diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__init__.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..040a3806b968f75b8d1a88ae37a4979fe83d466a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__init__.py @@ -0,0 +1,6 @@ +from . import calculus +# XXX: hack to set methods +from . import approximation +from . import differentiation +from . import extrapolation +from . import polynomials diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..10bb186c0e430e70d59c3f148729f855bf6a5063 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/approximation.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/approximation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0d2c16b482b4f65ee920335140534c64dd8df756 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/approximation.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/calculus.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/calculus.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e42dc59500f931d8f7fd64b13c0a40753e0f6e9c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/calculus.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/differentiation.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/differentiation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fd83563263454bcf6cd318e1354df6a6bb60cb88 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/differentiation.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/extrapolation.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/extrapolation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f937961d4d4349f0c05901f5d6906bee6ba878bb Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/extrapolation.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/inverselaplace.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/inverselaplace.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e1721e689c665671e4b74ed4ebae97f8d1e819d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/inverselaplace.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/odes.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/odes.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..89b9e577dc1da5d9a4914107c1240ef8a68023a1 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/odes.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/optimization.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/optimization.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..22b516271083ab97709e2851a589112fdfec2d0b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/optimization.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/polynomials.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/polynomials.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b754106a9e71b30681a2ce82376d181aa38fb25d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/polynomials.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/quadrature.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/quadrature.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50cff6515048b8eb0bab59188a9849993eaaeece Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/__pycache__/quadrature.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/approximation.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/approximation.py new file mode 100644 index 0000000000000000000000000000000000000000..7ca5cc598fb53491cb6ae4a41a40477c58544d53 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/approximation.py @@ -0,0 +1,246 @@ +from ..libmp.backend import xrange +from .calculus import defun + +#----------------------------------------------------------------------------# +# Approximation methods # +#----------------------------------------------------------------------------# + +# The Chebyshev approximation formula is given at: +# http://mathworld.wolfram.com/ChebyshevApproximationFormula.html + +# The only major changes in the following code is that we return the +# expanded polynomial coefficients instead of Chebyshev coefficients, +# and that we automatically transform [a,b] -> [-1,1] and back +# for convenience. + +# Coefficient in Chebyshev approximation +def chebcoeff(ctx,f,a,b,j,N): + s = ctx.mpf(0) + h = ctx.mpf(0.5) + for k in range(1, N+1): + t = ctx.cospi((k-h)/N) + s += f(t*(b-a)*h + (b+a)*h) * ctx.cospi(j*(k-h)/N) + return 2*s/N + +# Generate Chebyshev polynomials T_n(ax+b) in expanded form +def chebT(ctx, a=1, b=0): + Tb = [1] + yield Tb + Ta = [b, a] + while 1: + yield Ta + # Recurrence: T[n+1](ax+b) = 2*(ax+b)*T[n](ax+b) - T[n-1](ax+b) + Tmp = [0] + [2*a*t for t in Ta] + for i, c in enumerate(Ta): Tmp[i] += 2*b*c + for i, c in enumerate(Tb): Tmp[i] -= c + Ta, Tb = Tmp, Ta + +@defun +def chebyfit(ctx, f, interval, N, error=False): + r""" + Computes a polynomial of degree `N-1` that approximates the + given function `f` on the interval `[a, b]`. With ``error=True``, + :func:`~mpmath.chebyfit` also returns an accurate estimate of the + maximum absolute error; that is, the maximum value of + `|f(x) - P(x)|` for `x \in [a, b]`. + + :func:`~mpmath.chebyfit` uses the Chebyshev approximation formula, + which gives a nearly optimal solution: that is, the maximum + error of the approximating polynomial is very close to + the smallest possible for any polynomial of the same degree. + + Chebyshev approximation is very useful if one needs repeated + evaluation of an expensive function, such as function defined + implicitly by an integral or a differential equation. (For + example, it could be used to turn a slow mpmath function + into a fast machine-precision version of the same.) + + **Examples** + + Here we use :func:`~mpmath.chebyfit` to generate a low-degree approximation + of `f(x) = \cos(x)`, valid on the interval `[1, 2]`:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> poly, err = chebyfit(cos, [1, 2], 5, error=True) + >>> nprint(poly) + [0.00291682, 0.146166, -0.732491, 0.174141, 0.949553] + >>> nprint(err, 12) + 1.61351758081e-5 + + The polynomial can be evaluated using ``polyval``:: + + >>> nprint(polyval(poly, 1.6), 12) + -0.0291858904138 + >>> nprint(cos(1.6), 12) + -0.0291995223013 + + Sampling the true error at 1000 points shows that the error + estimate generated by ``chebyfit`` is remarkably good:: + + >>> error = lambda x: abs(cos(x) - polyval(poly, x)) + >>> nprint(max([error(1+n/1000.) for n in range(1000)]), 12) + 1.61349954245e-5 + + **Choice of degree** + + The degree `N` can be set arbitrarily high, to obtain an + arbitrarily good approximation. As a rule of thumb, an + `N`-term Chebyshev approximation is good to `N/(b-a)` decimal + places on a unit interval (although this depends on how + well-behaved `f` is). The cost grows accordingly: ``chebyfit`` + evaluates the function `(N^2)/2` times to compute the + coefficients and an additional `N` times to estimate the error. + + **Possible issues** + + One should be careful to use a sufficiently high working + precision both when calling ``chebyfit`` and when evaluating + the resulting polynomial, as the polynomial is sometimes + ill-conditioned. It is for example difficult to reach + 15-digit accuracy when evaluating the polynomial using + machine precision floats, no matter the theoretical + accuracy of the polynomial. (The option to return the + coefficients in Chebyshev form should be made available + in the future.) + + It is important to note the Chebyshev approximation works + poorly if `f` is not smooth. A function containing singularities, + rapid oscillation, etc can be approximated more effectively by + multiplying it by a weight function that cancels out the + nonsmooth features, or by dividing the interval into several + segments. + """ + a, b = ctx._as_points(interval) + orig = ctx.prec + try: + ctx.prec = orig + int(N**0.5) + 20 + c = [chebcoeff(ctx,f,a,b,k,N) for k in range(N)] + d = [ctx.zero] * N + d[0] = -c[0]/2 + h = ctx.mpf(0.5) + T = chebT(ctx, ctx.mpf(2)/(b-a), ctx.mpf(-1)*(b+a)/(b-a)) + for (k, Tk) in zip(range(N), T): + for i in range(len(Tk)): + d[i] += c[k]*Tk[i] + d = d[::-1] + # Estimate maximum error + err = ctx.zero + for k in range(N): + x = ctx.cos(ctx.pi*k/N) * (b-a)*h + (b+a)*h + err = max(err, abs(f(x) - ctx.polyval(d, x))) + finally: + ctx.prec = orig + if error: + return d, +err + else: + return d + +@defun +def fourier(ctx, f, interval, N): + r""" + Computes the Fourier series of degree `N` of the given function + on the interval `[a, b]`. More precisely, :func:`~mpmath.fourier` returns + two lists `(c, s)` of coefficients (the cosine series and sine + series, respectively), such that + + .. math :: + + f(x) \sim \sum_{k=0}^N + c_k \cos(k m x) + s_k \sin(k m x) + + where `m = 2 \pi / (b-a)`. + + Note that many texts define the first coefficient as `2 c_0` instead + of `c_0`. The easiest way to evaluate the computed series correctly + is to pass it to :func:`~mpmath.fourierval`. + + **Examples** + + The function `f(x) = x` has a simple Fourier series on the standard + interval `[-\pi, \pi]`. The cosine coefficients are all zero (because + the function has odd symmetry), and the sine coefficients are + rational numbers:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> c, s = fourier(lambda x: x, [-pi, pi], 5) + >>> nprint(c) + [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] + >>> nprint(s) + [0.0, 2.0, -1.0, 0.666667, -0.5, 0.4] + + This computes a Fourier series of a nonsymmetric function on + a nonstandard interval:: + + >>> I = [-1, 1.5] + >>> f = lambda x: x**2 - 4*x + 1 + >>> cs = fourier(f, I, 4) + >>> nprint(cs[0]) + [0.583333, 1.12479, -1.27552, 0.904708, -0.441296] + >>> nprint(cs[1]) + [0.0, -2.6255, 0.580905, 0.219974, -0.540057] + + It is instructive to plot a function along with its truncated + Fourier series:: + + >>> plot([f, lambda x: fourierval(cs, I, x)], I) #doctest: +SKIP + + Fourier series generally converge slowly (and may not converge + pointwise). For example, if `f(x) = \cosh(x)`, a 10-term Fourier + series gives an `L^2` error corresponding to 2-digit accuracy:: + + >>> I = [-1, 1] + >>> cs = fourier(cosh, I, 9) + >>> g = lambda x: (cosh(x) - fourierval(cs, I, x))**2 + >>> nprint(sqrt(quad(g, I))) + 0.00467963 + + :func:`~mpmath.fourier` uses numerical quadrature. For nonsmooth functions, + the accuracy (and speed) can be improved by including all singular + points in the interval specification:: + + >>> nprint(fourier(abs, [-1, 1], 0), 10) + ([0.5000441648], [0.0]) + >>> nprint(fourier(abs, [-1, 0, 1], 0), 10) + ([0.5], [0.0]) + + """ + interval = ctx._as_points(interval) + a = interval[0] + b = interval[-1] + L = b-a + cos_series = [] + sin_series = [] + cutoff = ctx.eps*10 + for n in xrange(N+1): + m = 2*n*ctx.pi/L + an = 2*ctx.quadgl(lambda t: f(t)*ctx.cos(m*t), interval)/L + bn = 2*ctx.quadgl(lambda t: f(t)*ctx.sin(m*t), interval)/L + if n == 0: + an /= 2 + if abs(an) < cutoff: an = ctx.zero + if abs(bn) < cutoff: bn = ctx.zero + cos_series.append(an) + sin_series.append(bn) + return cos_series, sin_series + +@defun +def fourierval(ctx, series, interval, x): + """ + Evaluates a Fourier series (in the format computed by + by :func:`~mpmath.fourier` for the given interval) at the point `x`. + + The series should be a pair `(c, s)` where `c` is the + cosine series and `s` is the sine series. The two lists + need not have the same length. + """ + cs, ss = series + ab = ctx._as_points(interval) + a = interval[0] + b = interval[-1] + m = 2*ctx.pi/(ab[-1]-ab[0]) + s = ctx.zero + s += ctx.fsum(cs[n]*ctx.cos(m*n*x) for n in xrange(len(cs)) if cs[n]) + s += ctx.fsum(ss[n]*ctx.sin(m*n*x) for n in xrange(len(ss)) if ss[n]) + return s diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/calculus.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/calculus.py new file mode 100644 index 0000000000000000000000000000000000000000..24256f121d6c07e5ce954f2a5f5024f156f64016 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/calculus.py @@ -0,0 +1,6 @@ +class CalculusMethods(object): + pass + +def defun(f): + setattr(CalculusMethods, f.__name__, f) + return f diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/differentiation.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/differentiation.py new file mode 100644 index 0000000000000000000000000000000000000000..f8186bebd4476476eded9e4b2f8dc3eb23ef5ff9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/differentiation.py @@ -0,0 +1,647 @@ +from ..libmp.backend import xrange +from .calculus import defun + +try: + iteritems = dict.iteritems +except AttributeError: + iteritems = dict.items + +#----------------------------------------------------------------------------# +# Differentiation # +#----------------------------------------------------------------------------# + +@defun +def difference(ctx, s, n): + r""" + Given a sequence `(s_k)` containing at least `n+1` items, returns the + `n`-th forward difference, + + .. math :: + + \Delta^n = \sum_{k=0}^{\infty} (-1)^{k+n} {n \choose k} s_k. + """ + n = int(n) + d = ctx.zero + b = (-1) ** (n & 1) + for k in xrange(n+1): + d += b * s[k] + b = (b * (k-n)) // (k+1) + return d + +def hsteps(ctx, f, x, n, prec, **options): + singular = options.get('singular') + addprec = options.get('addprec', 10) + direction = options.get('direction', 0) + workprec = (prec+2*addprec) * (n+1) + orig = ctx.prec + try: + ctx.prec = workprec + h = options.get('h') + if h is None: + if options.get('relative'): + hextramag = int(ctx.mag(x)) + else: + hextramag = 0 + h = ctx.ldexp(1, -prec-addprec-hextramag) + else: + h = ctx.convert(h) + # Directed: steps x, x+h, ... x+n*h + direction = options.get('direction', 0) + if direction: + h *= ctx.sign(direction) + steps = xrange(n+1) + norm = h + # Central: steps x-n*h, x-(n-2)*h ..., x, ..., x+(n-2)*h, x+n*h + else: + steps = xrange(-n, n+1, 2) + norm = (2*h) + # Perturb + if singular: + x += 0.5*h + values = [f(x+k*h) for k in steps] + return values, norm, workprec + finally: + ctx.prec = orig + + +@defun +def diff(ctx, f, x, n=1, **options): + r""" + Numerically computes the derivative of `f`, `f'(x)`, or generally for + an integer `n \ge 0`, the `n`-th derivative `f^{(n)}(x)`. + A few basic examples are:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> diff(lambda x: x**2 + x, 1.0) + 3.0 + >>> diff(lambda x: x**2 + x, 1.0, 2) + 2.0 + >>> diff(lambda x: x**2 + x, 1.0, 3) + 0.0 + >>> nprint([diff(exp, 3, n) for n in range(5)]) # exp'(x) = exp(x) + [20.0855, 20.0855, 20.0855, 20.0855, 20.0855] + + Even more generally, given a tuple of arguments `(x_1, \ldots, x_k)` + and order `(n_1, \ldots, n_k)`, the partial derivative + `f^{(n_1,\ldots,n_k)}(x_1,\ldots,x_k)` is evaluated. For example:: + + >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (0,1)) + 2.75 + >>> diff(lambda x,y: 3*x*y + 2*y - x, (0.25, 0.5), (1,1)) + 3.0 + + **Options** + + The following optional keyword arguments are recognized: + + ``method`` + Supported methods are ``'step'`` or ``'quad'``: derivatives may be + computed using either a finite difference with a small step + size `h` (default), or numerical quadrature. + ``direction`` + Direction of finite difference: can be -1 for a left + difference, 0 for a central difference (default), or +1 + for a right difference; more generally can be any complex number. + ``addprec`` + Extra precision for `h` used to account for the function's + sensitivity to perturbations (default = 10). + ``relative`` + Choose `h` relative to the magnitude of `x`, rather than an + absolute value; useful for large or tiny `x` (default = False). + ``h`` + As an alternative to ``addprec`` and ``relative``, manually + select the step size `h`. + ``singular`` + If True, evaluation exactly at the point `x` is avoided; this is + useful for differentiating functions with removable singularities. + Default = False. + ``radius`` + Radius of integration contour (with ``method = 'quad'``). + Default = 0.25. A larger radius typically is faster and more + accurate, but it must be chosen so that `f` has no + singularities within the radius from the evaluation point. + + A finite difference requires `n+1` function evaluations and must be + performed at `(n+1)` times the target precision. Accordingly, `f` must + support fast evaluation at high precision. + + With integration, a larger number of function evaluations is + required, but not much extra precision is required. For high order + derivatives, this method may thus be faster if f is very expensive to + evaluate at high precision. + + **Further examples** + + The direction option is useful for computing left- or right-sided + derivatives of nonsmooth functions:: + + >>> diff(abs, 0, direction=0) + 0.0 + >>> diff(abs, 0, direction=1) + 1.0 + >>> diff(abs, 0, direction=-1) + -1.0 + + More generally, if the direction is nonzero, a right difference + is computed where the step size is multiplied by sign(direction). + For example, with direction=+j, the derivative from the positive + imaginary direction will be computed:: + + >>> diff(abs, 0, direction=j) + (0.0 - 1.0j) + + With integration, the result may have a small imaginary part + even even if the result is purely real:: + + >>> diff(sqrt, 1, method='quad') # doctest:+ELLIPSIS + (0.5 - 4.59...e-26j) + >>> chop(_) + 0.5 + + Adding precision to obtain an accurate value:: + + >>> diff(cos, 1e-30) + 0.0 + >>> diff(cos, 1e-30, h=0.0001) + -9.99999998328279e-31 + >>> diff(cos, 1e-30, addprec=100) + -1.0e-30 + + """ + partial = False + try: + orders = list(n) + x = list(x) + partial = True + except TypeError: + pass + if partial: + x = [ctx.convert(_) for _ in x] + return _partial_diff(ctx, f, x, orders, options) + method = options.get('method', 'step') + if n == 0 and method != 'quad' and not options.get('singular'): + return f(ctx.convert(x)) + prec = ctx.prec + try: + if method == 'step': + values, norm, workprec = hsteps(ctx, f, x, n, prec, **options) + ctx.prec = workprec + v = ctx.difference(values, n) / norm**n + elif method == 'quad': + ctx.prec += 10 + radius = ctx.convert(options.get('radius', 0.25)) + def g(t): + rei = radius*ctx.expj(t) + z = x + rei + return f(z) / rei**n + d = ctx.quadts(g, [0, 2*ctx.pi]) + v = d * ctx.factorial(n) / (2*ctx.pi) + else: + raise ValueError("unknown method: %r" % method) + finally: + ctx.prec = prec + return +v + +def _partial_diff(ctx, f, xs, orders, options): + if not orders: + return f() + if not sum(orders): + return f(*xs) + i = 0 + for i in range(len(orders)): + if orders[i]: + break + order = orders[i] + def fdiff_inner(*f_args): + def inner(t): + return f(*(f_args[:i] + (t,) + f_args[i+1:])) + return ctx.diff(inner, f_args[i], order, **options) + orders[i] = 0 + return _partial_diff(ctx, fdiff_inner, xs, orders, options) + +@defun +def diffs(ctx, f, x, n=None, **options): + r""" + Returns a generator that yields the sequence of derivatives + + .. math :: + + f(x), f'(x), f''(x), \ldots, f^{(k)}(x), \ldots + + With ``method='step'``, :func:`~mpmath.diffs` uses only `O(k)` + function evaluations to generate the first `k` derivatives, + rather than the roughly `O(k^2)` evaluations + required if one calls :func:`~mpmath.diff` `k` separate times. + + With `n < \infty`, the generator stops as soon as the + `n`-th derivative has been generated. If the exact number of + needed derivatives is known in advance, this is further + slightly more efficient. + + Options are the same as for :func:`~mpmath.diff`. + + **Examples** + + >>> from mpmath import * + >>> mp.dps = 15 + >>> nprint(list(diffs(cos, 1, 5))) + [0.540302, -0.841471, -0.540302, 0.841471, 0.540302, -0.841471] + >>> for i, d in zip(range(6), diffs(cos, 1)): + ... print("%s %s" % (i, d)) + ... + 0 0.54030230586814 + 1 -0.841470984807897 + 2 -0.54030230586814 + 3 0.841470984807897 + 4 0.54030230586814 + 5 -0.841470984807897 + + """ + if n is None: + n = ctx.inf + else: + n = int(n) + if options.get('method', 'step') != 'step': + k = 0 + while k < n + 1: + yield ctx.diff(f, x, k, **options) + k += 1 + return + singular = options.get('singular') + if singular: + yield ctx.diff(f, x, 0, singular=True) + else: + yield f(ctx.convert(x)) + if n < 1: + return + if n == ctx.inf: + A, B = 1, 2 + else: + A, B = 1, n+1 + while 1: + callprec = ctx.prec + y, norm, workprec = hsteps(ctx, f, x, B, callprec, **options) + for k in xrange(A, B): + try: + ctx.prec = workprec + d = ctx.difference(y, k) / norm**k + finally: + ctx.prec = callprec + yield +d + if k >= n: + return + A, B = B, int(A*1.4+1) + B = min(B, n) + +def iterable_to_function(gen): + gen = iter(gen) + data = [] + def f(k): + for i in xrange(len(data), k+1): + data.append(next(gen)) + return data[k] + return f + +@defun +def diffs_prod(ctx, factors): + r""" + Given a list of `N` iterables or generators yielding + `f_k(x), f'_k(x), f''_k(x), \ldots` for `k = 1, \ldots, N`, + generate `g(x), g'(x), g''(x), \ldots` where + `g(x) = f_1(x) f_2(x) \cdots f_N(x)`. + + At high precision and for large orders, this is typically more efficient + than numerical differentiation if the derivatives of each `f_k(x)` + admit direct computation. + + Note: This function does not increase the working precision internally, + so guard digits may have to be added externally for full accuracy. + + **Examples** + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> f = lambda x: exp(x)*cos(x)*sin(x) + >>> u = diffs(f, 1) + >>> v = mp.diffs_prod([diffs(exp,1), diffs(cos,1), diffs(sin,1)]) + >>> next(u); next(v) + 1.23586333600241 + 1.23586333600241 + >>> next(u); next(v) + 0.104658952245596 + 0.104658952245596 + >>> next(u); next(v) + -5.96999877552086 + -5.96999877552086 + >>> next(u); next(v) + -12.4632923122697 + -12.4632923122697 + + """ + N = len(factors) + if N == 1: + for c in factors[0]: + yield c + else: + u = iterable_to_function(ctx.diffs_prod(factors[:N//2])) + v = iterable_to_function(ctx.diffs_prod(factors[N//2:])) + n = 0 + while 1: + #yield sum(binomial(n,k)*u(n-k)*v(k) for k in xrange(n+1)) + s = u(n) * v(0) + a = 1 + for k in xrange(1,n+1): + a = a * (n-k+1) // k + s += a * u(n-k) * v(k) + yield s + n += 1 + +def dpoly(n, _cache={}): + """ + nth differentiation polynomial for exp (Faa di Bruno's formula). + + TODO: most exponents are zero, so maybe a sparse representation + would be better. + """ + if n in _cache: + return _cache[n] + if not _cache: + _cache[0] = {(0,):1} + R = dpoly(n-1) + R = dict((c+(0,),v) for (c,v) in iteritems(R)) + Ra = {} + for powers, count in iteritems(R): + powers1 = (powers[0]+1,) + powers[1:] + if powers1 in Ra: + Ra[powers1] += count + else: + Ra[powers1] = count + for powers, count in iteritems(R): + if not sum(powers): + continue + for k,p in enumerate(powers): + if p: + powers2 = powers[:k] + (p-1,powers[k+1]+1) + powers[k+2:] + if powers2 in Ra: + Ra[powers2] += p*count + else: + Ra[powers2] = p*count + _cache[n] = Ra + return _cache[n] + +@defun +def diffs_exp(ctx, fdiffs): + r""" + Given an iterable or generator yielding `f(x), f'(x), f''(x), \ldots` + generate `g(x), g'(x), g''(x), \ldots` where `g(x) = \exp(f(x))`. + + At high precision and for large orders, this is typically more efficient + than numerical differentiation if the derivatives of `f(x)` + admit direct computation. + + Note: This function does not increase the working precision internally, + so guard digits may have to be added externally for full accuracy. + + **Examples** + + The derivatives of the gamma function can be computed using + logarithmic differentiation:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> + >>> def diffs_loggamma(x): + ... yield loggamma(x) + ... i = 0 + ... while 1: + ... yield psi(i,x) + ... i += 1 + ... + >>> u = diffs_exp(diffs_loggamma(3)) + >>> v = diffs(gamma, 3) + >>> next(u); next(v) + 2.0 + 2.0 + >>> next(u); next(v) + 1.84556867019693 + 1.84556867019693 + >>> next(u); next(v) + 2.49292999190269 + 2.49292999190269 + >>> next(u); next(v) + 3.44996501352367 + 3.44996501352367 + + """ + fn = iterable_to_function(fdiffs) + f0 = ctx.exp(fn(0)) + yield f0 + i = 1 + while 1: + s = ctx.mpf(0) + for powers, c in iteritems(dpoly(i)): + s += c*ctx.fprod(fn(k+1)**p for (k,p) in enumerate(powers) if p) + yield s * f0 + i += 1 + +@defun +def differint(ctx, f, x, n=1, x0=0): + r""" + Calculates the Riemann-Liouville differintegral, or fractional + derivative, defined by + + .. math :: + + \,_{x_0}{\mathbb{D}}^n_xf(x) = \frac{1}{\Gamma(m-n)} \frac{d^m}{dx^m} + \int_{x_0}^{x}(x-t)^{m-n-1}f(t)dt + + where `f` is a given (presumably well-behaved) function, + `x` is the evaluation point, `n` is the order, and `x_0` is + the reference point of integration (`m` is an arbitrary + parameter selected automatically). + + With `n = 1`, this is just the standard derivative `f'(x)`; with `n = 2`, + the second derivative `f''(x)`, etc. With `n = -1`, it gives + `\int_{x_0}^x f(t) dt`, with `n = -2` + it gives `\int_{x_0}^x \left( \int_{x_0}^t f(u) du \right) dt`, etc. + + As `n` is permitted to be any number, this operator generalizes + iterated differentiation and iterated integration to a single + operator with a continuous order parameter. + + **Examples** + + There is an exact formula for the fractional derivative of a + monomial `x^p`, which may be used as a reference. For example, + the following gives a half-derivative (order 0.5):: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> x = mpf(3); p = 2; n = 0.5 + >>> differint(lambda t: t**p, x, n) + 7.81764019044672 + >>> gamma(p+1)/gamma(p-n+1) * x**(p-n) + 7.81764019044672 + + Another useful test function is the exponential function, whose + integration / differentiation formula easy generalizes + to arbitrary order. Here we first compute a third derivative, + and then a triply nested integral. (The reference point `x_0` + is set to `-\infty` to avoid nonzero endpoint terms.):: + + >>> differint(lambda x: exp(pi*x), -1.5, 3) + 0.278538406900792 + >>> exp(pi*-1.5) * pi**3 + 0.278538406900792 + >>> differint(lambda x: exp(pi*x), 3.5, -3, -inf) + 1922.50563031149 + >>> exp(pi*3.5) / pi**3 + 1922.50563031149 + + However, for noninteger `n`, the differentiation formula for the + exponential function must be modified to give the same result as the + Riemann-Liouville differintegral:: + + >>> x = mpf(3.5) + >>> c = pi + >>> n = 1+2*j + >>> differint(lambda x: exp(c*x), x, n) + (-123295.005390743 + 140955.117867654j) + >>> x**(-n) * exp(c)**x * (x*c)**n * gammainc(-n, 0, x*c) / gamma(-n) + (-123295.005390743 + 140955.117867654j) + + + """ + m = max(int(ctx.ceil(ctx.re(n)))+1, 1) + r = m-n-1 + g = lambda x: ctx.quad(lambda t: (x-t)**r * f(t), [x0, x]) + return ctx.diff(g, x, m) / ctx.gamma(m-n) + +@defun +def diffun(ctx, f, n=1, **options): + r""" + Given a function `f`, returns a function `g(x)` that evaluates the nth + derivative `f^{(n)}(x)`:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> cos2 = diffun(sin) + >>> sin2 = diffun(sin, 4) + >>> cos(1.3), cos2(1.3) + (0.267498828624587, 0.267498828624587) + >>> sin(1.3), sin2(1.3) + (0.963558185417193, 0.963558185417193) + + The function `f` must support arbitrary precision evaluation. + See :func:`~mpmath.diff` for additional details and supported + keyword options. + """ + if n == 0: + return f + def g(x): + return ctx.diff(f, x, n, **options) + return g + +@defun +def taylor(ctx, f, x, n, **options): + r""" + Produces a degree-`n` Taylor polynomial around the point `x` of the + given function `f`. The coefficients are returned as a list. + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> nprint(chop(taylor(sin, 0, 5))) + [0.0, 1.0, 0.0, -0.166667, 0.0, 0.00833333] + + The coefficients are computed using high-order numerical + differentiation. The function must be possible to evaluate + to arbitrary precision. See :func:`~mpmath.diff` for additional details + and supported keyword options. + + Note that to evaluate the Taylor polynomial as an approximation + of `f`, e.g. with :func:`~mpmath.polyval`, the coefficients must be reversed, + and the point of the Taylor expansion must be subtracted from + the argument: + + >>> p = taylor(exp, 2.0, 10) + >>> polyval(p[::-1], 2.5 - 2.0) + 12.1824939606092 + >>> exp(2.5) + 12.1824939607035 + + """ + gen = enumerate(ctx.diffs(f, x, n, **options)) + if options.get("chop", True): + return [ctx.chop(d)/ctx.factorial(i) for i, d in gen] + else: + return [d/ctx.factorial(i) for i, d in gen] + +@defun +def pade(ctx, a, L, M): + r""" + Computes a Pade approximation of degree `(L, M)` to a function. + Given at least `L+M+1` Taylor coefficients `a` approximating + a function `A(x)`, :func:`~mpmath.pade` returns coefficients of + polynomials `P, Q` satisfying + + .. math :: + + P = \sum_{k=0}^L p_k x^k + + Q = \sum_{k=0}^M q_k x^k + + Q_0 = 1 + + A(x) Q(x) = P(x) + O(x^{L+M+1}) + + `P(x)/Q(x)` can provide a good approximation to an analytic function + beyond the radius of convergence of its Taylor series (example + from G.A. Baker 'Essentials of Pade Approximants' Academic Press, + Ch.1A):: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> one = mpf(1) + >>> def f(x): + ... return sqrt((one + 2*x)/(one + x)) + ... + >>> a = taylor(f, 0, 6) + >>> p, q = pade(a, 3, 3) + >>> x = 10 + >>> polyval(p[::-1], x)/polyval(q[::-1], x) + 1.38169105566806 + >>> f(x) + 1.38169855941551 + + """ + # To determine L+1 coefficients of P and M coefficients of Q + # L+M+1 coefficients of A must be provided + if len(a) < L+M+1: + raise ValueError("L+M+1 Coefficients should be provided") + + if M == 0: + if L == 0: + return [ctx.one], [ctx.one] + else: + return a[:L+1], [ctx.one] + + # Solve first + # a[L]*q[1] + ... + a[L-M+1]*q[M] = -a[L+1] + # ... + # a[L+M-1]*q[1] + ... + a[L]*q[M] = -a[L+M] + A = ctx.matrix(M) + for j in range(M): + for i in range(min(M, L+j+1)): + A[j, i] = a[L+j-i] + v = -ctx.matrix(a[(L+1):(L+M+1)]) + x = ctx.lu_solve(A, v) + q = [ctx.one] + list(x) + # compute p + p = [0]*(L+1) + for i in range(L+1): + s = a[i] + for j in range(1, min(M,i) + 1): + s += q[j]*a[i-j] + p[i] = s + return p, q diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/extrapolation.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/extrapolation.py new file mode 100644 index 0000000000000000000000000000000000000000..7df0fea3c62c9b71ee24d3f39fd9b7fd3318ed23 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/extrapolation.py @@ -0,0 +1,2115 @@ +try: + from itertools import izip +except ImportError: + izip = zip + +from ..libmp.backend import xrange +from .calculus import defun + +try: + next = next +except NameError: + next = lambda _: _.next() + +@defun +def richardson(ctx, seq): + r""" + Given a list ``seq`` of the first `N` elements of a slowly convergent + infinite sequence, :func:`~mpmath.richardson` computes the `N`-term + Richardson extrapolate for the limit. + + :func:`~mpmath.richardson` returns `(v, c)` where `v` is the estimated + limit and `c` is the magnitude of the largest weight used during the + computation. The weight provides an estimate of the precision + lost to cancellation. Due to cancellation effects, the sequence must + be typically be computed at a much higher precision than the target + accuracy of the extrapolation. + + **Applicability and issues** + + The `N`-step Richardson extrapolation algorithm used by + :func:`~mpmath.richardson` is described in [1]. + + Richardson extrapolation only works for a specific type of sequence, + namely one converging like partial sums of + `P(1)/Q(1) + P(2)/Q(2) + \ldots` where `P` and `Q` are polynomials. + When the sequence does not convergence at such a rate + :func:`~mpmath.richardson` generally produces garbage. + + Richardson extrapolation has the advantage of being fast: the `N`-term + extrapolate requires only `O(N)` arithmetic operations, and usually + produces an estimate that is accurate to `O(N)` digits. Contrast with + the Shanks transformation (see :func:`~mpmath.shanks`), which requires + `O(N^2)` operations. + + :func:`~mpmath.richardson` is unable to produce an estimate for the + approximation error. One way to estimate the error is to perform + two extrapolations with slightly different `N` and comparing the + results. + + Richardson extrapolation does not work for oscillating sequences. + As a simple workaround, :func:`~mpmath.richardson` detects if the last + three elements do not differ monotonically, and in that case + applies extrapolation only to the even-index elements. + + **Example** + + Applying Richardson extrapolation to the Leibniz series for `\pi`:: + + >>> from mpmath import * + >>> mp.dps = 30; mp.pretty = True + >>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m)) + ... for m in range(1,30)] + >>> v, c = richardson(S[:10]) + >>> v + 3.2126984126984126984126984127 + >>> nprint([v-pi, c]) + [0.0711058, 2.0] + + >>> v, c = richardson(S[:30]) + >>> v + 3.14159265468624052829954206226 + >>> nprint([v-pi, c]) + [1.09645e-9, 20833.3] + + **References** + + 1. [BenderOrszag]_ pp. 375-376 + + """ + if len(seq) < 3: + raise ValueError("seq should be of minimum length 3") + if ctx.sign(seq[-1]-seq[-2]) != ctx.sign(seq[-2]-seq[-3]): + seq = seq[::2] + N = len(seq)//2-1 + s = ctx.zero + # The general weight is c[k] = (N+k)**N * (-1)**(k+N) / k! / (N-k)! + # To avoid repeated factorials, we simplify the quotient + # of successive weights to obtain a recurrence relation + c = (-1)**N * N**N / ctx.mpf(ctx._ifac(N)) + maxc = 1 + for k in xrange(N+1): + s += c * seq[N+k] + maxc = max(abs(c), maxc) + c *= (k-N)*ctx.mpf(k+N+1)**N + c /= ((1+k)*ctx.mpf(k+N)**N) + return s, maxc + +@defun +def shanks(ctx, seq, table=None, randomized=False): + r""" + Given a list ``seq`` of the first `N` elements of a slowly + convergent infinite sequence `(A_k)`, :func:`~mpmath.shanks` computes the iterated + Shanks transformation `S(A), S(S(A)), \ldots, S^{N/2}(A)`. The Shanks + transformation often provides strong convergence acceleration, + especially if the sequence is oscillating. + + The iterated Shanks transformation is computed using the Wynn + epsilon algorithm (see [1]). :func:`~mpmath.shanks` returns the full + epsilon table generated by Wynn's algorithm, which can be read + off as follows: + + * The table is a list of lists forming a lower triangular matrix, + where higher row and column indices correspond to more accurate + values. + * The columns with even index hold dummy entries (required for the + computation) and the columns with odd index hold the actual + extrapolates. + * The last element in the last row is typically the most + accurate estimate of the limit. + * The difference to the third last element in the last row + provides an estimate of the approximation error. + * The magnitude of the second last element provides an estimate + of the numerical accuracy lost to cancellation. + + For convenience, so the extrapolation is stopped at an odd index + so that ``shanks(seq)[-1][-1]`` always gives an estimate of the + limit. + + Optionally, an existing table can be passed to :func:`~mpmath.shanks`. + This can be used to efficiently extend a previous computation after + new elements have been appended to the sequence. The table will + then be updated in-place. + + **The Shanks transformation** + + The Shanks transformation is defined as follows (see [2]): given + the input sequence `(A_0, A_1, \ldots)`, the transformed sequence is + given by + + .. math :: + + S(A_k) = \frac{A_{k+1}A_{k-1}-A_k^2}{A_{k+1}+A_{k-1}-2 A_k} + + The Shanks transformation gives the exact limit `A_{\infty}` in a + single step if `A_k = A + a q^k`. Note in particular that it + extrapolates the exact sum of a geometric series in a single step. + + Applying the Shanks transformation once often improves convergence + substantially for an arbitrary sequence, but the optimal effect is + obtained by applying it iteratively: + `S(S(A_k)), S(S(S(A_k))), \ldots`. + + Wynn's epsilon algorithm provides an efficient way to generate + the table of iterated Shanks transformations. It reduces the + computation of each element to essentially a single division, at + the cost of requiring dummy elements in the table. See [1] for + details. + + **Precision issues** + + Due to cancellation effects, the sequence must be typically be + computed at a much higher precision than the target accuracy + of the extrapolation. + + If the Shanks transformation converges to the exact limit (such + as if the sequence is a geometric series), then a division by + zero occurs. By default, :func:`~mpmath.shanks` handles this case by + terminating the iteration and returning the table it has + generated so far. With *randomized=True*, it will instead + replace the zero by a pseudorandom number close to zero. + (TODO: find a better solution to this problem.) + + **Examples** + + We illustrate by applying Shanks transformation to the Leibniz + series for `\pi`:: + + >>> from mpmath import * + >>> mp.dps = 50 + >>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m)) + ... for m in range(1,30)] + >>> + >>> T = shanks(S[:7]) + >>> for row in T: + ... nprint(row) + ... + [-0.75] + [1.25, 3.16667] + [-1.75, 3.13333, -28.75] + [2.25, 3.14524, 82.25, 3.14234] + [-2.75, 3.13968, -177.75, 3.14139, -969.937] + [3.25, 3.14271, 327.25, 3.14166, 3515.06, 3.14161] + + The extrapolated accuracy is about 4 digits, and about 4 digits + may have been lost due to cancellation:: + + >>> L = T[-1] + >>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])]) + [2.22532e-5, 4.78309e-5, 3515.06] + + Now we extend the computation:: + + >>> T = shanks(S[:25], T) + >>> L = T[-1] + >>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])]) + [3.75527e-19, 1.48478e-19, 2.96014e+17] + + The value for pi is now accurate to 18 digits. About 18 digits may + also have been lost to cancellation. + + Here is an example with a geometric series, where the convergence + is immediate (the sum is exactly 1):: + + >>> mp.dps = 15 + >>> for row in shanks([0.5, 0.75, 0.875, 0.9375, 0.96875]): + ... nprint(row) + [4.0] + [8.0, 1.0] + + **References** + + 1. [GravesMorris]_ + + 2. [BenderOrszag]_ pp. 368-375 + + """ + if len(seq) < 2: + raise ValueError("seq should be of minimum length 2") + if table: + START = len(table) + else: + START = 0 + table = [] + STOP = len(seq) - 1 + if STOP & 1: + STOP -= 1 + one = ctx.one + eps = +ctx.eps + if randomized: + from random import Random + rnd = Random() + rnd.seed(START) + for i in xrange(START, STOP): + row = [] + for j in xrange(i+1): + if j == 0: + a, b = 0, seq[i+1]-seq[i] + else: + if j == 1: + a = seq[i] + else: + a = table[i-1][j-2] + b = row[j-1] - table[i-1][j-1] + if not b: + if randomized: + b = (1 + rnd.getrandbits(10))*eps + elif i & 1: + return table[:-1] + else: + return table + row.append(a + one/b) + table.append(row) + return table + + +class levin_class: + # levin: Copyright 2013 Timo Hartmann (thartmann15 at gmail.com) + r""" + This interface implements Levin's (nonlinear) sequence transformation for + convergence acceleration and summation of divergent series. It performs + better than the Shanks/Wynn-epsilon algorithm for logarithmic convergent + or alternating divergent series. + + Let *A* be the series we want to sum: + + .. math :: + + A = \sum_{k=0}^{\infty} a_k + + Attention: all `a_k` must be non-zero! + + Let `s_n` be the partial sums of this series: + + .. math :: + + s_n = \sum_{k=0}^n a_k. + + **Methods** + + Calling ``levin`` returns an object with the following methods. + + ``update(...)`` works with the list of individual terms `a_k` of *A*, and + ``update_step(...)`` works with the list of partial sums `s_k` of *A*: + + .. code :: + + v, e = ...update([a_0, a_1,..., a_k]) + v, e = ...update_psum([s_0, s_1,..., s_k]) + + ``step(...)`` works with the individual terms `a_k` and ``step_psum(...)`` + works with the partial sums `s_k`: + + .. code :: + + v, e = ...step(a_k) + v, e = ...step_psum(s_k) + + *v* is the current estimate for *A*, and *e* is an error estimate which is + simply the difference between the current estimate and the last estimate. + One should not mix ``update``, ``update_psum``, ``step`` and ``step_psum``. + + **A word of caution** + + One can only hope for good results (i.e. convergence acceleration or + resummation) if the `s_n` have some well defind asymptotic behavior for + large `n` and are not erratic or random. Furthermore one usually needs very + high working precision because of the numerical cancellation. If the working + precision is insufficient, levin may produce silently numerical garbage. + Furthermore even if the Levin-transformation converges, in the general case + there is no proof that the result is mathematically sound. Only for very + special classes of problems one can prove that the Levin-transformation + converges to the expected result (for example Stieltjes-type integrals). + Furthermore the Levin-transform is quite expensive (i.e. slow) in comparison + to Shanks/Wynn-epsilon, Richardson & co. + In summary one can say that the Levin-transformation is powerful but + unreliable and that it may need a copious amount of working precision. + + The Levin transform has several variants differing in the choice of weights. + Some variants are better suited for the possible flavours of convergence + behaviour of *A* than other variants: + + .. code :: + + convergence behaviour levin-u levin-t levin-v shanks/wynn-epsilon + + logarithmic + - + - + linear + + + + + alternating divergent + + + + + + "+" means the variant is suitable,"-" means the variant is not suitable; + for comparison the Shanks/Wynn-epsilon transform is listed, too. + + The variant is controlled though the variant keyword (i.e. ``variant="u"``, + ``variant="t"`` or ``variant="v"``). Overall "u" is probably the best choice. + + Finally it is possible to use the Sidi-S transform instead of the Levin transform + by using the keyword ``method='sidi'``. The Sidi-S transform works better than the + Levin transformation for some divergent series (see the examples). + + Parameters: + + .. code :: + + method "levin" or "sidi" chooses either the Levin or the Sidi-S transformation + variant "u","t" or "v" chooses the weight variant. + + The Levin transform is also accessible through the nsum interface. + ``method="l"`` or ``method="levin"`` select the normal Levin transform while + ``method="sidi"`` + selects the Sidi-S transform. The variant is in both cases selected through the + levin_variant keyword. The stepsize in :func:`~mpmath.nsum` must not be chosen too large, otherwise + it will miss the point where the Levin transform converges resulting in numerical + overflow/garbage. For highly divergent series a copious amount of working precision + must be chosen. + + **Examples** + + First we sum the zeta function:: + + >>> from mpmath import mp + >>> mp.prec = 53 + >>> eps = mp.mpf(mp.eps) + >>> with mp.extraprec(2 * mp.prec): # levin needs a high working precision + ... L = mp.levin(method = "levin", variant = "u") + ... S, s, n = [], 0, 1 + ... while 1: + ... s += mp.one / (n * n) + ... n += 1 + ... S.append(s) + ... v, e = L.update_psum(S) + ... if e < eps: + ... break + ... if n > 1000: raise RuntimeError("iteration limit exceeded") + >>> print(mp.chop(v - mp.pi ** 2 / 6)) + 0.0 + >>> w = mp.nsum(lambda n: 1 / (n*n), [1, mp.inf], method = "levin", levin_variant = "u") + >>> print(mp.chop(v - w)) + 0.0 + + Now we sum the zeta function outside its range of convergence + (attention: This does not work at the negative integers!):: + + >>> eps = mp.mpf(mp.eps) + >>> with mp.extraprec(2 * mp.prec): # levin needs a high working precision + ... L = mp.levin(method = "levin", variant = "v") + ... A, n = [], 1 + ... while 1: + ... s = mp.mpf(n) ** (2 + 3j) + ... n += 1 + ... A.append(s) + ... v, e = L.update(A) + ... if e < eps: + ... break + ... if n > 1000: raise RuntimeError("iteration limit exceeded") + >>> print(mp.chop(v - mp.zeta(-2-3j))) + 0.0 + >>> w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v") + >>> print(mp.chop(v - w)) + 0.0 + + Now we sum the divergent asymptotic expansion of an integral related to the + exponential integral (see also [2] p.373). The Sidi-S transform works best here:: + + >>> z = mp.mpf(10) + >>> exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf]) + >>> # exact = z * mp.exp(z) * mp.expint(1,z) # this is the symbolic expression for the integral + >>> eps = mp.mpf(mp.eps) + >>> with mp.extraprec(2 * mp.prec): # high working precisions are mandatory for divergent resummation + ... L = mp.levin(method = "sidi", variant = "t") + ... n = 0 + ... while 1: + ... s = (-1)**n * mp.fac(n) * z ** (-n) + ... v, e = L.step(s) + ... n += 1 + ... if e < eps: + ... break + ... if n > 1000: raise RuntimeError("iteration limit exceeded") + >>> print(mp.chop(v - exact)) + 0.0 + >>> w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t") + >>> print(mp.chop(v - w)) + 0.0 + + Another highly divergent integral is also summable:: + + >>> z = mp.mpf(2) + >>> eps = mp.mpf(mp.eps) + >>> exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi) + >>> # exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi)) # this is the symbolic expression for the integral + >>> with mp.extraprec(7 * mp.prec): # we need copious amount of precision to sum this highly divergent series + ... L = mp.levin(method = "levin", variant = "t") + ... n, s = 0, 0 + ... while 1: + ... s += (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)) + ... n += 1 + ... v, e = L.step_psum(s) + ... if e < eps: + ... break + ... if n > 1000: raise RuntimeError("iteration limit exceeded") + >>> print(mp.chop(v - exact)) + 0.0 + >>> w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)), + ... [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)]) + >>> print(mp.chop(v - w)) + 0.0 + + These examples run with 15-20 decimal digits precision. For higher precision the + working precision must be raised. + + **Examples for nsum** + + Here we calculate Euler's constant as the constant term in the Laurent + expansion of `\zeta(s)` at `s=1`. This sum converges extremly slowly because of + the logarithmic convergence behaviour of the Dirichlet series for zeta:: + + >>> mp.dps = 30 + >>> z = mp.mpf(10) ** (-10) + >>> a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "l") - 1 / z + >>> print(mp.chop(a - mp.euler, tol = 1e-10)) + 0.0 + + The Sidi-S transform performs excellently for the alternating series of `\log(2)`:: + + >>> a = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "sidi") + >>> print(mp.chop(a - mp.log(2))) + 0.0 + + Hypergeometric series can also be summed outside their range of convergence. + The stepsize in :func:`~mpmath.nsum` must not be chosen too large, otherwise it will miss the + point where the Levin transform converges resulting in numerical overflow/garbage:: + + >>> z = 2 + 1j + >>> exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z) + >>> f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n)) + >>> v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)]) + >>> print(mp.chop(exact-v)) + 0.0 + + References: + + [1] E.J. Weniger - "Nonlinear Sequence Transformations for the Acceleration of + Convergence and the Summation of Divergent Series" arXiv:math/0306302 + + [2] A. Sidi - "Pratical Extrapolation Methods" + + [3] H.H.H. Homeier - "Scalar Levin-Type Sequence Transformations" arXiv:math/0005209 + + """ + + def __init__(self, method = "levin", variant = "u"): + self.variant = variant + self.n = 0 + self.a0 = 0 + self.theta = 1 + self.A = [] + self.B = [] + self.last = 0 + self.last_s = False + + if method == "levin": + self.factor = self.factor_levin + elif method == "sidi": + self.factor = self.factor_sidi + else: + raise ValueError("levin: unknown method \"%s\"" % method) + + def factor_levin(self, i): + # original levin + # [1] p.50,e.7.5-7 (with n-j replaced by i) + return (self.theta + i) * (self.theta + self.n - 1) ** (self.n - i - 2) / self.ctx.mpf(self.theta + self.n) ** (self.n - i - 1) + + def factor_sidi(self, i): + # sidi analogon to levin (factorial series) + # [1] p.59,e.8.3-16 (with n-j replaced by i) + return (self.theta + self.n - 1) * (self.theta + self.n - 2) / self.ctx.mpf((self.theta + 2 * self.n - i - 2) * (self.theta + 2 * self.n - i - 3)) + + def run(self, s, a0, a1 = 0): + if self.variant=="t": + # levin t + w=a0 + elif self.variant=="u": + # levin u + w=a0*(self.theta+self.n) + elif self.variant=="v": + # levin v + w=a0*a1/(a0-a1) + else: + assert False, "unknown variant" + + if w==0: + raise ValueError("levin: zero weight") + + self.A.append(s/w) + self.B.append(1/w) + + for i in range(self.n-1,-1,-1): + if i==self.n-1: + f=1 + else: + f=self.factor(i) + + self.A[i]=self.A[i+1]-f*self.A[i] + self.B[i]=self.B[i+1]-f*self.B[i] + + self.n+=1 + + ########################################################################### + + def update_psum(self,S): + """ + This routine applies the convergence acceleration to the list of partial sums. + + A = sum(a_k, k = 0..infinity) + s_n = sum(a_k, k = 0..n) + + v, e = ...update_psum([s_0, s_1,..., s_k]) + + output: + v current estimate of the series A + e an error estimate which is simply the difference between the current + estimate and the last estimate. + """ + + if self.variant!="v": + if self.n==0: + self.run(S[0],S[0]) + while self.n>> from mpmath import mp + >>> AC = mp.cohen_alt() + >>> S, s, n = [], 0, 1 + >>> while 1: + ... s += -((-1) ** n) * mp.one / (n * n) + ... n += 1 + ... S.append(s) + ... v, e = AC.update_psum(S) + ... if e < mp.eps: + ... break + ... if n > 1000: raise RuntimeError("iteration limit exceeded") + >>> print(mp.chop(v - mp.pi ** 2 / 12)) + 0.0 + + Here we compute the product `\prod_{n=1}^{\infty} \Gamma(1+1/(2n-1)) / \Gamma(1+1/(2n))`:: + + >>> A = [] + >>> AC = mp.cohen_alt() + >>> n = 1 + >>> while 1: + ... A.append( mp.loggamma(1 + mp.one / (2 * n - 1))) + ... A.append(-mp.loggamma(1 + mp.one / (2 * n))) + ... n += 1 + ... v, e = AC.update(A) + ... if e < mp.eps: + ... break + ... if n > 1000: raise RuntimeError("iteration limit exceeded") + >>> v = mp.exp(v) + >>> print(mp.chop(v - 1.06215090557106, tol = 1e-12)) + 0.0 + + ``cohen_alt`` is also accessible through the :func:`~mpmath.nsum` interface:: + + >>> v = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "a") + >>> print(mp.chop(v - mp.log(2))) + 0.0 + >>> v = mp.nsum(lambda n: (-1)**n / (2 * n + 1), [0, mp.inf], method = "a") + >>> print(mp.chop(v - mp.pi / 4)) + 0.0 + >>> v = mp.nsum(lambda n: (-1)**n * mp.log(n) * n, [1, mp.inf], method = "a") + >>> print(mp.chop(v - mp.diff(lambda s: mp.altzeta(s), -1))) + 0.0 + + """ + + def __init__(self): + self.last=0 + + def update(self, A): + """ + This routine applies the convergence acceleration to the list of individual terms. + + A = sum(a_k, k = 0..infinity) + + v, e = ...update([a_0, a_1,..., a_k]) + + output: + v current estimate of the series A + e an error estimate which is simply the difference between the current + estimate and the last estimate. + """ + + n = len(A) + d = (3 + self.ctx.sqrt(8)) ** n + d = (d + 1 / d) / 2 + b = -self.ctx.one + c = -d + s = 0 + + for k in xrange(n): + c = b - c + if k % 2 == 0: + s = s + c * A[k] + else: + s = s - c * A[k] + b = 2 * (k + n) * (k - n) * b / ((2 * k + 1) * (k + self.ctx.one)) + + value = s / d + + err = abs(value - self.last) + self.last = value + + return value, err + + def update_psum(self, S): + """ + This routine applies the convergence acceleration to the list of partial sums. + + A = sum(a_k, k = 0..infinity) + s_n = sum(a_k ,k = 0..n) + + v, e = ...update_psum([s_0, s_1,..., s_k]) + + output: + v current estimate of the series A + e an error estimate which is simply the difference between the current + estimate and the last estimate. + """ + + n = len(S) + d = (3 + self.ctx.sqrt(8)) ** n + d = (d + 1 / d) / 2 + b = self.ctx.one + s = 0 + + for k in xrange(n): + b = 2 * (n + k) * (n - k) * b / ((2 * k + 1) * (k + self.ctx.one)) + s += b * S[k] + + value = s / d + + err = abs(value - self.last) + self.last = value + + return value, err + +def cohen_alt(ctx): + L = cohen_alt_class() + L.ctx = ctx + return L + +cohen_alt.__doc__ = cohen_alt_class.__doc__ +defun(cohen_alt) + + +@defun +def sumap(ctx, f, interval, integral=None, error=False): + r""" + Evaluates an infinite series of an analytic summand *f* using the + Abel-Plana formula + + .. math :: + + \sum_{k=0}^{\infty} f(k) = \int_0^{\infty} f(t) dt + \frac{1}{2} f(0) + + i \int_0^{\infty} \frac{f(it)-f(-it)}{e^{2\pi t}-1} dt. + + Unlike the Euler-Maclaurin formula (see :func:`~mpmath.sumem`), + the Abel-Plana formula does not require derivatives. However, + it only works when `|f(it)-f(-it)|` does not + increase too rapidly with `t`. + + **Examples** + + The Abel-Plana formula is particularly useful when the summand + decreases like a power of `k`; for example when the sum is a pure + zeta function:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> sumap(lambda k: 1/k**2.5, [1,inf]) + 1.34148725725091717975677 + >>> zeta(2.5) + 1.34148725725091717975677 + >>> sumap(lambda k: 1/(k+1j)**(2.5+2.5j), [1,inf]) + (-3.385361068546473342286084 - 0.7432082105196321803869551j) + >>> zeta(2.5+2.5j, 1+1j) + (-3.385361068546473342286084 - 0.7432082105196321803869551j) + + If the series is alternating, numerical quadrature along the real + line is likely to give poor results, so it is better to evaluate + the first term symbolically whenever possible: + + >>> n=3; z=-0.75 + >>> I = expint(n,-log(z)) + >>> chop(sumap(lambda k: z**k / k**n, [1,inf], integral=I)) + -0.6917036036904594510141448 + >>> polylog(n,z) + -0.6917036036904594510141448 + + """ + prec = ctx.prec + try: + ctx.prec += 10 + a, b = interval + if b != ctx.inf: + raise ValueError("b should be equal to ctx.inf") + g = lambda x: f(x+a) + if integral is None: + i1, err1 = ctx.quad(g, [0,ctx.inf], error=True) + else: + i1, err1 = integral, 0 + j = ctx.j + p = ctx.pi * 2 + if ctx._is_real_type(i1): + h = lambda t: -2 * ctx.im(g(j*t)) / ctx.expm1(p*t) + else: + h = lambda t: j*(g(j*t)-g(-j*t)) / ctx.expm1(p*t) + i2, err2 = ctx.quad(h, [0,ctx.inf], error=True) + err = err1+err2 + v = i1+i2+0.5*g(ctx.mpf(0)) + finally: + ctx.prec = prec + if error: + return +v, err + return +v + + +@defun +def sumem(ctx, f, interval, tol=None, reject=10, integral=None, + adiffs=None, bdiffs=None, verbose=False, error=False, + _fast_abort=False): + r""" + Uses the Euler-Maclaurin formula to compute an approximation accurate + to within ``tol`` (which defaults to the present epsilon) of the sum + + .. math :: + + S = \sum_{k=a}^b f(k) + + where `(a,b)` are given by ``interval`` and `a` or `b` may be + infinite. The approximation is + + .. math :: + + S \sim \int_a^b f(x) \,dx + \frac{f(a)+f(b)}{2} + + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} + \left(f^{(2k-1)}(b)-f^{(2k-1)}(a)\right). + + The last sum in the Euler-Maclaurin formula is not generally + convergent (a notable exception is if `f` is a polynomial, in + which case Euler-Maclaurin actually gives an exact result). + + The summation is stopped as soon as the quotient between two + consecutive terms falls below *reject*. That is, by default + (*reject* = 10), the summation is continued as long as each + term adds at least one decimal. + + Although not convergent, convergence to a given tolerance can + often be "forced" if `b = \infty` by summing up to `a+N` and then + applying the Euler-Maclaurin formula to the sum over the range + `(a+N+1, \ldots, \infty)`. This procedure is implemented by + :func:`~mpmath.nsum`. + + By default numerical quadrature and differentiation is used. + If the symbolic values of the integral and endpoint derivatives + are known, it is more efficient to pass the value of the + integral explicitly as ``integral`` and the derivatives + explicitly as ``adiffs`` and ``bdiffs``. The derivatives + should be given as iterables that yield + `f(a), f'(a), f''(a), \ldots` (and the equivalent for `b`). + + **Examples** + + Summation of an infinite series, with automatic and symbolic + integral and derivative values (the second should be much faster):: + + >>> from mpmath import * + >>> mp.dps = 50; mp.pretty = True + >>> sumem(lambda n: 1/n**2, [32, inf]) + 0.03174336652030209012658168043874142714132886413417 + >>> I = mpf(1)/32 + >>> D = adiffs=((-1)**n*fac(n+1)*32**(-2-n) for n in range(999)) + >>> sumem(lambda n: 1/n**2, [32, inf], integral=I, adiffs=D) + 0.03174336652030209012658168043874142714132886413417 + + An exact evaluation of a finite polynomial sum:: + + >>> sumem(lambda n: n**5-12*n**2+3*n, [-100000, 200000]) + 10500155000624963999742499550000.0 + >>> print(sum(n**5-12*n**2+3*n for n in range(-100000, 200001))) + 10500155000624963999742499550000 + + """ + tol = tol or +ctx.eps + interval = ctx._as_points(interval) + a = ctx.convert(interval[0]) + b = ctx.convert(interval[-1]) + err = ctx.zero + prev = 0 + M = 10000 + if a == ctx.ninf: adiffs = (0 for n in xrange(M)) + else: adiffs = adiffs or ctx.diffs(f, a) + if b == ctx.inf: bdiffs = (0 for n in xrange(M)) + else: bdiffs = bdiffs or ctx.diffs(f, b) + orig = ctx.prec + #verbose = 1 + try: + ctx.prec += 10 + s = ctx.zero + for k, (da, db) in enumerate(izip(adiffs, bdiffs)): + if k & 1: + term = (db-da) * ctx.bernoulli(k+1) / ctx.factorial(k+1) + mag = abs(term) + if verbose: + print("term", k, "magnitude =", ctx.nstr(mag)) + if k > 4 and mag < tol: + s += term + break + elif k > 4 and abs(prev) / mag < reject: + err += mag + if _fast_abort: + return [s, (s, err)][error] + if verbose: + print("Failed to converge") + break + else: + s += term + prev = term + # Endpoint correction + if a != ctx.ninf: s += f(a)/2 + if b != ctx.inf: s += f(b)/2 + # Tail integral + if verbose: + print("Integrating f(x) from x = %s to %s" % (ctx.nstr(a), ctx.nstr(b))) + if integral: + s += integral + else: + integral, ierr = ctx.quad(f, interval, error=True) + if verbose: + print("Integration error:", ierr) + s += integral + err += ierr + finally: + ctx.prec = orig + if error: + return s, err + else: + return s + +@defun +def adaptive_extrapolation(ctx, update, emfun, kwargs): + option = kwargs.get + if ctx._fixed_precision: + tol = option('tol', ctx.eps*2**10) + else: + tol = option('tol', ctx.eps/2**10) + verbose = option('verbose', False) + maxterms = option('maxterms', ctx.dps*10) + method = set(option('method', 'r+s').split('+')) + skip = option('skip', 0) + steps = iter(option('steps', xrange(10, 10**9, 10))) + strict = option('strict') + #steps = (10 for i in xrange(1000)) + summer=[] + if 'd' in method or 'direct' in method: + TRY_RICHARDSON = TRY_SHANKS = TRY_EULER_MACLAURIN = False + else: + TRY_RICHARDSON = ('r' in method) or ('richardson' in method) + TRY_SHANKS = ('s' in method) or ('shanks' in method) + TRY_EULER_MACLAURIN = ('e' in method) or \ + ('euler-maclaurin' in method) + + def init_levin(m): + variant = kwargs.get("levin_variant", "u") + if isinstance(variant, str): + if variant == "all": + variant = ["u", "v", "t"] + else: + variant = [variant] + for s in variant: + L = levin_class(method = m, variant = s) + L.ctx = ctx + L.name = m + "(" + s + ")" + summer.append(L) + + if ('l' in method) or ('levin' in method): + init_levin("levin") + + if ('sidi' in method): + init_levin("sidi") + + if ('a' in method) or ('alternating' in method): + L = cohen_alt_class() + L.ctx = ctx + L.name = "alternating" + summer.append(L) + + last_richardson_value = 0 + shanks_table = [] + index = 0 + step = 10 + partial = [] + best = ctx.zero + orig = ctx.prec + try: + if 'workprec' in kwargs: + ctx.prec = kwargs['workprec'] + elif TRY_RICHARDSON or TRY_SHANKS or len(summer)!=0: + ctx.prec = (ctx.prec+10) * 4 + else: + ctx.prec += 30 + while 1: + if index >= maxterms: + break + + # Get new batch of terms + try: + step = next(steps) + except StopIteration: + pass + if verbose: + print("-"*70) + print("Adding terms #%i-#%i" % (index, index+step)) + update(partial, xrange(index, index+step)) + index += step + + # Check direct error + best = partial[-1] + error = abs(best - partial[-2]) + if verbose: + print("Direct error: %s" % ctx.nstr(error)) + if error <= tol: + return best + + # Check each extrapolation method + if TRY_RICHARDSON: + value, maxc = ctx.richardson(partial) + # Convergence + richardson_error = abs(value - last_richardson_value) + if verbose: + print("Richardson error: %s" % ctx.nstr(richardson_error)) + # Convergence + if richardson_error <= tol: + return value + last_richardson_value = value + # Unreliable due to cancellation + if ctx.eps*maxc > tol: + if verbose: + print("Ran out of precision for Richardson") + TRY_RICHARDSON = False + if richardson_error < error: + error = richardson_error + best = value + if TRY_SHANKS: + shanks_table = ctx.shanks(partial, shanks_table, randomized=True) + row = shanks_table[-1] + if len(row) == 2: + est1 = row[-1] + shanks_error = 0 + else: + est1, maxc, est2 = row[-1], abs(row[-2]), row[-3] + shanks_error = abs(est1-est2) + if verbose: + print("Shanks error: %s" % ctx.nstr(shanks_error)) + if shanks_error <= tol: + return est1 + if ctx.eps*maxc > tol: + if verbose: + print("Ran out of precision for Shanks") + TRY_SHANKS = False + if shanks_error < error: + error = shanks_error + best = est1 + for L in summer: + est, lerror = L.update_psum(partial) + if verbose: + print("%s error: %s" % (L.name, ctx.nstr(lerror))) + if lerror <= tol: + return est + if lerror < error: + error = lerror + best = est + if TRY_EULER_MACLAURIN: + if ctx.almosteq(ctx.mpc(ctx.sign(partial[-1]) / ctx.sign(partial[-2])), -1): + if verbose: + print ("NOT using Euler-Maclaurin: the series appears" + " to be alternating, so numerical\n quadrature" + " will most likely fail") + TRY_EULER_MACLAURIN = False + else: + value, em_error = emfun(index, tol) + value += partial[-1] + if verbose: + print("Euler-Maclaurin error: %s" % ctx.nstr(em_error)) + if em_error <= tol: + return value + if em_error < error: + best = value + finally: + ctx.prec = orig + if strict: + raise ctx.NoConvergence + if verbose: + print("Warning: failed to converge to target accuracy") + return best + +@defun +def nsum(ctx, f, *intervals, **options): + r""" + Computes the sum + + .. math :: S = \sum_{k=a}^b f(k) + + where `(a, b)` = *interval*, and where `a = -\infty` and/or + `b = \infty` are allowed, or more generally + + .. math :: S = \sum_{k_1=a_1}^{b_1} \cdots + \sum_{k_n=a_n}^{b_n} f(k_1,\ldots,k_n) + + if multiple intervals are given. + + Two examples of infinite series that can be summed by :func:`~mpmath.nsum`, + where the first converges rapidly and the second converges slowly, + are:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> nsum(lambda n: 1/fac(n), [0, inf]) + 2.71828182845905 + >>> nsum(lambda n: 1/n**2, [1, inf]) + 1.64493406684823 + + When appropriate, :func:`~mpmath.nsum` applies convergence acceleration to + accurately estimate the sums of slowly convergent series. If the series is + finite, :func:`~mpmath.nsum` currently does not attempt to perform any + extrapolation, and simply calls :func:`~mpmath.fsum`. + + Multidimensional infinite series are reduced to a single-dimensional + series over expanding hypercubes; if both infinite and finite dimensions + are present, the finite ranges are moved innermost. For more advanced + control over the summation order, use nested calls to :func:`~mpmath.nsum`, + or manually rewrite the sum as a single-dimensional series. + + **Options** + + *tol* + Desired maximum final error. Defaults roughly to the + epsilon of the working precision. + + *method* + Which summation algorithm to use (described below). + Default: ``'richardson+shanks'``. + + *maxterms* + Cancel after at most this many terms. Default: 10*dps. + + *steps* + An iterable giving the number of terms to add between + each extrapolation attempt. The default sequence is + [10, 20, 30, 40, ...]. For example, if you know that + approximately 100 terms will be required, efficiency might be + improved by setting this to [100, 10]. Then the first + extrapolation will be performed after 100 terms, the second + after 110, etc. + + *verbose* + Print details about progress. + + *ignore* + If enabled, any term that raises ``ArithmeticError`` + or ``ValueError`` (e.g. through division by zero) is replaced + by a zero. This is convenient for lattice sums with + a singular term near the origin. + + **Methods** + + Unfortunately, an algorithm that can efficiently sum any infinite + series does not exist. :func:`~mpmath.nsum` implements several different + algorithms that each work well in different cases. The *method* + keyword argument selects a method. + + The default method is ``'r+s'``, i.e. both Richardson extrapolation + and Shanks transformation is attempted. A slower method that + handles more cases is ``'r+s+e'``. For very high precision + summation, or if the summation needs to be fast (for example if + multiple sums need to be evaluated), it is a good idea to + investigate which one method works best and only use that. + + ``'richardson'`` / ``'r'``: + Uses Richardson extrapolation. Provides useful extrapolation + when `f(k) \sim P(k)/Q(k)` or when `f(k) \sim (-1)^k P(k)/Q(k)` + for polynomials `P` and `Q`. See :func:`~mpmath.richardson` for + additional information. + + ``'shanks'`` / ``'s'``: + Uses Shanks transformation. Typically provides useful + extrapolation when `f(k) \sim c^k` or when successive terms + alternate signs. Is able to sum some divergent series. + See :func:`~mpmath.shanks` for additional information. + + ``'levin'`` / ``'l'``: + Uses the Levin transformation. It performs better than the Shanks + transformation for logarithmic convergent or alternating divergent + series. The ``'levin_variant'``-keyword selects the variant. Valid + choices are "u", "t", "v" and "all" whereby "all" uses all three + u,t and v simultanously (This is good for performance comparison in + conjunction with "verbose=True"). Instead of the Levin transform one can + also use the Sidi-S transform by selecting the method ``'sidi'``. + See :func:`~mpmath.levin` for additional details. + + ``'alternating'`` / ``'a'``: + This is the convergence acceleration of alternating series developped + by Cohen, Villegras and Zagier. + See :func:`~mpmath.cohen_alt` for additional details. + + ``'euler-maclaurin'`` / ``'e'``: + Uses the Euler-Maclaurin summation formula to approximate + the remainder sum by an integral. This requires high-order + numerical derivatives and numerical integration. The advantage + of this algorithm is that it works regardless of the + decay rate of `f`, as long as `f` is sufficiently smooth. + See :func:`~mpmath.sumem` for additional information. + + ``'direct'`` / ``'d'``: + Does not perform any extrapolation. This can be used + (and should only be used for) rapidly convergent series. + The summation automatically stops when the terms + decrease below the target tolerance. + + **Basic examples** + + A finite sum:: + + >>> nsum(lambda k: 1/k, [1, 6]) + 2.45 + + Summation of a series going to negative infinity and a doubly + infinite series:: + + >>> nsum(lambda k: 1/k**2, [-inf, -1]) + 1.64493406684823 + >>> nsum(lambda k: 1/(1+k**2), [-inf, inf]) + 3.15334809493716 + + :func:`~mpmath.nsum` handles sums of complex numbers:: + + >>> nsum(lambda k: (0.5+0.25j)**k, [0, inf]) + (1.6 + 0.8j) + + The following sum converges very rapidly, so it is most + efficient to sum it by disabling convergence acceleration:: + + >>> mp.dps = 1000 + >>> a = nsum(lambda k: -(-1)**k * k**2 / fac(2*k), [1, inf], + ... method='direct') + >>> b = (cos(1)+sin(1))/4 + >>> abs(a-b) < mpf('1e-998') + True + + **Examples with Richardson extrapolation** + + Richardson extrapolation works well for sums over rational + functions, as well as their alternating counterparts:: + + >>> mp.dps = 50 + >>> nsum(lambda k: 1 / k**3, [1, inf], + ... method='richardson') + 1.2020569031595942853997381615114499907649862923405 + >>> zeta(3) + 1.2020569031595942853997381615114499907649862923405 + + >>> nsum(lambda n: (n + 3)/(n**3 + n**2), [1, inf], + ... method='richardson') + 2.9348022005446793094172454999380755676568497036204 + >>> pi**2/2-2 + 2.9348022005446793094172454999380755676568497036204 + + >>> nsum(lambda k: (-1)**k / k**3, [1, inf], + ... method='richardson') + -0.90154267736969571404980362113358749307373971925537 + >>> -3*zeta(3)/4 + -0.90154267736969571404980362113358749307373971925538 + + **Examples with Shanks transformation** + + The Shanks transformation works well for geometric series + and typically provides excellent acceleration for Taylor + series near the border of their disk of convergence. + Here we apply it to a series for `\log(2)`, which can be + seen as the Taylor series for `\log(1+x)` with `x = 1`:: + + >>> nsum(lambda k: -(-1)**k/k, [1, inf], + ... method='shanks') + 0.69314718055994530941723212145817656807550013436025 + >>> log(2) + 0.69314718055994530941723212145817656807550013436025 + + Here we apply it to a slowly convergent geometric series:: + + >>> nsum(lambda k: mpf('0.995')**k, [0, inf], + ... method='shanks') + 200.0 + + Finally, Shanks' method works very well for alternating series + where `f(k) = (-1)^k g(k)`, and often does so regardless of + the exact decay rate of `g(k)`:: + + >>> mp.dps = 15 + >>> nsum(lambda k: (-1)**(k+1) / k**1.5, [1, inf], + ... method='shanks') + 0.765147024625408 + >>> (2-sqrt(2))*zeta(1.5)/2 + 0.765147024625408 + + The following slowly convergent alternating series has no known + closed-form value. Evaluating the sum a second time at higher + precision indicates that the value is probably correct:: + + >>> nsum(lambda k: (-1)**k / log(k), [2, inf], + ... method='shanks') + 0.924299897222939 + >>> mp.dps = 30 + >>> nsum(lambda k: (-1)**k / log(k), [2, inf], + ... method='shanks') + 0.92429989722293885595957018136 + + **Examples with Levin transformation** + + The following example calculates Euler's constant as the constant term in + the Laurent expansion of zeta(s) at s=1. This sum converges extremly slow + because of the logarithmic convergence behaviour of the Dirichlet series + for zeta. + + >>> mp.dps = 30 + >>> z = mp.mpf(10) ** (-10) + >>> a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "levin") - 1 / z + >>> print(mp.chop(a - mp.euler, tol = 1e-10)) + 0.0 + + Now we sum the zeta function outside its range of convergence + (attention: This does not work at the negative integers!): + + >>> mp.dps = 15 + >>> w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v") + >>> print(mp.chop(w - mp.zeta(-2-3j))) + 0.0 + + The next example resummates an asymptotic series expansion of an integral + related to the exponential integral. + + >>> mp.dps = 15 + >>> z = mp.mpf(10) + >>> # exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf]) + >>> exact = z * mp.exp(z) * mp.expint(1,z) # this is the symbolic expression for the integral + >>> w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t") + >>> print(mp.chop(w - exact)) + 0.0 + + Following highly divergent asymptotic expansion needs some care. Firstly we + need copious amount of working precision. Secondly the stepsize must not be + chosen to large, otherwise nsum may miss the point where the Levin transform + converges and reach the point where only numerical garbage is produced due to + numerical cancellation. + + >>> mp.dps = 15 + >>> z = mp.mpf(2) + >>> # exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi) + >>> exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi)) # this is the symbolic expression for the integral + >>> w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)), + ... [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)]) + >>> print(mp.chop(w - exact)) + 0.0 + + The hypergeoemtric function can also be summed outside its range of convergence: + + >>> mp.dps = 15 + >>> z = 2 + 1j + >>> exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z) + >>> f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n)) + >>> v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)]) + >>> print(mp.chop(exact-v)) + 0.0 + + **Examples with Cohen's alternating series resummation** + + The next example sums the alternating zeta function: + + >>> v = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "a") + >>> print(mp.chop(v - mp.log(2))) + 0.0 + + The derivate of the alternating zeta function outside its range of + convergence: + + >>> v = mp.nsum(lambda n: (-1)**n * mp.log(n) * n, [1, mp.inf], method = "a") + >>> print(mp.chop(v - mp.diff(lambda s: mp.altzeta(s), -1))) + 0.0 + + **Examples with Euler-Maclaurin summation** + + The sum in the following example has the wrong rate of convergence + for either Richardson or Shanks to be effective. + + >>> f = lambda k: log(k)/k**2.5 + >>> mp.dps = 15 + >>> nsum(f, [1, inf], method='euler-maclaurin') + 0.38734195032621 + >>> -diff(zeta, 2.5) + 0.38734195032621 + + Increasing ``steps`` improves speed at higher precision:: + + >>> mp.dps = 50 + >>> nsum(f, [1, inf], method='euler-maclaurin', steps=[250]) + 0.38734195032620997271199237593105101319948228874688 + >>> -diff(zeta, 2.5) + 0.38734195032620997271199237593105101319948228874688 + + **Divergent series** + + The Shanks transformation is able to sum some *divergent* + series. In particular, it is often able to sum Taylor series + beyond their radius of convergence (this is due to a relation + between the Shanks transformation and Pade approximations; + see :func:`~mpmath.pade` for an alternative way to evaluate divergent + Taylor series). Furthermore the Levin-transform examples above + contain some divergent series resummation. + + Here we apply it to `\log(1+x)` far outside the region of + convergence:: + + >>> mp.dps = 50 + >>> nsum(lambda k: -(-9)**k/k, [1, inf], + ... method='shanks') + 2.3025850929940456840179914546843642076011014886288 + >>> log(10) + 2.3025850929940456840179914546843642076011014886288 + + A particular type of divergent series that can be summed + using the Shanks transformation is geometric series. + The result is the same as using the closed-form formula + for an infinite geometric series:: + + >>> mp.dps = 15 + >>> for n in range(-8, 8): + ... if n == 1: + ... continue + ... print("%s %s %s" % (mpf(n), mpf(1)/(1-n), + ... nsum(lambda k: n**k, [0, inf], method='shanks'))) + ... + -8.0 0.111111111111111 0.111111111111111 + -7.0 0.125 0.125 + -6.0 0.142857142857143 0.142857142857143 + -5.0 0.166666666666667 0.166666666666667 + -4.0 0.2 0.2 + -3.0 0.25 0.25 + -2.0 0.333333333333333 0.333333333333333 + -1.0 0.5 0.5 + 0.0 1.0 1.0 + 2.0 -1.0 -1.0 + 3.0 -0.5 -0.5 + 4.0 -0.333333333333333 -0.333333333333333 + 5.0 -0.25 -0.25 + 6.0 -0.2 -0.2 + 7.0 -0.166666666666667 -0.166666666666667 + + **Multidimensional sums** + + Any combination of finite and infinite ranges is allowed for the + summation indices:: + + >>> mp.dps = 15 + >>> nsum(lambda x,y: x+y, [2,3], [4,5]) + 28.0 + >>> nsum(lambda x,y: x/2**y, [1,3], [1,inf]) + 6.0 + >>> nsum(lambda x,y: y/2**x, [1,inf], [1,3]) + 6.0 + >>> nsum(lambda x,y,z: z/(2**x*2**y), [1,inf], [1,inf], [3,4]) + 7.0 + >>> nsum(lambda x,y,z: y/(2**x*2**z), [1,inf], [3,4], [1,inf]) + 7.0 + >>> nsum(lambda x,y,z: x/(2**z*2**y), [3,4], [1,inf], [1,inf]) + 7.0 + + Some nice examples of double series with analytic solutions or + reductions to single-dimensional series (see [1]):: + + >>> nsum(lambda m, n: 1/2**(m*n), [1,inf], [1,inf]) + 1.60669515241529 + >>> nsum(lambda n: 1/(2**n-1), [1,inf]) + 1.60669515241529 + + >>> nsum(lambda i,j: (-1)**(i+j)/(i**2+j**2), [1,inf], [1,inf]) + 0.278070510848213 + >>> pi*(pi-3*ln2)/12 + 0.278070510848213 + + >>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**2, [1,inf], [1,inf]) + 0.129319852864168 + >>> altzeta(2) - altzeta(1) + 0.129319852864168 + + >>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**3, [1,inf], [1,inf]) + 0.0790756439455825 + >>> altzeta(3) - altzeta(2) + 0.0790756439455825 + + >>> nsum(lambda m,n: m**2*n/(3**m*(n*3**m+m*3**n)), + ... [1,inf], [1,inf]) + 0.28125 + >>> mpf(9)/32 + 0.28125 + + >>> nsum(lambda i,j: fac(i-1)*fac(j-1)/fac(i+j), + ... [1,inf], [1,inf], workprec=400) + 1.64493406684823 + >>> zeta(2) + 1.64493406684823 + + A hard example of a multidimensional sum is the Madelung constant + in three dimensions (see [2]). The defining sum converges very + slowly and only conditionally, so :func:`~mpmath.nsum` is lucky to + obtain an accurate value through convergence acceleration. The + second evaluation below uses a much more efficient, rapidly + convergent 2D sum:: + + >>> nsum(lambda x,y,z: (-1)**(x+y+z)/(x*x+y*y+z*z)**0.5, + ... [-inf,inf], [-inf,inf], [-inf,inf], ignore=True) + -1.74756459463318 + >>> nsum(lambda x,y: -12*pi*sech(0.5*pi * \ + ... sqrt((2*x+1)**2+(2*y+1)**2))**2, [0,inf], [0,inf]) + -1.74756459463318 + + Another example of a lattice sum in 2D:: + + >>> nsum(lambda x,y: (-1)**(x+y) / (x**2+y**2), [-inf,inf], + ... [-inf,inf], ignore=True) + -2.1775860903036 + >>> -pi*ln2 + -2.1775860903036 + + An example of an Eisenstein series:: + + >>> nsum(lambda m,n: (m+n*1j)**(-4), [-inf,inf], [-inf,inf], + ... ignore=True) + (3.1512120021539 + 0.0j) + + **References** + + 1. [Weisstein]_ http://mathworld.wolfram.com/DoubleSeries.html, + 2. [Weisstein]_ http://mathworld.wolfram.com/MadelungConstants.html + + """ + infinite, g = standardize(ctx, f, intervals, options) + if not infinite: + return +g() + + def update(partial_sums, indices): + if partial_sums: + psum = partial_sums[-1] + else: + psum = ctx.zero + for k in indices: + psum = psum + g(ctx.mpf(k)) + partial_sums.append(psum) + + prec = ctx.prec + + def emfun(point, tol): + workprec = ctx.prec + ctx.prec = prec + 10 + v = ctx.sumem(g, [point, ctx.inf], tol, error=1) + ctx.prec = workprec + return v + + return +ctx.adaptive_extrapolation(update, emfun, options) + + +def wrapsafe(f): + def g(*args): + try: + return f(*args) + except (ArithmeticError, ValueError): + return 0 + return g + +def standardize(ctx, f, intervals, options): + if options.get("ignore"): + f = wrapsafe(f) + finite = [] + infinite = [] + for k, points in enumerate(intervals): + a, b = ctx._as_points(points) + if b < a: + return False, (lambda: ctx.zero) + if a == ctx.ninf or b == ctx.inf: + infinite.append((k, (a,b))) + else: + finite.append((k, (int(a), int(b)))) + if finite: + f = fold_finite(ctx, f, finite) + if not infinite: + return False, lambda: f(*([0]*len(intervals))) + if infinite: + f = standardize_infinite(ctx, f, infinite) + f = fold_infinite(ctx, f, infinite) + args = [0] * len(intervals) + d = infinite[0][0] + def g(k): + args[d] = k + return f(*args) + return True, g + +# backwards compatible itertools.product +def cartesian_product(args): + pools = map(tuple, args) + result = [[]] + for pool in pools: + result = [x+[y] for x in result for y in pool] + for prod in result: + yield tuple(prod) + +def fold_finite(ctx, f, intervals): + if not intervals: + return f + indices = [v[0] for v in intervals] + points = [v[1] for v in intervals] + ranges = [xrange(a, b+1) for (a,b) in points] + def g(*args): + args = list(args) + s = ctx.zero + for xs in cartesian_product(ranges): + for dim, x in zip(indices, xs): + args[dim] = ctx.mpf(x) + s += f(*args) + return s + #print "Folded finite", indices + return g + +# Standardize each interval to [0,inf] +def standardize_infinite(ctx, f, intervals): + if not intervals: + return f + dim, [a,b] = intervals[-1] + if a == ctx.ninf: + if b == ctx.inf: + def g(*args): + args = list(args) + k = args[dim] + if k: + s = f(*args) + args[dim] = -k + s += f(*args) + return s + else: + return f(*args) + else: + def g(*args): + args = list(args) + args[dim] = b - args[dim] + return f(*args) + else: + def g(*args): + args = list(args) + args[dim] += a + return f(*args) + #print "Standardized infinity along dimension", dim, a, b + return standardize_infinite(ctx, g, intervals[:-1]) + +def fold_infinite(ctx, f, intervals): + if len(intervals) < 2: + return f + dim1 = intervals[-2][0] + dim2 = intervals[-1][0] + # Assume intervals are [0,inf] x [0,inf] x ... + def g(*args): + args = list(args) + #args.insert(dim2, None) + n = int(args[dim1]) + s = ctx.zero + #y = ctx.mpf(n) + args[dim2] = ctx.mpf(n) #y + for x in xrange(n+1): + args[dim1] = ctx.mpf(x) + s += f(*args) + args[dim1] = ctx.mpf(n) #ctx.mpf(n) + for y in xrange(n): + args[dim2] = ctx.mpf(y) + s += f(*args) + return s + #print "Folded infinite from", len(intervals), "to", (len(intervals)-1) + return fold_infinite(ctx, g, intervals[:-1]) + +@defun +def nprod(ctx, f, interval, nsum=False, **kwargs): + r""" + Computes the product + + .. math :: + + P = \prod_{k=a}^b f(k) + + where `(a, b)` = *interval*, and where `a = -\infty` and/or + `b = \infty` are allowed. + + By default, :func:`~mpmath.nprod` uses the same extrapolation methods as + :func:`~mpmath.nsum`, except applied to the partial products rather than + partial sums, and the same keyword options as for :func:`~mpmath.nsum` are + supported. If ``nsum=True``, the product is instead computed via + :func:`~mpmath.nsum` as + + .. math :: + + P = \exp\left( \sum_{k=a}^b \log(f(k)) \right). + + This is slower, but can sometimes yield better results. It is + also required (and used automatically) when Euler-Maclaurin + summation is requested. + + **Examples** + + A simple finite product:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> nprod(lambda k: k, [1, 4]) + 24.0 + + A large number of infinite products have known exact values, + and can therefore be used as a reference. Most of the following + examples are taken from MathWorld [1]. + + A few infinite products with simple values are:: + + >>> 2*nprod(lambda k: (4*k**2)/(4*k**2-1), [1, inf]) + 3.141592653589793238462643 + >>> nprod(lambda k: (1+1/k)**2/(1+2/k), [1, inf]) + 2.0 + >>> nprod(lambda k: (k**3-1)/(k**3+1), [2, inf]) + 0.6666666666666666666666667 + >>> nprod(lambda k: (1-1/k**2), [2, inf]) + 0.5 + + Next, several more infinite products with more complicated + values:: + + >>> nprod(lambda k: exp(1/k**2), [1, inf]); exp(pi**2/6) + 5.180668317897115748416626 + 5.180668317897115748416626 + + >>> nprod(lambda k: (k**2-1)/(k**2+1), [2, inf]); pi*csch(pi) + 0.2720290549821331629502366 + 0.2720290549821331629502366 + + >>> nprod(lambda k: (k**4-1)/(k**4+1), [2, inf]) + 0.8480540493529003921296502 + >>> pi*sinh(pi)/(cosh(sqrt(2)*pi)-cos(sqrt(2)*pi)) + 0.8480540493529003921296502 + + >>> nprod(lambda k: (1+1/k+1/k**2)**2/(1+2/k+3/k**2), [1, inf]) + 1.848936182858244485224927 + >>> 3*sqrt(2)*cosh(pi*sqrt(3)/2)**2*csch(pi*sqrt(2))/pi + 1.848936182858244485224927 + + >>> nprod(lambda k: (1-1/k**4), [2, inf]); sinh(pi)/(4*pi) + 0.9190194775937444301739244 + 0.9190194775937444301739244 + + >>> nprod(lambda k: (1-1/k**6), [2, inf]) + 0.9826842777421925183244759 + >>> (1+cosh(pi*sqrt(3)))/(12*pi**2) + 0.9826842777421925183244759 + + >>> nprod(lambda k: (1+1/k**2), [2, inf]); sinh(pi)/(2*pi) + 1.838038955187488860347849 + 1.838038955187488860347849 + + >>> nprod(lambda n: (1+1/n)**n * exp(1/(2*n)-1), [1, inf]) + 1.447255926890365298959138 + >>> exp(1+euler/2)/sqrt(2*pi) + 1.447255926890365298959138 + + The following two products are equivalent and can be evaluated in + terms of a Jacobi theta function. Pi can be replaced by any value + (as long as convergence is preserved):: + + >>> nprod(lambda k: (1-pi**-k)/(1+pi**-k), [1, inf]) + 0.3838451207481672404778686 + >>> nprod(lambda k: tanh(k*log(pi)/2), [1, inf]) + 0.3838451207481672404778686 + >>> jtheta(4,0,1/pi) + 0.3838451207481672404778686 + + This product does not have a known closed form value:: + + >>> nprod(lambda k: (1-1/2**k), [1, inf]) + 0.2887880950866024212788997 + + A product taken from `-\infty`:: + + >>> nprod(lambda k: 1-k**(-3), [-inf,-2]) + 0.8093965973662901095786805 + >>> cosh(pi*sqrt(3)/2)/(3*pi) + 0.8093965973662901095786805 + + A doubly infinite product:: + + >>> nprod(lambda k: exp(1/(1+k**2)), [-inf, inf]) + 23.41432688231864337420035 + >>> exp(pi/tanh(pi)) + 23.41432688231864337420035 + + A product requiring the use of Euler-Maclaurin summation to compute + an accurate value:: + + >>> nprod(lambda k: (1-1/k**2.5), [2, inf], method='e') + 0.696155111336231052898125 + + **References** + + 1. [Weisstein]_ http://mathworld.wolfram.com/InfiniteProduct.html + + """ + if nsum or ('e' in kwargs.get('method', '')): + orig = ctx.prec + try: + # TODO: we are evaluating log(1+eps) -> eps, which is + # inaccurate. This currently works because nsum greatly + # increases the working precision. But we should be + # more intelligent and handle the precision here. + ctx.prec += 10 + v = ctx.nsum(lambda n: ctx.ln(f(n)), interval, **kwargs) + finally: + ctx.prec = orig + return +ctx.exp(v) + + a, b = ctx._as_points(interval) + if a == ctx.ninf: + if b == ctx.inf: + return f(0) * ctx.nprod(lambda k: f(-k) * f(k), [1, ctx.inf], **kwargs) + return ctx.nprod(f, [-b, ctx.inf], **kwargs) + elif b != ctx.inf: + return ctx.fprod(f(ctx.mpf(k)) for k in xrange(int(a), int(b)+1)) + + a = int(a) + + def update(partial_products, indices): + if partial_products: + pprod = partial_products[-1] + else: + pprod = ctx.one + for k in indices: + pprod = pprod * f(a + ctx.mpf(k)) + partial_products.append(pprod) + + return +ctx.adaptive_extrapolation(update, None, kwargs) + + +@defun +def limit(ctx, f, x, direction=1, exp=False, **kwargs): + r""" + Computes an estimate of the limit + + .. math :: + + \lim_{t \to x} f(t) + + where `x` may be finite or infinite. + + For finite `x`, :func:`~mpmath.limit` evaluates `f(x + d/n)` for + consecutive integer values of `n`, where the approach direction + `d` may be specified using the *direction* keyword argument. + For infinite `x`, :func:`~mpmath.limit` evaluates values of + `f(\mathrm{sign}(x) \cdot n)`. + + If the approach to the limit is not sufficiently fast to give + an accurate estimate directly, :func:`~mpmath.limit` attempts to find + the limit using Richardson extrapolation or the Shanks + transformation. You can select between these methods using + the *method* keyword (see documentation of :func:`~mpmath.nsum` for + more information). + + **Options** + + The following options are available with essentially the + same meaning as for :func:`~mpmath.nsum`: *tol*, *method*, *maxterms*, + *steps*, *verbose*. + + If the option *exp=True* is set, `f` will be + sampled at exponentially spaced points `n = 2^1, 2^2, 2^3, \ldots` + instead of the linearly spaced points `n = 1, 2, 3, \ldots`. + This can sometimes improve the rate of convergence so that + :func:`~mpmath.limit` may return a more accurate answer (and faster). + However, do note that this can only be used if `f` + supports fast and accurate evaluation for arguments that + are extremely close to the limit point (or if infinite, + very large arguments). + + **Examples** + + A basic evaluation of a removable singularity:: + + >>> from mpmath import * + >>> mp.dps = 30; mp.pretty = True + >>> limit(lambda x: (x-sin(x))/x**3, 0) + 0.166666666666666666666666666667 + + Computing the exponential function using its limit definition:: + + >>> limit(lambda n: (1+3/n)**n, inf) + 20.0855369231876677409285296546 + >>> exp(3) + 20.0855369231876677409285296546 + + A limit for `\pi`:: + + >>> f = lambda n: 2**(4*n+1)*fac(n)**4/(2*n+1)/fac(2*n)**2 + >>> limit(f, inf) + 3.14159265358979323846264338328 + + Calculating the coefficient in Stirling's formula:: + + >>> limit(lambda n: fac(n) / (sqrt(n)*(n/e)**n), inf) + 2.50662827463100050241576528481 + >>> sqrt(2*pi) + 2.50662827463100050241576528481 + + Evaluating Euler's constant `\gamma` using the limit representation + + .. math :: + + \gamma = \lim_{n \rightarrow \infty } \left[ \left( + \sum_{k=1}^n \frac{1}{k} \right) - \log(n) \right] + + (which converges notoriously slowly):: + + >>> f = lambda n: sum([mpf(1)/k for k in range(1,int(n)+1)]) - log(n) + >>> limit(f, inf) + 0.577215664901532860606512090082 + >>> +euler + 0.577215664901532860606512090082 + + With default settings, the following limit converges too slowly + to be evaluated accurately. Changing to exponential sampling + however gives a perfect result:: + + >>> f = lambda x: sqrt(x**3+x**2)/(sqrt(x**3)+x) + >>> limit(f, inf) + 0.992831158558330281129249686491 + >>> limit(f, inf, exp=True) + 1.0 + + """ + + if ctx.isinf(x): + direction = ctx.sign(x) + g = lambda k: f(ctx.mpf(k+1)*direction) + else: + direction *= ctx.one + g = lambda k: f(x + direction/(k+1)) + if exp: + h = g + g = lambda k: h(2**k) + + def update(values, indices): + for k in indices: + values.append(g(k+1)) + + # XXX: steps used by nsum don't work well + if not 'steps' in kwargs: + kwargs['steps'] = [10] + + return +ctx.adaptive_extrapolation(update, None, kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/inverselaplace.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/inverselaplace.py new file mode 100644 index 0000000000000000000000000000000000000000..d2206b05c1601ee781b09dcbedf3c0fcd89cfa59 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/inverselaplace.py @@ -0,0 +1,973 @@ +# contributed to mpmath by Kristopher L. Kuhlman, February 2017 +# contributed to mpmath by Guillermo Navas-Palencia, February 2022 + +class InverseLaplaceTransform(object): + r""" + Inverse Laplace transform methods are implemented using this + class, in order to simplify the code and provide a common + infrastructure. + + Implement a custom inverse Laplace transform algorithm by + subclassing :class:`InverseLaplaceTransform` and implementing the + appropriate methods. The subclass can then be used by + :func:`~mpmath.invertlaplace` by passing it as the *method* + argument. + """ + + def __init__(self, ctx): + self.ctx = ctx + + def calc_laplace_parameter(self, t, **kwargs): + r""" + Determine the vector of Laplace parameter values needed for an + algorithm, this will depend on the choice of algorithm (de + Hoog is default), the algorithm-specific parameters passed (or + default ones), and desired time. + """ + raise NotImplementedError + + def calc_time_domain_solution(self, fp): + r""" + Compute the time domain solution, after computing the + Laplace-space function evaluations at the abscissa required + for the algorithm. Abscissa computed for one algorithm are + typically not useful for another algorithm. + """ + raise NotImplementedError + + +class FixedTalbot(InverseLaplaceTransform): + + def calc_laplace_parameter(self, t, **kwargs): + r"""The "fixed" Talbot method deforms the Bromwich contour towards + `-\infty` in the shape of a parabola. Traditionally the Talbot + algorithm has adjustable parameters, but the "fixed" version + does not. The `r` parameter could be passed in as a parameter, + if you want to override the default given by (Abate & Valko, + 2004). + + The Laplace parameter is sampled along a parabola opening + along the negative imaginary axis, with the base of the + parabola along the real axis at + `p=\frac{r}{t_\mathrm{max}}`. As the number of terms used in + the approximation (degree) grows, the abscissa required for + function evaluation tend towards `-\infty`, requiring high + precision to prevent overflow. If any poles, branch cuts or + other singularities exist such that the deformed Bromwich + contour lies to the left of the singularity, the method will + fail. + + **Optional arguments** + + :class:`~mpmath.calculus.inverselaplace.FixedTalbot.calc_laplace_parameter` + recognizes the following keywords + + *tmax* + maximum time associated with vector of times + (typically just the time requested) + *degree* + integer order of approximation (M = number of terms) + *r* + abscissa for `p_0` (otherwise computed using rule + of thumb `2M/5`) + + The working precision will be increased according to a rule of + thumb. If 'degree' is not specified, the working precision and + degree are chosen to hopefully achieve the dps of the calling + context. If 'degree' is specified, the working precision is + chosen to achieve maximum resulting precision for the + specified degree. + + .. math :: + + p_0=\frac{r}{t} + + .. math :: + + p_i=\frac{i r \pi}{Mt_\mathrm{max}}\left[\cot\left( + \frac{i\pi}{M}\right) + j \right] \qquad 1\le i 0: + self.degree += 1 + + M = self.degree + + # this is adjusting the dps of the calling context + # hopefully the caller doesn't monkey around with it + # between calling this routine and calc_time_domain_solution() + self.dps_orig = self.ctx.dps + self.ctx.dps = self.dps_goal + + self.V = self._coeff() + self.p = self.ctx.matrix(self.ctx.arange(1, M+1))*self.ctx.ln2/self.t + + # NB: p is real (mpf) + + def _coeff(self): + r"""Salzer summation weights (aka, "Stehfest coefficients") + only depend on the approximation order (M) and the precision""" + + M = self.degree + M2 = int(M/2) # checked earlier that M is even + + V = self.ctx.matrix(M, 1) + + # Salzer summation weights + # get very large in magnitude and oscillate in sign, + # if the precision is not high enough, there will be + # catastrophic cancellation + for k in range(1, M+1): + z = self.ctx.matrix(min(k, M2)+1, 1) + for j in range(int((k+1)/2), min(k, M2)+1): + z[j] = (self.ctx.power(j, M2)*self.ctx.fac(2*j)/ + (self.ctx.fac(M2-j)*self.ctx.fac(j)* + self.ctx.fac(j-1)*self.ctx.fac(k-j)* + self.ctx.fac(2*j-k))) + V[k-1] = self.ctx.power(-1, k+M2)*self.ctx.fsum(z) + + return V + + def calc_time_domain_solution(self, fp, t, manual_prec=False): + r"""Compute time-domain Stehfest algorithm solution. + + .. math :: + + f(t,M) = \frac{\log 2}{t} \sum_{k=1}^{M} V_k \bar{f}\left( + p_k \right) + + where + + .. math :: + + V_k = (-1)^{k + N/2} \sum^{\min(k,N/2)}_{i=\lfloor(k+1)/2 \rfloor} + \frac{i^{\frac{N}{2}}(2i)!}{\left(\frac{N}{2}-i \right)! \, i! \, + \left(i-1 \right)! \, \left(k-i\right)! \, \left(2i-k \right)!} + + As the degree increases, the abscissa (`p_k`) only increase + linearly towards `\infty`, but the Stehfest coefficients + (`V_k`) alternate in sign and increase rapidly in sign, + requiring high precision to prevent overflow or loss of + significance when evaluating the sum. + + **References** + + 1. Widder, D. (1941). *The Laplace Transform*. Princeton. + 2. Stehfest, H. (1970). Algorithm 368: numerical inversion of + Laplace transforms. *Communications of the ACM* 13(1):47-49, + http://dx.doi.org/10.1145/361953.361969 + + """ + + # required + self.t = self.ctx.convert(t) + + # assume fp was computed from p matrix returned from + # calc_laplace_parameter(), so is already + # a list or matrix of mpmath 'mpf' types + + result = self.ctx.fdot(self.V, fp)*self.ctx.ln2/self.t + + # setting dps back to value when calc_laplace_parameter was called + if not manual_prec: + self.ctx.dps = self.dps_orig + + # ignore any small imaginary part + return result.real + + +# **************************************** + +class deHoog(InverseLaplaceTransform): + + def calc_laplace_parameter(self, t, **kwargs): + r"""the de Hoog, Knight & Stokes algorithm is an + accelerated form of the Fourier series numerical + inverse Laplace transform algorithms. + + .. math :: + + p_k = \gamma + \frac{jk}{T} \qquad 0 \le k < 2M+1 + + where + + .. math :: + + \gamma = \alpha - \frac{\log \mathrm{tol}}{2T}, + + `j=\sqrt{-1}`, `T = 2t_\mathrm{max}` is a scaled time, + `\alpha=10^{-\mathrm{dps\_goal}}` is the real part of the + rightmost pole or singularity, which is chosen based on the + desired accuracy (assuming the rightmost singularity is 0), + and `\mathrm{tol}=10\alpha` is the desired tolerance, which is + chosen in relation to `\alpha`.` + + When increasing the degree, the abscissa increase towards + `j\infty`, but more slowly than the fixed Talbot + algorithm. The de Hoog et al. algorithm typically does better + with oscillatory functions of time, and less well-behaved + functions. The method tends to be slower than the Talbot and + Stehfest algorithsm, especially so at very high precision + (e.g., `>500` digits precision). + + """ + + # required + # ------------------------------ + self.t = self.ctx.convert(t) + + # optional + # ------------------------------ + self.tmax = kwargs.get('tmax', self.t) + + # empirical relationships used here based on a linear fit of + # requested and delivered dps for exponentially decaying time + # functions for requested dps up to 512. + + if 'degree' in kwargs: + self.degree = kwargs['degree'] + self.dps_goal = int(1.38*self.degree) + else: + self.dps_goal = int(self.ctx.dps*1.36) + self.degree = max(10, self.dps_goal) + + # 2*M+1 terms in approximation + M = self.degree + + # adjust alpha component of abscissa of convergence for higher + # precision + tmp = self.ctx.power(10.0, -self.dps_goal) + self.alpha = self.ctx.convert(kwargs.get('alpha', tmp)) + + # desired tolerance (here simply related to alpha) + self.tol = self.ctx.convert(kwargs.get('tol', self.alpha*10.0)) + self.np = 2*self.degree+1 # number of terms in approximation + + # this is adjusting the dps of the calling context + # hopefully the caller doesn't monkey around with it + # between calling this routine and calc_time_domain_solution() + self.dps_orig = self.ctx.dps + self.ctx.dps = self.dps_goal + + # scaling factor (likely tun-able, but 2 is typical) + self.scale = kwargs.get('scale', 2) + self.T = self.ctx.convert(kwargs.get('T', self.scale*self.tmax)) + + self.p = self.ctx.matrix(2*M+1, 1) + self.gamma = self.alpha - self.ctx.log(self.tol)/(self.scale*self.T) + self.p = (self.gamma + self.ctx.pi* + self.ctx.matrix(self.ctx.arange(self.np))/self.T*1j) + + # NB: p is complex (mpc) + + def calc_time_domain_solution(self, fp, t, manual_prec=False): + r"""Calculate time-domain solution for + de Hoog, Knight & Stokes algorithm. + + The un-accelerated Fourier series approach is: + + .. math :: + + f(t,2M+1) = \frac{e^{\gamma t}}{T} \sum_{k=0}^{2M}{}^{'} + \Re\left[\bar{f}\left( p_k \right) + e^{i\pi t/T} \right], + + where the prime on the summation indicates the first term is halved. + + This simplistic approach requires so many function evaluations + that it is not practical. Non-linear acceleration is + accomplished via Pade-approximation and an analytic expression + for the remainder of the continued fraction. See the original + paper (reference 2 below) a detailed description of the + numerical approach. + + **References** + + 1. Davies, B. (2005). *Integral Transforms and their + Applications*, Third Edition. Springer. + 2. de Hoog, F., J. Knight, A. Stokes (1982). An improved + method for numerical inversion of Laplace transforms. *SIAM + Journal of Scientific and Statistical Computing* 3:357-366, + http://dx.doi.org/10.1137/0903022 + + """ + + M = self.degree + np = self.np + T = self.T + + self.t = self.ctx.convert(t) + + # would it be useful to try re-using + # space between e&q and A&B? + e = self.ctx.zeros(np, M+1) + q = self.ctx.matrix(2*M, M) + d = self.ctx.matrix(np, 1) + A = self.ctx.zeros(np+1, 1) + B = self.ctx.ones(np+1, 1) + + # initialize Q-D table + e[:, 0] = 0.0 + 0j + q[0, 0] = fp[1]/(fp[0]/2) + for i in range(1, 2*M): + q[i, 0] = fp[i+1]/fp[i] + + # rhombus rule for filling triangular Q-D table (e & q) + for r in range(1, M+1): + # start with e, column 1, 0:2*M-2 + mr = 2*(M-r) + 1 + e[0:mr, r] = q[1:mr+1, r-1] - q[0:mr, r-1] + e[1:mr+1, r-1] + if not r == M: + rq = r+1 + mr = 2*(M-rq)+1 + 2 + for i in range(mr): + q[i, rq-1] = q[i+1, rq-2]*e[i+1, rq-1]/e[i, rq-1] + + # build up continued fraction coefficients (d) + d[0] = fp[0]/2 + for r in range(1, M+1): + d[2*r-1] = -q[0, r-1] # even terms + d[2*r] = -e[0, r] # odd terms + + # seed A and B for recurrence + A[0] = 0.0 + 0.0j + A[1] = d[0] + B[0:2] = 1.0 + 0.0j + + # base of the power series + z = self.ctx.expjpi(self.t/T) # i*pi is already in fcn + + # coefficients of Pade approximation (A & B) + # using recurrence for all but last term + for i in range(1, 2*M): + A[i+1] = A[i] + d[i]*A[i-1]*z + B[i+1] = B[i] + d[i]*B[i-1]*z + + # "improved remainder" to continued fraction + brem = (1 + (d[2*M-1] - d[2*M])*z)/2 + # powm1(x,y) computes x^y - 1 more accurately near zero + rem = brem*self.ctx.powm1(1 + d[2*M]*z/brem, + self.ctx.fraction(1, 2)) + + # last term of recurrence using new remainder + A[np] = A[2*M] + rem*A[2*M-1] + B[np] = B[2*M] + rem*B[2*M-1] + + # diagonal Pade approximation + # F=A/B represents accelerated trapezoid rule + result = self.ctx.exp(self.gamma*self.t)/T*(A[np]/B[np]).real + + # setting dps back to value when calc_laplace_parameter was called + if not manual_prec: + self.ctx.dps = self.dps_orig + + return result + + +# **************************************** + +class Cohen(InverseLaplaceTransform): + + def calc_laplace_parameter(self, t, **kwargs): + r"""The Cohen algorithm accelerates the convergence of the nearly + alternating series resulting from the application of the trapezoidal + rule to the Bromwich contour inversion integral. + + .. math :: + + p_k = \frac{\gamma}{2 t} + \frac{\pi i k}{t} \qquad 0 \le k < M + + where + + .. math :: + + \gamma = \frac{2}{3} (d + \log(10) + \log(2 t)), + + `d = \mathrm{dps\_goal}`, which is chosen based on the desired + accuracy using the method developed in [1] to improve numerical + stability. The Cohen algorithm shows robustness similar to the de Hoog + et al. algorithm, but it is faster than the fixed Talbot algorithm. + + **Optional arguments** + + *degree* + integer order of the approximation (M = number of terms) + *alpha* + abscissa for `p_0` (controls the discretization error) + + The working precision will be increased according to a rule of + thumb. If 'degree' is not specified, the working precision and + degree are chosen to hopefully achieve the dps of the calling + context. If 'degree' is specified, the working precision is + chosen to achieve maximum resulting precision for the + specified degree. + + **References** + + 1. P. Glasserman, J. Ruiz-Mata (2006). Computing the credit loss + distribution in the Gaussian copula model: a comparison of methods. + *Journal of Credit Risk* 2(4):33-66, 10.21314/JCR.2006.057 + + """ + self.t = self.ctx.convert(t) + + if 'degree' in kwargs: + self.degree = kwargs['degree'] + self.dps_goal = int(1.5 * self.degree) + else: + self.dps_goal = int(self.ctx.dps * 1.74) + self.degree = max(22, int(1.31 * self.dps_goal)) + + M = self.degree + 1 + + # this is adjusting the dps of the calling context hopefully + # the caller doesn't monkey around with it between calling + # this routine and calc_time_domain_solution() + self.dps_orig = self.ctx.dps + self.ctx.dps = self.dps_goal + + ttwo = 2 * self.t + tmp = self.ctx.dps * self.ctx.log(10) + self.ctx.log(ttwo) + tmp = self.ctx.fraction(2, 3) * tmp + self.alpha = self.ctx.convert(kwargs.get('alpha', tmp)) + + # all but time-dependent part of p + a_t = self.alpha / ttwo + p_t = self.ctx.pi * 1j / self.t + + self.p = self.ctx.matrix(M, 1) + self.p[0] = a_t + + for i in range(1, M): + self.p[i] = a_t + i * p_t + + def calc_time_domain_solution(self, fp, t, manual_prec=False): + r"""Calculate time-domain solution for Cohen algorithm. + + The accelerated nearly alternating series is: + + .. math :: + + f(t, M) = \frac{e^{\gamma / 2}}{t} \left[\frac{1}{2} + \Re\left(\bar{f}\left(\frac{\gamma}{2t}\right) \right) - + \sum_{k=0}^{M-1}\frac{c_{M,k}}{d_M}\Re\left(\bar{f} + \left(\frac{\gamma + 2(k+1) \pi i}{2t}\right)\right)\right], + + where coefficients `\frac{c_{M, k}}{d_M}` are described in [1]. + + 1. H. Cohen, F. Rodriguez Villegas, D. Zagier (2000). Convergence + acceleration of alternating series. *Experiment. Math* 9(1):3-12 + + """ + self.t = self.ctx.convert(t) + + n = self.degree + M = n + 1 + + A = self.ctx.matrix(M, 1) + for i in range(M): + A[i] = fp[i].real + + d = (3 + self.ctx.sqrt(8)) ** n + d = (d + 1 / d) / 2 + b = -self.ctx.one + c = -d + s = 0 + + for k in range(n): + c = b - c + s = s + c * A[k + 1] + b = 2 * (k + n) * (k - n) * b / ((2 * k + 1) * (k + self.ctx.one)) + + result = self.ctx.exp(self.alpha / 2) / self.t * (A[0] / 2 - s / d) + + # setting dps back to value when calc_laplace_parameter was + # called, unless flag is set. + if not manual_prec: + self.ctx.dps = self.dps_orig + + return result + + +# **************************************** + +class LaplaceTransformInversionMethods(object): + def __init__(ctx, *args, **kwargs): + ctx._fixed_talbot = FixedTalbot(ctx) + ctx._stehfest = Stehfest(ctx) + ctx._de_hoog = deHoog(ctx) + ctx._cohen = Cohen(ctx) + + def invertlaplace(ctx, f, t, **kwargs): + r"""Computes the numerical inverse Laplace transform for a + Laplace-space function at a given time. The function being + evaluated is assumed to be a real-valued function of time. + + The user must supply a Laplace-space function `\bar{f}(p)`, + and a desired time at which to estimate the time-domain + solution `f(t)`. + + A few basic examples of Laplace-space functions with known + inverses (see references [1,2]) : + + .. math :: + + \mathcal{L}\left\lbrace f(t) \right\rbrace=\bar{f}(p) + + .. math :: + + \mathcal{L}^{-1}\left\lbrace \bar{f}(p) \right\rbrace = f(t) + + .. math :: + + \bar{f}(p) = \frac{1}{(p+1)^2} + + .. math :: + + f(t) = t e^{-t} + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> tt = [0.001, 0.01, 0.1, 1, 10] + >>> fp = lambda p: 1/(p+1)**2 + >>> ft = lambda t: t*exp(-t) + >>> ft(tt[0]),ft(tt[0])-invertlaplace(fp,tt[0],method='talbot') + (0.000999000499833375, 8.57923043561212e-20) + >>> ft(tt[1]),ft(tt[1])-invertlaplace(fp,tt[1],method='talbot') + (0.00990049833749168, 3.27007646698047e-19) + >>> ft(tt[2]),ft(tt[2])-invertlaplace(fp,tt[2],method='talbot') + (0.090483741803596, -1.75215800052168e-18) + >>> ft(tt[3]),ft(tt[3])-invertlaplace(fp,tt[3],method='talbot') + (0.367879441171442, 1.2428864009344e-17) + >>> ft(tt[4]),ft(tt[4])-invertlaplace(fp,tt[4],method='talbot') + (0.000453999297624849, 4.04513489306658e-20) + + The methods also work for higher precision: + + >>> mp.dps = 100; mp.pretty = True + >>> nstr(ft(tt[0]),15),nstr(ft(tt[0])-invertlaplace(fp,tt[0],method='talbot'),15) + ('0.000999000499833375', '-4.96868310693356e-105') + >>> nstr(ft(tt[1]),15),nstr(ft(tt[1])-invertlaplace(fp,tt[1],method='talbot'),15) + ('0.00990049833749168', '1.23032291513122e-104') + + .. math :: + + \bar{f}(p) = \frac{1}{p^2+1} + + .. math :: + + f(t) = \mathrm{J}_0(t) + + >>> mp.dps = 15; mp.pretty = True + >>> fp = lambda p: 1/sqrt(p*p + 1) + >>> ft = lambda t: besselj(0,t) + >>> ft(tt[0]),ft(tt[0])-invertlaplace(fp,tt[0],method='dehoog') + (0.999999750000016, -6.09717765032273e-18) + >>> ft(tt[1]),ft(tt[1])-invertlaplace(fp,tt[1],method='dehoog') + (0.99997500015625, -5.61756281076169e-17) + + .. math :: + + \bar{f}(p) = \frac{\log p}{p} + + .. math :: + + f(t) = -\gamma -\log t + + >>> mp.dps = 15; mp.pretty = True + >>> fp = lambda p: log(p)/p + >>> ft = lambda t: -euler-log(t) + >>> ft(tt[0]),ft(tt[0])-invertlaplace(fp,tt[0],method='stehfest') + (6.3305396140806, -1.92126634837863e-16) + >>> ft(tt[1]),ft(tt[1])-invertlaplace(fp,tt[1],method='stehfest') + (4.02795452108656, -4.81486093200704e-16) + + **Options** + + :func:`~mpmath.invertlaplace` recognizes the following optional + keywords valid for all methods: + + *method* + Chooses numerical inverse Laplace transform algorithm + (described below). + *degree* + Number of terms used in the approximation + + **Algorithms** + + Mpmath implements four numerical inverse Laplace transform + algorithms, attributed to: Talbot, Stehfest, and de Hoog, + Knight and Stokes. These can be selected by using + *method='talbot'*, *method='stehfest'*, *method='dehoog'* or + *method='cohen'* or by passing the classes *method=FixedTalbot*, + *method=Stehfest*, *method=deHoog*, or *method=Cohen*. The functions + :func:`~mpmath.invlaptalbot`, :func:`~mpmath.invlapstehfest`, + :func:`~mpmath.invlapdehoog`, and :func:`~mpmath.invlapcohen` + are also available as shortcuts. + + All four algorithms implement a heuristic balance between the + requested precision and the precision used internally for the + calculations. This has been tuned for a typical exponentially + decaying function and precision up to few hundred decimal + digits. + + The Laplace transform converts the variable time (i.e., along + a line) into a parameter given by the right half of the + complex `p`-plane. Singularities, poles, and branch cuts in + the complex `p`-plane contain all the information regarding + the time behavior of the corresponding function. Any numerical + method must therefore sample `p`-plane "close enough" to the + singularities to accurately characterize them, while not + getting too close to have catastrophic cancellation, overflow, + or underflow issues. Most significantly, if one or more of the + singularities in the `p`-plane is not on the left side of the + Bromwich contour, its effects will be left out of the computed + solution, and the answer will be completely wrong. + + *Talbot* + + The fixed Talbot method is high accuracy and fast, but the + method can catastrophically fail for certain classes of time-domain + behavior, including a Heaviside step function for positive + time (e.g., `H(t-2)`), or some oscillatory behaviors. The + Talbot method usually has adjustable parameters, but the + "fixed" variety implemented here does not. This method + deforms the Bromwich integral contour in the shape of a + parabola towards `-\infty`, which leads to problems + when the solution has a decaying exponential in it (e.g., a + Heaviside step function is equivalent to multiplying by a + decaying exponential in Laplace space). + + *Stehfest* + + The Stehfest algorithm only uses abscissa along the real axis + of the complex `p`-plane to estimate the time-domain + function. Oscillatory time-domain functions have poles away + from the real axis, so this method does not work well with + oscillatory functions, especially high-frequency ones. This + method also depends on summation of terms in a series that + grows very large, and will have catastrophic cancellation + during summation if the working precision is too low. + + *de Hoog et al.* + + The de Hoog, Knight, and Stokes method is essentially a + Fourier-series quadrature-type approximation to the Bromwich + contour integral, with non-linear series acceleration and an + analytical expression for the remainder term. This method is + typically one of the most robust. This method also involves the + greatest amount of overhead, so it is typically the slowest of the + four methods at high precision. + + *Cohen* + + The Cohen method is a trapezoidal rule approximation to the Bromwich + contour integral, with linear acceleration for alternating + series. This method is as robust as the de Hoog et al method and the + fastest of the four methods at high precision, and is therefore the + default method. + + **Singularities** + + All numerical inverse Laplace transform methods have problems + at large time when the Laplace-space function has poles, + singularities, or branch cuts to the right of the origin in + the complex plane. For simple poles in `\bar{f}(p)` at the + `p`-plane origin, the time function is constant in time (e.g., + `\mathcal{L}\left\lbrace 1 \right\rbrace=1/p` has a pole at + `p=0`). A pole in `\bar{f}(p)` to the left of the origin is a + decreasing function of time (e.g., `\mathcal{L}\left\lbrace + e^{-t/2} \right\rbrace=1/(p+1/2)` has a pole at `p=-1/2`), and + a pole to the right of the origin leads to an increasing + function in time (e.g., `\mathcal{L}\left\lbrace t e^{t/4} + \right\rbrace = 1/(p-1/4)^2` has a pole at `p=1/4`). When + singularities occur off the real `p` axis, the time-domain + function is oscillatory. For example `\mathcal{L}\left\lbrace + \mathrm{J}_0(t) \right\rbrace=1/\sqrt{p^2+1}` has a branch cut + starting at `p=j=\sqrt{-1}` and is a decaying oscillatory + function, This range of behaviors is illustrated in Duffy [3] + Figure 4.10.4, p. 228. + + In general as `p \rightarrow \infty` `t \rightarrow 0` and + vice-versa. All numerical inverse Laplace transform methods + require their abscissa to shift closer to the origin for + larger times. If the abscissa shift left of the rightmost + singularity in the Laplace domain, the answer will be + completely wrong (the effect of singularities to the right of + the Bromwich contour are not included in the results). + + For example, the following exponentially growing function has + a pole at `p=3`: + + .. math :: + + \bar{f}(p)=\frac{1}{p^2-9} + + .. math :: + + f(t)=\frac{1}{3}\sinh 3t + + >>> mp.dps = 15; mp.pretty = True + >>> fp = lambda p: 1/(p*p-9) + >>> ft = lambda t: sinh(3*t)/3 + >>> tt = [0.01,0.1,1.0,10.0] + >>> ft(tt[0]),invertlaplace(fp,tt[0],method='talbot') + (0.0100015000675014, 0.0100015000675014) + >>> ft(tt[1]),invertlaplace(fp,tt[1],method='talbot') + (0.101506764482381, 0.101506764482381) + >>> ft(tt[2]),invertlaplace(fp,tt[2],method='talbot') + (3.33929164246997, 3.33929164246997) + >>> ft(tt[3]),invertlaplace(fp,tt[3],method='talbot') + (1781079096920.74, -1.61331069624091e-14) + + **References** + + 1. [DLMF]_ section 1.14 (http://dlmf.nist.gov/1.14T4) + 2. Cohen, A.M. (2007). Numerical Methods for Laplace Transform + Inversion, Springer. + 3. Duffy, D.G. (1998). Advanced Engineering Mathematics, CRC Press. + + **Numerical Inverse Laplace Transform Reviews** + + 1. Bellman, R., R.E. Kalaba, J.A. Lockett (1966). *Numerical + inversion of the Laplace transform: Applications to Biology, + Economics, Engineering, and Physics*. Elsevier. + 2. Davies, B., B. Martin (1979). Numerical inversion of the + Laplace transform: a survey and comparison of methods. *Journal + of Computational Physics* 33:1-32, + http://dx.doi.org/10.1016/0021-9991(79)90025-1 + 3. Duffy, D.G. (1993). On the numerical inversion of Laplace + transforms: Comparison of three new methods on characteristic + problems from applications. *ACM Transactions on Mathematical + Software* 19(3):333-359, http://dx.doi.org/10.1145/155743.155788 + 4. Kuhlman, K.L., (2013). Review of Inverse Laplace Transform + Algorithms for Laplace-Space Numerical Approaches, *Numerical + Algorithms*, 63(2):339-355. + http://dx.doi.org/10.1007/s11075-012-9625-3 + + """ + + rule = kwargs.get('method', 'cohen') + if type(rule) is str: + lrule = rule.lower() + if lrule == 'talbot': + rule = ctx._fixed_talbot + elif lrule == 'stehfest': + rule = ctx._stehfest + elif lrule == 'dehoog': + rule = ctx._de_hoog + elif rule == 'cohen': + rule = ctx._cohen + else: + raise ValueError("unknown invlap algorithm: %s" % rule) + else: + rule = rule(ctx) + + # determine the vector of Laplace-space parameter + # needed for the requested method and desired time + rule.calc_laplace_parameter(t, **kwargs) + + # compute the Laplace-space function evalutations + # at the required abscissa. + fp = [f(p) for p in rule.p] + + # compute the time-domain solution from the + # Laplace-space function evaluations + return rule.calc_time_domain_solution(fp, t) + + # shortcuts for the above function for specific methods + def invlaptalbot(ctx, *args, **kwargs): + kwargs['method'] = 'talbot' + return ctx.invertlaplace(*args, **kwargs) + + def invlapstehfest(ctx, *args, **kwargs): + kwargs['method'] = 'stehfest' + return ctx.invertlaplace(*args, **kwargs) + + def invlapdehoog(ctx, *args, **kwargs): + kwargs['method'] = 'dehoog' + return ctx.invertlaplace(*args, **kwargs) + + def invlapcohen(ctx, *args, **kwargs): + kwargs['method'] = 'cohen' + return ctx.invertlaplace(*args, **kwargs) + + +# **************************************** + +if __name__ == '__main__': + import doctest + doctest.testmod() diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/odes.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/odes.py new file mode 100644 index 0000000000000000000000000000000000000000..ac6bd3cb056c8841e6cf77ba4d08a0b1abb2f2c9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/odes.py @@ -0,0 +1,288 @@ +from bisect import bisect +from ..libmp.backend import xrange + +class ODEMethods(object): + pass + +def ode_taylor(ctx, derivs, x0, y0, tol_prec, n): + h = tol = ctx.ldexp(1, -tol_prec) + dim = len(y0) + xs = [x0] + ys = [y0] + x = x0 + y = y0 + orig = ctx.prec + try: + ctx.prec = orig*(1+n) + # Use n steps with Euler's method to get + # evaluation points for derivatives + for i in range(n): + fxy = derivs(x, y) + y = [y[i]+h*fxy[i] for i in xrange(len(y))] + x += h + xs.append(x) + ys.append(y) + # Compute derivatives + ser = [[] for d in range(dim)] + for j in range(n+1): + s = [0]*dim + b = (-1) ** (j & 1) + k = 1 + for i in range(j+1): + for d in range(dim): + s[d] += b * ys[i][d] + b = (b * (j-k+1)) // (-k) + k += 1 + scale = h**(-j) / ctx.fac(j) + for d in range(dim): + s[d] = s[d] * scale + ser[d].append(s[d]) + finally: + ctx.prec = orig + # Estimate radius for which we can get full accuracy. + # XXX: do this right for zeros + radius = ctx.one + for ts in ser: + if ts[-1]: + radius = min(radius, ctx.nthroot(tol/abs(ts[-1]), n)) + radius /= 2 # XXX + return ser, x0+radius + +def odefun(ctx, F, x0, y0, tol=None, degree=None, method='taylor', verbose=False): + r""" + Returns a function `y(x) = [y_0(x), y_1(x), \ldots, y_n(x)]` + that is a numerical solution of the `n+1`-dimensional first-order + ordinary differential equation (ODE) system + + .. math :: + + y_0'(x) = F_0(x, [y_0(x), y_1(x), \ldots, y_n(x)]) + + y_1'(x) = F_1(x, [y_0(x), y_1(x), \ldots, y_n(x)]) + + \vdots + + y_n'(x) = F_n(x, [y_0(x), y_1(x), \ldots, y_n(x)]) + + The derivatives are specified by the vector-valued function + *F* that evaluates + `[y_0', \ldots, y_n'] = F(x, [y_0, \ldots, y_n])`. + The initial point `x_0` is specified by the scalar argument *x0*, + and the initial value `y(x_0) = [y_0(x_0), \ldots, y_n(x_0)]` is + specified by the vector argument *y0*. + + For convenience, if the system is one-dimensional, you may optionally + provide just a scalar value for *y0*. In this case, *F* should accept + a scalar *y* argument and return a scalar. The solution function + *y* will return scalar values instead of length-1 vectors. + + Evaluation of the solution function `y(x)` is permitted + for any `x \ge x_0`. + + A high-order ODE can be solved by transforming it into first-order + vector form. This transformation is described in standard texts + on ODEs. Examples will also be given below. + + **Options, speed and accuracy** + + By default, :func:`~mpmath.odefun` uses a high-order Taylor series + method. For reasonably well-behaved problems, the solution will + be fully accurate to within the working precision. Note that + *F* must be possible to evaluate to very high precision + for the generation of Taylor series to work. + + To get a faster but less accurate solution, you can set a large + value for *tol* (which defaults roughly to *eps*). If you just + want to plot the solution or perform a basic simulation, + *tol = 0.01* is likely sufficient. + + The *degree* argument controls the degree of the solver (with + *method='taylor'*, this is the degree of the Taylor series + expansion). A higher degree means that a longer step can be taken + before a new local solution must be generated from *F*, + meaning that fewer steps are required to get from `x_0` to a given + `x_1`. On the other hand, a higher degree also means that each + local solution becomes more expensive (i.e., more evaluations of + *F* are required per step, and at higher precision). + + The optimal setting therefore involves a tradeoff. Generally, + decreasing the *degree* for Taylor series is likely to give faster + solution at low precision, while increasing is likely to be better + at higher precision. + + The function + object returned by :func:`~mpmath.odefun` caches the solutions at all step + points and uses polynomial interpolation between step points. + Therefore, once `y(x_1)` has been evaluated for some `x_1`, + `y(x)` can be evaluated very quickly for any `x_0 \le x \le x_1`. + and continuing the evaluation up to `x_2 > x_1` is also fast. + + **Examples of first-order ODEs** + + We will solve the standard test problem `y'(x) = y(x), y(0) = 1` + which has explicit solution `y(x) = \exp(x)`:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> f = odefun(lambda x, y: y, 0, 1) + >>> for x in [0, 1, 2.5]: + ... print((f(x), exp(x))) + ... + (1.0, 1.0) + (2.71828182845905, 2.71828182845905) + (12.1824939607035, 12.1824939607035) + + The solution with high precision:: + + >>> mp.dps = 50 + >>> f = odefun(lambda x, y: y, 0, 1) + >>> f(1) + 2.7182818284590452353602874713526624977572470937 + >>> exp(1) + 2.7182818284590452353602874713526624977572470937 + + Using the more general vectorized form, the test problem + can be input as (note that *f* returns a 1-element vector):: + + >>> mp.dps = 15 + >>> f = odefun(lambda x, y: [y[0]], 0, [1]) + >>> f(1) + [2.71828182845905] + + :func:`~mpmath.odefun` can solve nonlinear ODEs, which are generally + impossible (and at best difficult) to solve analytically. As + an example of a nonlinear ODE, we will solve `y'(x) = x \sin(y(x))` + for `y(0) = \pi/2`. An exact solution happens to be known + for this problem, and is given by + `y(x) = 2 \tan^{-1}\left(\exp\left(x^2/2\right)\right)`:: + + >>> f = odefun(lambda x, y: x*sin(y), 0, pi/2) + >>> for x in [2, 5, 10]: + ... print((f(x), 2*atan(exp(mpf(x)**2/2)))) + ... + (2.87255666284091, 2.87255666284091) + (3.14158520028345, 3.14158520028345) + (3.14159265358979, 3.14159265358979) + + If `F` is independent of `y`, an ODE can be solved using direct + integration. We can therefore obtain a reference solution with + :func:`~mpmath.quad`:: + + >>> f = lambda x: (1+x**2)/(1+x**3) + >>> g = odefun(lambda x, y: f(x), pi, 0) + >>> g(2*pi) + 0.72128263801696 + >>> quad(f, [pi, 2*pi]) + 0.72128263801696 + + **Examples of second-order ODEs** + + We will solve the harmonic oscillator equation `y''(x) + y(x) = 0`. + To do this, we introduce the helper functions `y_0 = y, y_1 = y_0'` + whereby the original equation can be written as `y_1' + y_0' = 0`. Put + together, we get the first-order, two-dimensional vector ODE + + .. math :: + + \begin{cases} + y_0' = y_1 \\ + y_1' = -y_0 + \end{cases} + + To get a well-defined IVP, we need two initial values. With + `y(0) = y_0(0) = 1` and `-y'(0) = y_1(0) = 0`, the problem will of + course be solved by `y(x) = y_0(x) = \cos(x)` and + `-y'(x) = y_1(x) = \sin(x)`. We check this:: + + >>> f = odefun(lambda x, y: [-y[1], y[0]], 0, [1, 0]) + >>> for x in [0, 1, 2.5, 10]: + ... nprint(f(x), 15) + ... nprint([cos(x), sin(x)], 15) + ... print("---") + ... + [1.0, 0.0] + [1.0, 0.0] + --- + [0.54030230586814, 0.841470984807897] + [0.54030230586814, 0.841470984807897] + --- + [-0.801143615546934, 0.598472144103957] + [-0.801143615546934, 0.598472144103957] + --- + [-0.839071529076452, -0.54402111088937] + [-0.839071529076452, -0.54402111088937] + --- + + Note that we get both the sine and the cosine solutions + simultaneously. + + **TODO** + + * Better automatic choice of degree and step size + * Make determination of Taylor series convergence radius + more robust + * Allow solution for `x < x_0` + * Allow solution for complex `x` + * Test for difficult (ill-conditioned) problems + * Implement Runge-Kutta and other algorithms + + """ + if tol: + tol_prec = int(-ctx.log(tol, 2))+10 + else: + tol_prec = ctx.prec+10 + degree = degree or (3 + int(3*ctx.dps/2.)) + workprec = ctx.prec + 40 + try: + len(y0) + return_vector = True + except TypeError: + F_ = F + F = lambda x, y: [F_(x, y[0])] + y0 = [y0] + return_vector = False + ser, xb = ode_taylor(ctx, F, x0, y0, tol_prec, degree) + series_boundaries = [x0, xb] + series_data = [(ser, x0, xb)] + # We will be working with vectors of Taylor series + def mpolyval(ser, a): + return [ctx.polyval(s[::-1], a) for s in ser] + # Find nearest expansion point; compute if necessary + def get_series(x): + if x < x0: + raise ValueError + n = bisect(series_boundaries, x) + if n < len(series_boundaries): + return series_data[n-1] + while 1: + ser, xa, xb = series_data[-1] + if verbose: + print("Computing Taylor series for [%f, %f]" % (xa, xb)) + y = mpolyval(ser, xb-xa) + xa = xb + ser, xb = ode_taylor(ctx, F, xb, y, tol_prec, degree) + series_boundaries.append(xb) + series_data.append((ser, xa, xb)) + if x <= xb: + return series_data[-1] + # Evaluation function + def interpolant(x): + x = ctx.convert(x) + orig = ctx.prec + try: + ctx.prec = workprec + ser, xa, xb = get_series(x) + y = mpolyval(ser, x-xa) + finally: + ctx.prec = orig + if return_vector: + return [+yk for yk in y] + else: + return +y[0] + return interpolant + +ODEMethods.odefun = odefun + +if __name__ == "__main__": + import doctest + doctest.testmod() diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/optimization.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/optimization.py new file mode 100644 index 0000000000000000000000000000000000000000..69724f78336ee24856366db48917a47108b1b416 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/optimization.py @@ -0,0 +1,1102 @@ +from __future__ import print_function + +from copy import copy + +from ..libmp.backend import xrange + +class OptimizationMethods(object): + def __init__(ctx): + pass + +############## +# 1D-SOLVERS # +############## + +class Newton: + """ + 1d-solver generating pairs of approximative root and error. + + Needs starting points x0 close to the root. + + Pro: + + * converges fast + * sometimes more robust than secant with bad second starting point + + Contra: + + * converges slowly for multiple roots + * needs first derivative + * 2 function evaluations per iteration + """ + maxsteps = 20 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + if len(x0) == 1: + self.x0 = x0[0] + else: + raise ValueError('expected 1 starting point, got %i' % len(x0)) + self.f = f + if not 'df' in kwargs: + def df(x): + return self.ctx.diff(f, x) + else: + df = kwargs['df'] + self.df = df + + def __iter__(self): + f = self.f + df = self.df + x0 = self.x0 + while True: + x1 = x0 - f(x0) / df(x0) + error = abs(x1 - x0) + x0 = x1 + yield (x1, error) + +class Secant: + """ + 1d-solver generating pairs of approximative root and error. + + Needs starting points x0 and x1 close to the root. + x1 defaults to x0 + 0.25. + + Pro: + + * converges fast + + Contra: + + * converges slowly for multiple roots + """ + maxsteps = 30 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + if len(x0) == 1: + self.x0 = x0[0] + self.x1 = self.x0 + 0.25 + elif len(x0) == 2: + self.x0 = x0[0] + self.x1 = x0[1] + else: + raise ValueError('expected 1 or 2 starting points, got %i' % len(x0)) + self.f = f + + def __iter__(self): + f = self.f + x0 = self.x0 + x1 = self.x1 + f0 = f(x0) + while True: + f1 = f(x1) + l = x1 - x0 + if not l: + break + s = (f1 - f0) / l + if not s: + break + x0, x1 = x1, x1 - f1/s + f0 = f1 + yield x1, abs(l) + +class MNewton: + """ + 1d-solver generating pairs of approximative root and error. + + Needs starting point x0 close to the root. + Uses modified Newton's method that converges fast regardless of the + multiplicity of the root. + + Pro: + + * converges fast for multiple roots + + Contra: + + * needs first and second derivative of f + * 3 function evaluations per iteration + """ + maxsteps = 20 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + if not len(x0) == 1: + raise ValueError('expected 1 starting point, got %i' % len(x0)) + self.x0 = x0[0] + self.f = f + if not 'df' in kwargs: + def df(x): + return self.ctx.diff(f, x) + else: + df = kwargs['df'] + self.df = df + if not 'd2f' in kwargs: + def d2f(x): + return self.ctx.diff(df, x) + else: + d2f = kwargs['df'] + self.d2f = d2f + + def __iter__(self): + x = self.x0 + f = self.f + df = self.df + d2f = self.d2f + while True: + prevx = x + fx = f(x) + if fx == 0: + break + dfx = df(x) + d2fx = d2f(x) + # x = x - F(x)/F'(x) with F(x) = f(x)/f'(x) + x -= fx / (dfx - fx * d2fx / dfx) + error = abs(x - prevx) + yield x, error + +class Halley: + """ + 1d-solver generating pairs of approximative root and error. + + Needs a starting point x0 close to the root. + Uses Halley's method with cubic convergence rate. + + Pro: + + * converges even faster the Newton's method + * useful when computing with *many* digits + + Contra: + + * needs first and second derivative of f + * 3 function evaluations per iteration + * converges slowly for multiple roots + """ + + maxsteps = 20 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + if not len(x0) == 1: + raise ValueError('expected 1 starting point, got %i' % len(x0)) + self.x0 = x0[0] + self.f = f + if not 'df' in kwargs: + def df(x): + return self.ctx.diff(f, x) + else: + df = kwargs['df'] + self.df = df + if not 'd2f' in kwargs: + def d2f(x): + return self.ctx.diff(df, x) + else: + d2f = kwargs['df'] + self.d2f = d2f + + def __iter__(self): + x = self.x0 + f = self.f + df = self.df + d2f = self.d2f + while True: + prevx = x + fx = f(x) + dfx = df(x) + d2fx = d2f(x) + x -= 2*fx*dfx / (2*dfx**2 - fx*d2fx) + error = abs(x - prevx) + yield x, error + +class Muller: + """ + 1d-solver generating pairs of approximative root and error. + + Needs starting points x0, x1 and x2 close to the root. + x1 defaults to x0 + 0.25; x2 to x1 + 0.25. + Uses Muller's method that converges towards complex roots. + + Pro: + + * converges fast (somewhat faster than secant) + * can find complex roots + + Contra: + + * converges slowly for multiple roots + * may have complex values for real starting points and real roots + + http://en.wikipedia.org/wiki/Muller's_method + """ + maxsteps = 30 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + if len(x0) == 1: + self.x0 = x0[0] + self.x1 = self.x0 + 0.25 + self.x2 = self.x1 + 0.25 + elif len(x0) == 2: + self.x0 = x0[0] + self.x1 = x0[1] + self.x2 = self.x1 + 0.25 + elif len(x0) == 3: + self.x0 = x0[0] + self.x1 = x0[1] + self.x2 = x0[2] + else: + raise ValueError('expected 1, 2 or 3 starting points, got %i' + % len(x0)) + self.f = f + self.verbose = kwargs['verbose'] + + def __iter__(self): + f = self.f + x0 = self.x0 + x1 = self.x1 + x2 = self.x2 + fx0 = f(x0) + fx1 = f(x1) + fx2 = f(x2) + while True: + # TODO: maybe refactoring with function for divided differences + # calculate divided differences + fx2x1 = (fx1 - fx2) / (x1 - x2) + fx2x0 = (fx0 - fx2) / (x0 - x2) + fx1x0 = (fx0 - fx1) / (x0 - x1) + w = fx2x1 + fx2x0 - fx1x0 + fx2x1x0 = (fx1x0 - fx2x1) / (x0 - x2) + if w == 0 and fx2x1x0 == 0: + if self.verbose: + print('canceled with') + print('x0 =', x0, ', x1 =', x1, 'and x2 =', x2) + break + x0 = x1 + fx0 = fx1 + x1 = x2 + fx1 = fx2 + # denominator should be as large as possible => choose sign + r = self.ctx.sqrt(w**2 - 4*fx2*fx2x1x0) + if abs(w - r) > abs(w + r): + r = -r + x2 -= 2*fx2 / (w + r) + fx2 = f(x2) + error = abs(x2 - x1) + yield x2, error + +# TODO: consider raising a ValueError when there's no sign change in a and b +class Bisection: + """ + 1d-solver generating pairs of approximative root and error. + + Uses bisection method to find a root of f in [a, b]. + Might fail for multiple roots (needs sign change). + + Pro: + + * robust and reliable + + Contra: + + * converges slowly + * needs sign change + """ + maxsteps = 100 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + if len(x0) != 2: + raise ValueError('expected interval of 2 points, got %i' % len(x0)) + self.f = f + self.a = x0[0] + self.b = x0[1] + + def __iter__(self): + f = self.f + a = self.a + b = self.b + l = b - a + fb = f(b) + while True: + m = self.ctx.ldexp(a + b, -1) + fm = f(m) + sign = fm * fb + if sign < 0: + a = m + elif sign > 0: + b = m + fb = fm + else: + yield m, self.ctx.zero + l /= 2 + yield (a + b)/2, abs(l) + +def _getm(method): + """ + Return a function to calculate m for Illinois-like methods. + """ + if method == 'illinois': + def getm(fz, fb): + return 0.5 + elif method == 'pegasus': + def getm(fz, fb): + return fb/(fb + fz) + elif method == 'anderson': + def getm(fz, fb): + m = 1 - fz/fb + if m > 0: + return m + else: + return 0.5 + else: + raise ValueError("method '%s' not recognized" % method) + return getm + +class Illinois: + """ + 1d-solver generating pairs of approximative root and error. + + Uses Illinois method or similar to find a root of f in [a, b]. + Might fail for multiple roots (needs sign change). + Combines bisect with secant (improved regula falsi). + + The only difference between the methods is the scaling factor m, which is + used to ensure convergence (you can choose one using the 'method' keyword): + + Illinois method ('illinois'): + m = 0.5 + + Pegasus method ('pegasus'): + m = fb/(fb + fz) + + Anderson-Bjoerk method ('anderson'): + m = 1 - fz/fb if positive else 0.5 + + Pro: + + * converges very fast + + Contra: + + * has problems with multiple roots + * needs sign change + """ + maxsteps = 30 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + if len(x0) != 2: + raise ValueError('expected interval of 2 points, got %i' % len(x0)) + self.a = x0[0] + self.b = x0[1] + self.f = f + self.tol = kwargs['tol'] + self.verbose = kwargs['verbose'] + self.method = kwargs.get('method', 'illinois') + self.getm = _getm(self.method) + if self.verbose: + print('using %s method' % self.method) + + def __iter__(self): + method = self.method + f = self.f + a = self.a + b = self.b + fa = f(a) + fb = f(b) + m = None + while True: + l = b - a + if l == 0: + break + s = (fb - fa) / l + z = a - fa/s + fz = f(z) + if abs(fz) < self.tol: + # TODO: better condition (when f is very flat) + if self.verbose: + print('canceled with z =', z) + yield z, l + break + if fz * fb < 0: # root in [z, b] + a = b + fa = fb + b = z + fb = fz + else: # root in [a, z] + m = self.getm(fz, fb) + b = z + fb = fz + fa = m*fa # scale down to ensure convergence + if self.verbose and m and not method == 'illinois': + print('m:', m) + yield (a + b)/2, abs(l) + +def Pegasus(*args, **kwargs): + """ + 1d-solver generating pairs of approximative root and error. + + Uses Pegasus method to find a root of f in [a, b]. + Wrapper for illinois to use method='pegasus'. + """ + kwargs['method'] = 'pegasus' + return Illinois(*args, **kwargs) + +def Anderson(*args, **kwargs): + """ + 1d-solver generating pairs of approximative root and error. + + Uses Anderson-Bjoerk method to find a root of f in [a, b]. + Wrapper for illinois to use method='pegasus'. + """ + kwargs['method'] = 'anderson' + return Illinois(*args, **kwargs) + +# TODO: check whether it's possible to combine it with Illinois stuff +class Ridder: + """ + 1d-solver generating pairs of approximative root and error. + + Ridders' method to find a root of f in [a, b]. + Is told to perform as well as Brent's method while being simpler. + + Pro: + + * very fast + * simpler than Brent's method + + Contra: + + * two function evaluations per step + * has problems with multiple roots + * needs sign change + + http://en.wikipedia.org/wiki/Ridders'_method + """ + maxsteps = 30 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + self.f = f + if len(x0) != 2: + raise ValueError('expected interval of 2 points, got %i' % len(x0)) + self.x1 = x0[0] + self.x2 = x0[1] + self.verbose = kwargs['verbose'] + self.tol = kwargs['tol'] + + def __iter__(self): + ctx = self.ctx + f = self.f + x1 = self.x1 + fx1 = f(x1) + x2 = self.x2 + fx2 = f(x2) + while True: + x3 = 0.5*(x1 + x2) + fx3 = f(x3) + x4 = x3 + (x3 - x1) * ctx.sign(fx1 - fx2) * fx3 / ctx.sqrt(fx3**2 - fx1*fx2) + fx4 = f(x4) + if abs(fx4) < self.tol: + # TODO: better condition (when f is very flat) + if self.verbose: + print('canceled with f(x4) =', fx4) + yield x4, abs(x1 - x2) + break + if fx4 * fx2 < 0: # root in [x4, x2] + x1 = x4 + fx1 = fx4 + else: # root in [x1, x4] + x2 = x4 + fx2 = fx4 + error = abs(x1 - x2) + yield (x1 + x2)/2, error + +class ANewton: + """ + EXPERIMENTAL 1d-solver generating pairs of approximative root and error. + + Uses Newton's method modified to use Steffensens method when convergence is + slow. (I.e. for multiple roots.) + """ + maxsteps = 20 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + if not len(x0) == 1: + raise ValueError('expected 1 starting point, got %i' % len(x0)) + self.x0 = x0[0] + self.f = f + if not 'df' in kwargs: + def df(x): + return self.ctx.diff(f, x) + else: + df = kwargs['df'] + self.df = df + def phi(x): + return x - f(x) / df(x) + self.phi = phi + self.verbose = kwargs['verbose'] + + def __iter__(self): + x0 = self.x0 + f = self.f + df = self.df + phi = self.phi + error = 0 + counter = 0 + while True: + prevx = x0 + try: + x0 = phi(x0) + except ZeroDivisionError: + if self.verbose: + print('ZeroDivisionError: canceled with x =', x0) + break + preverror = error + error = abs(prevx - x0) + # TODO: decide not to use convergence acceleration + if error and abs(error - preverror) / error < 1: + if self.verbose: + print('converging slowly') + counter += 1 + if counter >= 3: + # accelerate convergence + phi = steffensen(phi) + counter = 0 + if self.verbose: + print('accelerating convergence') + yield x0, error + +# TODO: add Brent + +############################ +# MULTIDIMENSIONAL SOLVERS # +############################ + +def jacobian(ctx, f, x): + """ + Calculate the Jacobian matrix of a function at the point x0. + + This is the first derivative of a vectorial function: + + f : R^m -> R^n with m >= n + """ + x = ctx.matrix(x) + h = ctx.sqrt(ctx.eps) + fx = ctx.matrix(f(*x)) + m = len(fx) + n = len(x) + J = ctx.matrix(m, n) + for j in xrange(n): + xj = x.copy() + xj[j] += h + Jj = (ctx.matrix(f(*xj)) - fx) / h + for i in xrange(m): + J[i,j] = Jj[i] + return J + +# TODO: test with user-specified jacobian matrix +class MDNewton: + """ + Find the root of a vector function numerically using Newton's method. + + f is a vector function representing a nonlinear equation system. + + x0 is the starting point close to the root. + + J is a function returning the Jacobian matrix for a point. + + Supports overdetermined systems. + + Use the 'norm' keyword to specify which norm to use. Defaults to max-norm. + The function to calculate the Jacobian matrix can be given using the + keyword 'J'. Otherwise it will be calculated numerically. + + Please note that this method converges only locally. Especially for high- + dimensional systems it is not trivial to find a good starting point being + close enough to the root. + + It is recommended to use a faster, low-precision solver from SciPy [1] or + OpenOpt [2] to get an initial guess. Afterwards you can use this method for + root-polishing to any precision. + + [1] http://scipy.org + + [2] http://openopt.org/Welcome + """ + maxsteps = 10 + + def __init__(self, ctx, f, x0, **kwargs): + self.ctx = ctx + self.f = f + if isinstance(x0, (tuple, list)): + x0 = ctx.matrix(x0) + assert x0.cols == 1, 'need a vector' + self.x0 = x0 + if 'J' in kwargs: + self.J = kwargs['J'] + else: + def J(*x): + return ctx.jacobian(f, x) + self.J = J + self.norm = kwargs['norm'] + self.verbose = kwargs['verbose'] + + def __iter__(self): + f = self.f + x0 = self.x0 + norm = self.norm + J = self.J + fx = self.ctx.matrix(f(*x0)) + fxnorm = norm(fx) + cancel = False + while not cancel: + # get direction of descent + fxn = -fx + Jx = J(*x0) + s = self.ctx.lu_solve(Jx, fxn) + if self.verbose: + print('Jx:') + print(Jx) + print('s:', s) + # damping step size TODO: better strategy (hard task) + l = self.ctx.one + x1 = x0 + s + while True: + if x1 == x0: + if self.verbose: + print("canceled, won't get more excact") + cancel = True + break + fx = self.ctx.matrix(f(*x1)) + newnorm = norm(fx) + if newnorm < fxnorm: + # new x accepted + fxnorm = newnorm + x0 = x1 + break + l /= 2 + x1 = x0 + l*s + yield (x0, fxnorm) + +############# +# UTILITIES # +############# + +str2solver = {'newton':Newton, 'secant':Secant, 'mnewton':MNewton, + 'halley':Halley, 'muller':Muller, 'bisect':Bisection, + 'illinois':Illinois, 'pegasus':Pegasus, 'anderson':Anderson, + 'ridder':Ridder, 'anewton':ANewton, 'mdnewton':MDNewton} + +def findroot(ctx, f, x0, solver='secant', tol=None, verbose=False, verify=True, **kwargs): + r""" + Find an approximate solution to `f(x) = 0`, using *x0* as starting point or + interval for *x*. + + Multidimensional overdetermined systems are supported. + You can specify them using a function or a list of functions. + + Mathematically speaking, this function returns `x` such that + `|f(x)|^2 \leq \mathrm{tol}` is true within the current working precision. + If the computed value does not meet this criterion, an exception is raised. + This exception can be disabled with *verify=False*. + + For interval arithmetic (``iv.findroot()``), please note that + the returned interval ``x`` is not guaranteed to contain `f(x)=0`! + It is only some `x` for which `|f(x)|^2 \leq \mathrm{tol}` certainly holds + regardless of numerical error. This may be improved in the future. + + **Arguments** + + *f* + one dimensional function + *x0* + starting point, several starting points or interval (depends on solver) + *tol* + the returned solution has an error smaller than this + *verbose* + print additional information for each iteration if true + *verify* + verify the solution and raise a ValueError if `|f(x)|^2 > \mathrm{tol}` + *solver* + a generator for *f* and *x0* returning approximative solution and error + *maxsteps* + after how many steps the solver will cancel + *df* + first derivative of *f* (used by some solvers) + *d2f* + second derivative of *f* (used by some solvers) + *multidimensional* + force multidimensional solving + *J* + Jacobian matrix of *f* (used by multidimensional solvers) + *norm* + used vector norm (used by multidimensional solvers) + + solver has to be callable with ``(f, x0, **kwargs)`` and return an generator + yielding pairs of approximative solution and estimated error (which is + expected to be positive). + You can use the following string aliases: + 'secant', 'mnewton', 'halley', 'muller', 'illinois', 'pegasus', 'anderson', + 'ridder', 'anewton', 'bisect' + + See mpmath.calculus.optimization for their documentation. + + **Examples** + + The function :func:`~mpmath.findroot` locates a root of a given function using the + secant method by default. A simple example use of the secant method is to + compute `\pi` as the root of `\sin x` closest to `x_0 = 3`:: + + >>> from mpmath import * + >>> mp.dps = 30; mp.pretty = True + >>> findroot(sin, 3) + 3.14159265358979323846264338328 + + The secant method can be used to find complex roots of analytic functions, + although it must in that case generally be given a nonreal starting value + (or else it will never leave the real line):: + + >>> mp.dps = 15 + >>> findroot(lambda x: x**3 + 2*x + 1, j) + (0.226698825758202 + 1.46771150871022j) + + A nice application is to compute nontrivial roots of the Riemann zeta + function with many digits (good initial values are needed for convergence):: + + >>> mp.dps = 30 + >>> findroot(zeta, 0.5+14j) + (0.5 + 14.1347251417346937904572519836j) + + The secant method can also be used as an optimization algorithm, by passing + it a derivative of a function. The following example locates the positive + minimum of the gamma function:: + + >>> mp.dps = 20 + >>> findroot(lambda x: diff(gamma, x), 1) + 1.4616321449683623413 + + Finally, a useful application is to compute inverse functions, such as the + Lambert W function which is the inverse of `w e^w`, given the first + term of the solution's asymptotic expansion as the initial value. In basic + cases, this gives identical results to mpmath's built-in ``lambertw`` + function:: + + >>> def lambert(x): + ... return findroot(lambda w: w*exp(w) - x, log(1+x)) + ... + >>> mp.dps = 15 + >>> lambert(1); lambertw(1) + 0.567143290409784 + 0.567143290409784 + >>> lambert(1000); lambert(1000) + 5.2496028524016 + 5.2496028524016 + + Multidimensional functions are also supported:: + + >>> f = [lambda x1, x2: x1**2 + x2, + ... lambda x1, x2: 5*x1**2 - 3*x1 + 2*x2 - 3] + >>> findroot(f, (0, 0)) + [-0.618033988749895] + [-0.381966011250105] + >>> findroot(f, (10, 10)) + [ 1.61803398874989] + [-2.61803398874989] + + You can verify this by solving the system manually. + + Please note that the following (more general) syntax also works:: + + >>> def f(x1, x2): + ... return x1**2 + x2, 5*x1**2 - 3*x1 + 2*x2 - 3 + ... + >>> findroot(f, (0, 0)) + [-0.618033988749895] + [-0.381966011250105] + + + **Multiple roots** + + For multiple roots all methods of the Newtonian family (including secant) + converge slowly. Consider this example:: + + >>> f = lambda x: (x - 1)**99 + >>> findroot(f, 0.9, verify=False) + 0.918073542444929 + + Even for a very close starting point the secant method converges very + slowly. Use ``verbose=True`` to illustrate this. + + It is possible to modify Newton's method to make it converge regardless of + the root's multiplicity:: + + >>> findroot(f, -10, solver='mnewton') + 1.0 + + This variant uses the first and second derivative of the function, which is + not very efficient. + + Alternatively you can use an experimental Newtonian solver that keeps track + of the speed of convergence and accelerates it using Steffensen's method if + necessary:: + + >>> findroot(f, -10, solver='anewton', verbose=True) + x: -9.88888888888888888889 + error: 0.111111111111111111111 + converging slowly + x: -9.77890011223344556678 + error: 0.10998877665544332211 + converging slowly + x: -9.67002233332199662166 + error: 0.108877778911448945119 + converging slowly + accelerating convergence + x: -9.5622443299551077669 + error: 0.107778003366888854764 + converging slowly + x: 0.99999999999999999214 + error: 10.562244329955107759 + x: 1.0 + error: 7.8598304758094664213e-18 + ZeroDivisionError: canceled with x = 1.0 + 1.0 + + **Complex roots** + + For complex roots it's recommended to use Muller's method as it converges + even for real starting points very fast:: + + >>> findroot(lambda x: x**4 + x + 1, (0, 1, 2), solver='muller') + (0.727136084491197 + 0.934099289460529j) + + + **Intersection methods** + + When you need to find a root in a known interval, it's highly recommended to + use an intersection-based solver like ``'anderson'`` or ``'ridder'``. + Usually they converge faster and more reliable. They have however problems + with multiple roots and usually need a sign change to find a root:: + + >>> findroot(lambda x: x**3, (-1, 1), solver='anderson') + 0.0 + + Be careful with symmetric functions:: + + >>> findroot(lambda x: x**2, (-1, 1), solver='anderson') #doctest:+ELLIPSIS + Traceback (most recent call last): + ... + ZeroDivisionError + + It fails even for better starting points, because there is no sign change:: + + >>> findroot(lambda x: x**2, (-1, .5), solver='anderson') + Traceback (most recent call last): + ... + ValueError: Could not find root within given tolerance. (1.0 > 2.16840434497100886801e-19) + Try another starting point or tweak arguments. + + """ + prec = ctx.prec + try: + ctx.prec += 20 + + # initialize arguments + if tol is None: + tol = ctx.eps * 2**10 + + kwargs['verbose'] = kwargs.get('verbose', verbose) + + if 'd1f' in kwargs: + kwargs['df'] = kwargs['d1f'] + + kwargs['tol'] = tol + if isinstance(x0, (list, tuple)): + x0 = [ctx.convert(x) for x in x0] + else: + x0 = [ctx.convert(x0)] + + if isinstance(solver, str): + try: + solver = str2solver[solver] + except KeyError: + raise ValueError('could not recognize solver') + + # accept list of functions + if isinstance(f, (list, tuple)): + f2 = copy(f) + def tmp(*args): + return [fn(*args) for fn in f2] + f = tmp + + # detect multidimensional functions + try: + fx = f(*x0) + multidimensional = isinstance(fx, (list, tuple, ctx.matrix)) + except TypeError: + fx = f(x0[0]) + multidimensional = False + if 'multidimensional' in kwargs: + multidimensional = kwargs['multidimensional'] + if multidimensional: + # only one multidimensional solver available at the moment + solver = MDNewton + if not 'norm' in kwargs: + norm = lambda x: ctx.norm(x, 'inf') + kwargs['norm'] = norm + else: + norm = kwargs['norm'] + else: + norm = abs + + # happily return starting point if it's a root + if norm(fx) == 0: + if multidimensional: + return ctx.matrix(x0) + else: + return x0[0] + + # use solver + iterations = solver(ctx, f, x0, **kwargs) + if 'maxsteps' in kwargs: + maxsteps = kwargs['maxsteps'] + else: + maxsteps = iterations.maxsteps + i = 0 + for x, error in iterations: + if verbose: + print('x: ', x) + print('error:', error) + i += 1 + if error < tol * max(1, norm(x)) or i >= maxsteps: + break + else: + if not i: + raise ValueError('Could not find root using the given solver.\n' + 'Try another starting point or tweak arguments.') + if not isinstance(x, (list, tuple, ctx.matrix)): + xl = [x] + else: + xl = x + if verify and norm(f(*xl))**2 > tol: # TODO: better condition? + raise ValueError('Could not find root within given tolerance. ' + '(%s > %s)\n' + 'Try another starting point or tweak arguments.' + % (norm(f(*xl))**2, tol)) + return x + finally: + ctx.prec = prec + + +def multiplicity(ctx, f, root, tol=None, maxsteps=10, **kwargs): + """ + Return the multiplicity of a given root of f. + + Internally, numerical derivatives are used. This might be inefficient for + higher order derviatives. Due to this, ``multiplicity`` cancels after + evaluating 10 derivatives by default. You can be specify the n-th derivative + using the dnf keyword. + + >>> from mpmath import * + >>> multiplicity(lambda x: sin(x) - 1, pi/2) + 2 + + """ + if tol is None: + tol = ctx.eps ** 0.8 + kwargs['d0f'] = f + for i in xrange(maxsteps): + dfstr = 'd' + str(i) + 'f' + if dfstr in kwargs: + df = kwargs[dfstr] + else: + df = lambda x: ctx.diff(f, x, i) + if not abs(df(root)) < tol: + break + return i + +def steffensen(f): + """ + linear convergent function -> quadratic convergent function + + Steffensen's method for quadratic convergence of a linear converging + sequence. + Don not use it for higher rates of convergence. + It may even work for divergent sequences. + + Definition: + F(x) = (x*f(f(x)) - f(x)**2) / (f(f(x)) - 2*f(x) + x) + + Example + ....... + + You can use Steffensen's method to accelerate a fixpoint iteration of linear + (or less) convergence. + + x* is a fixpoint of the iteration x_{k+1} = phi(x_k) if x* = phi(x*). For + phi(x) = x**2 there are two fixpoints: 0 and 1. + + Let's try Steffensen's method: + + >>> f = lambda x: x**2 + >>> from mpmath.calculus.optimization import steffensen + >>> F = steffensen(f) + >>> for x in [0.5, 0.9, 2.0]: + ... fx = Fx = x + ... for i in xrange(9): + ... try: + ... fx = f(fx) + ... except OverflowError: + ... pass + ... try: + ... Fx = F(Fx) + ... except ZeroDivisionError: + ... pass + ... print('%20g %20g' % (fx, Fx)) + 0.25 -0.5 + 0.0625 0.1 + 0.00390625 -0.0011236 + 1.52588e-05 1.41691e-09 + 2.32831e-10 -2.84465e-27 + 5.42101e-20 2.30189e-80 + 2.93874e-39 -1.2197e-239 + 8.63617e-78 0 + 7.45834e-155 0 + 0.81 1.02676 + 0.6561 1.00134 + 0.430467 1 + 0.185302 1 + 0.0343368 1 + 0.00117902 1 + 1.39008e-06 1 + 1.93233e-12 1 + 3.73392e-24 1 + 4 1.6 + 16 1.2962 + 256 1.10194 + 65536 1.01659 + 4.29497e+09 1.00053 + 1.84467e+19 1 + 3.40282e+38 1 + 1.15792e+77 1 + 1.34078e+154 1 + + Unmodified, the iteration converges only towards 0. Modified it converges + not only much faster, it converges even to the repelling fixpoint 1. + """ + def F(x): + fx = f(x) + ffx = f(fx) + return (x*ffx - fx**2) / (ffx - 2*fx + x) + return F + +OptimizationMethods.jacobian = jacobian +OptimizationMethods.findroot = findroot +OptimizationMethods.multiplicity = multiplicity + +if __name__ == '__main__': + import doctest + doctest.testmod() diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/polynomials.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/polynomials.py new file mode 100644 index 0000000000000000000000000000000000000000..ba75c1e88cbc5d40aa590a786c0af5229f193103 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/polynomials.py @@ -0,0 +1,213 @@ +from ..libmp.backend import xrange +from .calculus import defun + +#----------------------------------------------------------------------------# +# Polynomials # +#----------------------------------------------------------------------------# + +# XXX: extra precision +@defun +def polyval(ctx, coeffs, x, derivative=False): + r""" + Given coefficients `[c_n, \ldots, c_2, c_1, c_0]` and a number `x`, + :func:`~mpmath.polyval` evaluates the polynomial + + .. math :: + + P(x) = c_n x^n + \ldots + c_2 x^2 + c_1 x + c_0. + + If *derivative=True* is set, :func:`~mpmath.polyval` simultaneously + evaluates `P(x)` with the derivative, `P'(x)`, and returns the + tuple `(P(x), P'(x))`. + + >>> from mpmath import * + >>> mp.pretty = True + >>> polyval([3, 0, 2], 0.5) + 2.75 + >>> polyval([3, 0, 2], 0.5, derivative=True) + (2.75, 3.0) + + The coefficients and the evaluation point may be any combination + of real or complex numbers. + """ + if not coeffs: + return ctx.zero + p = ctx.convert(coeffs[0]) + q = ctx.zero + for c in coeffs[1:]: + if derivative: + q = p + x*q + p = c + x*p + if derivative: + return p, q + else: + return p + +@defun +def polyroots(ctx, coeffs, maxsteps=50, cleanup=True, extraprec=10, + error=False, roots_init=None): + """ + Computes all roots (real or complex) of a given polynomial. + + The roots are returned as a sorted list, where real roots appear first + followed by complex conjugate roots as adjacent elements. The polynomial + should be given as a list of coefficients, in the format used by + :func:`~mpmath.polyval`. The leading coefficient must be nonzero. + + With *error=True*, :func:`~mpmath.polyroots` returns a tuple *(roots, err)* + where *err* is an estimate of the maximum error among the computed roots. + + **Examples** + + Finding the three real roots of `x^3 - x^2 - 14x + 24`:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> nprint(polyroots([1,-1,-14,24]), 4) + [-4.0, 2.0, 3.0] + + Finding the two complex conjugate roots of `4x^2 + 3x + 2`, with an + error estimate:: + + >>> roots, err = polyroots([4,3,2], error=True) + >>> for r in roots: + ... print(r) + ... + (-0.375 + 0.59947894041409j) + (-0.375 - 0.59947894041409j) + >>> + >>> err + 2.22044604925031e-16 + >>> + >>> polyval([4,3,2], roots[0]) + (2.22044604925031e-16 + 0.0j) + >>> polyval([4,3,2], roots[1]) + (2.22044604925031e-16 + 0.0j) + + The following example computes all the 5th roots of unity; that is, + the roots of `x^5 - 1`:: + + >>> mp.dps = 20 + >>> for r in polyroots([1, 0, 0, 0, 0, -1]): + ... print(r) + ... + 1.0 + (-0.8090169943749474241 + 0.58778525229247312917j) + (-0.8090169943749474241 - 0.58778525229247312917j) + (0.3090169943749474241 + 0.95105651629515357212j) + (0.3090169943749474241 - 0.95105651629515357212j) + + **Precision and conditioning** + + The roots are computed to the current working precision accuracy. If this + accuracy cannot be achieved in ``maxsteps`` steps, then a + ``NoConvergence`` exception is raised. The algorithm internally is using + the current working precision extended by ``extraprec``. If + ``NoConvergence`` was raised, that is caused either by not having enough + extra precision to achieve convergence (in which case increasing + ``extraprec`` should fix the problem) or too low ``maxsteps`` (in which + case increasing ``maxsteps`` should fix the problem), or a combination of + both. + + The user should always do a convergence study with regards to + ``extraprec`` to ensure accurate results. It is possible to get + convergence to a wrong answer with too low ``extraprec``. + + Provided there are no repeated roots, :func:`~mpmath.polyroots` can + typically compute all roots of an arbitrary polynomial to high precision:: + + >>> mp.dps = 60 + >>> for r in polyroots([1, 0, -10, 0, 1]): + ... print(r) + ... + -3.14626436994197234232913506571557044551247712918732870123249 + -0.317837245195782244725757617296174288373133378433432554879127 + 0.317837245195782244725757617296174288373133378433432554879127 + 3.14626436994197234232913506571557044551247712918732870123249 + >>> + >>> sqrt(3) + sqrt(2) + 3.14626436994197234232913506571557044551247712918732870123249 + >>> sqrt(3) - sqrt(2) + 0.317837245195782244725757617296174288373133378433432554879127 + + **Algorithm** + + :func:`~mpmath.polyroots` implements the Durand-Kerner method [1], which + uses complex arithmetic to locate all roots simultaneously. + The Durand-Kerner method can be viewed as approximately performing + simultaneous Newton iteration for all the roots. In particular, + the convergence to simple roots is quadratic, just like Newton's + method. + + Although all roots are internally calculated using complex arithmetic, any + root found to have an imaginary part smaller than the estimated numerical + error is truncated to a real number (small real parts are also chopped). + Real roots are placed first in the returned list, sorted by value. The + remaining complex roots are sorted by their real parts so that conjugate + roots end up next to each other. + + **References** + + 1. http://en.wikipedia.org/wiki/Durand-Kerner_method + + """ + if len(coeffs) <= 1: + if not coeffs or not coeffs[0]: + raise ValueError("Input to polyroots must not be the zero polynomial") + # Constant polynomial with no roots + return [] + + orig = ctx.prec + tol = +ctx.eps + with ctx.extraprec(extraprec): + deg = len(coeffs) - 1 + # Must be monic + lead = ctx.convert(coeffs[0]) + if lead == 1: + coeffs = [ctx.convert(c) for c in coeffs] + else: + coeffs = [c/lead for c in coeffs] + f = lambda x: ctx.polyval(coeffs, x) + if roots_init is None: + roots = [ctx.mpc((0.4+0.9j)**n) for n in xrange(deg)] + else: + roots = [None]*deg; + deg_init = min(deg, len(roots_init)) + roots[:deg_init] = list(roots_init[:deg_init]) + roots[deg_init:] = [ctx.mpc((0.4+0.9j)**n) for n + in xrange(deg_init,deg)] + err = [ctx.one for n in xrange(deg)] + # Durand-Kerner iteration until convergence + for step in xrange(maxsteps): + if abs(max(err)) < tol: + break + for i in xrange(deg): + p = roots[i] + x = f(p) + for j in range(deg): + if i != j: + try: + x /= (p-roots[j]) + except ZeroDivisionError: + continue + roots[i] = p - x + err[i] = abs(x) + if abs(max(err)) >= tol: + raise ctx.NoConvergence("Didn't converge in maxsteps=%d steps." \ + % maxsteps) + # Remove small real or imaginary parts + if cleanup: + for i in xrange(deg): + if abs(roots[i]) < tol: + roots[i] = ctx.zero + elif abs(ctx._im(roots[i])) < tol: + roots[i] = roots[i].real + elif abs(ctx._re(roots[i])) < tol: + roots[i] = roots[i].imag * 1j + roots.sort(key=lambda x: (abs(ctx._im(x)), ctx._re(x))) + if error: + err = max(err) + err = max(err, ctx.ldexp(1, -orig+1)) + return [+r for r in roots], +err + else: + return [+r for r in roots] diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/quadrature.py b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/quadrature.py new file mode 100644 index 0000000000000000000000000000000000000000..0545b3ad3e6f70a44f4ec31a0c3bcfb4ffde422b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/calculus/quadrature.py @@ -0,0 +1,1115 @@ +import math + +from ..libmp.backend import xrange + +class QuadratureRule(object): + """ + Quadrature rules are implemented using this class, in order to + simplify the code and provide a common infrastructure + for tasks such as error estimation and node caching. + + You can implement a custom quadrature rule by subclassing + :class:`QuadratureRule` and implementing the appropriate + methods. The subclass can then be used by :func:`~mpmath.quad` by + passing it as the *method* argument. + + :class:`QuadratureRule` instances are supposed to be singletons. + :class:`QuadratureRule` therefore implements instance caching + in :func:`~mpmath.__new__`. + """ + + def __init__(self, ctx): + self.ctx = ctx + self.standard_cache = {} + self.transformed_cache = {} + self.interval_count = {} + + def clear(self): + """ + Delete cached node data. + """ + self.standard_cache = {} + self.transformed_cache = {} + self.interval_count = {} + + def calc_nodes(self, degree, prec, verbose=False): + r""" + Compute nodes for the standard interval `[-1, 1]`. Subclasses + should probably implement only this method, and use + :func:`~mpmath.get_nodes` method to retrieve the nodes. + """ + raise NotImplementedError + + def get_nodes(self, a, b, degree, prec, verbose=False): + """ + Return nodes for given interval, degree and precision. The + nodes are retrieved from a cache if already computed; + otherwise they are computed by calling :func:`~mpmath.calc_nodes` + and are then cached. + + Subclasses should probably not implement this method, + but just implement :func:`~mpmath.calc_nodes` for the actual + node computation. + """ + key = (a, b, degree, prec) + if key in self.transformed_cache: + return self.transformed_cache[key] + orig = self.ctx.prec + try: + self.ctx.prec = prec+20 + # Get nodes on standard interval + if (degree, prec) in self.standard_cache: + nodes = self.standard_cache[degree, prec] + else: + nodes = self.calc_nodes(degree, prec, verbose) + self.standard_cache[degree, prec] = nodes + # Transform to general interval + nodes = self.transform_nodes(nodes, a, b, verbose) + if key in self.interval_count: + self.transformed_cache[key] = nodes + else: + self.interval_count[key] = True + finally: + self.ctx.prec = orig + return nodes + + def transform_nodes(self, nodes, a, b, verbose=False): + r""" + Rescale standardized nodes (for `[-1, 1]`) to a general + interval `[a, b]`. For a finite interval, a simple linear + change of variables is used. Otherwise, the following + transformations are used: + + .. math :: + + \lbrack a, \infty \rbrack : t = \frac{1}{x} + (a-1) + + \lbrack -\infty, b \rbrack : t = (b+1) - \frac{1}{x} + + \lbrack -\infty, \infty \rbrack : t = \frac{x}{\sqrt{1-x^2}} + + """ + ctx = self.ctx + a = ctx.convert(a) + b = ctx.convert(b) + one = ctx.one + if (a, b) == (-one, one): + return nodes + half = ctx.mpf(0.5) + new_nodes = [] + if ctx.isinf(a) or ctx.isinf(b): + if (a, b) == (ctx.ninf, ctx.inf): + p05 = -half + for x, w in nodes: + x2 = x*x + px1 = one-x2 + spx1 = px1**p05 + x = x*spx1 + w *= spx1/px1 + new_nodes.append((x, w)) + elif a == ctx.ninf: + b1 = b+1 + for x, w in nodes: + u = 2/(x+one) + x = b1-u + w *= half*u**2 + new_nodes.append((x, w)) + elif b == ctx.inf: + a1 = a-1 + for x, w in nodes: + u = 2/(x+one) + x = a1+u + w *= half*u**2 + new_nodes.append((x, w)) + elif a == ctx.inf or b == ctx.ninf: + return [(x,-w) for (x,w) in self.transform_nodes(nodes, b, a, verbose)] + else: + raise NotImplementedError + else: + # Simple linear change of variables + C = (b-a)/2 + D = (b+a)/2 + for x, w in nodes: + new_nodes.append((D+C*x, C*w)) + return new_nodes + + def guess_degree(self, prec): + """ + Given a desired precision `p` in bits, estimate the degree `m` + of the quadrature required to accomplish full accuracy for + typical integrals. By default, :func:`~mpmath.quad` will perform up + to `m` iterations. The value of `m` should be a slight + overestimate, so that "slightly bad" integrals can be dealt + with automatically using a few extra iterations. On the + other hand, it should not be too big, so :func:`~mpmath.quad` can + quit within a reasonable amount of time when it is given + an "unsolvable" integral. + + The default formula used by :func:`~mpmath.guess_degree` is tuned + for both :class:`TanhSinh` and :class:`GaussLegendre`. + The output is roughly as follows: + + +---------+---------+ + | `p` | `m` | + +=========+=========+ + | 50 | 6 | + +---------+---------+ + | 100 | 7 | + +---------+---------+ + | 500 | 10 | + +---------+---------+ + | 3000 | 12 | + +---------+---------+ + + This formula is based purely on a limited amount of + experimentation and will sometimes be wrong. + """ + # Expected degree + # XXX: use mag + g = int(4 + max(0, self.ctx.log(prec/30.0, 2))) + # Reasonable "worst case" + g += 2 + return g + + def estimate_error(self, results, prec, epsilon): + r""" + Given results from integrations `[I_1, I_2, \ldots, I_k]` done + with a quadrature of rule of degree `1, 2, \ldots, k`, estimate + the error of `I_k`. + + For `k = 2`, we estimate `|I_{\infty}-I_2|` as `|I_2-I_1|`. + + For `k > 2`, we extrapolate `|I_{\infty}-I_k| \approx |I_{k+1}-I_k|` + from `|I_k-I_{k-1}|` and `|I_k-I_{k-2}|` under the assumption + that each degree increment roughly doubles the accuracy of + the quadrature rule (this is true for both :class:`TanhSinh` + and :class:`GaussLegendre`). The extrapolation formula is given + by Borwein, Bailey & Girgensohn. Although not very conservative, + this method seems to be very robust in practice. + """ + if len(results) == 2: + return abs(results[0]-results[1]) + try: + if results[-1] == results[-2] == results[-3]: + return self.ctx.zero + D1 = self.ctx.log(abs(results[-1]-results[-2]), 10) + D2 = self.ctx.log(abs(results[-1]-results[-3]), 10) + except ValueError: + return epsilon + D3 = -prec + D4 = min(0, max(D1**2/D2, 2*D1, D3)) + return self.ctx.mpf(10) ** int(D4) + + def summation(self, f, points, prec, epsilon, max_degree, verbose=False): + """ + Main integration function. Computes the 1D integral over + the interval specified by *points*. For each subinterval, + performs quadrature of degree from 1 up to *max_degree* + until :func:`~mpmath.estimate_error` signals convergence. + + :func:`~mpmath.summation` transforms each subintegration to + the standard interval and then calls :func:`~mpmath.sum_next`. + """ + ctx = self.ctx + I = total_err = ctx.zero + for i in xrange(len(points)-1): + a, b = points[i], points[i+1] + if a == b: + continue + # XXX: we could use a single variable transformation, + # but this is not good in practice. We get better accuracy + # by having 0 as an endpoint. + if (a, b) == (ctx.ninf, ctx.inf): + _f = f + f = lambda x: _f(-x) + _f(x) + a, b = (ctx.zero, ctx.inf) + results = [] + err = ctx.zero + for degree in xrange(1, max_degree+1): + nodes = self.get_nodes(a, b, degree, prec, verbose) + if verbose: + print("Integrating from %s to %s (degree %s of %s)" % \ + (ctx.nstr(a), ctx.nstr(b), degree, max_degree)) + result = self.sum_next(f, nodes, degree, prec, results, verbose) + results.append(result) + if degree > 1: + err = self.estimate_error(results, prec, epsilon) + if verbose: + print("Estimated error:", ctx.nstr(err), " epsilon:", ctx.nstr(epsilon), " result: ", ctx.nstr(result)) + if err <= epsilon: + break + I += results[-1] + total_err += err + if total_err > epsilon: + if verbose: + print("Failed to reach full accuracy. Estimated error:", ctx.nstr(total_err)) + return I, total_err + + def sum_next(self, f, nodes, degree, prec, previous, verbose=False): + r""" + Evaluates the step sum `\sum w_k f(x_k)` where the *nodes* list + contains the `(w_k, x_k)` pairs. + + :func:`~mpmath.summation` will supply the list *results* of + values computed by :func:`~mpmath.sum_next` at previous degrees, in + case the quadrature rule is able to reuse them. + """ + return self.ctx.fdot((w, f(x)) for (x,w) in nodes) + + +class TanhSinh(QuadratureRule): + r""" + This class implements "tanh-sinh" or "doubly exponential" + quadrature. This quadrature rule is based on the Euler-Maclaurin + integral formula. By performing a change of variables involving + nested exponentials / hyperbolic functions (hence the name), the + derivatives at the endpoints vanish rapidly. Since the error term + in the Euler-Maclaurin formula depends on the derivatives at the + endpoints, a simple step sum becomes extremely accurate. In + practice, this means that doubling the number of evaluation + points roughly doubles the number of accurate digits. + + Comparison to Gauss-Legendre: + * Initial computation of nodes is usually faster + * Handles endpoint singularities better + * Handles infinite integration intervals better + * Is slower for smooth integrands once nodes have been computed + + The implementation of the tanh-sinh algorithm is based on the + description given in Borwein, Bailey & Girgensohn, "Experimentation + in Mathematics - Computational Paths to Discovery", A K Peters, + 2003, pages 312-313. In the present implementation, a few + improvements have been made: + + * A more efficient scheme is used to compute nodes (exploiting + recurrence for the exponential function) + * The nodes are computed successively instead of all at once + + **References** + + * [Bailey]_ + * http://users.cs.dal.ca/~jborwein/tanh-sinh.pdf + + """ + + def sum_next(self, f, nodes, degree, prec, previous, verbose=False): + """ + Step sum for tanh-sinh quadrature of degree `m`. We exploit the + fact that half of the abscissas at degree `m` are precisely the + abscissas from degree `m-1`. Thus reusing the result from + the previous level allows a 2x speedup. + """ + h = self.ctx.mpf(2)**(-degree) + # Abscissas overlap, so reusing saves half of the time + if previous: + S = previous[-1]/(h*2) + else: + S = self.ctx.zero + S += self.ctx.fdot((w,f(x)) for (x,w) in nodes) + return h*S + + def calc_nodes(self, degree, prec, verbose=False): + r""" + The abscissas and weights for tanh-sinh quadrature of degree + `m` are given by + + .. math:: + + x_k = \tanh(\pi/2 \sinh(t_k)) + + w_k = \pi/2 \cosh(t_k) / \cosh(\pi/2 \sinh(t_k))^2 + + where `t_k = t_0 + hk` for a step length `h \sim 2^{-m}`. The + list of nodes is actually infinite, but the weights die off so + rapidly that only a few are needed. + """ + ctx = self.ctx + nodes = [] + + extra = 20 + ctx.prec += extra + tol = ctx.ldexp(1, -prec-10) + pi4 = ctx.pi/4 + + # For simplicity, we work in steps h = 1/2^n, with the first point + # offset so that we can reuse the sum from the previous degree + + # We define degree 1 to include the "degree 0" steps, including + # the point x = 0. (It doesn't work well otherwise; not sure why.) + t0 = ctx.ldexp(1, -degree) + if degree == 1: + #nodes.append((mpf(0), pi4)) + #nodes.append((-mpf(0), pi4)) + nodes.append((ctx.zero, ctx.pi/2)) + h = t0 + else: + h = t0*2 + + # Since h is fixed, we can compute the next exponential + # by simply multiplying by exp(h) + expt0 = ctx.exp(t0) + a = pi4 * expt0 + b = pi4 / expt0 + udelta = ctx.exp(h) + urdelta = 1/udelta + + for k in xrange(0, 20*2**degree+1): + # Reference implementation: + # t = t0 + k*h + # x = tanh(pi/2 * sinh(t)) + # w = pi/2 * cosh(t) / cosh(pi/2 * sinh(t))**2 + + # Fast implementation. Note that c = exp(pi/2 * sinh(t)) + c = ctx.exp(a-b) + d = 1/c + co = (c+d)/2 + si = (c-d)/2 + x = si / co + w = (a+b) / co**2 + diff = abs(x-1) + if diff <= tol: + break + + nodes.append((x, w)) + nodes.append((-x, w)) + + a *= udelta + b *= urdelta + + if verbose and k % 300 == 150: + # Note: the number displayed is rather arbitrary. Should + # figure out how to print something that looks more like a + # percentage + print("Calculating nodes:", ctx.nstr(-ctx.log(diff, 10) / prec)) + + ctx.prec -= extra + return nodes + + +class GaussLegendre(QuadratureRule): + r""" + This class implements Gauss-Legendre quadrature, which is + exceptionally efficient for polynomials and polynomial-like (i.e. + very smooth) integrands. + + The abscissas and weights are given by roots and values of + Legendre polynomials, which are the orthogonal polynomials + on `[-1, 1]` with respect to the unit weight + (see :func:`~mpmath.legendre`). + + In this implementation, we take the "degree" `m` of the quadrature + to denote a Gauss-Legendre rule of degree `3 \cdot 2^m` (following + Borwein, Bailey & Girgensohn). This way we get quadratic, rather + than linear, convergence as the degree is incremented. + + Comparison to tanh-sinh quadrature: + * Is faster for smooth integrands once nodes have been computed + * Initial computation of nodes is usually slower + * Handles endpoint singularities worse + * Handles infinite integration intervals worse + + """ + + def calc_nodes(self, degree, prec, verbose=False): + r""" + Calculates the abscissas and weights for Gauss-Legendre + quadrature of degree of given degree (actually `3 \cdot 2^m`). + """ + ctx = self.ctx + # It is important that the epsilon is set lower than the + # "real" epsilon + epsilon = ctx.ldexp(1, -prec-8) + # Fairly high precision might be required for accurate + # evaluation of the roots + orig = ctx.prec + ctx.prec = int(prec*1.5) + if degree == 1: + x = ctx.sqrt(ctx.mpf(3)/5) + w = ctx.mpf(5)/9 + nodes = [(-x,w),(ctx.zero,ctx.mpf(8)/9),(x,w)] + ctx.prec = orig + return nodes + nodes = [] + n = 3*2**(degree-1) + upto = n//2 + 1 + for j in xrange(1, upto): + # Asymptotic formula for the roots + r = ctx.mpf(math.cos(math.pi*(j-0.25)/(n+0.5))) + # Newton iteration + while 1: + t1, t2 = 1, 0 + # Evaluates the Legendre polynomial using its defining + # recurrence relation + for j1 in xrange(1,n+1): + t3, t2, t1 = t2, t1, ((2*j1-1)*r*t1 - (j1-1)*t2)/j1 + t4 = n*(r*t1-t2)/(r**2-1) + a = t1/t4 + r = r - a + if abs(a) < epsilon: + break + x = r + w = 2/((1-r**2)*t4**2) + if verbose and j % 30 == 15: + print("Computing nodes (%i of %i)" % (j, upto)) + nodes.append((x, w)) + nodes.append((-x, w)) + ctx.prec = orig + return nodes + +class QuadratureMethods(object): + + def __init__(ctx, *args, **kwargs): + ctx._gauss_legendre = GaussLegendre(ctx) + ctx._tanh_sinh = TanhSinh(ctx) + + def quad(ctx, f, *points, **kwargs): + r""" + Computes a single, double or triple integral over a given + 1D interval, 2D rectangle, or 3D cuboid. A basic example:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> quad(sin, [0, pi]) + 2.0 + + A basic 2D integral:: + + >>> f = lambda x, y: cos(x+y/2) + >>> quad(f, [-pi/2, pi/2], [0, pi]) + 4.0 + + **Interval format** + + The integration range for each dimension may be specified + using a list or tuple. Arguments are interpreted as follows: + + ``quad(f, [x1, x2])`` -- calculates + `\int_{x_1}^{x_2} f(x) \, dx` + + ``quad(f, [x1, x2], [y1, y2])`` -- calculates + `\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x,y) \, dy \, dx` + + ``quad(f, [x1, x2], [y1, y2], [z1, z2])`` -- calculates + `\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} f(x,y,z) + \, dz \, dy \, dx` + + Endpoints may be finite or infinite. An interval descriptor + may also contain more than two points. In this + case, the integration is split into subintervals, between + each pair of consecutive points. This is useful for + dealing with mid-interval discontinuities, or integrating + over large intervals where the function is irregular or + oscillates. + + **Options** + + :func:`~mpmath.quad` recognizes the following keyword arguments: + + *method* + Chooses integration algorithm (described below). + *error* + If set to true, :func:`~mpmath.quad` returns `(v, e)` where `v` is the + integral and `e` is the estimated error. + *maxdegree* + Maximum degree of the quadrature rule to try before + quitting. + *verbose* + Print details about progress. + + **Algorithms** + + Mpmath presently implements two integration algorithms: tanh-sinh + quadrature and Gauss-Legendre quadrature. These can be selected + using *method='tanh-sinh'* or *method='gauss-legendre'* or by + passing the classes *method=TanhSinh*, *method=GaussLegendre*. + The functions :func:`~mpmath.quadts` and :func:`~mpmath.quadgl` are also available + as shortcuts. + + Both algorithms have the property that doubling the number of + evaluation points roughly doubles the accuracy, so both are ideal + for high precision quadrature (hundreds or thousands of digits). + + At high precision, computing the nodes and weights for the + integration can be expensive (more expensive than computing the + function values). To make repeated integrations fast, nodes + are automatically cached. + + The advantages of the tanh-sinh algorithm are that it tends to + handle endpoint singularities well, and that the nodes are cheap + to compute on the first run. For these reasons, it is used by + :func:`~mpmath.quad` as the default algorithm. + + Gauss-Legendre quadrature often requires fewer function + evaluations, and is therefore often faster for repeated use, but + the algorithm does not handle endpoint singularities as well and + the nodes are more expensive to compute. Gauss-Legendre quadrature + can be a better choice if the integrand is smooth and repeated + integrations are required (e.g. for multiple integrals). + + See the documentation for :class:`TanhSinh` and + :class:`GaussLegendre` for additional details. + + **Examples of 1D integrals** + + Intervals may be infinite or half-infinite. The following two + examples evaluate the limits of the inverse tangent function + (`\int 1/(1+x^2) = \tan^{-1} x`), and the Gaussian integral + `\int_{\infty}^{\infty} \exp(-x^2)\,dx = \sqrt{\pi}`:: + + >>> mp.dps = 15 + >>> quad(lambda x: 2/(x**2+1), [0, inf]) + 3.14159265358979 + >>> quad(lambda x: exp(-x**2), [-inf, inf])**2 + 3.14159265358979 + + Integrals can typically be resolved to high precision. + The following computes 50 digits of `\pi` by integrating the + area of the half-circle defined by `x^2 + y^2 \le 1`, + `-1 \le x \le 1`, `y \ge 0`:: + + >>> mp.dps = 50 + >>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1]) + 3.1415926535897932384626433832795028841971693993751 + + One can just as well compute 1000 digits (output truncated):: + + >>> mp.dps = 1000 + >>> 2*quad(lambda x: sqrt(1-x**2), [-1, 1]) #doctest:+ELLIPSIS + 3.141592653589793238462643383279502884...216420199 + + Complex integrals are supported. The following computes + a residue at `z = 0` by integrating counterclockwise along the + diamond-shaped path from `1` to `+i` to `-1` to `-i` to `1`:: + + >>> mp.dps = 15 + >>> chop(quad(lambda z: 1/z, [1,j,-1,-j,1])) + (0.0 + 6.28318530717959j) + + **Examples of 2D and 3D integrals** + + Here are several nice examples of analytically solvable + 2D integrals (taken from MathWorld [1]) that can be evaluated + to high precision fairly rapidly by :func:`~mpmath.quad`:: + + >>> mp.dps = 30 + >>> f = lambda x, y: (x-1)/((1-x*y)*log(x*y)) + >>> quad(f, [0, 1], [0, 1]) + 0.577215664901532860606512090082 + >>> +euler + 0.577215664901532860606512090082 + + >>> f = lambda x, y: 1/sqrt(1+x**2+y**2) + >>> quad(f, [-1, 1], [-1, 1]) + 3.17343648530607134219175646705 + >>> 4*log(2+sqrt(3))-2*pi/3 + 3.17343648530607134219175646705 + + >>> f = lambda x, y: 1/(1-x**2 * y**2) + >>> quad(f, [0, 1], [0, 1]) + 1.23370055013616982735431137498 + >>> pi**2 / 8 + 1.23370055013616982735431137498 + + >>> quad(lambda x, y: 1/(1-x*y), [0, 1], [0, 1]) + 1.64493406684822643647241516665 + >>> pi**2 / 6 + 1.64493406684822643647241516665 + + Multiple integrals may be done over infinite ranges:: + + >>> mp.dps = 15 + >>> print(quad(lambda x,y: exp(-x-y), [0, inf], [1, inf])) + 0.367879441171442 + >>> print(1/e) + 0.367879441171442 + + For nonrectangular areas, one can call :func:`~mpmath.quad` recursively. + For example, we can replicate the earlier example of calculating + `\pi` by integrating over the unit-circle, and actually use double + quadrature to actually measure the area circle:: + + >>> f = lambda x: quad(lambda y: 1, [-sqrt(1-x**2), sqrt(1-x**2)]) + >>> quad(f, [-1, 1]) + 3.14159265358979 + + Here is a simple triple integral:: + + >>> mp.dps = 15 + >>> f = lambda x,y,z: x*y/(1+z) + >>> quad(f, [0,1], [0,1], [1,2], method='gauss-legendre') + 0.101366277027041 + >>> (log(3)-log(2))/4 + 0.101366277027041 + + **Singularities** + + Both tanh-sinh and Gauss-Legendre quadrature are designed to + integrate smooth (infinitely differentiable) functions. Neither + algorithm copes well with mid-interval singularities (such as + mid-interval discontinuities in `f(x)` or `f'(x)`). + The best solution is to split the integral into parts:: + + >>> mp.dps = 15 + >>> quad(lambda x: abs(sin(x)), [0, 2*pi]) # Bad + 3.99900894176779 + >>> quad(lambda x: abs(sin(x)), [0, pi, 2*pi]) # Good + 4.0 + + The tanh-sinh rule often works well for integrands having a + singularity at one or both endpoints:: + + >>> mp.dps = 15 + >>> quad(log, [0, 1], method='tanh-sinh') # Good + -1.0 + >>> quad(log, [0, 1], method='gauss-legendre') # Bad + -0.999932197413801 + + However, the result may still be inaccurate for some functions:: + + >>> quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh') + 1.99999999946942 + + This problem is not due to the quadrature rule per se, but to + numerical amplification of errors in the nodes. The problem can be + circumvented by temporarily increasing the precision:: + + >>> mp.dps = 30 + >>> a = quad(lambda x: 1/sqrt(x), [0, 1], method='tanh-sinh') + >>> mp.dps = 15 + >>> +a + 2.0 + + **Highly variable functions** + + For functions that are smooth (in the sense of being infinitely + differentiable) but contain sharp mid-interval peaks or many + "bumps", :func:`~mpmath.quad` may fail to provide full accuracy. For + example, with default settings, :func:`~mpmath.quad` is able to integrate + `\sin(x)` accurately over an interval of length 100 but not over + length 1000:: + + >>> quad(sin, [0, 100]); 1-cos(100) # Good + 0.137681127712316 + 0.137681127712316 + >>> quad(sin, [0, 1000]); 1-cos(1000) # Bad + -37.8587612408485 + 0.437620923709297 + + One solution is to break the integration into 10 intervals of + length 100:: + + >>> quad(sin, linspace(0, 1000, 10)) # Good + 0.437620923709297 + + Another is to increase the degree of the quadrature:: + + >>> quad(sin, [0, 1000], maxdegree=10) # Also good + 0.437620923709297 + + Whether splitting the interval or increasing the degree is + more efficient differs from case to case. Another example is the + function `1/(1+x^2)`, which has a sharp peak centered around + `x = 0`:: + + >>> f = lambda x: 1/(1+x**2) + >>> quad(f, [-100, 100]) # Bad + 3.64804647105268 + >>> quad(f, [-100, 100], maxdegree=10) # Good + 3.12159332021646 + >>> quad(f, [-100, 0, 100]) # Also good + 3.12159332021646 + + **References** + + 1. http://mathworld.wolfram.com/DoubleIntegral.html + + """ + rule = kwargs.get('method', 'tanh-sinh') + if type(rule) is str: + if rule == 'tanh-sinh': + rule = ctx._tanh_sinh + elif rule == 'gauss-legendre': + rule = ctx._gauss_legendre + else: + raise ValueError("unknown quadrature rule: %s" % rule) + else: + rule = rule(ctx) + verbose = kwargs.get('verbose') + dim = len(points) + orig = prec = ctx.prec + epsilon = ctx.eps/8 + m = kwargs.get('maxdegree') or rule.guess_degree(prec) + points = [ctx._as_points(p) for p in points] + try: + ctx.prec += 20 + if dim == 1: + v, err = rule.summation(f, points[0], prec, epsilon, m, verbose) + elif dim == 2: + v, err = rule.summation(lambda x: \ + rule.summation(lambda y: f(x,y), \ + points[1], prec, epsilon, m)[0], + points[0], prec, epsilon, m, verbose) + elif dim == 3: + v, err = rule.summation(lambda x: \ + rule.summation(lambda y: \ + rule.summation(lambda z: f(x,y,z), \ + points[2], prec, epsilon, m)[0], + points[1], prec, epsilon, m)[0], + points[0], prec, epsilon, m, verbose) + else: + raise NotImplementedError("quadrature must have dim 1, 2 or 3") + finally: + ctx.prec = orig + if kwargs.get("error"): + return +v, err + return +v + + def quadts(ctx, *args, **kwargs): + """ + Performs tanh-sinh quadrature. The call + + quadts(func, *points, ...) + + is simply a shortcut for: + + quad(func, *points, ..., method=TanhSinh) + + For example, a single integral and a double integral: + + quadts(lambda x: exp(cos(x)), [0, 1]) + quadts(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1]) + + See the documentation for quad for information about how points + arguments and keyword arguments are parsed. + + See documentation for TanhSinh for algorithmic information about + tanh-sinh quadrature. + """ + kwargs['method'] = 'tanh-sinh' + return ctx.quad(*args, **kwargs) + + def quadgl(ctx, *args, **kwargs): + """ + Performs Gauss-Legendre quadrature. The call + + quadgl(func, *points, ...) + + is simply a shortcut for: + + quad(func, *points, ..., method=GaussLegendre) + + For example, a single integral and a double integral: + + quadgl(lambda x: exp(cos(x)), [0, 1]) + quadgl(lambda x, y: exp(cos(x+y)), [0, 1], [0, 1]) + + See the documentation for quad for information about how points + arguments and keyword arguments are parsed. + + See documentation for TanhSinh for algorithmic information about + tanh-sinh quadrature. + """ + kwargs['method'] = 'gauss-legendre' + return ctx.quad(*args, **kwargs) + + def quadosc(ctx, f, interval, omega=None, period=None, zeros=None): + r""" + Calculates + + .. math :: + + I = \int_a^b f(x) dx + + where at least one of `a` and `b` is infinite and where + `f(x) = g(x) \cos(\omega x + \phi)` for some slowly + decreasing function `g(x)`. With proper input, :func:`~mpmath.quadosc` + can also handle oscillatory integrals where the oscillation + rate is different from a pure sine or cosine wave. + + In the standard case when `|a| < \infty, b = \infty`, + :func:`~mpmath.quadosc` works by evaluating the infinite series + + .. math :: + + I = \int_a^{x_1} f(x) dx + + \sum_{k=1}^{\infty} \int_{x_k}^{x_{k+1}} f(x) dx + + where `x_k` are consecutive zeros (alternatively + some other periodic reference point) of `f(x)`. + Accordingly, :func:`~mpmath.quadosc` requires information about the + zeros of `f(x)`. For a periodic function, you can specify + the zeros by either providing the angular frequency `\omega` + (*omega*) or the *period* `2 \pi/\omega`. In general, you can + specify the `n`-th zero by providing the *zeros* arguments. + Below is an example of each:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> f = lambda x: sin(3*x)/(x**2+1) + >>> quadosc(f, [0,inf], omega=3) + 0.37833007080198 + >>> quadosc(f, [0,inf], period=2*pi/3) + 0.37833007080198 + >>> quadosc(f, [0,inf], zeros=lambda n: pi*n/3) + 0.37833007080198 + >>> (ei(3)*exp(-3)-exp(3)*ei(-3))/2 # Computed by Mathematica + 0.37833007080198 + + Note that *zeros* was specified to multiply `n` by the + *half-period*, not the full period. In theory, it does not matter + whether each partial integral is done over a half period or a full + period. However, if done over half-periods, the infinite series + passed to :func:`~mpmath.nsum` becomes an *alternating series* and this + typically makes the extrapolation much more efficient. + + Here is an example of an integration over the entire real line, + and a half-infinite integration starting at `-\infty`:: + + >>> quadosc(lambda x: cos(x)/(1+x**2), [-inf, inf], omega=1) + 1.15572734979092 + >>> pi/e + 1.15572734979092 + >>> quadosc(lambda x: cos(x)/x**2, [-inf, -1], period=2*pi) + -0.0844109505595739 + >>> cos(1)+si(1)-pi/2 + -0.0844109505595738 + + Of course, the integrand may contain a complex exponential just as + well as a real sine or cosine:: + + >>> quadosc(lambda x: exp(3*j*x)/(1+x**2), [-inf,inf], omega=3) + (0.156410688228254 + 0.0j) + >>> pi/e**3 + 0.156410688228254 + >>> quadosc(lambda x: exp(3*j*x)/(2+x+x**2), [-inf,inf], omega=3) + (0.00317486988463794 - 0.0447701735209082j) + >>> 2*pi/sqrt(7)/exp(3*(j+sqrt(7))/2) + (0.00317486988463794 - 0.0447701735209082j) + + **Non-periodic functions** + + If `f(x) = g(x) h(x)` for some function `h(x)` that is not + strictly periodic, *omega* or *period* might not work, and it might + be necessary to use *zeros*. + + A notable exception can be made for Bessel functions which, though not + periodic, are "asymptotically periodic" in a sufficiently strong sense + that the sum extrapolation will work out:: + + >>> quadosc(j0, [0, inf], period=2*pi) + 1.0 + >>> quadosc(j1, [0, inf], period=2*pi) + 1.0 + + More properly, one should provide the exact Bessel function zeros:: + + >>> j0zero = lambda n: findroot(j0, pi*(n-0.25)) + >>> quadosc(j0, [0, inf], zeros=j0zero) + 1.0 + + For an example where *zeros* becomes necessary, consider the + complete Fresnel integrals + + .. math :: + + \int_0^{\infty} \cos x^2\,dx = \int_0^{\infty} \sin x^2\,dx + = \sqrt{\frac{\pi}{8}}. + + Although the integrands do not decrease in magnitude as + `x \to \infty`, the integrals are convergent since the oscillation + rate increases (causing consecutive periods to asymptotically + cancel out). These integrals are virtually impossible to calculate + to any kind of accuracy using standard quadrature rules. However, + if one provides the correct asymptotic distribution of zeros + (`x_n \sim \sqrt{n}`), :func:`~mpmath.quadosc` works:: + + >>> mp.dps = 30 + >>> f = lambda x: cos(x**2) + >>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n)) + 0.626657068657750125603941321203 + >>> f = lambda x: sin(x**2) + >>> quadosc(f, [0,inf], zeros=lambda n:sqrt(pi*n)) + 0.626657068657750125603941321203 + >>> sqrt(pi/8) + 0.626657068657750125603941321203 + + (Interestingly, these integrals can still be evaluated if one + places some other constant than `\pi` in the square root sign.) + + In general, if `f(x) \sim g(x) \cos(h(x))`, the zeros follow + the inverse-function distribution `h^{-1}(x)`:: + + >>> mp.dps = 15 + >>> f = lambda x: sin(exp(x)) + >>> quadosc(f, [1,inf], zeros=lambda n: log(n)) + -0.25024394235267 + >>> pi/2-si(e) + -0.250243942352671 + + **Non-alternating functions** + + If the integrand oscillates around a positive value, without + alternating signs, the extrapolation might fail. A simple trick + that sometimes works is to multiply or divide the frequency by 2:: + + >>> f = lambda x: 1/x**2+sin(x)/x**4 + >>> quadosc(f, [1,inf], omega=1) # Bad + 1.28642190869861 + >>> quadosc(f, [1,inf], omega=0.5) # Perfect + 1.28652953559617 + >>> 1+(cos(1)+ci(1)+sin(1))/6 + 1.28652953559617 + + **Fast decay** + + :func:`~mpmath.quadosc` is primarily useful for slowly decaying + integrands. If the integrand decreases exponentially or faster, + :func:`~mpmath.quad` will likely handle it without trouble (and generally be + much faster than :func:`~mpmath.quadosc`):: + + >>> quadosc(lambda x: cos(x)/exp(x), [0, inf], omega=1) + 0.5 + >>> quad(lambda x: cos(x)/exp(x), [0, inf]) + 0.5 + + """ + a, b = ctx._as_points(interval) + a = ctx.convert(a) + b = ctx.convert(b) + if [omega, period, zeros].count(None) != 2: + raise ValueError( \ + "must specify exactly one of omega, period, zeros") + if a == ctx.ninf and b == ctx.inf: + s1 = ctx.quadosc(f, [a, 0], omega=omega, zeros=zeros, period=period) + s2 = ctx.quadosc(f, [0, b], omega=omega, zeros=zeros, period=period) + return s1 + s2 + if a == ctx.ninf: + if zeros: + return ctx.quadosc(lambda x:f(-x), [-b,-a], lambda n: zeros(-n)) + else: + return ctx.quadosc(lambda x:f(-x), [-b,-a], omega=omega, period=period) + if b != ctx.inf: + raise ValueError("quadosc requires an infinite integration interval") + if not zeros: + if omega: + period = 2*ctx.pi/omega + zeros = lambda n: n*period/2 + #for n in range(1,10): + # p = zeros(n) + # if p > a: + # break + #if n >= 9: + # raise ValueError("zeros do not appear to be correctly indexed") + n = 1 + s = ctx.quadgl(f, [a, zeros(n)]) + def term(k): + return ctx.quadgl(f, [zeros(k), zeros(k+1)]) + s += ctx.nsum(term, [n, ctx.inf]) + return s + + def quadsubdiv(ctx, f, interval, tol=None, maxintervals=None, **kwargs): + """ + Computes the integral of *f* over the interval or path specified + by *interval*, using :func:`~mpmath.quad` together with adaptive + subdivision of the interval. + + This function gives an accurate answer for some integrals where + :func:`~mpmath.quad` fails:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> quad(lambda x: abs(sin(x)), [0, 2*pi]) + 3.99900894176779 + >>> quadsubdiv(lambda x: abs(sin(x)), [0, 2*pi]) + 4.0 + >>> quadsubdiv(sin, [0, 1000]) + 0.437620923709297 + >>> quadsubdiv(lambda x: 1/(1+x**2), [-100, 100]) + 3.12159332021646 + >>> quadsubdiv(lambda x: ceil(x), [0, 100]) + 5050.0 + >>> quadsubdiv(lambda x: sin(x+exp(x)), [0,8]) + 0.347400172657248 + + The argument *maxintervals* can be set to limit the permissible + subdivision:: + + >>> quadsubdiv(lambda x: sin(x**2), [0,100], maxintervals=5, error=True) + (-5.40487904307774, 5.011) + >>> quadsubdiv(lambda x: sin(x**2), [0,100], maxintervals=100, error=True) + (0.631417921866934, 1.10101120134116e-17) + + Subdivision does not guarantee a correct answer since, the error + estimate on subintervals may be inaccurate:: + + >>> quadsubdiv(lambda x: sech(10*x-2)**2 + sech(100*x-40)**4 + sech(1000*x-600)**6, [0,1], error=True) + (0.210802735500549, 1.0001111101e-17) + >>> mp.dps = 20 + >>> quadsubdiv(lambda x: sech(10*x-2)**2 + sech(100*x-40)**4 + sech(1000*x-600)**6, [0,1], error=True) + (0.21080273550054927738, 2.200000001e-24) + + The second answer is correct. We can get an accurate result at lower + precision by forcing a finer initial subdivision:: + + >>> mp.dps = 15 + >>> quadsubdiv(lambda x: sech(10*x-2)**2 + sech(100*x-40)**4 + sech(1000*x-600)**6, linspace(0,1,5)) + 0.210802735500549 + + The following integral is too oscillatory for convergence, but we can get a + reasonable estimate:: + + >>> v, err = fp.quadsubdiv(lambda x: fp.sin(1/x), [0,1], error=True) + >>> round(v, 6), round(err, 6) + (0.504067, 1e-06) + >>> sin(1) - ci(1) + 0.504067061906928 + + """ + queue = [] + for i in range(len(interval)-1): + queue.append((interval[i], interval[i+1])) + total = ctx.zero + total_error = ctx.zero + if maxintervals is None: + maxintervals = 10 * ctx.prec + count = 0 + quad_args = kwargs.copy() + quad_args["verbose"] = False + quad_args["error"] = True + if tol is None: + tol = +ctx.eps + orig = ctx.prec + try: + ctx.prec += 5 + while queue: + a, b = queue.pop() + s, err = ctx.quad(f, [a, b], **quad_args) + if kwargs.get("verbose"): + print("subinterval", count, a, b, err) + if err < tol or count > maxintervals: + total += s + total_error += err + else: + count += 1 + if count == maxintervals and kwargs.get("verbose"): + print("warning: number of intervals exceeded maxintervals") + if a == -ctx.inf and b == ctx.inf: + m = 0 + elif a == -ctx.inf: + m = min(b-1, 2*b) + elif b == ctx.inf: + m = max(a+1, 2*a) + else: + m = a + (b - a) / 2 + queue.append((a, m)) + queue.append((m, b)) + finally: + ctx.prec = orig + if kwargs.get("error"): + return +total, +total_error + else: + return +total + +if __name__ == '__main__': + import doctest + doctest.testmod() diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__init__.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5896ed0579eceab086dc5c67eaa649b6061a53dc --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__init__.py @@ -0,0 +1,14 @@ +from . import functions +# Hack to update methods +from . import factorials +from . import hypergeometric +from . import expintegrals +from . import bessel +from . import orthogonal +from . import theta +from . import elliptic +from . import signals +from . import zeta +from . import rszeta +from . import zetazeros +from . import qfunctions diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..efb933971f856f5e2ccc9692f24b41cce791b4a3 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/bessel.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/bessel.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..535e1275e7cf7463c30d2beb03dcc8313ad09204 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/bessel.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/elliptic.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/elliptic.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f119c769f68a8901bef0eb04f20b2a1a39d290e Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/elliptic.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/expintegrals.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/expintegrals.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9e318993513cd4616cffbff7085ab65a8eebe665 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/expintegrals.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/factorials.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/factorials.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fc23c68142e4a5d941ba6ce2b1f705162c144903 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/factorials.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/functions.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/functions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3881e53bb3b40a5826d26ed2422102e8f4974141 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/functions.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/hypergeometric.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/hypergeometric.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..636e4ee854a1f99b2bf480ff6773365c0cd73d32 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/hypergeometric.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/orthogonal.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/orthogonal.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8bc7c6f524597ee7068122985c483378e749da10 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/orthogonal.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/qfunctions.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/qfunctions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8adbbb2cff68971a3ceea9ede9fd27e18a468251 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/qfunctions.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/rszeta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/rszeta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c7f4a0da2667edc14d1db487fb847e1b7bba57fe Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/rszeta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/signals.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/signals.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..633e82fe4d75eb260ade0a8701a94ea2f2aa9aa4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/signals.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/theta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/theta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7178fd3ef831fb4802d7b97e24efcab217c59582 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/theta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/zeta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/zeta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a847e1a1b2a76b8f47f2278a5871b3f12c9d3e61 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/zeta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/zetazeros.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/zetazeros.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eaf9734711692163cb43bc576a22d2cf7c98d15f Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/__pycache__/zetazeros.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/bessel.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/bessel.py new file mode 100644 index 0000000000000000000000000000000000000000..8b41d87bb0118de61d5561433dabcb181f872f84 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/bessel.py @@ -0,0 +1,1108 @@ +from .functions import defun, defun_wrapped + +@defun +def j0(ctx, x): + """Computes the Bessel function `J_0(x)`. See :func:`~mpmath.besselj`.""" + return ctx.besselj(0, x) + +@defun +def j1(ctx, x): + """Computes the Bessel function `J_1(x)`. See :func:`~mpmath.besselj`.""" + return ctx.besselj(1, x) + +@defun +def besselj(ctx, n, z, derivative=0, **kwargs): + if type(n) is int: + n_isint = True + else: + n = ctx.convert(n) + n_isint = ctx.isint(n) + if n_isint: + n = int(ctx._re(n)) + if n_isint and n < 0: + return (-1)**n * ctx.besselj(-n, z, derivative, **kwargs) + z = ctx.convert(z) + M = ctx.mag(z) + if derivative: + d = ctx.convert(derivative) + # TODO: the integer special-casing shouldn't be necessary. + # However, the hypergeometric series gets inaccurate for large d + # because of inaccurate pole cancellation at a pole far from + # zero (needs to be fixed in hypercomb or hypsum) + if ctx.isint(d) and d >= 0: + d = int(d) + orig = ctx.prec + try: + ctx.prec += 15 + v = ctx.fsum((-1)**k * ctx.binomial(d,k) * ctx.besselj(2*k+n-d,z) + for k in range(d+1)) + finally: + ctx.prec = orig + v *= ctx.mpf(2)**(-d) + else: + def h(n,d): + r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), -0.25, exact=True) + B = [0.5*(n-d+1), 0.5*(n-d+2)] + T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[],B,[(n+1)*0.5,(n+2)*0.5],B+[n+1],r)] + return T + v = ctx.hypercomb(h, [n,d], **kwargs) + else: + # Fast case: J_n(x), n int, appropriate magnitude for fixed-point calculation + if (not derivative) and n_isint and abs(M) < 10 and abs(n) < 20: + try: + return ctx._besselj(n, z) + except NotImplementedError: + pass + if not z: + if not n: + v = ctx.one + n+z + elif ctx.re(n) > 0: + v = n*z + else: + v = ctx.inf + z + n + else: + #v = 0 + orig = ctx.prec + try: + # XXX: workaround for accuracy in low level hypergeometric series + # when alternating, large arguments + ctx.prec += min(3*abs(M), ctx.prec) + w = ctx.fmul(z, 0.5, exact=True) + def h(n): + r = ctx.fneg(ctx.fmul(w, w, prec=max(0,ctx.prec+M)), exact=True) + return [([w], [n], [], [n+1], [], [n+1], r)] + v = ctx.hypercomb(h, [n], **kwargs) + finally: + ctx.prec = orig + v = +v + return v + +@defun +def besseli(ctx, n, z, derivative=0, **kwargs): + n = ctx.convert(n) + z = ctx.convert(z) + if not z: + if derivative: + raise ValueError + if not n: + # I(0,0) = 1 + return 1+n+z + if ctx.isint(n): + return 0*(n+z) + r = ctx.re(n) + if r == 0: + return ctx.nan*(n+z) + elif r > 0: + return 0*(n+z) + else: + return ctx.inf+(n+z) + M = ctx.mag(z) + if derivative: + d = ctx.convert(derivative) + def h(n,d): + r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), 0.25, exact=True) + B = [0.5*(n-d+1), 0.5*(n-d+2), n+1] + T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[n+1],B,[(n+1)*0.5,(n+2)*0.5],B,r)] + return T + v = ctx.hypercomb(h, [n,d], **kwargs) + else: + def h(n): + w = ctx.fmul(z, 0.5, exact=True) + r = ctx.fmul(w, w, prec=max(0,ctx.prec+M)) + return [([w], [n], [], [n+1], [], [n+1], r)] + v = ctx.hypercomb(h, [n], **kwargs) + return v + +@defun_wrapped +def bessely(ctx, n, z, derivative=0, **kwargs): + if not z: + if derivative: + # Not implemented + raise ValueError + if not n: + # ~ log(z/2) + return -ctx.inf + (n+z) + if ctx.im(n): + return ctx.nan * (n+z) + r = ctx.re(n) + q = n+0.5 + if ctx.isint(q): + if n > 0: + return -ctx.inf + (n+z) + else: + return 0 * (n+z) + if r < 0 and int(ctx.floor(q)) % 2: + return ctx.inf + (n+z) + else: + return ctx.ninf + (n+z) + # XXX: use hypercomb + ctx.prec += 10 + m, d = ctx.nint_distance(n) + if d < -ctx.prec: + h = +ctx.eps + ctx.prec *= 2 + n += h + elif d < 0: + ctx.prec -= d + # TODO: avoid cancellation for imaginary arguments + cos, sin = ctx.cospi_sinpi(n) + return (ctx.besselj(n,z,derivative,**kwargs)*cos - \ + ctx.besselj(-n,z,derivative,**kwargs))/sin + +@defun_wrapped +def besselk(ctx, n, z, **kwargs): + if not z: + return ctx.inf + M = ctx.mag(z) + if M < 1: + # Represent as limit definition + def h(n): + r = (z/2)**2 + T1 = [z, 2], [-n, n-1], [n], [], [], [1-n], r + T2 = [z, 2], [n, -n-1], [-n], [], [], [1+n], r + return T1, T2 + # We could use the limit definition always, but it leads + # to very bad cancellation (of exponentially large terms) + # for large real z + # Instead represent in terms of 2F0 + else: + ctx.prec += M + def h(n): + return [([ctx.pi/2, z, ctx.exp(-z)], [0.5,-0.5,1], [], [], \ + [n+0.5, 0.5-n], [], -1/(2*z))] + return ctx.hypercomb(h, [n], **kwargs) + +@defun_wrapped +def hankel1(ctx,n,x,**kwargs): + return ctx.besselj(n,x,**kwargs) + ctx.j*ctx.bessely(n,x,**kwargs) + +@defun_wrapped +def hankel2(ctx,n,x,**kwargs): + return ctx.besselj(n,x,**kwargs) - ctx.j*ctx.bessely(n,x,**kwargs) + +@defun_wrapped +def whitm(ctx,k,m,z,**kwargs): + if z == 0: + # M(k,m,z) = 0^(1/2+m) + if ctx.re(m) > -0.5: + return z + elif ctx.re(m) < -0.5: + return ctx.inf + z + else: + return ctx.nan * z + x = ctx.fmul(-0.5, z, exact=True) + y = 0.5+m + return ctx.exp(x) * z**y * ctx.hyp1f1(y-k, 1+2*m, z, **kwargs) + +@defun_wrapped +def whitw(ctx,k,m,z,**kwargs): + if z == 0: + g = abs(ctx.re(m)) + if g < 0.5: + return z + elif g > 0.5: + return ctx.inf + z + else: + return ctx.nan * z + x = ctx.fmul(-0.5, z, exact=True) + y = 0.5+m + return ctx.exp(x) * z**y * ctx.hyperu(y-k, 1+2*m, z, **kwargs) + +@defun +def hyperu(ctx, a, b, z, **kwargs): + a, atype = ctx._convert_param(a) + b, btype = ctx._convert_param(b) + z = ctx.convert(z) + if not z: + if ctx.re(b) <= 1: + return ctx.gammaprod([1-b],[a-b+1]) + else: + return ctx.inf + z + bb = 1+a-b + bb, bbtype = ctx._convert_param(bb) + try: + orig = ctx.prec + try: + ctx.prec += 10 + v = ctx.hypsum(2, 0, (atype, bbtype), [a, bb], -1/z, maxterms=ctx.prec) + return v / z**a + finally: + ctx.prec = orig + except ctx.NoConvergence: + pass + def h(a,b): + w = ctx.sinpi(b) + T1 = ([ctx.pi,w],[1,-1],[],[a-b+1,b],[a],[b],z) + T2 = ([-ctx.pi,w,z],[1,-1,1-b],[],[a,2-b],[a-b+1],[2-b],z) + return T1, T2 + return ctx.hypercomb(h, [a,b], **kwargs) + +@defun +def struveh(ctx,n,z, **kwargs): + n = ctx.convert(n) + z = ctx.convert(z) + # http://functions.wolfram.com/Bessel-TypeFunctions/StruveH/26/01/02/ + def h(n): + return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], -(z/2)**2)] + return ctx.hypercomb(h, [n], **kwargs) + +@defun +def struvel(ctx,n,z, **kwargs): + n = ctx.convert(n) + z = ctx.convert(z) + # http://functions.wolfram.com/Bessel-TypeFunctions/StruveL/26/01/02/ + def h(n): + return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], (z/2)**2)] + return ctx.hypercomb(h, [n], **kwargs) + +def _anger(ctx,which,v,z,**kwargs): + v = ctx._convert_param(v)[0] + z = ctx.convert(z) + def h(v): + b = ctx.mpq_1_2 + u = v*b + m = b*3 + a1,a2,b1,b2 = m-u, m+u, 1-u, 1+u + c, s = ctx.cospi_sinpi(u) + if which == 0: + A, B = [b*z, s], [c] + if which == 1: + A, B = [b*z, -c], [s] + w = ctx.square_exp_arg(z, mult=-0.25) + T1 = A, [1, 1], [], [a1,a2], [1], [a1,a2], w + T2 = B, [1], [], [b1,b2], [1], [b1,b2], w + return T1, T2 + return ctx.hypercomb(h, [v], **kwargs) + +@defun +def angerj(ctx, v, z, **kwargs): + return _anger(ctx, 0, v, z, **kwargs) + +@defun +def webere(ctx, v, z, **kwargs): + return _anger(ctx, 1, v, z, **kwargs) + +@defun +def lommels1(ctx, u, v, z, **kwargs): + u = ctx._convert_param(u)[0] + v = ctx._convert_param(v)[0] + z = ctx.convert(z) + def h(u,v): + b = ctx.mpq_1_2 + w = ctx.square_exp_arg(z, mult=-0.25) + return ([u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], \ + [b*(u-v+3),b*(u+v+3)], w), + return ctx.hypercomb(h, [u,v], **kwargs) + +@defun +def lommels2(ctx, u, v, z, **kwargs): + u = ctx._convert_param(u)[0] + v = ctx._convert_param(v)[0] + z = ctx.convert(z) + # Asymptotic expansion (GR p. 947) -- need to be careful + # not to use for small arguments + # def h(u,v): + # b = ctx.mpq_1_2 + # w = -(z/2)**(-2) + # return ([z], [u-1], [], [], [b*(1-u+v)], [b*(1-u-v)], w), + def h(u,v): + b = ctx.mpq_1_2 + w = ctx.square_exp_arg(z, mult=-0.25) + T1 = [u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], [b*(u-v+3),b*(u+v+3)], w + T2 = [2, z], [u+v-1, -v], [v, b*(u+v+1)], [b*(v-u+1)], [], [1-v], w + T3 = [2, z], [u-v-1, v], [-v, b*(u-v+1)], [b*(1-u-v)], [], [1+v], w + #c1 = ctx.cospi((u-v)*b) + #c2 = ctx.cospi((u+v)*b) + #s = ctx.sinpi(v) + #r1 = (u-v+1)*b + #r2 = (u+v+1)*b + #T2 = [c1, s, z, 2], [1, -1, -v, v], [], [-v+1], [], [-v+1], w + #T3 = [-c2, s, z, 2], [1, -1, v, -v], [], [v+1], [], [v+1], w + #T2 = [c1, s, z, 2], [1, -1, -v, v+u-1], [r1, r2], [-v+1], [], [-v+1], w + #T3 = [-c2, s, z, 2], [1, -1, v, -v+u-1], [r1, r2], [v+1], [], [v+1], w + return T1, T2, T3 + return ctx.hypercomb(h, [u,v], **kwargs) + +@defun +def ber(ctx, n, z, **kwargs): + n = ctx.convert(n) + z = ctx.convert(z) + # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBer2/26/01/02/0001/ + def h(n): + r = -(z/4)**4 + cos, sin = ctx.cospi_sinpi(-0.75*n) + T1 = [cos, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r + T2 = [sin, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r + return T1, T2 + return ctx.hypercomb(h, [n], **kwargs) + +@defun +def bei(ctx, n, z, **kwargs): + n = ctx.convert(n) + z = ctx.convert(z) + # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBei2/26/01/02/0001/ + def h(n): + r = -(z/4)**4 + cos, sin = ctx.cospi_sinpi(0.75*n) + T1 = [cos, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r + T2 = [sin, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r + return T1, T2 + return ctx.hypercomb(h, [n], **kwargs) + +@defun +def ker(ctx, n, z, **kwargs): + n = ctx.convert(n) + z = ctx.convert(z) + # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKer2/26/01/02/0001/ + def h(n): + r = -(z/4)**4 + cos1, sin1 = ctx.cospi_sinpi(0.25*n) + cos2, sin2 = ctx.cospi_sinpi(0.75*n) + T1 = [2, z, 4*cos1], [-n-3, n, 1], [-n], [], [], [0.5, 0.5*(1+n), 0.5*(n+2)], r + T2 = [2, z, -sin1], [-n-3, 2+n, 1], [-n-1], [], [], [1.5, 0.5*(3+n), 0.5*(n+2)], r + T3 = [2, z, 4*cos2], [n-3, -n, 1], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r + T4 = [2, z, -sin2], [n-3, 2-n, 1], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r + return T1, T2, T3, T4 + return ctx.hypercomb(h, [n], **kwargs) + +@defun +def kei(ctx, n, z, **kwargs): + n = ctx.convert(n) + z = ctx.convert(z) + # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKei2/26/01/02/0001/ + def h(n): + r = -(z/4)**4 + cos1, sin1 = ctx.cospi_sinpi(0.75*n) + cos2, sin2 = ctx.cospi_sinpi(0.25*n) + T1 = [-cos1, 2, z], [1, n-3, 2-n], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r + T2 = [-sin1, 2, z], [1, n-1, -n], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r + T3 = [-sin2, 2, z], [1, -n-1, n], [-n], [], [], [0.5, 0.5*(n+1), 0.5*(n+2)], r + T4 = [-cos2, 2, z], [1, -n-3, n+2], [-n-1], [], [], [1.5, 0.5*(n+3), 0.5*(n+2)], r + return T1, T2, T3, T4 + return ctx.hypercomb(h, [n], **kwargs) + +# TODO: do this more generically? +def c_memo(f): + name = f.__name__ + def f_wrapped(ctx): + cache = ctx._misc_const_cache + prec = ctx.prec + p,v = cache.get(name, (-1,0)) + if p >= prec: + return +v + else: + cache[name] = (prec, f(ctx)) + return cache[name][1] + return f_wrapped + +@c_memo +def _airyai_C1(ctx): + return 1 / (ctx.cbrt(9) * ctx.gamma(ctx.mpf(2)/3)) + +@c_memo +def _airyai_C2(ctx): + return -1 / (ctx.cbrt(3) * ctx.gamma(ctx.mpf(1)/3)) + +@c_memo +def _airybi_C1(ctx): + return 1 / (ctx.nthroot(3,6) * ctx.gamma(ctx.mpf(2)/3)) + +@c_memo +def _airybi_C2(ctx): + return ctx.nthroot(3,6) / ctx.gamma(ctx.mpf(1)/3) + +def _airybi_n2_inf(ctx): + prec = ctx.prec + try: + v = ctx.power(3,'2/3')*ctx.gamma('2/3')/(2*ctx.pi) + finally: + ctx.prec = prec + return +v + +# Derivatives at z = 0 +# TODO: could be expressed more elegantly using triple factorials +def _airyderiv_0(ctx, z, n, ntype, which): + if ntype == 'Z': + if n < 0: + return z + r = ctx.mpq_1_3 + prec = ctx.prec + try: + ctx.prec += 10 + v = ctx.gamma((n+1)*r) * ctx.power(3,n*r) / ctx.pi + if which == 0: + v *= ctx.sinpi(2*(n+1)*r) + v /= ctx.power(3,'2/3') + else: + v *= abs(ctx.sinpi(2*(n+1)*r)) + v /= ctx.power(3,'1/6') + finally: + ctx.prec = prec + return +v + z + else: + # singular (does the limit exist?) + raise NotImplementedError + +@defun +def airyai(ctx, z, derivative=0, **kwargs): + z = ctx.convert(z) + if derivative: + n, ntype = ctx._convert_param(derivative) + else: + n = 0 + # Values at infinities + if not ctx.isnormal(z) and z: + if n and ntype == 'Z': + if n == -1: + if z == ctx.inf: + return ctx.mpf(1)/3 + 1/z + if z == ctx.ninf: + return ctx.mpf(-2)/3 + 1/z + if n < -1: + if z == ctx.inf: + return z + if z == ctx.ninf: + return (-1)**n * (-z) + if (not n) and z == ctx.inf or z == ctx.ninf: + return 1/z + # TODO: limits + raise ValueError("essential singularity of Ai(z)") + # Account for exponential scaling + if z: + extraprec = max(0, int(1.5*ctx.mag(z))) + else: + extraprec = 0 + if n: + if n == 1: + def h(): + # http://functions.wolfram.com/03.07.06.0005.01 + if ctx._re(z) > 4: + ctx.prec += extraprec + w = z**1.5; r = -0.75/w; u = -2*w/3 + ctx.prec -= extraprec + C = -ctx.exp(u)/(2*ctx.sqrt(ctx.pi))*ctx.nthroot(z,4) + return ([C],[1],[],[],[(-1,6),(7,6)],[],r), + # http://functions.wolfram.com/03.07.26.0001.01 + else: + ctx.prec += extraprec + w = z**3 / 9 + ctx.prec -= extraprec + C1 = _airyai_C1(ctx) * 0.5 + C2 = _airyai_C2(ctx) + T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w + T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w + return T1, T2 + return ctx.hypercomb(h, [], **kwargs) + else: + if z == 0: + return _airyderiv_0(ctx, z, n, ntype, 0) + # http://functions.wolfram.com/03.05.20.0004.01 + def h(n): + ctx.prec += extraprec + w = z**3/9 + ctx.prec -= extraprec + q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3 + a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13 + T1 = [3, z], [n-q23, -n], [a1], [b1,b2,b3], \ + [a1,a2], [b1,b2,b3], w + a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13 + T2 = [3, z, -z], [n-q43, -n, 1], [a1], [b1,b2,b3], \ + [a1,a2], [b1,b2,b3], w + return T1, T2 + v = ctx.hypercomb(h, [n], **kwargs) + if ctx._is_real_type(z) and ctx.isint(n): + v = ctx._re(v) + return v + else: + def h(): + if ctx._re(z) > 4: + # We could use 1F1, but it results in huge cancellation; + # the following expansion is better. + # TODO: asymptotic series for derivatives + ctx.prec += extraprec + w = z**1.5; r = -0.75/w; u = -2*w/3 + ctx.prec -= extraprec + C = ctx.exp(u)/(2*ctx.sqrt(ctx.pi)*ctx.nthroot(z,4)) + return ([C],[1],[],[],[(1,6),(5,6)],[],r), + else: + ctx.prec += extraprec + w = z**3 / 9 + ctx.prec -= extraprec + C1 = _airyai_C1(ctx) + C2 = _airyai_C2(ctx) + T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w + T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w + return T1, T2 + return ctx.hypercomb(h, [], **kwargs) + +@defun +def airybi(ctx, z, derivative=0, **kwargs): + z = ctx.convert(z) + if derivative: + n, ntype = ctx._convert_param(derivative) + else: + n = 0 + # Values at infinities + if not ctx.isnormal(z) and z: + if n and ntype == 'Z': + if z == ctx.inf: + return z + if z == ctx.ninf: + if n == -1: + return 1/z + if n == -2: + return _airybi_n2_inf(ctx) + if n < -2: + return (-1)**n * (-z) + if not n: + if z == ctx.inf: + return z + if z == ctx.ninf: + return 1/z + # TODO: limits + raise ValueError("essential singularity of Bi(z)") + if z: + extraprec = max(0, int(1.5*ctx.mag(z))) + else: + extraprec = 0 + if n: + if n == 1: + # http://functions.wolfram.com/03.08.26.0001.01 + def h(): + ctx.prec += extraprec + w = z**3 / 9 + ctx.prec -= extraprec + C1 = _airybi_C1(ctx)*0.5 + C2 = _airybi_C2(ctx) + T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w + T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w + return T1, T2 + return ctx.hypercomb(h, [], **kwargs) + else: + if z == 0: + return _airyderiv_0(ctx, z, n, ntype, 1) + def h(n): + ctx.prec += extraprec + w = z**3/9 + ctx.prec -= extraprec + q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3 + q16 = ctx.mpq_1_6 + q56 = ctx.mpq_5_6 + a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13 + T1 = [3, z], [n-q16, -n], [a1], [b1,b2,b3], \ + [a1,a2], [b1,b2,b3], w + a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13 + T2 = [3, z], [n-q56, 1-n], [a1], [b1,b2,b3], \ + [a1,a2], [b1,b2,b3], w + return T1, T2 + v = ctx.hypercomb(h, [n], **kwargs) + if ctx._is_real_type(z) and ctx.isint(n): + v = ctx._re(v) + return v + else: + def h(): + ctx.prec += extraprec + w = z**3 / 9 + ctx.prec -= extraprec + C1 = _airybi_C1(ctx) + C2 = _airybi_C2(ctx) + T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w + T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w + return T1, T2 + return ctx.hypercomb(h, [], **kwargs) + +def _airy_zero(ctx, which, k, derivative, complex=False): + # Asymptotic formulas are given in DLMF section 9.9 + def U(t): return t**(2/3.)*(1-7/(t**2*48)) + def T(t): return t**(2/3.)*(1+5/(t**2*48)) + k = int(k) + if k < 1: + raise ValueError("k cannot be less than 1") + if not derivative in (0,1): + raise ValueError("Derivative should lie between 0 and 1") + if which == 0: + if derivative: + return ctx.findroot(lambda z: ctx.airyai(z,1), + -U(3*ctx.pi*(4*k-3)/8)) + return ctx.findroot(ctx.airyai, -T(3*ctx.pi*(4*k-1)/8)) + if which == 1 and complex == False: + if derivative: + return ctx.findroot(lambda z: ctx.airybi(z,1), + -U(3*ctx.pi*(4*k-1)/8)) + return ctx.findroot(ctx.airybi, -T(3*ctx.pi*(4*k-3)/8)) + if which == 1 and complex == True: + if derivative: + t = 3*ctx.pi*(4*k-3)/8 + 0.75j*ctx.ln2 + s = ctx.expjpi(ctx.mpf(1)/3) * T(t) + return ctx.findroot(lambda z: ctx.airybi(z,1), s) + t = 3*ctx.pi*(4*k-1)/8 + 0.75j*ctx.ln2 + s = ctx.expjpi(ctx.mpf(1)/3) * U(t) + return ctx.findroot(ctx.airybi, s) + +@defun +def airyaizero(ctx, k, derivative=0): + return _airy_zero(ctx, 0, k, derivative, False) + +@defun +def airybizero(ctx, k, derivative=0, complex=False): + return _airy_zero(ctx, 1, k, derivative, complex) + +def _scorer(ctx, z, which, kwargs): + z = ctx.convert(z) + if ctx.isinf(z): + if z == ctx.inf: + if which == 0: return 1/z + if which == 1: return z + if z == ctx.ninf: + return 1/z + raise ValueError("essential singularity") + if z: + extraprec = max(0, int(1.5*ctx.mag(z))) + else: + extraprec = 0 + if kwargs.get('derivative'): + raise NotImplementedError + # Direct asymptotic expansions, to avoid + # exponentially large cancellation + try: + if ctx.mag(z) > 3: + if which == 0 and abs(ctx.arg(z)) < ctx.pi/3 * 0.999: + def h(): + return (([ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),) + return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True) + if which == 1 and abs(ctx.arg(-z)) < 2*ctx.pi/3 * 0.999: + def h(): + return (([-ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),) + return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True) + except ctx.NoConvergence: + pass + def h(): + A = ctx.airybi(z, **kwargs)/3 + B = -2*ctx.pi + if which == 1: + A *= 2 + B *= -1 + ctx.prec += extraprec + w = z**3/9 + ctx.prec -= extraprec + T1 = [A], [1], [], [], [], [], 0 + T2 = [B,z], [-1,2], [], [], [1], [ctx.mpq_4_3,ctx.mpq_5_3], w + return T1, T2 + return ctx.hypercomb(h, [], **kwargs) + +@defun +def scorergi(ctx, z, **kwargs): + return _scorer(ctx, z, 0, kwargs) + +@defun +def scorerhi(ctx, z, **kwargs): + return _scorer(ctx, z, 1, kwargs) + +@defun_wrapped +def coulombc(ctx, l, eta, _cache={}): + if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec: + return +_cache[l,eta][1] + G3 = ctx.loggamma(2*l+2) + G1 = ctx.loggamma(1+l+ctx.j*eta) + G2 = ctx.loggamma(1+l-ctx.j*eta) + v = 2**l * ctx.exp((-ctx.pi*eta+G1+G2)/2 - G3) + if not (ctx.im(l) or ctx.im(eta)): + v = ctx.re(v) + _cache[l,eta] = (ctx.prec, v) + return v + +@defun_wrapped +def coulombf(ctx, l, eta, z, w=1, chop=True, **kwargs): + # Regular Coulomb wave function + # Note: w can be either 1 or -1; the other may be better in some cases + # TODO: check that chop=True chops when and only when it should + #ctx.prec += 10 + def h(l, eta): + try: + jw = ctx.j*w + jwz = ctx.fmul(jw, z, exact=True) + jwz2 = ctx.fmul(jwz, -2, exact=True) + C = ctx.coulombc(l, eta) + T1 = [C, z, ctx.exp(jwz)], [1, l+1, 1], [], [], [1+l+jw*eta], \ + [2*l+2], jwz2 + except ValueError: + T1 = [0], [-1], [], [], [], [], 0 + return (T1,) + v = ctx.hypercomb(h, [l,eta], **kwargs) + if chop and (not ctx.im(l)) and (not ctx.im(eta)) and (not ctx.im(z)) and \ + (ctx.re(z) >= 0): + v = ctx.re(v) + return v + +@defun_wrapped +def _coulomb_chi(ctx, l, eta, _cache={}): + if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec: + return _cache[l,eta][1] + def terms(): + l2 = -l-1 + jeta = ctx.j*eta + return [ctx.loggamma(1+l+jeta) * (-0.5j), + ctx.loggamma(1+l-jeta) * (0.5j), + ctx.loggamma(1+l2+jeta) * (0.5j), + ctx.loggamma(1+l2-jeta) * (-0.5j), + -(l+0.5)*ctx.pi] + v = ctx.sum_accurately(terms, 1) + _cache[l,eta] = (ctx.prec, v) + return v + +@defun_wrapped +def coulombg(ctx, l, eta, z, w=1, chop=True, **kwargs): + # Irregular Coulomb wave function + # Note: w can be either 1 or -1; the other may be better in some cases + # TODO: check that chop=True chops when and only when it should + if not ctx._im(l): + l = ctx._re(l) # XXX: for isint + def h(l, eta): + # Force perturbation for integers and half-integers + if ctx.isint(l*2): + T1 = [0], [-1], [], [], [], [], 0 + return (T1,) + l2 = -l-1 + try: + chi = ctx._coulomb_chi(l, eta) + jw = ctx.j*w + s = ctx.sin(chi); c = ctx.cos(chi) + C1 = ctx.coulombc(l,eta) + C2 = ctx.coulombc(l2,eta) + u = ctx.exp(jw*z) + x = -2*jw*z + T1 = [s, C1, z, u, c], [-1, 1, l+1, 1, 1], [], [], \ + [1+l+jw*eta], [2*l+2], x + T2 = [-s, C2, z, u], [-1, 1, l2+1, 1], [], [], \ + [1+l2+jw*eta], [2*l2+2], x + return T1, T2 + except ValueError: + T1 = [0], [-1], [], [], [], [], 0 + return (T1,) + v = ctx.hypercomb(h, [l,eta], **kwargs) + if chop and (not ctx._im(l)) and (not ctx._im(eta)) and (not ctx._im(z)) and \ + (ctx._re(z) >= 0): + v = ctx._re(v) + return v + +def mcmahon(ctx,kind,prime,v,m): + """ + Computes an estimate for the location of the Bessel function zero + j_{v,m}, y_{v,m}, j'_{v,m} or y'_{v,m} using McMahon's asymptotic + expansion (Abramowitz & Stegun 9.5.12-13, DLMF 20.21(vi)). + + Returns (r,err) where r is the estimated location of the root + and err is a positive number estimating the error of the + asymptotic expansion. + """ + u = 4*v**2 + if kind == 1 and not prime: b = (4*m+2*v-1)*ctx.pi/4 + if kind == 2 and not prime: b = (4*m+2*v-3)*ctx.pi/4 + if kind == 1 and prime: b = (4*m+2*v-3)*ctx.pi/4 + if kind == 2 and prime: b = (4*m+2*v-1)*ctx.pi/4 + if not prime: + s1 = b + s2 = -(u-1)/(8*b) + s3 = -4*(u-1)*(7*u-31)/(3*(8*b)**3) + s4 = -32*(u-1)*(83*u**2-982*u+3779)/(15*(8*b)**5) + s5 = -64*(u-1)*(6949*u**3-153855*u**2+1585743*u-6277237)/(105*(8*b)**7) + if prime: + s1 = b + s2 = -(u+3)/(8*b) + s3 = -4*(7*u**2+82*u-9)/(3*(8*b)**3) + s4 = -32*(83*u**3+2075*u**2-3039*u+3537)/(15*(8*b)**5) + s5 = -64*(6949*u**4+296492*u**3-1248002*u**2+7414380*u-5853627)/(105*(8*b)**7) + terms = [s1,s2,s3,s4,s5] + s = s1 + err = 0.0 + for i in range(1,len(terms)): + if abs(terms[i]) < abs(terms[i-1]): + s += terms[i] + else: + err = abs(terms[i]) + if i == len(terms)-1: + err = abs(terms[-1]) + return s, err + +def generalized_bisection(ctx,f,a,b,n): + """ + Given f known to have exactly n simple roots within [a,b], + return a list of n intervals isolating the roots + and having opposite signs at the endpoints. + + TODO: this can be optimized, e.g. by reusing evaluation points. + """ + if n < 1: + raise ValueError("n cannot be less than 1") + N = n+1 + points = [] + signs = [] + while 1: + points = ctx.linspace(a,b,N) + signs = [ctx.sign(f(x)) for x in points] + ok_intervals = [(points[i],points[i+1]) for i in range(N-1) \ + if signs[i]*signs[i+1] == -1] + if len(ok_intervals) == n: + return ok_intervals + N = N*2 + +def find_in_interval(ctx, f, ab): + return ctx.findroot(f, ab, solver='illinois', verify=False) + +def bessel_zero(ctx, kind, prime, v, m, isoltol=0.01, _interval_cache={}): + prec = ctx.prec + workprec = max(prec, ctx.mag(v), ctx.mag(m))+10 + try: + ctx.prec = workprec + v = ctx.mpf(v) + m = int(m) + prime = int(prime) + if v < 0: + raise ValueError("v cannot be negative") + if m < 1: + raise ValueError("m cannot be less than 1") + if not prime in (0,1): + raise ValueError("prime should lie between 0 and 1") + if kind == 1: + if prime: f = lambda x: ctx.besselj(v,x,derivative=1) + else: f = lambda x: ctx.besselj(v,x) + if kind == 2: + if prime: f = lambda x: ctx.bessely(v,x,derivative=1) + else: f = lambda x: ctx.bessely(v,x) + # The first root of J' is very close to 0 for small + # orders, and this needs to be special-cased + if kind == 1 and prime and m == 1: + if v == 0: + return ctx.zero + if v <= 1: + # TODO: use v <= j'_{v,1} < y_{v,1}? + r = 2*ctx.sqrt(v*(1+v)/(v+2)) + return find_in_interval(ctx, f, (r/10, 2*r)) + if (kind,prime,v,m) in _interval_cache: + return find_in_interval(ctx, f, _interval_cache[kind,prime,v,m]) + r, err = mcmahon(ctx, kind, prime, v, m) + if err < isoltol: + return find_in_interval(ctx, f, (r-isoltol, r+isoltol)) + # An x such that 0 < x < r_{v,1} + if kind == 1 and not prime: low = 2.4 + if kind == 1 and prime: low = 1.8 + if kind == 2 and not prime: low = 0.8 + if kind == 2 and prime: low = 2.0 + n = m+1 + while 1: + r1, err = mcmahon(ctx, kind, prime, v, n) + if err < isoltol: + r2, err2 = mcmahon(ctx, kind, prime, v, n+1) + intervals = generalized_bisection(ctx, f, low, 0.5*(r1+r2), n) + for k, ab in enumerate(intervals): + _interval_cache[kind,prime,v,k+1] = ab + return find_in_interval(ctx, f, intervals[m-1]) + else: + n = n*2 + finally: + ctx.prec = prec + +@defun +def besseljzero(ctx, v, m, derivative=0): + r""" + For a real order `\nu \ge 0` and a positive integer `m`, returns + `j_{\nu,m}`, the `m`-th positive zero of the Bessel function of the + first kind `J_{\nu}(z)` (see :func:`~mpmath.besselj`). Alternatively, + with *derivative=1*, gives the first nonnegative simple zero + `j'_{\nu,m}` of `J'_{\nu}(z)`. + + The indexing convention is that used by Abramowitz & Stegun + and the DLMF. Note the special case `j'_{0,1} = 0`, while all other + zeros are positive. In effect, only simple zeros are counted + (all zeros of Bessel functions are simple except possibly `z = 0`) + and `j_{\nu,m}` becomes a monotonic function of both `\nu` + and `m`. + + The zeros are interlaced according to the inequalities + + .. math :: + + j'_{\nu,k} < j_{\nu,k} < j'_{\nu,k+1} + + j_{\nu,1} < j_{\nu+1,2} < j_{\nu,2} < j_{\nu+1,2} < j_{\nu,3} < \cdots + + **Examples** + + Initial zeros of the Bessel functions `J_0(z), J_1(z), J_2(z)`:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> besseljzero(0,1); besseljzero(0,2); besseljzero(0,3) + 2.404825557695772768621632 + 5.520078110286310649596604 + 8.653727912911012216954199 + >>> besseljzero(1,1); besseljzero(1,2); besseljzero(1,3) + 3.831705970207512315614436 + 7.01558666981561875353705 + 10.17346813506272207718571 + >>> besseljzero(2,1); besseljzero(2,2); besseljzero(2,3) + 5.135622301840682556301402 + 8.417244140399864857783614 + 11.61984117214905942709415 + + Initial zeros of `J'_0(z), J'_1(z), J'_2(z)`:: + + 0.0 + 3.831705970207512315614436 + 7.01558666981561875353705 + >>> besseljzero(1,1,1); besseljzero(1,2,1); besseljzero(1,3,1) + 1.84118378134065930264363 + 5.331442773525032636884016 + 8.536316366346285834358961 + >>> besseljzero(2,1,1); besseljzero(2,2,1); besseljzero(2,3,1) + 3.054236928227140322755932 + 6.706133194158459146634394 + 9.969467823087595793179143 + + Zeros with large index:: + + >>> besseljzero(0,100); besseljzero(0,1000); besseljzero(0,10000) + 313.3742660775278447196902 + 3140.807295225078628895545 + 31415.14114171350798533666 + >>> besseljzero(5,100); besseljzero(5,1000); besseljzero(5,10000) + 321.1893195676003157339222 + 3148.657306813047523500494 + 31422.9947255486291798943 + >>> besseljzero(0,100,1); besseljzero(0,1000,1); besseljzero(0,10000,1) + 311.8018681873704508125112 + 3139.236339643802482833973 + 31413.57032947022399485808 + + Zeros of functions with large order:: + + >>> besseljzero(50,1) + 57.11689916011917411936228 + >>> besseljzero(50,2) + 62.80769876483536093435393 + >>> besseljzero(50,100) + 388.6936600656058834640981 + >>> besseljzero(50,1,1) + 52.99764038731665010944037 + >>> besseljzero(50,2,1) + 60.02631933279942589882363 + >>> besseljzero(50,100,1) + 387.1083151608726181086283 + + Zeros of functions with fractional order:: + + >>> besseljzero(0.5,1); besseljzero(1.5,1); besseljzero(2.25,4) + 3.141592653589793238462643 + 4.493409457909064175307881 + 15.15657692957458622921634 + + Both `J_{\nu}(z)` and `J'_{\nu}(z)` can be expressed as infinite + products over their zeros:: + + >>> v,z = 2, mpf(1) + >>> (z/2)**v/gamma(v+1) * \ + ... nprod(lambda k: 1-(z/besseljzero(v,k))**2, [1,inf]) + ... + 0.1149034849319004804696469 + >>> besselj(v,z) + 0.1149034849319004804696469 + >>> (z/2)**(v-1)/2/gamma(v) * \ + ... nprod(lambda k: 1-(z/besseljzero(v,k,1))**2, [1,inf]) + ... + 0.2102436158811325550203884 + >>> besselj(v,z,1) + 0.2102436158811325550203884 + + """ + return +bessel_zero(ctx, 1, derivative, v, m) + +@defun +def besselyzero(ctx, v, m, derivative=0): + r""" + For a real order `\nu \ge 0` and a positive integer `m`, returns + `y_{\nu,m}`, the `m`-th positive zero of the Bessel function of the + second kind `Y_{\nu}(z)` (see :func:`~mpmath.bessely`). Alternatively, + with *derivative=1*, gives the first positive zero `y'_{\nu,m}` of + `Y'_{\nu}(z)`. + + The zeros are interlaced according to the inequalities + + .. math :: + + y_{\nu,k} < y'_{\nu,k} < y_{\nu,k+1} + + y_{\nu,1} < y_{\nu+1,2} < y_{\nu,2} < y_{\nu+1,2} < y_{\nu,3} < \cdots + + **Examples** + + Initial zeros of the Bessel functions `Y_0(z), Y_1(z), Y_2(z)`:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> besselyzero(0,1); besselyzero(0,2); besselyzero(0,3) + 0.8935769662791675215848871 + 3.957678419314857868375677 + 7.086051060301772697623625 + >>> besselyzero(1,1); besselyzero(1,2); besselyzero(1,3) + 2.197141326031017035149034 + 5.429681040794135132772005 + 8.596005868331168926429606 + >>> besselyzero(2,1); besselyzero(2,2); besselyzero(2,3) + 3.384241767149593472701426 + 6.793807513268267538291167 + 10.02347797936003797850539 + + Initial zeros of `Y'_0(z), Y'_1(z), Y'_2(z)`:: + + >>> besselyzero(0,1,1); besselyzero(0,2,1); besselyzero(0,3,1) + 2.197141326031017035149034 + 5.429681040794135132772005 + 8.596005868331168926429606 + >>> besselyzero(1,1,1); besselyzero(1,2,1); besselyzero(1,3,1) + 3.683022856585177699898967 + 6.941499953654175655751944 + 10.12340465543661307978775 + >>> besselyzero(2,1,1); besselyzero(2,2,1); besselyzero(2,3,1) + 5.002582931446063945200176 + 8.350724701413079526349714 + 11.57419546521764654624265 + + Zeros with large index:: + + >>> besselyzero(0,100); besselyzero(0,1000); besselyzero(0,10000) + 311.8034717601871549333419 + 3139.236498918198006794026 + 31413.57034538691205229188 + >>> besselyzero(5,100); besselyzero(5,1000); besselyzero(5,10000) + 319.6183338562782156235062 + 3147.086508524556404473186 + 31421.42392920214673402828 + >>> besselyzero(0,100,1); besselyzero(0,1000,1); besselyzero(0,10000,1) + 313.3726705426359345050449 + 3140.807136030340213610065 + 31415.14112579761578220175 + + Zeros of functions with large order:: + + >>> besselyzero(50,1) + 53.50285882040036394680237 + >>> besselyzero(50,2) + 60.11244442774058114686022 + >>> besselyzero(50,100) + 387.1096509824943957706835 + >>> besselyzero(50,1,1) + 56.96290427516751320063605 + >>> besselyzero(50,2,1) + 62.74888166945933944036623 + >>> besselyzero(50,100,1) + 388.6923300548309258355475 + + Zeros of functions with fractional order:: + + >>> besselyzero(0.5,1); besselyzero(1.5,1); besselyzero(2.25,4) + 1.570796326794896619231322 + 2.798386045783887136720249 + 13.56721208770735123376018 + + """ + return +bessel_zero(ctx, 2, derivative, v, m) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/elliptic.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/elliptic.py new file mode 100644 index 0000000000000000000000000000000000000000..1e198697fa042b7cc8bcba9e9e770f5c8106dad6 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/elliptic.py @@ -0,0 +1,1431 @@ +r""" +Elliptic functions historically comprise the elliptic integrals +and their inverses, and originate from the problem of computing the +arc length of an ellipse. From a more modern point of view, +an elliptic function is defined as a doubly periodic function, i.e. +a function which satisfies + +.. math :: + + f(z + 2 \omega_1) = f(z + 2 \omega_2) = f(z) + +for some half-periods `\omega_1, \omega_2` with +`\mathrm{Im}[\omega_1 / \omega_2] > 0`. The canonical elliptic +functions are the Jacobi elliptic functions. More broadly, this section +includes quasi-doubly periodic functions (such as the Jacobi theta +functions) and other functions useful in the study of elliptic functions. + +Many different conventions for the arguments of +elliptic functions are in use. It is even standard to use +different parameterizations for different functions in the same +text or software (and mpmath is no exception). +The usual parameters are the elliptic nome `q`, which usually +must satisfy `|q| < 1`; the elliptic parameter `m` (an arbitrary +complex number); the elliptic modulus `k` (an arbitrary complex +number); and the half-period ratio `\tau`, which usually must +satisfy `\mathrm{Im}[\tau] > 0`. +These quantities can be expressed in terms of each other +using the following relations: + +.. math :: + + m = k^2 + +.. math :: + + \tau = i \frac{K(1-m)}{K(m)} + +.. math :: + + q = e^{i \pi \tau} + +.. math :: + + k = \frac{\vartheta_2^2(q)}{\vartheta_3^2(q)} + +In addition, an alternative definition is used for the nome in +number theory, which we here denote by q-bar: + +.. math :: + + \bar{q} = q^2 = e^{2 i \pi \tau} + +For convenience, mpmath provides functions to convert +between the various parameters (:func:`~mpmath.qfrom`, :func:`~mpmath.mfrom`, +:func:`~mpmath.kfrom`, :func:`~mpmath.taufrom`, :func:`~mpmath.qbarfrom`). + +**References** + +1. [AbramowitzStegun]_ + +2. [WhittakerWatson]_ + +""" + +from .functions import defun, defun_wrapped + +@defun_wrapped +def eta(ctx, tau): + r""" + Returns the Dedekind eta function of tau in the upper half-plane. + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> eta(1j); gamma(0.25) / (2*pi**0.75) + (0.7682254223260566590025942 + 0.0j) + 0.7682254223260566590025942 + >>> tau = sqrt(2) + sqrt(5)*1j + >>> eta(-1/tau); sqrt(-1j*tau) * eta(tau) + (0.9022859908439376463573294 + 0.07985093673948098408048575j) + (0.9022859908439376463573295 + 0.07985093673948098408048575j) + >>> eta(tau+1); exp(pi*1j/12) * eta(tau) + (0.4493066139717553786223114 + 0.3290014793877986663915939j) + (0.4493066139717553786223114 + 0.3290014793877986663915939j) + >>> f = lambda z: diff(eta, z) / eta(z) + >>> chop(36*diff(f,tau)**2 - 24*diff(f,tau,2)*f(tau) + diff(f,tau,3)) + 0.0 + + """ + if ctx.im(tau) <= 0.0: + raise ValueError("eta is only defined in the upper half-plane") + q = ctx.expjpi(tau/12) + return q * ctx.qp(q**24) + +def nome(ctx, m): + m = ctx.convert(m) + if not m: + return m + if m == ctx.one: + return m + if ctx.isnan(m): + return m + if ctx.isinf(m): + if m == ctx.ninf: + return type(m)(-1) + else: + return ctx.mpc(-1) + a = ctx.ellipk(ctx.one-m) + b = ctx.ellipk(m) + v = ctx.exp(-ctx.pi*a/b) + if not ctx._im(m) and ctx._re(m) < 1: + if ctx._is_real_type(m): + return v.real + else: + return v.real + 0j + elif m == 2: + v = ctx.mpc(0, v.imag) + return v + +@defun_wrapped +def qfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): + r""" + Returns the elliptic nome `q`, given any of `q, m, k, \tau, \bar{q}`:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> qfrom(q=0.25) + 0.25 + >>> qfrom(m=mfrom(q=0.25)) + 0.25 + >>> qfrom(k=kfrom(q=0.25)) + 0.25 + >>> qfrom(tau=taufrom(q=0.25)) + (0.25 + 0.0j) + >>> qfrom(qbar=qbarfrom(q=0.25)) + 0.25 + + """ + if q is not None: + return ctx.convert(q) + if m is not None: + return nome(ctx, m) + if k is not None: + return nome(ctx, ctx.convert(k)**2) + if tau is not None: + return ctx.expjpi(tau) + if qbar is not None: + return ctx.sqrt(qbar) + +@defun_wrapped +def qbarfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): + r""" + Returns the number-theoretic nome `\bar q`, given any of + `q, m, k, \tau, \bar{q}`:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> qbarfrom(qbar=0.25) + 0.25 + >>> qbarfrom(q=qfrom(qbar=0.25)) + 0.25 + >>> qbarfrom(m=extraprec(20)(mfrom)(qbar=0.25)) # ill-conditioned + 0.25 + >>> qbarfrom(k=extraprec(20)(kfrom)(qbar=0.25)) # ill-conditioned + 0.25 + >>> qbarfrom(tau=taufrom(qbar=0.25)) + (0.25 + 0.0j) + + """ + if qbar is not None: + return ctx.convert(qbar) + if q is not None: + return ctx.convert(q) ** 2 + if m is not None: + return nome(ctx, m) ** 2 + if k is not None: + return nome(ctx, ctx.convert(k)**2) ** 2 + if tau is not None: + return ctx.expjpi(2*tau) + +@defun_wrapped +def taufrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): + r""" + Returns the elliptic half-period ratio `\tau`, given any of + `q, m, k, \tau, \bar{q}`:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> taufrom(tau=0.5j) + (0.0 + 0.5j) + >>> taufrom(q=qfrom(tau=0.5j)) + (0.0 + 0.5j) + >>> taufrom(m=mfrom(tau=0.5j)) + (0.0 + 0.5j) + >>> taufrom(k=kfrom(tau=0.5j)) + (0.0 + 0.5j) + >>> taufrom(qbar=qbarfrom(tau=0.5j)) + (0.0 + 0.5j) + + """ + if tau is not None: + return ctx.convert(tau) + if m is not None: + m = ctx.convert(m) + return ctx.j*ctx.ellipk(1-m)/ctx.ellipk(m) + if k is not None: + k = ctx.convert(k) + return ctx.j*ctx.ellipk(1-k**2)/ctx.ellipk(k**2) + if q is not None: + return ctx.log(q) / (ctx.pi*ctx.j) + if qbar is not None: + qbar = ctx.convert(qbar) + return ctx.log(qbar) / (2*ctx.pi*ctx.j) + +@defun_wrapped +def kfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): + r""" + Returns the elliptic modulus `k`, given any of + `q, m, k, \tau, \bar{q}`:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> kfrom(k=0.25) + 0.25 + >>> kfrom(m=mfrom(k=0.25)) + 0.25 + >>> kfrom(q=qfrom(k=0.25)) + 0.25 + >>> kfrom(tau=taufrom(k=0.25)) + (0.25 + 0.0j) + >>> kfrom(qbar=qbarfrom(k=0.25)) + 0.25 + + As `q \to 1` and `q \to -1`, `k` rapidly approaches + `1` and `i \infty` respectively:: + + >>> kfrom(q=0.75) + 0.9999999999999899166471767 + >>> kfrom(q=-0.75) + (0.0 + 7041781.096692038332790615j) + >>> kfrom(q=1) + 1 + >>> kfrom(q=-1) + (0.0 + +infj) + """ + if k is not None: + return ctx.convert(k) + if m is not None: + return ctx.sqrt(m) + if tau is not None: + q = ctx.expjpi(tau) + if qbar is not None: + q = ctx.sqrt(qbar) + if q == 1: + return q + if q == -1: + return ctx.mpc(0,'inf') + return (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**2 + +@defun_wrapped +def mfrom(ctx, q=None, m=None, k=None, tau=None, qbar=None): + r""" + Returns the elliptic parameter `m`, given any of + `q, m, k, \tau, \bar{q}`:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> mfrom(m=0.25) + 0.25 + >>> mfrom(q=qfrom(m=0.25)) + 0.25 + >>> mfrom(k=kfrom(m=0.25)) + 0.25 + >>> mfrom(tau=taufrom(m=0.25)) + (0.25 + 0.0j) + >>> mfrom(qbar=qbarfrom(m=0.25)) + 0.25 + + As `q \to 1` and `q \to -1`, `m` rapidly approaches + `1` and `-\infty` respectively:: + + >>> mfrom(q=0.75) + 0.9999999999999798332943533 + >>> mfrom(q=-0.75) + -49586681013729.32611558353 + >>> mfrom(q=1) + 1.0 + >>> mfrom(q=-1) + -inf + + The inverse nome as a function of `q` has an integer + Taylor series expansion:: + + >>> taylor(lambda q: mfrom(q), 0, 7) + [0.0, 16.0, -128.0, 704.0, -3072.0, 11488.0, -38400.0, 117632.0] + + """ + if m is not None: + return m + if k is not None: + return k**2 + if tau is not None: + q = ctx.expjpi(tau) + if qbar is not None: + q = ctx.sqrt(qbar) + if q == 1: + return ctx.convert(q) + if q == -1: + return q*ctx.inf + v = (ctx.jtheta(2,0,q)/ctx.jtheta(3,0,q))**4 + if ctx._is_real_type(q) and q < 0: + v = v.real + return v + +jacobi_spec = { + 'sn' : ([3],[2],[1],[4], 'sin', 'tanh'), + 'cn' : ([4],[2],[2],[4], 'cos', 'sech'), + 'dn' : ([4],[3],[3],[4], '1', 'sech'), + 'ns' : ([2],[3],[4],[1], 'csc', 'coth'), + 'nc' : ([2],[4],[4],[2], 'sec', 'cosh'), + 'nd' : ([3],[4],[4],[3], '1', 'cosh'), + 'sc' : ([3],[4],[1],[2], 'tan', 'sinh'), + 'sd' : ([3,3],[2,4],[1],[3], 'sin', 'sinh'), + 'cd' : ([3],[2],[2],[3], 'cos', '1'), + 'cs' : ([4],[3],[2],[1], 'cot', 'csch'), + 'dc' : ([2],[3],[3],[2], 'sec', '1'), + 'ds' : ([2,4],[3,3],[3],[1], 'csc', 'csch'), + 'cc' : None, + 'ss' : None, + 'nn' : None, + 'dd' : None +} + +@defun +def ellipfun(ctx, kind, u=None, m=None, q=None, k=None, tau=None): + try: + S = jacobi_spec[kind] + except KeyError: + raise ValueError("First argument must be a two-character string " + "containing 's', 'c', 'd' or 'n', e.g.: 'sn'") + if u is None: + def f(*args, **kwargs): + return ctx.ellipfun(kind, *args, **kwargs) + f.__name__ = kind + return f + prec = ctx.prec + try: + ctx.prec += 10 + u = ctx.convert(u) + q = ctx.qfrom(m=m, q=q, k=k, tau=tau) + if S is None: + v = ctx.one + 0*q*u + elif q == ctx.zero: + if S[4] == '1': v = ctx.one + else: v = getattr(ctx, S[4])(u) + v += 0*q*u + elif q == ctx.one: + if S[5] == '1': v = ctx.one + else: v = getattr(ctx, S[5])(u) + v += 0*q*u + else: + t = u / ctx.jtheta(3, 0, q)**2 + v = ctx.one + for a in S[0]: v *= ctx.jtheta(a, 0, q) + for b in S[1]: v /= ctx.jtheta(b, 0, q) + for c in S[2]: v *= ctx.jtheta(c, t, q) + for d in S[3]: v /= ctx.jtheta(d, t, q) + finally: + ctx.prec = prec + return +v + +@defun_wrapped +def kleinj(ctx, tau=None, **kwargs): + r""" + Evaluates the Klein j-invariant, which is a modular function defined for + `\tau` in the upper half-plane as + + .. math :: + + J(\tau) = \frac{g_2^3(\tau)}{g_2^3(\tau) - 27 g_3^2(\tau)} + + where `g_2` and `g_3` are the modular invariants of the Weierstrass + elliptic function, + + .. math :: + + g_2(\tau) = 60 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-4} + + g_3(\tau) = 140 \sum_{(m,n) \in \mathbb{Z}^2 \setminus (0,0)} (m \tau+n)^{-6}. + + An alternative, common notation is that of the j-function + `j(\tau) = 1728 J(\tau)`. + + **Plots** + + .. literalinclude :: /plots/kleinj.py + .. image :: /plots/kleinj.png + .. literalinclude :: /plots/kleinj2.py + .. image :: /plots/kleinj2.png + + **Examples** + + Verifying the functional equation `J(\tau) = J(\tau+1) = J(-\tau^{-1})`:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> tau = 0.625+0.75*j + >>> tau = 0.625+0.75*j + >>> kleinj(tau) + (-0.1507492166511182267125242 + 0.07595948379084571927228948j) + >>> kleinj(tau+1) + (-0.1507492166511182267125242 + 0.07595948379084571927228948j) + >>> kleinj(-1/tau) + (-0.1507492166511182267125242 + 0.07595948379084571927228946j) + + The j-function has a famous Laurent series expansion in terms of the nome + `\bar{q}`, `j(\tau) = \bar{q}^{-1} + 744 + 196884\bar{q} + \ldots`:: + + >>> mp.dps = 15 + >>> taylor(lambda q: 1728*q*kleinj(qbar=q), 0, 5, singular=True) + [1.0, 744.0, 196884.0, 21493760.0, 864299970.0, 20245856256.0] + + The j-function admits exact evaluation at special algebraic points + related to the Heegner numbers 1, 2, 3, 7, 11, 19, 43, 67, 163:: + + >>> @extraprec(10) + ... def h(n): + ... v = (1+sqrt(n)*j) + ... if n > 2: + ... v *= 0.5 + ... return v + ... + >>> mp.dps = 25 + >>> for n in [1,2,3,7,11,19,43,67,163]: + ... n, chop(1728*kleinj(h(n))) + ... + (1, 1728.0) + (2, 8000.0) + (3, 0.0) + (7, -3375.0) + (11, -32768.0) + (19, -884736.0) + (43, -884736000.0) + (67, -147197952000.0) + (163, -262537412640768000.0) + + Also at other special points, the j-function assumes explicit + algebraic values, e.g.:: + + >>> chop(1728*kleinj(j*sqrt(5))) + 1264538.909475140509320227 + >>> identify(cbrt(_)) # note: not simplified + '((100+sqrt(13520))/2)' + >>> (50+26*sqrt(5))**3 + 1264538.909475140509320227 + + """ + q = ctx.qfrom(tau=tau, **kwargs) + t2 = ctx.jtheta(2,0,q) + t3 = ctx.jtheta(3,0,q) + t4 = ctx.jtheta(4,0,q) + P = (t2**8 + t3**8 + t4**8)**3 + Q = 54*(t2*t3*t4)**8 + return P/Q + + +def RF_calc(ctx, x, y, z, r): + if y == z: return RC_calc(ctx, x, y, r) + if x == z: return RC_calc(ctx, y, x, r) + if x == y: return RC_calc(ctx, z, x, r) + if not (ctx.isnormal(x) and ctx.isnormal(y) and ctx.isnormal(z)): + if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z): + return x*y*z + if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z): + return ctx.zero + xm,ym,zm = x,y,z + A0 = Am = (x+y+z)/3 + Q = ctx.root(3*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z)) + g = ctx.mpf(0.25) + pow4 = ctx.one + while 1: + xs = ctx.sqrt(xm) + ys = ctx.sqrt(ym) + zs = ctx.sqrt(zm) + lm = xs*ys + xs*zs + ys*zs + Am1 = (Am+lm)*g + xm, ym, zm = (xm+lm)*g, (ym+lm)*g, (zm+lm)*g + if pow4 * Q < abs(Am): + break + Am = Am1 + pow4 *= g + t = pow4/Am + X = (A0-x)*t + Y = (A0-y)*t + Z = -X-Y + E2 = X*Y-Z**2 + E3 = X*Y*Z + return ctx.power(Am,-0.5) * (9240-924*E2+385*E2**2+660*E3-630*E2*E3)/9240 + +def RC_calc(ctx, x, y, r, pv=True): + if not (ctx.isnormal(x) and ctx.isnormal(y)): + if ctx.isinf(x) or ctx.isinf(y): + return 1/(x*y) + if y == 0: + return ctx.inf + if x == 0: + return ctx.pi / ctx.sqrt(y) / 2 + raise ValueError + # Cauchy principal value + if pv and ctx._im(y) == 0 and ctx._re(y) < 0: + return ctx.sqrt(x/(x-y)) * RC_calc(ctx, x-y, -y, r) + if x == y: + return 1/ctx.sqrt(x) + extraprec = 2*max(0,-ctx.mag(x-y)+ctx.mag(x)) + ctx.prec += extraprec + if ctx._is_real_type(x) and ctx._is_real_type(y): + x = ctx._re(x) + y = ctx._re(y) + a = ctx.sqrt(x/y) + if x < y: + b = ctx.sqrt(y-x) + v = ctx.acos(a)/b + else: + b = ctx.sqrt(x-y) + v = ctx.acosh(a)/b + else: + sx = ctx.sqrt(x) + sy = ctx.sqrt(y) + v = ctx.acos(sx/sy)/(ctx.sqrt((1-x/y))*sy) + ctx.prec -= extraprec + return v + +def RJ_calc(ctx, x, y, z, p, r, integration): + """ + With integration == 0, computes RJ only using Carlson's algorithm + (may be wrong for some values). + With integration == 1, uses an initial integration to make sure + Carlson's algorithm is correct. + With integration == 2, uses only integration. + """ + if not (ctx.isnormal(x) and ctx.isnormal(y) and \ + ctx.isnormal(z) and ctx.isnormal(p)): + if ctx.isnan(x) or ctx.isnan(y) or ctx.isnan(z) or ctx.isnan(p): + return x*y*z + if ctx.isinf(x) or ctx.isinf(y) or ctx.isinf(z) or ctx.isinf(p): + return ctx.zero + if not p: + return ctx.inf + if (not x) + (not y) + (not z) > 1: + return ctx.inf + # Check conditions and fall back on integration for argument + # reduction if needed. The following conditions might be needlessly + # restrictive. + initial_integral = ctx.zero + if integration >= 1: + ok = (x.real >= 0 and y.real >= 0 and z.real >= 0 and p.real > 0) + if not ok: + if x == p or y == p or z == p: + ok = True + if not ok: + if p.imag != 0 or p.real >= 0: + if (x.imag == 0 and x.real >= 0 and ctx.conj(y) == z): + ok = True + if (y.imag == 0 and y.real >= 0 and ctx.conj(x) == z): + ok = True + if (z.imag == 0 and z.real >= 0 and ctx.conj(x) == y): + ok = True + if not ok or (integration == 2): + N = ctx.ceil(-min(x.real, y.real, z.real, p.real)) + 1 + # Integrate around any singularities + if all((t.imag >= 0 or t.real > 0) for t in [x, y, z, p]): + margin = ctx.j + elif all((t.imag < 0 or t.real > 0) for t in [x, y, z, p]): + margin = -ctx.j + else: + margin = 1 + # Go through the upper half-plane, but low enough that any + # parameter starting in the lower plane doesn't cross the + # branch cut + for t in [x, y, z, p]: + if t.imag >= 0 or t.real > 0: + continue + margin = min(margin, abs(t.imag) * 0.5) + margin *= ctx.j + N += margin + F = lambda t: 1/(ctx.sqrt(t+x)*ctx.sqrt(t+y)*ctx.sqrt(t+z)*(t+p)) + if integration == 2: + return 1.5 * ctx.quadsubdiv(F, [0, N, ctx.inf]) + initial_integral = 1.5 * ctx.quadsubdiv(F, [0, N]) + x += N; y += N; z += N; p += N + xm,ym,zm,pm = x,y,z,p + A0 = Am = (x + y + z + 2*p)/5 + delta = (p-x)*(p-y)*(p-z) + Q = ctx.root(0.25*r, -6) * max(abs(A0-x),abs(A0-y),abs(A0-z),abs(A0-p)) + g = ctx.mpf(0.25) + pow4 = ctx.one + S = 0 + while 1: + sx = ctx.sqrt(xm) + sy = ctx.sqrt(ym) + sz = ctx.sqrt(zm) + sp = ctx.sqrt(pm) + lm = sx*sy + sx*sz + sy*sz + Am1 = (Am+lm)*g + xm = (xm+lm)*g; ym = (ym+lm)*g; zm = (zm+lm)*g; pm = (pm+lm)*g + dm = (sp+sx) * (sp+sy) * (sp+sz) + em = delta * pow4**3 / dm**2 + if pow4 * Q < abs(Am): + break + T = RC_calc(ctx, ctx.one, ctx.one+em, r) * pow4 / dm + S += T + pow4 *= g + Am = Am1 + t = pow4 / Am + X = (A0-x)*t + Y = (A0-y)*t + Z = (A0-z)*t + P = (-X-Y-Z)/2 + E2 = X*Y + X*Z + Y*Z - 3*P**2 + E3 = X*Y*Z + 2*E2*P + 4*P**3 + E4 = (2*X*Y*Z + E2*P + 3*P**3)*P + E5 = X*Y*Z*P**2 + P = 24024 - 5148*E2 + 2457*E2**2 + 4004*E3 - 4158*E2*E3 - 3276*E4 + 2772*E5 + Q = 24024 + v1 = pow4 * ctx.power(Am, -1.5) * P/Q + v2 = 6*S + return initial_integral + v1 + v2 + +@defun +def elliprf(ctx, x, y, z): + r""" + Evaluates the Carlson symmetric elliptic integral of the first kind + + .. math :: + + R_F(x,y,z) = \frac{1}{2} + \int_0^{\infty} \frac{dt}{\sqrt{(t+x)(t+y)(t+z)}} + + which is defined for `x,y,z \notin (-\infty,0)`, and with + at most one of `x,y,z` being zero. + + For real `x,y,z \ge 0`, the principal square root is taken in the integrand. + For complex `x,y,z`, the principal square root is taken as `t \to \infty` + and as `t \to 0` non-principal branches are chosen as necessary so as to + make the integrand continuous. + + **Examples** + + Some basic values and limits:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> elliprf(0,1,1); pi/2 + 1.570796326794896619231322 + 1.570796326794896619231322 + >>> elliprf(0,1,inf) + 0.0 + >>> elliprf(1,1,1) + 1.0 + >>> elliprf(2,2,2)**2 + 0.5 + >>> elliprf(1,0,0); elliprf(0,0,1); elliprf(0,1,0); elliprf(0,0,0) + +inf + +inf + +inf + +inf + + Representing complete elliptic integrals in terms of `R_F`:: + + >>> m = mpf(0.75) + >>> ellipk(m); elliprf(0,1-m,1) + 2.156515647499643235438675 + 2.156515647499643235438675 + >>> ellipe(m); elliprf(0,1-m,1)-m*elliprd(0,1-m,1)/3 + 1.211056027568459524803563 + 1.211056027568459524803563 + + Some symmetries and argument transformations:: + + >>> x,y,z = 2,3,4 + >>> elliprf(x,y,z); elliprf(y,x,z); elliprf(z,y,x) + 0.5840828416771517066928492 + 0.5840828416771517066928492 + 0.5840828416771517066928492 + >>> k = mpf(100000) + >>> elliprf(k*x,k*y,k*z); k**(-0.5) * elliprf(x,y,z) + 0.001847032121923321253219284 + 0.001847032121923321253219284 + >>> l = sqrt(x*y) + sqrt(y*z) + sqrt(z*x) + >>> elliprf(x,y,z); 2*elliprf(x+l,y+l,z+l) + 0.5840828416771517066928492 + 0.5840828416771517066928492 + >>> elliprf((x+l)/4,(y+l)/4,(z+l)/4) + 0.5840828416771517066928492 + + Comparing with numerical integration:: + + >>> x,y,z = 2,3,4 + >>> elliprf(x,y,z) + 0.5840828416771517066928492 + >>> f = lambda t: 0.5*((t+x)*(t+y)*(t+z))**(-0.5) + >>> q = extradps(25)(quad) + >>> q(f, [0,inf]) + 0.5840828416771517066928492 + + With the following arguments, the square root in the integrand becomes + discontinuous at `t = 1/2` if the principal branch is used. To obtain + the right value, `-\sqrt{r}` must be taken instead of `\sqrt{r}` + on `t \in (0, 1/2)`:: + + >>> x,y,z = j-1,j,0 + >>> elliprf(x,y,z) + (0.7961258658423391329305694 - 1.213856669836495986430094j) + >>> -q(f, [0,0.5]) + q(f, [0.5,inf]) + (0.7961258658423391329305694 - 1.213856669836495986430094j) + + The so-called *first lemniscate constant*, a transcendental number:: + + >>> elliprf(0,1,2) + 1.31102877714605990523242 + >>> extradps(25)(quad)(lambda t: 1/sqrt(1-t**4), [0,1]) + 1.31102877714605990523242 + >>> gamma('1/4')**2/(4*sqrt(2*pi)) + 1.31102877714605990523242 + + **References** + + 1. [Carlson]_ + 2. [DLMF]_ Chapter 19. Elliptic Integrals + + """ + x = ctx.convert(x) + y = ctx.convert(y) + z = ctx.convert(z) + prec = ctx.prec + try: + ctx.prec += 20 + tol = ctx.eps * 2**10 + v = RF_calc(ctx, x, y, z, tol) + finally: + ctx.prec = prec + return +v + +@defun +def elliprc(ctx, x, y, pv=True): + r""" + Evaluates the degenerate Carlson symmetric elliptic integral + of the first kind + + .. math :: + + R_C(x,y) = R_F(x,y,y) = + \frac{1}{2} \int_0^{\infty} \frac{dt}{(t+y) \sqrt{(t+x)}}. + + If `y \in (-\infty,0)`, either a value defined by continuity, + or with *pv=True* the Cauchy principal value, can be computed. + + If `x \ge 0, y > 0`, the value can be expressed in terms of + elementary functions as + + .. math :: + + R_C(x,y) = + \begin{cases} + \dfrac{1}{\sqrt{y-x}} + \cos^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x < y \\ + \dfrac{1}{\sqrt{y}}, & x = y \\ + \dfrac{1}{\sqrt{x-y}} + \cosh^{-1}\left(\sqrt{\dfrac{x}{y}}\right), & x > y \\ + \end{cases}. + + **Examples** + + Some special values and limits:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> elliprc(1,2)*4; elliprc(0,1)*2; +pi + 3.141592653589793238462643 + 3.141592653589793238462643 + 3.141592653589793238462643 + >>> elliprc(1,0) + +inf + >>> elliprc(5,5)**2 + 0.2 + >>> elliprc(1,inf); elliprc(inf,1); elliprc(inf,inf) + 0.0 + 0.0 + 0.0 + + Comparing with the elementary closed-form solution:: + + >>> elliprc('1/3', '1/5'); sqrt(7.5)*acosh(sqrt('5/3')) + 2.041630778983498390751238 + 2.041630778983498390751238 + >>> elliprc('1/5', '1/3'); sqrt(7.5)*acos(sqrt('3/5')) + 1.875180765206547065111085 + 1.875180765206547065111085 + + Comparing with numerical integration:: + + >>> q = extradps(25)(quad) + >>> elliprc(2, -3, pv=True) + 0.3333969101113672670749334 + >>> elliprc(2, -3, pv=False) + (0.3333969101113672670749334 + 0.7024814731040726393156375j) + >>> 0.5*q(lambda t: 1/(sqrt(t+2)*(t-3)), [0,3-j,6,inf]) + (0.3333969101113672670749334 + 0.7024814731040726393156375j) + + """ + x = ctx.convert(x) + y = ctx.convert(y) + prec = ctx.prec + try: + ctx.prec += 20 + tol = ctx.eps * 2**10 + v = RC_calc(ctx, x, y, tol, pv) + finally: + ctx.prec = prec + return +v + +@defun +def elliprj(ctx, x, y, z, p, integration=1): + r""" + Evaluates the Carlson symmetric elliptic integral of the third kind + + .. math :: + + R_J(x,y,z,p) = \frac{3}{2} + \int_0^{\infty} \frac{dt}{(t+p)\sqrt{(t+x)(t+y)(t+z)}}. + + Like :func:`~mpmath.elliprf`, the branch of the square root in the integrand + is defined so as to be continuous along the path of integration for + complex values of the arguments. + + **Examples** + + Some values and limits:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> elliprj(1,1,1,1) + 1.0 + >>> elliprj(2,2,2,2); 1/(2*sqrt(2)) + 0.3535533905932737622004222 + 0.3535533905932737622004222 + >>> elliprj(0,1,2,2) + 1.067937989667395702268688 + >>> 3*(2*gamma('5/4')**2-pi**2/gamma('1/4')**2)/(sqrt(2*pi)) + 1.067937989667395702268688 + >>> elliprj(0,1,1,2); 3*pi*(2-sqrt(2))/4 + 1.380226776765915172432054 + 1.380226776765915172432054 + >>> elliprj(1,3,2,0); elliprj(0,1,1,0); elliprj(0,0,0,0) + +inf + +inf + +inf + >>> elliprj(1,inf,1,0); elliprj(1,1,1,inf) + 0.0 + 0.0 + >>> chop(elliprj(1+j, 1-j, 1, 1)) + 0.8505007163686739432927844 + + Scale transformation:: + + >>> x,y,z,p = 2,3,4,5 + >>> k = mpf(100000) + >>> elliprj(k*x,k*y,k*z,k*p); k**(-1.5)*elliprj(x,y,z,p) + 4.521291677592745527851168e-9 + 4.521291677592745527851168e-9 + + Comparing with numerical integration:: + + >>> elliprj(1,2,3,4) + 0.2398480997495677621758617 + >>> f = lambda t: 1/((t+4)*sqrt((t+1)*(t+2)*(t+3))) + >>> 1.5*quad(f, [0,inf]) + 0.2398480997495677621758617 + >>> elliprj(1,2+1j,3,4-2j) + (0.216888906014633498739952 + 0.04081912627366673332369512j) + >>> f = lambda t: 1/((t+4-2j)*sqrt((t+1)*(t+2+1j)*(t+3))) + >>> 1.5*quad(f, [0,inf]) + (0.216888906014633498739952 + 0.04081912627366673332369511j) + + """ + x = ctx.convert(x) + y = ctx.convert(y) + z = ctx.convert(z) + p = ctx.convert(p) + prec = ctx.prec + try: + ctx.prec += 20 + tol = ctx.eps * 2**10 + v = RJ_calc(ctx, x, y, z, p, tol, integration) + finally: + ctx.prec = prec + return +v + +@defun +def elliprd(ctx, x, y, z): + r""" + Evaluates the degenerate Carlson symmetric elliptic integral + of the third kind or Carlson elliptic integral of the + second kind `R_D(x,y,z) = R_J(x,y,z,z)`. + + See :func:`~mpmath.elliprj` for additional information. + + **Examples** + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> elliprd(1,2,3) + 0.2904602810289906442326534 + >>> elliprj(1,2,3,3) + 0.2904602810289906442326534 + + The so-called *second lemniscate constant*, a transcendental number:: + + >>> elliprd(0,2,1)/3 + 0.5990701173677961037199612 + >>> extradps(25)(quad)(lambda t: t**2/sqrt(1-t**4), [0,1]) + 0.5990701173677961037199612 + >>> gamma('3/4')**2/sqrt(2*pi) + 0.5990701173677961037199612 + + """ + return ctx.elliprj(x,y,z,z) + +@defun +def elliprg(ctx, x, y, z): + r""" + Evaluates the Carlson completely symmetric elliptic integral + of the second kind + + .. math :: + + R_G(x,y,z) = \frac{1}{4} \int_0^{\infty} + \frac{t}{\sqrt{(t+x)(t+y)(t+z)}} + \left( \frac{x}{t+x} + \frac{y}{t+y} + \frac{z}{t+z}\right) dt. + + **Examples** + + Evaluation for real and complex arguments:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> elliprg(0,1,1)*4; +pi + 3.141592653589793238462643 + 3.141592653589793238462643 + >>> elliprg(0,0.5,1) + 0.6753219405238377512600874 + >>> chop(elliprg(1+j, 1-j, 2)) + 1.172431327676416604532822 + + A double integral that can be evaluated in terms of `R_G`:: + + >>> x,y,z = 2,3,4 + >>> def f(t,u): + ... st = fp.sin(t); ct = fp.cos(t) + ... su = fp.sin(u); cu = fp.cos(u) + ... return (x*(st*cu)**2 + y*(st*su)**2 + z*ct**2)**0.5 * st + ... + >>> nprint(mpf(fp.quad(f, [0,fp.pi], [0,2*fp.pi])/(4*fp.pi)), 13) + 1.725503028069 + >>> nprint(elliprg(x,y,z), 13) + 1.725503028069 + + """ + x = ctx.convert(x) + y = ctx.convert(y) + z = ctx.convert(z) + zeros = (not x) + (not y) + (not z) + if zeros == 3: + return (x+y+z)*0 + if zeros == 2: + if x: return 0.5*ctx.sqrt(x) + if y: return 0.5*ctx.sqrt(y) + return 0.5*ctx.sqrt(z) + if zeros == 1: + if not z: + x, z = z, x + def terms(): + T1 = 0.5*z*ctx.elliprf(x,y,z) + T2 = -0.5*(x-z)*(y-z)*ctx.elliprd(x,y,z)/3 + T3 = 0.5*ctx.sqrt(x)*ctx.sqrt(y)/ctx.sqrt(z) + return T1,T2,T3 + return ctx.sum_accurately(terms) + + +@defun_wrapped +def ellipf(ctx, phi, m): + r""" + Evaluates the Legendre incomplete elliptic integral of the first kind + + .. math :: + + F(\phi,m) = \int_0^{\phi} \frac{dt}{\sqrt{1-m \sin^2 t}} + + or equivalently + + .. math :: + + F(\phi,m) = \int_0^{\sin \phi} + \frac{dt}{\left(\sqrt{1-t^2}\right)\left(\sqrt{1-mt^2}\right)}. + + The function reduces to a complete elliptic integral of the first kind + (see :func:`~mpmath.ellipk`) when `\phi = \frac{\pi}{2}`; that is, + + .. math :: + + F\left(\frac{\pi}{2}, m\right) = K(m). + + In the defining integral, it is assumed that the principal branch + of the square root is taken and that the path of integration avoids + crossing any branch cuts. Outside `-\pi/2 \le \Re(\phi) \le \pi/2`, + the function extends quasi-periodically as + + .. math :: + + F(\phi + n \pi, m) = 2 n K(m) + F(\phi,m), n \in \mathbb{Z}. + + **Plots** + + .. literalinclude :: /plots/ellipf.py + .. image :: /plots/ellipf.png + + **Examples** + + Basic values and limits:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> ellipf(0,1) + 0.0 + >>> ellipf(0,0) + 0.0 + >>> ellipf(1,0); ellipf(2+3j,0) + 1.0 + (2.0 + 3.0j) + >>> ellipf(1,1); log(sec(1)+tan(1)) + 1.226191170883517070813061 + 1.226191170883517070813061 + >>> ellipf(pi/2, -0.5); ellipk(-0.5) + 1.415737208425956198892166 + 1.415737208425956198892166 + >>> ellipf(pi/2+eps, 1); ellipf(-pi/2-eps, 1) + +inf + +inf + >>> ellipf(1.5, 1) + 3.340677542798311003320813 + + Comparing with numerical integration:: + + >>> z,m = 0.5, 1.25 + >>> ellipf(z,m) + 0.5287219202206327872978255 + >>> quad(lambda t: (1-m*sin(t)**2)**(-0.5), [0,z]) + 0.5287219202206327872978255 + + The arguments may be complex numbers:: + + >>> ellipf(3j, 0.5) + (0.0 + 1.713602407841590234804143j) + >>> ellipf(3+4j, 5-6j) + (1.269131241950351323305741 - 0.3561052815014558335412538j) + >>> z,m = 2+3j, 1.25 + >>> k = 1011 + >>> ellipf(z+pi*k,m); ellipf(z,m) + 2*k*ellipk(m) + (4086.184383622179764082821 - 3003.003538923749396546871j) + (4086.184383622179764082821 - 3003.003538923749396546871j) + + For `|\Re(z)| < \pi/2`, the function can be expressed as a + hypergeometric series of two variables + (see :func:`~mpmath.appellf1`):: + + >>> z,m = 0.5, 0.25 + >>> ellipf(z,m) + 0.5050887275786480788831083 + >>> sin(z)*appellf1(0.5,0.5,0.5,1.5,sin(z)**2,m*sin(z)**2) + 0.5050887275786480788831083 + + """ + z = phi + if not (ctx.isnormal(z) and ctx.isnormal(m)): + if m == 0: + return z + m + if z == 0: + return z * m + if m == ctx.inf or m == ctx.ninf: return z/m + raise ValueError + x = z.real + ctx.prec += max(0, ctx.mag(x)) + pi = +ctx.pi + away = abs(x) > pi/2 + if m == 1: + if away: + return ctx.inf + if away: + d = ctx.nint(x/pi) + z = z-pi*d + P = 2*d*ctx.ellipk(m) + else: + P = 0 + c, s = ctx.cos_sin(z) + return s * ctx.elliprf(c**2, 1-m*s**2, 1) + P + +@defun_wrapped +def ellipe(ctx, *args): + r""" + Called with a single argument `m`, evaluates the Legendre complete + elliptic integral of the second kind, `E(m)`, defined by + + .. math :: E(m) = \int_0^{\pi/2} \sqrt{1-m \sin^2 t} \, dt \,=\, + \frac{\pi}{2} + \,_2F_1\left(\frac{1}{2}, -\frac{1}{2}, 1, m\right). + + Called with two arguments `\phi, m`, evaluates the incomplete elliptic + integral of the second kind + + .. math :: + + E(\phi,m) = \int_0^{\phi} \sqrt{1-m \sin^2 t} \, dt = + \int_0^{\sin z} + \frac{\sqrt{1-mt^2}}{\sqrt{1-t^2}} \, dt. + + The incomplete integral reduces to a complete integral when + `\phi = \frac{\pi}{2}`; that is, + + .. math :: + + E\left(\frac{\pi}{2}, m\right) = E(m). + + In the defining integral, it is assumed that the principal branch + of the square root is taken and that the path of integration avoids + crossing any branch cuts. Outside `-\pi/2 \le \Re(z) \le \pi/2`, + the function extends quasi-periodically as + + .. math :: + + E(\phi + n \pi, m) = 2 n E(m) + E(\phi,m), n \in \mathbb{Z}. + + **Plots** + + .. literalinclude :: /plots/ellipe.py + .. image :: /plots/ellipe.png + + **Examples for the complete integral** + + Basic values and limits:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> ellipe(0) + 1.570796326794896619231322 + >>> ellipe(1) + 1.0 + >>> ellipe(-1) + 1.910098894513856008952381 + >>> ellipe(2) + (0.5990701173677961037199612 + 0.5990701173677961037199612j) + >>> ellipe(inf) + (0.0 + +infj) + >>> ellipe(-inf) + +inf + + Verifying the defining integral and hypergeometric + representation:: + + >>> ellipe(0.5) + 1.350643881047675502520175 + >>> quad(lambda t: sqrt(1-0.5*sin(t)**2), [0, pi/2]) + 1.350643881047675502520175 + >>> pi/2*hyp2f1(0.5,-0.5,1,0.5) + 1.350643881047675502520175 + + Evaluation is supported for arbitrary complex `m`:: + + >>> ellipe(0.5+0.25j) + (1.360868682163129682716687 - 0.1238733442561786843557315j) + >>> ellipe(3+4j) + (1.499553520933346954333612 - 1.577879007912758274533309j) + + A definite integral:: + + >>> quad(ellipe, [0,1]) + 1.333333333333333333333333 + + **Examples for the incomplete integral** + + Basic values and limits:: + + >>> ellipe(0,1) + 0.0 + >>> ellipe(0,0) + 0.0 + >>> ellipe(1,0) + 1.0 + >>> ellipe(2+3j,0) + (2.0 + 3.0j) + >>> ellipe(1,1); sin(1) + 0.8414709848078965066525023 + 0.8414709848078965066525023 + >>> ellipe(pi/2, -0.5); ellipe(-0.5) + 1.751771275694817862026502 + 1.751771275694817862026502 + >>> ellipe(pi/2, 1); ellipe(-pi/2, 1) + 1.0 + -1.0 + >>> ellipe(1.5, 1) + 0.9974949866040544309417234 + + Comparing with numerical integration:: + + >>> z,m = 0.5, 1.25 + >>> ellipe(z,m) + 0.4740152182652628394264449 + >>> quad(lambda t: sqrt(1-m*sin(t)**2), [0,z]) + 0.4740152182652628394264449 + + The arguments may be complex numbers:: + + >>> ellipe(3j, 0.5) + (0.0 + 7.551991234890371873502105j) + >>> ellipe(3+4j, 5-6j) + (24.15299022574220502424466 + 75.2503670480325997418156j) + >>> k = 35 + >>> z,m = 2+3j, 1.25 + >>> ellipe(z+pi*k,m); ellipe(z,m) + 2*k*ellipe(m) + (48.30138799412005235090766 + 17.47255216721987688224357j) + (48.30138799412005235090766 + 17.47255216721987688224357j) + + For `|\Re(z)| < \pi/2`, the function can be expressed as a + hypergeometric series of two variables + (see :func:`~mpmath.appellf1`):: + + >>> z,m = 0.5, 0.25 + >>> ellipe(z,m) + 0.4950017030164151928870375 + >>> sin(z)*appellf1(0.5,0.5,-0.5,1.5,sin(z)**2,m*sin(z)**2) + 0.4950017030164151928870376 + + """ + if len(args) == 1: + return ctx._ellipe(args[0]) + else: + phi, m = args + z = phi + if not (ctx.isnormal(z) and ctx.isnormal(m)): + if m == 0: + return z + m + if z == 0: + return z * m + if m == ctx.inf or m == ctx.ninf: + return ctx.inf + raise ValueError + x = z.real + ctx.prec += max(0, ctx.mag(x)) + pi = +ctx.pi + away = abs(x) > pi/2 + if away: + d = ctx.nint(x/pi) + z = z-pi*d + P = 2*d*ctx.ellipe(m) + else: + P = 0 + def terms(): + c, s = ctx.cos_sin(z) + x = c**2 + y = 1-m*s**2 + RF = ctx.elliprf(x, y, 1) + RD = ctx.elliprd(x, y, 1) + return s*RF, -m*s**3*RD/3 + return ctx.sum_accurately(terms) + P + +@defun_wrapped +def ellippi(ctx, *args): + r""" + Called with three arguments `n, \phi, m`, evaluates the Legendre + incomplete elliptic integral of the third kind + + .. math :: + + \Pi(n; \phi, m) = \int_0^{\phi} + \frac{dt}{(1-n \sin^2 t) \sqrt{1-m \sin^2 t}} = + \int_0^{\sin \phi} + \frac{dt}{(1-nt^2) \sqrt{1-t^2} \sqrt{1-mt^2}}. + + Called with two arguments `n, m`, evaluates the complete + elliptic integral of the third kind + `\Pi(n,m) = \Pi(n; \frac{\pi}{2},m)`. + + In the defining integral, it is assumed that the principal branch + of the square root is taken and that the path of integration avoids + crossing any branch cuts. Outside `-\pi/2 \le \Re(\phi) \le \pi/2`, + the function extends quasi-periodically as + + .. math :: + + \Pi(n,\phi+k\pi,m) = 2k\Pi(n,m) + \Pi(n,\phi,m), k \in \mathbb{Z}. + + **Plots** + + .. literalinclude :: /plots/ellippi.py + .. image :: /plots/ellippi.png + + **Examples for the complete integral** + + Some basic values and limits:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> ellippi(0,-5); ellipk(-5) + 0.9555039270640439337379334 + 0.9555039270640439337379334 + >>> ellippi(inf,2) + 0.0 + >>> ellippi(2,inf) + 0.0 + >>> abs(ellippi(1,5)) + +inf + >>> abs(ellippi(0.25,1)) + +inf + + Evaluation in terms of simpler functions:: + + >>> ellippi(0.25,0.25); ellipe(0.25)/(1-0.25) + 1.956616279119236207279727 + 1.956616279119236207279727 + >>> ellippi(3,0); pi/(2*sqrt(-2)) + (0.0 - 1.11072073453959156175397j) + (0.0 - 1.11072073453959156175397j) + >>> ellippi(-3,0); pi/(2*sqrt(4)) + 0.7853981633974483096156609 + 0.7853981633974483096156609 + + **Examples for the incomplete integral** + + Basic values and limits:: + + >>> ellippi(0.25,-0.5); ellippi(0.25,pi/2,-0.5) + 1.622944760954741603710555 + 1.622944760954741603710555 + >>> ellippi(1,0,1) + 0.0 + >>> ellippi(inf,0,1) + 0.0 + >>> ellippi(0,0.25,0.5); ellipf(0.25,0.5) + 0.2513040086544925794134591 + 0.2513040086544925794134591 + >>> ellippi(1,1,1); (log(sec(1)+tan(1))+sec(1)*tan(1))/2 + 2.054332933256248668692452 + 2.054332933256248668692452 + >>> ellippi(0.25, 53*pi/2, 0.75); 53*ellippi(0.25,0.75) + 135.240868757890840755058 + 135.240868757890840755058 + >>> ellippi(0.5,pi/4,0.5); 2*ellipe(pi/4,0.5)-1/sqrt(3) + 0.9190227391656969903987269 + 0.9190227391656969903987269 + + Complex arguments are supported:: + + >>> ellippi(0.5, 5+6j-2*pi, -7-8j) + (-0.3612856620076747660410167 + 0.5217735339984807829755815j) + + Some degenerate cases:: + + >>> ellippi(1,1) + +inf + >>> ellippi(1,0) + +inf + >>> ellippi(1,2,0) + +inf + >>> ellippi(1,2,1) + +inf + >>> ellippi(1,0,1) + 0.0 + + """ + if len(args) == 2: + n, m = args + complete = True + z = phi = ctx.pi/2 + else: + n, phi, m = args + complete = False + z = phi + if not (ctx.isnormal(n) and ctx.isnormal(z) and ctx.isnormal(m)): + if ctx.isnan(n) or ctx.isnan(z) or ctx.isnan(m): + raise ValueError + if complete: + if m == 0: + if n == 1: + return ctx.inf + return ctx.pi/(2*ctx.sqrt(1-n)) + if n == 0: return ctx.ellipk(m) + if ctx.isinf(n) or ctx.isinf(m): return ctx.zero + else: + if z == 0: return z + if ctx.isinf(n): return ctx.zero + if ctx.isinf(m): return ctx.zero + if ctx.isinf(n) or ctx.isinf(z) or ctx.isinf(m): + raise ValueError + if complete: + if m == 1: + if n == 1: + return ctx.inf + return -ctx.inf/ctx.sign(n-1) + away = False + else: + x = z.real + ctx.prec += max(0, ctx.mag(x)) + pi = +ctx.pi + away = abs(x) > pi/2 + if away: + d = ctx.nint(x/pi) + z = z-pi*d + P = 2*d*ctx.ellippi(n,m) + if ctx.isinf(P): + return ctx.inf + else: + P = 0 + def terms(): + if complete: + c, s = ctx.zero, ctx.one + else: + c, s = ctx.cos_sin(z) + x = c**2 + y = 1-m*s**2 + RF = ctx.elliprf(x, y, 1) + RJ = ctx.elliprj(x, y, 1, 1-n*s**2) + return s*RF, n*s**3*RJ/3 + return ctx.sum_accurately(terms) + P diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/expintegrals.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/expintegrals.py new file mode 100644 index 0000000000000000000000000000000000000000..0dee8356c0386819d8f0421fded476ee77229359 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/expintegrals.py @@ -0,0 +1,425 @@ +from .functions import defun, defun_wrapped + +@defun_wrapped +def _erf_complex(ctx, z): + z2 = ctx.square_exp_arg(z, -1) + #z2 = -z**2 + v = (2/ctx.sqrt(ctx.pi))*z * ctx.hyp1f1((1,2),(3,2), z2) + if not ctx._re(z): + v = ctx._im(v)*ctx.j + return v + +@defun_wrapped +def _erfc_complex(ctx, z): + if ctx.re(z) > 2: + z2 = ctx.square_exp_arg(z) + nz2 = ctx.fneg(z2, exact=True) + v = ctx.exp(nz2)/ctx.sqrt(ctx.pi) * ctx.hyperu((1,2),(1,2), z2) + else: + v = 1 - ctx._erf_complex(z) + if not ctx._re(z): + v = 1+ctx._im(v)*ctx.j + return v + +@defun +def erf(ctx, z): + z = ctx.convert(z) + if ctx._is_real_type(z): + try: + return ctx._erf(z) + except NotImplementedError: + pass + if ctx._is_complex_type(z) and not z.imag: + try: + return type(z)(ctx._erf(z.real)) + except NotImplementedError: + pass + return ctx._erf_complex(z) + +@defun +def erfc(ctx, z): + z = ctx.convert(z) + if ctx._is_real_type(z): + try: + return ctx._erfc(z) + except NotImplementedError: + pass + if ctx._is_complex_type(z) and not z.imag: + try: + return type(z)(ctx._erfc(z.real)) + except NotImplementedError: + pass + return ctx._erfc_complex(z) + +@defun +def square_exp_arg(ctx, z, mult=1, reciprocal=False): + prec = ctx.prec*4+20 + if reciprocal: + z2 = ctx.fmul(z, z, prec=prec) + z2 = ctx.fdiv(ctx.one, z2, prec=prec) + else: + z2 = ctx.fmul(z, z, prec=prec) + if mult != 1: + z2 = ctx.fmul(z2, mult, exact=True) + return z2 + +@defun_wrapped +def erfi(ctx, z): + if not z: + return z + z2 = ctx.square_exp_arg(z) + v = (2/ctx.sqrt(ctx.pi)*z) * ctx.hyp1f1((1,2), (3,2), z2) + if not ctx._re(z): + v = ctx._im(v)*ctx.j + return v + +@defun_wrapped +def erfinv(ctx, x): + xre = ctx._re(x) + if (xre != x) or (xre < -1) or (xre > 1): + return ctx.bad_domain("erfinv(x) is defined only for -1 <= x <= 1") + x = xre + #if ctx.isnan(x): return x + if not x: return x + if x == 1: return ctx.inf + if x == -1: return ctx.ninf + if abs(x) < 0.9: + a = 0.53728*x**3 + 0.813198*x + else: + # An asymptotic formula + u = ctx.ln(2/ctx.pi/(abs(x)-1)**2) + a = ctx.sign(x) * ctx.sqrt(u - ctx.ln(u))/ctx.sqrt(2) + ctx.prec += 10 + return ctx.findroot(lambda t: ctx.erf(t)-x, a) + +@defun_wrapped +def npdf(ctx, x, mu=0, sigma=1): + sigma = ctx.convert(sigma) + return ctx.exp(-(x-mu)**2/(2*sigma**2)) / (sigma*ctx.sqrt(2*ctx.pi)) + +@defun_wrapped +def ncdf(ctx, x, mu=0, sigma=1): + a = (x-mu)/(sigma*ctx.sqrt(2)) + if a < 0: + return ctx.erfc(-a)/2 + else: + return (1+ctx.erf(a))/2 + +@defun_wrapped +def betainc(ctx, a, b, x1=0, x2=1, regularized=False): + if x1 == x2: + v = 0 + elif not x1: + if x1 == 0 and x2 == 1: + v = ctx.beta(a, b) + else: + v = x2**a * ctx.hyp2f1(a, 1-b, a+1, x2) / a + else: + m, d = ctx.nint_distance(a) + if m <= 0: + if d < -ctx.prec: + h = +ctx.eps + ctx.prec *= 2 + a += h + elif d < -4: + ctx.prec -= d + s1 = x2**a * ctx.hyp2f1(a,1-b,a+1,x2) + s2 = x1**a * ctx.hyp2f1(a,1-b,a+1,x1) + v = (s1 - s2) / a + if regularized: + v /= ctx.beta(a,b) + return v + +@defun +def gammainc(ctx, z, a=0, b=None, regularized=False): + regularized = bool(regularized) + z = ctx.convert(z) + if a is None: + a = ctx.zero + lower_modified = False + else: + a = ctx.convert(a) + lower_modified = a != ctx.zero + if b is None: + b = ctx.inf + upper_modified = False + else: + b = ctx.convert(b) + upper_modified = b != ctx.inf + # Complete gamma function + if not (upper_modified or lower_modified): + if regularized: + if ctx.re(z) < 0: + return ctx.inf + elif ctx.re(z) > 0: + return ctx.one + else: + return ctx.nan + return ctx.gamma(z) + if a == b: + return ctx.zero + # Standardize + if ctx.re(a) > ctx.re(b): + return -ctx.gammainc(z, b, a, regularized) + # Generalized gamma + if upper_modified and lower_modified: + return +ctx._gamma3(z, a, b, regularized) + # Upper gamma + elif lower_modified: + return ctx._upper_gamma(z, a, regularized) + # Lower gamma + elif upper_modified: + return ctx._lower_gamma(z, b, regularized) + +@defun +def _lower_gamma(ctx, z, b, regularized=False): + # Pole + if ctx.isnpint(z): + return type(z)(ctx.inf) + G = [z] * regularized + negb = ctx.fneg(b, exact=True) + def h(z): + T1 = [ctx.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b + return (T1,) + return ctx.hypercomb(h, [z]) + +@defun +def _upper_gamma(ctx, z, a, regularized=False): + # Fast integer case, when available + if ctx.isint(z): + try: + if regularized: + # Gamma pole + if ctx.isnpint(z): + return type(z)(ctx.zero) + orig = ctx.prec + try: + ctx.prec += 10 + return ctx._gamma_upper_int(z, a) / ctx.gamma(z) + finally: + ctx.prec = orig + else: + return ctx._gamma_upper_int(z, a) + except NotImplementedError: + pass + # hypercomb is unable to detect the exact zeros, so handle them here + if z == 2 and a == -1: + return (z+a)*0 + if z == 3 and (a == -1-1j or a == -1+1j): + return (z+a)*0 + nega = ctx.fneg(a, exact=True) + G = [z] * regularized + # Use 2F0 series when possible; fall back to lower gamma representation + try: + def h(z): + r = z-1 + return [([ctx.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)] + return ctx.hypercomb(h, [z], force_series=True) + except ctx.NoConvergence: + def h(z): + T1 = [], [1, z-1], [z], G, [], [], 0 + T2 = [-ctx.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a + return T1, T2 + return ctx.hypercomb(h, [z]) + +@defun +def _gamma3(ctx, z, a, b, regularized=False): + pole = ctx.isnpint(z) + if regularized and pole: + return ctx.zero + try: + ctx.prec += 15 + # We don't know in advance whether it's better to write as a difference + # of lower or upper gamma functions, so try both + T1 = ctx.gammainc(z, a, regularized=regularized) + T2 = ctx.gammainc(z, b, regularized=regularized) + R = T1 - T2 + if ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10: + return R + if not pole: + T1 = ctx.gammainc(z, 0, b, regularized=regularized) + T2 = ctx.gammainc(z, 0, a, regularized=regularized) + R = T1 - T2 + # May be ok, but should probably at least print a warning + # about possible cancellation + if 1: #ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10: + return R + finally: + ctx.prec -= 15 + raise NotImplementedError + +@defun_wrapped +def expint(ctx, n, z): + if ctx.isint(n) and ctx._is_real_type(z): + try: + return ctx._expint_int(n, z) + except NotImplementedError: + pass + if ctx.isnan(n) or ctx.isnan(z): + return z*n + if z == ctx.inf: + return 1/z + if z == 0: + # integral from 1 to infinity of t^n + if ctx.re(n) <= 1: + # TODO: reasonable sign of infinity + return type(z)(ctx.inf) + else: + return ctx.one/(n-1) + if n == 0: + return ctx.exp(-z)/z + if n == -1: + return ctx.exp(-z)*(z+1)/z**2 + return z**(n-1) * ctx.gammainc(1-n, z) + +@defun_wrapped +def li(ctx, z, offset=False): + if offset: + if z == 2: + return ctx.zero + return ctx.ei(ctx.ln(z)) - ctx.ei(ctx.ln2) + if not z: + return z + if z == 1: + return ctx.ninf + return ctx.ei(ctx.ln(z)) + +@defun +def ei(ctx, z): + try: + return ctx._ei(z) + except NotImplementedError: + return ctx._ei_generic(z) + +@defun_wrapped +def _ei_generic(ctx, z): + # Note: the following is currently untested because mp and fp + # both use special-case ei code + if z == ctx.inf: + return z + if z == ctx.ninf: + return ctx.zero + if ctx.mag(z) > 1: + try: + r = ctx.one/z + v = ctx.exp(z)*ctx.hyper([1,1],[],r, + maxterms=ctx.prec, force_series=True)/z + im = ctx._im(z) + if im > 0: + v += ctx.pi*ctx.j + if im < 0: + v -= ctx.pi*ctx.j + return v + except ctx.NoConvergence: + pass + v = z*ctx.hyp2f2(1,1,2,2,z) + ctx.euler + if ctx._im(z): + v += 0.5*(ctx.log(z) - ctx.log(ctx.one/z)) + else: + v += ctx.log(abs(z)) + return v + +@defun +def e1(ctx, z): + try: + return ctx._e1(z) + except NotImplementedError: + return ctx.expint(1, z) + +@defun +def ci(ctx, z): + try: + return ctx._ci(z) + except NotImplementedError: + return ctx._ci_generic(z) + +@defun_wrapped +def _ci_generic(ctx, z): + if ctx.isinf(z): + if z == ctx.inf: return ctx.zero + if z == ctx.ninf: return ctx.pi*1j + jz = ctx.fmul(ctx.j,z,exact=True) + njz = ctx.fneg(jz,exact=True) + v = 0.5*(ctx.ei(jz) + ctx.ei(njz)) + zreal = ctx._re(z) + zimag = ctx._im(z) + if zreal == 0: + if zimag > 0: v += ctx.pi*0.5j + if zimag < 0: v -= ctx.pi*0.5j + if zreal < 0: + if zimag >= 0: v += ctx.pi*1j + if zimag < 0: v -= ctx.pi*1j + if ctx._is_real_type(z) and zreal > 0: + v = ctx._re(v) + return v + +@defun +def si(ctx, z): + try: + return ctx._si(z) + except NotImplementedError: + return ctx._si_generic(z) + +@defun_wrapped +def _si_generic(ctx, z): + if ctx.isinf(z): + if z == ctx.inf: return 0.5*ctx.pi + if z == ctx.ninf: return -0.5*ctx.pi + # Suffers from cancellation near 0 + if ctx.mag(z) >= -1: + jz = ctx.fmul(ctx.j,z,exact=True) + njz = ctx.fneg(jz,exact=True) + v = (-0.5j)*(ctx.ei(jz) - ctx.ei(njz)) + zreal = ctx._re(z) + if zreal > 0: + v -= 0.5*ctx.pi + if zreal < 0: + v += 0.5*ctx.pi + if ctx._is_real_type(z): + v = ctx._re(v) + return v + else: + return z*ctx.hyp1f2((1,2),(3,2),(3,2),-0.25*z*z) + +@defun_wrapped +def chi(ctx, z): + nz = ctx.fneg(z, exact=True) + v = 0.5*(ctx.ei(z) + ctx.ei(nz)) + zreal = ctx._re(z) + zimag = ctx._im(z) + if zimag > 0: + v += ctx.pi*0.5j + elif zimag < 0: + v -= ctx.pi*0.5j + elif zreal < 0: + v += ctx.pi*1j + return v + +@defun_wrapped +def shi(ctx, z): + # Suffers from cancellation near 0 + if ctx.mag(z) >= -1: + nz = ctx.fneg(z, exact=True) + v = 0.5*(ctx.ei(z) - ctx.ei(nz)) + zimag = ctx._im(z) + if zimag > 0: v -= 0.5j*ctx.pi + if zimag < 0: v += 0.5j*ctx.pi + return v + else: + return z * ctx.hyp1f2((1,2),(3,2),(3,2),0.25*z*z) + +@defun_wrapped +def fresnels(ctx, z): + if z == ctx.inf: + return ctx.mpf(0.5) + if z == ctx.ninf: + return ctx.mpf(-0.5) + return ctx.pi*z**3/6*ctx.hyp1f2((3,4),(3,2),(7,4),-ctx.pi**2*z**4/16) + +@defun_wrapped +def fresnelc(ctx, z): + if z == ctx.inf: + return ctx.mpf(0.5) + if z == ctx.ninf: + return ctx.mpf(-0.5) + return z*ctx.hyp1f2((1,4),(1,2),(5,4),-ctx.pi**2*z**4/16) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/factorials.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/factorials.py new file mode 100644 index 0000000000000000000000000000000000000000..9259e40b95bf1c908a7ad98b59bbb33528606b07 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/factorials.py @@ -0,0 +1,187 @@ +from ..libmp.backend import xrange +from .functions import defun, defun_wrapped + +@defun +def gammaprod(ctx, a, b, _infsign=False): + a = [ctx.convert(x) for x in a] + b = [ctx.convert(x) for x in b] + poles_num = [] + poles_den = [] + regular_num = [] + regular_den = [] + for x in a: [regular_num, poles_num][ctx.isnpint(x)].append(x) + for x in b: [regular_den, poles_den][ctx.isnpint(x)].append(x) + # One more pole in numerator or denominator gives 0 or inf + if len(poles_num) < len(poles_den): return ctx.zero + if len(poles_num) > len(poles_den): + # Get correct sign of infinity for x+h, h -> 0 from above + # XXX: hack, this should be done properly + if _infsign: + a = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_num] + b = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_den] + return ctx.sign(ctx.gammaprod(a+regular_num,b+regular_den)) * ctx.inf + else: + return ctx.inf + # All poles cancel + # lim G(i)/G(j) = (-1)**(i+j) * gamma(1-j) / gamma(1-i) + p = ctx.one + orig = ctx.prec + try: + ctx.prec = orig + 15 + while poles_num: + i = poles_num.pop() + j = poles_den.pop() + p *= (-1)**(i+j) * ctx.gamma(1-j) / ctx.gamma(1-i) + for x in regular_num: p *= ctx.gamma(x) + for x in regular_den: p /= ctx.gamma(x) + finally: + ctx.prec = orig + return +p + +@defun +def beta(ctx, x, y): + x = ctx.convert(x) + y = ctx.convert(y) + if ctx.isinf(y): + x, y = y, x + if ctx.isinf(x): + if x == ctx.inf and not ctx._im(y): + if y == ctx.ninf: + return ctx.nan + if y > 0: + return ctx.zero + if ctx.isint(y): + return ctx.nan + if y < 0: + return ctx.sign(ctx.gamma(y)) * ctx.inf + return ctx.nan + xy = ctx.fadd(x, y, prec=2*ctx.prec) + return ctx.gammaprod([x, y], [xy]) + +@defun +def binomial(ctx, n, k): + n1 = ctx.fadd(n, 1, prec=2*ctx.prec) + k1 = ctx.fadd(k, 1, prec=2*ctx.prec) + nk1 = ctx.fsub(n1, k, prec=2*ctx.prec) + return ctx.gammaprod([n1], [k1, nk1]) + +@defun +def rf(ctx, x, n): + xn = ctx.fadd(x, n, prec=2*ctx.prec) + return ctx.gammaprod([xn], [x]) + +@defun +def ff(ctx, x, n): + x1 = ctx.fadd(x, 1, prec=2*ctx.prec) + xn1 = ctx.fadd(ctx.fsub(x, n, prec=2*ctx.prec), 1, prec=2*ctx.prec) + return ctx.gammaprod([x1], [xn1]) + +@defun_wrapped +def fac2(ctx, x): + if ctx.isinf(x): + if x == ctx.inf: + return x + return ctx.nan + return 2**(x/2)*(ctx.pi/2)**((ctx.cospi(x)-1)/4)*ctx.gamma(x/2+1) + +@defun_wrapped +def barnesg(ctx, z): + if ctx.isinf(z): + if z == ctx.inf: + return z + return ctx.nan + if ctx.isnan(z): + return z + if (not ctx._im(z)) and ctx._re(z) <= 0 and ctx.isint(ctx._re(z)): + return z*0 + # Account for size (would not be needed if computing log(G)) + if abs(z) > 5: + ctx.dps += 2*ctx.log(abs(z),2) + # Reflection formula + if ctx.re(z) < -ctx.dps: + w = 1-z + pi2 = 2*ctx.pi + u = ctx.expjpi(2*w) + v = ctx.j*ctx.pi/12 - ctx.j*ctx.pi*w**2/2 + w*ctx.ln(1-u) - \ + ctx.j*ctx.polylog(2, u)/pi2 + v = ctx.barnesg(2-z)*ctx.exp(v)/pi2**w + if ctx._is_real_type(z): + v = ctx._re(v) + return v + # Estimate terms for asymptotic expansion + # TODO: fixme, obviously + N = ctx.dps // 2 + 5 + G = 1 + while abs(z) < N or ctx.re(z) < 1: + G /= ctx.gamma(z) + z += 1 + z -= 1 + s = ctx.mpf(1)/12 + s -= ctx.log(ctx.glaisher) + s += z*ctx.log(2*ctx.pi)/2 + s += (z**2/2-ctx.mpf(1)/12)*ctx.log(z) + s -= 3*z**2/4 + z2k = z2 = z**2 + for k in xrange(1, N+1): + t = ctx.bernoulli(2*k+2) / (4*k*(k+1)*z2k) + if abs(t) < ctx.eps: + #print k, N # check how many terms were needed + break + z2k *= z2 + s += t + #if k == N: + # print "warning: series for barnesg failed to converge", ctx.dps + return G*ctx.exp(s) + +@defun +def superfac(ctx, z): + return ctx.barnesg(z+2) + +@defun_wrapped +def hyperfac(ctx, z): + # XXX: estimate needed extra bits accurately + if z == ctx.inf: + return z + if abs(z) > 5: + extra = 4*int(ctx.log(abs(z),2)) + else: + extra = 0 + ctx.prec += extra + if not ctx._im(z) and ctx._re(z) < 0 and ctx.isint(ctx._re(z)): + n = int(ctx.re(z)) + h = ctx.hyperfac(-n-1) + if ((n+1)//2) & 1: + h = -h + if ctx._is_complex_type(z): + return h + 0j + return h + zp1 = z+1 + # Wrong branch cut + #v = ctx.gamma(zp1)**z + #ctx.prec -= extra + #return v / ctx.barnesg(zp1) + v = ctx.exp(z*ctx.loggamma(zp1)) + ctx.prec -= extra + return v / ctx.barnesg(zp1) + +''' +@defun +def psi0(ctx, z): + """Shortcut for psi(0,z) (the digamma function)""" + return ctx.psi(0, z) + +@defun +def psi1(ctx, z): + """Shortcut for psi(1,z) (the trigamma function)""" + return ctx.psi(1, z) + +@defun +def psi2(ctx, z): + """Shortcut for psi(2,z) (the tetragamma function)""" + return ctx.psi(2, z) + +@defun +def psi3(ctx, z): + """Shortcut for psi(3,z) (the pentagamma function)""" + return ctx.psi(3, z) +''' diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/functions.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/functions.py new file mode 100644 index 0000000000000000000000000000000000000000..4cdf5dd921418db10847ea75b32f8e6dfacdba64 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/functions.py @@ -0,0 +1,645 @@ +from ..libmp.backend import xrange + +class SpecialFunctions(object): + """ + This class implements special functions using high-level code. + + Elementary and some other functions (e.g. gamma function, basecase + hypergeometric series) are assumed to be predefined by the context as + "builtins" or "low-level" functions. + """ + defined_functions = {} + + # The series for the Jacobi theta functions converge for |q| < 1; + # in the current implementation they throw a ValueError for + # abs(q) > THETA_Q_LIM + THETA_Q_LIM = 1 - 10**-7 + + def __init__(self): + cls = self.__class__ + for name in cls.defined_functions: + f, wrap = cls.defined_functions[name] + cls._wrap_specfun(name, f, wrap) + + self.mpq_1 = self._mpq((1,1)) + self.mpq_0 = self._mpq((0,1)) + self.mpq_1_2 = self._mpq((1,2)) + self.mpq_3_2 = self._mpq((3,2)) + self.mpq_1_4 = self._mpq((1,4)) + self.mpq_1_16 = self._mpq((1,16)) + self.mpq_3_16 = self._mpq((3,16)) + self.mpq_5_2 = self._mpq((5,2)) + self.mpq_3_4 = self._mpq((3,4)) + self.mpq_7_4 = self._mpq((7,4)) + self.mpq_5_4 = self._mpq((5,4)) + self.mpq_1_3 = self._mpq((1,3)) + self.mpq_2_3 = self._mpq((2,3)) + self.mpq_4_3 = self._mpq((4,3)) + self.mpq_1_6 = self._mpq((1,6)) + self.mpq_5_6 = self._mpq((5,6)) + self.mpq_5_3 = self._mpq((5,3)) + + self._misc_const_cache = {} + + self._aliases.update({ + 'phase' : 'arg', + 'conjugate' : 'conj', + 'nthroot' : 'root', + 'polygamma' : 'psi', + 'hurwitz' : 'zeta', + #'digamma' : 'psi0', + #'trigamma' : 'psi1', + #'tetragamma' : 'psi2', + #'pentagamma' : 'psi3', + 'fibonacci' : 'fib', + 'factorial' : 'fac', + }) + + self.zetazero_memoized = self.memoize(self.zetazero) + + # Default -- do nothing + @classmethod + def _wrap_specfun(cls, name, f, wrap): + setattr(cls, name, f) + + # Optional fast versions of common functions in common cases. + # If not overridden, default (generic hypergeometric series) + # implementations will be used + def _besselj(ctx, n, z): raise NotImplementedError + def _erf(ctx, z): raise NotImplementedError + def _erfc(ctx, z): raise NotImplementedError + def _gamma_upper_int(ctx, z, a): raise NotImplementedError + def _expint_int(ctx, n, z): raise NotImplementedError + def _zeta(ctx, s): raise NotImplementedError + def _zetasum_fast(ctx, s, a, n, derivatives, reflect): raise NotImplementedError + def _ei(ctx, z): raise NotImplementedError + def _e1(ctx, z): raise NotImplementedError + def _ci(ctx, z): raise NotImplementedError + def _si(ctx, z): raise NotImplementedError + def _altzeta(ctx, s): raise NotImplementedError + +def defun_wrapped(f): + SpecialFunctions.defined_functions[f.__name__] = f, True + return f + +def defun(f): + SpecialFunctions.defined_functions[f.__name__] = f, False + return f + +def defun_static(f): + setattr(SpecialFunctions, f.__name__, f) + return f + +@defun_wrapped +def cot(ctx, z): return ctx.one / ctx.tan(z) + +@defun_wrapped +def sec(ctx, z): return ctx.one / ctx.cos(z) + +@defun_wrapped +def csc(ctx, z): return ctx.one / ctx.sin(z) + +@defun_wrapped +def coth(ctx, z): return ctx.one / ctx.tanh(z) + +@defun_wrapped +def sech(ctx, z): return ctx.one / ctx.cosh(z) + +@defun_wrapped +def csch(ctx, z): return ctx.one / ctx.sinh(z) + +@defun_wrapped +def acot(ctx, z): + if not z: + return ctx.pi * 0.5 + else: + return ctx.atan(ctx.one / z) + +@defun_wrapped +def asec(ctx, z): return ctx.acos(ctx.one / z) + +@defun_wrapped +def acsc(ctx, z): return ctx.asin(ctx.one / z) + +@defun_wrapped +def acoth(ctx, z): + if not z: + return ctx.pi * 0.5j + else: + return ctx.atanh(ctx.one / z) + + +@defun_wrapped +def asech(ctx, z): return ctx.acosh(ctx.one / z) + +@defun_wrapped +def acsch(ctx, z): return ctx.asinh(ctx.one / z) + +@defun +def sign(ctx, x): + x = ctx.convert(x) + if not x or ctx.isnan(x): + return x + if ctx._is_real_type(x): + if x > 0: + return ctx.one + else: + return -ctx.one + return x / abs(x) + +@defun +def agm(ctx, a, b=1): + if b == 1: + return ctx.agm1(a) + a = ctx.convert(a) + b = ctx.convert(b) + return ctx._agm(a, b) + +@defun_wrapped +def sinc(ctx, x): + if ctx.isinf(x): + return 1/x + if not x: + return x+1 + return ctx.sin(x)/x + +@defun_wrapped +def sincpi(ctx, x): + if ctx.isinf(x): + return 1/x + if not x: + return x+1 + return ctx.sinpi(x)/(ctx.pi*x) + +# TODO: tests; improve implementation +@defun_wrapped +def expm1(ctx, x): + if not x: + return ctx.zero + # exp(x) - 1 ~ x + if ctx.mag(x) < -ctx.prec: + return x + 0.5*x**2 + # TODO: accurately eval the smaller of the real/imag parts + return ctx.sum_accurately(lambda: iter([ctx.exp(x),-1]),1) + +@defun_wrapped +def log1p(ctx, x): + if not x: + return ctx.zero + if ctx.mag(x) < -ctx.prec: + return x - 0.5*x**2 + return ctx.log(ctx.fadd(1, x, prec=2*ctx.prec)) + +@defun_wrapped +def powm1(ctx, x, y): + mag = ctx.mag + one = ctx.one + w = x**y - one + M = mag(w) + # Only moderate cancellation + if M > -8: + return w + # Check for the only possible exact cases + if not w: + if (not y) or (x in (1, -1, 1j, -1j) and ctx.isint(y)): + return w + x1 = x - one + magy = mag(y) + lnx = ctx.ln(x) + # Small y: x^y - 1 ~ log(x)*y + O(log(x)^2 * y^2) + if magy + mag(lnx) < -ctx.prec: + return lnx*y + (lnx*y)**2/2 + # TODO: accurately eval the smaller of the real/imag part + return ctx.sum_accurately(lambda: iter([x**y, -1]), 1) + +@defun +def _rootof1(ctx, k, n): + k = int(k) + n = int(n) + k %= n + if not k: + return ctx.one + elif 2*k == n: + return -ctx.one + elif 4*k == n: + return ctx.j + elif 4*k == 3*n: + return -ctx.j + return ctx.expjpi(2*ctx.mpf(k)/n) + +@defun +def root(ctx, x, n, k=0): + n = int(n) + x = ctx.convert(x) + if k: + # Special case: there is an exact real root + if (n & 1 and 2*k == n-1) and (not ctx.im(x)) and (ctx.re(x) < 0): + return -ctx.root(-x, n) + # Multiply by root of unity + prec = ctx.prec + try: + ctx.prec += 10 + v = ctx.root(x, n, 0) * ctx._rootof1(k, n) + finally: + ctx.prec = prec + return +v + return ctx._nthroot(x, n) + +@defun +def unitroots(ctx, n, primitive=False): + gcd = ctx._gcd + prec = ctx.prec + try: + ctx.prec += 10 + if primitive: + v = [ctx._rootof1(k,n) for k in range(n) if gcd(k,n) == 1] + else: + # TODO: this can be done *much* faster + v = [ctx._rootof1(k,n) for k in range(n)] + finally: + ctx.prec = prec + return [+x for x in v] + +@defun +def arg(ctx, x): + x = ctx.convert(x) + re = ctx._re(x) + im = ctx._im(x) + return ctx.atan2(im, re) + +@defun +def fabs(ctx, x): + return abs(ctx.convert(x)) + +@defun +def re(ctx, x): + x = ctx.convert(x) + if hasattr(x, "real"): # py2.5 doesn't have .real/.imag for all numbers + return x.real + return x + +@defun +def im(ctx, x): + x = ctx.convert(x) + if hasattr(x, "imag"): # py2.5 doesn't have .real/.imag for all numbers + return x.imag + return ctx.zero + +@defun +def conj(ctx, x): + x = ctx.convert(x) + try: + return x.conjugate() + except AttributeError: + return x + +@defun +def polar(ctx, z): + return (ctx.fabs(z), ctx.arg(z)) + +@defun_wrapped +def rect(ctx, r, phi): + return r * ctx.mpc(*ctx.cos_sin(phi)) + +@defun +def log(ctx, x, b=None): + if b is None: + return ctx.ln(x) + wp = ctx.prec + 20 + return ctx.ln(x, prec=wp) / ctx.ln(b, prec=wp) + +@defun +def log10(ctx, x): + return ctx.log(x, 10) + +@defun +def fmod(ctx, x, y): + return ctx.convert(x) % ctx.convert(y) + +@defun +def degrees(ctx, x): + return x / ctx.degree + +@defun +def radians(ctx, x): + return x * ctx.degree + +def _lambertw_special(ctx, z, k): + # W(0,0) = 0; all other branches are singular + if not z: + if not k: + return z + return ctx.ninf + z + if z == ctx.inf: + if k == 0: + return z + else: + return z + 2*k*ctx.pi*ctx.j + if z == ctx.ninf: + return (-z) + (2*k+1)*ctx.pi*ctx.j + # Some kind of nan or complex inf/nan? + return ctx.ln(z) + +import math +import cmath + +def _lambertw_approx_hybrid(z, k): + imag_sign = 0 + if hasattr(z, "imag"): + x = float(z.real) + y = z.imag + if y: + imag_sign = (-1) ** (y < 0) + y = float(y) + else: + x = float(z) + y = 0.0 + imag_sign = 0 + # hack to work regardless of whether Python supports -0.0 + if not y: + y = 0.0 + z = complex(x,y) + if k == 0: + if -4.0 < y < 4.0 and -1.0 < x < 2.5: + if imag_sign: + # Taylor series in upper/lower half-plane + if y > 1.00: return (0.876+0.645j) + (0.118-0.174j)*(z-(0.75+2.5j)) + if y > 0.25: return (0.505+0.204j) + (0.375-0.132j)*(z-(0.75+0.5j)) + if y < -1.00: return (0.876-0.645j) + (0.118+0.174j)*(z-(0.75-2.5j)) + if y < -0.25: return (0.505-0.204j) + (0.375+0.132j)*(z-(0.75-0.5j)) + # Taylor series near -1 + if x < -0.5: + if imag_sign >= 0: + return (-0.318+1.34j) + (-0.697-0.593j)*(z+1) + else: + return (-0.318-1.34j) + (-0.697+0.593j)*(z+1) + # return real type + r = -0.367879441171442 + if (not imag_sign) and x > r: + z = x + # Singularity near -1/e + if x < -0.2: + return -1 + 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r) + # Taylor series near 0 + if x < 0.5: return z + # Simple linear approximation + return 0.2 + 0.3*z + if (not imag_sign) and x > 0.0: + L1 = math.log(x); L2 = math.log(L1) + else: + L1 = cmath.log(z); L2 = cmath.log(L1) + elif k == -1: + # return real type + r = -0.367879441171442 + if (not imag_sign) and r < x < 0.0: + z = x + if (imag_sign >= 0) and y < 0.1 and -0.6 < x < -0.2: + return -1 - 2.33164398159712*(z-r)**0.5 - 1.81218788563936*(z-r) + if (not imag_sign) and -0.2 <= x < 0.0: + L1 = math.log(-x) + return L1 - math.log(-L1) + else: + if imag_sign == -1 and (not y) and x < 0.0: + L1 = cmath.log(z) - 3.1415926535897932j + else: + L1 = cmath.log(z) - 6.2831853071795865j + L2 = cmath.log(L1) + return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2) + +def _lambertw_series(ctx, z, k, tol): + """ + Return rough approximation for W_k(z) from an asymptotic series, + sufficiently accurate for the Halley iteration to converge to + the correct value. + """ + magz = ctx.mag(z) + if (-10 < magz < 900) and (-1000 < k < 1000): + # Near the branch point at -1/e + if magz < 1 and abs(z+0.36787944117144) < 0.05: + if k == 0 or (k == -1 and ctx._im(z) >= 0) or \ + (k == 1 and ctx._im(z) < 0): + delta = ctx.sum_accurately(lambda: [z, ctx.exp(-1)]) + cancellation = -ctx.mag(delta) + ctx.prec += cancellation + # Use series given in Corless et al. + p = ctx.sqrt(2*(ctx.e*z+1)) + ctx.prec -= cancellation + u = {0:ctx.mpf(-1), 1:ctx.mpf(1)} + a = {0:ctx.mpf(2), 1:ctx.mpf(-1)} + if k != 0: + p = -p + s = ctx.zero + # The series converges, so we could use it directly, but unless + # *extremely* close, it is better to just use the first few + # terms to get a good approximation for the iteration + for l in xrange(max(2,cancellation)): + if l not in u: + a[l] = ctx.fsum(u[j]*u[l+1-j] for j in xrange(2,l)) + u[l] = (l-1)*(u[l-2]/2+a[l-2]/4)/(l+1)-a[l]/2-u[l-1]/(l+1) + term = u[l] * p**l + s += term + if ctx.mag(term) < -tol: + return s, True + l += 1 + ctx.prec += cancellation//2 + return s, False + if k == 0 or k == -1: + return _lambertw_approx_hybrid(z, k), False + if k == 0: + if magz < -1: + return z*(1-z), False + L1 = ctx.ln(z) + L2 = ctx.ln(L1) + elif k == -1 and (not ctx._im(z)) and (-0.36787944117144 < ctx._re(z) < 0): + L1 = ctx.ln(-z) + return L1 - ctx.ln(-L1), False + else: + # This holds both as z -> 0 and z -> inf. + # Relative error is O(1/log(z)). + L1 = ctx.ln(z) + 2j*ctx.pi*k + L2 = ctx.ln(L1) + return L1 - L2 + L2/L1 + L2*(L2-2)/(2*L1**2), False + +@defun +def lambertw(ctx, z, k=0): + z = ctx.convert(z) + k = int(k) + if not ctx.isnormal(z): + return _lambertw_special(ctx, z, k) + prec = ctx.prec + ctx.prec += 20 + ctx.mag(k or 1) + wp = ctx.prec + tol = wp - 5 + w, done = _lambertw_series(ctx, z, k, tol) + if not done: + # Use Halley iteration to solve w*exp(w) = z + two = ctx.mpf(2) + for i in xrange(100): + ew = ctx.exp(w) + wew = w*ew + wewz = wew-z + wn = w - wewz/(wew+ew-(w+two)*wewz/(two*w+two)) + if ctx.mag(wn-w) <= ctx.mag(wn) - tol: + w = wn + break + else: + w = wn + if i == 100: + ctx.warn("Lambert W iteration failed to converge for z = %s" % z) + ctx.prec = prec + return +w + +@defun_wrapped +def bell(ctx, n, x=1): + x = ctx.convert(x) + if not n: + if ctx.isnan(x): + return x + return type(x)(1) + if ctx.isinf(x) or ctx.isinf(n) or ctx.isnan(x) or ctx.isnan(n): + return x**n + if n == 1: return x + if n == 2: return x*(x+1) + if x == 0: return ctx.sincpi(n) + return _polyexp(ctx, n, x, True) / ctx.exp(x) + +def _polyexp(ctx, n, x, extra=False): + def _terms(): + if extra: + yield ctx.sincpi(n) + t = x + k = 1 + while 1: + yield k**n * t + k += 1 + t = t*x/k + return ctx.sum_accurately(_terms, check_step=4) + +@defun_wrapped +def polyexp(ctx, s, z): + if ctx.isinf(z) or ctx.isinf(s) or ctx.isnan(z) or ctx.isnan(s): + return z**s + if z == 0: return z*s + if s == 0: return ctx.expm1(z) + if s == 1: return ctx.exp(z)*z + if s == 2: return ctx.exp(z)*z*(z+1) + return _polyexp(ctx, s, z) + +@defun_wrapped +def cyclotomic(ctx, n, z): + n = int(n) + if n < 0: + raise ValueError("n cannot be negative") + p = ctx.one + if n == 0: + return p + if n == 1: + return z - p + if n == 2: + return z + p + # Use divisor product representation. Unfortunately, this sometimes + # includes singularities for roots of unity, which we have to cancel out. + # Matching zeros/poles pairwise, we have (1-z^a)/(1-z^b) ~ a/b + O(z-1). + a_prod = 1 + b_prod = 1 + num_zeros = 0 + num_poles = 0 + for d in range(1,n+1): + if not n % d: + w = ctx.moebius(n//d) + # Use powm1 because it is important that we get 0 only + # if it really is exactly 0 + b = -ctx.powm1(z, d) + if b: + p *= b**w + else: + if w == 1: + a_prod *= d + num_zeros += 1 + elif w == -1: + b_prod *= d + num_poles += 1 + #print n, num_zeros, num_poles + if num_zeros: + if num_zeros > num_poles: + p *= 0 + else: + p *= a_prod + p /= b_prod + return p + +@defun +def mangoldt(ctx, n): + r""" + Evaluates the von Mangoldt function `\Lambda(n) = \log p` + if `n = p^k` a power of a prime, and `\Lambda(n) = 0` otherwise. + + **Examples** + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> [mangoldt(n) for n in range(-2,3)] + [0.0, 0.0, 0.0, 0.0, 0.6931471805599453094172321] + >>> mangoldt(6) + 0.0 + >>> mangoldt(7) + 1.945910149055313305105353 + >>> mangoldt(8) + 0.6931471805599453094172321 + >>> fsum(mangoldt(n) for n in range(101)) + 94.04531122935739224600493 + >>> fsum(mangoldt(n) for n in range(10001)) + 10013.39669326311478372032 + + """ + n = int(n) + if n < 2: + return ctx.zero + if n % 2 == 0: + # Must be a power of two + if n & (n-1) == 0: + return +ctx.ln2 + else: + return ctx.zero + # TODO: the following could be generalized into a perfect + # power testing function + # --- + # Look for a small factor + for p in (3,5,7,11,13,17,19,23,29,31): + if not n % p: + q, r = n // p, 0 + while q > 1: + q, r = divmod(q, p) + if r: + return ctx.zero + return ctx.ln(p) + if ctx.isprime(n): + return ctx.ln(n) + # Obviously, we could use arbitrary-precision arithmetic for this... + if n > 10**30: + raise NotImplementedError + k = 2 + while 1: + p = int(n**(1./k) + 0.5) + if p < 2: + return ctx.zero + if p ** k == n: + if ctx.isprime(p): + return ctx.ln(p) + k += 1 + +@defun +def stirling1(ctx, n, k, exact=False): + v = ctx._stirling1(int(n), int(k)) + if exact: + return int(v) + else: + return ctx.mpf(v) + +@defun +def stirling2(ctx, n, k, exact=False): + v = ctx._stirling2(int(n), int(k)) + if exact: + return int(v) + else: + return ctx.mpf(v) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/hypergeometric.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/hypergeometric.py new file mode 100644 index 0000000000000000000000000000000000000000..ddb50cbf3ea6daa5982678d3c26157a67a7d7945 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/hypergeometric.py @@ -0,0 +1,1413 @@ +from ..libmp.backend import xrange +from .functions import defun, defun_wrapped + +def _check_need_perturb(ctx, terms, prec, discard_known_zeros): + perturb = recompute = False + extraprec = 0 + discard = [] + for term_index, term in enumerate(terms): + w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term + have_singular_nongamma_weight = False + # Avoid division by zero in leading factors (TODO: + # also check for near division by zero?) + for k, w in enumerate(w_s): + if not w: + if ctx.re(c_s[k]) <= 0 and c_s[k]: + perturb = recompute = True + have_singular_nongamma_weight = True + pole_count = [0, 0, 0] + # Check for gamma and series poles and near-poles + for data_index, data in enumerate([alpha_s, beta_s, b_s]): + for i, x in enumerate(data): + n, d = ctx.nint_distance(x) + # Poles + if n > 0: + continue + if d == ctx.ninf: + # OK if we have a polynomial + # ------------------------------ + ok = False + if data_index == 2: + for u in a_s: + if ctx.isnpint(u) and u >= int(n): + ok = True + break + if ok: + continue + pole_count[data_index] += 1 + # ------------------------------ + #perturb = recompute = True + #return perturb, recompute, extraprec + elif d < -4: + extraprec += -d + recompute = True + if discard_known_zeros and pole_count[1] > pole_count[0] + pole_count[2] \ + and not have_singular_nongamma_weight: + discard.append(term_index) + elif sum(pole_count): + perturb = recompute = True + return perturb, recompute, extraprec, discard + +_hypercomb_msg = """ +hypercomb() failed to converge to the requested %i bits of accuracy +using a working precision of %i bits. The function value may be zero or +infinite; try passing zeroprec=N or infprec=M to bound finite values between +2^(-N) and 2^M. Otherwise try a higher maxprec or maxterms. +""" + +@defun +def hypercomb(ctx, function, params=[], discard_known_zeros=True, **kwargs): + orig = ctx.prec + sumvalue = ctx.zero + dist = ctx.nint_distance + ninf = ctx.ninf + orig_params = params[:] + verbose = kwargs.get('verbose', False) + maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(orig)) + kwargs['maxprec'] = maxprec # For calls to hypsum + zeroprec = kwargs.get('zeroprec') + infprec = kwargs.get('infprec') + perturbed_reference_value = None + hextra = 0 + try: + while 1: + ctx.prec += 10 + if ctx.prec > maxprec: + raise ValueError(_hypercomb_msg % (orig, ctx.prec)) + orig2 = ctx.prec + params = orig_params[:] + terms = function(*params) + if verbose: + print() + print("ENTERING hypercomb main loop") + print("prec =", ctx.prec) + print("hextra", hextra) + perturb, recompute, extraprec, discard = \ + _check_need_perturb(ctx, terms, orig, discard_known_zeros) + ctx.prec += extraprec + if perturb: + if "hmag" in kwargs: + hmag = kwargs["hmag"] + elif ctx._fixed_precision: + hmag = int(ctx.prec*0.3) + else: + hmag = orig + 10 + hextra + h = ctx.ldexp(ctx.one, -hmag) + ctx.prec = orig2 + 10 + hmag + 10 + for k in range(len(params)): + params[k] += h + # Heuristically ensure that the perturbations + # are "independent" so that two perturbations + # don't accidentally cancel each other out + # in a subtraction. + h += h/(k+1) + if recompute: + terms = function(*params) + if discard_known_zeros: + terms = [term for (i, term) in enumerate(terms) if i not in discard] + if not terms: + return ctx.zero + evaluated_terms = [] + for term_index, term_data in enumerate(terms): + w_s, c_s, alpha_s, beta_s, a_s, b_s, z = term_data + if verbose: + print() + print(" Evaluating term %i/%i : %iF%i" % \ + (term_index+1, len(terms), len(a_s), len(b_s))) + print(" powers", ctx.nstr(w_s), ctx.nstr(c_s)) + print(" gamma", ctx.nstr(alpha_s), ctx.nstr(beta_s)) + print(" hyper", ctx.nstr(a_s), ctx.nstr(b_s)) + print(" z", ctx.nstr(z)) + #v = ctx.hyper(a_s, b_s, z, **kwargs) + #for a in alpha_s: v *= ctx.gamma(a) + #for b in beta_s: v *= ctx.rgamma(b) + #for w, c in zip(w_s, c_s): v *= ctx.power(w, c) + v = ctx.fprod([ctx.hyper(a_s, b_s, z, **kwargs)] + \ + [ctx.gamma(a) for a in alpha_s] + \ + [ctx.rgamma(b) for b in beta_s] + \ + [ctx.power(w,c) for (w,c) in zip(w_s,c_s)]) + if verbose: + print(" Value:", v) + evaluated_terms.append(v) + + if len(terms) == 1 and (not perturb): + sumvalue = evaluated_terms[0] + break + + if ctx._fixed_precision: + sumvalue = ctx.fsum(evaluated_terms) + break + + sumvalue = ctx.fsum(evaluated_terms) + term_magnitudes = [ctx.mag(x) for x in evaluated_terms] + max_magnitude = max(term_magnitudes) + sum_magnitude = ctx.mag(sumvalue) + cancellation = max_magnitude - sum_magnitude + if verbose: + print() + print(" Cancellation:", cancellation, "bits") + print(" Increased precision:", ctx.prec - orig, "bits") + + precision_ok = cancellation < ctx.prec - orig + + if zeroprec is None: + zero_ok = False + else: + zero_ok = max_magnitude - ctx.prec < -zeroprec + if infprec is None: + inf_ok = False + else: + inf_ok = max_magnitude > infprec + + if precision_ok and (not perturb) or ctx.isnan(cancellation): + break + elif precision_ok: + if perturbed_reference_value is None: + hextra += 20 + perturbed_reference_value = sumvalue + continue + elif ctx.mag(sumvalue - perturbed_reference_value) <= \ + ctx.mag(sumvalue) - orig: + break + elif zero_ok: + sumvalue = ctx.zero + break + elif inf_ok: + sumvalue = ctx.inf + break + elif 'hmag' in kwargs: + break + else: + hextra *= 2 + perturbed_reference_value = sumvalue + # Increase precision + else: + increment = min(max(cancellation, orig//2), max(extraprec,orig)) + ctx.prec += increment + if verbose: + print(" Must start over with increased precision") + continue + finally: + ctx.prec = orig + return +sumvalue + +@defun +def hyper(ctx, a_s, b_s, z, **kwargs): + """ + Hypergeometric function, general case. + """ + z = ctx.convert(z) + p = len(a_s) + q = len(b_s) + a_s = [ctx._convert_param(a) for a in a_s] + b_s = [ctx._convert_param(b) for b in b_s] + # Reduce degree by eliminating common parameters + if kwargs.get('eliminate', True): + elim_nonpositive = kwargs.get('eliminate_all', False) + i = 0 + while i < q and a_s: + b = b_s[i] + if b in a_s and (elim_nonpositive or not ctx.isnpint(b[0])): + a_s.remove(b) + b_s.remove(b) + p -= 1 + q -= 1 + else: + i += 1 + # Handle special cases + if p == 0: + if q == 1: return ctx._hyp0f1(b_s, z, **kwargs) + elif q == 0: return ctx.exp(z) + elif p == 1: + if q == 1: return ctx._hyp1f1(a_s, b_s, z, **kwargs) + elif q == 2: return ctx._hyp1f2(a_s, b_s, z, **kwargs) + elif q == 0: return ctx._hyp1f0(a_s[0][0], z) + elif p == 2: + if q == 1: return ctx._hyp2f1(a_s, b_s, z, **kwargs) + elif q == 2: return ctx._hyp2f2(a_s, b_s, z, **kwargs) + elif q == 3: return ctx._hyp2f3(a_s, b_s, z, **kwargs) + elif q == 0: return ctx._hyp2f0(a_s, b_s, z, **kwargs) + elif p == q+1: + return ctx._hypq1fq(p, q, a_s, b_s, z, **kwargs) + elif p > q+1 and not kwargs.get('force_series'): + return ctx._hyp_borel(p, q, a_s, b_s, z, **kwargs) + coeffs, types = zip(*(a_s+b_s)) + return ctx.hypsum(p, q, types, coeffs, z, **kwargs) + +@defun +def hyp0f1(ctx,b,z,**kwargs): + return ctx.hyper([],[b],z,**kwargs) + +@defun +def hyp1f1(ctx,a,b,z,**kwargs): + return ctx.hyper([a],[b],z,**kwargs) + +@defun +def hyp1f2(ctx,a1,b1,b2,z,**kwargs): + return ctx.hyper([a1],[b1,b2],z,**kwargs) + +@defun +def hyp2f1(ctx,a,b,c,z,**kwargs): + return ctx.hyper([a,b],[c],z,**kwargs) + +@defun +def hyp2f2(ctx,a1,a2,b1,b2,z,**kwargs): + return ctx.hyper([a1,a2],[b1,b2],z,**kwargs) + +@defun +def hyp2f3(ctx,a1,a2,b1,b2,b3,z,**kwargs): + return ctx.hyper([a1,a2],[b1,b2,b3],z,**kwargs) + +@defun +def hyp2f0(ctx,a,b,z,**kwargs): + return ctx.hyper([a,b],[],z,**kwargs) + +@defun +def hyp3f2(ctx,a1,a2,a3,b1,b2,z,**kwargs): + return ctx.hyper([a1,a2,a3],[b1,b2],z,**kwargs) + +@defun_wrapped +def _hyp1f0(ctx, a, z): + return (1-z) ** (-a) + +@defun +def _hyp0f1(ctx, b_s, z, **kwargs): + (b, btype), = b_s + if z: + magz = ctx.mag(z) + else: + magz = 0 + if magz >= 8 and not kwargs.get('force_series'): + try: + # http://functions.wolfram.com/HypergeometricFunctions/ + # Hypergeometric0F1/06/02/03/0004/ + # TODO: handle the all-real case more efficiently! + # TODO: figure out how much precision is needed (exponential growth) + orig = ctx.prec + try: + ctx.prec += 12 + magz//2 + def h(): + w = ctx.sqrt(-z) + jw = ctx.j*w + u = 1/(4*jw) + c = ctx.mpq_1_2 - b + E = ctx.exp(2*jw) + T1 = ([-jw,E], [c,-1], [], [], [b-ctx.mpq_1_2, ctx.mpq_3_2-b], [], -u) + T2 = ([jw,E], [c,1], [], [], [b-ctx.mpq_1_2, ctx.mpq_3_2-b], [], u) + return T1, T2 + v = ctx.hypercomb(h, [], force_series=True) + v = ctx.gamma(b)/(2*ctx.sqrt(ctx.pi))*v + finally: + ctx.prec = orig + if ctx._is_real_type(b) and ctx._is_real_type(z): + v = ctx._re(v) + return +v + except ctx.NoConvergence: + pass + return ctx.hypsum(0, 1, (btype,), [b], z, **kwargs) + +@defun +def _hyp1f1(ctx, a_s, b_s, z, **kwargs): + (a, atype), = a_s + (b, btype), = b_s + if not z: + return ctx.one+z + magz = ctx.mag(z) + if magz >= 7 and not (ctx.isint(a) and ctx.re(a) <= 0): + if ctx.isinf(z): + if ctx.sign(a) == ctx.sign(b) == ctx.sign(z) == 1: + return ctx.inf + return ctx.nan * z + try: + try: + ctx.prec += magz + sector = ctx._im(z) < 0 + def h(a,b): + if sector: + E = ctx.expjpi(ctx.fneg(a, exact=True)) + else: + E = ctx.expjpi(a) + rz = 1/z + T1 = ([E,z], [1,-a], [b], [b-a], [a, 1+a-b], [], -rz) + T2 = ([ctx.exp(z),z], [1,a-b], [b], [a], [b-a, 1-a], [], rz) + return T1, T2 + v = ctx.hypercomb(h, [a,b], force_series=True) + if ctx._is_real_type(a) and ctx._is_real_type(b) and ctx._is_real_type(z): + v = ctx._re(v) + return +v + except ctx.NoConvergence: + pass + finally: + ctx.prec -= magz + v = ctx.hypsum(1, 1, (atype, btype), [a, b], z, **kwargs) + return v + +def _hyp2f1_gosper(ctx,a,b,c,z,**kwargs): + # Use Gosper's recurrence + # See http://www.math.utexas.edu/pipermail/maxima/2006/000126.html + _a,_b,_c,_z = a, b, c, z + orig = ctx.prec + maxprec = kwargs.get('maxprec', 100*orig) + extra = 10 + while 1: + ctx.prec = orig + extra + #a = ctx.convert(_a) + #b = ctx.convert(_b) + #c = ctx.convert(_c) + z = ctx.convert(_z) + d = ctx.mpf(0) + e = ctx.mpf(1) + f = ctx.mpf(0) + k = 0 + # Common subexpression elimination, unfortunately making + # things a bit unreadable. The formula is quite messy to begin + # with, though... + abz = a*b*z + ch = c * ctx.mpq_1_2 + c1h = (c+1) * ctx.mpq_1_2 + nz = 1-z + g = z/nz + abg = a*b*g + cba = c-b-a + z2 = z-2 + tol = -ctx.prec - 10 + nstr = ctx.nstr + nprint = ctx.nprint + mag = ctx.mag + maxmag = ctx.ninf + while 1: + kch = k+ch + kakbz = (k+a)*(k+b)*z / (4*(k+1)*kch*(k+c1h)) + d1 = kakbz*(e-(k+cba)*d*g) + e1 = kakbz*(d*abg+(k+c)*e) + ft = d*(k*(cba*z+k*z2-c)-abz)/(2*kch*nz) + f1 = f + e - ft + maxmag = max(maxmag, mag(f1)) + if mag(f1-f) < tol: + break + d, e, f = d1, e1, f1 + k += 1 + cancellation = maxmag - mag(f1) + if cancellation < extra: + break + else: + extra += cancellation + if extra > maxprec: + raise ctx.NoConvergence + return f1 + +@defun +def _hyp2f1(ctx, a_s, b_s, z, **kwargs): + (a, atype), (b, btype) = a_s + (c, ctype), = b_s + if z == 1: + # TODO: the following logic can be simplified + convergent = ctx.re(c-a-b) > 0 + finite = (ctx.isint(a) and a <= 0) or (ctx.isint(b) and b <= 0) + zerodiv = ctx.isint(c) and c <= 0 and not \ + ((ctx.isint(a) and c <= a <= 0) or (ctx.isint(b) and c <= b <= 0)) + #print "bz", a, b, c, z, convergent, finite, zerodiv + # Gauss's theorem gives the value if convergent + if (convergent or finite) and not zerodiv: + return ctx.gammaprod([c, c-a-b], [c-a, c-b], _infsign=True) + # Otherwise, there is a pole and we take the + # sign to be that when approaching from below + # XXX: this evaluation is not necessarily correct in all cases + return ctx.hyp2f1(a,b,c,1-ctx.eps*2) * ctx.inf + + # Equal to 1 (first term), unless there is a subsequent + # division by zero + if not z: + # Division by zero but power of z is higher than + # first order so cancels + if c or a == 0 or b == 0: + return 1+z + # Indeterminate + return ctx.nan + + # Hit zero denominator unless numerator goes to 0 first + if ctx.isint(c) and c <= 0: + if (ctx.isint(a) and c <= a <= 0) or \ + (ctx.isint(b) and c <= b <= 0): + pass + else: + # Pole in series + return ctx.inf + + absz = abs(z) + + # Fast case: standard series converges rapidly, + # possibly in finitely many terms + if absz <= 0.8 or (ctx.isint(a) and a <= 0 and a >= -1000) or \ + (ctx.isint(b) and b <= 0 and b >= -1000): + return ctx.hypsum(2, 1, (atype, btype, ctype), [a, b, c], z, **kwargs) + + orig = ctx.prec + try: + ctx.prec += 10 + + # Use 1/z transformation + if absz >= 1.3: + def h(a,b): + t = ctx.mpq_1-c; ab = a-b; rz = 1/z + T1 = ([-z],[-a], [c,-ab],[b,c-a], [a,t+a],[ctx.mpq_1+ab], rz) + T2 = ([-z],[-b], [c,ab],[a,c-b], [b,t+b],[ctx.mpq_1-ab], rz) + return T1, T2 + v = ctx.hypercomb(h, [a,b], **kwargs) + + # Use 1-z transformation + elif abs(1-z) <= 0.75: + def h(a,b): + t = c-a-b; ca = c-a; cb = c-b; rz = 1-z + T1 = [], [], [c,t], [ca,cb], [a,b], [1-t], rz + T2 = [rz], [t], [c,a+b-c], [a,b], [ca,cb], [1+t], rz + return T1, T2 + v = ctx.hypercomb(h, [a,b], **kwargs) + + # Use z/(z-1) transformation + elif abs(z/(z-1)) <= 0.75: + v = ctx.hyp2f1(a, c-b, c, z/(z-1)) / (1-z)**a + + # Remaining part of unit circle + else: + v = _hyp2f1_gosper(ctx,a,b,c,z,**kwargs) + + finally: + ctx.prec = orig + return +v + +@defun +def _hypq1fq(ctx, p, q, a_s, b_s, z, **kwargs): + r""" + Evaluates 3F2, 4F3, 5F4, ... + """ + a_s, a_types = zip(*a_s) + b_s, b_types = zip(*b_s) + a_s = list(a_s) + b_s = list(b_s) + absz = abs(z) + ispoly = False + for a in a_s: + if ctx.isint(a) and a <= 0: + ispoly = True + break + # Direct summation + if absz < 1 or ispoly: + try: + return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs) + except ctx.NoConvergence: + if absz > 1.1 or ispoly: + raise + # Use expansion at |z-1| -> 0. + # Reference: Wolfgang Buhring, "Generalized Hypergeometric Functions at + # Unit Argument", Proc. Amer. Math. Soc., Vol. 114, No. 1 (Jan. 1992), + # pp.145-153 + # The current implementation has several problems: + # 1. We only implement it for 3F2. The expansion coefficients are + # given by extremely messy nested sums in the higher degree cases + # (see reference). Is efficient sequential generation of the coefficients + # possible in the > 3F2 case? + # 2. Although the series converges, it may do so slowly, so we need + # convergence acceleration. The acceleration implemented by + # nsum does not always help, so results returned are sometimes + # inaccurate! Can we do better? + # 3. We should check conditions for convergence, and possibly + # do a better job of cancelling out gamma poles if possible. + if z == 1: + # XXX: should also check for division by zero in the + # denominator of the series (cf. hyp2f1) + S = ctx.re(sum(b_s)-sum(a_s)) + if S <= 0: + #return ctx.hyper(a_s, b_s, 1-ctx.eps*2, **kwargs) * ctx.inf + return ctx.hyper(a_s, b_s, 0.9, **kwargs) * ctx.inf + if (p,q) == (3,2) and abs(z-1) < 0.05: # and kwargs.get('sum1') + #print "Using alternate summation (experimental)" + a1,a2,a3 = a_s + b1,b2 = b_s + u = b1+b2-a3 + initial = ctx.gammaprod([b2-a3,b1-a3,a1,a2],[b2-a3,b1-a3,1,u]) + def term(k, _cache={0:initial}): + u = b1+b2-a3+k + if k in _cache: + t = _cache[k] + else: + t = _cache[k-1] + t *= (b1+k-a3-1)*(b2+k-a3-1) + t /= k*(u-1) + _cache[k] = t + return t * ctx.hyp2f1(a1,a2,u,z) + try: + S = ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'), + strict=kwargs.get('strict', True)) + return S * ctx.gammaprod([b1,b2],[a1,a2,a3]) + except ctx.NoConvergence: + pass + # Try to use convergence acceleration on and close to the unit circle. + # Problem: the convergence acceleration degenerates as |z-1| -> 0, + # except for special cases. Everywhere else, the Shanks transformation + # is very efficient. + if absz < 1.1 and ctx._re(z) <= 1: + + def term(kk, _cache={0:ctx.one}): + k = int(kk) + if k != kk: + t = z ** ctx.mpf(kk) / ctx.fac(kk) + for a in a_s: t *= ctx.rf(a,kk) + for b in b_s: t /= ctx.rf(b,kk) + return t + if k in _cache: + return _cache[k] + t = term(k-1) + m = k-1 + for j in xrange(p): t *= (a_s[j]+m) + for j in xrange(q): t /= (b_s[j]+m) + t *= z + t /= k + _cache[k] = t + return t + + sum_method = kwargs.get('sum_method', 'r+s+e') + + try: + return ctx.nsum(term, [0,ctx.inf], verbose=kwargs.get('verbose'), + strict=kwargs.get('strict', True), + method=sum_method.replace('e','')) + except ctx.NoConvergence: + if 'e' not in sum_method: + raise + pass + + if kwargs.get('verbose'): + print("Attempting Euler-Maclaurin summation") + + + """ + Somewhat slower version (one diffs_exp for each factor). + However, this would be faster with fast direct derivatives + of the gamma function. + + def power_diffs(k0): + r = 0 + l = ctx.log(z) + while 1: + yield z**ctx.mpf(k0) * l**r + r += 1 + + def loggamma_diffs(x, reciprocal=False): + sign = (-1) ** reciprocal + yield sign * ctx.loggamma(x) + i = 0 + while 1: + yield sign * ctx.psi(i,x) + i += 1 + + def hyper_diffs(k0): + b2 = b_s + [1] + A = [ctx.diffs_exp(loggamma_diffs(a+k0)) for a in a_s] + B = [ctx.diffs_exp(loggamma_diffs(b+k0,True)) for b in b2] + Z = [power_diffs(k0)] + C = ctx.gammaprod([b for b in b2], [a for a in a_s]) + for d in ctx.diffs_prod(A + B + Z): + v = C * d + yield v + """ + + def log_diffs(k0): + b2 = b_s + [1] + yield sum(ctx.loggamma(a+k0) for a in a_s) - \ + sum(ctx.loggamma(b+k0) for b in b2) + k0*ctx.log(z) + i = 0 + while 1: + v = sum(ctx.psi(i,a+k0) for a in a_s) - \ + sum(ctx.psi(i,b+k0) for b in b2) + if i == 0: + v += ctx.log(z) + yield v + i += 1 + + def hyper_diffs(k0): + C = ctx.gammaprod([b for b in b_s], [a for a in a_s]) + for d in ctx.diffs_exp(log_diffs(k0)): + v = C * d + yield v + + tol = ctx.eps / 1024 + prec = ctx.prec + try: + trunc = 50 * ctx.dps + ctx.prec += 20 + for i in xrange(5): + head = ctx.fsum(term(k) for k in xrange(trunc)) + tail, err = ctx.sumem(term, [trunc, ctx.inf], tol=tol, + adiffs=hyper_diffs(trunc), + verbose=kwargs.get('verbose'), + error=True, + _fast_abort=True) + if err < tol: + v = head + tail + break + trunc *= 2 + # Need to increase precision because calculation of + # derivatives may be inaccurate + ctx.prec += ctx.prec//2 + if i == 4: + raise ctx.NoConvergence(\ + "Euler-Maclaurin summation did not converge") + finally: + ctx.prec = prec + return +v + + # Use 1/z transformation + # http://functions.wolfram.com/HypergeometricFunctions/ + # HypergeometricPFQ/06/01/05/02/0004/ + def h(*args): + a_s = list(args[:p]) + b_s = list(args[p:]) + Ts = [] + recz = ctx.one/z + negz = ctx.fneg(z, exact=True) + for k in range(q+1): + ak = a_s[k] + C = [negz] + Cp = [-ak] + Gn = b_s + [ak] + [a_s[j]-ak for j in range(q+1) if j != k] + Gd = a_s + [b_s[j]-ak for j in range(q)] + Fn = [ak] + [ak-b_s[j]+1 for j in range(q)] + Fd = [1-a_s[j]+ak for j in range(q+1) if j != k] + Ts.append((C, Cp, Gn, Gd, Fn, Fd, recz)) + return Ts + return ctx.hypercomb(h, a_s+b_s, **kwargs) + +@defun +def _hyp_borel(ctx, p, q, a_s, b_s, z, **kwargs): + if a_s: + a_s, a_types = zip(*a_s) + a_s = list(a_s) + else: + a_s, a_types = [], () + if b_s: + b_s, b_types = zip(*b_s) + b_s = list(b_s) + else: + b_s, b_types = [], () + kwargs['maxterms'] = kwargs.get('maxterms', ctx.prec) + try: + return ctx.hypsum(p, q, a_types+b_types, a_s+b_s, z, **kwargs) + except ctx.NoConvergence: + pass + prec = ctx.prec + try: + tol = kwargs.get('asymp_tol', ctx.eps/4) + ctx.prec += 10 + # hypsum is has a conservative tolerance. So we try again: + def term(k, cache={0:ctx.one}): + if k in cache: + return cache[k] + t = term(k-1) + for a in a_s: t *= (a+(k-1)) + for b in b_s: t /= (b+(k-1)) + t *= z + t /= k + cache[k] = t + return t + s = ctx.one + for k in xrange(1, ctx.prec): + t = term(k) + s += t + if abs(t) <= tol: + return s + finally: + ctx.prec = prec + if p <= q+3: + contour = kwargs.get('contour') + if not contour: + if ctx.arg(z) < 0.25: + u = z / max(1, abs(z)) + if ctx.arg(z) >= 0: + contour = [0, 2j, (2j+2)/u, 2/u, ctx.inf] + else: + contour = [0, -2j, (-2j+2)/u, 2/u, ctx.inf] + #contour = [0, 2j/z, 2/z, ctx.inf] + #contour = [0, 2j, 2/z, ctx.inf] + #contour = [0, 2j, ctx.inf] + else: + contour = [0, ctx.inf] + quad_kwargs = kwargs.get('quad_kwargs', {}) + def g(t): + return ctx.exp(-t)*ctx.hyper(a_s, b_s+[1], t*z) + I, err = ctx.quad(g, contour, error=True, **quad_kwargs) + if err <= abs(I)*ctx.eps*8: + return I + raise ctx.NoConvergence + + +@defun +def _hyp2f2(ctx, a_s, b_s, z, **kwargs): + (a1, a1type), (a2, a2type) = a_s + (b1, b1type), (b2, b2type) = b_s + + absz = abs(z) + magz = ctx.mag(z) + orig = ctx.prec + + # Asymptotic expansion is ~ exp(z) + asymp_extraprec = magz + + # Asymptotic series is in terms of 3F1 + can_use_asymptotic = (not kwargs.get('force_series')) and \ + (ctx.mag(absz) > 3) + + # TODO: much of the following could be shared with 2F3 instead of + # copypasted + if can_use_asymptotic: + #print "using asymp" + try: + try: + ctx.prec += asymp_extraprec + # http://functions.wolfram.com/HypergeometricFunctions/ + # Hypergeometric2F2/06/02/02/0002/ + def h(a1,a2,b1,b2): + X = a1+a2-b1-b2 + A2 = a1+a2 + B2 = b1+b2 + c = {} + c[0] = ctx.one + c[1] = (A2-1)*X+b1*b2-a1*a2 + s1 = 0 + k = 0 + tprev = 0 + while 1: + if k not in c: + uu1 = 1-B2+2*a1+a1**2+2*a2+a2**2-A2*B2+a1*a2+b1*b2+(2*B2-3*(A2+1))*k+2*k**2 + uu2 = (k-A2+b1-1)*(k-A2+b2-1)*(k-X-2) + c[k] = ctx.one/k * (uu1*c[k-1]-uu2*c[k-2]) + t1 = c[k] * z**(-k) + if abs(t1) < 0.1*ctx.eps: + #print "Convergence :)" + break + # Quit if the series doesn't converge quickly enough + if k > 5 and abs(tprev) / abs(t1) < 1.5: + #print "No convergence :(" + raise ctx.NoConvergence + s1 += t1 + tprev = t1 + k += 1 + S = ctx.exp(z)*s1 + T1 = [z,S], [X,1], [b1,b2],[a1,a2],[],[],0 + T2 = [-z],[-a1],[b1,b2,a2-a1],[a2,b1-a1,b2-a1],[a1,a1-b1+1,a1-b2+1],[a1-a2+1],-1/z + T3 = [-z],[-a2],[b1,b2,a1-a2],[a1,b1-a2,b2-a2],[a2,a2-b1+1,a2-b2+1],[-a1+a2+1],-1/z + return T1, T2, T3 + v = ctx.hypercomb(h, [a1,a2,b1,b2], force_series=True, maxterms=4*ctx.prec) + if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,z]) == 5: + v = ctx.re(v) + return v + except ctx.NoConvergence: + pass + finally: + ctx.prec = orig + + return ctx.hypsum(2, 2, (a1type, a2type, b1type, b2type), [a1, a2, b1, b2], z, **kwargs) + + + +@defun +def _hyp1f2(ctx, a_s, b_s, z, **kwargs): + (a1, a1type), = a_s + (b1, b1type), (b2, b2type) = b_s + + absz = abs(z) + magz = ctx.mag(z) + orig = ctx.prec + + # Asymptotic expansion is ~ exp(sqrt(z)) + asymp_extraprec = z and magz//2 + + # Asymptotic series is in terms of 3F0 + can_use_asymptotic = (not kwargs.get('force_series')) and \ + (ctx.mag(absz) > 19) and \ + (ctx.sqrt(absz) > 1.5*orig) # and \ + # ctx._hyp_check_convergence([a1, a1-b1+1, a1-b2+1], [], + # 1/absz, orig+40+asymp_extraprec) + + # TODO: much of the following could be shared with 2F3 instead of + # copypasted + if can_use_asymptotic: + #print "using asymp" + try: + try: + ctx.prec += asymp_extraprec + # http://functions.wolfram.com/HypergeometricFunctions/ + # Hypergeometric1F2/06/02/03/ + def h(a1,b1,b2): + X = ctx.mpq_1_2*(a1-b1-b2+ctx.mpq_1_2) + c = {} + c[0] = ctx.one + c[1] = 2*(ctx.mpq_1_4*(3*a1+b1+b2-2)*(a1-b1-b2)+b1*b2-ctx.mpq_3_16) + c[2] = 2*(b1*b2+ctx.mpq_1_4*(a1-b1-b2)*(3*a1+b1+b2-2)-ctx.mpq_3_16)**2+\ + ctx.mpq_1_16*(-16*(2*a1-3)*b1*b2 + \ + 4*(a1-b1-b2)*(-8*a1**2+11*a1+b1+b2-2)-3) + s1 = 0 + s2 = 0 + k = 0 + tprev = 0 + while 1: + if k not in c: + uu1 = (3*k**2+(-6*a1+2*b1+2*b2-4)*k + 3*a1**2 - \ + (b1-b2)**2 - 2*a1*(b1+b2-2) + ctx.mpq_1_4) + uu2 = (k-a1+b1-b2-ctx.mpq_1_2)*(k-a1-b1+b2-ctx.mpq_1_2)*\ + (k-a1+b1+b2-ctx.mpq_5_2) + c[k] = ctx.one/(2*k)*(uu1*c[k-1]-uu2*c[k-2]) + w = c[k] * (-z)**(-0.5*k) + t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w + t2 = ctx.j**k * ctx.mpf(2)**(-k) * w + if abs(t1) < 0.1*ctx.eps: + #print "Convergence :)" + break + # Quit if the series doesn't converge quickly enough + if k > 5 and abs(tprev) / abs(t1) < 1.5: + #print "No convergence :(" + raise ctx.NoConvergence + s1 += t1 + s2 += t2 + tprev = t1 + k += 1 + S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \ + ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2 + T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2], [a1],\ + [], [], 0 + T2 = [-z], [-a1], [b1,b2],[b1-a1,b2-a1], \ + [a1,a1-b1+1,a1-b2+1], [], 1/z + return T1, T2 + v = ctx.hypercomb(h, [a1,b1,b2], force_series=True, maxterms=4*ctx.prec) + if sum(ctx._is_real_type(u) for u in [a1,b1,b2,z]) == 4: + v = ctx.re(v) + return v + except ctx.NoConvergence: + pass + finally: + ctx.prec = orig + + #print "not using asymp" + return ctx.hypsum(1, 2, (a1type, b1type, b2type), [a1, b1, b2], z, **kwargs) + + + +@defun +def _hyp2f3(ctx, a_s, b_s, z, **kwargs): + (a1, a1type), (a2, a2type) = a_s + (b1, b1type), (b2, b2type), (b3, b3type) = b_s + + absz = abs(z) + magz = ctx.mag(z) + + # Asymptotic expansion is ~ exp(sqrt(z)) + asymp_extraprec = z and magz//2 + orig = ctx.prec + + # Asymptotic series is in terms of 4F1 + # The square root below empirically provides a plausible criterion + # for the leading series to converge + can_use_asymptotic = (not kwargs.get('force_series')) and \ + (ctx.mag(absz) > 19) and (ctx.sqrt(absz) > 1.5*orig) + + if can_use_asymptotic: + #print "using asymp" + try: + try: + ctx.prec += asymp_extraprec + # http://functions.wolfram.com/HypergeometricFunctions/ + # Hypergeometric2F3/06/02/03/01/0002/ + def h(a1,a2,b1,b2,b3): + X = ctx.mpq_1_2*(a1+a2-b1-b2-b3+ctx.mpq_1_2) + A2 = a1+a2 + B3 = b1+b2+b3 + A = a1*a2 + B = b1*b2+b3*b2+b1*b3 + R = b1*b2*b3 + c = {} + c[0] = ctx.one + c[1] = 2*(B - A + ctx.mpq_1_4*(3*A2+B3-2)*(A2-B3) - ctx.mpq_3_16) + c[2] = ctx.mpq_1_2*c[1]**2 + ctx.mpq_1_16*(-16*(2*A2-3)*(B-A) + 32*R +\ + 4*(-8*A2**2 + 11*A2 + 8*A + B3 - 2)*(A2-B3)-3) + s1 = 0 + s2 = 0 + k = 0 + tprev = 0 + while 1: + if k not in c: + uu1 = (k-2*X-3)*(k-2*X-2*b1-1)*(k-2*X-2*b2-1)*\ + (k-2*X-2*b3-1) + uu2 = (4*(k-1)**3 - 6*(4*X+B3)*(k-1)**2 + \ + 2*(24*X**2+12*B3*X+4*B+B3-1)*(k-1) - 32*X**3 - \ + 24*B3*X**2 - 4*B - 8*R - 4*(4*B+B3-1)*X + 2*B3-1) + uu3 = (5*(k-1)**2+2*(-10*X+A2-3*B3+3)*(k-1)+2*c[1]) + c[k] = ctx.one/(2*k)*(uu1*c[k-3]-uu2*c[k-2]+uu3*c[k-1]) + w = c[k] * ctx.power(-z, -0.5*k) + t1 = (-ctx.j)**k * ctx.mpf(2)**(-k) * w + t2 = ctx.j**k * ctx.mpf(2)**(-k) * w + if abs(t1) < 0.1*ctx.eps: + break + # Quit if the series doesn't converge quickly enough + if k > 5 and abs(tprev) / abs(t1) < 1.5: + raise ctx.NoConvergence + s1 += t1 + s2 += t2 + tprev = t1 + k += 1 + S = ctx.expj(ctx.pi*X+2*ctx.sqrt(-z))*s1 + \ + ctx.expj(-(ctx.pi*X+2*ctx.sqrt(-z)))*s2 + T1 = [0.5*S, ctx.pi, -z], [1, -0.5, X], [b1, b2, b3], [a1, a2],\ + [], [], 0 + T2 = [-z], [-a1], [b1,b2,b3,a2-a1],[a2,b1-a1,b2-a1,b3-a1], \ + [a1,a1-b1+1,a1-b2+1,a1-b3+1], [a1-a2+1], 1/z + T3 = [-z], [-a2], [b1,b2,b3,a1-a2],[a1,b1-a2,b2-a2,b3-a2], \ + [a2,a2-b1+1,a2-b2+1,a2-b3+1],[-a1+a2+1], 1/z + return T1, T2, T3 + v = ctx.hypercomb(h, [a1,a2,b1,b2,b3], force_series=True, maxterms=4*ctx.prec) + if sum(ctx._is_real_type(u) for u in [a1,a2,b1,b2,b3,z]) == 6: + v = ctx.re(v) + return v + except ctx.NoConvergence: + pass + finally: + ctx.prec = orig + + return ctx.hypsum(2, 3, (a1type, a2type, b1type, b2type, b3type), [a1, a2, b1, b2, b3], z, **kwargs) + +@defun +def _hyp2f0(ctx, a_s, b_s, z, **kwargs): + (a, atype), (b, btype) = a_s + # We want to try aggressively to use the asymptotic expansion, + # and fall back only when absolutely necessary + try: + kwargsb = kwargs.copy() + kwargsb['maxterms'] = kwargsb.get('maxterms', ctx.prec) + return ctx.hypsum(2, 0, (atype,btype), [a,b], z, **kwargsb) + except ctx.NoConvergence: + if kwargs.get('force_series'): + raise + pass + def h(a, b): + w = ctx.sinpi(b) + rz = -1/z + T1 = ([ctx.pi,w,rz],[1,-1,a],[],[a-b+1,b],[a],[b],rz) + T2 = ([-ctx.pi,w,rz],[1,-1,1+a-b],[],[a,2-b],[a-b+1],[2-b],rz) + return T1, T2 + return ctx.hypercomb(h, [a, 1+a-b], **kwargs) + +@defun +def meijerg(ctx, a_s, b_s, z, r=1, series=None, **kwargs): + an, ap = a_s + bm, bq = b_s + n = len(an) + p = n + len(ap) + m = len(bm) + q = m + len(bq) + a = an+ap + b = bm+bq + a = [ctx.convert(_) for _ in a] + b = [ctx.convert(_) for _ in b] + z = ctx.convert(z) + if series is None: + if p < q: series = 1 + if p > q: series = 2 + if p == q: + if m+n == p and abs(z) > 1: + series = 2 + else: + series = 1 + if kwargs.get('verbose'): + print("Meijer G m,n,p,q,series =", m,n,p,q,series) + if series == 1: + def h(*args): + a = args[:p] + b = args[p:] + terms = [] + for k in range(m): + bases = [z] + expts = [b[k]/r] + gn = [b[j]-b[k] for j in range(m) if j != k] + gn += [1-a[j]+b[k] for j in range(n)] + gd = [a[j]-b[k] for j in range(n,p)] + gd += [1-b[j]+b[k] for j in range(m,q)] + hn = [1-a[j]+b[k] for j in range(p)] + hd = [1-b[j]+b[k] for j in range(q) if j != k] + hz = (-ctx.one)**(p-m-n) * z**(ctx.one/r) + terms.append((bases, expts, gn, gd, hn, hd, hz)) + return terms + else: + def h(*args): + a = args[:p] + b = args[p:] + terms = [] + for k in range(n): + bases = [z] + if r == 1: + expts = [a[k]-1] + else: + expts = [(a[k]-1)/ctx.convert(r)] + gn = [a[k]-a[j] for j in range(n) if j != k] + gn += [1-a[k]+b[j] for j in range(m)] + gd = [a[k]-b[j] for j in range(m,q)] + gd += [1-a[k]+a[j] for j in range(n,p)] + hn = [1-a[k]+b[j] for j in range(q)] + hd = [1+a[j]-a[k] for j in range(p) if j != k] + hz = (-ctx.one)**(q-m-n) / z**(ctx.one/r) + terms.append((bases, expts, gn, gd, hn, hd, hz)) + return terms + return ctx.hypercomb(h, a+b, **kwargs) + +@defun_wrapped +def appellf1(ctx,a,b1,b2,c,x,y,**kwargs): + # Assume x smaller + # We will use x for the outer loop + if abs(x) > abs(y): + x, y = y, x + b1, b2 = b2, b1 + def ok(x): + return abs(x) < 0.99 + # Finite cases + if ctx.isnpint(a): + pass + elif ctx.isnpint(b1): + pass + elif ctx.isnpint(b2): + x, y, b1, b2 = y, x, b2, b1 + else: + #print x, y + # Note: ok if |y| > 1, because + # 2F1 implements analytic continuation + if not ok(x): + u1 = (x-y)/(x-1) + if not ok(u1): + raise ValueError("Analytic continuation not implemented") + #print "Using analytic continuation" + return (1-x)**(-b1)*(1-y)**(c-a-b2)*\ + ctx.appellf1(c-a,b1,c-b1-b2,c,u1,y,**kwargs) + return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]}, {'m+n':[c]}, x,y, **kwargs) + +@defun +def appellf2(ctx,a,b1,b2,c1,c2,x,y,**kwargs): + # TODO: continuation + return ctx.hyper2d({'m+n':[a],'m':[b1],'n':[b2]}, + {'m':[c1],'n':[c2]}, x,y, **kwargs) + +@defun +def appellf3(ctx,a1,a2,b1,b2,c,x,y,**kwargs): + outer_polynomial = ctx.isnpint(a1) or ctx.isnpint(b1) + inner_polynomial = ctx.isnpint(a2) or ctx.isnpint(b2) + if not outer_polynomial: + if inner_polynomial or abs(x) > abs(y): + x, y = y, x + a1,a2,b1,b2 = a2,a1,b2,b1 + return ctx.hyper2d({'m':[a1,b1],'n':[a2,b2]}, {'m+n':[c]},x,y,**kwargs) + +@defun +def appellf4(ctx,a,b,c1,c2,x,y,**kwargs): + # TODO: continuation + return ctx.hyper2d({'m+n':[a,b]}, {'m':[c1],'n':[c2]},x,y,**kwargs) + +@defun +def hyper2d(ctx, a, b, x, y, **kwargs): + r""" + Sums the generalized 2D hypergeometric series + + .. math :: + + \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} + \frac{P((a),m,n)}{Q((b),m,n)} + \frac{x^m y^n} {m! n!} + + where `(a) = (a_1,\ldots,a_r)`, `(b) = (b_1,\ldots,b_s)` and where + `P` and `Q` are products of rising factorials such as `(a_j)_n` or + `(a_j)_{m+n}`. `P` and `Q` are specified in the form of dicts, with + the `m` and `n` dependence as keys and parameter lists as values. + The supported rising factorials are given in the following table + (note that only a few are supported in `Q`): + + +------------+-------------------+--------+ + | Key | Rising factorial | `Q` | + +============+===================+========+ + | ``'m'`` | `(a_j)_m` | Yes | + +------------+-------------------+--------+ + | ``'n'`` | `(a_j)_n` | Yes | + +------------+-------------------+--------+ + | ``'m+n'`` | `(a_j)_{m+n}` | Yes | + +------------+-------------------+--------+ + | ``'m-n'`` | `(a_j)_{m-n}` | No | + +------------+-------------------+--------+ + | ``'n-m'`` | `(a_j)_{n-m}` | No | + +------------+-------------------+--------+ + | ``'2m+n'`` | `(a_j)_{2m+n}` | No | + +------------+-------------------+--------+ + | ``'2m-n'`` | `(a_j)_{2m-n}` | No | + +------------+-------------------+--------+ + | ``'2n-m'`` | `(a_j)_{2n-m}` | No | + +------------+-------------------+--------+ + + For example, the Appell F1 and F4 functions + + .. math :: + + F_1 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} + \frac{(a)_{m+n} (b)_m (c)_n}{(d)_{m+n}} + \frac{x^m y^n}{m! n!} + + F_4 = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} + \frac{(a)_{m+n} (b)_{m+n}}{(c)_m (d)_{n}} + \frac{x^m y^n}{m! n!} + + can be represented respectively as + + ``hyper2d({'m+n':[a], 'm':[b], 'n':[c]}, {'m+n':[d]}, x, y)`` + + ``hyper2d({'m+n':[a,b]}, {'m':[c], 'n':[d]}, x, y)`` + + More generally, :func:`~mpmath.hyper2d` can evaluate any of the 34 distinct + convergent second-order (generalized Gaussian) hypergeometric + series enumerated by Horn, as well as the Kampe de Feriet + function. + + The series is computed by rewriting it so that the inner + series (i.e. the series containing `n` and `y`) has the form of an + ordinary generalized hypergeometric series and thereby can be + evaluated efficiently using :func:`~mpmath.hyper`. If possible, + manually swapping `x` and `y` and the corresponding parameters + can sometimes give better results. + + **Examples** + + Two separable cases: a product of two geometric series, and a + product of two Gaussian hypergeometric functions:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> x, y = mpf(0.25), mpf(0.5) + >>> hyper2d({'m':1,'n':1}, {}, x,y) + 2.666666666666666666666667 + >>> 1/(1-x)/(1-y) + 2.666666666666666666666667 + >>> hyper2d({'m':[1,2],'n':[3,4]}, {'m':[5],'n':[6]}, x,y) + 4.164358531238938319669856 + >>> hyp2f1(1,2,5,x)*hyp2f1(3,4,6,y) + 4.164358531238938319669856 + + Some more series that can be done in closed form:: + + >>> hyper2d({'m':1,'n':1},{'m+n':1},x,y) + 2.013417124712514809623881 + >>> (exp(x)*x-exp(y)*y)/(x-y) + 2.013417124712514809623881 + + Six of the 34 Horn functions, G1-G3 and H1-H3:: + + >>> from mpmath import * + >>> mp.dps = 10; mp.pretty = True + >>> x, y = 0.0625, 0.125 + >>> a1,a2,b1,b2,c1,c2,d = 1.1,-1.2,-1.3,-1.4,1.5,-1.6,1.7 + >>> hyper2d({'m+n':a1,'n-m':b1,'m-n':b2},{},x,y) # G1 + 1.139090746 + >>> nsum(lambda m,n: rf(a1,m+n)*rf(b1,n-m)*rf(b2,m-n)*\ + ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) + 1.139090746 + >>> hyper2d({'m':a1,'n':a2,'n-m':b1,'m-n':b2},{},x,y) # G2 + 0.9503682696 + >>> nsum(lambda m,n: rf(a1,m)*rf(a2,n)*rf(b1,n-m)*rf(b2,m-n)*\ + ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) + 0.9503682696 + >>> hyper2d({'2n-m':a1,'2m-n':a2},{},x,y) # G3 + 1.029372029 + >>> nsum(lambda m,n: rf(a1,2*n-m)*rf(a2,2*m-n)*\ + ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) + 1.029372029 + >>> hyper2d({'m-n':a1,'m+n':b1,'n':c1},{'m':d},x,y) # H1 + -1.605331256 + >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m+n)*rf(c1,n)/rf(d,m)*\ + ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) + -1.605331256 + >>> hyper2d({'m-n':a1,'m':b1,'n':[c1,c2]},{'m':d},x,y) # H2 + -2.35405404 + >>> nsum(lambda m,n: rf(a1,m-n)*rf(b1,m)*rf(c1,n)*rf(c2,n)/rf(d,m)*\ + ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) + -2.35405404 + >>> hyper2d({'2m+n':a1,'n':b1},{'m+n':c1},x,y) # H3 + 0.974479074 + >>> nsum(lambda m,n: rf(a1,2*m+n)*rf(b1,n)/rf(c1,m+n)*\ + ... x**m*y**n/fac(m)/fac(n), [0,inf], [0,inf]) + 0.974479074 + + **References** + + 1. [SrivastavaKarlsson]_ + 2. [Weisstein]_ http://mathworld.wolfram.com/HornFunction.html + 3. [Weisstein]_ http://mathworld.wolfram.com/AppellHypergeometricFunction.html + + """ + x = ctx.convert(x) + y = ctx.convert(y) + def parse(dct, key): + args = dct.pop(key, []) + try: + args = list(args) + except TypeError: + args = [args] + return [ctx.convert(arg) for arg in args] + a_s = dict(a) + b_s = dict(b) + a_m = parse(a, 'm') + a_n = parse(a, 'n') + a_m_add_n = parse(a, 'm+n') + a_m_sub_n = parse(a, 'm-n') + a_n_sub_m = parse(a, 'n-m') + a_2m_add_n = parse(a, '2m+n') + a_2m_sub_n = parse(a, '2m-n') + a_2n_sub_m = parse(a, '2n-m') + b_m = parse(b, 'm') + b_n = parse(b, 'n') + b_m_add_n = parse(b, 'm+n') + if a: raise ValueError("unsupported key: %r" % a.keys()[0]) + if b: raise ValueError("unsupported key: %r" % b.keys()[0]) + s = 0 + outer = ctx.one + m = ctx.mpf(0) + ok_count = 0 + prec = ctx.prec + maxterms = kwargs.get('maxterms', 20*prec) + try: + ctx.prec += 10 + tol = +ctx.eps + while 1: + inner_sign = 1 + outer_sign = 1 + inner_a = list(a_n) + inner_b = list(b_n) + outer_a = [a+m for a in a_m] + outer_b = [b+m for b in b_m] + # (a)_{m+n} = (a)_m (a+m)_n + for a in a_m_add_n: + a = a+m + inner_a.append(a) + outer_a.append(a) + # (b)_{m+n} = (b)_m (b+m)_n + for b in b_m_add_n: + b = b+m + inner_b.append(b) + outer_b.append(b) + # (a)_{n-m} = (a-m)_n / (a-m)_m + for a in a_n_sub_m: + inner_a.append(a-m) + outer_b.append(a-m-1) + # (a)_{m-n} = (-1)^(m+n) (1-a-m)_m / (1-a-m)_n + for a in a_m_sub_n: + inner_sign *= (-1) + outer_sign *= (-1)**(m) + inner_b.append(1-a-m) + outer_a.append(-a-m) + # (a)_{2m+n} = (a)_{2m} (a+2m)_n + for a in a_2m_add_n: + inner_a.append(a+2*m) + outer_a.append((a+2*m)*(1+a+2*m)) + # (a)_{2m-n} = (-1)^(2m+n) (1-a-2m)_{2m} / (1-a-2m)_n + for a in a_2m_sub_n: + inner_sign *= (-1) + inner_b.append(1-a-2*m) + outer_a.append((a+2*m)*(1+a+2*m)) + # (a)_{2n-m} = 4^n ((a-m)/2)_n ((a-m+1)/2)_n / (a-m)_m + for a in a_2n_sub_m: + inner_sign *= 4 + inner_a.append(0.5*(a-m)) + inner_a.append(0.5*(a-m+1)) + outer_b.append(a-m-1) + inner = ctx.hyper(inner_a, inner_b, inner_sign*y, + zeroprec=ctx.prec, **kwargs) + term = outer * inner * outer_sign + if abs(term) < tol: + ok_count += 1 + else: + ok_count = 0 + if ok_count >= 3 or not outer: + break + s += term + for a in outer_a: outer *= a + for b in outer_b: outer /= b + m += 1 + outer = outer * x / m + if m > maxterms: + raise ctx.NoConvergence("maxterms exceeded in hyper2d") + finally: + ctx.prec = prec + return +s + +""" +@defun +def kampe_de_feriet(ctx,a,b,c,d,e,f,x,y,**kwargs): + return ctx.hyper2d({'m+n':a,'m':b,'n':c}, + {'m+n':d,'m':e,'n':f}, x,y, **kwargs) +""" + +@defun +def bihyper(ctx, a_s, b_s, z, **kwargs): + r""" + Evaluates the bilateral hypergeometric series + + .. math :: + + \,_AH_B(a_1, \ldots, a_k; b_1, \ldots, b_B; z) = + \sum_{n=-\infty}^{\infty} + \frac{(a_1)_n \ldots (a_A)_n} + {(b_1)_n \ldots (b_B)_n} \, z^n + + where, for direct convergence, `A = B` and `|z| = 1`, although a + regularized sum exists more generally by considering the + bilateral series as a sum of two ordinary hypergeometric + functions. In order for the series to make sense, none of the + parameters may be integers. + + **Examples** + + The value of `\,_2H_2` at `z = 1` is given by Dougall's formula:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> a,b,c,d = 0.5, 1.5, 2.25, 3.25 + >>> bihyper([a,b],[c,d],1) + -14.49118026212345786148847 + >>> gammaprod([c,d,1-a,1-b,c+d-a-b-1],[c-a,d-a,c-b,d-b]) + -14.49118026212345786148847 + + The regularized function `\,_1H_0` can be expressed as the + sum of one `\,_2F_0` function and one `\,_1F_1` function:: + + >>> a = mpf(0.25) + >>> z = mpf(0.75) + >>> bihyper([a], [], z) + (0.2454393389657273841385582 + 0.2454393389657273841385582j) + >>> hyper([a,1],[],z) + (hyper([1],[1-a],-1/z)-1) + (0.2454393389657273841385582 + 0.2454393389657273841385582j) + >>> hyper([a,1],[],z) + hyper([1],[2-a],-1/z)/z/(a-1) + (0.2454393389657273841385582 + 0.2454393389657273841385582j) + + **References** + + 1. [Slater]_ (chapter 6: "Bilateral Series", pp. 180-189) + 2. [Wikipedia]_ http://en.wikipedia.org/wiki/Bilateral_hypergeometric_series + + """ + z = ctx.convert(z) + c_s = a_s + b_s + p = len(a_s) + q = len(b_s) + if (p, q) == (0,0) or (p, q) == (1,1): + return ctx.zero * z + neg = (p-q) % 2 + def h(*c_s): + a_s = list(c_s[:p]) + b_s = list(c_s[p:]) + aa_s = [2-b for b in b_s] + bb_s = [2-a for a in a_s] + rp = [(-1)**neg * z] + [1-b for b in b_s] + [1-a for a in a_s] + rc = [-1] + [1]*len(b_s) + [-1]*len(a_s) + T1 = [], [], [], [], a_s + [1], b_s, z + T2 = rp, rc, [], [], aa_s + [1], bb_s, (-1)**neg / z + return T1, T2 + return ctx.hypercomb(h, c_s, **kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/orthogonal.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/orthogonal.py new file mode 100644 index 0000000000000000000000000000000000000000..aa33d8bd78290f55a970e78dab7a317d5f652dee --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/orthogonal.py @@ -0,0 +1,493 @@ +from .functions import defun, defun_wrapped + +def _hermite_param(ctx, n, z, parabolic_cylinder): + """ + Combined calculation of the Hermite polynomial H_n(z) (and its + generalization to complex n) and the parabolic cylinder + function D. + """ + n, ntyp = ctx._convert_param(n) + z = ctx.convert(z) + q = -ctx.mpq_1_2 + # For re(z) > 0, 2F0 -- http://functions.wolfram.com/ + # HypergeometricFunctions/HermiteHGeneral/06/02/0009/ + # Otherwise, there is a reflection formula + # 2F0 + http://functions.wolfram.com/HypergeometricFunctions/ + # HermiteHGeneral/16/01/01/0006/ + # + # TODO: + # An alternative would be to use + # http://functions.wolfram.com/HypergeometricFunctions/ + # HermiteHGeneral/06/02/0006/ + # + # Also, the 1F1 expansion + # http://functions.wolfram.com/HypergeometricFunctions/ + # HermiteHGeneral/26/01/02/0001/ + # should probably be used for tiny z + if not z: + T1 = [2, ctx.pi], [n, 0.5], [], [q*(n-1)], [], [], 0 + if parabolic_cylinder: + T1[1][0] += q*n + return T1, + can_use_2f0 = ctx.isnpint(-n) or ctx.re(z) > 0 or \ + (ctx.re(z) == 0 and ctx.im(z) > 0) + expprec = ctx.prec*4 + 20 + if parabolic_cylinder: + u = ctx.fmul(ctx.fmul(z,z,prec=expprec), -0.25, exact=True) + w = ctx.fmul(z, ctx.sqrt(0.5,prec=expprec), prec=expprec) + else: + w = z + w2 = ctx.fmul(w, w, prec=expprec) + rw2 = ctx.fdiv(1, w2, prec=expprec) + nrw2 = ctx.fneg(rw2, exact=True) + nw = ctx.fneg(w, exact=True) + if can_use_2f0: + T1 = [2, w], [n, n], [], [], [q*n, q*(n-1)], [], nrw2 + terms = [T1] + else: + T1 = [2, nw], [n, n], [], [], [q*n, q*(n-1)], [], nrw2 + T2 = [2, ctx.pi, nw], [n+2, 0.5, 1], [], [q*n], [q*(n-1)], [1-q], w2 + terms = [T1,T2] + # Multiply by prefactor for D_n + if parabolic_cylinder: + expu = ctx.exp(u) + for i in range(len(terms)): + terms[i][1][0] += q*n + terms[i][0].append(expu) + terms[i][1].append(1) + return tuple(terms) + +@defun +def hermite(ctx, n, z, **kwargs): + return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 0), [], **kwargs) + +@defun +def pcfd(ctx, n, z, **kwargs): + r""" + Gives the parabolic cylinder function in Whittaker's notation + `D_n(z) = U(-n-1/2, z)` (see :func:`~mpmath.pcfu`). + It solves the differential equation + + .. math :: + + y'' + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right) y = 0. + + and can be represented in terms of Hermite polynomials + (see :func:`~mpmath.hermite`) as + + .. math :: + + D_n(z) = 2^{-n/2} e^{-z^2/4} H_n\left(\frac{z}{\sqrt{2}}\right). + + **Plots** + + .. literalinclude :: /plots/pcfd.py + .. image :: /plots/pcfd.png + + **Examples** + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> pcfd(0,0); pcfd(1,0); pcfd(2,0); pcfd(3,0) + 1.0 + 0.0 + -1.0 + 0.0 + >>> pcfd(4,0); pcfd(-3,0) + 3.0 + 0.6266570686577501256039413 + >>> pcfd('1/2', 2+3j) + (-5.363331161232920734849056 - 3.858877821790010714163487j) + >>> pcfd(2, -10) + 1.374906442631438038871515e-9 + + Verifying the differential equation:: + + >>> n = mpf(2.5) + >>> y = lambda z: pcfd(n,z) + >>> z = 1.75 + >>> chop(diff(y,z,2) + (n+0.5-0.25*z**2)*y(z)) + 0.0 + + Rational Taylor series expansion when `n` is an integer:: + + >>> taylor(lambda z: pcfd(5,z), 0, 7) + [0.0, 15.0, 0.0, -13.75, 0.0, 3.96875, 0.0, -0.6015625] + + """ + return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 1), [], **kwargs) + +@defun +def pcfu(ctx, a, z, **kwargs): + r""" + Gives the parabolic cylinder function `U(a,z)`, which may be + defined for `\Re(z) > 0` in terms of the confluent + U-function (see :func:`~mpmath.hyperu`) by + + .. math :: + + U(a,z) = 2^{-\frac{1}{4}-\frac{a}{2}} e^{-\frac{1}{4} z^2} + U\left(\frac{a}{2}+\frac{1}{4}, + \frac{1}{2}, \frac{1}{2}z^2\right) + + or, for arbitrary `z`, + + .. math :: + + e^{-\frac{1}{4}z^2} U(a,z) = + U(a,0) \,_1F_1\left(-\tfrac{a}{2}+\tfrac{1}{4}; + \tfrac{1}{2}; -\tfrac{1}{2}z^2\right) + + U'(a,0) z \,_1F_1\left(-\tfrac{a}{2}+\tfrac{3}{4}; + \tfrac{3}{2}; -\tfrac{1}{2}z^2\right). + + **Examples** + + Connection to other functions:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> z = mpf(3) + >>> pcfu(0.5,z) + 0.03210358129311151450551963 + >>> sqrt(pi/2)*exp(z**2/4)*erfc(z/sqrt(2)) + 0.03210358129311151450551963 + >>> pcfu(0.5,-z) + 23.75012332835297233711255 + >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) + 23.75012332835297233711255 + >>> pcfu(0.5,-z) + 23.75012332835297233711255 + >>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) + 23.75012332835297233711255 + + """ + n, _ = ctx._convert_param(a) + return ctx.pcfd(-n-ctx.mpq_1_2, z) + +@defun +def pcfv(ctx, a, z, **kwargs): + r""" + Gives the parabolic cylinder function `V(a,z)`, which can be + represented in terms of :func:`~mpmath.pcfu` as + + .. math :: + + V(a,z) = \frac{\Gamma(a+\tfrac{1}{2}) (U(a,-z)-\sin(\pi a) U(a,z)}{\pi}. + + **Examples** + + Wronskian relation between `U` and `V`:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> a, z = 2, 3 + >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) + 0.7978845608028653558798921 + >>> sqrt(2/pi) + 0.7978845608028653558798921 + >>> a, z = 2.5, 3 + >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) + 0.7978845608028653558798921 + >>> a, z = 0.25, -1 + >>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) + 0.7978845608028653558798921 + >>> a, z = 2+1j, 2+3j + >>> chop(pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)) + 0.7978845608028653558798921 + + """ + n, ntype = ctx._convert_param(a) + z = ctx.convert(z) + q = ctx.mpq_1_2 + r = ctx.mpq_1_4 + if ntype == 'Q' and ctx.isint(n*2): + # Faster for half-integers + def h(): + jz = ctx.fmul(z, -1j, exact=True) + T1terms = _hermite_param(ctx, -n-q, z, 1) + T2terms = _hermite_param(ctx, n-q, jz, 1) + for T in T1terms: + T[0].append(1j) + T[1].append(1) + T[3].append(q-n) + u = ctx.expjpi((q*n-r)) * ctx.sqrt(2/ctx.pi) + for T in T2terms: + T[0].append(u) + T[1].append(1) + return T1terms + T2terms + v = ctx.hypercomb(h, [], **kwargs) + if ctx._is_real_type(n) and ctx._is_real_type(z): + v = ctx._re(v) + return v + else: + def h(n): + w = ctx.square_exp_arg(z, -0.25) + u = ctx.square_exp_arg(z, 0.5) + e = ctx.exp(w) + l = [ctx.pi, q, ctx.exp(w)] + Y1 = l, [-q, n*q+r, 1], [r-q*n], [], [q*n+r], [q], u + Y2 = l + [z], [-q, n*q-r, 1, 1], [1-r-q*n], [], [q*n+1-r], [1+q], u + c, s = ctx.cospi_sinpi(r+q*n) + Y1[0].append(s) + Y2[0].append(c) + for Y in (Y1, Y2): + Y[1].append(1) + Y[3].append(q-n) + return Y1, Y2 + return ctx.hypercomb(h, [n], **kwargs) + + +@defun +def pcfw(ctx, a, z, **kwargs): + r""" + Gives the parabolic cylinder function `W(a,z)` defined in (DLMF 12.14). + + **Examples** + + Value at the origin:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> a = mpf(0.25) + >>> pcfw(a,0) + 0.9722833245718180765617104 + >>> power(2,-0.75)*sqrt(abs(gamma(0.25+0.5j*a)/gamma(0.75+0.5j*a))) + 0.9722833245718180765617104 + >>> diff(pcfw,(a,0),(0,1)) + -0.5142533944210078966003624 + >>> -power(2,-0.25)*sqrt(abs(gamma(0.75+0.5j*a)/gamma(0.25+0.5j*a))) + -0.5142533944210078966003624 + + """ + n, _ = ctx._convert_param(a) + z = ctx.convert(z) + def terms(): + phi2 = ctx.arg(ctx.gamma(0.5 + ctx.j*n)) + phi2 = (ctx.loggamma(0.5+ctx.j*n) - ctx.loggamma(0.5-ctx.j*n))/2j + rho = ctx.pi/8 + 0.5*phi2 + # XXX: cancellation computing k + k = ctx.sqrt(1 + ctx.exp(2*ctx.pi*n)) - ctx.exp(ctx.pi*n) + C = ctx.sqrt(k/2) * ctx.exp(0.25*ctx.pi*n) + yield C * ctx.expj(rho) * ctx.pcfu(ctx.j*n, z*ctx.expjpi(-0.25)) + yield C * ctx.expj(-rho) * ctx.pcfu(-ctx.j*n, z*ctx.expjpi(0.25)) + v = ctx.sum_accurately(terms) + if ctx._is_real_type(n) and ctx._is_real_type(z): + v = ctx._re(v) + return v + +""" +Even/odd PCFs. Useful? + +@defun +def pcfy1(ctx, a, z, **kwargs): + a, _ = ctx._convert_param(n) + z = ctx.convert(z) + def h(): + w = ctx.square_exp_arg(z) + w1 = ctx.fmul(w, -0.25, exact=True) + w2 = ctx.fmul(w, 0.5, exact=True) + e = ctx.exp(w1) + return [e], [1], [], [], [ctx.mpq_1_2*a+ctx.mpq_1_4], [ctx.mpq_1_2], w2 + return ctx.hypercomb(h, [], **kwargs) + +@defun +def pcfy2(ctx, a, z, **kwargs): + a, _ = ctx._convert_param(n) + z = ctx.convert(z) + def h(): + w = ctx.square_exp_arg(z) + w1 = ctx.fmul(w, -0.25, exact=True) + w2 = ctx.fmul(w, 0.5, exact=True) + e = ctx.exp(w1) + return [e, z], [1, 1], [], [], [ctx.mpq_1_2*a+ctx.mpq_3_4], \ + [ctx.mpq_3_2], w2 + return ctx.hypercomb(h, [], **kwargs) +""" + +@defun_wrapped +def gegenbauer(ctx, n, a, z, **kwargs): + # Special cases: a+0.5, a*2 poles + if ctx.isnpint(a): + return 0*(z+n) + if ctx.isnpint(a+0.5): + # TODO: something else is required here + # E.g.: gegenbauer(-2, -0.5, 3) == -12 + if ctx.isnpint(n+1): + raise NotImplementedError("Gegenbauer function with two limits") + def h(a): + a2 = 2*a + T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z) + return [T] + return ctx.hypercomb(h, [a], **kwargs) + def h(n): + a2 = 2*a + T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z) + return [T] + return ctx.hypercomb(h, [n], **kwargs) + +@defun_wrapped +def jacobi(ctx, n, a, b, x, **kwargs): + if not ctx.isnpint(a): + def h(n): + return (([], [], [a+n+1], [n+1, a+1], [-n, a+b+n+1], [a+1], (1-x)*0.5),) + return ctx.hypercomb(h, [n], **kwargs) + if not ctx.isint(b): + def h(n, a): + return (([], [], [-b], [n+1, -b-n], [-n, a+b+n+1], [b+1], (x+1)*0.5),) + return ctx.hypercomb(h, [n, a], **kwargs) + # XXX: determine appropriate limit + return ctx.binomial(n+a,n) * ctx.hyp2f1(-n,1+n+a+b,a+1,(1-x)/2, **kwargs) + +@defun_wrapped +def laguerre(ctx, n, a, z, **kwargs): + # XXX: limits, poles + #if ctx.isnpint(n): + # return 0*(a+z) + def h(a): + return (([], [], [a+n+1], [a+1, n+1], [-n], [a+1], z),) + return ctx.hypercomb(h, [a], **kwargs) + +@defun_wrapped +def legendre(ctx, n, x, **kwargs): + if ctx.isint(n): + n = int(n) + # Accuracy near zeros + if (n + (n < 0)) & 1: + if not x: + return x + mag = ctx.mag(x) + if mag < -2*ctx.prec-10: + return x + if mag < -5: + ctx.prec += -mag + return ctx.hyp2f1(-n,n+1,1,(1-x)/2, **kwargs) + +@defun +def legenp(ctx, n, m, z, type=2, **kwargs): + # Legendre function, 1st kind + n = ctx.convert(n) + m = ctx.convert(m) + # Faster + if not m: + return ctx.legendre(n, z, **kwargs) + # TODO: correct evaluation at singularities + if type == 2: + def h(n,m): + g = m*0.5 + T = [1+z, 1-z], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z) + return (T,) + return ctx.hypercomb(h, [n,m], **kwargs) + if type == 3: + def h(n,m): + g = m*0.5 + T = [z+1, z-1], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z) + return (T,) + return ctx.hypercomb(h, [n,m], **kwargs) + raise ValueError("requires type=2 or type=3") + +@defun +def legenq(ctx, n, m, z, type=2, **kwargs): + # Legendre function, 2nd kind + n = ctx.convert(n) + m = ctx.convert(m) + z = ctx.convert(z) + if z in (1, -1): + #if ctx.isint(m): + # return ctx.nan + #return ctx.inf # unsigned + return ctx.nan + if type == 2: + def h(n, m): + cos, sin = ctx.cospi_sinpi(m) + s = 2 * sin / ctx.pi + c = cos + a = 1+z + b = 1-z + u = m/2 + w = (1-z)/2 + T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \ + [-n, n+1], [1-m], w + T2 = [-s, a, b], [-1, -u, u], [n+m+1], [n-m+1, m+1], \ + [-n, n+1], [m+1], w + return T1, T2 + return ctx.hypercomb(h, [n, m], **kwargs) + if type == 3: + # The following is faster when there only is a single series + # Note: not valid for -1 < z < 0 (?) + if abs(z) > 1: + def h(n, m): + T1 = [ctx.expjpi(m), 2, ctx.pi, z, z-1, z+1], \ + [1, -n-1, 0.5, -n-m-1, 0.5*m, 0.5*m], \ + [n+m+1], [n+1.5], \ + [0.5*(2+n+m), 0.5*(1+n+m)], [n+1.5], z**(-2) + return [T1] + return ctx.hypercomb(h, [n, m], **kwargs) + else: + # not valid for 1 < z < inf ? + def h(n, m): + s = 2 * ctx.sinpi(m) / ctx.pi + c = ctx.expjpi(m) + a = 1+z + b = z-1 + u = m/2 + w = (1-z)/2 + T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \ + [-n, n+1], [1-m], w + T2 = [-s, c, a, b], [-1, 1, -u, u], [n+m+1], [n-m+1, m+1], \ + [-n, n+1], [m+1], w + return T1, T2 + return ctx.hypercomb(h, [n, m], **kwargs) + raise ValueError("requires type=2 or type=3") + +@defun_wrapped +def chebyt(ctx, n, x, **kwargs): + if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1: + return x * 0 + return ctx.hyp2f1(-n,n,(1,2),(1-x)/2, **kwargs) + +@defun_wrapped +def chebyu(ctx, n, x, **kwargs): + if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1: + return x * 0 + return (n+1) * ctx.hyp2f1(-n, n+2, (3,2), (1-x)/2, **kwargs) + +@defun +def spherharm(ctx, l, m, theta, phi, **kwargs): + l = ctx.convert(l) + m = ctx.convert(m) + theta = ctx.convert(theta) + phi = ctx.convert(phi) + l_isint = ctx.isint(l) + l_natural = l_isint and l >= 0 + m_isint = ctx.isint(m) + if l_isint and l < 0 and m_isint: + return ctx.spherharm(-(l+1), m, theta, phi, **kwargs) + if theta == 0 and m_isint and m < 0: + return ctx.zero * 1j + if l_natural and m_isint: + if abs(m) > l: + return ctx.zero * 1j + # http://functions.wolfram.com/Polynomials/ + # SphericalHarmonicY/26/01/02/0004/ + def h(l,m): + absm = abs(m) + C = [-1, ctx.expj(m*phi), + (2*l+1)*ctx.fac(l+absm)/ctx.pi/ctx.fac(l-absm), + ctx.sin(theta)**2, + ctx.fac(absm), 2] + P = [0.5*m*(ctx.sign(m)+1), 1, 0.5, 0.5*absm, -1, -absm-1] + return ((C, P, [], [], [absm-l, l+absm+1], [absm+1], + ctx.sin(0.5*theta)**2),) + else: + # http://functions.wolfram.com/HypergeometricFunctions/ + # SphericalHarmonicYGeneral/26/01/02/0001/ + def h(l,m): + if ctx.isnpint(l-m+1) or ctx.isnpint(l+m+1) or ctx.isnpint(1-m): + return (([0], [-1], [], [], [], [], 0),) + cos, sin = ctx.cos_sin(0.5*theta) + C = [0.5*ctx.expj(m*phi), (2*l+1)/ctx.pi, + ctx.gamma(l-m+1), ctx.gamma(l+m+1), + cos**2, sin**2] + P = [1, 0.5, 0.5, -0.5, 0.5*m, -0.5*m] + return ((C, P, [], [1-m], [-l,l+1], [1-m], sin**2),) + return ctx.hypercomb(h, [l,m], **kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/qfunctions.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/qfunctions.py new file mode 100644 index 0000000000000000000000000000000000000000..5a20e53a8b6fa0d8fbc9ad098614d2694998f49a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/qfunctions.py @@ -0,0 +1,280 @@ +from .functions import defun, defun_wrapped + +@defun +def qp(ctx, a, q=None, n=None, **kwargs): + r""" + Evaluates the q-Pochhammer symbol (or q-rising factorial) + + .. math :: + + (a; q)_n = \prod_{k=0}^{n-1} (1-a q^k) + + where `n = \infty` is permitted if `|q| < 1`. Called with two arguments, + ``qp(a,q)`` computes `(a;q)_{\infty}`; with a single argument, ``qp(q)`` + computes `(q;q)_{\infty}`. The special case + + .. math :: + + \phi(q) = (q; q)_{\infty} = \prod_{k=1}^{\infty} (1-q^k) = + \sum_{k=-\infty}^{\infty} (-1)^k q^{(3k^2-k)/2} + + is also known as the Euler function, or (up to a factor `q^{-1/24}`) + the Dedekind eta function. + + **Examples** + + If `n` is a positive integer, the function amounts to a finite product:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> qp(2,3,5) + -725305.0 + >>> fprod(1-2*3**k for k in range(5)) + -725305.0 + >>> qp(2,3,0) + 1.0 + + Complex arguments are allowed:: + + >>> qp(2-1j, 0.75j) + (0.4628842231660149089976379 + 4.481821753552703090628793j) + + The regular Pochhammer symbol `(a)_n` is obtained in the + following limit as `q \to 1`:: + + >>> a, n = 4, 7 + >>> limit(lambda q: qp(q**a,q,n) / (1-q)**n, 1) + 604800.0 + >>> rf(a,n) + 604800.0 + + The Taylor series of the reciprocal Euler function gives + the partition function `P(n)`, i.e. the number of ways of writing + `n` as a sum of positive integers:: + + >>> taylor(lambda q: 1/qp(q), 0, 10) + [1.0, 1.0, 2.0, 3.0, 5.0, 7.0, 11.0, 15.0, 22.0, 30.0, 42.0] + + Special values include:: + + >>> qp(0) + 1.0 + >>> findroot(diffun(qp), -0.4) # location of maximum + -0.4112484791779547734440257 + >>> qp(_) + 1.228348867038575112586878 + + The q-Pochhammer symbol is related to the Jacobi theta functions. + For example, the following identity holds:: + + >>> q = mpf(0.5) # arbitrary + >>> qp(q) + 0.2887880950866024212788997 + >>> root(3,-2)*root(q,-24)*jtheta(2,pi/6,root(q,6)) + 0.2887880950866024212788997 + + """ + a = ctx.convert(a) + if n is None: + n = ctx.inf + else: + n = ctx.convert(n) + if n < 0: + raise ValueError("n cannot be negative") + if q is None: + q = a + else: + q = ctx.convert(q) + if n == 0: + return ctx.one + 0*(a+q) + infinite = (n == ctx.inf) + same = (a == q) + if infinite: + if abs(q) >= 1: + if same and (q == -1 or q == 1): + return ctx.zero * q + raise ValueError("q-function only defined for |q| < 1") + elif q == 0: + return ctx.one - a + maxterms = kwargs.get('maxterms', 50*ctx.prec) + if infinite and same: + # Euler's pentagonal theorem + def terms(): + t = 1 + yield t + k = 1 + x1 = q + x2 = q**2 + while 1: + yield (-1)**k * x1 + yield (-1)**k * x2 + x1 *= q**(3*k+1) + x2 *= q**(3*k+2) + k += 1 + if k > maxterms: + raise ctx.NoConvergence + return ctx.sum_accurately(terms) + # return ctx.nprod(lambda k: 1-a*q**k, [0,n-1]) + def factors(): + k = 0 + r = ctx.one + while 1: + yield 1 - a*r + r *= q + k += 1 + if k >= n: + return + if k > maxterms: + raise ctx.NoConvergence + return ctx.mul_accurately(factors) + +@defun_wrapped +def qgamma(ctx, z, q, **kwargs): + r""" + Evaluates the q-gamma function + + .. math :: + + \Gamma_q(z) = \frac{(q; q)_{\infty}}{(q^z; q)_{\infty}} (1-q)^{1-z}. + + + **Examples** + + Evaluation for real and complex arguments:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> qgamma(4,0.75) + 4.046875 + >>> qgamma(6,6) + 121226245.0 + >>> qgamma(3+4j, 0.5j) + (0.1663082382255199834630088 + 0.01952474576025952984418217j) + + The q-gamma function satisfies a functional equation similar + to that of the ordinary gamma function:: + + >>> q = mpf(0.25) + >>> z = mpf(2.5) + >>> qgamma(z+1,q) + 1.428277424823760954685912 + >>> (1-q**z)/(1-q)*qgamma(z,q) + 1.428277424823760954685912 + + """ + if abs(q) > 1: + return ctx.qgamma(z,1/q)*q**((z-2)*(z-1)*0.5) + return ctx.qp(q, q, None, **kwargs) / \ + ctx.qp(q**z, q, None, **kwargs) * (1-q)**(1-z) + +@defun_wrapped +def qfac(ctx, z, q, **kwargs): + r""" + Evaluates the q-factorial, + + .. math :: + + [n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}) + + or more generally + + .. math :: + + [z]_q! = \frac{(q;q)_z}{(1-q)^z}. + + **Examples** + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> qfac(0,0) + 1.0 + >>> qfac(4,3) + 2080.0 + >>> qfac(5,6) + 121226245.0 + >>> qfac(1+1j, 2+1j) + (0.4370556551322672478613695 + 0.2609739839216039203708921j) + + """ + if ctx.isint(z) and ctx._re(z) > 0: + n = int(ctx._re(z)) + return ctx.qp(q, q, n, **kwargs) / (1-q)**n + return ctx.qgamma(z+1, q, **kwargs) + +@defun +def qhyper(ctx, a_s, b_s, q, z, **kwargs): + r""" + Evaluates the basic hypergeometric series or hypergeometric q-series + + .. math :: + + \,_r\phi_s \left[\begin{matrix} + a_1 & a_2 & \ldots & a_r \\ + b_1 & b_2 & \ldots & b_s + \end{matrix} ; q,z \right] = + \sum_{n=0}^\infty + \frac{(a_1;q)_n, \ldots, (a_r;q)_n} + {(b_1;q)_n, \ldots, (b_s;q)_n} + \left((-1)^n q^{n\choose 2}\right)^{1+s-r} + \frac{z^n}{(q;q)_n} + + where `(a;q)_n` denotes the q-Pochhammer symbol (see :func:`~mpmath.qp`). + + **Examples** + + Evaluation works for real and complex arguments:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> qhyper([0.5], [2.25], 0.25, 4) + -0.1975849091263356009534385 + >>> qhyper([0.5], [2.25], 0.25-0.25j, 4) + (2.806330244925716649839237 + 3.568997623337943121769938j) + >>> qhyper([1+j], [2,3+0.5j], 0.25, 3+4j) + (9.112885171773400017270226 - 1.272756997166375050700388j) + + Comparing with a summation of the defining series, using + :func:`~mpmath.nsum`:: + + >>> b, q, z = 3, 0.25, 0.5 + >>> qhyper([], [b], q, z) + 0.6221136748254495583228324 + >>> nsum(lambda n: z**n / qp(q,q,n)/qp(b,q,n) * q**(n*(n-1)), [0,inf]) + 0.6221136748254495583228324 + + """ + #a_s = [ctx._convert_param(a)[0] for a in a_s] + #b_s = [ctx._convert_param(b)[0] for b in b_s] + #q = ctx._convert_param(q)[0] + a_s = [ctx.convert(a) for a in a_s] + b_s = [ctx.convert(b) for b in b_s] + q = ctx.convert(q) + z = ctx.convert(z) + r = len(a_s) + s = len(b_s) + d = 1+s-r + maxterms = kwargs.get('maxterms', 50*ctx.prec) + def terms(): + t = ctx.one + yield t + qk = 1 + k = 0 + x = 1 + while 1: + for a in a_s: + p = 1 - a*qk + t *= p + for b in b_s: + p = 1 - b*qk + if not p: + raise ValueError + t /= p + t *= z + x *= (-1)**d * qk ** d + qk *= q + t /= (1 - qk) + k += 1 + yield t * x + if k > maxterms: + raise ctx.NoConvergence + return ctx.sum_accurately(terms) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/rszeta.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/rszeta.py new file mode 100644 index 0000000000000000000000000000000000000000..19e2c9a251b81bafe8cf77a2b0180636b1078ee4 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/rszeta.py @@ -0,0 +1,1403 @@ +""" +--------------------------------------------------------------------- +.. sectionauthor:: Juan Arias de Reyna + +This module implements zeta-related functions using the Riemann-Siegel +expansion: zeta_offline(s,k=0) + +* coef(J, eps): Need in the computation of Rzeta(s,k) + +* Rzeta_simul(s, der=0) computes Rzeta^(k)(s) and Rzeta^(k)(1-s) simultaneously + for 0 <= k <= der. Used by zeta_offline and z_offline + +* Rzeta_set(s, derivatives) computes Rzeta^(k)(s) for given derivatives, used by + z_half(t,k) and zeta_half + +* z_offline(w,k): Z(w) and its derivatives of order k <= 4 +* z_half(t,k): Z(t) (Riemann Siegel function) and its derivatives of order k <= 4 +* zeta_offline(s): zeta(s) and its derivatives of order k<= 4 +* zeta_half(1/2+it,k): zeta(s) and its derivatives of order k<= 4 + +* rs_zeta(s,k=0) Computes zeta^(k)(s) Unifies zeta_half and zeta_offline +* rs_z(w,k=0) Computes Z^(k)(w) Unifies z_offline and z_half +---------------------------------------------------------------------- + +This program uses Riemann-Siegel expansion even to compute +zeta(s) on points s = sigma + i t with sigma arbitrary not +necessarily equal to 1/2. + +It is founded on a new deduction of the formula, with rigorous +and sharp bounds for the terms and rest of this expansion. + +More information on the papers: + + J. Arias de Reyna, High Precision Computation of Riemann's + Zeta Function by the Riemann-Siegel Formula I, II + + We refer to them as I, II. + + In them we shall find detailed explanation of all the + procedure. + +The program uses Riemann-Siegel expansion. +This is useful when t is big, ( say t > 10000 ). +The precision is limited, roughly it can compute zeta(sigma+it) +with an error less than exp(-c t) for some constant c depending +on sigma. The program gives an error when the Riemann-Siegel +formula can not compute to the wanted precision. + +""" + +import math + +class RSCache(object): + def __init__(ctx): + ctx._rs_cache = [0, 10, {}, {}] + +from .functions import defun + +#-------------------------------------------------------------------------------# +# # +# coef(ctx, J, eps, _cache=[0, 10, {} ] ) # +# # +#-------------------------------------------------------------------------------# + +# This function computes the coefficients c[n] defined on (I, equation (47)) +# but see also (II, section 3.14). +# +# Since these coefficients are very difficult to compute we save the values +# in a cache. So if we compute several values of the functions Rzeta(s) for +# near values of s, we do not recompute these coefficients. +# +# c[n] are the Taylor coefficients of the function: +# +# F(z):= (exp(pi*j*(z*z/2+3/8))-j* sqrt(2) cos(pi*z/2))/(2*cos(pi *z)) +# +# + +def _coef(ctx, J, eps): + r""" + Computes the coefficients `c_n` for `0\le n\le 2J` with error less than eps + + **Definition** + + The coefficients c_n are defined by + + .. math :: + + \begin{equation} + F(z)=\frac{e^{\pi i + \bigl(\frac{z^2}{2}+\frac38\bigr)}-i\sqrt{2}\cos\frac{\pi}{2}z}{2\cos\pi + z}=\sum_{n=0}^\infty c_{2n} z^{2n} + \end{equation} + + they are computed applying the relation + + .. math :: + + \begin{multline} + c_{2n}=-\frac{i}{\sqrt{2}}\Bigl(\frac{\pi}{2}\Bigr)^{2n} + \sum_{k=0}^n\frac{(-1)^k}{(2k)!} + 2^{2n-2k}\frac{(-1)^{n-k}E_{2n-2k}}{(2n-2k)!}+\\ + +e^{3\pi i/8}\sum_{j=0}^n(-1)^j\frac{ + E_{2j}}{(2j)!}\frac{i^{n-j}\pi^{n+j}}{(n-j)!2^{n-j+1}}. + \end{multline} + """ + + newJ = J+2 # compute more coefficients that are needed + neweps6 = eps/2. # compute with a slight more precision that are needed + + # PREPARATION FOR THE COMPUTATION OF V(N) AND W(N) + # See II Section 3.16 + # + # Computing the exponent wpvw of the error II equation (81) + wpvw = max(ctx.mag(10*(newJ+3)), 4*newJ+5-ctx.mag(neweps6)) + + # Preparation of Euler numbers (we need until the 2*RS_NEWJ) + E = ctx._eulernum(2*newJ) + + # Now we have in the cache all the needed Euler numbers. + # + # Computing the powers of pi + # + # We need to compute the powers pi**n for 1<= n <= 2*J + # with relative error less than 2**(-wpvw) + # it is easy to show that this is obtained + # taking wppi as the least d with + # 2**d>40*J and 2**d> 4.24 *newJ + 2**wpvw + # In II Section 3.9 we need also that + # wppi > wptcoef[0], and that the powers + # here computed 0<= k <= 2*newJ are more + # than those needed there that are 2*L-2. + # so we need J >= L this will be checked + # before computing tcoef[] + wppi = max(ctx.mag(40*newJ), ctx.mag(newJ)+3 +wpvw) + ctx.prec = wppi + pipower = {} + pipower[0] = ctx.one + pipower[1] = ctx.pi + for n in range(2,2*newJ+1): + pipower[n] = pipower[n-1]*ctx.pi + + # COMPUTING THE COEFFICIENTS v(n) AND w(n) + # see II equation (61) and equations (81) and (82) + ctx.prec = wpvw+2 + v={} + w={} + for n in range(0,newJ+1): + va = (-1)**n * ctx._eulernum(2*n) + va = ctx.mpf(va)/ctx.fac(2*n) + v[n]=va*pipower[2*n] + for n in range(0,2*newJ+1): + wa = ctx.one/ctx.fac(n) + wa=wa/(2**n) + w[n]=wa*pipower[n] + + # COMPUTATION OF THE CONVOLUTIONS RS_P1 AND RS_P2 + # See II Section 3.16 + ctx.prec = 15 + wpp1a = 9 - ctx.mag(neweps6) + P1 = {} + for n in range(0,newJ+1): + ctx.prec = 15 + wpp1 = max(ctx.mag(10*(n+4)),4*n+wpp1a) + ctx.prec = wpp1 + sump = 0 + for k in range(0,n+1): + sump += ((-1)**k) * v[k]*w[2*n-2*k] + P1[n]=((-1)**(n+1))*ctx.j*sump + P2={} + for n in range(0,newJ+1): + ctx.prec = 15 + wpp2 = max(ctx.mag(10*(n+4)),4*n+wpp1a) + ctx.prec = wpp2 + sump = 0 + for k in range(0,n+1): + sump += (ctx.j**(n-k)) * v[k]*w[n-k] + P2[n]=sump + # COMPUTING THE COEFFICIENTS c[2n] + # See II Section 3.14 + ctx.prec = 15 + wpc0 = 5 - ctx.mag(neweps6) + wpc = max(6,4*newJ+wpc0) + ctx.prec = wpc + mu = ctx.sqrt(ctx.mpf('2'))/2 + nu = ctx.expjpi(3./8)/2 + c={} + for n in range(0,newJ): + ctx.prec = 15 + wpc = max(6,4*n+wpc0) + ctx.prec = wpc + c[2*n] = mu*P1[n]+nu*P2[n] + for n in range(1,2*newJ,2): + c[n] = 0 + return [newJ, neweps6, c, pipower] + +def coef(ctx, J, eps): + _cache = ctx._rs_cache + if J <= _cache[0] and eps >= _cache[1]: + return _cache[2], _cache[3] + orig = ctx._mp.prec + try: + data = _coef(ctx._mp, J, eps) + finally: + ctx._mp.prec = orig + if ctx is not ctx._mp: + data[2] = dict((k,ctx.convert(v)) for (k,v) in data[2].items()) + data[3] = dict((k,ctx.convert(v)) for (k,v) in data[3].items()) + ctx._rs_cache[:] = data + return ctx._rs_cache[2], ctx._rs_cache[3] + +#-------------------------------------------------------------------------------# +# # +# Rzeta_simul(s,k=0) # +# # +#-------------------------------------------------------------------------------# +# This function return a list with the values: +# Rzeta(sigma+it), conj(Rzeta(1-sigma+it)),Rzeta'(sigma+it), conj(Rzeta'(1-sigma+it)), +# .... , Rzeta^{(k)}(sigma+it), conj(Rzeta^{(k)}(1-sigma+it)) +# +# Useful to compute the function zeta(s) and Z(w) or its derivatives. +# + +def aux_M_Fp(ctx, xA, xeps4, a, xB1, xL): + # COMPUTING M NUMBER OF DERIVATIVES Fp[m] TO COMPUTE + # See II Section 3.11 equations (47) and (48) + aux1 = 126.0657606*xA/xeps4 # 126.06.. = 316/sqrt(2*pi) + aux1 = ctx.ln(aux1) + aux2 = (2*ctx.ln(ctx.pi)+ctx.ln(xB1)+ctx.ln(a))/3 -ctx.ln(2*ctx.pi)/2 + m = 3*xL-3 + aux3= (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.) + while((aux1 < m*aux2+ aux3)and (m>1)): + m = m - 1 + aux3 = (ctx.loggamma(m+1)-ctx.loggamma(m/3.0+2))/2 -ctx.loggamma((m+1)/2.) + xM = m + return xM + +def aux_J_needed(ctx, xA, xeps4, a, xB1, xM): + # DETERMINATION OF J THE NUMBER OF TERMS NEEDED + # IN THE TAYLOR SERIES OF F. + # See II Section 3.11 equation (49)) + # Only determine one + h1 = xeps4/(632*xA) + h2 = xB1*a * 126.31337419529260248 # = pi^2*e^2*sqrt(3) + h2 = h1 * ctx.power((h2/xM**2),(xM-1)/3) / xM + h3 = min(h1,h2) + return h3 + +def Rzeta_simul(ctx, s, der=0): + # First we take the value of ctx.prec + wpinitial = ctx.prec + + # INITIALIZATION + # Take the real and imaginary part of s + t = ctx._im(s) + xsigma = ctx._re(s) + ysigma = 1 - xsigma + + # Now compute several parameter that appear on the program + ctx.prec = 15 + a = ctx.sqrt(t/(2*ctx.pi)) + xasigma = a ** xsigma + yasigma = a ** ysigma + + # We need a simple bound A1 < asigma (see II Section 3.1 and 3.3) + xA1=ctx.power(2, ctx.mag(xasigma)-1) + yA1=ctx.power(2, ctx.mag(yasigma)-1) + + # We compute various epsilon's (see II end of Section 3.1) + eps = ctx.power(2, -wpinitial) + eps1 = eps/6. + xeps2 = eps * xA1/3. + yeps2 = eps * yA1/3. + + # COMPUTING SOME COEFFICIENTS THAT DEPENDS + # ON sigma + # constant b and c (see I Theorem 2 formula (26) ) + # coefficients A and B1 (see I Section 6.1 equation (50)) + # + # here we not need high precision + ctx.prec = 15 + if xsigma > 0: + xb = 2. + xc = math.pow(9,xsigma)/4.44288 + # 4.44288 =(math.sqrt(2)*math.pi) + xA = math.pow(9,xsigma) + xB1 = 1 + else: + xb = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi ) + xc = math.pow(2,-xsigma)/4.44288 + xA = math.pow(2,-xsigma) + xB1 = 1.10789 # = 2*sqrt(1-log(2)) + + if(ysigma > 0): + yb = 2. + yc = math.pow(9,ysigma)/4.44288 + # 4.44288 =(math.sqrt(2)*math.pi) + yA = math.pow(9,ysigma) + yB1 = 1 + else: + yb = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi ) + yc = math.pow(2,-ysigma)/4.44288 + yA = math.pow(2,-ysigma) + yB1 = 1.10789 # = 2*sqrt(1-log(2)) + + # COMPUTING L THE NUMBER OF TERMS NEEDED IN THE RIEMANN-SIEGEL + # CORRECTION + # See II Section 3.2 + ctx.prec = 15 + xL = 1 + while 3*xc*ctx.gamma(xL*0.5) * ctx.power(xb*a,-xL) >= xeps2: + xL = xL+1 + xL = max(2,xL) + yL = 1 + while 3*yc*ctx.gamma(yL*0.5) * ctx.power(yb*a,-yL) >= yeps2: + yL = yL+1 + yL = max(2,yL) + + # The number L has to satify some conditions. + # If not RS can not compute Rzeta(s) with the prescribed precision + # (see II, Section 3.2 condition (20) ) and + # (II, Section 3.3 condition (22) ). Also we have added + # an additional technical condition in Section 3.17 Proposition 17 + if ((3*xL >= 2*a*a/25.) or (3*xL+2+xsigma<0) or (abs(xsigma) > a/2.) or \ + (3*yL >= 2*a*a/25.) or (3*yL+2+ysigma<0) or (abs(ysigma) > a/2.)): + ctx.prec = wpinitial + raise NotImplementedError("Riemann-Siegel can not compute with such precision") + + # We take the maximum of the two values + L = max(xL, yL) + + # INITIALIZATION (CONTINUATION) + # + # eps3 is the constant defined on (II, Section 3.5 equation (27) ) + # each term of the RS correction must be computed with error <= eps3 + xeps3 = xeps2/(4*xL) + yeps3 = yeps2/(4*yL) + + # eps4 is defined on (II Section 3.6 equation (30) ) + # each component of the formula (II Section 3.6 equation (29) ) + # must be computed with error <= eps4 + xeps4 = xeps3/(3*xL) + yeps4 = yeps3/(3*yL) + + # COMPUTING M NUMBER OF DERIVATIVES Fp[m] TO COMPUTE + xM = aux_M_Fp(ctx, xA, xeps4, a, xB1, xL) + yM = aux_M_Fp(ctx, yA, yeps4, a, yB1, yL) + M = max(xM, yM) + + # COMPUTING NUMBER OF TERMS J NEEDED + h3 = aux_J_needed(ctx, xA, xeps4, a, xB1, xM) + h4 = aux_J_needed(ctx, yA, yeps4, a, yB1, yM) + h3 = min(h3,h4) + J = 12 + jvalue = (2*ctx.pi)**J / ctx.gamma(J+1) + while jvalue > h3: + J = J+1 + jvalue = (2*ctx.pi)*jvalue/J + + # COMPUTING eps5[m] for 1 <= m <= 21 + # See II Section 10 equation (43) + # We choose the minimum of the two possibilities + eps5={} + xforeps5 = math.pi*math.pi*xB1*a + yforeps5 = math.pi*math.pi*yB1*a + for m in range(0,22): + xaux1 = math.pow(xforeps5, m/3)/(316.*xA) + yaux1 = math.pow(yforeps5, m/3)/(316.*yA) + aux1 = min(xaux1, yaux1) + aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5) + aux2 = math.sqrt(aux2) + eps5[m] = (aux1*aux2*min(xeps4,yeps4)) + + # COMPUTING wpfp + # See II Section 3.13 equation (59) + twenty = min(3*L-3, 21)+1 + aux = 6812*J + wpfp = ctx.mag(44*J) + for m in range(0,twenty): + wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m])) + + # COMPUTING N AND p + # See II Section + ctx.prec = wpfp + ctx.mag(t)+20 + a = ctx.sqrt(t/(2*ctx.pi)) + N = ctx.floor(a) + p = 1-2*(a-N) + + # now we get a rounded version of p + # to the precision wpfp + # this possibly is not necessary + num=ctx.floor(p*(ctx.mpf('2')**wpfp)) + difference = p * (ctx.mpf('2')**wpfp)-num + if (difference < 0.5): + num = num + else: + num = num+1 + p = ctx.convert(num * (ctx.mpf('2')**(-wpfp))) + + # COMPUTING THE COEFFICIENTS c[n] = cc[n] + # We shall use the notation cc[n], since there is + # a constant that is called c + # See II Section 3.14 + # We compute the coefficients and also save then in a + # cache. The bulk of the computation is passed to + # the function coef() + # + # eps6 is defined in II Section 3.13 equation (58) + eps6 = ctx.power(ctx.convert(2*ctx.pi), J)/(ctx.gamma(J+1)*3*J) + + # Now we compute the coefficients + cc = {} + cont = {} + cont, pipowers = coef(ctx, J, eps6) + cc=cont.copy() # we need a copy since we have to change his values. + Fp={} # this is the adequate locus of this + for n in range(M, 3*L-2): + Fp[n] = 0 + Fp={} + ctx.prec = wpfp + for m in range(0,M+1): + sumP = 0 + for k in range(2*J-m-1,-1,-1): + sumP = (sumP * p)+ cc[k] + Fp[m] = sumP + # preparation of the new coefficients + for k in range(0,2*J-m-1): + cc[k] = (k+1)* cc[k+1] + + # COMPUTING THE NUMBERS xd[u,n,k], yd[u,n,k] + # See II Section 3.17 + # + # First we compute the working precisions xwpd[k] + # Se II equation (92) + xwpd={} + d1 = max(6,ctx.mag(40*L*L)) + xd2 = 13+ctx.mag((1+abs(xsigma))*xA)-ctx.mag(xeps4)-1 + xconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*xB1*xB1)) /2 + for n in range(0,L): + xd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*xconst)+xd2 + xwpd[n]=max(xd3,d1) + + # procedure of II Section 3.17 + ctx.prec = xwpd[1]+10 + xpsigma = 1-(2*xsigma) + xd = {} + xd[0,0,-2]=0; xd[0,0,-1]=0; xd[0,0,0]=1; xd[0,0,1]=0 + xd[0,-1,-2]=0; xd[0,-1,-1]=0; xd[0,-1,0]=1; xd[0,-1,1]=0 + for n in range(1,L): + ctx.prec = xwpd[n]+10 + for k in range(0,3*n//2+1): + m = 3*n-2*k + if(m!=0): + m1 = ctx.one/m + c1= m1/4 + c2=(xpsigma*m1)/2 + c3=-(m+1) + xd[0,n,k]=c3*xd[0,n-1,k-2]+c1*xd[0,n-1,k]+c2*xd[0,n-1,k-1] + else: + xd[0,n,k]=0 + for r in range(0,k): + add=xd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r)) + xd[0,n,k] -= ((-1)**(k-r))*add + xd[0,n,-2]=0; xd[0,n,-1]=0; xd[0,n,3*n//2+1]=0 + for mu in range(-2,der+1): + for n in range(-2,L): + for k in range(-3,max(1,3*n//2+2)): + if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)): + xd[mu,n,k] = 0 + for mu in range(1,der+1): + for n in range(0,L): + ctx.prec = xwpd[n]+10 + for k in range(0,3*n//2+1): + aux=(2*mu-2)*xd[mu-2,n-2,k-3]+2*(xsigma+n-2)*xd[mu-1,n-2,k-3] + xd[mu,n,k] = aux - xd[mu-1,n-1,k-1] + + # Now we compute the working precisions ywpd[k] + # Se II equation (92) + ywpd={} + d1 = max(6,ctx.mag(40*L*L)) + yd2 = 13+ctx.mag((1+abs(ysigma))*yA)-ctx.mag(yeps4)-1 + yconst = ctx.ln(8/(ctx.pi*ctx.pi*a*a*yB1*yB1)) /2 + for n in range(0,L): + yd3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*yconst)+yd2 + ywpd[n]=max(yd3,d1) + + # procedure of II Section 3.17 + ctx.prec = ywpd[1]+10 + ypsigma = 1-(2*ysigma) + yd = {} + yd[0,0,-2]=0; yd[0,0,-1]=0; yd[0,0,0]=1; yd[0,0,1]=0 + yd[0,-1,-2]=0; yd[0,-1,-1]=0; yd[0,-1,0]=1; yd[0,-1,1]=0 + for n in range(1,L): + ctx.prec = ywpd[n]+10 + for k in range(0,3*n//2+1): + m = 3*n-2*k + if(m!=0): + m1 = ctx.one/m + c1= m1/4 + c2=(ypsigma*m1)/2 + c3=-(m+1) + yd[0,n,k]=c3*yd[0,n-1,k-2]+c1*yd[0,n-1,k]+c2*yd[0,n-1,k-1] + else: + yd[0,n,k]=0 + for r in range(0,k): + add=yd[0,n,r]*(ctx.mpf('1.0')*ctx.fac(2*k-2*r)/ctx.fac(k-r)) + yd[0,n,k] -= ((-1)**(k-r))*add + yd[0,n,-2]=0; yd[0,n,-1]=0; yd[0,n,3*n//2+1]=0 + + for mu in range(-2,der+1): + for n in range(-2,L): + for k in range(-3,max(1,3*n//2+2)): + if( (mu<0)or (n<0) or(k<0)or (k>3*n//2)): + yd[mu,n,k] = 0 + for mu in range(1,der+1): + for n in range(0,L): + ctx.prec = ywpd[n]+10 + for k in range(0,3*n//2+1): + aux=(2*mu-2)*yd[mu-2,n-2,k-3]+2*(ysigma+n-2)*yd[mu-1,n-2,k-3] + yd[mu,n,k] = aux - yd[mu-1,n-1,k-1] + + # COMPUTING THE COEFFICIENTS xtcoef[k,l] + # See II Section 3.9 + # + # computing the needed wp + xwptcoef={} + xwpterm={} + ctx.prec = 15 + c1 = ctx.mag(40*(L+2)) + xc2 = ctx.mag(68*(L+2)*xA) + xc4 = ctx.mag(xB1*a*math.sqrt(ctx.pi))-1 + for k in range(0,L): + xc3 = xc2 - k*xc4+ctx.mag(ctx.fac(k+0.5))/2. + xwptcoef[k] = (max(c1,xc3-ctx.mag(xeps4)+1)+1 +20)*1.5 + xwpterm[k] = (max(c1,ctx.mag(L+2)+xc3-ctx.mag(xeps3)+1)+1 +20) + ywptcoef={} + ywpterm={} + ctx.prec = 15 + c1 = ctx.mag(40*(L+2)) + yc2 = ctx.mag(68*(L+2)*yA) + yc4 = ctx.mag(yB1*a*math.sqrt(ctx.pi))-1 + for k in range(0,L): + yc3 = yc2 - k*yc4+ctx.mag(ctx.fac(k+0.5))/2. + ywptcoef[k] = ((max(c1,yc3-ctx.mag(yeps4)+1))+10)*1.5 + ywpterm[k] = (max(c1,ctx.mag(L+2)+yc3-ctx.mag(yeps3)+1)+1)+10 + + # check of power of pi + # computing the fortcoef[mu,k,ell] + xfortcoef={} + for mu in range(0,der+1): + for k in range(0,L): + for ell in range(-2,3*k//2+1): + xfortcoef[mu,k,ell]=0 + for mu in range(0,der+1): + for k in range(0,L): + ctx.prec = xwptcoef[k] + for ell in range(0,3*k//2+1): + xfortcoef[mu,k,ell]=xd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] + xfortcoef[mu,k,ell]=xfortcoef[mu,k,ell]/((2*ctx.j)**ell) + + def trunc_a(t): + wp = ctx.prec + ctx.prec = wp + 2 + aa = ctx.sqrt(t/(2*ctx.pi)) + ctx.prec = wp + return aa + + # computing the tcoef[k,ell] + xtcoef={} + for mu in range(0,der+1): + for k in range(0,L): + for ell in range(-2,3*k//2+1): + xtcoef[mu,k,ell]=0 + ctx.prec = max(xwptcoef[0],ywptcoef[0])+3 + aa= trunc_a(t) + la = -ctx.ln(aa) + + for chi in range(0,der+1): + for k in range(0,L): + ctx.prec = xwptcoef[k] + for ell in range(0,3*k//2+1): + xtcoef[chi,k,ell] =0 + for mu in range(0, chi+1): + tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*xfortcoef[chi-mu,k,ell] + xtcoef[chi,k,ell] += tcoefter + + # COMPUTING THE COEFFICIENTS ytcoef[k,l] + # See II Section 3.9 + # + # computing the needed wp + # check of power of pi + # computing the fortcoef[mu,k,ell] + yfortcoef={} + for mu in range(0,der+1): + for k in range(0,L): + for ell in range(-2,3*k//2+1): + yfortcoef[mu,k,ell]=0 + for mu in range(0,der+1): + for k in range(0,L): + ctx.prec = ywptcoef[k] + for ell in range(0,3*k//2+1): + yfortcoef[mu,k,ell]=yd[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] + yfortcoef[mu,k,ell]=yfortcoef[mu,k,ell]/((2*ctx.j)**ell) + # computing the tcoef[k,ell] + ytcoef={} + for chi in range(0,der+1): + for k in range(0,L): + for ell in range(-2,3*k//2+1): + ytcoef[chi,k,ell]=0 + for chi in range(0,der+1): + for k in range(0,L): + ctx.prec = ywptcoef[k] + for ell in range(0,3*k//2+1): + ytcoef[chi,k,ell] =0 + for mu in range(0, chi+1): + tcoefter=ctx.binomial(chi,mu)*ctx.power(la,mu)*yfortcoef[chi-mu,k,ell] + ytcoef[chi,k,ell] += tcoefter + + # COMPUTING tv[k,ell] + # See II Section 3.8 + # + # a has a good value + ctx.prec = max(xwptcoef[0], ywptcoef[0])+2 + av = {} + av[0] = 1 + av[1] = av[0]/a + + ctx.prec = max(xwptcoef[0],ywptcoef[0]) + for k in range(2,L): + av[k] = av[k-1] * av[1] + + # Computing the quotients + xtv = {} + for chi in range(0,der+1): + for k in range(0,L): + ctx.prec = xwptcoef[k] + for ell in range(0,3*k//2+1): + xtv[chi,k,ell] = xtcoef[chi,k,ell]* av[k] + # Computing the quotients + ytv = {} + for chi in range(0,der+1): + for k in range(0,L): + ctx.prec = ywptcoef[k] + for ell in range(0,3*k//2+1): + ytv[chi,k,ell] = ytcoef[chi,k,ell]* av[k] + + # COMPUTING THE TERMS xterm[k] + # See II Section 3.6 + xterm = {} + for chi in range(0,der+1): + for n in range(0,L): + ctx.prec = xwpterm[n] + te = 0 + for k in range(0, 3*n//2+1): + te += xtv[chi,n,k] + xterm[chi,n] = te + + # COMPUTING THE TERMS yterm[k] + # See II Section 3.6 + yterm = {} + for chi in range(0,der+1): + for n in range(0,L): + ctx.prec = ywpterm[n] + te = 0 + for k in range(0, 3*n//2+1): + te += ytv[chi,n,k] + yterm[chi,n] = te + + # COMPUTING rssum + # See II Section 3.5 + xrssum={} + ctx.prec=15 + xrsbound = math.sqrt(ctx.pi) * xc /(xb*a) + ctx.prec=15 + xwprssum = ctx.mag(4.4*((L+3)**2)*xrsbound / xeps2) + xwprssum = max(xwprssum, ctx.mag(10*(L+1))) + ctx.prec = xwprssum + for chi in range(0,der+1): + xrssum[chi] = 0 + for k in range(1,L+1): + xrssum[chi] += xterm[chi,L-k] + yrssum={} + ctx.prec=15 + yrsbound = math.sqrt(ctx.pi) * yc /(yb*a) + ctx.prec=15 + ywprssum = ctx.mag(4.4*((L+3)**2)*yrsbound / yeps2) + ywprssum = max(ywprssum, ctx.mag(10*(L+1))) + ctx.prec = ywprssum + for chi in range(0,der+1): + yrssum[chi] = 0 + for k in range(1,L+1): + yrssum[chi] += yterm[chi,L-k] + + # COMPUTING S3 + # See II Section 3.19 + ctx.prec = 15 + A2 = 2**(max(ctx.mag(abs(xrssum[0])), ctx.mag(abs(yrssum[0])))) + eps8 = eps/(3*A2) + T = t *ctx.ln(t/(2*ctx.pi)) + xwps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-xsigma))*T) + ywps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-ysigma))*T) + + ctx.prec = max(xwps3, ywps3) + + tpi = t/(2*ctx.pi) + arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8 + U = ctx.expj(-arg) + a = trunc_a(t) + xasigma = ctx.power(a, -xsigma) + yasigma = ctx.power(a, -ysigma) + xS3 = ((-1)**(N-1)) * xasigma * U + yS3 = ((-1)**(N-1)) * yasigma * U + + # COMPUTING S1 the zetasum + # See II Section 3.18 + ctx.prec = 15 + xwpsum = 4+ ctx.mag((N+ctx.power(N,1-xsigma))*ctx.ln(N) /eps1) + ywpsum = 4+ ctx.mag((N+ctx.power(N,1-ysigma))*ctx.ln(N) /eps1) + wpsum = max(xwpsum, ywpsum) + + ctx.prec = wpsum +10 + ''' + # This can be improved + xS1={} + yS1={} + for chi in range(0,der+1): + xS1[chi] = 0 + yS1[chi] = 0 + for n in range(1,int(N)+1): + ln = ctx.ln(n) + xexpn = ctx.exp(-ln*(xsigma+ctx.j*t)) + yexpn = ctx.conj(1/(n*xexpn)) + for chi in range(0,der+1): + pown = ctx.power(-ln, chi) + xterm = pown*xexpn + yterm = pown*yexpn + xS1[chi] += xterm + yS1[chi] += yterm + ''' + xS1, yS1 = ctx._zetasum(s, 1, int(N)-1, range(0,der+1), True) + + # END OF COMPUTATION of xrz, yrz + # See II Section 3.1 + ctx.prec = 15 + xabsS1 = abs(xS1[der]) + xabsS2 = abs(xrssum[der] * xS3) + xwpend = max(6, wpinitial+ctx.mag(6*(3*xabsS1+7*xabsS2) ) ) + + ctx.prec = xwpend + xrz={} + for chi in range(0,der+1): + xrz[chi] = xS1[chi]+xrssum[chi]*xS3 + + ctx.prec = 15 + yabsS1 = abs(yS1[der]) + yabsS2 = abs(yrssum[der] * yS3) + ywpend = max(6, wpinitial+ctx.mag(6*(3*yabsS1+7*yabsS2) ) ) + + ctx.prec = ywpend + yrz={} + for chi in range(0,der+1): + yrz[chi] = yS1[chi]+yrssum[chi]*yS3 + yrz[chi] = ctx.conj(yrz[chi]) + ctx.prec = wpinitial + return xrz, yrz + +def Rzeta_set(ctx, s, derivatives=[0]): + r""" + Computes several derivatives of the auxiliary function of Riemann `R(s)`. + + **Definition** + + The function is defined by + + .. math :: + + \begin{equation} + {\mathop{\mathcal R }\nolimits}(s)= + \int_{0\swarrow1}\frac{x^{-s} e^{\pi i x^2}}{e^{\pi i x}- + e^{-\pi i x}}\,dx + \end{equation} + + To this function we apply the Riemann-Siegel expansion. + """ + der = max(derivatives) + # First we take the value of ctx.prec + # During the computation we will change ctx.prec, and finally we will + # restaurate the initial value + wpinitial = ctx.prec + # Take the real and imaginary part of s + t = ctx._im(s) + sigma = ctx._re(s) + # Now compute several parameter that appear on the program + ctx.prec = 15 + a = ctx.sqrt(t/(2*ctx.pi)) # Careful + asigma = ctx.power(a, sigma) # Careful + # We need a simple bound A1 < asigma (see II Section 3.1 and 3.3) + A1 = ctx.power(2, ctx.mag(asigma)-1) + # We compute various epsilon's (see II end of Section 3.1) + eps = ctx.power(2, -wpinitial) + eps1 = eps/6. + eps2 = eps * A1/3. + # COMPUTING SOME COEFFICIENTS THAT DEPENDS + # ON sigma + # constant b and c (see I Theorem 2 formula (26) ) + # coefficients A and B1 (see I Section 6.1 equation (50)) + # here we not need high precision + ctx.prec = 15 + if sigma > 0: + b = 2. + c = math.pow(9,sigma)/4.44288 + # 4.44288 =(math.sqrt(2)*math.pi) + A = math.pow(9,sigma) + B1 = 1 + else: + b = 2.25158 # math.sqrt( (3-2* math.log(2))*math.pi ) + c = math.pow(2,-sigma)/4.44288 + A = math.pow(2,-sigma) + B1 = 1.10789 # = 2*sqrt(1-log(2)) + # COMPUTING L THE NUMBER OF TERMS NEEDED IN THE RIEMANN-SIEGEL + # CORRECTION + # See II Section 3.2 + ctx.prec = 15 + L = 1 + while 3*c*ctx.gamma(L*0.5) * ctx.power(b*a,-L) >= eps2: + L = L+1 + L = max(2,L) + # The number L has to satify some conditions. + # If not RS can not compute Rzeta(s) with the prescribed precision + # (see II, Section 3.2 condition (20) ) and + # (II, Section 3.3 condition (22) ). Also we have added + # an additional technical condition in Section 3.17 Proposition 17 + if ((3*L >= 2*a*a/25.) or (3*L+2+sigma<0) or (abs(sigma)> a/2.)): + #print 'Error Riemann-Siegel can not compute with such precision' + ctx.prec = wpinitial + raise NotImplementedError("Riemann-Siegel can not compute with such precision") + + # INITIALIZATION (CONTINUATION) + # + # eps3 is the constant defined on (II, Section 3.5 equation (27) ) + # each term of the RS correction must be computed with error <= eps3 + eps3 = eps2/(4*L) + + # eps4 is defined on (II Section 3.6 equation (30) ) + # each component of the formula (II Section 3.6 equation (29) ) + # must be computed with error <= eps4 + eps4 = eps3/(3*L) + + # COMPUTING M. NUMBER OF DERIVATIVES Fp[m] TO COMPUTE + M = aux_M_Fp(ctx, A, eps4, a, B1, L) + Fp = {} + for n in range(M, 3*L-2): + Fp[n] = 0 + + # But I have not seen an instance of M != 3*L-3 + # + # DETERMINATION OF J THE NUMBER OF TERMS NEEDED + # IN THE TAYLOR SERIES OF F. + # See II Section 3.11 equation (49)) + h1 = eps4/(632*A) + h2 = ctx.pi*ctx.pi*B1*a *ctx.sqrt(3)*math.e*math.e + h2 = h1 * ctx.power((h2/M**2),(M-1)/3) / M + h3 = min(h1,h2) + J=12 + jvalue = (2*ctx.pi)**J / ctx.gamma(J+1) + while jvalue > h3: + J = J+1 + jvalue = (2*ctx.pi)*jvalue/J + + # COMPUTING eps5[m] for 1 <= m <= 21 + # See II Section 10 equation (43) + eps5={} + foreps5 = math.pi*math.pi*B1*a + for m in range(0,22): + aux1 = math.pow(foreps5, m/3)/(316.*A) + aux2 = ctx.gamma(m+1)/ctx.gamma(m/3.0+0.5) + aux2 = math.sqrt(aux2) + eps5[m] = aux1*aux2*eps4 + + # COMPUTING wpfp + # See II Section 3.13 equation (59) + twenty = min(3*L-3, 21)+1 + aux = 6812*J + wpfp = ctx.mag(44*J) + for m in range(0, twenty): + wpfp = max(wpfp, ctx.mag(aux*ctx.gamma(m+1)/eps5[m])) + # COMPUTING N AND p + # See II Section + ctx.prec = wpfp + ctx.mag(t) + 20 + a = ctx.sqrt(t/(2*ctx.pi)) + N = ctx.floor(a) + p = 1-2*(a-N) + + # now we get a rounded version of p to the precision wpfp + # this possibly is not necessary + num = ctx.floor(p*(ctx.mpf(2)**wpfp)) + difference = p * (ctx.mpf(2)**wpfp)-num + if difference < 0.5: + num = num + else: + num = num+1 + p = ctx.convert(num * (ctx.mpf(2)**(-wpfp))) + + # COMPUTING THE COEFFICIENTS c[n] = cc[n] + # We shall use the notation cc[n], since there is + # a constant that is called c + # See II Section 3.14 + # We compute the coefficients and also save then in a + # cache. The bulk of the computation is passed to + # the function coef() + # + # eps6 is defined in II Section 3.13 equation (58) + eps6 = ctx.power(2*ctx.pi, J)/(ctx.gamma(J+1)*3*J) + + # Now we compute the coefficients + cc={} + cont={} + cont, pipowers = coef(ctx, J, eps6) + cc = cont.copy() # we need a copy since we have + Fp={} + for n in range(M, 3*L-2): + Fp[n] = 0 + ctx.prec = wpfp + for m in range(0,M+1): + sumP = 0 + for k in range(2*J-m-1,-1,-1): + sumP = (sumP * p) + cc[k] + Fp[m] = sumP + # preparation of the new coefficients + for k in range(0, 2*J-m-1): + cc[k] = (k+1) * cc[k+1] + + # COMPUTING THE NUMBERS d[n,k] + # See II Section 3.17 + + # First we compute the working precisions wpd[k] + # Se II equation (92) + wpd = {} + d1 = max(6, ctx.mag(40*L*L)) + d2 = 13+ctx.mag((1+abs(sigma))*A)-ctx.mag(eps4)-1 + const = ctx.ln(8/(ctx.pi*ctx.pi*a*a*B1*B1)) /2 + for n in range(0,L): + d3 = ctx.mag(ctx.sqrt(ctx.gamma(n-0.5)))-ctx.floor(n*const)+d2 + wpd[n] = max(d3,d1) + + # procedure of II Section 3.17 + ctx.prec = wpd[1]+10 + psigma = 1-(2*sigma) + d = {} + d[0,0,-2]=0; d[0,0,-1]=0; d[0,0,0]=1; d[0,0,1]=0 + d[0,-1,-2]=0; d[0,-1,-1]=0; d[0,-1,0]=1; d[0,-1,1]=0 + for n in range(1,L): + ctx.prec = wpd[n]+10 + for k in range(0,3*n//2+1): + m = 3*n-2*k + if (m!=0): + m1 = ctx.one/m + c1 = m1/4 + c2 = (psigma*m1)/2 + c3 = -(m+1) + d[0,n,k] = c3*d[0,n-1,k-2]+c1*d[0,n-1,k]+c2*d[0,n-1,k-1] + else: + d[0,n,k]=0 + for r in range(0,k): + add = d[0,n,r]*(ctx.one*ctx.fac(2*k-2*r)/ctx.fac(k-r)) + d[0,n,k] -= ((-1)**(k-r))*add + d[0,n,-2]=0; d[0,n,-1]=0; d[0,n,3*n//2+1]=0 + + for mu in range(-2,der+1): + for n in range(-2,L): + for k in range(-3,max(1,3*n//2+2)): + if ((mu<0)or (n<0) or(k<0)or (k>3*n//2)): + d[mu,n,k] = 0 + + for mu in range(1,der+1): + for n in range(0,L): + ctx.prec = wpd[n]+10 + for k in range(0,3*n//2+1): + aux=(2*mu-2)*d[mu-2,n-2,k-3]+2*(sigma+n-2)*d[mu-1,n-2,k-3] + d[mu,n,k] = aux - d[mu-1,n-1,k-1] + + # COMPUTING THE COEFFICIENTS t[k,l] + # See II Section 3.9 + # + # computing the needed wp + wptcoef = {} + wpterm = {} + ctx.prec = 15 + c1 = ctx.mag(40*(L+2)) + c2 = ctx.mag(68*(L+2)*A) + c4 = ctx.mag(B1*a*math.sqrt(ctx.pi))-1 + for k in range(0,L): + c3 = c2 - k*c4+ctx.mag(ctx.fac(k+0.5))/2. + wptcoef[k] = max(c1,c3-ctx.mag(eps4)+1)+1 +10 + wpterm[k] = max(c1,ctx.mag(L+2)+c3-ctx.mag(eps3)+1)+1 +10 + + # check of power of pi + + # computing the fortcoef[mu,k,ell] + fortcoef={} + for mu in derivatives: + for k in range(0,L): + for ell in range(-2,3*k//2+1): + fortcoef[mu,k,ell]=0 + + for mu in derivatives: + for k in range(0,L): + ctx.prec = wptcoef[k] + for ell in range(0,3*k//2+1): + fortcoef[mu,k,ell]=d[mu,k,ell]*Fp[3*k-2*ell]/pipowers[2*k-ell] + fortcoef[mu,k,ell]=fortcoef[mu,k,ell]/((2*ctx.j)**ell) + + def trunc_a(t): + wp = ctx.prec + ctx.prec = wp + 2 + aa = ctx.sqrt(t/(2*ctx.pi)) + ctx.prec = wp + return aa + + # computing the tcoef[chi,k,ell] + tcoef={} + for chi in derivatives: + for k in range(0,L): + for ell in range(-2,3*k//2+1): + tcoef[chi,k,ell]=0 + ctx.prec = wptcoef[0]+3 + aa = trunc_a(t) + la = -ctx.ln(aa) + + for chi in derivatives: + for k in range(0,L): + ctx.prec = wptcoef[k] + for ell in range(0,3*k//2+1): + tcoef[chi,k,ell] = 0 + for mu in range(0, chi+1): + tcoefter = ctx.binomial(chi,mu) * la**mu * \ + fortcoef[chi-mu,k,ell] + tcoef[chi,k,ell] += tcoefter + + # COMPUTING tv[k,ell] + # See II Section 3.8 + + # Computing the powers av[k] = a**(-k) + ctx.prec = wptcoef[0] + 2 + + # a has a good value of a. + # See II Section 3.6 + av = {} + av[0] = 1 + av[1] = av[0]/a + + ctx.prec = wptcoef[0] + for k in range(2,L): + av[k] = av[k-1] * av[1] + + # Computing the quotients + tv = {} + for chi in derivatives: + for k in range(0,L): + ctx.prec = wptcoef[k] + for ell in range(0,3*k//2+1): + tv[chi,k,ell] = tcoef[chi,k,ell]* av[k] + + # COMPUTING THE TERMS term[k] + # See II Section 3.6 + term = {} + for chi in derivatives: + for n in range(0,L): + ctx.prec = wpterm[n] + te = 0 + for k in range(0, 3*n//2+1): + te += tv[chi,n,k] + term[chi,n] = te + + # COMPUTING rssum + # See II Section 3.5 + rssum={} + ctx.prec=15 + rsbound = math.sqrt(ctx.pi) * c /(b*a) + ctx.prec=15 + wprssum = ctx.mag(4.4*((L+3)**2)*rsbound / eps2) + wprssum = max(wprssum, ctx.mag(10*(L+1))) + ctx.prec = wprssum + for chi in derivatives: + rssum[chi] = 0 + for k in range(1,L+1): + rssum[chi] += term[chi,L-k] + + # COMPUTING S3 + # See II Section 3.19 + ctx.prec = 15 + A2 = 2**(ctx.mag(rssum[0])) + eps8 = eps/(3* A2) + T = t * ctx.ln(t/(2*ctx.pi)) + wps3 = 5 + ctx.mag((1+(2/eps8)*ctx.power(a,-sigma))*T) + + ctx.prec = wps3 + tpi = t/(2*ctx.pi) + arg = (t/2)*ctx.ln(tpi)-(t/2)-ctx.pi/8 + U = ctx.expj(-arg) + a = trunc_a(t) + asigma = ctx.power(a, -sigma) + S3 = ((-1)**(N-1)) * asigma * U + + # COMPUTING S1 the zetasum + # See II Section 3.18 + ctx.prec = 15 + wpsum = 4 + ctx.mag((N+ctx.power(N,1-sigma))*ctx.ln(N)/eps1) + + ctx.prec = wpsum + 10 + ''' + # This can be improved + S1 = {} + for chi in derivatives: + S1[chi] = 0 + for n in range(1,int(N)+1): + ln = ctx.ln(n) + expn = ctx.exp(-ln*(sigma+ctx.j*t)) + for chi in derivatives: + term = ctx.power(-ln, chi)*expn + S1[chi] += term + ''' + S1 = ctx._zetasum(s, 1, int(N)-1, derivatives)[0] + + # END OF COMPUTATION + # See II Section 3.1 + ctx.prec = 15 + absS1 = abs(S1[der]) + absS2 = abs(rssum[der] * S3) + wpend = max(6, wpinitial + ctx.mag(6*(3*absS1+7*absS2))) + ctx.prec = wpend + rz = {} + for chi in derivatives: + rz[chi] = S1[chi]+rssum[chi]*S3 + ctx.prec = wpinitial + return rz + + +def z_half(ctx,t,der=0): + r""" + z_half(t,der=0) Computes Z^(der)(t) + """ + s=ctx.mpf('0.5')+ctx.j*t + wpinitial = ctx.prec + ctx.prec = 15 + tt = t/(2*ctx.pi) + wptheta = wpinitial +1 + ctx.mag(3*(tt**1.5)*ctx.ln(tt)) + wpz = wpinitial + 1 + ctx.mag(12*tt*ctx.ln(tt)) + ctx.prec = wptheta + theta = ctx.siegeltheta(t) + ctx.prec = wpz + rz = Rzeta_set(ctx,s, range(der+1)) + if der > 0: ps1 = ctx._re(ctx.psi(0,s/2)/2 - ctx.ln(ctx.pi)/2) + if der > 1: ps2 = ctx._re(ctx.j*ctx.psi(1,s/2)/4) + if der > 2: ps3 = ctx._re(-ctx.psi(2,s/2)/8) + if der > 3: ps4 = ctx._re(-ctx.j*ctx.psi(3,s/2)/16) + exptheta = ctx.expj(theta) + if der == 0: + z = 2*exptheta*rz[0] + if der == 1: + zf = 2j*exptheta + z = zf*(ps1*rz[0]+rz[1]) + if der == 2: + zf = 2 * exptheta + z = -zf*(2*rz[1]*ps1+rz[0]*ps1**2+rz[2]-ctx.j*rz[0]*ps2) + if der == 3: + zf = -2j*exptheta + z = 3*rz[1]*ps1**2+rz[0]*ps1**3+3*ps1*rz[2] + z = zf*(z-3j*rz[1]*ps2-3j*rz[0]*ps1*ps2+rz[3]-rz[0]*ps3) + if der == 4: + zf = 2*exptheta + z = 4*rz[1]*ps1**3+rz[0]*ps1**4+6*ps1**2*rz[2] + z = z-12j*rz[1]*ps1*ps2-6j*rz[0]*ps1**2*ps2-6j*rz[2]*ps2-3*rz[0]*ps2*ps2 + z = z + 4*ps1*rz[3]-4*rz[1]*ps3-4*rz[0]*ps1*ps3+rz[4]+ctx.j*rz[0]*ps4 + z = zf*z + ctx.prec = wpinitial + return ctx._re(z) + +def zeta_half(ctx, s, k=0): + """ + zeta_half(s,k=0) Computes zeta^(k)(s) when Re s = 0.5 + """ + wpinitial = ctx.prec + sigma = ctx._re(s) + t = ctx._im(s) + #--- compute wptheta, wpR, wpbasic --- + ctx.prec = 53 + # X see II Section 3.21 (109) and (110) + if sigma > 0: + X = ctx.sqrt(abs(s)) + else: + X = (2*ctx.pi)**(sigma-1) * abs(1-s)**(0.5-sigma) + # M1 see II Section 3.21 (111) and (112) + if sigma > 0: + M1 = 2*ctx.sqrt(t/(2*ctx.pi)) + else: + M1 = 4 * t * X + # T see II Section 3.21 (113) + abst = abs(0.5-s) + T = 2* abst*math.log(abst) + # computing wpbasic, wptheta, wpR see II Section 3.21 + wpbasic = max(6,3+ctx.mag(t)) + wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M1*X+1.3*M1*X*T)+wpinitial+1 + wpbasic = max(wpbasic, wpbasic2) + wptheta = max(4, 3+ctx.mag(2.7*M1*X)+wpinitial+1) + wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1 + ctx.prec = wptheta + theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5'))) + if k > 0: ps1 = (ctx._re(ctx.psi(0,s/2)))/2 - ctx.ln(ctx.pi)/2 + if k > 1: ps2 = -(ctx._im(ctx.psi(1,s/2)))/4 + if k > 2: ps3 = -(ctx._re(ctx.psi(2,s/2)))/8 + if k > 3: ps4 = (ctx._im(ctx.psi(3,s/2)))/16 + ctx.prec = wpR + xrz = Rzeta_set(ctx,s,range(k+1)) + yrz={} + for chi in range(0,k+1): + yrz[chi] = ctx.conj(xrz[chi]) + ctx.prec = wpbasic + exptheta = ctx.expj(-2*theta) + if k==0: + zv = xrz[0]+exptheta*yrz[0] + if k==1: + zv1 = -yrz[1] - 2*yrz[0]*ps1 + zv = xrz[1] + exptheta*zv1 + if k==2: + zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2)+yrz[2]+2j*yrz[0]*ps2 + zv = xrz[2]+exptheta*zv1 + if k==3: + zv1 = -12*yrz[1]*ps1**2-8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2 + zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3 + zv = xrz[3]+exptheta*zv1 + if k == 4: + zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2 + zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2 + zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3 + zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4 + zv = xrz[4]+exptheta*zv1 + ctx.prec = wpinitial + return zv + +def zeta_offline(ctx, s, k=0): + """ + Computes zeta^(k)(s) off the line + """ + wpinitial = ctx.prec + sigma = ctx._re(s) + t = ctx._im(s) + #--- compute wptheta, wpR, wpbasic --- + ctx.prec = 53 + # X see II Section 3.21 (109) and (110) + if sigma > 0: + X = ctx.power(abs(s), 0.5) + else: + X = ctx.power(2*ctx.pi, sigma-1)*ctx.power(abs(1-s),0.5-sigma) + # M1 see II Section 3.21 (111) and (112) + if (sigma > 0): + M1 = 2*ctx.sqrt(t/(2*ctx.pi)) + else: + M1 = 4 * t * X + # M2 see II Section 3.21 (111) and (112) + if (1-sigma > 0): + M2 = 2*ctx.sqrt(t/(2*ctx.pi)) + else: + M2 = 4*t*ctx.power(2*ctx.pi, -sigma)*ctx.power(abs(s),sigma-0.5) + # T see II Section 3.21 (113) + abst = abs(0.5-s) + T = 2* abst*math.log(abst) + # computing wpbasic, wptheta, wpR see II Section 3.21 + wpbasic = max(6,3+ctx.mag(t)) + wpbasic2 = 2+ctx.mag(2.12*M1+21.2*M2*X+1.3*M2*X*T)+wpinitial+1 + wpbasic = max(wpbasic, wpbasic2) + wptheta = max(4, 3+ctx.mag(2.7*M2*X)+wpinitial+1) + wpR = 3+ctx.mag(1.1+2*X)+wpinitial+1 + ctx.prec = wptheta + theta = ctx.siegeltheta(t-ctx.j*(sigma-ctx.mpf('0.5'))) + s1 = s + s2 = ctx.conj(1-s1) + ctx.prec = wpR + xrz, yrz = Rzeta_simul(ctx, s, k) + if k > 0: ps1 = (ctx.psi(0,s1/2)+ctx.psi(0,(1-s1)/2))/4 - ctx.ln(ctx.pi)/2 + if k > 1: ps2 = ctx.j*(ctx.psi(1,s1/2)-ctx.psi(1,(1-s1)/2))/8 + if k > 2: ps3 = -(ctx.psi(2,s1/2)+ctx.psi(2,(1-s1)/2))/16 + if k > 3: ps4 = -ctx.j*(ctx.psi(3,s1/2)-ctx.psi(3,(1-s1)/2))/32 + ctx.prec = wpbasic + exptheta = ctx.expj(-2*theta) + if k == 0: + zv = xrz[0]+exptheta*yrz[0] + if k == 1: + zv1 = -yrz[1]-2*yrz[0]*ps1 + zv = xrz[1]+exptheta*zv1 + if k == 2: + zv1 = 4*yrz[1]*ps1+4*yrz[0]*(ps1**2) +yrz[2]+2j*yrz[0]*ps2 + zv = xrz[2]+exptheta*zv1 + if k == 3: + zv1 = -12*yrz[1]*ps1**2 -8*yrz[0]*ps1**3-6*yrz[2]*ps1-6j*yrz[1]*ps2 + zv1 = zv1 - 12j*yrz[0]*ps1*ps2-yrz[3]+2*yrz[0]*ps3 + zv = xrz[3]+exptheta*zv1 + if k == 4: + zv1 = 32*yrz[1]*ps1**3 +16*yrz[0]*ps1**4+24*yrz[2]*ps1**2 + zv1 = zv1 +48j*yrz[1]*ps1*ps2+48j*yrz[0]*(ps1**2)*ps2 + zv1 = zv1+12j*yrz[2]*ps2-12*yrz[0]*ps2**2+8*yrz[3]*ps1-8*yrz[1]*ps3 + zv1 = zv1-16*yrz[0]*ps1*ps3+yrz[4]-2j*yrz[0]*ps4 + zv = xrz[4]+exptheta*zv1 + ctx.prec = wpinitial + return zv + +def z_offline(ctx, w, k=0): + r""" + Computes Z(w) and its derivatives off the line + """ + s = ctx.mpf('0.5')+ctx.j*w + s1 = s + s2 = ctx.conj(1-s1) + wpinitial = ctx.prec + ctx.prec = 35 + # X see II Section 3.21 (109) and (110) + # M1 see II Section 3.21 (111) and (112) + if (ctx._re(s1) >= 0): + M1 = 2*ctx.sqrt(ctx._im(s1)/(2 * ctx.pi)) + X = ctx.sqrt(abs(s1)) + else: + X = (2*ctx.pi)**(ctx._re(s1)-1) * abs(1-s1)**(0.5-ctx._re(s1)) + M1 = 4 * ctx._im(s1)*X + # M2 see II Section 3.21 (111) and (112) + if (ctx._re(s2) >= 0): + M2 = 2*ctx.sqrt(ctx._im(s2)/(2 * ctx.pi)) + else: + M2 = 4 * ctx._im(s2)*(2*ctx.pi)**(ctx._re(s2)-1)*abs(1-s2)**(0.5-ctx._re(s2)) + # T see II Section 3.21 Prop. 27 + T = 2*abs(ctx.siegeltheta(w)) + # defining some precisions + # see II Section 3.22 (115), (116), (117) + aux1 = ctx.sqrt(X) + aux2 = aux1*(M1+M2) + aux3 = 3 +wpinitial + wpbasic = max(6, 3+ctx.mag(T), ctx.mag(aux2*(26+2*T))+aux3) + wptheta = max(4,ctx.mag(2.04*aux2)+aux3) + wpR = ctx.mag(4*aux1)+aux3 + # now the computations + ctx.prec = wptheta + theta = ctx.siegeltheta(w) + ctx.prec = wpR + xrz, yrz = Rzeta_simul(ctx,s,k) + pta = 0.25 + 0.5j*w + ptb = 0.25 - 0.5j*w + if k > 0: ps1 = 0.25*(ctx.psi(0,pta)+ctx.psi(0,ptb)) - ctx.ln(ctx.pi)/2 + if k > 1: ps2 = (1j/8)*(ctx.psi(1,pta)-ctx.psi(1,ptb)) + if k > 2: ps3 = (-1./16)*(ctx.psi(2,pta)+ctx.psi(2,ptb)) + if k > 3: ps4 = (-1j/32)*(ctx.psi(3,pta)-ctx.psi(3,ptb)) + ctx.prec = wpbasic + exptheta = ctx.expj(theta) + if k == 0: + zv = exptheta*xrz[0]+yrz[0]/exptheta + j = ctx.j + if k == 1: + zv = j*exptheta*(xrz[1]+xrz[0]*ps1)-j*(yrz[1]+yrz[0]*ps1)/exptheta + if k == 2: + zv = exptheta*(-2*xrz[1]*ps1-xrz[0]*ps1**2-xrz[2]+j*xrz[0]*ps2) + zv =zv + (-2*yrz[1]*ps1-yrz[0]*ps1**2-yrz[2]-j*yrz[0]*ps2)/exptheta + if k == 3: + zv1 = -3*xrz[1]*ps1**2-xrz[0]*ps1**3-3*xrz[2]*ps1+j*3*xrz[1]*ps2 + zv1 = (zv1+ 3j*xrz[0]*ps1*ps2-xrz[3]+xrz[0]*ps3)*j*exptheta + zv2 = 3*yrz[1]*ps1**2+yrz[0]*ps1**3+3*yrz[2]*ps1+j*3*yrz[1]*ps2 + zv2 = j*(zv2 + 3j*yrz[0]*ps1*ps2+ yrz[3]-yrz[0]*ps3)/exptheta + zv = zv1+zv2 + if k == 4: + zv1 = 4*xrz[1]*ps1**3+xrz[0]*ps1**4 + 6*xrz[2]*ps1**2 + zv1 = zv1-12j*xrz[1]*ps1*ps2-6j*xrz[0]*ps1**2*ps2-6j*xrz[2]*ps2 + zv1 = zv1-3*xrz[0]*ps2*ps2+4*xrz[3]*ps1-4*xrz[1]*ps3-4*xrz[0]*ps1*ps3 + zv1 = zv1+xrz[4]+j*xrz[0]*ps4 + zv2 = 4*yrz[1]*ps1**3+yrz[0]*ps1**4 + 6*yrz[2]*ps1**2 + zv2 = zv2+12j*yrz[1]*ps1*ps2+6j*yrz[0]*ps1**2*ps2+6j*yrz[2]*ps2 + zv2 = zv2-3*yrz[0]*ps2*ps2+4*yrz[3]*ps1-4*yrz[1]*ps3-4*yrz[0]*ps1*ps3 + zv2 = zv2+yrz[4]-j*yrz[0]*ps4 + zv = exptheta*zv1+zv2/exptheta + ctx.prec = wpinitial + return zv + +@defun +def rs_zeta(ctx, s, derivative=0, **kwargs): + if derivative > 4: + raise NotImplementedError + s = ctx.convert(s) + re = ctx._re(s); im = ctx._im(s) + if im < 0: + z = ctx.conj(ctx.rs_zeta(ctx.conj(s), derivative)) + return z + critical_line = (re == 0.5) + if critical_line: + return zeta_half(ctx, s, derivative) + else: + return zeta_offline(ctx, s, derivative) + +@defun +def rs_z(ctx, w, derivative=0): + w = ctx.convert(w) + re = ctx._re(w); im = ctx._im(w) + if re < 0: + return rs_z(ctx, -w, derivative) + critical_line = (im == 0) + if critical_line : + return z_half(ctx, w, derivative) + else: + return z_offline(ctx, w, derivative) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/signals.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/signals.py new file mode 100644 index 0000000000000000000000000000000000000000..6fadafb2dbb44fe19a2defa8d807d81d7c8e2789 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/signals.py @@ -0,0 +1,32 @@ +from .functions import defun_wrapped + +@defun_wrapped +def squarew(ctx, t, amplitude=1, period=1): + P = period + A = amplitude + return A*((-1)**ctx.floor(2*t/P)) + +@defun_wrapped +def trianglew(ctx, t, amplitude=1, period=1): + A = amplitude + P = period + + return 2*A*(0.5 - ctx.fabs(1 - 2*ctx.frac(t/P + 0.25))) + +@defun_wrapped +def sawtoothw(ctx, t, amplitude=1, period=1): + A = amplitude + P = period + return A*ctx.frac(t/P) + +@defun_wrapped +def unit_triangle(ctx, t, amplitude=1): + A = amplitude + if t <= -1 or t >= 1: + return ctx.zero + return A*(-ctx.fabs(t) + 1) + +@defun_wrapped +def sigmoid(ctx, t, amplitude=1): + A = amplitude + return A / (1 + ctx.exp(-t)) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/theta.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/theta.py new file mode 100644 index 0000000000000000000000000000000000000000..2b3d8323a163a43186b85417a1b40f3b656c30d0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/theta.py @@ -0,0 +1,1049 @@ +from .functions import defun, defun_wrapped + +@defun +def _jacobi_theta2(ctx, z, q): + extra1 = 10 + extra2 = 20 + # the loops below break when the fixed precision quantities + # a and b go to zero; + # right shifting small negative numbers by wp one obtains -1, not zero, + # so the condition a**2 + b**2 > MIN is used to break the loops. + MIN = 2 + if z == ctx.zero: + if (not ctx._im(q)): + wp = ctx.prec + extra1 + x = ctx.to_fixed(ctx._re(q), wp) + x2 = (x*x) >> wp + a = b = x2 + s = x2 + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + s += a + s = (1 << (wp+1)) + (s << 1) + s = ctx.ldexp(s, -wp) + else: + wp = ctx.prec + extra1 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp-1) + are = bre = x2re + aim = bim = x2im + sre = (1< MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + sre += are + sim += aim + sre = (sre << 1) + sim = (sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + else: + if (not ctx._im(q)) and (not ctx._im(z)): + wp = ctx.prec + extra1 + x = ctx.to_fixed(ctx._re(q), wp) + x2 = (x*x) >> wp + a = b = x2 + c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) + cn = c1 = ctx.to_fixed(c1, wp) + sn = s1 = ctx.to_fixed(s1, wp) + c2 = (c1*c1 - s1*s1) >> wp + s2 = (c1 * s1) >> (wp - 1) + cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + s = c1 + ((a * cn) >> wp) + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + s += (a * cn) >> wp + s = (s << 1) + s = ctx.ldexp(s, -wp) + s *= ctx.nthroot(q, 4) + return s + # case z real, q complex + elif not ctx._im(z): + wp = ctx.prec + extra2 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp - 1) + are = bre = x2re + aim = bim = x2im + c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) + cn = c1 = ctx.to_fixed(c1, wp) + sn = s1 = ctx.to_fixed(s1, wp) + c2 = (c1*c1 - s1*s1) >> wp + s2 = (c1 * s1) >> (wp - 1) + cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + sre = c1 + ((are * cn) >> wp) + sim = ((aim * cn) >> wp) + while are**2 + aim**2 > MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + sre += ((are * cn) >> wp) + sim += ((aim * cn) >> wp) + sre = (sre << 1) + sim = (sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + #case z complex, q real + elif not ctx._im(q): + wp = ctx.prec + extra2 + x = ctx.to_fixed(ctx._re(q), wp) + x2 = (x*x) >> wp + a = b = x2 + prec0 = ctx.prec + ctx.prec = wp + c1, s1 = ctx.cos_sin(z) + ctx.prec = prec0 + cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) + cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) + snre = s1re = ctx.to_fixed(ctx._re(s1), wp) + snim = s1im = ctx.to_fixed(ctx._im(s1), wp) + #c2 = (c1*c1 - s1*s1) >> wp + c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp + c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) + #s2 = (c1 * s1) >> (wp - 1) + s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) + s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) + #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp + t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp + t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp + t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + sre = c1re + ((a * cnre) >> wp) + sim = c1im + ((a * cnim) >> wp) + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp + t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp + t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp + t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + sre += ((a * cnre) >> wp) + sim += ((a * cnim) >> wp) + sre = (sre << 1) + sim = (sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + # case z and q complex + else: + wp = ctx.prec + extra2 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp - 1) + are = bre = x2re + aim = bim = x2im + prec0 = ctx.prec + ctx.prec = wp + # cos(z), sin(z) with z complex + c1, s1 = ctx.cos_sin(z) + ctx.prec = prec0 + cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) + cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) + snre = s1re = ctx.to_fixed(ctx._re(s1), wp) + snim = s1im = ctx.to_fixed(ctx._im(s1), wp) + c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp + c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) + s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) + s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) + t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp + t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp + t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp + t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + n = 1 + termre = c1re + termim = c1im + sre = c1re + ((are * cnre - aim * cnim) >> wp) + sim = c1im + ((are * cnim + aim * cnre) >> wp) + n = 3 + termre = ((are * cnre - aim * cnim) >> wp) + termim = ((are * cnim + aim * cnre) >> wp) + sre = c1re + ((are * cnre - aim * cnim) >> wp) + sim = c1im + ((are * cnim + aim * cnre) >> wp) + n = 5 + while are**2 + aim**2 > MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp + t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp + t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp + t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp + t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + termre = ((are * cnre - aim * cnim) >> wp) + termim = ((aim * cnre + are * cnim) >> wp) + sre += ((are * cnre - aim * cnim) >> wp) + sim += ((aim * cnre + are * cnim) >> wp) + n += 2 + sre = (sre << 1) + sim = (sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + s *= ctx.nthroot(q, 4) + return s + +@defun +def _djacobi_theta2(ctx, z, q, nd): + MIN = 2 + extra1 = 10 + extra2 = 20 + if (not ctx._im(q)) and (not ctx._im(z)): + wp = ctx.prec + extra1 + x = ctx.to_fixed(ctx._re(q), wp) + x2 = (x*x) >> wp + a = b = x2 + c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) + cn = c1 = ctx.to_fixed(c1, wp) + sn = s1 = ctx.to_fixed(s1, wp) + c2 = (c1*c1 - s1*s1) >> wp + s2 = (c1 * s1) >> (wp - 1) + cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + if (nd&1): + s = s1 + ((a * sn * 3**nd) >> wp) + else: + s = c1 + ((a * cn * 3**nd) >> wp) + n = 2 + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + if nd&1: + s += (a * sn * (2*n+1)**nd) >> wp + else: + s += (a * cn * (2*n+1)**nd) >> wp + n += 1 + s = -(s << 1) + s = ctx.ldexp(s, -wp) + # case z real, q complex + elif not ctx._im(z): + wp = ctx.prec + extra2 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp - 1) + are = bre = x2re + aim = bim = x2im + c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) + cn = c1 = ctx.to_fixed(c1, wp) + sn = s1 = ctx.to_fixed(s1, wp) + c2 = (c1*c1 - s1*s1) >> wp + s2 = (c1 * s1) >> (wp - 1) + cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + if (nd&1): + sre = s1 + ((are * sn * 3**nd) >> wp) + sim = ((aim * sn * 3**nd) >> wp) + else: + sre = c1 + ((are * cn * 3**nd) >> wp) + sim = ((aim * cn * 3**nd) >> wp) + n = 5 + while are**2 + aim**2 > MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + + if (nd&1): + sre += ((are * sn * n**nd) >> wp) + sim += ((aim * sn * n**nd) >> wp) + else: + sre += ((are * cn * n**nd) >> wp) + sim += ((aim * cn * n**nd) >> wp) + n += 2 + sre = -(sre << 1) + sim = -(sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + #case z complex, q real + elif not ctx._im(q): + wp = ctx.prec + extra2 + x = ctx.to_fixed(ctx._re(q), wp) + x2 = (x*x) >> wp + a = b = x2 + prec0 = ctx.prec + ctx.prec = wp + c1, s1 = ctx.cos_sin(z) + ctx.prec = prec0 + cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) + cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) + snre = s1re = ctx.to_fixed(ctx._re(s1), wp) + snim = s1im = ctx.to_fixed(ctx._im(s1), wp) + #c2 = (c1*c1 - s1*s1) >> wp + c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp + c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) + #s2 = (c1 * s1) >> (wp - 1) + s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) + s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) + #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp + t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp + t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp + t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp + t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + if (nd&1): + sre = s1re + ((a * snre * 3**nd) >> wp) + sim = s1im + ((a * snim * 3**nd) >> wp) + else: + sre = c1re + ((a * cnre * 3**nd) >> wp) + sim = c1im + ((a * cnim * 3**nd) >> wp) + n = 5 + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp + t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp + t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp + t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + if (nd&1): + sre += ((a * snre * n**nd) >> wp) + sim += ((a * snim * n**nd) >> wp) + else: + sre += ((a * cnre * n**nd) >> wp) + sim += ((a * cnim * n**nd) >> wp) + n += 2 + sre = -(sre << 1) + sim = -(sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + # case z and q complex + else: + wp = ctx.prec + extra2 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp - 1) + are = bre = x2re + aim = bim = x2im + prec0 = ctx.prec + ctx.prec = wp + # cos(2*z), sin(2*z) with z complex + c1, s1 = ctx.cos_sin(z) + ctx.prec = prec0 + cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) + cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) + snre = s1re = ctx.to_fixed(ctx._re(s1), wp) + snim = s1im = ctx.to_fixed(ctx._im(s1), wp) + c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp + c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) + s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) + s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) + t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp + t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp + t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp + t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + if (nd&1): + sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp) + sim = s1im + (((are * snim + aim * snre)* 3**nd) >> wp) + else: + sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp) + sim = c1im + (((are * cnim + aim * cnre)* 3**nd) >> wp) + n = 5 + while are**2 + aim**2 > MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp + t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp + t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp + t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp + t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + if (nd&1): + sre += (((are * snre - aim * snim) * n**nd) >> wp) + sim += (((aim * snre + are * snim) * n**nd) >> wp) + else: + sre += (((are * cnre - aim * cnim) * n**nd) >> wp) + sim += (((aim * cnre + are * cnim) * n**nd) >> wp) + n += 2 + sre = -(sre << 1) + sim = -(sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + s *= ctx.nthroot(q, 4) + if (nd&1): + return (-1)**(nd//2) * s + else: + return (-1)**(1 + nd//2) * s + +@defun +def _jacobi_theta3(ctx, z, q): + extra1 = 10 + extra2 = 20 + MIN = 2 + if z == ctx.zero: + if not ctx._im(q): + wp = ctx.prec + extra1 + x = ctx.to_fixed(ctx._re(q), wp) + s = x + a = b = x + x2 = (x*x) >> wp + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + s += a + s = (1 << wp) + (s << 1) + s = ctx.ldexp(s, -wp) + return s + else: + wp = ctx.prec + extra1 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp - 1) + sre = are = bre = xre + sim = aim = bim = xim + while are**2 + aim**2 > MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + sre += are + sim += aim + sre = (1 << wp) + (sre << 1) + sim = (sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + return s + else: + if (not ctx._im(q)) and (not ctx._im(z)): + s = 0 + wp = ctx.prec + extra1 + x = ctx.to_fixed(ctx._re(q), wp) + a = b = x + x2 = (x*x) >> wp + c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) + c1 = ctx.to_fixed(c1, wp) + s1 = ctx.to_fixed(s1, wp) + cn = c1 + sn = s1 + s += (a * cn) >> wp + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp + s += (a * cn) >> wp + s = (1 << wp) + (s << 1) + s = ctx.ldexp(s, -wp) + return s + # case z real, q complex + elif not ctx._im(z): + wp = ctx.prec + extra2 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp - 1) + are = bre = xre + aim = bim = xim + c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) + c1 = ctx.to_fixed(c1, wp) + s1 = ctx.to_fixed(s1, wp) + cn = c1 + sn = s1 + sre = (are * cn) >> wp + sim = (aim * cn) >> wp + while are**2 + aim**2 > MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp + sre += (are * cn) >> wp + sim += (aim * cn) >> wp + sre = (1 << wp) + (sre << 1) + sim = (sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + return s + #case z complex, q real + elif not ctx._im(q): + wp = ctx.prec + extra2 + x = ctx.to_fixed(ctx._re(q), wp) + a = b = x + x2 = (x*x) >> wp + prec0 = ctx.prec + ctx.prec = wp + c1, s1 = ctx.cos_sin(2*z) + ctx.prec = prec0 + cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) + cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) + snre = s1re = ctx.to_fixed(ctx._re(s1), wp) + snim = s1im = ctx.to_fixed(ctx._im(s1), wp) + sre = (a * cnre) >> wp + sim = (a * cnim) >> wp + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp + t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp + t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp + t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + sre += (a * cnre) >> wp + sim += (a * cnim) >> wp + sre = (1 << wp) + (sre << 1) + sim = (sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + return s + # case z and q complex + else: + wp = ctx.prec + extra2 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp - 1) + are = bre = xre + aim = bim = xim + prec0 = ctx.prec + ctx.prec = wp + # cos(2*z), sin(2*z) with z complex + c1, s1 = ctx.cos_sin(2*z) + ctx.prec = prec0 + cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) + cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) + snre = s1re = ctx.to_fixed(ctx._re(s1), wp) + snim = s1im = ctx.to_fixed(ctx._im(s1), wp) + sre = (are * cnre - aim * cnim) >> wp + sim = (aim * cnre + are * cnim) >> wp + while are**2 + aim**2 > MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp + t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp + t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp + t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + sre += (are * cnre - aim * cnim) >> wp + sim += (aim * cnre + are * cnim) >> wp + sre = (1 << wp) + (sre << 1) + sim = (sim << 1) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + return s + +@defun +def _djacobi_theta3(ctx, z, q, nd): + """nd=1,2,3 order of the derivative with respect to z""" + MIN = 2 + extra1 = 10 + extra2 = 20 + if (not ctx._im(q)) and (not ctx._im(z)): + s = 0 + wp = ctx.prec + extra1 + x = ctx.to_fixed(ctx._re(q), wp) + a = b = x + x2 = (x*x) >> wp + c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) + c1 = ctx.to_fixed(c1, wp) + s1 = ctx.to_fixed(s1, wp) + cn = c1 + sn = s1 + if (nd&1): + s += (a * sn) >> wp + else: + s += (a * cn) >> wp + n = 2 + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp + if nd&1: + s += (a * sn * n**nd) >> wp + else: + s += (a * cn * n**nd) >> wp + n += 1 + s = -(s << (nd+1)) + s = ctx.ldexp(s, -wp) + # case z real, q complex + elif not ctx._im(z): + wp = ctx.prec + extra2 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp - 1) + are = bre = xre + aim = bim = xim + c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) + c1 = ctx.to_fixed(c1, wp) + s1 = ctx.to_fixed(s1, wp) + cn = c1 + sn = s1 + if (nd&1): + sre = (are * sn) >> wp + sim = (aim * sn) >> wp + else: + sre = (are * cn) >> wp + sim = (aim * cn) >> wp + n = 2 + while are**2 + aim**2 > MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp + if nd&1: + sre += (are * sn * n**nd) >> wp + sim += (aim * sn * n**nd) >> wp + else: + sre += (are * cn * n**nd) >> wp + sim += (aim * cn * n**nd) >> wp + n += 1 + sre = -(sre << (nd+1)) + sim = -(sim << (nd+1)) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + #case z complex, q real + elif not ctx._im(q): + wp = ctx.prec + extra2 + x = ctx.to_fixed(ctx._re(q), wp) + a = b = x + x2 = (x*x) >> wp + prec0 = ctx.prec + ctx.prec = wp + c1, s1 = ctx.cos_sin(2*z) + ctx.prec = prec0 + cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) + cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) + snre = s1re = ctx.to_fixed(ctx._re(s1), wp) + snim = s1im = ctx.to_fixed(ctx._im(s1), wp) + if (nd&1): + sre = (a * snre) >> wp + sim = (a * snim) >> wp + else: + sre = (a * cnre) >> wp + sim = (a * cnim) >> wp + n = 2 + while abs(a) > MIN: + b = (b*x2) >> wp + a = (a*b) >> wp + t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp + t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp + t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp + t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + if (nd&1): + sre += (a * snre * n**nd) >> wp + sim += (a * snim * n**nd) >> wp + else: + sre += (a * cnre * n**nd) >> wp + sim += (a * cnim * n**nd) >> wp + n += 1 + sre = -(sre << (nd+1)) + sim = -(sim << (nd+1)) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + # case z and q complex + else: + wp = ctx.prec + extra2 + xre = ctx.to_fixed(ctx._re(q), wp) + xim = ctx.to_fixed(ctx._im(q), wp) + x2re = (xre*xre - xim*xim) >> wp + x2im = (xre*xim) >> (wp - 1) + are = bre = xre + aim = bim = xim + prec0 = ctx.prec + ctx.prec = wp + # cos(2*z), sin(2*z) with z complex + c1, s1 = ctx.cos_sin(2*z) + ctx.prec = prec0 + cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) + cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) + snre = s1re = ctx.to_fixed(ctx._re(s1), wp) + snim = s1im = ctx.to_fixed(ctx._im(s1), wp) + if (nd&1): + sre = (are * snre - aim * snim) >> wp + sim = (aim * snre + are * snim) >> wp + else: + sre = (are * cnre - aim * cnim) >> wp + sim = (aim * cnre + are * cnim) >> wp + n = 2 + while are**2 + aim**2 > MIN: + bre, bim = (bre * x2re - bim * x2im) >> wp, \ + (bre * x2im + bim * x2re) >> wp + are, aim = (are * bre - aim * bim) >> wp, \ + (are * bim + aim * bre) >> wp + t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp + t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp + t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp + t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp + cnre = t1 + cnim = t2 + snre = t3 + snim = t4 + if(nd&1): + sre += ((are * snre - aim * snim) * n**nd) >> wp + sim += ((aim * snre + are * snim) * n**nd) >> wp + else: + sre += ((are * cnre - aim * cnim) * n**nd) >> wp + sim += ((aim * cnre + are * cnim) * n**nd) >> wp + n += 1 + sre = -(sre << (nd+1)) + sim = -(sim << (nd+1)) + sre = ctx.ldexp(sre, -wp) + sim = ctx.ldexp(sim, -wp) + s = ctx.mpc(sre, sim) + if (nd&1): + return (-1)**(nd//2) * s + else: + return (-1)**(1 + nd//2) * s + +@defun +def _jacobi_theta2a(ctx, z, q): + """ + case ctx._im(z) != 0 + theta(2, z, q) = + q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=-inf, inf) + max term for minimum (2*n+1)*log(q).real - 2* ctx._im(z) + n0 = int(ctx._im(z)/log(q).real - 1/2) + theta(2, z, q) = + q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=n0, inf) + + q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n, n0-1, -inf) + """ + n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2) + e2 = ctx.expj(2*z) + e = e0 = ctx.expj((2*n+1)*z) + a = q**(n*n + n) + # leading term + term = a * e + s = term + eps1 = ctx.eps*abs(term) + while 1: + n += 1 + e = e * e2 + term = q**(n*n + n) * e + if abs(term) < eps1: + break + s += term + e = e0 + e2 = ctx.expj(-2*z) + n = n0 + while 1: + n -= 1 + e = e * e2 + term = q**(n*n + n) * e + if abs(term) < eps1: + break + s += term + s = s * ctx.nthroot(q, 4) + return s + +@defun +def _jacobi_theta3a(ctx, z, q): + """ + case ctx._im(z) != 0 + theta3(z, q) = Sum(q**(n*n) * exp(j*2*n*z), n, -inf, inf) + max term for n*abs(log(q).real) + ctx._im(z) ~= 0 + n0 = int(- ctx._im(z)/abs(log(q).real)) + """ + n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q)))) + e2 = ctx.expj(2*z) + e = e0 = ctx.expj(2*n*z) + s = term = q**(n*n) * e + eps1 = ctx.eps*abs(term) + while 1: + n += 1 + e = e * e2 + term = q**(n*n) * e + if abs(term) < eps1: + break + s += term + e = e0 + e2 = ctx.expj(-2*z) + n = n0 + while 1: + n -= 1 + e = e * e2 + term = q**(n*n) * e + if abs(term) < eps1: + break + s += term + return s + +@defun +def _djacobi_theta2a(ctx, z, q, nd): + """ + case ctx._im(z) != 0 + dtheta(2, z, q, nd) = + j* q**1/4 * Sum(q**(n*n + n) * (2*n+1)*exp(j*(2*n + 1)*z), n=-inf, inf) + max term for (2*n0+1)*log(q).real - 2* ctx._im(z) ~= 0 + n0 = int(ctx._im(z)/log(q).real - 1/2) + """ + n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2) + e2 = ctx.expj(2*z) + e = e0 = ctx.expj((2*n + 1)*z) + a = q**(n*n + n) + # leading term + term = (2*n+1)**nd * a * e + s = term + eps1 = ctx.eps*abs(term) + while 1: + n += 1 + e = e * e2 + term = (2*n+1)**nd * q**(n*n + n) * e + if abs(term) < eps1: + break + s += term + e = e0 + e2 = ctx.expj(-2*z) + n = n0 + while 1: + n -= 1 + e = e * e2 + term = (2*n+1)**nd * q**(n*n + n) * e + if abs(term) < eps1: + break + s += term + return ctx.j**nd * s * ctx.nthroot(q, 4) + +@defun +def _djacobi_theta3a(ctx, z, q, nd): + """ + case ctx._im(z) != 0 + djtheta3(z, q, nd) = (2*j)**nd * + Sum(q**(n*n) * n**nd * exp(j*2*n*z), n, -inf, inf) + max term for minimum n*abs(log(q).real) + ctx._im(z) + """ + n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q)))) + e2 = ctx.expj(2*z) + e = e0 = ctx.expj(2*n*z) + a = q**(n*n) * e + s = term = n**nd * a + if n != 0: + eps1 = ctx.eps*abs(term) + else: + eps1 = ctx.eps*abs(a) + while 1: + n += 1 + e = e * e2 + a = q**(n*n) * e + term = n**nd * a + if n != 0: + aterm = abs(term) + else: + aterm = abs(a) + if aterm < eps1: + break + s += term + e = e0 + e2 = ctx.expj(-2*z) + n = n0 + while 1: + n -= 1 + e = e * e2 + a = q**(n*n) * e + term = n**nd * a + if n != 0: + aterm = abs(term) + else: + aterm = abs(a) + if aterm < eps1: + break + s += term + return (2*ctx.j)**nd * s + +@defun +def jtheta(ctx, n, z, q, derivative=0): + if derivative: + return ctx._djtheta(n, z, q, derivative) + + z = ctx.convert(z) + q = ctx.convert(q) + + # Implementation note + # If ctx._im(z) is close to zero, _jacobi_theta2 and _jacobi_theta3 + # are used, + # which compute the series starting from n=0 using fixed precision + # numbers; + # otherwise _jacobi_theta2a and _jacobi_theta3a are used, which compute + # the series starting from n=n0, which is the largest term. + + # TODO: write _jacobi_theta2a and _jacobi_theta3a using fixed-point + + if abs(q) > ctx.THETA_Q_LIM: + raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM) + + extra = 10 + if z: + M = ctx.mag(z) + if M > 5 or (n == 1 and M < -5): + extra += 2*abs(M) + cz = 0.5 + extra2 = 50 + prec0 = ctx.prec + try: + ctx.prec += extra + if n == 1: + if ctx._im(z): + if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): + ctx.dps += extra2 + res = ctx._jacobi_theta2(z - ctx.pi/2, q) + else: + ctx.dps += 10 + res = ctx._jacobi_theta2a(z - ctx.pi/2, q) + else: + res = ctx._jacobi_theta2(z - ctx.pi/2, q) + elif n == 2: + if ctx._im(z): + if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): + ctx.dps += extra2 + res = ctx._jacobi_theta2(z, q) + else: + ctx.dps += 10 + res = ctx._jacobi_theta2a(z, q) + else: + res = ctx._jacobi_theta2(z, q) + elif n == 3: + if ctx._im(z): + if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): + ctx.dps += extra2 + res = ctx._jacobi_theta3(z, q) + else: + ctx.dps += 10 + res = ctx._jacobi_theta3a(z, q) + else: + res = ctx._jacobi_theta3(z, q) + elif n == 4: + if ctx._im(z): + if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): + ctx.dps += extra2 + res = ctx._jacobi_theta3(z, -q) + else: + ctx.dps += 10 + res = ctx._jacobi_theta3a(z, -q) + else: + res = ctx._jacobi_theta3(z, -q) + else: + raise ValueError + finally: + ctx.prec = prec0 + return res + +@defun +def _djtheta(ctx, n, z, q, derivative=1): + z = ctx.convert(z) + q = ctx.convert(q) + nd = int(derivative) + + if abs(q) > ctx.THETA_Q_LIM: + raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM) + extra = 10 + ctx.prec * nd // 10 + if z: + M = ctx.mag(z) + if M > 5 or (n != 1 and M < -5): + extra += 2*abs(M) + cz = 0.5 + extra2 = 50 + prec0 = ctx.prec + try: + ctx.prec += extra + if n == 1: + if ctx._im(z): + if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): + ctx.dps += extra2 + res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd) + else: + ctx.dps += 10 + res = ctx._djacobi_theta2a(z - ctx.pi/2, q, nd) + else: + res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd) + elif n == 2: + if ctx._im(z): + if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): + ctx.dps += extra2 + res = ctx._djacobi_theta2(z, q, nd) + else: + ctx.dps += 10 + res = ctx._djacobi_theta2a(z, q, nd) + else: + res = ctx._djacobi_theta2(z, q, nd) + elif n == 3: + if ctx._im(z): + if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): + ctx.dps += extra2 + res = ctx._djacobi_theta3(z, q, nd) + else: + ctx.dps += 10 + res = ctx._djacobi_theta3a(z, q, nd) + else: + res = ctx._djacobi_theta3(z, q, nd) + elif n == 4: + if ctx._im(z): + if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): + ctx.dps += extra2 + res = ctx._djacobi_theta3(z, -q, nd) + else: + ctx.dps += 10 + res = ctx._djacobi_theta3a(z, -q, nd) + else: + res = ctx._djacobi_theta3(z, -q, nd) + else: + raise ValueError + finally: + ctx.prec = prec0 + return +res diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/zeta.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/zeta.py new file mode 100644 index 0000000000000000000000000000000000000000..d7ede50d95e5b6eff511619620c934529942cbdd --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/zeta.py @@ -0,0 +1,1154 @@ +from __future__ import print_function + +from ..libmp.backend import xrange +from .functions import defun, defun_wrapped, defun_static + +@defun +def stieltjes(ctx, n, a=1): + n = ctx.convert(n) + a = ctx.convert(a) + if n < 0: + return ctx.bad_domain("Stieltjes constants defined for n >= 0") + if hasattr(ctx, "stieltjes_cache"): + stieltjes_cache = ctx.stieltjes_cache + else: + stieltjes_cache = ctx.stieltjes_cache = {} + if a == 1: + if n == 0: + return +ctx.euler + if n in stieltjes_cache: + prec, s = stieltjes_cache[n] + if prec >= ctx.prec: + return +s + mag = 1 + def f(x): + xa = x/a + v = (xa-ctx.j)*ctx.ln(a-ctx.j*x)**n/(1+xa**2)/(ctx.exp(2*ctx.pi*x)-1) + return ctx._re(v) / mag + orig = ctx.prec + try: + # Normalize integrand by approx. magnitude to + # speed up quadrature (which uses absolute error) + if n > 50: + ctx.prec = 20 + mag = ctx.quad(f, [0,ctx.inf], maxdegree=3) + ctx.prec = orig + 10 + int(n**0.5) + s = ctx.quad(f, [0,ctx.inf], maxdegree=20) + v = ctx.ln(a)**n/(2*a) - ctx.ln(a)**(n+1)/(n+1) + 2*s/a*mag + finally: + ctx.prec = orig + if a == 1 and ctx.isint(n): + stieltjes_cache[n] = (ctx.prec, v) + return +v + +@defun_wrapped +def siegeltheta(ctx, t, derivative=0): + d = int(derivative) + if (t == ctx.inf or t == ctx.ninf): + if d < 2: + if t == ctx.ninf and d == 0: + return ctx.ninf + return ctx.inf + else: + return ctx.zero + if d == 0: + if ctx._im(t): + # XXX: cancellation occurs + a = ctx.loggamma(0.25+0.5j*t) + b = ctx.loggamma(0.25-0.5j*t) + return -ctx.ln(ctx.pi)/2*t - 0.5j*(a-b) + else: + if ctx.isinf(t): + return t + return ctx._im(ctx.loggamma(0.25+0.5j*t)) - ctx.ln(ctx.pi)/2*t + if d > 0: + a = (-0.5j)**(d-1)*ctx.polygamma(d-1, 0.25-0.5j*t) + b = (0.5j)**(d-1)*ctx.polygamma(d-1, 0.25+0.5j*t) + if ctx._im(t): + if d == 1: + return -0.5*ctx.log(ctx.pi)+0.25*(a+b) + else: + return 0.25*(a+b) + else: + if d == 1: + return ctx._re(-0.5*ctx.log(ctx.pi)+0.25*(a+b)) + else: + return ctx._re(0.25*(a+b)) + +@defun_wrapped +def grampoint(ctx, n): + # asymptotic expansion, from + # http://mathworld.wolfram.com/GramPoint.html + g = 2*ctx.pi*ctx.exp(1+ctx.lambertw((8*n+1)/(8*ctx.e))) + return ctx.findroot(lambda t: ctx.siegeltheta(t)-ctx.pi*n, g) + + +@defun_wrapped +def siegelz(ctx, t, **kwargs): + d = int(kwargs.get("derivative", 0)) + t = ctx.convert(t) + t1 = ctx._re(t) + t2 = ctx._im(t) + prec = ctx.prec + try: + if abs(t1) > 500*prec and t2**2 < t1: + v = ctx.rs_z(t, d) + if ctx._is_real_type(t): + return ctx._re(v) + return v + except NotImplementedError: + pass + ctx.prec += 21 + e1 = ctx.expj(ctx.siegeltheta(t)) + z = ctx.zeta(0.5+ctx.j*t) + if d == 0: + v = e1*z + ctx.prec=prec + if ctx._is_real_type(t): + return ctx._re(v) + return +v + z1 = ctx.zeta(0.5+ctx.j*t, derivative=1) + theta1 = ctx.siegeltheta(t, derivative=1) + if d == 1: + v = ctx.j*e1*(z1+z*theta1) + ctx.prec=prec + if ctx._is_real_type(t): + return ctx._re(v) + return +v + z2 = ctx.zeta(0.5+ctx.j*t, derivative=2) + theta2 = ctx.siegeltheta(t, derivative=2) + comb1 = theta1**2-ctx.j*theta2 + if d == 2: + def terms(): + return [2*z1*theta1, z2, z*comb1] + v = ctx.sum_accurately(terms, 1) + v = -e1*v + ctx.prec = prec + if ctx._is_real_type(t): + return ctx._re(v) + return +v + ctx.prec += 10 + z3 = ctx.zeta(0.5+ctx.j*t, derivative=3) + theta3 = ctx.siegeltheta(t, derivative=3) + comb2 = theta1**3-3*ctx.j*theta1*theta2-theta3 + if d == 3: + def terms(): + return [3*theta1*z2, 3*z1*comb1, z3+z*comb2] + v = ctx.sum_accurately(terms, 1) + v = -ctx.j*e1*v + ctx.prec = prec + if ctx._is_real_type(t): + return ctx._re(v) + return +v + z4 = ctx.zeta(0.5+ctx.j*t, derivative=4) + theta4 = ctx.siegeltheta(t, derivative=4) + def terms(): + return [theta1**4, -6*ctx.j*theta1**2*theta2, -3*theta2**2, + -4*theta1*theta3, ctx.j*theta4] + comb3 = ctx.sum_accurately(terms, 1) + if d == 4: + def terms(): + return [6*theta1**2*z2, -6*ctx.j*z2*theta2, 4*theta1*z3, + 4*z1*comb2, z4, z*comb3] + v = ctx.sum_accurately(terms, 1) + v = e1*v + ctx.prec = prec + if ctx._is_real_type(t): + return ctx._re(v) + return +v + if d > 4: + h = lambda x: ctx.siegelz(x, derivative=4) + return ctx.diff(h, t, n=d-4) + + +_zeta_zeros = [ +14.134725142,21.022039639,25.010857580,30.424876126,32.935061588, +37.586178159,40.918719012,43.327073281,48.005150881,49.773832478, +52.970321478,56.446247697,59.347044003,60.831778525,65.112544048, +67.079810529,69.546401711,72.067157674,75.704690699,77.144840069, +79.337375020,82.910380854,84.735492981,87.425274613,88.809111208, +92.491899271,94.651344041,95.870634228,98.831194218,101.317851006, +103.725538040,105.446623052,107.168611184,111.029535543,111.874659177, +114.320220915,116.226680321,118.790782866,121.370125002,122.946829294, +124.256818554,127.516683880,129.578704200,131.087688531,133.497737203, +134.756509753,138.116042055,139.736208952,141.123707404,143.111845808, +146.000982487,147.422765343,150.053520421,150.925257612,153.024693811, +156.112909294,157.597591818,158.849988171,161.188964138,163.030709687, +165.537069188,167.184439978,169.094515416,169.911976479,173.411536520, +174.754191523,176.441434298,178.377407776,179.916484020,182.207078484, +184.874467848,185.598783678,187.228922584,189.416158656,192.026656361, +193.079726604,195.265396680,196.876481841,198.015309676,201.264751944, +202.493594514,204.189671803,205.394697202,207.906258888,209.576509717, +211.690862595,213.347919360,214.547044783,216.169538508,219.067596349, +220.714918839,221.430705555,224.007000255,224.983324670,227.421444280, +229.337413306,231.250188700,231.987235253,233.693404179,236.524229666, +] + +def _load_zeta_zeros(url): + import urllib + d = urllib.urlopen(url) + L = [float(x) for x in d.readlines()] + # Sanity check + assert round(L[0]) == 14 + _zeta_zeros[:] = L + +@defun +def oldzetazero(ctx, n, url='http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1'): + n = int(n) + if n < 0: + return ctx.zetazero(-n).conjugate() + if n == 0: + raise ValueError("n must be nonzero") + if n > len(_zeta_zeros) and n <= 100000: + _load_zeta_zeros(url) + if n > len(_zeta_zeros): + raise NotImplementedError("n too large for zetazeros") + return ctx.mpc(0.5, ctx.findroot(ctx.siegelz, _zeta_zeros[n-1])) + +@defun_wrapped +def riemannr(ctx, x): + if x == 0: + return ctx.zero + # Check if a simple asymptotic estimate is accurate enough + if abs(x) > 1000: + a = ctx.li(x) + b = 0.5*ctx.li(ctx.sqrt(x)) + if abs(b) < abs(a)*ctx.eps: + return a + if abs(x) < 0.01: + # XXX + ctx.prec += int(-ctx.log(abs(x),2)) + # Sum Gram's series + s = t = ctx.one + u = ctx.ln(x) + k = 1 + while abs(t) > abs(s)*ctx.eps: + t = t * u / k + s += t / (k * ctx._zeta_int(k+1)) + k += 1 + return s + +@defun_static +def primepi(ctx, x): + x = int(x) + if x < 2: + return 0 + return len(ctx.list_primes(x)) + +# TODO: fix the interface wrt contexts +@defun_wrapped +def primepi2(ctx, x): + x = int(x) + if x < 2: + return ctx._iv.zero + if x < 2657: + return ctx._iv.mpf(ctx.primepi(x)) + mid = ctx.li(x) + # Schoenfeld's estimate for x >= 2657, assuming RH + err = ctx.sqrt(x,rounding='u')*ctx.ln(x,rounding='u')/8/ctx.pi(rounding='d') + a = ctx.floor((ctx._iv.mpf(mid)-err).a, rounding='d') + b = ctx.ceil((ctx._iv.mpf(mid)+err).b, rounding='u') + return ctx._iv.mpf([a,b]) + +@defun_wrapped +def primezeta(ctx, s): + if ctx.isnan(s): + return s + if ctx.re(s) <= 0: + raise ValueError("prime zeta function defined only for re(s) > 0") + if s == 1: + return ctx.inf + if s == 0.5: + return ctx.mpc(ctx.ninf, ctx.pi) + r = ctx.re(s) + if r > ctx.prec: + return 0.5**s + else: + wp = ctx.prec + int(r) + def terms(): + orig = ctx.prec + # zeta ~ 1+eps; need to set precision + # to get logarithm accurately + k = 0 + while 1: + k += 1 + u = ctx.moebius(k) + if not u: + continue + ctx.prec = wp + t = u*ctx.ln(ctx.zeta(k*s))/k + if not t: + return + #print ctx.prec, ctx.nstr(t) + ctx.prec = orig + yield t + return ctx.sum_accurately(terms) + +# TODO: for bernpoly and eulerpoly, ensure that all exact zeros are covered + +@defun_wrapped +def bernpoly(ctx, n, z): + # Slow implementation: + #return sum(ctx.binomial(n,k)*ctx.bernoulli(k)*z**(n-k) for k in xrange(0,n+1)) + n = int(n) + if n < 0: + raise ValueError("Bernoulli polynomials only defined for n >= 0") + if z == 0 or (z == 1 and n > 1): + return ctx.bernoulli(n) + if z == 0.5: + return (ctx.ldexp(1,1-n)-1)*ctx.bernoulli(n) + if n <= 3: + if n == 0: return z ** 0 + if n == 1: return z - 0.5 + if n == 2: return (6*z*(z-1)+1)/6 + if n == 3: return z*(z*(z-1.5)+0.5) + if ctx.isinf(z): + return z ** n + if ctx.isnan(z): + return z + if abs(z) > 2: + def terms(): + t = ctx.one + yield t + r = ctx.one/z + k = 1 + while k <= n: + t = t*(n+1-k)/k*r + if not (k > 2 and k & 1): + yield t*ctx.bernoulli(k) + k += 1 + return ctx.sum_accurately(terms) * z**n + else: + def terms(): + yield ctx.bernoulli(n) + t = ctx.one + k = 1 + while k <= n: + t = t*(n+1-k)/k * z + m = n-k + if not (m > 2 and m & 1): + yield t*ctx.bernoulli(m) + k += 1 + return ctx.sum_accurately(terms) + +@defun_wrapped +def eulerpoly(ctx, n, z): + n = int(n) + if n < 0: + raise ValueError("Euler polynomials only defined for n >= 0") + if n <= 2: + if n == 0: return z ** 0 + if n == 1: return z - 0.5 + if n == 2: return z*(z-1) + if ctx.isinf(z): + return z**n + if ctx.isnan(z): + return z + m = n+1 + if z == 0: + return -2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0 + if z == 1: + return 2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0 + if z == 0.5: + if n % 2: + return ctx.zero + # Use exact code for Euler numbers + if n < 100 or n*ctx.mag(0.46839865*n) < ctx.prec*0.25: + return ctx.ldexp(ctx._eulernum(n), -n) + # http://functions.wolfram.com/Polynomials/EulerE2/06/01/02/01/0002/ + def terms(): + t = ctx.one + k = 0 + w = ctx.ldexp(1,n+2) + while 1: + v = n-k+1 + if not (v > 2 and v & 1): + yield (2-w)*ctx.bernoulli(v)*t + k += 1 + if k > n: + break + t = t*z*(n-k+2)/k + w *= 0.5 + return ctx.sum_accurately(terms) / m + +@defun +def eulernum(ctx, n, exact=False): + n = int(n) + if exact: + return int(ctx._eulernum(n)) + if n < 100: + return ctx.mpf(ctx._eulernum(n)) + if n % 2: + return ctx.zero + return ctx.ldexp(ctx.eulerpoly(n,0.5), n) + +# TODO: this should be implemented low-level +def polylog_series(ctx, s, z): + tol = +ctx.eps + l = ctx.zero + k = 1 + zk = z + while 1: + term = zk / k**s + l += term + if abs(term) < tol: + break + zk *= z + k += 1 + return l + +def polylog_continuation(ctx, n, z): + if n < 0: + return z*0 + twopij = 2j * ctx.pi + a = -twopij**n/ctx.fac(n) * ctx.bernpoly(n, ctx.ln(z)/twopij) + if ctx._is_real_type(z) and z < 0: + a = ctx._re(a) + if ctx._im(z) < 0 or (ctx._im(z) == 0 and ctx._re(z) >= 1): + a -= twopij*ctx.ln(z)**(n-1)/ctx.fac(n-1) + return a + +def polylog_unitcircle(ctx, n, z): + tol = +ctx.eps + if n > 1: + l = ctx.zero + logz = ctx.ln(z) + logmz = ctx.one + m = 0 + while 1: + if (n-m) != 1: + term = ctx.zeta(n-m) * logmz / ctx.fac(m) + if term and abs(term) < tol: + break + l += term + logmz *= logz + m += 1 + l += ctx.ln(z)**(n-1)/ctx.fac(n-1)*(ctx.harmonic(n-1)-ctx.ln(-ctx.ln(z))) + elif n < 1: # else + l = ctx.fac(-n)*(-ctx.ln(z))**(n-1) + logz = ctx.ln(z) + logkz = ctx.one + k = 0 + while 1: + b = ctx.bernoulli(k-n+1) + if b: + term = b*logkz/(ctx.fac(k)*(k-n+1)) + if abs(term) < tol: + break + l -= term + logkz *= logz + k += 1 + else: + raise ValueError + if ctx._is_real_type(z) and z < 0: + l = ctx._re(l) + return l + +def polylog_general(ctx, s, z): + v = ctx.zero + u = ctx.ln(z) + if not abs(u) < 5: # theoretically |u| < 2*pi + j = ctx.j + v = 1-s + y = ctx.ln(-z)/(2*ctx.pi*j) + return ctx.gamma(v)*(j**v*ctx.zeta(v,0.5+y) + j**-v*ctx.zeta(v,0.5-y))/(2*ctx.pi)**v + t = 1 + k = 0 + while 1: + term = ctx.zeta(s-k) * t + if abs(term) < ctx.eps: + break + v += term + k += 1 + t *= u + t /= k + return ctx.gamma(1-s)*(-u)**(s-1) + v + +@defun_wrapped +def polylog(ctx, s, z): + s = ctx.convert(s) + z = ctx.convert(z) + if z == 1: + return ctx.zeta(s) + if z == -1: + return -ctx.altzeta(s) + if s == 0: + return z/(1-z) + if s == 1: + return -ctx.ln(1-z) + if s == -1: + return z/(1-z)**2 + if abs(z) <= 0.75 or (not ctx.isint(s) and abs(z) < 0.9): + return polylog_series(ctx, s, z) + if abs(z) >= 1.4 and ctx.isint(s): + return (-1)**(s+1)*polylog_series(ctx, s, 1/z) + polylog_continuation(ctx, int(ctx.re(s)), z) + if ctx.isint(s): + return polylog_unitcircle(ctx, int(ctx.re(s)), z) + return polylog_general(ctx, s, z) + +@defun_wrapped +def clsin(ctx, s, z, pi=False): + if ctx.isint(s) and s < 0 and int(s) % 2 == 1: + return z*0 + if pi: + a = ctx.expjpi(z) + else: + a = ctx.expj(z) + if ctx._is_real_type(z) and ctx._is_real_type(s): + return ctx.im(ctx.polylog(s,a)) + b = 1/a + return (-0.5j)*(ctx.polylog(s,a) - ctx.polylog(s,b)) + +@defun_wrapped +def clcos(ctx, s, z, pi=False): + if ctx.isint(s) and s < 0 and int(s) % 2 == 0: + return z*0 + if pi: + a = ctx.expjpi(z) + else: + a = ctx.expj(z) + if ctx._is_real_type(z) and ctx._is_real_type(s): + return ctx.re(ctx.polylog(s,a)) + b = 1/a + return 0.5*(ctx.polylog(s,a) + ctx.polylog(s,b)) + +@defun +def altzeta(ctx, s, **kwargs): + try: + return ctx._altzeta(s, **kwargs) + except NotImplementedError: + return ctx._altzeta_generic(s) + +@defun_wrapped +def _altzeta_generic(ctx, s): + if s == 1: + return ctx.ln2 + 0*s + return -ctx.powm1(2, 1-s) * ctx.zeta(s) + +@defun +def zeta(ctx, s, a=1, derivative=0, method=None, **kwargs): + d = int(derivative) + if a == 1 and not (d or method): + try: + return ctx._zeta(s, **kwargs) + except NotImplementedError: + pass + s = ctx.convert(s) + prec = ctx.prec + method = kwargs.get('method') + verbose = kwargs.get('verbose') + if (not s) and (not derivative): + return ctx.mpf(0.5) - ctx._convert_param(a)[0] + if a == 1 and method != 'euler-maclaurin': + im = abs(ctx._im(s)) + re = abs(ctx._re(s)) + #if (im < prec or method == 'borwein') and not derivative: + # try: + # if verbose: + # print "zeta: Attempting to use the Borwein algorithm" + # return ctx._zeta(s, **kwargs) + # except NotImplementedError: + # if verbose: + # print "zeta: Could not use the Borwein algorithm" + # pass + if abs(im) > 500*prec and 10*re < prec and derivative <= 4 or \ + method == 'riemann-siegel': + try: # py2.4 compatible try block + try: + if verbose: + print("zeta: Attempting to use the Riemann-Siegel algorithm") + return ctx.rs_zeta(s, derivative, **kwargs) + except NotImplementedError: + if verbose: + print("zeta: Could not use the Riemann-Siegel algorithm") + pass + finally: + ctx.prec = prec + if s == 1: + return ctx.inf + abss = abs(s) + if abss == ctx.inf: + if ctx.re(s) == ctx.inf: + if d == 0: + return ctx.one + return ctx.zero + return s*0 + elif ctx.isnan(abss): + return 1/s + if ctx.re(s) > 2*ctx.prec and a == 1 and not derivative: + return ctx.one + ctx.power(2, -s) + return +ctx._hurwitz(s, a, d, **kwargs) + +@defun +def _hurwitz(ctx, s, a=1, d=0, **kwargs): + prec = ctx.prec + verbose = kwargs.get('verbose') + try: + extraprec = 10 + ctx.prec += extraprec + # We strongly want to special-case rational a + a, atype = ctx._convert_param(a) + if ctx.re(s) < 0: + if verbose: + print("zeta: Attempting reflection formula") + try: + return _hurwitz_reflection(ctx, s, a, d, atype) + except NotImplementedError: + pass + if verbose: + print("zeta: Reflection formula failed") + if verbose: + print("zeta: Using the Euler-Maclaurin algorithm") + while 1: + ctx.prec = prec + extraprec + T1, T2 = _hurwitz_em(ctx, s, a, d, prec+10, verbose) + cancellation = ctx.mag(T1) - ctx.mag(T1+T2) + if verbose: + print("Term 1:", T1) + print("Term 2:", T2) + print("Cancellation:", cancellation, "bits") + if cancellation < extraprec: + return T1 + T2 + else: + extraprec = max(2*extraprec, min(cancellation + 5, 100*prec)) + if extraprec > kwargs.get('maxprec', 100*prec): + raise ctx.NoConvergence("zeta: too much cancellation") + finally: + ctx.prec = prec + +def _hurwitz_reflection(ctx, s, a, d, atype): + # TODO: implement for derivatives + if d != 0: + raise NotImplementedError + res = ctx.re(s) + negs = -s + # Integer reflection formula + if ctx.isnpint(s): + n = int(res) + if n <= 0: + return ctx.bernpoly(1-n, a) / (n-1) + if not (atype == 'Q' or atype == 'Z'): + raise NotImplementedError + t = 1-s + # We now require a to be standardized + v = 0 + shift = 0 + b = a + while ctx.re(b) > 1: + b -= 1 + v -= b**negs + shift -= 1 + while ctx.re(b) <= 0: + v += b**negs + b += 1 + shift += 1 + # Rational reflection formula + try: + p, q = a._mpq_ + except: + assert a == int(a) + p = int(a) + q = 1 + p += shift*q + assert 1 <= p <= q + g = ctx.fsum(ctx.cospi(t/2-2*k*b)*ctx._hurwitz(t,(k,q)) \ + for k in range(1,q+1)) + g *= 2*ctx.gamma(t)/(2*ctx.pi*q)**t + v += g + return v + +def _hurwitz_em(ctx, s, a, d, prec, verbose): + # May not be converted at this point + a = ctx.convert(a) + tol = -prec + # Estimate number of terms for Euler-Maclaurin summation; could be improved + M1 = 0 + M2 = prec // 3 + N = M2 + lsum = 0 + # This speeds up the recurrence for derivatives + if ctx.isint(s): + s = int(ctx._re(s)) + s1 = s-1 + while 1: + # Truncated L-series + l = ctx._zetasum(s, M1+a, M2-M1-1, [d])[0][0] + #if d: + # l = ctx.fsum((-ctx.ln(n+a))**d * (n+a)**negs for n in range(M1,M2)) + #else: + # l = ctx.fsum((n+a)**negs for n in range(M1,M2)) + lsum += l + M2a = M2+a + logM2a = ctx.ln(M2a) + logM2ad = logM2a**d + logs = [logM2ad] + logr = 1/logM2a + rM2a = 1/M2a + M2as = M2a**(-s) + if d: + tailsum = ctx.gammainc(d+1, s1*logM2a) / s1**(d+1) + else: + tailsum = 1/((s1)*(M2a)**s1) + tailsum += 0.5 * logM2ad * M2as + U = [1] + r = M2as + fact = 2 + for j in range(1, N+1): + # TODO: the following could perhaps be tidied a bit + j2 = 2*j + if j == 1: + upds = [1] + else: + upds = [j2-2, j2-1] + for m in upds: + D = min(m,d+1) + if m <= d: + logs.append(logs[-1] * logr) + Un = [0]*(D+1) + for i in xrange(D): Un[i] = (1-m-s)*U[i] + for i in xrange(1,D+1): Un[i] += (d-(i-1))*U[i-1] + U = Un + r *= rM2a + t = ctx.fdot(U, logs) * r * ctx.bernoulli(j2)/(-fact) + tailsum += t + if ctx.mag(t) < tol: + return lsum, (-1)**d * tailsum + fact *= (j2+1)*(j2+2) + if verbose: + print("Sum range:", M1, M2, "term magnitude", ctx.mag(t), "tolerance", tol) + M1, M2 = M2, M2*2 + if ctx.re(s) < 0: + N += N//2 + + + +@defun +def _zetasum(ctx, s, a, n, derivatives=[0], reflect=False): + """ + Returns [xd0,xd1,...,xdr], [yd0,yd1,...ydr] where + + xdk = D^k ( 1/a^s + 1/(a+1)^s + ... + 1/(a+n)^s ) + ydk = D^k conj( 1/a^(1-s) + 1/(a+1)^(1-s) + ... + 1/(a+n)^(1-s) ) + + D^k = kth derivative with respect to s, k ranges over the given list of + derivatives (which should consist of either a single element + or a range 0,1,...r). If reflect=False, the ydks are not computed. + """ + #print "zetasum", s, a, n + # don't use the fixed-point code if there are large exponentials + if abs(ctx.re(s)) < 0.5 * ctx.prec: + try: + return ctx._zetasum_fast(s, a, n, derivatives, reflect) + except NotImplementedError: + pass + negs = ctx.fneg(s, exact=True) + have_derivatives = derivatives != [0] + have_one_derivative = len(derivatives) == 1 + if not reflect: + if not have_derivatives: + return [ctx.fsum((a+k)**negs for k in xrange(n+1))], [] + if have_one_derivative: + d = derivatives[0] + x = ctx.fsum(ctx.ln(a+k)**d * (a+k)**negs for k in xrange(n+1)) + return [(-1)**d * x], [] + maxd = max(derivatives) + if not have_one_derivative: + derivatives = range(maxd+1) + xs = [ctx.zero for d in derivatives] + if reflect: + ys = [ctx.zero for d in derivatives] + else: + ys = [] + for k in xrange(n+1): + w = a + k + xterm = w ** negs + if reflect: + yterm = ctx.conj(ctx.one / (w * xterm)) + if have_derivatives: + logw = -ctx.ln(w) + if have_one_derivative: + logw = logw ** maxd + xs[0] += xterm * logw + if reflect: + ys[0] += yterm * logw + else: + t = ctx.one + for d in derivatives: + xs[d] += xterm * t + if reflect: + ys[d] += yterm * t + t *= logw + else: + xs[0] += xterm + if reflect: + ys[0] += yterm + return xs, ys + +@defun +def dirichlet(ctx, s, chi=[1], derivative=0): + s = ctx.convert(s) + q = len(chi) + d = int(derivative) + if d > 2: + raise NotImplementedError("arbitrary order derivatives") + prec = ctx.prec + try: + ctx.prec += 10 + if s == 1: + have_pole = True + for x in chi: + if x and x != 1: + have_pole = False + h = +ctx.eps + ctx.prec *= 2*(d+1) + s += h + if have_pole: + return +ctx.inf + z = ctx.zero + for p in range(1,q+1): + if chi[p%q]: + if d == 1: + z += chi[p%q] * (ctx.zeta(s, (p,q), 1) - \ + ctx.zeta(s, (p,q))*ctx.log(q)) + else: + z += chi[p%q] * ctx.zeta(s, (p,q)) + z /= q**s + finally: + ctx.prec = prec + return +z + + +def secondzeta_main_term(ctx, s, a, **kwargs): + tol = ctx.eps + f = lambda n: ctx.gammainc(0.5*s, a*gamm**2, regularized=True)*gamm**(-s) + totsum = term = ctx.zero + mg = ctx.inf + n = 0 + while mg > tol: + totsum += term + n += 1 + gamm = ctx.im(ctx.zetazero_memoized(n)) + term = f(n) + mg = abs(term) + err = 0 + if kwargs.get("error"): + sg = ctx.re(s) + err = 0.5*ctx.pi**(-1)*max(1,sg)*a**(sg-0.5)*ctx.log(gamm/(2*ctx.pi))*\ + ctx.gammainc(-0.5, a*gamm**2)/abs(ctx.gamma(s/2)) + err = abs(err) + return +totsum, err, n + +def secondzeta_prime_term(ctx, s, a, **kwargs): + tol = ctx.eps + f = lambda n: ctx.gammainc(0.5*(1-s),0.25*ctx.log(n)**2 * a**(-1))*\ + ((0.5*ctx.log(n))**(s-1))*ctx.mangoldt(n)/ctx.sqrt(n)/\ + (2*ctx.gamma(0.5*s)*ctx.sqrt(ctx.pi)) + totsum = term = ctx.zero + mg = ctx.inf + n = 1 + while mg > tol or n < 9: + totsum += term + n += 1 + term = f(n) + if term == 0: + mg = ctx.inf + else: + mg = abs(term) + if kwargs.get("error"): + err = mg + return +totsum, err, n + +def secondzeta_exp_term(ctx, s, a): + if ctx.isint(s) and ctx.re(s) <= 0: + m = int(round(ctx.re(s))) + if not m & 1: + return ctx.mpf('-0.25')**(-m//2) + tol = ctx.eps + f = lambda n: (0.25*a)**n/((n+0.5*s)*ctx.fac(n)) + totsum = ctx.zero + term = f(0) + mg = ctx.inf + n = 0 + while mg > tol: + totsum += term + n += 1 + term = f(n) + mg = abs(term) + v = a**(0.5*s)*totsum/ctx.gamma(0.5*s) + return v + +def secondzeta_singular_term(ctx, s, a, **kwargs): + factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s)) + extraprec = ctx.mag(factor) + ctx.prec += extraprec + factor = a**(0.5*(s-1))/(4*ctx.sqrt(ctx.pi)*ctx.gamma(0.5*s)) + tol = ctx.eps + f = lambda n: ctx.bernpoly(n,0.75)*(4*ctx.sqrt(a))**n*\ + ctx.gamma(0.5*n)/((s+n-1)*ctx.fac(n)) + totsum = ctx.zero + mg1 = ctx.inf + n = 1 + term = f(n) + mg2 = abs(term) + while mg2 > tol and mg2 <= mg1: + totsum += term + n += 1 + term = f(n) + totsum += term + n +=1 + term = f(n) + mg1 = mg2 + mg2 = abs(term) + totsum += term + pole = -2*(s-1)**(-2)+(ctx.euler+ctx.log(16*ctx.pi**2*a))*(s-1)**(-1) + st = factor*(pole+totsum) + err = 0 + if kwargs.get("error"): + if not ((mg2 > tol) and (mg2 <= mg1)): + if mg2 <= tol: + err = ctx.mpf(10)**int(ctx.log(abs(factor*tol),10)) + if mg2 > mg1: + err = ctx.mpf(10)**int(ctx.log(abs(factor*mg1),10)) + err = max(err, ctx.eps*1.) + ctx.prec -= extraprec + return +st, err + +@defun +def secondzeta(ctx, s, a = 0.015, **kwargs): + r""" + Evaluates the secondary zeta function `Z(s)`, defined for + `\mathrm{Re}(s)>1` by + + .. math :: + + Z(s) = \sum_{n=1}^{\infty} \frac{1}{\tau_n^s} + + where `\frac12+i\tau_n` runs through the zeros of `\zeta(s)` with + imaginary part positive. + + `Z(s)` extends to a meromorphic function on `\mathbb{C}` with a + double pole at `s=1` and simple poles at the points `-2n` for + `n=0`, 1, 2, ... + + **Examples** + + >>> from mpmath import * + >>> mp.pretty = True; mp.dps = 15 + >>> secondzeta(2) + 0.023104993115419 + >>> xi = lambda s: 0.5*s*(s-1)*pi**(-0.5*s)*gamma(0.5*s)*zeta(s) + >>> Xi = lambda t: xi(0.5+t*j) + >>> chop(-0.5*diff(Xi,0,n=2)/Xi(0)) + 0.023104993115419 + + We may ask for an approximate error value:: + + >>> secondzeta(0.5+100j, error=True) + ((-0.216272011276718 - 0.844952708937228j), 2.22044604925031e-16) + + The function has poles at the negative odd integers, + and dyadic rational values at the negative even integers:: + + >>> mp.dps = 30 + >>> secondzeta(-8) + -0.67236328125 + >>> secondzeta(-7) + +inf + + **Implementation notes** + + The function is computed as sum of four terms `Z(s)=A(s)-P(s)+E(s)-S(s)` + respectively main, prime, exponential and singular terms. + The main term `A(s)` is computed from the zeros of zeta. + The prime term depends on the von Mangoldt function. + The singular term is responsible for the poles of the function. + + The four terms depends on a small parameter `a`. We may change the + value of `a`. Theoretically this has no effect on the sum of the four + terms, but in practice may be important. + + A smaller value of the parameter `a` makes `A(s)` depend on + a smaller number of zeros of zeta, but `P(s)` uses more values of + von Mangoldt function. + + We may also add a verbose option to obtain data about the + values of the four terms. + + >>> mp.dps = 10 + >>> secondzeta(0.5 + 40j, error=True, verbose=True) + main term = (-30190318549.138656312556 - 13964804384.624622876523j) + computed using 19 zeros of zeta + prime term = (132717176.89212754625045 + 188980555.17563978290601j) + computed using 9 values of the von Mangoldt function + exponential term = (542447428666.07179812536 + 362434922978.80192435203j) + singular term = (512124392939.98154322355 + 348281138038.65531023921j) + ((0.059471043 + 0.3463514534j), 1.455191523e-11) + + >>> secondzeta(0.5 + 40j, a=0.04, error=True, verbose=True) + main term = (-151962888.19606243907725 - 217930683.90210294051982j) + computed using 9 zeros of zeta + prime term = (2476659342.3038722372461 + 28711581821.921627163136j) + computed using 37 values of the von Mangoldt function + exponential term = (178506047114.7838188264 + 819674143244.45677330576j) + singular term = (175877424884.22441310708 + 790744630738.28669174871j) + ((0.059471043 + 0.3463514534j), 1.455191523e-11) + + Notice the great cancellation between the four terms. Changing `a`, the + four terms are very different numbers but the cancellation gives + the good value of Z(s). + + **References** + + A. Voros, Zeta functions for the Riemann zeros, Ann. Institute Fourier, + 53, (2003) 665--699. + + A. Voros, Zeta functions over Zeros of Zeta Functions, Lecture Notes + of the Unione Matematica Italiana, Springer, 2009. + """ + s = ctx.convert(s) + a = ctx.convert(a) + tol = ctx.eps + if ctx.isint(s) and ctx.re(s) <= 1: + if abs(s-1) < tol*1000: + return ctx.inf + m = int(round(ctx.re(s))) + if m & 1: + return ctx.inf + else: + return ((-1)**(-m//2)*\ + ctx.fraction(8-ctx.eulernum(-m,exact=True),2**(-m+3))) + prec = ctx.prec + try: + t3 = secondzeta_exp_term(ctx, s, a) + extraprec = max(ctx.mag(t3),0) + ctx.prec += extraprec + 3 + t1, r1, gt = secondzeta_main_term(ctx,s,a,error='True', verbose='True') + t2, r2, pt = secondzeta_prime_term(ctx,s,a,error='True', verbose='True') + t4, r4 = secondzeta_singular_term(ctx,s,a,error='True') + t3 = secondzeta_exp_term(ctx, s, a) + err = r1+r2+r4 + t = t1-t2+t3-t4 + if kwargs.get("verbose"): + print('main term =', t1) + print(' computed using', gt, 'zeros of zeta') + print('prime term =', t2) + print(' computed using', pt, 'values of the von Mangoldt function') + print('exponential term =', t3) + print('singular term =', t4) + finally: + ctx.prec = prec + if kwargs.get("error"): + w = max(ctx.mag(abs(t)),0) + err = max(err*2**w, ctx.eps*1.*2**w) + return +t, err + return +t + + +@defun_wrapped +def lerchphi(ctx, z, s, a): + r""" + Gives the Lerch transcendent, defined for `|z| < 1` and + `\Re{a} > 0` by + + .. math :: + + \Phi(z,s,a) = \sum_{k=0}^{\infty} \frac{z^k}{(a+k)^s} + + and generally by the recurrence `\Phi(z,s,a) = z \Phi(z,s,a+1) + a^{-s}` + along with the integral representation valid for `\Re{a} > 0` + + .. math :: + + \Phi(z,s,a) = \frac{1}{2 a^s} + + \int_0^{\infty} \frac{z^t}{(a+t)^s} dt - + 2 \int_0^{\infty} \frac{\sin(t \log z - s + \operatorname{arctan}(t/a)}{(a^2 + t^2)^{s/2} + (e^{2 \pi t}-1)} dt. + + The Lerch transcendent generalizes the Hurwitz zeta function :func:`zeta` + (`z = 1`) and the polylogarithm :func:`polylog` (`a = 1`). + + **Examples** + + Several evaluations in terms of simpler functions:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> lerchphi(-1,2,0.5); 4*catalan + 3.663862376708876060218414 + 3.663862376708876060218414 + >>> diff(lerchphi, (-1,-2,1), (0,1,0)); 7*zeta(3)/(4*pi**2) + 0.2131391994087528954617607 + 0.2131391994087528954617607 + >>> lerchphi(-4,1,1); log(5)/4 + 0.4023594781085250936501898 + 0.4023594781085250936501898 + >>> lerchphi(-3+2j,1,0.5); 2*atanh(sqrt(-3+2j))/sqrt(-3+2j) + (1.142423447120257137774002 + 0.2118232380980201350495795j) + (1.142423447120257137774002 + 0.2118232380980201350495795j) + + Evaluation works for complex arguments and `|z| \ge 1`:: + + >>> lerchphi(1+2j, 3-j, 4+2j) + (0.002025009957009908600539469 + 0.003327897536813558807438089j) + >>> lerchphi(-2,2,-2.5) + -12.28676272353094275265944 + >>> lerchphi(10,10,10) + (-4.462130727102185701817349e-11 - 1.575172198981096218823481e-12j) + >>> lerchphi(10,10,-10.5) + (112658784011940.5605789002 - 498113185.5756221777743631j) + + Some degenerate cases:: + + >>> lerchphi(0,1,2) + 0.5 + >>> lerchphi(0,1,-2) + -0.5 + + Reduction to simpler functions:: + + >>> lerchphi(1, 4.25+1j, 1) + (1.044674457556746668033975 - 0.04674508654012658932271226j) + >>> zeta(4.25+1j) + (1.044674457556746668033975 - 0.04674508654012658932271226j) + >>> lerchphi(1 - 0.5**10, 4.25+1j, 1) + (1.044629338021507546737197 - 0.04667768813963388181708101j) + >>> lerchphi(3, 4, 1) + (1.249503297023366545192592 - 0.2314252413375664776474462j) + >>> polylog(4, 3) / 3 + (1.249503297023366545192592 - 0.2314252413375664776474462j) + >>> lerchphi(3, 4, 1 - 0.5**10) + (1.253978063946663945672674 - 0.2316736622836535468765376j) + + **References** + + 1. [DLMF]_ section 25.14 + + """ + if z == 0: + return a ** (-s) + # Faster, but these cases are useful for testing right now + if z == 1: + return ctx.zeta(s, a) + if a == 1: + return ctx.polylog(s, z) / z + if ctx.re(a) < 1: + if ctx.isnpint(a): + raise ValueError("Lerch transcendent complex infinity") + m = int(ctx.ceil(1-ctx.re(a))) + v = ctx.zero + zpow = ctx.one + for n in xrange(m): + v += zpow / (a+n)**s + zpow *= z + return zpow * ctx.lerchphi(z,s, a+m) + v + g = ctx.ln(z) + v = 1/(2*a**s) + ctx.gammainc(1-s, -a*g) * (-g)**(s-1) / z**a + h = s / 2 + r = 2*ctx.pi + f = lambda t: ctx.sin(s*ctx.atan(t/a)-t*g) / \ + ((a**2+t**2)**h * ctx.expm1(r*t)) + v += 2*ctx.quad(f, [0, ctx.inf]) + if not ctx.im(z) and not ctx.im(s) and not ctx.im(a) and ctx.re(z) < 1: + v = ctx.chop(v) + return v diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/functions/zetazeros.py b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/zetazeros.py new file mode 100644 index 0000000000000000000000000000000000000000..37c11a29426b0114053ae61664541f7ae7de95d8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/functions/zetazeros.py @@ -0,0 +1,1018 @@ +""" +The function zetazero(n) computes the n-th nontrivial zero of zeta(s). + +The general strategy is to locate a block of Gram intervals B where we +know exactly the number of zeros contained and which of those zeros +is that which we search. + +If n <= 400 000 000 we know exactly the Rosser exceptions, contained +in a list in this file. Hence for n<=400 000 000 we simply +look at these list of exceptions. If our zero is implicated in one of +these exceptions we have our block B. In other case we simply locate +the good Rosser block containing our zero. + +For n > 400 000 000 we apply the method of Turing, as complemented by +Lehman, Brent and Trudgian to find a suitable B. +""" + +from .functions import defun, defun_wrapped + +def find_rosser_block_zero(ctx, n): + """for n<400 000 000 determines a block were one find our zero""" + for k in range(len(_ROSSER_EXCEPTIONS)//2): + a=_ROSSER_EXCEPTIONS[2*k][0] + b=_ROSSER_EXCEPTIONS[2*k][1] + if ((a<= n-2) and (n-1 <= b)): + t0 = ctx.grampoint(a) + t1 = ctx.grampoint(b) + v0 = ctx._fp.siegelz(t0) + v1 = ctx._fp.siegelz(t1) + my_zero_number = n-a-1 + zero_number_block = b-a + pattern = _ROSSER_EXCEPTIONS[2*k+1] + return (my_zero_number, [a,b], [t0,t1], [v0,v1]) + k = n-2 + t,v,b = compute_triple_tvb(ctx, k) + T = [t] + V = [v] + while b < 0: + k -= 1 + t,v,b = compute_triple_tvb(ctx, k) + T.insert(0,t) + V.insert(0,v) + my_zero_number = n-k-1 + m = n-1 + t,v,b = compute_triple_tvb(ctx, m) + T.append(t) + V.append(v) + while b < 0: + m += 1 + t,v,b = compute_triple_tvb(ctx, m) + T.append(t) + V.append(v) + return (my_zero_number, [k,m], T, V) + +def wpzeros(t): + """Precision needed to compute higher zeros""" + wp = 53 + if t > 3*10**8: + wp = 63 + if t > 10**11: + wp = 70 + if t > 10**14: + wp = 83 + return wp + +def separate_zeros_in_block(ctx, zero_number_block, T, V, limitloop=None, + fp_tolerance=None): + """Separate the zeros contained in the block T, limitloop + determines how long one must search""" + if limitloop is None: + limitloop = ctx.inf + loopnumber = 0 + variations = count_variations(V) + while ((variations < zero_number_block) and (loopnumber 0): + alpha = ctx.sqrt(u/v) + b= (alpha*a+b2)/(alpha+1) + else: + b = (a+b2)/2 + if fp_tolerance < 10: + w = ctx._fp.siegelz(b) + if abs(w)ITERATION_LIMIT)and(loopnumber>2)and(variations+2==zero_number_block): + dtMax=0 + dtSec=0 + kMax = 0 + for k1 in range(1,len(T)): + dt = T[k1]-T[k1-1] + if dt > dtMax: + kMax=k1 + dtSec = dtMax + dtMax = dt + elif (dtdtSec): + dtSec = dt + if dtMax>3*dtSec: + f = lambda x: ctx.rs_z(x,derivative=1) + t0=T[kMax-1] + t1 = T[kMax] + t=ctx.findroot(f, (t0,t1), solver ='illinois',verify=False, verbose=False) + v = ctx.siegelz(t) + if (t0 2*wpz: + index +=1 + precs = [precs[0] // 2 +3+2*index] + precs + ctx.prec = precs[0] + guard + r = ctx.findroot(lambda x:ctx.siegelz(x), (t0,t1), solver ='illinois', verbose=False) + #print "first step at", ctx.dps, "digits" + z=ctx.mpc(0.5,r) + for prec in precs[1:]: + ctx.prec = prec + guard + #print "refining to", ctx.dps, "digits" + znew = z - ctx.zeta(z) / ctx.zeta(z, derivative=1) + #print "difference", ctx.nstr(abs(z-znew)) + z=ctx.mpc(0.5,ctx.im(znew)) + return ctx.im(z) + +def sure_number_block(ctx, n): + """The number of good Rosser blocks needed to apply + Turing method + References: + R. P. Brent, On the Zeros of the Riemann Zeta Function + in the Critical Strip, Math. Comp. 33 (1979) 1361--1372 + T. Trudgian, Improvements to Turing Method, Math. Comp.""" + if n < 9*10**5: + return(2) + g = ctx.grampoint(n-100) + lg = ctx._fp.ln(g) + brent = 0.0061 * lg**2 +0.08*lg + trudgian = 0.0031 * lg**2 +0.11*lg + N = ctx.ceil(min(brent,trudgian)) + N = int(N) + return N + +def compute_triple_tvb(ctx, n): + t = ctx.grampoint(n) + v = ctx._fp.siegelz(t) + if ctx.mag(abs(v))400 000 000""" + sb = sure_number_block(ctx, n) + number_goodblocks = 0 + m2 = n-1 + t, v, b = compute_triple_tvb(ctx, m2) + Tf = [t] + Vf = [v] + while b < 0: + m2 += 1 + t,v,b = compute_triple_tvb(ctx, m2) + Tf.append(t) + Vf.append(v) + goodpoints = [m2] + T = [t] + V = [v] + while number_goodblocks < 2*sb: + m2 += 1 + t, v, b = compute_triple_tvb(ctx, m2) + T.append(t) + V.append(v) + while b < 0: + m2 += 1 + t,v,b = compute_triple_tvb(ctx, m2) + T.append(t) + V.append(v) + goodpoints.append(m2) + zn = len(T)-1 + A, B, separated =\ + separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT, + fp_tolerance=fp_tolerance) + Tf.pop() + Tf.extend(A) + Vf.pop() + Vf.extend(B) + if separated: + number_goodblocks += 1 + else: + number_goodblocks = 0 + T = [t] + V = [v] + # Now the same procedure to the left + number_goodblocks = 0 + m2 = n-2 + t, v, b = compute_triple_tvb(ctx, m2) + Tf.insert(0,t) + Vf.insert(0,v) + while b < 0: + m2 -= 1 + t,v,b = compute_triple_tvb(ctx, m2) + Tf.insert(0,t) + Vf.insert(0,v) + goodpoints.insert(0,m2) + T = [t] + V = [v] + while number_goodblocks < 2*sb: + m2 -= 1 + t, v, b = compute_triple_tvb(ctx, m2) + T.insert(0,t) + V.insert(0,v) + while b < 0: + m2 -= 1 + t,v,b = compute_triple_tvb(ctx, m2) + T.insert(0,t) + V.insert(0,v) + goodpoints.insert(0,m2) + zn = len(T)-1 + A, B, separated =\ + separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance) + A.pop() + Tf = A+Tf + B.pop() + Vf = B+Vf + if separated: + number_goodblocks += 1 + else: + number_goodblocks = 0 + T = [t] + V = [v] + r = goodpoints[2*sb] + lg = len(goodpoints) + s = goodpoints[lg-2*sb-1] + tr, vr, br = compute_triple_tvb(ctx, r) + ar = Tf.index(tr) + ts, vs, bs = compute_triple_tvb(ctx, s) + as1 = Tf.index(ts) + T = Tf[ar:as1+1] + V = Vf[ar:as1+1] + zn = s-r + A, B, separated =\ + separate_zeros_in_block(ctx, zn,T,V,limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance) + if separated: + return (n-r-1,[r,s],A,B) + q = goodpoints[sb] + lg = len(goodpoints) + t = goodpoints[lg-sb-1] + tq, vq, bq = compute_triple_tvb(ctx, q) + aq = Tf.index(tq) + tt, vt, bt = compute_triple_tvb(ctx, t) + at = Tf.index(tt) + T = Tf[aq:at+1] + V = Vf[aq:at+1] + return (n-q-1,[q,t],T,V) + +def count_variations(V): + count = 0 + vold = V[0] + for n in range(1, len(V)): + vnew = V[n] + if vold*vnew < 0: + count +=1 + vold = vnew + return count + +def pattern_construct(ctx, block, T, V): + pattern = '(' + a = block[0] + b = block[1] + t0,v0,b0 = compute_triple_tvb(ctx, a) + k = 0 + k0 = 0 + for n in range(a+1,b+1): + t1,v1,b1 = compute_triple_tvb(ctx, n) + lgT =len(T) + while (k < lgT) and (T[k] <= t1): + k += 1 + L = V[k0:k] + L.append(v1) + L.insert(0,v0) + count = count_variations(L) + pattern = pattern + ("%s" % count) + if b1 > 0: + pattern = pattern + ')(' + k0 = k + t0,v0,b0 = t1,v1,b1 + pattern = pattern[:-1] + return pattern + +@defun +def zetazero(ctx, n, info=False, round=True): + r""" + Computes the `n`-th nontrivial zero of `\zeta(s)` on the critical line, + i.e. returns an approximation of the `n`-th largest complex number + `s = \frac{1}{2} + ti` for which `\zeta(s) = 0`. Equivalently, the + imaginary part `t` is a zero of the Z-function (:func:`~mpmath.siegelz`). + + **Examples** + + The first few zeros:: + + >>> from mpmath import * + >>> mp.dps = 25; mp.pretty = True + >>> zetazero(1) + (0.5 + 14.13472514173469379045725j) + >>> zetazero(2) + (0.5 + 21.02203963877155499262848j) + >>> zetazero(20) + (0.5 + 77.14484006887480537268266j) + + Verifying that the values are zeros:: + + >>> for n in range(1,5): + ... s = zetazero(n) + ... chop(zeta(s)), chop(siegelz(s.imag)) + ... + (0.0, 0.0) + (0.0, 0.0) + (0.0, 0.0) + (0.0, 0.0) + + Negative indices give the conjugate zeros (`n = 0` is undefined):: + + >>> zetazero(-1) + (0.5 - 14.13472514173469379045725j) + + :func:`~mpmath.zetazero` supports arbitrarily large `n` and arbitrary precision:: + + >>> mp.dps = 15 + >>> zetazero(1234567) + (0.5 + 727690.906948208j) + >>> mp.dps = 50 + >>> zetazero(1234567) + (0.5 + 727690.9069482075392389420041147142092708393819935j) + >>> chop(zeta(_)/_) + 0.0 + + with *info=True*, :func:`~mpmath.zetazero` gives additional information:: + + >>> mp.dps = 15 + >>> zetazero(542964976,info=True) + ((0.5 + 209039046.578535j), [542964969, 542964978], 6, '(013111110)') + + This means that the zero is between Gram points 542964969 and 542964978; + it is the 6-th zero between them. Finally (01311110) is the pattern + of zeros in this interval. The numbers indicate the number of zeros + in each Gram interval (Rosser blocks between parenthesis). In this case + there is only one Rosser block of length nine. + """ + n = int(n) + if n < 0: + return ctx.zetazero(-n).conjugate() + if n == 0: + raise ValueError("n must be nonzero") + wpinitial = ctx.prec + try: + wpz, fp_tolerance = comp_fp_tolerance(ctx, n) + ctx.prec = wpz + if n < 400000000: + my_zero_number, block, T, V =\ + find_rosser_block_zero(ctx, n) + else: + my_zero_number, block, T, V =\ + search_supergood_block(ctx, n, fp_tolerance) + zero_number_block = block[1]-block[0] + T, V, separated = separate_zeros_in_block(ctx, zero_number_block, T, V, + limitloop=ctx.inf, fp_tolerance=fp_tolerance) + if info: + pattern = pattern_construct(ctx,block,T,V) + prec = max(wpinitial, wpz) + t = separate_my_zero(ctx, my_zero_number, zero_number_block,T,V,prec) + v = ctx.mpc(0.5,t) + finally: + ctx.prec = wpinitial + if round: + v =+v + if info: + return (v,block,my_zero_number,pattern) + else: + return v + +def gram_index(ctx, t): + if t > 10**13: + wp = 3*ctx.log(t, 10) + else: + wp = 0 + prec = ctx.prec + try: + ctx.prec += wp + h = int(ctx.siegeltheta(t)/ctx.pi) + finally: + ctx.prec = prec + return(h) + +def count_to(ctx, t, T, V): + count = 0 + vold = V[0] + told = T[0] + tnew = T[1] + k = 1 + while tnew < t: + vnew = V[k] + if vold*vnew < 0: + count += 1 + vold = vnew + k += 1 + tnew = T[k] + a = ctx.siegelz(t) + if a*vold < 0: + count += 1 + return count + +def comp_fp_tolerance(ctx, n): + wpz = wpzeros(n*ctx.log(n)) + if n < 15*10**8: + fp_tolerance = 0.0005 + elif n <= 10**14: + fp_tolerance = 0.1 + else: + fp_tolerance = 100 + return wpz, fp_tolerance + +@defun +def nzeros(ctx, t): + r""" + Computes the number of zeros of the Riemann zeta function in + `(0,1) \times (0,t]`, usually denoted by `N(t)`. + + **Examples** + + The first zero has imaginary part between 14 and 15:: + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> nzeros(14) + 0 + >>> nzeros(15) + 1 + >>> zetazero(1) + (0.5 + 14.1347251417347j) + + Some closely spaced zeros:: + + >>> nzeros(10**7) + 21136125 + >>> zetazero(21136125) + (0.5 + 9999999.32718175j) + >>> zetazero(21136126) + (0.5 + 10000000.2400236j) + >>> nzeros(545439823.215) + 1500000001 + >>> zetazero(1500000001) + (0.5 + 545439823.201985j) + >>> zetazero(1500000002) + (0.5 + 545439823.325697j) + + This confirms the data given by J. van de Lune, + H. J. J. te Riele and D. T. Winter in 1986. + """ + if t < 14.1347251417347: + return 0 + x = gram_index(ctx, t) + k = int(ctx.floor(x)) + wpinitial = ctx.prec + wpz, fp_tolerance = comp_fp_tolerance(ctx, k) + ctx.prec = wpz + a = ctx.siegelz(t) + if k == -1 and a < 0: + return 0 + elif k == -1 and a > 0: + return 1 + if k+2 < 400000000: + Rblock = find_rosser_block_zero(ctx, k+2) + else: + Rblock = search_supergood_block(ctx, k+2, fp_tolerance) + n1, n2 = Rblock[1] + if n2-n1 == 1: + b = Rblock[3][0] + if a*b > 0: + ctx.prec = wpinitial + return k+1 + else: + ctx.prec = wpinitial + return k+2 + my_zero_number,block, T, V = Rblock + zero_number_block = n2-n1 + T, V, separated = separate_zeros_in_block(ctx,\ + zero_number_block, T, V,\ + limitloop=ctx.inf,\ + fp_tolerance=fp_tolerance) + n = count_to(ctx, t, T, V) + ctx.prec = wpinitial + return n+n1+1 + +@defun_wrapped +def backlunds(ctx, t): + r""" + Computes the function + `S(t) = \operatorname{arg} \zeta(\frac{1}{2} + it) / \pi`. + + See Titchmarsh Section 9.3 for details of the definition. + + **Examples** + + >>> from mpmath import * + >>> mp.dps = 15; mp.pretty = True + >>> backlunds(217.3) + 0.16302205431184 + + Generally, the value is a small number. At Gram points it is an integer, + frequently equal to 0:: + + >>> chop(backlunds(grampoint(200))) + 0.0 + >>> backlunds(extraprec(10)(grampoint)(211)) + 1.0 + >>> backlunds(extraprec(10)(grampoint)(232)) + -1.0 + + The number of zeros of the Riemann zeta function up to height `t` + satisfies `N(t) = \theta(t)/\pi + 1 + S(t)` (see :func:nzeros` and + :func:`siegeltheta`):: + + >>> t = 1234.55 + >>> nzeros(t) + 842 + >>> siegeltheta(t)/pi+1+backlunds(t) + 842.0 + + """ + return ctx.nzeros(t)-1-ctx.siegeltheta(t)/ctx.pi + + +""" +_ROSSER_EXCEPTIONS is a list of all exceptions to +Rosser's rule for n <= 400 000 000. + +Alternately the entry is of type [n,m], or a string. +The string is the zero pattern of the Block and the relevant +adjacent. For example (010)3 corresponds to a block +composed of three Gram intervals, the first ant third without +a zero and the intermediate with a zero. The next Gram interval +contain three zeros. So that in total we have 4 zeros in 4 Gram +blocks. n and m are the indices of the Gram points of this +interval of four Gram intervals. The Rosser exception is therefore +formed by the three Gram intervals that are signaled between +parenthesis. + +We have included also some Rosser's exceptions beyond n=400 000 000 +that are noted in the literature by some reason. + +The list is composed from the data published in the references: + +R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter, +'On the Zeros of the Riemann Zeta Function in the Critical Strip. II', +Math. Comp. 39 (1982) 681--688. +See also Corrigenda in Math. Comp. 46 (1986) 771. + +J. van de Lune, H. J. J. te Riele, +'On the Zeros of the Riemann Zeta Function in the Critical Strip. III', +Math. Comp. 41 (1983) 759--767. +See also Corrigenda in Math. Comp. 46 (1986) 771. + +J. van de Lune, +'Sums of Equal Powers of Positive Integers', +Dissertation, +Vrije Universiteit te Amsterdam, Centrum voor Wiskunde en Informatica, +Amsterdam, 1984. + +Thanks to the authors all this papers and those others that have +contributed to make this possible. +""" + + + + + + + +_ROSSER_EXCEPTIONS = \ +[[13999525, 13999528], '(00)3', +[30783329, 30783332], '(00)3', +[30930926, 30930929], '3(00)', +[37592215, 37592218], '(00)3', +[40870156, 40870159], '(00)3', +[43628107, 43628110], '(00)3', +[46082042, 46082045], '(00)3', +[46875667, 46875670], '(00)3', +[49624540, 49624543], '3(00)', +[50799238, 50799241], '(00)3', +[55221453, 55221456], '3(00)', +[56948779, 56948782], '3(00)', +[60515663, 60515666], '(00)3', +[61331766, 61331770], '(00)40', +[69784843, 69784846], '3(00)', +[75052114, 75052117], '(00)3', +[79545240, 79545243], '3(00)', +[79652247, 79652250], '3(00)', +[83088043, 83088046], '(00)3', +[83689522, 83689525], '3(00)', +[85348958, 85348961], '(00)3', +[86513820, 86513823], '(00)3', +[87947596, 87947599], '3(00)', +[88600095, 88600098], '(00)3', +[93681183, 93681186], '(00)3', +[100316551, 100316554], '3(00)', +[100788444, 100788447], '(00)3', +[106236172, 106236175], '(00)3', +[106941327, 106941330], '3(00)', +[107287955, 107287958], '(00)3', +[107532016, 107532019], '3(00)', +[110571044, 110571047], '(00)3', +[111885253, 111885256], '3(00)', +[113239783, 113239786], '(00)3', +[120159903, 120159906], '(00)3', +[121424391, 121424394], '3(00)', +[121692931, 121692934], '3(00)', +[121934170, 121934173], '3(00)', +[122612848, 122612851], '3(00)', +[126116567, 126116570], '(00)3', +[127936513, 127936516], '(00)3', +[128710277, 128710280], '3(00)', +[129398902, 129398905], '3(00)', +[130461096, 130461099], '3(00)', +[131331947, 131331950], '3(00)', +[137334071, 137334074], '3(00)', +[137832603, 137832606], '(00)3', +[138799471, 138799474], '3(00)', +[139027791, 139027794], '(00)3', +[141617806, 141617809], '(00)3', +[144454931, 144454934], '(00)3', +[145402379, 145402382], '3(00)', +[146130245, 146130248], '3(00)', +[147059770, 147059773], '(00)3', +[147896099, 147896102], '3(00)', +[151097113, 151097116], '(00)3', +[152539438, 152539441], '(00)3', +[152863168, 152863171], '3(00)', +[153522726, 153522729], '3(00)', +[155171524, 155171527], '3(00)', +[155366607, 155366610], '(00)3', +[157260686, 157260689], '3(00)', +[157269224, 157269227], '(00)3', +[157755123, 157755126], '(00)3', +[158298484, 158298487], '3(00)', +[160369050, 160369053], '3(00)', +[162962787, 162962790], '(00)3', +[163724709, 163724712], '(00)3', +[164198113, 164198116], '3(00)', +[164689301, 164689305], '(00)40', +[164880228, 164880231], '3(00)', +[166201932, 166201935], '(00)3', +[168573836, 168573839], '(00)3', +[169750763, 169750766], '(00)3', +[170375507, 170375510], '(00)3', +[170704879, 170704882], '3(00)', +[172000992, 172000995], '3(00)', +[173289941, 173289944], '(00)3', +[173737613, 173737616], '3(00)', +[174102513, 174102516], '(00)3', +[174284990, 174284993], '(00)3', +[174500513, 174500516], '(00)3', +[175710609, 175710612], '(00)3', +[176870843, 176870846], '3(00)', +[177332732, 177332735], '3(00)', +[177902861, 177902864], '3(00)', +[179979095, 179979098], '(00)3', +[181233726, 181233729], '3(00)', +[181625435, 181625438], '(00)3', +[182105255, 182105259], '22(00)', +[182223559, 182223562], '3(00)', +[191116404, 191116407], '3(00)', +[191165599, 191165602], '3(00)', +[191297535, 191297539], '(00)22', +[192485616, 192485619], '(00)3', +[193264634, 193264638], '22(00)', +[194696968, 194696971], '(00)3', +[195876805, 195876808], '(00)3', +[195916548, 195916551], '3(00)', +[196395160, 196395163], '3(00)', +[196676303, 196676306], '(00)3', +[197889882, 197889885], '3(00)', +[198014122, 198014125], '(00)3', +[199235289, 199235292], '(00)3', +[201007375, 201007378], '(00)3', +[201030605, 201030608], '3(00)', +[201184290, 201184293], '3(00)', +[201685414, 201685418], '(00)22', +[202762875, 202762878], '3(00)', +[202860957, 202860960], '3(00)', +[203832577, 203832580], '3(00)', +[205880544, 205880547], '(00)3', +[206357111, 206357114], '(00)3', +[207159767, 207159770], '3(00)', +[207167343, 207167346], '3(00)', +[207482539, 207482543], '3(010)', +[207669540, 207669543], '3(00)', +[208053426, 208053429], '(00)3', +[208110027, 208110030], '3(00)', +[209513826, 209513829], '3(00)', +[212623522, 212623525], '(00)3', +[213841715, 213841718], '(00)3', +[214012333, 214012336], '(00)3', +[214073567, 214073570], '(00)3', +[215170600, 215170603], '3(00)', +[215881039, 215881042], '3(00)', +[216274604, 216274607], '3(00)', +[216957120, 216957123], '3(00)', +[217323208, 217323211], '(00)3', +[218799264, 218799267], '(00)3', +[218803557, 218803560], '3(00)', +[219735146, 219735149], '(00)3', +[219830062, 219830065], '3(00)', +[219897904, 219897907], '(00)3', +[221205545, 221205548], '(00)3', +[223601929, 223601932], '(00)3', +[223907076, 223907079], '3(00)', +[223970397, 223970400], '(00)3', +[224874044, 224874048], '22(00)', +[225291157, 225291160], '(00)3', +[227481734, 227481737], '(00)3', +[228006442, 228006445], '3(00)', +[228357900, 228357903], '(00)3', +[228386399, 228386402], '(00)3', +[228907446, 228907449], '(00)3', +[228984552, 228984555], '3(00)', +[229140285, 229140288], '3(00)', +[231810024, 231810027], '(00)3', +[232838062, 232838065], '3(00)', +[234389088, 234389091], '3(00)', +[235588194, 235588197], '(00)3', +[236645695, 236645698], '(00)3', +[236962876, 236962879], '3(00)', +[237516723, 237516727], '04(00)', +[240004911, 240004914], '(00)3', +[240221306, 240221309], '3(00)', +[241389213, 241389217], '(010)3', +[241549003, 241549006], '(00)3', +[241729717, 241729720], '(00)3', +[241743684, 241743687], '3(00)', +[243780200, 243780203], '3(00)', +[243801317, 243801320], '(00)3', +[244122072, 244122075], '(00)3', +[244691224, 244691227], '3(00)', +[244841577, 244841580], '(00)3', +[245813461, 245813464], '(00)3', +[246299475, 246299478], '(00)3', +[246450176, 246450179], '3(00)', +[249069349, 249069352], '(00)3', +[250076378, 250076381], '(00)3', +[252442157, 252442160], '3(00)', +[252904231, 252904234], '3(00)', +[255145220, 255145223], '(00)3', +[255285971, 255285974], '3(00)', +[256713230, 256713233], '(00)3', +[257992082, 257992085], '(00)3', +[258447955, 258447959], '22(00)', +[259298045, 259298048], '3(00)', +[262141503, 262141506], '(00)3', +[263681743, 263681746], '3(00)', +[266527881, 266527885], '(010)3', +[266617122, 266617125], '(00)3', +[266628044, 266628047], '3(00)', +[267305763, 267305766], '(00)3', +[267388404, 267388407], '3(00)', +[267441672, 267441675], '3(00)', +[267464886, 267464889], '(00)3', +[267554907, 267554910], '3(00)', +[269787480, 269787483], '(00)3', +[270881434, 270881437], '(00)3', +[270997583, 270997586], '3(00)', +[272096378, 272096381], '3(00)', +[272583009, 272583012], '(00)3', +[274190881, 274190884], '3(00)', +[274268747, 274268750], '(00)3', +[275297429, 275297432], '3(00)', +[275545476, 275545479], '3(00)', +[275898479, 275898482], '3(00)', +[275953000, 275953003], '(00)3', +[277117197, 277117201], '(00)22', +[277447310, 277447313], '3(00)', +[279059657, 279059660], '3(00)', +[279259144, 279259147], '3(00)', +[279513636, 279513639], '3(00)', +[279849069, 279849072], '3(00)', +[280291419, 280291422], '(00)3', +[281449425, 281449428], '3(00)', +[281507953, 281507956], '3(00)', +[281825600, 281825603], '(00)3', +[282547093, 282547096], '3(00)', +[283120963, 283120966], '3(00)', +[283323493, 283323496], '(00)3', +[284764535, 284764538], '3(00)', +[286172639, 286172642], '3(00)', +[286688824, 286688827], '(00)3', +[287222172, 287222175], '3(00)', +[287235534, 287235537], '3(00)', +[287304861, 287304864], '3(00)', +[287433571, 287433574], '(00)3', +[287823551, 287823554], '(00)3', +[287872422, 287872425], '3(00)', +[288766615, 288766618], '3(00)', +[290122963, 290122966], '3(00)', +[290450849, 290450853], '(00)22', +[291426141, 291426144], '3(00)', +[292810353, 292810356], '3(00)', +[293109861, 293109864], '3(00)', +[293398054, 293398057], '3(00)', +[294134426, 294134429], '3(00)', +[294216438, 294216441], '(00)3', +[295367141, 295367144], '3(00)', +[297834111, 297834114], '3(00)', +[299099969, 299099972], '3(00)', +[300746958, 300746961], '3(00)', +[301097423, 301097426], '(00)3', +[301834209, 301834212], '(00)3', +[302554791, 302554794], '(00)3', +[303497445, 303497448], '3(00)', +[304165344, 304165347], '3(00)', +[304790218, 304790222], '3(010)', +[305302352, 305302355], '(00)3', +[306785996, 306785999], '3(00)', +[307051443, 307051446], '3(00)', +[307481539, 307481542], '3(00)', +[308605569, 308605572], '3(00)', +[309237610, 309237613], '3(00)', +[310509287, 310509290], '(00)3', +[310554057, 310554060], '3(00)', +[310646345, 310646348], '3(00)', +[311274896, 311274899], '(00)3', +[311894272, 311894275], '3(00)', +[312269470, 312269473], '(00)3', +[312306601, 312306605], '(00)40', +[312683193, 312683196], '3(00)', +[314499804, 314499807], '3(00)', +[314636802, 314636805], '(00)3', +[314689897, 314689900], '3(00)', +[314721319, 314721322], '3(00)', +[316132890, 316132893], '3(00)', +[316217470, 316217474], '(010)3', +[316465705, 316465708], '3(00)', +[316542790, 316542793], '(00)3', +[320822347, 320822350], '3(00)', +[321733242, 321733245], '3(00)', +[324413970, 324413973], '(00)3', +[325950140, 325950143], '(00)3', +[326675884, 326675887], '(00)3', +[326704208, 326704211], '3(00)', +[327596247, 327596250], '3(00)', +[328123172, 328123175], '3(00)', +[328182212, 328182215], '(00)3', +[328257498, 328257501], '3(00)', +[328315836, 328315839], '(00)3', +[328800974, 328800977], '(00)3', +[328998509, 328998512], '3(00)', +[329725370, 329725373], '(00)3', +[332080601, 332080604], '(00)3', +[332221246, 332221249], '(00)3', +[332299899, 332299902], '(00)3', +[332532822, 332532825], '(00)3', +[333334544, 333334548], '(00)22', +[333881266, 333881269], '3(00)', +[334703267, 334703270], '3(00)', +[334875138, 334875141], '3(00)', +[336531451, 336531454], '3(00)', +[336825907, 336825910], '(00)3', +[336993167, 336993170], '(00)3', +[337493998, 337494001], '3(00)', +[337861034, 337861037], '3(00)', +[337899191, 337899194], '(00)3', +[337958123, 337958126], '(00)3', +[342331982, 342331985], '3(00)', +[342676068, 342676071], '3(00)', +[347063781, 347063784], '3(00)', +[347697348, 347697351], '3(00)', +[347954319, 347954322], '3(00)', +[348162775, 348162778], '3(00)', +[349210702, 349210705], '(00)3', +[349212913, 349212916], '3(00)', +[349248650, 349248653], '(00)3', +[349913500, 349913503], '3(00)', +[350891529, 350891532], '3(00)', +[351089323, 351089326], '3(00)', +[351826158, 351826161], '3(00)', +[352228580, 352228583], '(00)3', +[352376244, 352376247], '3(00)', +[352853758, 352853761], '(00)3', +[355110439, 355110442], '(00)3', +[355808090, 355808094], '(00)40', +[355941556, 355941559], '3(00)', +[356360231, 356360234], '(00)3', +[356586657, 356586660], '3(00)', +[356892926, 356892929], '(00)3', +[356908232, 356908235], '3(00)', +[357912730, 357912733], '3(00)', +[358120344, 358120347], '3(00)', +[359044096, 359044099], '(00)3', +[360819357, 360819360], '3(00)', +[361399662, 361399666], '(010)3', +[362361315, 362361318], '(00)3', +[363610112, 363610115], '(00)3', +[363964804, 363964807], '3(00)', +[364527375, 364527378], '(00)3', +[365090327, 365090330], '(00)3', +[365414539, 365414542], '3(00)', +[366738474, 366738477], '3(00)', +[368714778, 368714783], '04(010)', +[368831545, 368831548], '(00)3', +[368902387, 368902390], '(00)3', +[370109769, 370109772], '3(00)', +[370963333, 370963336], '3(00)', +[372541136, 372541140], '3(010)', +[372681562, 372681565], '(00)3', +[373009410, 373009413], '(00)3', +[373458970, 373458973], '3(00)', +[375648658, 375648661], '3(00)', +[376834728, 376834731], '3(00)', +[377119945, 377119948], '(00)3', +[377335703, 377335706], '(00)3', +[378091745, 378091748], '3(00)', +[379139522, 379139525], '3(00)', +[380279160, 380279163], '(00)3', +[380619442, 380619445], '3(00)', +[381244231, 381244234], '3(00)', +[382327446, 382327450], '(010)3', +[382357073, 382357076], '3(00)', +[383545479, 383545482], '3(00)', +[384363766, 384363769], '(00)3', +[384401786, 384401790], '22(00)', +[385198212, 385198215], '3(00)', +[385824476, 385824479], '(00)3', +[385908194, 385908197], '3(00)', +[386946806, 386946809], '3(00)', +[387592175, 387592179], '22(00)', +[388329293, 388329296], '(00)3', +[388679566, 388679569], '3(00)', +[388832142, 388832145], '3(00)', +[390087103, 390087106], '(00)3', +[390190926, 390190930], '(00)22', +[390331207, 390331210], '3(00)', +[391674495, 391674498], '3(00)', +[391937831, 391937834], '3(00)', +[391951632, 391951636], '(00)22', +[392963986, 392963989], '(00)3', +[393007921, 393007924], '3(00)', +[393373210, 393373213], '3(00)', +[393759572, 393759575], '(00)3', +[394036662, 394036665], '(00)3', +[395813866, 395813869], '(00)3', +[395956690, 395956693], '3(00)', +[396031670, 396031673], '3(00)', +[397076433, 397076436], '3(00)', +[397470601, 397470604], '3(00)', +[398289458, 398289461], '3(00)', +# +[368714778, 368714783], '04(010)', +[437953499, 437953504], '04(010)', +[526196233, 526196238], '032(00)', +[744719566, 744719571], '(010)40', +[750375857, 750375862], '032(00)', +[958241932, 958241937], '04(010)', +[983377342, 983377347], '(00)410', +[1003780080, 1003780085], '04(010)', +[1070232754, 1070232759], '(00)230', +[1209834865, 1209834870], '032(00)', +[1257209100, 1257209105], '(00)410', +[1368002233, 1368002238], '(00)230' +] diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__init__.py b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1573114afc4fbce73f2ba9d2ddc99882c00027c0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__init__.py @@ -0,0 +1,77 @@ +from .libmpf import (prec_to_dps, dps_to_prec, repr_dps, + round_down, round_up, round_floor, round_ceiling, round_nearest, + to_pickable, from_pickable, ComplexResult, + fzero, fnzero, fone, fnone, ftwo, ften, fhalf, fnan, finf, fninf, + math_float_inf, round_int, normalize, normalize1, + from_man_exp, from_int, to_man_exp, to_int, mpf_ceil, mpf_floor, + mpf_nint, mpf_frac, + from_float, from_npfloat, from_Decimal, to_float, from_rational, to_rational, to_fixed, + mpf_rand, mpf_eq, mpf_hash, mpf_cmp, mpf_lt, mpf_le, mpf_gt, mpf_ge, + mpf_pos, mpf_neg, mpf_abs, mpf_sign, mpf_add, mpf_sub, mpf_sum, + mpf_mul, mpf_mul_int, mpf_shift, mpf_frexp, + mpf_div, mpf_rdiv_int, mpf_mod, mpf_pow_int, + mpf_perturb, + to_digits_exp, to_str, str_to_man_exp, from_str, from_bstr, to_bstr, + mpf_sqrt, mpf_hypot) + +from .libmpc import (mpc_one, mpc_zero, mpc_two, mpc_half, + mpc_is_inf, mpc_is_infnan, mpc_to_str, mpc_to_complex, mpc_hash, + mpc_conjugate, mpc_is_nonzero, mpc_add, mpc_add_mpf, + mpc_sub, mpc_sub_mpf, mpc_pos, mpc_neg, mpc_shift, mpc_abs, + mpc_arg, mpc_floor, mpc_ceil, mpc_nint, mpc_frac, mpc_mul, mpc_square, + mpc_mul_mpf, mpc_mul_imag_mpf, mpc_mul_int, + mpc_div, mpc_div_mpf, mpc_reciprocal, mpc_mpf_div, + complex_int_pow, mpc_pow, mpc_pow_mpf, mpc_pow_int, + mpc_sqrt, mpc_nthroot, mpc_cbrt, mpc_exp, mpc_log, mpc_cos, mpc_sin, + mpc_tan, mpc_cos_pi, mpc_sin_pi, mpc_cosh, mpc_sinh, mpc_tanh, + mpc_atan, mpc_acos, mpc_asin, mpc_asinh, mpc_acosh, mpc_atanh, + mpc_fibonacci, mpf_expj, mpf_expjpi, mpc_expj, mpc_expjpi, + mpc_cos_sin, mpc_cos_sin_pi) + +from .libelefun import (ln2_fixed, mpf_ln2, ln10_fixed, mpf_ln10, + pi_fixed, mpf_pi, e_fixed, mpf_e, phi_fixed, mpf_phi, + degree_fixed, mpf_degree, + mpf_pow, mpf_nthroot, mpf_cbrt, log_int_fixed, agm_fixed, + mpf_log, mpf_log_hypot, mpf_exp, mpf_cos_sin, mpf_cos, mpf_sin, mpf_tan, + mpf_cos_sin_pi, mpf_cos_pi, mpf_sin_pi, mpf_cosh_sinh, + mpf_cosh, mpf_sinh, mpf_tanh, mpf_atan, mpf_atan2, mpf_asin, + mpf_acos, mpf_asinh, mpf_acosh, mpf_atanh, mpf_fibonacci) + +from .libhyper import (NoConvergence, make_hyp_summator, + mpf_erf, mpf_erfc, mpf_ei, mpc_ei, mpf_e1, mpc_e1, mpf_expint, + mpf_ci_si, mpf_ci, mpf_si, mpc_ci, mpc_si, mpf_besseljn, + mpc_besseljn, mpf_agm, mpf_agm1, mpc_agm, mpc_agm1, + mpf_ellipk, mpc_ellipk, mpf_ellipe, mpc_ellipe) + +from .gammazeta import (catalan_fixed, mpf_catalan, + khinchin_fixed, mpf_khinchin, glaisher_fixed, mpf_glaisher, + apery_fixed, mpf_apery, euler_fixed, mpf_euler, mertens_fixed, + mpf_mertens, twinprime_fixed, mpf_twinprime, + mpf_bernoulli, bernfrac, mpf_gamma_int, + mpf_factorial, mpc_factorial, mpf_gamma, mpc_gamma, + mpf_loggamma, mpc_loggamma, mpf_rgamma, mpc_rgamma, + mpf_harmonic, mpc_harmonic, mpf_psi0, mpc_psi0, + mpf_psi, mpc_psi, mpf_zeta_int, mpf_zeta, mpc_zeta, + mpf_altzeta, mpc_altzeta, mpf_zetasum, mpc_zetasum) + +from .libmpi import (mpi_str, + mpi_from_str, mpi_to_str, + mpi_eq, mpi_ne, + mpi_lt, mpi_le, mpi_gt, mpi_ge, + mpi_add, mpi_sub, mpi_delta, mpi_mid, + mpi_pos, mpi_neg, mpi_abs, mpi_mul, mpi_div, mpi_exp, + mpi_log, mpi_sqrt, mpi_pow_int, mpi_pow, mpi_cos_sin, + mpi_cos, mpi_sin, mpi_tan, mpi_cot, + mpi_atan, mpi_atan2, + mpci_pos, mpci_neg, mpci_add, mpci_sub, mpci_mul, mpci_div, mpci_pow, + mpci_abs, mpci_pow, mpci_exp, mpci_log, mpci_cos, mpci_sin, + mpi_gamma, mpci_gamma, mpi_loggamma, mpci_loggamma, + mpi_rgamma, mpci_rgamma, mpi_factorial, mpci_factorial) + +from .libintmath import (trailing, bitcount, numeral, bin_to_radix, + isqrt, isqrt_small, isqrt_fast, sqrt_fixed, sqrtrem, ifib, ifac, + list_primes, isprime, moebius, gcd, eulernum, stirling1, stirling2) + +from .backend import (gmpy, sage, BACKEND, STRICT, MPZ, MPZ_TYPE, + MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_THREE, MPZ_FIVE, int_types, + HASH_MODULUS, HASH_BITS) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e7dcc7231c05157adcf693c180216e6cab23ad7d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/backend.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/backend.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7da0c5d7877ac77473dfd7c01dbbfa6c8116b7e1 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/backend.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/gammazeta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/gammazeta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3f46016a8b9a19a981799aecc36620914e0dca27 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/gammazeta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libelefun.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libelefun.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..76ea82d6e0de4ff4640019bcd4d7b2326b5db754 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libelefun.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libhyper.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libhyper.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f2944a20532a039c09a1ad9d26fb65e454db4d52 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libhyper.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libintmath.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libintmath.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4742c08d745d3f29049b3980791c0e069cdd308e Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libintmath.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libmpc.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libmpc.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0f5f5096143d94abdbba3322c13f06b649178baf Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libmpc.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libmpf.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libmpf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3f03e99c5323ea7d9338283087b86ca0657d4556 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libmpf.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libmpi.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libmpi.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28a4e790aa8e8595313ad3c991c2a142b32b52e4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/__pycache__/libmpi.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/backend.py b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/backend.py new file mode 100644 index 0000000000000000000000000000000000000000..5610221290a05078f21f09df3c1a76b0e4ccdc02 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/backend.py @@ -0,0 +1,115 @@ +import os +import sys + +#----------------------------------------------------------------------------# +# Support GMPY for high-speed large integer arithmetic. # +# # +# To allow an external module to handle arithmetic, we need to make sure # +# that all high-precision variables are declared of the correct type. MPZ # +# is the constructor for the high-precision type. It defaults to Python's # +# long type but can be assinged another type, typically gmpy.mpz. # +# # +# MPZ must be used for the mantissa component of an mpf and must be used # +# for internal fixed-point operations. # +# # +# Side-effects # +# 1) "is" cannot be used to test for special values. Must use "==". # +# 2) There are bugs in GMPY prior to v1.02 so we must use v1.03 or later. # +#----------------------------------------------------------------------------# + +# So we can import it from this module +gmpy = None +sage = None +sage_utils = None + +if sys.version_info[0] < 3: + python3 = False +else: + python3 = True + +BACKEND = 'python' + +if not python3: + MPZ = long + xrange = xrange + basestring = basestring + + def exec_(_code_, _globs_=None, _locs_=None): + """Execute code in a namespace.""" + if _globs_ is None: + frame = sys._getframe(1) + _globs_ = frame.f_globals + if _locs_ is None: + _locs_ = frame.f_locals + del frame + elif _locs_ is None: + _locs_ = _globs_ + exec("""exec _code_ in _globs_, _locs_""") +else: + MPZ = int + xrange = range + basestring = str + + import builtins + exec_ = getattr(builtins, "exec") + +# Define constants for calculating hash on Python 3.2. +if sys.version_info >= (3, 2): + HASH_MODULUS = sys.hash_info.modulus + if sys.hash_info.width == 32: + HASH_BITS = 31 + else: + HASH_BITS = 61 +else: + HASH_MODULUS = None + HASH_BITS = None + +if 'MPMATH_NOGMPY' not in os.environ: + try: + try: + import gmpy2 as gmpy + except ImportError: + try: + import gmpy + except ImportError: + raise ImportError + if gmpy.version() >= '1.03': + BACKEND = 'gmpy' + MPZ = gmpy.mpz + except: + pass + +if ('MPMATH_NOSAGE' not in os.environ and 'SAGE_ROOT' in os.environ or + 'MPMATH_SAGE' in os.environ): + try: + import sage.all + import sage.libs.mpmath.utils as _sage_utils + sage = sage.all + sage_utils = _sage_utils + BACKEND = 'sage' + MPZ = sage.Integer + except: + pass + +if 'MPMATH_STRICT' in os.environ: + STRICT = True +else: + STRICT = False + +MPZ_TYPE = type(MPZ(0)) +MPZ_ZERO = MPZ(0) +MPZ_ONE = MPZ(1) +MPZ_TWO = MPZ(2) +MPZ_THREE = MPZ(3) +MPZ_FIVE = MPZ(5) + +try: + if BACKEND == 'python': + int_types = (int, long) + else: + int_types = (int, long, MPZ_TYPE) +except NameError: + if BACKEND == 'python': + int_types = (int,) + else: + int_types = (int, MPZ_TYPE) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/gammazeta.py b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/gammazeta.py new file mode 100644 index 0000000000000000000000000000000000000000..3b05cc63c5f00e6c76d8383853dba06f15e46030 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/gammazeta.py @@ -0,0 +1,2167 @@ +""" +----------------------------------------------------------------------- +This module implements gamma- and zeta-related functions: + +* Bernoulli numbers +* Factorials +* The gamma function +* Polygamma functions +* Harmonic numbers +* The Riemann zeta function +* Constants related to these functions + +----------------------------------------------------------------------- +""" + +import math +import sys + +from .backend import xrange +from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_THREE, gmpy + +from .libintmath import list_primes, ifac, ifac2, moebius + +from .libmpf import (\ + round_floor, round_ceiling, round_down, round_up, + round_nearest, round_fast, + lshift, sqrt_fixed, isqrt_fast, + fzero, fone, fnone, fhalf, ftwo, finf, fninf, fnan, + from_int, to_int, to_fixed, from_man_exp, from_rational, + mpf_pos, mpf_neg, mpf_abs, mpf_add, mpf_sub, + mpf_mul, mpf_mul_int, mpf_div, mpf_sqrt, mpf_pow_int, + mpf_rdiv_int, + mpf_perturb, mpf_le, mpf_lt, mpf_gt, mpf_shift, + negative_rnd, reciprocal_rnd, + bitcount, to_float, mpf_floor, mpf_sign, ComplexResult +) + +from .libelefun import (\ + constant_memo, + def_mpf_constant, + mpf_pi, pi_fixed, ln2_fixed, log_int_fixed, mpf_ln2, + mpf_exp, mpf_log, mpf_pow, mpf_cosh, + mpf_cos_sin, mpf_cosh_sinh, mpf_cos_sin_pi, mpf_cos_pi, mpf_sin_pi, + ln_sqrt2pi_fixed, mpf_ln_sqrt2pi, sqrtpi_fixed, mpf_sqrtpi, + cos_sin_fixed, exp_fixed +) + +from .libmpc import (\ + mpc_zero, mpc_one, mpc_half, mpc_two, + mpc_abs, mpc_shift, mpc_pos, mpc_neg, + mpc_add, mpc_sub, mpc_mul, mpc_div, + mpc_add_mpf, mpc_mul_mpf, mpc_div_mpf, mpc_mpf_div, + mpc_mul_int, mpc_pow_int, + mpc_log, mpc_exp, mpc_pow, + mpc_cos_pi, mpc_sin_pi, + mpc_reciprocal, mpc_square, + mpc_sub_mpf +) + + + +# Catalan's constant is computed using Lupas's rapidly convergent series +# (listed on http://mathworld.wolfram.com/CatalansConstant.html) +# oo +# ___ n-1 8n 2 3 2 +# 1 \ (-1) 2 (40n - 24n + 3) [(2n)!] (n!) +# K = --- ) ----------------------------------------- +# 64 /___ 3 2 +# n (2n-1) [(4n)!] +# n = 1 + +@constant_memo +def catalan_fixed(prec): + prec = prec + 20 + a = one = MPZ_ONE << prec + s, t, n = 0, 1, 1 + while t: + a *= 32 * n**3 * (2*n-1) + a //= (3-16*n+16*n**2)**2 + t = a * (-1)**(n-1) * (40*n**2-24*n+3) // (n**3 * (2*n-1)) + s += t + n += 1 + return s >> (20 + 6) + +# Khinchin's constant is relatively difficult to compute. Here +# we use the rational zeta series + +# oo 2*n-1 +# ___ ___ +# \ ` zeta(2*n)-1 \ ` (-1)^(k+1) +# log(K)*log(2) = ) ------------ ) ---------- +# /___. n /___. k +# n = 1 k = 1 + +# which adds half a digit per term. The essential trick for achieving +# reasonable efficiency is to recycle both the values of the zeta +# function (essentially Bernoulli numbers) and the partial terms of +# the inner sum. + +# An alternative might be to use K = 2*exp[1/log(2) X] where + +# / 1 1 [ pi*x*(1-x^2) ] +# X = | ------ log [ ------------ ]. +# / 0 x(1+x) [ sin(pi*x) ] + +# and integrate numerically. In practice, this seems to be slightly +# slower than the zeta series at high precision. + +@constant_memo +def khinchin_fixed(prec): + wp = int(prec + prec**0.5 + 15) + s = MPZ_ZERO + fac = from_int(4) + t = ONE = MPZ_ONE << wp + pi = mpf_pi(wp) + pipow = twopi2 = mpf_shift(mpf_mul(pi, pi, wp), 2) + n = 1 + while 1: + zeta2n = mpf_abs(mpf_bernoulli(2*n, wp)) + zeta2n = mpf_mul(zeta2n, pipow, wp) + zeta2n = mpf_div(zeta2n, fac, wp) + zeta2n = to_fixed(zeta2n, wp) + term = (((zeta2n - ONE) * t) // n) >> wp + if term < 100: + break + #if not n % 10: + # print n, math.log(int(abs(term))) + s += term + t += ONE//(2*n+1) - ONE//(2*n) + n += 1 + fac = mpf_mul_int(fac, (2*n)*(2*n-1), wp) + pipow = mpf_mul(pipow, twopi2, wp) + s = (s << wp) // ln2_fixed(wp) + K = mpf_exp(from_man_exp(s, -wp), wp) + K = to_fixed(K, prec) + return K + + +# Glaisher's constant is defined as A = exp(1/2 - zeta'(-1)). +# One way to compute it would be to perform direct numerical +# differentiation, but computing arbitrary Riemann zeta function +# values at high precision is expensive. We instead use the formula + +# A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12) + +# and compute zeta'(2) from the series representation + +# oo +# ___ +# \ log k +# -zeta'(2) = ) ----- +# /___ 2 +# k +# k = 2 + +# This series converges exceptionally slowly, but can be accelerated +# using Euler-Maclaurin formula. The important insight is that the +# E-M integral can be done in closed form and that the high order +# are given by + +# n / \ +# d | log x | a + b log x +# --- | ----- | = ----------- +# n | 2 | 2 + n +# dx \ x / x + +# where a and b are integers given by a simple recurrence. Note +# that just one logarithm is needed. However, lots of integer +# logarithms are required for the initial summation. + +# This algorithm could possibly be turned into a faster algorithm +# for general evaluation of zeta(s) or zeta'(s); this should be +# looked into. + +@constant_memo +def glaisher_fixed(prec): + wp = prec + 30 + # Number of direct terms to sum before applying the Euler-Maclaurin + # formula to the tail. TODO: choose more intelligently + N = int(0.33*prec + 5) + ONE = MPZ_ONE << wp + # Euler-Maclaurin, step 1: sum log(k)/k**2 for k from 2 to N-1 + s = MPZ_ZERO + for k in range(2, N): + #print k, N + s += log_int_fixed(k, wp) // k**2 + logN = log_int_fixed(N, wp) + #logN = to_fixed(mpf_log(from_int(N), wp+20), wp) + # E-M step 2: integral of log(x)/x**2 from N to inf + s += (ONE + logN) // N + # E-M step 3: endpoint correction term f(N)/2 + s += logN // (N**2 * 2) + # E-M step 4: the series of derivatives + pN = N**3 + a = 1 + b = -2 + j = 3 + fac = from_int(2) + k = 1 + while 1: + # D(2*k-1) * B(2*k) / fac(2*k) [D(n) = nth derivative] + D = ((a << wp) + b*logN) // pN + D = from_man_exp(D, -wp) + B = mpf_bernoulli(2*k, wp) + term = mpf_mul(B, D, wp) + term = mpf_div(term, fac, wp) + term = to_fixed(term, wp) + if abs(term) < 100: + break + #if not k % 10: + # print k, math.log(int(abs(term)), 10) + s -= term + # Advance derivative twice + a, b, pN, j = b-a*j, -j*b, pN*N, j+1 + a, b, pN, j = b-a*j, -j*b, pN*N, j+1 + k += 1 + fac = mpf_mul_int(fac, (2*k)*(2*k-1), wp) + # A = exp((6*s/pi**2 + log(2*pi) + euler)/12) + pi = pi_fixed(wp) + s *= 6 + s = (s << wp) // (pi**2 >> wp) + s += euler_fixed(wp) + s += to_fixed(mpf_log(from_man_exp(2*pi, -wp), wp), wp) + s //= 12 + A = mpf_exp(from_man_exp(s, -wp), wp) + return to_fixed(A, prec) + +# Apery's constant can be computed using the very rapidly convergent +# series +# oo +# ___ 2 10 +# \ n 205 n + 250 n + 77 (n!) +# zeta(3) = ) (-1) ------------------- ---------- +# /___ 64 5 +# n = 0 ((2n+1)!) + +@constant_memo +def apery_fixed(prec): + prec += 20 + d = MPZ_ONE << prec + term = MPZ(77) << prec + n = 1 + s = MPZ_ZERO + while term: + s += term + d *= (n**10) + d //= (((2*n+1)**5) * (2*n)**5) + term = (-1)**n * (205*(n**2) + 250*n + 77) * d + n += 1 + return s >> (20 + 6) + +""" +Euler's constant (gamma) is computed using the Brent-McMillan formula, +gamma ~= I(n)/J(n) - log(n), where + + I(n) = sum_{k=0,1,2,...} (n**k / k!)**2 * H(k) + J(n) = sum_{k=0,1,2,...} (n**k / k!)**2 + H(k) = 1 + 1/2 + 1/3 + ... + 1/k + +The error is bounded by O(exp(-4n)). Choosing n to be a power +of two, 2**p, the logarithm becomes particularly easy to calculate.[1] + +We use the formulation of Algorithm 3.9 in [2] to make the summation +more efficient. + +Reference: +[1] Xavier Gourdon & Pascal Sebah, The Euler constant: gamma +http://numbers.computation.free.fr/Constants/Gamma/gamma.pdf + +[2] [BorweinBailey]_ +""" + +@constant_memo +def euler_fixed(prec): + extra = 30 + prec += extra + # choose p such that exp(-4*(2**p)) < 2**-n + p = int(math.log((prec/4) * math.log(2), 2)) + 1 + n = 2**p + A = U = -p*ln2_fixed(prec) + B = V = MPZ_ONE << prec + k = 1 + while 1: + B = B*n**2//k**2 + A = (A*n**2//k + B)//k + U += A + V += B + if max(abs(A), abs(B)) < 100: + break + k += 1 + return (U<<(prec-extra))//V + +# Use zeta accelerated formulas for the Mertens and twin +# prime constants; see +# http://mathworld.wolfram.com/MertensConstant.html +# http://mathworld.wolfram.com/TwinPrimesConstant.html + +@constant_memo +def mertens_fixed(prec): + wp = prec + 20 + m = 2 + s = mpf_euler(wp) + while 1: + t = mpf_zeta_int(m, wp) + if t == fone: + break + t = mpf_log(t, wp) + t = mpf_mul_int(t, moebius(m), wp) + t = mpf_div(t, from_int(m), wp) + s = mpf_add(s, t) + m += 1 + return to_fixed(s, prec) + +@constant_memo +def twinprime_fixed(prec): + def I(n): + return sum(moebius(d)<<(n//d) for d in xrange(1,n+1) if not n%d)//n + wp = 2*prec + 30 + res = fone + primes = [from_rational(1,p,wp) for p in [2,3,5,7]] + ppowers = [mpf_mul(p,p,wp) for p in primes] + n = 2 + while 1: + a = mpf_zeta_int(n, wp) + for i in range(4): + a = mpf_mul(a, mpf_sub(fone, ppowers[i]), wp) + ppowers[i] = mpf_mul(ppowers[i], primes[i], wp) + a = mpf_pow_int(a, -I(n), wp) + if mpf_pos(a, prec+10, 'n') == fone: + break + #from libmpf import to_str + #print n, to_str(mpf_sub(fone, a), 6) + res = mpf_mul(res, a, wp) + n += 1 + res = mpf_mul(res, from_int(3*15*35), wp) + res = mpf_div(res, from_int(4*16*36), wp) + return to_fixed(res, prec) + + +mpf_euler = def_mpf_constant(euler_fixed) +mpf_apery = def_mpf_constant(apery_fixed) +mpf_khinchin = def_mpf_constant(khinchin_fixed) +mpf_glaisher = def_mpf_constant(glaisher_fixed) +mpf_catalan = def_mpf_constant(catalan_fixed) +mpf_mertens = def_mpf_constant(mertens_fixed) +mpf_twinprime = def_mpf_constant(twinprime_fixed) + + +#-----------------------------------------------------------------------# +# # +# Bernoulli numbers # +# # +#-----------------------------------------------------------------------# + +MAX_BERNOULLI_CACHE = 3000 + + +r""" +Small Bernoulli numbers and factorials are used in numerous summations, +so it is critical for speed that sequential computation is fast and that +values are cached up to a fairly high threshold. + +On the other hand, we also want to support fast computation of isolated +large numbers. Currently, no such acceleration is provided for integer +factorials (though it is for large floating-point factorials, which are +computed via gamma if the precision is low enough). + +For sequential computation of Bernoulli numbers, we use Ramanujan's formula + + / n + 3 \ + B = (A(n) - S(n)) / | | + n \ n / + +where A(n) = (n+3)/3 when n = 0 or 2 (mod 6), A(n) = -(n+3)/6 +when n = 4 (mod 6), and + + [n/6] + ___ + \ / n + 3 \ + S(n) = ) | | * B + /___ \ n - 6*k / n-6*k + k = 1 + +For isolated large Bernoulli numbers, we use the Riemann zeta function +to calculate a numerical value for B_n. The von Staudt-Clausen theorem +can then be used to optionally find the exact value of the +numerator and denominator. +""" + +bernoulli_cache = {} +f3 = from_int(3) +f6 = from_int(6) + +def bernoulli_size(n): + """Accurately estimate the size of B_n (even n > 2 only)""" + lgn = math.log(n,2) + return int(2.326 + 0.5*lgn + n*(lgn - 4.094)) + +BERNOULLI_PREC_CUTOFF = bernoulli_size(MAX_BERNOULLI_CACHE) + +def mpf_bernoulli(n, prec, rnd=None): + """Computation of Bernoulli numbers (numerically)""" + if n < 2: + if n < 0: + raise ValueError("Bernoulli numbers only defined for n >= 0") + if n == 0: + return fone + if n == 1: + return mpf_neg(fhalf) + # For odd n > 1, the Bernoulli numbers are zero + if n & 1: + return fzero + # If precision is extremely high, we can save time by computing + # the Bernoulli number at a lower precision that is sufficient to + # obtain the exact fraction, round to the exact fraction, and + # convert the fraction back to an mpf value at the original precision + if prec > BERNOULLI_PREC_CUTOFF and prec > bernoulli_size(n)*1.1 + 1000: + p, q = bernfrac(n) + return from_rational(p, q, prec, rnd or round_floor) + if n > MAX_BERNOULLI_CACHE: + return mpf_bernoulli_huge(n, prec, rnd) + wp = prec + 30 + # Reuse nearby precisions + wp += 32 - (prec & 31) + cached = bernoulli_cache.get(wp) + if cached: + numbers, state = cached + if n in numbers: + if not rnd: + return numbers[n] + return mpf_pos(numbers[n], prec, rnd) + m, bin, bin1 = state + if n - m > 10: + return mpf_bernoulli_huge(n, prec, rnd) + else: + if n > 10: + return mpf_bernoulli_huge(n, prec, rnd) + numbers = {0:fone} + m, bin, bin1 = state = [2, MPZ(10), MPZ_ONE] + bernoulli_cache[wp] = (numbers, state) + while m <= n: + #print m + case = m % 6 + # Accurately estimate size of B_m so we can use + # fixed point math without using too much precision + szbm = bernoulli_size(m) + s = 0 + sexp = max(0, szbm) - wp + if m < 6: + a = MPZ_ZERO + else: + a = bin1 + for j in xrange(1, m//6+1): + usign, uman, uexp, ubc = u = numbers[m-6*j] + if usign: + uman = -uman + s += lshift(a*uman, uexp-sexp) + # Update inner binomial coefficient + j6 = 6*j + a *= ((m-5-j6)*(m-4-j6)*(m-3-j6)*(m-2-j6)*(m-1-j6)*(m-j6)) + a //= ((4+j6)*(5+j6)*(6+j6)*(7+j6)*(8+j6)*(9+j6)) + if case == 0: b = mpf_rdiv_int(m+3, f3, wp) + if case == 2: b = mpf_rdiv_int(m+3, f3, wp) + if case == 4: b = mpf_rdiv_int(-m-3, f6, wp) + s = from_man_exp(s, sexp, wp) + b = mpf_div(mpf_sub(b, s, wp), from_int(bin), wp) + numbers[m] = b + m += 2 + # Update outer binomial coefficient + bin = bin * ((m+2)*(m+3)) // (m*(m-1)) + if m > 6: + bin1 = bin1 * ((2+m)*(3+m)) // ((m-7)*(m-6)) + state[:] = [m, bin, bin1] + return numbers[n] + +def mpf_bernoulli_huge(n, prec, rnd=None): + wp = prec + 10 + piprec = wp + int(math.log(n,2)) + v = mpf_gamma_int(n+1, wp) + v = mpf_mul(v, mpf_zeta_int(n, wp), wp) + v = mpf_mul(v, mpf_pow_int(mpf_pi(piprec), -n, wp)) + v = mpf_shift(v, 1-n) + if not n & 3: + v = mpf_neg(v) + return mpf_pos(v, prec, rnd or round_fast) + +def bernfrac(n): + r""" + Returns a tuple of integers `(p, q)` such that `p/q = B_n` exactly, + where `B_n` denotes the `n`-th Bernoulli number. The fraction is + always reduced to lowest terms. Note that for `n > 1` and `n` odd, + `B_n = 0`, and `(0, 1)` is returned. + + **Examples** + + The first few Bernoulli numbers are exactly:: + + >>> from mpmath import * + >>> for n in range(15): + ... p, q = bernfrac(n) + ... print("%s %s/%s" % (n, p, q)) + ... + 0 1/1 + 1 -1/2 + 2 1/6 + 3 0/1 + 4 -1/30 + 5 0/1 + 6 1/42 + 7 0/1 + 8 -1/30 + 9 0/1 + 10 5/66 + 11 0/1 + 12 -691/2730 + 13 0/1 + 14 7/6 + + This function works for arbitrarily large `n`:: + + >>> p, q = bernfrac(10**4) + >>> print(q) + 2338224387510 + >>> print(len(str(p))) + 27692 + >>> mp.dps = 15 + >>> print(mpf(p) / q) + -9.04942396360948e+27677 + >>> print(bernoulli(10**4)) + -9.04942396360948e+27677 + + .. note :: + + :func:`~mpmath.bernoulli` computes a floating-point approximation + directly, without computing the exact fraction first. + This is much faster for large `n`. + + **Algorithm** + + :func:`~mpmath.bernfrac` works by computing the value of `B_n` numerically + and then using the von Staudt-Clausen theorem [1] to reconstruct + the exact fraction. For large `n`, this is significantly faster than + computing `B_1, B_2, \ldots, B_2` recursively with exact arithmetic. + The implementation has been tested for `n = 10^m` up to `m = 6`. + + In practice, :func:`~mpmath.bernfrac` appears to be about three times + slower than the specialized program calcbn.exe [2] + + **References** + + 1. MathWorld, von Staudt-Clausen Theorem: + http://mathworld.wolfram.com/vonStaudt-ClausenTheorem.html + + 2. The Bernoulli Number Page: + http://www.bernoulli.org/ + + """ + n = int(n) + if n < 3: + return [(1, 1), (-1, 2), (1, 6)][n] + if n & 1: + return (0, 1) + q = 1 + for k in list_primes(n+1): + if not (n % (k-1)): + q *= k + prec = bernoulli_size(n) + int(math.log(q,2)) + 20 + b = mpf_bernoulli(n, prec) + p = mpf_mul(b, from_int(q)) + pint = to_int(p, round_nearest) + return (pint, q) + + +#-----------------------------------------------------------------------# +# # +# Polygamma functions # +# # +#-----------------------------------------------------------------------# + +r""" +For all polygamma (psi) functions, we use the Euler-Maclaurin summation +formula. It looks slightly different in the m = 0 and m > 0 cases. + +For m = 0, we have + oo + ___ B + (0) 1 \ 2 k -2 k + psi (z) ~ log z + --- - ) ------ z + 2 z /___ (2 k)! + k = 1 + +Experiment shows that the minimum term of the asymptotic series +reaches 2^(-p) when Re(z) > 0.11*p. So we simply use the recurrence +for psi (equivalent, in fact, to summing to the first few terms +directly before applying E-M) to obtain z large enough. + +Since, very crudely, log z ~= 1 for Re(z) > 1, we can use +fixed-point arithmetic (if z is extremely large, log(z) itself +is a sufficient approximation, so we can stop there already). + +For Re(z) << 0, we could use recurrence, but this is of course +inefficient for large negative z, so there we use the +reflection formula instead. + +For m > 0, we have + + N - 1 + ___ + ~~~(m) [ \ 1 ] 1 1 + psi (z) ~ [ ) -------- ] + ---------- + -------- + + [ /___ m+1 ] m+1 m + k = 1 (z+k) ] 2 (z+N) m (z+N) + + oo + ___ B + \ 2 k (m+1) (m+2) ... (m+2k-1) + + ) ------ ------------------------ + /___ (2 k)! m + 2 k + k = 1 (z+N) + +where ~~~ denotes the function rescaled by 1/((-1)^(m+1) m!). + +Here again N is chosen to make z+N large enough for the minimum +term in the last series to become smaller than eps. + +TODO: the current estimation of N for m > 0 is *very suboptimal*. + +TODO: implement the reflection formula for m > 0, Re(z) << 0. +It is generally a combination of multiple cotangents. Need to +figure out a reasonably simple way to generate these formulas +on the fly. + +TODO: maybe use exact algorithms to compute psi for integral +and certain rational arguments, as this can be much more +efficient. (On the other hand, the availability of these +special values provides a convenient way to test the general +algorithm.) +""" + +# Harmonic numbers are just shifted digamma functions +# We should calculate these exactly when x is an integer +# and when doing so is faster. + +def mpf_harmonic(x, prec, rnd): + if x in (fzero, fnan, finf): + return x + a = mpf_psi0(mpf_add(fone, x, prec+5), prec) + return mpf_add(a, mpf_euler(prec+5, rnd), prec, rnd) + +def mpc_harmonic(z, prec, rnd): + if z[1] == fzero: + return (mpf_harmonic(z[0], prec, rnd), fzero) + a = mpc_psi0(mpc_add_mpf(z, fone, prec+5), prec) + return mpc_add_mpf(a, mpf_euler(prec+5, rnd), prec, rnd) + +def mpf_psi0(x, prec, rnd=round_fast): + """ + Computation of the digamma function (psi function of order 0) + of a real argument. + """ + sign, man, exp, bc = x + wp = prec + 10 + if not man: + if x == finf: return x + if x == fninf or x == fnan: return fnan + if x == fzero or (exp >= 0 and sign): + raise ValueError("polygamma pole") + # Near 0 -- fixed-point arithmetic becomes bad + if exp+bc < -5: + v = mpf_psi0(mpf_add(x, fone, prec, rnd), prec, rnd) + return mpf_sub(v, mpf_div(fone, x, wp, rnd), prec, rnd) + # Reflection formula + if sign and exp+bc > 3: + c, s = mpf_cos_sin_pi(x, wp) + q = mpf_mul(mpf_div(c, s, wp), mpf_pi(wp), wp) + p = mpf_psi0(mpf_sub(fone, x, wp), wp) + return mpf_sub(p, q, prec, rnd) + # The logarithmic term is accurate enough + if (not sign) and bc + exp > wp: + return mpf_log(mpf_sub(x, fone, wp), prec, rnd) + # Initial recurrence to obtain a large enough x + m = to_int(x) + n = int(0.11*wp) + 2 + s = MPZ_ZERO + x = to_fixed(x, wp) + one = MPZ_ONE << wp + if m < n: + for k in xrange(m, n): + s -= (one << wp) // x + x += one + x -= one + # Logarithmic term + s += to_fixed(mpf_log(from_man_exp(x, -wp, wp), wp), wp) + # Endpoint term in Euler-Maclaurin expansion + s += (one << wp) // (2*x) + # Euler-Maclaurin remainder sum + x2 = (x*x) >> wp + t = one + prev = 0 + k = 1 + while 1: + t = (t*x2) >> wp + bsign, bman, bexp, bbc = mpf_bernoulli(2*k, wp) + offset = (bexp + 2*wp) + if offset >= 0: term = (bman << offset) // (t*(2*k)) + else: term = (bman >> (-offset)) // (t*(2*k)) + if k & 1: s -= term + else: s += term + if k > 2 and term >= prev: + break + prev = term + k += 1 + return from_man_exp(s, -wp, wp, rnd) + +def mpc_psi0(z, prec, rnd=round_fast): + """ + Computation of the digamma function (psi function of order 0) + of a complex argument. + """ + re, im = z + # Fall back to the real case + if im == fzero: + return (mpf_psi0(re, prec, rnd), fzero) + wp = prec + 20 + sign, man, exp, bc = re + # Reflection formula + if sign and exp+bc > 3: + c = mpc_cos_pi(z, wp) + s = mpc_sin_pi(z, wp) + q = mpc_mul_mpf(mpc_div(c, s, wp), mpf_pi(wp), wp) + p = mpc_psi0(mpc_sub(mpc_one, z, wp), wp) + return mpc_sub(p, q, prec, rnd) + # Just the logarithmic term + if (not sign) and bc + exp > wp: + return mpc_log(mpc_sub(z, mpc_one, wp), prec, rnd) + # Initial recurrence to obtain a large enough z + w = to_int(re) + n = int(0.11*wp) + 2 + s = mpc_zero + if w < n: + for k in xrange(w, n): + s = mpc_sub(s, mpc_reciprocal(z, wp), wp) + z = mpc_add_mpf(z, fone, wp) + z = mpc_sub(z, mpc_one, wp) + # Logarithmic and endpoint term + s = mpc_add(s, mpc_log(z, wp), wp) + s = mpc_add(s, mpc_div(mpc_half, z, wp), wp) + # Euler-Maclaurin remainder sum + z2 = mpc_square(z, wp) + t = mpc_one + prev = mpc_zero + szprev = fzero + k = 1 + eps = mpf_shift(fone, -wp+2) + while 1: + t = mpc_mul(t, z2, wp) + bern = mpf_bernoulli(2*k, wp) + term = mpc_mpf_div(bern, mpc_mul_int(t, 2*k, wp), wp) + s = mpc_sub(s, term, wp) + szterm = mpc_abs(term, 10) + if k > 2 and (mpf_le(szterm, eps) or mpf_le(szprev, szterm)): + break + prev = term + szprev = szterm + k += 1 + return s + +# Currently unoptimized +def mpf_psi(m, x, prec, rnd=round_fast): + """ + Computation of the polygamma function of arbitrary integer order + m >= 0, for a real argument x. + """ + if m == 0: + return mpf_psi0(x, prec, rnd=round_fast) + return mpc_psi(m, (x, fzero), prec, rnd)[0] + +def mpc_psi(m, z, prec, rnd=round_fast): + """ + Computation of the polygamma function of arbitrary integer order + m >= 0, for a complex argument z. + """ + if m == 0: + return mpc_psi0(z, prec, rnd) + re, im = z + wp = prec + 20 + sign, man, exp, bc = re + if not im[1]: + if im in (finf, fninf, fnan): + return (fnan, fnan) + if not man: + if re == finf and im == fzero: + return (fzero, fzero) + if re == fnan: + return (fnan, fnan) + # Recurrence + w = to_int(re) + n = int(0.4*wp + 4*m) + s = mpc_zero + if w < n: + for k in xrange(w, n): + t = mpc_pow_int(z, -m-1, wp) + s = mpc_add(s, t, wp) + z = mpc_add_mpf(z, fone, wp) + zm = mpc_pow_int(z, -m, wp) + z2 = mpc_pow_int(z, -2, wp) + # 1/m*(z+N)^m + integral_term = mpc_div_mpf(zm, from_int(m), wp) + s = mpc_add(s, integral_term, wp) + # 1/2*(z+N)^(-(m+1)) + s = mpc_add(s, mpc_mul_mpf(mpc_div(zm, z, wp), fhalf, wp), wp) + a = m + 1 + b = 2 + k = 1 + # Important: we want to sum up to the *relative* error, + # not the absolute error, because psi^(m)(z) might be tiny + magn = mpc_abs(s, 10) + magn = magn[2]+magn[3] + eps = mpf_shift(fone, magn-wp+2) + while 1: + zm = mpc_mul(zm, z2, wp) + bern = mpf_bernoulli(2*k, wp) + scal = mpf_mul_int(bern, a, wp) + scal = mpf_div(scal, from_int(b), wp) + term = mpc_mul_mpf(zm, scal, wp) + s = mpc_add(s, term, wp) + szterm = mpc_abs(term, 10) + if k > 2 and mpf_le(szterm, eps): + break + #print k, to_str(szterm, 10), to_str(eps, 10) + a *= (m+2*k)*(m+2*k+1) + b *= (2*k+1)*(2*k+2) + k += 1 + # Scale and sign factor + v = mpc_mul_mpf(s, mpf_gamma(from_int(m+1), wp), prec, rnd) + if not (m & 1): + v = mpf_neg(v[0]), mpf_neg(v[1]) + return v + + +#-----------------------------------------------------------------------# +# # +# Riemann zeta function # +# # +#-----------------------------------------------------------------------# + +r""" +We use zeta(s) = eta(s) / (1 - 2**(1-s)) and Borwein's approximation + + n-1 + ___ k + -1 \ (-1) (d_k - d_n) + eta(s) ~= ---- ) ------------------ + d_n /___ s + k = 0 (k + 1) +where + k + ___ i + \ (n + i - 1)! 4 + d_k = n ) ---------------. + /___ (n - i)! (2i)! + i = 0 + +If s = a + b*I, the absolute error for eta(s) is bounded by + + 3 (1 + 2|b|) + ------------ * exp(|b| pi/2) + n + (3+sqrt(8)) + +Disregarding the linear term, we have approximately, + + log(err) ~= log(exp(1.58*|b|)) - log(5.8**n) + log(err) ~= 1.58*|b| - log(5.8)*n + log(err) ~= 1.58*|b| - 1.76*n + log2(err) ~= 2.28*|b| - 2.54*n + +So for p bits, we should choose n > (p + 2.28*|b|) / 2.54. + +References: +----------- + +Peter Borwein, "An Efficient Algorithm for the Riemann Zeta Function" +http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P117.ps + +http://en.wikipedia.org/wiki/Dirichlet_eta_function +""" + +borwein_cache = {} + +def borwein_coefficients(n): + if n in borwein_cache: + return borwein_cache[n] + ds = [MPZ_ZERO] * (n+1) + d = MPZ_ONE + s = ds[0] = MPZ_ONE + for i in range(1, n+1): + d = d * 4 * (n+i-1) * (n-i+1) + d //= ((2*i) * ((2*i)-1)) + s += d + ds[i] = s + borwein_cache[n] = ds + return ds + +ZETA_INT_CACHE_MAX_PREC = 1000 +zeta_int_cache = {} + +def mpf_zeta_int(s, prec, rnd=round_fast): + """ + Optimized computation of zeta(s) for an integer s. + """ + wp = prec + 20 + s = int(s) + if s in zeta_int_cache and zeta_int_cache[s][0] >= wp: + return mpf_pos(zeta_int_cache[s][1], prec, rnd) + if s < 2: + if s == 1: + raise ValueError("zeta(1) pole") + if not s: + return mpf_neg(fhalf) + return mpf_div(mpf_bernoulli(-s+1, wp), from_int(s-1), prec, rnd) + # 2^-s term vanishes? + if s >= wp: + return mpf_perturb(fone, 0, prec, rnd) + # 5^-s term vanishes? + elif s >= wp*0.431: + t = one = 1 << wp + t += 1 << (wp - s) + t += one // (MPZ_THREE ** s) + t += 1 << max(0, wp - s*2) + return from_man_exp(t, -wp, prec, rnd) + else: + # Fast enough to sum directly? + # Even better, we use the Euler product (idea stolen from pari) + m = (float(wp)/(s-1) + 1) + if m < 30: + needed_terms = int(2.0**m + 1) + if needed_terms < int(wp/2.54 + 5) / 10: + t = fone + for k in list_primes(needed_terms): + #print k, needed_terms + powprec = int(wp - s*math.log(k,2)) + if powprec < 2: + break + a = mpf_sub(fone, mpf_pow_int(from_int(k), -s, powprec), wp) + t = mpf_mul(t, a, wp) + return mpf_div(fone, t, wp) + # Use Borwein's algorithm + n = int(wp/2.54 + 5) + d = borwein_coefficients(n) + t = MPZ_ZERO + s = MPZ(s) + for k in xrange(n): + t += (((-1)**k * (d[k] - d[n])) << wp) // (k+1)**s + t = (t << wp) // (-d[n]) + t = (t << wp) // ((1 << wp) - (1 << (wp+1-s))) + if (s in zeta_int_cache and zeta_int_cache[s][0] < wp) or (s not in zeta_int_cache): + zeta_int_cache[s] = (wp, from_man_exp(t, -wp-wp)) + return from_man_exp(t, -wp-wp, prec, rnd) + +def mpf_zeta(s, prec, rnd=round_fast, alt=0): + sign, man, exp, bc = s + if not man: + if s == fzero: + if alt: + return fhalf + else: + return mpf_neg(fhalf) + if s == finf: + return fone + return fnan + wp = prec + 20 + # First term vanishes? + if (not sign) and (exp + bc > (math.log(wp,2) + 2)): + return mpf_perturb(fone, alt, prec, rnd) + # Optimize for integer arguments + elif exp >= 0: + if alt: + if s == fone: + return mpf_ln2(prec, rnd) + z = mpf_zeta_int(to_int(s), wp, negative_rnd[rnd]) + q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp) + return mpf_mul(z, q, prec, rnd) + else: + return mpf_zeta_int(to_int(s), prec, rnd) + # Negative: use the reflection formula + # Borwein only proves the accuracy bound for x >= 1/2. However, based on + # tests, the accuracy without reflection is quite good even some distance + # to the left of 1/2. XXX: verify this. + if sign: + # XXX: could use the separate refl. formula for Dirichlet eta + if alt: + q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp) + return mpf_mul(mpf_zeta(s, wp), q, prec, rnd) + # XXX: -1 should be done exactly + y = mpf_sub(fone, s, 10*wp) + a = mpf_gamma(y, wp) + b = mpf_zeta(y, wp) + c = mpf_sin_pi(mpf_shift(s, -1), wp) + wp2 = wp + max(0,exp+bc) + pi = mpf_pi(wp+wp2) + d = mpf_div(mpf_pow(mpf_shift(pi, 1), s, wp2), pi, wp2) + return mpf_mul(a,mpf_mul(b,mpf_mul(c,d,wp),wp),prec,rnd) + + # Near pole + r = mpf_sub(fone, s, wp) + asign, aman, aexp, abc = mpf_abs(r) + pole_dist = -2*(aexp+abc) + if pole_dist > wp: + if alt: + return mpf_ln2(prec, rnd) + else: + q = mpf_neg(mpf_div(fone, r, wp)) + return mpf_add(q, mpf_euler(wp), prec, rnd) + else: + wp += max(0, pole_dist) + + t = MPZ_ZERO + #wp += 16 - (prec & 15) + # Use Borwein's algorithm + n = int(wp/2.54 + 5) + d = borwein_coefficients(n) + t = MPZ_ZERO + sf = to_fixed(s, wp) + ln2 = ln2_fixed(wp) + for k in xrange(n): + u = (-sf*log_int_fixed(k+1, wp, ln2)) >> wp + #esign, eman, eexp, ebc = mpf_exp(u, wp) + #offset = eexp + wp + #if offset >= 0: + # w = ((d[k] - d[n]) * eman) << offset + #else: + # w = ((d[k] - d[n]) * eman) >> (-offset) + eman = exp_fixed(u, wp, ln2) + w = (d[k] - d[n]) * eman + if k & 1: + t -= w + else: + t += w + t = t // (-d[n]) + t = from_man_exp(t, -wp, wp) + if alt: + return mpf_pos(t, prec, rnd) + else: + q = mpf_sub(fone, mpf_pow(ftwo, mpf_sub(fone, s, wp), wp), wp) + return mpf_div(t, q, prec, rnd) + +def mpc_zeta(s, prec, rnd=round_fast, alt=0, force=False): + re, im = s + if im == fzero: + return mpf_zeta(re, prec, rnd, alt), fzero + + # slow for large s + if (not force) and mpf_gt(mpc_abs(s, 10), from_int(prec)): + raise NotImplementedError + + wp = prec + 20 + + # Near pole + r = mpc_sub(mpc_one, s, wp) + asign, aman, aexp, abc = mpc_abs(r, 10) + pole_dist = -2*(aexp+abc) + if pole_dist > wp: + if alt: + q = mpf_ln2(wp) + y = mpf_mul(q, mpf_euler(wp), wp) + g = mpf_shift(mpf_mul(q, q, wp), -1) + g = mpf_sub(y, g) + z = mpc_mul_mpf(r, mpf_neg(g), wp) + z = mpc_add_mpf(z, q, wp) + return mpc_pos(z, prec, rnd) + else: + q = mpc_neg(mpc_div(mpc_one, r, wp)) + q = mpc_add_mpf(q, mpf_euler(wp), wp) + return mpc_pos(q, prec, rnd) + else: + wp += max(0, pole_dist) + + # Reflection formula. To be rigorous, we should reflect to the left of + # re = 1/2 (see comments for mpf_zeta), but this leads to unnecessary + # slowdown for interesting values of s + if mpf_lt(re, fzero): + # XXX: could use the separate refl. formula for Dirichlet eta + if alt: + q = mpc_sub(mpc_one, mpc_pow(mpc_two, mpc_sub(mpc_one, s, wp), + wp), wp) + return mpc_mul(mpc_zeta(s, wp), q, prec, rnd) + # XXX: -1 should be done exactly + y = mpc_sub(mpc_one, s, 10*wp) + a = mpc_gamma(y, wp) + b = mpc_zeta(y, wp) + c = mpc_sin_pi(mpc_shift(s, -1), wp) + rsign, rman, rexp, rbc = re + isign, iman, iexp, ibc = im + mag = max(rexp+rbc, iexp+ibc) + wp2 = wp + max(0, mag) + pi = mpf_pi(wp+wp2) + pi2 = (mpf_shift(pi, 1), fzero) + d = mpc_div_mpf(mpc_pow(pi2, s, wp2), pi, wp2) + return mpc_mul(a,mpc_mul(b,mpc_mul(c,d,wp),wp),prec,rnd) + n = int(wp/2.54 + 5) + n += int(0.9*abs(to_int(im))) + d = borwein_coefficients(n) + ref = to_fixed(re, wp) + imf = to_fixed(im, wp) + tre = MPZ_ZERO + tim = MPZ_ZERO + one = MPZ_ONE << wp + one_2wp = MPZ_ONE << (2*wp) + critical_line = re == fhalf + ln2 = ln2_fixed(wp) + pi2 = pi_fixed(wp-1) + wp2 = wp+wp + for k in xrange(n): + log = log_int_fixed(k+1, wp, ln2) + # A square root is much cheaper than an exp + if critical_line: + w = one_2wp // isqrt_fast((k+1) << wp2) + else: + w = exp_fixed((-ref*log) >> wp, wp) + if k & 1: + w *= (d[n] - d[k]) + else: + w *= (d[k] - d[n]) + wre, wim = cos_sin_fixed((-imf*log)>>wp, wp, pi2) + tre += (w * wre) >> wp + tim += (w * wim) >> wp + tre //= (-d[n]) + tim //= (-d[n]) + tre = from_man_exp(tre, -wp, wp) + tim = from_man_exp(tim, -wp, wp) + if alt: + return mpc_pos((tre, tim), prec, rnd) + else: + q = mpc_sub(mpc_one, mpc_pow(mpc_two, r, wp), wp) + return mpc_div((tre, tim), q, prec, rnd) + +def mpf_altzeta(s, prec, rnd=round_fast): + return mpf_zeta(s, prec, rnd, 1) + +def mpc_altzeta(s, prec, rnd=round_fast): + return mpc_zeta(s, prec, rnd, 1) + +# Not optimized currently +mpf_zetasum = None + + +def pow_fixed(x, n, wp): + if n == 1: + return x + y = MPZ_ONE << wp + while n: + if n & 1: + y = (y*x) >> wp + n -= 1 + x = (x*x) >> wp + n //= 2 + return y + +# TODO: optimize / cleanup interface / unify with list_primes +sieve_cache = [] +primes_cache = [] +mult_cache = [] + +def primesieve(n): + global sieve_cache, primes_cache, mult_cache + if n < len(sieve_cache): + sieve = sieve_cache#[:n+1] + primes = primes_cache[:primes_cache.index(max(sieve))+1] + mult = mult_cache#[:n+1] + return sieve, primes, mult + sieve = [0] * (n+1) + mult = [0] * (n+1) + primes = list_primes(n) + for p in primes: + #sieve[p::p] = p + for k in xrange(p,n+1,p): + sieve[k] = p + for i, p in enumerate(sieve): + if i >= 2: + m = 1 + n = i // p + while not n % p: + n //= p + m += 1 + mult[i] = m + sieve_cache = sieve + primes_cache = primes + mult_cache = mult + return sieve, primes, mult + +def zetasum_sieved(critical_line, sre, sim, a, n, wp): + if a < 1: + raise ValueError("a cannot be less than 1") + sieve, primes, mult = primesieve(a+n) + basic_powers = {} + one = MPZ_ONE << wp + one_2wp = MPZ_ONE << (2*wp) + wp2 = wp+wp + ln2 = ln2_fixed(wp) + pi2 = pi_fixed(wp-1) + for p in primes: + if p*2 > a+n: + break + log = log_int_fixed(p, wp, ln2) + cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2) + if critical_line: + u = one_2wp // isqrt_fast(p<>wp, wp) + pre = (u*cos) >> wp + pim = (u*sin) >> wp + basic_powers[p] = [(pre, pim)] + tre, tim = pre, pim + for m in range(1,int(math.log(a+n,p)+0.01)+1): + tre, tim = ((pre*tre-pim*tim)>>wp), ((pim*tre+pre*tim)>>wp) + basic_powers[p].append((tre,tim)) + xre = MPZ_ZERO + xim = MPZ_ZERO + if a == 1: + xre += one + aa = max(a,2) + for k in xrange(aa, a+n+1): + p = sieve[k] + if p in basic_powers: + m = mult[k] + tre, tim = basic_powers[p][m-1] + while 1: + k //= p**m + if k == 1: + break + p = sieve[k] + m = mult[k] + pre, pim = basic_powers[p][m-1] + tre, tim = ((pre*tre-pim*tim)>>wp), ((pim*tre+pre*tim)>>wp) + else: + log = log_int_fixed(k, wp, ln2) + cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2) + if critical_line: + u = one_2wp // isqrt_fast(k<>wp, wp) + tre = (u*cos) >> wp + tim = (u*sin) >> wp + xre += tre + xim += tim + return xre, xim + +# Set to something large to disable +ZETASUM_SIEVE_CUTOFF = 10 + +def mpc_zetasum(s, a, n, derivatives, reflect, prec): + """ + Fast version of mp._zetasum, assuming s = complex, a = integer. + """ + + wp = prec + 10 + derivatives = list(derivatives) + have_derivatives = derivatives != [0] + have_one_derivative = len(derivatives) == 1 + + # parse s + sre, sim = s + critical_line = (sre == fhalf) + sre = to_fixed(sre, wp) + sim = to_fixed(sim, wp) + + if a > 0 and n > ZETASUM_SIEVE_CUTOFF and not have_derivatives \ + and not reflect and (n < 4e7 or sys.maxsize > 2**32): + re, im = zetasum_sieved(critical_line, sre, sim, a, n, wp) + xs = [(from_man_exp(re, -wp, prec, 'n'), from_man_exp(im, -wp, prec, 'n'))] + return xs, [] + + maxd = max(derivatives) + if not have_one_derivative: + derivatives = range(maxd+1) + + # x_d = 0, y_d = 0 + xre = [MPZ_ZERO for d in derivatives] + xim = [MPZ_ZERO for d in derivatives] + if reflect: + yre = [MPZ_ZERO for d in derivatives] + yim = [MPZ_ZERO for d in derivatives] + else: + yre = yim = [] + + one = MPZ_ONE << wp + one_2wp = MPZ_ONE << (2*wp) + + ln2 = ln2_fixed(wp) + pi2 = pi_fixed(wp-1) + wp2 = wp+wp + + for w in xrange(a, a+n+1): + log = log_int_fixed(w, wp, ln2) + cos, sin = cos_sin_fixed((-sim*log)>>wp, wp, pi2) + if critical_line: + u = one_2wp // isqrt_fast(w<>wp, wp) + xterm_re = (u * cos) >> wp + xterm_im = (u * sin) >> wp + if reflect: + reciprocal = (one_2wp // (u*w)) + yterm_re = (reciprocal * cos) >> wp + yterm_im = (reciprocal * sin) >> wp + + if have_derivatives: + if have_one_derivative: + log = pow_fixed(log, maxd, wp) + xre[0] += (xterm_re * log) >> wp + xim[0] += (xterm_im * log) >> wp + if reflect: + yre[0] += (yterm_re * log) >> wp + yim[0] += (yterm_im * log) >> wp + else: + t = MPZ_ONE << wp + for d in derivatives: + xre[d] += (xterm_re * t) >> wp + xim[d] += (xterm_im * t) >> wp + if reflect: + yre[d] += (yterm_re * t) >> wp + yim[d] += (yterm_im * t) >> wp + t = (t * log) >> wp + else: + xre[0] += xterm_re + xim[0] += xterm_im + if reflect: + yre[0] += yterm_re + yim[0] += yterm_im + if have_derivatives: + if have_one_derivative: + if maxd % 2: + xre[0] = -xre[0] + xim[0] = -xim[0] + if reflect: + yre[0] = -yre[0] + yim[0] = -yim[0] + else: + xre = [(-1)**d * xre[d] for d in derivatives] + xim = [(-1)**d * xim[d] for d in derivatives] + if reflect: + yre = [(-1)**d * yre[d] for d in derivatives] + yim = [(-1)**d * yim[d] for d in derivatives] + xs = [(from_man_exp(xa, -wp, prec, 'n'), from_man_exp(xb, -wp, prec, 'n')) + for (xa, xb) in zip(xre, xim)] + ys = [(from_man_exp(ya, -wp, prec, 'n'), from_man_exp(yb, -wp, prec, 'n')) + for (ya, yb) in zip(yre, yim)] + return xs, ys + + +#-----------------------------------------------------------------------# +# # +# The gamma function (NEW IMPLEMENTATION) # +# # +#-----------------------------------------------------------------------# + +# Higher means faster, but more precomputation time +MAX_GAMMA_TAYLOR_PREC = 5000 +# Need to derive higher bounds for Taylor series to go higher +assert MAX_GAMMA_TAYLOR_PREC < 15000 + +# Use Stirling's series if abs(x) > beta*prec +# Important: must be large enough for convergence! +GAMMA_STIRLING_BETA = 0.2 + +SMALL_FACTORIAL_CACHE_SIZE = 150 + +gamma_taylor_cache = {} +gamma_stirling_cache = {} + +small_factorial_cache = [from_int(ifac(n)) for \ + n in range(SMALL_FACTORIAL_CACHE_SIZE+1)] + +def zeta_array(N, prec): + """ + zeta(n) = A * pi**n / n! + B + + where A is a rational number (A = Bernoulli number + for n even) and B is an infinite sum over powers of exp(2*pi). + (B = 0 for n even). + + TODO: this is currently only used for gamma, but could + be very useful elsewhere. + """ + extra = 30 + wp = prec+extra + zeta_values = [MPZ_ZERO] * (N+2) + pi = pi_fixed(wp) + # STEP 1: + one = MPZ_ONE << wp + zeta_values[0] = -one//2 + f_2pi = mpf_shift(mpf_pi(wp),1) + exp_2pi_k = exp_2pi = mpf_exp(f_2pi, wp) + # Compute exponential series + # Store values of 1/(exp(2*pi*k)-1), + # exp(2*pi*k)/(exp(2*pi*k)-1)**2, 1/(exp(2*pi*k)-1)**2 + # pi*k*exp(2*pi*k)/(exp(2*pi*k)-1)**2 + exps3 = [] + k = 1 + while 1: + tp = wp - 9*k + if tp < 1: + break + # 1/(exp(2*pi*k-1) + q1 = mpf_div(fone, mpf_sub(exp_2pi_k, fone, tp), tp) + # pi*k*exp(2*pi*k)/(exp(2*pi*k)-1)**2 + q2 = mpf_mul(exp_2pi_k, mpf_mul(q1,q1,tp), tp) + q1 = to_fixed(q1, wp) + q2 = to_fixed(q2, wp) + q2 = (k * q2 * pi) >> wp + exps3.append((q1, q2)) + # Multiply for next round + exp_2pi_k = mpf_mul(exp_2pi_k, exp_2pi, wp) + k += 1 + # Exponential sum + for n in xrange(3, N+1, 2): + s = MPZ_ZERO + k = 1 + for e1, e2 in exps3: + if n%4 == 3: + t = e1 // k**n + else: + U = (n-1)//4 + t = (e1 + e2//U) // k**n + if not t: + break + s += t + k += 1 + zeta_values[n] = -2*s + # Even zeta values + B = [mpf_abs(mpf_bernoulli(k,wp)) for k in xrange(N+2)] + pi_pow = fpi = mpf_pow_int(mpf_shift(mpf_pi(wp), 1), 2, wp) + pi_pow = mpf_div(pi_pow, from_int(4), wp) + for n in xrange(2,N+2,2): + z = mpf_mul(B[n], pi_pow, wp) + zeta_values[n] = to_fixed(z, wp) + pi_pow = mpf_mul(pi_pow, fpi, wp) + pi_pow = mpf_div(pi_pow, from_int((n+1)*(n+2)), wp) + # Zeta sum + reciprocal_pi = (one << wp) // pi + for n in xrange(3, N+1, 4): + U = (n-3)//4 + s = zeta_values[4*U+4]*(4*U+7)//4 + for k in xrange(1, U+1): + s -= (zeta_values[4*k] * zeta_values[4*U+4-4*k]) >> wp + zeta_values[n] += (2*s*reciprocal_pi) >> wp + for n in xrange(5, N+1, 4): + U = (n-1)//4 + s = zeta_values[4*U+2]*(2*U+1) + for k in xrange(1, 2*U+1): + s += ((-1)**k*2*k* zeta_values[2*k] * zeta_values[4*U+2-2*k])>>wp + zeta_values[n] += ((s*reciprocal_pi)>>wp)//(2*U) + return [x>>extra for x in zeta_values] + +def gamma_taylor_coefficients(inprec): + """ + Gives the Taylor coefficients of 1/gamma(1+x) as + a list of fixed-point numbers. Enough coefficients are returned + to ensure that the series converges to the given precision + when x is in [0.5, 1.5]. + """ + # Reuse nearby cache values (small case) + if inprec < 400: + prec = inprec + (10-(inprec%10)) + elif inprec < 1000: + prec = inprec + (30-(inprec%30)) + else: + prec = inprec + if prec in gamma_taylor_cache: + return gamma_taylor_cache[prec], prec + + # Experimentally determined bounds + if prec < 1000: + N = int(prec**0.76 + 2) + else: + # Valid to at least 15000 bits + N = int(prec**0.787 + 2) + + # Reuse higher precision values + for cprec in gamma_taylor_cache: + if cprec > prec: + coeffs = [x>>(cprec-prec) for x in gamma_taylor_cache[cprec][-N:]] + if inprec < 1000: + gamma_taylor_cache[prec] = coeffs + return coeffs, prec + + # Cache at a higher precision (large case) + if prec > 1000: + prec = int(prec * 1.2) + + wp = prec + 20 + A = [0] * N + A[0] = MPZ_ZERO + A[1] = MPZ_ONE << wp + A[2] = euler_fixed(wp) + # SLOW, reference implementation + #zeta_values = [0,0]+[to_fixed(mpf_zeta_int(k,wp),wp) for k in xrange(2,N)] + zeta_values = zeta_array(N, wp) + for k in xrange(3, N): + a = (-A[2]*A[k-1])>>wp + for j in xrange(2,k): + a += ((-1)**j * zeta_values[j] * A[k-j]) >> wp + a //= (1-k) + A[k] = a + A = [a>>20 for a in A] + A = A[::-1] + A = A[:-1] + gamma_taylor_cache[prec] = A + #return A, prec + return gamma_taylor_coefficients(inprec) + +def gamma_fixed_taylor(xmpf, x, wp, prec, rnd, type): + # Determine nearest multiple of N/2 + #n = int(x >> (wp-1)) + #steps = (n-1)>>1 + nearest_int = ((x >> (wp-1)) + MPZ_ONE) >> 1 + one = MPZ_ONE << wp + coeffs, cwp = gamma_taylor_coefficients(wp) + if nearest_int > 0: + r = one + for i in xrange(nearest_int-1): + x -= one + r = (r*x) >> wp + x -= one + p = MPZ_ZERO + for c in coeffs: + p = c + ((x*p)>>wp) + p >>= (cwp-wp) + if type == 0: + return from_man_exp((r<> wp + x += one + p = MPZ_ZERO + for c in coeffs: + p = c + ((x*p)>>wp) + p >>= (cwp-wp) + if wp - bitcount(abs(x)) > 10: + # pass very close to 0, so do floating-point multiply + g = mpf_add(xmpf, from_int(-nearest_int)) # exact + r = from_man_exp(p*r,-wp-wp) + r = mpf_mul(r, g, wp) + if type == 0: + return mpf_div(fone, r, prec, rnd) + if type == 2: + return mpf_pos(r, prec, rnd) + if type == 3: + return mpf_log(mpf_abs(mpf_div(fone, r, wp)), prec, rnd) + else: + r = from_man_exp(x*p*r,-3*wp) + if type == 0: return mpf_div(fone, r, prec, rnd) + if type == 2: return mpf_pos(r, prec, rnd) + if type == 3: return mpf_neg(mpf_log(mpf_abs(r), prec, rnd)) + +def stirling_coefficient(n): + if n in gamma_stirling_cache: + return gamma_stirling_cache[n] + p, q = bernfrac(n) + q *= MPZ(n*(n-1)) + gamma_stirling_cache[n] = p, q, bitcount(abs(p)), bitcount(q) + return gamma_stirling_cache[n] + +def real_stirling_series(x, prec): + """ + Sums the rational part of Stirling's expansion, + + log(sqrt(2*pi)) - z + 1/(12*z) - 1/(360*z^3) + ... + + """ + t = (MPZ_ONE<<(prec+prec)) // x # t = 1/x + u = (t*t)>>prec # u = 1/x**2 + s = ln_sqrt2pi_fixed(prec) - x + # Add initial terms of Stirling's series + s += t//12; t = (t*u)>>prec + s -= t//360; t = (t*u)>>prec + s += t//1260; t = (t*u)>>prec + s -= t//1680; t = (t*u)>>prec + if not t: return s + s += t//1188; t = (t*u)>>prec + s -= 691*t//360360; t = (t*u)>>prec + s += t//156; t = (t*u)>>prec + if not t: return s + s -= 3617*t//122400; t = (t*u)>>prec + s += 43867*t//244188; t = (t*u)>>prec + s -= 174611*t//125400; t = (t*u)>>prec + if not t: return s + k = 22 + # From here on, the coefficients are growing, so we + # have to keep t at a roughly constant size + usize = bitcount(abs(u)) + tsize = bitcount(abs(t)) + texp = 0 + while 1: + p, q, pb, qb = stirling_coefficient(k) + term_mag = tsize + pb + texp + shift = -texp + m = pb - term_mag + if m > 0 and shift < m: + p >>= m + shift -= m + m = tsize - term_mag + if m > 0 and shift < m: + w = t >> m + shift -= m + else: + w = t + term = (t*p//q) >> shift + if not term: + break + s += term + t = (t*u) >> usize + texp -= (prec - usize) + k += 2 + return s + +def complex_stirling_series(x, y, prec): + # t = 1/z + _m = (x*x + y*y) >> prec + tre = (x << prec) // _m + tim = (-y << prec) // _m + # u = 1/z**2 + ure = (tre*tre - tim*tim) >> prec + uim = tim*tre >> (prec-1) + # s = log(sqrt(2*pi)) - z + sre = ln_sqrt2pi_fixed(prec) - x + sim = -y + + # Add initial terms of Stirling's series + sre += tre//12; sim += tim//12; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + sre -= tre//360; sim -= tim//360; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + sre += tre//1260; sim += tim//1260; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + sre -= tre//1680; sim -= tim//1680; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + if abs(tre) + abs(tim) < 5: return sre, sim + sre += tre//1188; sim += tim//1188; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + sre -= 691*tre//360360; sim -= 691*tim//360360; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + sre += tre//156; sim += tim//156; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + if abs(tre) + abs(tim) < 5: return sre, sim + sre -= 3617*tre//122400; sim -= 3617*tim//122400; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + sre += 43867*tre//244188; sim += 43867*tim//244188; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + sre -= 174611*tre//125400; sim -= 174611*tim//125400; + tre, tim = ((tre*ure-tim*uim)>>prec), ((tre*uim+tim*ure)>>prec) + if abs(tre) + abs(tim) < 5: return sre, sim + + k = 22 + # From here on, the coefficients are growing, so we + # have to keep t at a roughly constant size + usize = bitcount(max(abs(ure), abs(uim))) + tsize = bitcount(max(abs(tre), abs(tim))) + texp = 0 + while 1: + p, q, pb, qb = stirling_coefficient(k) + term_mag = tsize + pb + texp + shift = -texp + m = pb - term_mag + if m > 0 and shift < m: + p >>= m + shift -= m + m = tsize - term_mag + if m > 0 and shift < m: + wre = tre >> m + wim = tim >> m + shift -= m + else: + wre = tre + wim = tim + termre = (tre*p//q) >> shift + termim = (tim*p//q) >> shift + if abs(termre) + abs(termim) < 5: + break + sre += termre + sim += termim + tre, tim = ((tre*ure - tim*uim)>>usize), \ + ((tre*uim + tim*ure)>>usize) + texp -= (prec - usize) + k += 2 + return sre, sim + + +def mpf_gamma(x, prec, rnd='d', type=0): + """ + This function implements multipurpose evaluation of the gamma + function, G(x), as well as the following versions of the same: + + type = 0 -- G(x) [standard gamma function] + type = 1 -- G(x+1) = x*G(x+1) = x! [factorial] + type = 2 -- 1/G(x) [reciprocal gamma function] + type = 3 -- log(|G(x)|) [log-gamma function, real part] + """ + + # Specal values + sign, man, exp, bc = x + if not man: + if x == fzero: + if type == 1: return fone + if type == 2: return fzero + raise ValueError("gamma function pole") + if x == finf: + if type == 2: return fzero + return finf + return fnan + + # First of all, for log gamma, numbers can be well beyond the fixed-point + # range, so we must take care of huge numbers before e.g. trying + # to convert x to the nearest integer + if type == 3: + wp = prec+20 + if exp+bc > wp and not sign: + return mpf_sub(mpf_mul(x, mpf_log(x, wp), wp), x, prec, rnd) + + # We strongly want to special-case small integers + is_integer = exp >= 0 + if is_integer: + # Poles + if sign: + if type == 2: + return fzero + raise ValueError("gamma function pole") + # n = x + n = man << exp + if n < SMALL_FACTORIAL_CACHE_SIZE: + if type == 0: + return mpf_pos(small_factorial_cache[n-1], prec, rnd) + if type == 1: + return mpf_pos(small_factorial_cache[n], prec, rnd) + if type == 2: + return mpf_div(fone, small_factorial_cache[n-1], prec, rnd) + if type == 3: + return mpf_log(small_factorial_cache[n-1], prec, rnd) + else: + # floor(abs(x)) + n = int(man >> (-exp)) + + # Estimate size and precision + # Estimate log(gamma(|x|),2) as x*log(x,2) + mag = exp + bc + gamma_size = n*mag + + if type == 3: + wp = prec + 20 + else: + wp = prec + bitcount(gamma_size) + 20 + + # Very close to 0, pole + if mag < -wp: + if type == 0: + return mpf_sub(mpf_div(fone,x, wp),mpf_shift(fone,-wp),prec,rnd) + if type == 1: return mpf_sub(fone, x, prec, rnd) + if type == 2: return mpf_add(x, mpf_shift(fone,mag-wp), prec, rnd) + if type == 3: return mpf_neg(mpf_log(mpf_abs(x), prec, rnd)) + + # From now on, we assume having a gamma function + if type == 1: + return mpf_gamma(mpf_add(x, fone), prec, rnd, 0) + + # Special case integers (those not small enough to be caught above, + # but still small enough for an exact factorial to be faster + # than an approximate algorithm), and half-integers + if exp >= -1: + if is_integer: + if gamma_size < 10*wp: + if type == 0: + return from_int(ifac(n-1), prec, rnd) + if type == 2: + return from_rational(MPZ_ONE, ifac(n-1), prec, rnd) + if type == 3: + return mpf_log(from_int(ifac(n-1)), prec, rnd) + # half-integer + if n < 100 or gamma_size < 10*wp: + if sign: + w = sqrtpi_fixed(wp) + if n % 2: f = ifac2(2*n+1) + else: f = -ifac2(2*n+1) + if type == 0: + return mpf_shift(from_rational(w, f, prec, rnd), -wp+n+1) + if type == 2: + return mpf_shift(from_rational(f, w, prec, rnd), wp-n-1) + if type == 3: + return mpf_log(mpf_shift(from_rational(w, abs(f), + prec, rnd), -wp+n+1), prec, rnd) + elif n == 0: + if type == 0: return mpf_sqrtpi(prec, rnd) + if type == 2: return mpf_div(fone, mpf_sqrtpi(wp), prec, rnd) + if type == 3: return mpf_log(mpf_sqrtpi(wp), prec, rnd) + else: + w = sqrtpi_fixed(wp) + w = from_man_exp(w * ifac2(2*n-1), -wp-n) + if type == 0: return mpf_pos(w, prec, rnd) + if type == 2: return mpf_div(fone, w, prec, rnd) + if type == 3: return mpf_log(mpf_abs(w), prec, rnd) + + # Convert to fixed point + offset = exp + wp + if offset >= 0: absxman = man << offset + else: absxman = man >> (-offset) + + # For log gamma, provide accurate evaluation for x = 1+eps and 2+eps + if type == 3 and not sign: + one = MPZ_ONE << wp + one_dist = abs(absxman-one) + two_dist = abs(absxman-2*one) + cancellation = (wp - bitcount(min(one_dist, two_dist))) + if cancellation > 10: + xsub1 = mpf_sub(fone, x) + xsub2 = mpf_sub(ftwo, x) + xsub1mag = xsub1[2]+xsub1[3] + xsub2mag = xsub2[2]+xsub2[3] + if xsub1mag < -wp: + return mpf_mul(mpf_euler(wp), mpf_sub(fone, x), prec, rnd) + if xsub2mag < -wp: + return mpf_mul(mpf_sub(fone, mpf_euler(wp)), + mpf_sub(x, ftwo), prec, rnd) + # Proceed but increase precision + wp += max(-xsub1mag, -xsub2mag) + offset = exp + wp + if offset >= 0: absxman = man << offset + else: absxman = man >> (-offset) + + # Use Taylor series if appropriate + n_for_stirling = int(GAMMA_STIRLING_BETA*wp) + if n < max(100, n_for_stirling) and wp < MAX_GAMMA_TAYLOR_PREC: + if sign: + absxman = -absxman + return gamma_fixed_taylor(x, absxman, wp, prec, rnd, type) + + # Use Stirling's series + # First ensure that |x| is large enough for rapid convergence + xorig = x + + # Argument reduction + r = 0 + if n < n_for_stirling: + r = one = MPZ_ONE << wp + d = n_for_stirling - n + for k in xrange(d): + r = (r * absxman) >> wp + absxman += one + x = xabs = from_man_exp(absxman, -wp) + if sign: + x = mpf_neg(x) + else: + xabs = mpf_abs(x) + + # Asymptotic series + y = real_stirling_series(absxman, wp) + u = to_fixed(mpf_log(xabs, wp), wp) + u = ((absxman - (MPZ_ONE<<(wp-1))) * u) >> wp + y += u + w = from_man_exp(y, -wp) + + # Compute final value + if sign: + # Reflection formula + A = mpf_mul(mpf_sin_pi(xorig, wp), xorig, wp) + B = mpf_neg(mpf_pi(wp)) + if type == 0 or type == 2: + A = mpf_mul(A, mpf_exp(w, wp)) + if r: + B = mpf_mul(B, from_man_exp(r, -wp), wp) + if type == 0: + return mpf_div(B, A, prec, rnd) + if type == 2: + return mpf_div(A, B, prec, rnd) + if type == 3: + if r: + B = mpf_mul(B, from_man_exp(r, -wp), wp) + A = mpf_add(mpf_log(mpf_abs(A), wp), w, wp) + return mpf_sub(mpf_log(mpf_abs(B), wp), A, prec, rnd) + else: + if type == 0: + if r: + return mpf_div(mpf_exp(w, wp), + from_man_exp(r, -wp), prec, rnd) + return mpf_exp(w, prec, rnd) + if type == 2: + if r: + return mpf_div(from_man_exp(r, -wp), + mpf_exp(w, wp), prec, rnd) + return mpf_exp(mpf_neg(w), prec, rnd) + if type == 3: + if r: + return mpf_sub(w, mpf_log(from_man_exp(r,-wp), wp), prec, rnd) + return mpf_pos(w, prec, rnd) + + +def mpc_gamma(z, prec, rnd='d', type=0): + a, b = z + asign, aman, aexp, abc = a + bsign, bman, bexp, bbc = b + + if b == fzero: + # Imaginary part on negative half-axis for log-gamma function + if type == 3 and asign: + re = mpf_gamma(a, prec, rnd, 3) + n = (-aman) >> (-aexp) + im = mpf_mul_int(mpf_pi(prec+10), n, prec, rnd) + return re, im + return mpf_gamma(a, prec, rnd, type), fzero + + # Some kind of complex inf/nan + if (not aman and aexp) or (not bman and bexp): + return (fnan, fnan) + + # Initial working precision + wp = prec + 20 + + amag = aexp+abc + bmag = bexp+bbc + if aman: + mag = max(amag, bmag) + else: + mag = bmag + + # Close to 0 + if mag < -8: + if mag < -wp: + # 1/gamma(z) = z + euler*z^2 + O(z^3) + v = mpc_add(z, mpc_mul_mpf(mpc_mul(z,z,wp),mpf_euler(wp),wp), wp) + if type == 0: return mpc_reciprocal(v, prec, rnd) + if type == 1: return mpc_div(z, v, prec, rnd) + if type == 2: return mpc_pos(v, prec, rnd) + if type == 3: return mpc_log(mpc_reciprocal(v, prec), prec, rnd) + elif type != 1: + wp += (-mag) + + # Handle huge log-gamma values; must do this before converting to + # a fixed-point value. TODO: determine a precise cutoff of validity + # depending on amag and bmag + if type == 3 and mag > wp and ((not asign) or (bmag >= amag)): + return mpc_sub(mpc_mul(z, mpc_log(z, wp), wp), z, prec, rnd) + + # From now on, we assume having a gamma function + if type == 1: + return mpc_gamma((mpf_add(a, fone), b), prec, rnd, 0) + + an = abs(to_int(a)) + bn = abs(to_int(b)) + absn = max(an, bn) + gamma_size = absn*mag + if type == 3: + pass + else: + wp += bitcount(gamma_size) + + # Reflect to the right half-plane. Note that Stirling's expansion + # is valid in the left half-plane too, as long as we're not too close + # to the real axis, but in order to use this argument reduction + # in the negative direction must be implemented. + #need_reflection = asign and ((bmag < 0) or (amag-bmag > 4)) + need_reflection = asign + zorig = z + if need_reflection: + z = mpc_neg(z) + asign, aman, aexp, abc = a = z[0] + bsign, bman, bexp, bbc = b = z[1] + + # Imaginary part very small compared to real one? + yfinal = 0 + balance_prec = 0 + if bmag < -10: + # Check z ~= 1 and z ~= 2 for loggamma + if type == 3: + zsub1 = mpc_sub_mpf(z, fone) + if zsub1[0] == fzero: + cancel1 = -bmag + else: + cancel1 = -max(zsub1[0][2]+zsub1[0][3], bmag) + if cancel1 > wp: + pi = mpf_pi(wp) + x = mpc_mul_mpf(zsub1, pi, wp) + x = mpc_mul(x, x, wp) + x = mpc_div_mpf(x, from_int(12), wp) + y = mpc_mul_mpf(zsub1, mpf_neg(mpf_euler(wp)), wp) + yfinal = mpc_add(x, y, wp) + if not need_reflection: + return mpc_pos(yfinal, prec, rnd) + elif cancel1 > 0: + wp += cancel1 + zsub2 = mpc_sub_mpf(z, ftwo) + if zsub2[0] == fzero: + cancel2 = -bmag + else: + cancel2 = -max(zsub2[0][2]+zsub2[0][3], bmag) + if cancel2 > wp: + pi = mpf_pi(wp) + t = mpf_sub(mpf_mul(pi, pi), from_int(6)) + x = mpc_mul_mpf(mpc_mul(zsub2, zsub2, wp), t, wp) + x = mpc_div_mpf(x, from_int(12), wp) + y = mpc_mul_mpf(zsub2, mpf_sub(fone, mpf_euler(wp)), wp) + yfinal = mpc_add(x, y, wp) + if not need_reflection: + return mpc_pos(yfinal, prec, rnd) + elif cancel2 > 0: + wp += cancel2 + if bmag < -wp: + # Compute directly from the real gamma function. + pp = 2*(wp+10) + aabs = mpf_abs(a) + eps = mpf_shift(fone, amag-wp) + x1 = mpf_gamma(aabs, pp, type=type) + x2 = mpf_gamma(mpf_add(aabs, eps), pp, type=type) + xprime = mpf_div(mpf_sub(x2, x1, pp), eps, pp) + y = mpf_mul(b, xprime, prec, rnd) + yfinal = (x1, y) + # Note: we still need to use the reflection formula for + # near-poles, and the correct branch of the log-gamma function + if not need_reflection: + return mpc_pos(yfinal, prec, rnd) + else: + balance_prec += (-bmag) + + wp += balance_prec + n_for_stirling = int(GAMMA_STIRLING_BETA*wp) + need_reduction = absn < n_for_stirling + + afix = to_fixed(a, wp) + bfix = to_fixed(b, wp) + + r = 0 + if not yfinal: + zprered = z + # Argument reduction + if absn < n_for_stirling: + absn = complex(an, bn) + d = int((1 + n_for_stirling**2 - bn**2)**0.5 - an) + rre = one = MPZ_ONE << wp + rim = MPZ_ZERO + for k in xrange(d): + rre, rim = ((afix*rre-bfix*rim)>>wp), ((afix*rim + bfix*rre)>>wp) + afix += one + r = from_man_exp(rre, -wp), from_man_exp(rim, -wp) + a = from_man_exp(afix, -wp) + z = a, b + + yre, yim = complex_stirling_series(afix, bfix, wp) + # (z-1/2)*log(z) + S + lre, lim = mpc_log(z, wp) + lre = to_fixed(lre, wp) + lim = to_fixed(lim, wp) + yre = ((lre*afix - lim*bfix)>>wp) - (lre>>1) + yre + yim = ((lre*bfix + lim*afix)>>wp) - (lim>>1) + yim + y = from_man_exp(yre, -wp), from_man_exp(yim, -wp) + + if r and type == 3: + # If re(z) > 0 and abs(z) <= 4, the branches of loggamma(z) + # and log(gamma(z)) coincide. Otherwise, use the zeroth order + # Stirling expansion to compute the correct imaginary part. + y = mpc_sub(y, mpc_log(r, wp), wp) + zfa = to_float(zprered[0]) + zfb = to_float(zprered[1]) + zfabs = math.hypot(zfa,zfb) + #if not (zfa > 0.0 and zfabs <= 4): + yfb = to_float(y[1]) + u = math.atan2(zfb, zfa) + if zfabs <= 0.5: + gi = 0.577216*zfb - u + else: + gi = -zfb - 0.5*u + zfa*u + zfb*math.log(zfabs) + n = int(math.floor((gi-yfb)/(2*math.pi)+0.5)) + y = (y[0], mpf_add(y[1], mpf_mul_int(mpf_pi(wp), 2*n, wp), wp)) + + if need_reflection: + if type == 0 or type == 2: + A = mpc_mul(mpc_sin_pi(zorig, wp), zorig, wp) + B = (mpf_neg(mpf_pi(wp)), fzero) + if yfinal: + if type == 2: + A = mpc_div(A, yfinal, wp) + else: + A = mpc_mul(A, yfinal, wp) + else: + A = mpc_mul(A, mpc_exp(y, wp), wp) + if r: + B = mpc_mul(B, r, wp) + if type == 0: return mpc_div(B, A, prec, rnd) + if type == 2: return mpc_div(A, B, prec, rnd) + + # Reflection formula for the log-gamma function with correct branch + # http://functions.wolfram.com/GammaBetaErf/LogGamma/16/01/01/0006/ + # LogGamma[z] == -LogGamma[-z] - Log[-z] + + # Sign[Im[z]] Floor[Re[z]] Pi I + Log[Pi] - + # Log[Sin[Pi (z - Floor[Re[z]])]] - + # Pi I (1 - Abs[Sign[Im[z]]]) Abs[Floor[Re[z]]] + if type == 3: + if yfinal: + s1 = mpc_neg(yfinal) + else: + s1 = mpc_neg(y) + # s -= log(-z) + s1 = mpc_sub(s1, mpc_log(mpc_neg(zorig), wp), wp) + # floor(re(z)) + rezfloor = mpf_floor(zorig[0]) + imzsign = mpf_sign(zorig[1]) + pi = mpf_pi(wp) + t = mpf_mul(pi, rezfloor) + t = mpf_mul_int(t, imzsign, wp) + s1 = (s1[0], mpf_add(s1[1], t, wp)) + s1 = mpc_add_mpf(s1, mpf_log(pi, wp), wp) + t = mpc_sin_pi(mpc_sub_mpf(zorig, rezfloor), wp) + t = mpc_log(t, wp) + s1 = mpc_sub(s1, t, wp) + # Note: may actually be unused, because we fall back + # to the mpf_ function for real arguments + if not imzsign: + t = mpf_mul(pi, mpf_floor(rezfloor), wp) + s1 = (s1[0], mpf_sub(s1[1], t, wp)) + return mpc_pos(s1, prec, rnd) + else: + if type == 0: + if r: + return mpc_div(mpc_exp(y, wp), r, prec, rnd) + return mpc_exp(y, prec, rnd) + if type == 2: + if r: + return mpc_div(r, mpc_exp(y, wp), prec, rnd) + return mpc_exp(mpc_neg(y), prec, rnd) + if type == 3: + return mpc_pos(y, prec, rnd) + +def mpf_factorial(x, prec, rnd='d'): + return mpf_gamma(x, prec, rnd, 1) + +def mpc_factorial(x, prec, rnd='d'): + return mpc_gamma(x, prec, rnd, 1) + +def mpf_rgamma(x, prec, rnd='d'): + return mpf_gamma(x, prec, rnd, 2) + +def mpc_rgamma(x, prec, rnd='d'): + return mpc_gamma(x, prec, rnd, 2) + +def mpf_loggamma(x, prec, rnd='d'): + sign, man, exp, bc = x + if sign: + raise ComplexResult + return mpf_gamma(x, prec, rnd, 3) + +def mpc_loggamma(z, prec, rnd='d'): + a, b = z + asign, aman, aexp, abc = a + bsign, bman, bexp, bbc = b + if b == fzero and asign: + re = mpf_gamma(a, prec, rnd, 3) + n = (-aman) >> (-aexp) + im = mpf_mul_int(mpf_pi(prec+10), n, prec, rnd) + return re, im + return mpc_gamma(z, prec, rnd, 3) + +def mpf_gamma_int(n, prec, rnd=round_fast): + if n < SMALL_FACTORIAL_CACHE_SIZE: + return mpf_pos(small_factorial_cache[n-1], prec, rnd) + return mpf_gamma(from_int(n), prec, rnd) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libelefun.py b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libelefun.py new file mode 100644 index 0000000000000000000000000000000000000000..3de2e5aaef02296ed03dec3df3021b56823f3728 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libelefun.py @@ -0,0 +1,1428 @@ +""" +This module implements computation of elementary transcendental +functions (powers, logarithms, trigonometric and hyperbolic +functions, inverse trigonometric and hyperbolic) for real +floating-point numbers. + +For complex and interval implementations of the same functions, +see libmpc and libmpi. + +""" + +import math +from bisect import bisect + +from .backend import xrange +from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, BACKEND + +from .libmpf import ( + round_floor, round_ceiling, round_down, round_up, + round_nearest, round_fast, + ComplexResult, + bitcount, bctable, lshift, rshift, giant_steps, sqrt_fixed, + from_int, to_int, from_man_exp, to_fixed, to_float, from_float, + from_rational, normalize, + fzero, fone, fnone, fhalf, finf, fninf, fnan, + mpf_cmp, mpf_sign, mpf_abs, + mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_div, mpf_shift, + mpf_rdiv_int, mpf_pow_int, mpf_sqrt, + reciprocal_rnd, negative_rnd, mpf_perturb, + isqrt_fast +) + +from .libintmath import ifib + + +#------------------------------------------------------------------------------- +# Tuning parameters +#------------------------------------------------------------------------------- + +# Cutoff for computing exp from cosh+sinh. This reduces the +# number of terms by half, but also requires a square root which +# is expensive with the pure-Python square root code. +if BACKEND == 'python': + EXP_COSH_CUTOFF = 600 +else: + EXP_COSH_CUTOFF = 400 +# Cutoff for using more than 2 series +EXP_SERIES_U_CUTOFF = 1500 + +# Also basically determined by sqrt +if BACKEND == 'python': + COS_SIN_CACHE_PREC = 400 +else: + COS_SIN_CACHE_PREC = 200 +COS_SIN_CACHE_STEP = 8 +cos_sin_cache = {} + +# Number of integer logarithms to cache (for zeta sums) +MAX_LOG_INT_CACHE = 2000 +log_int_cache = {} + +LOG_TAYLOR_PREC = 2500 # Use Taylor series with caching up to this prec +LOG_TAYLOR_SHIFT = 9 # Cache log values in steps of size 2^-N +log_taylor_cache = {} +# prec/size ratio of x for fastest convergence in AGM formula +LOG_AGM_MAG_PREC_RATIO = 20 + +ATAN_TAYLOR_PREC = 3000 # Same as for log +ATAN_TAYLOR_SHIFT = 7 # steps of size 2^-N +atan_taylor_cache = {} + + +# ~= next power of two + 20 +cache_prec_steps = [22,22] +for k in xrange(1, bitcount(LOG_TAYLOR_PREC)+1): + cache_prec_steps += [min(2**k,LOG_TAYLOR_PREC)+20] * 2**(k-1) + + +#----------------------------------------------------------------------------# +# # +# Elementary mathematical constants # +# # +#----------------------------------------------------------------------------# + +def constant_memo(f): + """ + Decorator for caching computed values of mathematical + constants. This decorator should be applied to a + function taking a single argument prec as input and + returning a fixed-point value with the given precision. + """ + f.memo_prec = -1 + f.memo_val = None + def g(prec, **kwargs): + memo_prec = f.memo_prec + if prec <= memo_prec: + return f.memo_val >> (memo_prec-prec) + newprec = int(prec*1.05+10) + f.memo_val = f(newprec, **kwargs) + f.memo_prec = newprec + return f.memo_val >> (newprec-prec) + g.__name__ = f.__name__ + g.__doc__ = f.__doc__ + return g + +def def_mpf_constant(fixed): + """ + Create a function that computes the mpf value for a mathematical + constant, given a function that computes the fixed-point value. + + Assumptions: the constant is positive and has magnitude ~= 1; + the fixed-point function rounds to floor. + """ + def f(prec, rnd=round_fast): + wp = prec + 20 + v = fixed(wp) + if rnd in (round_up, round_ceiling): + v += 1 + return normalize(0, v, -wp, bitcount(v), prec, rnd) + f.__doc__ = fixed.__doc__ + return f + +def bsp_acot(q, a, b, hyperbolic): + if b - a == 1: + a1 = MPZ(2*a + 3) + if hyperbolic or a&1: + return MPZ_ONE, a1 * q**2, a1 + else: + return -MPZ_ONE, a1 * q**2, a1 + m = (a+b)//2 + p1, q1, r1 = bsp_acot(q, a, m, hyperbolic) + p2, q2, r2 = bsp_acot(q, m, b, hyperbolic) + return q2*p1 + r1*p2, q1*q2, r1*r2 + +# the acoth(x) series converges like the geometric series for x^2 +# N = ceil(p*log(2)/(2*log(x))) +def acot_fixed(a, prec, hyperbolic): + """ + Compute acot(a) or acoth(a) for an integer a with binary splitting; see + http://numbers.computation.free.fr/Constants/Algorithms/splitting.html + """ + N = int(0.35 * prec/math.log(a) + 20) + p, q, r = bsp_acot(a, 0,N, hyperbolic) + return ((p+q)<> extraprec) + +# Logarithms of integers are needed for various computations involving +# logarithms, powers, radix conversion, etc + +@constant_memo +def ln2_fixed(prec): + """ + Computes ln(2). This is done with a hyperbolic Machin-type formula, + with binary splitting at high precision. + """ + return machin([(18, 26), (-2, 4801), (8, 8749)], prec, True) + +@constant_memo +def ln10_fixed(prec): + """ + Computes ln(10). This is done with a hyperbolic Machin-type formula. + """ + return machin([(46, 31), (34, 49), (20, 161)], prec, True) + + +r""" +For computation of pi, we use the Chudnovsky series: + + oo + ___ k + 1 \ (-1) (6 k)! (A + B k) + ----- = ) ----------------------- + 12 pi /___ 3 3k+3/2 + (3 k)! (k!) C + k = 0 + +where A, B, and C are certain integer constants. This series adds roughly +14 digits per term. Note that C^(3/2) can be extracted so that the +series contains only rational terms. This makes binary splitting very +efficient. + +The recurrence formulas for the binary splitting were taken from +ftp://ftp.gmplib.org/pub/src/gmp-chudnovsky.c + +Previously, Machin's formula was used at low precision and the AGM iteration +was used at high precision. However, the Chudnovsky series is essentially as +fast as the Machin formula at low precision and in practice about 3x faster +than the AGM at high precision (despite theoretically having a worse +asymptotic complexity), so there is no reason not to use it in all cases. + +""" + +# Constants in Chudnovsky's series +CHUD_A = MPZ(13591409) +CHUD_B = MPZ(545140134) +CHUD_C = MPZ(640320) +CHUD_D = MPZ(12) + +def bs_chudnovsky(a, b, level, verbose): + """ + Computes the sum from a to b of the series in the Chudnovsky + formula. Returns g, p, q where p/q is the sum as an exact + fraction and g is a temporary value used to save work + for recursive calls. + """ + if b-a == 1: + g = MPZ((6*b-5)*(2*b-1)*(6*b-1)) + p = b**3 * CHUD_C**3 // 24 + q = (-1)**b * g * (CHUD_A+CHUD_B*b) + else: + if verbose and level < 4: + print(" binary splitting", a, b) + mid = (a+b)//2 + g1, p1, q1 = bs_chudnovsky(a, mid, level+1, verbose) + g2, p2, q2 = bs_chudnovsky(mid, b, level+1, verbose) + p = p1*p2 + g = g1*g2 + q = q1*p2 + q2*g1 + return g, p, q + +@constant_memo +def pi_fixed(prec, verbose=False, verbose_base=None): + """ + Compute floor(pi * 2**prec) as a big integer. + + This is done using Chudnovsky's series (see comments in + libelefun.py for details). + """ + # The Chudnovsky series gives 14.18 digits per term + N = int(prec/3.3219280948/14.181647462 + 2) + if verbose: + print("binary splitting with N =", N) + g, p, q = bs_chudnovsky(0, N, 0, verbose) + sqrtC = isqrt_fast(CHUD_C<<(2*prec)) + v = p*CHUD_C*sqrtC//((q+CHUD_A*p)*CHUD_D) + return v + +def degree_fixed(prec): + return pi_fixed(prec)//180 + +def bspe(a, b): + """ + Sum series for exp(1)-1 between a, b, returning the result + as an exact fraction (p, q). + """ + if b-a == 1: + return MPZ_ONE, MPZ(b) + m = (a+b)//2 + p1, q1 = bspe(a, m) + p2, q2 = bspe(m, b) + return p1*q2+p2, q1*q2 + +@constant_memo +def e_fixed(prec): + """ + Computes exp(1). This is done using the ordinary Taylor series for + exp, with binary splitting. For a description of the algorithm, + see: + + http://numbers.computation.free.fr/Constants/ + Algorithms/splitting.html + """ + # Slight overestimate of N needed for 1/N! < 2**(-prec) + # This could be tightened for large N. + N = int(1.1*prec/math.log(prec) + 20) + p, q = bspe(0,N) + return ((p+q)<> 11 + +mpf_phi = def_mpf_constant(phi_fixed) +mpf_pi = def_mpf_constant(pi_fixed) +mpf_e = def_mpf_constant(e_fixed) +mpf_degree = def_mpf_constant(degree_fixed) +mpf_ln2 = def_mpf_constant(ln2_fixed) +mpf_ln10 = def_mpf_constant(ln10_fixed) + + +@constant_memo +def ln_sqrt2pi_fixed(prec): + wp = prec + 10 + # ln(sqrt(2*pi)) = ln(2*pi)/2 + return to_fixed(mpf_log(mpf_shift(mpf_pi(wp), 1), wp), prec-1) + +@constant_memo +def sqrtpi_fixed(prec): + return sqrt_fixed(pi_fixed(prec), prec) + +mpf_sqrtpi = def_mpf_constant(sqrtpi_fixed) +mpf_ln_sqrt2pi = def_mpf_constant(ln_sqrt2pi_fixed) + + +#----------------------------------------------------------------------------# +# # +# Powers # +# # +#----------------------------------------------------------------------------# + +def mpf_pow(s, t, prec, rnd=round_fast): + """ + Compute s**t. Raises ComplexResult if s is negative and t is + fractional. + """ + ssign, sman, sexp, sbc = s + tsign, tman, texp, tbc = t + if ssign and texp < 0: + raise ComplexResult("negative number raised to a fractional power") + if texp >= 0: + return mpf_pow_int(s, (-1)**tsign * (tman<> pbc)] + if pbc > workprec: + pm = pm >> (pbc-workprec) + pe += pbc - workprec + pbc = workprec + n -= 1 + if not n: + break + y = y*y + exp = exp+exp + bc = bc + bc - 2 + bc = bc + bctable[int(y >> bc)] + if bc > workprec: + y = y >> (bc-workprec) + exp += bc - workprec + bc = workprec + n = n // 2 + return pm, pe + +# froot(s, n, prec, rnd) computes the real n-th root of a +# positive mpf tuple s. +# To compute the root we start from a 50-bit estimate for r +# generated with ordinary floating-point arithmetic, and then refine +# the value to full accuracy using the iteration + +# 1 / y \ +# r = --- | (n-1) * r + ---------- | +# n+1 n \ n r_n**(n-1) / + +# which is simply Newton's method applied to the equation r**n = y. +# With giant_steps(start, prec+extra) = [p0,...,pm, prec+extra] +# and y = man * 2**-shift one has +# (man * 2**exp)**(1/n) = +# y**(1/n) * 2**(start-prec/n) * 2**(p0-start) * ... * 2**(prec+extra-pm) * +# 2**((exp+shift-(n-1)*prec)/n -extra)) +# The last factor is accounted for in the last line of froot. + +def nthroot_fixed(y, n, prec, exp1): + start = 50 + try: + y1 = rshift(y, prec - n*start) + r = MPZ(int(y1**(1.0/n))) + except OverflowError: + y1 = from_int(y1, start) + fn = from_int(n) + fn = mpf_rdiv_int(1, fn, start) + r = mpf_pow(y1, fn, start) + r = to_int(r) + extra = 10 + extra1 = n + prevp = start + for p in giant_steps(start, prec+extra): + pm, pe = int_pow_fixed(r, n-1, prevp) + r2 = rshift(pm, (n-1)*prevp - p - pe - extra1) + B = lshift(y, 2*p-prec+extra1)//r2 + r = (B + (n-1) * lshift(r, p-prevp))//n + prevp = p + return r + +def mpf_nthroot(s, n, prec, rnd=round_fast): + """nth-root of a positive number + + Use the Newton method when faster, otherwise use x**(1/n) + """ + sign, man, exp, bc = s + if sign: + raise ComplexResult("nth root of a negative number") + if not man: + if s == fnan: + return fnan + if s == fzero: + if n > 0: + return fzero + if n == 0: + return fone + return finf + # Infinity + if not n: + return fnan + if n < 0: + return fzero + return finf + flag_inverse = False + if n < 2: + if n == 0: + return fone + if n == 1: + return mpf_pos(s, prec, rnd) + if n == -1: + return mpf_div(fone, s, prec, rnd) + # n < 0 + rnd = reciprocal_rnd[rnd] + flag_inverse = True + extra_inverse = 5 + prec += extra_inverse + n = -n + if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)): + prec2 = prec + 10 + fn = from_int(n) + nth = mpf_rdiv_int(1, fn, prec2) + r = mpf_pow(s, nth, prec2, rnd) + s = normalize(r[0], r[1], r[2], r[3], prec, rnd) + if flag_inverse: + return mpf_div(fone, s, prec-extra_inverse, rnd) + else: + return s + # Convert to a fixed-point number with prec2 bits. + prec2 = prec + 2*n - (prec%n) + # a few tests indicate that + # for 10 < n < 10**4 a bit more precision is needed + if n > 10: + prec2 += prec2//10 + prec2 = prec2 - prec2%n + # Mantissa may have more bits than we need. Trim it down. + shift = bc - prec2 + # Adjust exponents to make prec2 and exp+shift multiples of n. + sign1 = 0 + es = exp+shift + if es < 0: + sign1 = 1 + es = -es + if sign1: + shift += es%n + else: + shift -= es%n + man = rshift(man, shift) + extra = 10 + exp1 = ((exp+shift-(n-1)*prec2)//n) - extra + rnd_shift = 0 + if flag_inverse: + if rnd == 'u' or rnd == 'c': + rnd_shift = 1 + else: + if rnd == 'd' or rnd == 'f': + rnd_shift = 1 + man = nthroot_fixed(man+rnd_shift, n, prec2, exp1) + s = from_man_exp(man, exp1, prec, rnd) + if flag_inverse: + return mpf_div(fone, s, prec-extra_inverse, rnd) + else: + return s + +def mpf_cbrt(s, prec, rnd=round_fast): + """cubic root of a positive number""" + return mpf_nthroot(s, 3, prec, rnd) + +#----------------------------------------------------------------------------# +# # +# Logarithms # +# # +#----------------------------------------------------------------------------# + + +def log_int_fixed(n, prec, ln2=None): + """ + Fast computation of log(n), caching the value for small n, + intended for zeta sums. + """ + if n in log_int_cache: + value, vprec = log_int_cache[n] + if vprec >= prec: + return value >> (vprec - prec) + wp = prec + 10 + if wp <= LOG_TAYLOR_SHIFT: + if ln2 is None: + ln2 = ln2_fixed(wp) + r = bitcount(n) + x = n << (wp-r) + v = log_taylor_cached(x, wp) + r*ln2 + else: + v = to_fixed(mpf_log(from_int(n), wp+5), wp) + if n < MAX_LOG_INT_CACHE: + log_int_cache[n] = (v, wp) + return v >> (wp-prec) + +def agm_fixed(a, b, prec): + """ + Fixed-point computation of agm(a,b), assuming + a, b both close to unit magnitude. + """ + i = 0 + while 1: + anew = (a+b)>>1 + if i > 4 and abs(a-anew) < 8: + return a + b = isqrt_fast(a*b) + a = anew + i += 1 + return a + +def log_agm(x, prec): + """ + Fixed-point computation of -log(x) = log(1/x), suitable + for large precision. It is required that 0 < x < 1. The + algorithm used is the Sasaki-Kanada formula + + -log(x) = pi/agm(theta2(x)^2,theta3(x)^2). [1] + + For faster convergence in the theta functions, x should + be chosen closer to 0. + + Guard bits must be added by the caller. + + HYPOTHESIS: if x = 2^(-n), n bits need to be added to + account for the truncation to a fixed-point number, + and this is the only significant cancellation error. + + The number of bits lost to roundoff is small and can be + considered constant. + + [1] Richard P. Brent, "Fast Algorithms for High-Precision + Computation of Elementary Functions (extended abstract)", + http://wwwmaths.anu.edu.au/~brent/pd/RNC7-Brent.pdf + + """ + x2 = (x*x) >> prec + # Compute jtheta2(x)**2 + s = a = b = x2 + while a: + b = (b*x2) >> prec + a = (a*b) >> prec + s += a + s += (MPZ_ONE<>(prec-2) + s = (s*isqrt_fast(x<>prec + # Compute jtheta3(x)**2 + t = a = b = x + while a: + b = (b*x2) >> prec + a = (a*b) >> prec + t += a + t = (MPZ_ONE<>prec + # Final formula + p = agm_fixed(s, t, prec) + return (pi_fixed(prec) << prec) // p + +def log_taylor(x, prec, r=0): + """ + Fixed-point calculation of log(x). It is assumed that x is close + enough to 1 for the Taylor series to converge quickly. Convergence + can be improved by specifying r > 0 to compute + log(x^(1/2^r))*2^r, at the cost of performing r square roots. + + The caller must provide sufficient guard bits. + """ + for i in xrange(r): + x = isqrt_fast(x<> prec + v4 = (v2*v2) >> prec + s0 = v + s1 = v//3 + v = (v*v4) >> prec + k = 5 + while v: + s0 += v // k + k += 2 + s1 += v // k + v = (v*v4) >> prec + k += 2 + s1 = (s1*v2) >> prec + s = (s0+s1) << (1+r) + if sign: + return -s + return s + +def log_taylor_cached(x, prec): + """ + Fixed-point computation of log(x), assuming x in (0.5, 2) + and prec <= LOG_TAYLOR_PREC. + """ + n = x >> (prec-LOG_TAYLOR_SHIFT) + cached_prec = cache_prec_steps[prec] + dprec = cached_prec - prec + if (n, cached_prec) in log_taylor_cache: + a, log_a = log_taylor_cache[n, cached_prec] + else: + a = n << (cached_prec - LOG_TAYLOR_SHIFT) + log_a = log_taylor(a, cached_prec, 8) + log_taylor_cache[n, cached_prec] = (a, log_a) + a >>= dprec + log_a >>= dprec + u = ((x - a) << prec) // a + v = (u << prec) // ((MPZ_TWO << prec) + u) + v2 = (v*v) >> prec + v4 = (v2*v2) >> prec + s0 = v + s1 = v//3 + v = (v*v4) >> prec + k = 5 + while v: + s0 += v//k + k += 2 + s1 += v//k + v = (v*v4) >> prec + k += 2 + s1 = (s1*v2) >> prec + s = (s0+s1) << 1 + return log_a + s + +def mpf_log(x, prec, rnd=round_fast): + """ + Compute the natural logarithm of the mpf value x. If x is negative, + ComplexResult is raised. + """ + sign, man, exp, bc = x + #------------------------------------------------------------------ + # Handle special values + if not man: + if x == fzero: return fninf + if x == finf: return finf + if x == fnan: return fnan + if sign: + raise ComplexResult("logarithm of a negative number") + wp = prec + 20 + #------------------------------------------------------------------ + # Handle log(2^n) = log(n)*2. + # Here we catch the only possible exact value, log(1) = 0 + if man == 1: + if not exp: + return fzero + return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) + mag = exp+bc + abs_mag = abs(mag) + #------------------------------------------------------------------ + # Handle x = 1+eps, where log(x) ~ x. We need to check for + # cancellation when moving to fixed-point math and compensate + # by increasing the precision. Note that abs_mag in (0, 1) <=> + # 0.5 < x < 2 and x != 1 + if abs_mag <= 1: + # Calculate t = x-1 to measure distance from 1 in bits + tsign = 1-abs_mag + if tsign: + tman = (MPZ_ONE< wp: + t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n') + return mpf_perturb(t, tsign, prec, rnd) + else: + wp += cancellation + # TODO: if close enough to 1, we could use Taylor series + # even in the AGM precision range, since the Taylor series + # converges rapidly + #------------------------------------------------------------------ + # Another special case: + # n*log(2) is a good enough approximation + if abs_mag > 10000: + if bitcount(abs_mag) > wp: + return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) + #------------------------------------------------------------------ + # General case. + # Perform argument reduction using log(x) = log(x*2^n) - n*log(2): + # If we are in the Taylor precision range, choose magnitude 0 or 1. + # If we are in the AGM precision range, choose magnitude -m for + # some large m; benchmarking on one machine showed m = prec/20 to be + # optimal between 1000 and 100,000 digits. + if wp <= LOG_TAYLOR_PREC: + m = log_taylor_cached(lshift(man, wp-bc), wp) + if mag: + m += mag*ln2_fixed(wp) + else: + optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO + n = optimal_mag - mag + x = mpf_shift(x, n) + wp += (-optimal_mag) + m = -log_agm(to_fixed(x, wp), wp) + m -= n*ln2_fixed(wp) + return from_man_exp(m, -wp, prec, rnd) + +def mpf_log_hypot(a, b, prec, rnd): + """ + Computes log(sqrt(a^2+b^2)) accurately. + """ + # If either a or b is inf/nan/0, assume it to be a + if not b[1]: + a, b = b, a + # a is inf/nan/0 + if not a[1]: + # both are inf/nan/0 + if not b[1]: + if a == b == fzero: + return fninf + if fnan in (a, b): + return fnan + # at least one term is (+/- inf)^2 + return finf + # only a is inf/nan/0 + if a == fzero: + # log(sqrt(0+b^2)) = log(|b|) + return mpf_log(mpf_abs(b), prec, rnd) + if a == fnan: + return fnan + return finf + # Exact + a2 = mpf_mul(a,a) + b2 = mpf_mul(b,b) + extra = 20 + # Not exact + h2 = mpf_add(a2, b2, prec+extra) + cancelled = mpf_add(h2, fnone, 10) + mag_cancelled = cancelled[2]+cancelled[3] + # Just redo the sum exactly if necessary (could be smarter + # and avoid memory allocation when a or b is precisely 1 + # and the other is tiny...) + if cancelled == fzero or mag_cancelled < -extra//2: + h2 = mpf_add(a2, b2, prec+extra-min(a2[2],b2[2])) + return mpf_shift(mpf_log(h2, prec, rnd), -1) + + +#---------------------------------------------------------------------- +# Inverse tangent +# + +def atan_newton(x, prec): + if prec >= 100: + r = math.atan(int((x>>(prec-53)))/2.0**53) + else: + r = math.atan(int(x)/2.0**prec) + prevp = 50 + r = MPZ(int(r * 2.0**53) >> (53-prevp)) + extra_p = 50 + for wp in giant_steps(prevp, prec): + wp += extra_p + r = r << (wp-prevp) + cos, sin = cos_sin_fixed(r, wp) + tan = (sin << wp) // cos + a = ((tan-rshift(x, prec-wp)) << wp) // ((MPZ_ONE<>wp)) + r = r - a + prevp = wp + return rshift(r, prevp-prec) + +def atan_taylor_get_cached(n, prec): + # Taylor series with caching wins up to huge precisions + # To avoid unnecessary precomputation at low precision, we + # do it in steps + # Round to next power of 2 + prec2 = (1<<(bitcount(prec-1))) + 20 + dprec = prec2 - prec + if (n, prec2) in atan_taylor_cache: + a, atan_a = atan_taylor_cache[n, prec2] + else: + a = n << (prec2 - ATAN_TAYLOR_SHIFT) + atan_a = atan_newton(a, prec2) + atan_taylor_cache[n, prec2] = (a, atan_a) + return (a >> dprec), (atan_a >> dprec) + +def atan_taylor(x, prec): + n = (x >> (prec-ATAN_TAYLOR_SHIFT)) + a, atan_a = atan_taylor_get_cached(n, prec) + d = x - a + s0 = v = (d << prec) // ((a**2 >> prec) + (a*d >> prec) + (MPZ_ONE << prec)) + v2 = (v**2 >> prec) + v4 = (v2 * v2) >> prec + s1 = v//3 + v = (v * v4) >> prec + k = 5 + while v: + s0 += v // k + k += 2 + s1 += v // k + v = (v * v4) >> prec + k += 2 + s1 = (s1 * v2) >> prec + s = s0 - s1 + return atan_a + s + +def atan_inf(sign, prec, rnd): + if not sign: + return mpf_shift(mpf_pi(prec, rnd), -1) + return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) + +def mpf_atan(x, prec, rnd=round_fast): + sign, man, exp, bc = x + if not man: + if x == fzero: return fzero + if x == finf: return atan_inf(0, prec, rnd) + if x == fninf: return atan_inf(1, prec, rnd) + return fnan + mag = exp + bc + # Essentially infinity + if mag > prec+20: + return atan_inf(sign, prec, rnd) + # Essentially ~ x + if -mag > prec+20: + return mpf_perturb(x, 1-sign, prec, rnd) + wp = prec + 30 + abs(mag) + # For large x, use atan(x) = pi/2 - atan(1/x) + if mag >= 2: + x = mpf_rdiv_int(1, x, wp) + reciprocal = True + else: + reciprocal = False + t = to_fixed(x, wp) + if sign: + t = -t + if wp < ATAN_TAYLOR_PREC: + a = atan_taylor(t, wp) + else: + a = atan_newton(t, wp) + if reciprocal: + a = ((pi_fixed(wp)>>1)+1) - a + if sign: + a = -a + return from_man_exp(a, -wp, prec, rnd) + +# TODO: cleanup the special cases +def mpf_atan2(y, x, prec, rnd=round_fast): + xsign, xman, xexp, xbc = x + ysign, yman, yexp, ybc = y + if not yman: + if y == fzero and x != fnan: + if mpf_sign(x) >= 0: + return fzero + return mpf_pi(prec, rnd) + if y in (finf, fninf): + if x in (finf, fninf): + return fnan + # pi/2 + if y == finf: + return mpf_shift(mpf_pi(prec, rnd), -1) + # -pi/2 + return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) + return fnan + if ysign: + return mpf_neg(mpf_atan2(mpf_neg(y), x, prec, negative_rnd[rnd])) + if not xman: + if x == fnan: + return fnan + if x == finf: + return fzero + if x == fninf: + return mpf_pi(prec, rnd) + if y == fzero: + return fzero + return mpf_shift(mpf_pi(prec, rnd), -1) + tquo = mpf_atan(mpf_div(y, x, prec+4), prec+4) + if xsign: + return mpf_add(mpf_pi(prec+4), tquo, prec, rnd) + else: + return mpf_pos(tquo, prec, rnd) + +def mpf_asin(x, prec, rnd=round_fast): + sign, man, exp, bc = x + if bc+exp > 0 and x not in (fone, fnone): + raise ComplexResult("asin(x) is real only for -1 <= x <= 1") + # asin(x) = 2*atan(x/(1+sqrt(1-x**2))) + wp = prec + 15 + a = mpf_mul(x, x) + b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp) + c = mpf_div(x, b, wp) + return mpf_shift(mpf_atan(c, prec, rnd), 1) + +def mpf_acos(x, prec, rnd=round_fast): + # acos(x) = 2*atan(sqrt(1-x**2)/(1+x)) + sign, man, exp, bc = x + if bc + exp > 0: + if x not in (fone, fnone): + raise ComplexResult("acos(x) is real only for -1 <= x <= 1") + if x == fnone: + return mpf_pi(prec, rnd) + wp = prec + 15 + a = mpf_mul(x, x) + b = mpf_sqrt(mpf_sub(fone, a, wp), wp) + c = mpf_div(b, mpf_add(fone, x, wp), wp) + return mpf_shift(mpf_atan(c, prec, rnd), 1) + +def mpf_asinh(x, prec, rnd=round_fast): + wp = prec + 20 + sign, man, exp, bc = x + mag = exp+bc + if mag < -8: + if mag < -wp: + return mpf_perturb(x, 1-sign, prec, rnd) + wp += (-mag) + # asinh(x) = log(x+sqrt(x**2+1)) + # use reflection symmetry to avoid cancellation + q = mpf_sqrt(mpf_add(mpf_mul(x, x), fone, wp), wp) + q = mpf_add(mpf_abs(x), q, wp) + if sign: + return mpf_neg(mpf_log(q, prec, negative_rnd[rnd])) + else: + return mpf_log(q, prec, rnd) + +def mpf_acosh(x, prec, rnd=round_fast): + # acosh(x) = log(x+sqrt(x**2-1)) + wp = prec + 15 + if mpf_cmp(x, fone) == -1: + raise ComplexResult("acosh(x) is real only for x >= 1") + q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp) + return mpf_log(mpf_add(x, q, wp), prec, rnd) + +def mpf_atanh(x, prec, rnd=round_fast): + # atanh(x) = log((1+x)/(1-x))/2 + sign, man, exp, bc = x + if (not man) and exp: + if x in (fzero, fnan): + return x + raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") + mag = bc + exp + if mag > 0: + if mag == 1 and man == 1: + return [finf, fninf][sign] + raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") + wp = prec + 15 + if mag < -8: + if mag < -wp: + return mpf_perturb(x, sign, prec, rnd) + wp += (-mag) + a = mpf_add(x, fone, wp) + b = mpf_sub(fone, x, wp) + return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1) + +def mpf_fibonacci(x, prec, rnd=round_fast): + sign, man, exp, bc = x + if not man: + if x == fninf: + return fnan + return x + # F(2^n) ~= 2^(2^n) + size = abs(exp+bc) + if exp >= 0: + # Exact + if size < 10 or size <= bitcount(prec): + return from_int(ifib(to_int(x)), prec, rnd) + # Use the modified Binet formula + wp = prec + size + 20 + a = mpf_phi(wp) + b = mpf_add(mpf_shift(a, 1), fnone, wp) + u = mpf_pow(a, x, wp) + v = mpf_cos_pi(x, wp) + v = mpf_div(v, u, wp) + u = mpf_sub(u, v, wp) + u = mpf_div(u, b, prec, rnd) + return u + + +#------------------------------------------------------------------------------- +# Exponential-type functions +#------------------------------------------------------------------------------- + +def exponential_series(x, prec, type=0): + """ + Taylor series for cosh/sinh or cos/sin. + + type = 0 -- returns exp(x) (slightly faster than cosh+sinh) + type = 1 -- returns (cosh(x), sinh(x)) + type = 2 -- returns (cos(x), sin(x)) + """ + if x < 0: + x = -x + sign = 1 + else: + sign = 0 + r = int(0.5*prec**0.5) + xmag = bitcount(x) - prec + r = max(0, xmag + r) + extra = 10 + 2*max(r,-xmag) + wp = prec + extra + x <<= (extra - r) + one = MPZ_ONE << wp + alt = (type == 2) + if prec < EXP_SERIES_U_CUTOFF: + x2 = a = (x*x) >> wp + x4 = (x2*x2) >> wp + s0 = s1 = MPZ_ZERO + k = 2 + while a: + a //= (k-1)*k; s0 += a; k += 2 + a //= (k-1)*k; s1 += a; k += 2 + a = (a*x4) >> wp + s1 = (x2*s1) >> wp + if alt: + c = s1 - s0 + one + else: + c = s1 + s0 + one + else: + u = int(0.3*prec**0.35) + x2 = a = (x*x) >> wp + xpowers = [one, x2] + for i in xrange(1, u): + xpowers.append((xpowers[-1]*x2)>>wp) + sums = [MPZ_ZERO] * u + k = 2 + while a: + for i in xrange(u): + a //= (k-1)*k + if alt and k & 2: sums[i] -= a + else: sums[i] += a + k += 2 + a = (a*xpowers[-1]) >> wp + for i in xrange(1, u): + sums[i] = (sums[i]*xpowers[i]) >> wp + c = sum(sums) + one + if type == 0: + s = isqrt_fast(c*c - (one<> wp + return v >> extra + else: + # Repeatedly apply the double-angle formula + # cosh(2*x) = 2*cosh(x)^2 - 1 + # cos(2*x) = 2*cos(x)^2 - 1 + pshift = wp-1 + for i in xrange(r): + c = ((c*c) >> pshift) - one + # With the abs, this is the same for sinh and sin + s = isqrt_fast(abs((one<>extra), (s>>extra) + +def exp_basecase(x, prec): + """ + Compute exp(x) as a fixed-point number. Works for any x, + but for speed should have |x| < 1. For an arbitrary number, + use exp(x) = exp(x-m*log(2)) * 2^m where m = floor(x/log(2)). + """ + if prec > EXP_COSH_CUTOFF: + return exponential_series(x, prec, 0) + r = int(prec**0.5) + prec += r + s0 = s1 = (MPZ_ONE << prec) + k = 2 + a = x2 = (x*x) >> prec + while a: + a //= k; s0 += a; k += 1 + a //= k; s1 += a; k += 1 + a = (a*x2) >> prec + s1 = (s1*x) >> prec + s = s0 + s1 + u = r + while r: + s = (s*s) >> prec + r -= 1 + return s >> u + +def exp_expneg_basecase(x, prec): + """ + Computation of exp(x), exp(-x) + """ + if prec > EXP_COSH_CUTOFF: + cosh, sinh = exponential_series(x, prec, 1) + return cosh+sinh, cosh-sinh + a = exp_basecase(x, prec) + b = (MPZ_ONE << (prec+prec)) // a + return a, b + +def cos_sin_basecase(x, prec): + """ + Compute cos(x), sin(x) as fixed-point numbers, assuming x + in [0, pi/2). For an arbitrary number, use x' = x - m*(pi/2) + where m = floor(x/(pi/2)) along with quarter-period symmetries. + """ + if prec > COS_SIN_CACHE_PREC: + return exponential_series(x, prec, 2) + precs = prec - COS_SIN_CACHE_STEP + t = x >> precs + n = int(t) + if n not in cos_sin_cache: + w = t<<(10+COS_SIN_CACHE_PREC-COS_SIN_CACHE_STEP) + cos_t, sin_t = exponential_series(w, 10+COS_SIN_CACHE_PREC, 2) + cos_sin_cache[n] = (cos_t>>10), (sin_t>>10) + cos_t, sin_t = cos_sin_cache[n] + offset = COS_SIN_CACHE_PREC - prec + cos_t >>= offset + sin_t >>= offset + x -= t << precs + cos = MPZ_ONE << prec + sin = x + k = 2 + a = -((x*x) >> prec) + while a: + a //= k; cos += a; k += 1; a = (a*x) >> prec + a //= k; sin += a; k += 1; a = -((a*x) >> prec) + return ((cos*cos_t-sin*sin_t) >> prec), ((sin*cos_t+cos*sin_t) >> prec) + +def mpf_exp(x, prec, rnd=round_fast): + sign, man, exp, bc = x + if man: + mag = bc + exp + wp = prec + 14 + if sign: + man = -man + # TODO: the best cutoff depends on both x and the precision. + if prec > 600 and exp >= 0: + # Need about log2(exp(n)) ~= 1.45*mag extra precision + e = mpf_e(wp+int(1.45*mag)) + return mpf_pow_int(e, man<= 2 + if mag > 1: + # For large arguments: exp(2^mag*(1+eps)) = + # exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...) + # so about mag extra bits is required. + wpmod = wp + mag + offset = exp + wpmod + if offset >= 0: + t = man << offset + else: + t = man >> (-offset) + lg2 = ln2_fixed(wpmod) + n, t = divmod(t, lg2) + n = int(n) + t >>= mag + else: + offset = exp + wp + if offset >= 0: + t = man << offset + else: + t = man >> (-offset) + n = 0 + man = exp_basecase(t, wp) + return from_man_exp(man, n-wp, prec, rnd) + if not exp: + return fone + if x == fninf: + return fzero + return x + + +def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0): + """Simultaneously compute (cosh(x), sinh(x)) for real x""" + sign, man, exp, bc = x + if (not man) and exp: + if tanh: + if x == finf: return fone + if x == fninf: return fnone + return fnan + if x == finf: return (finf, finf) + if x == fninf: return (finf, fninf) + return fnan, fnan + mag = exp+bc + wp = prec+14 + if mag < -4: + # Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1 + if mag < -wp: + if tanh: + return mpf_perturb(x, 1-sign, prec, rnd) + cosh = mpf_perturb(fone, 0, prec, rnd) + sinh = mpf_perturb(x, sign, prec, rnd) + return cosh, sinh + # Fix for cancellation when computing sinh + wp += (-mag) + # Does exp(-2*x) vanish? + if mag > 10: + if 3*(1<<(mag-1)) > wp: + # XXX: rounding + if tanh: + return mpf_perturb([fone,fnone][sign], 1-sign, prec, rnd) + c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1) + if sign: + s = mpf_neg(s) + return c, s + # |x| > 1 + if mag > 1: + wpmod = wp + mag + offset = exp + wpmod + if offset >= 0: + t = man << offset + else: + t = man >> (-offset) + lg2 = ln2_fixed(wpmod) + n, t = divmod(t, lg2) + n = int(n) + t >>= mag + else: + offset = exp + wp + if offset >= 0: + t = man << offset + else: + t = man >> (-offset) + n = 0 + a, b = exp_expneg_basecase(t, wp) + # TODO: optimize division precision + cosh = a + (b>>(2*n)) + sinh = a - (b>>(2*n)) + if sign: + sinh = -sinh + if tanh: + man = (sinh << wp) // cosh + return from_man_exp(man, -wp, prec, rnd) + else: + cosh = from_man_exp(cosh, n-wp-1, prec, rnd) + sinh = from_man_exp(sinh, n-wp-1, prec, rnd) + return cosh, sinh + + +def mod_pi2(man, exp, mag, wp): + # Reduce to standard interval + if mag > 0: + i = 0 + while 1: + cancellation_prec = 20 << i + wpmod = wp + mag + cancellation_prec + pi2 = pi_fixed(wpmod-1) + pi4 = pi2 >> 1 + offset = wpmod + exp + if offset >= 0: + t = man << offset + else: + t = man >> (-offset) + n, y = divmod(t, pi2) + if y > pi4: + small = pi2 - y + else: + small = y + if small >> (wp+mag-10): + n = int(n) + t = y >> mag + wp = wpmod - mag + break + i += 1 + else: + wp += (-mag) + offset = exp + wp + if offset >= 0: + t = man << offset + else: + t = man >> (-offset) + n = 0 + return t, n, wp + + +def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False): + """ + which: + 0 -- return cos(x), sin(x) + 1 -- return cos(x) + 2 -- return sin(x) + 3 -- return tan(x) + + if pi=True, compute for pi*x + """ + sign, man, exp, bc = x + if not man: + if exp: + c, s = fnan, fnan + else: + c, s = fone, fzero + if which == 0: return c, s + if which == 1: return c + if which == 2: return s + if which == 3: return s + + mag = bc + exp + wp = prec + 10 + + # Extremely small? + if mag < 0: + if mag < -wp: + if pi: + x = mpf_mul(x, mpf_pi(wp)) + c = mpf_perturb(fone, 1, prec, rnd) + s = mpf_perturb(x, 1-sign, prec, rnd) + if which == 0: return c, s + if which == 1: return c + if which == 2: return s + if which == 3: return mpf_perturb(x, sign, prec, rnd) + if pi: + if exp >= -1: + if exp == -1: + c = fzero + s = (fone, fnone)[bool(man & 2) ^ sign] + elif exp == 0: + c, s = (fnone, fzero) + else: + c, s = (fone, fzero) + if which == 0: return c, s + if which == 1: return c + if which == 2: return s + if which == 3: return mpf_div(s, c, prec, rnd) + # Subtract nearest half-integer (= mod by pi/2) + n = ((man >> (-exp-2)) + 1) >> 1 + man = man - (n << (-exp-1)) + mag2 = bitcount(man) + exp + wp = prec + 10 - mag2 + offset = exp + wp + if offset >= 0: + t = man << offset + else: + t = man >> (-offset) + t = (t*pi_fixed(wp)) >> wp + else: + t, n, wp = mod_pi2(man, exp, mag, wp) + c, s = cos_sin_basecase(t, wp) + m = n & 3 + if m == 1: c, s = -s, c + elif m == 2: c, s = -c, -s + elif m == 3: c, s = s, -c + if sign: + s = -s + if which == 0: + c = from_man_exp(c, -wp, prec, rnd) + s = from_man_exp(s, -wp, prec, rnd) + return c, s + if which == 1: + return from_man_exp(c, -wp, prec, rnd) + if which == 2: + return from_man_exp(s, -wp, prec, rnd) + if which == 3: + return from_rational(s, c, prec, rnd) + +def mpf_cos(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1) +def mpf_sin(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2) +def mpf_tan(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 3) +def mpf_cos_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 0, 1) +def mpf_cos_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1, 1) +def mpf_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2, 1) +def mpf_cosh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[0] +def mpf_sinh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[1] +def mpf_tanh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd, tanh=1) + + +# Low-overhead fixed-point versions + +def cos_sin_fixed(x, prec, pi2=None): + if pi2 is None: + pi2 = pi_fixed(prec-1) + n, t = divmod(x, pi2) + n = int(n) + c, s = cos_sin_basecase(t, prec) + m = n & 3 + if m == 0: return c, s + if m == 1: return -s, c + if m == 2: return -c, -s + if m == 3: return s, -c + +def exp_fixed(x, prec, ln2=None): + if ln2 is None: + ln2 = ln2_fixed(prec) + n, t = divmod(x, ln2) + n = int(n) + v = exp_basecase(t, prec) + if n >= 0: + return v << n + else: + return v >> (-n) + + +if BACKEND == 'sage': + try: + import sage.libs.mpmath.ext_libmp as _lbmp + mpf_sqrt = _lbmp.mpf_sqrt + mpf_exp = _lbmp.mpf_exp + mpf_log = _lbmp.mpf_log + mpf_cos = _lbmp.mpf_cos + mpf_sin = _lbmp.mpf_sin + mpf_pow = _lbmp.mpf_pow + exp_fixed = _lbmp.exp_fixed + cos_sin_fixed = _lbmp.cos_sin_fixed + log_int_fixed = _lbmp.log_int_fixed + except (ImportError, AttributeError): + print("Warning: Sage imports in libelefun failed") diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libhyper.py b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libhyper.py new file mode 100644 index 0000000000000000000000000000000000000000..04f52d59710be77819066aea5c1cf4b0883f72d7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libhyper.py @@ -0,0 +1,1150 @@ +""" +This module implements computation of hypergeometric and related +functions. In particular, it provides code for generic summation +of hypergeometric series. Optimized versions for various special +cases are also provided. +""" + +import operator +import math + +from .backend import MPZ_ZERO, MPZ_ONE, BACKEND, xrange, exec_ + +from .libintmath import gcd + +from .libmpf import (\ + ComplexResult, round_fast, round_nearest, + negative_rnd, bitcount, to_fixed, from_man_exp, from_int, to_int, + from_rational, + fzero, fone, fnone, ftwo, finf, fninf, fnan, + mpf_sign, mpf_add, mpf_abs, mpf_pos, + mpf_cmp, mpf_lt, mpf_le, mpf_gt, mpf_min_max, + mpf_perturb, mpf_neg, mpf_shift, mpf_sub, mpf_mul, mpf_div, + sqrt_fixed, mpf_sqrt, mpf_rdiv_int, mpf_pow_int, + to_rational, +) + +from .libelefun import (\ + mpf_pi, mpf_exp, mpf_log, pi_fixed, mpf_cos_sin, mpf_cos, mpf_sin, + mpf_sqrt, agm_fixed, +) + +from .libmpc import (\ + mpc_one, mpc_sub, mpc_mul_mpf, mpc_mul, mpc_neg, complex_int_pow, + mpc_div, mpc_add_mpf, mpc_sub_mpf, + mpc_log, mpc_add, mpc_pos, mpc_shift, + mpc_is_infnan, mpc_zero, mpc_sqrt, mpc_abs, + mpc_mpf_div, mpc_square, mpc_exp +) + +from .libintmath import ifac +from .gammazeta import mpf_gamma_int, mpf_euler, euler_fixed + +class NoConvergence(Exception): + pass + + +#-----------------------------------------------------------------------# +# # +# Generic hypergeometric series # +# # +#-----------------------------------------------------------------------# + +""" +TODO: + +1. proper mpq parsing +2. imaginary z special-cased (also: rational, integer?) +3. more clever handling of series that don't converge because of stupid + upwards rounding +4. checking for cancellation + +""" + +def make_hyp_summator(key): + """ + Returns a function that sums a generalized hypergeometric series, + for given parameter types (integer, rational, real, complex). + + """ + p, q, param_types, ztype = key + + pstring = "".join(param_types) + fname = "hypsum_%i_%i_%s_%s_%s" % (p, q, pstring[:p], pstring[p:], ztype) + #print "generating hypsum", fname + + have_complex_param = 'C' in param_types + have_complex_arg = ztype == 'C' + have_complex = have_complex_param or have_complex_arg + + source = [] + add = source.append + + aint = [] + arat = [] + bint = [] + brat = [] + areal = [] + breal = [] + acomplex = [] + bcomplex = [] + + #add("wp = prec + 40") + add("MAX = kwargs.get('maxterms', wp*100)") + add("HIGH = MPZ_ONE<= 0:") + add(" ZRE = xm << offset") + add("else:") + add(" ZRE = xm >> (-offset)") + if have_complex_arg: + add("offset = ye + wp") + add("if offset >= 0:") + add(" ZIM = ym << offset") + add("else:") + add(" ZIM = ym >> (-offset)") + + for i, flag in enumerate(param_types): + W = ["A", "B"][i >= p] + if flag == 'Z': + ([aint,bint][i >= p]).append(i) + add("%sINT_%i = coeffs[%i]" % (W, i, i)) + elif flag == 'Q': + ([arat,brat][i >= p]).append(i) + add("%sP_%i, %sQ_%i = coeffs[%i]._mpq_" % (W, i, W, i, i)) + elif flag == 'R': + ([areal,breal][i >= p]).append(i) + add("xsign, xm, xe, xbc = coeffs[%i]._mpf_" % i) + add("if xsign: xm = -xm") + add("offset = xe + wp") + add("if offset >= 0:") + add(" %sREAL_%i = xm << offset" % (W, i)) + add("else:") + add(" %sREAL_%i = xm >> (-offset)" % (W, i)) + elif flag == 'C': + ([acomplex,bcomplex][i >= p]).append(i) + add("__re, __im = coeffs[%i]._mpc_" % i) + add("xsign, xm, xe, xbc = __re") + add("if xsign: xm = -xm") + add("ysign, ym, ye, ybc = __im") + add("if ysign: ym = -ym") + + add("offset = xe + wp") + add("if offset >= 0:") + add(" %sCRE_%i = xm << offset" % (W, i)) + add("else:") + add(" %sCRE_%i = xm >> (-offset)" % (W, i)) + add("offset = ye + wp") + add("if offset >= 0:") + add(" %sCIM_%i = ym << offset" % (W, i)) + add("else:") + add(" %sCIM_%i = ym >> (-offset)" % (W, i)) + else: + raise ValueError + + l_areal = len(areal) + l_breal = len(breal) + cancellable_real = min(l_areal, l_breal) + noncancellable_real_num = areal[cancellable_real:] + noncancellable_real_den = breal[cancellable_real:] + + # LOOP + add("for n in xrange(1,10**8):") + + add(" if n in magnitude_check:") + add(" p_mag = bitcount(abs(PRE))") + if have_complex: + add(" p_mag = max(p_mag, bitcount(abs(PIM)))") + add(" magnitude_check[n] = wp-p_mag") + + # Real factors + multiplier = " * ".join(["AINT_#".replace("#", str(i)) for i in aint] + \ + ["AP_#".replace("#", str(i)) for i in arat] + \ + ["BQ_#".replace("#", str(i)) for i in brat]) + + divisor = " * ".join(["BINT_#".replace("#", str(i)) for i in bint] + \ + ["BP_#".replace("#", str(i)) for i in brat] + \ + ["AQ_#".replace("#", str(i)) for i in arat] + ["n"]) + + if multiplier: + add(" mul = " + multiplier) + add(" div = " + divisor) + + # Check for singular terms + add(" if not div:") + if multiplier: + add(" if not mul:") + add(" break") + add(" raise ZeroDivisionError") + + # Update product + if have_complex: + + # TODO: when there are several real parameters and just a few complex + # (maybe just the complex argument), we only need to do about + # half as many ops if we accumulate the real factor in a single real variable + for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) + for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i))) + for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i))) + for k in range(cancellable_real): add(" PIM = PIM * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) + for i in noncancellable_real_num: add(" PIM = (PIM * AREAL_#) >> wp".replace("#", str(i))) + for i in noncancellable_real_den: add(" PIM = (PIM << wp) // BREAL_#".replace("#", str(i))) + + if multiplier: + if have_complex_arg: + add(" PRE, PIM = (mul*(PRE*ZRE-PIM*ZIM))//div, (mul*(PIM*ZRE+PRE*ZIM))//div") + add(" PRE >>= wp") + add(" PIM >>= wp") + else: + add(" PRE = ((mul * PRE * ZRE) >> wp) // div") + add(" PIM = ((mul * PIM * ZRE) >> wp) // div") + else: + if have_complex_arg: + add(" PRE, PIM = (PRE*ZRE-PIM*ZIM)//div, (PIM*ZRE+PRE*ZIM)//div") + add(" PRE >>= wp") + add(" PIM >>= wp") + else: + add(" PRE = ((PRE * ZRE) >> wp) // div") + add(" PIM = ((PIM * ZRE) >> wp) // div") + + for i in acomplex: + add(" PRE, PIM = PRE*ACRE_#-PIM*ACIM_#, PIM*ACRE_#+PRE*ACIM_#".replace("#", str(i))) + add(" PRE >>= wp") + add(" PIM >>= wp") + + for i in bcomplex: + add(" mag = BCRE_#*BCRE_#+BCIM_#*BCIM_#".replace("#", str(i))) + add(" re = PRE*BCRE_# + PIM*BCIM_#".replace("#", str(i))) + add(" im = PIM*BCRE_# - PRE*BCIM_#".replace("#", str(i))) + add(" PRE = (re << wp) // mag".replace("#", str(i))) + add(" PIM = (im << wp) // mag".replace("#", str(i))) + + else: + for k in range(cancellable_real): add(" PRE = PRE * AREAL_%i // BREAL_%i" % (areal[k], breal[k])) + for i in noncancellable_real_num: add(" PRE = (PRE * AREAL_#) >> wp".replace("#", str(i))) + for i in noncancellable_real_den: add(" PRE = (PRE << wp) // BREAL_#".replace("#", str(i))) + if multiplier: + add(" PRE = ((PRE * mul * ZRE) >> wp) // div") + else: + add(" PRE = ((PRE * ZRE) >> wp) // div") + + # Add product to sum + if have_complex: + add(" SRE += PRE") + add(" SIM += PIM") + add(" if (HIGH > PRE > LOW) and (HIGH > PIM > LOW):") + add(" break") + else: + add(" SRE += PRE") + add(" if HIGH > PRE > LOW:") + add(" break") + + #add(" from mpmath import nprint, log, ldexp") + #add(" nprint([n, log(abs(PRE),2), ldexp(PRE,-wp)])") + + add(" if n > MAX:") + add(" raise NoConvergence('Hypergeometric series converges too slowly. Try increasing maxterms.')") + + # +1 all parameters for next loop + for i in aint: add(" AINT_# += 1".replace("#", str(i))) + for i in bint: add(" BINT_# += 1".replace("#", str(i))) + for i in arat: add(" AP_# += AQ_#".replace("#", str(i))) + for i in brat: add(" BP_# += BQ_#".replace("#", str(i))) + for i in areal: add(" AREAL_# += one".replace("#", str(i))) + for i in breal: add(" BREAL_# += one".replace("#", str(i))) + for i in acomplex: add(" ACRE_# += one".replace("#", str(i))) + for i in bcomplex: add(" BCRE_# += one".replace("#", str(i))) + + if have_complex: + add("a = from_man_exp(SRE, -wp, prec, 'n')") + add("b = from_man_exp(SIM, -wp, prec, 'n')") + + add("if SRE:") + add(" if SIM:") + add(" magn = max(a[2]+a[3], b[2]+b[3])") + add(" else:") + add(" magn = a[2]+a[3]") + add("elif SIM:") + add(" magn = b[2]+b[3]") + add("else:") + add(" magn = -wp+1") + + add("return (a, b), True, magn") + else: + add("a = from_man_exp(SRE, -wp, prec, 'n')") + + add("if SRE:") + add(" magn = a[2]+a[3]") + add("else:") + add(" magn = -wp+1") + + add("return a, False, magn") + + source = "\n".join((" " + line) for line in source) + source = ("def %s(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs):\n" % fname) + source + + namespace = {} + + exec_(source, globals(), namespace) + + #print source + return source, namespace[fname] + + +if BACKEND == 'sage': + + def make_hyp_summator(key): + """ + Returns a function that sums a generalized hypergeometric series, + for given parameter types (integer, rational, real, complex). + """ + from sage.libs.mpmath.ext_main import hypsum_internal + p, q, param_types, ztype = key + def _hypsum(coeffs, z, prec, wp, epsshift, magnitude_check, **kwargs): + return hypsum_internal(p, q, param_types, ztype, coeffs, z, + prec, wp, epsshift, magnitude_check, kwargs) + + return "(none)", _hypsum + + +#-----------------------------------------------------------------------# +# # +# Error functions # +# # +#-----------------------------------------------------------------------# + +# TODO: mpf_erf should call mpf_erfc when appropriate (currently +# only the converse delegation is implemented) + +def mpf_erf(x, prec, rnd=round_fast): + sign, man, exp, bc = x + if not man: + if x == fzero: return fzero + if x == finf: return fone + if x== fninf: return fnone + return fnan + size = exp + bc + lg = math.log + # The approximation erf(x) = 1 is accurate to > x^2 * log(e,2) bits + if size > 3 and 2*(size-1) + 0.528766 > lg(prec,2): + if sign: + return mpf_perturb(fnone, 0, prec, rnd) + else: + return mpf_perturb(fone, 1, prec, rnd) + # erf(x) ~ 2*x/sqrt(pi) close to 0 + if size < -prec: + # 2*x + x = mpf_shift(x,1) + c = mpf_sqrt(mpf_pi(prec+20), prec+20) + # TODO: interval rounding + return mpf_div(x, c, prec, rnd) + wp = prec + abs(size) + 25 + # Taylor series for erf, fixed-point summation + t = abs(to_fixed(x, wp)) + t2 = (t*t) >> wp + s, term, k = t, 12345, 1 + while term: + t = ((t * t2) >> wp) // k + term = t // (2*k+1) + if k & 1: + s -= term + else: + s += term + k += 1 + s = (s << (wp+1)) // sqrt_fixed(pi_fixed(wp), wp) + if sign: + s = -s + return from_man_exp(s, -wp, prec, rnd) + +# If possible, we use the asymptotic series for erfc. +# This is an alternating divergent asymptotic series, so +# the error is at most equal to the first omitted term. +# Here we check if the smallest term is small enough +# for a given x and precision +def erfc_check_series(x, prec): + n = to_int(x) + if n**2 * 1.44 > prec: + return True + return False + +def mpf_erfc(x, prec, rnd=round_fast): + sign, man, exp, bc = x + if not man: + if x == fzero: return fone + if x == finf: return fzero + if x == fninf: return ftwo + return fnan + wp = prec + 20 + mag = bc+exp + # Preserve full accuracy when exponent grows huge + wp += max(0, 2*mag) + regular_erf = sign or mag < 2 + if regular_erf or not erfc_check_series(x, wp): + if regular_erf: + return mpf_sub(fone, mpf_erf(x, prec+10, negative_rnd[rnd]), prec, rnd) + # 1-erf(x) ~ exp(-x^2), increase prec to deal with cancellation + n = to_int(x)+1 + return mpf_sub(fone, mpf_erf(x, prec + int(n**2*1.44) + 10), prec, rnd) + s = term = MPZ_ONE << wp + term_prev = 0 + t = (2 * to_fixed(x, wp) ** 2) >> wp + k = 1 + while 1: + term = ((term * (2*k - 1)) << wp) // t + if k > 4 and term > term_prev or not term: + break + if k & 1: + s -= term + else: + s += term + term_prev = term + #print k, to_str(from_man_exp(term, -wp, 50), 10) + k += 1 + s = (s << wp) // sqrt_fixed(pi_fixed(wp), wp) + s = from_man_exp(s, -wp, wp) + z = mpf_exp(mpf_neg(mpf_mul(x,x,wp),wp),wp) + y = mpf_div(mpf_mul(z, s, wp), x, prec, rnd) + return y + + +#-----------------------------------------------------------------------# +# # +# Exponential integrals # +# # +#-----------------------------------------------------------------------# + +def ei_taylor(x, prec): + s = t = x + k = 2 + while t: + t = ((t*x) >> prec) // k + s += t // k + k += 1 + return s + +def complex_ei_taylor(zre, zim, prec): + _abs = abs + sre = tre = zre + sim = tim = zim + k = 2 + while _abs(tre) + _abs(tim) > 5: + tre, tim = ((tre*zre-tim*zim)//k)>>prec, ((tre*zim+tim*zre)//k)>>prec + sre += tre // k + sim += tim // k + k += 1 + return sre, sim + +def ei_asymptotic(x, prec): + one = MPZ_ONE << prec + x = t = ((one << prec) // x) + s = one + x + k = 2 + while t: + t = (k*t*x) >> prec + s += t + k += 1 + return s + +def complex_ei_asymptotic(zre, zim, prec): + _abs = abs + one = MPZ_ONE << prec + M = (zim*zim + zre*zre) >> prec + # 1 / z + xre = tre = (zre << prec) // M + xim = tim = ((-zim) << prec) // M + sre = one + xre + sim = xim + k = 2 + while _abs(tre) + _abs(tim) > 1000: + #print tre, tim + tre, tim = ((tre*xre-tim*xim)*k)>>prec, ((tre*xim+tim*xre)*k)>>prec + sre += tre + sim += tim + k += 1 + if k > prec: + raise NoConvergence + return sre, sim + +def mpf_ei(x, prec, rnd=round_fast, e1=False): + if e1: + x = mpf_neg(x) + sign, man, exp, bc = x + if e1 and not sign: + if x == fzero: + return finf + raise ComplexResult("E1(x) for x < 0") + if man: + xabs = 0, man, exp, bc + xmag = exp+bc + wp = prec + 20 + can_use_asymp = xmag > wp + if not can_use_asymp: + if exp >= 0: + xabsint = man << exp + else: + xabsint = man >> (-exp) + can_use_asymp = xabsint > int(wp*0.693) + 10 + if can_use_asymp: + if xmag > wp: + v = fone + else: + v = from_man_exp(ei_asymptotic(to_fixed(x, wp), wp), -wp) + v = mpf_mul(v, mpf_exp(x, wp), wp) + v = mpf_div(v, x, prec, rnd) + else: + wp += 2*int(to_int(xabs)) + u = to_fixed(x, wp) + v = ei_taylor(u, wp) + euler_fixed(wp) + t1 = from_man_exp(v,-wp) + t2 = mpf_log(xabs,wp) + v = mpf_add(t1, t2, prec, rnd) + else: + if x == fzero: v = fninf + elif x == finf: v = finf + elif x == fninf: v = fzero + else: v = fnan + if e1: + v = mpf_neg(v) + return v + +def mpc_ei(z, prec, rnd=round_fast, e1=False): + if e1: + z = mpc_neg(z) + a, b = z + asign, aman, aexp, abc = a + bsign, bman, bexp, bbc = b + if b == fzero: + if e1: + x = mpf_neg(mpf_ei(a, prec, rnd)) + if not asign: + y = mpf_neg(mpf_pi(prec, rnd)) + else: + y = fzero + return x, y + else: + return mpf_ei(a, prec, rnd), fzero + if a != fzero: + if not aman or not bman: + return (fnan, fnan) + wp = prec + 40 + amag = aexp+abc + bmag = bexp+bbc + zmag = max(amag, bmag) + can_use_asymp = zmag > wp + if not can_use_asymp: + zabsint = abs(to_int(a)) + abs(to_int(b)) + can_use_asymp = zabsint > int(wp*0.693) + 20 + try: + if can_use_asymp: + if zmag > wp: + v = fone, fzero + else: + zre = to_fixed(a, wp) + zim = to_fixed(b, wp) + vre, vim = complex_ei_asymptotic(zre, zim, wp) + v = from_man_exp(vre, -wp), from_man_exp(vim, -wp) + v = mpc_mul(v, mpc_exp(z, wp), wp) + v = mpc_div(v, z, wp) + if e1: + v = mpc_neg(v, prec, rnd) + else: + x, y = v + if bsign: + v = mpf_pos(x, prec, rnd), mpf_sub(y, mpf_pi(wp), prec, rnd) + else: + v = mpf_pos(x, prec, rnd), mpf_add(y, mpf_pi(wp), prec, rnd) + return v + except NoConvergence: + pass + #wp += 2*max(0,zmag) + wp += 2*int(to_int(mpc_abs(z, 5))) + zre = to_fixed(a, wp) + zim = to_fixed(b, wp) + vre, vim = complex_ei_taylor(zre, zim, wp) + vre += euler_fixed(wp) + v = from_man_exp(vre,-wp), from_man_exp(vim,-wp) + if e1: + u = mpc_log(mpc_neg(z),wp) + else: + u = mpc_log(z,wp) + v = mpc_add(v, u, prec, rnd) + if e1: + v = mpc_neg(v) + return v + +def mpf_e1(x, prec, rnd=round_fast): + return mpf_ei(x, prec, rnd, True) + +def mpc_e1(x, prec, rnd=round_fast): + return mpc_ei(x, prec, rnd, True) + +def mpf_expint(n, x, prec, rnd=round_fast, gamma=False): + """ + E_n(x), n an integer, x real + + With gamma=True, computes Gamma(n,x) (upper incomplete gamma function) + + Returns (real, None) if real, otherwise (real, imag) + The imaginary part is an optional branch cut term + + """ + sign, man, exp, bc = x + if not man: + if gamma: + if x == fzero: + # Actually gamma function pole + if n <= 0: + return finf, None + return mpf_gamma_int(n, prec, rnd), None + if x == finf: + return fzero, None + # TODO: could return finite imaginary value at -inf + return fnan, fnan + else: + if x == fzero: + if n > 1: + return from_rational(1, n-1, prec, rnd), None + else: + return finf, None + if x == finf: + return fzero, None + return fnan, fnan + n_orig = n + if gamma: + n = 1-n + wp = prec + 20 + xmag = exp + bc + # Beware of near-poles + if xmag < -10: + raise NotImplementedError + nmag = bitcount(abs(n)) + have_imag = n > 0 and sign + negx = mpf_neg(x) + # Skip series if direct convergence + if n == 0 or 2*nmag - xmag < -wp: + if gamma: + v = mpf_exp(negx, wp) + re = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), prec, rnd) + else: + v = mpf_exp(negx, wp) + re = mpf_div(v, x, prec, rnd) + else: + # Finite number of terms, or... + can_use_asymptotic_series = -3*wp < n <= 0 + # ...large enough? + if not can_use_asymptotic_series: + xi = abs(to_int(x)) + m = min(max(1, xi-n), 2*wp) + siz = -n*nmag + (m+n)*bitcount(abs(m+n)) - m*xmag - (144*m//100) + tol = -wp-10 + can_use_asymptotic_series = siz < tol + if can_use_asymptotic_series: + r = ((-MPZ_ONE) << (wp+wp)) // to_fixed(x, wp) + m = n + t = r*m + s = MPZ_ONE << wp + while m and t: + s += t + m += 1 + t = (m*r*t) >> wp + v = mpf_exp(negx, wp) + if gamma: + # ~ exp(-x) * x^(n-1) * (1 + ...) + v = mpf_mul(v, mpf_pow_int(x, n_orig-1, wp), wp) + else: + # ~ exp(-x)/x * (1 + ...) + v = mpf_div(v, x, wp) + re = mpf_mul(v, from_man_exp(s, -wp), prec, rnd) + elif n == 1: + re = mpf_neg(mpf_ei(negx, prec, rnd)) + elif n > 0 and n < 3*wp: + T1 = mpf_neg(mpf_ei(negx, wp)) + if gamma: + if n_orig & 1: + T1 = mpf_neg(T1) + else: + T1 = mpf_mul(T1, mpf_pow_int(negx, n-1, wp), wp) + r = t = to_fixed(x, wp) + facs = [1] * (n-1) + for k in range(1,n-1): + facs[k] = facs[k-1] * k + facs = facs[::-1] + s = facs[0] << wp + for k in range(1, n-1): + if k & 1: + s -= facs[k] * t + else: + s += facs[k] * t + t = (t*r) >> wp + T2 = from_man_exp(s, -wp, wp) + T2 = mpf_mul(T2, mpf_exp(negx, wp)) + if gamma: + T2 = mpf_mul(T2, mpf_pow_int(x, n_orig, wp), wp) + R = mpf_add(T1, T2) + re = mpf_div(R, from_int(ifac(n-1)), prec, rnd) + else: + raise NotImplementedError + if have_imag: + M = from_int(-ifac(n-1)) + if gamma: + im = mpf_div(mpf_pi(wp), M, prec, rnd) + if n_orig & 1: + im = mpf_neg(im) + else: + im = mpf_div(mpf_mul(mpf_pi(wp), mpf_pow_int(negx, n_orig-1, wp), wp), M, prec, rnd) + return re, im + else: + return re, None + +def mpf_ci_si_taylor(x, wp, which=0): + """ + 0 - Ci(x) - (euler+log(x)) + 1 - Si(x) + """ + x = to_fixed(x, wp) + x2 = -(x*x) >> wp + if which == 0: + s, t, k = 0, (MPZ_ONE<>wp + s += t//k + k += 2 + return from_man_exp(s, -wp) + +def mpc_ci_si_taylor(re, im, wp, which=0): + # The following code is only designed for small arguments, + # and not too small arguments (for relative accuracy) + if re[1]: + mag = re[2]+re[3] + elif im[1]: + mag = im[2]+im[3] + if im[1]: + mag = max(mag, im[2]+im[3]) + if mag > 2 or mag < -wp: + raise NotImplementedError + wp += (2-mag) + zre = to_fixed(re, wp) + zim = to_fixed(im, wp) + z2re = (zim*zim-zre*zre)>>wp + z2im = (-2*zre*zim)>>wp + tre = zre + tim = zim + one = MPZ_ONE< 2: + f = k*(k-1) + tre, tim = ((tre*z2re-tim*z2im)//f)>>wp, ((tre*z2im+tim*z2re)//f)>>wp + sre += tre//k + sim += tim//k + k += 2 + return from_man_exp(sre, -wp), from_man_exp(sim, -wp) + +def mpf_ci_si(x, prec, rnd=round_fast, which=2): + """ + Calculation of Ci(x), Si(x) for real x. + + which = 0 -- returns (Ci(x), -) + which = 1 -- returns (Si(x), -) + which = 2 -- returns (Ci(x), Si(x)) + + Note: if x < 0, Ci(x) needs an additional imaginary term, pi*i. + """ + wp = prec + 20 + sign, man, exp, bc = x + ci, si = None, None + if not man: + if x == fzero: + return (fninf, fzero) + if x == fnan: + return (x, x) + ci = fzero + if which != 0: + if x == finf: + si = mpf_shift(mpf_pi(prec, rnd), -1) + if x == fninf: + si = mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) + return (ci, si) + # For small x: Ci(x) ~ euler + log(x), Si(x) ~ x + mag = exp+bc + if mag < -wp: + if which != 0: + si = mpf_perturb(x, 1-sign, prec, rnd) + if which != 1: + y = mpf_euler(wp) + xabs = mpf_abs(x) + ci = mpf_add(y, mpf_log(xabs, wp), prec, rnd) + return ci, si + # For huge x: Ci(x) ~ sin(x)/x, Si(x) ~ pi/2 + elif mag > wp: + if which != 0: + if sign: + si = mpf_neg(mpf_pi(prec, negative_rnd[rnd])) + else: + si = mpf_pi(prec, rnd) + si = mpf_shift(si, -1) + if which != 1: + ci = mpf_div(mpf_sin(x, wp), x, prec, rnd) + return ci, si + else: + wp += abs(mag) + # Use an asymptotic series? The smallest value of n!/x^n + # occurs for n ~ x, where the magnitude is ~ exp(-x). + asymptotic = mag-1 > math.log(wp, 2) + # Case 1: convergent series near 0 + if not asymptotic: + if which != 0: + si = mpf_pos(mpf_ci_si_taylor(x, wp, 1), prec, rnd) + if which != 1: + ci = mpf_ci_si_taylor(x, wp, 0) + ci = mpf_add(ci, mpf_euler(wp), wp) + ci = mpf_add(ci, mpf_log(mpf_abs(x), wp), prec, rnd) + return ci, si + x = mpf_abs(x) + # Case 2: asymptotic series for x >> 1 + xf = to_fixed(x, wp) + xr = (MPZ_ONE<<(2*wp)) // xf # 1/x + s1 = (MPZ_ONE << wp) + s2 = xr + t = xr + k = 2 + while t: + t = -t + t = (t*xr*k)>>wp + k += 1 + s1 += t + t = (t*xr*k)>>wp + k += 1 + s2 += t + s1 = from_man_exp(s1, -wp) + s2 = from_man_exp(s2, -wp) + s1 = mpf_div(s1, x, wp) + s2 = mpf_div(s2, x, wp) + cos, sin = mpf_cos_sin(x, wp) + # Ci(x) = sin(x)*s1-cos(x)*s2 + # Si(x) = pi/2-cos(x)*s1-sin(x)*s2 + if which != 0: + si = mpf_add(mpf_mul(cos, s1), mpf_mul(sin, s2), wp) + si = mpf_sub(mpf_shift(mpf_pi(wp), -1), si, wp) + if sign: + si = mpf_neg(si) + si = mpf_pos(si, prec, rnd) + if which != 1: + ci = mpf_sub(mpf_mul(sin, s1), mpf_mul(cos, s2), prec, rnd) + return ci, si + +def mpf_ci(x, prec, rnd=round_fast): + if mpf_sign(x) < 0: + raise ComplexResult + return mpf_ci_si(x, prec, rnd, 0)[0] + +def mpf_si(x, prec, rnd=round_fast): + return mpf_ci_si(x, prec, rnd, 1)[1] + +def mpc_ci(z, prec, rnd=round_fast): + re, im = z + if im == fzero: + ci = mpf_ci_si(re, prec, rnd, 0)[0] + if mpf_sign(re) < 0: + return (ci, mpf_pi(prec, rnd)) + return (ci, fzero) + wp = prec + 20 + cre, cim = mpc_ci_si_taylor(re, im, wp, 0) + cre = mpf_add(cre, mpf_euler(wp), wp) + ci = mpc_add((cre, cim), mpc_log(z, wp), prec, rnd) + return ci + +def mpc_si(z, prec, rnd=round_fast): + re, im = z + if im == fzero: + return (mpf_ci_si(re, prec, rnd, 1)[1], fzero) + wp = prec + 20 + z = mpc_ci_si_taylor(re, im, wp, 1) + return mpc_pos(z, prec, rnd) + + +#-----------------------------------------------------------------------# +# # +# Bessel functions # +# # +#-----------------------------------------------------------------------# + +# A Bessel function of the first kind of integer order, J_n(x), is +# given by the power series + +# oo +# ___ k 2 k + n +# \ (-1) / x \ +# J_n(x) = ) ----------- | - | +# /___ k! (k + n)! \ 2 / +# k = 0 + +# Simplifying the quotient between two successive terms gives the +# ratio x^2 / (-4*k*(k+n)). Hence, we only need one full-precision +# multiplication and one division by a small integer per term. +# The complex version is very similar, the only difference being +# that the multiplication is actually 4 multiplies. + +# In the general case, we have +# J_v(x) = (x/2)**v / v! * 0F1(v+1, (-1/4)*z**2) + +# TODO: for extremely large x, we could use an asymptotic +# trigonometric approximation. + +# TODO: recompute at higher precision if the fixed-point mantissa +# is very small + +def mpf_besseljn(n, x, prec, rounding=round_fast): + prec += 50 + negate = n < 0 and n & 1 + mag = x[2]+x[3] + n = abs(n) + wp = prec + 20 + n*bitcount(n) + if mag < 0: + wp -= n * mag + x = to_fixed(x, wp) + x2 = (x**2) >> wp + if not n: + s = t = MPZ_ONE << wp + else: + s = t = (x**n // ifac(n)) >> ((n-1)*wp + n) + k = 1 + while t: + t = ((t * x2) // (-4*k*(k+n))) >> wp + s += t + k += 1 + if negate: + s = -s + return from_man_exp(s, -wp, prec, rounding) + +def mpc_besseljn(n, z, prec, rounding=round_fast): + negate = n < 0 and n & 1 + n = abs(n) + origprec = prec + zre, zim = z + mag = max(zre[2]+zre[3], zim[2]+zim[3]) + prec += 20 + n*bitcount(n) + abs(mag) + if mag < 0: + prec -= n * mag + zre = to_fixed(zre, prec) + zim = to_fixed(zim, prec) + z2re = (zre**2 - zim**2) >> prec + z2im = (zre*zim) >> (prec-1) + if not n: + sre = tre = MPZ_ONE << prec + sim = tim = MPZ_ZERO + else: + re, im = complex_int_pow(zre, zim, n) + sre = tre = (re // ifac(n)) >> ((n-1)*prec + n) + sim = tim = (im // ifac(n)) >> ((n-1)*prec + n) + k = 1 + while abs(tre) + abs(tim) > 3: + p = -4*k*(k+n) + tre, tim = tre*z2re - tim*z2im, tim*z2re + tre*z2im + tre = (tre // p) >> prec + tim = (tim // p) >> prec + sre += tre + sim += tim + k += 1 + if negate: + sre = -sre + sim = -sim + re = from_man_exp(sre, -prec, origprec, rounding) + im = from_man_exp(sim, -prec, origprec, rounding) + return (re, im) + +def mpf_agm(a, b, prec, rnd=round_fast): + """ + Computes the arithmetic-geometric mean agm(a,b) for + nonnegative mpf values a, b. + """ + asign, aman, aexp, abc = a + bsign, bman, bexp, bbc = b + if asign or bsign: + raise ComplexResult("agm of a negative number") + # Handle inf, nan or zero in either operand + if not (aman and bman): + if a == fnan or b == fnan: + return fnan + if a == finf: + if b == fzero: + return fnan + return finf + if b == finf: + if a == fzero: + return fnan + return finf + # agm(0,x) = agm(x,0) = 0 + return fzero + wp = prec + 20 + amag = aexp+abc + bmag = bexp+bbc + mag_delta = amag - bmag + # Reduce to roughly the same magnitude using floating-point AGM + abs_mag_delta = abs(mag_delta) + if abs_mag_delta > 10: + while abs_mag_delta > 10: + a, b = mpf_shift(mpf_add(a,b,wp),-1), \ + mpf_sqrt(mpf_mul(a,b,wp),wp) + abs_mag_delta //= 2 + asign, aman, aexp, abc = a + bsign, bman, bexp, bbc = b + amag = aexp+abc + bmag = bexp+bbc + mag_delta = amag - bmag + #print to_float(a), to_float(b) + # Use agm(a,b) = agm(x*a,x*b)/x to obtain a, b ~= 1 + min_mag = min(amag,bmag) + max_mag = max(amag,bmag) + n = 0 + # If too small, we lose precision when going to fixed-point + if min_mag < -8: + n = -min_mag + # If too large, we waste time using fixed-point with large numbers + elif max_mag > 20: + n = -max_mag + if n: + a = mpf_shift(a, n) + b = mpf_shift(b, n) + #print to_float(a), to_float(b) + af = to_fixed(a, wp) + bf = to_fixed(b, wp) + g = agm_fixed(af, bf, wp) + return from_man_exp(g, -wp-n, prec, rnd) + +def mpf_agm1(a, prec, rnd=round_fast): + """ + Computes the arithmetic-geometric mean agm(1,a) for a nonnegative + mpf value a. + """ + return mpf_agm(fone, a, prec, rnd) + +def mpc_agm(a, b, prec, rnd=round_fast): + """ + Complex AGM. + + TODO: + * check that convergence works as intended + * optimize + * select a nonarbitrary branch + """ + if mpc_is_infnan(a) or mpc_is_infnan(b): + return fnan, fnan + if mpc_zero in (a, b): + return fzero, fzero + if mpc_neg(a) == b: + return fzero, fzero + wp = prec+20 + eps = mpf_shift(fone, -wp+10) + while 1: + a1 = mpc_shift(mpc_add(a, b, wp), -1) + b1 = mpc_sqrt(mpc_mul(a, b, wp), wp) + a, b = a1, b1 + size = mpf_min_max([mpc_abs(a,10), mpc_abs(b,10)])[1] + err = mpc_abs(mpc_sub(a, b, 10), 10) + if size == fzero or mpf_lt(err, mpf_mul(eps, size)): + return a + +def mpc_agm1(a, prec, rnd=round_fast): + return mpc_agm(mpc_one, a, prec, rnd) + +def mpf_ellipk(x, prec, rnd=round_fast): + if not x[1]: + if x == fzero: + return mpf_shift(mpf_pi(prec, rnd), -1) + if x == fninf: + return fzero + if x == fnan: + return x + if x == fone: + return finf + # TODO: for |x| << 1/2, one could use fall back to + # pi/2 * hyp2f1_rat((1,2),(1,2),(1,1), x) + wp = prec + 15 + # Use K(x) = pi/2/agm(1,a) where a = sqrt(1-x) + # The sqrt raises ComplexResult if x > 0 + a = mpf_sqrt(mpf_sub(fone, x, wp), wp) + v = mpf_agm1(a, wp) + r = mpf_div(mpf_pi(wp), v, prec, rnd) + return mpf_shift(r, -1) + +def mpc_ellipk(z, prec, rnd=round_fast): + re, im = z + if im == fzero: + if re == finf: + return mpc_zero + if mpf_le(re, fone): + return mpf_ellipk(re, prec, rnd), fzero + wp = prec + 15 + a = mpc_sqrt(mpc_sub(mpc_one, z, wp), wp) + v = mpc_agm1(a, wp) + r = mpc_mpf_div(mpf_pi(wp), v, prec, rnd) + return mpc_shift(r, -1) + +def mpf_ellipe(x, prec, rnd=round_fast): + # http://functions.wolfram.com/EllipticIntegrals/ + # EllipticK/20/01/0001/ + # E = (1-m)*(K'(m)*2*m + K(m)) + sign, man, exp, bc = x + if not man: + if x == fzero: + return mpf_shift(mpf_pi(prec, rnd), -1) + if x == fninf: + return finf + if x == fnan: + return x + if x == finf: + raise ComplexResult + if x == fone: + return fone + wp = prec+20 + mag = exp+bc + if mag < -wp: + return mpf_shift(mpf_pi(prec, rnd), -1) + # Compute a finite difference for K' + p = max(mag, 0) - wp + h = mpf_shift(fone, p) + K = mpf_ellipk(x, 2*wp) + Kh = mpf_ellipk(mpf_sub(x, h), 2*wp) + Kdiff = mpf_shift(mpf_sub(K, Kh), -p) + t = mpf_sub(fone, x) + b = mpf_mul(Kdiff, mpf_shift(x,1), wp) + return mpf_mul(t, mpf_add(K, b), prec, rnd) + +def mpc_ellipe(z, prec, rnd=round_fast): + re, im = z + if im == fzero: + if re == finf: + return (fzero, finf) + if mpf_le(re, fone): + return mpf_ellipe(re, prec, rnd), fzero + wp = prec + 15 + mag = mpc_abs(z, 1) + p = max(mag[2]+mag[3], 0) - wp + h = mpf_shift(fone, p) + K = mpc_ellipk(z, 2*wp) + Kh = mpc_ellipk(mpc_add_mpf(z, h, 2*wp), 2*wp) + Kdiff = mpc_shift(mpc_sub(Kh, K, wp), -p) + t = mpc_sub(mpc_one, z, wp) + b = mpc_mul(Kdiff, mpc_shift(z,1), wp) + return mpc_mul(t, mpc_add(K, b, wp), prec, rnd) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libintmath.py b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libintmath.py new file mode 100644 index 0000000000000000000000000000000000000000..7880546e135639208d136488408b102ad41682a2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libintmath.py @@ -0,0 +1,584 @@ +""" +Utility functions for integer math. + +TODO: rename, cleanup, perhaps move the gmpy wrapper code +here from settings.py + +""" + +import math +from bisect import bisect + +from .backend import xrange +from .backend import BACKEND, gmpy, sage, sage_utils, MPZ, MPZ_ONE, MPZ_ZERO + +small_trailing = [0] * 256 +for j in range(1,8): + small_trailing[1<>> giant_steps(50,1000) + [66, 128, 253, 502, 1000] + >>> giant_steps(50,1000,4) + [65, 252, 1000] + + """ + L = [target] + while L[-1] > start*n: + L = L + [L[-1]//n + 2] + return L[::-1] + +def rshift(x, n): + """For an integer x, calculate x >> n with the fastest (floor) + rounding. Unlike the plain Python expression (x >> n), n is + allowed to be negative, in which case a left shift is performed.""" + if n >= 0: return x >> n + else: return x << (-n) + +def lshift(x, n): + """For an integer x, calculate x << n. Unlike the plain Python + expression (x << n), n is allowed to be negative, in which case a + right shift with default (floor) rounding is performed.""" + if n >= 0: return x << n + else: return x >> (-n) + +if BACKEND == 'sage': + import operator + rshift = operator.rshift + lshift = operator.lshift + +def python_trailing(n): + """Count the number of trailing zero bits in abs(n).""" + if not n: + return 0 + low_byte = n & 0xff + if low_byte: + return small_trailing[low_byte] + t = 8 + n >>= 8 + while not n & 0xff: + n >>= 8 + t += 8 + return t + small_trailing[n & 0xff] + +if BACKEND == 'gmpy': + if gmpy.version() >= '2': + def gmpy_trailing(n): + """Count the number of trailing zero bits in abs(n) using gmpy.""" + if n: return MPZ(n).bit_scan1() + else: return 0 + else: + def gmpy_trailing(n): + """Count the number of trailing zero bits in abs(n) using gmpy.""" + if n: return MPZ(n).scan1() + else: return 0 + +# Small powers of 2 +powers = [1<<_ for _ in range(300)] + +def python_bitcount(n): + """Calculate bit size of the nonnegative integer n.""" + bc = bisect(powers, n) + if bc != 300: + return bc + bc = int(math.log(n, 2)) - 4 + return bc + bctable[n>>bc] + +def gmpy_bitcount(n): + """Calculate bit size of the nonnegative integer n.""" + if n: return MPZ(n).numdigits(2) + else: return 0 + +#def sage_bitcount(n): +# if n: return MPZ(n).nbits() +# else: return 0 + +def sage_trailing(n): + return MPZ(n).trailing_zero_bits() + +if BACKEND == 'gmpy': + bitcount = gmpy_bitcount + trailing = gmpy_trailing +elif BACKEND == 'sage': + sage_bitcount = sage_utils.bitcount + bitcount = sage_bitcount + trailing = sage_trailing +else: + bitcount = python_bitcount + trailing = python_trailing + +if BACKEND == 'gmpy' and 'bit_length' in dir(gmpy): + bitcount = gmpy.bit_length + +# Used to avoid slow function calls as far as possible +trailtable = [trailing(n) for n in range(256)] +bctable = [bitcount(n) for n in range(1024)] + +# TODO: speed up for bases 2, 4, 8, 16, ... + +def bin_to_radix(x, xbits, base, bdigits): + """Changes radix of a fixed-point number; i.e., converts + x * 2**xbits to floor(x * 10**bdigits).""" + return x * (MPZ(base)**bdigits) >> xbits + +stddigits = '0123456789abcdefghijklmnopqrstuvwxyz' + +def small_numeral(n, base=10, digits=stddigits): + """Return the string numeral of a positive integer in an arbitrary + base. Most efficient for small input.""" + if base == 10: + return str(n) + digs = [] + while n: + n, digit = divmod(n, base) + digs.append(digits[digit]) + return "".join(digs[::-1]) + +def numeral_python(n, base=10, size=0, digits=stddigits): + """Represent the integer n as a string of digits in the given base. + Recursive division is used to make this function about 3x faster + than Python's str() for converting integers to decimal strings. + + The 'size' parameters specifies the number of digits in n; this + number is only used to determine splitting points and need not be + exact.""" + if n <= 0: + if not n: + return "0" + return "-" + numeral(-n, base, size, digits) + # Fast enough to do directly + if size < 250: + return small_numeral(n, base, digits) + # Divide in half + half = (size // 2) + (size & 1) + A, B = divmod(n, base**half) + ad = numeral(A, base, half, digits) + bd = numeral(B, base, half, digits).rjust(half, "0") + return ad + bd + +def numeral_gmpy(n, base=10, size=0, digits=stddigits): + """Represent the integer n as a string of digits in the given base. + Recursive division is used to make this function about 3x faster + than Python's str() for converting integers to decimal strings. + + The 'size' parameters specifies the number of digits in n; this + number is only used to determine splitting points and need not be + exact.""" + if n < 0: + return "-" + numeral(-n, base, size, digits) + # gmpy.digits() may cause a segmentation fault when trying to convert + # extremely large values to a string. The size limit may need to be + # adjusted on some platforms, but 1500000 works on Windows and Linux. + if size < 1500000: + return gmpy.digits(n, base) + # Divide in half + half = (size // 2) + (size & 1) + A, B = divmod(n, MPZ(base)**half) + ad = numeral(A, base, half, digits) + bd = numeral(B, base, half, digits).rjust(half, "0") + return ad + bd + +if BACKEND == "gmpy": + numeral = numeral_gmpy +else: + numeral = numeral_python + +_1_800 = 1<<800 +_1_600 = 1<<600 +_1_400 = 1<<400 +_1_200 = 1<<200 +_1_100 = 1<<100 +_1_50 = 1<<50 + +def isqrt_small_python(x): + """ + Correctly (floor) rounded integer square root, using + division. Fast up to ~200 digits. + """ + if not x: + return x + if x < _1_800: + # Exact with IEEE double precision arithmetic + if x < _1_50: + return int(x**0.5) + # Initial estimate can be any integer >= the true root; round up + r = int(x**0.5 * 1.00000000000001) + 1 + else: + bc = bitcount(x) + n = bc//2 + r = int((x>>(2*n-100))**0.5+2)<<(n-50) # +2 is to round up + # The following iteration now precisely computes floor(sqrt(x)) + # See e.g. Crandall & Pomerance, "Prime Numbers: A Computational + # Perspective" + while 1: + y = (r+x//r)>>1 + if y >= r: + return r + r = y + +def isqrt_fast_python(x): + """ + Fast approximate integer square root, computed using division-free + Newton iteration for large x. For random integers the result is almost + always correct (floor(sqrt(x))), but is 1 ulp too small with a roughly + 0.1% probability. If x is very close to an exact square, the answer is + 1 ulp wrong with high probability. + + With 0 guard bits, the largest error over a set of 10^5 random + inputs of size 1-10^5 bits was 3 ulp. The use of 10 guard bits + almost certainly guarantees a max 1 ulp error. + """ + # Use direct division-based iteration if sqrt(x) < 2^400 + # Assume floating-point square root accurate to within 1 ulp, then: + # 0 Newton iterations good to 52 bits + # 1 Newton iterations good to 104 bits + # 2 Newton iterations good to 208 bits + # 3 Newton iterations good to 416 bits + if x < _1_800: + y = int(x**0.5) + if x >= _1_100: + y = (y + x//y) >> 1 + if x >= _1_200: + y = (y + x//y) >> 1 + if x >= _1_400: + y = (y + x//y) >> 1 + return y + bc = bitcount(x) + guard_bits = 10 + x <<= 2*guard_bits + bc += 2*guard_bits + bc += (bc&1) + hbc = bc//2 + startprec = min(50, hbc) + # Newton iteration for 1/sqrt(x), with floating-point starting value + r = int(2.0**(2*startprec) * (x >> (bc-2*startprec)) ** -0.5) + pp = startprec + for p in giant_steps(startprec, hbc): + # r**2, scaled from real size 2**(-bc) to 2**p + r2 = (r*r) >> (2*pp - p) + # x*r**2, scaled from real size ~1.0 to 2**p + xr2 = ((x >> (bc-p)) * r2) >> p + # New value of r, scaled from real size 2**(-bc/2) to 2**p + r = (r * ((3<> (pp+1) + pp = p + # (1/sqrt(x))*x = sqrt(x) + return (r*(x>>hbc)) >> (p+guard_bits) + +def sqrtrem_python(x): + """Correctly rounded integer (floor) square root with remainder.""" + # to check cutoff: + # plot(lambda x: timing(isqrt, 2**int(x)), [0,2000]) + if x < _1_600: + y = isqrt_small_python(x) + return y, x - y*y + y = isqrt_fast_python(x) + 1 + rem = x - y*y + # Correct remainder + while rem < 0: + y -= 1 + rem += (1+2*y) + else: + if rem: + while rem > 2*(1+y): + y += 1 + rem -= (1+2*y) + return y, rem + +def isqrt_python(x): + """Integer square root with correct (floor) rounding.""" + return sqrtrem_python(x)[0] + +def sqrt_fixed(x, prec): + return isqrt_fast(x<= '2': + isqrt_small = isqrt_fast = isqrt = gmpy.isqrt + sqrtrem = gmpy.isqrt_rem + else: + isqrt_small = isqrt_fast = isqrt = gmpy.sqrt + sqrtrem = gmpy.sqrtrem +elif BACKEND == 'sage': + isqrt_small = isqrt_fast = isqrt = \ + getattr(sage_utils, "isqrt", lambda n: MPZ(n).isqrt()) + sqrtrem = lambda n: MPZ(n).sqrtrem() +else: + isqrt_small = isqrt_small_python + isqrt_fast = isqrt_fast_python + isqrt = isqrt_python + sqrtrem = sqrtrem_python + + +def ifib(n, _cache={}): + """Computes the nth Fibonacci number as an integer, for + integer n.""" + if n < 0: + return (-1)**(-n+1) * ifib(-n) + if n in _cache: + return _cache[n] + m = n + # Use Dijkstra's logarithmic algorithm + # The following implementation is basically equivalent to + # http://en.literateprograms.org/Fibonacci_numbers_(Scheme) + a, b, p, q = MPZ_ONE, MPZ_ZERO, MPZ_ZERO, MPZ_ONE + while n: + if n & 1: + aq = a*q + a, b = b*q+aq+a*p, b*p+aq + n -= 1 + else: + qq = q*q + p, q = p*p+qq, qq+2*p*q + n >>= 1 + if m < 250: + _cache[m] = b + return b + +MAX_FACTORIAL_CACHE = 1000 + +def ifac(n, memo={0:1, 1:1}): + """Return n factorial (for integers n >= 0 only).""" + f = memo.get(n) + if f: + return f + k = len(memo) + p = memo[k-1] + MAX = MAX_FACTORIAL_CACHE + while k <= n: + p *= k + if k <= MAX: + memo[k] = p + k += 1 + return p + +def ifac2(n, memo_pair=[{0:1}, {1:1}]): + """Return n!! (double factorial), integers n >= 0 only.""" + memo = memo_pair[n&1] + f = memo.get(n) + if f: + return f + k = max(memo) + p = memo[k] + MAX = MAX_FACTORIAL_CACHE + while k < n: + k += 2 + p *= k + if k <= MAX: + memo[k] = p + return p + +if BACKEND == 'gmpy': + ifac = gmpy.fac +elif BACKEND == 'sage': + ifac = lambda n: int(sage.factorial(n)) + ifib = sage.fibonacci + +def list_primes(n): + n = n + 1 + sieve = list(xrange(n)) + sieve[:2] = [0, 0] + for i in xrange(2, int(n**0.5)+1): + if sieve[i]: + for j in xrange(i**2, n, i): + sieve[j] = 0 + return [p for p in sieve if p] + +if BACKEND == 'sage': + # Note: it is *VERY* important for performance that we convert + # the list to Python ints. + def list_primes(n): + return [int(_) for _ in sage.primes(n+1)] + +small_odd_primes = (3,5,7,11,13,17,19,23,29,31,37,41,43,47) +small_odd_primes_set = set(small_odd_primes) + +def isprime(n): + """ + Determines whether n is a prime number. A probabilistic test is + performed if n is very large. No special trick is used for detecting + perfect powers. + + >>> sum(list_primes(100000)) + 454396537 + >>> sum(n*isprime(n) for n in range(100000)) + 454396537 + + """ + n = int(n) + if not n & 1: + return n == 2 + if n < 50: + return n in small_odd_primes_set + for p in small_odd_primes: + if not n % p: + return False + m = n-1 + s = trailing(m) + d = m >> s + def test(a): + x = pow(a,d,n) + if x == 1 or x == m: + return True + for r in xrange(1,s): + x = x**2 % n + if x == m: + return True + return False + # See http://primes.utm.edu/prove/prove2_3.html + if n < 1373653: + witnesses = [2,3] + elif n < 341550071728321: + witnesses = [2,3,5,7,11,13,17] + else: + witnesses = small_odd_primes + for a in witnesses: + if not test(a): + return False + return True + +def moebius(n): + """ + Evaluates the Moebius function which is `mu(n) = (-1)^k` if `n` + is a product of `k` distinct primes and `mu(n) = 0` otherwise. + + TODO: speed up using factorization + """ + n = abs(int(n)) + if n < 2: + return n + factors = [] + for p in xrange(2, n+1): + if not (n % p): + if not (n % p**2): + return 0 + if not sum(p % f for f in factors): + factors.append(p) + return (-1)**len(factors) + +def gcd(*args): + a = 0 + for b in args: + if a: + while b: + a, b = b, a % b + else: + a = b + return a + + +# Comment by Juan Arias de Reyna: +# +# I learn this method to compute EulerE[2n] from van de Lune. +# +# We apply the formula EulerE[2n] = (-1)^n 2**(-2n) sum_{j=0}^n a(2n,2j+1) +# +# where the numbers a(n,j) vanish for j > n+1 or j <= -1 and satisfies +# +# a(0,-1) = a(0,0) = 0; a(0,1)= 1; a(0,2) = a(0,3) = 0 +# +# a(n,j) = a(n-1,j) when n+j is even +# a(n,j) = (j-1) a(n-1,j-1) + (j+1) a(n-1,j+1) when n+j is odd +# +# +# But we can use only one array unidimensional a(j) since to compute +# a(n,j) we only need to know a(n-1,k) where k and j are of different parity +# and we have not to conserve the used values. +# +# We cached up the values of Euler numbers to sufficiently high order. +# +# Important Observation: If we pretend to use the numbers +# EulerE[1], EulerE[2], ... , EulerE[n] +# it is convenient to compute first EulerE[n], since the algorithm +# computes first all +# the previous ones, and keeps them in the CACHE + +MAX_EULER_CACHE = 500 + +def eulernum(m, _cache={0:MPZ_ONE}): + r""" + Computes the Euler numbers `E(n)`, which can be defined as + coefficients of the Taylor expansion of `1/cosh x`: + + .. math :: + + \frac{1}{\cosh x} = \sum_{n=0}^\infty \frac{E_n}{n!} x^n + + Example:: + + >>> [int(eulernum(n)) for n in range(11)] + [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] + >>> [int(eulernum(n)) for n in range(11)] # test cache + [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521] + + """ + # for odd m > 1, the Euler numbers are zero + if m & 1: + return MPZ_ZERO + f = _cache.get(m) + if f: + return f + MAX = MAX_EULER_CACHE + n = m + a = [MPZ(_) for _ in [0,0,1,0,0,0]] + for n in range(1, m+1): + for j in range(n+1, -1, -2): + a[j+1] = (j-1)*a[j] + (j+1)*a[j+2] + a.append(0) + suma = 0 + for k in range(n+1, -1, -2): + suma += a[k+1] + if n <= MAX: + _cache[n] = ((-1)**(n//2))*(suma // 2**n) + if n == m: + return ((-1)**(n//2))*suma // 2**n + +def stirling1(n, k): + """ + Stirling number of the first kind. + """ + if n < 0 or k < 0: + raise ValueError + if k >= n: + return MPZ(n == k) + if k < 1: + return MPZ_ZERO + L = [MPZ_ZERO] * (k+1) + L[1] = MPZ_ONE + for m in xrange(2, n+1): + for j in xrange(min(k, m), 0, -1): + L[j] = (m-1) * L[j] + L[j-1] + return (-1)**(n+k) * L[k] + +def stirling2(n, k): + """ + Stirling number of the second kind. + """ + if n < 0 or k < 0: + raise ValueError + if k >= n: + return MPZ(n == k) + if k <= 1: + return MPZ(k == 1) + s = MPZ_ZERO + t = MPZ_ONE + for j in xrange(k+1): + if (k + j) & 1: + s -= t * MPZ(j)**n + else: + s += t * MPZ(j)**n + t = t * (k - j) // (j + 1) + return s // ifac(k) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libmpc.py b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libmpc.py new file mode 100644 index 0000000000000000000000000000000000000000..cc22d0e73674676c8a9249ebc2d48da7f3be8b0d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libmpc.py @@ -0,0 +1,835 @@ +""" +Low-level functions for complex arithmetic. +""" + +import sys + +from .backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, BACKEND + +from .libmpf import (\ + round_floor, round_ceiling, round_down, round_up, + round_nearest, round_fast, bitcount, + bctable, normalize, normalize1, reciprocal_rnd, rshift, lshift, giant_steps, + negative_rnd, + to_str, to_fixed, from_man_exp, from_float, to_float, from_int, to_int, + fzero, fone, ftwo, fhalf, finf, fninf, fnan, fnone, + mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, + mpf_div, mpf_mul_int, mpf_shift, mpf_sqrt, mpf_hypot, + mpf_rdiv_int, mpf_floor, mpf_ceil, mpf_nint, mpf_frac, + mpf_sign, mpf_hash, + ComplexResult +) + +from .libelefun import (\ + mpf_pi, mpf_exp, mpf_log, mpf_cos_sin, mpf_cosh_sinh, mpf_tan, mpf_pow_int, + mpf_log_hypot, + mpf_cos_sin_pi, mpf_phi, + mpf_cos, mpf_sin, mpf_cos_pi, mpf_sin_pi, + mpf_atan, mpf_atan2, mpf_cosh, mpf_sinh, mpf_tanh, + mpf_asin, mpf_acos, mpf_acosh, mpf_nthroot, mpf_fibonacci +) + +# An mpc value is a (real, imag) tuple +mpc_one = fone, fzero +mpc_zero = fzero, fzero +mpc_two = ftwo, fzero +mpc_half = (fhalf, fzero) + +_infs = (finf, fninf) +_infs_nan = (finf, fninf, fnan) + +def mpc_is_inf(z): + """Check if either real or imaginary part is infinite""" + re, im = z + if re in _infs: return True + if im in _infs: return True + return False + +def mpc_is_infnan(z): + """Check if either real or imaginary part is infinite or nan""" + re, im = z + if re in _infs_nan: return True + if im in _infs_nan: return True + return False + +def mpc_to_str(z, dps, **kwargs): + re, im = z + rs = to_str(re, dps) + if im[0]: + return rs + " - " + to_str(mpf_neg(im), dps, **kwargs) + "j" + else: + return rs + " + " + to_str(im, dps, **kwargs) + "j" + +def mpc_to_complex(z, strict=False, rnd=round_fast): + re, im = z + return complex(to_float(re, strict, rnd), to_float(im, strict, rnd)) + +def mpc_hash(z): + if sys.version_info >= (3, 2): + re, im = z + h = mpf_hash(re) + sys.hash_info.imag * mpf_hash(im) + # Need to reduce either module 2^32 or 2^64 + h = h % (2**sys.hash_info.width) + return int(h) + else: + try: + return hash(mpc_to_complex(z, strict=True)) + except OverflowError: + return hash(z) + +def mpc_conjugate(z, prec, rnd=round_fast): + re, im = z + return re, mpf_neg(im, prec, rnd) + +def mpc_is_nonzero(z): + return z != mpc_zero + +def mpc_add(z, w, prec, rnd=round_fast): + a, b = z + c, d = w + return mpf_add(a, c, prec, rnd), mpf_add(b, d, prec, rnd) + +def mpc_add_mpf(z, x, prec, rnd=round_fast): + a, b = z + return mpf_add(a, x, prec, rnd), b + +def mpc_sub(z, w, prec=0, rnd=round_fast): + a, b = z + c, d = w + return mpf_sub(a, c, prec, rnd), mpf_sub(b, d, prec, rnd) + +def mpc_sub_mpf(z, p, prec=0, rnd=round_fast): + a, b = z + return mpf_sub(a, p, prec, rnd), b + +def mpc_pos(z, prec, rnd=round_fast): + a, b = z + return mpf_pos(a, prec, rnd), mpf_pos(b, prec, rnd) + +def mpc_neg(z, prec=None, rnd=round_fast): + a, b = z + return mpf_neg(a, prec, rnd), mpf_neg(b, prec, rnd) + +def mpc_shift(z, n): + a, b = z + return mpf_shift(a, n), mpf_shift(b, n) + +def mpc_abs(z, prec, rnd=round_fast): + """Absolute value of a complex number, |a+bi|. + Returns an mpf value.""" + a, b = z + return mpf_hypot(a, b, prec, rnd) + +def mpc_arg(z, prec, rnd=round_fast): + """Argument of a complex number. Returns an mpf value.""" + a, b = z + return mpf_atan2(b, a, prec, rnd) + +def mpc_floor(z, prec, rnd=round_fast): + a, b = z + return mpf_floor(a, prec, rnd), mpf_floor(b, prec, rnd) + +def mpc_ceil(z, prec, rnd=round_fast): + a, b = z + return mpf_ceil(a, prec, rnd), mpf_ceil(b, prec, rnd) + +def mpc_nint(z, prec, rnd=round_fast): + a, b = z + return mpf_nint(a, prec, rnd), mpf_nint(b, prec, rnd) + +def mpc_frac(z, prec, rnd=round_fast): + a, b = z + return mpf_frac(a, prec, rnd), mpf_frac(b, prec, rnd) + + +def mpc_mul(z, w, prec, rnd=round_fast): + """ + Complex multiplication. + + Returns the real and imaginary part of (a+bi)*(c+di), rounded to + the specified precision. The rounding mode applies to the real and + imaginary parts separately. + """ + a, b = z + c, d = w + p = mpf_mul(a, c) + q = mpf_mul(b, d) + r = mpf_mul(a, d) + s = mpf_mul(b, c) + re = mpf_sub(p, q, prec, rnd) + im = mpf_add(r, s, prec, rnd) + return re, im + +def mpc_square(z, prec, rnd=round_fast): + # (a+b*I)**2 == a**2 - b**2 + 2*I*a*b + a, b = z + p = mpf_mul(a,a) + q = mpf_mul(b,b) + r = mpf_mul(a,b, prec, rnd) + re = mpf_sub(p, q, prec, rnd) + im = mpf_shift(r, 1) + return re, im + +def mpc_mul_mpf(z, p, prec, rnd=round_fast): + a, b = z + re = mpf_mul(a, p, prec, rnd) + im = mpf_mul(b, p, prec, rnd) + return re, im + +def mpc_mul_imag_mpf(z, x, prec, rnd=round_fast): + """ + Multiply the mpc value z by I*x where x is an mpf value. + """ + a, b = z + re = mpf_neg(mpf_mul(b, x, prec, rnd)) + im = mpf_mul(a, x, prec, rnd) + return re, im + +def mpc_mul_int(z, n, prec, rnd=round_fast): + a, b = z + re = mpf_mul_int(a, n, prec, rnd) + im = mpf_mul_int(b, n, prec, rnd) + return re, im + +def mpc_div(z, w, prec, rnd=round_fast): + a, b = z + c, d = w + wp = prec + 10 + # mag = c*c + d*d + mag = mpf_add(mpf_mul(c, c), mpf_mul(d, d), wp) + # (a*c+b*d)/mag, (b*c-a*d)/mag + t = mpf_add(mpf_mul(a,c), mpf_mul(b,d), wp) + u = mpf_sub(mpf_mul(b,c), mpf_mul(a,d), wp) + return mpf_div(t,mag,prec,rnd), mpf_div(u,mag,prec,rnd) + +def mpc_div_mpf(z, p, prec, rnd=round_fast): + """Calculate z/p where p is real""" + a, b = z + re = mpf_div(a, p, prec, rnd) + im = mpf_div(b, p, prec, rnd) + return re, im + +def mpc_reciprocal(z, prec, rnd=round_fast): + """Calculate 1/z efficiently""" + a, b = z + m = mpf_add(mpf_mul(a,a),mpf_mul(b,b),prec+10) + re = mpf_div(a, m, prec, rnd) + im = mpf_neg(mpf_div(b, m, prec, rnd)) + return re, im + +def mpc_mpf_div(p, z, prec, rnd=round_fast): + """Calculate p/z where p is real efficiently""" + a, b = z + m = mpf_add(mpf_mul(a,a),mpf_mul(b,b), prec+10) + re = mpf_div(mpf_mul(a,p), m, prec, rnd) + im = mpf_div(mpf_neg(mpf_mul(b,p)), m, prec, rnd) + return re, im + +def complex_int_pow(a, b, n): + """Complex integer power: computes (a+b*I)**n exactly for + nonnegative n (a and b must be Python ints).""" + wre = 1 + wim = 0 + while n: + if n & 1: + wre, wim = wre*a - wim*b, wim*a + wre*b + n -= 1 + a, b = a*a - b*b, 2*a*b + n //= 2 + return wre, wim + +def mpc_pow(z, w, prec, rnd=round_fast): + if w[1] == fzero: + return mpc_pow_mpf(z, w[0], prec, rnd) + return mpc_exp(mpc_mul(mpc_log(z, prec+10), w, prec+10), prec, rnd) + +def mpc_pow_mpf(z, p, prec, rnd=round_fast): + psign, pman, pexp, pbc = p + if pexp >= 0: + return mpc_pow_int(z, (-1)**psign * (pman< 0: + aman <<= de + aexp = bexp + else: + bman <<= (-de) + bexp = aexp + re, im = complex_int_pow(aman, bman, n) + re = from_man_exp(re, int(n*aexp), prec, rnd) + im = from_man_exp(im, int(n*bexp), prec, rnd) + return re, im + return mpc_exp(mpc_mul_int(mpc_log(z, prec+10), n, prec+10), prec, rnd) + +def mpc_sqrt(z, prec, rnd=round_fast): + """Complex square root (principal branch). + + We have sqrt(a+bi) = sqrt((r+a)/2) + b/sqrt(2*(r+a))*i where + r = abs(a+bi), when a+bi is not a negative real number.""" + a, b = z + if b == fzero: + if a == fzero: + return (a, b) + # When a+bi is a negative real number, we get a real sqrt times i + if a[0]: + im = mpf_sqrt(mpf_neg(a), prec, rnd) + return (fzero, im) + else: + re = mpf_sqrt(a, prec, rnd) + return (re, fzero) + wp = prec+20 + if not a[0]: # case a positive + t = mpf_add(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) + a + u = mpf_shift(t, -1) # u = t/2 + re = mpf_sqrt(u, prec, rnd) # re = sqrt(u) + v = mpf_shift(t, 1) # v = 2*t + w = mpf_sqrt(v, wp) # w = sqrt(v) + im = mpf_div(b, w, prec, rnd) # im = b / w + else: # case a negative + t = mpf_sub(mpc_abs((a, b), wp), a, wp) # t = abs(a+bi) - a + u = mpf_shift(t, -1) # u = t/2 + im = mpf_sqrt(u, prec, rnd) # im = sqrt(u) + v = mpf_shift(t, 1) # v = 2*t + w = mpf_sqrt(v, wp) # w = sqrt(v) + re = mpf_div(b, w, prec, rnd) # re = b/w + if b[0]: + re = mpf_neg(re) + im = mpf_neg(im) + return re, im + +def mpc_nthroot_fixed(a, b, n, prec): + # a, b signed integers at fixed precision prec + start = 50 + a1 = int(rshift(a, prec - n*start)) + b1 = int(rshift(b, prec - n*start)) + try: + r = (a1 + 1j * b1)**(1.0/n) + re = r.real + im = r.imag + re = MPZ(int(re)) + im = MPZ(int(im)) + except OverflowError: + a1 = from_int(a1, start) + b1 = from_int(b1, start) + fn = from_int(n) + nth = mpf_rdiv_int(1, fn, start) + re, im = mpc_pow((a1, b1), (nth, fzero), start) + re = to_int(re) + im = to_int(im) + extra = 10 + prevp = start + extra1 = n + for p in giant_steps(start, prec+extra): + # this is slow for large n, unlike int_pow_fixed + re2, im2 = complex_int_pow(re, im, n-1) + re2 = rshift(re2, (n-1)*prevp - p - extra1) + im2 = rshift(im2, (n-1)*prevp - p - extra1) + r4 = (re2*re2 + im2*im2) >> (p + extra1) + ap = rshift(a, prec - p) + bp = rshift(b, prec - p) + rec = (ap * re2 + bp * im2) >> p + imc = (-ap * im2 + bp * re2) >> p + reb = (rec << p) // r4 + imb = (imc << p) // r4 + re = (reb + (n-1)*lshift(re, p-prevp))//n + im = (imb + (n-1)*lshift(im, p-prevp))//n + prevp = p + return re, im + +def mpc_nthroot(z, n, prec, rnd=round_fast): + """ + Complex n-th root. + + Use Newton method as in the real case when it is faster, + otherwise use z**(1/n) + """ + a, b = z + if a[0] == 0 and b == fzero: + re = mpf_nthroot(a, n, prec, rnd) + return (re, fzero) + if n < 2: + if n == 0: + return mpc_one + if n == 1: + return mpc_pos((a, b), prec, rnd) + if n == -1: + return mpc_div(mpc_one, (a, b), prec, rnd) + inverse = mpc_nthroot((a, b), -n, prec+5, reciprocal_rnd[rnd]) + return mpc_div(mpc_one, inverse, prec, rnd) + if n <= 20: + prec2 = int(1.2 * (prec + 10)) + asign, aman, aexp, abc = a + bsign, bman, bexp, bbc = b + pf = mpc_abs((a,b), prec) + if pf[-2] + pf[-1] > -10 and pf[-2] + pf[-1] < prec: + af = to_fixed(a, prec2) + bf = to_fixed(b, prec2) + re, im = mpc_nthroot_fixed(af, bf, n, prec2) + extra = 10 + re = from_man_exp(re, -prec2-extra, prec2, rnd) + im = from_man_exp(im, -prec2-extra, prec2, rnd) + return re, im + fn = from_int(n) + prec2 = prec+10 + 10 + nth = mpf_rdiv_int(1, fn, prec2) + re, im = mpc_pow((a, b), (nth, fzero), prec2, rnd) + re = normalize(re[0], re[1], re[2], re[3], prec, rnd) + im = normalize(im[0], im[1], im[2], im[3], prec, rnd) + return re, im + +def mpc_cbrt(z, prec, rnd=round_fast): + """ + Complex cubic root. + """ + return mpc_nthroot(z, 3, prec, rnd) + +def mpc_exp(z, prec, rnd=round_fast): + """ + Complex exponential function. + + We use the direct formula exp(a+bi) = exp(a) * (cos(b) + sin(b)*i) + for the computation. This formula is very nice because it is + pefectly stable; since we just do real multiplications, the only + numerical errors that can creep in are single-ulp rounding errors. + + The formula is efficient since mpmath's real exp is quite fast and + since we can compute cos and sin simultaneously. + + It is no problem if a and b are large; if the implementations of + exp/cos/sin are accurate and efficient for all real numbers, then + so is this function for all complex numbers. + """ + a, b = z + if a == fzero: + return mpf_cos_sin(b, prec, rnd) + if b == fzero: + return mpf_exp(a, prec, rnd), fzero + mag = mpf_exp(a, prec+4, rnd) + c, s = mpf_cos_sin(b, prec+4, rnd) + re = mpf_mul(mag, c, prec, rnd) + im = mpf_mul(mag, s, prec, rnd) + return re, im + +def mpc_log(z, prec, rnd=round_fast): + re = mpf_log_hypot(z[0], z[1], prec, rnd) + im = mpc_arg(z, prec, rnd) + return re, im + +def mpc_cos(z, prec, rnd=round_fast): + """Complex cosine. The formula used is cos(a+bi) = cos(a)*cosh(b) - + sin(a)*sinh(b)*i. + + The same comments apply as for the complex exp: only real + multiplications are pewrormed, so no cancellation errors are + possible. The formula is also efficient since we can compute both + pairs (cos, sin) and (cosh, sinh) in single stwps.""" + a, b = z + if b == fzero: + return mpf_cos(a, prec, rnd), fzero + if a == fzero: + return mpf_cosh(b, prec, rnd), fzero + wp = prec + 6 + c, s = mpf_cos_sin(a, wp) + ch, sh = mpf_cosh_sinh(b, wp) + re = mpf_mul(c, ch, prec, rnd) + im = mpf_mul(s, sh, prec, rnd) + return re, mpf_neg(im) + +def mpc_sin(z, prec, rnd=round_fast): + """Complex sine. We have sin(a+bi) = sin(a)*cosh(b) + + cos(a)*sinh(b)*i. See the docstring for mpc_cos for additional + comments.""" + a, b = z + if b == fzero: + return mpf_sin(a, prec, rnd), fzero + if a == fzero: + return fzero, mpf_sinh(b, prec, rnd) + wp = prec + 6 + c, s = mpf_cos_sin(a, wp) + ch, sh = mpf_cosh_sinh(b, wp) + re = mpf_mul(s, ch, prec, rnd) + im = mpf_mul(c, sh, prec, rnd) + return re, im + +def mpc_tan(z, prec, rnd=round_fast): + """Complex tangent. Computed as tan(a+bi) = sin(2a)/M + sinh(2b)/M*i + where M = cos(2a) + cosh(2b).""" + a, b = z + asign, aman, aexp, abc = a + bsign, bman, bexp, bbc = b + if b == fzero: return mpf_tan(a, prec, rnd), fzero + if a == fzero: return fzero, mpf_tanh(b, prec, rnd) + wp = prec + 15 + a = mpf_shift(a, 1) + b = mpf_shift(b, 1) + c, s = mpf_cos_sin(a, wp) + ch, sh = mpf_cosh_sinh(b, wp) + # TODO: handle cancellation when c ~= -1 and ch ~= 1 + mag = mpf_add(c, ch, wp) + re = mpf_div(s, mag, prec, rnd) + im = mpf_div(sh, mag, prec, rnd) + return re, im + +def mpc_cos_pi(z, prec, rnd=round_fast): + a, b = z + if b == fzero: + return mpf_cos_pi(a, prec, rnd), fzero + b = mpf_mul(b, mpf_pi(prec+5), prec+5) + if a == fzero: + return mpf_cosh(b, prec, rnd), fzero + wp = prec + 6 + c, s = mpf_cos_sin_pi(a, wp) + ch, sh = mpf_cosh_sinh(b, wp) + re = mpf_mul(c, ch, prec, rnd) + im = mpf_mul(s, sh, prec, rnd) + return re, mpf_neg(im) + +def mpc_sin_pi(z, prec, rnd=round_fast): + a, b = z + if b == fzero: + return mpf_sin_pi(a, prec, rnd), fzero + b = mpf_mul(b, mpf_pi(prec+5), prec+5) + if a == fzero: + return fzero, mpf_sinh(b, prec, rnd) + wp = prec + 6 + c, s = mpf_cos_sin_pi(a, wp) + ch, sh = mpf_cosh_sinh(b, wp) + re = mpf_mul(s, ch, prec, rnd) + im = mpf_mul(c, sh, prec, rnd) + return re, im + +def mpc_cos_sin(z, prec, rnd=round_fast): + a, b = z + if a == fzero: + ch, sh = mpf_cosh_sinh(b, prec, rnd) + return (ch, fzero), (fzero, sh) + if b == fzero: + c, s = mpf_cos_sin(a, prec, rnd) + return (c, fzero), (s, fzero) + wp = prec + 6 + c, s = mpf_cos_sin(a, wp) + ch, sh = mpf_cosh_sinh(b, wp) + cre = mpf_mul(c, ch, prec, rnd) + cim = mpf_mul(s, sh, prec, rnd) + sre = mpf_mul(s, ch, prec, rnd) + sim = mpf_mul(c, sh, prec, rnd) + return (cre, mpf_neg(cim)), (sre, sim) + +def mpc_cos_sin_pi(z, prec, rnd=round_fast): + a, b = z + if b == fzero: + c, s = mpf_cos_sin_pi(a, prec, rnd) + return (c, fzero), (s, fzero) + b = mpf_mul(b, mpf_pi(prec+5), prec+5) + if a == fzero: + ch, sh = mpf_cosh_sinh(b, prec, rnd) + return (ch, fzero), (fzero, sh) + wp = prec + 6 + c, s = mpf_cos_sin_pi(a, wp) + ch, sh = mpf_cosh_sinh(b, wp) + cre = mpf_mul(c, ch, prec, rnd) + cim = mpf_mul(s, sh, prec, rnd) + sre = mpf_mul(s, ch, prec, rnd) + sim = mpf_mul(c, sh, prec, rnd) + return (cre, mpf_neg(cim)), (sre, sim) + +def mpc_cosh(z, prec, rnd=round_fast): + """Complex hyperbolic cosine. Computed as cosh(z) = cos(z*i).""" + a, b = z + return mpc_cos((b, mpf_neg(a)), prec, rnd) + +def mpc_sinh(z, prec, rnd=round_fast): + """Complex hyperbolic sine. Computed as sinh(z) = -i*sin(z*i).""" + a, b = z + b, a = mpc_sin((b, a), prec, rnd) + return a, b + +def mpc_tanh(z, prec, rnd=round_fast): + """Complex hyperbolic tangent. Computed as tanh(z) = -i*tan(z*i).""" + a, b = z + b, a = mpc_tan((b, a), prec, rnd) + return a, b + +# TODO: avoid loss of accuracy +def mpc_atan(z, prec, rnd=round_fast): + a, b = z + # atan(z) = (I/2)*(log(1-I*z) - log(1+I*z)) + # x = 1-I*z = 1 + b - I*a + # y = 1+I*z = 1 - b + I*a + wp = prec + 15 + x = mpf_add(fone, b, wp), mpf_neg(a) + y = mpf_sub(fone, b, wp), a + l1 = mpc_log(x, wp) + l2 = mpc_log(y, wp) + a, b = mpc_sub(l1, l2, prec, rnd) + # (I/2) * (a+b*I) = (-b/2 + a/2*I) + v = mpf_neg(mpf_shift(b,-1)), mpf_shift(a,-1) + # Subtraction at infinity gives correct real part but + # wrong imaginary part (should be zero) + if v[1] == fnan and mpc_is_inf(z): + v = (v[0], fzero) + return v + +beta_crossover = from_float(0.6417) +alpha_crossover = from_float(1.5) + +def acos_asin(z, prec, rnd, n): + """ complex acos for n = 0, asin for n = 1 + The algorithm is described in + T.E. Hull, T.F. Fairgrieve and P.T.P. Tang + 'Implementing the Complex Arcsine and Arcosine Functions + using Exception Handling', + ACM Trans. on Math. Software Vol. 23 (1997), p299 + The complex acos and asin can be defined as + acos(z) = acos(beta) - I*sign(a)* log(alpha + sqrt(alpha**2 -1)) + asin(z) = asin(beta) + I*sign(a)* log(alpha + sqrt(alpha**2 -1)) + where z = a + I*b + alpha = (1/2)*(r + s); beta = (1/2)*(r - s) = a/alpha + r = sqrt((a+1)**2 + y**2); s = sqrt((a-1)**2 + y**2) + These expressions are rewritten in different ways in different + regions, delimited by two crossovers alpha_crossover and beta_crossover, + and by abs(a) <= 1, in order to improve the numerical accuracy. + """ + a, b = z + wp = prec + 10 + # special cases with real argument + if b == fzero: + am = mpf_sub(fone, mpf_abs(a), wp) + # case abs(a) <= 1 + if not am[0]: + if n == 0: + return mpf_acos(a, prec, rnd), fzero + else: + return mpf_asin(a, prec, rnd), fzero + # cases abs(a) > 1 + else: + # case a < -1 + if a[0]: + pi = mpf_pi(prec, rnd) + c = mpf_acosh(mpf_neg(a), prec, rnd) + if n == 0: + return pi, mpf_neg(c) + else: + return mpf_neg(mpf_shift(pi, -1)), c + # case a > 1 + else: + c = mpf_acosh(a, prec, rnd) + if n == 0: + return fzero, c + else: + pi = mpf_pi(prec, rnd) + return mpf_shift(pi, -1), mpf_neg(c) + asign = bsign = 0 + if a[0]: + a = mpf_neg(a) + asign = 1 + if b[0]: + b = mpf_neg(b) + bsign = 1 + am = mpf_sub(fone, a, wp) + ap = mpf_add(fone, a, wp) + r = mpf_hypot(ap, b, wp) + s = mpf_hypot(am, b, wp) + alpha = mpf_shift(mpf_add(r, s, wp), -1) + beta = mpf_div(a, alpha, wp) + b2 = mpf_mul(b,b, wp) + # case beta <= beta_crossover + if not mpf_sub(beta_crossover, beta, wp)[0]: + if n == 0: + re = mpf_acos(beta, wp) + else: + re = mpf_asin(beta, wp) + else: + # to compute the real part in this region use the identity + # asin(beta) = atan(beta/sqrt(1-beta**2)) + # beta/sqrt(1-beta**2) = (alpha + a) * (alpha - a) + # alpha + a is numerically accurate; alpha - a can have + # cancellations leading to numerical inaccuracies, so rewrite + # it in differente ways according to the region + Ax = mpf_add(alpha, a, wp) + # case a <= 1 + if not am[0]: + # c = b*b/(r + (a+1)); d = (s + (1-a)) + # alpha - a = (1/2)*(c + d) + # case n=0: re = atan(sqrt((1/2) * Ax * (c + d))/a) + # case n=1: re = atan(a/sqrt((1/2) * Ax * (c + d))) + c = mpf_div(b2, mpf_add(r, ap, wp), wp) + d = mpf_add(s, am, wp) + re = mpf_shift(mpf_mul(Ax, mpf_add(c, d, wp), wp), -1) + if n == 0: + re = mpf_atan(mpf_div(mpf_sqrt(re, wp), a, wp), wp) + else: + re = mpf_atan(mpf_div(a, mpf_sqrt(re, wp), wp), wp) + else: + # c = Ax/(r + (a+1)); d = Ax/(s - (1-a)) + # alpha - a = (1/2)*(c + d) + # case n = 0: re = atan(b*sqrt(c + d)/2/a) + # case n = 1: re = atan(a/(b*sqrt(c + d)/2) + c = mpf_div(Ax, mpf_add(r, ap, wp), wp) + d = mpf_div(Ax, mpf_sub(s, am, wp), wp) + re = mpf_shift(mpf_add(c, d, wp), -1) + re = mpf_mul(b, mpf_sqrt(re, wp), wp) + if n == 0: + re = mpf_atan(mpf_div(re, a, wp), wp) + else: + re = mpf_atan(mpf_div(a, re, wp), wp) + # to compute alpha + sqrt(alpha**2 - 1), if alpha <= alpha_crossover + # replace it with 1 + Am1 + sqrt(Am1*(alpha+1))) + # where Am1 = alpha -1 + # if alpha <= alpha_crossover: + if not mpf_sub(alpha_crossover, alpha, wp)[0]: + c1 = mpf_div(b2, mpf_add(r, ap, wp), wp) + # case a < 1 + if mpf_neg(am)[0]: + # Am1 = (1/2) * (b*b/(r + (a+1)) + b*b/(s + (1-a)) + c2 = mpf_add(s, am, wp) + c2 = mpf_div(b2, c2, wp) + Am1 = mpf_shift(mpf_add(c1, c2, wp), -1) + else: + # Am1 = (1/2) * (b*b/(r + (a+1)) + (s - (1-a))) + c2 = mpf_sub(s, am, wp) + Am1 = mpf_shift(mpf_add(c1, c2, wp), -1) + # im = log(1 + Am1 + sqrt(Am1*(alpha+1))) + im = mpf_mul(Am1, mpf_add(alpha, fone, wp), wp) + im = mpf_log(mpf_add(fone, mpf_add(Am1, mpf_sqrt(im, wp), wp), wp), wp) + else: + # im = log(alpha + sqrt(alpha*alpha - 1)) + im = mpf_sqrt(mpf_sub(mpf_mul(alpha, alpha, wp), fone, wp), wp) + im = mpf_log(mpf_add(alpha, im, wp), wp) + if asign: + if n == 0: + re = mpf_sub(mpf_pi(wp), re, wp) + else: + re = mpf_neg(re) + if not bsign and n == 0: + im = mpf_neg(im) + if bsign and n == 1: + im = mpf_neg(im) + re = normalize(re[0], re[1], re[2], re[3], prec, rnd) + im = normalize(im[0], im[1], im[2], im[3], prec, rnd) + return re, im + +def mpc_acos(z, prec, rnd=round_fast): + return acos_asin(z, prec, rnd, 0) + +def mpc_asin(z, prec, rnd=round_fast): + return acos_asin(z, prec, rnd, 1) + +def mpc_asinh(z, prec, rnd=round_fast): + # asinh(z) = I * asin(-I z) + a, b = z + a, b = mpc_asin((b, mpf_neg(a)), prec, rnd) + return mpf_neg(b), a + +def mpc_acosh(z, prec, rnd=round_fast): + # acosh(z) = -I * acos(z) for Im(acos(z)) <= 0 + # +I * acos(z) otherwise + a, b = mpc_acos(z, prec, rnd) + if b[0] or b == fzero: + return mpf_neg(b), a + else: + return b, mpf_neg(a) + +def mpc_atanh(z, prec, rnd=round_fast): + # atanh(z) = (log(1+z)-log(1-z))/2 + wp = prec + 15 + a = mpc_add(z, mpc_one, wp) + b = mpc_sub(mpc_one, z, wp) + a = mpc_log(a, wp) + b = mpc_log(b, wp) + v = mpc_shift(mpc_sub(a, b, wp), -1) + # Subtraction at infinity gives correct imaginary part but + # wrong real part (should be zero) + if v[0] == fnan and mpc_is_inf(z): + v = (fzero, v[1]) + return v + +def mpc_fibonacci(z, prec, rnd=round_fast): + re, im = z + if im == fzero: + return (mpf_fibonacci(re, prec, rnd), fzero) + size = max(abs(re[2]+re[3]), abs(re[2]+re[3])) + wp = prec + size + 20 + a = mpf_phi(wp) + b = mpf_add(mpf_shift(a, 1), fnone, wp) + u = mpc_pow((a, fzero), z, wp) + v = mpc_cos_pi(z, wp) + v = mpc_div(v, u, wp) + u = mpc_sub(u, v, wp) + u = mpc_div_mpf(u, b, prec, rnd) + return u + +def mpf_expj(x, prec, rnd='f'): + raise ComplexResult + +def mpc_expj(z, prec, rnd='f'): + re, im = z + if im == fzero: + return mpf_cos_sin(re, prec, rnd) + if re == fzero: + return mpf_exp(mpf_neg(im), prec, rnd), fzero + ey = mpf_exp(mpf_neg(im), prec+10) + c, s = mpf_cos_sin(re, prec+10) + re = mpf_mul(ey, c, prec, rnd) + im = mpf_mul(ey, s, prec, rnd) + return re, im + +def mpf_expjpi(x, prec, rnd='f'): + raise ComplexResult + +def mpc_expjpi(z, prec, rnd='f'): + re, im = z + if im == fzero: + return mpf_cos_sin_pi(re, prec, rnd) + sign, man, exp, bc = im + wp = prec+10 + if man: + wp += max(0, exp+bc) + im = mpf_neg(mpf_mul(mpf_pi(wp), im, wp)) + if re == fzero: + return mpf_exp(im, prec, rnd), fzero + ey = mpf_exp(im, prec+10) + c, s = mpf_cos_sin_pi(re, prec+10) + re = mpf_mul(ey, c, prec, rnd) + im = mpf_mul(ey, s, prec, rnd) + return re, im + + +if BACKEND == 'sage': + try: + import sage.libs.mpmath.ext_libmp as _lbmp + mpc_exp = _lbmp.mpc_exp + mpc_sqrt = _lbmp.mpc_sqrt + except (ImportError, AttributeError): + print("Warning: Sage imports in libmpc failed") diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libmpf.py b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libmpf.py new file mode 100644 index 0000000000000000000000000000000000000000..5c162e17d4f688c71dc3476b944e2d31c65faab7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/mpmath/libmp/libmpf.py @@ -0,0 +1,1414 @@ +""" +Low-level functions for arbitrary-precision floating-point arithmetic. +""" + +__docformat__ = 'plaintext' + +import math + +from bisect import bisect + +import sys + +# Importing random is slow +#from random import getrandbits +getrandbits = None + +from .backend import (MPZ, MPZ_TYPE, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, + BACKEND, STRICT, HASH_MODULUS, HASH_BITS, gmpy, sage, sage_utils) + +from .libintmath import (giant_steps, + trailtable, bctable, lshift, rshift, bitcount, trailing, + sqrt_fixed, numeral, isqrt, isqrt_fast, sqrtrem, + bin_to_radix) + +# We don't pickle tuples directly for the following reasons: +# 1: pickle uses str() for ints, which is inefficient when they are large +# 2: pickle doesn't work for gmpy mpzs +# Both problems are solved by using hex() + +if BACKEND == 'sage': + def to_pickable(x): + sign, man, exp, bc = x + return sign, hex(man), exp, bc +else: + def to_pickable(x): + sign, man, exp, bc = x + return sign, hex(man)[2:], exp, bc + +def from_pickable(x): + sign, man, exp, bc = x + return (sign, MPZ(man, 16), exp, bc) + +class ComplexResult(ValueError): + pass + +try: + intern +except NameError: + intern = lambda x: x + +# All supported rounding modes +round_nearest = intern('n') +round_floor = intern('f') +round_ceiling = intern('c') +round_up = intern('u') +round_down = intern('d') +round_fast = round_down + +def prec_to_dps(n): + """Return number of accurate decimals that can be represented + with a precision of n bits.""" + return max(1, int(round(int(n)/3.3219280948873626)-1)) + +def dps_to_prec(n): + """Return the number of bits required to represent n decimals + accurately.""" + return max(1, int(round((int(n)+1)*3.3219280948873626))) + +def repr_dps(n): + """Return the number of decimal digits required to represent + a number with n-bit precision so that it can be uniquely + reconstructed from the representation.""" + dps = prec_to_dps(n) + if dps == 15: + return 17 + return dps + 3 + +#----------------------------------------------------------------------------# +# Some commonly needed float values # +#----------------------------------------------------------------------------# + +# Regular number format: +# (-1)**sign * mantissa * 2**exponent, plus bitcount of mantissa +fzero = (0, MPZ_ZERO, 0, 0) +fnzero = (1, MPZ_ZERO, 0, 0) +fone = (0, MPZ_ONE, 0, 1) +fnone = (1, MPZ_ONE, 0, 1) +ftwo = (0, MPZ_ONE, 1, 1) +ften = (0, MPZ_FIVE, 1, 3) +fhalf = (0, MPZ_ONE, -1, 1) + +# Arbitrary encoding for special numbers: zero mantissa, nonzero exponent +fnan = (0, MPZ_ZERO, -123, -1) +finf = (0, MPZ_ZERO, -456, -2) +fninf = (1, MPZ_ZERO, -789, -3) + +# Was 1e1000; this is broken in Python 2.4 +math_float_inf = 1e300 * 1e300 + + +#----------------------------------------------------------------------------# +# Rounding # +#----------------------------------------------------------------------------# + +# This function can be used to round a mantissa generally. However, +# we will try to do most rounding inline for efficiency. +def round_int(x, n, rnd): + if rnd == round_nearest: + if x >= 0: + t = x >> (n-1) + if t & 1 and ((t & 2) or (x & h_mask[n<300][n])): + return (t>>1)+1 + else: + return t>>1 + else: + return -round_int(-x, n, rnd) + if rnd == round_floor: + return x >> n + if rnd == round_ceiling: + return -((-x) >> n) + if rnd == round_down: + if x >= 0: + return x >> n + return -((-x) >> n) + if rnd == round_up: + if x >= 0: + return -((-x) >> n) + return x >> n + +# These masks are used to pick out segments of numbers to determine +# which direction to round when rounding to nearest. +class h_mask_big: + def __getitem__(self, n): + return (MPZ_ONE<<(n-1))-1 + +h_mask_small = [0]+[((MPZ_ONE<<(_-1))-1) for _ in range(1, 300)] +h_mask = [h_mask_big(), h_mask_small] + +# The >> operator rounds to floor. shifts_down[rnd][sign] +# tells whether this is the right direction to use, or if the +# number should be negated before shifting +shifts_down = {round_floor:(1,0), round_ceiling:(0,1), + round_down:(1,1), round_up:(0,0)} + + +#----------------------------------------------------------------------------# +# Normalization of raw mpfs # +#----------------------------------------------------------------------------# + +# This function is called almost every time an mpf is created. +# It has been optimized accordingly. + +def _normalize(sign, man, exp, bc, prec, rnd): + """ + Create a raw mpf tuple with value (-1)**sign * man * 2**exp and + normalized mantissa. The mantissa is rounded in the specified + direction if its size exceeds the precision. Trailing zero bits + are also stripped from the mantissa to ensure that the + representation is canonical. + + Conditions on the input: + * The input must represent a regular (finite) number + * The sign bit must be 0 or 1 + * The mantissa must be positive + * The exponent must be an integer + * The bitcount must be exact + + If these conditions are not met, use from_man_exp, mpf_pos, or any + of the conversion functions to create normalized raw mpf tuples. + """ + if not man: + return fzero + # Cut mantissa down to size if larger than target precision + n = bc - prec + if n > 0: + if rnd == round_nearest: + t = man >> (n-1) + if t & 1 and ((t & 2) or (man & h_mask[n<300][n])): + man = (t>>1)+1 + else: + man = t>>1 + elif shifts_down[rnd][sign]: + man >>= n + else: + man = -((-man)>>n) + exp += n + bc = prec + # Strip trailing bits + if not man & 1: + t = trailtable[int(man & 255)] + if not t: + while not man & 255: + man >>= 8 + exp += 8 + bc -= 8 + t = trailtable[int(man & 255)] + man >>= t + exp += t + bc -= t + # Bit count can be wrong if the input mantissa was 1 less than + # a power of 2 and got rounded up, thereby adding an extra bit. + # With trailing bits removed, all powers of two have mantissa 1, + # so this is easy to check for. + if man == 1: + bc = 1 + return sign, man, exp, bc + +def _normalize1(sign, man, exp, bc, prec, rnd): + """same as normalize, but with the added condition that + man is odd or zero + """ + if not man: + return fzero + if bc <= prec: + return sign, man, exp, bc + n = bc - prec + if rnd == round_nearest: + t = man >> (n-1) + if t & 1 and ((t & 2) or (man & h_mask[n<300][n])): + man = (t>>1)+1 + else: + man = t>>1 + elif shifts_down[rnd][sign]: + man >>= n + else: + man = -((-man)>>n) + exp += n + bc = prec + # Strip trailing bits + if not man & 1: + t = trailtable[int(man & 255)] + if not t: + while not man & 255: + man >>= 8 + exp += 8 + bc -= 8 + t = trailtable[int(man & 255)] + man >>= t + exp += t + bc -= t + # Bit count can be wrong if the input mantissa was 1 less than + # a power of 2 and got rounded up, thereby adding an extra bit. + # With trailing bits removed, all powers of two have mantissa 1, + # so this is easy to check for. + if man == 1: + bc = 1 + return sign, man, exp, bc + +try: + _exp_types = (int, long) +except NameError: + _exp_types = (int,) + +def strict_normalize(sign, man, exp, bc, prec, rnd): + """Additional checks on the components of an mpf. Enable tests by setting + the environment variable MPMATH_STRICT to Y.""" + assert type(man) == MPZ_TYPE + assert type(bc) in _exp_types + assert type(exp) in _exp_types + assert bc == bitcount(man) + return _normalize(sign, man, exp, bc, prec, rnd) + +def strict_normalize1(sign, man, exp, bc, prec, rnd): + """Additional checks on the components of an mpf. Enable tests by setting + the environment variable MPMATH_STRICT to Y.""" + assert type(man) == MPZ_TYPE + assert type(bc) in _exp_types + assert type(exp) in _exp_types + assert bc == bitcount(man) + assert (not man) or (man & 1) + return _normalize1(sign, man, exp, bc, prec, rnd) + +if BACKEND == 'gmpy' and '_mpmath_normalize' in dir(gmpy): + _normalize = gmpy._mpmath_normalize + _normalize1 = gmpy._mpmath_normalize + +if BACKEND == 'sage': + _normalize = _normalize1 = sage_utils.normalize + +if STRICT: + normalize = strict_normalize + normalize1 = strict_normalize1 +else: + normalize = _normalize + normalize1 = _normalize1 + +#----------------------------------------------------------------------------# +# Conversion functions # +#----------------------------------------------------------------------------# + +def from_man_exp(man, exp, prec=None, rnd=round_fast): + """Create raw mpf from (man, exp) pair. The mantissa may be signed. + If no precision is specified, the mantissa is stored exactly.""" + man = MPZ(man) + sign = 0 + if man < 0: + sign = 1 + man = -man + if man < 1024: + bc = bctable[int(man)] + else: + bc = bitcount(man) + if not prec: + if not man: + return fzero + if not man & 1: + if man & 2: + return (sign, man >> 1, exp + 1, bc - 1) + t = trailtable[int(man & 255)] + if not t: + while not man & 255: + man >>= 8 + exp += 8 + bc -= 8 + t = trailtable[int(man & 255)] + man >>= t + exp += t + bc -= t + return (sign, man, exp, bc) + return normalize(sign, man, exp, bc, prec, rnd) + +int_cache = dict((n, from_man_exp(n, 0)) for n in range(-10, 257)) + +if BACKEND == 'gmpy' and '_mpmath_create' in dir(gmpy): + from_man_exp = gmpy._mpmath_create + +if BACKEND == 'sage': + from_man_exp = sage_utils.from_man_exp + +def from_int(n, prec=0, rnd=round_fast): + """Create a raw mpf from an integer. If no precision is specified, + the mantissa is stored exactly.""" + if not prec: + if n in int_cache: + return int_cache[n] + return from_man_exp(n, 0, prec, rnd) + +def to_man_exp(s): + """Return (man, exp) of a raw mpf. Raise an error if inf/nan.""" + sign, man, exp, bc = s + if (not man) and exp: + raise ValueError("mantissa and exponent are undefined for %s" % man) + return man, exp + +def to_int(s, rnd=None): + """Convert a raw mpf to the nearest int. Rounding is done down by + default (same as int(float) in Python), but can be changed. If the + input is inf/nan, an exception is raised.""" + sign, man, exp, bc = s + if (not man) and exp: + raise ValueError("cannot convert inf or nan to int") + if exp >= 0: + if sign: + return (-man) << exp + return man << exp + # Make default rounding fast + if not rnd: + if sign: + return -(man >> (-exp)) + else: + return man >> (-exp) + if sign: + return round_int(-man, -exp, rnd) + else: + return round_int(man, -exp, rnd) + +def mpf_round_int(s, rnd): + sign, man, exp, bc = s + if (not man) and exp: + return s + if exp >= 0: + return s + mag = exp+bc + if mag < 1: + if rnd == round_ceiling: + if sign: return fzero + else: return fone + elif rnd == round_floor: + if sign: return fnone + else: return fzero + elif rnd == round_nearest: + if mag < 0 or man == MPZ_ONE: return fzero + elif sign: return fnone + else: return fone + else: + raise NotImplementedError + return mpf_pos(s, min(bc, mag), rnd) + +def mpf_floor(s, prec=0, rnd=round_fast): + v = mpf_round_int(s, round_floor) + if prec: + v = mpf_pos(v, prec, rnd) + return v + +def mpf_ceil(s, prec=0, rnd=round_fast): + v = mpf_round_int(s, round_ceiling) + if prec: + v = mpf_pos(v, prec, rnd) + return v + +def mpf_nint(s, prec=0, rnd=round_fast): + v = mpf_round_int(s, round_nearest) + if prec: + v = mpf_pos(v, prec, rnd) + return v + +def mpf_frac(s, prec=0, rnd=round_fast): + return mpf_sub(s, mpf_floor(s), prec, rnd) + +def from_float(x, prec=53, rnd=round_fast): + """Create a raw mpf from a Python float, rounding if necessary. + If prec >= 53, the result is guaranteed to represent exactly the + same number as the input. If prec is not specified, use prec=53.""" + # frexp only raises an exception for nan on some platforms + if x != x: + return fnan + # in Python2.5 math.frexp gives an exception for float infinity + # in Python2.6 it returns (float infinity, 0) + try: + m, e = math.frexp(x) + except: + if x == math_float_inf: return finf + if x == -math_float_inf: return fninf + return fnan + if x == math_float_inf: return finf + if x == -math_float_inf: return fninf + return from_man_exp(int(m*(1<<53)), e-53, prec, rnd) + +def from_npfloat(x, prec=113, rnd=round_fast): + """Create a raw mpf from a numpy float, rounding if necessary. + If prec >= 113, the result is guaranteed to represent exactly the + same number as the input. If prec is not specified, use prec=113.""" + y = float(x) + if x == y: # ldexp overflows for float16 + return from_float(y, prec, rnd) + import numpy as np + if np.isfinite(x): + m, e = np.frexp(x) + return from_man_exp(int(np.ldexp(m, 113)), int(e-113), prec, rnd) + if np.isposinf(x): return finf + if np.isneginf(x): return fninf + return fnan + +def from_Decimal(x, prec=None, rnd=round_fast): + """Create a raw mpf from a Decimal, rounding if necessary. + If prec is not specified, use the equivalent bit precision + of the number of significant digits in x.""" + if x.is_nan(): return fnan + if x.is_infinite(): return fninf if x.is_signed() else finf + if prec is None: + prec = int(len(x.as_tuple()[1])*3.3219280948873626) + return from_str(str(x), prec, rnd) + +def to_float(s, strict=False, rnd=round_fast): + """ + Convert a raw mpf to a Python float. The result is exact if the + bitcount of s is <= 53 and no underflow/overflow occurs. + + If the number is too large or too small to represent as a regular + float, it will be converted to inf or 0.0. Setting strict=True + forces an OverflowError to be raised instead. + + Warning: with a directed rounding mode, the correct nearest representable + floating-point number in the specified direction might not be computed + in case of overflow or (gradual) underflow. + """ + sign, man, exp, bc = s + if not man: + if s == fzero: return 0.0 + if s == finf: return math_float_inf + if s == fninf: return -math_float_inf + return math_float_inf/math_float_inf + if bc > 53: + sign, man, exp, bc = normalize1(sign, man, exp, bc, 53, rnd) + if sign: + man = -man + try: + return math.ldexp(man, exp) + except OverflowError: + if strict: + raise + # Overflow to infinity + if exp + bc > 0: + if sign: + return -math_float_inf + else: + return math_float_inf + # Underflow to zero + return 0.0 + +def from_rational(p, q, prec, rnd=round_fast): + """Create a raw mpf from a rational number p/q, round if + necessary.""" + return mpf_div(from_int(p), from_int(q), prec, rnd) + +def to_rational(s): + """Convert a raw mpf to a rational number. Return integers (p, q) + such that s = p/q exactly.""" + sign, man, exp, bc = s + if sign: + man = -man + if bc == -1: + raise ValueError("cannot convert %s to a rational number" % man) + if exp >= 0: + return man * (1<= 0: return (-man) << offset + else: return (-man) >> (-offset) + else: + if offset >= 0: return man << offset + else: return man >> (-offset) + + +############################################################################## +############################################################################## + +#----------------------------------------------------------------------------# +# Arithmetic operations, etc. # +#----------------------------------------------------------------------------# + +def mpf_rand(prec): + """Return a raw mpf chosen randomly from [0, 1), with prec bits + in the mantissa.""" + global getrandbits + if not getrandbits: + import random + getrandbits = random.getrandbits + return from_man_exp(getrandbits(prec), -prec, prec, round_floor) + +def mpf_eq(s, t): + """Test equality of two raw mpfs. This is simply tuple comparison + unless either number is nan, in which case the result is False.""" + if not s[1] or not t[1]: + if s == fnan or t == fnan: + return False + return s == t + +def mpf_hash(s): + # Duplicate the new hash algorithm introduces in Python 3.2. + if sys.version_info >= (3, 2): + ssign, sman, sexp, sbc = s + + # Handle special numbers + if not sman: + if s == fnan: return sys.hash_info.nan + if s == finf: return sys.hash_info.inf + if s == fninf: return -sys.hash_info.inf + h = sman % HASH_MODULUS + if sexp >= 0: + sexp = sexp % HASH_BITS + else: + sexp = HASH_BITS - 1 - ((-1 - sexp) % HASH_BITS) + h = (h << sexp) % HASH_MODULUS + if ssign: h = -h + if h == -1: h = -2 + return int(h) + else: + try: + # Try to be compatible with hash values for floats and ints + return hash(to_float(s, strict=1)) + except OverflowError: + # We must unfortunately sacrifice compatibility with ints here. + # We could do hash(man << exp) when the exponent is positive, but + # this would cause unreasonable inefficiency for large numbers. + return hash(s) + +def mpf_cmp(s, t): + """Compare the raw mpfs s and t. Return -1 if s < t, 0 if s == t, + and 1 if s > t. (Same convention as Python's cmp() function.)""" + + # In principle, a comparison amounts to determining the sign of s-t. + # A full subtraction is relatively slow, however, so we first try to + # look at the components. + ssign, sman, sexp, sbc = s + tsign, tman, texp, tbc = t + + # Handle zeros and special numbers + if not sman or not tman: + if s == fzero: return -mpf_sign(t) + if t == fzero: return mpf_sign(s) + if s == t: return 0 + # Follow same convention as Python's cmp for float nan + if t == fnan: return 1 + if s == finf: return 1 + if t == fninf: return 1 + return -1 + # Different sides of zero + if ssign != tsign: + if not ssign: return 1 + return -1 + # This reduces to direct integer comparison + if sexp == texp: + if sman == tman: + return 0 + if sman > tman: + if ssign: return -1 + else: return 1 + else: + if ssign: return 1 + else: return -1 + # Check position of the highest set bit in each number. If + # different, there is certainly an inequality. + a = sbc + sexp + b = tbc + texp + if ssign: + if a < b: return 1 + if a > b: return -1 + else: + if a < b: return -1 + if a > b: return 1 + + # Both numbers have the same highest bit. Subtract to find + # how the lower bits compare. + delta = mpf_sub(s, t, 5, round_floor) + if delta[0]: + return -1 + return 1 + +def mpf_lt(s, t): + if s == fnan or t == fnan: + return False + return mpf_cmp(s, t) < 0 + +def mpf_le(s, t): + if s == fnan or t == fnan: + return False + return mpf_cmp(s, t) <= 0 + +def mpf_gt(s, t): + if s == fnan or t == fnan: + return False + return mpf_cmp(s, t) > 0 + +def mpf_ge(s, t): + if s == fnan or t == fnan: + return False + return mpf_cmp(s, t) >= 0 + +def mpf_min_max(seq): + min = max = seq[0] + for x in seq[1:]: + if mpf_lt(x, min): min = x + if mpf_gt(x, max): max = x + return min, max + +def mpf_pos(s, prec=0, rnd=round_fast): + """Calculate 0+s for a raw mpf (i.e., just round s to the specified + precision).""" + if prec: + sign, man, exp, bc = s + if (not man) and exp: + return s + return normalize1(sign, man, exp, bc, prec, rnd) + return s + +def mpf_neg(s, prec=None, rnd=round_fast): + """Negate a raw mpf (return -s), rounding the result to the + specified precision. The prec argument can be omitted to do the + operation exactly.""" + sign, man, exp, bc = s + if not man: + if exp: + if s == finf: return fninf + if s == fninf: return finf + return s + if not prec: + return (1-sign, man, exp, bc) + return normalize1(1-sign, man, exp, bc, prec, rnd) + +def mpf_abs(s, prec=None, rnd=round_fast): + """Return abs(s) of the raw mpf s, rounded to the specified + precision. The prec argument can be omitted to generate an + exact result.""" + sign, man, exp, bc = s + if (not man) and exp: + if s == fninf: + return finf + return s + if not prec: + if sign: + return (0, man, exp, bc) + return s + return normalize1(0, man, exp, bc, prec, rnd) + +def mpf_sign(s): + """Return -1, 0, or 1 (as a Python int, not a raw mpf) depending on + whether s is negative, zero, or positive. (Nan is taken to give 0.)""" + sign, man, exp, bc = s + if not man: + if s == finf: return 1 + if s == fninf: return -1 + return 0 + return (-1) ** sign + +def mpf_add(s, t, prec=0, rnd=round_fast, _sub=0): + """ + Add the two raw mpf values s and t. + + With prec=0, no rounding is performed. Note that this can + produce a very large mantissa (potentially too large to fit + in memory) if exponents are far apart. + """ + ssign, sman, sexp, sbc = s + tsign, tman, texp, tbc = t + tsign ^= _sub + # Standard case: two nonzero, regular numbers + if sman and tman: + offset = sexp - texp + if offset: + if offset > 0: + # Outside precision range; only need to perturb + if offset > 100 and prec: + delta = sbc + sexp - tbc - texp + if delta > prec + 4: + offset = prec + 4 + sman <<= offset + if tsign == ssign: sman += 1 + else: sman -= 1 + return normalize1(ssign, sman, sexp-offset, + bitcount(sman), prec, rnd) + # Add + if ssign == tsign: + man = tman + (sman << offset) + # Subtract + else: + if ssign: man = tman - (sman << offset) + else: man = (sman << offset) - tman + if man >= 0: + ssign = 0 + else: + man = -man + ssign = 1 + bc = bitcount(man) + return normalize1(ssign, man, texp, bc, prec or bc, rnd) + elif offset < 0: + # Outside precision range; only need to perturb + if offset < -100 and prec: + delta = tbc + texp - sbc - sexp + if delta > prec + 4: + offset = prec + 4 + tman <<= offset + if ssign == tsign: tman += 1 + else: tman -= 1 + return normalize1(tsign, tman, texp-offset, + bitcount(tman), prec, rnd) + # Add + if ssign == tsign: + man = sman + (tman << -offset) + # Subtract + else: + if tsign: man = sman - (tman << -offset) + else: man = (tman << -offset) - sman + if man >= 0: + ssign = 0 + else: + man = -man + ssign = 1 + bc = bitcount(man) + return normalize1(ssign, man, sexp, bc, prec or bc, rnd) + # Equal exponents; no shifting necessary + if ssign == tsign: + man = tman + sman + else: + if ssign: man = tman - sman + else: man = sman - tman + if man >= 0: + ssign = 0 + else: + man = -man + ssign = 1 + bc = bitcount(man) + return normalize(ssign, man, texp, bc, prec or bc, rnd) + # Handle zeros and special numbers + if _sub: + t = mpf_neg(t) + if not sman: + if sexp: + if s == t or tman or not texp: + return s + return fnan + if tman: + return normalize1(tsign, tman, texp, tbc, prec or tbc, rnd) + return t + if texp: + return t + if sman: + return normalize1(ssign, sman, sexp, sbc, prec or sbc, rnd) + return s + +def mpf_sub(s, t, prec=0, rnd=round_fast): + """Return the difference of two raw mpfs, s-t. This function is + simply a wrapper of mpf_add that changes the sign of t.""" + return mpf_add(s, t, prec, rnd, 1) + +def mpf_sum(xs, prec=0, rnd=round_fast, absolute=False): + """ + Sum a list of mpf values efficiently and accurately + (typically no temporary roundoff occurs). If prec=0, + the final result will not be rounded either. + + There may be roundoff error or cancellation if extremely + large exponent differences occur. + + With absolute=True, sums the absolute values. + """ + man = 0 + exp = 0 + max_extra_prec = prec*2 or 1000000 # XXX + special = None + for x in xs: + xsign, xman, xexp, xbc = x + if xman: + if xsign and not absolute: + xman = -xman + delta = xexp - exp + if xexp >= exp: + # x much larger than existing sum? + # first: quick test + if (delta > max_extra_prec) and \ + ((not man) or delta-bitcount(abs(man)) > max_extra_prec): + man = xman + exp = xexp + else: + man += (xman << delta) + else: + delta = -delta + # x much smaller than existing sum? + if delta-xbc > max_extra_prec: + if not man: + man, exp = xman, xexp + else: + man = (man << delta) + xman + exp = xexp + elif xexp: + if absolute: + x = mpf_abs(x) + special = mpf_add(special or fzero, x, 1) + # Will be inf or nan + if special: + return special + return from_man_exp(man, exp, prec, rnd) + +def gmpy_mpf_mul(s, t, prec=0, rnd=round_fast): + """Multiply two raw mpfs""" + ssign, sman, sexp, sbc = s + tsign, tman, texp, tbc = t + sign = ssign ^ tsign + man = sman*tman + if man: + bc = bitcount(man) + if prec: + return normalize1(sign, man, sexp+texp, bc, prec, rnd) + else: + return (sign, man, sexp+texp, bc) + s_special = (not sman) and sexp + t_special = (not tman) and texp + if not s_special and not t_special: + return fzero + if fnan in (s, t): return fnan + if (not tman) and texp: s, t = t, s + if t == fzero: return fnan + return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] + +def gmpy_mpf_mul_int(s, n, prec, rnd=round_fast): + """Multiply by a Python integer.""" + sign, man, exp, bc = s + if not man: + return mpf_mul(s, from_int(n), prec, rnd) + if not n: + return fzero + if n < 0: + sign ^= 1 + n = -n + man *= n + return normalize(sign, man, exp, bitcount(man), prec, rnd) + +def python_mpf_mul(s, t, prec=0, rnd=round_fast): + """Multiply two raw mpfs""" + ssign, sman, sexp, sbc = s + tsign, tman, texp, tbc = t + sign = ssign ^ tsign + man = sman*tman + if man: + bc = sbc + tbc - 1 + bc += int(man>>bc) + if prec: + return normalize1(sign, man, sexp+texp, bc, prec, rnd) + else: + return (sign, man, sexp+texp, bc) + s_special = (not sman) and sexp + t_special = (not tman) and texp + if not s_special and not t_special: + return fzero + if fnan in (s, t): return fnan + if (not tman) and texp: s, t = t, s + if t == fzero: return fnan + return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] + +def python_mpf_mul_int(s, n, prec, rnd=round_fast): + """Multiply by a Python integer.""" + sign, man, exp, bc = s + if not man: + return mpf_mul(s, from_int(n), prec, rnd) + if not n: + return fzero + if n < 0: + sign ^= 1 + n = -n + man *= n + # Generally n will be small + if n < 1024: + bc += bctable[int(n)] - 1 + else: + bc += bitcount(n) - 1 + bc += int(man>>bc) + return normalize(sign, man, exp, bc, prec, rnd) + + +if BACKEND == 'gmpy': + mpf_mul = gmpy_mpf_mul + mpf_mul_int = gmpy_mpf_mul_int +else: + mpf_mul = python_mpf_mul + mpf_mul_int = python_mpf_mul_int + +def mpf_shift(s, n): + """Quickly multiply the raw mpf s by 2**n without rounding.""" + sign, man, exp, bc = s + if not man: + return s + return sign, man, exp+n, bc + +def mpf_frexp(x): + """Convert x = y*2**n to (y, n) with abs(y) in [0.5, 1) if nonzero""" + sign, man, exp, bc = x + if not man: + if x == fzero: + return (fzero, 0) + else: + raise ValueError + return mpf_shift(x, -bc-exp), bc+exp + +def mpf_div(s, t, prec, rnd=round_fast): + """Floating-point division""" + ssign, sman, sexp, sbc = s + tsign, tman, texp, tbc = t + if not sman or not tman: + if s == fzero: + if t == fzero: raise ZeroDivisionError + if t == fnan: return fnan + return fzero + if t == fzero: + raise ZeroDivisionError + s_special = (not sman) and sexp + t_special = (not tman) and texp + if s_special and t_special: + return fnan + if s == fnan or t == fnan: + return fnan + if not t_special: + if t == fzero: + return fnan + return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)] + return fzero + sign = ssign ^ tsign + if tman == 1: + return normalize1(sign, sman, sexp-texp, sbc, prec, rnd) + # Same strategy as for addition: if there is a remainder, perturb + # the result a few bits outside the precision range before rounding + extra = prec - sbc + tbc + 5 + if extra < 5: + extra = 5 + quot, rem = divmod(sman< sexp+sbc: + return s + # Another important special case: this allows us to do e.g. x % 1.0 + # to find the fractional part of x, and it will work when x is huge. + if tman == 1 and sexp > texp+tbc: + return fzero + base = min(sexp, texp) + sman = (-1)**ssign * sman + tman = (-1)**tsign * tman + man = (sman << (sexp-base)) % (tman << (texp-base)) + if man >= 0: + sign = 0 + else: + man = -man + sign = 1 + return normalize(sign, man, base, bitcount(man), prec, rnd) + +reciprocal_rnd = { + round_down : round_up, + round_up : round_down, + round_floor : round_ceiling, + round_ceiling : round_floor, + round_nearest : round_nearest +} + +negative_rnd = { + round_down : round_down, + round_up : round_up, + round_floor : round_ceiling, + round_ceiling : round_floor, + round_nearest : round_nearest +} + +def mpf_pow_int(s, n, prec, rnd=round_fast): + """Compute s**n, where s is a raw mpf and n is a Python integer.""" + sign, man, exp, bc = s + + if (not man) and exp: + if s == finf: + if n > 0: return s + if n == 0: return fnan + return fzero + if s == fninf: + if n > 0: return [finf, fninf][n & 1] + if n == 0: return fnan + return fzero + return fnan + + n = int(n) + if n == 0: return fone + if n == 1: return mpf_pos(s, prec, rnd) + if n == 2: + _, man, exp, bc = s + if not man: + return fzero + man = man*man + if man == 1: + return (0, MPZ_ONE, exp+exp, 1) + bc = bc + bc - 2 + bc += bctable[int(man>>bc)] + return normalize1(0, man, exp+exp, bc, prec, rnd) + if n == -1: return mpf_div(fone, s, prec, rnd) + if n < 0: + inverse = mpf_pow_int(s, -n, prec+5, reciprocal_rnd[rnd]) + return mpf_div(fone, inverse, prec, rnd) + + result_sign = sign & n + + # Use exact integer power when the exact mantissa is small + if man == 1: + return (result_sign, MPZ_ONE, exp*n, 1) + if bc*n < 1000: + man **= n + return normalize1(result_sign, man, exp*n, bitcount(man), prec, rnd) + + # Use directed rounding all the way through to maintain rigorous + # bounds for interval arithmetic + rounds_down = (rnd == round_nearest) or \ + shifts_down[rnd][result_sign] + + # Now we perform binary exponentiation. Need to estimate precision + # to avoid rounding errors from temporary operations. Roughly log_2(n) + # operations are performed. + workprec = prec + 4*bitcount(n) + 4 + _, pm, pe, pbc = fone + while 1: + if n & 1: + pm = pm*man + pe = pe+exp + pbc += bc - 2 + pbc = pbc + bctable[int(pm >> pbc)] + if pbc > workprec: + if rounds_down: + pm = pm >> (pbc-workprec) + else: + pm = -((-pm) >> (pbc-workprec)) + pe += pbc - workprec + pbc = workprec + n -= 1 + if not n: + break + man = man*man + exp = exp+exp + bc = bc + bc - 2 + bc = bc + bctable[int(man >> bc)] + if bc > workprec: + if rounds_down: + man = man >> (bc-workprec) + else: + man = -((-man) >> (bc-workprec)) + exp += bc - workprec + bc = workprec + n = n // 2 + + return normalize(result_sign, pm, pe, pbc, prec, rnd) + + +def mpf_perturb(x, eps_sign, prec, rnd): + """ + For nonzero x, calculate x + eps with directed rounding, where + eps < prec relatively and eps has the given sign (0 for + positive, 1 for negative). + + With rounding to nearest, this is taken to simply normalize + x to the given precision. + """ + if rnd == round_nearest: + return mpf_pos(x, prec, rnd) + sign, man, exp, bc = x + eps = (eps_sign, MPZ_ONE, exp+bc-prec-1, 1) + if sign: + away = (rnd in (round_down, round_ceiling)) ^ eps_sign + else: + away = (rnd in (round_up, round_ceiling)) ^ eps_sign + if away: + return mpf_add(x, eps, prec, rnd) + else: + return mpf_pos(x, prec, rnd) + + +#----------------------------------------------------------------------------# +# Radix conversion # +#----------------------------------------------------------------------------# + +def to_digits_exp(s, dps): + """Helper function for representing the floating-point number s as + a decimal with dps digits. Returns (sign, string, exponent) where + sign is '' or '-', string is the digit string, and exponent is + the decimal exponent as an int. + + If inexact, the decimal representation is rounded toward zero.""" + + # Extract sign first so it doesn't mess up the string digit count + if s[0]: + sign = '-' + s = mpf_neg(s) + else: + sign = '' + _sign, man, exp, bc = s + + if not man: + return '', '0', 0 + + bitprec = int(dps * math.log(10,2)) + 10 + + # Cut down to size + # TODO: account for precision when doing this + exp_from_1 = exp + bc + if abs(exp_from_1) > 3500: + from .libelefun import mpf_ln2, mpf_ln10 + # Set b = int(exp * log(2)/log(10)) + # If exp is huge, we must use high-precision arithmetic to + # find the nearest power of ten + expprec = bitcount(abs(exp)) + 5 + tmp = from_int(exp) + tmp = mpf_mul(tmp, mpf_ln2(expprec)) + tmp = mpf_div(tmp, mpf_ln10(expprec), expprec) + b = to_int(tmp) + s = mpf_div(s, mpf_pow_int(ften, b, bitprec), bitprec) + _sign, man, exp, bc = s + exponent = b + else: + exponent = 0 + + # First, calculate mantissa digits by converting to a binary + # fixed-point number and then converting that number to + # a decimal fixed-point number. + fixprec = max(bitprec - exp - bc, 0) + fixdps = int(fixprec / math.log(10,2) + 0.5) + sf = to_fixed(s, fixprec) + sd = bin_to_radix(sf, fixprec, 10, fixdps) + digits = numeral(sd, base=10, size=dps) + + exponent += len(digits) - fixdps - 1 + return sign, digits, exponent + +def to_str(s, dps, strip_zeros=True, min_fixed=None, max_fixed=None, + show_zero_exponent=False): + """ + Convert a raw mpf to a decimal floating-point literal with at + most `dps` decimal digits in the mantissa (not counting extra zeros + that may be inserted for visual purposes). + + The number will be printed in fixed-point format if the position + of the leading digit is strictly between min_fixed + (default = min(-dps/3,-5)) and max_fixed (default = dps). + + To force fixed-point format always, set min_fixed = -inf, + max_fixed = +inf. To force floating-point format, set + min_fixed >= max_fixed. + + The literal is formatted so that it can be parsed back to a number + by to_str, float() or Decimal(). + """ + + # Special numbers + if not s[1]: + if s == fzero: + if dps: t = '0.0' + else: t = '.0' + if show_zero_exponent: + t += 'e+0' + return t + if s == finf: return '+inf' + if s == fninf: return '-inf' + if s == fnan: return 'nan' + raise ValueError + + if min_fixed is None: min_fixed = min(-(dps//3), -5) + if max_fixed is None: max_fixed = dps + + # to_digits_exp rounds to floor. + # This sometimes kills some instances of "...00001" + sign, digits, exponent = to_digits_exp(s, dps+3) + + # No digits: show only .0; round exponent to nearest + if not dps: + if digits[0] in '56789': + exponent += 1 + digits = ".0" + + else: + # Rounding up kills some instances of "...99999" + if len(digits) > dps and digits[dps] in '56789': + digits = digits[:dps] + i = dps - 1 + while i >= 0 and digits[i] == '9': + i -= 1 + if i >= 0: + digits = digits[:i] + str(int(digits[i]) + 1) + '0' * (dps - i - 1) + else: + digits = '1' + '0' * (dps - 1) + exponent += 1 + else: + digits = digits[:dps] + + # Prettify numbers close to unit magnitude + if min_fixed < exponent < max_fixed: + if exponent < 0: + digits = ("0"*int(-exponent)) + digits + split = 1 + else: + split = exponent + 1 + if split > dps: + digits += "0"*(split-dps) + exponent = 0 + else: + split = 1 + + digits = (digits[:split] + "." + digits[split:]) + + if strip_zeros: + # Clean up trailing zeros + digits = digits.rstrip('0') + if digits[-1] == ".": + digits += "0" + + if exponent == 0 and dps and not show_zero_exponent: return sign + digits + if exponent >= 0: return sign + digits + "e+" + str(exponent) + if exponent < 0: return sign + digits + "e" + str(exponent) + +def str_to_man_exp(x, base=10): + """Helper function for from_str.""" + x = x.lower().rstrip('l') + # Verify that the input is a valid float literal + float(x) + # Split into mantissa, exponent + parts = x.split('e') + if len(parts) == 1: + exp = 0 + else: # == 2 + x = parts[0] + exp = int(parts[1]) + # Look for radix point in mantissa + parts = x.split('.') + if len(parts) == 2: + a, b = parts[0], parts[1].rstrip('0') + exp -= len(b) + x = a + b + x = MPZ(int(x, base)) + return x, exp + +special_str = {'inf':finf, '+inf':finf, '-inf':fninf, 'nan':fnan} + +def from_str(x, prec, rnd=round_fast): + """Create a raw mpf from a decimal literal, rounding in the + specified direction if the input number cannot be represented + exactly as a binary floating-point number with the given number of + bits. The literal syntax accepted is the same as for Python + floats. + + TODO: the rounding does not work properly for large exponents. + """ + x = x.lower().strip() + if x in special_str: + return special_str[x] + + if '/' in x: + p, q = x.split('/') + p, q = p.rstrip('l'), q.rstrip('l') + return from_rational(int(p), int(q), prec, rnd) + + man, exp = str_to_man_exp(x, base=10) + + # XXX: appropriate cutoffs & track direction + # note no factors of 5 + if abs(exp) > 400: + s = from_int(man, prec+10) + s = mpf_mul(s, mpf_pow_int(ften, exp, prec+10), prec, rnd) + else: + if exp >= 0: + s = from_int(man * 10**exp, prec, rnd) + else: + s = from_rational(man, 10**-exp, prec, rnd) + return s + +# Binary string conversion. These are currently mainly used for debugging +# and could use some improvement in the future + +def from_bstr(x): + man, exp = str_to_man_exp(x, base=2) + man = MPZ(man) + sign = 0 + if man < 0: + man = -man + sign = 1 + bc = bitcount(man) + return normalize(sign, man, exp, bc, bc, round_floor) + +def to_bstr(x): + sign, man, exp, bc = x + return ['','-'][sign] + numeral(man, size=bitcount(man), base=2) + ("e%i" % exp) + + +#----------------------------------------------------------------------------# +# Square roots # +#----------------------------------------------------------------------------# + + +def mpf_sqrt(s, prec, rnd=round_fast): + """ + Compute the square root of a nonnegative mpf value. The + result is correctly rounded. + """ + sign, man, exp, bc = s + if sign: + raise ComplexResult("square root of a negative number") + if not man: + return s + if exp & 1: + exp -= 1 + man <<= 1 + bc += 1 + elif man == 1: + return normalize1(sign, man, exp//2, bc, prec, rnd) + shift = max(4, 2*prec-bc+4) + shift += shift & 1 + if rnd in 'fd': + man = isqrt(man<= 0: + a = mpf_pos(sa, prec, round_floor) + b = mpf_pos(sb, prec, round_ceiling) + # Upper point nonnegative? + elif sbs >= 0: + a = fzero + negsa = mpf_neg(sa) + if mpf_lt(negsa, sb): + b = mpf_pos(sb, prec, round_ceiling) + else: + b = mpf_pos(negsa, prec, round_ceiling) + # Both negative? + else: + a = mpf_neg(sb, prec, round_floor) + b = mpf_neg(sa, prec, round_ceiling) + return a, b + +# TODO: optimize +def mpi_mul_mpf(s, t, prec): + return mpi_mul(s, (t, t), prec) + +def mpi_div_mpf(s, t, prec): + return mpi_div(s, (t, t), prec) + +def mpi_mul(s, t, prec=0): + sa, sb = s + ta, tb = t + sas = mpf_sign(sa) + sbs = mpf_sign(sb) + tas = mpf_sign(ta) + tbs = mpf_sign(tb) + if sas == sbs == 0: + # Should maybe be undefined + if ta == fninf or tb == finf: + return fninf, finf + return fzero, fzero + if tas == tbs == 0: + # Should maybe be undefined + if sa == fninf or sb == finf: + return fninf, finf + return fzero, fzero + if sas >= 0: + # positive * positive + if tas >= 0: + a = mpf_mul(sa, ta, prec, round_floor) + b = mpf_mul(sb, tb, prec, round_ceiling) + if a == fnan: a = fzero + if b == fnan: b = finf + # positive * negative + elif tbs <= 0: + a = mpf_mul(sb, ta, prec, round_floor) + b = mpf_mul(sa, tb, prec, round_ceiling) + if a == fnan: a = fninf + if b == fnan: b = fzero + # positive * both signs + else: + a = mpf_mul(sb, ta, prec, round_floor) + b = mpf_mul(sb, tb, prec, round_ceiling) + if a == fnan: a = fninf + if b == fnan: b = finf + elif sbs <= 0: + # negative * positive + if tas >= 0: + a = mpf_mul(sa, tb, prec, round_floor) + b = mpf_mul(sb, ta, prec, round_ceiling) + if a == fnan: a = fninf + if b == fnan: b = fzero + # negative * negative + elif tbs <= 0: + a = mpf_mul(sb, tb, prec, round_floor) + b = mpf_mul(sa, ta, prec, round_ceiling) + if a == fnan: a = fzero + if b == fnan: b = finf + # negative * both signs + else: + a = mpf_mul(sa, tb, prec, round_floor) + b = mpf_mul(sa, ta, prec, round_ceiling) + if a == fnan: a = fninf + if b == fnan: b = finf + else: + # General case: perform all cross-multiplications and compare + # Since the multiplications can be done exactly, we need only + # do 4 (instead of 8: two for each rounding mode) + cases = [mpf_mul(sa, ta), mpf_mul(sa, tb), mpf_mul(sb, ta), mpf_mul(sb, tb)] + if fnan in cases: + a, b = (fninf, finf) + else: + a, b = mpf_min_max(cases) + a = mpf_pos(a, prec, round_floor) + b = mpf_pos(b, prec, round_ceiling) + return a, b + +def mpi_square(s, prec=0): + sa, sb = s + if mpf_ge(sa, fzero): + a = mpf_mul(sa, sa, prec, round_floor) + b = mpf_mul(sb, sb, prec, round_ceiling) + elif mpf_le(sb, fzero): + a = mpf_mul(sb, sb, prec, round_floor) + b = mpf_mul(sa, sa, prec, round_ceiling) + else: + sa = mpf_neg(sa) + sa, sb = mpf_min_max([sa, sb]) + a = fzero + b = mpf_mul(sb, sb, prec, round_ceiling) + return a, b + +def mpi_div(s, t, prec): + sa, sb = s + ta, tb = t + sas = mpf_sign(sa) + sbs = mpf_sign(sb) + tas = mpf_sign(ta) + tbs = mpf_sign(tb) + # 0 / X + if sas == sbs == 0: + # 0 / + if (tas < 0 and tbs > 0) or (tas == 0 or tbs == 0): + return fninf, finf + return fzero, fzero + # Denominator contains both negative and positive numbers; + # this should properly be a multi-interval, but the closest + # match is the entire (extended) real line + if tas < 0 and tbs > 0: + return fninf, finf + # Assume denominator to be nonnegative + if tas < 0: + return mpi_div(mpi_neg(s), mpi_neg(t), prec) + # Division by zero + # XXX: make sure all results make sense + if tas == 0: + # Numerator contains both signs? + if sas < 0 and sbs > 0: + return fninf, finf + if tas == tbs: + return fninf, finf + # Numerator positive? + if sas >= 0: + a = mpf_div(sa, tb, prec, round_floor) + b = finf + if sbs <= 0: + a = fninf + b = mpf_div(sb, tb, prec, round_ceiling) + # Division with positive denominator + # We still have to handle nans resulting from inf/0 or inf/inf + else: + # Nonnegative numerator + if sas >= 0: + a = mpf_div(sa, tb, prec, round_floor) + b = mpf_div(sb, ta, prec, round_ceiling) + if a == fnan: a = fzero + if b == fnan: b = finf + # Nonpositive numerator + elif sbs <= 0: + a = mpf_div(sa, ta, prec, round_floor) + b = mpf_div(sb, tb, prec, round_ceiling) + if a == fnan: a = fninf + if b == fnan: b = fzero + # Numerator contains both signs? + else: + a = mpf_div(sa, ta, prec, round_floor) + b = mpf_div(sb, ta, prec, round_ceiling) + if a == fnan: a = fninf + if b == fnan: b = finf + return a, b + +def mpi_pi(prec): + a = mpf_pi(prec, round_floor) + b = mpf_pi(prec, round_ceiling) + return a, b + +def mpi_exp(s, prec): + sa, sb = s + # exp is monotonic + a = mpf_exp(sa, prec, round_floor) + b = mpf_exp(sb, prec, round_ceiling) + return a, b + +def mpi_log(s, prec): + sa, sb = s + # log is monotonic + a = mpf_log(sa, prec, round_floor) + b = mpf_log(sb, prec, round_ceiling) + return a, b + +def mpi_sqrt(s, prec): + sa, sb = s + # sqrt is monotonic + a = mpf_sqrt(sa, prec, round_floor) + b = mpf_sqrt(sb, prec, round_ceiling) + return a, b + +def mpi_atan(s, prec): + sa, sb = s + a = mpf_atan(sa, prec, round_floor) + b = mpf_atan(sb, prec, round_ceiling) + return a, b + +def mpi_pow_int(s, n, prec): + sa, sb = s + if n < 0: + return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec) + if n == 0: + return (fone, fone) + if n == 1: + return s + if n == 2: + return mpi_square(s, prec) + # Odd -- signs are preserved + if n & 1: + a = mpf_pow_int(sa, n, prec, round_floor) + b = mpf_pow_int(sb, n, prec, round_ceiling) + # Even -- important to ensure positivity + else: + sas = mpf_sign(sa) + sbs = mpf_sign(sb) + # Nonnegative? + if sas >= 0: + a = mpf_pow_int(sa, n, prec, round_floor) + b = mpf_pow_int(sb, n, prec, round_ceiling) + # Nonpositive? + elif sbs <= 0: + a = mpf_pow_int(sb, n, prec, round_floor) + b = mpf_pow_int(sa, n, prec, round_ceiling) + # Mixed signs? + else: + a = fzero + # max(-a,b)**n + sa = mpf_neg(sa) + if mpf_ge(sa, sb): + b = mpf_pow_int(sa, n, prec, round_ceiling) + else: + b = mpf_pow_int(sb, n, prec, round_ceiling) + return a, b + +def mpi_pow(s, t, prec): + ta, tb = t + if ta == tb and ta not in (finf, fninf): + if ta == from_int(to_int(ta)): + return mpi_pow_int(s, to_int(ta), prec) + if ta == fhalf: + return mpi_sqrt(s, prec) + u = mpi_log(s, prec + 20) + v = mpi_mul(u, t, prec + 20) + return mpi_exp(v, prec) + +def MIN(x, y): + if mpf_le(x, y): + return x + return y + +def MAX(x, y): + if mpf_ge(x, y): + return x + return y + +def cos_sin_quadrant(x, wp): + sign, man, exp, bc = x + if x == fzero: + return fone, fzero, 0 + # TODO: combine evaluation code to avoid duplicate modulo + c, s = mpf_cos_sin(x, wp) + t, n, wp_ = mod_pi2(man, exp, exp+bc, 15) + if sign: + n = -1-n + return c, s, n + +def mpi_cos_sin(x, prec): + a, b = x + if a == b == fzero: + return (fone, fone), (fzero, fzero) + # Guaranteed to contain both -1 and 1 + if (finf in x) or (fninf in x): + return (fnone, fone), (fnone, fone) + wp = prec + 20 + ca, sa, na = cos_sin_quadrant(a, wp) + cb, sb, nb = cos_sin_quadrant(b, wp) + ca, cb = mpf_min_max([ca, cb]) + sa, sb = mpf_min_max([sa, sb]) + # Both functions are monotonic within one quadrant + if na == nb: + pass + # Guaranteed to contain both -1 and 1 + elif nb - na >= 4: + return (fnone, fone), (fnone, fone) + else: + # cos has maximum between a and b + if na//4 != nb//4: + cb = fone + # cos has minimum + if (na-2)//4 != (nb-2)//4: + ca = fnone + # sin has maximum + if (na-1)//4 != (nb-1)//4: + sb = fone + # sin has minimum + if (na-3)//4 != (nb-3)//4: + sa = fnone + # Perturb to force interval rounding + more = from_man_exp((MPZ_ONE<= 1: + if sign: + return fnone + return fone + return v + ca = finalize(ca, round_floor) + cb = finalize(cb, round_ceiling) + sa = finalize(sa, round_floor) + sb = finalize(sb, round_ceiling) + return (ca,cb), (sa,sb) + +def mpi_cos(x, prec): + return mpi_cos_sin(x, prec)[0] + +def mpi_sin(x, prec): + return mpi_cos_sin(x, prec)[1] + +def mpi_tan(x, prec): + cos, sin = mpi_cos_sin(x, prec+20) + return mpi_div(sin, cos, prec) + +def mpi_cot(x, prec): + cos, sin = mpi_cos_sin(x, prec+20) + return mpi_div(cos, sin, prec) + +def mpi_from_str_a_b(x, y, percent, prec): + wp = prec + 20 + xa = from_str(x, wp, round_floor) + xb = from_str(x, wp, round_ceiling) + #ya = from_str(y, wp, round_floor) + y = from_str(y, wp, round_ceiling) + assert mpf_ge(y, fzero) + if percent: + y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling) + y = mpf_div(y, from_int(100), wp, round_ceiling) + a = mpf_sub(xa, y, prec, round_floor) + b = mpf_add(xb, y, prec, round_ceiling) + return a, b + +def mpi_from_str(s, prec): + """ + Parse an interval number given as a string. + + Allowed forms are + + "-1.23e-27" + Any single decimal floating-point literal. + "a +- b" or "a (b)" + a is the midpoint of the interval and b is the half-width + "a +- b%" or "a (b%)" + a is the midpoint of the interval and the half-width + is b percent of a (`a \times b / 100`). + "[a, b]" + The interval indicated directly. + "x[y,z]e" + x are shared digits, y and z are unequal digits, e is the exponent. + + """ + e = ValueError("Improperly formed interval number '%s'" % s) + s = s.replace(" ", "") + wp = prec + 20 + if "+-" in s: + x, y = s.split("+-") + return mpi_from_str_a_b(x, y, False, prec) + # case 2 + elif "(" in s: + # Don't confuse with a complex number (x,y) + if s[0] == "(" or ")" not in s: + raise e + s = s.replace(")", "") + percent = False + if "%" in s: + if s[-1] != "%": + raise e + percent = True + s = s.replace("%", "") + x, y = s.split("(") + return mpi_from_str_a_b(x, y, percent, prec) + elif "," in s: + if ('[' not in s) or (']' not in s): + raise e + if s[0] == '[': + # case 3 + s = s.replace("[", "") + s = s.replace("]", "") + a, b = s.split(",") + a = from_str(a, prec, round_floor) + b = from_str(b, prec, round_ceiling) + return a, b + else: + # case 4 + x, y = s.split('[') + y, z = y.split(',') + if 'e' in s: + z, e = z.split(']') + else: + z, e = z.rstrip(']'), '' + a = from_str(x+y+e, prec, round_floor) + b = from_str(x+z+e, prec, round_ceiling) + return a, b + else: + a = from_str(s, prec, round_floor) + b = from_str(s, prec, round_ceiling) + return a, b + +def mpi_to_str(x, dps, use_spaces=True, brackets='[]', mode='brackets', error_dps=4, **kwargs): + """ + Convert a mpi interval to a string. + + **Arguments** + + *dps* + decimal places to use for printing + *use_spaces* + use spaces for more readable output, defaults to true + *brackets* + pair of strings (or two-character string) giving left and right brackets + *mode* + mode of display: 'plusminus', 'percent', 'brackets' (default) or 'diff' + *error_dps* + limit the error to *error_dps* digits (mode 'plusminus and 'percent') + + Additional keyword arguments are forwarded to the mpf-to-string conversion + for the components of the output. + + **Examples** + + >>> from mpmath import mpi, mp + >>> mp.dps = 30 + >>> x = mpi(1, 2)._mpi_ + >>> mpi_to_str(x, 2, mode='plusminus') + '1.5 +- 0.5' + >>> mpi_to_str(x, 2, mode='percent') + '1.5 (33.33%)' + >>> mpi_to_str(x, 2, mode='brackets') + '[1.0, 2.0]' + >>> mpi_to_str(x, 2, mode='brackets' , brackets=('<', '>')) + '<1.0, 2.0>' + >>> x = mpi('5.2582327113062393041', '5.2582327113062749951')._mpi_ + >>> mpi_to_str(x, 15, mode='diff') + '5.2582327113062[4, 7]' + >>> mpi_to_str(mpi(0)._mpi_, 2, mode='percent') + '0.0 (0.0%)' + + """ + prec = dps_to_prec(dps) + wp = prec + 20 + a, b = x + mid = mpi_mid(x, prec) + delta = mpi_delta(x, prec) + a_str = to_str(a, dps, **kwargs) + b_str = to_str(b, dps, **kwargs) + mid_str = to_str(mid, dps, **kwargs) + sp = "" + if use_spaces: + sp = " " + br1, br2 = brackets + if mode == 'plusminus': + delta_str = to_str(mpf_shift(delta,-1), dps, **kwargs) + s = mid_str + sp + "+-" + sp + delta_str + elif mode == 'percent': + if mid == fzero: + p = fzero + else: + # p = 100 * delta(x) / (2*mid(x)) + p = mpf_mul(delta, from_int(100)) + p = mpf_div(p, mpf_mul(mid, from_int(2)), wp) + s = mid_str + sp + "(" + to_str(p, error_dps) + "%)" + elif mode == 'brackets': + s = br1 + a_str + "," + sp + b_str + br2 + elif mode == 'diff': + # use more digits if str(x.a) and str(x.b) are equal + if a_str == b_str: + a_str = to_str(a, dps+3, **kwargs) + b_str = to_str(b, dps+3, **kwargs) + # separate mantissa and exponent + a = a_str.split('e') + if len(a) == 1: + a.append('') + b = b_str.split('e') + if len(b) == 1: + b.append('') + if a[1] == b[1]: + if a[0] != b[0]: + for i in xrange(len(a[0]) + 1): + if a[0][i] != b[0][i]: + break + s = (a[0][:i] + br1 + a[0][i:] + ',' + sp + b[0][i:] + br2 + + 'e'*min(len(a[1]), 1) + a[1]) + else: # no difference + s = a[0] + br1 + br2 + 'e'*min(len(a[1]), 1) + a[1] + else: + s = br1 + 'e'.join(a) + ',' + sp + 'e'.join(b) + br2 + else: + raise ValueError("'%s' is unknown mode for printing mpi" % mode) + return s + +def mpci_add(x, y, prec): + a, b = x + c, d = y + return mpi_add(a, c, prec), mpi_add(b, d, prec) + +def mpci_sub(x, y, prec): + a, b = x + c, d = y + return mpi_sub(a, c, prec), mpi_sub(b, d, prec) + +def mpci_neg(x, prec=0): + a, b = x + return mpi_neg(a, prec), mpi_neg(b, prec) + +def mpci_pos(x, prec): + a, b = x + return mpi_pos(a, prec), mpi_pos(b, prec) + +def mpci_mul(x, y, prec): + # TODO: optimize for real/imag cases + a, b = x + c, d = y + r1 = mpi_mul(a,c) + r2 = mpi_mul(b,d) + re = mpi_sub(r1,r2,prec) + i1 = mpi_mul(a,d) + i2 = mpi_mul(b,c) + im = mpi_add(i1,i2,prec) + return re, im + +def mpci_div(x, y, prec): + # TODO: optimize for real/imag cases + a, b = x + c, d = y + wp = prec+20 + m1 = mpi_square(c) + m2 = mpi_square(d) + m = mpi_add(m1,m2,wp) + re = mpi_add(mpi_mul(a,c), mpi_mul(b,d), wp) + im = mpi_sub(mpi_mul(b,c), mpi_mul(a,d), wp) + re = mpi_div(re, m, prec) + im = mpi_div(im, m, prec) + return re, im + +def mpci_exp(x, prec): + a, b = x + wp = prec+20 + r = mpi_exp(a, wp) + c, s = mpi_cos_sin(b, wp) + a = mpi_mul(r, c, prec) + b = mpi_mul(r, s, prec) + return a, b + +def mpi_shift(x, n): + a, b = x + return mpf_shift(a,n), mpf_shift(b,n) + +def mpi_cosh_sinh(x, prec): + # TODO: accuracy for small x + wp = prec+20 + e1 = mpi_exp(x, wp) + e2 = mpi_div(mpi_one, e1, wp) + c = mpi_add(e1, e2, prec) + s = mpi_sub(e1, e2, prec) + c = mpi_shift(c, -1) + s = mpi_shift(s, -1) + return c, s + +def mpci_cos(x, prec): + a, b = x + wp = prec+10 + c, s = mpi_cos_sin(a, wp) + ch, sh = mpi_cosh_sinh(b, wp) + re = mpi_mul(c, ch, prec) + im = mpi_mul(s, sh, prec) + return re, mpi_neg(im) + +def mpci_sin(x, prec): + a, b = x + wp = prec+10 + c, s = mpi_cos_sin(a, wp) + ch, sh = mpi_cosh_sinh(b, wp) + re = mpi_mul(s, ch, prec) + im = mpi_mul(c, sh, prec) + return re, im + +def mpci_abs(x, prec): + a, b = x + if a == mpi_zero: + return mpi_abs(b) + if b == mpi_zero: + return mpi_abs(a) + # Important: nonnegative + a = mpi_square(a) + b = mpi_square(b) + t = mpi_add(a, b, prec+20) + return mpi_sqrt(t, prec) + +def mpi_atan2(y, x, prec): + ya, yb = y + xa, xb = x + # Constrained to the real line + if ya == yb == fzero: + if mpf_ge(xa, fzero): + return mpi_zero + return mpi_pi(prec) + # Right half-plane + if mpf_ge(xa, fzero): + if mpf_ge(ya, fzero): + a = mpf_atan2(ya, xb, prec, round_floor) + else: + a = mpf_atan2(ya, xa, prec, round_floor) + if mpf_ge(yb, fzero): + b = mpf_atan2(yb, xa, prec, round_ceiling) + else: + b = mpf_atan2(yb, xb, prec, round_ceiling) + # Upper half-plane + elif mpf_ge(ya, fzero): + b = mpf_atan2(ya, xa, prec, round_ceiling) + if mpf_le(xb, fzero): + a = mpf_atan2(yb, xb, prec, round_floor) + else: + a = mpf_atan2(ya, xb, prec, round_floor) + # Lower half-plane + elif mpf_le(yb, fzero): + a = mpf_atan2(yb, xa, prec, round_floor) + if mpf_le(xb, fzero): + b = mpf_atan2(ya, xb, prec, round_ceiling) + else: + b = mpf_atan2(yb, xb, prec, round_ceiling) + # Covering the origin + else: + b = mpf_pi(prec, round_ceiling) + a = mpf_neg(b) + return a, b + +def mpci_arg(z, prec): + x, y = z + return mpi_atan2(y, x, prec) + +def mpci_log(z, prec): + x, y = z + re = mpi_log(mpci_abs(z, prec+20), prec) + im = mpci_arg(z, prec) + return re, im + +def mpci_pow(x, y, prec): + # TODO: recognize/speed up real cases, integer y + yre, yim = y + if yim == mpi_zero: + ya, yb = yre + if ya == yb: + sign, man, exp, bc = yb + if man and exp >= 0: + return mpci_pow_int(x, (-1)**sign * int(man<>= 1 + return mpci_pos(result, prec) + +gamma_min_a = from_float(1.46163214496) +gamma_min_b = from_float(1.46163214497) +gamma_min = (gamma_min_a, gamma_min_b) +gamma_mono_imag_a = from_float(-1.1) +gamma_mono_imag_b = from_float(1.1) + +def mpi_overlap(x, y): + a, b = x + c, d = y + if mpf_lt(d, a): return False + if mpf_gt(c, b): return False + return True + +# type = 0 -- gamma +# type = 1 -- factorial +# type = 2 -- 1/gamma +# type = 3 -- log-gamma + +def mpi_gamma(z, prec, type=0): + a, b = z + wp = prec+20 + + if type == 1: + return mpi_gamma(mpi_add(z, mpi_one, wp), prec, 0) + + # increasing + if mpf_gt(a, gamma_min_b): + if type == 0: + c = mpf_gamma(a, prec, round_floor) + d = mpf_gamma(b, prec, round_ceiling) + elif type == 2: + c = mpf_rgamma(b, prec, round_floor) + d = mpf_rgamma(a, prec, round_ceiling) + elif type == 3: + c = mpf_loggamma(a, prec, round_floor) + d = mpf_loggamma(b, prec, round_ceiling) + # decreasing + elif mpf_gt(a, fzero) and mpf_lt(b, gamma_min_a): + if type == 0: + c = mpf_gamma(b, prec, round_floor) + d = mpf_gamma(a, prec, round_ceiling) + elif type == 2: + c = mpf_rgamma(a, prec, round_floor) + d = mpf_rgamma(b, prec, round_ceiling) + elif type == 3: + c = mpf_loggamma(b, prec, round_floor) + d = mpf_loggamma(a, prec, round_ceiling) + else: + # TODO: reflection formula + znew = mpi_add(z, mpi_one, wp) + if type == 0: return mpi_div(mpi_gamma(znew, prec+2, 0), z, prec) + if type == 2: return mpi_mul(mpi_gamma(znew, prec+2, 2), z, prec) + if type == 3: return mpi_sub(mpi_gamma(znew, prec+2, 3), mpi_log(z, prec+2), prec) + return c, d + +def mpci_gamma(z, prec, type=0): + (a1,a2), (b1,b2) = z + + # Real case + if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)): + return mpi_gamma(z, prec, type), mpi_zero + + # Estimate precision + wp = prec+20 + if type != 3: + amag = a2[2]+a2[3] + bmag = b2[2]+b2[3] + if a2 != fzero: + mag = max(amag, bmag) + else: + mag = bmag + an = abs(to_int(a2)) + bn = abs(to_int(b2)) + absn = max(an, bn) + gamma_size = max(0,absn*mag) + wp += bitcount(gamma_size) + + # Assume type != 1 + if type == 1: + (a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2) + type = 0 + + # Avoid non-monotonic region near the negative real axis + if mpf_lt(a1, gamma_min_b): + if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)): + # TODO: reflection formula + #if mpf_lt(a2, mpf_shift(fone,-1)): + # znew = mpci_sub((mpi_one,mpi_zero),z,wp) + # ... + # Recurrence: + # gamma(z) = gamma(z+1)/z + znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2) + if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec) + if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec) + if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec) + + # Use monotonicity (except for a small region close to the + # origin and near poles) + # upper half-plane + if mpf_ge(b1, fzero): + minre = mpc_loggamma((a1,b2), wp, round_floor) + maxre = mpc_loggamma((a2,b1), wp, round_ceiling) + minim = mpc_loggamma((a1,b1), wp, round_floor) + maxim = mpc_loggamma((a2,b2), wp, round_ceiling) + # lower half-plane + elif mpf_le(b2, fzero): + minre = mpc_loggamma((a1,b1), wp, round_floor) + maxre = mpc_loggamma((a2,b2), wp, round_ceiling) + minim = mpc_loggamma((a2,b1), wp, round_floor) + maxim = mpc_loggamma((a1,b2), wp, round_ceiling) + # crosses real axis + else: + maxre = mpc_loggamma((a2,fzero), wp, round_ceiling) + # stretches more into the lower half-plane + if mpf_gt(mpf_neg(b1), b2): + minre = mpc_loggamma((a1,b1), wp, round_ceiling) + else: + minre = mpc_loggamma((a1,b2), wp, round_ceiling) + minim = mpc_loggamma((a2,b1), wp, round_floor) + maxim = mpc_loggamma((a2,b2), wp, round_floor) + + w = (minre[0], maxre[0]), (minim[1], maxim[1]) + if type == 3: + return mpi_pos(w[0], prec), mpi_pos(w[1], prec) + if type == 2: + w = mpci_neg(w) + return mpci_exp(w, prec) + +def mpi_loggamma(z, prec): return mpi_gamma(z, prec, type=3) +def mpci_loggamma(z, prec): return mpci_gamma(z, prec, type=3) + +def mpi_rgamma(z, prec): return mpi_gamma(z, prec, type=2) +def mpci_rgamma(z, prec): return mpci_gamma(z, prec, type=2) + +def mpi_factorial(z, prec): return mpi_gamma(z, prec, type=1) +def mpci_factorial(z, prec): return mpci_gamma(z, prec, type=1) diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/extratest_gamma.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/extratest_gamma.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..44b3d27ff008d76a7c66e2ca11dcdc54244504ff Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/extratest_gamma.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/runtests.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/runtests.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..86e08d146ea595236866c352137368fee6583d06 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/runtests.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_compatibility.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_compatibility.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14531ae8de321c6f6e60d278bde5193e62fc8b5f Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_compatibility.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_convert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_convert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c7642edf6f3c5835958fef7a51e84c249228502 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_convert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_elliptic.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_elliptic.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ec0deb21dc280246d2f0fca2ddb8d6579f47124 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_elliptic.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_gammazeta.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_gammazeta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..88548df8adbcc3ad3368f21ed8404bf4be163a85 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_gammazeta.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_linalg.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_linalg.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..33f7d04e64d182ca4aa1fe2f4b8388f3c0716a79 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_linalg.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_str.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_str.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1357fefff10e97b9f0cba3b84d6f94db4ebd8236 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_str.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_summation.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_summation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..97757912461094d973e8265654d90a53bb13e213 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/mpmath/tests/__pycache__/test_summation.cpython-310.pyc differ