Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sympy/categories/__init__.py +33 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/baseclasses.py +979 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/diagram_drawing.py +2591 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/test_baseclasses.py +209 -0
- env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/test_drawing.py +919 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__init__.py +1 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/_trigonometric_special.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/complexes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/exponential.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/hyperbolic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/integers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/miscellaneous.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/piecewise.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/trigonometric.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/_trigonometric_special.py +260 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/benchmarks/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/benchmarks/__pycache__/bench_exp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/benchmarks/bench_exp.py +11 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/complexes.py +1465 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/exponential.py +1291 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/integers.py +625 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_complexes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_exponential.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_hyperbolic.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_integers.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_interface.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_miscellaneous.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_piecewise.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_trigonometric.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_complexes.py +1018 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_exponential.py +806 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_hyperbolic.py +1460 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_integers.py +632 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_interface.py +72 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_miscellaneous.py +504 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_piecewise.py +1606 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_trigonometric.py +2162 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/trigonometric.py +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__init__.py +1 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/bessel.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/beta_functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/elliptic_integrals.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/gamma_functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/mathieu_functions.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/sympy/categories/__init__.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Category Theory module.
|
3 |
+
|
4 |
+
Provides some of the fundamental category-theory-related classes,
|
5 |
+
including categories, morphisms, diagrams. Functors are not
|
6 |
+
implemented yet.
|
7 |
+
|
8 |
+
The general reference work this module tries to follow is
|
9 |
+
|
10 |
+
[JoyOfCats] J. Adamek, H. Herrlich. G. E. Strecker: Abstract and
|
11 |
+
Concrete Categories. The Joy of Cats.
|
12 |
+
|
13 |
+
The latest version of this book should be available for free download
|
14 |
+
from
|
15 |
+
|
16 |
+
katmat.math.uni-bremen.de/acc/acc.pdf
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
from .baseclasses import (Object, Morphism, IdentityMorphism,
|
21 |
+
NamedMorphism, CompositeMorphism, Category,
|
22 |
+
Diagram)
|
23 |
+
|
24 |
+
from .diagram_drawing import (DiagramGrid, XypicDiagramDrawer,
|
25 |
+
xypic_draw_diagram, preview_diagram)
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
'Object', 'Morphism', 'IdentityMorphism', 'NamedMorphism',
|
29 |
+
'CompositeMorphism', 'Category', 'Diagram',
|
30 |
+
|
31 |
+
'DiagramGrid', 'XypicDiagramDrawer', 'xypic_draw_diagram',
|
32 |
+
'preview_diagram',
|
33 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/baseclasses.py
ADDED
@@ -0,0 +1,979 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, Basic, Dict, Symbol, Tuple, sympify
|
2 |
+
from sympy.core.symbol import Str
|
3 |
+
from sympy.sets import Set, FiniteSet, EmptySet
|
4 |
+
from sympy.utilities.iterables import iterable
|
5 |
+
|
6 |
+
|
7 |
+
class Class(Set):
|
8 |
+
r"""
|
9 |
+
The base class for any kind of class in the set-theoretic sense.
|
10 |
+
|
11 |
+
Explanation
|
12 |
+
===========
|
13 |
+
|
14 |
+
In axiomatic set theories, everything is a class. A class which
|
15 |
+
can be a member of another class is a set. A class which is not a
|
16 |
+
member of another class is a proper class. The class `\{1, 2\}`
|
17 |
+
is a set; the class of all sets is a proper class.
|
18 |
+
|
19 |
+
This class is essentially a synonym for :class:`sympy.core.Set`.
|
20 |
+
The goal of this class is to assure easier migration to the
|
21 |
+
eventual proper implementation of set theory.
|
22 |
+
"""
|
23 |
+
is_proper = False
|
24 |
+
|
25 |
+
|
26 |
+
class Object(Symbol):
|
27 |
+
"""
|
28 |
+
The base class for any kind of object in an abstract category.
|
29 |
+
|
30 |
+
Explanation
|
31 |
+
===========
|
32 |
+
|
33 |
+
While technically any instance of :class:`~.Basic` will do, this
|
34 |
+
class is the recommended way to create abstract objects in
|
35 |
+
abstract categories.
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
class Morphism(Basic):
|
40 |
+
"""
|
41 |
+
The base class for any morphism in an abstract category.
|
42 |
+
|
43 |
+
Explanation
|
44 |
+
===========
|
45 |
+
|
46 |
+
In abstract categories, a morphism is an arrow between two
|
47 |
+
category objects. The object where the arrow starts is called the
|
48 |
+
domain, while the object where the arrow ends is called the
|
49 |
+
codomain.
|
50 |
+
|
51 |
+
Two morphisms between the same pair of objects are considered to
|
52 |
+
be the same morphisms. To distinguish between morphisms between
|
53 |
+
the same objects use :class:`NamedMorphism`.
|
54 |
+
|
55 |
+
It is prohibited to instantiate this class. Use one of the
|
56 |
+
derived classes instead.
|
57 |
+
|
58 |
+
See Also
|
59 |
+
========
|
60 |
+
|
61 |
+
IdentityMorphism, NamedMorphism, CompositeMorphism
|
62 |
+
"""
|
63 |
+
def __new__(cls, domain, codomain):
|
64 |
+
raise(NotImplementedError(
|
65 |
+
"Cannot instantiate Morphism. Use derived classes instead."))
|
66 |
+
|
67 |
+
@property
|
68 |
+
def domain(self):
|
69 |
+
"""
|
70 |
+
Returns the domain of the morphism.
|
71 |
+
|
72 |
+
Examples
|
73 |
+
========
|
74 |
+
|
75 |
+
>>> from sympy.categories import Object, NamedMorphism
|
76 |
+
>>> A = Object("A")
|
77 |
+
>>> B = Object("B")
|
78 |
+
>>> f = NamedMorphism(A, B, "f")
|
79 |
+
>>> f.domain
|
80 |
+
Object("A")
|
81 |
+
|
82 |
+
"""
|
83 |
+
return self.args[0]
|
84 |
+
|
85 |
+
@property
|
86 |
+
def codomain(self):
|
87 |
+
"""
|
88 |
+
Returns the codomain of the morphism.
|
89 |
+
|
90 |
+
Examples
|
91 |
+
========
|
92 |
+
|
93 |
+
>>> from sympy.categories import Object, NamedMorphism
|
94 |
+
>>> A = Object("A")
|
95 |
+
>>> B = Object("B")
|
96 |
+
>>> f = NamedMorphism(A, B, "f")
|
97 |
+
>>> f.codomain
|
98 |
+
Object("B")
|
99 |
+
|
100 |
+
"""
|
101 |
+
return self.args[1]
|
102 |
+
|
103 |
+
def compose(self, other):
|
104 |
+
r"""
|
105 |
+
Composes self with the supplied morphism.
|
106 |
+
|
107 |
+
The order of elements in the composition is the usual order,
|
108 |
+
i.e., to construct `g\circ f` use ``g.compose(f)``.
|
109 |
+
|
110 |
+
Examples
|
111 |
+
========
|
112 |
+
|
113 |
+
>>> from sympy.categories import Object, NamedMorphism
|
114 |
+
>>> A = Object("A")
|
115 |
+
>>> B = Object("B")
|
116 |
+
>>> C = Object("C")
|
117 |
+
>>> f = NamedMorphism(A, B, "f")
|
118 |
+
>>> g = NamedMorphism(B, C, "g")
|
119 |
+
>>> g * f
|
120 |
+
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
|
121 |
+
NamedMorphism(Object("B"), Object("C"), "g")))
|
122 |
+
>>> (g * f).domain
|
123 |
+
Object("A")
|
124 |
+
>>> (g * f).codomain
|
125 |
+
Object("C")
|
126 |
+
|
127 |
+
"""
|
128 |
+
return CompositeMorphism(other, self)
|
129 |
+
|
130 |
+
def __mul__(self, other):
|
131 |
+
r"""
|
132 |
+
Composes self with the supplied morphism.
|
133 |
+
|
134 |
+
The semantics of this operation is given by the following
|
135 |
+
equation: ``g * f == g.compose(f)`` for composable morphisms
|
136 |
+
``g`` and ``f``.
|
137 |
+
|
138 |
+
See Also
|
139 |
+
========
|
140 |
+
|
141 |
+
compose
|
142 |
+
"""
|
143 |
+
return self.compose(other)
|
144 |
+
|
145 |
+
|
146 |
+
class IdentityMorphism(Morphism):
|
147 |
+
"""
|
148 |
+
Represents an identity morphism.
|
149 |
+
|
150 |
+
Explanation
|
151 |
+
===========
|
152 |
+
|
153 |
+
An identity morphism is a morphism with equal domain and codomain,
|
154 |
+
which acts as an identity with respect to composition.
|
155 |
+
|
156 |
+
Examples
|
157 |
+
========
|
158 |
+
|
159 |
+
>>> from sympy.categories import Object, NamedMorphism, IdentityMorphism
|
160 |
+
>>> A = Object("A")
|
161 |
+
>>> B = Object("B")
|
162 |
+
>>> f = NamedMorphism(A, B, "f")
|
163 |
+
>>> id_A = IdentityMorphism(A)
|
164 |
+
>>> id_B = IdentityMorphism(B)
|
165 |
+
>>> f * id_A == f
|
166 |
+
True
|
167 |
+
>>> id_B * f == f
|
168 |
+
True
|
169 |
+
|
170 |
+
See Also
|
171 |
+
========
|
172 |
+
|
173 |
+
Morphism
|
174 |
+
"""
|
175 |
+
def __new__(cls, domain):
|
176 |
+
return Basic.__new__(cls, domain)
|
177 |
+
|
178 |
+
@property
|
179 |
+
def codomain(self):
|
180 |
+
return self.domain
|
181 |
+
|
182 |
+
|
183 |
+
class NamedMorphism(Morphism):
|
184 |
+
"""
|
185 |
+
Represents a morphism which has a name.
|
186 |
+
|
187 |
+
Explanation
|
188 |
+
===========
|
189 |
+
|
190 |
+
Names are used to distinguish between morphisms which have the
|
191 |
+
same domain and codomain: two named morphisms are equal if they
|
192 |
+
have the same domains, codomains, and names.
|
193 |
+
|
194 |
+
Examples
|
195 |
+
========
|
196 |
+
|
197 |
+
>>> from sympy.categories import Object, NamedMorphism
|
198 |
+
>>> A = Object("A")
|
199 |
+
>>> B = Object("B")
|
200 |
+
>>> f = NamedMorphism(A, B, "f")
|
201 |
+
>>> f
|
202 |
+
NamedMorphism(Object("A"), Object("B"), "f")
|
203 |
+
>>> f.name
|
204 |
+
'f'
|
205 |
+
|
206 |
+
See Also
|
207 |
+
========
|
208 |
+
|
209 |
+
Morphism
|
210 |
+
"""
|
211 |
+
def __new__(cls, domain, codomain, name):
|
212 |
+
if not name:
|
213 |
+
raise ValueError("Empty morphism names not allowed.")
|
214 |
+
|
215 |
+
if not isinstance(name, Str):
|
216 |
+
name = Str(name)
|
217 |
+
|
218 |
+
return Basic.__new__(cls, domain, codomain, name)
|
219 |
+
|
220 |
+
@property
|
221 |
+
def name(self):
|
222 |
+
"""
|
223 |
+
Returns the name of the morphism.
|
224 |
+
|
225 |
+
Examples
|
226 |
+
========
|
227 |
+
|
228 |
+
>>> from sympy.categories import Object, NamedMorphism
|
229 |
+
>>> A = Object("A")
|
230 |
+
>>> B = Object("B")
|
231 |
+
>>> f = NamedMorphism(A, B, "f")
|
232 |
+
>>> f.name
|
233 |
+
'f'
|
234 |
+
|
235 |
+
"""
|
236 |
+
return self.args[2].name
|
237 |
+
|
238 |
+
|
239 |
+
class CompositeMorphism(Morphism):
|
240 |
+
r"""
|
241 |
+
Represents a morphism which is a composition of other morphisms.
|
242 |
+
|
243 |
+
Explanation
|
244 |
+
===========
|
245 |
+
|
246 |
+
Two composite morphisms are equal if the morphisms they were
|
247 |
+
obtained from (components) are the same and were listed in the
|
248 |
+
same order.
|
249 |
+
|
250 |
+
The arguments to the constructor for this class should be listed
|
251 |
+
in diagram order: to obtain the composition `g\circ f` from the
|
252 |
+
instances of :class:`Morphism` ``g`` and ``f`` use
|
253 |
+
``CompositeMorphism(f, g)``.
|
254 |
+
|
255 |
+
Examples
|
256 |
+
========
|
257 |
+
|
258 |
+
>>> from sympy.categories import Object, NamedMorphism, CompositeMorphism
|
259 |
+
>>> A = Object("A")
|
260 |
+
>>> B = Object("B")
|
261 |
+
>>> C = Object("C")
|
262 |
+
>>> f = NamedMorphism(A, B, "f")
|
263 |
+
>>> g = NamedMorphism(B, C, "g")
|
264 |
+
>>> g * f
|
265 |
+
CompositeMorphism((NamedMorphism(Object("A"), Object("B"), "f"),
|
266 |
+
NamedMorphism(Object("B"), Object("C"), "g")))
|
267 |
+
>>> CompositeMorphism(f, g) == g * f
|
268 |
+
True
|
269 |
+
|
270 |
+
"""
|
271 |
+
@staticmethod
|
272 |
+
def _add_morphism(t, morphism):
|
273 |
+
"""
|
274 |
+
Intelligently adds ``morphism`` to tuple ``t``.
|
275 |
+
|
276 |
+
Explanation
|
277 |
+
===========
|
278 |
+
|
279 |
+
If ``morphism`` is a composite morphism, its components are
|
280 |
+
added to the tuple. If ``morphism`` is an identity, nothing
|
281 |
+
is added to the tuple.
|
282 |
+
|
283 |
+
No composability checks are performed.
|
284 |
+
"""
|
285 |
+
if isinstance(morphism, CompositeMorphism):
|
286 |
+
# ``morphism`` is a composite morphism; we have to
|
287 |
+
# denest its components.
|
288 |
+
return t + morphism.components
|
289 |
+
elif isinstance(morphism, IdentityMorphism):
|
290 |
+
# ``morphism`` is an identity. Nothing happens.
|
291 |
+
return t
|
292 |
+
else:
|
293 |
+
return t + Tuple(morphism)
|
294 |
+
|
295 |
+
def __new__(cls, *components):
|
296 |
+
if components and not isinstance(components[0], Morphism):
|
297 |
+
# Maybe the user has explicitly supplied a list of
|
298 |
+
# morphisms.
|
299 |
+
return CompositeMorphism.__new__(cls, *components[0])
|
300 |
+
|
301 |
+
normalised_components = Tuple()
|
302 |
+
|
303 |
+
for current, following in zip(components, components[1:]):
|
304 |
+
if not isinstance(current, Morphism) or \
|
305 |
+
not isinstance(following, Morphism):
|
306 |
+
raise TypeError("All components must be morphisms.")
|
307 |
+
|
308 |
+
if current.codomain != following.domain:
|
309 |
+
raise ValueError("Uncomposable morphisms.")
|
310 |
+
|
311 |
+
normalised_components = CompositeMorphism._add_morphism(
|
312 |
+
normalised_components, current)
|
313 |
+
|
314 |
+
# We haven't added the last morphism to the list of normalised
|
315 |
+
# components. Add it now.
|
316 |
+
normalised_components = CompositeMorphism._add_morphism(
|
317 |
+
normalised_components, components[-1])
|
318 |
+
|
319 |
+
if not normalised_components:
|
320 |
+
# If ``normalised_components`` is empty, only identities
|
321 |
+
# were supplied. Since they all were composable, they are
|
322 |
+
# all the same identities.
|
323 |
+
return components[0]
|
324 |
+
elif len(normalised_components) == 1:
|
325 |
+
# No sense to construct a whole CompositeMorphism.
|
326 |
+
return normalised_components[0]
|
327 |
+
|
328 |
+
return Basic.__new__(cls, normalised_components)
|
329 |
+
|
330 |
+
@property
|
331 |
+
def components(self):
|
332 |
+
"""
|
333 |
+
Returns the components of this composite morphism.
|
334 |
+
|
335 |
+
Examples
|
336 |
+
========
|
337 |
+
|
338 |
+
>>> from sympy.categories import Object, NamedMorphism
|
339 |
+
>>> A = Object("A")
|
340 |
+
>>> B = Object("B")
|
341 |
+
>>> C = Object("C")
|
342 |
+
>>> f = NamedMorphism(A, B, "f")
|
343 |
+
>>> g = NamedMorphism(B, C, "g")
|
344 |
+
>>> (g * f).components
|
345 |
+
(NamedMorphism(Object("A"), Object("B"), "f"),
|
346 |
+
NamedMorphism(Object("B"), Object("C"), "g"))
|
347 |
+
|
348 |
+
"""
|
349 |
+
return self.args[0]
|
350 |
+
|
351 |
+
@property
|
352 |
+
def domain(self):
|
353 |
+
"""
|
354 |
+
Returns the domain of this composite morphism.
|
355 |
+
|
356 |
+
The domain of the composite morphism is the domain of its
|
357 |
+
first component.
|
358 |
+
|
359 |
+
Examples
|
360 |
+
========
|
361 |
+
|
362 |
+
>>> from sympy.categories import Object, NamedMorphism
|
363 |
+
>>> A = Object("A")
|
364 |
+
>>> B = Object("B")
|
365 |
+
>>> C = Object("C")
|
366 |
+
>>> f = NamedMorphism(A, B, "f")
|
367 |
+
>>> g = NamedMorphism(B, C, "g")
|
368 |
+
>>> (g * f).domain
|
369 |
+
Object("A")
|
370 |
+
|
371 |
+
"""
|
372 |
+
return self.components[0].domain
|
373 |
+
|
374 |
+
@property
|
375 |
+
def codomain(self):
|
376 |
+
"""
|
377 |
+
Returns the codomain of this composite morphism.
|
378 |
+
|
379 |
+
The codomain of the composite morphism is the codomain of its
|
380 |
+
last component.
|
381 |
+
|
382 |
+
Examples
|
383 |
+
========
|
384 |
+
|
385 |
+
>>> from sympy.categories import Object, NamedMorphism
|
386 |
+
>>> A = Object("A")
|
387 |
+
>>> B = Object("B")
|
388 |
+
>>> C = Object("C")
|
389 |
+
>>> f = NamedMorphism(A, B, "f")
|
390 |
+
>>> g = NamedMorphism(B, C, "g")
|
391 |
+
>>> (g * f).codomain
|
392 |
+
Object("C")
|
393 |
+
|
394 |
+
"""
|
395 |
+
return self.components[-1].codomain
|
396 |
+
|
397 |
+
def flatten(self, new_name):
|
398 |
+
"""
|
399 |
+
Forgets the composite structure of this morphism.
|
400 |
+
|
401 |
+
Explanation
|
402 |
+
===========
|
403 |
+
|
404 |
+
If ``new_name`` is not empty, returns a :class:`NamedMorphism`
|
405 |
+
with the supplied name, otherwise returns a :class:`Morphism`.
|
406 |
+
In both cases the domain of the new morphism is the domain of
|
407 |
+
this composite morphism and the codomain of the new morphism
|
408 |
+
is the codomain of this composite morphism.
|
409 |
+
|
410 |
+
Examples
|
411 |
+
========
|
412 |
+
|
413 |
+
>>> from sympy.categories import Object, NamedMorphism
|
414 |
+
>>> A = Object("A")
|
415 |
+
>>> B = Object("B")
|
416 |
+
>>> C = Object("C")
|
417 |
+
>>> f = NamedMorphism(A, B, "f")
|
418 |
+
>>> g = NamedMorphism(B, C, "g")
|
419 |
+
>>> (g * f).flatten("h")
|
420 |
+
NamedMorphism(Object("A"), Object("C"), "h")
|
421 |
+
|
422 |
+
"""
|
423 |
+
return NamedMorphism(self.domain, self.codomain, new_name)
|
424 |
+
|
425 |
+
|
426 |
+
class Category(Basic):
|
427 |
+
r"""
|
428 |
+
An (abstract) category.
|
429 |
+
|
430 |
+
Explanation
|
431 |
+
===========
|
432 |
+
|
433 |
+
A category [JoyOfCats] is a quadruple `\mbox{K} = (O, \hom, id,
|
434 |
+
\circ)` consisting of
|
435 |
+
|
436 |
+
* a (set-theoretical) class `O`, whose members are called
|
437 |
+
`K`-objects,
|
438 |
+
|
439 |
+
* for each pair `(A, B)` of `K`-objects, a set `\hom(A, B)` whose
|
440 |
+
members are called `K`-morphisms from `A` to `B`,
|
441 |
+
|
442 |
+
* for a each `K`-object `A`, a morphism `id:A\rightarrow A`,
|
443 |
+
called the `K`-identity of `A`,
|
444 |
+
|
445 |
+
* a composition law `\circ` associating with every `K`-morphisms
|
446 |
+
`f:A\rightarrow B` and `g:B\rightarrow C` a `K`-morphism `g\circ
|
447 |
+
f:A\rightarrow C`, called the composite of `f` and `g`.
|
448 |
+
|
449 |
+
Composition is associative, `K`-identities are identities with
|
450 |
+
respect to composition, and the sets `\hom(A, B)` are pairwise
|
451 |
+
disjoint.
|
452 |
+
|
453 |
+
This class knows nothing about its objects and morphisms.
|
454 |
+
Concrete cases of (abstract) categories should be implemented as
|
455 |
+
classes derived from this one.
|
456 |
+
|
457 |
+
Certain instances of :class:`Diagram` can be asserted to be
|
458 |
+
commutative in a :class:`Category` by supplying the argument
|
459 |
+
``commutative_diagrams`` in the constructor.
|
460 |
+
|
461 |
+
Examples
|
462 |
+
========
|
463 |
+
|
464 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
|
465 |
+
>>> from sympy import FiniteSet
|
466 |
+
>>> A = Object("A")
|
467 |
+
>>> B = Object("B")
|
468 |
+
>>> C = Object("C")
|
469 |
+
>>> f = NamedMorphism(A, B, "f")
|
470 |
+
>>> g = NamedMorphism(B, C, "g")
|
471 |
+
>>> d = Diagram([f, g])
|
472 |
+
>>> K = Category("K", commutative_diagrams=[d])
|
473 |
+
>>> K.commutative_diagrams == FiniteSet(d)
|
474 |
+
True
|
475 |
+
|
476 |
+
See Also
|
477 |
+
========
|
478 |
+
|
479 |
+
Diagram
|
480 |
+
"""
|
481 |
+
def __new__(cls, name, objects=EmptySet, commutative_diagrams=EmptySet):
|
482 |
+
if not name:
|
483 |
+
raise ValueError("A Category cannot have an empty name.")
|
484 |
+
|
485 |
+
if not isinstance(name, Str):
|
486 |
+
name = Str(name)
|
487 |
+
|
488 |
+
if not isinstance(objects, Class):
|
489 |
+
objects = Class(objects)
|
490 |
+
|
491 |
+
new_category = Basic.__new__(cls, name, objects,
|
492 |
+
FiniteSet(*commutative_diagrams))
|
493 |
+
return new_category
|
494 |
+
|
495 |
+
@property
|
496 |
+
def name(self):
|
497 |
+
"""
|
498 |
+
Returns the name of this category.
|
499 |
+
|
500 |
+
Examples
|
501 |
+
========
|
502 |
+
|
503 |
+
>>> from sympy.categories import Category
|
504 |
+
>>> K = Category("K")
|
505 |
+
>>> K.name
|
506 |
+
'K'
|
507 |
+
|
508 |
+
"""
|
509 |
+
return self.args[0].name
|
510 |
+
|
511 |
+
@property
|
512 |
+
def objects(self):
|
513 |
+
"""
|
514 |
+
Returns the class of objects of this category.
|
515 |
+
|
516 |
+
Examples
|
517 |
+
========
|
518 |
+
|
519 |
+
>>> from sympy.categories import Object, Category
|
520 |
+
>>> from sympy import FiniteSet
|
521 |
+
>>> A = Object("A")
|
522 |
+
>>> B = Object("B")
|
523 |
+
>>> K = Category("K", FiniteSet(A, B))
|
524 |
+
>>> K.objects
|
525 |
+
Class({Object("A"), Object("B")})
|
526 |
+
|
527 |
+
"""
|
528 |
+
return self.args[1]
|
529 |
+
|
530 |
+
@property
|
531 |
+
def commutative_diagrams(self):
|
532 |
+
"""
|
533 |
+
Returns the :class:`~.FiniteSet` of diagrams which are known to
|
534 |
+
be commutative in this category.
|
535 |
+
|
536 |
+
Examples
|
537 |
+
========
|
538 |
+
|
539 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram, Category
|
540 |
+
>>> from sympy import FiniteSet
|
541 |
+
>>> A = Object("A")
|
542 |
+
>>> B = Object("B")
|
543 |
+
>>> C = Object("C")
|
544 |
+
>>> f = NamedMorphism(A, B, "f")
|
545 |
+
>>> g = NamedMorphism(B, C, "g")
|
546 |
+
>>> d = Diagram([f, g])
|
547 |
+
>>> K = Category("K", commutative_diagrams=[d])
|
548 |
+
>>> K.commutative_diagrams == FiniteSet(d)
|
549 |
+
True
|
550 |
+
|
551 |
+
"""
|
552 |
+
return self.args[2]
|
553 |
+
|
554 |
+
def hom(self, A, B):
|
555 |
+
raise NotImplementedError(
|
556 |
+
"hom-sets are not implemented in Category.")
|
557 |
+
|
558 |
+
def all_morphisms(self):
|
559 |
+
raise NotImplementedError(
|
560 |
+
"Obtaining the class of morphisms is not implemented in Category.")
|
561 |
+
|
562 |
+
|
563 |
+
class Diagram(Basic):
|
564 |
+
r"""
|
565 |
+
Represents a diagram in a certain category.
|
566 |
+
|
567 |
+
Explanation
|
568 |
+
===========
|
569 |
+
|
570 |
+
Informally, a diagram is a collection of objects of a category and
|
571 |
+
certain morphisms between them. A diagram is still a monoid with
|
572 |
+
respect to morphism composition; i.e., identity morphisms, as well
|
573 |
+
as all composites of morphisms included in the diagram belong to
|
574 |
+
the diagram. For a more formal approach to this notion see
|
575 |
+
[Pare1970].
|
576 |
+
|
577 |
+
The components of composite morphisms are also added to the
|
578 |
+
diagram. No properties are assigned to such morphisms by default.
|
579 |
+
|
580 |
+
A commutative diagram is often accompanied by a statement of the
|
581 |
+
following kind: "if such morphisms with such properties exist,
|
582 |
+
then such morphisms which such properties exist and the diagram is
|
583 |
+
commutative". To represent this, an instance of :class:`Diagram`
|
584 |
+
includes a collection of morphisms which are the premises and
|
585 |
+
another collection of conclusions. ``premises`` and
|
586 |
+
``conclusions`` associate morphisms belonging to the corresponding
|
587 |
+
categories with the :class:`~.FiniteSet`'s of their properties.
|
588 |
+
|
589 |
+
The set of properties of a composite morphism is the intersection
|
590 |
+
of the sets of properties of its components. The domain and
|
591 |
+
codomain of a conclusion morphism should be among the domains and
|
592 |
+
codomains of the morphisms listed as the premises of a diagram.
|
593 |
+
|
594 |
+
No checks are carried out of whether the supplied object and
|
595 |
+
morphisms do belong to one and the same category.
|
596 |
+
|
597 |
+
Examples
|
598 |
+
========
|
599 |
+
|
600 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
601 |
+
>>> from sympy import pprint, default_sort_key
|
602 |
+
>>> A = Object("A")
|
603 |
+
>>> B = Object("B")
|
604 |
+
>>> C = Object("C")
|
605 |
+
>>> f = NamedMorphism(A, B, "f")
|
606 |
+
>>> g = NamedMorphism(B, C, "g")
|
607 |
+
>>> d = Diagram([f, g])
|
608 |
+
>>> premises_keys = sorted(d.premises.keys(), key=default_sort_key)
|
609 |
+
>>> pprint(premises_keys, use_unicode=False)
|
610 |
+
[g*f:A-->C, id:A-->A, id:B-->B, id:C-->C, f:A-->B, g:B-->C]
|
611 |
+
>>> pprint(d.premises, use_unicode=False)
|
612 |
+
{g*f:A-->C: EmptySet, id:A-->A: EmptySet, id:B-->B: EmptySet, id:C-->C: EmptyS
|
613 |
+
et, f:A-->B: EmptySet, g:B-->C: EmptySet}
|
614 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
615 |
+
>>> pprint(d.conclusions,use_unicode=False)
|
616 |
+
{g*f:A-->C: {unique}}
|
617 |
+
|
618 |
+
References
|
619 |
+
==========
|
620 |
+
|
621 |
+
[Pare1970] B. Pareigis: Categories and functors. Academic Press, 1970.
|
622 |
+
|
623 |
+
"""
|
624 |
+
@staticmethod
|
625 |
+
def _set_dict_union(dictionary, key, value):
|
626 |
+
"""
|
627 |
+
If ``key`` is in ``dictionary``, set the new value of ``key``
|
628 |
+
to be the union between the old value and ``value``.
|
629 |
+
Otherwise, set the value of ``key`` to ``value.
|
630 |
+
|
631 |
+
Returns ``True`` if the key already was in the dictionary and
|
632 |
+
``False`` otherwise.
|
633 |
+
"""
|
634 |
+
if key in dictionary:
|
635 |
+
dictionary[key] = dictionary[key] | value
|
636 |
+
return True
|
637 |
+
else:
|
638 |
+
dictionary[key] = value
|
639 |
+
return False
|
640 |
+
|
641 |
+
@staticmethod
|
642 |
+
def _add_morphism_closure(morphisms, morphism, props, add_identities=True,
|
643 |
+
recurse_composites=True):
|
644 |
+
"""
|
645 |
+
Adds a morphism and its attributes to the supplied dictionary
|
646 |
+
``morphisms``. If ``add_identities`` is True, also adds the
|
647 |
+
identity morphisms for the domain and the codomain of
|
648 |
+
``morphism``.
|
649 |
+
"""
|
650 |
+
if not Diagram._set_dict_union(morphisms, morphism, props):
|
651 |
+
# We have just added a new morphism.
|
652 |
+
|
653 |
+
if isinstance(morphism, IdentityMorphism):
|
654 |
+
if props:
|
655 |
+
# Properties for identity morphisms don't really
|
656 |
+
# make sense, because very much is known about
|
657 |
+
# identity morphisms already, so much that they
|
658 |
+
# are trivial. Having properties for identity
|
659 |
+
# morphisms would only be confusing.
|
660 |
+
raise ValueError(
|
661 |
+
"Instances of IdentityMorphism cannot have properties.")
|
662 |
+
return
|
663 |
+
|
664 |
+
if add_identities:
|
665 |
+
empty = EmptySet
|
666 |
+
|
667 |
+
id_dom = IdentityMorphism(morphism.domain)
|
668 |
+
id_cod = IdentityMorphism(morphism.codomain)
|
669 |
+
|
670 |
+
Diagram._set_dict_union(morphisms, id_dom, empty)
|
671 |
+
Diagram._set_dict_union(morphisms, id_cod, empty)
|
672 |
+
|
673 |
+
for existing_morphism, existing_props in list(morphisms.items()):
|
674 |
+
new_props = existing_props & props
|
675 |
+
if morphism.domain == existing_morphism.codomain:
|
676 |
+
left = morphism * existing_morphism
|
677 |
+
Diagram._set_dict_union(morphisms, left, new_props)
|
678 |
+
if morphism.codomain == existing_morphism.domain:
|
679 |
+
right = existing_morphism * morphism
|
680 |
+
Diagram._set_dict_union(morphisms, right, new_props)
|
681 |
+
|
682 |
+
if isinstance(morphism, CompositeMorphism) and recurse_composites:
|
683 |
+
# This is a composite morphism, add its components as
|
684 |
+
# well.
|
685 |
+
empty = EmptySet
|
686 |
+
for component in morphism.components:
|
687 |
+
Diagram._add_morphism_closure(morphisms, component, empty,
|
688 |
+
add_identities)
|
689 |
+
|
690 |
+
def __new__(cls, *args):
|
691 |
+
"""
|
692 |
+
Construct a new instance of Diagram.
|
693 |
+
|
694 |
+
Explanation
|
695 |
+
===========
|
696 |
+
|
697 |
+
If no arguments are supplied, an empty diagram is created.
|
698 |
+
|
699 |
+
If at least an argument is supplied, ``args[0]`` is
|
700 |
+
interpreted as the premises of the diagram. If ``args[0]`` is
|
701 |
+
a list, it is interpreted as a list of :class:`Morphism`'s, in
|
702 |
+
which each :class:`Morphism` has an empty set of properties.
|
703 |
+
If ``args[0]`` is a Python dictionary or a :class:`Dict`, it
|
704 |
+
is interpreted as a dictionary associating to some
|
705 |
+
:class:`Morphism`'s some properties.
|
706 |
+
|
707 |
+
If at least two arguments are supplied ``args[1]`` is
|
708 |
+
interpreted as the conclusions of the diagram. The type of
|
709 |
+
``args[1]`` is interpreted in exactly the same way as the type
|
710 |
+
of ``args[0]``. If only one argument is supplied, the diagram
|
711 |
+
has no conclusions.
|
712 |
+
|
713 |
+
Examples
|
714 |
+
========
|
715 |
+
|
716 |
+
>>> from sympy.categories import Object, NamedMorphism
|
717 |
+
>>> from sympy.categories import IdentityMorphism, Diagram
|
718 |
+
>>> A = Object("A")
|
719 |
+
>>> B = Object("B")
|
720 |
+
>>> C = Object("C")
|
721 |
+
>>> f = NamedMorphism(A, B, "f")
|
722 |
+
>>> g = NamedMorphism(B, C, "g")
|
723 |
+
>>> d = Diagram([f, g])
|
724 |
+
>>> IdentityMorphism(A) in d.premises.keys()
|
725 |
+
True
|
726 |
+
>>> g * f in d.premises.keys()
|
727 |
+
True
|
728 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
729 |
+
>>> d.conclusions[g * f]
|
730 |
+
{unique}
|
731 |
+
|
732 |
+
"""
|
733 |
+
premises = {}
|
734 |
+
conclusions = {}
|
735 |
+
|
736 |
+
# Here we will keep track of the objects which appear in the
|
737 |
+
# premises.
|
738 |
+
objects = EmptySet
|
739 |
+
|
740 |
+
if len(args) >= 1:
|
741 |
+
# We've got some premises in the arguments.
|
742 |
+
premises_arg = args[0]
|
743 |
+
|
744 |
+
if isinstance(premises_arg, list):
|
745 |
+
# The user has supplied a list of morphisms, none of
|
746 |
+
# which have any attributes.
|
747 |
+
empty = EmptySet
|
748 |
+
|
749 |
+
for morphism in premises_arg:
|
750 |
+
objects |= FiniteSet(morphism.domain, morphism.codomain)
|
751 |
+
Diagram._add_morphism_closure(premises, morphism, empty)
|
752 |
+
elif isinstance(premises_arg, (dict, Dict)):
|
753 |
+
# The user has supplied a dictionary of morphisms and
|
754 |
+
# their properties.
|
755 |
+
for morphism, props in premises_arg.items():
|
756 |
+
objects |= FiniteSet(morphism.domain, morphism.codomain)
|
757 |
+
Diagram._add_morphism_closure(
|
758 |
+
premises, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props))
|
759 |
+
|
760 |
+
if len(args) >= 2:
|
761 |
+
# We also have some conclusions.
|
762 |
+
conclusions_arg = args[1]
|
763 |
+
|
764 |
+
if isinstance(conclusions_arg, list):
|
765 |
+
# The user has supplied a list of morphisms, none of
|
766 |
+
# which have any attributes.
|
767 |
+
empty = EmptySet
|
768 |
+
|
769 |
+
for morphism in conclusions_arg:
|
770 |
+
# Check that no new objects appear in conclusions.
|
771 |
+
if ((sympify(objects.contains(morphism.domain)) is S.true) and
|
772 |
+
(sympify(objects.contains(morphism.codomain)) is S.true)):
|
773 |
+
# No need to add identities and recurse
|
774 |
+
# composites this time.
|
775 |
+
Diagram._add_morphism_closure(
|
776 |
+
conclusions, morphism, empty, add_identities=False,
|
777 |
+
recurse_composites=False)
|
778 |
+
elif isinstance(conclusions_arg, dict) or \
|
779 |
+
isinstance(conclusions_arg, Dict):
|
780 |
+
# The user has supplied a dictionary of morphisms and
|
781 |
+
# their properties.
|
782 |
+
for morphism, props in conclusions_arg.items():
|
783 |
+
# Check that no new objects appear in conclusions.
|
784 |
+
if (morphism.domain in objects) and \
|
785 |
+
(morphism.codomain in objects):
|
786 |
+
# No need to add identities and recurse
|
787 |
+
# composites this time.
|
788 |
+
Diagram._add_morphism_closure(
|
789 |
+
conclusions, morphism, FiniteSet(*props) if iterable(props) else FiniteSet(props),
|
790 |
+
add_identities=False, recurse_composites=False)
|
791 |
+
|
792 |
+
return Basic.__new__(cls, Dict(premises), Dict(conclusions), objects)
|
793 |
+
|
794 |
+
@property
|
795 |
+
def premises(self):
|
796 |
+
"""
|
797 |
+
Returns the premises of this diagram.
|
798 |
+
|
799 |
+
Examples
|
800 |
+
========
|
801 |
+
|
802 |
+
>>> from sympy.categories import Object, NamedMorphism
|
803 |
+
>>> from sympy.categories import IdentityMorphism, Diagram
|
804 |
+
>>> from sympy import pretty
|
805 |
+
>>> A = Object("A")
|
806 |
+
>>> B = Object("B")
|
807 |
+
>>> f = NamedMorphism(A, B, "f")
|
808 |
+
>>> id_A = IdentityMorphism(A)
|
809 |
+
>>> id_B = IdentityMorphism(B)
|
810 |
+
>>> d = Diagram([f])
|
811 |
+
>>> print(pretty(d.premises, use_unicode=False))
|
812 |
+
{id:A-->A: EmptySet, id:B-->B: EmptySet, f:A-->B: EmptySet}
|
813 |
+
|
814 |
+
"""
|
815 |
+
return self.args[0]
|
816 |
+
|
817 |
+
@property
|
818 |
+
def conclusions(self):
|
819 |
+
"""
|
820 |
+
Returns the conclusions of this diagram.
|
821 |
+
|
822 |
+
Examples
|
823 |
+
========
|
824 |
+
|
825 |
+
>>> from sympy.categories import Object, NamedMorphism
|
826 |
+
>>> from sympy.categories import IdentityMorphism, Diagram
|
827 |
+
>>> from sympy import FiniteSet
|
828 |
+
>>> A = Object("A")
|
829 |
+
>>> B = Object("B")
|
830 |
+
>>> C = Object("C")
|
831 |
+
>>> f = NamedMorphism(A, B, "f")
|
832 |
+
>>> g = NamedMorphism(B, C, "g")
|
833 |
+
>>> d = Diagram([f, g])
|
834 |
+
>>> IdentityMorphism(A) in d.premises.keys()
|
835 |
+
True
|
836 |
+
>>> g * f in d.premises.keys()
|
837 |
+
True
|
838 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
839 |
+
>>> d.conclusions[g * f] == FiniteSet("unique")
|
840 |
+
True
|
841 |
+
|
842 |
+
"""
|
843 |
+
return self.args[1]
|
844 |
+
|
845 |
+
@property
|
846 |
+
def objects(self):
|
847 |
+
"""
|
848 |
+
Returns the :class:`~.FiniteSet` of objects that appear in this
|
849 |
+
diagram.
|
850 |
+
|
851 |
+
Examples
|
852 |
+
========
|
853 |
+
|
854 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
855 |
+
>>> A = Object("A")
|
856 |
+
>>> B = Object("B")
|
857 |
+
>>> C = Object("C")
|
858 |
+
>>> f = NamedMorphism(A, B, "f")
|
859 |
+
>>> g = NamedMorphism(B, C, "g")
|
860 |
+
>>> d = Diagram([f, g])
|
861 |
+
>>> d.objects
|
862 |
+
{Object("A"), Object("B"), Object("C")}
|
863 |
+
|
864 |
+
"""
|
865 |
+
return self.args[2]
|
866 |
+
|
867 |
+
def hom(self, A, B):
|
868 |
+
"""
|
869 |
+
Returns a 2-tuple of sets of morphisms between objects ``A`` and
|
870 |
+
``B``: one set of morphisms listed as premises, and the other set
|
871 |
+
of morphisms listed as conclusions.
|
872 |
+
|
873 |
+
Examples
|
874 |
+
========
|
875 |
+
|
876 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
877 |
+
>>> from sympy import pretty
|
878 |
+
>>> A = Object("A")
|
879 |
+
>>> B = Object("B")
|
880 |
+
>>> C = Object("C")
|
881 |
+
>>> f = NamedMorphism(A, B, "f")
|
882 |
+
>>> g = NamedMorphism(B, C, "g")
|
883 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
884 |
+
>>> print(pretty(d.hom(A, C), use_unicode=False))
|
885 |
+
({g*f:A-->C}, {g*f:A-->C})
|
886 |
+
|
887 |
+
See Also
|
888 |
+
========
|
889 |
+
Object, Morphism
|
890 |
+
"""
|
891 |
+
premises = EmptySet
|
892 |
+
conclusions = EmptySet
|
893 |
+
|
894 |
+
for morphism in self.premises.keys():
|
895 |
+
if (morphism.domain == A) and (morphism.codomain == B):
|
896 |
+
premises |= FiniteSet(morphism)
|
897 |
+
for morphism in self.conclusions.keys():
|
898 |
+
if (morphism.domain == A) and (morphism.codomain == B):
|
899 |
+
conclusions |= FiniteSet(morphism)
|
900 |
+
|
901 |
+
return (premises, conclusions)
|
902 |
+
|
903 |
+
def is_subdiagram(self, diagram):
|
904 |
+
"""
|
905 |
+
Checks whether ``diagram`` is a subdiagram of ``self``.
|
906 |
+
Diagram `D'` is a subdiagram of `D` if all premises
|
907 |
+
(conclusions) of `D'` are contained in the premises
|
908 |
+
(conclusions) of `D`. The morphisms contained
|
909 |
+
both in `D'` and `D` should have the same properties for `D'`
|
910 |
+
to be a subdiagram of `D`.
|
911 |
+
|
912 |
+
Examples
|
913 |
+
========
|
914 |
+
|
915 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
916 |
+
>>> A = Object("A")
|
917 |
+
>>> B = Object("B")
|
918 |
+
>>> C = Object("C")
|
919 |
+
>>> f = NamedMorphism(A, B, "f")
|
920 |
+
>>> g = NamedMorphism(B, C, "g")
|
921 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
922 |
+
>>> d1 = Diagram([f])
|
923 |
+
>>> d.is_subdiagram(d1)
|
924 |
+
True
|
925 |
+
>>> d1.is_subdiagram(d)
|
926 |
+
False
|
927 |
+
"""
|
928 |
+
premises = all((m in self.premises) and
|
929 |
+
(diagram.premises[m] == self.premises[m])
|
930 |
+
for m in diagram.premises)
|
931 |
+
if not premises:
|
932 |
+
return False
|
933 |
+
|
934 |
+
conclusions = all((m in self.conclusions) and
|
935 |
+
(diagram.conclusions[m] == self.conclusions[m])
|
936 |
+
for m in diagram.conclusions)
|
937 |
+
|
938 |
+
# Premises is surely ``True`` here.
|
939 |
+
return conclusions
|
940 |
+
|
941 |
+
def subdiagram_from_objects(self, objects):
|
942 |
+
"""
|
943 |
+
If ``objects`` is a subset of the objects of ``self``, returns
|
944 |
+
a diagram which has as premises all those premises of ``self``
|
945 |
+
which have a domains and codomains in ``objects``, likewise
|
946 |
+
for conclusions. Properties are preserved.
|
947 |
+
|
948 |
+
Examples
|
949 |
+
========
|
950 |
+
|
951 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
952 |
+
>>> from sympy import FiniteSet
|
953 |
+
>>> A = Object("A")
|
954 |
+
>>> B = Object("B")
|
955 |
+
>>> C = Object("C")
|
956 |
+
>>> f = NamedMorphism(A, B, "f")
|
957 |
+
>>> g = NamedMorphism(B, C, "g")
|
958 |
+
>>> d = Diagram([f, g], {f: "unique", g*f: "veryunique"})
|
959 |
+
>>> d1 = d.subdiagram_from_objects(FiniteSet(A, B))
|
960 |
+
>>> d1 == Diagram([f], {f: "unique"})
|
961 |
+
True
|
962 |
+
"""
|
963 |
+
if not objects.is_subset(self.objects):
|
964 |
+
raise ValueError(
|
965 |
+
"Supplied objects should all belong to the diagram.")
|
966 |
+
|
967 |
+
new_premises = {}
|
968 |
+
for morphism, props in self.premises.items():
|
969 |
+
if ((sympify(objects.contains(morphism.domain)) is S.true) and
|
970 |
+
(sympify(objects.contains(morphism.codomain)) is S.true)):
|
971 |
+
new_premises[morphism] = props
|
972 |
+
|
973 |
+
new_conclusions = {}
|
974 |
+
for morphism, props in self.conclusions.items():
|
975 |
+
if ((sympify(objects.contains(morphism.domain)) is S.true) and
|
976 |
+
(sympify(objects.contains(morphism.codomain)) is S.true)):
|
977 |
+
new_conclusions[morphism] = props
|
978 |
+
|
979 |
+
return Diagram(new_premises, new_conclusions)
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/diagram_drawing.py
ADDED
@@ -0,0 +1,2591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
This module contains the functionality to arrange the nodes of a
|
3 |
+
diagram on an abstract grid, and then to produce a graphical
|
4 |
+
representation of the grid.
|
5 |
+
|
6 |
+
The currently supported back-ends are Xy-pic [Xypic].
|
7 |
+
|
8 |
+
Layout Algorithm
|
9 |
+
================
|
10 |
+
|
11 |
+
This section provides an overview of the algorithms implemented in
|
12 |
+
:class:`DiagramGrid` to lay out diagrams.
|
13 |
+
|
14 |
+
The first step of the algorithm is the removal composite and identity
|
15 |
+
morphisms which do not have properties in the supplied diagram. The
|
16 |
+
premises and conclusions of the diagram are then merged.
|
17 |
+
|
18 |
+
The generic layout algorithm begins with the construction of the
|
19 |
+
"skeleton" of the diagram. The skeleton is an undirected graph which
|
20 |
+
has the objects of the diagram as vertices and has an (undirected)
|
21 |
+
edge between each pair of objects between which there exist morphisms.
|
22 |
+
The direction of the morphisms does not matter at this stage. The
|
23 |
+
skeleton also includes an edge between each pair of vertices `A` and
|
24 |
+
`C` such that there exists an object `B` which is connected via
|
25 |
+
a morphism to `A`, and via a morphism to `C`.
|
26 |
+
|
27 |
+
The skeleton constructed in this way has the property that every
|
28 |
+
object is a vertex of a triangle formed by three edges of the
|
29 |
+
skeleton. This property lies at the base of the generic layout
|
30 |
+
algorithm.
|
31 |
+
|
32 |
+
After the skeleton has been constructed, the algorithm lists all
|
33 |
+
triangles which can be formed. Note that some triangles will not have
|
34 |
+
all edges corresponding to morphisms which will actually be drawn.
|
35 |
+
Triangles which have only one edge or less which will actually be
|
36 |
+
drawn are immediately discarded.
|
37 |
+
|
38 |
+
The list of triangles is sorted according to the number of edges which
|
39 |
+
correspond to morphisms, then the triangle with the least number of such
|
40 |
+
edges is selected. One of such edges is picked and the corresponding
|
41 |
+
objects are placed horizontally, on a grid. This edge is recorded to
|
42 |
+
be in the fringe. The algorithm then finds a "welding" of a triangle
|
43 |
+
to the fringe. A welding is an edge in the fringe where a triangle
|
44 |
+
could be attached. If the algorithm succeeds in finding such a
|
45 |
+
welding, it adds to the grid that vertex of the triangle which was not
|
46 |
+
yet included in any edge in the fringe and records the two new edges in
|
47 |
+
the fringe. This process continues iteratively until all objects of
|
48 |
+
the diagram has been placed or until no more weldings can be found.
|
49 |
+
|
50 |
+
An edge is only removed from the fringe when a welding to this edge
|
51 |
+
has been found, and there is no room around this edge to place
|
52 |
+
another vertex.
|
53 |
+
|
54 |
+
When no more weldings can be found, but there are still triangles
|
55 |
+
left, the algorithm searches for a possibility of attaching one of the
|
56 |
+
remaining triangles to the existing structure by a vertex. If such a
|
57 |
+
possibility is found, the corresponding edge of the found triangle is
|
58 |
+
placed in the found space and the iterative process of welding
|
59 |
+
triangles restarts.
|
60 |
+
|
61 |
+
When logical groups are supplied, each of these groups is laid out
|
62 |
+
independently. Then a diagram is constructed in which groups are
|
63 |
+
objects and any two logical groups between which there exist morphisms
|
64 |
+
are connected via a morphism. This diagram is laid out. Finally,
|
65 |
+
the grid which includes all objects of the initial diagram is
|
66 |
+
constructed by replacing the cells which contain logical groups with
|
67 |
+
the corresponding laid out grids, and by correspondingly expanding the
|
68 |
+
rows and columns.
|
69 |
+
|
70 |
+
The sequential layout algorithm begins by constructing the
|
71 |
+
underlying undirected graph defined by the morphisms obtained after
|
72 |
+
simplifying premises and conclusions and merging them (see above).
|
73 |
+
The vertex with the minimal degree is then picked up and depth-first
|
74 |
+
search is started from it. All objects which are located at distance
|
75 |
+
`n` from the root in the depth-first search tree, are positioned in
|
76 |
+
the `n`-th column of the resulting grid. The sequential layout will
|
77 |
+
therefore attempt to lay the objects out along a line.
|
78 |
+
|
79 |
+
References
|
80 |
+
==========
|
81 |
+
|
82 |
+
.. [Xypic] https://xy-pic.sourceforge.net/
|
83 |
+
|
84 |
+
"""
|
85 |
+
from sympy.categories import (CompositeMorphism, IdentityMorphism,
|
86 |
+
NamedMorphism, Diagram)
|
87 |
+
from sympy.core import Dict, Symbol, default_sort_key
|
88 |
+
from sympy.printing.latex import latex
|
89 |
+
from sympy.sets import FiniteSet
|
90 |
+
from sympy.utilities.iterables import iterable
|
91 |
+
from sympy.utilities.decorator import doctest_depends_on
|
92 |
+
|
93 |
+
from itertools import chain
|
94 |
+
|
95 |
+
|
96 |
+
__doctest_requires__ = {('preview_diagram',): 'pyglet'}
|
97 |
+
|
98 |
+
|
99 |
+
class _GrowableGrid:
|
100 |
+
"""
|
101 |
+
Holds a growable grid of objects.
|
102 |
+
|
103 |
+
Explanation
|
104 |
+
===========
|
105 |
+
|
106 |
+
It is possible to append or prepend a row or a column to the grid
|
107 |
+
using the corresponding methods. Prepending rows or columns has
|
108 |
+
the effect of changing the coordinates of the already existing
|
109 |
+
elements.
|
110 |
+
|
111 |
+
This class currently represents a naive implementation of the
|
112 |
+
functionality with little attempt at optimisation.
|
113 |
+
"""
|
114 |
+
def __init__(self, width, height):
|
115 |
+
self._width = width
|
116 |
+
self._height = height
|
117 |
+
|
118 |
+
self._array = [[None for j in range(width)] for i in range(height)]
|
119 |
+
|
120 |
+
@property
|
121 |
+
def width(self):
|
122 |
+
return self._width
|
123 |
+
|
124 |
+
@property
|
125 |
+
def height(self):
|
126 |
+
return self._height
|
127 |
+
|
128 |
+
def __getitem__(self, i_j):
|
129 |
+
"""
|
130 |
+
Returns the element located at in the i-th line and j-th
|
131 |
+
column.
|
132 |
+
"""
|
133 |
+
i, j = i_j
|
134 |
+
return self._array[i][j]
|
135 |
+
|
136 |
+
def __setitem__(self, i_j, newvalue):
|
137 |
+
"""
|
138 |
+
Sets the element located at in the i-th line and j-th
|
139 |
+
column.
|
140 |
+
"""
|
141 |
+
i, j = i_j
|
142 |
+
self._array[i][j] = newvalue
|
143 |
+
|
144 |
+
def append_row(self):
|
145 |
+
"""
|
146 |
+
Appends an empty row to the grid.
|
147 |
+
"""
|
148 |
+
self._height += 1
|
149 |
+
self._array.append([None for j in range(self._width)])
|
150 |
+
|
151 |
+
def append_column(self):
|
152 |
+
"""
|
153 |
+
Appends an empty column to the grid.
|
154 |
+
"""
|
155 |
+
self._width += 1
|
156 |
+
for i in range(self._height):
|
157 |
+
self._array[i].append(None)
|
158 |
+
|
159 |
+
def prepend_row(self):
|
160 |
+
"""
|
161 |
+
Prepends the grid with an empty row.
|
162 |
+
"""
|
163 |
+
self._height += 1
|
164 |
+
self._array.insert(0, [None for j in range(self._width)])
|
165 |
+
|
166 |
+
def prepend_column(self):
|
167 |
+
"""
|
168 |
+
Prepends the grid with an empty column.
|
169 |
+
"""
|
170 |
+
self._width += 1
|
171 |
+
for i in range(self._height):
|
172 |
+
self._array[i].insert(0, None)
|
173 |
+
|
174 |
+
|
175 |
+
class DiagramGrid:
|
176 |
+
r"""
|
177 |
+
Constructs and holds the fitting of the diagram into a grid.
|
178 |
+
|
179 |
+
Explanation
|
180 |
+
===========
|
181 |
+
|
182 |
+
The mission of this class is to analyse the structure of the
|
183 |
+
supplied diagram and to place its objects on a grid such that,
|
184 |
+
when the objects and the morphisms are actually drawn, the diagram
|
185 |
+
would be "readable", in the sense that there will not be many
|
186 |
+
intersections of moprhisms. This class does not perform any
|
187 |
+
actual drawing. It does strive nevertheless to offer sufficient
|
188 |
+
metadata to draw a diagram.
|
189 |
+
|
190 |
+
Consider the following simple diagram.
|
191 |
+
|
192 |
+
>>> from sympy.categories import Object, NamedMorphism
|
193 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
194 |
+
>>> from sympy import pprint
|
195 |
+
>>> A = Object("A")
|
196 |
+
>>> B = Object("B")
|
197 |
+
>>> C = Object("C")
|
198 |
+
>>> f = NamedMorphism(A, B, "f")
|
199 |
+
>>> g = NamedMorphism(B, C, "g")
|
200 |
+
>>> diagram = Diagram([f, g])
|
201 |
+
|
202 |
+
The simplest way to have a diagram laid out is the following:
|
203 |
+
|
204 |
+
>>> grid = DiagramGrid(diagram)
|
205 |
+
>>> (grid.width, grid.height)
|
206 |
+
(2, 2)
|
207 |
+
>>> pprint(grid)
|
208 |
+
A B
|
209 |
+
<BLANKLINE>
|
210 |
+
C
|
211 |
+
|
212 |
+
Sometimes one sees the diagram as consisting of logical groups.
|
213 |
+
One can advise ``DiagramGrid`` as to such groups by employing the
|
214 |
+
``groups`` keyword argument.
|
215 |
+
|
216 |
+
Consider the following diagram:
|
217 |
+
|
218 |
+
>>> D = Object("D")
|
219 |
+
>>> f = NamedMorphism(A, B, "f")
|
220 |
+
>>> g = NamedMorphism(B, C, "g")
|
221 |
+
>>> h = NamedMorphism(D, A, "h")
|
222 |
+
>>> k = NamedMorphism(D, B, "k")
|
223 |
+
>>> diagram = Diagram([f, g, h, k])
|
224 |
+
|
225 |
+
Lay it out with generic layout:
|
226 |
+
|
227 |
+
>>> grid = DiagramGrid(diagram)
|
228 |
+
>>> pprint(grid)
|
229 |
+
A B D
|
230 |
+
<BLANKLINE>
|
231 |
+
C
|
232 |
+
|
233 |
+
Now, we can group the objects `A` and `D` to have them near one
|
234 |
+
another:
|
235 |
+
|
236 |
+
>>> grid = DiagramGrid(diagram, groups=[[A, D], B, C])
|
237 |
+
>>> pprint(grid)
|
238 |
+
B C
|
239 |
+
<BLANKLINE>
|
240 |
+
A D
|
241 |
+
|
242 |
+
Note how the positioning of the other objects changes.
|
243 |
+
|
244 |
+
Further indications can be supplied to the constructor of
|
245 |
+
:class:`DiagramGrid` using keyword arguments. The currently
|
246 |
+
supported hints are explained in the following paragraphs.
|
247 |
+
|
248 |
+
:class:`DiagramGrid` does not automatically guess which layout
|
249 |
+
would suit the supplied diagram better. Consider, for example,
|
250 |
+
the following linear diagram:
|
251 |
+
|
252 |
+
>>> E = Object("E")
|
253 |
+
>>> f = NamedMorphism(A, B, "f")
|
254 |
+
>>> g = NamedMorphism(B, C, "g")
|
255 |
+
>>> h = NamedMorphism(C, D, "h")
|
256 |
+
>>> i = NamedMorphism(D, E, "i")
|
257 |
+
>>> diagram = Diagram([f, g, h, i])
|
258 |
+
|
259 |
+
When laid out with the generic layout, it does not get to look
|
260 |
+
linear:
|
261 |
+
|
262 |
+
>>> grid = DiagramGrid(diagram)
|
263 |
+
>>> pprint(grid)
|
264 |
+
A B
|
265 |
+
<BLANKLINE>
|
266 |
+
C D
|
267 |
+
<BLANKLINE>
|
268 |
+
E
|
269 |
+
|
270 |
+
To get it laid out in a line, use ``layout="sequential"``:
|
271 |
+
|
272 |
+
>>> grid = DiagramGrid(diagram, layout="sequential")
|
273 |
+
>>> pprint(grid)
|
274 |
+
A B C D E
|
275 |
+
|
276 |
+
One may sometimes need to transpose the resulting layout. While
|
277 |
+
this can always be done by hand, :class:`DiagramGrid` provides a
|
278 |
+
hint for that purpose:
|
279 |
+
|
280 |
+
>>> grid = DiagramGrid(diagram, layout="sequential", transpose=True)
|
281 |
+
>>> pprint(grid)
|
282 |
+
A
|
283 |
+
<BLANKLINE>
|
284 |
+
B
|
285 |
+
<BLANKLINE>
|
286 |
+
C
|
287 |
+
<BLANKLINE>
|
288 |
+
D
|
289 |
+
<BLANKLINE>
|
290 |
+
E
|
291 |
+
|
292 |
+
Separate hints can also be provided for each group. For an
|
293 |
+
example, refer to ``tests/test_drawing.py``, and see the different
|
294 |
+
ways in which the five lemma [FiveLemma] can be laid out.
|
295 |
+
|
296 |
+
See Also
|
297 |
+
========
|
298 |
+
|
299 |
+
Diagram
|
300 |
+
|
301 |
+
References
|
302 |
+
==========
|
303 |
+
|
304 |
+
.. [FiveLemma] https://en.wikipedia.org/wiki/Five_lemma
|
305 |
+
"""
|
306 |
+
@staticmethod
|
307 |
+
def _simplify_morphisms(morphisms):
|
308 |
+
"""
|
309 |
+
Given a dictionary mapping morphisms to their properties,
|
310 |
+
returns a new dictionary in which there are no morphisms which
|
311 |
+
do not have properties, and which are compositions of other
|
312 |
+
morphisms included in the dictionary. Identities are dropped
|
313 |
+
as well.
|
314 |
+
"""
|
315 |
+
newmorphisms = {}
|
316 |
+
for morphism, props in morphisms.items():
|
317 |
+
if isinstance(morphism, CompositeMorphism) and not props:
|
318 |
+
continue
|
319 |
+
elif isinstance(morphism, IdentityMorphism):
|
320 |
+
continue
|
321 |
+
else:
|
322 |
+
newmorphisms[morphism] = props
|
323 |
+
return newmorphisms
|
324 |
+
|
325 |
+
@staticmethod
|
326 |
+
def _merge_premises_conclusions(premises, conclusions):
|
327 |
+
"""
|
328 |
+
Given two dictionaries of morphisms and their properties,
|
329 |
+
produces a single dictionary which includes elements from both
|
330 |
+
dictionaries. If a morphism has some properties in premises
|
331 |
+
and also in conclusions, the properties in conclusions take
|
332 |
+
priority.
|
333 |
+
"""
|
334 |
+
return dict(chain(premises.items(), conclusions.items()))
|
335 |
+
|
336 |
+
@staticmethod
|
337 |
+
def _juxtapose_edges(edge1, edge2):
|
338 |
+
"""
|
339 |
+
If ``edge1`` and ``edge2`` have precisely one common endpoint,
|
340 |
+
returns an edge which would form a triangle with ``edge1`` and
|
341 |
+
``edge2``.
|
342 |
+
|
343 |
+
If ``edge1`` and ``edge2`` do not have a common endpoint,
|
344 |
+
returns ``None``.
|
345 |
+
|
346 |
+
If ``edge1`` and ``edge`` are the same edge, returns ``None``.
|
347 |
+
"""
|
348 |
+
intersection = edge1 & edge2
|
349 |
+
if len(intersection) != 1:
|
350 |
+
# The edges either have no common points or are equal.
|
351 |
+
return None
|
352 |
+
|
353 |
+
# The edges have a common endpoint. Extract the different
|
354 |
+
# endpoints and set up the new edge.
|
355 |
+
return (edge1 - intersection) | (edge2 - intersection)
|
356 |
+
|
357 |
+
@staticmethod
|
358 |
+
def _add_edge_append(dictionary, edge, elem):
|
359 |
+
"""
|
360 |
+
If ``edge`` is not in ``dictionary``, adds ``edge`` to the
|
361 |
+
dictionary and sets its value to ``[elem]``. Otherwise
|
362 |
+
appends ``elem`` to the value of existing entry.
|
363 |
+
|
364 |
+
Note that edges are undirected, thus `(A, B) = (B, A)`.
|
365 |
+
"""
|
366 |
+
if edge in dictionary:
|
367 |
+
dictionary[edge].append(elem)
|
368 |
+
else:
|
369 |
+
dictionary[edge] = [elem]
|
370 |
+
|
371 |
+
@staticmethod
|
372 |
+
def _build_skeleton(morphisms):
|
373 |
+
"""
|
374 |
+
Creates a dictionary which maps edges to corresponding
|
375 |
+
morphisms. Thus for a morphism `f:A\rightarrow B`, the edge
|
376 |
+
`(A, B)` will be associated with `f`. This function also adds
|
377 |
+
to the list those edges which are formed by juxtaposition of
|
378 |
+
two edges already in the list. These new edges are not
|
379 |
+
associated with any morphism and are only added to assure that
|
380 |
+
the diagram can be decomposed into triangles.
|
381 |
+
"""
|
382 |
+
edges = {}
|
383 |
+
# Create edges for morphisms.
|
384 |
+
for morphism in morphisms:
|
385 |
+
DiagramGrid._add_edge_append(
|
386 |
+
edges, frozenset([morphism.domain, morphism.codomain]), morphism)
|
387 |
+
|
388 |
+
# Create new edges by juxtaposing existing edges.
|
389 |
+
edges1 = dict(edges)
|
390 |
+
for w in edges1:
|
391 |
+
for v in edges1:
|
392 |
+
wv = DiagramGrid._juxtapose_edges(w, v)
|
393 |
+
if wv and wv not in edges:
|
394 |
+
edges[wv] = []
|
395 |
+
|
396 |
+
return edges
|
397 |
+
|
398 |
+
@staticmethod
|
399 |
+
def _list_triangles(edges):
|
400 |
+
"""
|
401 |
+
Builds the set of triangles formed by the supplied edges. The
|
402 |
+
triangles are arbitrary and need not be commutative. A
|
403 |
+
triangle is a set that contains all three of its sides.
|
404 |
+
"""
|
405 |
+
triangles = set()
|
406 |
+
|
407 |
+
for w in edges:
|
408 |
+
for v in edges:
|
409 |
+
wv = DiagramGrid._juxtapose_edges(w, v)
|
410 |
+
if wv and wv in edges:
|
411 |
+
triangles.add(frozenset([w, v, wv]))
|
412 |
+
|
413 |
+
return triangles
|
414 |
+
|
415 |
+
@staticmethod
|
416 |
+
def _drop_redundant_triangles(triangles, skeleton):
|
417 |
+
"""
|
418 |
+
Returns a list which contains only those triangles who have
|
419 |
+
morphisms associated with at least two edges.
|
420 |
+
"""
|
421 |
+
return [tri for tri in triangles
|
422 |
+
if len([e for e in tri if skeleton[e]]) >= 2]
|
423 |
+
|
424 |
+
@staticmethod
|
425 |
+
def _morphism_length(morphism):
|
426 |
+
"""
|
427 |
+
Returns the length of a morphism. The length of a morphism is
|
428 |
+
the number of components it consists of. A non-composite
|
429 |
+
morphism is of length 1.
|
430 |
+
"""
|
431 |
+
if isinstance(morphism, CompositeMorphism):
|
432 |
+
return len(morphism.components)
|
433 |
+
else:
|
434 |
+
return 1
|
435 |
+
|
436 |
+
@staticmethod
|
437 |
+
def _compute_triangle_min_sizes(triangles, edges):
|
438 |
+
r"""
|
439 |
+
Returns a dictionary mapping triangles to their minimal sizes.
|
440 |
+
The minimal size of a triangle is the sum of maximal lengths
|
441 |
+
of morphisms associated to the sides of the triangle. The
|
442 |
+
length of a morphism is the number of components it consists
|
443 |
+
of. A non-composite morphism is of length 1.
|
444 |
+
|
445 |
+
Sorting triangles by this metric attempts to address two
|
446 |
+
aspects of layout. For triangles with only simple morphisms
|
447 |
+
in the edge, this assures that triangles with all three edges
|
448 |
+
visible will get typeset after triangles with less visible
|
449 |
+
edges, which sometimes minimizes the necessity in diagonal
|
450 |
+
arrows. For triangles with composite morphisms in the edges,
|
451 |
+
this assures that objects connected with shorter morphisms
|
452 |
+
will be laid out first, resulting the visual proximity of
|
453 |
+
those objects which are connected by shorter morphisms.
|
454 |
+
"""
|
455 |
+
triangle_sizes = {}
|
456 |
+
for triangle in triangles:
|
457 |
+
size = 0
|
458 |
+
for e in triangle:
|
459 |
+
morphisms = edges[e]
|
460 |
+
if morphisms:
|
461 |
+
size += max(DiagramGrid._morphism_length(m)
|
462 |
+
for m in morphisms)
|
463 |
+
triangle_sizes[triangle] = size
|
464 |
+
return triangle_sizes
|
465 |
+
|
466 |
+
@staticmethod
|
467 |
+
def _triangle_objects(triangle):
|
468 |
+
"""
|
469 |
+
Given a triangle, returns the objects included in it.
|
470 |
+
"""
|
471 |
+
# A triangle is a frozenset of three two-element frozensets
|
472 |
+
# (the edges). This chains the three edges together and
|
473 |
+
# creates a frozenset from the iterator, thus producing a
|
474 |
+
# frozenset of objects of the triangle.
|
475 |
+
return frozenset(chain(*tuple(triangle)))
|
476 |
+
|
477 |
+
@staticmethod
|
478 |
+
def _other_vertex(triangle, edge):
|
479 |
+
"""
|
480 |
+
Given a triangle and an edge of it, returns the vertex which
|
481 |
+
opposes the edge.
|
482 |
+
"""
|
483 |
+
# This gets the set of objects of the triangle and then
|
484 |
+
# subtracts the set of objects employed in ``edge`` to get the
|
485 |
+
# vertex opposite to ``edge``.
|
486 |
+
return list(DiagramGrid._triangle_objects(triangle) - set(edge))[0]
|
487 |
+
|
488 |
+
@staticmethod
|
489 |
+
def _empty_point(pt, grid):
|
490 |
+
"""
|
491 |
+
Checks if the cell at coordinates ``pt`` is either empty or
|
492 |
+
out of the bounds of the grid.
|
493 |
+
"""
|
494 |
+
if (pt[0] < 0) or (pt[1] < 0) or \
|
495 |
+
(pt[0] >= grid.height) or (pt[1] >= grid.width):
|
496 |
+
return True
|
497 |
+
return grid[pt] is None
|
498 |
+
|
499 |
+
@staticmethod
|
500 |
+
def _put_object(coords, obj, grid, fringe):
|
501 |
+
"""
|
502 |
+
Places an object at the coordinate ``cords`` in ``grid``,
|
503 |
+
growing the grid and updating ``fringe``, if necessary.
|
504 |
+
Returns (0, 0) if no row or column has been prepended, (1, 0)
|
505 |
+
if a row was prepended, (0, 1) if a column was prepended and
|
506 |
+
(1, 1) if both a column and a row were prepended.
|
507 |
+
"""
|
508 |
+
(i, j) = coords
|
509 |
+
offset = (0, 0)
|
510 |
+
if i == -1:
|
511 |
+
grid.prepend_row()
|
512 |
+
i = 0
|
513 |
+
offset = (1, 0)
|
514 |
+
for k in range(len(fringe)):
|
515 |
+
((i1, j1), (i2, j2)) = fringe[k]
|
516 |
+
fringe[k] = ((i1 + 1, j1), (i2 + 1, j2))
|
517 |
+
elif i == grid.height:
|
518 |
+
grid.append_row()
|
519 |
+
|
520 |
+
if j == -1:
|
521 |
+
j = 0
|
522 |
+
offset = (offset[0], 1)
|
523 |
+
grid.prepend_column()
|
524 |
+
for k in range(len(fringe)):
|
525 |
+
((i1, j1), (i2, j2)) = fringe[k]
|
526 |
+
fringe[k] = ((i1, j1 + 1), (i2, j2 + 1))
|
527 |
+
elif j == grid.width:
|
528 |
+
grid.append_column()
|
529 |
+
|
530 |
+
grid[i, j] = obj
|
531 |
+
return offset
|
532 |
+
|
533 |
+
@staticmethod
|
534 |
+
def _choose_target_cell(pt1, pt2, edge, obj, skeleton, grid):
|
535 |
+
"""
|
536 |
+
Given two points, ``pt1`` and ``pt2``, and the welding edge
|
537 |
+
``edge``, chooses one of the two points to place the opposing
|
538 |
+
vertex ``obj`` of the triangle. If neither of this points
|
539 |
+
fits, returns ``None``.
|
540 |
+
"""
|
541 |
+
pt1_empty = DiagramGrid._empty_point(pt1, grid)
|
542 |
+
pt2_empty = DiagramGrid._empty_point(pt2, grid)
|
543 |
+
|
544 |
+
if pt1_empty and pt2_empty:
|
545 |
+
# Both cells are empty. Of these two, choose that cell
|
546 |
+
# which will assure that a visible edge of the triangle
|
547 |
+
# will be drawn perpendicularly to the current welding
|
548 |
+
# edge.
|
549 |
+
|
550 |
+
A = grid[edge[0]]
|
551 |
+
|
552 |
+
if skeleton.get(frozenset([A, obj])):
|
553 |
+
return pt1
|
554 |
+
else:
|
555 |
+
return pt2
|
556 |
+
if pt1_empty:
|
557 |
+
return pt1
|
558 |
+
elif pt2_empty:
|
559 |
+
return pt2
|
560 |
+
else:
|
561 |
+
return None
|
562 |
+
|
563 |
+
@staticmethod
|
564 |
+
def _find_triangle_to_weld(triangles, fringe, grid):
|
565 |
+
"""
|
566 |
+
Finds, if possible, a triangle and an edge in the ``fringe`` to
|
567 |
+
which the triangle could be attached. Returns the tuple
|
568 |
+
containing the triangle and the index of the corresponding
|
569 |
+
edge in the ``fringe``.
|
570 |
+
|
571 |
+
This function relies on the fact that objects are unique in
|
572 |
+
the diagram.
|
573 |
+
"""
|
574 |
+
for triangle in triangles:
|
575 |
+
for (a, b) in fringe:
|
576 |
+
if frozenset([grid[a], grid[b]]) in triangle:
|
577 |
+
return (triangle, (a, b))
|
578 |
+
return None
|
579 |
+
|
580 |
+
@staticmethod
|
581 |
+
def _weld_triangle(tri, welding_edge, fringe, grid, skeleton):
|
582 |
+
"""
|
583 |
+
If possible, welds the triangle ``tri`` to ``fringe`` and
|
584 |
+
returns ``False``. If this method encounters a degenerate
|
585 |
+
situation in the fringe and corrects it such that a restart of
|
586 |
+
the search is required, it returns ``True`` (which means that
|
587 |
+
a restart in finding triangle weldings is required).
|
588 |
+
|
589 |
+
A degenerate situation is a situation when an edge listed in
|
590 |
+
the fringe does not belong to the visual boundary of the
|
591 |
+
diagram.
|
592 |
+
"""
|
593 |
+
a, b = welding_edge
|
594 |
+
target_cell = None
|
595 |
+
|
596 |
+
obj = DiagramGrid._other_vertex(tri, (grid[a], grid[b]))
|
597 |
+
|
598 |
+
# We now have a triangle and an edge where it can be welded to
|
599 |
+
# the fringe. Decide where to place the other vertex of the
|
600 |
+
# triangle and check for degenerate situations en route.
|
601 |
+
|
602 |
+
if (abs(a[0] - b[0]) == 1) and (abs(a[1] - b[1]) == 1):
|
603 |
+
# A diagonal edge.
|
604 |
+
target_cell = (a[0], b[1])
|
605 |
+
if grid[target_cell]:
|
606 |
+
# That cell is already occupied.
|
607 |
+
target_cell = (b[0], a[1])
|
608 |
+
|
609 |
+
if grid[target_cell]:
|
610 |
+
# Degenerate situation, this edge is not
|
611 |
+
# on the actual fringe. Correct the
|
612 |
+
# fringe and go on.
|
613 |
+
fringe.remove((a, b))
|
614 |
+
return True
|
615 |
+
elif a[0] == b[0]:
|
616 |
+
# A horizontal edge. We first attempt to build the
|
617 |
+
# triangle in the downward direction.
|
618 |
+
|
619 |
+
down_left = a[0] + 1, a[1]
|
620 |
+
down_right = a[0] + 1, b[1]
|
621 |
+
|
622 |
+
target_cell = DiagramGrid._choose_target_cell(
|
623 |
+
down_left, down_right, (a, b), obj, skeleton, grid)
|
624 |
+
|
625 |
+
if not target_cell:
|
626 |
+
# No room below this edge. Check above.
|
627 |
+
up_left = a[0] - 1, a[1]
|
628 |
+
up_right = a[0] - 1, b[1]
|
629 |
+
|
630 |
+
target_cell = DiagramGrid._choose_target_cell(
|
631 |
+
up_left, up_right, (a, b), obj, skeleton, grid)
|
632 |
+
|
633 |
+
if not target_cell:
|
634 |
+
# This edge is not in the fringe, remove it
|
635 |
+
# and restart.
|
636 |
+
fringe.remove((a, b))
|
637 |
+
return True
|
638 |
+
elif a[1] == b[1]:
|
639 |
+
# A vertical edge. We will attempt to place the other
|
640 |
+
# vertex of the triangle to the right of this edge.
|
641 |
+
right_up = a[0], a[1] + 1
|
642 |
+
right_down = b[0], a[1] + 1
|
643 |
+
|
644 |
+
target_cell = DiagramGrid._choose_target_cell(
|
645 |
+
right_up, right_down, (a, b), obj, skeleton, grid)
|
646 |
+
|
647 |
+
if not target_cell:
|
648 |
+
# No room to the left. See what's to the right.
|
649 |
+
left_up = a[0], a[1] - 1
|
650 |
+
left_down = b[0], a[1] - 1
|
651 |
+
|
652 |
+
target_cell = DiagramGrid._choose_target_cell(
|
653 |
+
left_up, left_down, (a, b), obj, skeleton, grid)
|
654 |
+
|
655 |
+
if not target_cell:
|
656 |
+
# This edge is not in the fringe, remove it
|
657 |
+
# and restart.
|
658 |
+
fringe.remove((a, b))
|
659 |
+
return True
|
660 |
+
|
661 |
+
# We now know where to place the other vertex of the
|
662 |
+
# triangle.
|
663 |
+
offset = DiagramGrid._put_object(target_cell, obj, grid, fringe)
|
664 |
+
|
665 |
+
# Take care of the displacement of coordinates if a row or
|
666 |
+
# a column was prepended.
|
667 |
+
target_cell = (target_cell[0] + offset[0],
|
668 |
+
target_cell[1] + offset[1])
|
669 |
+
a = (a[0] + offset[0], a[1] + offset[1])
|
670 |
+
b = (b[0] + offset[0], b[1] + offset[1])
|
671 |
+
|
672 |
+
fringe.extend([(a, target_cell), (b, target_cell)])
|
673 |
+
|
674 |
+
# No restart is required.
|
675 |
+
return False
|
676 |
+
|
677 |
+
@staticmethod
|
678 |
+
def _triangle_key(tri, triangle_sizes):
|
679 |
+
"""
|
680 |
+
Returns a key for the supplied triangle. It should be the
|
681 |
+
same independently of the hash randomisation.
|
682 |
+
"""
|
683 |
+
objects = sorted(
|
684 |
+
DiagramGrid._triangle_objects(tri), key=default_sort_key)
|
685 |
+
return (triangle_sizes[tri], default_sort_key(objects))
|
686 |
+
|
687 |
+
@staticmethod
|
688 |
+
def _pick_root_edge(tri, skeleton):
|
689 |
+
"""
|
690 |
+
For a given triangle always picks the same root edge. The
|
691 |
+
root edge is the edge that will be placed first on the grid.
|
692 |
+
"""
|
693 |
+
candidates = [sorted(e, key=default_sort_key)
|
694 |
+
for e in tri if skeleton[e]]
|
695 |
+
sorted_candidates = sorted(candidates, key=default_sort_key)
|
696 |
+
# Don't forget to assure the proper ordering of the vertices
|
697 |
+
# in this edge.
|
698 |
+
return tuple(sorted(sorted_candidates[0], key=default_sort_key))
|
699 |
+
|
700 |
+
@staticmethod
|
701 |
+
def _drop_irrelevant_triangles(triangles, placed_objects):
|
702 |
+
"""
|
703 |
+
Returns only those triangles whose set of objects is not
|
704 |
+
completely included in ``placed_objects``.
|
705 |
+
"""
|
706 |
+
return [tri for tri in triangles if not placed_objects.issuperset(
|
707 |
+
DiagramGrid._triangle_objects(tri))]
|
708 |
+
|
709 |
+
@staticmethod
|
710 |
+
def _grow_pseudopod(triangles, fringe, grid, skeleton, placed_objects):
|
711 |
+
"""
|
712 |
+
Starting from an object in the existing structure on the ``grid``,
|
713 |
+
adds an edge to which a triangle from ``triangles`` could be
|
714 |
+
welded. If this method has found a way to do so, it returns
|
715 |
+
the object it has just added.
|
716 |
+
|
717 |
+
This method should be applied when ``_weld_triangle`` cannot
|
718 |
+
find weldings any more.
|
719 |
+
"""
|
720 |
+
for i in range(grid.height):
|
721 |
+
for j in range(grid.width):
|
722 |
+
obj = grid[i, j]
|
723 |
+
if not obj:
|
724 |
+
continue
|
725 |
+
|
726 |
+
# Here we need to choose a triangle which has only
|
727 |
+
# ``obj`` in common with the existing structure. The
|
728 |
+
# situations when this is not possible should be
|
729 |
+
# handled elsewhere.
|
730 |
+
|
731 |
+
def good_triangle(tri):
|
732 |
+
objs = DiagramGrid._triangle_objects(tri)
|
733 |
+
return obj in objs and \
|
734 |
+
placed_objects & (objs - {obj}) == set()
|
735 |
+
|
736 |
+
tris = [tri for tri in triangles if good_triangle(tri)]
|
737 |
+
if not tris:
|
738 |
+
# This object is not interesting.
|
739 |
+
continue
|
740 |
+
|
741 |
+
# Pick the "simplest" of the triangles which could be
|
742 |
+
# attached. Remember that the list of triangles is
|
743 |
+
# sorted according to their "simplicity" (see
|
744 |
+
# _compute_triangle_min_sizes for the metric).
|
745 |
+
#
|
746 |
+
# Note that ``tris`` are sequentially built from
|
747 |
+
# ``triangles``, so we don't have to worry about hash
|
748 |
+
# randomisation.
|
749 |
+
tri = tris[0]
|
750 |
+
|
751 |
+
# We have found a triangle which could be attached to
|
752 |
+
# the existing structure by a vertex.
|
753 |
+
|
754 |
+
candidates = sorted([e for e in tri if skeleton[e]],
|
755 |
+
key=lambda e: FiniteSet(*e).sort_key())
|
756 |
+
edges = [e for e in candidates if obj in e]
|
757 |
+
|
758 |
+
# Note that a meaningful edge (i.e., and edge that is
|
759 |
+
# associated with a morphism) containing ``obj``
|
760 |
+
# always exists. That's because all triangles are
|
761 |
+
# guaranteed to have at least two meaningful edges.
|
762 |
+
# See _drop_redundant_triangles.
|
763 |
+
|
764 |
+
# Get the object at the other end of the edge.
|
765 |
+
edge = edges[0]
|
766 |
+
other_obj = tuple(edge - frozenset([obj]))[0]
|
767 |
+
|
768 |
+
# Now check for free directions. When checking for
|
769 |
+
# free directions, prefer the horizontal and vertical
|
770 |
+
# directions.
|
771 |
+
neighbours = [(i - 1, j), (i, j + 1), (i + 1, j), (i, j - 1),
|
772 |
+
(i - 1, j - 1), (i - 1, j + 1), (i + 1, j - 1), (i + 1, j + 1)]
|
773 |
+
|
774 |
+
for pt in neighbours:
|
775 |
+
if DiagramGrid._empty_point(pt, grid):
|
776 |
+
# We have a found a place to grow the
|
777 |
+
# pseudopod into.
|
778 |
+
offset = DiagramGrid._put_object(
|
779 |
+
pt, other_obj, grid, fringe)
|
780 |
+
|
781 |
+
i += offset[0]
|
782 |
+
j += offset[1]
|
783 |
+
pt = (pt[0] + offset[0], pt[1] + offset[1])
|
784 |
+
fringe.append(((i, j), pt))
|
785 |
+
|
786 |
+
return other_obj
|
787 |
+
|
788 |
+
# This diagram is actually cooler that I can handle. Fail cowardly.
|
789 |
+
return None
|
790 |
+
|
791 |
+
@staticmethod
|
792 |
+
def _handle_groups(diagram, groups, merged_morphisms, hints):
|
793 |
+
"""
|
794 |
+
Given the slightly preprocessed morphisms of the diagram,
|
795 |
+
produces a grid laid out according to ``groups``.
|
796 |
+
|
797 |
+
If a group has hints, it is laid out with those hints only,
|
798 |
+
without any influence from ``hints``. Otherwise, it is laid
|
799 |
+
out with ``hints``.
|
800 |
+
"""
|
801 |
+
def lay_out_group(group, local_hints):
|
802 |
+
"""
|
803 |
+
If ``group`` is a set of objects, uses a ``DiagramGrid``
|
804 |
+
to lay it out and returns the grid. Otherwise returns the
|
805 |
+
object (i.e., ``group``). If ``local_hints`` is not
|
806 |
+
empty, it is supplied to ``DiagramGrid`` as the dictionary
|
807 |
+
of hints. Otherwise, the ``hints`` argument of
|
808 |
+
``_handle_groups`` is used.
|
809 |
+
"""
|
810 |
+
if isinstance(group, FiniteSet):
|
811 |
+
# Set up the corresponding object-to-group
|
812 |
+
# mappings.
|
813 |
+
for obj in group:
|
814 |
+
obj_groups[obj] = group
|
815 |
+
|
816 |
+
# Lay out the current group.
|
817 |
+
if local_hints:
|
818 |
+
groups_grids[group] = DiagramGrid(
|
819 |
+
diagram.subdiagram_from_objects(group), **local_hints)
|
820 |
+
else:
|
821 |
+
groups_grids[group] = DiagramGrid(
|
822 |
+
diagram.subdiagram_from_objects(group), **hints)
|
823 |
+
else:
|
824 |
+
obj_groups[group] = group
|
825 |
+
|
826 |
+
def group_to_finiteset(group):
|
827 |
+
"""
|
828 |
+
Converts ``group`` to a :class:``FiniteSet`` if it is an
|
829 |
+
iterable.
|
830 |
+
"""
|
831 |
+
if iterable(group):
|
832 |
+
return FiniteSet(*group)
|
833 |
+
else:
|
834 |
+
return group
|
835 |
+
|
836 |
+
obj_groups = {}
|
837 |
+
groups_grids = {}
|
838 |
+
|
839 |
+
# We would like to support various containers to represent
|
840 |
+
# groups. To achieve that, before laying each group out, it
|
841 |
+
# should be converted to a FiniteSet, because that is what the
|
842 |
+
# following code expects.
|
843 |
+
|
844 |
+
if isinstance(groups, (dict, Dict)):
|
845 |
+
finiteset_groups = {}
|
846 |
+
for group, local_hints in groups.items():
|
847 |
+
finiteset_group = group_to_finiteset(group)
|
848 |
+
finiteset_groups[finiteset_group] = local_hints
|
849 |
+
lay_out_group(group, local_hints)
|
850 |
+
groups = finiteset_groups
|
851 |
+
else:
|
852 |
+
finiteset_groups = []
|
853 |
+
for group in groups:
|
854 |
+
finiteset_group = group_to_finiteset(group)
|
855 |
+
finiteset_groups.append(finiteset_group)
|
856 |
+
lay_out_group(finiteset_group, None)
|
857 |
+
groups = finiteset_groups
|
858 |
+
|
859 |
+
new_morphisms = []
|
860 |
+
for morphism in merged_morphisms:
|
861 |
+
dom = obj_groups[morphism.domain]
|
862 |
+
cod = obj_groups[morphism.codomain]
|
863 |
+
# Note that we are not really interested in morphisms
|
864 |
+
# which do not employ two different groups, because
|
865 |
+
# these do not influence the layout.
|
866 |
+
if dom != cod:
|
867 |
+
# These are essentially unnamed morphisms; they are
|
868 |
+
# not going to mess in the final layout. By giving
|
869 |
+
# them the same names, we avoid unnecessary
|
870 |
+
# duplicates.
|
871 |
+
new_morphisms.append(NamedMorphism(dom, cod, "dummy"))
|
872 |
+
|
873 |
+
# Lay out the new diagram. Since these are dummy morphisms,
|
874 |
+
# properties and conclusions are irrelevant.
|
875 |
+
top_grid = DiagramGrid(Diagram(new_morphisms))
|
876 |
+
|
877 |
+
# We now have to substitute the groups with the corresponding
|
878 |
+
# grids, laid out at the beginning of this function. Compute
|
879 |
+
# the size of each row and column in the grid, so that all
|
880 |
+
# nested grids fit.
|
881 |
+
|
882 |
+
def group_size(group):
|
883 |
+
"""
|
884 |
+
For the supplied group (or object, eventually), returns
|
885 |
+
the size of the cell that will hold this group (object).
|
886 |
+
"""
|
887 |
+
if group in groups_grids:
|
888 |
+
grid = groups_grids[group]
|
889 |
+
return (grid.height, grid.width)
|
890 |
+
else:
|
891 |
+
return (1, 1)
|
892 |
+
|
893 |
+
row_heights = [max(group_size(top_grid[i, j])[0]
|
894 |
+
for j in range(top_grid.width))
|
895 |
+
for i in range(top_grid.height)]
|
896 |
+
|
897 |
+
column_widths = [max(group_size(top_grid[i, j])[1]
|
898 |
+
for i in range(top_grid.height))
|
899 |
+
for j in range(top_grid.width)]
|
900 |
+
|
901 |
+
grid = _GrowableGrid(sum(column_widths), sum(row_heights))
|
902 |
+
|
903 |
+
real_row = 0
|
904 |
+
real_column = 0
|
905 |
+
for logical_row in range(top_grid.height):
|
906 |
+
for logical_column in range(top_grid.width):
|
907 |
+
obj = top_grid[logical_row, logical_column]
|
908 |
+
|
909 |
+
if obj in groups_grids:
|
910 |
+
# This is a group. Copy the corresponding grid in
|
911 |
+
# place.
|
912 |
+
local_grid = groups_grids[obj]
|
913 |
+
for i in range(local_grid.height):
|
914 |
+
for j in range(local_grid.width):
|
915 |
+
grid[real_row + i,
|
916 |
+
real_column + j] = local_grid[i, j]
|
917 |
+
else:
|
918 |
+
# This is an object. Just put it there.
|
919 |
+
grid[real_row, real_column] = obj
|
920 |
+
|
921 |
+
real_column += column_widths[logical_column]
|
922 |
+
real_column = 0
|
923 |
+
real_row += row_heights[logical_row]
|
924 |
+
|
925 |
+
return grid
|
926 |
+
|
927 |
+
@staticmethod
|
928 |
+
def _generic_layout(diagram, merged_morphisms):
|
929 |
+
"""
|
930 |
+
Produces the generic layout for the supplied diagram.
|
931 |
+
"""
|
932 |
+
all_objects = set(diagram.objects)
|
933 |
+
if len(all_objects) == 1:
|
934 |
+
# There only one object in the diagram, just put in on 1x1
|
935 |
+
# grid.
|
936 |
+
grid = _GrowableGrid(1, 1)
|
937 |
+
grid[0, 0] = tuple(all_objects)[0]
|
938 |
+
return grid
|
939 |
+
|
940 |
+
skeleton = DiagramGrid._build_skeleton(merged_morphisms)
|
941 |
+
|
942 |
+
grid = _GrowableGrid(2, 1)
|
943 |
+
|
944 |
+
if len(skeleton) == 1:
|
945 |
+
# This diagram contains only one morphism. Draw it
|
946 |
+
# horizontally.
|
947 |
+
objects = sorted(all_objects, key=default_sort_key)
|
948 |
+
grid[0, 0] = objects[0]
|
949 |
+
grid[0, 1] = objects[1]
|
950 |
+
|
951 |
+
return grid
|
952 |
+
|
953 |
+
triangles = DiagramGrid._list_triangles(skeleton)
|
954 |
+
triangles = DiagramGrid._drop_redundant_triangles(triangles, skeleton)
|
955 |
+
triangle_sizes = DiagramGrid._compute_triangle_min_sizes(
|
956 |
+
triangles, skeleton)
|
957 |
+
|
958 |
+
triangles = sorted(triangles, key=lambda tri:
|
959 |
+
DiagramGrid._triangle_key(tri, triangle_sizes))
|
960 |
+
|
961 |
+
# Place the first edge on the grid.
|
962 |
+
root_edge = DiagramGrid._pick_root_edge(triangles[0], skeleton)
|
963 |
+
grid[0, 0], grid[0, 1] = root_edge
|
964 |
+
fringe = [((0, 0), (0, 1))]
|
965 |
+
|
966 |
+
# Record which objects we now have on the grid.
|
967 |
+
placed_objects = set(root_edge)
|
968 |
+
|
969 |
+
while placed_objects != all_objects:
|
970 |
+
welding = DiagramGrid._find_triangle_to_weld(
|
971 |
+
triangles, fringe, grid)
|
972 |
+
|
973 |
+
if welding:
|
974 |
+
(triangle, welding_edge) = welding
|
975 |
+
|
976 |
+
restart_required = DiagramGrid._weld_triangle(
|
977 |
+
triangle, welding_edge, fringe, grid, skeleton)
|
978 |
+
if restart_required:
|
979 |
+
continue
|
980 |
+
|
981 |
+
placed_objects.update(
|
982 |
+
DiagramGrid._triangle_objects(triangle))
|
983 |
+
else:
|
984 |
+
# No more weldings found. Try to attach triangles by
|
985 |
+
# vertices.
|
986 |
+
new_obj = DiagramGrid._grow_pseudopod(
|
987 |
+
triangles, fringe, grid, skeleton, placed_objects)
|
988 |
+
|
989 |
+
if not new_obj:
|
990 |
+
# No more triangles can be attached, not even by
|
991 |
+
# the edge. We will set up a new diagram out of
|
992 |
+
# what has been left, laid it out independently,
|
993 |
+
# and then attach it to this one.
|
994 |
+
|
995 |
+
remaining_objects = all_objects - placed_objects
|
996 |
+
|
997 |
+
remaining_diagram = diagram.subdiagram_from_objects(
|
998 |
+
FiniteSet(*remaining_objects))
|
999 |
+
remaining_grid = DiagramGrid(remaining_diagram)
|
1000 |
+
|
1001 |
+
# Now, let's glue ``remaining_grid`` to ``grid``.
|
1002 |
+
final_width = grid.width + remaining_grid.width
|
1003 |
+
final_height = max(grid.height, remaining_grid.height)
|
1004 |
+
final_grid = _GrowableGrid(final_width, final_height)
|
1005 |
+
|
1006 |
+
for i in range(grid.width):
|
1007 |
+
for j in range(grid.height):
|
1008 |
+
final_grid[i, j] = grid[i, j]
|
1009 |
+
|
1010 |
+
start_j = grid.width
|
1011 |
+
for i in range(remaining_grid.height):
|
1012 |
+
for j in range(remaining_grid.width):
|
1013 |
+
final_grid[i, start_j + j] = remaining_grid[i, j]
|
1014 |
+
|
1015 |
+
return final_grid
|
1016 |
+
|
1017 |
+
placed_objects.add(new_obj)
|
1018 |
+
|
1019 |
+
triangles = DiagramGrid._drop_irrelevant_triangles(
|
1020 |
+
triangles, placed_objects)
|
1021 |
+
|
1022 |
+
return grid
|
1023 |
+
|
1024 |
+
@staticmethod
|
1025 |
+
def _get_undirected_graph(objects, merged_morphisms):
|
1026 |
+
"""
|
1027 |
+
Given the objects and the relevant morphisms of a diagram,
|
1028 |
+
returns the adjacency lists of the underlying undirected
|
1029 |
+
graph.
|
1030 |
+
"""
|
1031 |
+
adjlists = {}
|
1032 |
+
for obj in objects:
|
1033 |
+
adjlists[obj] = []
|
1034 |
+
|
1035 |
+
for morphism in merged_morphisms:
|
1036 |
+
adjlists[morphism.domain].append(morphism.codomain)
|
1037 |
+
adjlists[morphism.codomain].append(morphism.domain)
|
1038 |
+
|
1039 |
+
# Assure that the objects in the adjacency list are always in
|
1040 |
+
# the same order.
|
1041 |
+
for obj in adjlists.keys():
|
1042 |
+
adjlists[obj].sort(key=default_sort_key)
|
1043 |
+
|
1044 |
+
return adjlists
|
1045 |
+
|
1046 |
+
@staticmethod
|
1047 |
+
def _sequential_layout(diagram, merged_morphisms):
|
1048 |
+
r"""
|
1049 |
+
Lays out the diagram in "sequential" layout. This method
|
1050 |
+
will attempt to produce a result as close to a line as
|
1051 |
+
possible. For linear diagrams, the result will actually be a
|
1052 |
+
line.
|
1053 |
+
"""
|
1054 |
+
objects = diagram.objects
|
1055 |
+
sorted_objects = sorted(objects, key=default_sort_key)
|
1056 |
+
|
1057 |
+
# Set up the adjacency lists of the underlying undirected
|
1058 |
+
# graph of ``merged_morphisms``.
|
1059 |
+
adjlists = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
|
1060 |
+
|
1061 |
+
# Find an object with the minimal degree. This is going to be
|
1062 |
+
# the root.
|
1063 |
+
root = sorted_objects[0]
|
1064 |
+
mindegree = len(adjlists[root])
|
1065 |
+
for obj in sorted_objects:
|
1066 |
+
current_degree = len(adjlists[obj])
|
1067 |
+
if current_degree < mindegree:
|
1068 |
+
root = obj
|
1069 |
+
mindegree = current_degree
|
1070 |
+
|
1071 |
+
grid = _GrowableGrid(1, 1)
|
1072 |
+
grid[0, 0] = root
|
1073 |
+
|
1074 |
+
placed_objects = {root}
|
1075 |
+
|
1076 |
+
def place_objects(pt, placed_objects):
|
1077 |
+
"""
|
1078 |
+
Does depth-first search in the underlying graph of the
|
1079 |
+
diagram and places the objects en route.
|
1080 |
+
"""
|
1081 |
+
# We will start placing new objects from here.
|
1082 |
+
new_pt = (pt[0], pt[1] + 1)
|
1083 |
+
|
1084 |
+
for adjacent_obj in adjlists[grid[pt]]:
|
1085 |
+
if adjacent_obj in placed_objects:
|
1086 |
+
# This object has already been placed.
|
1087 |
+
continue
|
1088 |
+
|
1089 |
+
DiagramGrid._put_object(new_pt, adjacent_obj, grid, [])
|
1090 |
+
placed_objects.add(adjacent_obj)
|
1091 |
+
placed_objects.update(place_objects(new_pt, placed_objects))
|
1092 |
+
|
1093 |
+
new_pt = (new_pt[0] + 1, new_pt[1])
|
1094 |
+
|
1095 |
+
return placed_objects
|
1096 |
+
|
1097 |
+
place_objects((0, 0), placed_objects)
|
1098 |
+
|
1099 |
+
return grid
|
1100 |
+
|
1101 |
+
@staticmethod
|
1102 |
+
def _drop_inessential_morphisms(merged_morphisms):
|
1103 |
+
r"""
|
1104 |
+
Removes those morphisms which should appear in the diagram,
|
1105 |
+
but which have no relevance to object layout.
|
1106 |
+
|
1107 |
+
Currently this removes "loop" morphisms: the non-identity
|
1108 |
+
morphisms with the same domains and codomains.
|
1109 |
+
"""
|
1110 |
+
morphisms = [m for m in merged_morphisms if m.domain != m.codomain]
|
1111 |
+
return morphisms
|
1112 |
+
|
1113 |
+
@staticmethod
|
1114 |
+
def _get_connected_components(objects, merged_morphisms):
|
1115 |
+
"""
|
1116 |
+
Given a container of morphisms, returns a list of connected
|
1117 |
+
components formed by these morphisms. A connected component
|
1118 |
+
is represented by a diagram consisting of the corresponding
|
1119 |
+
morphisms.
|
1120 |
+
"""
|
1121 |
+
component_index = {}
|
1122 |
+
for o in objects:
|
1123 |
+
component_index[o] = None
|
1124 |
+
|
1125 |
+
# Get the underlying undirected graph of the diagram.
|
1126 |
+
adjlist = DiagramGrid._get_undirected_graph(objects, merged_morphisms)
|
1127 |
+
|
1128 |
+
def traverse_component(object, current_index):
|
1129 |
+
"""
|
1130 |
+
Does a depth-first search traversal of the component
|
1131 |
+
containing ``object``.
|
1132 |
+
"""
|
1133 |
+
component_index[object] = current_index
|
1134 |
+
for o in adjlist[object]:
|
1135 |
+
if component_index[o] is None:
|
1136 |
+
traverse_component(o, current_index)
|
1137 |
+
|
1138 |
+
# Traverse all components.
|
1139 |
+
current_index = 0
|
1140 |
+
for o in adjlist:
|
1141 |
+
if component_index[o] is None:
|
1142 |
+
traverse_component(o, current_index)
|
1143 |
+
current_index += 1
|
1144 |
+
|
1145 |
+
# List the objects of the components.
|
1146 |
+
component_objects = [[] for i in range(current_index)]
|
1147 |
+
for o, idx in component_index.items():
|
1148 |
+
component_objects[idx].append(o)
|
1149 |
+
|
1150 |
+
# Finally, list the morphisms belonging to each component.
|
1151 |
+
#
|
1152 |
+
# Note: If some objects are isolated, they will not get any
|
1153 |
+
# morphisms at this stage, and since the layout algorithm
|
1154 |
+
# relies, we are essentially going to lose this object.
|
1155 |
+
# Therefore, check if there are isolated objects and, for each
|
1156 |
+
# of them, provide the trivial identity morphism. It will get
|
1157 |
+
# discarded later, but the object will be there.
|
1158 |
+
|
1159 |
+
component_morphisms = []
|
1160 |
+
for component in component_objects:
|
1161 |
+
current_morphisms = {}
|
1162 |
+
for m in merged_morphisms:
|
1163 |
+
if (m.domain in component) and (m.codomain in component):
|
1164 |
+
current_morphisms[m] = merged_morphisms[m]
|
1165 |
+
|
1166 |
+
if len(component) == 1:
|
1167 |
+
# Let's add an identity morphism, for the sake of
|
1168 |
+
# surely having morphisms in this component.
|
1169 |
+
current_morphisms[IdentityMorphism(component[0])] = FiniteSet()
|
1170 |
+
|
1171 |
+
component_morphisms.append(Diagram(current_morphisms))
|
1172 |
+
|
1173 |
+
return component_morphisms
|
1174 |
+
|
1175 |
+
def __init__(self, diagram, groups=None, **hints):
|
1176 |
+
premises = DiagramGrid._simplify_morphisms(diagram.premises)
|
1177 |
+
conclusions = DiagramGrid._simplify_morphisms(diagram.conclusions)
|
1178 |
+
all_merged_morphisms = DiagramGrid._merge_premises_conclusions(
|
1179 |
+
premises, conclusions)
|
1180 |
+
merged_morphisms = DiagramGrid._drop_inessential_morphisms(
|
1181 |
+
all_merged_morphisms)
|
1182 |
+
|
1183 |
+
# Store the merged morphisms for later use.
|
1184 |
+
self._morphisms = all_merged_morphisms
|
1185 |
+
|
1186 |
+
components = DiagramGrid._get_connected_components(
|
1187 |
+
diagram.objects, all_merged_morphisms)
|
1188 |
+
|
1189 |
+
if groups and (groups != diagram.objects):
|
1190 |
+
# Lay out the diagram according to the groups.
|
1191 |
+
self._grid = DiagramGrid._handle_groups(
|
1192 |
+
diagram, groups, merged_morphisms, hints)
|
1193 |
+
elif len(components) > 1:
|
1194 |
+
# Note that we check for connectedness _before_ checking
|
1195 |
+
# the layout hints because the layout strategies don't
|
1196 |
+
# know how to deal with disconnected diagrams.
|
1197 |
+
|
1198 |
+
# The diagram is disconnected. Lay out the components
|
1199 |
+
# independently.
|
1200 |
+
grids = []
|
1201 |
+
|
1202 |
+
# Sort the components to eventually get the grids arranged
|
1203 |
+
# in a fixed, hash-independent order.
|
1204 |
+
components = sorted(components, key=default_sort_key)
|
1205 |
+
|
1206 |
+
for component in components:
|
1207 |
+
grid = DiagramGrid(component, **hints)
|
1208 |
+
grids.append(grid)
|
1209 |
+
|
1210 |
+
# Throw the grids together, in a line.
|
1211 |
+
total_width = sum(g.width for g in grids)
|
1212 |
+
total_height = max(g.height for g in grids)
|
1213 |
+
|
1214 |
+
grid = _GrowableGrid(total_width, total_height)
|
1215 |
+
start_j = 0
|
1216 |
+
for g in grids:
|
1217 |
+
for i in range(g.height):
|
1218 |
+
for j in range(g.width):
|
1219 |
+
grid[i, start_j + j] = g[i, j]
|
1220 |
+
|
1221 |
+
start_j += g.width
|
1222 |
+
|
1223 |
+
self._grid = grid
|
1224 |
+
elif "layout" in hints:
|
1225 |
+
if hints["layout"] == "sequential":
|
1226 |
+
self._grid = DiagramGrid._sequential_layout(
|
1227 |
+
diagram, merged_morphisms)
|
1228 |
+
else:
|
1229 |
+
self._grid = DiagramGrid._generic_layout(diagram, merged_morphisms)
|
1230 |
+
|
1231 |
+
if hints.get("transpose"):
|
1232 |
+
# Transpose the resulting grid.
|
1233 |
+
grid = _GrowableGrid(self._grid.height, self._grid.width)
|
1234 |
+
for i in range(self._grid.height):
|
1235 |
+
for j in range(self._grid.width):
|
1236 |
+
grid[j, i] = self._grid[i, j]
|
1237 |
+
self._grid = grid
|
1238 |
+
|
1239 |
+
@property
|
1240 |
+
def width(self):
|
1241 |
+
"""
|
1242 |
+
Returns the number of columns in this diagram layout.
|
1243 |
+
|
1244 |
+
Examples
|
1245 |
+
========
|
1246 |
+
|
1247 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1248 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1249 |
+
>>> A = Object("A")
|
1250 |
+
>>> B = Object("B")
|
1251 |
+
>>> C = Object("C")
|
1252 |
+
>>> f = NamedMorphism(A, B, "f")
|
1253 |
+
>>> g = NamedMorphism(B, C, "g")
|
1254 |
+
>>> diagram = Diagram([f, g])
|
1255 |
+
>>> grid = DiagramGrid(diagram)
|
1256 |
+
>>> grid.width
|
1257 |
+
2
|
1258 |
+
|
1259 |
+
"""
|
1260 |
+
return self._grid.width
|
1261 |
+
|
1262 |
+
@property
|
1263 |
+
def height(self):
|
1264 |
+
"""
|
1265 |
+
Returns the number of rows in this diagram layout.
|
1266 |
+
|
1267 |
+
Examples
|
1268 |
+
========
|
1269 |
+
|
1270 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1271 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1272 |
+
>>> A = Object("A")
|
1273 |
+
>>> B = Object("B")
|
1274 |
+
>>> C = Object("C")
|
1275 |
+
>>> f = NamedMorphism(A, B, "f")
|
1276 |
+
>>> g = NamedMorphism(B, C, "g")
|
1277 |
+
>>> diagram = Diagram([f, g])
|
1278 |
+
>>> grid = DiagramGrid(diagram)
|
1279 |
+
>>> grid.height
|
1280 |
+
2
|
1281 |
+
|
1282 |
+
"""
|
1283 |
+
return self._grid.height
|
1284 |
+
|
1285 |
+
def __getitem__(self, i_j):
|
1286 |
+
"""
|
1287 |
+
Returns the object placed in the row ``i`` and column ``j``.
|
1288 |
+
The indices are 0-based.
|
1289 |
+
|
1290 |
+
Examples
|
1291 |
+
========
|
1292 |
+
|
1293 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1294 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1295 |
+
>>> A = Object("A")
|
1296 |
+
>>> B = Object("B")
|
1297 |
+
>>> C = Object("C")
|
1298 |
+
>>> f = NamedMorphism(A, B, "f")
|
1299 |
+
>>> g = NamedMorphism(B, C, "g")
|
1300 |
+
>>> diagram = Diagram([f, g])
|
1301 |
+
>>> grid = DiagramGrid(diagram)
|
1302 |
+
>>> (grid[0, 0], grid[0, 1])
|
1303 |
+
(Object("A"), Object("B"))
|
1304 |
+
>>> (grid[1, 0], grid[1, 1])
|
1305 |
+
(None, Object("C"))
|
1306 |
+
|
1307 |
+
"""
|
1308 |
+
i, j = i_j
|
1309 |
+
return self._grid[i, j]
|
1310 |
+
|
1311 |
+
@property
|
1312 |
+
def morphisms(self):
|
1313 |
+
"""
|
1314 |
+
Returns those morphisms (and their properties) which are
|
1315 |
+
sufficiently meaningful to be drawn.
|
1316 |
+
|
1317 |
+
Examples
|
1318 |
+
========
|
1319 |
+
|
1320 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1321 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1322 |
+
>>> A = Object("A")
|
1323 |
+
>>> B = Object("B")
|
1324 |
+
>>> C = Object("C")
|
1325 |
+
>>> f = NamedMorphism(A, B, "f")
|
1326 |
+
>>> g = NamedMorphism(B, C, "g")
|
1327 |
+
>>> diagram = Diagram([f, g])
|
1328 |
+
>>> grid = DiagramGrid(diagram)
|
1329 |
+
>>> grid.morphisms
|
1330 |
+
{NamedMorphism(Object("A"), Object("B"), "f"): EmptySet,
|
1331 |
+
NamedMorphism(Object("B"), Object("C"), "g"): EmptySet}
|
1332 |
+
|
1333 |
+
"""
|
1334 |
+
return self._morphisms
|
1335 |
+
|
1336 |
+
def __str__(self):
|
1337 |
+
"""
|
1338 |
+
Produces a string representation of this class.
|
1339 |
+
|
1340 |
+
This method returns a string representation of the underlying
|
1341 |
+
list of lists of objects.
|
1342 |
+
|
1343 |
+
Examples
|
1344 |
+
========
|
1345 |
+
|
1346 |
+
>>> from sympy.categories import Object, NamedMorphism
|
1347 |
+
>>> from sympy.categories import Diagram, DiagramGrid
|
1348 |
+
>>> A = Object("A")
|
1349 |
+
>>> B = Object("B")
|
1350 |
+
>>> C = Object("C")
|
1351 |
+
>>> f = NamedMorphism(A, B, "f")
|
1352 |
+
>>> g = NamedMorphism(B, C, "g")
|
1353 |
+
>>> diagram = Diagram([f, g])
|
1354 |
+
>>> grid = DiagramGrid(diagram)
|
1355 |
+
>>> print(grid)
|
1356 |
+
[[Object("A"), Object("B")],
|
1357 |
+
[None, Object("C")]]
|
1358 |
+
|
1359 |
+
"""
|
1360 |
+
return repr(self._grid._array)
|
1361 |
+
|
1362 |
+
|
1363 |
+
class ArrowStringDescription:
|
1364 |
+
r"""
|
1365 |
+
Stores the information necessary for producing an Xy-pic
|
1366 |
+
description of an arrow.
|
1367 |
+
|
1368 |
+
The principal goal of this class is to abstract away the string
|
1369 |
+
representation of an arrow and to also provide the functionality
|
1370 |
+
to produce the actual Xy-pic string.
|
1371 |
+
|
1372 |
+
``unit`` sets the unit which will be used to specify the amount of
|
1373 |
+
curving and other distances. ``horizontal_direction`` should be a
|
1374 |
+
string of ``"r"`` or ``"l"`` specifying the horizontal offset of the
|
1375 |
+
target cell of the arrow relatively to the current one.
|
1376 |
+
``vertical_direction`` should specify the vertical offset using a
|
1377 |
+
series of either ``"d"`` or ``"u"``. ``label_position`` should be
|
1378 |
+
either ``"^"``, ``"_"``, or ``"|"`` to specify that the label should
|
1379 |
+
be positioned above the arrow, below the arrow or just over the arrow,
|
1380 |
+
in a break. Note that the notions "above" and "below" are relative
|
1381 |
+
to arrow direction. ``label`` stores the morphism label.
|
1382 |
+
|
1383 |
+
This works as follows (disregard the yet unexplained arguments):
|
1384 |
+
|
1385 |
+
>>> from sympy.categories.diagram_drawing import ArrowStringDescription
|
1386 |
+
>>> astr = ArrowStringDescription(
|
1387 |
+
... unit="mm", curving=None, curving_amount=None,
|
1388 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1389 |
+
... vertical_direction="r", label_position="_", label="f")
|
1390 |
+
>>> print(str(astr))
|
1391 |
+
\ar[dr]_{f}
|
1392 |
+
|
1393 |
+
``curving`` should be one of ``"^"``, ``"_"`` to specify in which
|
1394 |
+
direction the arrow is going to curve. ``curving_amount`` is a number
|
1395 |
+
describing how many ``unit``'s the morphism is going to curve:
|
1396 |
+
|
1397 |
+
>>> astr = ArrowStringDescription(
|
1398 |
+
... unit="mm", curving="^", curving_amount=12,
|
1399 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1400 |
+
... vertical_direction="r", label_position="_", label="f")
|
1401 |
+
>>> print(str(astr))
|
1402 |
+
\ar@/^12mm/[dr]_{f}
|
1403 |
+
|
1404 |
+
``looping_start`` and ``looping_end`` are currently only used for
|
1405 |
+
loop morphisms, those which have the same domain and codomain.
|
1406 |
+
These two attributes should store a valid Xy-pic direction and
|
1407 |
+
specify, correspondingly, the direction the arrow gets out into
|
1408 |
+
and the direction the arrow gets back from:
|
1409 |
+
|
1410 |
+
>>> astr = ArrowStringDescription(
|
1411 |
+
... unit="mm", curving=None, curving_amount=None,
|
1412 |
+
... looping_start="u", looping_end="l", horizontal_direction="",
|
1413 |
+
... vertical_direction="", label_position="_", label="f")
|
1414 |
+
>>> print(str(astr))
|
1415 |
+
\ar@(u,l)[]_{f}
|
1416 |
+
|
1417 |
+
``label_displacement`` controls how far the arrow label is from
|
1418 |
+
the ends of the arrow. For example, to position the arrow label
|
1419 |
+
near the arrow head, use ">":
|
1420 |
+
|
1421 |
+
>>> astr = ArrowStringDescription(
|
1422 |
+
... unit="mm", curving="^", curving_amount=12,
|
1423 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1424 |
+
... vertical_direction="r", label_position="_", label="f")
|
1425 |
+
>>> astr.label_displacement = ">"
|
1426 |
+
>>> print(str(astr))
|
1427 |
+
\ar@/^12mm/[dr]_>{f}
|
1428 |
+
|
1429 |
+
Finally, ``arrow_style`` is used to specify the arrow style. To
|
1430 |
+
get a dashed arrow, for example, use "{-->}" as arrow style:
|
1431 |
+
|
1432 |
+
>>> astr = ArrowStringDescription(
|
1433 |
+
... unit="mm", curving="^", curving_amount=12,
|
1434 |
+
... looping_start=None, looping_end=None, horizontal_direction="d",
|
1435 |
+
... vertical_direction="r", label_position="_", label="f")
|
1436 |
+
>>> astr.arrow_style = "{-->}"
|
1437 |
+
>>> print(str(astr))
|
1438 |
+
\ar@/^12mm/@{-->}[dr]_{f}
|
1439 |
+
|
1440 |
+
Notes
|
1441 |
+
=====
|
1442 |
+
|
1443 |
+
Instances of :class:`ArrowStringDescription` will be constructed
|
1444 |
+
by :class:`XypicDiagramDrawer` and provided for further use in
|
1445 |
+
formatters. The user is not expected to construct instances of
|
1446 |
+
:class:`ArrowStringDescription` themselves.
|
1447 |
+
|
1448 |
+
To be able to properly utilise this class, the reader is encouraged
|
1449 |
+
to checkout the Xy-pic user guide, available at [Xypic].
|
1450 |
+
|
1451 |
+
See Also
|
1452 |
+
========
|
1453 |
+
|
1454 |
+
XypicDiagramDrawer
|
1455 |
+
|
1456 |
+
References
|
1457 |
+
==========
|
1458 |
+
|
1459 |
+
.. [Xypic] https://xy-pic.sourceforge.net/
|
1460 |
+
"""
|
1461 |
+
def __init__(self, unit, curving, curving_amount, looping_start,
|
1462 |
+
looping_end, horizontal_direction, vertical_direction,
|
1463 |
+
label_position, label):
|
1464 |
+
self.unit = unit
|
1465 |
+
self.curving = curving
|
1466 |
+
self.curving_amount = curving_amount
|
1467 |
+
self.looping_start = looping_start
|
1468 |
+
self.looping_end = looping_end
|
1469 |
+
self.horizontal_direction = horizontal_direction
|
1470 |
+
self.vertical_direction = vertical_direction
|
1471 |
+
self.label_position = label_position
|
1472 |
+
self.label = label
|
1473 |
+
|
1474 |
+
self.label_displacement = ""
|
1475 |
+
self.arrow_style = ""
|
1476 |
+
|
1477 |
+
# This flag shows that the position of the label of this
|
1478 |
+
# morphism was set while typesetting a curved morphism and
|
1479 |
+
# should not be modified later.
|
1480 |
+
self.forced_label_position = False
|
1481 |
+
|
1482 |
+
def __str__(self):
|
1483 |
+
if self.curving:
|
1484 |
+
curving_str = "@/%s%d%s/" % (self.curving, self.curving_amount,
|
1485 |
+
self.unit)
|
1486 |
+
else:
|
1487 |
+
curving_str = ""
|
1488 |
+
|
1489 |
+
if self.looping_start and self.looping_end:
|
1490 |
+
looping_str = "@(%s,%s)" % (self.looping_start, self.looping_end)
|
1491 |
+
else:
|
1492 |
+
looping_str = ""
|
1493 |
+
|
1494 |
+
if self.arrow_style:
|
1495 |
+
|
1496 |
+
style_str = "@" + self.arrow_style
|
1497 |
+
else:
|
1498 |
+
style_str = ""
|
1499 |
+
|
1500 |
+
return "\\ar%s%s%s[%s%s]%s%s{%s}" % \
|
1501 |
+
(curving_str, looping_str, style_str, self.horizontal_direction,
|
1502 |
+
self.vertical_direction, self.label_position,
|
1503 |
+
self.label_displacement, self.label)
|
1504 |
+
|
1505 |
+
|
1506 |
+
class XypicDiagramDrawer:
|
1507 |
+
r"""
|
1508 |
+
Given a :class:`~.Diagram` and the corresponding
|
1509 |
+
:class:`DiagramGrid`, produces the Xy-pic representation of the
|
1510 |
+
diagram.
|
1511 |
+
|
1512 |
+
The most important method in this class is ``draw``. Consider the
|
1513 |
+
following triangle diagram:
|
1514 |
+
|
1515 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
1516 |
+
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
|
1517 |
+
>>> A = Object("A")
|
1518 |
+
>>> B = Object("B")
|
1519 |
+
>>> C = Object("C")
|
1520 |
+
>>> f = NamedMorphism(A, B, "f")
|
1521 |
+
>>> g = NamedMorphism(B, C, "g")
|
1522 |
+
>>> diagram = Diagram([f, g], {g * f: "unique"})
|
1523 |
+
|
1524 |
+
To draw this diagram, its objects need to be laid out with a
|
1525 |
+
:class:`DiagramGrid`::
|
1526 |
+
|
1527 |
+
>>> grid = DiagramGrid(diagram)
|
1528 |
+
|
1529 |
+
Finally, the drawing:
|
1530 |
+
|
1531 |
+
>>> drawer = XypicDiagramDrawer()
|
1532 |
+
>>> print(drawer.draw(diagram, grid))
|
1533 |
+
\xymatrix{
|
1534 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
1535 |
+
C &
|
1536 |
+
}
|
1537 |
+
|
1538 |
+
For further details see the docstring of this method.
|
1539 |
+
|
1540 |
+
To control the appearance of the arrows, formatters are used. The
|
1541 |
+
dictionary ``arrow_formatters`` maps morphisms to formatter
|
1542 |
+
functions. A formatter is accepts an
|
1543 |
+
:class:`ArrowStringDescription` and is allowed to modify any of
|
1544 |
+
the arrow properties exposed thereby. For example, to have all
|
1545 |
+
morphisms with the property ``unique`` appear as dashed arrows,
|
1546 |
+
and to have their names prepended with `\exists !`, the following
|
1547 |
+
should be done:
|
1548 |
+
|
1549 |
+
>>> def formatter(astr):
|
1550 |
+
... astr.label = r"\exists !" + astr.label
|
1551 |
+
... astr.arrow_style = "{-->}"
|
1552 |
+
>>> drawer.arrow_formatters["unique"] = formatter
|
1553 |
+
>>> print(drawer.draw(diagram, grid))
|
1554 |
+
\xymatrix{
|
1555 |
+
A \ar@{-->}[d]_{\exists !g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
1556 |
+
C &
|
1557 |
+
}
|
1558 |
+
|
1559 |
+
To modify the appearance of all arrows in the diagram, set
|
1560 |
+
``default_arrow_formatter``. For example, to place all morphism
|
1561 |
+
labels a little bit farther from the arrow head so that they look
|
1562 |
+
more centred, do as follows:
|
1563 |
+
|
1564 |
+
>>> def default_formatter(astr):
|
1565 |
+
... astr.label_displacement = "(0.45)"
|
1566 |
+
>>> drawer.default_arrow_formatter = default_formatter
|
1567 |
+
>>> print(drawer.draw(diagram, grid))
|
1568 |
+
\xymatrix{
|
1569 |
+
A \ar@{-->}[d]_(0.45){\exists !g\circ f} \ar[r]^(0.45){f} & B \ar[ld]^(0.45){g} \\
|
1570 |
+
C &
|
1571 |
+
}
|
1572 |
+
|
1573 |
+
In some diagrams some morphisms are drawn as curved arrows.
|
1574 |
+
Consider the following diagram:
|
1575 |
+
|
1576 |
+
>>> D = Object("D")
|
1577 |
+
>>> E = Object("E")
|
1578 |
+
>>> h = NamedMorphism(D, A, "h")
|
1579 |
+
>>> k = NamedMorphism(D, B, "k")
|
1580 |
+
>>> diagram = Diagram([f, g, h, k])
|
1581 |
+
>>> grid = DiagramGrid(diagram)
|
1582 |
+
>>> drawer = XypicDiagramDrawer()
|
1583 |
+
>>> print(drawer.draw(diagram, grid))
|
1584 |
+
\xymatrix{
|
1585 |
+
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_3mm/[ll]_{h} \\
|
1586 |
+
& C &
|
1587 |
+
}
|
1588 |
+
|
1589 |
+
To control how far the morphisms are curved by default, one can
|
1590 |
+
use the ``unit`` and ``default_curving_amount`` attributes:
|
1591 |
+
|
1592 |
+
>>> drawer.unit = "cm"
|
1593 |
+
>>> drawer.default_curving_amount = 1
|
1594 |
+
>>> print(drawer.draw(diagram, grid))
|
1595 |
+
\xymatrix{
|
1596 |
+
A \ar[r]_{f} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_1cm/[ll]_{h} \\
|
1597 |
+
& C &
|
1598 |
+
}
|
1599 |
+
|
1600 |
+
In some diagrams, there are multiple curved morphisms between the
|
1601 |
+
same two objects. To control by how much the curving changes
|
1602 |
+
between two such successive morphisms, use
|
1603 |
+
``default_curving_step``:
|
1604 |
+
|
1605 |
+
>>> drawer.default_curving_step = 1
|
1606 |
+
>>> h1 = NamedMorphism(A, D, "h1")
|
1607 |
+
>>> diagram = Diagram([f, g, h, k, h1])
|
1608 |
+
>>> grid = DiagramGrid(diagram)
|
1609 |
+
>>> print(drawer.draw(diagram, grid))
|
1610 |
+
\xymatrix{
|
1611 |
+
A \ar[r]_{f} \ar@/^1cm/[rr]^{h_{1}} & B \ar[d]^{g} & D \ar[l]^{k} \ar@/_2cm/[ll]_{h} \\
|
1612 |
+
& C &
|
1613 |
+
}
|
1614 |
+
|
1615 |
+
The default value of ``default_curving_step`` is 4 units.
|
1616 |
+
|
1617 |
+
See Also
|
1618 |
+
========
|
1619 |
+
|
1620 |
+
draw, ArrowStringDescription
|
1621 |
+
"""
|
1622 |
+
def __init__(self):
|
1623 |
+
self.unit = "mm"
|
1624 |
+
self.default_curving_amount = 3
|
1625 |
+
self.default_curving_step = 4
|
1626 |
+
|
1627 |
+
# This dictionary maps properties to the corresponding arrow
|
1628 |
+
# formatters.
|
1629 |
+
self.arrow_formatters = {}
|
1630 |
+
|
1631 |
+
# This is the default arrow formatter which will be applied to
|
1632 |
+
# each arrow independently of its properties.
|
1633 |
+
self.default_arrow_formatter = None
|
1634 |
+
|
1635 |
+
@staticmethod
|
1636 |
+
def _process_loop_morphism(i, j, grid, morphisms_str_info, object_coords):
|
1637 |
+
"""
|
1638 |
+
Produces the information required for constructing the string
|
1639 |
+
representation of a loop morphism. This function is invoked
|
1640 |
+
from ``_process_morphism``.
|
1641 |
+
|
1642 |
+
See Also
|
1643 |
+
========
|
1644 |
+
|
1645 |
+
_process_morphism
|
1646 |
+
"""
|
1647 |
+
curving = ""
|
1648 |
+
label_pos = "^"
|
1649 |
+
looping_start = ""
|
1650 |
+
looping_end = ""
|
1651 |
+
|
1652 |
+
# This is a loop morphism. Count how many morphisms stick
|
1653 |
+
# in each of the four quadrants. Note that straight
|
1654 |
+
# vertical and horizontal morphisms count in two quadrants
|
1655 |
+
# at the same time (i.e., a morphism going up counts both
|
1656 |
+
# in the first and the second quadrants).
|
1657 |
+
|
1658 |
+
# The usual numbering (counterclockwise) of quadrants
|
1659 |
+
# applies.
|
1660 |
+
quadrant = [0, 0, 0, 0]
|
1661 |
+
|
1662 |
+
obj = grid[i, j]
|
1663 |
+
|
1664 |
+
for m, m_str_info in morphisms_str_info.items():
|
1665 |
+
if (m.domain == obj) and (m.codomain == obj):
|
1666 |
+
# That's another loop morphism. Check how it
|
1667 |
+
# loops and mark the corresponding quadrants as
|
1668 |
+
# busy.
|
1669 |
+
(l_s, l_e) = (m_str_info.looping_start, m_str_info.looping_end)
|
1670 |
+
|
1671 |
+
if (l_s, l_e) == ("r", "u"):
|
1672 |
+
quadrant[0] += 1
|
1673 |
+
elif (l_s, l_e) == ("u", "l"):
|
1674 |
+
quadrant[1] += 1
|
1675 |
+
elif (l_s, l_e) == ("l", "d"):
|
1676 |
+
quadrant[2] += 1
|
1677 |
+
elif (l_s, l_e) == ("d", "r"):
|
1678 |
+
quadrant[3] += 1
|
1679 |
+
|
1680 |
+
continue
|
1681 |
+
if m.domain == obj:
|
1682 |
+
(end_i, end_j) = object_coords[m.codomain]
|
1683 |
+
goes_out = True
|
1684 |
+
elif m.codomain == obj:
|
1685 |
+
(end_i, end_j) = object_coords[m.domain]
|
1686 |
+
goes_out = False
|
1687 |
+
else:
|
1688 |
+
continue
|
1689 |
+
|
1690 |
+
d_i = end_i - i
|
1691 |
+
d_j = end_j - j
|
1692 |
+
m_curving = m_str_info.curving
|
1693 |
+
|
1694 |
+
if (d_i != 0) and (d_j != 0):
|
1695 |
+
# This is really a diagonal morphism. Detect the
|
1696 |
+
# quadrant.
|
1697 |
+
if (d_i > 0) and (d_j > 0):
|
1698 |
+
quadrant[0] += 1
|
1699 |
+
elif (d_i > 0) and (d_j < 0):
|
1700 |
+
quadrant[1] += 1
|
1701 |
+
elif (d_i < 0) and (d_j < 0):
|
1702 |
+
quadrant[2] += 1
|
1703 |
+
elif (d_i < 0) and (d_j > 0):
|
1704 |
+
quadrant[3] += 1
|
1705 |
+
elif d_i == 0:
|
1706 |
+
# Knowing where the other end of the morphism is
|
1707 |
+
# and which way it goes, we now have to decide
|
1708 |
+
# which quadrant is now the upper one and which is
|
1709 |
+
# the lower one.
|
1710 |
+
if d_j > 0:
|
1711 |
+
if goes_out:
|
1712 |
+
upper_quadrant = 0
|
1713 |
+
lower_quadrant = 3
|
1714 |
+
else:
|
1715 |
+
upper_quadrant = 3
|
1716 |
+
lower_quadrant = 0
|
1717 |
+
else:
|
1718 |
+
if goes_out:
|
1719 |
+
upper_quadrant = 2
|
1720 |
+
lower_quadrant = 1
|
1721 |
+
else:
|
1722 |
+
upper_quadrant = 1
|
1723 |
+
lower_quadrant = 2
|
1724 |
+
|
1725 |
+
if m_curving:
|
1726 |
+
if m_curving == "^":
|
1727 |
+
quadrant[upper_quadrant] += 1
|
1728 |
+
elif m_curving == "_":
|
1729 |
+
quadrant[lower_quadrant] += 1
|
1730 |
+
else:
|
1731 |
+
# This morphism counts in both upper and lower
|
1732 |
+
# quadrants.
|
1733 |
+
quadrant[upper_quadrant] += 1
|
1734 |
+
quadrant[lower_quadrant] += 1
|
1735 |
+
elif d_j == 0:
|
1736 |
+
# Knowing where the other end of the morphism is
|
1737 |
+
# and which way it goes, we now have to decide
|
1738 |
+
# which quadrant is now the left one and which is
|
1739 |
+
# the right one.
|
1740 |
+
if d_i < 0:
|
1741 |
+
if goes_out:
|
1742 |
+
left_quadrant = 1
|
1743 |
+
right_quadrant = 0
|
1744 |
+
else:
|
1745 |
+
left_quadrant = 0
|
1746 |
+
right_quadrant = 1
|
1747 |
+
else:
|
1748 |
+
if goes_out:
|
1749 |
+
left_quadrant = 3
|
1750 |
+
right_quadrant = 2
|
1751 |
+
else:
|
1752 |
+
left_quadrant = 2
|
1753 |
+
right_quadrant = 3
|
1754 |
+
|
1755 |
+
if m_curving:
|
1756 |
+
if m_curving == "^":
|
1757 |
+
quadrant[left_quadrant] += 1
|
1758 |
+
elif m_curving == "_":
|
1759 |
+
quadrant[right_quadrant] += 1
|
1760 |
+
else:
|
1761 |
+
# This morphism counts in both upper and lower
|
1762 |
+
# quadrants.
|
1763 |
+
quadrant[left_quadrant] += 1
|
1764 |
+
quadrant[right_quadrant] += 1
|
1765 |
+
|
1766 |
+
# Pick the freest quadrant to curve our morphism into.
|
1767 |
+
freest_quadrant = 0
|
1768 |
+
for i in range(4):
|
1769 |
+
if quadrant[i] < quadrant[freest_quadrant]:
|
1770 |
+
freest_quadrant = i
|
1771 |
+
|
1772 |
+
# Now set up proper looping.
|
1773 |
+
(looping_start, looping_end) = [("r", "u"), ("u", "l"), ("l", "d"),
|
1774 |
+
("d", "r")][freest_quadrant]
|
1775 |
+
|
1776 |
+
return (curving, label_pos, looping_start, looping_end)
|
1777 |
+
|
1778 |
+
@staticmethod
|
1779 |
+
def _process_horizontal_morphism(i, j, target_j, grid, morphisms_str_info,
|
1780 |
+
object_coords):
|
1781 |
+
"""
|
1782 |
+
Produces the information required for constructing the string
|
1783 |
+
representation of a horizontal morphism. This function is
|
1784 |
+
invoked from ``_process_morphism``.
|
1785 |
+
|
1786 |
+
See Also
|
1787 |
+
========
|
1788 |
+
|
1789 |
+
_process_morphism
|
1790 |
+
"""
|
1791 |
+
# The arrow is horizontal. Check if it goes from left to
|
1792 |
+
# right (``backwards == False``) or from right to left
|
1793 |
+
# (``backwards == True``).
|
1794 |
+
backwards = False
|
1795 |
+
start = j
|
1796 |
+
end = target_j
|
1797 |
+
if end < start:
|
1798 |
+
(start, end) = (end, start)
|
1799 |
+
backwards = True
|
1800 |
+
|
1801 |
+
# Let's see which objects are there between ``start`` and
|
1802 |
+
# ``end``, and then count how many morphisms stick out
|
1803 |
+
# upwards, and how many stick out downwards.
|
1804 |
+
#
|
1805 |
+
# For example, consider the situation:
|
1806 |
+
#
|
1807 |
+
# B1 C1
|
1808 |
+
# | |
|
1809 |
+
# A--B--C--D
|
1810 |
+
# |
|
1811 |
+
# B2
|
1812 |
+
#
|
1813 |
+
# Between the objects `A` and `D` there are two objects:
|
1814 |
+
# `B` and `C`. Further, there are two morphisms which
|
1815 |
+
# stick out upward (the ones between `B1` and `B` and
|
1816 |
+
# between `C` and `C1`) and one morphism which sticks out
|
1817 |
+
# downward (the one between `B and `B2`).
|
1818 |
+
#
|
1819 |
+
# We need this information to decide how to curve the
|
1820 |
+
# arrow between `A` and `D`. First of all, since there
|
1821 |
+
# are two objects between `A` and `D``, we must curve the
|
1822 |
+
# arrow. Then, we will have it curve downward, because
|
1823 |
+
# there is more space (less morphisms stick out downward
|
1824 |
+
# than upward).
|
1825 |
+
up = []
|
1826 |
+
down = []
|
1827 |
+
straight_horizontal = []
|
1828 |
+
for k in range(start + 1, end):
|
1829 |
+
obj = grid[i, k]
|
1830 |
+
if not obj:
|
1831 |
+
continue
|
1832 |
+
|
1833 |
+
for m in morphisms_str_info:
|
1834 |
+
if m.domain == obj:
|
1835 |
+
(end_i, end_j) = object_coords[m.codomain]
|
1836 |
+
elif m.codomain == obj:
|
1837 |
+
(end_i, end_j) = object_coords[m.domain]
|
1838 |
+
else:
|
1839 |
+
continue
|
1840 |
+
|
1841 |
+
if end_i > i:
|
1842 |
+
down.append(m)
|
1843 |
+
elif end_i < i:
|
1844 |
+
up.append(m)
|
1845 |
+
elif not morphisms_str_info[m].curving:
|
1846 |
+
# This is a straight horizontal morphism,
|
1847 |
+
# because it has no curving.
|
1848 |
+
straight_horizontal.append(m)
|
1849 |
+
|
1850 |
+
if len(up) < len(down):
|
1851 |
+
# More morphisms stick out downward than upward, let's
|
1852 |
+
# curve the morphism up.
|
1853 |
+
if backwards:
|
1854 |
+
curving = "_"
|
1855 |
+
label_pos = "_"
|
1856 |
+
else:
|
1857 |
+
curving = "^"
|
1858 |
+
label_pos = "^"
|
1859 |
+
|
1860 |
+
# Assure that the straight horizontal morphisms have
|
1861 |
+
# their labels on the lower side of the arrow.
|
1862 |
+
for m in straight_horizontal:
|
1863 |
+
(i1, j1) = object_coords[m.domain]
|
1864 |
+
(i2, j2) = object_coords[m.codomain]
|
1865 |
+
|
1866 |
+
m_str_info = morphisms_str_info[m]
|
1867 |
+
if j1 < j2:
|
1868 |
+
m_str_info.label_position = "_"
|
1869 |
+
else:
|
1870 |
+
m_str_info.label_position = "^"
|
1871 |
+
|
1872 |
+
# Don't allow any further modifications of the
|
1873 |
+
# position of this label.
|
1874 |
+
m_str_info.forced_label_position = True
|
1875 |
+
else:
|
1876 |
+
# More morphisms stick out downward than upward, let's
|
1877 |
+
# curve the morphism up.
|
1878 |
+
if backwards:
|
1879 |
+
curving = "^"
|
1880 |
+
label_pos = "^"
|
1881 |
+
else:
|
1882 |
+
curving = "_"
|
1883 |
+
label_pos = "_"
|
1884 |
+
|
1885 |
+
# Assure that the straight horizontal morphisms have
|
1886 |
+
# their labels on the upper side of the arrow.
|
1887 |
+
for m in straight_horizontal:
|
1888 |
+
(i1, j1) = object_coords[m.domain]
|
1889 |
+
(i2, j2) = object_coords[m.codomain]
|
1890 |
+
|
1891 |
+
m_str_info = morphisms_str_info[m]
|
1892 |
+
if j1 < j2:
|
1893 |
+
m_str_info.label_position = "^"
|
1894 |
+
else:
|
1895 |
+
m_str_info.label_position = "_"
|
1896 |
+
|
1897 |
+
# Don't allow any further modifications of the
|
1898 |
+
# position of this label.
|
1899 |
+
m_str_info.forced_label_position = True
|
1900 |
+
|
1901 |
+
return (curving, label_pos)
|
1902 |
+
|
1903 |
+
@staticmethod
|
1904 |
+
def _process_vertical_morphism(i, j, target_i, grid, morphisms_str_info,
|
1905 |
+
object_coords):
|
1906 |
+
"""
|
1907 |
+
Produces the information required for constructing the string
|
1908 |
+
representation of a vertical morphism. This function is
|
1909 |
+
invoked from ``_process_morphism``.
|
1910 |
+
|
1911 |
+
See Also
|
1912 |
+
========
|
1913 |
+
|
1914 |
+
_process_morphism
|
1915 |
+
"""
|
1916 |
+
# This arrow is vertical. Check if it goes from top to
|
1917 |
+
# bottom (``backwards == False``) or from bottom to top
|
1918 |
+
# (``backwards == True``).
|
1919 |
+
backwards = False
|
1920 |
+
start = i
|
1921 |
+
end = target_i
|
1922 |
+
if end < start:
|
1923 |
+
(start, end) = (end, start)
|
1924 |
+
backwards = True
|
1925 |
+
|
1926 |
+
# Let's see which objects are there between ``start`` and
|
1927 |
+
# ``end``, and then count how many morphisms stick out to
|
1928 |
+
# the left, and how many stick out to the right.
|
1929 |
+
#
|
1930 |
+
# See the corresponding comment in the previous branch of
|
1931 |
+
# this if-statement for more details.
|
1932 |
+
left = []
|
1933 |
+
right = []
|
1934 |
+
straight_vertical = []
|
1935 |
+
for k in range(start + 1, end):
|
1936 |
+
obj = grid[k, j]
|
1937 |
+
if not obj:
|
1938 |
+
continue
|
1939 |
+
|
1940 |
+
for m in morphisms_str_info:
|
1941 |
+
if m.domain == obj:
|
1942 |
+
(end_i, end_j) = object_coords[m.codomain]
|
1943 |
+
elif m.codomain == obj:
|
1944 |
+
(end_i, end_j) = object_coords[m.domain]
|
1945 |
+
else:
|
1946 |
+
continue
|
1947 |
+
|
1948 |
+
if end_j > j:
|
1949 |
+
right.append(m)
|
1950 |
+
elif end_j < j:
|
1951 |
+
left.append(m)
|
1952 |
+
elif not morphisms_str_info[m].curving:
|
1953 |
+
# This is a straight vertical morphism,
|
1954 |
+
# because it has no curving.
|
1955 |
+
straight_vertical.append(m)
|
1956 |
+
|
1957 |
+
if len(left) < len(right):
|
1958 |
+
# More morphisms stick out to the left than to the
|
1959 |
+
# right, let's curve the morphism to the right.
|
1960 |
+
if backwards:
|
1961 |
+
curving = "^"
|
1962 |
+
label_pos = "^"
|
1963 |
+
else:
|
1964 |
+
curving = "_"
|
1965 |
+
label_pos = "_"
|
1966 |
+
|
1967 |
+
# Assure that the straight vertical morphisms have
|
1968 |
+
# their labels on the left side of the arrow.
|
1969 |
+
for m in straight_vertical:
|
1970 |
+
(i1, j1) = object_coords[m.domain]
|
1971 |
+
(i2, j2) = object_coords[m.codomain]
|
1972 |
+
|
1973 |
+
m_str_info = morphisms_str_info[m]
|
1974 |
+
if i1 < i2:
|
1975 |
+
m_str_info.label_position = "^"
|
1976 |
+
else:
|
1977 |
+
m_str_info.label_position = "_"
|
1978 |
+
|
1979 |
+
# Don't allow any further modifications of the
|
1980 |
+
# position of this label.
|
1981 |
+
m_str_info.forced_label_position = True
|
1982 |
+
else:
|
1983 |
+
# More morphisms stick out to the right than to the
|
1984 |
+
# left, let's curve the morphism to the left.
|
1985 |
+
if backwards:
|
1986 |
+
curving = "_"
|
1987 |
+
label_pos = "_"
|
1988 |
+
else:
|
1989 |
+
curving = "^"
|
1990 |
+
label_pos = "^"
|
1991 |
+
|
1992 |
+
# Assure that the straight vertical morphisms have
|
1993 |
+
# their labels on the right side of the arrow.
|
1994 |
+
for m in straight_vertical:
|
1995 |
+
(i1, j1) = object_coords[m.domain]
|
1996 |
+
(i2, j2) = object_coords[m.codomain]
|
1997 |
+
|
1998 |
+
m_str_info = morphisms_str_info[m]
|
1999 |
+
if i1 < i2:
|
2000 |
+
m_str_info.label_position = "_"
|
2001 |
+
else:
|
2002 |
+
m_str_info.label_position = "^"
|
2003 |
+
|
2004 |
+
# Don't allow any further modifications of the
|
2005 |
+
# position of this label.
|
2006 |
+
m_str_info.forced_label_position = True
|
2007 |
+
|
2008 |
+
return (curving, label_pos)
|
2009 |
+
|
2010 |
+
def _process_morphism(self, diagram, grid, morphism, object_coords,
|
2011 |
+
morphisms, morphisms_str_info):
|
2012 |
+
"""
|
2013 |
+
Given the required information, produces the string
|
2014 |
+
representation of ``morphism``.
|
2015 |
+
"""
|
2016 |
+
def repeat_string_cond(times, str_gt, str_lt):
|
2017 |
+
"""
|
2018 |
+
If ``times > 0``, repeats ``str_gt`` ``times`` times.
|
2019 |
+
Otherwise, repeats ``str_lt`` ``-times`` times.
|
2020 |
+
"""
|
2021 |
+
if times > 0:
|
2022 |
+
return str_gt * times
|
2023 |
+
else:
|
2024 |
+
return str_lt * (-times)
|
2025 |
+
|
2026 |
+
def count_morphisms_undirected(A, B):
|
2027 |
+
"""
|
2028 |
+
Counts how many processed morphisms there are between the
|
2029 |
+
two supplied objects.
|
2030 |
+
"""
|
2031 |
+
return len([m for m in morphisms_str_info
|
2032 |
+
if {m.domain, m.codomain} == {A, B}])
|
2033 |
+
|
2034 |
+
def count_morphisms_filtered(dom, cod, curving):
|
2035 |
+
"""
|
2036 |
+
Counts the processed morphisms which go out of ``dom``
|
2037 |
+
into ``cod`` with curving ``curving``.
|
2038 |
+
"""
|
2039 |
+
return len([m for m, m_str_info in morphisms_str_info.items()
|
2040 |
+
if (m.domain, m.codomain) == (dom, cod) and
|
2041 |
+
(m_str_info.curving == curving)])
|
2042 |
+
|
2043 |
+
(i, j) = object_coords[morphism.domain]
|
2044 |
+
(target_i, target_j) = object_coords[morphism.codomain]
|
2045 |
+
|
2046 |
+
# We now need to determine the direction of
|
2047 |
+
# the arrow.
|
2048 |
+
delta_i = target_i - i
|
2049 |
+
delta_j = target_j - j
|
2050 |
+
vertical_direction = repeat_string_cond(delta_i,
|
2051 |
+
"d", "u")
|
2052 |
+
horizontal_direction = repeat_string_cond(delta_j,
|
2053 |
+
"r", "l")
|
2054 |
+
|
2055 |
+
curving = ""
|
2056 |
+
label_pos = "^"
|
2057 |
+
looping_start = ""
|
2058 |
+
looping_end = ""
|
2059 |
+
|
2060 |
+
if (delta_i == 0) and (delta_j == 0):
|
2061 |
+
# This is a loop morphism.
|
2062 |
+
(curving, label_pos, looping_start,
|
2063 |
+
looping_end) = XypicDiagramDrawer._process_loop_morphism(
|
2064 |
+
i, j, grid, morphisms_str_info, object_coords)
|
2065 |
+
elif (delta_i == 0) and (abs(j - target_j) > 1):
|
2066 |
+
# This is a horizontal morphism.
|
2067 |
+
(curving, label_pos) = XypicDiagramDrawer._process_horizontal_morphism(
|
2068 |
+
i, j, target_j, grid, morphisms_str_info, object_coords)
|
2069 |
+
elif (delta_j == 0) and (abs(i - target_i) > 1):
|
2070 |
+
# This is a vertical morphism.
|
2071 |
+
(curving, label_pos) = XypicDiagramDrawer._process_vertical_morphism(
|
2072 |
+
i, j, target_i, grid, morphisms_str_info, object_coords)
|
2073 |
+
|
2074 |
+
count = count_morphisms_undirected(morphism.domain, morphism.codomain)
|
2075 |
+
curving_amount = ""
|
2076 |
+
if curving:
|
2077 |
+
# This morphisms should be curved anyway.
|
2078 |
+
curving_amount = self.default_curving_amount + count * \
|
2079 |
+
self.default_curving_step
|
2080 |
+
elif count:
|
2081 |
+
# There are no objects between the domain and codomain of
|
2082 |
+
# the current morphism, but this is not there already are
|
2083 |
+
# some morphisms with the same domain and codomain, so we
|
2084 |
+
# have to curve this one.
|
2085 |
+
curving = "^"
|
2086 |
+
filtered_morphisms = count_morphisms_filtered(
|
2087 |
+
morphism.domain, morphism.codomain, curving)
|
2088 |
+
curving_amount = self.default_curving_amount + \
|
2089 |
+
filtered_morphisms * \
|
2090 |
+
self.default_curving_step
|
2091 |
+
|
2092 |
+
# Let's now get the name of the morphism.
|
2093 |
+
morphism_name = ""
|
2094 |
+
if isinstance(morphism, IdentityMorphism):
|
2095 |
+
morphism_name = "id_{%s}" + latex(grid[i, j])
|
2096 |
+
elif isinstance(morphism, CompositeMorphism):
|
2097 |
+
component_names = [latex(Symbol(component.name)) for
|
2098 |
+
component in morphism.components]
|
2099 |
+
component_names.reverse()
|
2100 |
+
morphism_name = "\\circ ".join(component_names)
|
2101 |
+
elif isinstance(morphism, NamedMorphism):
|
2102 |
+
morphism_name = latex(Symbol(morphism.name))
|
2103 |
+
|
2104 |
+
return ArrowStringDescription(
|
2105 |
+
self.unit, curving, curving_amount, looping_start,
|
2106 |
+
looping_end, horizontal_direction, vertical_direction,
|
2107 |
+
label_pos, morphism_name)
|
2108 |
+
|
2109 |
+
@staticmethod
|
2110 |
+
def _check_free_space_horizontal(dom_i, dom_j, cod_j, grid):
|
2111 |
+
"""
|
2112 |
+
For a horizontal morphism, checks whether there is free space
|
2113 |
+
(i.e., space not occupied by any objects) above the morphism
|
2114 |
+
or below it.
|
2115 |
+
"""
|
2116 |
+
if dom_j < cod_j:
|
2117 |
+
(start, end) = (dom_j, cod_j)
|
2118 |
+
backwards = False
|
2119 |
+
else:
|
2120 |
+
(start, end) = (cod_j, dom_j)
|
2121 |
+
backwards = True
|
2122 |
+
|
2123 |
+
# Check for free space above.
|
2124 |
+
if dom_i == 0:
|
2125 |
+
free_up = True
|
2126 |
+
else:
|
2127 |
+
free_up = all(grid[dom_i - 1, j] for j in
|
2128 |
+
range(start, end + 1))
|
2129 |
+
|
2130 |
+
# Check for free space below.
|
2131 |
+
if dom_i == grid.height - 1:
|
2132 |
+
free_down = True
|
2133 |
+
else:
|
2134 |
+
free_down = not any(grid[dom_i + 1, j] for j in
|
2135 |
+
range(start, end + 1))
|
2136 |
+
|
2137 |
+
return (free_up, free_down, backwards)
|
2138 |
+
|
2139 |
+
@staticmethod
|
2140 |
+
def _check_free_space_vertical(dom_i, cod_i, dom_j, grid):
|
2141 |
+
"""
|
2142 |
+
For a vertical morphism, checks whether there is free space
|
2143 |
+
(i.e., space not occupied by any objects) to the left of the
|
2144 |
+
morphism or to the right of it.
|
2145 |
+
"""
|
2146 |
+
if dom_i < cod_i:
|
2147 |
+
(start, end) = (dom_i, cod_i)
|
2148 |
+
backwards = False
|
2149 |
+
else:
|
2150 |
+
(start, end) = (cod_i, dom_i)
|
2151 |
+
backwards = True
|
2152 |
+
|
2153 |
+
# Check if there's space to the left.
|
2154 |
+
if dom_j == 0:
|
2155 |
+
free_left = True
|
2156 |
+
else:
|
2157 |
+
free_left = not any(grid[i, dom_j - 1] for i in
|
2158 |
+
range(start, end + 1))
|
2159 |
+
|
2160 |
+
if dom_j == grid.width - 1:
|
2161 |
+
free_right = True
|
2162 |
+
else:
|
2163 |
+
free_right = not any(grid[i, dom_j + 1] for i in
|
2164 |
+
range(start, end + 1))
|
2165 |
+
|
2166 |
+
return (free_left, free_right, backwards)
|
2167 |
+
|
2168 |
+
@staticmethod
|
2169 |
+
def _check_free_space_diagonal(dom_i, cod_i, dom_j, cod_j, grid):
|
2170 |
+
"""
|
2171 |
+
For a diagonal morphism, checks whether there is free space
|
2172 |
+
(i.e., space not occupied by any objects) above the morphism
|
2173 |
+
or below it.
|
2174 |
+
"""
|
2175 |
+
def abs_xrange(start, end):
|
2176 |
+
if start < end:
|
2177 |
+
return range(start, end + 1)
|
2178 |
+
else:
|
2179 |
+
return range(end, start + 1)
|
2180 |
+
|
2181 |
+
if dom_i < cod_i and dom_j < cod_j:
|
2182 |
+
# This morphism goes from top-left to
|
2183 |
+
# bottom-right.
|
2184 |
+
(start_i, start_j) = (dom_i, dom_j)
|
2185 |
+
(end_i, end_j) = (cod_i, cod_j)
|
2186 |
+
backwards = False
|
2187 |
+
elif dom_i > cod_i and dom_j > cod_j:
|
2188 |
+
# This morphism goes from bottom-right to
|
2189 |
+
# top-left.
|
2190 |
+
(start_i, start_j) = (cod_i, cod_j)
|
2191 |
+
(end_i, end_j) = (dom_i, dom_j)
|
2192 |
+
backwards = True
|
2193 |
+
if dom_i < cod_i and dom_j > cod_j:
|
2194 |
+
# This morphism goes from top-right to
|
2195 |
+
# bottom-left.
|
2196 |
+
(start_i, start_j) = (dom_i, dom_j)
|
2197 |
+
(end_i, end_j) = (cod_i, cod_j)
|
2198 |
+
backwards = True
|
2199 |
+
elif dom_i > cod_i and dom_j < cod_j:
|
2200 |
+
# This morphism goes from bottom-left to
|
2201 |
+
# top-right.
|
2202 |
+
(start_i, start_j) = (cod_i, cod_j)
|
2203 |
+
(end_i, end_j) = (dom_i, dom_j)
|
2204 |
+
backwards = False
|
2205 |
+
|
2206 |
+
# This is an attempt at a fast and furious strategy to
|
2207 |
+
# decide where there is free space on the two sides of
|
2208 |
+
# a diagonal morphism. For a diagonal morphism
|
2209 |
+
# starting at ``(start_i, start_j)`` and ending at
|
2210 |
+
# ``(end_i, end_j)`` the rectangle defined by these
|
2211 |
+
# two points is considered. The slope of the diagonal
|
2212 |
+
# ``alpha`` is then computed. Then, for every cell
|
2213 |
+
# ``(i, j)`` within the rectangle, the slope
|
2214 |
+
# ``alpha1`` of the line through ``(start_i,
|
2215 |
+
# start_j)`` and ``(i, j)`` is considered. If
|
2216 |
+
# ``alpha1`` is between 0 and ``alpha``, the point
|
2217 |
+
# ``(i, j)`` is above the diagonal, if ``alpha1`` is
|
2218 |
+
# between ``alpha`` and infinity, the point is below
|
2219 |
+
# the diagonal. Also note that, with some beforehand
|
2220 |
+
# precautions, this trick works for both the main and
|
2221 |
+
# the secondary diagonals of the rectangle.
|
2222 |
+
|
2223 |
+
# I have considered the possibility to only follow the
|
2224 |
+
# shorter diagonals immediately above and below the
|
2225 |
+
# main (or secondary) diagonal. This, however,
|
2226 |
+
# wouldn't have resulted in much performance gain or
|
2227 |
+
# better detection of outer edges, because of
|
2228 |
+
# relatively small sizes of diagram grids, while the
|
2229 |
+
# code would have become harder to understand.
|
2230 |
+
|
2231 |
+
alpha = float(end_i - start_i)/(end_j - start_j)
|
2232 |
+
free_up = True
|
2233 |
+
free_down = True
|
2234 |
+
for i in abs_xrange(start_i, end_i):
|
2235 |
+
if not free_up and not free_down:
|
2236 |
+
break
|
2237 |
+
|
2238 |
+
for j in abs_xrange(start_j, end_j):
|
2239 |
+
if not free_up and not free_down:
|
2240 |
+
break
|
2241 |
+
|
2242 |
+
if (i, j) == (start_i, start_j):
|
2243 |
+
continue
|
2244 |
+
|
2245 |
+
if j == start_j:
|
2246 |
+
alpha1 = "inf"
|
2247 |
+
else:
|
2248 |
+
alpha1 = float(i - start_i)/(j - start_j)
|
2249 |
+
|
2250 |
+
if grid[i, j]:
|
2251 |
+
if (alpha1 == "inf") or (abs(alpha1) > abs(alpha)):
|
2252 |
+
free_down = False
|
2253 |
+
elif abs(alpha1) < abs(alpha):
|
2254 |
+
free_up = False
|
2255 |
+
|
2256 |
+
return (free_up, free_down, backwards)
|
2257 |
+
|
2258 |
+
def _push_labels_out(self, morphisms_str_info, grid, object_coords):
|
2259 |
+
"""
|
2260 |
+
For all straight morphisms which form the visual boundary of
|
2261 |
+
the laid out diagram, puts their labels on their outer sides.
|
2262 |
+
"""
|
2263 |
+
def set_label_position(free1, free2, pos1, pos2, backwards, m_str_info):
|
2264 |
+
"""
|
2265 |
+
Given the information about room available to one side and
|
2266 |
+
to the other side of a morphism (``free1`` and ``free2``),
|
2267 |
+
sets the position of the morphism label in such a way that
|
2268 |
+
it is on the freer side. This latter operations involves
|
2269 |
+
choice between ``pos1`` and ``pos2``, taking ``backwards``
|
2270 |
+
in consideration.
|
2271 |
+
|
2272 |
+
Thus this function will do nothing if either both ``free1
|
2273 |
+
== True`` and ``free2 == True`` or both ``free1 == False``
|
2274 |
+
and ``free2 == False``. In either case, choosing one side
|
2275 |
+
over the other presents no advantage.
|
2276 |
+
"""
|
2277 |
+
if backwards:
|
2278 |
+
(pos1, pos2) = (pos2, pos1)
|
2279 |
+
|
2280 |
+
if free1 and not free2:
|
2281 |
+
m_str_info.label_position = pos1
|
2282 |
+
elif free2 and not free1:
|
2283 |
+
m_str_info.label_position = pos2
|
2284 |
+
|
2285 |
+
for m, m_str_info in morphisms_str_info.items():
|
2286 |
+
if m_str_info.curving or m_str_info.forced_label_position:
|
2287 |
+
# This is either a curved morphism, and curved
|
2288 |
+
# morphisms have other magic, or the position of this
|
2289 |
+
# label has already been fixed.
|
2290 |
+
continue
|
2291 |
+
|
2292 |
+
if m.domain == m.codomain:
|
2293 |
+
# This is a loop morphism, their labels, again have a
|
2294 |
+
# different magic.
|
2295 |
+
continue
|
2296 |
+
|
2297 |
+
(dom_i, dom_j) = object_coords[m.domain]
|
2298 |
+
(cod_i, cod_j) = object_coords[m.codomain]
|
2299 |
+
|
2300 |
+
if dom_i == cod_i:
|
2301 |
+
# Horizontal morphism.
|
2302 |
+
(free_up, free_down,
|
2303 |
+
backwards) = XypicDiagramDrawer._check_free_space_horizontal(
|
2304 |
+
dom_i, dom_j, cod_j, grid)
|
2305 |
+
|
2306 |
+
set_label_position(free_up, free_down, "^", "_",
|
2307 |
+
backwards, m_str_info)
|
2308 |
+
elif dom_j == cod_j:
|
2309 |
+
# Vertical morphism.
|
2310 |
+
(free_left, free_right,
|
2311 |
+
backwards) = XypicDiagramDrawer._check_free_space_vertical(
|
2312 |
+
dom_i, cod_i, dom_j, grid)
|
2313 |
+
|
2314 |
+
set_label_position(free_left, free_right, "_", "^",
|
2315 |
+
backwards, m_str_info)
|
2316 |
+
else:
|
2317 |
+
# A diagonal morphism.
|
2318 |
+
(free_up, free_down,
|
2319 |
+
backwards) = XypicDiagramDrawer._check_free_space_diagonal(
|
2320 |
+
dom_i, cod_i, dom_j, cod_j, grid)
|
2321 |
+
|
2322 |
+
set_label_position(free_up, free_down, "^", "_",
|
2323 |
+
backwards, m_str_info)
|
2324 |
+
|
2325 |
+
@staticmethod
|
2326 |
+
def _morphism_sort_key(morphism, object_coords):
|
2327 |
+
"""
|
2328 |
+
Provides a morphism sorting key such that horizontal or
|
2329 |
+
vertical morphisms between neighbouring objects come
|
2330 |
+
first, then horizontal or vertical morphisms between more
|
2331 |
+
far away objects, and finally, all other morphisms.
|
2332 |
+
"""
|
2333 |
+
(i, j) = object_coords[morphism.domain]
|
2334 |
+
(target_i, target_j) = object_coords[morphism.codomain]
|
2335 |
+
|
2336 |
+
if morphism.domain == morphism.codomain:
|
2337 |
+
# Loop morphisms should get after diagonal morphisms
|
2338 |
+
# so that the proper direction in which to curve the
|
2339 |
+
# loop can be determined.
|
2340 |
+
return (3, 0, default_sort_key(morphism))
|
2341 |
+
|
2342 |
+
if target_i == i:
|
2343 |
+
return (1, abs(target_j - j), default_sort_key(morphism))
|
2344 |
+
|
2345 |
+
if target_j == j:
|
2346 |
+
return (1, abs(target_i - i), default_sort_key(morphism))
|
2347 |
+
|
2348 |
+
# Diagonal morphism.
|
2349 |
+
return (2, 0, default_sort_key(morphism))
|
2350 |
+
|
2351 |
+
@staticmethod
|
2352 |
+
def _build_xypic_string(diagram, grid, morphisms,
|
2353 |
+
morphisms_str_info, diagram_format):
|
2354 |
+
"""
|
2355 |
+
Given a collection of :class:`ArrowStringDescription`
|
2356 |
+
describing the morphisms of a diagram and the object layout
|
2357 |
+
information of a diagram, produces the final Xy-pic picture.
|
2358 |
+
"""
|
2359 |
+
# Build the mapping between objects and morphisms which have
|
2360 |
+
# them as domains.
|
2361 |
+
object_morphisms = {}
|
2362 |
+
for obj in diagram.objects:
|
2363 |
+
object_morphisms[obj] = []
|
2364 |
+
for morphism in morphisms:
|
2365 |
+
object_morphisms[morphism.domain].append(morphism)
|
2366 |
+
|
2367 |
+
result = "\\xymatrix%s{\n" % diagram_format
|
2368 |
+
|
2369 |
+
for i in range(grid.height):
|
2370 |
+
for j in range(grid.width):
|
2371 |
+
obj = grid[i, j]
|
2372 |
+
if obj:
|
2373 |
+
result += latex(obj) + " "
|
2374 |
+
|
2375 |
+
morphisms_to_draw = object_morphisms[obj]
|
2376 |
+
for morphism in morphisms_to_draw:
|
2377 |
+
result += str(morphisms_str_info[morphism]) + " "
|
2378 |
+
|
2379 |
+
# Don't put the & after the last column.
|
2380 |
+
if j < grid.width - 1:
|
2381 |
+
result += "& "
|
2382 |
+
|
2383 |
+
# Don't put the line break after the last row.
|
2384 |
+
if i < grid.height - 1:
|
2385 |
+
result += "\\\\"
|
2386 |
+
result += "\n"
|
2387 |
+
|
2388 |
+
result += "}\n"
|
2389 |
+
|
2390 |
+
return result
|
2391 |
+
|
2392 |
+
def draw(self, diagram, grid, masked=None, diagram_format=""):
|
2393 |
+
r"""
|
2394 |
+
Returns the Xy-pic representation of ``diagram`` laid out in
|
2395 |
+
``grid``.
|
2396 |
+
|
2397 |
+
Consider the following simple triangle diagram.
|
2398 |
+
|
2399 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
2400 |
+
>>> from sympy.categories import DiagramGrid, XypicDiagramDrawer
|
2401 |
+
>>> A = Object("A")
|
2402 |
+
>>> B = Object("B")
|
2403 |
+
>>> C = Object("C")
|
2404 |
+
>>> f = NamedMorphism(A, B, "f")
|
2405 |
+
>>> g = NamedMorphism(B, C, "g")
|
2406 |
+
>>> diagram = Diagram([f, g], {g * f: "unique"})
|
2407 |
+
|
2408 |
+
To draw this diagram, its objects need to be laid out with a
|
2409 |
+
:class:`DiagramGrid`::
|
2410 |
+
|
2411 |
+
>>> grid = DiagramGrid(diagram)
|
2412 |
+
|
2413 |
+
Finally, the drawing:
|
2414 |
+
|
2415 |
+
>>> drawer = XypicDiagramDrawer()
|
2416 |
+
>>> print(drawer.draw(diagram, grid))
|
2417 |
+
\xymatrix{
|
2418 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
2419 |
+
C &
|
2420 |
+
}
|
2421 |
+
|
2422 |
+
The argument ``masked`` can be used to skip morphisms in the
|
2423 |
+
presentation of the diagram:
|
2424 |
+
|
2425 |
+
>>> print(drawer.draw(diagram, grid, masked=[g * f]))
|
2426 |
+
\xymatrix{
|
2427 |
+
A \ar[r]^{f} & B \ar[ld]^{g} \\
|
2428 |
+
C &
|
2429 |
+
}
|
2430 |
+
|
2431 |
+
Finally, the ``diagram_format`` argument can be used to
|
2432 |
+
specify the format string of the diagram. For example, to
|
2433 |
+
increase the spacing by 1 cm, proceeding as follows:
|
2434 |
+
|
2435 |
+
>>> print(drawer.draw(diagram, grid, diagram_format="@+1cm"))
|
2436 |
+
\xymatrix@+1cm{
|
2437 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
2438 |
+
C &
|
2439 |
+
}
|
2440 |
+
|
2441 |
+
"""
|
2442 |
+
# This method works in several steps. It starts by removing
|
2443 |
+
# the masked morphisms, if necessary, and then maps objects to
|
2444 |
+
# their positions in the grid (coordinate tuples). Remember
|
2445 |
+
# that objects are unique in ``Diagram`` and in the layout
|
2446 |
+
# produced by ``DiagramGrid``, so every object is mapped to a
|
2447 |
+
# single coordinate pair.
|
2448 |
+
#
|
2449 |
+
# The next step is the central step and is concerned with
|
2450 |
+
# analysing the morphisms of the diagram and deciding how to
|
2451 |
+
# draw them. For example, how to curve the arrows is decided
|
2452 |
+
# at this step. The bulk of the analysis is implemented in
|
2453 |
+
# ``_process_morphism``, to the result of which the
|
2454 |
+
# appropriate formatters are applied.
|
2455 |
+
#
|
2456 |
+
# The result of the previous step is a list of
|
2457 |
+
# ``ArrowStringDescription``. After the analysis and
|
2458 |
+
# application of formatters, some extra logic tries to assure
|
2459 |
+
# better positioning of morphism labels (for example, an
|
2460 |
+
# attempt is made to avoid the situations when arrows cross
|
2461 |
+
# labels). This functionality constitutes the next step and
|
2462 |
+
# is implemented in ``_push_labels_out``. Note that label
|
2463 |
+
# positions which have been set via a formatter are not
|
2464 |
+
# affected in this step.
|
2465 |
+
#
|
2466 |
+
# Finally, at the closing step, the array of
|
2467 |
+
# ``ArrowStringDescription`` and the layout information
|
2468 |
+
# incorporated in ``DiagramGrid`` are combined to produce the
|
2469 |
+
# resulting Xy-pic picture. This part of code lies in
|
2470 |
+
# ``_build_xypic_string``.
|
2471 |
+
|
2472 |
+
if not masked:
|
2473 |
+
morphisms_props = grid.morphisms
|
2474 |
+
else:
|
2475 |
+
morphisms_props = {}
|
2476 |
+
for m, props in grid.morphisms.items():
|
2477 |
+
if m in masked:
|
2478 |
+
continue
|
2479 |
+
morphisms_props[m] = props
|
2480 |
+
|
2481 |
+
# Build the mapping between objects and their position in the
|
2482 |
+
# grid.
|
2483 |
+
object_coords = {}
|
2484 |
+
for i in range(grid.height):
|
2485 |
+
for j in range(grid.width):
|
2486 |
+
if grid[i, j]:
|
2487 |
+
object_coords[grid[i, j]] = (i, j)
|
2488 |
+
|
2489 |
+
morphisms = sorted(morphisms_props,
|
2490 |
+
key=lambda m: XypicDiagramDrawer._morphism_sort_key(
|
2491 |
+
m, object_coords))
|
2492 |
+
|
2493 |
+
# Build the tuples defining the string representations of
|
2494 |
+
# morphisms.
|
2495 |
+
morphisms_str_info = {}
|
2496 |
+
for morphism in morphisms:
|
2497 |
+
string_description = self._process_morphism(
|
2498 |
+
diagram, grid, morphism, object_coords, morphisms,
|
2499 |
+
morphisms_str_info)
|
2500 |
+
|
2501 |
+
if self.default_arrow_formatter:
|
2502 |
+
self.default_arrow_formatter(string_description)
|
2503 |
+
|
2504 |
+
for prop in morphisms_props[morphism]:
|
2505 |
+
# prop is a Symbol. TODO: Find out why.
|
2506 |
+
if prop.name in self.arrow_formatters:
|
2507 |
+
formatter = self.arrow_formatters[prop.name]
|
2508 |
+
formatter(string_description)
|
2509 |
+
|
2510 |
+
morphisms_str_info[morphism] = string_description
|
2511 |
+
|
2512 |
+
# Reposition the labels a bit.
|
2513 |
+
self._push_labels_out(morphisms_str_info, grid, object_coords)
|
2514 |
+
|
2515 |
+
return XypicDiagramDrawer._build_xypic_string(
|
2516 |
+
diagram, grid, morphisms, morphisms_str_info, diagram_format)
|
2517 |
+
|
2518 |
+
|
2519 |
+
def xypic_draw_diagram(diagram, masked=None, diagram_format="",
|
2520 |
+
groups=None, **hints):
|
2521 |
+
r"""
|
2522 |
+
Provides a shortcut combining :class:`DiagramGrid` and
|
2523 |
+
:class:`XypicDiagramDrawer`. Returns an Xy-pic presentation of
|
2524 |
+
``diagram``. The argument ``masked`` is a list of morphisms which
|
2525 |
+
will be not be drawn. The argument ``diagram_format`` is the
|
2526 |
+
format string inserted after "\xymatrix". ``groups`` should be a
|
2527 |
+
set of logical groups. The ``hints`` will be passed directly to
|
2528 |
+
the constructor of :class:`DiagramGrid`.
|
2529 |
+
|
2530 |
+
For more information about the arguments, see the docstrings of
|
2531 |
+
:class:`DiagramGrid` and ``XypicDiagramDrawer.draw``.
|
2532 |
+
|
2533 |
+
Examples
|
2534 |
+
========
|
2535 |
+
|
2536 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
2537 |
+
>>> from sympy.categories import xypic_draw_diagram
|
2538 |
+
>>> A = Object("A")
|
2539 |
+
>>> B = Object("B")
|
2540 |
+
>>> C = Object("C")
|
2541 |
+
>>> f = NamedMorphism(A, B, "f")
|
2542 |
+
>>> g = NamedMorphism(B, C, "g")
|
2543 |
+
>>> diagram = Diagram([f, g], {g * f: "unique"})
|
2544 |
+
>>> print(xypic_draw_diagram(diagram))
|
2545 |
+
\xymatrix{
|
2546 |
+
A \ar[d]_{g\circ f} \ar[r]^{f} & B \ar[ld]^{g} \\
|
2547 |
+
C &
|
2548 |
+
}
|
2549 |
+
|
2550 |
+
See Also
|
2551 |
+
========
|
2552 |
+
|
2553 |
+
XypicDiagramDrawer, DiagramGrid
|
2554 |
+
"""
|
2555 |
+
grid = DiagramGrid(diagram, groups, **hints)
|
2556 |
+
drawer = XypicDiagramDrawer()
|
2557 |
+
return drawer.draw(diagram, grid, masked, diagram_format)
|
2558 |
+
|
2559 |
+
|
2560 |
+
@doctest_depends_on(exe=('latex', 'dvipng'), modules=('pyglet',))
|
2561 |
+
def preview_diagram(diagram, masked=None, diagram_format="", groups=None,
|
2562 |
+
output='png', viewer=None, euler=True, **hints):
|
2563 |
+
"""
|
2564 |
+
Combines the functionality of ``xypic_draw_diagram`` and
|
2565 |
+
``sympy.printing.preview``. The arguments ``masked``,
|
2566 |
+
``diagram_format``, ``groups``, and ``hints`` are passed to
|
2567 |
+
``xypic_draw_diagram``, while ``output``, ``viewer, and ``euler``
|
2568 |
+
are passed to ``preview``.
|
2569 |
+
|
2570 |
+
Examples
|
2571 |
+
========
|
2572 |
+
|
2573 |
+
>>> from sympy.categories import Object, NamedMorphism, Diagram
|
2574 |
+
>>> from sympy.categories import preview_diagram
|
2575 |
+
>>> A = Object("A")
|
2576 |
+
>>> B = Object("B")
|
2577 |
+
>>> C = Object("C")
|
2578 |
+
>>> f = NamedMorphism(A, B, "f")
|
2579 |
+
>>> g = NamedMorphism(B, C, "g")
|
2580 |
+
>>> d = Diagram([f, g], {g * f: "unique"})
|
2581 |
+
>>> preview_diagram(d)
|
2582 |
+
|
2583 |
+
See Also
|
2584 |
+
========
|
2585 |
+
|
2586 |
+
XypicDiagramDrawer
|
2587 |
+
"""
|
2588 |
+
from sympy.printing import preview
|
2589 |
+
latex_output = xypic_draw_diagram(diagram, masked, diagram_format,
|
2590 |
+
groups, **hints)
|
2591 |
+
preview(latex_output, output, viewer, euler, ("xypic",))
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/test_baseclasses.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.categories import (Object, Morphism, IdentityMorphism,
|
2 |
+
NamedMorphism, CompositeMorphism,
|
3 |
+
Diagram, Category)
|
4 |
+
from sympy.categories.baseclasses import Class
|
5 |
+
from sympy.testing.pytest import raises
|
6 |
+
from sympy.core.containers import (Dict, Tuple)
|
7 |
+
from sympy.sets import EmptySet
|
8 |
+
from sympy.sets.sets import FiniteSet
|
9 |
+
|
10 |
+
|
11 |
+
def test_morphisms():
|
12 |
+
A = Object("A")
|
13 |
+
B = Object("B")
|
14 |
+
C = Object("C")
|
15 |
+
D = Object("D")
|
16 |
+
|
17 |
+
# Test the base morphism.
|
18 |
+
f = NamedMorphism(A, B, "f")
|
19 |
+
assert f.domain == A
|
20 |
+
assert f.codomain == B
|
21 |
+
assert f == NamedMorphism(A, B, "f")
|
22 |
+
|
23 |
+
# Test identities.
|
24 |
+
id_A = IdentityMorphism(A)
|
25 |
+
id_B = IdentityMorphism(B)
|
26 |
+
assert id_A.domain == A
|
27 |
+
assert id_A.codomain == A
|
28 |
+
assert id_A == IdentityMorphism(A)
|
29 |
+
assert id_A != id_B
|
30 |
+
|
31 |
+
# Test named morphisms.
|
32 |
+
g = NamedMorphism(B, C, "g")
|
33 |
+
assert g.name == "g"
|
34 |
+
assert g != f
|
35 |
+
assert g == NamedMorphism(B, C, "g")
|
36 |
+
assert g != NamedMorphism(B, C, "f")
|
37 |
+
|
38 |
+
# Test composite morphisms.
|
39 |
+
assert f == CompositeMorphism(f)
|
40 |
+
|
41 |
+
k = g.compose(f)
|
42 |
+
assert k.domain == A
|
43 |
+
assert k.codomain == C
|
44 |
+
assert k.components == Tuple(f, g)
|
45 |
+
assert g * f == k
|
46 |
+
assert CompositeMorphism(f, g) == k
|
47 |
+
|
48 |
+
assert CompositeMorphism(g * f) == g * f
|
49 |
+
|
50 |
+
# Test the associativity of composition.
|
51 |
+
h = NamedMorphism(C, D, "h")
|
52 |
+
|
53 |
+
p = h * g
|
54 |
+
u = h * g * f
|
55 |
+
|
56 |
+
assert h * k == u
|
57 |
+
assert p * f == u
|
58 |
+
assert CompositeMorphism(f, g, h) == u
|
59 |
+
|
60 |
+
# Test flattening.
|
61 |
+
u2 = u.flatten("u")
|
62 |
+
assert isinstance(u2, NamedMorphism)
|
63 |
+
assert u2.name == "u"
|
64 |
+
assert u2.domain == A
|
65 |
+
assert u2.codomain == D
|
66 |
+
|
67 |
+
# Test identities.
|
68 |
+
assert f * id_A == f
|
69 |
+
assert id_B * f == f
|
70 |
+
assert id_A * id_A == id_A
|
71 |
+
assert CompositeMorphism(id_A) == id_A
|
72 |
+
|
73 |
+
# Test bad compositions.
|
74 |
+
raises(ValueError, lambda: f * g)
|
75 |
+
|
76 |
+
raises(TypeError, lambda: f.compose(None))
|
77 |
+
raises(TypeError, lambda: id_A.compose(None))
|
78 |
+
raises(TypeError, lambda: f * None)
|
79 |
+
raises(TypeError, lambda: id_A * None)
|
80 |
+
|
81 |
+
raises(TypeError, lambda: CompositeMorphism(f, None, 1))
|
82 |
+
|
83 |
+
raises(ValueError, lambda: NamedMorphism(A, B, ""))
|
84 |
+
raises(NotImplementedError, lambda: Morphism(A, B))
|
85 |
+
|
86 |
+
|
87 |
+
def test_diagram():
|
88 |
+
A = Object("A")
|
89 |
+
B = Object("B")
|
90 |
+
C = Object("C")
|
91 |
+
|
92 |
+
f = NamedMorphism(A, B, "f")
|
93 |
+
g = NamedMorphism(B, C, "g")
|
94 |
+
id_A = IdentityMorphism(A)
|
95 |
+
id_B = IdentityMorphism(B)
|
96 |
+
|
97 |
+
empty = EmptySet
|
98 |
+
|
99 |
+
# Test the addition of identities.
|
100 |
+
d1 = Diagram([f])
|
101 |
+
|
102 |
+
assert d1.objects == FiniteSet(A, B)
|
103 |
+
assert d1.hom(A, B) == (FiniteSet(f), empty)
|
104 |
+
assert d1.hom(A, A) == (FiniteSet(id_A), empty)
|
105 |
+
assert d1.hom(B, B) == (FiniteSet(id_B), empty)
|
106 |
+
|
107 |
+
assert d1 == Diagram([id_A, f])
|
108 |
+
assert d1 == Diagram([f, f])
|
109 |
+
|
110 |
+
# Test the addition of composites.
|
111 |
+
d2 = Diagram([f, g])
|
112 |
+
homAC = d2.hom(A, C)[0]
|
113 |
+
|
114 |
+
assert d2.objects == FiniteSet(A, B, C)
|
115 |
+
assert g * f in d2.premises.keys()
|
116 |
+
assert homAC == FiniteSet(g * f)
|
117 |
+
|
118 |
+
# Test equality, inequality and hash.
|
119 |
+
d11 = Diagram([f])
|
120 |
+
|
121 |
+
assert d1 == d11
|
122 |
+
assert d1 != d2
|
123 |
+
assert hash(d1) == hash(d11)
|
124 |
+
|
125 |
+
d11 = Diagram({f: "unique"})
|
126 |
+
assert d1 != d11
|
127 |
+
|
128 |
+
# Make sure that (re-)adding composites (with new properties)
|
129 |
+
# works as expected.
|
130 |
+
d = Diagram([f, g], {g * f: "unique"})
|
131 |
+
assert d.conclusions == Dict({g * f: FiniteSet("unique")})
|
132 |
+
|
133 |
+
# Check the hom-sets when there are premises and conclusions.
|
134 |
+
assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f))
|
135 |
+
d = Diagram([f, g], [g * f])
|
136 |
+
assert d.hom(A, C) == (FiniteSet(g * f), FiniteSet(g * f))
|
137 |
+
|
138 |
+
# Check how the properties of composite morphisms are computed.
|
139 |
+
d = Diagram({f: ["unique", "isomorphism"], g: "unique"})
|
140 |
+
assert d.premises[g * f] == FiniteSet("unique")
|
141 |
+
|
142 |
+
# Check that conclusion morphisms with new objects are not allowed.
|
143 |
+
d = Diagram([f], [g])
|
144 |
+
assert d.conclusions == Dict({})
|
145 |
+
|
146 |
+
# Test an empty diagram.
|
147 |
+
d = Diagram()
|
148 |
+
assert d.premises == Dict({})
|
149 |
+
assert d.conclusions == Dict({})
|
150 |
+
assert d.objects == empty
|
151 |
+
|
152 |
+
# Check a SymPy Dict object.
|
153 |
+
d = Diagram(Dict({f: FiniteSet("unique", "isomorphism"), g: "unique"}))
|
154 |
+
assert d.premises[g * f] == FiniteSet("unique")
|
155 |
+
|
156 |
+
# Check the addition of components of composite morphisms.
|
157 |
+
d = Diagram([g * f])
|
158 |
+
assert f in d.premises
|
159 |
+
assert g in d.premises
|
160 |
+
|
161 |
+
# Check subdiagrams.
|
162 |
+
d = Diagram([f, g], {g * f: "unique"})
|
163 |
+
|
164 |
+
d1 = Diagram([f])
|
165 |
+
assert d.is_subdiagram(d1)
|
166 |
+
assert not d1.is_subdiagram(d)
|
167 |
+
|
168 |
+
d = Diagram([NamedMorphism(B, A, "f'")])
|
169 |
+
assert not d.is_subdiagram(d1)
|
170 |
+
assert not d1.is_subdiagram(d)
|
171 |
+
|
172 |
+
d1 = Diagram([f, g], {g * f: ["unique", "something"]})
|
173 |
+
assert not d.is_subdiagram(d1)
|
174 |
+
assert not d1.is_subdiagram(d)
|
175 |
+
|
176 |
+
d = Diagram({f: "blooh"})
|
177 |
+
d1 = Diagram({f: "bleeh"})
|
178 |
+
assert not d.is_subdiagram(d1)
|
179 |
+
assert not d1.is_subdiagram(d)
|
180 |
+
|
181 |
+
d = Diagram([f, g], {f: "unique", g * f: "veryunique"})
|
182 |
+
d1 = d.subdiagram_from_objects(FiniteSet(A, B))
|
183 |
+
assert d1 == Diagram([f], {f: "unique"})
|
184 |
+
raises(ValueError, lambda: d.subdiagram_from_objects(FiniteSet(A,
|
185 |
+
Object("D"))))
|
186 |
+
|
187 |
+
raises(ValueError, lambda: Diagram({IdentityMorphism(A): "unique"}))
|
188 |
+
|
189 |
+
|
190 |
+
def test_category():
|
191 |
+
A = Object("A")
|
192 |
+
B = Object("B")
|
193 |
+
C = Object("C")
|
194 |
+
|
195 |
+
f = NamedMorphism(A, B, "f")
|
196 |
+
g = NamedMorphism(B, C, "g")
|
197 |
+
|
198 |
+
d1 = Diagram([f, g])
|
199 |
+
d2 = Diagram([f])
|
200 |
+
|
201 |
+
objects = d1.objects | d2.objects
|
202 |
+
|
203 |
+
K = Category("K", objects, commutative_diagrams=[d1, d2])
|
204 |
+
|
205 |
+
assert K.name == "K"
|
206 |
+
assert K.objects == Class(objects)
|
207 |
+
assert K.commutative_diagrams == FiniteSet(d1, d2)
|
208 |
+
|
209 |
+
raises(ValueError, lambda: Category(""))
|
env-llmeval/lib/python3.10/site-packages/sympy/categories/tests/test_drawing.py
ADDED
@@ -0,0 +1,919 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.categories.diagram_drawing import _GrowableGrid, ArrowStringDescription
|
2 |
+
from sympy.categories import (DiagramGrid, Object, NamedMorphism,
|
3 |
+
Diagram, XypicDiagramDrawer, xypic_draw_diagram)
|
4 |
+
from sympy.sets.sets import FiniteSet
|
5 |
+
|
6 |
+
|
7 |
+
def test_GrowableGrid():
|
8 |
+
grid = _GrowableGrid(1, 2)
|
9 |
+
|
10 |
+
# Check dimensions.
|
11 |
+
assert grid.width == 1
|
12 |
+
assert grid.height == 2
|
13 |
+
|
14 |
+
# Check initialization of elements.
|
15 |
+
assert grid[0, 0] is None
|
16 |
+
assert grid[1, 0] is None
|
17 |
+
|
18 |
+
# Check assignment to elements.
|
19 |
+
grid[0, 0] = 1
|
20 |
+
grid[1, 0] = "two"
|
21 |
+
|
22 |
+
assert grid[0, 0] == 1
|
23 |
+
assert grid[1, 0] == "two"
|
24 |
+
|
25 |
+
# Check appending a row.
|
26 |
+
grid.append_row()
|
27 |
+
|
28 |
+
assert grid.width == 1
|
29 |
+
assert grid.height == 3
|
30 |
+
|
31 |
+
assert grid[0, 0] == 1
|
32 |
+
assert grid[1, 0] == "two"
|
33 |
+
assert grid[2, 0] is None
|
34 |
+
|
35 |
+
# Check appending a column.
|
36 |
+
grid.append_column()
|
37 |
+
assert grid.width == 2
|
38 |
+
assert grid.height == 3
|
39 |
+
|
40 |
+
assert grid[0, 0] == 1
|
41 |
+
assert grid[1, 0] == "two"
|
42 |
+
assert grid[2, 0] is None
|
43 |
+
|
44 |
+
assert grid[0, 1] is None
|
45 |
+
assert grid[1, 1] is None
|
46 |
+
assert grid[2, 1] is None
|
47 |
+
|
48 |
+
grid = _GrowableGrid(1, 2)
|
49 |
+
grid[0, 0] = 1
|
50 |
+
grid[1, 0] = "two"
|
51 |
+
|
52 |
+
# Check prepending a row.
|
53 |
+
grid.prepend_row()
|
54 |
+
assert grid.width == 1
|
55 |
+
assert grid.height == 3
|
56 |
+
|
57 |
+
assert grid[0, 0] is None
|
58 |
+
assert grid[1, 0] == 1
|
59 |
+
assert grid[2, 0] == "two"
|
60 |
+
|
61 |
+
# Check prepending a column.
|
62 |
+
grid.prepend_column()
|
63 |
+
assert grid.width == 2
|
64 |
+
assert grid.height == 3
|
65 |
+
|
66 |
+
assert grid[0, 0] is None
|
67 |
+
assert grid[1, 0] is None
|
68 |
+
assert grid[2, 0] is None
|
69 |
+
|
70 |
+
assert grid[0, 1] is None
|
71 |
+
assert grid[1, 1] == 1
|
72 |
+
assert grid[2, 1] == "two"
|
73 |
+
|
74 |
+
|
75 |
+
def test_DiagramGrid():
|
76 |
+
# Set up some objects and morphisms.
|
77 |
+
A = Object("A")
|
78 |
+
B = Object("B")
|
79 |
+
C = Object("C")
|
80 |
+
D = Object("D")
|
81 |
+
E = Object("E")
|
82 |
+
|
83 |
+
f = NamedMorphism(A, B, "f")
|
84 |
+
g = NamedMorphism(B, C, "g")
|
85 |
+
h = NamedMorphism(D, A, "h")
|
86 |
+
k = NamedMorphism(D, B, "k")
|
87 |
+
|
88 |
+
# A one-morphism diagram.
|
89 |
+
d = Diagram([f])
|
90 |
+
grid = DiagramGrid(d)
|
91 |
+
|
92 |
+
assert grid.width == 2
|
93 |
+
assert grid.height == 1
|
94 |
+
assert grid[0, 0] == A
|
95 |
+
assert grid[0, 1] == B
|
96 |
+
assert grid.morphisms == {f: FiniteSet()}
|
97 |
+
|
98 |
+
# A triangle.
|
99 |
+
d = Diagram([f, g], {g * f: "unique"})
|
100 |
+
grid = DiagramGrid(d)
|
101 |
+
|
102 |
+
assert grid.width == 2
|
103 |
+
assert grid.height == 2
|
104 |
+
assert grid[0, 0] == A
|
105 |
+
assert grid[0, 1] == B
|
106 |
+
assert grid[1, 0] == C
|
107 |
+
assert grid[1, 1] is None
|
108 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(),
|
109 |
+
g * f: FiniteSet("unique")}
|
110 |
+
|
111 |
+
# A triangle with a "loop" morphism.
|
112 |
+
l_A = NamedMorphism(A, A, "l_A")
|
113 |
+
d = Diagram([f, g, l_A])
|
114 |
+
grid = DiagramGrid(d)
|
115 |
+
|
116 |
+
assert grid.width == 2
|
117 |
+
assert grid.height == 2
|
118 |
+
assert grid[0, 0] == A
|
119 |
+
assert grid[0, 1] == B
|
120 |
+
assert grid[1, 0] is None
|
121 |
+
assert grid[1, 1] == C
|
122 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), l_A: FiniteSet()}
|
123 |
+
|
124 |
+
# A simple diagram.
|
125 |
+
d = Diagram([f, g, h, k])
|
126 |
+
grid = DiagramGrid(d)
|
127 |
+
|
128 |
+
assert grid.width == 3
|
129 |
+
assert grid.height == 2
|
130 |
+
assert grid[0, 0] == A
|
131 |
+
assert grid[0, 1] == B
|
132 |
+
assert grid[0, 2] == D
|
133 |
+
assert grid[1, 0] is None
|
134 |
+
assert grid[1, 1] == C
|
135 |
+
assert grid[1, 2] is None
|
136 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
137 |
+
k: FiniteSet()}
|
138 |
+
|
139 |
+
assert str(grid) == '[[Object("A"), Object("B"), Object("D")], ' \
|
140 |
+
'[None, Object("C"), None]]'
|
141 |
+
|
142 |
+
# A chain of morphisms.
|
143 |
+
f = NamedMorphism(A, B, "f")
|
144 |
+
g = NamedMorphism(B, C, "g")
|
145 |
+
h = NamedMorphism(C, D, "h")
|
146 |
+
k = NamedMorphism(D, E, "k")
|
147 |
+
d = Diagram([f, g, h, k])
|
148 |
+
grid = DiagramGrid(d)
|
149 |
+
|
150 |
+
assert grid.width == 3
|
151 |
+
assert grid.height == 3
|
152 |
+
assert grid[0, 0] == A
|
153 |
+
assert grid[0, 1] == B
|
154 |
+
assert grid[0, 2] is None
|
155 |
+
assert grid[1, 0] is None
|
156 |
+
assert grid[1, 1] == C
|
157 |
+
assert grid[1, 2] == D
|
158 |
+
assert grid[2, 0] is None
|
159 |
+
assert grid[2, 1] is None
|
160 |
+
assert grid[2, 2] == E
|
161 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
162 |
+
k: FiniteSet()}
|
163 |
+
|
164 |
+
# A square.
|
165 |
+
f = NamedMorphism(A, B, "f")
|
166 |
+
g = NamedMorphism(B, D, "g")
|
167 |
+
h = NamedMorphism(A, C, "h")
|
168 |
+
k = NamedMorphism(C, D, "k")
|
169 |
+
d = Diagram([f, g, h, k])
|
170 |
+
grid = DiagramGrid(d)
|
171 |
+
|
172 |
+
assert grid.width == 2
|
173 |
+
assert grid.height == 2
|
174 |
+
assert grid[0, 0] == A
|
175 |
+
assert grid[0, 1] == B
|
176 |
+
assert grid[1, 0] == C
|
177 |
+
assert grid[1, 1] == D
|
178 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
179 |
+
k: FiniteSet()}
|
180 |
+
|
181 |
+
# A strange diagram which resulted from a typo when creating a
|
182 |
+
# test for five lemma, but which allowed to stop one extra problem
|
183 |
+
# in the algorithm.
|
184 |
+
A = Object("A")
|
185 |
+
B = Object("B")
|
186 |
+
C = Object("C")
|
187 |
+
D = Object("D")
|
188 |
+
E = Object("E")
|
189 |
+
A_ = Object("A'")
|
190 |
+
B_ = Object("B'")
|
191 |
+
C_ = Object("C'")
|
192 |
+
D_ = Object("D'")
|
193 |
+
E_ = Object("E'")
|
194 |
+
|
195 |
+
f = NamedMorphism(A, B, "f")
|
196 |
+
g = NamedMorphism(B, C, "g")
|
197 |
+
h = NamedMorphism(C, D, "h")
|
198 |
+
i = NamedMorphism(D, E, "i")
|
199 |
+
|
200 |
+
# These 4 morphisms should be between primed objects.
|
201 |
+
j = NamedMorphism(A, B, "j")
|
202 |
+
k = NamedMorphism(B, C, "k")
|
203 |
+
l = NamedMorphism(C, D, "l")
|
204 |
+
m = NamedMorphism(D, E, "m")
|
205 |
+
|
206 |
+
o = NamedMorphism(A, A_, "o")
|
207 |
+
p = NamedMorphism(B, B_, "p")
|
208 |
+
q = NamedMorphism(C, C_, "q")
|
209 |
+
r = NamedMorphism(D, D_, "r")
|
210 |
+
s = NamedMorphism(E, E_, "s")
|
211 |
+
|
212 |
+
d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s])
|
213 |
+
grid = DiagramGrid(d)
|
214 |
+
|
215 |
+
assert grid.width == 3
|
216 |
+
assert grid.height == 4
|
217 |
+
assert grid[0, 0] is None
|
218 |
+
assert grid[0, 1] == A
|
219 |
+
assert grid[0, 2] == A_
|
220 |
+
assert grid[1, 0] == C
|
221 |
+
assert grid[1, 1] == B
|
222 |
+
assert grid[1, 2] == B_
|
223 |
+
assert grid[2, 0] == C_
|
224 |
+
assert grid[2, 1] == D
|
225 |
+
assert grid[2, 2] == D_
|
226 |
+
assert grid[3, 0] is None
|
227 |
+
assert grid[3, 1] == E
|
228 |
+
assert grid[3, 2] == E_
|
229 |
+
|
230 |
+
morphisms = {}
|
231 |
+
for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]:
|
232 |
+
morphisms[m] = FiniteSet()
|
233 |
+
assert grid.morphisms == morphisms
|
234 |
+
|
235 |
+
# A cube.
|
236 |
+
A1 = Object("A1")
|
237 |
+
A2 = Object("A2")
|
238 |
+
A3 = Object("A3")
|
239 |
+
A4 = Object("A4")
|
240 |
+
A5 = Object("A5")
|
241 |
+
A6 = Object("A6")
|
242 |
+
A7 = Object("A7")
|
243 |
+
A8 = Object("A8")
|
244 |
+
|
245 |
+
# The top face of the cube.
|
246 |
+
f1 = NamedMorphism(A1, A2, "f1")
|
247 |
+
f2 = NamedMorphism(A1, A3, "f2")
|
248 |
+
f3 = NamedMorphism(A2, A4, "f3")
|
249 |
+
f4 = NamedMorphism(A3, A4, "f3")
|
250 |
+
|
251 |
+
# The bottom face of the cube.
|
252 |
+
f5 = NamedMorphism(A5, A6, "f5")
|
253 |
+
f6 = NamedMorphism(A5, A7, "f6")
|
254 |
+
f7 = NamedMorphism(A6, A8, "f7")
|
255 |
+
f8 = NamedMorphism(A7, A8, "f8")
|
256 |
+
|
257 |
+
# The remaining morphisms.
|
258 |
+
f9 = NamedMorphism(A1, A5, "f9")
|
259 |
+
f10 = NamedMorphism(A2, A6, "f10")
|
260 |
+
f11 = NamedMorphism(A3, A7, "f11")
|
261 |
+
f12 = NamedMorphism(A4, A8, "f11")
|
262 |
+
|
263 |
+
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12])
|
264 |
+
grid = DiagramGrid(d)
|
265 |
+
|
266 |
+
assert grid.width == 4
|
267 |
+
assert grid.height == 3
|
268 |
+
assert grid[0, 0] is None
|
269 |
+
assert grid[0, 1] == A5
|
270 |
+
assert grid[0, 2] == A6
|
271 |
+
assert grid[0, 3] is None
|
272 |
+
assert grid[1, 0] is None
|
273 |
+
assert grid[1, 1] == A1
|
274 |
+
assert grid[1, 2] == A2
|
275 |
+
assert grid[1, 3] is None
|
276 |
+
assert grid[2, 0] == A7
|
277 |
+
assert grid[2, 1] == A3
|
278 |
+
assert grid[2, 2] == A4
|
279 |
+
assert grid[2, 3] == A8
|
280 |
+
|
281 |
+
morphisms = {}
|
282 |
+
for m in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12]:
|
283 |
+
morphisms[m] = FiniteSet()
|
284 |
+
assert grid.morphisms == morphisms
|
285 |
+
|
286 |
+
# A line diagram.
|
287 |
+
A = Object("A")
|
288 |
+
B = Object("B")
|
289 |
+
C = Object("C")
|
290 |
+
D = Object("D")
|
291 |
+
E = Object("E")
|
292 |
+
|
293 |
+
f = NamedMorphism(A, B, "f")
|
294 |
+
g = NamedMorphism(B, C, "g")
|
295 |
+
h = NamedMorphism(C, D, "h")
|
296 |
+
i = NamedMorphism(D, E, "i")
|
297 |
+
d = Diagram([f, g, h, i])
|
298 |
+
grid = DiagramGrid(d, layout="sequential")
|
299 |
+
|
300 |
+
assert grid.width == 5
|
301 |
+
assert grid.height == 1
|
302 |
+
assert grid[0, 0] == A
|
303 |
+
assert grid[0, 1] == B
|
304 |
+
assert grid[0, 2] == C
|
305 |
+
assert grid[0, 3] == D
|
306 |
+
assert grid[0, 4] == E
|
307 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
308 |
+
i: FiniteSet()}
|
309 |
+
|
310 |
+
# Test the transposed version.
|
311 |
+
grid = DiagramGrid(d, layout="sequential", transpose=True)
|
312 |
+
|
313 |
+
assert grid.width == 1
|
314 |
+
assert grid.height == 5
|
315 |
+
assert grid[0, 0] == A
|
316 |
+
assert grid[1, 0] == B
|
317 |
+
assert grid[2, 0] == C
|
318 |
+
assert grid[3, 0] == D
|
319 |
+
assert grid[4, 0] == E
|
320 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), h: FiniteSet(),
|
321 |
+
i: FiniteSet()}
|
322 |
+
|
323 |
+
# A pullback.
|
324 |
+
m1 = NamedMorphism(A, B, "m1")
|
325 |
+
m2 = NamedMorphism(A, C, "m2")
|
326 |
+
s1 = NamedMorphism(B, D, "s1")
|
327 |
+
s2 = NamedMorphism(C, D, "s2")
|
328 |
+
f1 = NamedMorphism(E, B, "f1")
|
329 |
+
f2 = NamedMorphism(E, C, "f2")
|
330 |
+
g = NamedMorphism(E, A, "g")
|
331 |
+
|
332 |
+
d = Diagram([m1, m2, s1, s2, f1, f2], {g: "unique"})
|
333 |
+
grid = DiagramGrid(d)
|
334 |
+
|
335 |
+
assert grid.width == 3
|
336 |
+
assert grid.height == 2
|
337 |
+
assert grid[0, 0] == A
|
338 |
+
assert grid[0, 1] == B
|
339 |
+
assert grid[0, 2] == E
|
340 |
+
assert grid[1, 0] == C
|
341 |
+
assert grid[1, 1] == D
|
342 |
+
assert grid[1, 2] is None
|
343 |
+
|
344 |
+
morphisms = {g: FiniteSet("unique")}
|
345 |
+
for m in [m1, m2, s1, s2, f1, f2]:
|
346 |
+
morphisms[m] = FiniteSet()
|
347 |
+
assert grid.morphisms == morphisms
|
348 |
+
|
349 |
+
# Test the pullback with sequential layout, just for stress
|
350 |
+
# testing.
|
351 |
+
grid = DiagramGrid(d, layout="sequential")
|
352 |
+
|
353 |
+
assert grid.width == 5
|
354 |
+
assert grid.height == 1
|
355 |
+
assert grid[0, 0] == D
|
356 |
+
assert grid[0, 1] == B
|
357 |
+
assert grid[0, 2] == A
|
358 |
+
assert grid[0, 3] == C
|
359 |
+
assert grid[0, 4] == E
|
360 |
+
assert grid.morphisms == morphisms
|
361 |
+
|
362 |
+
# Test a pullback with object grouping.
|
363 |
+
grid = DiagramGrid(d, groups=FiniteSet(E, FiniteSet(A, B, C, D)))
|
364 |
+
|
365 |
+
assert grid.width == 3
|
366 |
+
assert grid.height == 2
|
367 |
+
assert grid[0, 0] == E
|
368 |
+
assert grid[0, 1] == A
|
369 |
+
assert grid[0, 2] == B
|
370 |
+
assert grid[1, 0] is None
|
371 |
+
assert grid[1, 1] == C
|
372 |
+
assert grid[1, 2] == D
|
373 |
+
assert grid.morphisms == morphisms
|
374 |
+
|
375 |
+
# Five lemma, actually.
|
376 |
+
A = Object("A")
|
377 |
+
B = Object("B")
|
378 |
+
C = Object("C")
|
379 |
+
D = Object("D")
|
380 |
+
E = Object("E")
|
381 |
+
A_ = Object("A'")
|
382 |
+
B_ = Object("B'")
|
383 |
+
C_ = Object("C'")
|
384 |
+
D_ = Object("D'")
|
385 |
+
E_ = Object("E'")
|
386 |
+
|
387 |
+
f = NamedMorphism(A, B, "f")
|
388 |
+
g = NamedMorphism(B, C, "g")
|
389 |
+
h = NamedMorphism(C, D, "h")
|
390 |
+
i = NamedMorphism(D, E, "i")
|
391 |
+
|
392 |
+
j = NamedMorphism(A_, B_, "j")
|
393 |
+
k = NamedMorphism(B_, C_, "k")
|
394 |
+
l = NamedMorphism(C_, D_, "l")
|
395 |
+
m = NamedMorphism(D_, E_, "m")
|
396 |
+
|
397 |
+
o = NamedMorphism(A, A_, "o")
|
398 |
+
p = NamedMorphism(B, B_, "p")
|
399 |
+
q = NamedMorphism(C, C_, "q")
|
400 |
+
r = NamedMorphism(D, D_, "r")
|
401 |
+
s = NamedMorphism(E, E_, "s")
|
402 |
+
|
403 |
+
d = Diagram([f, g, h, i, j, k, l, m, o, p, q, r, s])
|
404 |
+
grid = DiagramGrid(d)
|
405 |
+
|
406 |
+
assert grid.width == 5
|
407 |
+
assert grid.height == 3
|
408 |
+
assert grid[0, 0] is None
|
409 |
+
assert grid[0, 1] == A
|
410 |
+
assert grid[0, 2] == A_
|
411 |
+
assert grid[0, 3] is None
|
412 |
+
assert grid[0, 4] is None
|
413 |
+
assert grid[1, 0] == C
|
414 |
+
assert grid[1, 1] == B
|
415 |
+
assert grid[1, 2] == B_
|
416 |
+
assert grid[1, 3] == C_
|
417 |
+
assert grid[1, 4] is None
|
418 |
+
assert grid[2, 0] == D
|
419 |
+
assert grid[2, 1] == E
|
420 |
+
assert grid[2, 2] is None
|
421 |
+
assert grid[2, 3] == D_
|
422 |
+
assert grid[2, 4] == E_
|
423 |
+
|
424 |
+
morphisms = {}
|
425 |
+
for m in [f, g, h, i, j, k, l, m, o, p, q, r, s]:
|
426 |
+
morphisms[m] = FiniteSet()
|
427 |
+
assert grid.morphisms == morphisms
|
428 |
+
|
429 |
+
# Test the five lemma with object grouping.
|
430 |
+
grid = DiagramGrid(d, FiniteSet(
|
431 |
+
FiniteSet(A, B, C, D, E), FiniteSet(A_, B_, C_, D_, E_)))
|
432 |
+
|
433 |
+
assert grid.width == 6
|
434 |
+
assert grid.height == 3
|
435 |
+
assert grid[0, 0] == A
|
436 |
+
assert grid[0, 1] == B
|
437 |
+
assert grid[0, 2] is None
|
438 |
+
assert grid[0, 3] == A_
|
439 |
+
assert grid[0, 4] == B_
|
440 |
+
assert grid[0, 5] is None
|
441 |
+
assert grid[1, 0] is None
|
442 |
+
assert grid[1, 1] == C
|
443 |
+
assert grid[1, 2] == D
|
444 |
+
assert grid[1, 3] is None
|
445 |
+
assert grid[1, 4] == C_
|
446 |
+
assert grid[1, 5] == D_
|
447 |
+
assert grid[2, 0] is None
|
448 |
+
assert grid[2, 1] is None
|
449 |
+
assert grid[2, 2] == E
|
450 |
+
assert grid[2, 3] is None
|
451 |
+
assert grid[2, 4] is None
|
452 |
+
assert grid[2, 5] == E_
|
453 |
+
assert grid.morphisms == morphisms
|
454 |
+
|
455 |
+
# Test the five lemma with object grouping, but mixing containers
|
456 |
+
# to represent groups.
|
457 |
+
grid = DiagramGrid(d, [(A, B, C, D, E), {A_, B_, C_, D_, E_}])
|
458 |
+
|
459 |
+
assert grid.width == 6
|
460 |
+
assert grid.height == 3
|
461 |
+
assert grid[0, 0] == A
|
462 |
+
assert grid[0, 1] == B
|
463 |
+
assert grid[0, 2] is None
|
464 |
+
assert grid[0, 3] == A_
|
465 |
+
assert grid[0, 4] == B_
|
466 |
+
assert grid[0, 5] is None
|
467 |
+
assert grid[1, 0] is None
|
468 |
+
assert grid[1, 1] == C
|
469 |
+
assert grid[1, 2] == D
|
470 |
+
assert grid[1, 3] is None
|
471 |
+
assert grid[1, 4] == C_
|
472 |
+
assert grid[1, 5] == D_
|
473 |
+
assert grid[2, 0] is None
|
474 |
+
assert grid[2, 1] is None
|
475 |
+
assert grid[2, 2] == E
|
476 |
+
assert grid[2, 3] is None
|
477 |
+
assert grid[2, 4] is None
|
478 |
+
assert grid[2, 5] == E_
|
479 |
+
assert grid.morphisms == morphisms
|
480 |
+
|
481 |
+
# Test the five lemma with object grouping and hints.
|
482 |
+
grid = DiagramGrid(d, {
|
483 |
+
FiniteSet(A, B, C, D, E): {"layout": "sequential",
|
484 |
+
"transpose": True},
|
485 |
+
FiniteSet(A_, B_, C_, D_, E_): {"layout": "sequential",
|
486 |
+
"transpose": True}},
|
487 |
+
transpose=True)
|
488 |
+
|
489 |
+
assert grid.width == 5
|
490 |
+
assert grid.height == 2
|
491 |
+
assert grid[0, 0] == A
|
492 |
+
assert grid[0, 1] == B
|
493 |
+
assert grid[0, 2] == C
|
494 |
+
assert grid[0, 3] == D
|
495 |
+
assert grid[0, 4] == E
|
496 |
+
assert grid[1, 0] == A_
|
497 |
+
assert grid[1, 1] == B_
|
498 |
+
assert grid[1, 2] == C_
|
499 |
+
assert grid[1, 3] == D_
|
500 |
+
assert grid[1, 4] == E_
|
501 |
+
assert grid.morphisms == morphisms
|
502 |
+
|
503 |
+
# A two-triangle disconnected diagram.
|
504 |
+
f = NamedMorphism(A, B, "f")
|
505 |
+
g = NamedMorphism(B, C, "g")
|
506 |
+
f_ = NamedMorphism(A_, B_, "f")
|
507 |
+
g_ = NamedMorphism(B_, C_, "g")
|
508 |
+
d = Diagram([f, g, f_, g_], {g * f: "unique", g_ * f_: "unique"})
|
509 |
+
grid = DiagramGrid(d)
|
510 |
+
|
511 |
+
assert grid.width == 4
|
512 |
+
assert grid.height == 2
|
513 |
+
assert grid[0, 0] == A
|
514 |
+
assert grid[0, 1] == B
|
515 |
+
assert grid[0, 2] == A_
|
516 |
+
assert grid[0, 3] == B_
|
517 |
+
assert grid[1, 0] == C
|
518 |
+
assert grid[1, 1] is None
|
519 |
+
assert grid[1, 2] == C_
|
520 |
+
assert grid[1, 3] is None
|
521 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet(), f_: FiniteSet(),
|
522 |
+
g_: FiniteSet(), g * f: FiniteSet("unique"),
|
523 |
+
g_ * f_: FiniteSet("unique")}
|
524 |
+
|
525 |
+
# A two-morphism disconnected diagram.
|
526 |
+
f = NamedMorphism(A, B, "f")
|
527 |
+
g = NamedMorphism(C, D, "g")
|
528 |
+
d = Diagram([f, g])
|
529 |
+
grid = DiagramGrid(d)
|
530 |
+
|
531 |
+
assert grid.width == 4
|
532 |
+
assert grid.height == 1
|
533 |
+
assert grid[0, 0] == A
|
534 |
+
assert grid[0, 1] == B
|
535 |
+
assert grid[0, 2] == C
|
536 |
+
assert grid[0, 3] == D
|
537 |
+
assert grid.morphisms == {f: FiniteSet(), g: FiniteSet()}
|
538 |
+
|
539 |
+
# Test a one-object diagram.
|
540 |
+
f = NamedMorphism(A, A, "f")
|
541 |
+
d = Diagram([f])
|
542 |
+
grid = DiagramGrid(d)
|
543 |
+
|
544 |
+
assert grid.width == 1
|
545 |
+
assert grid.height == 1
|
546 |
+
assert grid[0, 0] == A
|
547 |
+
|
548 |
+
# Test a two-object disconnected diagram.
|
549 |
+
g = NamedMorphism(B, B, "g")
|
550 |
+
d = Diagram([f, g])
|
551 |
+
grid = DiagramGrid(d)
|
552 |
+
|
553 |
+
assert grid.width == 2
|
554 |
+
assert grid.height == 1
|
555 |
+
assert grid[0, 0] == A
|
556 |
+
assert grid[0, 1] == B
|
557 |
+
|
558 |
+
|
559 |
+
def test_DiagramGrid_pseudopod():
|
560 |
+
# Test a diagram in which even growing a pseudopod does not
|
561 |
+
# eventually help.
|
562 |
+
A = Object("A")
|
563 |
+
B = Object("B")
|
564 |
+
C = Object("C")
|
565 |
+
D = Object("D")
|
566 |
+
E = Object("E")
|
567 |
+
F = Object("F")
|
568 |
+
A_ = Object("A'")
|
569 |
+
B_ = Object("B'")
|
570 |
+
C_ = Object("C'")
|
571 |
+
D_ = Object("D'")
|
572 |
+
E_ = Object("E'")
|
573 |
+
|
574 |
+
f1 = NamedMorphism(A, B, "f1")
|
575 |
+
f2 = NamedMorphism(A, C, "f2")
|
576 |
+
f3 = NamedMorphism(A, D, "f3")
|
577 |
+
f4 = NamedMorphism(A, E, "f4")
|
578 |
+
f5 = NamedMorphism(A, A_, "f5")
|
579 |
+
f6 = NamedMorphism(A, B_, "f6")
|
580 |
+
f7 = NamedMorphism(A, C_, "f7")
|
581 |
+
f8 = NamedMorphism(A, D_, "f8")
|
582 |
+
f9 = NamedMorphism(A, E_, "f9")
|
583 |
+
f10 = NamedMorphism(A, F, "f10")
|
584 |
+
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10])
|
585 |
+
grid = DiagramGrid(d)
|
586 |
+
|
587 |
+
assert grid.width == 5
|
588 |
+
assert grid.height == 3
|
589 |
+
assert grid[0, 0] == E
|
590 |
+
assert grid[0, 1] == C
|
591 |
+
assert grid[0, 2] == C_
|
592 |
+
assert grid[0, 3] == E_
|
593 |
+
assert grid[0, 4] == F
|
594 |
+
assert grid[1, 0] == D
|
595 |
+
assert grid[1, 1] == A
|
596 |
+
assert grid[1, 2] == A_
|
597 |
+
assert grid[1, 3] is None
|
598 |
+
assert grid[1, 4] is None
|
599 |
+
assert grid[2, 0] == D_
|
600 |
+
assert grid[2, 1] == B
|
601 |
+
assert grid[2, 2] == B_
|
602 |
+
assert grid[2, 3] is None
|
603 |
+
assert grid[2, 4] is None
|
604 |
+
|
605 |
+
morphisms = {}
|
606 |
+
for f in [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10]:
|
607 |
+
morphisms[f] = FiniteSet()
|
608 |
+
assert grid.morphisms == morphisms
|
609 |
+
|
610 |
+
|
611 |
+
def test_ArrowStringDescription():
|
612 |
+
astr = ArrowStringDescription("cm", "", None, "", "", "d", "r", "_", "f")
|
613 |
+
assert str(astr) == "\\ar[dr]_{f}"
|
614 |
+
|
615 |
+
astr = ArrowStringDescription("cm", "", 12, "", "", "d", "r", "_", "f")
|
616 |
+
assert str(astr) == "\\ar[dr]_{f}"
|
617 |
+
|
618 |
+
astr = ArrowStringDescription("cm", "^", 12, "", "", "d", "r", "_", "f")
|
619 |
+
assert str(astr) == "\\ar@/^12cm/[dr]_{f}"
|
620 |
+
|
621 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "", "d", "r", "_", "f")
|
622 |
+
assert str(astr) == "\\ar[dr]_{f}"
|
623 |
+
|
624 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
|
625 |
+
assert str(astr) == "\\ar@(r,u)[dr]_{f}"
|
626 |
+
|
627 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
|
628 |
+
assert str(astr) == "\\ar@(r,u)[dr]_{f}"
|
629 |
+
|
630 |
+
astr = ArrowStringDescription("cm", "", 12, "r", "u", "d", "r", "_", "f")
|
631 |
+
astr.arrow_style = "{-->}"
|
632 |
+
assert str(astr) == "\\ar@(r,u)@{-->}[dr]_{f}"
|
633 |
+
|
634 |
+
astr = ArrowStringDescription("cm", "_", 12, "", "", "d", "r", "_", "f")
|
635 |
+
astr.arrow_style = "{-->}"
|
636 |
+
assert str(astr) == "\\ar@/_12cm/@{-->}[dr]_{f}"
|
637 |
+
|
638 |
+
|
639 |
+
def test_XypicDiagramDrawer_line():
|
640 |
+
# A linear diagram.
|
641 |
+
A = Object("A")
|
642 |
+
B = Object("B")
|
643 |
+
C = Object("C")
|
644 |
+
D = Object("D")
|
645 |
+
E = Object("E")
|
646 |
+
|
647 |
+
f = NamedMorphism(A, B, "f")
|
648 |
+
g = NamedMorphism(B, C, "g")
|
649 |
+
h = NamedMorphism(C, D, "h")
|
650 |
+
i = NamedMorphism(D, E, "i")
|
651 |
+
d = Diagram([f, g, h, i])
|
652 |
+
grid = DiagramGrid(d, layout="sequential")
|
653 |
+
drawer = XypicDiagramDrawer()
|
654 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
655 |
+
"A \\ar[r]^{f} & B \\ar[r]^{g} & C \\ar[r]^{h} & D \\ar[r]^{i} & E \n" \
|
656 |
+
"}\n"
|
657 |
+
|
658 |
+
# The same diagram, transposed.
|
659 |
+
grid = DiagramGrid(d, layout="sequential", transpose=True)
|
660 |
+
drawer = XypicDiagramDrawer()
|
661 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
662 |
+
"A \\ar[d]^{f} \\\\\n" \
|
663 |
+
"B \\ar[d]^{g} \\\\\n" \
|
664 |
+
"C \\ar[d]^{h} \\\\\n" \
|
665 |
+
"D \\ar[d]^{i} \\\\\n" \
|
666 |
+
"E \n" \
|
667 |
+
"}\n"
|
668 |
+
|
669 |
+
|
670 |
+
def test_XypicDiagramDrawer_triangle():
|
671 |
+
# A triangle diagram.
|
672 |
+
A = Object("A")
|
673 |
+
B = Object("B")
|
674 |
+
C = Object("C")
|
675 |
+
f = NamedMorphism(A, B, "f")
|
676 |
+
g = NamedMorphism(B, C, "g")
|
677 |
+
|
678 |
+
d = Diagram([f, g], {g * f: "unique"})
|
679 |
+
grid = DiagramGrid(d)
|
680 |
+
drawer = XypicDiagramDrawer()
|
681 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
682 |
+
"A \\ar[d]_{g\\circ f} \\ar[r]^{f} & B \\ar[ld]^{g} \\\\\n" \
|
683 |
+
"C & \n" \
|
684 |
+
"}\n"
|
685 |
+
|
686 |
+
# The same diagram, transposed.
|
687 |
+
grid = DiagramGrid(d, transpose=True)
|
688 |
+
drawer = XypicDiagramDrawer()
|
689 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
690 |
+
"A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \
|
691 |
+
"B \\ar[ru]_{g} & \n" \
|
692 |
+
"}\n"
|
693 |
+
|
694 |
+
# The same diagram, with a masked morphism.
|
695 |
+
assert drawer.draw(d, grid, masked=[g]) == "\\xymatrix{\n" \
|
696 |
+
"A \\ar[r]^{g\\circ f} \\ar[d]_{f} & C \\\\\n" \
|
697 |
+
"B & \n" \
|
698 |
+
"}\n"
|
699 |
+
|
700 |
+
# The same diagram with a formatter for "unique".
|
701 |
+
def formatter(astr):
|
702 |
+
astr.label = "\\exists !" + astr.label
|
703 |
+
astr.arrow_style = "{-->}"
|
704 |
+
|
705 |
+
drawer.arrow_formatters["unique"] = formatter
|
706 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
707 |
+
"A \\ar@{-->}[r]^{\\exists !g\\circ f} \\ar[d]_{f} & C \\\\\n" \
|
708 |
+
"B \\ar[ru]_{g} & \n" \
|
709 |
+
"}\n"
|
710 |
+
|
711 |
+
# The same diagram with a default formatter.
|
712 |
+
def default_formatter(astr):
|
713 |
+
astr.label_displacement = "(0.45)"
|
714 |
+
|
715 |
+
drawer.default_arrow_formatter = default_formatter
|
716 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
717 |
+
"A \\ar@{-->}[r]^(0.45){\\exists !g\\circ f} \\ar[d]_(0.45){f} & C \\\\\n" \
|
718 |
+
"B \\ar[ru]_(0.45){g} & \n" \
|
719 |
+
"}\n"
|
720 |
+
|
721 |
+
# A triangle diagram with a lot of morphisms between the same
|
722 |
+
# objects.
|
723 |
+
f1 = NamedMorphism(B, A, "f1")
|
724 |
+
f2 = NamedMorphism(A, B, "f2")
|
725 |
+
g1 = NamedMorphism(C, B, "g1")
|
726 |
+
g2 = NamedMorphism(B, C, "g2")
|
727 |
+
d = Diagram([f, f1, f2, g, g1, g2], {f1 * g1: "unique", g2 * f2: "unique"})
|
728 |
+
|
729 |
+
grid = DiagramGrid(d, transpose=True)
|
730 |
+
drawer = XypicDiagramDrawer()
|
731 |
+
assert drawer.draw(d, grid, masked=[f1*g1*g2*f2, g2*f2*f1*g1]) == \
|
732 |
+
"\\xymatrix{\n" \
|
733 |
+
"A \\ar[r]^{g_{2}\\circ f_{2}} \\ar[d]_{f} \\ar@/^3mm/[d]^{f_{2}} " \
|
734 |
+
"& C \\ar@/^3mm/[l]^{f_{1}\\circ g_{1}} \\ar@/^3mm/[ld]^{g_{1}} \\\\\n" \
|
735 |
+
"B \\ar@/^3mm/[u]^{f_{1}} \\ar[ru]_{g} \\ar@/^3mm/[ru]^{g_{2}} & \n" \
|
736 |
+
"}\n"
|
737 |
+
|
738 |
+
|
739 |
+
def test_XypicDiagramDrawer_cube():
|
740 |
+
# A cube diagram.
|
741 |
+
A1 = Object("A1")
|
742 |
+
A2 = Object("A2")
|
743 |
+
A3 = Object("A3")
|
744 |
+
A4 = Object("A4")
|
745 |
+
A5 = Object("A5")
|
746 |
+
A6 = Object("A6")
|
747 |
+
A7 = Object("A7")
|
748 |
+
A8 = Object("A8")
|
749 |
+
|
750 |
+
# The top face of the cube.
|
751 |
+
f1 = NamedMorphism(A1, A2, "f1")
|
752 |
+
f2 = NamedMorphism(A1, A3, "f2")
|
753 |
+
f3 = NamedMorphism(A2, A4, "f3")
|
754 |
+
f4 = NamedMorphism(A3, A4, "f3")
|
755 |
+
|
756 |
+
# The bottom face of the cube.
|
757 |
+
f5 = NamedMorphism(A5, A6, "f5")
|
758 |
+
f6 = NamedMorphism(A5, A7, "f6")
|
759 |
+
f7 = NamedMorphism(A6, A8, "f7")
|
760 |
+
f8 = NamedMorphism(A7, A8, "f8")
|
761 |
+
|
762 |
+
# The remaining morphisms.
|
763 |
+
f9 = NamedMorphism(A1, A5, "f9")
|
764 |
+
f10 = NamedMorphism(A2, A6, "f10")
|
765 |
+
f11 = NamedMorphism(A3, A7, "f11")
|
766 |
+
f12 = NamedMorphism(A4, A8, "f11")
|
767 |
+
|
768 |
+
d = Diagram([f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12])
|
769 |
+
grid = DiagramGrid(d)
|
770 |
+
drawer = XypicDiagramDrawer()
|
771 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
772 |
+
"& A_{5} \\ar[r]^{f_{5}} \\ar[ldd]_{f_{6}} & A_{6} \\ar[rdd]^{f_{7}} " \
|
773 |
+
"& \\\\\n" \
|
774 |
+
"& A_{1} \\ar[r]^{f_{1}} \\ar[d]^{f_{2}} \\ar[u]^{f_{9}} & A_{2} " \
|
775 |
+
"\\ar[d]^{f_{3}} \\ar[u]_{f_{10}} & \\\\\n" \
|
776 |
+
"A_{7} \\ar@/_3mm/[rrr]_{f_{8}} & A_{3} \\ar[r]^{f_{3}} \\ar[l]_{f_{11}} " \
|
777 |
+
"& A_{4} \\ar[r]^{f_{11}} & A_{8} \n" \
|
778 |
+
"}\n"
|
779 |
+
|
780 |
+
# The same diagram, transposed.
|
781 |
+
grid = DiagramGrid(d, transpose=True)
|
782 |
+
drawer = XypicDiagramDrawer()
|
783 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
784 |
+
"& & A_{7} \\ar@/^3mm/[ddd]^{f_{8}} \\\\\n" \
|
785 |
+
"A_{5} \\ar[d]_{f_{5}} \\ar[rru]^{f_{6}} & A_{1} \\ar[d]^{f_{1}} " \
|
786 |
+
"\\ar[r]^{f_{2}} \\ar[l]^{f_{9}} & A_{3} \\ar[d]_{f_{3}} " \
|
787 |
+
"\\ar[u]^{f_{11}} \\\\\n" \
|
788 |
+
"A_{6} \\ar[rrd]_{f_{7}} & A_{2} \\ar[r]^{f_{3}} \\ar[l]^{f_{10}} " \
|
789 |
+
"& A_{4} \\ar[d]_{f_{11}} \\\\\n" \
|
790 |
+
"& & A_{8} \n" \
|
791 |
+
"}\n"
|
792 |
+
|
793 |
+
|
794 |
+
def test_XypicDiagramDrawer_curved_and_loops():
|
795 |
+
# A simple diagram, with a curved arrow.
|
796 |
+
A = Object("A")
|
797 |
+
B = Object("B")
|
798 |
+
C = Object("C")
|
799 |
+
D = Object("D")
|
800 |
+
|
801 |
+
f = NamedMorphism(A, B, "f")
|
802 |
+
g = NamedMorphism(B, C, "g")
|
803 |
+
h = NamedMorphism(D, A, "h")
|
804 |
+
k = NamedMorphism(D, B, "k")
|
805 |
+
d = Diagram([f, g, h, k])
|
806 |
+
grid = DiagramGrid(d)
|
807 |
+
drawer = XypicDiagramDrawer()
|
808 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
809 |
+
"A \\ar[r]_{f} & B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_3mm/[ll]_{h} \\\\\n" \
|
810 |
+
"& C & \n" \
|
811 |
+
"}\n"
|
812 |
+
|
813 |
+
# The same diagram, transposed.
|
814 |
+
grid = DiagramGrid(d, transpose=True)
|
815 |
+
drawer = XypicDiagramDrawer()
|
816 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
817 |
+
"A \\ar[d]^{f} & \\\\\n" \
|
818 |
+
"B \\ar[r]^{g} & C \\\\\n" \
|
819 |
+
"D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \
|
820 |
+
"}\n"
|
821 |
+
|
822 |
+
# The same diagram, larger and rotated.
|
823 |
+
assert drawer.draw(d, grid, diagram_format="@+1cm@dr") == \
|
824 |
+
"\\xymatrix@+1cm@dr{\n" \
|
825 |
+
"A \\ar[d]^{f} & \\\\\n" \
|
826 |
+
"B \\ar[r]^{g} & C \\\\\n" \
|
827 |
+
"D \\ar[u]_{k} \\ar@/^3mm/[uu]^{h} & \n" \
|
828 |
+
"}\n"
|
829 |
+
|
830 |
+
# A simple diagram with three curved arrows.
|
831 |
+
h1 = NamedMorphism(D, A, "h1")
|
832 |
+
h2 = NamedMorphism(A, D, "h2")
|
833 |
+
k = NamedMorphism(D, B, "k")
|
834 |
+
d = Diagram([f, g, h, k, h1, h2])
|
835 |
+
grid = DiagramGrid(d)
|
836 |
+
drawer = XypicDiagramDrawer()
|
837 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
838 |
+
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \
|
839 |
+
"\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\\\\n" \
|
840 |
+
"& C & \n" \
|
841 |
+
"}\n"
|
842 |
+
|
843 |
+
# The same diagram, transposed.
|
844 |
+
grid = DiagramGrid(d, transpose=True)
|
845 |
+
drawer = XypicDiagramDrawer()
|
846 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
847 |
+
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} & \\\\\n" \
|
848 |
+
"B \\ar[r]^{g} & C \\\\\n" \
|
849 |
+
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} & \n" \
|
850 |
+
"}\n"
|
851 |
+
|
852 |
+
# The same diagram, with "loop" morphisms.
|
853 |
+
l_A = NamedMorphism(A, A, "l_A")
|
854 |
+
l_D = NamedMorphism(D, D, "l_D")
|
855 |
+
l_C = NamedMorphism(C, C, "l_C")
|
856 |
+
d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C])
|
857 |
+
grid = DiagramGrid(d)
|
858 |
+
drawer = XypicDiagramDrawer()
|
859 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
860 |
+
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \
|
861 |
+
"& B \\ar[d]^{g} & D \\ar[l]^{k} \\ar@/_7mm/[ll]_{h} " \
|
862 |
+
"\\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} \\\\\n" \
|
863 |
+
"& C \\ar@(l,d)[]^{l_{C}} & \n" \
|
864 |
+
"}\n"
|
865 |
+
|
866 |
+
# The same diagram with "loop" morphisms, transposed.
|
867 |
+
grid = DiagramGrid(d, transpose=True)
|
868 |
+
drawer = XypicDiagramDrawer()
|
869 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
870 |
+
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} & \\\\\n" \
|
871 |
+
"B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\\\\n" \
|
872 |
+
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \
|
873 |
+
"\\ar@(l,d)[]^{l_{D}} & \n" \
|
874 |
+
"}\n"
|
875 |
+
|
876 |
+
# The same diagram with two "loop" morphisms per object.
|
877 |
+
l_A_ = NamedMorphism(A, A, "n_A")
|
878 |
+
l_D_ = NamedMorphism(D, D, "n_D")
|
879 |
+
l_C_ = NamedMorphism(C, C, "n_C")
|
880 |
+
d = Diagram([f, g, h, k, h1, h2, l_A, l_D, l_C, l_A_, l_D_, l_C_])
|
881 |
+
grid = DiagramGrid(d)
|
882 |
+
drawer = XypicDiagramDrawer()
|
883 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
884 |
+
"A \\ar[r]_{f} \\ar@/^3mm/[rr]^{h_{2}} \\ar@(u,l)[]^{l_{A}} " \
|
885 |
+
"\\ar@/^3mm/@(l,d)[]^{n_{A}} & B \\ar[d]^{g} & D \\ar[l]^{k} " \
|
886 |
+
"\\ar@/_7mm/[ll]_{h} \\ar@/_11mm/[ll]_{h_{1}} \\ar@(r,u)[]^{l_{D}} " \
|
887 |
+
"\\ar@/^3mm/@(d,r)[]^{n_{D}} \\\\\n" \
|
888 |
+
"& C \\ar@(l,d)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} & \n" \
|
889 |
+
"}\n"
|
890 |
+
|
891 |
+
# The same diagram with two "loop" morphisms per object, transposed.
|
892 |
+
grid = DiagramGrid(d, transpose=True)
|
893 |
+
drawer = XypicDiagramDrawer()
|
894 |
+
assert drawer.draw(d, grid) == "\\xymatrix{\n" \
|
895 |
+
"A \\ar[d]^{f} \\ar@/_3mm/[dd]_{h_{2}} \\ar@(r,u)[]^{l_{A}} " \
|
896 |
+
"\\ar@/^3mm/@(u,l)[]^{n_{A}} & \\\\\n" \
|
897 |
+
"B \\ar[r]^{g} & C \\ar@(r,u)[]^{l_{C}} \\ar@/^3mm/@(d,r)[]^{n_{C}} \\\\\n" \
|
898 |
+
"D \\ar[u]_{k} \\ar@/^7mm/[uu]^{h} \\ar@/^11mm/[uu]^{h_{1}} " \
|
899 |
+
"\\ar@(l,d)[]^{l_{D}} \\ar@/^3mm/@(d,r)[]^{n_{D}} & \n" \
|
900 |
+
"}\n"
|
901 |
+
|
902 |
+
|
903 |
+
def test_xypic_draw_diagram():
|
904 |
+
# A linear diagram.
|
905 |
+
A = Object("A")
|
906 |
+
B = Object("B")
|
907 |
+
C = Object("C")
|
908 |
+
D = Object("D")
|
909 |
+
E = Object("E")
|
910 |
+
|
911 |
+
f = NamedMorphism(A, B, "f")
|
912 |
+
g = NamedMorphism(B, C, "g")
|
913 |
+
h = NamedMorphism(C, D, "h")
|
914 |
+
i = NamedMorphism(D, E, "i")
|
915 |
+
d = Diagram([f, g, h, i])
|
916 |
+
|
917 |
+
grid = DiagramGrid(d, layout="sequential")
|
918 |
+
drawer = XypicDiagramDrawer()
|
919 |
+
assert drawer.draw(d, grid) == xypic_draw_diagram(d, layout="sequential")
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Stub __init__.py for sympy.functions.elementary
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/_trigonometric_special.cpython-310.pyc
ADDED
Binary file (8.55 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/complexes.cpython-310.pyc
ADDED
Binary file (39 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/exponential.cpython-310.pyc
ADDED
Binary file (34.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/hyperbolic.cpython-310.pyc
ADDED
Binary file (55.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/integers.cpython-310.pyc
ADDED
Binary file (16 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/miscellaneous.cpython-310.pyc
ADDED
Binary file (30.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/piecewise.cpython-310.pyc
ADDED
Binary file (44.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/__pycache__/trigonometric.cpython-310.pyc
ADDED
Binary file (91.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/_trigonometric_special.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""A module for special angle forumlas for trigonometric functions
|
2 |
+
|
3 |
+
TODO
|
4 |
+
====
|
5 |
+
|
6 |
+
This module should be developed in the future to contain direct squrae root
|
7 |
+
representation of
|
8 |
+
|
9 |
+
.. math
|
10 |
+
F(\frac{n}{m} \pi)
|
11 |
+
|
12 |
+
for every
|
13 |
+
|
14 |
+
- $m \in \{ 3, 5, 17, 257, 65537 \}$
|
15 |
+
- $n \in \mathbb{N}$, $0 \le n < m$
|
16 |
+
- $F \in \{\sin, \cos, \tan, \csc, \sec, \cot\}$
|
17 |
+
|
18 |
+
Without multi-step rewrites
|
19 |
+
(e.g. $\tan \to \cos/\sin \to \cos/\sqrt \to \ sqrt$)
|
20 |
+
or using chebyshev identities
|
21 |
+
(e.g. $\cos \to \cos + \cos^2 + \cdots \to \sqrt{} + \sqrt{}^2 + \cdots $),
|
22 |
+
which are trivial to implement in sympy,
|
23 |
+
and had used to give overly complicated expressions.
|
24 |
+
|
25 |
+
The reference can be found below, if anyone may need help implementing them.
|
26 |
+
|
27 |
+
References
|
28 |
+
==========
|
29 |
+
|
30 |
+
.. [*] Gottlieb, Christian. (1999). The Simple and straightforward construction
|
31 |
+
of the regular 257-gon. The Mathematical Intelligencer. 21. 31-37.
|
32 |
+
10.1007/BF03024829.
|
33 |
+
.. [*] https://resources.wolframcloud.com/FunctionRepository/resources/Cos2PiOverFermatPrime
|
34 |
+
"""
|
35 |
+
from __future__ import annotations
|
36 |
+
from typing import Callable
|
37 |
+
from functools import reduce
|
38 |
+
from sympy.core.expr import Expr
|
39 |
+
from sympy.core.singleton import S
|
40 |
+
from sympy.core.numbers import igcdex, Integer
|
41 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
42 |
+
from sympy.core.cache import cacheit
|
43 |
+
|
44 |
+
|
45 |
+
def migcdex(*x: int) -> tuple[tuple[int, ...], int]:
|
46 |
+
r"""Compute extended gcd for multiple integers.
|
47 |
+
|
48 |
+
Explanation
|
49 |
+
===========
|
50 |
+
|
51 |
+
Given the integers $x_1, \cdots, x_n$ and
|
52 |
+
an extended gcd for multiple arguments are defined as a solution
|
53 |
+
$(y_1, \cdots, y_n), g$ for the diophantine equation
|
54 |
+
$x_1 y_1 + \cdots + x_n y_n = g$ such that
|
55 |
+
$g = \gcd(x_1, \cdots, x_n)$.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
========
|
59 |
+
|
60 |
+
>>> from sympy.functions.elementary._trigonometric_special import migcdex
|
61 |
+
>>> migcdex()
|
62 |
+
((), 0)
|
63 |
+
>>> migcdex(4)
|
64 |
+
((1,), 4)
|
65 |
+
>>> migcdex(4, 6)
|
66 |
+
((-1, 1), 2)
|
67 |
+
>>> migcdex(6, 10, 15)
|
68 |
+
((1, 1, -1), 1)
|
69 |
+
"""
|
70 |
+
if not x:
|
71 |
+
return (), 0
|
72 |
+
|
73 |
+
if len(x) == 1:
|
74 |
+
return (1,), x[0]
|
75 |
+
|
76 |
+
if len(x) == 2:
|
77 |
+
u, v, h = igcdex(x[0], x[1])
|
78 |
+
return (u, v), h
|
79 |
+
|
80 |
+
y, g = migcdex(*x[1:])
|
81 |
+
u, v, h = igcdex(x[0], g)
|
82 |
+
return (u, *(v * i for i in y)), h
|
83 |
+
|
84 |
+
|
85 |
+
def ipartfrac(*denoms: int) -> tuple[int, ...]:
|
86 |
+
r"""Compute the the partial fraction decomposition.
|
87 |
+
|
88 |
+
Explanation
|
89 |
+
===========
|
90 |
+
|
91 |
+
Given a rational number $\frac{1}{q_1 \cdots q_n}$ where all
|
92 |
+
$q_1, \cdots, q_n$ are pairwise coprime,
|
93 |
+
|
94 |
+
A partial fraction decomposition is defined as
|
95 |
+
|
96 |
+
.. math::
|
97 |
+
\frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}
|
98 |
+
|
99 |
+
And it can be derived from solving the following diophantine equation for
|
100 |
+
the $p_1, \cdots, p_n$
|
101 |
+
|
102 |
+
.. math::
|
103 |
+
1 = p_1 \prod_{i \ne 1}q_i + \cdots + p_n \prod_{i \ne n}q_i
|
104 |
+
|
105 |
+
Where $q_1, \cdots, q_n$ being pairwise coprime implies
|
106 |
+
$\gcd(\prod_{i \ne 1}q_i, \cdots, \prod_{i \ne n}q_i) = 1$,
|
107 |
+
which guarantees the existance of the solution.
|
108 |
+
|
109 |
+
It is sufficient to compute partial fraction decomposition only
|
110 |
+
for numerator $1$ because partial fraction decomposition for any
|
111 |
+
$\frac{n}{q_1 \cdots q_n}$ can be easily computed by multiplying
|
112 |
+
the result by $n$ afterwards.
|
113 |
+
|
114 |
+
Parameters
|
115 |
+
==========
|
116 |
+
|
117 |
+
denoms : int
|
118 |
+
The pairwise coprime integer denominators $q_i$ which defines the
|
119 |
+
rational number $\frac{1}{q_1 \cdots q_n}$
|
120 |
+
|
121 |
+
Returns
|
122 |
+
=======
|
123 |
+
|
124 |
+
tuple[int, ...]
|
125 |
+
The list of numerators which semantically corresponds to $p_i$ of the
|
126 |
+
partial fraction decomposition
|
127 |
+
$\frac{1}{q_1 \cdots q_n} = \frac{p_1}{q_1} + \cdots + \frac{p_n}{q_n}$
|
128 |
+
|
129 |
+
Examples
|
130 |
+
========
|
131 |
+
|
132 |
+
>>> from sympy import Rational, Mul
|
133 |
+
>>> from sympy.functions.elementary._trigonometric_special import ipartfrac
|
134 |
+
|
135 |
+
>>> denoms = 2, 3, 5
|
136 |
+
>>> numers = ipartfrac(2, 3, 5)
|
137 |
+
>>> numers
|
138 |
+
(1, 7, -14)
|
139 |
+
|
140 |
+
>>> Rational(1, Mul(*denoms))
|
141 |
+
1/30
|
142 |
+
>>> out = 0
|
143 |
+
>>> for n, d in zip(numers, denoms):
|
144 |
+
... out += Rational(n, d)
|
145 |
+
>>> out
|
146 |
+
1/30
|
147 |
+
"""
|
148 |
+
if not denoms:
|
149 |
+
return ()
|
150 |
+
|
151 |
+
def mul(x: int, y: int) -> int:
|
152 |
+
return x * y
|
153 |
+
|
154 |
+
denom = reduce(mul, denoms)
|
155 |
+
a = [denom // x for x in denoms]
|
156 |
+
h, _ = migcdex(*a)
|
157 |
+
return h
|
158 |
+
|
159 |
+
|
160 |
+
def fermat_coords(n: int) -> list[int] | None:
|
161 |
+
"""If n can be factored in terms of Fermat primes with
|
162 |
+
multiplicity of each being 1, return those primes, else
|
163 |
+
None
|
164 |
+
"""
|
165 |
+
primes = []
|
166 |
+
for p in [3, 5, 17, 257, 65537]:
|
167 |
+
quotient, remainder = divmod(n, p)
|
168 |
+
if remainder == 0:
|
169 |
+
n = quotient
|
170 |
+
primes.append(p)
|
171 |
+
if n == 1:
|
172 |
+
return primes
|
173 |
+
return None
|
174 |
+
|
175 |
+
|
176 |
+
@cacheit
|
177 |
+
def cos_3() -> Expr:
|
178 |
+
r"""Computes $\cos \frac{\pi}{3}$ in square roots"""
|
179 |
+
return S.Half
|
180 |
+
|
181 |
+
|
182 |
+
@cacheit
|
183 |
+
def cos_5() -> Expr:
|
184 |
+
r"""Computes $\cos \frac{\pi}{5}$ in square roots"""
|
185 |
+
return (sqrt(5) + 1) / 4
|
186 |
+
|
187 |
+
|
188 |
+
@cacheit
|
189 |
+
def cos_17() -> Expr:
|
190 |
+
r"""Computes $\cos \frac{\pi}{17}$ in square roots"""
|
191 |
+
return sqrt(
|
192 |
+
(15 + sqrt(17)) / 32 + sqrt(2) * (sqrt(17 - sqrt(17)) +
|
193 |
+
sqrt(sqrt(2) * (-8 * sqrt(17 + sqrt(17)) - (1 - sqrt(17))
|
194 |
+
* sqrt(17 - sqrt(17))) + 6 * sqrt(17) + 34)) / 32)
|
195 |
+
|
196 |
+
|
197 |
+
@cacheit
|
198 |
+
def cos_257() -> Expr:
|
199 |
+
r"""Computes $\cos \frac{\pi}{257}$ in square roots
|
200 |
+
|
201 |
+
References
|
202 |
+
==========
|
203 |
+
|
204 |
+
.. [*] https://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
|
205 |
+
.. [*] https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
|
206 |
+
"""
|
207 |
+
def f1(a: Expr, b: Expr) -> tuple[Expr, Expr]:
|
208 |
+
return (a + sqrt(a**2 + b)) / 2, (a - sqrt(a**2 + b)) / 2
|
209 |
+
|
210 |
+
def f2(a: Expr, b: Expr) -> Expr:
|
211 |
+
return (a - sqrt(a**2 + b))/2
|
212 |
+
|
213 |
+
t1, t2 = f1(S.NegativeOne, Integer(256))
|
214 |
+
z1, z3 = f1(t1, Integer(64))
|
215 |
+
z2, z4 = f1(t2, Integer(64))
|
216 |
+
y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
|
217 |
+
y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
|
218 |
+
y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
|
219 |
+
y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
|
220 |
+
x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
|
221 |
+
x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
|
222 |
+
x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
|
223 |
+
x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
|
224 |
+
x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
|
225 |
+
x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
|
226 |
+
x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
|
227 |
+
x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
|
228 |
+
v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
|
229 |
+
v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
|
230 |
+
v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
|
231 |
+
v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
|
232 |
+
v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
|
233 |
+
v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
|
234 |
+
u1 = -f2(-v1, -4*(v2 + v3))
|
235 |
+
u2 = -f2(-v4, -4*(v5 + v6))
|
236 |
+
w1 = -2*f2(-u1, -4*u2)
|
237 |
+
return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
|
238 |
+
|
239 |
+
|
240 |
+
def cos_table() -> dict[int, Callable[[], Expr]]:
|
241 |
+
r"""Lazily evaluated table for $\cos \frac{\pi}{n}$ in square roots for
|
242 |
+
$n \in \{3, 5, 17, 257, 65537\}$.
|
243 |
+
|
244 |
+
Notes
|
245 |
+
=====
|
246 |
+
|
247 |
+
65537 is the only other known Fermat prime and it is nearly impossible to
|
248 |
+
build in the current SymPy due to performance issues.
|
249 |
+
|
250 |
+
References
|
251 |
+
==========
|
252 |
+
|
253 |
+
https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
|
254 |
+
"""
|
255 |
+
return {
|
256 |
+
3: cos_3,
|
257 |
+
5: cos_5,
|
258 |
+
17: cos_17,
|
259 |
+
257: cos_257
|
260 |
+
}
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/benchmarks/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/benchmarks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (202 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/benchmarks/__pycache__/bench_exp.cpython-310.pyc
ADDED
Binary file (527 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/benchmarks/bench_exp.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import symbols
|
2 |
+
from sympy.functions.elementary.exponential import exp
|
3 |
+
|
4 |
+
x, y = symbols('x,y')
|
5 |
+
|
6 |
+
e = exp(2*x)
|
7 |
+
q = exp(3*x)
|
8 |
+
|
9 |
+
|
10 |
+
def timeit_exp_subs():
|
11 |
+
e.subs(q, y)
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/complexes.py
ADDED
@@ -0,0 +1,1465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple as tTuple
|
2 |
+
|
3 |
+
from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.exprtools import factor_terms
|
6 |
+
from sympy.core.function import (Function, Derivative, ArgumentIndexError,
|
7 |
+
AppliedUndef, expand_mul)
|
8 |
+
from sympy.core.logic import fuzzy_not, fuzzy_or
|
9 |
+
from sympy.core.numbers import pi, I, oo
|
10 |
+
from sympy.core.power import Pow
|
11 |
+
from sympy.core.relational import Eq
|
12 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
13 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
14 |
+
|
15 |
+
###############################################################################
|
16 |
+
######################### REAL and IMAGINARY PARTS ############################
|
17 |
+
###############################################################################
|
18 |
+
|
19 |
+
|
20 |
+
class re(Function):
|
21 |
+
"""
|
22 |
+
Returns real part of expression. This function performs only
|
23 |
+
elementary analysis and so it will fail to decompose properly
|
24 |
+
more complicated expressions. If completely simplified result
|
25 |
+
is needed then use ``Basic.as_real_imag()`` or perform complex
|
26 |
+
expansion on instance of this function.
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
>>> from sympy import re, im, I, E, symbols
|
32 |
+
>>> x, y = symbols('x y', real=True)
|
33 |
+
>>> re(2*E)
|
34 |
+
2*E
|
35 |
+
>>> re(2*I + 17)
|
36 |
+
17
|
37 |
+
>>> re(2*I)
|
38 |
+
0
|
39 |
+
>>> re(im(x) + x*I + 2)
|
40 |
+
2
|
41 |
+
>>> re(5 + I + 2)
|
42 |
+
7
|
43 |
+
|
44 |
+
Parameters
|
45 |
+
==========
|
46 |
+
|
47 |
+
arg : Expr
|
48 |
+
Real or complex expression.
|
49 |
+
|
50 |
+
Returns
|
51 |
+
=======
|
52 |
+
|
53 |
+
expr : Expr
|
54 |
+
Real part of expression.
|
55 |
+
|
56 |
+
See Also
|
57 |
+
========
|
58 |
+
|
59 |
+
im
|
60 |
+
"""
|
61 |
+
|
62 |
+
args: tTuple[Expr]
|
63 |
+
|
64 |
+
is_extended_real = True
|
65 |
+
unbranched = True # implicitly works on the projection to C
|
66 |
+
_singularities = True # non-holomorphic
|
67 |
+
|
68 |
+
@classmethod
|
69 |
+
def eval(cls, arg):
|
70 |
+
if arg is S.NaN:
|
71 |
+
return S.NaN
|
72 |
+
elif arg is S.ComplexInfinity:
|
73 |
+
return S.NaN
|
74 |
+
elif arg.is_extended_real:
|
75 |
+
return arg
|
76 |
+
elif arg.is_imaginary or (I*arg).is_extended_real:
|
77 |
+
return S.Zero
|
78 |
+
elif arg.is_Matrix:
|
79 |
+
return arg.as_real_imag()[0]
|
80 |
+
elif arg.is_Function and isinstance(arg, conjugate):
|
81 |
+
return re(arg.args[0])
|
82 |
+
else:
|
83 |
+
|
84 |
+
included, reverted, excluded = [], [], []
|
85 |
+
args = Add.make_args(arg)
|
86 |
+
for term in args:
|
87 |
+
coeff = term.as_coefficient(I)
|
88 |
+
|
89 |
+
if coeff is not None:
|
90 |
+
if not coeff.is_extended_real:
|
91 |
+
reverted.append(coeff)
|
92 |
+
elif not term.has(I) and term.is_extended_real:
|
93 |
+
excluded.append(term)
|
94 |
+
else:
|
95 |
+
# Try to do some advanced expansion. If
|
96 |
+
# impossible, don't try to do re(arg) again
|
97 |
+
# (because this is what we are trying to do now).
|
98 |
+
real_imag = term.as_real_imag(ignore=arg)
|
99 |
+
if real_imag:
|
100 |
+
excluded.append(real_imag[0])
|
101 |
+
else:
|
102 |
+
included.append(term)
|
103 |
+
|
104 |
+
if len(args) != len(included):
|
105 |
+
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
|
106 |
+
|
107 |
+
return cls(a) - im(b) + c
|
108 |
+
|
109 |
+
def as_real_imag(self, deep=True, **hints):
|
110 |
+
"""
|
111 |
+
Returns the real number with a zero imaginary part.
|
112 |
+
|
113 |
+
"""
|
114 |
+
return (self, S.Zero)
|
115 |
+
|
116 |
+
def _eval_derivative(self, x):
|
117 |
+
if x.is_extended_real or self.args[0].is_extended_real:
|
118 |
+
return re(Derivative(self.args[0], x, evaluate=True))
|
119 |
+
if x.is_imaginary or self.args[0].is_imaginary:
|
120 |
+
return -I \
|
121 |
+
* im(Derivative(self.args[0], x, evaluate=True))
|
122 |
+
|
123 |
+
def _eval_rewrite_as_im(self, arg, **kwargs):
|
124 |
+
return self.args[0] - I*im(self.args[0])
|
125 |
+
|
126 |
+
def _eval_is_algebraic(self):
|
127 |
+
return self.args[0].is_algebraic
|
128 |
+
|
129 |
+
def _eval_is_zero(self):
|
130 |
+
# is_imaginary implies nonzero
|
131 |
+
return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero])
|
132 |
+
|
133 |
+
def _eval_is_finite(self):
|
134 |
+
if self.args[0].is_finite:
|
135 |
+
return True
|
136 |
+
|
137 |
+
def _eval_is_complex(self):
|
138 |
+
if self.args[0].is_finite:
|
139 |
+
return True
|
140 |
+
|
141 |
+
|
142 |
+
class im(Function):
|
143 |
+
"""
|
144 |
+
Returns imaginary part of expression. This function performs only
|
145 |
+
elementary analysis and so it will fail to decompose properly more
|
146 |
+
complicated expressions. If completely simplified result is needed then
|
147 |
+
use ``Basic.as_real_imag()`` or perform complex expansion on instance of
|
148 |
+
this function.
|
149 |
+
|
150 |
+
Examples
|
151 |
+
========
|
152 |
+
|
153 |
+
>>> from sympy import re, im, E, I
|
154 |
+
>>> from sympy.abc import x, y
|
155 |
+
>>> im(2*E)
|
156 |
+
0
|
157 |
+
>>> im(2*I + 17)
|
158 |
+
2
|
159 |
+
>>> im(x*I)
|
160 |
+
re(x)
|
161 |
+
>>> im(re(x) + y)
|
162 |
+
im(y)
|
163 |
+
>>> im(2 + 3*I)
|
164 |
+
3
|
165 |
+
|
166 |
+
Parameters
|
167 |
+
==========
|
168 |
+
|
169 |
+
arg : Expr
|
170 |
+
Real or complex expression.
|
171 |
+
|
172 |
+
Returns
|
173 |
+
=======
|
174 |
+
|
175 |
+
expr : Expr
|
176 |
+
Imaginary part of expression.
|
177 |
+
|
178 |
+
See Also
|
179 |
+
========
|
180 |
+
|
181 |
+
re
|
182 |
+
"""
|
183 |
+
|
184 |
+
args: tTuple[Expr]
|
185 |
+
|
186 |
+
is_extended_real = True
|
187 |
+
unbranched = True # implicitly works on the projection to C
|
188 |
+
_singularities = True # non-holomorphic
|
189 |
+
|
190 |
+
@classmethod
|
191 |
+
def eval(cls, arg):
|
192 |
+
if arg is S.NaN:
|
193 |
+
return S.NaN
|
194 |
+
elif arg is S.ComplexInfinity:
|
195 |
+
return S.NaN
|
196 |
+
elif arg.is_extended_real:
|
197 |
+
return S.Zero
|
198 |
+
elif arg.is_imaginary or (I*arg).is_extended_real:
|
199 |
+
return -I * arg
|
200 |
+
elif arg.is_Matrix:
|
201 |
+
return arg.as_real_imag()[1]
|
202 |
+
elif arg.is_Function and isinstance(arg, conjugate):
|
203 |
+
return -im(arg.args[0])
|
204 |
+
else:
|
205 |
+
included, reverted, excluded = [], [], []
|
206 |
+
args = Add.make_args(arg)
|
207 |
+
for term in args:
|
208 |
+
coeff = term.as_coefficient(I)
|
209 |
+
|
210 |
+
if coeff is not None:
|
211 |
+
if not coeff.is_extended_real:
|
212 |
+
reverted.append(coeff)
|
213 |
+
else:
|
214 |
+
excluded.append(coeff)
|
215 |
+
elif term.has(I) or not term.is_extended_real:
|
216 |
+
# Try to do some advanced expansion. If
|
217 |
+
# impossible, don't try to do im(arg) again
|
218 |
+
# (because this is what we are trying to do now).
|
219 |
+
real_imag = term.as_real_imag(ignore=arg)
|
220 |
+
if real_imag:
|
221 |
+
excluded.append(real_imag[1])
|
222 |
+
else:
|
223 |
+
included.append(term)
|
224 |
+
|
225 |
+
if len(args) != len(included):
|
226 |
+
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
|
227 |
+
|
228 |
+
return cls(a) + re(b) + c
|
229 |
+
|
230 |
+
def as_real_imag(self, deep=True, **hints):
|
231 |
+
"""
|
232 |
+
Return the imaginary part with a zero real part.
|
233 |
+
|
234 |
+
"""
|
235 |
+
return (self, S.Zero)
|
236 |
+
|
237 |
+
def _eval_derivative(self, x):
|
238 |
+
if x.is_extended_real or self.args[0].is_extended_real:
|
239 |
+
return im(Derivative(self.args[0], x, evaluate=True))
|
240 |
+
if x.is_imaginary or self.args[0].is_imaginary:
|
241 |
+
return -I \
|
242 |
+
* re(Derivative(self.args[0], x, evaluate=True))
|
243 |
+
|
244 |
+
def _eval_rewrite_as_re(self, arg, **kwargs):
|
245 |
+
return -I*(self.args[0] - re(self.args[0]))
|
246 |
+
|
247 |
+
def _eval_is_algebraic(self):
|
248 |
+
return self.args[0].is_algebraic
|
249 |
+
|
250 |
+
def _eval_is_zero(self):
|
251 |
+
return self.args[0].is_extended_real
|
252 |
+
|
253 |
+
def _eval_is_finite(self):
|
254 |
+
if self.args[0].is_finite:
|
255 |
+
return True
|
256 |
+
|
257 |
+
def _eval_is_complex(self):
|
258 |
+
if self.args[0].is_finite:
|
259 |
+
return True
|
260 |
+
|
261 |
+
###############################################################################
|
262 |
+
############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################
|
263 |
+
###############################################################################
|
264 |
+
|
265 |
+
class sign(Function):
|
266 |
+
"""
|
267 |
+
Returns the complex sign of an expression:
|
268 |
+
|
269 |
+
Explanation
|
270 |
+
===========
|
271 |
+
|
272 |
+
If the expression is real the sign will be:
|
273 |
+
|
274 |
+
* $1$ if expression is positive
|
275 |
+
* $0$ if expression is equal to zero
|
276 |
+
* $-1$ if expression is negative
|
277 |
+
|
278 |
+
If the expression is imaginary the sign will be:
|
279 |
+
|
280 |
+
* $I$ if im(expression) is positive
|
281 |
+
* $-I$ if im(expression) is negative
|
282 |
+
|
283 |
+
Otherwise an unevaluated expression will be returned. When evaluated, the
|
284 |
+
result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``.
|
285 |
+
|
286 |
+
Examples
|
287 |
+
========
|
288 |
+
|
289 |
+
>>> from sympy import sign, I
|
290 |
+
|
291 |
+
>>> sign(-1)
|
292 |
+
-1
|
293 |
+
>>> sign(0)
|
294 |
+
0
|
295 |
+
>>> sign(-3*I)
|
296 |
+
-I
|
297 |
+
>>> sign(1 + I)
|
298 |
+
sign(1 + I)
|
299 |
+
>>> _.evalf()
|
300 |
+
0.707106781186548 + 0.707106781186548*I
|
301 |
+
|
302 |
+
Parameters
|
303 |
+
==========
|
304 |
+
|
305 |
+
arg : Expr
|
306 |
+
Real or imaginary expression.
|
307 |
+
|
308 |
+
Returns
|
309 |
+
=======
|
310 |
+
|
311 |
+
expr : Expr
|
312 |
+
Complex sign of expression.
|
313 |
+
|
314 |
+
See Also
|
315 |
+
========
|
316 |
+
|
317 |
+
Abs, conjugate
|
318 |
+
"""
|
319 |
+
|
320 |
+
is_complex = True
|
321 |
+
_singularities = True
|
322 |
+
|
323 |
+
def doit(self, **hints):
|
324 |
+
s = super().doit()
|
325 |
+
if s == self and self.args[0].is_zero is False:
|
326 |
+
return self.args[0] / Abs(self.args[0])
|
327 |
+
return s
|
328 |
+
|
329 |
+
@classmethod
|
330 |
+
def eval(cls, arg):
|
331 |
+
# handle what we can
|
332 |
+
if arg.is_Mul:
|
333 |
+
c, args = arg.as_coeff_mul()
|
334 |
+
unk = []
|
335 |
+
s = sign(c)
|
336 |
+
for a in args:
|
337 |
+
if a.is_extended_negative:
|
338 |
+
s = -s
|
339 |
+
elif a.is_extended_positive:
|
340 |
+
pass
|
341 |
+
else:
|
342 |
+
if a.is_imaginary:
|
343 |
+
ai = im(a)
|
344 |
+
if ai.is_comparable: # i.e. a = I*real
|
345 |
+
s *= I
|
346 |
+
if ai.is_extended_negative:
|
347 |
+
# can't use sign(ai) here since ai might not be
|
348 |
+
# a Number
|
349 |
+
s = -s
|
350 |
+
else:
|
351 |
+
unk.append(a)
|
352 |
+
else:
|
353 |
+
unk.append(a)
|
354 |
+
if c is S.One and len(unk) == len(args):
|
355 |
+
return None
|
356 |
+
return s * cls(arg._new_rawargs(*unk))
|
357 |
+
if arg is S.NaN:
|
358 |
+
return S.NaN
|
359 |
+
if arg.is_zero: # it may be an Expr that is zero
|
360 |
+
return S.Zero
|
361 |
+
if arg.is_extended_positive:
|
362 |
+
return S.One
|
363 |
+
if arg.is_extended_negative:
|
364 |
+
return S.NegativeOne
|
365 |
+
if arg.is_Function:
|
366 |
+
if isinstance(arg, sign):
|
367 |
+
return arg
|
368 |
+
if arg.is_imaginary:
|
369 |
+
if arg.is_Pow and arg.exp is S.Half:
|
370 |
+
# we catch this because non-trivial sqrt args are not expanded
|
371 |
+
# e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1)
|
372 |
+
return I
|
373 |
+
arg2 = -I * arg
|
374 |
+
if arg2.is_extended_positive:
|
375 |
+
return I
|
376 |
+
if arg2.is_extended_negative:
|
377 |
+
return -I
|
378 |
+
|
379 |
+
def _eval_Abs(self):
|
380 |
+
if fuzzy_not(self.args[0].is_zero):
|
381 |
+
return S.One
|
382 |
+
|
383 |
+
def _eval_conjugate(self):
|
384 |
+
return sign(conjugate(self.args[0]))
|
385 |
+
|
386 |
+
def _eval_derivative(self, x):
|
387 |
+
if self.args[0].is_extended_real:
|
388 |
+
from sympy.functions.special.delta_functions import DiracDelta
|
389 |
+
return 2 * Derivative(self.args[0], x, evaluate=True) \
|
390 |
+
* DiracDelta(self.args[0])
|
391 |
+
elif self.args[0].is_imaginary:
|
392 |
+
from sympy.functions.special.delta_functions import DiracDelta
|
393 |
+
return 2 * Derivative(self.args[0], x, evaluate=True) \
|
394 |
+
* DiracDelta(-I * self.args[0])
|
395 |
+
|
396 |
+
def _eval_is_nonnegative(self):
|
397 |
+
if self.args[0].is_nonnegative:
|
398 |
+
return True
|
399 |
+
|
400 |
+
def _eval_is_nonpositive(self):
|
401 |
+
if self.args[0].is_nonpositive:
|
402 |
+
return True
|
403 |
+
|
404 |
+
def _eval_is_imaginary(self):
|
405 |
+
return self.args[0].is_imaginary
|
406 |
+
|
407 |
+
def _eval_is_integer(self):
|
408 |
+
return self.args[0].is_extended_real
|
409 |
+
|
410 |
+
def _eval_is_zero(self):
|
411 |
+
return self.args[0].is_zero
|
412 |
+
|
413 |
+
def _eval_power(self, other):
|
414 |
+
if (
|
415 |
+
fuzzy_not(self.args[0].is_zero) and
|
416 |
+
other.is_integer and
|
417 |
+
other.is_even
|
418 |
+
):
|
419 |
+
return S.One
|
420 |
+
|
421 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
422 |
+
arg0 = self.args[0]
|
423 |
+
x0 = arg0.subs(x, 0)
|
424 |
+
if x0 != 0:
|
425 |
+
return self.func(x0)
|
426 |
+
if cdir != 0:
|
427 |
+
cdir = arg0.dir(x, cdir)
|
428 |
+
return -S.One if re(cdir) < 0 else S.One
|
429 |
+
|
430 |
+
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
|
431 |
+
if arg.is_extended_real:
|
432 |
+
return Piecewise((1, arg > 0), (-1, arg < 0), (0, True))
|
433 |
+
|
434 |
+
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
|
435 |
+
from sympy.functions.special.delta_functions import Heaviside
|
436 |
+
if arg.is_extended_real:
|
437 |
+
return Heaviside(arg) * 2 - 1
|
438 |
+
|
439 |
+
def _eval_rewrite_as_Abs(self, arg, **kwargs):
|
440 |
+
return Piecewise((0, Eq(arg, 0)), (arg / Abs(arg), True))
|
441 |
+
|
442 |
+
def _eval_simplify(self, **kwargs):
|
443 |
+
return self.func(factor_terms(self.args[0])) # XXX include doit?
|
444 |
+
|
445 |
+
|
446 |
+
class Abs(Function):
|
447 |
+
"""
|
448 |
+
Return the absolute value of the argument.
|
449 |
+
|
450 |
+
Explanation
|
451 |
+
===========
|
452 |
+
|
453 |
+
This is an extension of the built-in function ``abs()`` to accept symbolic
|
454 |
+
values. If you pass a SymPy expression to the built-in ``abs()``, it will
|
455 |
+
pass it automatically to ``Abs()``.
|
456 |
+
|
457 |
+
Examples
|
458 |
+
========
|
459 |
+
|
460 |
+
>>> from sympy import Abs, Symbol, S, I
|
461 |
+
>>> Abs(-1)
|
462 |
+
1
|
463 |
+
>>> x = Symbol('x', real=True)
|
464 |
+
>>> Abs(-x)
|
465 |
+
Abs(x)
|
466 |
+
>>> Abs(x**2)
|
467 |
+
x**2
|
468 |
+
>>> abs(-x) # The Python built-in
|
469 |
+
Abs(x)
|
470 |
+
>>> Abs(3*x + 2*I)
|
471 |
+
sqrt(9*x**2 + 4)
|
472 |
+
>>> Abs(8*I)
|
473 |
+
8
|
474 |
+
|
475 |
+
Note that the Python built-in will return either an Expr or int depending on
|
476 |
+
the argument::
|
477 |
+
|
478 |
+
>>> type(abs(-1))
|
479 |
+
<... 'int'>
|
480 |
+
>>> type(abs(S.NegativeOne))
|
481 |
+
<class 'sympy.core.numbers.One'>
|
482 |
+
|
483 |
+
Abs will always return a SymPy object.
|
484 |
+
|
485 |
+
Parameters
|
486 |
+
==========
|
487 |
+
|
488 |
+
arg : Expr
|
489 |
+
Real or complex expression.
|
490 |
+
|
491 |
+
Returns
|
492 |
+
=======
|
493 |
+
|
494 |
+
expr : Expr
|
495 |
+
Absolute value returned can be an expression or integer depending on
|
496 |
+
input arg.
|
497 |
+
|
498 |
+
See Also
|
499 |
+
========
|
500 |
+
|
501 |
+
sign, conjugate
|
502 |
+
"""
|
503 |
+
|
504 |
+
args: tTuple[Expr]
|
505 |
+
|
506 |
+
is_extended_real = True
|
507 |
+
is_extended_negative = False
|
508 |
+
is_extended_nonnegative = True
|
509 |
+
unbranched = True
|
510 |
+
_singularities = True # non-holomorphic
|
511 |
+
|
512 |
+
def fdiff(self, argindex=1):
|
513 |
+
"""
|
514 |
+
Get the first derivative of the argument to Abs().
|
515 |
+
|
516 |
+
"""
|
517 |
+
if argindex == 1:
|
518 |
+
return sign(self.args[0])
|
519 |
+
else:
|
520 |
+
raise ArgumentIndexError(self, argindex)
|
521 |
+
|
522 |
+
@classmethod
|
523 |
+
def eval(cls, arg):
|
524 |
+
from sympy.simplify.simplify import signsimp
|
525 |
+
|
526 |
+
if hasattr(arg, '_eval_Abs'):
|
527 |
+
obj = arg._eval_Abs()
|
528 |
+
if obj is not None:
|
529 |
+
return obj
|
530 |
+
if not isinstance(arg, Expr):
|
531 |
+
raise TypeError("Bad argument type for Abs(): %s" % type(arg))
|
532 |
+
|
533 |
+
# handle what we can
|
534 |
+
arg = signsimp(arg, evaluate=False)
|
535 |
+
n, d = arg.as_numer_denom()
|
536 |
+
if d.free_symbols and not n.free_symbols:
|
537 |
+
return cls(n)/cls(d)
|
538 |
+
|
539 |
+
if arg.is_Mul:
|
540 |
+
known = []
|
541 |
+
unk = []
|
542 |
+
for t in arg.args:
|
543 |
+
if t.is_Pow and t.exp.is_integer and t.exp.is_negative:
|
544 |
+
bnew = cls(t.base)
|
545 |
+
if isinstance(bnew, cls):
|
546 |
+
unk.append(t)
|
547 |
+
else:
|
548 |
+
known.append(Pow(bnew, t.exp))
|
549 |
+
else:
|
550 |
+
tnew = cls(t)
|
551 |
+
if isinstance(tnew, cls):
|
552 |
+
unk.append(t)
|
553 |
+
else:
|
554 |
+
known.append(tnew)
|
555 |
+
known = Mul(*known)
|
556 |
+
unk = cls(Mul(*unk), evaluate=False) if unk else S.One
|
557 |
+
return known*unk
|
558 |
+
if arg is S.NaN:
|
559 |
+
return S.NaN
|
560 |
+
if arg is S.ComplexInfinity:
|
561 |
+
return oo
|
562 |
+
from sympy.functions.elementary.exponential import exp, log
|
563 |
+
|
564 |
+
if arg.is_Pow:
|
565 |
+
base, exponent = arg.as_base_exp()
|
566 |
+
if base.is_extended_real:
|
567 |
+
if exponent.is_integer:
|
568 |
+
if exponent.is_even:
|
569 |
+
return arg
|
570 |
+
if base is S.NegativeOne:
|
571 |
+
return S.One
|
572 |
+
return Abs(base)**exponent
|
573 |
+
if base.is_extended_nonnegative:
|
574 |
+
return base**re(exponent)
|
575 |
+
if base.is_extended_negative:
|
576 |
+
return (-base)**re(exponent)*exp(-pi*im(exponent))
|
577 |
+
return
|
578 |
+
elif not base.has(Symbol): # complex base
|
579 |
+
# express base**exponent as exp(exponent*log(base))
|
580 |
+
a, b = log(base).as_real_imag()
|
581 |
+
z = a + I*b
|
582 |
+
return exp(re(exponent*z))
|
583 |
+
if isinstance(arg, exp):
|
584 |
+
return exp(re(arg.args[0]))
|
585 |
+
if isinstance(arg, AppliedUndef):
|
586 |
+
if arg.is_positive:
|
587 |
+
return arg
|
588 |
+
elif arg.is_negative:
|
589 |
+
return -arg
|
590 |
+
return
|
591 |
+
if arg.is_Add and arg.has(oo, S.NegativeInfinity):
|
592 |
+
if any(a.is_infinite for a in arg.as_real_imag()):
|
593 |
+
return oo
|
594 |
+
if arg.is_zero:
|
595 |
+
return S.Zero
|
596 |
+
if arg.is_extended_nonnegative:
|
597 |
+
return arg
|
598 |
+
if arg.is_extended_nonpositive:
|
599 |
+
return -arg
|
600 |
+
if arg.is_imaginary:
|
601 |
+
arg2 = -I * arg
|
602 |
+
if arg2.is_extended_nonnegative:
|
603 |
+
return arg2
|
604 |
+
if arg.is_extended_real:
|
605 |
+
return
|
606 |
+
# reject result if all new conjugates are just wrappers around
|
607 |
+
# an expression that was already in the arg
|
608 |
+
conj = signsimp(arg.conjugate(), evaluate=False)
|
609 |
+
new_conj = conj.atoms(conjugate) - arg.atoms(conjugate)
|
610 |
+
if new_conj and all(arg.has(i.args[0]) for i in new_conj):
|
611 |
+
return
|
612 |
+
if arg != conj and arg != -conj:
|
613 |
+
ignore = arg.atoms(Abs)
|
614 |
+
abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore})
|
615 |
+
unk = [a for a in abs_free_arg.free_symbols if a.is_extended_real is None]
|
616 |
+
if not unk or not all(conj.has(conjugate(u)) for u in unk):
|
617 |
+
return sqrt(expand_mul(arg*conj))
|
618 |
+
|
619 |
+
def _eval_is_real(self):
|
620 |
+
if self.args[0].is_finite:
|
621 |
+
return True
|
622 |
+
|
623 |
+
def _eval_is_integer(self):
|
624 |
+
if self.args[0].is_extended_real:
|
625 |
+
return self.args[0].is_integer
|
626 |
+
|
627 |
+
def _eval_is_extended_nonzero(self):
|
628 |
+
return fuzzy_not(self._args[0].is_zero)
|
629 |
+
|
630 |
+
def _eval_is_zero(self):
|
631 |
+
return self._args[0].is_zero
|
632 |
+
|
633 |
+
def _eval_is_extended_positive(self):
|
634 |
+
return fuzzy_not(self._args[0].is_zero)
|
635 |
+
|
636 |
+
def _eval_is_rational(self):
|
637 |
+
if self.args[0].is_extended_real:
|
638 |
+
return self.args[0].is_rational
|
639 |
+
|
640 |
+
def _eval_is_even(self):
|
641 |
+
if self.args[0].is_extended_real:
|
642 |
+
return self.args[0].is_even
|
643 |
+
|
644 |
+
def _eval_is_odd(self):
|
645 |
+
if self.args[0].is_extended_real:
|
646 |
+
return self.args[0].is_odd
|
647 |
+
|
648 |
+
def _eval_is_algebraic(self):
|
649 |
+
return self.args[0].is_algebraic
|
650 |
+
|
651 |
+
def _eval_power(self, exponent):
|
652 |
+
if self.args[0].is_extended_real and exponent.is_integer:
|
653 |
+
if exponent.is_even:
|
654 |
+
return self.args[0]**exponent
|
655 |
+
elif exponent is not S.NegativeOne and exponent.is_Integer:
|
656 |
+
return self.args[0]**(exponent - 1)*self
|
657 |
+
return
|
658 |
+
|
659 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
660 |
+
from sympy.functions.elementary.exponential import log
|
661 |
+
direction = self.args[0].leadterm(x)[0]
|
662 |
+
if direction.has(log(x)):
|
663 |
+
direction = direction.subs(log(x), logx)
|
664 |
+
s = self.args[0]._eval_nseries(x, n=n, logx=logx)
|
665 |
+
return (sign(direction)*s).expand()
|
666 |
+
|
667 |
+
def _eval_derivative(self, x):
|
668 |
+
if self.args[0].is_extended_real or self.args[0].is_imaginary:
|
669 |
+
return Derivative(self.args[0], x, evaluate=True) \
|
670 |
+
* sign(conjugate(self.args[0]))
|
671 |
+
rv = (re(self.args[0]) * Derivative(re(self.args[0]), x,
|
672 |
+
evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]),
|
673 |
+
x, evaluate=True)) / Abs(self.args[0])
|
674 |
+
return rv.rewrite(sign)
|
675 |
+
|
676 |
+
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
|
677 |
+
# Note this only holds for real arg (since Heaviside is not defined
|
678 |
+
# for complex arguments).
|
679 |
+
from sympy.functions.special.delta_functions import Heaviside
|
680 |
+
if arg.is_extended_real:
|
681 |
+
return arg*(Heaviside(arg) - Heaviside(-arg))
|
682 |
+
|
683 |
+
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
|
684 |
+
if arg.is_extended_real:
|
685 |
+
return Piecewise((arg, arg >= 0), (-arg, True))
|
686 |
+
elif arg.is_imaginary:
|
687 |
+
return Piecewise((I*arg, I*arg >= 0), (-I*arg, True))
|
688 |
+
|
689 |
+
def _eval_rewrite_as_sign(self, arg, **kwargs):
|
690 |
+
return arg/sign(arg)
|
691 |
+
|
692 |
+
def _eval_rewrite_as_conjugate(self, arg, **kwargs):
|
693 |
+
return sqrt(arg*conjugate(arg))
|
694 |
+
|
695 |
+
|
696 |
+
class arg(Function):
|
697 |
+
r"""
|
698 |
+
Returns the argument (in radians) of a complex number. The argument is
|
699 |
+
evaluated in consistent convention with ``atan2`` where the branch-cut is
|
700 |
+
taken along the negative real axis and ``arg(z)`` is in the interval
|
701 |
+
$(-\pi,\pi]$. For a positive number, the argument is always 0; the
|
702 |
+
argument of a negative number is $\pi$; and the argument of 0
|
703 |
+
is undefined and returns ``nan``. So the ``arg`` function will never nest
|
704 |
+
greater than 3 levels since at the 4th application, the result must be
|
705 |
+
nan; for a real number, nan is returned on the 3rd application.
|
706 |
+
|
707 |
+
Examples
|
708 |
+
========
|
709 |
+
|
710 |
+
>>> from sympy import arg, I, sqrt, Dummy
|
711 |
+
>>> from sympy.abc import x
|
712 |
+
>>> arg(2.0)
|
713 |
+
0
|
714 |
+
>>> arg(I)
|
715 |
+
pi/2
|
716 |
+
>>> arg(sqrt(2) + I*sqrt(2))
|
717 |
+
pi/4
|
718 |
+
>>> arg(sqrt(3)/2 + I/2)
|
719 |
+
pi/6
|
720 |
+
>>> arg(4 + 3*I)
|
721 |
+
atan(3/4)
|
722 |
+
>>> arg(0.8 + 0.6*I)
|
723 |
+
0.643501108793284
|
724 |
+
>>> arg(arg(arg(arg(x))))
|
725 |
+
nan
|
726 |
+
>>> real = Dummy(real=True)
|
727 |
+
>>> arg(arg(arg(real)))
|
728 |
+
nan
|
729 |
+
|
730 |
+
Parameters
|
731 |
+
==========
|
732 |
+
|
733 |
+
arg : Expr
|
734 |
+
Real or complex expression.
|
735 |
+
|
736 |
+
Returns
|
737 |
+
=======
|
738 |
+
|
739 |
+
value : Expr
|
740 |
+
Returns arc tangent of arg measured in radians.
|
741 |
+
|
742 |
+
"""
|
743 |
+
|
744 |
+
is_extended_real = True
|
745 |
+
is_real = True
|
746 |
+
is_finite = True
|
747 |
+
_singularities = True # non-holomorphic
|
748 |
+
|
749 |
+
@classmethod
|
750 |
+
def eval(cls, arg):
|
751 |
+
a = arg
|
752 |
+
for i in range(3):
|
753 |
+
if isinstance(a, cls):
|
754 |
+
a = a.args[0]
|
755 |
+
else:
|
756 |
+
if i == 2 and a.is_extended_real:
|
757 |
+
return S.NaN
|
758 |
+
break
|
759 |
+
else:
|
760 |
+
return S.NaN
|
761 |
+
from sympy.functions.elementary.exponential import exp_polar
|
762 |
+
if isinstance(arg, exp_polar):
|
763 |
+
return periodic_argument(arg, oo)
|
764 |
+
if not arg.is_Atom:
|
765 |
+
c, arg_ = factor_terms(arg).as_coeff_Mul()
|
766 |
+
if arg_.is_Mul:
|
767 |
+
arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else
|
768 |
+
sign(a) for a in arg_.args])
|
769 |
+
arg_ = sign(c)*arg_
|
770 |
+
else:
|
771 |
+
arg_ = arg
|
772 |
+
if any(i.is_extended_positive is None for i in arg_.atoms(AppliedUndef)):
|
773 |
+
return
|
774 |
+
from sympy.functions.elementary.trigonometric import atan2
|
775 |
+
x, y = arg_.as_real_imag()
|
776 |
+
rv = atan2(y, x)
|
777 |
+
if rv.is_number:
|
778 |
+
return rv
|
779 |
+
if arg_ != arg:
|
780 |
+
return cls(arg_, evaluate=False)
|
781 |
+
|
782 |
+
def _eval_derivative(self, t):
|
783 |
+
x, y = self.args[0].as_real_imag()
|
784 |
+
return (x * Derivative(y, t, evaluate=True) - y *
|
785 |
+
Derivative(x, t, evaluate=True)) / (x**2 + y**2)
|
786 |
+
|
787 |
+
def _eval_rewrite_as_atan2(self, arg, **kwargs):
|
788 |
+
from sympy.functions.elementary.trigonometric import atan2
|
789 |
+
x, y = self.args[0].as_real_imag()
|
790 |
+
return atan2(y, x)
|
791 |
+
|
792 |
+
|
793 |
+
class conjugate(Function):
|
794 |
+
"""
|
795 |
+
Returns the *complex conjugate* [1]_ of an argument.
|
796 |
+
In mathematics, the complex conjugate of a complex number
|
797 |
+
is given by changing the sign of the imaginary part.
|
798 |
+
|
799 |
+
Thus, the conjugate of the complex number
|
800 |
+
:math:`a + ib` (where $a$ and $b$ are real numbers) is :math:`a - ib`
|
801 |
+
|
802 |
+
Examples
|
803 |
+
========
|
804 |
+
|
805 |
+
>>> from sympy import conjugate, I
|
806 |
+
>>> conjugate(2)
|
807 |
+
2
|
808 |
+
>>> conjugate(I)
|
809 |
+
-I
|
810 |
+
>>> conjugate(3 + 2*I)
|
811 |
+
3 - 2*I
|
812 |
+
>>> conjugate(5 - I)
|
813 |
+
5 + I
|
814 |
+
|
815 |
+
Parameters
|
816 |
+
==========
|
817 |
+
|
818 |
+
arg : Expr
|
819 |
+
Real or complex expression.
|
820 |
+
|
821 |
+
Returns
|
822 |
+
=======
|
823 |
+
|
824 |
+
arg : Expr
|
825 |
+
Complex conjugate of arg as real, imaginary or mixed expression.
|
826 |
+
|
827 |
+
See Also
|
828 |
+
========
|
829 |
+
|
830 |
+
sign, Abs
|
831 |
+
|
832 |
+
References
|
833 |
+
==========
|
834 |
+
|
835 |
+
.. [1] https://en.wikipedia.org/wiki/Complex_conjugation
|
836 |
+
"""
|
837 |
+
_singularities = True # non-holomorphic
|
838 |
+
|
839 |
+
@classmethod
|
840 |
+
def eval(cls, arg):
|
841 |
+
obj = arg._eval_conjugate()
|
842 |
+
if obj is not None:
|
843 |
+
return obj
|
844 |
+
|
845 |
+
def inverse(self):
|
846 |
+
return conjugate
|
847 |
+
|
848 |
+
def _eval_Abs(self):
|
849 |
+
return Abs(self.args[0], evaluate=True)
|
850 |
+
|
851 |
+
def _eval_adjoint(self):
|
852 |
+
return transpose(self.args[0])
|
853 |
+
|
854 |
+
def _eval_conjugate(self):
|
855 |
+
return self.args[0]
|
856 |
+
|
857 |
+
def _eval_derivative(self, x):
|
858 |
+
if x.is_real:
|
859 |
+
return conjugate(Derivative(self.args[0], x, evaluate=True))
|
860 |
+
elif x.is_imaginary:
|
861 |
+
return -conjugate(Derivative(self.args[0], x, evaluate=True))
|
862 |
+
|
863 |
+
def _eval_transpose(self):
|
864 |
+
return adjoint(self.args[0])
|
865 |
+
|
866 |
+
def _eval_is_algebraic(self):
|
867 |
+
return self.args[0].is_algebraic
|
868 |
+
|
869 |
+
|
870 |
+
class transpose(Function):
|
871 |
+
"""
|
872 |
+
Linear map transposition.
|
873 |
+
|
874 |
+
Examples
|
875 |
+
========
|
876 |
+
|
877 |
+
>>> from sympy import transpose, Matrix, MatrixSymbol
|
878 |
+
>>> A = MatrixSymbol('A', 25, 9)
|
879 |
+
>>> transpose(A)
|
880 |
+
A.T
|
881 |
+
>>> B = MatrixSymbol('B', 9, 22)
|
882 |
+
>>> transpose(B)
|
883 |
+
B.T
|
884 |
+
>>> transpose(A*B)
|
885 |
+
B.T*A.T
|
886 |
+
>>> M = Matrix([[4, 5], [2, 1], [90, 12]])
|
887 |
+
>>> M
|
888 |
+
Matrix([
|
889 |
+
[ 4, 5],
|
890 |
+
[ 2, 1],
|
891 |
+
[90, 12]])
|
892 |
+
>>> transpose(M)
|
893 |
+
Matrix([
|
894 |
+
[4, 2, 90],
|
895 |
+
[5, 1, 12]])
|
896 |
+
|
897 |
+
Parameters
|
898 |
+
==========
|
899 |
+
|
900 |
+
arg : Matrix
|
901 |
+
Matrix or matrix expression to take the transpose of.
|
902 |
+
|
903 |
+
Returns
|
904 |
+
=======
|
905 |
+
|
906 |
+
value : Matrix
|
907 |
+
Transpose of arg.
|
908 |
+
|
909 |
+
"""
|
910 |
+
|
911 |
+
@classmethod
|
912 |
+
def eval(cls, arg):
|
913 |
+
obj = arg._eval_transpose()
|
914 |
+
if obj is not None:
|
915 |
+
return obj
|
916 |
+
|
917 |
+
def _eval_adjoint(self):
|
918 |
+
return conjugate(self.args[0])
|
919 |
+
|
920 |
+
def _eval_conjugate(self):
|
921 |
+
return adjoint(self.args[0])
|
922 |
+
|
923 |
+
def _eval_transpose(self):
|
924 |
+
return self.args[0]
|
925 |
+
|
926 |
+
|
927 |
+
class adjoint(Function):
|
928 |
+
"""
|
929 |
+
Conjugate transpose or Hermite conjugation.
|
930 |
+
|
931 |
+
Examples
|
932 |
+
========
|
933 |
+
|
934 |
+
>>> from sympy import adjoint, MatrixSymbol
|
935 |
+
>>> A = MatrixSymbol('A', 10, 5)
|
936 |
+
>>> adjoint(A)
|
937 |
+
Adjoint(A)
|
938 |
+
|
939 |
+
Parameters
|
940 |
+
==========
|
941 |
+
|
942 |
+
arg : Matrix
|
943 |
+
Matrix or matrix expression to take the adjoint of.
|
944 |
+
|
945 |
+
Returns
|
946 |
+
=======
|
947 |
+
|
948 |
+
value : Matrix
|
949 |
+
Represents the conjugate transpose or Hermite
|
950 |
+
conjugation of arg.
|
951 |
+
|
952 |
+
"""
|
953 |
+
|
954 |
+
@classmethod
|
955 |
+
def eval(cls, arg):
|
956 |
+
obj = arg._eval_adjoint()
|
957 |
+
if obj is not None:
|
958 |
+
return obj
|
959 |
+
obj = arg._eval_transpose()
|
960 |
+
if obj is not None:
|
961 |
+
return conjugate(obj)
|
962 |
+
|
963 |
+
def _eval_adjoint(self):
|
964 |
+
return self.args[0]
|
965 |
+
|
966 |
+
def _eval_conjugate(self):
|
967 |
+
return transpose(self.args[0])
|
968 |
+
|
969 |
+
def _eval_transpose(self):
|
970 |
+
return conjugate(self.args[0])
|
971 |
+
|
972 |
+
def _latex(self, printer, exp=None, *args):
|
973 |
+
arg = printer._print(self.args[0])
|
974 |
+
tex = r'%s^{\dagger}' % arg
|
975 |
+
if exp:
|
976 |
+
tex = r'\left(%s\right)^{%s}' % (tex, exp)
|
977 |
+
return tex
|
978 |
+
|
979 |
+
def _pretty(self, printer, *args):
|
980 |
+
from sympy.printing.pretty.stringpict import prettyForm
|
981 |
+
pform = printer._print(self.args[0], *args)
|
982 |
+
if printer._use_unicode:
|
983 |
+
pform = pform**prettyForm('\N{DAGGER}')
|
984 |
+
else:
|
985 |
+
pform = pform**prettyForm('+')
|
986 |
+
return pform
|
987 |
+
|
988 |
+
###############################################################################
|
989 |
+
############### HANDLING OF POLAR NUMBERS #####################################
|
990 |
+
###############################################################################
|
991 |
+
|
992 |
+
|
993 |
+
class polar_lift(Function):
|
994 |
+
"""
|
995 |
+
Lift argument to the Riemann surface of the logarithm, using the
|
996 |
+
standard branch.
|
997 |
+
|
998 |
+
Examples
|
999 |
+
========
|
1000 |
+
|
1001 |
+
>>> from sympy import Symbol, polar_lift, I
|
1002 |
+
>>> p = Symbol('p', polar=True)
|
1003 |
+
>>> x = Symbol('x')
|
1004 |
+
>>> polar_lift(4)
|
1005 |
+
4*exp_polar(0)
|
1006 |
+
>>> polar_lift(-4)
|
1007 |
+
4*exp_polar(I*pi)
|
1008 |
+
>>> polar_lift(-I)
|
1009 |
+
exp_polar(-I*pi/2)
|
1010 |
+
>>> polar_lift(I + 2)
|
1011 |
+
polar_lift(2 + I)
|
1012 |
+
|
1013 |
+
>>> polar_lift(4*x)
|
1014 |
+
4*polar_lift(x)
|
1015 |
+
>>> polar_lift(4*p)
|
1016 |
+
4*p
|
1017 |
+
|
1018 |
+
Parameters
|
1019 |
+
==========
|
1020 |
+
|
1021 |
+
arg : Expr
|
1022 |
+
Real or complex expression.
|
1023 |
+
|
1024 |
+
See Also
|
1025 |
+
========
|
1026 |
+
|
1027 |
+
sympy.functions.elementary.exponential.exp_polar
|
1028 |
+
periodic_argument
|
1029 |
+
"""
|
1030 |
+
|
1031 |
+
is_polar = True
|
1032 |
+
is_comparable = False # Cannot be evalf'd.
|
1033 |
+
|
1034 |
+
@classmethod
|
1035 |
+
def eval(cls, arg):
|
1036 |
+
from sympy.functions.elementary.complexes import arg as argument
|
1037 |
+
if arg.is_number:
|
1038 |
+
ar = argument(arg)
|
1039 |
+
# In general we want to affirm that something is known,
|
1040 |
+
# e.g. `not ar.has(argument) and not ar.has(atan)`
|
1041 |
+
# but for now we will just be more restrictive and
|
1042 |
+
# see that it has evaluated to one of the known values.
|
1043 |
+
if ar in (0, pi/2, -pi/2, pi):
|
1044 |
+
from sympy.functions.elementary.exponential import exp_polar
|
1045 |
+
return exp_polar(I*ar)*abs(arg)
|
1046 |
+
|
1047 |
+
if arg.is_Mul:
|
1048 |
+
args = arg.args
|
1049 |
+
else:
|
1050 |
+
args = [arg]
|
1051 |
+
included = []
|
1052 |
+
excluded = []
|
1053 |
+
positive = []
|
1054 |
+
for arg in args:
|
1055 |
+
if arg.is_polar:
|
1056 |
+
included += [arg]
|
1057 |
+
elif arg.is_positive:
|
1058 |
+
positive += [arg]
|
1059 |
+
else:
|
1060 |
+
excluded += [arg]
|
1061 |
+
if len(excluded) < len(args):
|
1062 |
+
if excluded:
|
1063 |
+
return Mul(*(included + positive))*polar_lift(Mul(*excluded))
|
1064 |
+
elif included:
|
1065 |
+
return Mul(*(included + positive))
|
1066 |
+
else:
|
1067 |
+
from sympy.functions.elementary.exponential import exp_polar
|
1068 |
+
return Mul(*positive)*exp_polar(0)
|
1069 |
+
|
1070 |
+
def _eval_evalf(self, prec):
|
1071 |
+
""" Careful! any evalf of polar numbers is flaky """
|
1072 |
+
return self.args[0]._eval_evalf(prec)
|
1073 |
+
|
1074 |
+
def _eval_Abs(self):
|
1075 |
+
return Abs(self.args[0], evaluate=True)
|
1076 |
+
|
1077 |
+
|
1078 |
+
class periodic_argument(Function):
|
1079 |
+
r"""
|
1080 |
+
Represent the argument on a quotient of the Riemann surface of the
|
1081 |
+
logarithm. That is, given a period $P$, always return a value in
|
1082 |
+
$(-P/2, P/2]$, by using $\exp(PI) = 1$.
|
1083 |
+
|
1084 |
+
Examples
|
1085 |
+
========
|
1086 |
+
|
1087 |
+
>>> from sympy import exp_polar, periodic_argument
|
1088 |
+
>>> from sympy import I, pi
|
1089 |
+
>>> periodic_argument(exp_polar(10*I*pi), 2*pi)
|
1090 |
+
0
|
1091 |
+
>>> periodic_argument(exp_polar(5*I*pi), 4*pi)
|
1092 |
+
pi
|
1093 |
+
>>> from sympy import exp_polar, periodic_argument
|
1094 |
+
>>> from sympy import I, pi
|
1095 |
+
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
|
1096 |
+
pi
|
1097 |
+
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
|
1098 |
+
-pi
|
1099 |
+
>>> periodic_argument(exp_polar(5*I*pi), pi)
|
1100 |
+
0
|
1101 |
+
|
1102 |
+
Parameters
|
1103 |
+
==========
|
1104 |
+
|
1105 |
+
ar : Expr
|
1106 |
+
A polar number.
|
1107 |
+
|
1108 |
+
period : Expr
|
1109 |
+
The period $P$.
|
1110 |
+
|
1111 |
+
See Also
|
1112 |
+
========
|
1113 |
+
|
1114 |
+
sympy.functions.elementary.exponential.exp_polar
|
1115 |
+
polar_lift : Lift argument to the Riemann surface of the logarithm
|
1116 |
+
principal_branch
|
1117 |
+
"""
|
1118 |
+
|
1119 |
+
@classmethod
|
1120 |
+
def _getunbranched(cls, ar):
|
1121 |
+
from sympy.functions.elementary.exponential import exp_polar, log
|
1122 |
+
if ar.is_Mul:
|
1123 |
+
args = ar.args
|
1124 |
+
else:
|
1125 |
+
args = [ar]
|
1126 |
+
unbranched = 0
|
1127 |
+
for a in args:
|
1128 |
+
if not a.is_polar:
|
1129 |
+
unbranched += arg(a)
|
1130 |
+
elif isinstance(a, exp_polar):
|
1131 |
+
unbranched += a.exp.as_real_imag()[1]
|
1132 |
+
elif a.is_Pow:
|
1133 |
+
re, im = a.exp.as_real_imag()
|
1134 |
+
unbranched += re*unbranched_argument(
|
1135 |
+
a.base) + im*log(abs(a.base))
|
1136 |
+
elif isinstance(a, polar_lift):
|
1137 |
+
unbranched += arg(a.args[0])
|
1138 |
+
else:
|
1139 |
+
return None
|
1140 |
+
return unbranched
|
1141 |
+
|
1142 |
+
@classmethod
|
1143 |
+
def eval(cls, ar, period):
|
1144 |
+
# Our strategy is to evaluate the argument on the Riemann surface of the
|
1145 |
+
# logarithm, and then reduce.
|
1146 |
+
# NOTE evidently this means it is a rather bad idea to use this with
|
1147 |
+
# period != 2*pi and non-polar numbers.
|
1148 |
+
if not period.is_extended_positive:
|
1149 |
+
return None
|
1150 |
+
if period == oo and isinstance(ar, principal_branch):
|
1151 |
+
return periodic_argument(*ar.args)
|
1152 |
+
if isinstance(ar, polar_lift) and period >= 2*pi:
|
1153 |
+
return periodic_argument(ar.args[0], period)
|
1154 |
+
if ar.is_Mul:
|
1155 |
+
newargs = [x for x in ar.args if not x.is_positive]
|
1156 |
+
if len(newargs) != len(ar.args):
|
1157 |
+
return periodic_argument(Mul(*newargs), period)
|
1158 |
+
unbranched = cls._getunbranched(ar)
|
1159 |
+
if unbranched is None:
|
1160 |
+
return None
|
1161 |
+
from sympy.functions.elementary.trigonometric import atan, atan2
|
1162 |
+
if unbranched.has(periodic_argument, atan2, atan):
|
1163 |
+
return None
|
1164 |
+
if period == oo:
|
1165 |
+
return unbranched
|
1166 |
+
if period != oo:
|
1167 |
+
from sympy.functions.elementary.integers import ceiling
|
1168 |
+
n = ceiling(unbranched/period - S.Half)*period
|
1169 |
+
if not n.has(ceiling):
|
1170 |
+
return unbranched - n
|
1171 |
+
|
1172 |
+
def _eval_evalf(self, prec):
|
1173 |
+
z, period = self.args
|
1174 |
+
if period == oo:
|
1175 |
+
unbranched = periodic_argument._getunbranched(z)
|
1176 |
+
if unbranched is None:
|
1177 |
+
return self
|
1178 |
+
return unbranched._eval_evalf(prec)
|
1179 |
+
ub = periodic_argument(z, oo)._eval_evalf(prec)
|
1180 |
+
from sympy.functions.elementary.integers import ceiling
|
1181 |
+
return (ub - ceiling(ub/period - S.Half)*period)._eval_evalf(prec)
|
1182 |
+
|
1183 |
+
|
1184 |
+
def unbranched_argument(arg):
|
1185 |
+
'''
|
1186 |
+
Returns periodic argument of arg with period as infinity.
|
1187 |
+
|
1188 |
+
Examples
|
1189 |
+
========
|
1190 |
+
|
1191 |
+
>>> from sympy import exp_polar, unbranched_argument
|
1192 |
+
>>> from sympy import I, pi
|
1193 |
+
>>> unbranched_argument(exp_polar(15*I*pi))
|
1194 |
+
15*pi
|
1195 |
+
>>> unbranched_argument(exp_polar(7*I*pi))
|
1196 |
+
7*pi
|
1197 |
+
|
1198 |
+
See also
|
1199 |
+
========
|
1200 |
+
|
1201 |
+
periodic_argument
|
1202 |
+
'''
|
1203 |
+
return periodic_argument(arg, oo)
|
1204 |
+
|
1205 |
+
|
1206 |
+
class principal_branch(Function):
|
1207 |
+
"""
|
1208 |
+
Represent a polar number reduced to its principal branch on a quotient
|
1209 |
+
of the Riemann surface of the logarithm.
|
1210 |
+
|
1211 |
+
Explanation
|
1212 |
+
===========
|
1213 |
+
|
1214 |
+
This is a function of two arguments. The first argument is a polar
|
1215 |
+
number `z`, and the second one a positive real number or infinity, `p`.
|
1216 |
+
The result is ``z mod exp_polar(I*p)``.
|
1217 |
+
|
1218 |
+
Examples
|
1219 |
+
========
|
1220 |
+
|
1221 |
+
>>> from sympy import exp_polar, principal_branch, oo, I, pi
|
1222 |
+
>>> from sympy.abc import z
|
1223 |
+
>>> principal_branch(z, oo)
|
1224 |
+
z
|
1225 |
+
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
|
1226 |
+
3*exp_polar(0)
|
1227 |
+
>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
|
1228 |
+
3*principal_branch(z, 2*pi)
|
1229 |
+
|
1230 |
+
Parameters
|
1231 |
+
==========
|
1232 |
+
|
1233 |
+
x : Expr
|
1234 |
+
A polar number.
|
1235 |
+
|
1236 |
+
period : Expr
|
1237 |
+
Positive real number or infinity.
|
1238 |
+
|
1239 |
+
See Also
|
1240 |
+
========
|
1241 |
+
|
1242 |
+
sympy.functions.elementary.exponential.exp_polar
|
1243 |
+
polar_lift : Lift argument to the Riemann surface of the logarithm
|
1244 |
+
periodic_argument
|
1245 |
+
"""
|
1246 |
+
|
1247 |
+
is_polar = True
|
1248 |
+
is_comparable = False # cannot always be evalf'd
|
1249 |
+
|
1250 |
+
@classmethod
|
1251 |
+
def eval(self, x, period):
|
1252 |
+
from sympy.functions.elementary.exponential import exp_polar
|
1253 |
+
if isinstance(x, polar_lift):
|
1254 |
+
return principal_branch(x.args[0], period)
|
1255 |
+
if period == oo:
|
1256 |
+
return x
|
1257 |
+
ub = periodic_argument(x, oo)
|
1258 |
+
barg = periodic_argument(x, period)
|
1259 |
+
if ub != barg and not ub.has(periodic_argument) \
|
1260 |
+
and not barg.has(periodic_argument):
|
1261 |
+
pl = polar_lift(x)
|
1262 |
+
|
1263 |
+
def mr(expr):
|
1264 |
+
if not isinstance(expr, Symbol):
|
1265 |
+
return polar_lift(expr)
|
1266 |
+
return expr
|
1267 |
+
pl = pl.replace(polar_lift, mr)
|
1268 |
+
# Recompute unbranched argument
|
1269 |
+
ub = periodic_argument(pl, oo)
|
1270 |
+
if not pl.has(polar_lift):
|
1271 |
+
if ub != barg:
|
1272 |
+
res = exp_polar(I*(barg - ub))*pl
|
1273 |
+
else:
|
1274 |
+
res = pl
|
1275 |
+
if not res.is_polar and not res.has(exp_polar):
|
1276 |
+
res *= exp_polar(0)
|
1277 |
+
return res
|
1278 |
+
|
1279 |
+
if not x.free_symbols:
|
1280 |
+
c, m = x, ()
|
1281 |
+
else:
|
1282 |
+
c, m = x.as_coeff_mul(*x.free_symbols)
|
1283 |
+
others = []
|
1284 |
+
for y in m:
|
1285 |
+
if y.is_positive:
|
1286 |
+
c *= y
|
1287 |
+
else:
|
1288 |
+
others += [y]
|
1289 |
+
m = tuple(others)
|
1290 |
+
arg = periodic_argument(c, period)
|
1291 |
+
if arg.has(periodic_argument):
|
1292 |
+
return None
|
1293 |
+
if arg.is_number and (unbranched_argument(c) != arg or
|
1294 |
+
(arg == 0 and m != () and c != 1)):
|
1295 |
+
if arg == 0:
|
1296 |
+
return abs(c)*principal_branch(Mul(*m), period)
|
1297 |
+
return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c)
|
1298 |
+
if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \
|
1299 |
+
and m == ():
|
1300 |
+
return exp_polar(arg*I)*abs(c)
|
1301 |
+
|
1302 |
+
def _eval_evalf(self, prec):
|
1303 |
+
z, period = self.args
|
1304 |
+
p = periodic_argument(z, period)._eval_evalf(prec)
|
1305 |
+
if abs(p) > pi or p == -pi:
|
1306 |
+
return self # Cannot evalf for this argument.
|
1307 |
+
from sympy.functions.elementary.exponential import exp
|
1308 |
+
return (abs(z)*exp(I*p))._eval_evalf(prec)
|
1309 |
+
|
1310 |
+
|
1311 |
+
def _polarify(eq, lift, pause=False):
|
1312 |
+
from sympy.integrals.integrals import Integral
|
1313 |
+
if eq.is_polar:
|
1314 |
+
return eq
|
1315 |
+
if eq.is_number and not pause:
|
1316 |
+
return polar_lift(eq)
|
1317 |
+
if isinstance(eq, Symbol) and not pause and lift:
|
1318 |
+
return polar_lift(eq)
|
1319 |
+
elif eq.is_Atom:
|
1320 |
+
return eq
|
1321 |
+
elif eq.is_Add:
|
1322 |
+
r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args])
|
1323 |
+
if lift:
|
1324 |
+
return polar_lift(r)
|
1325 |
+
return r
|
1326 |
+
elif eq.is_Pow and eq.base == S.Exp1:
|
1327 |
+
return eq.func(S.Exp1, _polarify(eq.exp, lift, pause=False))
|
1328 |
+
elif eq.is_Function:
|
1329 |
+
return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args])
|
1330 |
+
elif isinstance(eq, Integral):
|
1331 |
+
# Don't lift the integration variable
|
1332 |
+
func = _polarify(eq.function, lift, pause=pause)
|
1333 |
+
limits = []
|
1334 |
+
for limit in eq.args[1:]:
|
1335 |
+
var = _polarify(limit[0], lift=False, pause=pause)
|
1336 |
+
rest = _polarify(limit[1:], lift=lift, pause=pause)
|
1337 |
+
limits.append((var,) + rest)
|
1338 |
+
return Integral(*((func,) + tuple(limits)))
|
1339 |
+
else:
|
1340 |
+
return eq.func(*[_polarify(arg, lift, pause=pause)
|
1341 |
+
if isinstance(arg, Expr) else arg for arg in eq.args])
|
1342 |
+
|
1343 |
+
|
1344 |
+
def polarify(eq, subs=True, lift=False):
|
1345 |
+
"""
|
1346 |
+
Turn all numbers in eq into their polar equivalents (under the standard
|
1347 |
+
choice of argument).
|
1348 |
+
|
1349 |
+
Note that no attempt is made to guess a formal convention of adding
|
1350 |
+
polar numbers, expressions like $1 + x$ will generally not be altered.
|
1351 |
+
|
1352 |
+
Note also that this function does not promote ``exp(x)`` to ``exp_polar(x)``.
|
1353 |
+
|
1354 |
+
If ``subs`` is ``True``, all symbols which are not already polar will be
|
1355 |
+
substituted for polar dummies; in this case the function behaves much
|
1356 |
+
like :func:`~.posify`.
|
1357 |
+
|
1358 |
+
If ``lift`` is ``True``, both addition statements and non-polar symbols are
|
1359 |
+
changed to their ``polar_lift()``ed versions.
|
1360 |
+
Note that ``lift=True`` implies ``subs=False``.
|
1361 |
+
|
1362 |
+
Examples
|
1363 |
+
========
|
1364 |
+
|
1365 |
+
>>> from sympy import polarify, sin, I
|
1366 |
+
>>> from sympy.abc import x, y
|
1367 |
+
>>> expr = (-x)**y
|
1368 |
+
>>> expr.expand()
|
1369 |
+
(-x)**y
|
1370 |
+
>>> polarify(expr)
|
1371 |
+
((_x*exp_polar(I*pi))**_y, {_x: x, _y: y})
|
1372 |
+
>>> polarify(expr)[0].expand()
|
1373 |
+
_x**_y*exp_polar(_y*I*pi)
|
1374 |
+
>>> polarify(x, lift=True)
|
1375 |
+
polar_lift(x)
|
1376 |
+
>>> polarify(x*(1+y), lift=True)
|
1377 |
+
polar_lift(x)*polar_lift(y + 1)
|
1378 |
+
|
1379 |
+
Adds are treated carefully:
|
1380 |
+
|
1381 |
+
>>> polarify(1 + sin((1 + I)*x))
|
1382 |
+
(sin(_x*polar_lift(1 + I)) + 1, {_x: x})
|
1383 |
+
"""
|
1384 |
+
if lift:
|
1385 |
+
subs = False
|
1386 |
+
eq = _polarify(sympify(eq), lift)
|
1387 |
+
if not subs:
|
1388 |
+
return eq
|
1389 |
+
reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols}
|
1390 |
+
eq = eq.subs(reps)
|
1391 |
+
return eq, {r: s for s, r in reps.items()}
|
1392 |
+
|
1393 |
+
|
1394 |
+
def _unpolarify(eq, exponents_only, pause=False):
|
1395 |
+
if not isinstance(eq, Basic) or eq.is_Atom:
|
1396 |
+
return eq
|
1397 |
+
|
1398 |
+
if not pause:
|
1399 |
+
from sympy.functions.elementary.exponential import exp, exp_polar
|
1400 |
+
if isinstance(eq, exp_polar):
|
1401 |
+
return exp(_unpolarify(eq.exp, exponents_only))
|
1402 |
+
if isinstance(eq, principal_branch) and eq.args[1] == 2*pi:
|
1403 |
+
return _unpolarify(eq.args[0], exponents_only)
|
1404 |
+
if (
|
1405 |
+
eq.is_Add or eq.is_Mul or eq.is_Boolean or
|
1406 |
+
eq.is_Relational and (
|
1407 |
+
eq.rel_op in ('==', '!=') and 0 in eq.args or
|
1408 |
+
eq.rel_op not in ('==', '!='))
|
1409 |
+
):
|
1410 |
+
return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args])
|
1411 |
+
if isinstance(eq, polar_lift):
|
1412 |
+
return _unpolarify(eq.args[0], exponents_only)
|
1413 |
+
|
1414 |
+
if eq.is_Pow:
|
1415 |
+
expo = _unpolarify(eq.exp, exponents_only)
|
1416 |
+
base = _unpolarify(eq.base, exponents_only,
|
1417 |
+
not (expo.is_integer and not pause))
|
1418 |
+
return base**expo
|
1419 |
+
|
1420 |
+
if eq.is_Function and getattr(eq.func, 'unbranched', False):
|
1421 |
+
return eq.func(*[_unpolarify(x, exponents_only, exponents_only)
|
1422 |
+
for x in eq.args])
|
1423 |
+
|
1424 |
+
return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args])
|
1425 |
+
|
1426 |
+
|
1427 |
+
def unpolarify(eq, subs=None, exponents_only=False):
|
1428 |
+
"""
|
1429 |
+
If `p` denotes the projection from the Riemann surface of the logarithm to
|
1430 |
+
the complex line, return a simplified version `eq'` of `eq` such that
|
1431 |
+
`p(eq') = p(eq)`.
|
1432 |
+
Also apply the substitution subs in the end. (This is a convenience, since
|
1433 |
+
``unpolarify``, in a certain sense, undoes :func:`polarify`.)
|
1434 |
+
|
1435 |
+
Examples
|
1436 |
+
========
|
1437 |
+
|
1438 |
+
>>> from sympy import unpolarify, polar_lift, sin, I
|
1439 |
+
>>> unpolarify(polar_lift(I + 2))
|
1440 |
+
2 + I
|
1441 |
+
>>> unpolarify(sin(polar_lift(I + 7)))
|
1442 |
+
sin(7 + I)
|
1443 |
+
"""
|
1444 |
+
if isinstance(eq, bool):
|
1445 |
+
return eq
|
1446 |
+
|
1447 |
+
eq = sympify(eq)
|
1448 |
+
if subs is not None:
|
1449 |
+
return unpolarify(eq.subs(subs))
|
1450 |
+
changed = True
|
1451 |
+
pause = False
|
1452 |
+
if exponents_only:
|
1453 |
+
pause = True
|
1454 |
+
while changed:
|
1455 |
+
changed = False
|
1456 |
+
res = _unpolarify(eq, exponents_only, pause)
|
1457 |
+
if res != eq:
|
1458 |
+
changed = True
|
1459 |
+
eq = res
|
1460 |
+
if isinstance(res, bool):
|
1461 |
+
return res
|
1462 |
+
# Finally, replacing Exp(0) by 1 is always correct.
|
1463 |
+
# So is polar_lift(0) -> 0.
|
1464 |
+
from sympy.functions.elementary.exponential import exp_polar
|
1465 |
+
return res.subs({exp_polar(0): 1, polar_lift(0): 0})
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/exponential.py
ADDED
@@ -0,0 +1,1291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import product
|
2 |
+
from typing import Tuple as tTuple
|
3 |
+
|
4 |
+
from sympy.core.add import Add
|
5 |
+
from sympy.core.cache import cacheit
|
6 |
+
from sympy.core.expr import Expr
|
7 |
+
from sympy.core.function import (Function, ArgumentIndexError, expand_log,
|
8 |
+
expand_mul, FunctionClass, PoleError, expand_multinomial, expand_complex)
|
9 |
+
from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or
|
10 |
+
from sympy.core.mul import Mul
|
11 |
+
from sympy.core.numbers import Integer, Rational, pi, I, ImaginaryUnit
|
12 |
+
from sympy.core.parameters import global_parameters
|
13 |
+
from sympy.core.power import Pow
|
14 |
+
from sympy.core.singleton import S
|
15 |
+
from sympy.core.symbol import Wild, Dummy
|
16 |
+
from sympy.core.sympify import sympify
|
17 |
+
from sympy.functions.combinatorial.factorials import factorial
|
18 |
+
from sympy.functions.elementary.complexes import arg, unpolarify, im, re, Abs
|
19 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
20 |
+
from sympy.ntheory import multiplicity, perfect_power
|
21 |
+
from sympy.ntheory.factor_ import factorint
|
22 |
+
|
23 |
+
# NOTE IMPORTANT
|
24 |
+
# The series expansion code in this file is an important part of the gruntz
|
25 |
+
# algorithm for determining limits. _eval_nseries has to return a generalized
|
26 |
+
# power series with coefficients in C(log(x), log).
|
27 |
+
# In more detail, the result of _eval_nseries(self, x, n) must be
|
28 |
+
# c_0*x**e_0 + ... (finitely many terms)
|
29 |
+
# where e_i are numbers (not necessarily integers) and c_i involve only
|
30 |
+
# numbers, the function log, and log(x). [This also means it must not contain
|
31 |
+
# log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and
|
32 |
+
# p.is_positive.]
|
33 |
+
|
34 |
+
|
35 |
+
class ExpBase(Function):
|
36 |
+
|
37 |
+
unbranched = True
|
38 |
+
_singularities = (S.ComplexInfinity,)
|
39 |
+
|
40 |
+
@property
|
41 |
+
def kind(self):
|
42 |
+
return self.exp.kind
|
43 |
+
|
44 |
+
def inverse(self, argindex=1):
|
45 |
+
"""
|
46 |
+
Returns the inverse function of ``exp(x)``.
|
47 |
+
"""
|
48 |
+
return log
|
49 |
+
|
50 |
+
def as_numer_denom(self):
|
51 |
+
"""
|
52 |
+
Returns this with a positive exponent as a 2-tuple (a fraction).
|
53 |
+
|
54 |
+
Examples
|
55 |
+
========
|
56 |
+
|
57 |
+
>>> from sympy import exp
|
58 |
+
>>> from sympy.abc import x
|
59 |
+
>>> exp(-x).as_numer_denom()
|
60 |
+
(1, exp(x))
|
61 |
+
>>> exp(x).as_numer_denom()
|
62 |
+
(exp(x), 1)
|
63 |
+
"""
|
64 |
+
# this should be the same as Pow.as_numer_denom wrt
|
65 |
+
# exponent handling
|
66 |
+
exp = self.exp
|
67 |
+
neg_exp = exp.is_negative
|
68 |
+
if not neg_exp and not (-exp).is_negative:
|
69 |
+
neg_exp = exp.could_extract_minus_sign()
|
70 |
+
if neg_exp:
|
71 |
+
return S.One, self.func(-exp)
|
72 |
+
return self, S.One
|
73 |
+
|
74 |
+
@property
|
75 |
+
def exp(self):
|
76 |
+
"""
|
77 |
+
Returns the exponent of the function.
|
78 |
+
"""
|
79 |
+
return self.args[0]
|
80 |
+
|
81 |
+
def as_base_exp(self):
|
82 |
+
"""
|
83 |
+
Returns the 2-tuple (base, exponent).
|
84 |
+
"""
|
85 |
+
return self.func(1), Mul(*self.args)
|
86 |
+
|
87 |
+
def _eval_adjoint(self):
|
88 |
+
return self.func(self.exp.adjoint())
|
89 |
+
|
90 |
+
def _eval_conjugate(self):
|
91 |
+
return self.func(self.exp.conjugate())
|
92 |
+
|
93 |
+
def _eval_transpose(self):
|
94 |
+
return self.func(self.exp.transpose())
|
95 |
+
|
96 |
+
def _eval_is_finite(self):
|
97 |
+
arg = self.exp
|
98 |
+
if arg.is_infinite:
|
99 |
+
if arg.is_extended_negative:
|
100 |
+
return True
|
101 |
+
if arg.is_extended_positive:
|
102 |
+
return False
|
103 |
+
if arg.is_finite:
|
104 |
+
return True
|
105 |
+
|
106 |
+
def _eval_is_rational(self):
|
107 |
+
s = self.func(*self.args)
|
108 |
+
if s.func == self.func:
|
109 |
+
z = s.exp.is_zero
|
110 |
+
if z:
|
111 |
+
return True
|
112 |
+
elif s.exp.is_rational and fuzzy_not(z):
|
113 |
+
return False
|
114 |
+
else:
|
115 |
+
return s.is_rational
|
116 |
+
|
117 |
+
def _eval_is_zero(self):
|
118 |
+
return self.exp is S.NegativeInfinity
|
119 |
+
|
120 |
+
def _eval_power(self, other):
|
121 |
+
"""exp(arg)**e -> exp(arg*e) if assumptions allow it.
|
122 |
+
"""
|
123 |
+
b, e = self.as_base_exp()
|
124 |
+
return Pow._eval_power(Pow(b, e, evaluate=False), other)
|
125 |
+
|
126 |
+
def _eval_expand_power_exp(self, **hints):
|
127 |
+
from sympy.concrete.products import Product
|
128 |
+
from sympy.concrete.summations import Sum
|
129 |
+
arg = self.args[0]
|
130 |
+
if arg.is_Add and arg.is_commutative:
|
131 |
+
return Mul.fromiter(self.func(x) for x in arg.args)
|
132 |
+
elif isinstance(arg, Sum) and arg.is_commutative:
|
133 |
+
return Product(self.func(arg.function), *arg.limits)
|
134 |
+
return self.func(arg)
|
135 |
+
|
136 |
+
|
137 |
+
class exp_polar(ExpBase):
|
138 |
+
r"""
|
139 |
+
Represent a *polar number* (see g-function Sphinx documentation).
|
140 |
+
|
141 |
+
Explanation
|
142 |
+
===========
|
143 |
+
|
144 |
+
``exp_polar`` represents the function
|
145 |
+
`Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
|
146 |
+
`z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
|
147 |
+
the main functions to construct polar numbers.
|
148 |
+
|
149 |
+
Examples
|
150 |
+
========
|
151 |
+
|
152 |
+
>>> from sympy import exp_polar, pi, I, exp
|
153 |
+
|
154 |
+
The main difference is that polar numbers do not "wrap around" at `2 \pi`:
|
155 |
+
|
156 |
+
>>> exp(2*pi*I)
|
157 |
+
1
|
158 |
+
>>> exp_polar(2*pi*I)
|
159 |
+
exp_polar(2*I*pi)
|
160 |
+
|
161 |
+
apart from that they behave mostly like classical complex numbers:
|
162 |
+
|
163 |
+
>>> exp_polar(2)*exp_polar(3)
|
164 |
+
exp_polar(5)
|
165 |
+
|
166 |
+
See Also
|
167 |
+
========
|
168 |
+
|
169 |
+
sympy.simplify.powsimp.powsimp
|
170 |
+
polar_lift
|
171 |
+
periodic_argument
|
172 |
+
principal_branch
|
173 |
+
"""
|
174 |
+
|
175 |
+
is_polar = True
|
176 |
+
is_comparable = False # cannot be evalf'd
|
177 |
+
|
178 |
+
def _eval_Abs(self): # Abs is never a polar number
|
179 |
+
return exp(re(self.args[0]))
|
180 |
+
|
181 |
+
def _eval_evalf(self, prec):
|
182 |
+
""" Careful! any evalf of polar numbers is flaky """
|
183 |
+
i = im(self.args[0])
|
184 |
+
try:
|
185 |
+
bad = (i <= -pi or i > pi)
|
186 |
+
except TypeError:
|
187 |
+
bad = True
|
188 |
+
if bad:
|
189 |
+
return self # cannot evalf for this argument
|
190 |
+
res = exp(self.args[0])._eval_evalf(prec)
|
191 |
+
if i > 0 and im(res) < 0:
|
192 |
+
# i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi
|
193 |
+
return re(res)
|
194 |
+
return res
|
195 |
+
|
196 |
+
def _eval_power(self, other):
|
197 |
+
return self.func(self.args[0]*other)
|
198 |
+
|
199 |
+
def _eval_is_extended_real(self):
|
200 |
+
if self.args[0].is_extended_real:
|
201 |
+
return True
|
202 |
+
|
203 |
+
def as_base_exp(self):
|
204 |
+
# XXX exp_polar(0) is special!
|
205 |
+
if self.args[0] == 0:
|
206 |
+
return self, S.One
|
207 |
+
return ExpBase.as_base_exp(self)
|
208 |
+
|
209 |
+
|
210 |
+
class ExpMeta(FunctionClass):
|
211 |
+
def __instancecheck__(cls, instance):
|
212 |
+
if exp in instance.__class__.__mro__:
|
213 |
+
return True
|
214 |
+
return isinstance(instance, Pow) and instance.base is S.Exp1
|
215 |
+
|
216 |
+
|
217 |
+
class exp(ExpBase, metaclass=ExpMeta):
|
218 |
+
"""
|
219 |
+
The exponential function, :math:`e^x`.
|
220 |
+
|
221 |
+
Examples
|
222 |
+
========
|
223 |
+
|
224 |
+
>>> from sympy import exp, I, pi
|
225 |
+
>>> from sympy.abc import x
|
226 |
+
>>> exp(x)
|
227 |
+
exp(x)
|
228 |
+
>>> exp(x).diff(x)
|
229 |
+
exp(x)
|
230 |
+
>>> exp(I*pi)
|
231 |
+
-1
|
232 |
+
|
233 |
+
Parameters
|
234 |
+
==========
|
235 |
+
|
236 |
+
arg : Expr
|
237 |
+
|
238 |
+
See Also
|
239 |
+
========
|
240 |
+
|
241 |
+
log
|
242 |
+
"""
|
243 |
+
|
244 |
+
def fdiff(self, argindex=1):
|
245 |
+
"""
|
246 |
+
Returns the first derivative of this function.
|
247 |
+
"""
|
248 |
+
if argindex == 1:
|
249 |
+
return self
|
250 |
+
else:
|
251 |
+
raise ArgumentIndexError(self, argindex)
|
252 |
+
|
253 |
+
def _eval_refine(self, assumptions):
|
254 |
+
from sympy.assumptions import ask, Q
|
255 |
+
arg = self.args[0]
|
256 |
+
if arg.is_Mul:
|
257 |
+
Ioo = I*S.Infinity
|
258 |
+
if arg in [Ioo, -Ioo]:
|
259 |
+
return S.NaN
|
260 |
+
|
261 |
+
coeff = arg.as_coefficient(pi*I)
|
262 |
+
if coeff:
|
263 |
+
if ask(Q.integer(2*coeff)):
|
264 |
+
if ask(Q.even(coeff)):
|
265 |
+
return S.One
|
266 |
+
elif ask(Q.odd(coeff)):
|
267 |
+
return S.NegativeOne
|
268 |
+
elif ask(Q.even(coeff + S.Half)):
|
269 |
+
return -I
|
270 |
+
elif ask(Q.odd(coeff + S.Half)):
|
271 |
+
return I
|
272 |
+
|
273 |
+
@classmethod
|
274 |
+
def eval(cls, arg):
|
275 |
+
from sympy.calculus import AccumBounds
|
276 |
+
from sympy.matrices.matrices import MatrixBase
|
277 |
+
from sympy.sets.setexpr import SetExpr
|
278 |
+
from sympy.simplify.simplify import logcombine
|
279 |
+
if isinstance(arg, MatrixBase):
|
280 |
+
return arg.exp()
|
281 |
+
elif global_parameters.exp_is_pow:
|
282 |
+
return Pow(S.Exp1, arg)
|
283 |
+
elif arg.is_Number:
|
284 |
+
if arg is S.NaN:
|
285 |
+
return S.NaN
|
286 |
+
elif arg.is_zero:
|
287 |
+
return S.One
|
288 |
+
elif arg is S.One:
|
289 |
+
return S.Exp1
|
290 |
+
elif arg is S.Infinity:
|
291 |
+
return S.Infinity
|
292 |
+
elif arg is S.NegativeInfinity:
|
293 |
+
return S.Zero
|
294 |
+
elif arg is S.ComplexInfinity:
|
295 |
+
return S.NaN
|
296 |
+
elif isinstance(arg, log):
|
297 |
+
return arg.args[0]
|
298 |
+
elif isinstance(arg, AccumBounds):
|
299 |
+
return AccumBounds(exp(arg.min), exp(arg.max))
|
300 |
+
elif isinstance(arg, SetExpr):
|
301 |
+
return arg._eval_func(cls)
|
302 |
+
elif arg.is_Mul:
|
303 |
+
coeff = arg.as_coefficient(pi*I)
|
304 |
+
if coeff:
|
305 |
+
if (2*coeff).is_integer:
|
306 |
+
if coeff.is_even:
|
307 |
+
return S.One
|
308 |
+
elif coeff.is_odd:
|
309 |
+
return S.NegativeOne
|
310 |
+
elif (coeff + S.Half).is_even:
|
311 |
+
return -I
|
312 |
+
elif (coeff + S.Half).is_odd:
|
313 |
+
return I
|
314 |
+
elif coeff.is_Rational:
|
315 |
+
ncoeff = coeff % 2 # restrict to [0, 2pi)
|
316 |
+
if ncoeff > 1: # restrict to (-pi, pi]
|
317 |
+
ncoeff -= 2
|
318 |
+
if ncoeff != coeff:
|
319 |
+
return cls(ncoeff*pi*I)
|
320 |
+
|
321 |
+
# Warning: code in risch.py will be very sensitive to changes
|
322 |
+
# in this (see DifferentialExtension).
|
323 |
+
|
324 |
+
# look for a single log factor
|
325 |
+
|
326 |
+
coeff, terms = arg.as_coeff_Mul()
|
327 |
+
|
328 |
+
# but it can't be multiplied by oo
|
329 |
+
if coeff in [S.NegativeInfinity, S.Infinity]:
|
330 |
+
if terms.is_number:
|
331 |
+
if coeff is S.NegativeInfinity:
|
332 |
+
terms = -terms
|
333 |
+
if re(terms).is_zero and terms is not S.Zero:
|
334 |
+
return S.NaN
|
335 |
+
if re(terms).is_positive and im(terms) is not S.Zero:
|
336 |
+
return S.ComplexInfinity
|
337 |
+
if re(terms).is_negative:
|
338 |
+
return S.Zero
|
339 |
+
return None
|
340 |
+
|
341 |
+
coeffs, log_term = [coeff], None
|
342 |
+
for term in Mul.make_args(terms):
|
343 |
+
term_ = logcombine(term)
|
344 |
+
if isinstance(term_, log):
|
345 |
+
if log_term is None:
|
346 |
+
log_term = term_.args[0]
|
347 |
+
else:
|
348 |
+
return None
|
349 |
+
elif term.is_comparable:
|
350 |
+
coeffs.append(term)
|
351 |
+
else:
|
352 |
+
return None
|
353 |
+
|
354 |
+
return log_term**Mul(*coeffs) if log_term else None
|
355 |
+
|
356 |
+
elif arg.is_Add:
|
357 |
+
out = []
|
358 |
+
add = []
|
359 |
+
argchanged = False
|
360 |
+
for a in arg.args:
|
361 |
+
if a is S.One:
|
362 |
+
add.append(a)
|
363 |
+
continue
|
364 |
+
newa = cls(a)
|
365 |
+
if isinstance(newa, cls):
|
366 |
+
if newa.args[0] != a:
|
367 |
+
add.append(newa.args[0])
|
368 |
+
argchanged = True
|
369 |
+
else:
|
370 |
+
add.append(a)
|
371 |
+
else:
|
372 |
+
out.append(newa)
|
373 |
+
if out or argchanged:
|
374 |
+
return Mul(*out)*cls(Add(*add), evaluate=False)
|
375 |
+
|
376 |
+
if arg.is_zero:
|
377 |
+
return S.One
|
378 |
+
|
379 |
+
@property
|
380 |
+
def base(self):
|
381 |
+
"""
|
382 |
+
Returns the base of the exponential function.
|
383 |
+
"""
|
384 |
+
return S.Exp1
|
385 |
+
|
386 |
+
@staticmethod
|
387 |
+
@cacheit
|
388 |
+
def taylor_term(n, x, *previous_terms):
|
389 |
+
"""
|
390 |
+
Calculates the next term in the Taylor series expansion.
|
391 |
+
"""
|
392 |
+
if n < 0:
|
393 |
+
return S.Zero
|
394 |
+
if n == 0:
|
395 |
+
return S.One
|
396 |
+
x = sympify(x)
|
397 |
+
if previous_terms:
|
398 |
+
p = previous_terms[-1]
|
399 |
+
if p is not None:
|
400 |
+
return p * x / n
|
401 |
+
return x**n/factorial(n)
|
402 |
+
|
403 |
+
def as_real_imag(self, deep=True, **hints):
|
404 |
+
"""
|
405 |
+
Returns this function as a 2-tuple representing a complex number.
|
406 |
+
|
407 |
+
Examples
|
408 |
+
========
|
409 |
+
|
410 |
+
>>> from sympy import exp, I
|
411 |
+
>>> from sympy.abc import x
|
412 |
+
>>> exp(x).as_real_imag()
|
413 |
+
(exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
|
414 |
+
>>> exp(1).as_real_imag()
|
415 |
+
(E, 0)
|
416 |
+
>>> exp(I).as_real_imag()
|
417 |
+
(cos(1), sin(1))
|
418 |
+
>>> exp(1+I).as_real_imag()
|
419 |
+
(E*cos(1), E*sin(1))
|
420 |
+
|
421 |
+
See Also
|
422 |
+
========
|
423 |
+
|
424 |
+
sympy.functions.elementary.complexes.re
|
425 |
+
sympy.functions.elementary.complexes.im
|
426 |
+
"""
|
427 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
428 |
+
re, im = self.args[0].as_real_imag()
|
429 |
+
if deep:
|
430 |
+
re = re.expand(deep, **hints)
|
431 |
+
im = im.expand(deep, **hints)
|
432 |
+
cos, sin = cos(im), sin(im)
|
433 |
+
return (exp(re)*cos, exp(re)*sin)
|
434 |
+
|
435 |
+
def _eval_subs(self, old, new):
|
436 |
+
# keep processing of power-like args centralized in Pow
|
437 |
+
if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2)
|
438 |
+
old = exp(old.exp*log(old.base))
|
439 |
+
elif old is S.Exp1 and new.is_Function:
|
440 |
+
old = exp
|
441 |
+
if isinstance(old, exp) or old is S.Exp1:
|
442 |
+
f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if (
|
443 |
+
a.is_Pow or isinstance(a, exp)) else a
|
444 |
+
return Pow._eval_subs(f(self), f(old), new)
|
445 |
+
|
446 |
+
if old is exp and not new.is_Function:
|
447 |
+
return new**self.exp._subs(old, new)
|
448 |
+
return Function._eval_subs(self, old, new)
|
449 |
+
|
450 |
+
def _eval_is_extended_real(self):
|
451 |
+
if self.args[0].is_extended_real:
|
452 |
+
return True
|
453 |
+
elif self.args[0].is_imaginary:
|
454 |
+
arg2 = -S(2) * I * self.args[0] / pi
|
455 |
+
return arg2.is_even
|
456 |
+
|
457 |
+
def _eval_is_complex(self):
|
458 |
+
def complex_extended_negative(arg):
|
459 |
+
yield arg.is_complex
|
460 |
+
yield arg.is_extended_negative
|
461 |
+
return fuzzy_or(complex_extended_negative(self.args[0]))
|
462 |
+
|
463 |
+
def _eval_is_algebraic(self):
|
464 |
+
if (self.exp / pi / I).is_rational:
|
465 |
+
return True
|
466 |
+
if fuzzy_not(self.exp.is_zero):
|
467 |
+
if self.exp.is_algebraic:
|
468 |
+
return False
|
469 |
+
elif (self.exp / pi).is_rational:
|
470 |
+
return False
|
471 |
+
|
472 |
+
def _eval_is_extended_positive(self):
|
473 |
+
if self.exp.is_extended_real:
|
474 |
+
return self.args[0] is not S.NegativeInfinity
|
475 |
+
elif self.exp.is_imaginary:
|
476 |
+
arg2 = -I * self.args[0] / pi
|
477 |
+
return arg2.is_even
|
478 |
+
|
479 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
480 |
+
# NOTE Please see the comment at the beginning of this file, labelled
|
481 |
+
# IMPORTANT.
|
482 |
+
from sympy.functions.elementary.complexes import sign
|
483 |
+
from sympy.functions.elementary.integers import ceiling
|
484 |
+
from sympy.series.limits import limit
|
485 |
+
from sympy.series.order import Order
|
486 |
+
from sympy.simplify.powsimp import powsimp
|
487 |
+
arg = self.exp
|
488 |
+
arg_series = arg._eval_nseries(x, n=n, logx=logx)
|
489 |
+
if arg_series.is_Order:
|
490 |
+
return 1 + arg_series
|
491 |
+
arg0 = limit(arg_series.removeO(), x, 0)
|
492 |
+
if arg0 is S.NegativeInfinity:
|
493 |
+
return Order(x**n, x)
|
494 |
+
if arg0 is S.Infinity:
|
495 |
+
return self
|
496 |
+
# checking for indecisiveness/ sign terms in arg0
|
497 |
+
if any(isinstance(arg, (sign, ImaginaryUnit)) for arg in arg0.args):
|
498 |
+
return self
|
499 |
+
t = Dummy("t")
|
500 |
+
nterms = n
|
501 |
+
try:
|
502 |
+
cf = Order(arg.as_leading_term(x, logx=logx), x).getn()
|
503 |
+
except (NotImplementedError, PoleError):
|
504 |
+
cf = 0
|
505 |
+
if cf and cf > 0:
|
506 |
+
nterms = ceiling(n/cf)
|
507 |
+
exp_series = exp(t)._taylor(t, nterms)
|
508 |
+
r = exp(arg0)*exp_series.subs(t, arg_series - arg0)
|
509 |
+
rep = {logx: log(x)} if logx is not None else {}
|
510 |
+
if r.subs(rep) == self:
|
511 |
+
return r
|
512 |
+
if cf and cf > 1:
|
513 |
+
r += Order((arg_series - arg0)**n, x)/x**((cf-1)*n)
|
514 |
+
else:
|
515 |
+
r += Order((arg_series - arg0)**n, x)
|
516 |
+
r = r.expand()
|
517 |
+
r = powsimp(r, deep=True, combine='exp')
|
518 |
+
# powsimp may introduce unexpanded (-1)**Rational; see PR #17201
|
519 |
+
simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6]
|
520 |
+
w = Wild('w', properties=[simplerat])
|
521 |
+
r = r.replace(S.NegativeOne**w, expand_complex(S.NegativeOne**w))
|
522 |
+
return r
|
523 |
+
|
524 |
+
def _taylor(self, x, n):
|
525 |
+
l = []
|
526 |
+
g = None
|
527 |
+
for i in range(n):
|
528 |
+
g = self.taylor_term(i, self.args[0], g)
|
529 |
+
g = g.nseries(x, n=n)
|
530 |
+
l.append(g.removeO())
|
531 |
+
return Add(*l)
|
532 |
+
|
533 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
534 |
+
from sympy.calculus.util import AccumBounds
|
535 |
+
arg = self.args[0].cancel().as_leading_term(x, logx=logx)
|
536 |
+
arg0 = arg.subs(x, 0)
|
537 |
+
if arg is S.NaN:
|
538 |
+
return S.NaN
|
539 |
+
if isinstance(arg0, AccumBounds):
|
540 |
+
# This check addresses a corner case involving AccumBounds.
|
541 |
+
# if isinstance(arg, AccumBounds) is True, then arg0 can either be 0,
|
542 |
+
# AccumBounds(-oo, 0) or AccumBounds(-oo, oo).
|
543 |
+
# Check out function: test_issue_18473() in test_exponential.py and
|
544 |
+
# test_limits.py for more information.
|
545 |
+
if re(cdir) < S.Zero:
|
546 |
+
return exp(-arg0)
|
547 |
+
return exp(arg0)
|
548 |
+
if arg0 is S.NaN:
|
549 |
+
arg0 = arg.limit(x, 0)
|
550 |
+
if arg0.is_infinite is False:
|
551 |
+
return exp(arg0)
|
552 |
+
raise PoleError("Cannot expand %s around 0" % (self))
|
553 |
+
|
554 |
+
def _eval_rewrite_as_sin(self, arg, **kwargs):
|
555 |
+
from sympy.functions.elementary.trigonometric import sin
|
556 |
+
return sin(I*arg + pi/2) - I*sin(I*arg)
|
557 |
+
|
558 |
+
def _eval_rewrite_as_cos(self, arg, **kwargs):
|
559 |
+
from sympy.functions.elementary.trigonometric import cos
|
560 |
+
return cos(I*arg) + I*cos(I*arg + pi/2)
|
561 |
+
|
562 |
+
def _eval_rewrite_as_tanh(self, arg, **kwargs):
|
563 |
+
from sympy.functions.elementary.hyperbolic import tanh
|
564 |
+
return (1 + tanh(arg/2))/(1 - tanh(arg/2))
|
565 |
+
|
566 |
+
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
|
567 |
+
from sympy.functions.elementary.trigonometric import sin, cos
|
568 |
+
if arg.is_Mul:
|
569 |
+
coeff = arg.coeff(pi*I)
|
570 |
+
if coeff and coeff.is_number:
|
571 |
+
cosine, sine = cos(pi*coeff), sin(pi*coeff)
|
572 |
+
if not isinstance(cosine, cos) and not isinstance (sine, sin):
|
573 |
+
return cosine + I*sine
|
574 |
+
|
575 |
+
def _eval_rewrite_as_Pow(self, arg, **kwargs):
|
576 |
+
if arg.is_Mul:
|
577 |
+
logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1]
|
578 |
+
if logs:
|
579 |
+
return Pow(logs[0].args[0], arg.coeff(logs[0]))
|
580 |
+
|
581 |
+
|
582 |
+
def match_real_imag(expr):
|
583 |
+
r"""
|
584 |
+
Try to match expr with $a + Ib$ for real $a$ and $b$.
|
585 |
+
|
586 |
+
``match_real_imag`` returns a tuple containing the real and imaginary
|
587 |
+
parts of expr or ``(None, None)`` if direct matching is not possible. Contrary
|
588 |
+
to :func:`~.re()`, :func:`~.im()``, and ``as_real_imag()``, this helper will not force things
|
589 |
+
by returning expressions themselves containing ``re()`` or ``im()`` and it
|
590 |
+
does not expand its argument either.
|
591 |
+
|
592 |
+
"""
|
593 |
+
r_, i_ = expr.as_independent(I, as_Add=True)
|
594 |
+
if i_ == 0 and r_.is_real:
|
595 |
+
return (r_, i_)
|
596 |
+
i_ = i_.as_coefficient(I)
|
597 |
+
if i_ and i_.is_real and r_.is_real:
|
598 |
+
return (r_, i_)
|
599 |
+
else:
|
600 |
+
return (None, None) # simpler to check for than None
|
601 |
+
|
602 |
+
|
603 |
+
class log(Function):
|
604 |
+
r"""
|
605 |
+
The natural logarithm function `\ln(x)` or `\log(x)`.
|
606 |
+
|
607 |
+
Explanation
|
608 |
+
===========
|
609 |
+
|
610 |
+
Logarithms are taken with the natural base, `e`. To get
|
611 |
+
a logarithm of a different base ``b``, use ``log(x, b)``,
|
612 |
+
which is essentially short-hand for ``log(x)/log(b)``.
|
613 |
+
|
614 |
+
``log`` represents the principal branch of the natural
|
615 |
+
logarithm. As such it has a branch cut along the negative
|
616 |
+
real axis and returns values having a complex argument in
|
617 |
+
`(-\pi, \pi]`.
|
618 |
+
|
619 |
+
Examples
|
620 |
+
========
|
621 |
+
|
622 |
+
>>> from sympy import log, sqrt, S, I
|
623 |
+
>>> log(8, 2)
|
624 |
+
3
|
625 |
+
>>> log(S(8)/3, 2)
|
626 |
+
-log(3)/log(2) + 3
|
627 |
+
>>> log(-1 + I*sqrt(3))
|
628 |
+
log(2) + 2*I*pi/3
|
629 |
+
|
630 |
+
See Also
|
631 |
+
========
|
632 |
+
|
633 |
+
exp
|
634 |
+
|
635 |
+
"""
|
636 |
+
|
637 |
+
args: tTuple[Expr]
|
638 |
+
|
639 |
+
_singularities = (S.Zero, S.ComplexInfinity)
|
640 |
+
|
641 |
+
def fdiff(self, argindex=1):
|
642 |
+
"""
|
643 |
+
Returns the first derivative of the function.
|
644 |
+
"""
|
645 |
+
if argindex == 1:
|
646 |
+
return 1/self.args[0]
|
647 |
+
else:
|
648 |
+
raise ArgumentIndexError(self, argindex)
|
649 |
+
|
650 |
+
def inverse(self, argindex=1):
|
651 |
+
r"""
|
652 |
+
Returns `e^x`, the inverse function of `\log(x)`.
|
653 |
+
"""
|
654 |
+
return exp
|
655 |
+
|
656 |
+
@classmethod
|
657 |
+
def eval(cls, arg, base=None):
|
658 |
+
from sympy.calculus import AccumBounds
|
659 |
+
from sympy.sets.setexpr import SetExpr
|
660 |
+
|
661 |
+
arg = sympify(arg)
|
662 |
+
|
663 |
+
if base is not None:
|
664 |
+
base = sympify(base)
|
665 |
+
if base == 1:
|
666 |
+
if arg == 1:
|
667 |
+
return S.NaN
|
668 |
+
else:
|
669 |
+
return S.ComplexInfinity
|
670 |
+
try:
|
671 |
+
# handle extraction of powers of the base now
|
672 |
+
# or else expand_log in Mul would have to handle this
|
673 |
+
n = multiplicity(base, arg)
|
674 |
+
if n:
|
675 |
+
return n + log(arg / base**n) / log(base)
|
676 |
+
else:
|
677 |
+
return log(arg)/log(base)
|
678 |
+
except ValueError:
|
679 |
+
pass
|
680 |
+
if base is not S.Exp1:
|
681 |
+
return cls(arg)/cls(base)
|
682 |
+
else:
|
683 |
+
return cls(arg)
|
684 |
+
|
685 |
+
if arg.is_Number:
|
686 |
+
if arg.is_zero:
|
687 |
+
return S.ComplexInfinity
|
688 |
+
elif arg is S.One:
|
689 |
+
return S.Zero
|
690 |
+
elif arg is S.Infinity:
|
691 |
+
return S.Infinity
|
692 |
+
elif arg is S.NegativeInfinity:
|
693 |
+
return S.Infinity
|
694 |
+
elif arg is S.NaN:
|
695 |
+
return S.NaN
|
696 |
+
elif arg.is_Rational and arg.p == 1:
|
697 |
+
return -cls(arg.q)
|
698 |
+
|
699 |
+
if arg.is_Pow and arg.base is S.Exp1 and arg.exp.is_extended_real:
|
700 |
+
return arg.exp
|
701 |
+
if isinstance(arg, exp) and arg.exp.is_extended_real:
|
702 |
+
return arg.exp
|
703 |
+
elif isinstance(arg, exp) and arg.exp.is_number:
|
704 |
+
r_, i_ = match_real_imag(arg.exp)
|
705 |
+
if i_ and i_.is_comparable:
|
706 |
+
i_ %= 2*pi
|
707 |
+
if i_ > pi:
|
708 |
+
i_ -= 2*pi
|
709 |
+
return r_ + expand_mul(i_ * I, deep=False)
|
710 |
+
elif isinstance(arg, exp_polar):
|
711 |
+
return unpolarify(arg.exp)
|
712 |
+
elif isinstance(arg, AccumBounds):
|
713 |
+
if arg.min.is_positive:
|
714 |
+
return AccumBounds(log(arg.min), log(arg.max))
|
715 |
+
elif arg.min.is_zero:
|
716 |
+
return AccumBounds(S.NegativeInfinity, log(arg.max))
|
717 |
+
else:
|
718 |
+
return S.NaN
|
719 |
+
elif isinstance(arg, SetExpr):
|
720 |
+
return arg._eval_func(cls)
|
721 |
+
|
722 |
+
if arg.is_number:
|
723 |
+
if arg.is_negative:
|
724 |
+
return pi * I + cls(-arg)
|
725 |
+
elif arg is S.ComplexInfinity:
|
726 |
+
return S.ComplexInfinity
|
727 |
+
elif arg is S.Exp1:
|
728 |
+
return S.One
|
729 |
+
|
730 |
+
if arg.is_zero:
|
731 |
+
return S.ComplexInfinity
|
732 |
+
|
733 |
+
# don't autoexpand Pow or Mul (see the issue 3351):
|
734 |
+
if not arg.is_Add:
|
735 |
+
coeff = arg.as_coefficient(I)
|
736 |
+
|
737 |
+
if coeff is not None:
|
738 |
+
if coeff is S.Infinity:
|
739 |
+
return S.Infinity
|
740 |
+
elif coeff is S.NegativeInfinity:
|
741 |
+
return S.Infinity
|
742 |
+
elif coeff.is_Rational:
|
743 |
+
if coeff.is_nonnegative:
|
744 |
+
return pi * I * S.Half + cls(coeff)
|
745 |
+
else:
|
746 |
+
return -pi * I * S.Half + cls(-coeff)
|
747 |
+
|
748 |
+
if arg.is_number and arg.is_algebraic:
|
749 |
+
# Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real.
|
750 |
+
coeff, arg_ = arg.as_independent(I, as_Add=False)
|
751 |
+
if coeff.is_negative:
|
752 |
+
coeff *= -1
|
753 |
+
arg_ *= -1
|
754 |
+
arg_ = expand_mul(arg_, deep=False)
|
755 |
+
r_, i_ = arg_.as_independent(I, as_Add=True)
|
756 |
+
i_ = i_.as_coefficient(I)
|
757 |
+
if coeff.is_real and i_ and i_.is_real and r_.is_real:
|
758 |
+
if r_.is_zero:
|
759 |
+
if i_.is_positive:
|
760 |
+
return pi * I * S.Half + cls(coeff * i_)
|
761 |
+
elif i_.is_negative:
|
762 |
+
return -pi * I * S.Half + cls(coeff * -i_)
|
763 |
+
else:
|
764 |
+
from sympy.simplify import ratsimp
|
765 |
+
# Check for arguments involving rational multiples of pi
|
766 |
+
t = (i_/r_).cancel()
|
767 |
+
t1 = (-t).cancel()
|
768 |
+
atan_table = _log_atan_table()
|
769 |
+
if t in atan_table:
|
770 |
+
modulus = ratsimp(coeff * Abs(arg_))
|
771 |
+
if r_.is_positive:
|
772 |
+
return cls(modulus) + I * atan_table[t]
|
773 |
+
else:
|
774 |
+
return cls(modulus) + I * (atan_table[t] - pi)
|
775 |
+
elif t1 in atan_table:
|
776 |
+
modulus = ratsimp(coeff * Abs(arg_))
|
777 |
+
if r_.is_positive:
|
778 |
+
return cls(modulus) + I * (-atan_table[t1])
|
779 |
+
else:
|
780 |
+
return cls(modulus) + I * (pi - atan_table[t1])
|
781 |
+
|
782 |
+
def as_base_exp(self):
|
783 |
+
"""
|
784 |
+
Returns this function in the form (base, exponent).
|
785 |
+
"""
|
786 |
+
return self, S.One
|
787 |
+
|
788 |
+
@staticmethod
|
789 |
+
@cacheit
|
790 |
+
def taylor_term(n, x, *previous_terms): # of log(1+x)
|
791 |
+
r"""
|
792 |
+
Returns the next term in the Taylor series expansion of `\log(1+x)`.
|
793 |
+
"""
|
794 |
+
from sympy.simplify.powsimp import powsimp
|
795 |
+
if n < 0:
|
796 |
+
return S.Zero
|
797 |
+
x = sympify(x)
|
798 |
+
if n == 0:
|
799 |
+
return x
|
800 |
+
if previous_terms:
|
801 |
+
p = previous_terms[-1]
|
802 |
+
if p is not None:
|
803 |
+
return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp')
|
804 |
+
return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1)
|
805 |
+
|
806 |
+
def _eval_expand_log(self, deep=True, **hints):
|
807 |
+
from sympy.concrete import Sum, Product
|
808 |
+
force = hints.get('force', False)
|
809 |
+
factor = hints.get('factor', False)
|
810 |
+
if (len(self.args) == 2):
|
811 |
+
return expand_log(self.func(*self.args), deep=deep, force=force)
|
812 |
+
arg = self.args[0]
|
813 |
+
if arg.is_Integer:
|
814 |
+
# remove perfect powers
|
815 |
+
p = perfect_power(arg)
|
816 |
+
logarg = None
|
817 |
+
coeff = 1
|
818 |
+
if p is not False:
|
819 |
+
arg, coeff = p
|
820 |
+
logarg = self.func(arg)
|
821 |
+
# expand as product of its prime factors if factor=True
|
822 |
+
if factor:
|
823 |
+
p = factorint(arg)
|
824 |
+
if arg not in p.keys():
|
825 |
+
logarg = sum(n*log(val) for val, n in p.items())
|
826 |
+
if logarg is not None:
|
827 |
+
return coeff*logarg
|
828 |
+
elif arg.is_Rational:
|
829 |
+
return log(arg.p) - log(arg.q)
|
830 |
+
elif arg.is_Mul:
|
831 |
+
expr = []
|
832 |
+
nonpos = []
|
833 |
+
for x in arg.args:
|
834 |
+
if force or x.is_positive or x.is_polar:
|
835 |
+
a = self.func(x)
|
836 |
+
if isinstance(a, log):
|
837 |
+
expr.append(self.func(x)._eval_expand_log(**hints))
|
838 |
+
else:
|
839 |
+
expr.append(a)
|
840 |
+
elif x.is_negative:
|
841 |
+
a = self.func(-x)
|
842 |
+
expr.append(a)
|
843 |
+
nonpos.append(S.NegativeOne)
|
844 |
+
else:
|
845 |
+
nonpos.append(x)
|
846 |
+
return Add(*expr) + log(Mul(*nonpos))
|
847 |
+
elif arg.is_Pow or isinstance(arg, exp):
|
848 |
+
if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1)
|
849 |
+
.is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar:
|
850 |
+
b = arg.base
|
851 |
+
e = arg.exp
|
852 |
+
a = self.func(b)
|
853 |
+
if isinstance(a, log):
|
854 |
+
return unpolarify(e) * a._eval_expand_log(**hints)
|
855 |
+
else:
|
856 |
+
return unpolarify(e) * a
|
857 |
+
elif isinstance(arg, Product):
|
858 |
+
if force or arg.function.is_positive:
|
859 |
+
return Sum(log(arg.function), *arg.limits)
|
860 |
+
|
861 |
+
return self.func(arg)
|
862 |
+
|
863 |
+
def _eval_simplify(self, **kwargs):
|
864 |
+
from sympy.simplify.simplify import expand_log, simplify, inversecombine
|
865 |
+
if len(self.args) == 2: # it's unevaluated
|
866 |
+
return simplify(self.func(*self.args), **kwargs)
|
867 |
+
|
868 |
+
expr = self.func(simplify(self.args[0], **kwargs))
|
869 |
+
if kwargs['inverse']:
|
870 |
+
expr = inversecombine(expr)
|
871 |
+
expr = expand_log(expr, deep=True)
|
872 |
+
return min([expr, self], key=kwargs['measure'])
|
873 |
+
|
874 |
+
def as_real_imag(self, deep=True, **hints):
|
875 |
+
"""
|
876 |
+
Returns this function as a complex coordinate.
|
877 |
+
|
878 |
+
Examples
|
879 |
+
========
|
880 |
+
|
881 |
+
>>> from sympy import I, log
|
882 |
+
>>> from sympy.abc import x
|
883 |
+
>>> log(x).as_real_imag()
|
884 |
+
(log(Abs(x)), arg(x))
|
885 |
+
>>> log(I).as_real_imag()
|
886 |
+
(0, pi/2)
|
887 |
+
>>> log(1 + I).as_real_imag()
|
888 |
+
(log(sqrt(2)), pi/4)
|
889 |
+
>>> log(I*x).as_real_imag()
|
890 |
+
(log(Abs(x)), arg(I*x))
|
891 |
+
|
892 |
+
"""
|
893 |
+
sarg = self.args[0]
|
894 |
+
if deep:
|
895 |
+
sarg = self.args[0].expand(deep, **hints)
|
896 |
+
sarg_abs = Abs(sarg)
|
897 |
+
if sarg_abs == sarg:
|
898 |
+
return self, S.Zero
|
899 |
+
sarg_arg = arg(sarg)
|
900 |
+
if hints.get('log', False): # Expand the log
|
901 |
+
hints['complex'] = False
|
902 |
+
return (log(sarg_abs).expand(deep, **hints), sarg_arg)
|
903 |
+
else:
|
904 |
+
return log(sarg_abs), sarg_arg
|
905 |
+
|
906 |
+
def _eval_is_rational(self):
|
907 |
+
s = self.func(*self.args)
|
908 |
+
if s.func == self.func:
|
909 |
+
if (self.args[0] - 1).is_zero:
|
910 |
+
return True
|
911 |
+
if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero):
|
912 |
+
return False
|
913 |
+
else:
|
914 |
+
return s.is_rational
|
915 |
+
|
916 |
+
def _eval_is_algebraic(self):
|
917 |
+
s = self.func(*self.args)
|
918 |
+
if s.func == self.func:
|
919 |
+
if (self.args[0] - 1).is_zero:
|
920 |
+
return True
|
921 |
+
elif fuzzy_not((self.args[0] - 1).is_zero):
|
922 |
+
if self.args[0].is_algebraic:
|
923 |
+
return False
|
924 |
+
else:
|
925 |
+
return s.is_algebraic
|
926 |
+
|
927 |
+
def _eval_is_extended_real(self):
|
928 |
+
return self.args[0].is_extended_positive
|
929 |
+
|
930 |
+
def _eval_is_complex(self):
|
931 |
+
z = self.args[0]
|
932 |
+
return fuzzy_and([z.is_complex, fuzzy_not(z.is_zero)])
|
933 |
+
|
934 |
+
def _eval_is_finite(self):
|
935 |
+
arg = self.args[0]
|
936 |
+
if arg.is_zero:
|
937 |
+
return False
|
938 |
+
return arg.is_finite
|
939 |
+
|
940 |
+
def _eval_is_extended_positive(self):
|
941 |
+
return (self.args[0] - 1).is_extended_positive
|
942 |
+
|
943 |
+
def _eval_is_zero(self):
|
944 |
+
return (self.args[0] - 1).is_zero
|
945 |
+
|
946 |
+
def _eval_is_extended_nonnegative(self):
|
947 |
+
return (self.args[0] - 1).is_extended_nonnegative
|
948 |
+
|
949 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
950 |
+
# NOTE Please see the comment at the beginning of this file, labelled
|
951 |
+
# IMPORTANT.
|
952 |
+
from sympy.series.order import Order
|
953 |
+
from sympy.simplify.simplify import logcombine
|
954 |
+
from sympy.core.symbol import Dummy
|
955 |
+
|
956 |
+
if self.args[0] == x:
|
957 |
+
return log(x) if logx is None else logx
|
958 |
+
arg = self.args[0]
|
959 |
+
t = Dummy('t', positive=True)
|
960 |
+
if cdir == 0:
|
961 |
+
cdir = 1
|
962 |
+
z = arg.subs(x, cdir*t)
|
963 |
+
|
964 |
+
k, l = Wild("k"), Wild("l")
|
965 |
+
r = z.match(k*t**l)
|
966 |
+
if r is not None:
|
967 |
+
k, l = r[k], r[l]
|
968 |
+
if l != 0 and not l.has(t) and not k.has(t):
|
969 |
+
r = l*log(x) if logx is None else l*logx
|
970 |
+
r += log(k) - l*log(cdir) # XXX true regardless of assumptions?
|
971 |
+
return r
|
972 |
+
|
973 |
+
def coeff_exp(term, x):
|
974 |
+
coeff, exp = S.One, S.Zero
|
975 |
+
for factor in Mul.make_args(term):
|
976 |
+
if factor.has(x):
|
977 |
+
base, exp = factor.as_base_exp()
|
978 |
+
if base != x:
|
979 |
+
try:
|
980 |
+
return term.leadterm(x)
|
981 |
+
except ValueError:
|
982 |
+
return term, S.Zero
|
983 |
+
else:
|
984 |
+
coeff *= factor
|
985 |
+
return coeff, exp
|
986 |
+
|
987 |
+
# TODO new and probably slow
|
988 |
+
try:
|
989 |
+
a, b = z.leadterm(t, logx=logx, cdir=1)
|
990 |
+
except (ValueError, NotImplementedError, PoleError):
|
991 |
+
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
|
992 |
+
while s.is_Order:
|
993 |
+
n += 1
|
994 |
+
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
|
995 |
+
try:
|
996 |
+
a, b = s.removeO().leadterm(t, cdir=1)
|
997 |
+
except ValueError:
|
998 |
+
a, b = s.removeO().as_leading_term(t, cdir=1), S.Zero
|
999 |
+
|
1000 |
+
p = (z/(a*t**b) - 1)._eval_nseries(t, n=n, logx=logx, cdir=1)
|
1001 |
+
if p.has(exp):
|
1002 |
+
p = logcombine(p)
|
1003 |
+
if isinstance(p, Order):
|
1004 |
+
n = p.getn()
|
1005 |
+
_, d = coeff_exp(p, t)
|
1006 |
+
logx = log(x) if logx is None else logx
|
1007 |
+
|
1008 |
+
if not d.is_positive:
|
1009 |
+
res = log(a) - b*log(cdir) + b*logx
|
1010 |
+
_res = res
|
1011 |
+
logflags = {"deep": True, "log": True, "mul": False, "power_exp": False,
|
1012 |
+
"power_base": False, "multinomial": False, "basic": False, "force": True,
|
1013 |
+
"factor": False}
|
1014 |
+
expr = self.expand(**logflags)
|
1015 |
+
if (not a.could_extract_minus_sign() and
|
1016 |
+
logx.could_extract_minus_sign()):
|
1017 |
+
_res = _res.subs(-logx, -log(x)).expand(**logflags)
|
1018 |
+
else:
|
1019 |
+
_res = _res.subs(logx, log(x)).expand(**logflags)
|
1020 |
+
if _res == expr:
|
1021 |
+
return res
|
1022 |
+
return res + Order(x**n, x)
|
1023 |
+
|
1024 |
+
def mul(d1, d2):
|
1025 |
+
res = {}
|
1026 |
+
for e1, e2 in product(d1, d2):
|
1027 |
+
ex = e1 + e2
|
1028 |
+
if ex < n:
|
1029 |
+
res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
|
1030 |
+
return res
|
1031 |
+
|
1032 |
+
pterms = {}
|
1033 |
+
|
1034 |
+
for term in Add.make_args(p.removeO()):
|
1035 |
+
co1, e1 = coeff_exp(term, t)
|
1036 |
+
pterms[e1] = pterms.get(e1, S.Zero) + co1
|
1037 |
+
|
1038 |
+
k = S.One
|
1039 |
+
terms = {}
|
1040 |
+
pk = pterms
|
1041 |
+
|
1042 |
+
while k*d < n:
|
1043 |
+
coeff = -S.NegativeOne**k/k
|
1044 |
+
for ex in pk:
|
1045 |
+
_ = terms.get(ex, S.Zero) + coeff*pk[ex]
|
1046 |
+
terms[ex] = _.nsimplify()
|
1047 |
+
pk = mul(pk, pterms)
|
1048 |
+
k += S.One
|
1049 |
+
|
1050 |
+
res = log(a) - b*log(cdir) + b*logx
|
1051 |
+
for ex in terms:
|
1052 |
+
res += terms[ex]*t**(ex)
|
1053 |
+
|
1054 |
+
if a.is_negative and im(z) != 0:
|
1055 |
+
from sympy.functions.special.delta_functions import Heaviside
|
1056 |
+
for i, term in enumerate(z.lseries(t)):
|
1057 |
+
if not term.is_real or i == 5:
|
1058 |
+
break
|
1059 |
+
if i < 5:
|
1060 |
+
coeff, _ = term.as_coeff_exponent(t)
|
1061 |
+
res += -2*I*pi*Heaviside(-im(coeff), 0)
|
1062 |
+
|
1063 |
+
res = res.subs(t, x/cdir)
|
1064 |
+
return res + Order(x**n, x)
|
1065 |
+
|
1066 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
1067 |
+
# NOTE
|
1068 |
+
# Refer https://github.com/sympy/sympy/pull/23592 for more information
|
1069 |
+
# on each of the following steps involved in this method.
|
1070 |
+
arg0 = self.args[0].together()
|
1071 |
+
|
1072 |
+
# STEP 1
|
1073 |
+
t = Dummy('t', positive=True)
|
1074 |
+
if cdir == 0:
|
1075 |
+
cdir = 1
|
1076 |
+
z = arg0.subs(x, cdir*t)
|
1077 |
+
|
1078 |
+
# STEP 2
|
1079 |
+
try:
|
1080 |
+
c, e = z.leadterm(t, logx=logx, cdir=1)
|
1081 |
+
except ValueError:
|
1082 |
+
arg = arg0.as_leading_term(x, logx=logx, cdir=cdir)
|
1083 |
+
return log(arg)
|
1084 |
+
if c.has(t):
|
1085 |
+
c = c.subs(t, x/cdir)
|
1086 |
+
if e != 0:
|
1087 |
+
raise PoleError("Cannot expand %s around 0" % (self))
|
1088 |
+
return log(c)
|
1089 |
+
|
1090 |
+
# STEP 3
|
1091 |
+
if c == S.One and e == S.Zero:
|
1092 |
+
return (arg0 - S.One).as_leading_term(x, logx=logx)
|
1093 |
+
|
1094 |
+
# STEP 4
|
1095 |
+
res = log(c) - e*log(cdir)
|
1096 |
+
logx = log(x) if logx is None else logx
|
1097 |
+
res += e*logx
|
1098 |
+
|
1099 |
+
# STEP 5
|
1100 |
+
if c.is_negative and im(z) != 0:
|
1101 |
+
from sympy.functions.special.delta_functions import Heaviside
|
1102 |
+
for i, term in enumerate(z.lseries(t)):
|
1103 |
+
if not term.is_real or i == 5:
|
1104 |
+
break
|
1105 |
+
if i < 5:
|
1106 |
+
coeff, _ = term.as_coeff_exponent(t)
|
1107 |
+
res += -2*I*pi*Heaviside(-im(coeff), 0)
|
1108 |
+
return res
|
1109 |
+
|
1110 |
+
|
1111 |
+
class LambertW(Function):
|
1112 |
+
r"""
|
1113 |
+
The Lambert W function $W(z)$ is defined as the inverse
|
1114 |
+
function of $w \exp(w)$ [1]_.
|
1115 |
+
|
1116 |
+
Explanation
|
1117 |
+
===========
|
1118 |
+
|
1119 |
+
In other words, the value of $W(z)$ is such that $z = W(z) \exp(W(z))$
|
1120 |
+
for any complex number $z$. The Lambert W function is a multivalued
|
1121 |
+
function with infinitely many branches $W_k(z)$, indexed by
|
1122 |
+
$k \in \mathbb{Z}$. Each branch gives a different solution $w$
|
1123 |
+
of the equation $z = w \exp(w)$.
|
1124 |
+
|
1125 |
+
The Lambert W function has two partially real branches: the
|
1126 |
+
principal branch ($k = 0$) is real for real $z > -1/e$, and the
|
1127 |
+
$k = -1$ branch is real for $-1/e < z < 0$. All branches except
|
1128 |
+
$k = 0$ have a logarithmic singularity at $z = 0$.
|
1129 |
+
|
1130 |
+
Examples
|
1131 |
+
========
|
1132 |
+
|
1133 |
+
>>> from sympy import LambertW
|
1134 |
+
>>> LambertW(1.2)
|
1135 |
+
0.635564016364870
|
1136 |
+
>>> LambertW(1.2, -1).n()
|
1137 |
+
-1.34747534407696 - 4.41624341514535*I
|
1138 |
+
>>> LambertW(-1).is_real
|
1139 |
+
False
|
1140 |
+
|
1141 |
+
References
|
1142 |
+
==========
|
1143 |
+
|
1144 |
+
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
|
1145 |
+
"""
|
1146 |
+
_singularities = (-Pow(S.Exp1, -1, evaluate=False), S.ComplexInfinity)
|
1147 |
+
|
1148 |
+
@classmethod
|
1149 |
+
def eval(cls, x, k=None):
|
1150 |
+
if k == S.Zero:
|
1151 |
+
return cls(x)
|
1152 |
+
elif k is None:
|
1153 |
+
k = S.Zero
|
1154 |
+
|
1155 |
+
if k.is_zero:
|
1156 |
+
if x.is_zero:
|
1157 |
+
return S.Zero
|
1158 |
+
if x is S.Exp1:
|
1159 |
+
return S.One
|
1160 |
+
if x == -1/S.Exp1:
|
1161 |
+
return S.NegativeOne
|
1162 |
+
if x == -log(2)/2:
|
1163 |
+
return -log(2)
|
1164 |
+
if x == 2*log(2):
|
1165 |
+
return log(2)
|
1166 |
+
if x == -pi/2:
|
1167 |
+
return I*pi/2
|
1168 |
+
if x == exp(1 + S.Exp1):
|
1169 |
+
return S.Exp1
|
1170 |
+
if x is S.Infinity:
|
1171 |
+
return S.Infinity
|
1172 |
+
if x.is_zero:
|
1173 |
+
return S.Zero
|
1174 |
+
|
1175 |
+
if fuzzy_not(k.is_zero):
|
1176 |
+
if x.is_zero:
|
1177 |
+
return S.NegativeInfinity
|
1178 |
+
if k is S.NegativeOne:
|
1179 |
+
if x == -pi/2:
|
1180 |
+
return -I*pi/2
|
1181 |
+
elif x == -1/S.Exp1:
|
1182 |
+
return S.NegativeOne
|
1183 |
+
elif x == -2*exp(-2):
|
1184 |
+
return -Integer(2)
|
1185 |
+
|
1186 |
+
def fdiff(self, argindex=1):
|
1187 |
+
"""
|
1188 |
+
Return the first derivative of this function.
|
1189 |
+
"""
|
1190 |
+
x = self.args[0]
|
1191 |
+
|
1192 |
+
if len(self.args) == 1:
|
1193 |
+
if argindex == 1:
|
1194 |
+
return LambertW(x)/(x*(1 + LambertW(x)))
|
1195 |
+
else:
|
1196 |
+
k = self.args[1]
|
1197 |
+
if argindex == 1:
|
1198 |
+
return LambertW(x, k)/(x*(1 + LambertW(x, k)))
|
1199 |
+
|
1200 |
+
raise ArgumentIndexError(self, argindex)
|
1201 |
+
|
1202 |
+
def _eval_is_extended_real(self):
|
1203 |
+
x = self.args[0]
|
1204 |
+
if len(self.args) == 1:
|
1205 |
+
k = S.Zero
|
1206 |
+
else:
|
1207 |
+
k = self.args[1]
|
1208 |
+
if k.is_zero:
|
1209 |
+
if (x + 1/S.Exp1).is_positive:
|
1210 |
+
return True
|
1211 |
+
elif (x + 1/S.Exp1).is_nonpositive:
|
1212 |
+
return False
|
1213 |
+
elif (k + 1).is_zero:
|
1214 |
+
if x.is_negative and (x + 1/S.Exp1).is_positive:
|
1215 |
+
return True
|
1216 |
+
elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative:
|
1217 |
+
return False
|
1218 |
+
elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero):
|
1219 |
+
if x.is_extended_real:
|
1220 |
+
return False
|
1221 |
+
|
1222 |
+
def _eval_is_finite(self):
|
1223 |
+
return self.args[0].is_finite
|
1224 |
+
|
1225 |
+
def _eval_is_algebraic(self):
|
1226 |
+
s = self.func(*self.args)
|
1227 |
+
if s.func == self.func:
|
1228 |
+
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
|
1229 |
+
return False
|
1230 |
+
else:
|
1231 |
+
return s.is_algebraic
|
1232 |
+
|
1233 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
1234 |
+
if len(self.args) == 1:
|
1235 |
+
arg = self.args[0]
|
1236 |
+
arg0 = arg.subs(x, 0).cancel()
|
1237 |
+
if not arg0.is_zero:
|
1238 |
+
return self.func(arg0)
|
1239 |
+
return arg.as_leading_term(x)
|
1240 |
+
|
1241 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
1242 |
+
if len(self.args) == 1:
|
1243 |
+
from sympy.functions.elementary.integers import ceiling
|
1244 |
+
from sympy.series.order import Order
|
1245 |
+
arg = self.args[0].nseries(x, n=n, logx=logx)
|
1246 |
+
lt = arg.as_leading_term(x, logx=logx)
|
1247 |
+
lte = 1
|
1248 |
+
if lt.is_Pow:
|
1249 |
+
lte = lt.exp
|
1250 |
+
if ceiling(n/lte) >= 1:
|
1251 |
+
s = Add(*[(-S.One)**(k - 1)*Integer(k)**(k - 2)/
|
1252 |
+
factorial(k - 1)*arg**k for k in range(1, ceiling(n/lte))])
|
1253 |
+
s = expand_multinomial(s)
|
1254 |
+
else:
|
1255 |
+
s = S.Zero
|
1256 |
+
|
1257 |
+
return s + Order(x**n, x)
|
1258 |
+
return super()._eval_nseries(x, n, logx)
|
1259 |
+
|
1260 |
+
def _eval_is_zero(self):
|
1261 |
+
x = self.args[0]
|
1262 |
+
if len(self.args) == 1:
|
1263 |
+
return x.is_zero
|
1264 |
+
else:
|
1265 |
+
return fuzzy_and([x.is_zero, self.args[1].is_zero])
|
1266 |
+
|
1267 |
+
|
1268 |
+
@cacheit
|
1269 |
+
def _log_atan_table():
|
1270 |
+
return {
|
1271 |
+
# first quadrant only
|
1272 |
+
sqrt(3): pi / 3,
|
1273 |
+
1: pi / 4,
|
1274 |
+
sqrt(5 - 2 * sqrt(5)): pi / 5,
|
1275 |
+
sqrt(2) * sqrt(5 - sqrt(5)) / (1 + sqrt(5)): pi / 5,
|
1276 |
+
sqrt(5 + 2 * sqrt(5)): pi * Rational(2, 5),
|
1277 |
+
sqrt(2) * sqrt(sqrt(5) + 5) / (-1 + sqrt(5)): pi * Rational(2, 5),
|
1278 |
+
sqrt(3) / 3: pi / 6,
|
1279 |
+
sqrt(2) - 1: pi / 8,
|
1280 |
+
sqrt(2 - sqrt(2)) / sqrt(sqrt(2) + 2): pi / 8,
|
1281 |
+
sqrt(2) + 1: pi * Rational(3, 8),
|
1282 |
+
sqrt(sqrt(2) + 2) / sqrt(2 - sqrt(2)): pi * Rational(3, 8),
|
1283 |
+
sqrt(1 - 2 * sqrt(5) / 5): pi / 10,
|
1284 |
+
(-sqrt(2) + sqrt(10)) / (2 * sqrt(sqrt(5) + 5)): pi / 10,
|
1285 |
+
sqrt(1 + 2 * sqrt(5) / 5): pi * Rational(3, 10),
|
1286 |
+
(sqrt(2) + sqrt(10)) / (2 * sqrt(5 - sqrt(5))): pi * Rational(3, 10),
|
1287 |
+
2 - sqrt(3): pi / 12,
|
1288 |
+
(-1 + sqrt(3)) / (1 + sqrt(3)): pi / 12,
|
1289 |
+
2 + sqrt(3): pi * Rational(5, 12),
|
1290 |
+
(1 + sqrt(3)) / (-1 + sqrt(3)): pi * Rational(5, 12)
|
1291 |
+
}
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/integers.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple as tTuple
|
2 |
+
|
3 |
+
from sympy.core.basic import Basic
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
|
6 |
+
from sympy.core import Add, S
|
7 |
+
from sympy.core.evalf import get_integer_part, PrecisionExhausted
|
8 |
+
from sympy.core.function import Function
|
9 |
+
from sympy.core.logic import fuzzy_or
|
10 |
+
from sympy.core.numbers import Integer
|
11 |
+
from sympy.core.relational import Gt, Lt, Ge, Le, Relational, is_eq
|
12 |
+
from sympy.core.symbol import Symbol
|
13 |
+
from sympy.core.sympify import _sympify
|
14 |
+
from sympy.functions.elementary.complexes import im, re
|
15 |
+
from sympy.multipledispatch import dispatch
|
16 |
+
|
17 |
+
###############################################################################
|
18 |
+
######################### FLOOR and CEILING FUNCTIONS #########################
|
19 |
+
###############################################################################
|
20 |
+
|
21 |
+
|
22 |
+
class RoundFunction(Function):
|
23 |
+
"""Abstract base class for rounding functions."""
|
24 |
+
|
25 |
+
args: tTuple[Expr]
|
26 |
+
|
27 |
+
@classmethod
|
28 |
+
def eval(cls, arg):
|
29 |
+
v = cls._eval_number(arg)
|
30 |
+
if v is not None:
|
31 |
+
return v
|
32 |
+
|
33 |
+
if arg.is_integer or arg.is_finite is False:
|
34 |
+
return arg
|
35 |
+
if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
|
36 |
+
i = im(arg)
|
37 |
+
if not i.has(S.ImaginaryUnit):
|
38 |
+
return cls(i)*S.ImaginaryUnit
|
39 |
+
return cls(arg, evaluate=False)
|
40 |
+
|
41 |
+
# Integral, numerical, symbolic part
|
42 |
+
ipart = npart = spart = S.Zero
|
43 |
+
|
44 |
+
# Extract integral (or complex integral) terms
|
45 |
+
terms = Add.make_args(arg)
|
46 |
+
|
47 |
+
for t in terms:
|
48 |
+
if t.is_integer or (t.is_imaginary and im(t).is_integer):
|
49 |
+
ipart += t
|
50 |
+
elif t.has(Symbol):
|
51 |
+
spart += t
|
52 |
+
else:
|
53 |
+
npart += t
|
54 |
+
|
55 |
+
if not (npart or spart):
|
56 |
+
return ipart
|
57 |
+
|
58 |
+
# Evaluate npart numerically if independent of spart
|
59 |
+
if npart and (
|
60 |
+
not spart or
|
61 |
+
npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or
|
62 |
+
npart.is_imaginary and spart.is_real):
|
63 |
+
try:
|
64 |
+
r, i = get_integer_part(
|
65 |
+
npart, cls._dir, {}, return_ints=True)
|
66 |
+
ipart += Integer(r) + Integer(i)*S.ImaginaryUnit
|
67 |
+
npart = S.Zero
|
68 |
+
except (PrecisionExhausted, NotImplementedError):
|
69 |
+
pass
|
70 |
+
|
71 |
+
spart += npart
|
72 |
+
if not spart:
|
73 |
+
return ipart
|
74 |
+
elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real:
|
75 |
+
return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit
|
76 |
+
elif isinstance(spart, (floor, ceiling)):
|
77 |
+
return ipart + spart
|
78 |
+
else:
|
79 |
+
return ipart + cls(spart, evaluate=False)
|
80 |
+
|
81 |
+
@classmethod
|
82 |
+
def _eval_number(cls, arg):
|
83 |
+
raise NotImplementedError()
|
84 |
+
|
85 |
+
def _eval_is_finite(self):
|
86 |
+
return self.args[0].is_finite
|
87 |
+
|
88 |
+
def _eval_is_real(self):
|
89 |
+
return self.args[0].is_real
|
90 |
+
|
91 |
+
def _eval_is_integer(self):
|
92 |
+
return self.args[0].is_real
|
93 |
+
|
94 |
+
|
95 |
+
class floor(RoundFunction):
|
96 |
+
"""
|
97 |
+
Floor is a univariate function which returns the largest integer
|
98 |
+
value not greater than its argument. This implementation
|
99 |
+
generalizes floor to complex numbers by taking the floor of the
|
100 |
+
real and imaginary parts separately.
|
101 |
+
|
102 |
+
Examples
|
103 |
+
========
|
104 |
+
|
105 |
+
>>> from sympy import floor, E, I, S, Float, Rational
|
106 |
+
>>> floor(17)
|
107 |
+
17
|
108 |
+
>>> floor(Rational(23, 10))
|
109 |
+
2
|
110 |
+
>>> floor(2*E)
|
111 |
+
5
|
112 |
+
>>> floor(-Float(0.567))
|
113 |
+
-1
|
114 |
+
>>> floor(-I/2)
|
115 |
+
-I
|
116 |
+
>>> floor(S(5)/2 + 5*I/2)
|
117 |
+
2 + 2*I
|
118 |
+
|
119 |
+
See Also
|
120 |
+
========
|
121 |
+
|
122 |
+
sympy.functions.elementary.integers.ceiling
|
123 |
+
|
124 |
+
References
|
125 |
+
==========
|
126 |
+
|
127 |
+
.. [1] "Concrete mathematics" by Graham, pp. 87
|
128 |
+
.. [2] https://mathworld.wolfram.com/FloorFunction.html
|
129 |
+
|
130 |
+
"""
|
131 |
+
_dir = -1
|
132 |
+
|
133 |
+
@classmethod
|
134 |
+
def _eval_number(cls, arg):
|
135 |
+
if arg.is_Number:
|
136 |
+
return arg.floor()
|
137 |
+
elif any(isinstance(i, j)
|
138 |
+
for i in (arg, -arg) for j in (floor, ceiling)):
|
139 |
+
return arg
|
140 |
+
if arg.is_NumberSymbol:
|
141 |
+
return arg.approximation_interval(Integer)[0]
|
142 |
+
|
143 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
144 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
145 |
+
arg = self.args[0]
|
146 |
+
arg0 = arg.subs(x, 0)
|
147 |
+
r = self.subs(x, 0)
|
148 |
+
if arg0 is S.NaN or isinstance(arg0, AccumBounds):
|
149 |
+
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
150 |
+
r = floor(arg0)
|
151 |
+
if arg0.is_finite:
|
152 |
+
if arg0 == r:
|
153 |
+
ndir = arg.dir(x, cdir=cdir)
|
154 |
+
return r - 1 if ndir.is_negative else r
|
155 |
+
else:
|
156 |
+
return r
|
157 |
+
return arg.as_leading_term(x, logx=logx, cdir=cdir)
|
158 |
+
|
159 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
160 |
+
arg = self.args[0]
|
161 |
+
arg0 = arg.subs(x, 0)
|
162 |
+
r = self.subs(x, 0)
|
163 |
+
if arg0 is S.NaN:
|
164 |
+
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
165 |
+
r = floor(arg0)
|
166 |
+
if arg0.is_infinite:
|
167 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
168 |
+
from sympy.series.order import Order
|
169 |
+
s = arg._eval_nseries(x, n, logx, cdir)
|
170 |
+
o = Order(1, (x, 0)) if n <= 0 else AccumBounds(-1, 0)
|
171 |
+
return s + o
|
172 |
+
if arg0 == r:
|
173 |
+
ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
|
174 |
+
return r - 1 if ndir.is_negative else r
|
175 |
+
else:
|
176 |
+
return r
|
177 |
+
|
178 |
+
def _eval_is_negative(self):
|
179 |
+
return self.args[0].is_negative
|
180 |
+
|
181 |
+
def _eval_is_nonnegative(self):
|
182 |
+
return self.args[0].is_nonnegative
|
183 |
+
|
184 |
+
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
|
185 |
+
return -ceiling(-arg)
|
186 |
+
|
187 |
+
def _eval_rewrite_as_frac(self, arg, **kwargs):
|
188 |
+
return arg - frac(arg)
|
189 |
+
|
190 |
+
def __le__(self, other):
|
191 |
+
other = S(other)
|
192 |
+
if self.args[0].is_real:
|
193 |
+
if other.is_integer:
|
194 |
+
return self.args[0] < other + 1
|
195 |
+
if other.is_number and other.is_real:
|
196 |
+
return self.args[0] < ceiling(other)
|
197 |
+
if self.args[0] == other and other.is_real:
|
198 |
+
return S.true
|
199 |
+
if other is S.Infinity and self.is_finite:
|
200 |
+
return S.true
|
201 |
+
|
202 |
+
return Le(self, other, evaluate=False)
|
203 |
+
|
204 |
+
def __ge__(self, other):
|
205 |
+
other = S(other)
|
206 |
+
if self.args[0].is_real:
|
207 |
+
if other.is_integer:
|
208 |
+
return self.args[0] >= other
|
209 |
+
if other.is_number and other.is_real:
|
210 |
+
return self.args[0] >= ceiling(other)
|
211 |
+
if self.args[0] == other and other.is_real:
|
212 |
+
return S.false
|
213 |
+
if other is S.NegativeInfinity and self.is_finite:
|
214 |
+
return S.true
|
215 |
+
|
216 |
+
return Ge(self, other, evaluate=False)
|
217 |
+
|
218 |
+
def __gt__(self, other):
|
219 |
+
other = S(other)
|
220 |
+
if self.args[0].is_real:
|
221 |
+
if other.is_integer:
|
222 |
+
return self.args[0] >= other + 1
|
223 |
+
if other.is_number and other.is_real:
|
224 |
+
return self.args[0] >= ceiling(other)
|
225 |
+
if self.args[0] == other and other.is_real:
|
226 |
+
return S.false
|
227 |
+
if other is S.NegativeInfinity and self.is_finite:
|
228 |
+
return S.true
|
229 |
+
|
230 |
+
return Gt(self, other, evaluate=False)
|
231 |
+
|
232 |
+
def __lt__(self, other):
|
233 |
+
other = S(other)
|
234 |
+
if self.args[0].is_real:
|
235 |
+
if other.is_integer:
|
236 |
+
return self.args[0] < other
|
237 |
+
if other.is_number and other.is_real:
|
238 |
+
return self.args[0] < ceiling(other)
|
239 |
+
if self.args[0] == other and other.is_real:
|
240 |
+
return S.false
|
241 |
+
if other is S.Infinity and self.is_finite:
|
242 |
+
return S.true
|
243 |
+
|
244 |
+
return Lt(self, other, evaluate=False)
|
245 |
+
|
246 |
+
|
247 |
+
@dispatch(floor, Expr)
|
248 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
249 |
+
return is_eq(lhs.rewrite(ceiling), rhs) or \
|
250 |
+
is_eq(lhs.rewrite(frac),rhs)
|
251 |
+
|
252 |
+
|
253 |
+
class ceiling(RoundFunction):
|
254 |
+
"""
|
255 |
+
Ceiling is a univariate function which returns the smallest integer
|
256 |
+
value not less than its argument. This implementation
|
257 |
+
generalizes ceiling to complex numbers by taking the ceiling of the
|
258 |
+
real and imaginary parts separately.
|
259 |
+
|
260 |
+
Examples
|
261 |
+
========
|
262 |
+
|
263 |
+
>>> from sympy import ceiling, E, I, S, Float, Rational
|
264 |
+
>>> ceiling(17)
|
265 |
+
17
|
266 |
+
>>> ceiling(Rational(23, 10))
|
267 |
+
3
|
268 |
+
>>> ceiling(2*E)
|
269 |
+
6
|
270 |
+
>>> ceiling(-Float(0.567))
|
271 |
+
0
|
272 |
+
>>> ceiling(I/2)
|
273 |
+
I
|
274 |
+
>>> ceiling(S(5)/2 + 5*I/2)
|
275 |
+
3 + 3*I
|
276 |
+
|
277 |
+
See Also
|
278 |
+
========
|
279 |
+
|
280 |
+
sympy.functions.elementary.integers.floor
|
281 |
+
|
282 |
+
References
|
283 |
+
==========
|
284 |
+
|
285 |
+
.. [1] "Concrete mathematics" by Graham, pp. 87
|
286 |
+
.. [2] https://mathworld.wolfram.com/CeilingFunction.html
|
287 |
+
|
288 |
+
"""
|
289 |
+
_dir = 1
|
290 |
+
|
291 |
+
@classmethod
|
292 |
+
def _eval_number(cls, arg):
|
293 |
+
if arg.is_Number:
|
294 |
+
return arg.ceiling()
|
295 |
+
elif any(isinstance(i, j)
|
296 |
+
for i in (arg, -arg) for j in (floor, ceiling)):
|
297 |
+
return arg
|
298 |
+
if arg.is_NumberSymbol:
|
299 |
+
return arg.approximation_interval(Integer)[1]
|
300 |
+
|
301 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
302 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
303 |
+
arg = self.args[0]
|
304 |
+
arg0 = arg.subs(x, 0)
|
305 |
+
r = self.subs(x, 0)
|
306 |
+
if arg0 is S.NaN or isinstance(arg0, AccumBounds):
|
307 |
+
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
308 |
+
r = ceiling(arg0)
|
309 |
+
if arg0.is_finite:
|
310 |
+
if arg0 == r:
|
311 |
+
ndir = arg.dir(x, cdir=cdir)
|
312 |
+
return r if ndir.is_negative else r + 1
|
313 |
+
else:
|
314 |
+
return r
|
315 |
+
return arg.as_leading_term(x, logx=logx, cdir=cdir)
|
316 |
+
|
317 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
318 |
+
arg = self.args[0]
|
319 |
+
arg0 = arg.subs(x, 0)
|
320 |
+
r = self.subs(x, 0)
|
321 |
+
if arg0 is S.NaN:
|
322 |
+
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
323 |
+
r = ceiling(arg0)
|
324 |
+
if arg0.is_infinite:
|
325 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
326 |
+
from sympy.series.order import Order
|
327 |
+
s = arg._eval_nseries(x, n, logx, cdir)
|
328 |
+
o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1)
|
329 |
+
return s + o
|
330 |
+
if arg0 == r:
|
331 |
+
ndir = arg.dir(x, cdir=cdir if cdir != 0 else 1)
|
332 |
+
return r if ndir.is_negative else r + 1
|
333 |
+
else:
|
334 |
+
return r
|
335 |
+
|
336 |
+
def _eval_rewrite_as_floor(self, arg, **kwargs):
|
337 |
+
return -floor(-arg)
|
338 |
+
|
339 |
+
def _eval_rewrite_as_frac(self, arg, **kwargs):
|
340 |
+
return arg + frac(-arg)
|
341 |
+
|
342 |
+
def _eval_is_positive(self):
|
343 |
+
return self.args[0].is_positive
|
344 |
+
|
345 |
+
def _eval_is_nonpositive(self):
|
346 |
+
return self.args[0].is_nonpositive
|
347 |
+
|
348 |
+
def __lt__(self, other):
|
349 |
+
other = S(other)
|
350 |
+
if self.args[0].is_real:
|
351 |
+
if other.is_integer:
|
352 |
+
return self.args[0] <= other - 1
|
353 |
+
if other.is_number and other.is_real:
|
354 |
+
return self.args[0] <= floor(other)
|
355 |
+
if self.args[0] == other and other.is_real:
|
356 |
+
return S.false
|
357 |
+
if other is S.Infinity and self.is_finite:
|
358 |
+
return S.true
|
359 |
+
|
360 |
+
return Lt(self, other, evaluate=False)
|
361 |
+
|
362 |
+
def __gt__(self, other):
|
363 |
+
other = S(other)
|
364 |
+
if self.args[0].is_real:
|
365 |
+
if other.is_integer:
|
366 |
+
return self.args[0] > other
|
367 |
+
if other.is_number and other.is_real:
|
368 |
+
return self.args[0] > floor(other)
|
369 |
+
if self.args[0] == other and other.is_real:
|
370 |
+
return S.false
|
371 |
+
if other is S.NegativeInfinity and self.is_finite:
|
372 |
+
return S.true
|
373 |
+
|
374 |
+
return Gt(self, other, evaluate=False)
|
375 |
+
|
376 |
+
def __ge__(self, other):
|
377 |
+
other = S(other)
|
378 |
+
if self.args[0].is_real:
|
379 |
+
if other.is_integer:
|
380 |
+
return self.args[0] > other - 1
|
381 |
+
if other.is_number and other.is_real:
|
382 |
+
return self.args[0] > floor(other)
|
383 |
+
if self.args[0] == other and other.is_real:
|
384 |
+
return S.true
|
385 |
+
if other is S.NegativeInfinity and self.is_finite:
|
386 |
+
return S.true
|
387 |
+
|
388 |
+
return Ge(self, other, evaluate=False)
|
389 |
+
|
390 |
+
def __le__(self, other):
|
391 |
+
other = S(other)
|
392 |
+
if self.args[0].is_real:
|
393 |
+
if other.is_integer:
|
394 |
+
return self.args[0] <= other
|
395 |
+
if other.is_number and other.is_real:
|
396 |
+
return self.args[0] <= floor(other)
|
397 |
+
if self.args[0] == other and other.is_real:
|
398 |
+
return S.false
|
399 |
+
if other is S.Infinity and self.is_finite:
|
400 |
+
return S.true
|
401 |
+
|
402 |
+
return Le(self, other, evaluate=False)
|
403 |
+
|
404 |
+
|
405 |
+
@dispatch(ceiling, Basic) # type:ignore
|
406 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
407 |
+
return is_eq(lhs.rewrite(floor), rhs) or is_eq(lhs.rewrite(frac),rhs)
|
408 |
+
|
409 |
+
|
410 |
+
class frac(Function):
|
411 |
+
r"""Represents the fractional part of x
|
412 |
+
|
413 |
+
For real numbers it is defined [1]_ as
|
414 |
+
|
415 |
+
.. math::
|
416 |
+
x - \left\lfloor{x}\right\rfloor
|
417 |
+
|
418 |
+
Examples
|
419 |
+
========
|
420 |
+
|
421 |
+
>>> from sympy import Symbol, frac, Rational, floor, I
|
422 |
+
>>> frac(Rational(4, 3))
|
423 |
+
1/3
|
424 |
+
>>> frac(-Rational(4, 3))
|
425 |
+
2/3
|
426 |
+
|
427 |
+
returns zero for integer arguments
|
428 |
+
|
429 |
+
>>> n = Symbol('n', integer=True)
|
430 |
+
>>> frac(n)
|
431 |
+
0
|
432 |
+
|
433 |
+
rewrite as floor
|
434 |
+
|
435 |
+
>>> x = Symbol('x')
|
436 |
+
>>> frac(x).rewrite(floor)
|
437 |
+
x - floor(x)
|
438 |
+
|
439 |
+
for complex arguments
|
440 |
+
|
441 |
+
>>> r = Symbol('r', real=True)
|
442 |
+
>>> t = Symbol('t', real=True)
|
443 |
+
>>> frac(t + I*r)
|
444 |
+
I*frac(r) + frac(t)
|
445 |
+
|
446 |
+
See Also
|
447 |
+
========
|
448 |
+
|
449 |
+
sympy.functions.elementary.integers.floor
|
450 |
+
sympy.functions.elementary.integers.ceiling
|
451 |
+
|
452 |
+
References
|
453 |
+
===========
|
454 |
+
|
455 |
+
.. [1] https://en.wikipedia.org/wiki/Fractional_part
|
456 |
+
.. [2] https://mathworld.wolfram.com/FractionalPart.html
|
457 |
+
|
458 |
+
"""
|
459 |
+
@classmethod
|
460 |
+
def eval(cls, arg):
|
461 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
462 |
+
|
463 |
+
def _eval(arg):
|
464 |
+
if arg in (S.Infinity, S.NegativeInfinity):
|
465 |
+
return AccumBounds(0, 1)
|
466 |
+
if arg.is_integer:
|
467 |
+
return S.Zero
|
468 |
+
if arg.is_number:
|
469 |
+
if arg is S.NaN:
|
470 |
+
return S.NaN
|
471 |
+
elif arg is S.ComplexInfinity:
|
472 |
+
return S.NaN
|
473 |
+
else:
|
474 |
+
return arg - floor(arg)
|
475 |
+
return cls(arg, evaluate=False)
|
476 |
+
|
477 |
+
terms = Add.make_args(arg)
|
478 |
+
real, imag = S.Zero, S.Zero
|
479 |
+
for t in terms:
|
480 |
+
# Two checks are needed for complex arguments
|
481 |
+
# see issue-7649 for details
|
482 |
+
if t.is_imaginary or (S.ImaginaryUnit*t).is_real:
|
483 |
+
i = im(t)
|
484 |
+
if not i.has(S.ImaginaryUnit):
|
485 |
+
imag += i
|
486 |
+
else:
|
487 |
+
real += t
|
488 |
+
else:
|
489 |
+
real += t
|
490 |
+
|
491 |
+
real = _eval(real)
|
492 |
+
imag = _eval(imag)
|
493 |
+
return real + S.ImaginaryUnit*imag
|
494 |
+
|
495 |
+
def _eval_rewrite_as_floor(self, arg, **kwargs):
|
496 |
+
return arg - floor(arg)
|
497 |
+
|
498 |
+
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
|
499 |
+
return arg + ceiling(-arg)
|
500 |
+
|
501 |
+
def _eval_is_finite(self):
|
502 |
+
return True
|
503 |
+
|
504 |
+
def _eval_is_real(self):
|
505 |
+
return self.args[0].is_extended_real
|
506 |
+
|
507 |
+
def _eval_is_imaginary(self):
|
508 |
+
return self.args[0].is_imaginary
|
509 |
+
|
510 |
+
def _eval_is_integer(self):
|
511 |
+
return self.args[0].is_integer
|
512 |
+
|
513 |
+
def _eval_is_zero(self):
|
514 |
+
return fuzzy_or([self.args[0].is_zero, self.args[0].is_integer])
|
515 |
+
|
516 |
+
def _eval_is_negative(self):
|
517 |
+
return False
|
518 |
+
|
519 |
+
def __ge__(self, other):
|
520 |
+
if self.is_extended_real:
|
521 |
+
other = _sympify(other)
|
522 |
+
# Check if other <= 0
|
523 |
+
if other.is_extended_nonpositive:
|
524 |
+
return S.true
|
525 |
+
# Check if other >= 1
|
526 |
+
res = self._value_one_or_more(other)
|
527 |
+
if res is not None:
|
528 |
+
return not(res)
|
529 |
+
return Ge(self, other, evaluate=False)
|
530 |
+
|
531 |
+
def __gt__(self, other):
|
532 |
+
if self.is_extended_real:
|
533 |
+
other = _sympify(other)
|
534 |
+
# Check if other < 0
|
535 |
+
res = self._value_one_or_more(other)
|
536 |
+
if res is not None:
|
537 |
+
return not(res)
|
538 |
+
# Check if other >= 1
|
539 |
+
if other.is_extended_negative:
|
540 |
+
return S.true
|
541 |
+
return Gt(self, other, evaluate=False)
|
542 |
+
|
543 |
+
def __le__(self, other):
|
544 |
+
if self.is_extended_real:
|
545 |
+
other = _sympify(other)
|
546 |
+
# Check if other < 0
|
547 |
+
if other.is_extended_negative:
|
548 |
+
return S.false
|
549 |
+
# Check if other >= 1
|
550 |
+
res = self._value_one_or_more(other)
|
551 |
+
if res is not None:
|
552 |
+
return res
|
553 |
+
return Le(self, other, evaluate=False)
|
554 |
+
|
555 |
+
def __lt__(self, other):
|
556 |
+
if self.is_extended_real:
|
557 |
+
other = _sympify(other)
|
558 |
+
# Check if other <= 0
|
559 |
+
if other.is_extended_nonpositive:
|
560 |
+
return S.false
|
561 |
+
# Check if other >= 1
|
562 |
+
res = self._value_one_or_more(other)
|
563 |
+
if res is not None:
|
564 |
+
return res
|
565 |
+
return Lt(self, other, evaluate=False)
|
566 |
+
|
567 |
+
def _value_one_or_more(self, other):
|
568 |
+
if other.is_extended_real:
|
569 |
+
if other.is_number:
|
570 |
+
res = other >= 1
|
571 |
+
if res and not isinstance(res, Relational):
|
572 |
+
return S.true
|
573 |
+
if other.is_integer and other.is_positive:
|
574 |
+
return S.true
|
575 |
+
|
576 |
+
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
577 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
578 |
+
arg = self.args[0]
|
579 |
+
arg0 = arg.subs(x, 0)
|
580 |
+
r = self.subs(x, 0)
|
581 |
+
|
582 |
+
if arg0.is_finite:
|
583 |
+
if r.is_zero:
|
584 |
+
ndir = arg.dir(x, cdir=cdir)
|
585 |
+
if ndir.is_negative:
|
586 |
+
return S.One
|
587 |
+
return (arg - arg0).as_leading_term(x, logx=logx, cdir=cdir)
|
588 |
+
else:
|
589 |
+
return r
|
590 |
+
elif arg0 in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity):
|
591 |
+
return AccumBounds(0, 1)
|
592 |
+
return arg.as_leading_term(x, logx=logx, cdir=cdir)
|
593 |
+
|
594 |
+
def _eval_nseries(self, x, n, logx, cdir=0):
|
595 |
+
from sympy.series.order import Order
|
596 |
+
arg = self.args[0]
|
597 |
+
arg0 = arg.subs(x, 0)
|
598 |
+
r = self.subs(x, 0)
|
599 |
+
|
600 |
+
if arg0.is_infinite:
|
601 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
602 |
+
o = Order(1, (x, 0)) if n <= 0 else AccumBounds(0, 1) + Order(x**n, (x, 0))
|
603 |
+
return o
|
604 |
+
else:
|
605 |
+
res = (arg - arg0)._eval_nseries(x, n, logx=logx, cdir=cdir)
|
606 |
+
if r.is_zero:
|
607 |
+
ndir = arg.dir(x, cdir=cdir)
|
608 |
+
res += S.One if ndir.is_negative else S.Zero
|
609 |
+
else:
|
610 |
+
res += r
|
611 |
+
return res
|
612 |
+
|
613 |
+
|
614 |
+
@dispatch(frac, Basic) # type:ignore
|
615 |
+
def _eval_is_eq(lhs, rhs): # noqa:F811
|
616 |
+
if (lhs.rewrite(floor) == rhs) or \
|
617 |
+
(lhs.rewrite(ceiling) == rhs):
|
618 |
+
return True
|
619 |
+
# Check if other < 0
|
620 |
+
if rhs.is_extended_negative:
|
621 |
+
return False
|
622 |
+
# Check if other >= 1
|
623 |
+
res = lhs._value_one_or_more(rhs)
|
624 |
+
if res is not None:
|
625 |
+
return False
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (197 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_complexes.cpython-310.pyc
ADDED
Binary file (30.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_exponential.cpython-310.pyc
ADDED
Binary file (29.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_hyperbolic.cpython-310.pyc
ADDED
Binary file (54.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_integers.cpython-310.pyc
ADDED
Binary file (16.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_interface.cpython-310.pyc
ADDED
Binary file (3.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_miscellaneous.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_piecewise.cpython-310.pyc
ADDED
Binary file (54.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/__pycache__/test_trigonometric.cpython-310.pyc
ADDED
Binary file (85.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_complexes.py
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.expr import Expr
|
2 |
+
from sympy.core.function import (Derivative, Function, Lambda, expand)
|
3 |
+
from sympy.core.numbers import (E, I, Rational, comp, nan, oo, pi, zoo)
|
4 |
+
from sympy.core.relational import Eq
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.symbol import (Symbol, symbols)
|
7 |
+
from sympy.functions.elementary.complexes import (Abs, adjoint, arg, conjugate, im, re, sign, transpose)
|
8 |
+
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
|
9 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
10 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
11 |
+
from sympy.functions.elementary.trigonometric import (acos, atan, atan2, cos, sin)
|
12 |
+
from sympy.functions.special.delta_functions import (DiracDelta, Heaviside)
|
13 |
+
from sympy.integrals.integrals import Integral
|
14 |
+
from sympy.matrices.dense import Matrix
|
15 |
+
from sympy.matrices.expressions.funcmatrix import FunctionMatrix
|
16 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
17 |
+
from sympy.matrices.immutable import (ImmutableMatrix, ImmutableSparseMatrix)
|
18 |
+
from sympy.matrices import SparseMatrix
|
19 |
+
from sympy.sets.sets import Interval
|
20 |
+
from sympy.core.expr import unchanged
|
21 |
+
from sympy.core.function import ArgumentIndexError
|
22 |
+
from sympy.testing.pytest import XFAIL, raises, _both_exp_pow
|
23 |
+
|
24 |
+
|
25 |
+
def N_equals(a, b):
|
26 |
+
"""Check whether two complex numbers are numerically close"""
|
27 |
+
return comp(a.n(), b.n(), 1.e-6)
|
28 |
+
|
29 |
+
|
30 |
+
def test_re():
|
31 |
+
x, y = symbols('x,y')
|
32 |
+
a, b = symbols('a,b', real=True)
|
33 |
+
|
34 |
+
r = Symbol('r', real=True)
|
35 |
+
i = Symbol('i', imaginary=True)
|
36 |
+
|
37 |
+
assert re(nan) is nan
|
38 |
+
|
39 |
+
assert re(oo) is oo
|
40 |
+
assert re(-oo) is -oo
|
41 |
+
|
42 |
+
assert re(0) == 0
|
43 |
+
|
44 |
+
assert re(1) == 1
|
45 |
+
assert re(-1) == -1
|
46 |
+
|
47 |
+
assert re(E) == E
|
48 |
+
assert re(-E) == -E
|
49 |
+
|
50 |
+
assert unchanged(re, x)
|
51 |
+
assert re(x*I) == -im(x)
|
52 |
+
assert re(r*I) == 0
|
53 |
+
assert re(r) == r
|
54 |
+
assert re(i*I) == I * i
|
55 |
+
assert re(i) == 0
|
56 |
+
|
57 |
+
assert re(x + y) == re(x) + re(y)
|
58 |
+
assert re(x + r) == re(x) + r
|
59 |
+
|
60 |
+
assert re(re(x)) == re(x)
|
61 |
+
|
62 |
+
assert re(2 + I) == 2
|
63 |
+
assert re(x + I) == re(x)
|
64 |
+
|
65 |
+
assert re(x + y*I) == re(x) - im(y)
|
66 |
+
assert re(x + r*I) == re(x)
|
67 |
+
|
68 |
+
assert re(log(2*I)) == log(2)
|
69 |
+
|
70 |
+
assert re((2 + I)**2).expand(complex=True) == 3
|
71 |
+
|
72 |
+
assert re(conjugate(x)) == re(x)
|
73 |
+
assert conjugate(re(x)) == re(x)
|
74 |
+
|
75 |
+
assert re(x).as_real_imag() == (re(x), 0)
|
76 |
+
|
77 |
+
assert re(i*r*x).diff(r) == re(i*x)
|
78 |
+
assert re(i*r*x).diff(i) == I*r*im(x)
|
79 |
+
|
80 |
+
assert re(
|
81 |
+
sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)
|
82 |
+
assert re(a * (2 + b*I)) == 2*a
|
83 |
+
|
84 |
+
assert re((1 + sqrt(a + b*I))/2) == \
|
85 |
+
(a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + S.Half
|
86 |
+
|
87 |
+
assert re(x).rewrite(im) == x - S.ImaginaryUnit*im(x)
|
88 |
+
assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit*im(y)
|
89 |
+
|
90 |
+
a = Symbol('a', algebraic=True)
|
91 |
+
t = Symbol('t', transcendental=True)
|
92 |
+
x = Symbol('x')
|
93 |
+
assert re(a).is_algebraic
|
94 |
+
assert re(x).is_algebraic is None
|
95 |
+
assert re(t).is_algebraic is False
|
96 |
+
|
97 |
+
assert re(S.ComplexInfinity) is S.NaN
|
98 |
+
|
99 |
+
n, m, l = symbols('n m l')
|
100 |
+
A = MatrixSymbol('A',n,m)
|
101 |
+
assert re(A) == (S.Half) * (A + conjugate(A))
|
102 |
+
|
103 |
+
A = Matrix([[1 + 4*I,2],[0, -3*I]])
|
104 |
+
assert re(A) == Matrix([[1, 2],[0, 0]])
|
105 |
+
|
106 |
+
A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
|
107 |
+
assert re(A) == ImmutableMatrix([[1, 3],[0, 0]])
|
108 |
+
|
109 |
+
X = SparseMatrix([[2*j + i*I for i in range(5)] for j in range(5)])
|
110 |
+
assert re(X) - Matrix([[0, 0, 0, 0, 0],
|
111 |
+
[2, 2, 2, 2, 2],
|
112 |
+
[4, 4, 4, 4, 4],
|
113 |
+
[6, 6, 6, 6, 6],
|
114 |
+
[8, 8, 8, 8, 8]]) == Matrix.zeros(5)
|
115 |
+
|
116 |
+
assert im(X) - Matrix([[0, 1, 2, 3, 4],
|
117 |
+
[0, 1, 2, 3, 4],
|
118 |
+
[0, 1, 2, 3, 4],
|
119 |
+
[0, 1, 2, 3, 4],
|
120 |
+
[0, 1, 2, 3, 4]]) == Matrix.zeros(5)
|
121 |
+
|
122 |
+
X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
|
123 |
+
assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]])
|
124 |
+
|
125 |
+
|
126 |
+
def test_im():
|
127 |
+
x, y = symbols('x,y')
|
128 |
+
a, b = symbols('a,b', real=True)
|
129 |
+
|
130 |
+
r = Symbol('r', real=True)
|
131 |
+
i = Symbol('i', imaginary=True)
|
132 |
+
|
133 |
+
assert im(nan) is nan
|
134 |
+
|
135 |
+
assert im(oo*I) is oo
|
136 |
+
assert im(-oo*I) is -oo
|
137 |
+
|
138 |
+
assert im(0) == 0
|
139 |
+
|
140 |
+
assert im(1) == 0
|
141 |
+
assert im(-1) == 0
|
142 |
+
|
143 |
+
assert im(E*I) == E
|
144 |
+
assert im(-E*I) == -E
|
145 |
+
|
146 |
+
assert unchanged(im, x)
|
147 |
+
assert im(x*I) == re(x)
|
148 |
+
assert im(r*I) == r
|
149 |
+
assert im(r) == 0
|
150 |
+
assert im(i*I) == 0
|
151 |
+
assert im(i) == -I * i
|
152 |
+
|
153 |
+
assert im(x + y) == im(x) + im(y)
|
154 |
+
assert im(x + r) == im(x)
|
155 |
+
assert im(x + r*I) == im(x) + r
|
156 |
+
|
157 |
+
assert im(im(x)*I) == im(x)
|
158 |
+
|
159 |
+
assert im(2 + I) == 1
|
160 |
+
assert im(x + I) == im(x) + 1
|
161 |
+
|
162 |
+
assert im(x + y*I) == im(x) + re(y)
|
163 |
+
assert im(x + r*I) == im(x) + r
|
164 |
+
|
165 |
+
assert im(log(2*I)) == pi/2
|
166 |
+
|
167 |
+
assert im((2 + I)**2).expand(complex=True) == 4
|
168 |
+
|
169 |
+
assert im(conjugate(x)) == -im(x)
|
170 |
+
assert conjugate(im(x)) == im(x)
|
171 |
+
|
172 |
+
assert im(x).as_real_imag() == (im(x), 0)
|
173 |
+
|
174 |
+
assert im(i*r*x).diff(r) == im(i*x)
|
175 |
+
assert im(i*r*x).diff(i) == -I * re(r*x)
|
176 |
+
|
177 |
+
assert im(
|
178 |
+
sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)
|
179 |
+
assert im(a * (2 + b*I)) == a*b
|
180 |
+
|
181 |
+
assert im((1 + sqrt(a + b*I))/2) == \
|
182 |
+
(a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2
|
183 |
+
|
184 |
+
assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x))
|
185 |
+
assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y))
|
186 |
+
|
187 |
+
a = Symbol('a', algebraic=True)
|
188 |
+
t = Symbol('t', transcendental=True)
|
189 |
+
x = Symbol('x')
|
190 |
+
assert re(a).is_algebraic
|
191 |
+
assert re(x).is_algebraic is None
|
192 |
+
assert re(t).is_algebraic is False
|
193 |
+
|
194 |
+
assert im(S.ComplexInfinity) is S.NaN
|
195 |
+
|
196 |
+
n, m, l = symbols('n m l')
|
197 |
+
A = MatrixSymbol('A',n,m)
|
198 |
+
|
199 |
+
assert im(A) == (S.One/(2*I)) * (A - conjugate(A))
|
200 |
+
|
201 |
+
A = Matrix([[1 + 4*I, 2],[0, -3*I]])
|
202 |
+
assert im(A) == Matrix([[4, 0],[0, -3]])
|
203 |
+
|
204 |
+
A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]])
|
205 |
+
assert im(A) == ImmutableMatrix([[3, -2],[0, 2]])
|
206 |
+
|
207 |
+
X = ImmutableSparseMatrix(
|
208 |
+
[[i*I + i for i in range(5)] for i in range(5)])
|
209 |
+
Y = SparseMatrix([list(range(5)) for i in range(5)])
|
210 |
+
assert im(X).as_immutable() == Y
|
211 |
+
|
212 |
+
X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I))
|
213 |
+
assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]])
|
214 |
+
|
215 |
+
def test_sign():
|
216 |
+
assert sign(1.2) == 1
|
217 |
+
assert sign(-1.2) == -1
|
218 |
+
assert sign(3*I) == I
|
219 |
+
assert sign(-3*I) == -I
|
220 |
+
assert sign(0) == 0
|
221 |
+
assert sign(0, evaluate=False).doit() == 0
|
222 |
+
assert sign(oo, evaluate=False).doit() == 1
|
223 |
+
assert sign(nan) is nan
|
224 |
+
assert sign(2 + 2*I).doit() == sqrt(2)*(2 + 2*I)/4
|
225 |
+
assert sign(2 + 3*I).simplify() == sign(2 + 3*I)
|
226 |
+
assert sign(2 + 2*I).simplify() == sign(1 + I)
|
227 |
+
assert sign(im(sqrt(1 - sqrt(3)))) == 1
|
228 |
+
assert sign(sqrt(1 - sqrt(3))) == I
|
229 |
+
|
230 |
+
x = Symbol('x')
|
231 |
+
assert sign(x).is_finite is True
|
232 |
+
assert sign(x).is_complex is True
|
233 |
+
assert sign(x).is_imaginary is None
|
234 |
+
assert sign(x).is_integer is None
|
235 |
+
assert sign(x).is_real is None
|
236 |
+
assert sign(x).is_zero is None
|
237 |
+
assert sign(x).doit() == sign(x)
|
238 |
+
assert sign(1.2*x) == sign(x)
|
239 |
+
assert sign(2*x) == sign(x)
|
240 |
+
assert sign(I*x) == I*sign(x)
|
241 |
+
assert sign(-2*I*x) == -I*sign(x)
|
242 |
+
assert sign(conjugate(x)) == conjugate(sign(x))
|
243 |
+
|
244 |
+
p = Symbol('p', positive=True)
|
245 |
+
n = Symbol('n', negative=True)
|
246 |
+
m = Symbol('m', negative=True)
|
247 |
+
assert sign(2*p*x) == sign(x)
|
248 |
+
assert sign(n*x) == -sign(x)
|
249 |
+
assert sign(n*m*x) == sign(x)
|
250 |
+
|
251 |
+
x = Symbol('x', imaginary=True)
|
252 |
+
assert sign(x).is_imaginary is True
|
253 |
+
assert sign(x).is_integer is False
|
254 |
+
assert sign(x).is_real is False
|
255 |
+
assert sign(x).is_zero is False
|
256 |
+
assert sign(x).diff(x) == 2*DiracDelta(-I*x)
|
257 |
+
assert sign(x).doit() == x / Abs(x)
|
258 |
+
assert conjugate(sign(x)) == -sign(x)
|
259 |
+
|
260 |
+
x = Symbol('x', real=True)
|
261 |
+
assert sign(x).is_imaginary is False
|
262 |
+
assert sign(x).is_integer is True
|
263 |
+
assert sign(x).is_real is True
|
264 |
+
assert sign(x).is_zero is None
|
265 |
+
assert sign(x).diff(x) == 2*DiracDelta(x)
|
266 |
+
assert sign(x).doit() == sign(x)
|
267 |
+
assert conjugate(sign(x)) == sign(x)
|
268 |
+
|
269 |
+
x = Symbol('x', nonzero=True)
|
270 |
+
assert sign(x).is_imaginary is False
|
271 |
+
assert sign(x).is_integer is True
|
272 |
+
assert sign(x).is_real is True
|
273 |
+
assert sign(x).is_zero is False
|
274 |
+
assert sign(x).doit() == x / Abs(x)
|
275 |
+
assert sign(Abs(x)) == 1
|
276 |
+
assert Abs(sign(x)) == 1
|
277 |
+
|
278 |
+
x = Symbol('x', positive=True)
|
279 |
+
assert sign(x).is_imaginary is False
|
280 |
+
assert sign(x).is_integer is True
|
281 |
+
assert sign(x).is_real is True
|
282 |
+
assert sign(x).is_zero is False
|
283 |
+
assert sign(x).doit() == x / Abs(x)
|
284 |
+
assert sign(Abs(x)) == 1
|
285 |
+
assert Abs(sign(x)) == 1
|
286 |
+
|
287 |
+
x = 0
|
288 |
+
assert sign(x).is_imaginary is False
|
289 |
+
assert sign(x).is_integer is True
|
290 |
+
assert sign(x).is_real is True
|
291 |
+
assert sign(x).is_zero is True
|
292 |
+
assert sign(x).doit() == 0
|
293 |
+
assert sign(Abs(x)) == 0
|
294 |
+
assert Abs(sign(x)) == 0
|
295 |
+
|
296 |
+
nz = Symbol('nz', nonzero=True, integer=True)
|
297 |
+
assert sign(nz).is_imaginary is False
|
298 |
+
assert sign(nz).is_integer is True
|
299 |
+
assert sign(nz).is_real is True
|
300 |
+
assert sign(nz).is_zero is False
|
301 |
+
assert sign(nz)**2 == 1
|
302 |
+
assert (sign(nz)**3).args == (sign(nz), 3)
|
303 |
+
|
304 |
+
assert sign(Symbol('x', nonnegative=True)).is_nonnegative
|
305 |
+
assert sign(Symbol('x', nonnegative=True)).is_nonpositive is None
|
306 |
+
assert sign(Symbol('x', nonpositive=True)).is_nonnegative is None
|
307 |
+
assert sign(Symbol('x', nonpositive=True)).is_nonpositive
|
308 |
+
assert sign(Symbol('x', real=True)).is_nonnegative is None
|
309 |
+
assert sign(Symbol('x', real=True)).is_nonpositive is None
|
310 |
+
assert sign(Symbol('x', real=True, zero=False)).is_nonpositive is None
|
311 |
+
|
312 |
+
x, y = Symbol('x', real=True), Symbol('y')
|
313 |
+
f = Function('f')
|
314 |
+
assert sign(x).rewrite(Piecewise) == \
|
315 |
+
Piecewise((1, x > 0), (-1, x < 0), (0, True))
|
316 |
+
assert sign(y).rewrite(Piecewise) == sign(y)
|
317 |
+
assert sign(x).rewrite(Heaviside) == 2*Heaviside(x, H0=S(1)/2) - 1
|
318 |
+
assert sign(y).rewrite(Heaviside) == sign(y)
|
319 |
+
assert sign(y).rewrite(Abs) == Piecewise((0, Eq(y, 0)), (y/Abs(y), True))
|
320 |
+
assert sign(f(y)).rewrite(Abs) == Piecewise((0, Eq(f(y), 0)), (f(y)/Abs(f(y)), True))
|
321 |
+
|
322 |
+
# evaluate what can be evaluated
|
323 |
+
assert sign(exp_polar(I*pi)*pi) is S.NegativeOne
|
324 |
+
|
325 |
+
eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
|
326 |
+
# if there is a fast way to know when and when you cannot prove an
|
327 |
+
# expression like this is zero then the equality to zero is ok
|
328 |
+
assert sign(eq).func is sign or sign(eq) == 0
|
329 |
+
# but sometimes it's hard to do this so it's better not to load
|
330 |
+
# abs down with tests that will be very slow
|
331 |
+
q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
|
332 |
+
p = expand(q**3)**Rational(1, 3)
|
333 |
+
d = p - q
|
334 |
+
assert sign(d).func is sign or sign(d) == 0
|
335 |
+
|
336 |
+
|
337 |
+
def test_as_real_imag():
|
338 |
+
n = pi**1000
|
339 |
+
# the special code for working out the real
|
340 |
+
# and complex parts of a power with Integer exponent
|
341 |
+
# should not run if there is no imaginary part, hence
|
342 |
+
# this should not hang
|
343 |
+
assert n.as_real_imag() == (n, 0)
|
344 |
+
|
345 |
+
# issue 6261
|
346 |
+
x = Symbol('x')
|
347 |
+
assert sqrt(x).as_real_imag() == \
|
348 |
+
((re(x)**2 + im(x)**2)**Rational(1, 4)*cos(atan2(im(x), re(x))/2),
|
349 |
+
(re(x)**2 + im(x)**2)**Rational(1, 4)*sin(atan2(im(x), re(x))/2))
|
350 |
+
|
351 |
+
# issue 3853
|
352 |
+
a, b = symbols('a,b', real=True)
|
353 |
+
assert ((1 + sqrt(a + b*I))/2).as_real_imag() == \
|
354 |
+
(
|
355 |
+
(a**2 + b**2)**Rational(
|
356 |
+
1, 4)*cos(atan2(b, a)/2)/2 + S.Half,
|
357 |
+
(a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2)
|
358 |
+
|
359 |
+
assert sqrt(a**2).as_real_imag() == (sqrt(a**2), 0)
|
360 |
+
i = symbols('i', imaginary=True)
|
361 |
+
assert sqrt(i**2).as_real_imag() == (0, abs(i))
|
362 |
+
|
363 |
+
assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1)
|
364 |
+
assert ((1 + I)**3/(1 - I)).as_real_imag() == (-2, 0)
|
365 |
+
|
366 |
+
|
367 |
+
@XFAIL
|
368 |
+
def test_sign_issue_3068():
|
369 |
+
n = pi**1000
|
370 |
+
i = int(n)
|
371 |
+
x = Symbol('x')
|
372 |
+
assert (n - i).round() == 1 # doesn't hang
|
373 |
+
assert sign(n - i) == 1
|
374 |
+
# perhaps it's not possible to get the sign right when
|
375 |
+
# only 1 digit is being requested for this situation;
|
376 |
+
# 2 digits works
|
377 |
+
assert (n - x).n(1, subs={x: i}) > 0
|
378 |
+
assert (n - x).n(2, subs={x: i}) > 0
|
379 |
+
|
380 |
+
|
381 |
+
def test_Abs():
|
382 |
+
raises(TypeError, lambda: Abs(Interval(2, 3))) # issue 8717
|
383 |
+
|
384 |
+
x, y = symbols('x,y')
|
385 |
+
assert sign(sign(x)) == sign(x)
|
386 |
+
assert sign(x*y).func is sign
|
387 |
+
assert Abs(0) == 0
|
388 |
+
assert Abs(1) == 1
|
389 |
+
assert Abs(-1) == 1
|
390 |
+
assert Abs(I) == 1
|
391 |
+
assert Abs(-I) == 1
|
392 |
+
assert Abs(nan) is nan
|
393 |
+
assert Abs(zoo) is oo
|
394 |
+
assert Abs(I * pi) == pi
|
395 |
+
assert Abs(-I * pi) == pi
|
396 |
+
assert Abs(I * x) == Abs(x)
|
397 |
+
assert Abs(-I * x) == Abs(x)
|
398 |
+
assert Abs(-2*x) == 2*Abs(x)
|
399 |
+
assert Abs(-2.0*x) == 2.0*Abs(x)
|
400 |
+
assert Abs(2*pi*x*y) == 2*pi*Abs(x*y)
|
401 |
+
assert Abs(conjugate(x)) == Abs(x)
|
402 |
+
assert conjugate(Abs(x)) == Abs(x)
|
403 |
+
assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2)
|
404 |
+
|
405 |
+
a = Symbol('a', positive=True)
|
406 |
+
assert Abs(2*pi*x*a) == 2*pi*a*Abs(x)
|
407 |
+
assert Abs(2*pi*I*x*a) == 2*pi*a*Abs(x)
|
408 |
+
|
409 |
+
x = Symbol('x', real=True)
|
410 |
+
n = Symbol('n', integer=True)
|
411 |
+
assert Abs((-1)**n) == 1
|
412 |
+
assert x**(2*n) == Abs(x)**(2*n)
|
413 |
+
assert Abs(x).diff(x) == sign(x)
|
414 |
+
assert abs(x) == Abs(x) # Python built-in
|
415 |
+
assert Abs(x)**3 == x**2*Abs(x)
|
416 |
+
assert Abs(x)**4 == x**4
|
417 |
+
assert (
|
418 |
+
Abs(x)**(3*n)).args == (Abs(x), 3*n) # leave symbolic odd unchanged
|
419 |
+
assert (1/Abs(x)).args == (Abs(x), -1)
|
420 |
+
assert 1/Abs(x)**3 == 1/(x**2*Abs(x))
|
421 |
+
assert Abs(x)**-3 == Abs(x)/(x**4)
|
422 |
+
assert Abs(x**3) == x**2*Abs(x)
|
423 |
+
assert Abs(I**I) == exp(-pi/2)
|
424 |
+
assert Abs((4 + 5*I)**(6 + 7*I)) == 68921*exp(-7*atan(Rational(5, 4)))
|
425 |
+
y = Symbol('y', real=True)
|
426 |
+
assert Abs(I**y) == 1
|
427 |
+
y = Symbol('y')
|
428 |
+
assert Abs(I**y) == exp(-pi*im(y)/2)
|
429 |
+
|
430 |
+
x = Symbol('x', imaginary=True)
|
431 |
+
assert Abs(x).diff(x) == -sign(x)
|
432 |
+
|
433 |
+
eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
|
434 |
+
# if there is a fast way to know when you can and when you cannot prove an
|
435 |
+
# expression like this is zero then the equality to zero is ok
|
436 |
+
assert abs(eq).func is Abs or abs(eq) == 0
|
437 |
+
# but sometimes it's hard to do this so it's better not to load
|
438 |
+
# abs down with tests that will be very slow
|
439 |
+
q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6)
|
440 |
+
p = expand(q**3)**Rational(1, 3)
|
441 |
+
d = p - q
|
442 |
+
assert abs(d).func is Abs or abs(d) == 0
|
443 |
+
|
444 |
+
assert Abs(4*exp(pi*I/4)) == 4
|
445 |
+
assert Abs(3**(2 + I)) == 9
|
446 |
+
assert Abs((-3)**(1 - I)) == 3*exp(pi)
|
447 |
+
|
448 |
+
assert Abs(oo) is oo
|
449 |
+
assert Abs(-oo) is oo
|
450 |
+
assert Abs(oo + I) is oo
|
451 |
+
assert Abs(oo + I*oo) is oo
|
452 |
+
|
453 |
+
a = Symbol('a', algebraic=True)
|
454 |
+
t = Symbol('t', transcendental=True)
|
455 |
+
x = Symbol('x')
|
456 |
+
assert re(a).is_algebraic
|
457 |
+
assert re(x).is_algebraic is None
|
458 |
+
assert re(t).is_algebraic is False
|
459 |
+
assert Abs(x).fdiff() == sign(x)
|
460 |
+
raises(ArgumentIndexError, lambda: Abs(x).fdiff(2))
|
461 |
+
|
462 |
+
# doesn't have recursion error
|
463 |
+
arg = sqrt(acos(1 - I)*acos(1 + I))
|
464 |
+
assert abs(arg) == arg
|
465 |
+
|
466 |
+
# special handling to put Abs in denom
|
467 |
+
assert abs(1/x) == 1/Abs(x)
|
468 |
+
e = abs(2/x**2)
|
469 |
+
assert e.is_Mul and e == 2/Abs(x**2)
|
470 |
+
assert unchanged(Abs, y/x)
|
471 |
+
assert unchanged(Abs, x/(x + 1))
|
472 |
+
assert unchanged(Abs, x*y)
|
473 |
+
p = Symbol('p', positive=True)
|
474 |
+
assert abs(x/p) == abs(x)/p
|
475 |
+
|
476 |
+
# coverage
|
477 |
+
assert unchanged(Abs, Symbol('x', real=True)**y)
|
478 |
+
# issue 19627
|
479 |
+
f = Function('f', positive=True)
|
480 |
+
assert sqrt(f(x)**2) == f(x)
|
481 |
+
# issue 21625
|
482 |
+
assert unchanged(Abs, S("im(acos(-i + acosh(-g + i)))"))
|
483 |
+
|
484 |
+
|
485 |
+
def test_Abs_rewrite():
|
486 |
+
x = Symbol('x', real=True)
|
487 |
+
a = Abs(x).rewrite(Heaviside).expand()
|
488 |
+
assert a == x*Heaviside(x) - x*Heaviside(-x)
|
489 |
+
for i in [-2, -1, 0, 1, 2]:
|
490 |
+
assert a.subs(x, i) == abs(i)
|
491 |
+
y = Symbol('y')
|
492 |
+
assert Abs(y).rewrite(Heaviside) == Abs(y)
|
493 |
+
|
494 |
+
x, y = Symbol('x', real=True), Symbol('y')
|
495 |
+
assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True))
|
496 |
+
assert Abs(y).rewrite(Piecewise) == Abs(y)
|
497 |
+
assert Abs(y).rewrite(sign) == y/sign(y)
|
498 |
+
|
499 |
+
i = Symbol('i', imaginary=True)
|
500 |
+
assert abs(i).rewrite(Piecewise) == Piecewise((I*i, I*i >= 0), (-I*i, True))
|
501 |
+
|
502 |
+
|
503 |
+
assert Abs(y).rewrite(conjugate) == sqrt(y*conjugate(y))
|
504 |
+
assert Abs(i).rewrite(conjugate) == sqrt(-i**2) # == -I*i
|
505 |
+
|
506 |
+
y = Symbol('y', extended_real=True)
|
507 |
+
assert (Abs(exp(-I*x)-exp(-I*y))**2).rewrite(conjugate) == \
|
508 |
+
-exp(I*x)*exp(-I*y) + 2 - exp(-I*x)*exp(I*y)
|
509 |
+
|
510 |
+
|
511 |
+
def test_Abs_real():
|
512 |
+
# test some properties of abs that only apply
|
513 |
+
# to real numbers
|
514 |
+
x = Symbol('x', complex=True)
|
515 |
+
assert sqrt(x**2) != Abs(x)
|
516 |
+
assert Abs(x**2) != x**2
|
517 |
+
|
518 |
+
x = Symbol('x', real=True)
|
519 |
+
assert sqrt(x**2) == Abs(x)
|
520 |
+
assert Abs(x**2) == x**2
|
521 |
+
|
522 |
+
# if the symbol is zero, the following will still apply
|
523 |
+
nn = Symbol('nn', nonnegative=True, real=True)
|
524 |
+
np = Symbol('np', nonpositive=True, real=True)
|
525 |
+
assert Abs(nn) == nn
|
526 |
+
assert Abs(np) == -np
|
527 |
+
|
528 |
+
|
529 |
+
def test_Abs_properties():
|
530 |
+
x = Symbol('x')
|
531 |
+
assert Abs(x).is_real is None
|
532 |
+
assert Abs(x).is_extended_real is True
|
533 |
+
assert Abs(x).is_rational is None
|
534 |
+
assert Abs(x).is_positive is None
|
535 |
+
assert Abs(x).is_nonnegative is None
|
536 |
+
assert Abs(x).is_extended_positive is None
|
537 |
+
assert Abs(x).is_extended_nonnegative is True
|
538 |
+
|
539 |
+
f = Symbol('x', finite=True)
|
540 |
+
assert Abs(f).is_real is True
|
541 |
+
assert Abs(f).is_extended_real is True
|
542 |
+
assert Abs(f).is_rational is None
|
543 |
+
assert Abs(f).is_positive is None
|
544 |
+
assert Abs(f).is_nonnegative is True
|
545 |
+
assert Abs(f).is_extended_positive is None
|
546 |
+
assert Abs(f).is_extended_nonnegative is True
|
547 |
+
|
548 |
+
z = Symbol('z', complex=True, zero=False)
|
549 |
+
assert Abs(z).is_real is True # since complex implies finite
|
550 |
+
assert Abs(z).is_extended_real is True
|
551 |
+
assert Abs(z).is_rational is None
|
552 |
+
assert Abs(z).is_positive is True
|
553 |
+
assert Abs(z).is_extended_positive is True
|
554 |
+
assert Abs(z).is_zero is False
|
555 |
+
|
556 |
+
p = Symbol('p', positive=True)
|
557 |
+
assert Abs(p).is_real is True
|
558 |
+
assert Abs(p).is_extended_real is True
|
559 |
+
assert Abs(p).is_rational is None
|
560 |
+
assert Abs(p).is_positive is True
|
561 |
+
assert Abs(p).is_zero is False
|
562 |
+
|
563 |
+
q = Symbol('q', rational=True)
|
564 |
+
assert Abs(q).is_real is True
|
565 |
+
assert Abs(q).is_rational is True
|
566 |
+
assert Abs(q).is_integer is None
|
567 |
+
assert Abs(q).is_positive is None
|
568 |
+
assert Abs(q).is_nonnegative is True
|
569 |
+
|
570 |
+
i = Symbol('i', integer=True)
|
571 |
+
assert Abs(i).is_real is True
|
572 |
+
assert Abs(i).is_integer is True
|
573 |
+
assert Abs(i).is_positive is None
|
574 |
+
assert Abs(i).is_nonnegative is True
|
575 |
+
|
576 |
+
e = Symbol('n', even=True)
|
577 |
+
ne = Symbol('ne', real=True, even=False)
|
578 |
+
assert Abs(e).is_even is True
|
579 |
+
assert Abs(ne).is_even is False
|
580 |
+
assert Abs(i).is_even is None
|
581 |
+
|
582 |
+
o = Symbol('n', odd=True)
|
583 |
+
no = Symbol('no', real=True, odd=False)
|
584 |
+
assert Abs(o).is_odd is True
|
585 |
+
assert Abs(no).is_odd is False
|
586 |
+
assert Abs(i).is_odd is None
|
587 |
+
|
588 |
+
|
589 |
+
def test_abs():
|
590 |
+
# this tests that abs calls Abs; don't rename to
|
591 |
+
# test_Abs since that test is already above
|
592 |
+
a = Symbol('a', positive=True)
|
593 |
+
assert abs(I*(1 + a)**2) == (1 + a)**2
|
594 |
+
|
595 |
+
|
596 |
+
def test_arg():
|
597 |
+
assert arg(0) is nan
|
598 |
+
assert arg(1) == 0
|
599 |
+
assert arg(-1) == pi
|
600 |
+
assert arg(I) == pi/2
|
601 |
+
assert arg(-I) == -pi/2
|
602 |
+
assert arg(1 + I) == pi/4
|
603 |
+
assert arg(-1 + I) == pi*Rational(3, 4)
|
604 |
+
assert arg(1 - I) == -pi/4
|
605 |
+
assert arg(exp_polar(4*pi*I)) == 4*pi
|
606 |
+
assert arg(exp_polar(-7*pi*I)) == -7*pi
|
607 |
+
assert arg(exp_polar(5 - 3*pi*I/4)) == pi*Rational(-3, 4)
|
608 |
+
f = Function('f')
|
609 |
+
assert not arg(f(0) + I*f(1)).atoms(re)
|
610 |
+
|
611 |
+
# check nesting
|
612 |
+
x = Symbol('x')
|
613 |
+
assert arg(arg(arg(x))) is not S.NaN
|
614 |
+
assert arg(arg(arg(arg(x)))) is S.NaN
|
615 |
+
r = Symbol('r', extended_real=True)
|
616 |
+
assert arg(arg(r)) is not S.NaN
|
617 |
+
assert arg(arg(arg(r))) is S.NaN
|
618 |
+
|
619 |
+
p = Function('p', extended_positive=True)
|
620 |
+
assert arg(p(x)) == 0
|
621 |
+
assert arg((3 + I)*p(x)) == arg(3 + I)
|
622 |
+
|
623 |
+
p = Symbol('p', positive=True)
|
624 |
+
assert arg(p) == 0
|
625 |
+
assert arg(p*I) == pi/2
|
626 |
+
|
627 |
+
n = Symbol('n', negative=True)
|
628 |
+
assert arg(n) == pi
|
629 |
+
assert arg(n*I) == -pi/2
|
630 |
+
|
631 |
+
x = Symbol('x')
|
632 |
+
assert conjugate(arg(x)) == arg(x)
|
633 |
+
|
634 |
+
e = p + I*p**2
|
635 |
+
assert arg(e) == arg(1 + p*I)
|
636 |
+
# make sure sign doesn't swap
|
637 |
+
e = -2*p + 4*I*p**2
|
638 |
+
assert arg(e) == arg(-1 + 2*p*I)
|
639 |
+
# make sure sign isn't lost
|
640 |
+
x = symbols('x', real=True) # could be zero
|
641 |
+
e = x + I*x
|
642 |
+
assert arg(e) == arg(x*(1 + I))
|
643 |
+
assert arg(e/p) == arg(x*(1 + I))
|
644 |
+
e = p*cos(p) + I*log(p)*exp(p)
|
645 |
+
assert arg(e).args[0] == e
|
646 |
+
# keep it simple -- let the user do more advanced cancellation
|
647 |
+
e = (p + 1) + I*(p**2 - 1)
|
648 |
+
assert arg(e).args[0] == e
|
649 |
+
|
650 |
+
f = Function('f')
|
651 |
+
e = 2*x*(f(0) - 1) - 2*x*f(0)
|
652 |
+
assert arg(e) == arg(-2*x)
|
653 |
+
assert arg(f(0)).func == arg and arg(f(0)).args == (f(0),)
|
654 |
+
|
655 |
+
|
656 |
+
def test_arg_rewrite():
|
657 |
+
assert arg(1 + I) == atan2(1, 1)
|
658 |
+
|
659 |
+
x = Symbol('x', real=True)
|
660 |
+
y = Symbol('y', real=True)
|
661 |
+
assert arg(x + I*y).rewrite(atan2) == atan2(y, x)
|
662 |
+
|
663 |
+
|
664 |
+
def test_adjoint():
|
665 |
+
a = Symbol('a', antihermitian=True)
|
666 |
+
b = Symbol('b', hermitian=True)
|
667 |
+
assert adjoint(a) == -a
|
668 |
+
assert adjoint(I*a) == I*a
|
669 |
+
assert adjoint(b) == b
|
670 |
+
assert adjoint(I*b) == -I*b
|
671 |
+
assert adjoint(a*b) == -b*a
|
672 |
+
assert adjoint(I*a*b) == I*b*a
|
673 |
+
|
674 |
+
x, y = symbols('x y')
|
675 |
+
assert adjoint(adjoint(x)) == x
|
676 |
+
assert adjoint(x + y) == adjoint(x) + adjoint(y)
|
677 |
+
assert adjoint(x - y) == adjoint(x) - adjoint(y)
|
678 |
+
assert adjoint(x * y) == adjoint(x) * adjoint(y)
|
679 |
+
assert adjoint(x / y) == adjoint(x) / adjoint(y)
|
680 |
+
assert adjoint(-x) == -adjoint(x)
|
681 |
+
|
682 |
+
x, y = symbols('x y', commutative=False)
|
683 |
+
assert adjoint(adjoint(x)) == x
|
684 |
+
assert adjoint(x + y) == adjoint(x) + adjoint(y)
|
685 |
+
assert adjoint(x - y) == adjoint(x) - adjoint(y)
|
686 |
+
assert adjoint(x * y) == adjoint(y) * adjoint(x)
|
687 |
+
assert adjoint(x / y) == 1 / adjoint(y) * adjoint(x)
|
688 |
+
assert adjoint(-x) == -adjoint(x)
|
689 |
+
|
690 |
+
|
691 |
+
def test_conjugate():
|
692 |
+
a = Symbol('a', real=True)
|
693 |
+
b = Symbol('b', imaginary=True)
|
694 |
+
assert conjugate(a) == a
|
695 |
+
assert conjugate(I*a) == -I*a
|
696 |
+
assert conjugate(b) == -b
|
697 |
+
assert conjugate(I*b) == I*b
|
698 |
+
assert conjugate(a*b) == -a*b
|
699 |
+
assert conjugate(I*a*b) == I*a*b
|
700 |
+
|
701 |
+
x, y = symbols('x y')
|
702 |
+
assert conjugate(conjugate(x)) == x
|
703 |
+
assert conjugate(x).inverse() == conjugate
|
704 |
+
assert conjugate(x + y) == conjugate(x) + conjugate(y)
|
705 |
+
assert conjugate(x - y) == conjugate(x) - conjugate(y)
|
706 |
+
assert conjugate(x * y) == conjugate(x) * conjugate(y)
|
707 |
+
assert conjugate(x / y) == conjugate(x) / conjugate(y)
|
708 |
+
assert conjugate(-x) == -conjugate(x)
|
709 |
+
|
710 |
+
a = Symbol('a', algebraic=True)
|
711 |
+
t = Symbol('t', transcendental=True)
|
712 |
+
assert re(a).is_algebraic
|
713 |
+
assert re(x).is_algebraic is None
|
714 |
+
assert re(t).is_algebraic is False
|
715 |
+
|
716 |
+
|
717 |
+
def test_conjugate_transpose():
|
718 |
+
x = Symbol('x')
|
719 |
+
assert conjugate(transpose(x)) == adjoint(x)
|
720 |
+
assert transpose(conjugate(x)) == adjoint(x)
|
721 |
+
assert adjoint(transpose(x)) == conjugate(x)
|
722 |
+
assert transpose(adjoint(x)) == conjugate(x)
|
723 |
+
assert adjoint(conjugate(x)) == transpose(x)
|
724 |
+
assert conjugate(adjoint(x)) == transpose(x)
|
725 |
+
|
726 |
+
class Symmetric(Expr):
|
727 |
+
def _eval_adjoint(self):
|
728 |
+
return None
|
729 |
+
|
730 |
+
def _eval_conjugate(self):
|
731 |
+
return None
|
732 |
+
|
733 |
+
def _eval_transpose(self):
|
734 |
+
return self
|
735 |
+
x = Symmetric()
|
736 |
+
assert conjugate(x) == adjoint(x)
|
737 |
+
assert transpose(x) == x
|
738 |
+
|
739 |
+
|
740 |
+
def test_transpose():
|
741 |
+
a = Symbol('a', complex=True)
|
742 |
+
assert transpose(a) == a
|
743 |
+
assert transpose(I*a) == I*a
|
744 |
+
|
745 |
+
x, y = symbols('x y')
|
746 |
+
assert transpose(transpose(x)) == x
|
747 |
+
assert transpose(x + y) == transpose(x) + transpose(y)
|
748 |
+
assert transpose(x - y) == transpose(x) - transpose(y)
|
749 |
+
assert transpose(x * y) == transpose(x) * transpose(y)
|
750 |
+
assert transpose(x / y) == transpose(x) / transpose(y)
|
751 |
+
assert transpose(-x) == -transpose(x)
|
752 |
+
|
753 |
+
x, y = symbols('x y', commutative=False)
|
754 |
+
assert transpose(transpose(x)) == x
|
755 |
+
assert transpose(x + y) == transpose(x) + transpose(y)
|
756 |
+
assert transpose(x - y) == transpose(x) - transpose(y)
|
757 |
+
assert transpose(x * y) == transpose(y) * transpose(x)
|
758 |
+
assert transpose(x / y) == 1 / transpose(y) * transpose(x)
|
759 |
+
assert transpose(-x) == -transpose(x)
|
760 |
+
|
761 |
+
|
762 |
+
@_both_exp_pow
|
763 |
+
def test_polarify():
|
764 |
+
from sympy.functions.elementary.complexes import (polar_lift, polarify)
|
765 |
+
x = Symbol('x')
|
766 |
+
z = Symbol('z', polar=True)
|
767 |
+
f = Function('f')
|
768 |
+
ES = {}
|
769 |
+
|
770 |
+
assert polarify(-1) == (polar_lift(-1), ES)
|
771 |
+
assert polarify(1 + I) == (polar_lift(1 + I), ES)
|
772 |
+
|
773 |
+
assert polarify(exp(x), subs=False) == exp(x)
|
774 |
+
assert polarify(1 + x, subs=False) == 1 + x
|
775 |
+
assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x
|
776 |
+
|
777 |
+
assert polarify(x, lift=True) == polar_lift(x)
|
778 |
+
assert polarify(z, lift=True) == z
|
779 |
+
assert polarify(f(x), lift=True) == f(polar_lift(x))
|
780 |
+
assert polarify(1 + x, lift=True) == polar_lift(1 + x)
|
781 |
+
assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x)))
|
782 |
+
|
783 |
+
newex, subs = polarify(f(x) + z)
|
784 |
+
assert newex.subs(subs) == f(x) + z
|
785 |
+
|
786 |
+
mu = Symbol("mu")
|
787 |
+
sigma = Symbol("sigma", positive=True)
|
788 |
+
|
789 |
+
# Make sure polarify(lift=True) doesn't try to lift the integration
|
790 |
+
# variable
|
791 |
+
assert polarify(
|
792 |
+
Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma),
|
793 |
+
(x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi)*
|
794 |
+
exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x)**
|
795 |
+
(2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo))
|
796 |
+
|
797 |
+
|
798 |
+
def test_unpolarify():
|
799 |
+
from sympy.functions.elementary.complexes import (polar_lift, principal_branch, unpolarify)
|
800 |
+
from sympy.core.relational import Ne
|
801 |
+
from sympy.functions.elementary.hyperbolic import tanh
|
802 |
+
from sympy.functions.special.error_functions import erf
|
803 |
+
from sympy.functions.special.gamma_functions import (gamma, uppergamma)
|
804 |
+
from sympy.abc import x
|
805 |
+
p = exp_polar(7*I) + 1
|
806 |
+
u = exp(7*I) + 1
|
807 |
+
|
808 |
+
assert unpolarify(1) == 1
|
809 |
+
assert unpolarify(p) == u
|
810 |
+
assert unpolarify(p**2) == u**2
|
811 |
+
assert unpolarify(p**x) == p**x
|
812 |
+
assert unpolarify(p*x) == u*x
|
813 |
+
assert unpolarify(p + x) == u + x
|
814 |
+
assert unpolarify(sqrt(sin(p))) == sqrt(sin(u))
|
815 |
+
|
816 |
+
# Test reduction to principal branch 2*pi.
|
817 |
+
t = principal_branch(x, 2*pi)
|
818 |
+
assert unpolarify(t) == x
|
819 |
+
assert unpolarify(sqrt(t)) == sqrt(t)
|
820 |
+
|
821 |
+
# Test exponents_only.
|
822 |
+
assert unpolarify(p**p, exponents_only=True) == p**u
|
823 |
+
assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u)
|
824 |
+
|
825 |
+
# Test functions.
|
826 |
+
assert unpolarify(sin(p)) == sin(u)
|
827 |
+
assert unpolarify(tanh(p)) == tanh(u)
|
828 |
+
assert unpolarify(gamma(p)) == gamma(u)
|
829 |
+
assert unpolarify(erf(p)) == erf(u)
|
830 |
+
assert unpolarify(uppergamma(x, p)) == uppergamma(x, p)
|
831 |
+
|
832 |
+
assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \
|
833 |
+
uppergamma(sin(u), sin(u + 1))
|
834 |
+
assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \
|
835 |
+
uppergamma(0, 2)
|
836 |
+
|
837 |
+
assert unpolarify(Eq(p, 0)) == Eq(u, 0)
|
838 |
+
assert unpolarify(Ne(p, 0)) == Ne(u, 0)
|
839 |
+
assert unpolarify(polar_lift(x) > 0) == (x > 0)
|
840 |
+
|
841 |
+
# Test bools
|
842 |
+
assert unpolarify(True) is True
|
843 |
+
|
844 |
+
|
845 |
+
def test_issue_4035():
|
846 |
+
x = Symbol('x')
|
847 |
+
assert Abs(x).expand(trig=True) == Abs(x)
|
848 |
+
assert sign(x).expand(trig=True) == sign(x)
|
849 |
+
assert arg(x).expand(trig=True) == arg(x)
|
850 |
+
|
851 |
+
|
852 |
+
def test_issue_3206():
|
853 |
+
x = Symbol('x')
|
854 |
+
assert Abs(Abs(x)) == Abs(x)
|
855 |
+
|
856 |
+
|
857 |
+
def test_issue_4754_derivative_conjugate():
|
858 |
+
x = Symbol('x', real=True)
|
859 |
+
y = Symbol('y', imaginary=True)
|
860 |
+
f = Function('f')
|
861 |
+
assert (f(x).conjugate()).diff(x) == (f(x).diff(x)).conjugate()
|
862 |
+
assert (f(y).conjugate()).diff(y) == -(f(y).diff(y)).conjugate()
|
863 |
+
|
864 |
+
|
865 |
+
def test_derivatives_issue_4757():
|
866 |
+
x = Symbol('x', real=True)
|
867 |
+
y = Symbol('y', imaginary=True)
|
868 |
+
f = Function('f')
|
869 |
+
assert re(f(x)).diff(x) == re(f(x).diff(x))
|
870 |
+
assert im(f(x)).diff(x) == im(f(x).diff(x))
|
871 |
+
assert re(f(y)).diff(y) == -I*im(f(y).diff(y))
|
872 |
+
assert im(f(y)).diff(y) == -I*re(f(y).diff(y))
|
873 |
+
assert Abs(f(x)).diff(x).subs(f(x), 1 + I*x).doit() == x/sqrt(1 + x**2)
|
874 |
+
assert arg(f(x)).diff(x).subs(f(x), 1 + I*x**2).doit() == 2*x/(1 + x**4)
|
875 |
+
assert Abs(f(y)).diff(y).subs(f(y), 1 + y).doit() == -y/sqrt(1 - y**2)
|
876 |
+
assert arg(f(y)).diff(y).subs(f(y), I + y**2).doit() == 2*y/(1 + y**4)
|
877 |
+
|
878 |
+
|
879 |
+
def test_issue_11413():
|
880 |
+
from sympy.simplify.simplify import simplify
|
881 |
+
v0 = Symbol('v0')
|
882 |
+
v1 = Symbol('v1')
|
883 |
+
v2 = Symbol('v2')
|
884 |
+
V = Matrix([[v0],[v1],[v2]])
|
885 |
+
U = V.normalized()
|
886 |
+
assert U == Matrix([
|
887 |
+
[v0/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)],
|
888 |
+
[v1/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)],
|
889 |
+
[v2/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)]])
|
890 |
+
U.norm = sqrt(v0**2/(v0**2 + v1**2 + v2**2) + v1**2/(v0**2 + v1**2 + v2**2) + v2**2/(v0**2 + v1**2 + v2**2))
|
891 |
+
assert simplify(U.norm) == 1
|
892 |
+
|
893 |
+
|
894 |
+
def test_periodic_argument():
|
895 |
+
from sympy.functions.elementary.complexes import (periodic_argument, polar_lift, principal_branch, unbranched_argument)
|
896 |
+
x = Symbol('x')
|
897 |
+
p = Symbol('p', positive=True)
|
898 |
+
|
899 |
+
assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo)
|
900 |
+
assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo)
|
901 |
+
assert N_equals(unbranched_argument((1 + I)**2), pi/2)
|
902 |
+
assert N_equals(unbranched_argument((1 - I)**2), -pi/2)
|
903 |
+
assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2)
|
904 |
+
assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2)
|
905 |
+
|
906 |
+
assert unbranched_argument(principal_branch(x, pi)) == \
|
907 |
+
periodic_argument(x, pi)
|
908 |
+
|
909 |
+
assert unbranched_argument(polar_lift(2 + I)) == unbranched_argument(2 + I)
|
910 |
+
assert periodic_argument(polar_lift(2 + I), 2*pi) == \
|
911 |
+
periodic_argument(2 + I, 2*pi)
|
912 |
+
assert periodic_argument(polar_lift(2 + I), 3*pi) == \
|
913 |
+
periodic_argument(2 + I, 3*pi)
|
914 |
+
assert periodic_argument(polar_lift(2 + I), pi) == \
|
915 |
+
periodic_argument(polar_lift(2 + I), pi)
|
916 |
+
|
917 |
+
assert unbranched_argument(polar_lift(1 + I)) == pi/4
|
918 |
+
assert periodic_argument(2*p, p) == periodic_argument(p, p)
|
919 |
+
assert periodic_argument(pi*p, p) == periodic_argument(p, p)
|
920 |
+
|
921 |
+
assert Abs(polar_lift(1 + I)) == Abs(1 + I)
|
922 |
+
|
923 |
+
|
924 |
+
@XFAIL
|
925 |
+
def test_principal_branch_fail():
|
926 |
+
# TODO XXX why does abs(x)._eval_evalf() not fall back to global evalf?
|
927 |
+
from sympy.functions.elementary.complexes import principal_branch
|
928 |
+
assert N_equals(principal_branch((1 + I)**2, pi/2), 0)
|
929 |
+
|
930 |
+
|
931 |
+
def test_principal_branch():
|
932 |
+
from sympy.functions.elementary.complexes import (polar_lift, principal_branch)
|
933 |
+
p = Symbol('p', positive=True)
|
934 |
+
x = Symbol('x')
|
935 |
+
neg = Symbol('x', negative=True)
|
936 |
+
|
937 |
+
assert principal_branch(polar_lift(x), p) == principal_branch(x, p)
|
938 |
+
assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p)
|
939 |
+
assert principal_branch(2*x, p) == 2*principal_branch(x, p)
|
940 |
+
assert principal_branch(1, pi) == exp_polar(0)
|
941 |
+
assert principal_branch(-1, 2*pi) == exp_polar(I*pi)
|
942 |
+
assert principal_branch(-1, pi) == exp_polar(0)
|
943 |
+
assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \
|
944 |
+
principal_branch(exp_polar(I*pi)*x, 2*pi)
|
945 |
+
assert principal_branch(neg*exp_polar(pi*I), 2*pi) == neg*exp_polar(-I*pi)
|
946 |
+
# related to issue #14692
|
947 |
+
assert principal_branch(exp_polar(-I*pi/2)/polar_lift(neg), 2*pi) == \
|
948 |
+
exp_polar(-I*pi/2)/neg
|
949 |
+
|
950 |
+
assert N_equals(principal_branch((1 + I)**2, 2*pi), 2*I)
|
951 |
+
assert N_equals(principal_branch((1 + I)**2, 3*pi), 2*I)
|
952 |
+
assert N_equals(principal_branch((1 + I)**2, 1*pi), 2*I)
|
953 |
+
|
954 |
+
# test argument sanitization
|
955 |
+
assert principal_branch(x, I).func is principal_branch
|
956 |
+
assert principal_branch(x, -4).func is principal_branch
|
957 |
+
assert principal_branch(x, -oo).func is principal_branch
|
958 |
+
assert principal_branch(x, zoo).func is principal_branch
|
959 |
+
|
960 |
+
|
961 |
+
@XFAIL
|
962 |
+
def test_issue_6167_6151():
|
963 |
+
n = pi**1000
|
964 |
+
i = int(n)
|
965 |
+
assert sign(n - i) == 1
|
966 |
+
assert abs(n - i) == n - i
|
967 |
+
x = Symbol('x')
|
968 |
+
eps = pi**-1500
|
969 |
+
big = pi**1000
|
970 |
+
one = cos(x)**2 + sin(x)**2
|
971 |
+
e = big*one - big + eps
|
972 |
+
from sympy.simplify.simplify import simplify
|
973 |
+
assert sign(simplify(e)) == 1
|
974 |
+
for xi in (111, 11, 1, Rational(1, 10)):
|
975 |
+
assert sign(e.subs(x, xi)) == 1
|
976 |
+
|
977 |
+
|
978 |
+
def test_issue_14216():
|
979 |
+
from sympy.functions.elementary.complexes import unpolarify
|
980 |
+
A = MatrixSymbol("A", 2, 2)
|
981 |
+
assert unpolarify(A[0, 0]) == A[0, 0]
|
982 |
+
assert unpolarify(A[0, 0]*A[1, 0]) == A[0, 0]*A[1, 0]
|
983 |
+
|
984 |
+
|
985 |
+
def test_issue_14238():
|
986 |
+
# doesn't cause recursion error
|
987 |
+
r = Symbol('r', real=True)
|
988 |
+
assert Abs(r + Piecewise((0, r > 0), (1 - r, True)))
|
989 |
+
|
990 |
+
|
991 |
+
def test_issue_22189():
|
992 |
+
x = Symbol('x')
|
993 |
+
for a in (sqrt(7 - 2*x) - 2, 1 - x):
|
994 |
+
assert Abs(a) - Abs(-a) == 0, a
|
995 |
+
|
996 |
+
|
997 |
+
def test_zero_assumptions():
|
998 |
+
nr = Symbol('nonreal', real=False, finite=True)
|
999 |
+
ni = Symbol('nonimaginary', imaginary=False)
|
1000 |
+
# imaginary implies not zero
|
1001 |
+
nzni = Symbol('nonzerononimaginary', zero=False, imaginary=False)
|
1002 |
+
|
1003 |
+
assert re(nr).is_zero is None
|
1004 |
+
assert im(nr).is_zero is False
|
1005 |
+
|
1006 |
+
assert re(ni).is_zero is None
|
1007 |
+
assert im(ni).is_zero is None
|
1008 |
+
|
1009 |
+
assert re(nzni).is_zero is False
|
1010 |
+
assert im(nzni).is_zero is None
|
1011 |
+
|
1012 |
+
|
1013 |
+
@_both_exp_pow
|
1014 |
+
def test_issue_15893():
|
1015 |
+
f = Function('f', real=True)
|
1016 |
+
x = Symbol('x', real=True)
|
1017 |
+
eq = Derivative(Abs(f(x)), f(x))
|
1018 |
+
assert eq.doit() == sign(f(x))
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_exponential.py
ADDED
@@ -0,0 +1,806 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.assumptions.refine import refine
|
2 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
3 |
+
from sympy.concrete.products import Product
|
4 |
+
from sympy.concrete.summations import Sum
|
5 |
+
from sympy.core.function import expand_log
|
6 |
+
from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
|
7 |
+
from sympy.core.power import Pow
|
8 |
+
from sympy.core.singleton import S
|
9 |
+
from sympy.core.symbol import (Symbol, symbols)
|
10 |
+
from sympy.functions.elementary.complexes import (adjoint, conjugate, re, sign, transpose)
|
11 |
+
from sympy.functions.elementary.exponential import (LambertW, exp, exp_polar, log)
|
12 |
+
from sympy.functions.elementary.hyperbolic import (cosh, sinh, tanh)
|
13 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
14 |
+
from sympy.functions.elementary.trigonometric import (cos, sin, tan)
|
15 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
16 |
+
from sympy.polys.polytools import gcd
|
17 |
+
from sympy.series.order import O
|
18 |
+
from sympy.simplify.simplify import simplify
|
19 |
+
from sympy.core.parameters import global_parameters
|
20 |
+
from sympy.functions.elementary.exponential import match_real_imag
|
21 |
+
from sympy.abc import x, y, z
|
22 |
+
from sympy.core.expr import unchanged
|
23 |
+
from sympy.core.function import ArgumentIndexError
|
24 |
+
from sympy.testing.pytest import raises, XFAIL, _both_exp_pow
|
25 |
+
|
26 |
+
|
27 |
+
@_both_exp_pow
|
28 |
+
def test_exp_values():
|
29 |
+
if global_parameters.exp_is_pow:
|
30 |
+
assert type(exp(x)) is Pow
|
31 |
+
else:
|
32 |
+
assert type(exp(x)) is exp
|
33 |
+
|
34 |
+
k = Symbol('k', integer=True)
|
35 |
+
|
36 |
+
assert exp(nan) is nan
|
37 |
+
|
38 |
+
assert exp(oo) is oo
|
39 |
+
assert exp(-oo) == 0
|
40 |
+
|
41 |
+
assert exp(0) == 1
|
42 |
+
assert exp(1) == E
|
43 |
+
assert exp(-1 + x).as_base_exp() == (S.Exp1, x - 1)
|
44 |
+
assert exp(1 + x).as_base_exp() == (S.Exp1, x + 1)
|
45 |
+
|
46 |
+
assert exp(pi*I/2) == I
|
47 |
+
assert exp(pi*I) == -1
|
48 |
+
assert exp(pi*I*Rational(3, 2)) == -I
|
49 |
+
assert exp(2*pi*I) == 1
|
50 |
+
|
51 |
+
assert refine(exp(pi*I*2*k)) == 1
|
52 |
+
assert refine(exp(pi*I*2*(k + S.Half))) == -1
|
53 |
+
assert refine(exp(pi*I*2*(k + Rational(1, 4)))) == I
|
54 |
+
assert refine(exp(pi*I*2*(k + Rational(3, 4)))) == -I
|
55 |
+
|
56 |
+
assert exp(log(x)) == x
|
57 |
+
assert exp(2*log(x)) == x**2
|
58 |
+
assert exp(pi*log(x)) == x**pi
|
59 |
+
|
60 |
+
assert exp(17*log(x) + E*log(y)) == x**17 * y**E
|
61 |
+
|
62 |
+
assert exp(x*log(x)) != x**x
|
63 |
+
assert exp(sin(x)*log(x)) != x
|
64 |
+
|
65 |
+
assert exp(3*log(x) + oo*x) == exp(oo*x) * x**3
|
66 |
+
assert exp(4*log(x)*log(y) + 3*log(x)) == x**3 * exp(4*log(x)*log(y))
|
67 |
+
|
68 |
+
assert exp(-oo, evaluate=False).is_finite is True
|
69 |
+
assert exp(oo, evaluate=False).is_finite is False
|
70 |
+
|
71 |
+
|
72 |
+
@_both_exp_pow
|
73 |
+
def test_exp_period():
|
74 |
+
assert exp(I*pi*Rational(9, 4)) == exp(I*pi/4)
|
75 |
+
assert exp(I*pi*Rational(46, 18)) == exp(I*pi*Rational(5, 9))
|
76 |
+
assert exp(I*pi*Rational(25, 7)) == exp(I*pi*Rational(-3, 7))
|
77 |
+
assert exp(I*pi*Rational(-19, 3)) == exp(-I*pi/3)
|
78 |
+
assert exp(I*pi*Rational(37, 8)) - exp(I*pi*Rational(-11, 8)) == 0
|
79 |
+
assert exp(I*pi*Rational(-5, 3)) / exp(I*pi*Rational(11, 5)) * exp(I*pi*Rational(148, 15)) == 1
|
80 |
+
|
81 |
+
assert exp(2 - I*pi*Rational(17, 5)) == exp(2 + I*pi*Rational(3, 5))
|
82 |
+
assert exp(log(3) + I*pi*Rational(29, 9)) == 3 * exp(I*pi*Rational(-7, 9))
|
83 |
+
|
84 |
+
n = Symbol('n', integer=True)
|
85 |
+
e = Symbol('e', even=True)
|
86 |
+
assert exp(e*I*pi) == 1
|
87 |
+
assert exp((e + 1)*I*pi) == -1
|
88 |
+
assert exp((1 + 4*n)*I*pi/2) == I
|
89 |
+
assert exp((-1 + 4*n)*I*pi/2) == -I
|
90 |
+
|
91 |
+
|
92 |
+
@_both_exp_pow
|
93 |
+
def test_exp_log():
|
94 |
+
x = Symbol("x", real=True)
|
95 |
+
assert log(exp(x)) == x
|
96 |
+
assert exp(log(x)) == x
|
97 |
+
|
98 |
+
if not global_parameters.exp_is_pow:
|
99 |
+
assert log(x).inverse() == exp
|
100 |
+
assert exp(x).inverse() == log
|
101 |
+
|
102 |
+
y = Symbol("y", polar=True)
|
103 |
+
assert log(exp_polar(z)) == z
|
104 |
+
assert exp(log(y)) == y
|
105 |
+
|
106 |
+
|
107 |
+
@_both_exp_pow
|
108 |
+
def test_exp_expand():
|
109 |
+
e = exp(log(Rational(2))*(1 + x) - log(Rational(2))*x)
|
110 |
+
assert e.expand() == 2
|
111 |
+
assert exp(x + y) != exp(x)*exp(y)
|
112 |
+
assert exp(x + y).expand() == exp(x)*exp(y)
|
113 |
+
|
114 |
+
|
115 |
+
@_both_exp_pow
|
116 |
+
def test_exp__as_base_exp():
|
117 |
+
assert exp(x).as_base_exp() == (E, x)
|
118 |
+
assert exp(2*x).as_base_exp() == (E, 2*x)
|
119 |
+
assert exp(x*y).as_base_exp() == (E, x*y)
|
120 |
+
assert exp(-x).as_base_exp() == (E, -x)
|
121 |
+
|
122 |
+
# Pow( *expr.as_base_exp() ) == expr invariant should hold
|
123 |
+
assert E**x == exp(x)
|
124 |
+
assert E**(2*x) == exp(2*x)
|
125 |
+
assert E**(x*y) == exp(x*y)
|
126 |
+
|
127 |
+
assert exp(x).base is S.Exp1
|
128 |
+
assert exp(x).exp == x
|
129 |
+
|
130 |
+
|
131 |
+
@_both_exp_pow
|
132 |
+
def test_exp_infinity():
|
133 |
+
assert exp(I*y) != nan
|
134 |
+
assert refine(exp(I*oo)) is nan
|
135 |
+
assert refine(exp(-I*oo)) is nan
|
136 |
+
assert exp(y*I*oo) != nan
|
137 |
+
assert exp(zoo) is nan
|
138 |
+
x = Symbol('x', extended_real=True, finite=False)
|
139 |
+
assert exp(x).is_complex is None
|
140 |
+
|
141 |
+
|
142 |
+
@_both_exp_pow
|
143 |
+
def test_exp_subs():
|
144 |
+
x = Symbol('x')
|
145 |
+
e = (exp(3*log(x), evaluate=False)) # evaluates to x**3
|
146 |
+
assert e.subs(x**3, y**3) == e
|
147 |
+
assert e.subs(x**2, 5) == e
|
148 |
+
assert (x**3).subs(x**2, y) != y**Rational(3, 2)
|
149 |
+
assert exp(exp(x) + exp(x**2)).subs(exp(exp(x)), y) == y * exp(exp(x**2))
|
150 |
+
assert exp(x).subs(E, y) == y**x
|
151 |
+
x = symbols('x', real=True)
|
152 |
+
assert exp(5*x).subs(exp(7*x), y) == y**Rational(5, 7)
|
153 |
+
assert exp(2*x + 7).subs(exp(3*x), y) == y**Rational(2, 3) * exp(7)
|
154 |
+
x = symbols('x', positive=True)
|
155 |
+
assert exp(3*log(x)).subs(x**2, y) == y**Rational(3, 2)
|
156 |
+
# differentiate between E and exp
|
157 |
+
assert exp(exp(x + E)).subs(exp, 3) == 3**(3**(x + E))
|
158 |
+
assert exp(exp(x + E)).subs(exp, sin) == sin(sin(x + E))
|
159 |
+
assert exp(exp(x + E)).subs(E, 3) == 3**(3**(x + 3))
|
160 |
+
assert exp(3).subs(E, sin) == sin(3)
|
161 |
+
|
162 |
+
|
163 |
+
def test_exp_adjoint():
|
164 |
+
assert adjoint(exp(x)) == exp(adjoint(x))
|
165 |
+
|
166 |
+
|
167 |
+
def test_exp_conjugate():
|
168 |
+
assert conjugate(exp(x)) == exp(conjugate(x))
|
169 |
+
|
170 |
+
|
171 |
+
@_both_exp_pow
|
172 |
+
def test_exp_transpose():
|
173 |
+
assert transpose(exp(x)) == exp(transpose(x))
|
174 |
+
|
175 |
+
|
176 |
+
@_both_exp_pow
|
177 |
+
def test_exp_rewrite():
|
178 |
+
assert exp(x).rewrite(sin) == sinh(x) + cosh(x)
|
179 |
+
assert exp(x*I).rewrite(cos) == cos(x) + I*sin(x)
|
180 |
+
assert exp(1).rewrite(cos) == sinh(1) + cosh(1)
|
181 |
+
assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
|
182 |
+
assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
|
183 |
+
assert exp(x).rewrite(tanh) == (1 + tanh(x/2))/(1 - tanh(x/2))
|
184 |
+
assert exp(pi*I/4).rewrite(sqrt) == sqrt(2)/2 + sqrt(2)*I/2
|
185 |
+
assert exp(pi*I/3).rewrite(sqrt) == S.Half + sqrt(3)*I/2
|
186 |
+
if not global_parameters.exp_is_pow:
|
187 |
+
assert exp(x*log(y)).rewrite(Pow) == y**x
|
188 |
+
assert exp(log(x)*log(y)).rewrite(Pow) in [x**log(y), y**log(x)]
|
189 |
+
assert exp(log(log(x))*y).rewrite(Pow) == log(x)**y
|
190 |
+
|
191 |
+
n = Symbol('n', integer=True)
|
192 |
+
|
193 |
+
assert Sum((exp(pi*I/2)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == Rational(4, 5) + I*2/5
|
194 |
+
assert Sum((exp(pi*I/4)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(1 - sqrt(2)*(1 + I)/4)
|
195 |
+
assert (Sum((exp(pi*I/3)/2)**n, (n, 0, oo)).rewrite(sqrt).doit().cancel()
|
196 |
+
== 4*I/(sqrt(3) + 3*I))
|
197 |
+
|
198 |
+
|
199 |
+
@_both_exp_pow
|
200 |
+
def test_exp_leading_term():
|
201 |
+
assert exp(x).as_leading_term(x) == 1
|
202 |
+
assert exp(2 + x).as_leading_term(x) == exp(2)
|
203 |
+
assert exp((2*x + 3) / (x+1)).as_leading_term(x) == exp(3)
|
204 |
+
|
205 |
+
# The following tests are commented, since now SymPy returns the
|
206 |
+
# original function when the leading term in the series expansion does
|
207 |
+
# not exist.
|
208 |
+
# raises(NotImplementedError, lambda: exp(1/x).as_leading_term(x))
|
209 |
+
# raises(NotImplementedError, lambda: exp((x + 1) / x**2).as_leading_term(x))
|
210 |
+
# raises(NotImplementedError, lambda: exp(x + 1/x).as_leading_term(x))
|
211 |
+
|
212 |
+
|
213 |
+
@_both_exp_pow
|
214 |
+
def test_exp_taylor_term():
|
215 |
+
x = symbols('x')
|
216 |
+
assert exp(x).taylor_term(1, x) == x
|
217 |
+
assert exp(x).taylor_term(3, x) == x**3/6
|
218 |
+
assert exp(x).taylor_term(4, x) == x**4/24
|
219 |
+
assert exp(x).taylor_term(-1, x) is S.Zero
|
220 |
+
|
221 |
+
|
222 |
+
def test_exp_MatrixSymbol():
|
223 |
+
A = MatrixSymbol("A", 2, 2)
|
224 |
+
assert exp(A).has(exp)
|
225 |
+
|
226 |
+
|
227 |
+
def test_exp_fdiff():
|
228 |
+
x = Symbol('x')
|
229 |
+
raises(ArgumentIndexError, lambda: exp(x).fdiff(2))
|
230 |
+
|
231 |
+
|
232 |
+
def test_log_values():
|
233 |
+
assert log(nan) is nan
|
234 |
+
|
235 |
+
assert log(oo) is oo
|
236 |
+
assert log(-oo) is oo
|
237 |
+
|
238 |
+
assert log(zoo) is zoo
|
239 |
+
assert log(-zoo) is zoo
|
240 |
+
|
241 |
+
assert log(0) is zoo
|
242 |
+
|
243 |
+
assert log(1) == 0
|
244 |
+
assert log(-1) == I*pi
|
245 |
+
|
246 |
+
assert log(E) == 1
|
247 |
+
assert log(-E).expand() == 1 + I*pi
|
248 |
+
|
249 |
+
assert unchanged(log, pi)
|
250 |
+
assert log(-pi).expand() == log(pi) + I*pi
|
251 |
+
|
252 |
+
assert unchanged(log, 17)
|
253 |
+
assert log(-17) == log(17) + I*pi
|
254 |
+
|
255 |
+
assert log(I) == I*pi/2
|
256 |
+
assert log(-I) == -I*pi/2
|
257 |
+
|
258 |
+
assert log(17*I) == I*pi/2 + log(17)
|
259 |
+
assert log(-17*I).expand() == -I*pi/2 + log(17)
|
260 |
+
|
261 |
+
assert log(oo*I) is oo
|
262 |
+
assert log(-oo*I) is oo
|
263 |
+
assert log(0, 2) is zoo
|
264 |
+
assert log(0, 5) is zoo
|
265 |
+
|
266 |
+
assert exp(-log(3))**(-1) == 3
|
267 |
+
|
268 |
+
assert log(S.Half) == -log(2)
|
269 |
+
assert log(2*3).func is log
|
270 |
+
assert log(2*3**2).func is log
|
271 |
+
|
272 |
+
|
273 |
+
def test_match_real_imag():
|
274 |
+
x, y = symbols('x,y', real=True)
|
275 |
+
i = Symbol('i', imaginary=True)
|
276 |
+
assert match_real_imag(S.One) == (1, 0)
|
277 |
+
assert match_real_imag(I) == (0, 1)
|
278 |
+
assert match_real_imag(3 - 5*I) == (3, -5)
|
279 |
+
assert match_real_imag(-sqrt(3) + S.Half*I) == (-sqrt(3), S.Half)
|
280 |
+
assert match_real_imag(x + y*I) == (x, y)
|
281 |
+
assert match_real_imag(x*I + y*I) == (0, x + y)
|
282 |
+
assert match_real_imag((x + y)*I) == (0, x + y)
|
283 |
+
assert match_real_imag(Rational(-2, 3)*i*I) == (None, None)
|
284 |
+
assert match_real_imag(1 - 2*i) == (None, None)
|
285 |
+
assert match_real_imag(sqrt(2)*(3 - 5*I)) == (None, None)
|
286 |
+
|
287 |
+
|
288 |
+
def test_log_exact():
|
289 |
+
# check for pi/2, pi/3, pi/4, pi/6, pi/8, pi/12; pi/5, pi/10:
|
290 |
+
for n in range(-23, 24):
|
291 |
+
if gcd(n, 24) != 1:
|
292 |
+
assert log(exp(n*I*pi/24).rewrite(sqrt)) == n*I*pi/24
|
293 |
+
for n in range(-9, 10):
|
294 |
+
assert log(exp(n*I*pi/10).rewrite(sqrt)) == n*I*pi/10
|
295 |
+
|
296 |
+
assert log(S.Half - I*sqrt(3)/2) == -I*pi/3
|
297 |
+
assert log(Rational(-1, 2) + I*sqrt(3)/2) == I*pi*Rational(2, 3)
|
298 |
+
assert log(-sqrt(2)/2 - I*sqrt(2)/2) == -I*pi*Rational(3, 4)
|
299 |
+
assert log(-sqrt(3)/2 - I*S.Half) == -I*pi*Rational(5, 6)
|
300 |
+
|
301 |
+
assert log(Rational(-1, 4) + sqrt(5)/4 - I*sqrt(sqrt(5)/8 + Rational(5, 8))) == -I*pi*Rational(2, 5)
|
302 |
+
assert log(sqrt(Rational(5, 8) - sqrt(5)/8) + I*(Rational(1, 4) + sqrt(5)/4)) == I*pi*Rational(3, 10)
|
303 |
+
assert log(-sqrt(sqrt(2)/4 + S.Half) + I*sqrt(S.Half - sqrt(2)/4)) == I*pi*Rational(7, 8)
|
304 |
+
assert log(-sqrt(6)/4 - sqrt(2)/4 + I*(-sqrt(6)/4 + sqrt(2)/4)) == -I*pi*Rational(11, 12)
|
305 |
+
|
306 |
+
assert log(-1 + I*sqrt(3)) == log(2) + I*pi*Rational(2, 3)
|
307 |
+
assert log(5 + 5*I) == log(5*sqrt(2)) + I*pi/4
|
308 |
+
assert log(sqrt(-12)) == log(2*sqrt(3)) + I*pi/2
|
309 |
+
assert log(-sqrt(6) + sqrt(2) - I*sqrt(6) - I*sqrt(2)) == log(4) - I*pi*Rational(7, 12)
|
310 |
+
assert log(-sqrt(6-3*sqrt(2)) - I*sqrt(6+3*sqrt(2))) == log(2*sqrt(3)) - I*pi*Rational(5, 8)
|
311 |
+
assert log(1 + I*sqrt(2-sqrt(2))/sqrt(2+sqrt(2))) == log(2/sqrt(sqrt(2) + 2)) + I*pi/8
|
312 |
+
assert log(cos(pi*Rational(7, 12)) + I*sin(pi*Rational(7, 12))) == I*pi*Rational(7, 12)
|
313 |
+
assert log(cos(pi*Rational(6, 5)) + I*sin(pi*Rational(6, 5))) == I*pi*Rational(-4, 5)
|
314 |
+
|
315 |
+
assert log(5*(1 + I)/sqrt(2)) == log(5) + I*pi/4
|
316 |
+
assert log(sqrt(2)*(-sqrt(3) + 1 - sqrt(3)*I - I)) == log(4) - I*pi*Rational(7, 12)
|
317 |
+
assert log(-sqrt(2)*(1 - I*sqrt(3))) == log(2*sqrt(2)) + I*pi*Rational(2, 3)
|
318 |
+
assert log(sqrt(3)*I*(-sqrt(6 - 3*sqrt(2)) - I*sqrt(3*sqrt(2) + 6))) == log(6) - I*pi/8
|
319 |
+
|
320 |
+
zero = (1 + sqrt(2))**2 - 3 - 2*sqrt(2)
|
321 |
+
assert log(zero - I*sqrt(3)) == log(sqrt(3)) - I*pi/2
|
322 |
+
assert unchanged(log, zero + I*zero) or log(zero + zero*I) is zoo
|
323 |
+
|
324 |
+
# bail quickly if no obvious simplification is possible:
|
325 |
+
assert unchanged(log, (sqrt(2)-1/sqrt(sqrt(3)+I))**1000)
|
326 |
+
# beware of non-real coefficients
|
327 |
+
assert unchanged(log, sqrt(2-sqrt(5))*(1 + I))
|
328 |
+
|
329 |
+
|
330 |
+
def test_log_base():
|
331 |
+
assert log(1, 2) == 0
|
332 |
+
assert log(2, 2) == 1
|
333 |
+
assert log(3, 2) == log(3)/log(2)
|
334 |
+
assert log(6, 2) == 1 + log(3)/log(2)
|
335 |
+
assert log(6, 3) == 1 + log(2)/log(3)
|
336 |
+
assert log(2**3, 2) == 3
|
337 |
+
assert log(3**3, 3) == 3
|
338 |
+
assert log(5, 1) is zoo
|
339 |
+
assert log(1, 1) is nan
|
340 |
+
assert log(Rational(2, 3), 10) == log(Rational(2, 3))/log(10)
|
341 |
+
assert log(Rational(2, 3), Rational(1, 3)) == -log(2)/log(3) + 1
|
342 |
+
assert log(Rational(2, 3), Rational(2, 5)) == \
|
343 |
+
log(Rational(2, 3))/log(Rational(2, 5))
|
344 |
+
# issue 17148
|
345 |
+
assert log(Rational(8, 3), 2) == -log(3)/log(2) + 3
|
346 |
+
|
347 |
+
|
348 |
+
def test_log_symbolic():
|
349 |
+
assert log(x, exp(1)) == log(x)
|
350 |
+
assert log(exp(x)) != x
|
351 |
+
|
352 |
+
assert log(x, exp(1)) == log(x)
|
353 |
+
assert log(x*y) != log(x) + log(y)
|
354 |
+
assert log(x/y).expand() != log(x) - log(y)
|
355 |
+
assert log(x/y).expand(force=True) == log(x) - log(y)
|
356 |
+
assert log(x**y).expand() != y*log(x)
|
357 |
+
assert log(x**y).expand(force=True) == y*log(x)
|
358 |
+
|
359 |
+
assert log(x, 2) == log(x)/log(2)
|
360 |
+
assert log(E, 2) == 1/log(2)
|
361 |
+
|
362 |
+
p, q = symbols('p,q', positive=True)
|
363 |
+
r = Symbol('r', real=True)
|
364 |
+
|
365 |
+
assert log(p**2) != 2*log(p)
|
366 |
+
assert log(p**2).expand() == 2*log(p)
|
367 |
+
assert log(x**2).expand() != 2*log(x)
|
368 |
+
assert log(p**q) != q*log(p)
|
369 |
+
assert log(exp(p)) == p
|
370 |
+
assert log(p*q) != log(p) + log(q)
|
371 |
+
assert log(p*q).expand() == log(p) + log(q)
|
372 |
+
|
373 |
+
assert log(-sqrt(3)) == log(sqrt(3)) + I*pi
|
374 |
+
assert log(-exp(p)) != p + I*pi
|
375 |
+
assert log(-exp(x)).expand() != x + I*pi
|
376 |
+
assert log(-exp(r)).expand() == r + I*pi
|
377 |
+
|
378 |
+
assert log(x**y) != y*log(x)
|
379 |
+
|
380 |
+
assert (log(x**-5)**-1).expand() != -1/log(x)/5
|
381 |
+
assert (log(p**-5)**-1).expand() == -1/log(p)/5
|
382 |
+
assert log(-x).func is log and log(-x).args[0] == -x
|
383 |
+
assert log(-p).func is log and log(-p).args[0] == -p
|
384 |
+
|
385 |
+
|
386 |
+
def test_log_exp():
|
387 |
+
assert log(exp(4*I*pi)) == 0 # exp evaluates
|
388 |
+
assert log(exp(-5*I*pi)) == I*pi # exp evaluates
|
389 |
+
assert log(exp(I*pi*Rational(19, 4))) == I*pi*Rational(3, 4)
|
390 |
+
assert log(exp(I*pi*Rational(25, 7))) == I*pi*Rational(-3, 7)
|
391 |
+
assert log(exp(-5*I)) == -5*I + 2*I*pi
|
392 |
+
|
393 |
+
|
394 |
+
@_both_exp_pow
|
395 |
+
def test_exp_assumptions():
|
396 |
+
r = Symbol('r', real=True)
|
397 |
+
i = Symbol('i', imaginary=True)
|
398 |
+
for e in exp, exp_polar:
|
399 |
+
assert e(x).is_real is None
|
400 |
+
assert e(x).is_imaginary is None
|
401 |
+
assert e(i).is_real is None
|
402 |
+
assert e(i).is_imaginary is None
|
403 |
+
assert e(r).is_real is True
|
404 |
+
assert e(r).is_imaginary is False
|
405 |
+
assert e(re(x)).is_extended_real is True
|
406 |
+
assert e(re(x)).is_imaginary is False
|
407 |
+
|
408 |
+
assert Pow(E, I*pi, evaluate=False).is_imaginary == False
|
409 |
+
assert Pow(E, 2*I*pi, evaluate=False).is_imaginary == False
|
410 |
+
assert Pow(E, I*pi/2, evaluate=False).is_imaginary == True
|
411 |
+
assert Pow(E, I*pi/3, evaluate=False).is_imaginary is None
|
412 |
+
|
413 |
+
assert exp(0, evaluate=False).is_algebraic
|
414 |
+
|
415 |
+
a = Symbol('a', algebraic=True)
|
416 |
+
an = Symbol('an', algebraic=True, nonzero=True)
|
417 |
+
r = Symbol('r', rational=True)
|
418 |
+
rn = Symbol('rn', rational=True, nonzero=True)
|
419 |
+
assert exp(a).is_algebraic is None
|
420 |
+
assert exp(an).is_algebraic is False
|
421 |
+
assert exp(pi*r).is_algebraic is None
|
422 |
+
assert exp(pi*rn).is_algebraic is False
|
423 |
+
|
424 |
+
assert exp(0, evaluate=False).is_algebraic is True
|
425 |
+
assert exp(I*pi/3, evaluate=False).is_algebraic is True
|
426 |
+
assert exp(I*pi*r, evaluate=False).is_algebraic is True
|
427 |
+
|
428 |
+
|
429 |
+
@_both_exp_pow
|
430 |
+
def test_exp_AccumBounds():
|
431 |
+
assert exp(AccumBounds(1, 2)) == AccumBounds(E, E**2)
|
432 |
+
|
433 |
+
|
434 |
+
def test_log_assumptions():
|
435 |
+
p = symbols('p', positive=True)
|
436 |
+
n = symbols('n', negative=True)
|
437 |
+
z = symbols('z', zero=True)
|
438 |
+
x = symbols('x', infinite=True, extended_positive=True)
|
439 |
+
|
440 |
+
assert log(z).is_positive is False
|
441 |
+
assert log(x).is_extended_positive is True
|
442 |
+
assert log(2) > 0
|
443 |
+
assert log(1, evaluate=False).is_zero
|
444 |
+
assert log(1 + z).is_zero
|
445 |
+
assert log(p).is_zero is None
|
446 |
+
assert log(n).is_zero is False
|
447 |
+
assert log(0.5).is_negative is True
|
448 |
+
assert log(exp(p) + 1).is_positive
|
449 |
+
|
450 |
+
assert log(1, evaluate=False).is_algebraic
|
451 |
+
assert log(42, evaluate=False).is_algebraic is False
|
452 |
+
|
453 |
+
assert log(1 + z).is_rational
|
454 |
+
|
455 |
+
|
456 |
+
def test_log_hashing():
|
457 |
+
assert x != log(log(x))
|
458 |
+
assert hash(x) != hash(log(log(x)))
|
459 |
+
assert log(x) != log(log(log(x)))
|
460 |
+
|
461 |
+
e = 1/log(log(x) + log(log(x)))
|
462 |
+
assert e.base.func is log
|
463 |
+
e = 1/log(log(x) + log(log(log(x))))
|
464 |
+
assert e.base.func is log
|
465 |
+
|
466 |
+
e = log(log(x))
|
467 |
+
assert e.func is log
|
468 |
+
assert x.func is not log
|
469 |
+
assert hash(log(log(x))) != hash(x)
|
470 |
+
assert e != x
|
471 |
+
|
472 |
+
|
473 |
+
def test_log_sign():
|
474 |
+
assert sign(log(2)) == 1
|
475 |
+
|
476 |
+
|
477 |
+
def test_log_expand_complex():
|
478 |
+
assert log(1 + I).expand(complex=True) == log(2)/2 + I*pi/4
|
479 |
+
assert log(1 - sqrt(2)).expand(complex=True) == log(sqrt(2) - 1) + I*pi
|
480 |
+
|
481 |
+
|
482 |
+
def test_log_apply_evalf():
|
483 |
+
value = (log(3)/log(2) - 1).evalf()
|
484 |
+
assert value.epsilon_eq(Float("0.58496250072115618145373"))
|
485 |
+
|
486 |
+
|
487 |
+
def test_log_leading_term():
|
488 |
+
p = Symbol('p')
|
489 |
+
|
490 |
+
# Test for STEP 3
|
491 |
+
assert log(1 + x + x**2).as_leading_term(x, cdir=1) == x
|
492 |
+
# Test for STEP 4
|
493 |
+
assert log(2*x).as_leading_term(x, cdir=1) == log(x) + log(2)
|
494 |
+
assert log(2*x).as_leading_term(x, cdir=-1) == log(x) + log(2)
|
495 |
+
assert log(-2*x).as_leading_term(x, cdir=1, logx=p) == p + log(2) + I*pi
|
496 |
+
assert log(-2*x).as_leading_term(x, cdir=-1, logx=p) == p + log(2) - I*pi
|
497 |
+
# Test for STEP 5
|
498 |
+
assert log(-2*x + (3 - I)*x**2).as_leading_term(x, cdir=1) == log(x) + log(2) - I*pi
|
499 |
+
assert log(-2*x + (3 - I)*x**2).as_leading_term(x, cdir=-1) == log(x) + log(2) - I*pi
|
500 |
+
assert log(2*x + (3 - I)*x**2).as_leading_term(x, cdir=1) == log(x) + log(2)
|
501 |
+
assert log(2*x + (3 - I)*x**2).as_leading_term(x, cdir=-1) == log(x) + log(2) - 2*I*pi
|
502 |
+
assert log(-1 + x - I*x**2 + I*x**3).as_leading_term(x, cdir=1) == -I*pi
|
503 |
+
assert log(-1 + x - I*x**2 + I*x**3).as_leading_term(x, cdir=-1) == -I*pi
|
504 |
+
assert log(-1/(1 - x)).as_leading_term(x, cdir=1) == I*pi
|
505 |
+
assert log(-1/(1 - x)).as_leading_term(x, cdir=-1) == I*pi
|
506 |
+
|
507 |
+
|
508 |
+
def test_log_nseries():
|
509 |
+
p = Symbol('p')
|
510 |
+
assert log(1/x)._eval_nseries(x, 4, logx=-p, cdir=1) == p
|
511 |
+
assert log(1/x)._eval_nseries(x, 4, logx=-p, cdir=-1) == p + 2*I*pi
|
512 |
+
assert log(x - 1)._eval_nseries(x, 4, None, I) == I*pi - x - x**2/2 - x**3/3 + O(x**4)
|
513 |
+
assert log(x - 1)._eval_nseries(x, 4, None, -I) == -I*pi - x - x**2/2 - x**3/3 + O(x**4)
|
514 |
+
assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x + x**2/2 + O(x**3)
|
515 |
+
assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == -I*pi - I*x + x**2/2 + O(x**3)
|
516 |
+
assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x**2 + O(x**3)
|
517 |
+
assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == I*pi - I*x**2 + O(x**3)
|
518 |
+
assert log(2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, 1) == log(2) + log(x) + \
|
519 |
+
x*(S(3)/2 - I/2) + x**2*(-1 + 3*I/4) + O(x**3)
|
520 |
+
assert log(2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, -1) == -2*I*pi + log(2) + \
|
521 |
+
log(x) - x*(-S(3)/2 + I/2) + x**2*(-1 + 3*I/4) + O(x**3)
|
522 |
+
assert log(-2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, 1) == -I*pi + log(2) + log(x) + \
|
523 |
+
x*(-S(3)/2 + I/2) + x**2*(-1 + 3*I/4) + O(x**3)
|
524 |
+
assert log(-2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, -1) == -I*pi + log(2) + log(x) - \
|
525 |
+
x*(S(3)/2 - I/2) + x**2*(-1 + 3*I/4) + O(x**3)
|
526 |
+
assert log(sqrt(-I*x**2 - 3)*sqrt(-I*x**2 - 1) - 2)._eval_nseries(x, 3, None, 1) == -I*pi + \
|
527 |
+
log(sqrt(3) + 2) + I*x**2*(-2 + 4*sqrt(3)/3) + O(x**3)
|
528 |
+
assert log(-1/(1 - x))._eval_nseries(x, 3, None, 1) == I*pi + x + x**2/2 + O(x**3)
|
529 |
+
assert log(-1/(1 - x))._eval_nseries(x, 3, None, -1) == I*pi + x + x**2/2 + O(x**3)
|
530 |
+
|
531 |
+
|
532 |
+
def test_log_series():
|
533 |
+
# Note Series at infinities other than oo/-oo were introduced as a part of
|
534 |
+
# pull request 23798. Refer https://github.com/sympy/sympy/pull/23798 for
|
535 |
+
# more information.
|
536 |
+
expr1 = log(1 + x)
|
537 |
+
expr2 = log(x + sqrt(x**2 + 1))
|
538 |
+
|
539 |
+
assert expr1.series(x, x0=I*oo, n=4) == 1/(3*x**3) - 1/(2*x**2) + 1/x + \
|
540 |
+
I*pi/2 - log(I/x) + O(x**(-4), (x, oo*I))
|
541 |
+
assert expr1.series(x, x0=-I*oo, n=4) == 1/(3*x**3) - 1/(2*x**2) + 1/x - \
|
542 |
+
I*pi/2 - log(-I/x) + O(x**(-4), (x, -oo*I))
|
543 |
+
assert expr2.series(x, x0=I*oo, n=4) == 1/(4*x**2) + I*pi/2 + log(2) - \
|
544 |
+
log(I/x) + O(x**(-4), (x, oo*I))
|
545 |
+
assert expr2.series(x, x0=-I*oo, n=4) == -1/(4*x**2) - I*pi/2 - log(2) + \
|
546 |
+
log(-I/x) + O(x**(-4), (x, -oo*I))
|
547 |
+
|
548 |
+
|
549 |
+
def test_log_expand():
|
550 |
+
w = Symbol("w", positive=True)
|
551 |
+
e = log(w**(log(5)/log(3)))
|
552 |
+
assert e.expand() == log(5)/log(3) * log(w)
|
553 |
+
x, y, z = symbols('x,y,z', positive=True)
|
554 |
+
assert log(x*(y + z)).expand(mul=False) == log(x) + log(y + z)
|
555 |
+
assert log(log(x**2)*log(y*z)).expand() in [log(2*log(x)*log(y) +
|
556 |
+
2*log(x)*log(z)), log(log(x)*log(z) + log(y)*log(x)) + log(2),
|
557 |
+
log((log(y) + log(z))*log(x)) + log(2)]
|
558 |
+
assert log(x**log(x**2)).expand(deep=False) == log(x)*log(x**2)
|
559 |
+
assert log(x**log(x**2)).expand() == 2*log(x)**2
|
560 |
+
x, y = symbols('x,y')
|
561 |
+
assert log(x*y).expand(force=True) == log(x) + log(y)
|
562 |
+
assert log(x**y).expand(force=True) == y*log(x)
|
563 |
+
assert log(exp(x)).expand(force=True) == x
|
564 |
+
|
565 |
+
# there's generally no need to expand out logs since this requires
|
566 |
+
# factoring and if simplification is sought, it's cheaper to put
|
567 |
+
# logs together than it is to take them apart.
|
568 |
+
assert log(2*3**2).expand() != 2*log(3) + log(2)
|
569 |
+
|
570 |
+
|
571 |
+
@XFAIL
|
572 |
+
def test_log_expand_fail():
|
573 |
+
x, y, z = symbols('x,y,z', positive=True)
|
574 |
+
assert (log(x*(y + z))*(x + y)).expand(mul=True, log=True) == y*log(
|
575 |
+
x) + y*log(y + z) + z*log(x) + z*log(y + z)
|
576 |
+
|
577 |
+
|
578 |
+
def test_log_simplify():
|
579 |
+
x = Symbol("x", positive=True)
|
580 |
+
assert log(x**2).expand() == 2*log(x)
|
581 |
+
assert expand_log(log(x**(2 + log(2)))) == (2 + log(2))*log(x)
|
582 |
+
|
583 |
+
z = Symbol('z')
|
584 |
+
assert log(sqrt(z)).expand() == log(z)/2
|
585 |
+
assert expand_log(log(z**(log(2) - 1))) == (log(2) - 1)*log(z)
|
586 |
+
assert log(z**(-1)).expand() != -log(z)
|
587 |
+
assert log(z**(x/(x+1))).expand() == x*log(z)/(x + 1)
|
588 |
+
|
589 |
+
|
590 |
+
def test_log_AccumBounds():
|
591 |
+
assert log(AccumBounds(1, E)) == AccumBounds(0, 1)
|
592 |
+
assert log(AccumBounds(0, E)) == AccumBounds(-oo, 1)
|
593 |
+
assert log(AccumBounds(-1, E)) == S.NaN
|
594 |
+
assert log(AccumBounds(0, oo)) == AccumBounds(-oo, oo)
|
595 |
+
assert log(AccumBounds(-oo, 0)) == S.NaN
|
596 |
+
assert log(AccumBounds(-oo, oo)) == S.NaN
|
597 |
+
|
598 |
+
|
599 |
+
@_both_exp_pow
|
600 |
+
def test_lambertw():
|
601 |
+
k = Symbol('k')
|
602 |
+
|
603 |
+
assert LambertW(x, 0) == LambertW(x)
|
604 |
+
assert LambertW(x, 0, evaluate=False) != LambertW(x)
|
605 |
+
assert LambertW(0) == 0
|
606 |
+
assert LambertW(E) == 1
|
607 |
+
assert LambertW(-1/E) == -1
|
608 |
+
assert LambertW(-log(2)/2) == -log(2)
|
609 |
+
assert LambertW(oo) is oo
|
610 |
+
assert LambertW(0, 1) is -oo
|
611 |
+
assert LambertW(0, 42) is -oo
|
612 |
+
assert LambertW(-pi/2, -1) == -I*pi/2
|
613 |
+
assert LambertW(-1/E, -1) == -1
|
614 |
+
assert LambertW(-2*exp(-2), -1) == -2
|
615 |
+
assert LambertW(2*log(2)) == log(2)
|
616 |
+
assert LambertW(-pi/2) == I*pi/2
|
617 |
+
assert LambertW(exp(1 + E)) == E
|
618 |
+
|
619 |
+
assert LambertW(x**2).diff(x) == 2*LambertW(x**2)/x/(1 + LambertW(x**2))
|
620 |
+
assert LambertW(x, k).diff(x) == LambertW(x, k)/x/(1 + LambertW(x, k))
|
621 |
+
|
622 |
+
assert LambertW(sqrt(2)).evalf(30).epsilon_eq(
|
623 |
+
Float("0.701338383413663009202120278965", 30), 1e-29)
|
624 |
+
assert re(LambertW(2, -1)).evalf().epsilon_eq(Float("-0.834310366631110"))
|
625 |
+
|
626 |
+
assert LambertW(-1).is_real is False # issue 5215
|
627 |
+
assert LambertW(2, evaluate=False).is_real
|
628 |
+
p = Symbol('p', positive=True)
|
629 |
+
assert LambertW(p, evaluate=False).is_real
|
630 |
+
assert LambertW(p - 1, evaluate=False).is_real is None
|
631 |
+
assert LambertW(-p - 2/S.Exp1, evaluate=False).is_real is False
|
632 |
+
assert LambertW(S.Half, -1, evaluate=False).is_real is False
|
633 |
+
assert LambertW(Rational(-1, 10), -1, evaluate=False).is_real
|
634 |
+
assert LambertW(-10, -1, evaluate=False).is_real is False
|
635 |
+
assert LambertW(-2, 2, evaluate=False).is_real is False
|
636 |
+
|
637 |
+
assert LambertW(0, evaluate=False).is_algebraic
|
638 |
+
na = Symbol('na', nonzero=True, algebraic=True)
|
639 |
+
assert LambertW(na).is_algebraic is False
|
640 |
+
assert LambertW(p).is_zero is False
|
641 |
+
n = Symbol('n', negative=True)
|
642 |
+
assert LambertW(n).is_zero is False
|
643 |
+
|
644 |
+
|
645 |
+
def test_issue_5673():
|
646 |
+
e = LambertW(-1)
|
647 |
+
assert e.is_comparable is False
|
648 |
+
assert e.is_positive is not True
|
649 |
+
e2 = 1 - 1/(1 - exp(-1000))
|
650 |
+
assert e2.is_positive is not True
|
651 |
+
e3 = -2 + exp(exp(LambertW(log(2)))*LambertW(log(2)))
|
652 |
+
assert e3.is_nonzero is not True
|
653 |
+
|
654 |
+
|
655 |
+
def test_log_fdiff():
|
656 |
+
x = Symbol('x')
|
657 |
+
raises(ArgumentIndexError, lambda: log(x).fdiff(2))
|
658 |
+
|
659 |
+
|
660 |
+
def test_log_taylor_term():
|
661 |
+
x = symbols('x')
|
662 |
+
assert log(x).taylor_term(0, x) == x
|
663 |
+
assert log(x).taylor_term(1, x) == -x**2/2
|
664 |
+
assert log(x).taylor_term(4, x) == x**5/5
|
665 |
+
assert log(x).taylor_term(-1, x) is S.Zero
|
666 |
+
|
667 |
+
|
668 |
+
def test_exp_expand_NC():
|
669 |
+
A, B, C = symbols('A,B,C', commutative=False)
|
670 |
+
|
671 |
+
assert exp(A + B).expand() == exp(A + B)
|
672 |
+
assert exp(A + B + C).expand() == exp(A + B + C)
|
673 |
+
assert exp(x + y).expand() == exp(x)*exp(y)
|
674 |
+
assert exp(x + y + z).expand() == exp(x)*exp(y)*exp(z)
|
675 |
+
|
676 |
+
|
677 |
+
@_both_exp_pow
|
678 |
+
def test_as_numer_denom():
|
679 |
+
n = symbols('n', negative=True)
|
680 |
+
assert exp(x).as_numer_denom() == (exp(x), 1)
|
681 |
+
assert exp(-x).as_numer_denom() == (1, exp(x))
|
682 |
+
assert exp(-2*x).as_numer_denom() == (1, exp(2*x))
|
683 |
+
assert exp(-2).as_numer_denom() == (1, exp(2))
|
684 |
+
assert exp(n).as_numer_denom() == (1, exp(-n))
|
685 |
+
assert exp(-n).as_numer_denom() == (exp(-n), 1)
|
686 |
+
assert exp(-I*x).as_numer_denom() == (1, exp(I*x))
|
687 |
+
assert exp(-I*n).as_numer_denom() == (1, exp(I*n))
|
688 |
+
assert exp(-n).as_numer_denom() == (exp(-n), 1)
|
689 |
+
|
690 |
+
|
691 |
+
@_both_exp_pow
|
692 |
+
def test_polar():
|
693 |
+
x, y = symbols('x y', polar=True)
|
694 |
+
|
695 |
+
assert abs(exp_polar(I*4)) == 1
|
696 |
+
assert abs(exp_polar(0)) == 1
|
697 |
+
assert abs(exp_polar(2 + 3*I)) == exp(2)
|
698 |
+
assert exp_polar(I*10).n() == exp_polar(I*10)
|
699 |
+
|
700 |
+
assert log(exp_polar(z)) == z
|
701 |
+
assert log(x*y).expand() == log(x) + log(y)
|
702 |
+
assert log(x**z).expand() == z*log(x)
|
703 |
+
|
704 |
+
assert exp_polar(3).exp == 3
|
705 |
+
|
706 |
+
# Compare exp(1.0*pi*I).
|
707 |
+
assert (exp_polar(1.0*pi*I).n(n=5)).as_real_imag()[1] >= 0
|
708 |
+
|
709 |
+
assert exp_polar(0).is_rational is True # issue 8008
|
710 |
+
|
711 |
+
|
712 |
+
def test_exp_summation():
|
713 |
+
w = symbols("w")
|
714 |
+
m, n, i, j = symbols("m n i j")
|
715 |
+
expr = exp(Sum(w*i, (i, 0, n), (j, 0, m)))
|
716 |
+
assert expr.expand() == Product(exp(w*i), (i, 0, n), (j, 0, m))
|
717 |
+
|
718 |
+
|
719 |
+
def test_log_product():
|
720 |
+
from sympy.abc import n, m
|
721 |
+
|
722 |
+
i, j = symbols('i,j', positive=True, integer=True)
|
723 |
+
x, y = symbols('x,y', positive=True)
|
724 |
+
z = symbols('z', real=True)
|
725 |
+
w = symbols('w')
|
726 |
+
|
727 |
+
expr = log(Product(x**i, (i, 1, n)))
|
728 |
+
assert simplify(expr) == expr
|
729 |
+
assert expr.expand() == Sum(i*log(x), (i, 1, n))
|
730 |
+
expr = log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))
|
731 |
+
assert simplify(expr) == expr
|
732 |
+
assert expr.expand() == Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
|
733 |
+
|
734 |
+
expr = log(Product(-2, (n, 0, 4)))
|
735 |
+
assert simplify(expr) == expr
|
736 |
+
assert expr.expand() == expr
|
737 |
+
assert expr.expand(force=True) == Sum(log(-2), (n, 0, 4))
|
738 |
+
|
739 |
+
expr = log(Product(exp(z*i), (i, 0, n)))
|
740 |
+
assert expr.expand() == Sum(z*i, (i, 0, n))
|
741 |
+
|
742 |
+
expr = log(Product(exp(w*i), (i, 0, n)))
|
743 |
+
assert expr.expand() == expr
|
744 |
+
assert expr.expand(force=True) == Sum(w*i, (i, 0, n))
|
745 |
+
|
746 |
+
expr = log(Product(i**2*abs(j), (i, 1, n), (j, 1, m)))
|
747 |
+
assert expr.expand() == Sum(2*log(i) + log(j), (i, 1, n), (j, 1, m))
|
748 |
+
|
749 |
+
|
750 |
+
@XFAIL
|
751 |
+
def test_log_product_simplify_to_sum():
|
752 |
+
from sympy.abc import n, m
|
753 |
+
i, j = symbols('i,j', positive=True, integer=True)
|
754 |
+
x, y = symbols('x,y', positive=True)
|
755 |
+
assert simplify(log(Product(x**i, (i, 1, n)))) == Sum(i*log(x), (i, 1, n))
|
756 |
+
assert simplify(log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))) == \
|
757 |
+
Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
|
758 |
+
|
759 |
+
|
760 |
+
def test_issue_8866():
|
761 |
+
assert simplify(log(x, 10, evaluate=False)) == simplify(log(x, 10))
|
762 |
+
assert expand_log(log(x, 10, evaluate=False)) == expand_log(log(x, 10))
|
763 |
+
|
764 |
+
y = Symbol('y', positive=True)
|
765 |
+
l1 = log(exp(y), exp(10))
|
766 |
+
b1 = log(exp(y), exp(5))
|
767 |
+
l2 = log(exp(y), exp(10), evaluate=False)
|
768 |
+
b2 = log(exp(y), exp(5), evaluate=False)
|
769 |
+
assert simplify(log(l1, b1)) == simplify(log(l2, b2))
|
770 |
+
assert expand_log(log(l1, b1)) == expand_log(log(l2, b2))
|
771 |
+
|
772 |
+
|
773 |
+
def test_log_expand_factor():
|
774 |
+
assert (log(18)/log(3) - 2).expand(factor=True) == log(2)/log(3)
|
775 |
+
assert (log(12)/log(2)).expand(factor=True) == log(3)/log(2) + 2
|
776 |
+
assert (log(15)/log(3)).expand(factor=True) == 1 + log(5)/log(3)
|
777 |
+
assert (log(2)/(-log(12) + log(24))).expand(factor=True) == 1
|
778 |
+
|
779 |
+
assert expand_log(log(12), factor=True) == log(3) + 2*log(2)
|
780 |
+
assert expand_log(log(21)/log(7), factor=False) == log(3)/log(7) + 1
|
781 |
+
assert expand_log(log(45)/log(5) + log(20), factor=False) == \
|
782 |
+
1 + 2*log(3)/log(5) + log(20)
|
783 |
+
assert expand_log(log(45)/log(5) + log(26), factor=True) == \
|
784 |
+
log(2) + log(13) + (log(5) + 2*log(3))/log(5)
|
785 |
+
|
786 |
+
|
787 |
+
def test_issue_9116():
|
788 |
+
n = Symbol('n', positive=True, integer=True)
|
789 |
+
assert log(n).is_nonnegative is True
|
790 |
+
|
791 |
+
|
792 |
+
def test_issue_18473():
|
793 |
+
assert exp(x*log(cos(1/x))).as_leading_term(x) == S.NaN
|
794 |
+
assert exp(x*log(tan(1/x))).as_leading_term(x) == S.NaN
|
795 |
+
assert log(cos(1/x)).as_leading_term(x) == S.NaN
|
796 |
+
assert log(tan(1/x)).as_leading_term(x) == S.NaN
|
797 |
+
assert log(cos(1/x) + 2).as_leading_term(x) == AccumBounds(0, log(3))
|
798 |
+
assert exp(x*log(cos(1/x) + 2)).as_leading_term(x) == 1
|
799 |
+
assert log(cos(1/x) - 2).as_leading_term(x) == S.NaN
|
800 |
+
assert exp(x*log(cos(1/x) - 2)).as_leading_term(x) == S.NaN
|
801 |
+
assert log(cos(1/x) + 1).as_leading_term(x) == AccumBounds(-oo, log(2))
|
802 |
+
assert exp(x*log(cos(1/x) + 1)).as_leading_term(x) == AccumBounds(0, 1)
|
803 |
+
assert log(sin(1/x)**2).as_leading_term(x) == AccumBounds(-oo, 0)
|
804 |
+
assert exp(x*log(sin(1/x)**2)).as_leading_term(x) == AccumBounds(0, 1)
|
805 |
+
assert log(tan(1/x)**2).as_leading_term(x) == AccumBounds(-oo, oo)
|
806 |
+
assert exp(2*x*(log(tan(1/x)**2))).as_leading_term(x) == AccumBounds(0, oo)
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_hyperbolic.py
ADDED
@@ -0,0 +1,1460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
2 |
+
from sympy.core.function import (expand_mul, expand_trig)
|
3 |
+
from sympy.core.numbers import (E, I, Integer, Rational, nan, oo, pi, zoo)
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import (Symbol, symbols)
|
6 |
+
from sympy.functions.elementary.complexes import (im, re)
|
7 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
8 |
+
from sympy.functions.elementary.hyperbolic import (acosh, acoth, acsch, asech, asinh, atanh, cosh, coth, csch, sech, sinh, tanh)
|
9 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
10 |
+
from sympy.functions.elementary.trigonometric import (acos, asin, cos, cot, sec, sin, tan)
|
11 |
+
from sympy.series.order import O
|
12 |
+
|
13 |
+
from sympy.core.expr import unchanged
|
14 |
+
from sympy.core.function import ArgumentIndexError
|
15 |
+
from sympy.testing.pytest import raises
|
16 |
+
|
17 |
+
|
18 |
+
def test_sinh():
|
19 |
+
x, y = symbols('x,y')
|
20 |
+
|
21 |
+
k = Symbol('k', integer=True)
|
22 |
+
|
23 |
+
assert sinh(nan) is nan
|
24 |
+
assert sinh(zoo) is nan
|
25 |
+
|
26 |
+
assert sinh(oo) is oo
|
27 |
+
assert sinh(-oo) is -oo
|
28 |
+
|
29 |
+
assert sinh(0) == 0
|
30 |
+
|
31 |
+
assert unchanged(sinh, 1)
|
32 |
+
assert sinh(-1) == -sinh(1)
|
33 |
+
|
34 |
+
assert unchanged(sinh, x)
|
35 |
+
assert sinh(-x) == -sinh(x)
|
36 |
+
|
37 |
+
assert unchanged(sinh, pi)
|
38 |
+
assert sinh(-pi) == -sinh(pi)
|
39 |
+
|
40 |
+
assert unchanged(sinh, 2**1024 * E)
|
41 |
+
assert sinh(-2**1024 * E) == -sinh(2**1024 * E)
|
42 |
+
|
43 |
+
assert sinh(pi*I) == 0
|
44 |
+
assert sinh(-pi*I) == 0
|
45 |
+
assert sinh(2*pi*I) == 0
|
46 |
+
assert sinh(-2*pi*I) == 0
|
47 |
+
assert sinh(-3*10**73*pi*I) == 0
|
48 |
+
assert sinh(7*10**103*pi*I) == 0
|
49 |
+
|
50 |
+
assert sinh(pi*I/2) == I
|
51 |
+
assert sinh(-pi*I/2) == -I
|
52 |
+
assert sinh(pi*I*Rational(5, 2)) == I
|
53 |
+
assert sinh(pi*I*Rational(7, 2)) == -I
|
54 |
+
|
55 |
+
assert sinh(pi*I/3) == S.Half*sqrt(3)*I
|
56 |
+
assert sinh(pi*I*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3)*I
|
57 |
+
|
58 |
+
assert sinh(pi*I/4) == S.Half*sqrt(2)*I
|
59 |
+
assert sinh(-pi*I/4) == Rational(-1, 2)*sqrt(2)*I
|
60 |
+
assert sinh(pi*I*Rational(17, 4)) == S.Half*sqrt(2)*I
|
61 |
+
assert sinh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)*I
|
62 |
+
|
63 |
+
assert sinh(pi*I/6) == S.Half*I
|
64 |
+
assert sinh(-pi*I/6) == Rational(-1, 2)*I
|
65 |
+
assert sinh(pi*I*Rational(7, 6)) == Rational(-1, 2)*I
|
66 |
+
assert sinh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*I
|
67 |
+
|
68 |
+
assert sinh(pi*I/105) == sin(pi/105)*I
|
69 |
+
assert sinh(-pi*I/105) == -sin(pi/105)*I
|
70 |
+
|
71 |
+
assert unchanged(sinh, 2 + 3*I)
|
72 |
+
|
73 |
+
assert sinh(x*I) == sin(x)*I
|
74 |
+
|
75 |
+
assert sinh(k*pi*I) == 0
|
76 |
+
assert sinh(17*k*pi*I) == 0
|
77 |
+
|
78 |
+
assert sinh(k*pi*I/2) == sin(k*pi/2)*I
|
79 |
+
|
80 |
+
assert sinh(x).as_real_imag(deep=False) == (cos(im(x))*sinh(re(x)),
|
81 |
+
sin(im(x))*cosh(re(x)))
|
82 |
+
x = Symbol('x', extended_real=True)
|
83 |
+
assert sinh(x).as_real_imag(deep=False) == (sinh(x), 0)
|
84 |
+
|
85 |
+
x = Symbol('x', real=True)
|
86 |
+
assert sinh(I*x).is_finite is True
|
87 |
+
assert sinh(x).is_real is True
|
88 |
+
assert sinh(I).is_real is False
|
89 |
+
p = Symbol('p', positive=True)
|
90 |
+
assert sinh(p).is_zero is False
|
91 |
+
assert sinh(0, evaluate=False).is_zero is True
|
92 |
+
assert sinh(2*pi*I, evaluate=False).is_zero is True
|
93 |
+
|
94 |
+
|
95 |
+
def test_sinh_series():
|
96 |
+
x = Symbol('x')
|
97 |
+
assert sinh(x).series(x, 0, 10) == \
|
98 |
+
x + x**3/6 + x**5/120 + x**7/5040 + x**9/362880 + O(x**10)
|
99 |
+
|
100 |
+
|
101 |
+
def test_sinh_fdiff():
|
102 |
+
x = Symbol('x')
|
103 |
+
raises(ArgumentIndexError, lambda: sinh(x).fdiff(2))
|
104 |
+
|
105 |
+
|
106 |
+
def test_cosh():
|
107 |
+
x, y = symbols('x,y')
|
108 |
+
|
109 |
+
k = Symbol('k', integer=True)
|
110 |
+
|
111 |
+
assert cosh(nan) is nan
|
112 |
+
assert cosh(zoo) is nan
|
113 |
+
|
114 |
+
assert cosh(oo) is oo
|
115 |
+
assert cosh(-oo) is oo
|
116 |
+
|
117 |
+
assert cosh(0) == 1
|
118 |
+
|
119 |
+
assert unchanged(cosh, 1)
|
120 |
+
assert cosh(-1) == cosh(1)
|
121 |
+
|
122 |
+
assert unchanged(cosh, x)
|
123 |
+
assert cosh(-x) == cosh(x)
|
124 |
+
|
125 |
+
assert cosh(pi*I) == cos(pi)
|
126 |
+
assert cosh(-pi*I) == cos(pi)
|
127 |
+
|
128 |
+
assert unchanged(cosh, 2**1024 * E)
|
129 |
+
assert cosh(-2**1024 * E) == cosh(2**1024 * E)
|
130 |
+
|
131 |
+
assert cosh(pi*I/2) == 0
|
132 |
+
assert cosh(-pi*I/2) == 0
|
133 |
+
assert cosh((-3*10**73 + 1)*pi*I/2) == 0
|
134 |
+
assert cosh((7*10**103 + 1)*pi*I/2) == 0
|
135 |
+
|
136 |
+
assert cosh(pi*I) == -1
|
137 |
+
assert cosh(-pi*I) == -1
|
138 |
+
assert cosh(5*pi*I) == -1
|
139 |
+
assert cosh(8*pi*I) == 1
|
140 |
+
|
141 |
+
assert cosh(pi*I/3) == S.Half
|
142 |
+
assert cosh(pi*I*Rational(-2, 3)) == Rational(-1, 2)
|
143 |
+
|
144 |
+
assert cosh(pi*I/4) == S.Half*sqrt(2)
|
145 |
+
assert cosh(-pi*I/4) == S.Half*sqrt(2)
|
146 |
+
assert cosh(pi*I*Rational(11, 4)) == Rational(-1, 2)*sqrt(2)
|
147 |
+
assert cosh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)
|
148 |
+
|
149 |
+
assert cosh(pi*I/6) == S.Half*sqrt(3)
|
150 |
+
assert cosh(-pi*I/6) == S.Half*sqrt(3)
|
151 |
+
assert cosh(pi*I*Rational(7, 6)) == Rational(-1, 2)*sqrt(3)
|
152 |
+
assert cosh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3)
|
153 |
+
|
154 |
+
assert cosh(pi*I/105) == cos(pi/105)
|
155 |
+
assert cosh(-pi*I/105) == cos(pi/105)
|
156 |
+
|
157 |
+
assert unchanged(cosh, 2 + 3*I)
|
158 |
+
|
159 |
+
assert cosh(x*I) == cos(x)
|
160 |
+
|
161 |
+
assert cosh(k*pi*I) == cos(k*pi)
|
162 |
+
assert cosh(17*k*pi*I) == cos(17*k*pi)
|
163 |
+
|
164 |
+
assert unchanged(cosh, k*pi)
|
165 |
+
|
166 |
+
assert cosh(x).as_real_imag(deep=False) == (cos(im(x))*cosh(re(x)),
|
167 |
+
sin(im(x))*sinh(re(x)))
|
168 |
+
x = Symbol('x', extended_real=True)
|
169 |
+
assert cosh(x).as_real_imag(deep=False) == (cosh(x), 0)
|
170 |
+
|
171 |
+
x = Symbol('x', real=True)
|
172 |
+
assert cosh(I*x).is_finite is True
|
173 |
+
assert cosh(I*x).is_real is True
|
174 |
+
assert cosh(I*2 + 1).is_real is False
|
175 |
+
assert cosh(5*I*S.Pi/2, evaluate=False).is_zero is True
|
176 |
+
assert cosh(x).is_zero is False
|
177 |
+
|
178 |
+
|
179 |
+
def test_cosh_series():
|
180 |
+
x = Symbol('x')
|
181 |
+
assert cosh(x).series(x, 0, 10) == \
|
182 |
+
1 + x**2/2 + x**4/24 + x**6/720 + x**8/40320 + O(x**10)
|
183 |
+
|
184 |
+
|
185 |
+
def test_cosh_fdiff():
|
186 |
+
x = Symbol('x')
|
187 |
+
raises(ArgumentIndexError, lambda: cosh(x).fdiff(2))
|
188 |
+
|
189 |
+
|
190 |
+
def test_tanh():
|
191 |
+
x, y = symbols('x,y')
|
192 |
+
|
193 |
+
k = Symbol('k', integer=True)
|
194 |
+
|
195 |
+
assert tanh(nan) is nan
|
196 |
+
assert tanh(zoo) is nan
|
197 |
+
|
198 |
+
assert tanh(oo) == 1
|
199 |
+
assert tanh(-oo) == -1
|
200 |
+
|
201 |
+
assert tanh(0) == 0
|
202 |
+
|
203 |
+
assert unchanged(tanh, 1)
|
204 |
+
assert tanh(-1) == -tanh(1)
|
205 |
+
|
206 |
+
assert unchanged(tanh, x)
|
207 |
+
assert tanh(-x) == -tanh(x)
|
208 |
+
|
209 |
+
assert unchanged(tanh, pi)
|
210 |
+
assert tanh(-pi) == -tanh(pi)
|
211 |
+
|
212 |
+
assert unchanged(tanh, 2**1024 * E)
|
213 |
+
assert tanh(-2**1024 * E) == -tanh(2**1024 * E)
|
214 |
+
|
215 |
+
assert tanh(pi*I) == 0
|
216 |
+
assert tanh(-pi*I) == 0
|
217 |
+
assert tanh(2*pi*I) == 0
|
218 |
+
assert tanh(-2*pi*I) == 0
|
219 |
+
assert tanh(-3*10**73*pi*I) == 0
|
220 |
+
assert tanh(7*10**103*pi*I) == 0
|
221 |
+
|
222 |
+
assert tanh(pi*I/2) is zoo
|
223 |
+
assert tanh(-pi*I/2) is zoo
|
224 |
+
assert tanh(pi*I*Rational(5, 2)) is zoo
|
225 |
+
assert tanh(pi*I*Rational(7, 2)) is zoo
|
226 |
+
|
227 |
+
assert tanh(pi*I/3) == sqrt(3)*I
|
228 |
+
assert tanh(pi*I*Rational(-2, 3)) == sqrt(3)*I
|
229 |
+
|
230 |
+
assert tanh(pi*I/4) == I
|
231 |
+
assert tanh(-pi*I/4) == -I
|
232 |
+
assert tanh(pi*I*Rational(17, 4)) == I
|
233 |
+
assert tanh(pi*I*Rational(-3, 4)) == I
|
234 |
+
|
235 |
+
assert tanh(pi*I/6) == I/sqrt(3)
|
236 |
+
assert tanh(-pi*I/6) == -I/sqrt(3)
|
237 |
+
assert tanh(pi*I*Rational(7, 6)) == I/sqrt(3)
|
238 |
+
assert tanh(pi*I*Rational(-5, 6)) == I/sqrt(3)
|
239 |
+
|
240 |
+
assert tanh(pi*I/105) == tan(pi/105)*I
|
241 |
+
assert tanh(-pi*I/105) == -tan(pi/105)*I
|
242 |
+
|
243 |
+
assert unchanged(tanh, 2 + 3*I)
|
244 |
+
|
245 |
+
assert tanh(x*I) == tan(x)*I
|
246 |
+
|
247 |
+
assert tanh(k*pi*I) == 0
|
248 |
+
assert tanh(17*k*pi*I) == 0
|
249 |
+
|
250 |
+
assert tanh(k*pi*I/2) == tan(k*pi/2)*I
|
251 |
+
|
252 |
+
assert tanh(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(cos(im(x))**2
|
253 |
+
+ sinh(re(x))**2),
|
254 |
+
sin(im(x))*cos(im(x))/(cos(im(x))**2 + sinh(re(x))**2))
|
255 |
+
x = Symbol('x', extended_real=True)
|
256 |
+
assert tanh(x).as_real_imag(deep=False) == (tanh(x), 0)
|
257 |
+
assert tanh(I*pi/3 + 1).is_real is False
|
258 |
+
assert tanh(x).is_real is True
|
259 |
+
assert tanh(I*pi*x/2).is_real is None
|
260 |
+
|
261 |
+
|
262 |
+
def test_tanh_series():
|
263 |
+
x = Symbol('x')
|
264 |
+
assert tanh(x).series(x, 0, 10) == \
|
265 |
+
x - x**3/3 + 2*x**5/15 - 17*x**7/315 + 62*x**9/2835 + O(x**10)
|
266 |
+
|
267 |
+
|
268 |
+
def test_tanh_fdiff():
|
269 |
+
x = Symbol('x')
|
270 |
+
raises(ArgumentIndexError, lambda: tanh(x).fdiff(2))
|
271 |
+
|
272 |
+
|
273 |
+
def test_coth():
|
274 |
+
x, y = symbols('x,y')
|
275 |
+
|
276 |
+
k = Symbol('k', integer=True)
|
277 |
+
|
278 |
+
assert coth(nan) is nan
|
279 |
+
assert coth(zoo) is nan
|
280 |
+
|
281 |
+
assert coth(oo) == 1
|
282 |
+
assert coth(-oo) == -1
|
283 |
+
|
284 |
+
assert coth(0) is zoo
|
285 |
+
assert unchanged(coth, 1)
|
286 |
+
assert coth(-1) == -coth(1)
|
287 |
+
|
288 |
+
assert unchanged(coth, x)
|
289 |
+
assert coth(-x) == -coth(x)
|
290 |
+
|
291 |
+
assert coth(pi*I) == -I*cot(pi)
|
292 |
+
assert coth(-pi*I) == cot(pi)*I
|
293 |
+
|
294 |
+
assert unchanged(coth, 2**1024 * E)
|
295 |
+
assert coth(-2**1024 * E) == -coth(2**1024 * E)
|
296 |
+
|
297 |
+
assert coth(pi*I) == -I*cot(pi)
|
298 |
+
assert coth(-pi*I) == I*cot(pi)
|
299 |
+
assert coth(2*pi*I) == -I*cot(2*pi)
|
300 |
+
assert coth(-2*pi*I) == I*cot(2*pi)
|
301 |
+
assert coth(-3*10**73*pi*I) == I*cot(3*10**73*pi)
|
302 |
+
assert coth(7*10**103*pi*I) == -I*cot(7*10**103*pi)
|
303 |
+
|
304 |
+
assert coth(pi*I/2) == 0
|
305 |
+
assert coth(-pi*I/2) == 0
|
306 |
+
assert coth(pi*I*Rational(5, 2)) == 0
|
307 |
+
assert coth(pi*I*Rational(7, 2)) == 0
|
308 |
+
|
309 |
+
assert coth(pi*I/3) == -I/sqrt(3)
|
310 |
+
assert coth(pi*I*Rational(-2, 3)) == -I/sqrt(3)
|
311 |
+
|
312 |
+
assert coth(pi*I/4) == -I
|
313 |
+
assert coth(-pi*I/4) == I
|
314 |
+
assert coth(pi*I*Rational(17, 4)) == -I
|
315 |
+
assert coth(pi*I*Rational(-3, 4)) == -I
|
316 |
+
|
317 |
+
assert coth(pi*I/6) == -sqrt(3)*I
|
318 |
+
assert coth(-pi*I/6) == sqrt(3)*I
|
319 |
+
assert coth(pi*I*Rational(7, 6)) == -sqrt(3)*I
|
320 |
+
assert coth(pi*I*Rational(-5, 6)) == -sqrt(3)*I
|
321 |
+
|
322 |
+
assert coth(pi*I/105) == -cot(pi/105)*I
|
323 |
+
assert coth(-pi*I/105) == cot(pi/105)*I
|
324 |
+
|
325 |
+
assert unchanged(coth, 2 + 3*I)
|
326 |
+
|
327 |
+
assert coth(x*I) == -cot(x)*I
|
328 |
+
|
329 |
+
assert coth(k*pi*I) == -cot(k*pi)*I
|
330 |
+
assert coth(17*k*pi*I) == -cot(17*k*pi)*I
|
331 |
+
|
332 |
+
assert coth(k*pi*I) == -cot(k*pi)*I
|
333 |
+
|
334 |
+
assert coth(log(tan(2))) == coth(log(-tan(2)))
|
335 |
+
assert coth(1 + I*pi/2) == tanh(1)
|
336 |
+
|
337 |
+
assert coth(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(sin(im(x))**2
|
338 |
+
+ sinh(re(x))**2),
|
339 |
+
-sin(im(x))*cos(im(x))/(sin(im(x))**2 + sinh(re(x))**2))
|
340 |
+
x = Symbol('x', extended_real=True)
|
341 |
+
assert coth(x).as_real_imag(deep=False) == (coth(x), 0)
|
342 |
+
|
343 |
+
assert expand_trig(coth(2*x)) == (coth(x)**2 + 1)/(2*coth(x))
|
344 |
+
assert expand_trig(coth(3*x)) == (coth(x)**3 + 3*coth(x))/(1 + 3*coth(x)**2)
|
345 |
+
|
346 |
+
assert expand_trig(coth(x + y)) == (1 + coth(x)*coth(y))/(coth(x) + coth(y))
|
347 |
+
|
348 |
+
|
349 |
+
def test_coth_series():
|
350 |
+
x = Symbol('x')
|
351 |
+
assert coth(x).series(x, 0, 8) == \
|
352 |
+
1/x + x/3 - x**3/45 + 2*x**5/945 - x**7/4725 + O(x**8)
|
353 |
+
|
354 |
+
|
355 |
+
def test_coth_fdiff():
|
356 |
+
x = Symbol('x')
|
357 |
+
raises(ArgumentIndexError, lambda: coth(x).fdiff(2))
|
358 |
+
|
359 |
+
|
360 |
+
def test_csch():
|
361 |
+
x, y = symbols('x,y')
|
362 |
+
|
363 |
+
k = Symbol('k', integer=True)
|
364 |
+
n = Symbol('n', positive=True)
|
365 |
+
|
366 |
+
assert csch(nan) is nan
|
367 |
+
assert csch(zoo) is nan
|
368 |
+
|
369 |
+
assert csch(oo) == 0
|
370 |
+
assert csch(-oo) == 0
|
371 |
+
|
372 |
+
assert csch(0) is zoo
|
373 |
+
|
374 |
+
assert csch(-1) == -csch(1)
|
375 |
+
|
376 |
+
assert csch(-x) == -csch(x)
|
377 |
+
assert csch(-pi) == -csch(pi)
|
378 |
+
assert csch(-2**1024 * E) == -csch(2**1024 * E)
|
379 |
+
|
380 |
+
assert csch(pi*I) is zoo
|
381 |
+
assert csch(-pi*I) is zoo
|
382 |
+
assert csch(2*pi*I) is zoo
|
383 |
+
assert csch(-2*pi*I) is zoo
|
384 |
+
assert csch(-3*10**73*pi*I) is zoo
|
385 |
+
assert csch(7*10**103*pi*I) is zoo
|
386 |
+
|
387 |
+
assert csch(pi*I/2) == -I
|
388 |
+
assert csch(-pi*I/2) == I
|
389 |
+
assert csch(pi*I*Rational(5, 2)) == -I
|
390 |
+
assert csch(pi*I*Rational(7, 2)) == I
|
391 |
+
|
392 |
+
assert csch(pi*I/3) == -2/sqrt(3)*I
|
393 |
+
assert csch(pi*I*Rational(-2, 3)) == 2/sqrt(3)*I
|
394 |
+
|
395 |
+
assert csch(pi*I/4) == -sqrt(2)*I
|
396 |
+
assert csch(-pi*I/4) == sqrt(2)*I
|
397 |
+
assert csch(pi*I*Rational(7, 4)) == sqrt(2)*I
|
398 |
+
assert csch(pi*I*Rational(-3, 4)) == sqrt(2)*I
|
399 |
+
|
400 |
+
assert csch(pi*I/6) == -2*I
|
401 |
+
assert csch(-pi*I/6) == 2*I
|
402 |
+
assert csch(pi*I*Rational(7, 6)) == 2*I
|
403 |
+
assert csch(pi*I*Rational(-7, 6)) == -2*I
|
404 |
+
assert csch(pi*I*Rational(-5, 6)) == 2*I
|
405 |
+
|
406 |
+
assert csch(pi*I/105) == -1/sin(pi/105)*I
|
407 |
+
assert csch(-pi*I/105) == 1/sin(pi/105)*I
|
408 |
+
|
409 |
+
assert csch(x*I) == -1/sin(x)*I
|
410 |
+
|
411 |
+
assert csch(k*pi*I) is zoo
|
412 |
+
assert csch(17*k*pi*I) is zoo
|
413 |
+
|
414 |
+
assert csch(k*pi*I/2) == -1/sin(k*pi/2)*I
|
415 |
+
|
416 |
+
assert csch(n).is_real is True
|
417 |
+
|
418 |
+
assert expand_trig(csch(x + y)) == 1/(sinh(x)*cosh(y) + cosh(x)*sinh(y))
|
419 |
+
|
420 |
+
|
421 |
+
def test_csch_series():
|
422 |
+
x = Symbol('x')
|
423 |
+
assert csch(x).series(x, 0, 10) == \
|
424 |
+
1/ x - x/6 + 7*x**3/360 - 31*x**5/15120 + 127*x**7/604800 \
|
425 |
+
- 73*x**9/3421440 + O(x**10)
|
426 |
+
|
427 |
+
|
428 |
+
def test_csch_fdiff():
|
429 |
+
x = Symbol('x')
|
430 |
+
raises(ArgumentIndexError, lambda: csch(x).fdiff(2))
|
431 |
+
|
432 |
+
|
433 |
+
def test_sech():
|
434 |
+
x, y = symbols('x, y')
|
435 |
+
|
436 |
+
k = Symbol('k', integer=True)
|
437 |
+
n = Symbol('n', positive=True)
|
438 |
+
|
439 |
+
assert sech(nan) is nan
|
440 |
+
assert sech(zoo) is nan
|
441 |
+
|
442 |
+
assert sech(oo) == 0
|
443 |
+
assert sech(-oo) == 0
|
444 |
+
|
445 |
+
assert sech(0) == 1
|
446 |
+
|
447 |
+
assert sech(-1) == sech(1)
|
448 |
+
assert sech(-x) == sech(x)
|
449 |
+
|
450 |
+
assert sech(pi*I) == sec(pi)
|
451 |
+
|
452 |
+
assert sech(-pi*I) == sec(pi)
|
453 |
+
assert sech(-2**1024 * E) == sech(2**1024 * E)
|
454 |
+
|
455 |
+
assert sech(pi*I/2) is zoo
|
456 |
+
assert sech(-pi*I/2) is zoo
|
457 |
+
assert sech((-3*10**73 + 1)*pi*I/2) is zoo
|
458 |
+
assert sech((7*10**103 + 1)*pi*I/2) is zoo
|
459 |
+
|
460 |
+
assert sech(pi*I) == -1
|
461 |
+
assert sech(-pi*I) == -1
|
462 |
+
assert sech(5*pi*I) == -1
|
463 |
+
assert sech(8*pi*I) == 1
|
464 |
+
|
465 |
+
assert sech(pi*I/3) == 2
|
466 |
+
assert sech(pi*I*Rational(-2, 3)) == -2
|
467 |
+
|
468 |
+
assert sech(pi*I/4) == sqrt(2)
|
469 |
+
assert sech(-pi*I/4) == sqrt(2)
|
470 |
+
assert sech(pi*I*Rational(5, 4)) == -sqrt(2)
|
471 |
+
assert sech(pi*I*Rational(-5, 4)) == -sqrt(2)
|
472 |
+
|
473 |
+
assert sech(pi*I/6) == 2/sqrt(3)
|
474 |
+
assert sech(-pi*I/6) == 2/sqrt(3)
|
475 |
+
assert sech(pi*I*Rational(7, 6)) == -2/sqrt(3)
|
476 |
+
assert sech(pi*I*Rational(-5, 6)) == -2/sqrt(3)
|
477 |
+
|
478 |
+
assert sech(pi*I/105) == 1/cos(pi/105)
|
479 |
+
assert sech(-pi*I/105) == 1/cos(pi/105)
|
480 |
+
|
481 |
+
assert sech(x*I) == 1/cos(x)
|
482 |
+
|
483 |
+
assert sech(k*pi*I) == 1/cos(k*pi)
|
484 |
+
assert sech(17*k*pi*I) == 1/cos(17*k*pi)
|
485 |
+
|
486 |
+
assert sech(n).is_real is True
|
487 |
+
|
488 |
+
assert expand_trig(sech(x + y)) == 1/(cosh(x)*cosh(y) + sinh(x)*sinh(y))
|
489 |
+
|
490 |
+
|
491 |
+
def test_sech_series():
|
492 |
+
x = Symbol('x')
|
493 |
+
assert sech(x).series(x, 0, 10) == \
|
494 |
+
1 - x**2/2 + 5*x**4/24 - 61*x**6/720 + 277*x**8/8064 + O(x**10)
|
495 |
+
|
496 |
+
|
497 |
+
def test_sech_fdiff():
|
498 |
+
x = Symbol('x')
|
499 |
+
raises(ArgumentIndexError, lambda: sech(x).fdiff(2))
|
500 |
+
|
501 |
+
|
502 |
+
def test_asinh():
|
503 |
+
x, y = symbols('x,y')
|
504 |
+
assert unchanged(asinh, x)
|
505 |
+
assert asinh(-x) == -asinh(x)
|
506 |
+
|
507 |
+
#at specific points
|
508 |
+
assert asinh(nan) is nan
|
509 |
+
assert asinh( 0) == 0
|
510 |
+
assert asinh(+1) == log(sqrt(2) + 1)
|
511 |
+
|
512 |
+
assert asinh(-1) == log(sqrt(2) - 1)
|
513 |
+
assert asinh(I) == pi*I/2
|
514 |
+
assert asinh(-I) == -pi*I/2
|
515 |
+
assert asinh(I/2) == pi*I/6
|
516 |
+
assert asinh(-I/2) == -pi*I/6
|
517 |
+
|
518 |
+
# at infinites
|
519 |
+
assert asinh(oo) is oo
|
520 |
+
assert asinh(-oo) is -oo
|
521 |
+
|
522 |
+
assert asinh(I*oo) is oo
|
523 |
+
assert asinh(-I *oo) is -oo
|
524 |
+
|
525 |
+
assert asinh(zoo) is zoo
|
526 |
+
|
527 |
+
#properties
|
528 |
+
assert asinh(I *(sqrt(3) - 1)/(2**Rational(3, 2))) == pi*I/12
|
529 |
+
assert asinh(-I *(sqrt(3) - 1)/(2**Rational(3, 2))) == -pi*I/12
|
530 |
+
|
531 |
+
assert asinh(I*(sqrt(5) - 1)/4) == pi*I/10
|
532 |
+
assert asinh(-I*(sqrt(5) - 1)/4) == -pi*I/10
|
533 |
+
|
534 |
+
assert asinh(I*(sqrt(5) + 1)/4) == pi*I*Rational(3, 10)
|
535 |
+
assert asinh(-I*(sqrt(5) + 1)/4) == pi*I*Rational(-3, 10)
|
536 |
+
|
537 |
+
# Symmetry
|
538 |
+
assert asinh(Rational(-1, 2)) == -asinh(S.Half)
|
539 |
+
|
540 |
+
# inverse composition
|
541 |
+
assert unchanged(asinh, sinh(Symbol('v1')))
|
542 |
+
|
543 |
+
assert asinh(sinh(0, evaluate=False)) == 0
|
544 |
+
assert asinh(sinh(-3, evaluate=False)) == -3
|
545 |
+
assert asinh(sinh(2, evaluate=False)) == 2
|
546 |
+
assert asinh(sinh(I, evaluate=False)) == I
|
547 |
+
assert asinh(sinh(-I, evaluate=False)) == -I
|
548 |
+
assert asinh(sinh(5*I, evaluate=False)) == -2*I*pi + 5*I
|
549 |
+
assert asinh(sinh(15 + 11*I)) == 15 - 4*I*pi + 11*I
|
550 |
+
assert asinh(sinh(-73 + 97*I)) == 73 - 97*I + 31*I*pi
|
551 |
+
assert asinh(sinh(-7 - 23*I)) == 7 - 7*I*pi + 23*I
|
552 |
+
assert asinh(sinh(13 - 3*I)) == -13 - I*pi + 3*I
|
553 |
+
p = Symbol('p', positive=True)
|
554 |
+
assert asinh(p).is_zero is False
|
555 |
+
assert asinh(sinh(0, evaluate=False), evaluate=False).is_zero is True
|
556 |
+
|
557 |
+
|
558 |
+
def test_asinh_rewrite():
|
559 |
+
x = Symbol('x')
|
560 |
+
assert asinh(x).rewrite(log) == log(x + sqrt(x**2 + 1))
|
561 |
+
assert asinh(x).rewrite(atanh) == atanh(x/sqrt(1 + x**2))
|
562 |
+
assert asinh(x).rewrite(asin) == asinh(x)
|
563 |
+
assert asinh(x*(1 + I)).rewrite(asin) == -I*asin(I*x*(1+I))
|
564 |
+
assert asinh(x).rewrite(acos) == I*(-I*asinh(x) + pi/2) - I*pi/2
|
565 |
+
|
566 |
+
|
567 |
+
def test_asinh_leading_term():
|
568 |
+
x = Symbol('x')
|
569 |
+
assert asinh(x).as_leading_term(x, cdir=1) == x
|
570 |
+
# Tests concerning branch points
|
571 |
+
assert asinh(x + I).as_leading_term(x, cdir=1) == I*pi/2
|
572 |
+
assert asinh(x - I).as_leading_term(x, cdir=1) == -I*pi/2
|
573 |
+
assert asinh(1/x).as_leading_term(x, cdir=1) == -log(x) + log(2)
|
574 |
+
assert asinh(1/x).as_leading_term(x, cdir=-1) == log(x) - log(2) - I*pi
|
575 |
+
# Tests concerning points lying on branch cuts
|
576 |
+
assert asinh(x + 2*I).as_leading_term(x, cdir=1) == I*asin(2)
|
577 |
+
assert asinh(x + 2*I).as_leading_term(x, cdir=-1) == -I*asin(2) + I*pi
|
578 |
+
assert asinh(x - 2*I).as_leading_term(x, cdir=1) == -I*pi + I*asin(2)
|
579 |
+
assert asinh(x - 2*I).as_leading_term(x, cdir=-1) == -I*asin(2)
|
580 |
+
# Tests concerning re(ndir) == 0
|
581 |
+
assert asinh(2*I + I*x - x**2).as_leading_term(x, cdir=1) == log(2 - sqrt(3)) + I*pi/2
|
582 |
+
assert asinh(2*I + I*x - x**2).as_leading_term(x, cdir=-1) == log(2 - sqrt(3)) + I*pi/2
|
583 |
+
|
584 |
+
|
585 |
+
def test_asinh_series():
|
586 |
+
x = Symbol('x')
|
587 |
+
assert asinh(x).series(x, 0, 8) == \
|
588 |
+
x - x**3/6 + 3*x**5/40 - 5*x**7/112 + O(x**8)
|
589 |
+
t5 = asinh(x).taylor_term(5, x)
|
590 |
+
assert t5 == 3*x**5/40
|
591 |
+
assert asinh(x).taylor_term(7, x, t5, 0) == -5*x**7/112
|
592 |
+
|
593 |
+
|
594 |
+
def test_asinh_nseries():
|
595 |
+
x = Symbol('x')
|
596 |
+
# Tests concerning branch points
|
597 |
+
assert asinh(x + I)._eval_nseries(x, 4, None) == I*pi/2 + \
|
598 |
+
sqrt(x)*(1 - I) + x**(S(3)/2)*(S(1)/12 + I/12) + x**(S(5)/2)*(-S(3)/160 + 3*I/160) + \
|
599 |
+
x**(S(7)/2)*(-S(5)/896 - 5*I/896) + O(x**4)
|
600 |
+
assert asinh(x - I)._eval_nseries(x, 4, None) == -I*pi/2 + \
|
601 |
+
sqrt(x)*(1 + I) + x**(S(3)/2)*(S(1)/12 - I/12) + x**(S(5)/2)*(-S(3)/160 - 3*I/160) + \
|
602 |
+
x**(S(7)/2)*(-S(5)/896 + 5*I/896) + O(x**4)
|
603 |
+
# Tests concerning points lying on branch cuts
|
604 |
+
assert asinh(x + 2*I)._eval_nseries(x, 4, None, cdir=1) == I*asin(2) - \
|
605 |
+
sqrt(3)*I*x/3 + sqrt(3)*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
|
606 |
+
assert asinh(x + 2*I)._eval_nseries(x, 4, None, cdir=-1) == I*pi - I*asin(2) + \
|
607 |
+
sqrt(3)*I*x/3 - sqrt(3)*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
|
608 |
+
assert asinh(x - 2*I)._eval_nseries(x, 4, None, cdir=1) == I*asin(2) - I*pi + \
|
609 |
+
sqrt(3)*I*x/3 + sqrt(3)*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
|
610 |
+
assert asinh(x - 2*I)._eval_nseries(x, 4, None, cdir=-1) == -I*asin(2) - \
|
611 |
+
sqrt(3)*I*x/3 - sqrt(3)*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
|
612 |
+
# Tests concerning re(ndir) == 0
|
613 |
+
assert asinh(2*I + I*x - x**2)._eval_nseries(x, 4, None) == I*pi/2 + log(2 - sqrt(3)) - \
|
614 |
+
sqrt(3)*x/3 + x**2*(sqrt(3)/9 - sqrt(3)*I/3) + x**3*(-sqrt(3)/18 + 2*sqrt(3)*I/9) + O(x**4)
|
615 |
+
|
616 |
+
|
617 |
+
def test_asinh_fdiff():
|
618 |
+
x = Symbol('x')
|
619 |
+
raises(ArgumentIndexError, lambda: asinh(x).fdiff(2))
|
620 |
+
|
621 |
+
|
622 |
+
def test_acosh():
|
623 |
+
x = Symbol('x')
|
624 |
+
|
625 |
+
assert unchanged(acosh, -x)
|
626 |
+
|
627 |
+
#at specific points
|
628 |
+
assert acosh(1) == 0
|
629 |
+
assert acosh(-1) == pi*I
|
630 |
+
assert acosh(0) == I*pi/2
|
631 |
+
assert acosh(S.Half) == I*pi/3
|
632 |
+
assert acosh(Rational(-1, 2)) == pi*I*Rational(2, 3)
|
633 |
+
assert acosh(nan) is nan
|
634 |
+
|
635 |
+
# at infinites
|
636 |
+
assert acosh(oo) is oo
|
637 |
+
assert acosh(-oo) is oo
|
638 |
+
|
639 |
+
assert acosh(I*oo) == oo + I*pi/2
|
640 |
+
assert acosh(-I*oo) == oo - I*pi/2
|
641 |
+
|
642 |
+
assert acosh(zoo) is zoo
|
643 |
+
|
644 |
+
assert acosh(I) == log(I*(1 + sqrt(2)))
|
645 |
+
assert acosh(-I) == log(-I*(1 + sqrt(2)))
|
646 |
+
assert acosh((sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(5, 12)
|
647 |
+
assert acosh(-(sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(7, 12)
|
648 |
+
assert acosh(sqrt(2)/2) == I*pi/4
|
649 |
+
assert acosh(-sqrt(2)/2) == I*pi*Rational(3, 4)
|
650 |
+
assert acosh(sqrt(3)/2) == I*pi/6
|
651 |
+
assert acosh(-sqrt(3)/2) == I*pi*Rational(5, 6)
|
652 |
+
assert acosh(sqrt(2 + sqrt(2))/2) == I*pi/8
|
653 |
+
assert acosh(-sqrt(2 + sqrt(2))/2) == I*pi*Rational(7, 8)
|
654 |
+
assert acosh(sqrt(2 - sqrt(2))/2) == I*pi*Rational(3, 8)
|
655 |
+
assert acosh(-sqrt(2 - sqrt(2))/2) == I*pi*Rational(5, 8)
|
656 |
+
assert acosh((1 + sqrt(3))/(2*sqrt(2))) == I*pi/12
|
657 |
+
assert acosh(-(1 + sqrt(3))/(2*sqrt(2))) == I*pi*Rational(11, 12)
|
658 |
+
assert acosh((sqrt(5) + 1)/4) == I*pi/5
|
659 |
+
assert acosh(-(sqrt(5) + 1)/4) == I*pi*Rational(4, 5)
|
660 |
+
|
661 |
+
assert str(acosh(5*I).n(6)) == '2.31244 + 1.5708*I'
|
662 |
+
assert str(acosh(-5*I).n(6)) == '2.31244 - 1.5708*I'
|
663 |
+
|
664 |
+
# inverse composition
|
665 |
+
assert unchanged(acosh, Symbol('v1'))
|
666 |
+
|
667 |
+
assert acosh(cosh(-3, evaluate=False)) == 3
|
668 |
+
assert acosh(cosh(3, evaluate=False)) == 3
|
669 |
+
assert acosh(cosh(0, evaluate=False)) == 0
|
670 |
+
assert acosh(cosh(I, evaluate=False)) == I
|
671 |
+
assert acosh(cosh(-I, evaluate=False)) == I
|
672 |
+
assert acosh(cosh(7*I, evaluate=False)) == -2*I*pi + 7*I
|
673 |
+
assert acosh(cosh(1 + I)) == 1 + I
|
674 |
+
assert acosh(cosh(3 - 3*I)) == 3 - 3*I
|
675 |
+
assert acosh(cosh(-3 + 2*I)) == 3 - 2*I
|
676 |
+
assert acosh(cosh(-5 - 17*I)) == 5 - 6*I*pi + 17*I
|
677 |
+
assert acosh(cosh(-21 + 11*I)) == 21 - 11*I + 4*I*pi
|
678 |
+
assert acosh(cosh(cosh(1) + I)) == cosh(1) + I
|
679 |
+
assert acosh(1, evaluate=False).is_zero is True
|
680 |
+
|
681 |
+
|
682 |
+
def test_acosh_rewrite():
|
683 |
+
x = Symbol('x')
|
684 |
+
assert acosh(x).rewrite(log) == log(x + sqrt(x - 1)*sqrt(x + 1))
|
685 |
+
assert acosh(x).rewrite(asin) == sqrt(x - 1)*(-asin(x) + pi/2)/sqrt(1 - x)
|
686 |
+
assert acosh(x).rewrite(asinh) == sqrt(x - 1)*(-asin(x) + pi/2)/sqrt(1 - x)
|
687 |
+
assert acosh(x).rewrite(atanh) == \
|
688 |
+
(sqrt(x - 1)*sqrt(x + 1)*atanh(sqrt(x**2 - 1)/x)/sqrt(x**2 - 1) +
|
689 |
+
pi*sqrt(x - 1)*(-x*sqrt(x**(-2)) + 1)/(2*sqrt(1 - x)))
|
690 |
+
x = Symbol('x', positive=True)
|
691 |
+
assert acosh(x).rewrite(atanh) == \
|
692 |
+
sqrt(x - 1)*sqrt(x + 1)*atanh(sqrt(x**2 - 1)/x)/sqrt(x**2 - 1)
|
693 |
+
|
694 |
+
|
695 |
+
def test_acosh_leading_term():
|
696 |
+
x = Symbol('x')
|
697 |
+
# Tests concerning branch points
|
698 |
+
assert acosh(x).as_leading_term(x) == I*pi/2
|
699 |
+
assert acosh(x + 1).as_leading_term(x) == sqrt(2)*sqrt(x)
|
700 |
+
assert acosh(x - 1).as_leading_term(x) == I*pi
|
701 |
+
assert acosh(1/x).as_leading_term(x, cdir=1) == -log(x) + log(2)
|
702 |
+
assert acosh(1/x).as_leading_term(x, cdir=-1) == -log(x) + log(2) + 2*I*pi
|
703 |
+
# Tests concerning points lying on branch cuts
|
704 |
+
assert acosh(I*x - 2).as_leading_term(x, cdir=1) == acosh(-2)
|
705 |
+
assert acosh(-I*x - 2).as_leading_term(x, cdir=1) == -2*I*pi + acosh(-2)
|
706 |
+
assert acosh(x**2 - I*x + S(1)/3).as_leading_term(x, cdir=1) == -acosh(S(1)/3)
|
707 |
+
assert acosh(x**2 - I*x + S(1)/3).as_leading_term(x, cdir=-1) == acosh(S(1)/3)
|
708 |
+
assert acosh(1/(I*x - 3)).as_leading_term(x, cdir=1) == -acosh(-S(1)/3)
|
709 |
+
assert acosh(1/(I*x - 3)).as_leading_term(x, cdir=-1) == acosh(-S(1)/3)
|
710 |
+
# Tests concerning im(ndir) == 0
|
711 |
+
assert acosh(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == log(sqrt(3) + 2) - I*pi
|
712 |
+
assert acosh(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == log(sqrt(3) + 2) - I*pi
|
713 |
+
|
714 |
+
|
715 |
+
def test_acosh_series():
|
716 |
+
x = Symbol('x')
|
717 |
+
assert acosh(x).series(x, 0, 8) == \
|
718 |
+
-I*x + pi*I/2 - I*x**3/6 - 3*I*x**5/40 - 5*I*x**7/112 + O(x**8)
|
719 |
+
t5 = acosh(x).taylor_term(5, x)
|
720 |
+
assert t5 == - 3*I*x**5/40
|
721 |
+
assert acosh(x).taylor_term(7, x, t5, 0) == - 5*I*x**7/112
|
722 |
+
|
723 |
+
|
724 |
+
def test_acosh_nseries():
|
725 |
+
x = Symbol('x')
|
726 |
+
# Tests concerning branch points
|
727 |
+
assert acosh(x + 1)._eval_nseries(x, 4, None) == sqrt(2)*sqrt(x) - \
|
728 |
+
sqrt(2)*x**(S(3)/2)/12 + 3*sqrt(2)*x**(S(5)/2)/160 - 5*sqrt(2)*x**(S(7)/2)/896 + O(x**4)
|
729 |
+
# Tests concerning points lying on branch cuts
|
730 |
+
assert acosh(x - 1)._eval_nseries(x, 4, None) == I*pi - \
|
731 |
+
sqrt(2)*I*sqrt(x) - sqrt(2)*I*x**(S(3)/2)/12 - 3*sqrt(2)*I*x**(S(5)/2)/160 - \
|
732 |
+
5*sqrt(2)*I*x**(S(7)/2)/896 + O(x**4)
|
733 |
+
assert acosh(I*x - 2)._eval_nseries(x, 4, None, cdir=1) == acosh(-2) - \
|
734 |
+
sqrt(3)*I*x/3 + sqrt(3)*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
|
735 |
+
assert acosh(-I*x - 2)._eval_nseries(x, 4, None, cdir=1) == acosh(-2) - \
|
736 |
+
2*I*pi + sqrt(3)*I*x/3 + sqrt(3)*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
|
737 |
+
assert acosh(1/(I*x - 3))._eval_nseries(x, 4, None, cdir=1) == -acosh(-S(1)/3) + \
|
738 |
+
sqrt(2)*x/12 + 17*sqrt(2)*I*x**2/576 - 443*sqrt(2)*x**3/41472 + O(x**4)
|
739 |
+
assert acosh(1/(I*x - 3))._eval_nseries(x, 4, None, cdir=-1) == acosh(-S(1)/3) - \
|
740 |
+
sqrt(2)*x/12 - 17*sqrt(2)*I*x**2/576 + 443*sqrt(2)*x**3/41472 + O(x**4)
|
741 |
+
# Tests concerning im(ndir) == 0
|
742 |
+
assert acosh(-I*x**2 + x - 2)._eval_nseries(x, 4, None) == -I*pi + log(sqrt(3) + 2) - \
|
743 |
+
sqrt(3)*x/3 + x**2*(-sqrt(3)/9 + sqrt(3)*I/3) + x**3*(-sqrt(3)/18 + 2*sqrt(3)*I/9) + O(x**4)
|
744 |
+
|
745 |
+
|
746 |
+
def test_acosh_fdiff():
|
747 |
+
x = Symbol('x')
|
748 |
+
raises(ArgumentIndexError, lambda: acosh(x).fdiff(2))
|
749 |
+
|
750 |
+
|
751 |
+
def test_asech():
|
752 |
+
x = Symbol('x')
|
753 |
+
|
754 |
+
assert unchanged(asech, -x)
|
755 |
+
|
756 |
+
# values at fixed points
|
757 |
+
assert asech(1) == 0
|
758 |
+
assert asech(-1) == pi*I
|
759 |
+
assert asech(0) is oo
|
760 |
+
assert asech(2) == I*pi/3
|
761 |
+
assert asech(-2) == 2*I*pi / 3
|
762 |
+
assert asech(nan) is nan
|
763 |
+
|
764 |
+
# at infinites
|
765 |
+
assert asech(oo) == I*pi/2
|
766 |
+
assert asech(-oo) == I*pi/2
|
767 |
+
assert asech(zoo) == I*AccumBounds(-pi/2, pi/2)
|
768 |
+
|
769 |
+
assert asech(I) == log(1 + sqrt(2)) - I*pi/2
|
770 |
+
assert asech(-I) == log(1 + sqrt(2)) + I*pi/2
|
771 |
+
assert asech(sqrt(2) - sqrt(6)) == 11*I*pi / 12
|
772 |
+
assert asech(sqrt(2 - 2/sqrt(5))) == I*pi / 10
|
773 |
+
assert asech(-sqrt(2 - 2/sqrt(5))) == 9*I*pi / 10
|
774 |
+
assert asech(2 / sqrt(2 + sqrt(2))) == I*pi / 8
|
775 |
+
assert asech(-2 / sqrt(2 + sqrt(2))) == 7*I*pi / 8
|
776 |
+
assert asech(sqrt(5) - 1) == I*pi / 5
|
777 |
+
assert asech(1 - sqrt(5)) == 4*I*pi / 5
|
778 |
+
assert asech(-sqrt(2*(2 + sqrt(2)))) == 5*I*pi / 8
|
779 |
+
|
780 |
+
# properties
|
781 |
+
# asech(x) == acosh(1/x)
|
782 |
+
assert asech(sqrt(2)) == acosh(1/sqrt(2))
|
783 |
+
assert asech(2/sqrt(3)) == acosh(sqrt(3)/2)
|
784 |
+
assert asech(2/sqrt(2 + sqrt(2))) == acosh(sqrt(2 + sqrt(2))/2)
|
785 |
+
assert asech(2) == acosh(S.Half)
|
786 |
+
|
787 |
+
# asech(x) == I*acos(1/x)
|
788 |
+
# (Note: the exact formula is asech(x) == +/- I*acos(1/x))
|
789 |
+
assert asech(-sqrt(2)) == I*acos(-1/sqrt(2))
|
790 |
+
assert asech(-2/sqrt(3)) == I*acos(-sqrt(3)/2)
|
791 |
+
assert asech(-S(2)) == I*acos(Rational(-1, 2))
|
792 |
+
assert asech(-2/sqrt(2)) == I*acos(-sqrt(2)/2)
|
793 |
+
|
794 |
+
# sech(asech(x)) / x == 1
|
795 |
+
assert expand_mul(sech(asech(sqrt(6) - sqrt(2))) / (sqrt(6) - sqrt(2))) == 1
|
796 |
+
assert expand_mul(sech(asech(sqrt(6) + sqrt(2))) / (sqrt(6) + sqrt(2))) == 1
|
797 |
+
assert (sech(asech(sqrt(2 + 2/sqrt(5)))) / (sqrt(2 + 2/sqrt(5)))).simplify() == 1
|
798 |
+
assert (sech(asech(-sqrt(2 + 2/sqrt(5)))) / (-sqrt(2 + 2/sqrt(5)))).simplify() == 1
|
799 |
+
assert (sech(asech(sqrt(2*(2 + sqrt(2))))) / (sqrt(2*(2 + sqrt(2))))).simplify() == 1
|
800 |
+
assert expand_mul(sech(asech(1 + sqrt(5))) / (1 + sqrt(5))) == 1
|
801 |
+
assert expand_mul(sech(asech(-1 - sqrt(5))) / (-1 - sqrt(5))) == 1
|
802 |
+
assert expand_mul(sech(asech(-sqrt(6) - sqrt(2))) / (-sqrt(6) - sqrt(2))) == 1
|
803 |
+
|
804 |
+
# numerical evaluation
|
805 |
+
assert str(asech(5*I).n(6)) == '0.19869 - 1.5708*I'
|
806 |
+
assert str(asech(-5*I).n(6)) == '0.19869 + 1.5708*I'
|
807 |
+
|
808 |
+
|
809 |
+
def test_asech_leading_term():
|
810 |
+
x = Symbol('x')
|
811 |
+
# Tests concerning branch points
|
812 |
+
assert asech(x).as_leading_term(x, cdir=1) == -log(x) + log(2)
|
813 |
+
assert asech(x).as_leading_term(x, cdir=-1) == -log(x) + log(2) + 2*I*pi
|
814 |
+
assert asech(x + 1).as_leading_term(x, cdir=1) == sqrt(2)*I*sqrt(x)
|
815 |
+
assert asech(1/x).as_leading_term(x, cdir=1) == I*pi/2
|
816 |
+
# Tests concerning points lying on branch cuts
|
817 |
+
assert asech(x - 1).as_leading_term(x, cdir=1) == I*pi
|
818 |
+
assert asech(I*x + 3).as_leading_term(x, cdir=1) == -asech(3)
|
819 |
+
assert asech(-I*x + 3).as_leading_term(x, cdir=1) == asech(3)
|
820 |
+
assert asech(I*x - 3).as_leading_term(x, cdir=1) == -asech(-3)
|
821 |
+
assert asech(-I*x - 3).as_leading_term(x, cdir=1) == asech(-3)
|
822 |
+
assert asech(I*x - S(1)/3).as_leading_term(x, cdir=1) == -2*I*pi + asech(-S(1)/3)
|
823 |
+
assert asech(I*x - S(1)/3).as_leading_term(x, cdir=-1) == asech(-S(1)/3)
|
824 |
+
# Tests concerning im(ndir) == 0
|
825 |
+
assert asech(-I*x**2 + x - 3).as_leading_term(x, cdir=1) == log(-S(1)/3 + 2*sqrt(2)*I/3)
|
826 |
+
assert asech(-I*x**2 + x - 3).as_leading_term(x, cdir=-1) == log(-S(1)/3 + 2*sqrt(2)*I/3)
|
827 |
+
|
828 |
+
|
829 |
+
def test_asech_series():
|
830 |
+
x = Symbol('x')
|
831 |
+
assert asech(x).series(x, 0, 9, cdir=1) == log(2) - log(x) - x**2/4 - 3*x**4/32 \
|
832 |
+
- 5*x**6/96 - 35*x**8/1024 + O(x**9)
|
833 |
+
assert asech(x).series(x, 0, 9, cdir=-1) == I*pi + log(2) - log(-x) - x**2/4 - \
|
834 |
+
3*x**4/32 - 5*x**6/96 - 35*x**8/1024 + O(x**9)
|
835 |
+
t6 = asech(x).taylor_term(6, x)
|
836 |
+
assert t6 == -5*x**6/96
|
837 |
+
assert asech(x).taylor_term(8, x, t6, 0) == -35*x**8/1024
|
838 |
+
|
839 |
+
|
840 |
+
def test_asech_nseries():
|
841 |
+
x = Symbol('x')
|
842 |
+
# Tests concerning branch points
|
843 |
+
assert asech(x + 1)._eval_nseries(x, 4, None) == sqrt(2)*sqrt(-x) + 5*sqrt(2)*(-x)**(S(3)/2)/12 + \
|
844 |
+
43*sqrt(2)*(-x)**(S(5)/2)/160 + 177*sqrt(2)*(-x)**(S(7)/2)/896 + O(x**4)
|
845 |
+
# Tests concerning points lying on branch cuts
|
846 |
+
assert asech(x - 1)._eval_nseries(x, 4, None) == I*pi + sqrt(2)*sqrt(x) + \
|
847 |
+
5*sqrt(2)*x**(S(3)/2)/12 + 43*sqrt(2)*x**(S(5)/2)/160 + 177*sqrt(2)*x**(S(7)/2)/896 + O(x**4)
|
848 |
+
assert asech(I*x + 3)._eval_nseries(x, 4, None) == -asech(3) + sqrt(2)*x/12 - \
|
849 |
+
17*sqrt(2)*I*x**2/576 - 443*sqrt(2)*x**3/41472 + O(x**4)
|
850 |
+
assert asech(-I*x + 3)._eval_nseries(x, 4, None) == asech(3) + sqrt(2)*x/12 + \
|
851 |
+
17*sqrt(2)*I*x**2/576 - 443*sqrt(2)*x**3/41472 + O(x**4)
|
852 |
+
assert asech(I*x - 3)._eval_nseries(x, 4, None) == -asech(-3) - sqrt(2)*x/12 - \
|
853 |
+
17*sqrt(2)*I*x**2/576 + 443*sqrt(2)*x**3/41472 + O(x**4)
|
854 |
+
assert asech(-I*x - 3)._eval_nseries(x, 4, None) == asech(-3) - sqrt(2)*x/12 + \
|
855 |
+
17*sqrt(2)*I*x**2/576 + 443*sqrt(2)*x**3/41472 + O(x**4)
|
856 |
+
# Tests concerning im(ndir) == 0
|
857 |
+
assert asech(-I*x**2 + x - 2)._eval_nseries(x, 3, None) == 2*I*pi/3 + sqrt(3)*I*x/6 + \
|
858 |
+
x**2*(sqrt(3)/6 + 7*sqrt(3)*I/72) + O(x**3)
|
859 |
+
|
860 |
+
|
861 |
+
def test_asech_rewrite():
|
862 |
+
x = Symbol('x')
|
863 |
+
assert asech(x).rewrite(log) == log(1/x + sqrt(1/x - 1) * sqrt(1/x + 1))
|
864 |
+
assert asech(x).rewrite(acosh) == acosh(1/x)
|
865 |
+
assert asech(x).rewrite(asinh) == sqrt(-1 + 1/x)*(-asin(1/x) + pi/2)/sqrt(1 - 1/x)
|
866 |
+
assert asech(x).rewrite(atanh) == \
|
867 |
+
sqrt(x + 1)*sqrt(1/(x + 1))*atanh(sqrt(1 - x**2)) + I*pi*(-sqrt(x)*sqrt(1/x) + 1 - I*sqrt(x**2)/(2*sqrt(-x**2)) - I*sqrt(-x)/(2*sqrt(x)))
|
868 |
+
|
869 |
+
|
870 |
+
def test_asech_fdiff():
|
871 |
+
x = Symbol('x')
|
872 |
+
raises(ArgumentIndexError, lambda: asech(x).fdiff(2))
|
873 |
+
|
874 |
+
|
875 |
+
def test_acsch():
|
876 |
+
x = Symbol('x')
|
877 |
+
|
878 |
+
assert unchanged(acsch, x)
|
879 |
+
assert acsch(-x) == -acsch(x)
|
880 |
+
|
881 |
+
# values at fixed points
|
882 |
+
assert acsch(1) == log(1 + sqrt(2))
|
883 |
+
assert acsch(-1) == - log(1 + sqrt(2))
|
884 |
+
assert acsch(0) is zoo
|
885 |
+
assert acsch(2) == log((1+sqrt(5))/2)
|
886 |
+
assert acsch(-2) == - log((1+sqrt(5))/2)
|
887 |
+
|
888 |
+
assert acsch(I) == - I*pi/2
|
889 |
+
assert acsch(-I) == I*pi/2
|
890 |
+
assert acsch(-I*(sqrt(6) + sqrt(2))) == I*pi / 12
|
891 |
+
assert acsch(I*(sqrt(2) + sqrt(6))) == -I*pi / 12
|
892 |
+
assert acsch(-I*(1 + sqrt(5))) == I*pi / 10
|
893 |
+
assert acsch(I*(1 + sqrt(5))) == -I*pi / 10
|
894 |
+
assert acsch(-I*2 / sqrt(2 - sqrt(2))) == I*pi / 8
|
895 |
+
assert acsch(I*2 / sqrt(2 - sqrt(2))) == -I*pi / 8
|
896 |
+
assert acsch(-I*2) == I*pi / 6
|
897 |
+
assert acsch(I*2) == -I*pi / 6
|
898 |
+
assert acsch(-I*sqrt(2 + 2/sqrt(5))) == I*pi / 5
|
899 |
+
assert acsch(I*sqrt(2 + 2/sqrt(5))) == -I*pi / 5
|
900 |
+
assert acsch(-I*sqrt(2)) == I*pi / 4
|
901 |
+
assert acsch(I*sqrt(2)) == -I*pi / 4
|
902 |
+
assert acsch(-I*(sqrt(5)-1)) == 3*I*pi / 10
|
903 |
+
assert acsch(I*(sqrt(5)-1)) == -3*I*pi / 10
|
904 |
+
assert acsch(-I*2 / sqrt(3)) == I*pi / 3
|
905 |
+
assert acsch(I*2 / sqrt(3)) == -I*pi / 3
|
906 |
+
assert acsch(-I*2 / sqrt(2 + sqrt(2))) == 3*I*pi / 8
|
907 |
+
assert acsch(I*2 / sqrt(2 + sqrt(2))) == -3*I*pi / 8
|
908 |
+
assert acsch(-I*sqrt(2 - 2/sqrt(5))) == 2*I*pi / 5
|
909 |
+
assert acsch(I*sqrt(2 - 2/sqrt(5))) == -2*I*pi / 5
|
910 |
+
assert acsch(-I*(sqrt(6) - sqrt(2))) == 5*I*pi / 12
|
911 |
+
assert acsch(I*(sqrt(6) - sqrt(2))) == -5*I*pi / 12
|
912 |
+
assert acsch(nan) is nan
|
913 |
+
|
914 |
+
# properties
|
915 |
+
# acsch(x) == asinh(1/x)
|
916 |
+
assert acsch(-I*sqrt(2)) == asinh(I/sqrt(2))
|
917 |
+
assert acsch(-I*2 / sqrt(3)) == asinh(I*sqrt(3) / 2)
|
918 |
+
|
919 |
+
# acsch(x) == -I*asin(I/x)
|
920 |
+
assert acsch(-I*sqrt(2)) == -I*asin(-1/sqrt(2))
|
921 |
+
assert acsch(-I*2 / sqrt(3)) == -I*asin(-sqrt(3)/2)
|
922 |
+
|
923 |
+
# csch(acsch(x)) / x == 1
|
924 |
+
assert expand_mul(csch(acsch(-I*(sqrt(6) + sqrt(2)))) / (-I*(sqrt(6) + sqrt(2)))) == 1
|
925 |
+
assert expand_mul(csch(acsch(I*(1 + sqrt(5)))) / (I*(1 + sqrt(5)))) == 1
|
926 |
+
assert (csch(acsch(I*sqrt(2 - 2/sqrt(5)))) / (I*sqrt(2 - 2/sqrt(5)))).simplify() == 1
|
927 |
+
assert (csch(acsch(-I*sqrt(2 - 2/sqrt(5)))) / (-I*sqrt(2 - 2/sqrt(5)))).simplify() == 1
|
928 |
+
|
929 |
+
# numerical evaluation
|
930 |
+
assert str(acsch(5*I+1).n(6)) == '0.0391819 - 0.193363*I'
|
931 |
+
assert str(acsch(-5*I+1).n(6)) == '0.0391819 + 0.193363*I'
|
932 |
+
|
933 |
+
|
934 |
+
def test_acsch_infinities():
|
935 |
+
assert acsch(oo) == 0
|
936 |
+
assert acsch(-oo) == 0
|
937 |
+
assert acsch(zoo) == 0
|
938 |
+
|
939 |
+
|
940 |
+
def test_acsch_leading_term():
|
941 |
+
x = Symbol('x')
|
942 |
+
assert acsch(1/x).as_leading_term(x) == x
|
943 |
+
# Tests concerning branch points
|
944 |
+
assert acsch(x + I).as_leading_term(x) == -I*pi/2
|
945 |
+
assert acsch(x - I).as_leading_term(x) == I*pi/2
|
946 |
+
# Tests concerning points lying on branch cuts
|
947 |
+
assert acsch(x).as_leading_term(x, cdir=1) == -log(x) + log(2)
|
948 |
+
assert acsch(x).as_leading_term(x, cdir=-1) == log(x) - log(2) - I*pi
|
949 |
+
assert acsch(x + I/2).as_leading_term(x, cdir=1) == -I*pi - acsch(I/2)
|
950 |
+
assert acsch(x + I/2).as_leading_term(x, cdir=-1) == acsch(I/2)
|
951 |
+
assert acsch(x - I/2).as_leading_term(x, cdir=1) == -acsch(I/2)
|
952 |
+
assert acsch(x - I/2).as_leading_term(x, cdir=-1) == acsch(I/2) + I*pi
|
953 |
+
# Tests concerning re(ndir) == 0
|
954 |
+
assert acsch(I/2 + I*x - x**2).as_leading_term(x, cdir=1) == log(2 - sqrt(3)) - I*pi/2
|
955 |
+
assert acsch(I/2 + I*x - x**2).as_leading_term(x, cdir=-1) == log(2 - sqrt(3)) - I*pi/2
|
956 |
+
|
957 |
+
|
958 |
+
def test_acsch_series():
|
959 |
+
x = Symbol('x')
|
960 |
+
assert acsch(x).series(x, 0, 9) == log(2) - log(x) + x**2/4 - 3*x**4/32 \
|
961 |
+
+ 5*x**6/96 - 35*x**8/1024 + O(x**9)
|
962 |
+
t4 = acsch(x).taylor_term(4, x)
|
963 |
+
assert t4 == -3*x**4/32
|
964 |
+
assert acsch(x).taylor_term(6, x, t4, 0) == 5*x**6/96
|
965 |
+
|
966 |
+
|
967 |
+
def test_acsch_nseries():
|
968 |
+
x = Symbol('x')
|
969 |
+
# Tests concerning branch points
|
970 |
+
assert acsch(x + I)._eval_nseries(x, 4, None) == -I*pi/2 + I*sqrt(x) + \
|
971 |
+
sqrt(x) + 5*I*x**(S(3)/2)/12 - 5*x**(S(3)/2)/12 - 43*I*x**(S(5)/2)/160 - \
|
972 |
+
43*x**(S(5)/2)/160 - 177*I*x**(S(7)/2)/896 + 177*x**(S(7)/2)/896 + O(x**4)
|
973 |
+
assert acsch(x - I)._eval_nseries(x, 4, None) == I*pi/2 - I*sqrt(x) + \
|
974 |
+
sqrt(x) - 5*I*x**(S(3)/2)/12 - 5*x**(S(3)/2)/12 + 43*I*x**(S(5)/2)/160 - \
|
975 |
+
43*x**(S(5)/2)/160 + 177*I*x**(S(7)/2)/896 + 177*x**(S(7)/2)/896 + O(x**4)
|
976 |
+
# Tests concerning points lying on branch cuts
|
977 |
+
assert acsch(x + I/2)._eval_nseries(x, 4, None, cdir=1) == -acsch(I/2) - \
|
978 |
+
I*pi + 4*sqrt(3)*I*x/3 - 8*sqrt(3)*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
|
979 |
+
assert acsch(x + I/2)._eval_nseries(x, 4, None, cdir=-1) == acsch(I/2) - \
|
980 |
+
4*sqrt(3)*I*x/3 + 8*sqrt(3)*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
|
981 |
+
assert acsch(x - I/2)._eval_nseries(x, 4, None, cdir=1) == -acsch(I/2) - \
|
982 |
+
4*sqrt(3)*I*x/3 - 8*sqrt(3)*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
|
983 |
+
assert acsch(x - I/2)._eval_nseries(x, 4, None, cdir=-1) == I*pi + \
|
984 |
+
acsch(I/2) + 4*sqrt(3)*I*x/3 + 8*sqrt(3)*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
|
985 |
+
# TODO: Tests concerning re(ndir) == 0
|
986 |
+
assert acsch(I/2 + I*x - x**2)._eval_nseries(x, 4, None) == -I*pi/2 + \
|
987 |
+
log(2 - sqrt(3)) + 4*sqrt(3)*x/3 + x**2*(-8*sqrt(3)/9 + 4*sqrt(3)*I/3) + \
|
988 |
+
x**3*(16*sqrt(3)/9 - 16*sqrt(3)*I/9) + O(x**4)
|
989 |
+
|
990 |
+
|
991 |
+
def test_acsch_rewrite():
|
992 |
+
x = Symbol('x')
|
993 |
+
assert acsch(x).rewrite(log) == log(1/x + sqrt(1/x**2 + 1))
|
994 |
+
assert acsch(x).rewrite(asinh) == asinh(1/x)
|
995 |
+
assert acsch(x).rewrite(atanh) == (sqrt(-x**2)*(-sqrt(-(x**2 + 1)**2)
|
996 |
+
*atanh(sqrt(x**2 + 1))/(x**2 + 1)
|
997 |
+
+ pi/2)/x)
|
998 |
+
|
999 |
+
|
1000 |
+
def test_acsch_fdiff():
|
1001 |
+
x = Symbol('x')
|
1002 |
+
raises(ArgumentIndexError, lambda: acsch(x).fdiff(2))
|
1003 |
+
|
1004 |
+
|
1005 |
+
def test_atanh():
|
1006 |
+
x = Symbol('x')
|
1007 |
+
|
1008 |
+
#at specific points
|
1009 |
+
assert atanh(0) == 0
|
1010 |
+
assert atanh(I) == I*pi/4
|
1011 |
+
assert atanh(-I) == -I*pi/4
|
1012 |
+
assert atanh(1) is oo
|
1013 |
+
assert atanh(-1) is -oo
|
1014 |
+
assert atanh(nan) is nan
|
1015 |
+
|
1016 |
+
# at infinites
|
1017 |
+
assert atanh(oo) == -I*pi/2
|
1018 |
+
assert atanh(-oo) == I*pi/2
|
1019 |
+
|
1020 |
+
assert atanh(I*oo) == I*pi/2
|
1021 |
+
assert atanh(-I*oo) == -I*pi/2
|
1022 |
+
|
1023 |
+
assert atanh(zoo) == I*AccumBounds(-pi/2, pi/2)
|
1024 |
+
|
1025 |
+
#properties
|
1026 |
+
assert atanh(-x) == -atanh(x)
|
1027 |
+
|
1028 |
+
assert atanh(I/sqrt(3)) == I*pi/6
|
1029 |
+
assert atanh(-I/sqrt(3)) == -I*pi/6
|
1030 |
+
assert atanh(I*sqrt(3)) == I*pi/3
|
1031 |
+
assert atanh(-I*sqrt(3)) == -I*pi/3
|
1032 |
+
assert atanh(I*(1 + sqrt(2))) == pi*I*Rational(3, 8)
|
1033 |
+
assert atanh(I*(sqrt(2) - 1)) == pi*I/8
|
1034 |
+
assert atanh(I*(1 - sqrt(2))) == -pi*I/8
|
1035 |
+
assert atanh(-I*(1 + sqrt(2))) == pi*I*Rational(-3, 8)
|
1036 |
+
assert atanh(I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(2, 5)
|
1037 |
+
assert atanh(-I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(-2, 5)
|
1038 |
+
assert atanh(I*(2 - sqrt(3))) == pi*I/12
|
1039 |
+
assert atanh(I*(sqrt(3) - 2)) == -pi*I/12
|
1040 |
+
assert atanh(oo) == -I*pi/2
|
1041 |
+
|
1042 |
+
# Symmetry
|
1043 |
+
assert atanh(Rational(-1, 2)) == -atanh(S.Half)
|
1044 |
+
|
1045 |
+
# inverse composition
|
1046 |
+
assert unchanged(atanh, tanh(Symbol('v1')))
|
1047 |
+
|
1048 |
+
assert atanh(tanh(-5, evaluate=False)) == -5
|
1049 |
+
assert atanh(tanh(0, evaluate=False)) == 0
|
1050 |
+
assert atanh(tanh(7, evaluate=False)) == 7
|
1051 |
+
assert atanh(tanh(I, evaluate=False)) == I
|
1052 |
+
assert atanh(tanh(-I, evaluate=False)) == -I
|
1053 |
+
assert atanh(tanh(-11*I, evaluate=False)) == -11*I + 4*I*pi
|
1054 |
+
assert atanh(tanh(3 + I)) == 3 + I
|
1055 |
+
assert atanh(tanh(4 + 5*I)) == 4 - 2*I*pi + 5*I
|
1056 |
+
assert atanh(tanh(pi/2)) == pi/2
|
1057 |
+
assert atanh(tanh(pi)) == pi
|
1058 |
+
assert atanh(tanh(-3 + 7*I)) == -3 - 2*I*pi + 7*I
|
1059 |
+
assert atanh(tanh(9 - I*2/3)) == 9 - I*2/3
|
1060 |
+
assert atanh(tanh(-32 - 123*I)) == -32 - 123*I + 39*I*pi
|
1061 |
+
|
1062 |
+
|
1063 |
+
def test_atanh_rewrite():
|
1064 |
+
x = Symbol('x')
|
1065 |
+
assert atanh(x).rewrite(log) == (log(1 + x) - log(1 - x)) / 2
|
1066 |
+
assert atanh(x).rewrite(asinh) == \
|
1067 |
+
pi*x/(2*sqrt(-x**2)) - sqrt(-x)*sqrt(1 - x**2)*sqrt(1/(x**2 - 1))*asinh(sqrt(1/(x**2 - 1)))/sqrt(x)
|
1068 |
+
|
1069 |
+
|
1070 |
+
def test_atanh_leading_term():
|
1071 |
+
x = Symbol('x')
|
1072 |
+
assert atanh(x).as_leading_term(x) == x
|
1073 |
+
# Tests concerning branch points
|
1074 |
+
assert atanh(x + 1).as_leading_term(x, cdir=1) == -log(x)/2 + log(2)/2 - I*pi/2
|
1075 |
+
assert atanh(x + 1).as_leading_term(x, cdir=-1) == -log(x)/2 + log(2)/2 + I*pi/2
|
1076 |
+
assert atanh(x - 1).as_leading_term(x, cdir=1) == log(x)/2 - log(2)/2
|
1077 |
+
assert atanh(x - 1).as_leading_term(x, cdir=-1) == log(x)/2 - log(2)/2
|
1078 |
+
assert atanh(1/x).as_leading_term(x, cdir=1) == -I*pi/2
|
1079 |
+
assert atanh(1/x).as_leading_term(x, cdir=-1) == I*pi/2
|
1080 |
+
# Tests concerning points lying on branch cuts
|
1081 |
+
assert atanh(I*x + 2).as_leading_term(x, cdir=1) == atanh(2) + I*pi
|
1082 |
+
assert atanh(-I*x + 2).as_leading_term(x, cdir=1) == atanh(2)
|
1083 |
+
assert atanh(I*x - 2).as_leading_term(x, cdir=1) == -atanh(2)
|
1084 |
+
assert atanh(-I*x - 2).as_leading_term(x, cdir=1) == -I*pi - atanh(2)
|
1085 |
+
# Tests concerning im(ndir) == 0
|
1086 |
+
assert atanh(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == -log(3)/2 - I*pi/2
|
1087 |
+
assert atanh(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == -log(3)/2 - I*pi/2
|
1088 |
+
|
1089 |
+
|
1090 |
+
def test_atanh_series():
|
1091 |
+
x = Symbol('x')
|
1092 |
+
assert atanh(x).series(x, 0, 10) == \
|
1093 |
+
x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10)
|
1094 |
+
|
1095 |
+
|
1096 |
+
def test_atanh_nseries():
|
1097 |
+
x = Symbol('x')
|
1098 |
+
# Tests concerning branch points
|
1099 |
+
assert atanh(x + 1)._eval_nseries(x, 4, None, cdir=1) == -I*pi/2 + log(2)/2 - \
|
1100 |
+
log(x)/2 + x/4 - x**2/16 + x**3/48 + O(x**4)
|
1101 |
+
assert atanh(x + 1)._eval_nseries(x, 4, None, cdir=-1) == I*pi/2 + log(2)/2 - \
|
1102 |
+
log(x)/2 + x/4 - x**2/16 + x**3/48 + O(x**4)
|
1103 |
+
assert atanh(x - 1)._eval_nseries(x, 4, None, cdir=1) == -log(2)/2 + log(x)/2 + \
|
1104 |
+
x/4 + x**2/16 + x**3/48 + O(x**4)
|
1105 |
+
assert atanh(x - 1)._eval_nseries(x, 4, None, cdir=-1) == -log(2)/2 + log(x)/2 + \
|
1106 |
+
x/4 + x**2/16 + x**3/48 + O(x**4)
|
1107 |
+
# Tests concerning points lying on branch cuts
|
1108 |
+
assert atanh(I*x + 2)._eval_nseries(x, 4, None, cdir=1) == I*pi + atanh(2) - \
|
1109 |
+
I*x/3 - 2*x**2/9 + 13*I*x**3/81 + O(x**4)
|
1110 |
+
assert atanh(I*x + 2)._eval_nseries(x, 4, None, cdir=-1) == atanh(2) - I*x/3 - \
|
1111 |
+
2*x**2/9 + 13*I*x**3/81 + O(x**4)
|
1112 |
+
assert atanh(I*x - 2)._eval_nseries(x, 4, None, cdir=1) == -atanh(2) - I*x/3 + \
|
1113 |
+
2*x**2/9 + 13*I*x**3/81 + O(x**4)
|
1114 |
+
assert atanh(I*x - 2)._eval_nseries(x, 4, None, cdir=-1) == -atanh(2) - I*pi - \
|
1115 |
+
I*x/3 + 2*x**2/9 + 13*I*x**3/81 + O(x**4)
|
1116 |
+
# Tests concerning im(ndir) == 0
|
1117 |
+
assert atanh(-I*x**2 + x - 2)._eval_nseries(x, 4, None) == -I*pi/2 - log(3)/2 - x/3 + \
|
1118 |
+
x**2*(-S(1)/4 + I/2) + x**2*(S(1)/36 - I/6) + x**3*(-S(1)/6 + I/2) + x**3*(S(1)/162 - I/18) + O(x**4)
|
1119 |
+
|
1120 |
+
|
1121 |
+
def test_atanh_fdiff():
|
1122 |
+
x = Symbol('x')
|
1123 |
+
raises(ArgumentIndexError, lambda: atanh(x).fdiff(2))
|
1124 |
+
|
1125 |
+
|
1126 |
+
def test_acoth():
|
1127 |
+
x = Symbol('x')
|
1128 |
+
|
1129 |
+
#at specific points
|
1130 |
+
assert acoth(0) == I*pi/2
|
1131 |
+
assert acoth(I) == -I*pi/4
|
1132 |
+
assert acoth(-I) == I*pi/4
|
1133 |
+
assert acoth(1) is oo
|
1134 |
+
assert acoth(-1) is -oo
|
1135 |
+
assert acoth(nan) is nan
|
1136 |
+
|
1137 |
+
# at infinites
|
1138 |
+
assert acoth(oo) == 0
|
1139 |
+
assert acoth(-oo) == 0
|
1140 |
+
assert acoth(I*oo) == 0
|
1141 |
+
assert acoth(-I*oo) == 0
|
1142 |
+
assert acoth(zoo) == 0
|
1143 |
+
|
1144 |
+
#properties
|
1145 |
+
assert acoth(-x) == -acoth(x)
|
1146 |
+
|
1147 |
+
assert acoth(I/sqrt(3)) == -I*pi/3
|
1148 |
+
assert acoth(-I/sqrt(3)) == I*pi/3
|
1149 |
+
assert acoth(I*sqrt(3)) == -I*pi/6
|
1150 |
+
assert acoth(-I*sqrt(3)) == I*pi/6
|
1151 |
+
assert acoth(I*(1 + sqrt(2))) == -pi*I/8
|
1152 |
+
assert acoth(-I*(sqrt(2) + 1)) == pi*I/8
|
1153 |
+
assert acoth(I*(1 - sqrt(2))) == pi*I*Rational(3, 8)
|
1154 |
+
assert acoth(I*(sqrt(2) - 1)) == pi*I*Rational(-3, 8)
|
1155 |
+
assert acoth(I*sqrt(5 + 2*sqrt(5))) == -I*pi/10
|
1156 |
+
assert acoth(-I*sqrt(5 + 2*sqrt(5))) == I*pi/10
|
1157 |
+
assert acoth(I*(2 + sqrt(3))) == -pi*I/12
|
1158 |
+
assert acoth(-I*(2 + sqrt(3))) == pi*I/12
|
1159 |
+
assert acoth(I*(2 - sqrt(3))) == pi*I*Rational(-5, 12)
|
1160 |
+
assert acoth(I*(sqrt(3) - 2)) == pi*I*Rational(5, 12)
|
1161 |
+
|
1162 |
+
# Symmetry
|
1163 |
+
assert acoth(Rational(-1, 2)) == -acoth(S.Half)
|
1164 |
+
|
1165 |
+
|
1166 |
+
def test_acoth_rewrite():
|
1167 |
+
x = Symbol('x')
|
1168 |
+
assert acoth(x).rewrite(log) == (log(1 + 1/x) - log(1 - 1/x)) / 2
|
1169 |
+
assert acoth(x).rewrite(atanh) == atanh(1/x)
|
1170 |
+
assert acoth(x).rewrite(asinh) == \
|
1171 |
+
x*sqrt(x**(-2))*asinh(sqrt(1/(x**2 - 1))) + I*pi*(sqrt((x - 1)/x)*sqrt(x/(x - 1)) - sqrt(x/(x + 1))*sqrt(1 + 1/x))/2
|
1172 |
+
|
1173 |
+
|
1174 |
+
def test_acoth_leading_term():
|
1175 |
+
x = Symbol('x')
|
1176 |
+
# Tests concerning branch points
|
1177 |
+
assert acoth(x + 1).as_leading_term(x, cdir=1) == -log(x)/2 + log(2)/2
|
1178 |
+
assert acoth(x + 1).as_leading_term(x, cdir=-1) == -log(x)/2 + log(2)/2
|
1179 |
+
assert acoth(x - 1).as_leading_term(x, cdir=1) == log(x)/2 - log(2)/2 + I*pi/2
|
1180 |
+
assert acoth(x - 1).as_leading_term(x, cdir=-1) == log(x)/2 - log(2)/2 - I*pi/2
|
1181 |
+
# Tests concerning points lying on branch cuts
|
1182 |
+
assert acoth(x).as_leading_term(x, cdir=-1) == I*pi/2
|
1183 |
+
assert acoth(x).as_leading_term(x, cdir=1) == -I*pi/2
|
1184 |
+
assert acoth(I*x + 1/2).as_leading_term(x, cdir=1) == acoth(1/2)
|
1185 |
+
assert acoth(-I*x + 1/2).as_leading_term(x, cdir=1) == acoth(1/2) + I*pi
|
1186 |
+
assert acoth(I*x - 1/2).as_leading_term(x, cdir=1) == -I*pi - acoth(1/2)
|
1187 |
+
assert acoth(-I*x - 1/2).as_leading_term(x, cdir=1) == -acoth(1/2)
|
1188 |
+
# Tests concerning im(ndir) == 0
|
1189 |
+
assert acoth(-I*x**2 - x - S(1)/2).as_leading_term(x, cdir=1) == -log(3)/2 + I*pi/2
|
1190 |
+
assert acoth(-I*x**2 - x - S(1)/2).as_leading_term(x, cdir=-1) == -log(3)/2 + I*pi/2
|
1191 |
+
|
1192 |
+
|
1193 |
+
def test_acoth_series():
|
1194 |
+
x = Symbol('x')
|
1195 |
+
assert acoth(x).series(x, 0, 10) == \
|
1196 |
+
-I*pi/2 + x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10)
|
1197 |
+
|
1198 |
+
|
1199 |
+
def test_acoth_nseries():
|
1200 |
+
x = Symbol('x')
|
1201 |
+
# Tests concerning branch points
|
1202 |
+
assert acoth(x + 1)._eval_nseries(x, 4, None) == log(2)/2 - log(x)/2 + x/4 - \
|
1203 |
+
x**2/16 + x**3/48 + O(x**4)
|
1204 |
+
assert acoth(x - 1)._eval_nseries(x, 4, None, cdir=1) == I*pi/2 - log(2)/2 + \
|
1205 |
+
log(x)/2 + x/4 + x**2/16 + x**3/48 + O(x**4)
|
1206 |
+
assert acoth(x - 1)._eval_nseries(x, 4, None, cdir=-1) == -I*pi/2 - log(2)/2 + \
|
1207 |
+
log(x)/2 + x/4 + x**2/16 + x**3/48 + O(x**4)
|
1208 |
+
# Tests concerning points lying on branch cuts
|
1209 |
+
assert acoth(I*x + S(1)/2)._eval_nseries(x, 4, None, cdir=1) == acoth(S(1)/2) + \
|
1210 |
+
4*I*x/3 - 8*x**2/9 - 112*I*x**3/81 + O(x**4)
|
1211 |
+
assert acoth(I*x + S(1)/2)._eval_nseries(x, 4, None, cdir=-1) == I*pi + \
|
1212 |
+
acoth(S(1)/2) + 4*I*x/3 - 8*x**2/9 - 112*I*x**3/81 + O(x**4)
|
1213 |
+
assert acoth(I*x - S(1)/2)._eval_nseries(x, 4, None, cdir=1) == -acoth(S(1)/2) - \
|
1214 |
+
I*pi + 4*I*x/3 + 8*x**2/9 - 112*I*x**3/81 + O(x**4)
|
1215 |
+
assert acoth(I*x - S(1)/2)._eval_nseries(x, 4, None, cdir=-1) == -acoth(S(1)/2) + \
|
1216 |
+
4*I*x/3 + 8*x**2/9 - 112*I*x**3/81 + O(x**4)
|
1217 |
+
# Tests concerning im(ndir) == 0
|
1218 |
+
assert acoth(-I*x**2 - x - S(1)/2)._eval_nseries(x, 4, None) == I*pi/2 - log(3)/2 - \
|
1219 |
+
4*x/3 + x**2*(-S(8)/9 + 2*I/3) - 2*I*x**2 + x**3*(S(104)/81 - 16*I/9) - 8*x**3/3 + O(x**4)
|
1220 |
+
|
1221 |
+
|
1222 |
+
def test_acoth_fdiff():
|
1223 |
+
x = Symbol('x')
|
1224 |
+
raises(ArgumentIndexError, lambda: acoth(x).fdiff(2))
|
1225 |
+
|
1226 |
+
|
1227 |
+
def test_inverses():
|
1228 |
+
x = Symbol('x')
|
1229 |
+
assert sinh(x).inverse() == asinh
|
1230 |
+
raises(AttributeError, lambda: cosh(x).inverse())
|
1231 |
+
assert tanh(x).inverse() == atanh
|
1232 |
+
assert coth(x).inverse() == acoth
|
1233 |
+
assert asinh(x).inverse() == sinh
|
1234 |
+
assert acosh(x).inverse() == cosh
|
1235 |
+
assert atanh(x).inverse() == tanh
|
1236 |
+
assert acoth(x).inverse() == coth
|
1237 |
+
assert asech(x).inverse() == sech
|
1238 |
+
assert acsch(x).inverse() == csch
|
1239 |
+
|
1240 |
+
|
1241 |
+
def test_leading_term():
|
1242 |
+
x = Symbol('x')
|
1243 |
+
assert cosh(x).as_leading_term(x) == 1
|
1244 |
+
assert coth(x).as_leading_term(x) == 1/x
|
1245 |
+
for func in [sinh, tanh]:
|
1246 |
+
assert func(x).as_leading_term(x) == x
|
1247 |
+
for func in [sinh, cosh, tanh, coth]:
|
1248 |
+
for ar in (1/x, S.Half):
|
1249 |
+
eq = func(ar)
|
1250 |
+
assert eq.as_leading_term(x) == eq
|
1251 |
+
for func in [csch, sech]:
|
1252 |
+
eq = func(S.Half)
|
1253 |
+
assert eq.as_leading_term(x) == eq
|
1254 |
+
|
1255 |
+
|
1256 |
+
def test_complex():
|
1257 |
+
a, b = symbols('a,b', real=True)
|
1258 |
+
z = a + b*I
|
1259 |
+
for func in [sinh, cosh, tanh, coth, sech, csch]:
|
1260 |
+
assert func(z).conjugate() == func(a - b*I)
|
1261 |
+
for deep in [True, False]:
|
1262 |
+
assert sinh(z).expand(
|
1263 |
+
complex=True, deep=deep) == sinh(a)*cos(b) + I*cosh(a)*sin(b)
|
1264 |
+
assert cosh(z).expand(
|
1265 |
+
complex=True, deep=deep) == cosh(a)*cos(b) + I*sinh(a)*sin(b)
|
1266 |
+
assert tanh(z).expand(complex=True, deep=deep) == sinh(a)*cosh(
|
1267 |
+
a)/(cos(b)**2 + sinh(a)**2) + I*sin(b)*cos(b)/(cos(b)**2 + sinh(a)**2)
|
1268 |
+
assert coth(z).expand(complex=True, deep=deep) == sinh(a)*cosh(
|
1269 |
+
a)/(sin(b)**2 + sinh(a)**2) - I*sin(b)*cos(b)/(sin(b)**2 + sinh(a)**2)
|
1270 |
+
assert csch(z).expand(complex=True, deep=deep) == cos(b) * sinh(a) / (sin(b)**2\
|
1271 |
+
*cosh(a)**2 + cos(b)**2 * sinh(a)**2) - I*sin(b) * cosh(a) / (sin(b)**2\
|
1272 |
+
*cosh(a)**2 + cos(b)**2 * sinh(a)**2)
|
1273 |
+
assert sech(z).expand(complex=True, deep=deep) == cos(b) * cosh(a) / (sin(b)**2\
|
1274 |
+
*sinh(a)**2 + cos(b)**2 * cosh(a)**2) - I*sin(b) * sinh(a) / (sin(b)**2\
|
1275 |
+
*sinh(a)**2 + cos(b)**2 * cosh(a)**2)
|
1276 |
+
|
1277 |
+
|
1278 |
+
def test_complex_2899():
|
1279 |
+
a, b = symbols('a,b', real=True)
|
1280 |
+
for deep in [True, False]:
|
1281 |
+
for func in [sinh, cosh, tanh, coth]:
|
1282 |
+
assert func(a).expand(complex=True, deep=deep) == func(a)
|
1283 |
+
|
1284 |
+
|
1285 |
+
def test_simplifications():
|
1286 |
+
x = Symbol('x')
|
1287 |
+
assert sinh(asinh(x)) == x
|
1288 |
+
assert sinh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1)
|
1289 |
+
assert sinh(atanh(x)) == x/sqrt(1 - x**2)
|
1290 |
+
assert sinh(acoth(x)) == 1/(sqrt(x - 1) * sqrt(x + 1))
|
1291 |
+
|
1292 |
+
assert cosh(asinh(x)) == sqrt(1 + x**2)
|
1293 |
+
assert cosh(acosh(x)) == x
|
1294 |
+
assert cosh(atanh(x)) == 1/sqrt(1 - x**2)
|
1295 |
+
assert cosh(acoth(x)) == x/(sqrt(x - 1) * sqrt(x + 1))
|
1296 |
+
|
1297 |
+
assert tanh(asinh(x)) == x/sqrt(1 + x**2)
|
1298 |
+
assert tanh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1) / x
|
1299 |
+
assert tanh(atanh(x)) == x
|
1300 |
+
assert tanh(acoth(x)) == 1/x
|
1301 |
+
|
1302 |
+
assert coth(asinh(x)) == sqrt(1 + x**2)/x
|
1303 |
+
assert coth(acosh(x)) == x/(sqrt(x - 1) * sqrt(x + 1))
|
1304 |
+
assert coth(atanh(x)) == 1/x
|
1305 |
+
assert coth(acoth(x)) == x
|
1306 |
+
|
1307 |
+
assert csch(asinh(x)) == 1/x
|
1308 |
+
assert csch(acosh(x)) == 1/(sqrt(x - 1) * sqrt(x + 1))
|
1309 |
+
assert csch(atanh(x)) == sqrt(1 - x**2)/x
|
1310 |
+
assert csch(acoth(x)) == sqrt(x - 1) * sqrt(x + 1)
|
1311 |
+
|
1312 |
+
assert sech(asinh(x)) == 1/sqrt(1 + x**2)
|
1313 |
+
assert sech(acosh(x)) == 1/x
|
1314 |
+
assert sech(atanh(x)) == sqrt(1 - x**2)
|
1315 |
+
assert sech(acoth(x)) == sqrt(x - 1) * sqrt(x + 1)/x
|
1316 |
+
|
1317 |
+
|
1318 |
+
def test_issue_4136():
|
1319 |
+
assert cosh(asinh(Integer(3)/2)) == sqrt(Integer(13)/4)
|
1320 |
+
|
1321 |
+
|
1322 |
+
def test_sinh_rewrite():
|
1323 |
+
x = Symbol('x')
|
1324 |
+
assert sinh(x).rewrite(exp) == (exp(x) - exp(-x))/2 \
|
1325 |
+
== sinh(x).rewrite('tractable')
|
1326 |
+
assert sinh(x).rewrite(cosh) == -I*cosh(x + I*pi/2)
|
1327 |
+
tanh_half = tanh(S.Half*x)
|
1328 |
+
assert sinh(x).rewrite(tanh) == 2*tanh_half/(1 - tanh_half**2)
|
1329 |
+
coth_half = coth(S.Half*x)
|
1330 |
+
assert sinh(x).rewrite(coth) == 2*coth_half/(coth_half**2 - 1)
|
1331 |
+
|
1332 |
+
|
1333 |
+
def test_cosh_rewrite():
|
1334 |
+
x = Symbol('x')
|
1335 |
+
assert cosh(x).rewrite(exp) == (exp(x) + exp(-x))/2 \
|
1336 |
+
== cosh(x).rewrite('tractable')
|
1337 |
+
assert cosh(x).rewrite(sinh) == -I*sinh(x + I*pi/2)
|
1338 |
+
tanh_half = tanh(S.Half*x)**2
|
1339 |
+
assert cosh(x).rewrite(tanh) == (1 + tanh_half)/(1 - tanh_half)
|
1340 |
+
coth_half = coth(S.Half*x)**2
|
1341 |
+
assert cosh(x).rewrite(coth) == (coth_half + 1)/(coth_half - 1)
|
1342 |
+
|
1343 |
+
|
1344 |
+
def test_tanh_rewrite():
|
1345 |
+
x = Symbol('x')
|
1346 |
+
assert tanh(x).rewrite(exp) == (exp(x) - exp(-x))/(exp(x) + exp(-x)) \
|
1347 |
+
== tanh(x).rewrite('tractable')
|
1348 |
+
assert tanh(x).rewrite(sinh) == I*sinh(x)/sinh(I*pi/2 - x)
|
1349 |
+
assert tanh(x).rewrite(cosh) == I*cosh(I*pi/2 - x)/cosh(x)
|
1350 |
+
assert tanh(x).rewrite(coth) == 1/coth(x)
|
1351 |
+
|
1352 |
+
|
1353 |
+
def test_coth_rewrite():
|
1354 |
+
x = Symbol('x')
|
1355 |
+
assert coth(x).rewrite(exp) == (exp(x) + exp(-x))/(exp(x) - exp(-x)) \
|
1356 |
+
== coth(x).rewrite('tractable')
|
1357 |
+
assert coth(x).rewrite(sinh) == -I*sinh(I*pi/2 - x)/sinh(x)
|
1358 |
+
assert coth(x).rewrite(cosh) == -I*cosh(x)/cosh(I*pi/2 - x)
|
1359 |
+
assert coth(x).rewrite(tanh) == 1/tanh(x)
|
1360 |
+
|
1361 |
+
|
1362 |
+
def test_csch_rewrite():
|
1363 |
+
x = Symbol('x')
|
1364 |
+
assert csch(x).rewrite(exp) == 1 / (exp(x)/2 - exp(-x)/2) \
|
1365 |
+
== csch(x).rewrite('tractable')
|
1366 |
+
assert csch(x).rewrite(cosh) == I/cosh(x + I*pi/2)
|
1367 |
+
tanh_half = tanh(S.Half*x)
|
1368 |
+
assert csch(x).rewrite(tanh) == (1 - tanh_half**2)/(2*tanh_half)
|
1369 |
+
coth_half = coth(S.Half*x)
|
1370 |
+
assert csch(x).rewrite(coth) == (coth_half**2 - 1)/(2*coth_half)
|
1371 |
+
|
1372 |
+
|
1373 |
+
def test_sech_rewrite():
|
1374 |
+
x = Symbol('x')
|
1375 |
+
assert sech(x).rewrite(exp) == 1 / (exp(x)/2 + exp(-x)/2) \
|
1376 |
+
== sech(x).rewrite('tractable')
|
1377 |
+
assert sech(x).rewrite(sinh) == I/sinh(x + I*pi/2)
|
1378 |
+
tanh_half = tanh(S.Half*x)**2
|
1379 |
+
assert sech(x).rewrite(tanh) == (1 - tanh_half)/(1 + tanh_half)
|
1380 |
+
coth_half = coth(S.Half*x)**2
|
1381 |
+
assert sech(x).rewrite(coth) == (coth_half - 1)/(coth_half + 1)
|
1382 |
+
|
1383 |
+
|
1384 |
+
def test_derivs():
|
1385 |
+
x = Symbol('x')
|
1386 |
+
assert coth(x).diff(x) == -sinh(x)**(-2)
|
1387 |
+
assert sinh(x).diff(x) == cosh(x)
|
1388 |
+
assert cosh(x).diff(x) == sinh(x)
|
1389 |
+
assert tanh(x).diff(x) == -tanh(x)**2 + 1
|
1390 |
+
assert csch(x).diff(x) == -coth(x)*csch(x)
|
1391 |
+
assert sech(x).diff(x) == -tanh(x)*sech(x)
|
1392 |
+
assert acoth(x).diff(x) == 1/(-x**2 + 1)
|
1393 |
+
assert asinh(x).diff(x) == 1/sqrt(x**2 + 1)
|
1394 |
+
assert acosh(x).diff(x) == 1/(sqrt(x - 1)*sqrt(x + 1))
|
1395 |
+
assert acosh(x).diff(x) == acosh(x).rewrite(log).diff(x).together()
|
1396 |
+
assert atanh(x).diff(x) == 1/(-x**2 + 1)
|
1397 |
+
assert asech(x).diff(x) == -1/(x*sqrt(1 - x**2))
|
1398 |
+
assert acsch(x).diff(x) == -1/(x**2*sqrt(1 + x**(-2)))
|
1399 |
+
|
1400 |
+
|
1401 |
+
def test_sinh_expansion():
|
1402 |
+
x, y = symbols('x,y')
|
1403 |
+
assert sinh(x+y).expand(trig=True) == sinh(x)*cosh(y) + cosh(x)*sinh(y)
|
1404 |
+
assert sinh(2*x).expand(trig=True) == 2*sinh(x)*cosh(x)
|
1405 |
+
assert sinh(3*x).expand(trig=True).expand() == \
|
1406 |
+
sinh(x)**3 + 3*sinh(x)*cosh(x)**2
|
1407 |
+
|
1408 |
+
|
1409 |
+
def test_cosh_expansion():
|
1410 |
+
x, y = symbols('x,y')
|
1411 |
+
assert cosh(x+y).expand(trig=True) == cosh(x)*cosh(y) + sinh(x)*sinh(y)
|
1412 |
+
assert cosh(2*x).expand(trig=True) == cosh(x)**2 + sinh(x)**2
|
1413 |
+
assert cosh(3*x).expand(trig=True).expand() == \
|
1414 |
+
3*sinh(x)**2*cosh(x) + cosh(x)**3
|
1415 |
+
|
1416 |
+
def test_cosh_positive():
|
1417 |
+
# See issue 11721
|
1418 |
+
# cosh(x) is positive for real values of x
|
1419 |
+
k = symbols('k', real=True)
|
1420 |
+
n = symbols('n', integer=True)
|
1421 |
+
|
1422 |
+
assert cosh(k, evaluate=False).is_positive is True
|
1423 |
+
assert cosh(k + 2*n*pi*I, evaluate=False).is_positive is True
|
1424 |
+
assert cosh(I*pi/4, evaluate=False).is_positive is True
|
1425 |
+
assert cosh(3*I*pi/4, evaluate=False).is_positive is False
|
1426 |
+
|
1427 |
+
def test_cosh_nonnegative():
|
1428 |
+
k = symbols('k', real=True)
|
1429 |
+
n = symbols('n', integer=True)
|
1430 |
+
|
1431 |
+
assert cosh(k, evaluate=False).is_nonnegative is True
|
1432 |
+
assert cosh(k + 2*n*pi*I, evaluate=False).is_nonnegative is True
|
1433 |
+
assert cosh(I*pi/4, evaluate=False).is_nonnegative is True
|
1434 |
+
assert cosh(3*I*pi/4, evaluate=False).is_nonnegative is False
|
1435 |
+
assert cosh(S.Zero, evaluate=False).is_nonnegative is True
|
1436 |
+
|
1437 |
+
def test_real_assumptions():
|
1438 |
+
z = Symbol('z', real=False)
|
1439 |
+
assert sinh(z).is_real is None
|
1440 |
+
assert cosh(z).is_real is None
|
1441 |
+
assert tanh(z).is_real is None
|
1442 |
+
assert sech(z).is_real is None
|
1443 |
+
assert csch(z).is_real is None
|
1444 |
+
assert coth(z).is_real is None
|
1445 |
+
|
1446 |
+
def test_sign_assumptions():
|
1447 |
+
p = Symbol('p', positive=True)
|
1448 |
+
n = Symbol('n', negative=True)
|
1449 |
+
assert sinh(n).is_negative is True
|
1450 |
+
assert sinh(p).is_positive is True
|
1451 |
+
assert cosh(n).is_positive is True
|
1452 |
+
assert cosh(p).is_positive is True
|
1453 |
+
assert tanh(n).is_negative is True
|
1454 |
+
assert tanh(p).is_positive is True
|
1455 |
+
assert csch(n).is_negative is True
|
1456 |
+
assert csch(p).is_positive is True
|
1457 |
+
assert sech(n).is_positive is True
|
1458 |
+
assert sech(p).is_positive is True
|
1459 |
+
assert coth(n).is_negative is True
|
1460 |
+
assert coth(p).is_positive is True
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_integers.py
ADDED
@@ -0,0 +1,632 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
2 |
+
from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
|
3 |
+
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne)
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import (Symbol, symbols)
|
6 |
+
from sympy.functions.combinatorial.factorials import factorial
|
7 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
8 |
+
from sympy.functions.elementary.integers import (ceiling, floor, frac)
|
9 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
10 |
+
from sympy.functions.elementary.trigonometric import sin, cos, tan
|
11 |
+
|
12 |
+
from sympy.core.expr import unchanged
|
13 |
+
from sympy.testing.pytest import XFAIL
|
14 |
+
|
15 |
+
x = Symbol('x')
|
16 |
+
i = Symbol('i', imaginary=True)
|
17 |
+
y = Symbol('y', real=True)
|
18 |
+
k, n = symbols('k,n', integer=True)
|
19 |
+
|
20 |
+
|
21 |
+
def test_floor():
|
22 |
+
|
23 |
+
assert floor(nan) is nan
|
24 |
+
|
25 |
+
assert floor(oo) is oo
|
26 |
+
assert floor(-oo) is -oo
|
27 |
+
assert floor(zoo) is zoo
|
28 |
+
|
29 |
+
assert floor(0) == 0
|
30 |
+
|
31 |
+
assert floor(1) == 1
|
32 |
+
assert floor(-1) == -1
|
33 |
+
|
34 |
+
assert floor(E) == 2
|
35 |
+
assert floor(-E) == -3
|
36 |
+
|
37 |
+
assert floor(2*E) == 5
|
38 |
+
assert floor(-2*E) == -6
|
39 |
+
|
40 |
+
assert floor(pi) == 3
|
41 |
+
assert floor(-pi) == -4
|
42 |
+
|
43 |
+
assert floor(S.Half) == 0
|
44 |
+
assert floor(Rational(-1, 2)) == -1
|
45 |
+
|
46 |
+
assert floor(Rational(7, 3)) == 2
|
47 |
+
assert floor(Rational(-7, 3)) == -3
|
48 |
+
assert floor(-Rational(7, 3)) == -3
|
49 |
+
|
50 |
+
assert floor(Float(17.0)) == 17
|
51 |
+
assert floor(-Float(17.0)) == -17
|
52 |
+
|
53 |
+
assert floor(Float(7.69)) == 7
|
54 |
+
assert floor(-Float(7.69)) == -8
|
55 |
+
|
56 |
+
assert floor(I) == I
|
57 |
+
assert floor(-I) == -I
|
58 |
+
e = floor(i)
|
59 |
+
assert e.func is floor and e.args[0] == i
|
60 |
+
|
61 |
+
assert floor(oo*I) == oo*I
|
62 |
+
assert floor(-oo*I) == -oo*I
|
63 |
+
assert floor(exp(I*pi/4)*oo) == exp(I*pi/4)*oo
|
64 |
+
|
65 |
+
assert floor(2*I) == 2*I
|
66 |
+
assert floor(-2*I) == -2*I
|
67 |
+
|
68 |
+
assert floor(I/2) == 0
|
69 |
+
assert floor(-I/2) == -I
|
70 |
+
|
71 |
+
assert floor(E + 17) == 19
|
72 |
+
assert floor(pi + 2) == 5
|
73 |
+
|
74 |
+
assert floor(E + pi) == 5
|
75 |
+
assert floor(I + pi) == 3 + I
|
76 |
+
|
77 |
+
assert floor(floor(pi)) == 3
|
78 |
+
assert floor(floor(y)) == floor(y)
|
79 |
+
assert floor(floor(x)) == floor(x)
|
80 |
+
|
81 |
+
assert unchanged(floor, x)
|
82 |
+
assert unchanged(floor, 2*x)
|
83 |
+
assert unchanged(floor, k*x)
|
84 |
+
|
85 |
+
assert floor(k) == k
|
86 |
+
assert floor(2*k) == 2*k
|
87 |
+
assert floor(k*n) == k*n
|
88 |
+
|
89 |
+
assert unchanged(floor, k/2)
|
90 |
+
|
91 |
+
assert unchanged(floor, x + y)
|
92 |
+
|
93 |
+
assert floor(x + 3) == floor(x) + 3
|
94 |
+
assert floor(x + k) == floor(x) + k
|
95 |
+
|
96 |
+
assert floor(y + 3) == floor(y) + 3
|
97 |
+
assert floor(y + k) == floor(y) + k
|
98 |
+
|
99 |
+
assert floor(3 + I*y + pi) == 6 + floor(y)*I
|
100 |
+
|
101 |
+
assert floor(k + n) == k + n
|
102 |
+
|
103 |
+
assert unchanged(floor, x*I)
|
104 |
+
assert floor(k*I) == k*I
|
105 |
+
|
106 |
+
assert floor(Rational(23, 10) - E*I) == 2 - 3*I
|
107 |
+
|
108 |
+
assert floor(sin(1)) == 0
|
109 |
+
assert floor(sin(-1)) == -1
|
110 |
+
|
111 |
+
assert floor(exp(2)) == 7
|
112 |
+
|
113 |
+
assert floor(log(8)/log(2)) != 2
|
114 |
+
assert int(floor(log(8)/log(2)).evalf(chop=True)) == 3
|
115 |
+
|
116 |
+
assert floor(factorial(50)/exp(1)) == \
|
117 |
+
11188719610782480504630258070757734324011354208865721592720336800
|
118 |
+
|
119 |
+
assert (floor(y) < y) == False
|
120 |
+
assert (floor(y) <= y) == True
|
121 |
+
assert (floor(y) > y) == False
|
122 |
+
assert (floor(y) >= y) == False
|
123 |
+
assert (floor(x) <= x).is_Relational # x could be non-real
|
124 |
+
assert (floor(x) > x).is_Relational
|
125 |
+
assert (floor(x) <= y).is_Relational # arg is not same as rhs
|
126 |
+
assert (floor(x) > y).is_Relational
|
127 |
+
assert (floor(y) <= oo) == True
|
128 |
+
assert (floor(y) < oo) == True
|
129 |
+
assert (floor(y) >= -oo) == True
|
130 |
+
assert (floor(y) > -oo) == True
|
131 |
+
|
132 |
+
assert floor(y).rewrite(frac) == y - frac(y)
|
133 |
+
assert floor(y).rewrite(ceiling) == -ceiling(-y)
|
134 |
+
assert floor(y).rewrite(frac).subs(y, -pi) == floor(-pi)
|
135 |
+
assert floor(y).rewrite(frac).subs(y, E) == floor(E)
|
136 |
+
assert floor(y).rewrite(ceiling).subs(y, E) == -ceiling(-E)
|
137 |
+
assert floor(y).rewrite(ceiling).subs(y, -pi) == -ceiling(pi)
|
138 |
+
|
139 |
+
assert Eq(floor(y), y - frac(y))
|
140 |
+
assert Eq(floor(y), -ceiling(-y))
|
141 |
+
|
142 |
+
neg = Symbol('neg', negative=True)
|
143 |
+
nn = Symbol('nn', nonnegative=True)
|
144 |
+
pos = Symbol('pos', positive=True)
|
145 |
+
np = Symbol('np', nonpositive=True)
|
146 |
+
|
147 |
+
assert (floor(neg) < 0) == True
|
148 |
+
assert (floor(neg) <= 0) == True
|
149 |
+
assert (floor(neg) > 0) == False
|
150 |
+
assert (floor(neg) >= 0) == False
|
151 |
+
assert (floor(neg) <= -1) == True
|
152 |
+
assert (floor(neg) >= -3) == (neg >= -3)
|
153 |
+
assert (floor(neg) < 5) == (neg < 5)
|
154 |
+
|
155 |
+
assert (floor(nn) < 0) == False
|
156 |
+
assert (floor(nn) >= 0) == True
|
157 |
+
|
158 |
+
assert (floor(pos) < 0) == False
|
159 |
+
assert (floor(pos) <= 0) == (pos < 1)
|
160 |
+
assert (floor(pos) > 0) == (pos >= 1)
|
161 |
+
assert (floor(pos) >= 0) == True
|
162 |
+
assert (floor(pos) >= 3) == (pos >= 3)
|
163 |
+
|
164 |
+
assert (floor(np) <= 0) == True
|
165 |
+
assert (floor(np) > 0) == False
|
166 |
+
|
167 |
+
assert floor(neg).is_negative == True
|
168 |
+
assert floor(neg).is_nonnegative == False
|
169 |
+
assert floor(nn).is_negative == False
|
170 |
+
assert floor(nn).is_nonnegative == True
|
171 |
+
assert floor(pos).is_negative == False
|
172 |
+
assert floor(pos).is_nonnegative == True
|
173 |
+
assert floor(np).is_negative is None
|
174 |
+
assert floor(np).is_nonnegative is None
|
175 |
+
|
176 |
+
assert (floor(7, evaluate=False) >= 7) == True
|
177 |
+
assert (floor(7, evaluate=False) > 7) == False
|
178 |
+
assert (floor(7, evaluate=False) <= 7) == True
|
179 |
+
assert (floor(7, evaluate=False) < 7) == False
|
180 |
+
|
181 |
+
assert (floor(7, evaluate=False) >= 6) == True
|
182 |
+
assert (floor(7, evaluate=False) > 6) == True
|
183 |
+
assert (floor(7, evaluate=False) <= 6) == False
|
184 |
+
assert (floor(7, evaluate=False) < 6) == False
|
185 |
+
|
186 |
+
assert (floor(7, evaluate=False) >= 8) == False
|
187 |
+
assert (floor(7, evaluate=False) > 8) == False
|
188 |
+
assert (floor(7, evaluate=False) <= 8) == True
|
189 |
+
assert (floor(7, evaluate=False) < 8) == True
|
190 |
+
|
191 |
+
assert (floor(x) <= 5.5) == Le(floor(x), 5.5, evaluate=False)
|
192 |
+
assert (floor(x) >= -3.2) == Ge(floor(x), -3.2, evaluate=False)
|
193 |
+
assert (floor(x) < 2.9) == Lt(floor(x), 2.9, evaluate=False)
|
194 |
+
assert (floor(x) > -1.7) == Gt(floor(x), -1.7, evaluate=False)
|
195 |
+
|
196 |
+
assert (floor(y) <= 5.5) == (y < 6)
|
197 |
+
assert (floor(y) >= -3.2) == (y >= -3)
|
198 |
+
assert (floor(y) < 2.9) == (y < 3)
|
199 |
+
assert (floor(y) > -1.7) == (y >= -1)
|
200 |
+
|
201 |
+
assert (floor(y) <= n) == (y < n + 1)
|
202 |
+
assert (floor(y) >= n) == (y >= n)
|
203 |
+
assert (floor(y) < n) == (y < n)
|
204 |
+
assert (floor(y) > n) == (y >= n + 1)
|
205 |
+
|
206 |
+
|
207 |
+
def test_ceiling():
|
208 |
+
|
209 |
+
assert ceiling(nan) is nan
|
210 |
+
|
211 |
+
assert ceiling(oo) is oo
|
212 |
+
assert ceiling(-oo) is -oo
|
213 |
+
assert ceiling(zoo) is zoo
|
214 |
+
|
215 |
+
assert ceiling(0) == 0
|
216 |
+
|
217 |
+
assert ceiling(1) == 1
|
218 |
+
assert ceiling(-1) == -1
|
219 |
+
|
220 |
+
assert ceiling(E) == 3
|
221 |
+
assert ceiling(-E) == -2
|
222 |
+
|
223 |
+
assert ceiling(2*E) == 6
|
224 |
+
assert ceiling(-2*E) == -5
|
225 |
+
|
226 |
+
assert ceiling(pi) == 4
|
227 |
+
assert ceiling(-pi) == -3
|
228 |
+
|
229 |
+
assert ceiling(S.Half) == 1
|
230 |
+
assert ceiling(Rational(-1, 2)) == 0
|
231 |
+
|
232 |
+
assert ceiling(Rational(7, 3)) == 3
|
233 |
+
assert ceiling(-Rational(7, 3)) == -2
|
234 |
+
|
235 |
+
assert ceiling(Float(17.0)) == 17
|
236 |
+
assert ceiling(-Float(17.0)) == -17
|
237 |
+
|
238 |
+
assert ceiling(Float(7.69)) == 8
|
239 |
+
assert ceiling(-Float(7.69)) == -7
|
240 |
+
|
241 |
+
assert ceiling(I) == I
|
242 |
+
assert ceiling(-I) == -I
|
243 |
+
e = ceiling(i)
|
244 |
+
assert e.func is ceiling and e.args[0] == i
|
245 |
+
|
246 |
+
assert ceiling(oo*I) == oo*I
|
247 |
+
assert ceiling(-oo*I) == -oo*I
|
248 |
+
assert ceiling(exp(I*pi/4)*oo) == exp(I*pi/4)*oo
|
249 |
+
|
250 |
+
assert ceiling(2*I) == 2*I
|
251 |
+
assert ceiling(-2*I) == -2*I
|
252 |
+
|
253 |
+
assert ceiling(I/2) == I
|
254 |
+
assert ceiling(-I/2) == 0
|
255 |
+
|
256 |
+
assert ceiling(E + 17) == 20
|
257 |
+
assert ceiling(pi + 2) == 6
|
258 |
+
|
259 |
+
assert ceiling(E + pi) == 6
|
260 |
+
assert ceiling(I + pi) == I + 4
|
261 |
+
|
262 |
+
assert ceiling(ceiling(pi)) == 4
|
263 |
+
assert ceiling(ceiling(y)) == ceiling(y)
|
264 |
+
assert ceiling(ceiling(x)) == ceiling(x)
|
265 |
+
|
266 |
+
assert unchanged(ceiling, x)
|
267 |
+
assert unchanged(ceiling, 2*x)
|
268 |
+
assert unchanged(ceiling, k*x)
|
269 |
+
|
270 |
+
assert ceiling(k) == k
|
271 |
+
assert ceiling(2*k) == 2*k
|
272 |
+
assert ceiling(k*n) == k*n
|
273 |
+
|
274 |
+
assert unchanged(ceiling, k/2)
|
275 |
+
|
276 |
+
assert unchanged(ceiling, x + y)
|
277 |
+
|
278 |
+
assert ceiling(x + 3) == ceiling(x) + 3
|
279 |
+
assert ceiling(x + k) == ceiling(x) + k
|
280 |
+
|
281 |
+
assert ceiling(y + 3) == ceiling(y) + 3
|
282 |
+
assert ceiling(y + k) == ceiling(y) + k
|
283 |
+
|
284 |
+
assert ceiling(3 + pi + y*I) == 7 + ceiling(y)*I
|
285 |
+
|
286 |
+
assert ceiling(k + n) == k + n
|
287 |
+
|
288 |
+
assert unchanged(ceiling, x*I)
|
289 |
+
assert ceiling(k*I) == k*I
|
290 |
+
|
291 |
+
assert ceiling(Rational(23, 10) - E*I) == 3 - 2*I
|
292 |
+
|
293 |
+
assert ceiling(sin(1)) == 1
|
294 |
+
assert ceiling(sin(-1)) == 0
|
295 |
+
|
296 |
+
assert ceiling(exp(2)) == 8
|
297 |
+
|
298 |
+
assert ceiling(-log(8)/log(2)) != -2
|
299 |
+
assert int(ceiling(-log(8)/log(2)).evalf(chop=True)) == -3
|
300 |
+
|
301 |
+
assert ceiling(factorial(50)/exp(1)) == \
|
302 |
+
11188719610782480504630258070757734324011354208865721592720336801
|
303 |
+
|
304 |
+
assert (ceiling(y) >= y) == True
|
305 |
+
assert (ceiling(y) > y) == False
|
306 |
+
assert (ceiling(y) < y) == False
|
307 |
+
assert (ceiling(y) <= y) == False
|
308 |
+
assert (ceiling(x) >= x).is_Relational # x could be non-real
|
309 |
+
assert (ceiling(x) < x).is_Relational
|
310 |
+
assert (ceiling(x) >= y).is_Relational # arg is not same as rhs
|
311 |
+
assert (ceiling(x) < y).is_Relational
|
312 |
+
assert (ceiling(y) >= -oo) == True
|
313 |
+
assert (ceiling(y) > -oo) == True
|
314 |
+
assert (ceiling(y) <= oo) == True
|
315 |
+
assert (ceiling(y) < oo) == True
|
316 |
+
|
317 |
+
assert ceiling(y).rewrite(floor) == -floor(-y)
|
318 |
+
assert ceiling(y).rewrite(frac) == y + frac(-y)
|
319 |
+
assert ceiling(y).rewrite(floor).subs(y, -pi) == -floor(pi)
|
320 |
+
assert ceiling(y).rewrite(floor).subs(y, E) == -floor(-E)
|
321 |
+
assert ceiling(y).rewrite(frac).subs(y, pi) == ceiling(pi)
|
322 |
+
assert ceiling(y).rewrite(frac).subs(y, -E) == ceiling(-E)
|
323 |
+
|
324 |
+
assert Eq(ceiling(y), y + frac(-y))
|
325 |
+
assert Eq(ceiling(y), -floor(-y))
|
326 |
+
|
327 |
+
neg = Symbol('neg', negative=True)
|
328 |
+
nn = Symbol('nn', nonnegative=True)
|
329 |
+
pos = Symbol('pos', positive=True)
|
330 |
+
np = Symbol('np', nonpositive=True)
|
331 |
+
|
332 |
+
assert (ceiling(neg) <= 0) == True
|
333 |
+
assert (ceiling(neg) < 0) == (neg <= -1)
|
334 |
+
assert (ceiling(neg) > 0) == False
|
335 |
+
assert (ceiling(neg) >= 0) == (neg > -1)
|
336 |
+
assert (ceiling(neg) > -3) == (neg > -3)
|
337 |
+
assert (ceiling(neg) <= 10) == (neg <= 10)
|
338 |
+
|
339 |
+
assert (ceiling(nn) < 0) == False
|
340 |
+
assert (ceiling(nn) >= 0) == True
|
341 |
+
|
342 |
+
assert (ceiling(pos) < 0) == False
|
343 |
+
assert (ceiling(pos) <= 0) == False
|
344 |
+
assert (ceiling(pos) > 0) == True
|
345 |
+
assert (ceiling(pos) >= 0) == True
|
346 |
+
assert (ceiling(pos) >= 1) == True
|
347 |
+
assert (ceiling(pos) > 5) == (pos > 5)
|
348 |
+
|
349 |
+
assert (ceiling(np) <= 0) == True
|
350 |
+
assert (ceiling(np) > 0) == False
|
351 |
+
|
352 |
+
assert ceiling(neg).is_positive == False
|
353 |
+
assert ceiling(neg).is_nonpositive == True
|
354 |
+
assert ceiling(nn).is_positive is None
|
355 |
+
assert ceiling(nn).is_nonpositive is None
|
356 |
+
assert ceiling(pos).is_positive == True
|
357 |
+
assert ceiling(pos).is_nonpositive == False
|
358 |
+
assert ceiling(np).is_positive == False
|
359 |
+
assert ceiling(np).is_nonpositive == True
|
360 |
+
|
361 |
+
assert (ceiling(7, evaluate=False) >= 7) == True
|
362 |
+
assert (ceiling(7, evaluate=False) > 7) == False
|
363 |
+
assert (ceiling(7, evaluate=False) <= 7) == True
|
364 |
+
assert (ceiling(7, evaluate=False) < 7) == False
|
365 |
+
|
366 |
+
assert (ceiling(7, evaluate=False) >= 6) == True
|
367 |
+
assert (ceiling(7, evaluate=False) > 6) == True
|
368 |
+
assert (ceiling(7, evaluate=False) <= 6) == False
|
369 |
+
assert (ceiling(7, evaluate=False) < 6) == False
|
370 |
+
|
371 |
+
assert (ceiling(7, evaluate=False) >= 8) == False
|
372 |
+
assert (ceiling(7, evaluate=False) > 8) == False
|
373 |
+
assert (ceiling(7, evaluate=False) <= 8) == True
|
374 |
+
assert (ceiling(7, evaluate=False) < 8) == True
|
375 |
+
|
376 |
+
assert (ceiling(x) <= 5.5) == Le(ceiling(x), 5.5, evaluate=False)
|
377 |
+
assert (ceiling(x) >= -3.2) == Ge(ceiling(x), -3.2, evaluate=False)
|
378 |
+
assert (ceiling(x) < 2.9) == Lt(ceiling(x), 2.9, evaluate=False)
|
379 |
+
assert (ceiling(x) > -1.7) == Gt(ceiling(x), -1.7, evaluate=False)
|
380 |
+
|
381 |
+
assert (ceiling(y) <= 5.5) == (y <= 5)
|
382 |
+
assert (ceiling(y) >= -3.2) == (y > -4)
|
383 |
+
assert (ceiling(y) < 2.9) == (y <= 2)
|
384 |
+
assert (ceiling(y) > -1.7) == (y > -2)
|
385 |
+
|
386 |
+
assert (ceiling(y) <= n) == (y <= n)
|
387 |
+
assert (ceiling(y) >= n) == (y > n - 1)
|
388 |
+
assert (ceiling(y) < n) == (y <= n - 1)
|
389 |
+
assert (ceiling(y) > n) == (y > n)
|
390 |
+
|
391 |
+
|
392 |
+
def test_frac():
|
393 |
+
assert isinstance(frac(x), frac)
|
394 |
+
assert frac(oo) == AccumBounds(0, 1)
|
395 |
+
assert frac(-oo) == AccumBounds(0, 1)
|
396 |
+
assert frac(zoo) is nan
|
397 |
+
|
398 |
+
assert frac(n) == 0
|
399 |
+
assert frac(nan) is nan
|
400 |
+
assert frac(Rational(4, 3)) == Rational(1, 3)
|
401 |
+
assert frac(-Rational(4, 3)) == Rational(2, 3)
|
402 |
+
assert frac(Rational(-4, 3)) == Rational(2, 3)
|
403 |
+
|
404 |
+
r = Symbol('r', real=True)
|
405 |
+
assert frac(I*r) == I*frac(r)
|
406 |
+
assert frac(1 + I*r) == I*frac(r)
|
407 |
+
assert frac(0.5 + I*r) == 0.5 + I*frac(r)
|
408 |
+
assert frac(n + I*r) == I*frac(r)
|
409 |
+
assert frac(n + I*k) == 0
|
410 |
+
assert unchanged(frac, x + I*x)
|
411 |
+
assert frac(x + I*n) == frac(x)
|
412 |
+
|
413 |
+
assert frac(x).rewrite(floor) == x - floor(x)
|
414 |
+
assert frac(x).rewrite(ceiling) == x + ceiling(-x)
|
415 |
+
assert frac(y).rewrite(floor).subs(y, pi) == frac(pi)
|
416 |
+
assert frac(y).rewrite(floor).subs(y, -E) == frac(-E)
|
417 |
+
assert frac(y).rewrite(ceiling).subs(y, -pi) == frac(-pi)
|
418 |
+
assert frac(y).rewrite(ceiling).subs(y, E) == frac(E)
|
419 |
+
|
420 |
+
assert Eq(frac(y), y - floor(y))
|
421 |
+
assert Eq(frac(y), y + ceiling(-y))
|
422 |
+
|
423 |
+
r = Symbol('r', real=True)
|
424 |
+
p_i = Symbol('p_i', integer=True, positive=True)
|
425 |
+
n_i = Symbol('p_i', integer=True, negative=True)
|
426 |
+
np_i = Symbol('np_i', integer=True, nonpositive=True)
|
427 |
+
nn_i = Symbol('nn_i', integer=True, nonnegative=True)
|
428 |
+
p_r = Symbol('p_r', positive=True)
|
429 |
+
n_r = Symbol('n_r', negative=True)
|
430 |
+
np_r = Symbol('np_r', real=True, nonpositive=True)
|
431 |
+
nn_r = Symbol('nn_r', real=True, nonnegative=True)
|
432 |
+
|
433 |
+
# Real frac argument, integer rhs
|
434 |
+
assert frac(r) <= p_i
|
435 |
+
assert not frac(r) <= n_i
|
436 |
+
assert (frac(r) <= np_i).has(Le)
|
437 |
+
assert (frac(r) <= nn_i).has(Le)
|
438 |
+
assert frac(r) < p_i
|
439 |
+
assert not frac(r) < n_i
|
440 |
+
assert not frac(r) < np_i
|
441 |
+
assert (frac(r) < nn_i).has(Lt)
|
442 |
+
assert not frac(r) >= p_i
|
443 |
+
assert frac(r) >= n_i
|
444 |
+
assert frac(r) >= np_i
|
445 |
+
assert (frac(r) >= nn_i).has(Ge)
|
446 |
+
assert not frac(r) > p_i
|
447 |
+
assert frac(r) > n_i
|
448 |
+
assert (frac(r) > np_i).has(Gt)
|
449 |
+
assert (frac(r) > nn_i).has(Gt)
|
450 |
+
|
451 |
+
assert not Eq(frac(r), p_i)
|
452 |
+
assert not Eq(frac(r), n_i)
|
453 |
+
assert Eq(frac(r), np_i).has(Eq)
|
454 |
+
assert Eq(frac(r), nn_i).has(Eq)
|
455 |
+
|
456 |
+
assert Ne(frac(r), p_i)
|
457 |
+
assert Ne(frac(r), n_i)
|
458 |
+
assert Ne(frac(r), np_i).has(Ne)
|
459 |
+
assert Ne(frac(r), nn_i).has(Ne)
|
460 |
+
|
461 |
+
|
462 |
+
# Real frac argument, real rhs
|
463 |
+
assert (frac(r) <= p_r).has(Le)
|
464 |
+
assert not frac(r) <= n_r
|
465 |
+
assert (frac(r) <= np_r).has(Le)
|
466 |
+
assert (frac(r) <= nn_r).has(Le)
|
467 |
+
assert (frac(r) < p_r).has(Lt)
|
468 |
+
assert not frac(r) < n_r
|
469 |
+
assert not frac(r) < np_r
|
470 |
+
assert (frac(r) < nn_r).has(Lt)
|
471 |
+
assert (frac(r) >= p_r).has(Ge)
|
472 |
+
assert frac(r) >= n_r
|
473 |
+
assert frac(r) >= np_r
|
474 |
+
assert (frac(r) >= nn_r).has(Ge)
|
475 |
+
assert (frac(r) > p_r).has(Gt)
|
476 |
+
assert frac(r) > n_r
|
477 |
+
assert (frac(r) > np_r).has(Gt)
|
478 |
+
assert (frac(r) > nn_r).has(Gt)
|
479 |
+
|
480 |
+
assert not Eq(frac(r), n_r)
|
481 |
+
assert Eq(frac(r), p_r).has(Eq)
|
482 |
+
assert Eq(frac(r), np_r).has(Eq)
|
483 |
+
assert Eq(frac(r), nn_r).has(Eq)
|
484 |
+
|
485 |
+
assert Ne(frac(r), p_r).has(Ne)
|
486 |
+
assert Ne(frac(r), n_r)
|
487 |
+
assert Ne(frac(r), np_r).has(Ne)
|
488 |
+
assert Ne(frac(r), nn_r).has(Ne)
|
489 |
+
|
490 |
+
# Real frac argument, +/- oo rhs
|
491 |
+
assert frac(r) < oo
|
492 |
+
assert frac(r) <= oo
|
493 |
+
assert not frac(r) > oo
|
494 |
+
assert not frac(r) >= oo
|
495 |
+
|
496 |
+
assert not frac(r) < -oo
|
497 |
+
assert not frac(r) <= -oo
|
498 |
+
assert frac(r) > -oo
|
499 |
+
assert frac(r) >= -oo
|
500 |
+
|
501 |
+
assert frac(r) < 1
|
502 |
+
assert frac(r) <= 1
|
503 |
+
assert not frac(r) > 1
|
504 |
+
assert not frac(r) >= 1
|
505 |
+
|
506 |
+
assert not frac(r) < 0
|
507 |
+
assert (frac(r) <= 0).has(Le)
|
508 |
+
assert (frac(r) > 0).has(Gt)
|
509 |
+
assert frac(r) >= 0
|
510 |
+
|
511 |
+
# Some test for numbers
|
512 |
+
assert frac(r) <= sqrt(2)
|
513 |
+
assert (frac(r) <= sqrt(3) - sqrt(2)).has(Le)
|
514 |
+
assert not frac(r) <= sqrt(2) - sqrt(3)
|
515 |
+
assert not frac(r) >= sqrt(2)
|
516 |
+
assert (frac(r) >= sqrt(3) - sqrt(2)).has(Ge)
|
517 |
+
assert frac(r) >= sqrt(2) - sqrt(3)
|
518 |
+
|
519 |
+
assert not Eq(frac(r), sqrt(2))
|
520 |
+
assert Eq(frac(r), sqrt(3) - sqrt(2)).has(Eq)
|
521 |
+
assert not Eq(frac(r), sqrt(2) - sqrt(3))
|
522 |
+
assert Ne(frac(r), sqrt(2))
|
523 |
+
assert Ne(frac(r), sqrt(3) - sqrt(2)).has(Ne)
|
524 |
+
assert Ne(frac(r), sqrt(2) - sqrt(3))
|
525 |
+
|
526 |
+
assert frac(p_i, evaluate=False).is_zero
|
527 |
+
assert frac(p_i, evaluate=False).is_finite
|
528 |
+
assert frac(p_i, evaluate=False).is_integer
|
529 |
+
assert frac(p_i, evaluate=False).is_real
|
530 |
+
assert frac(r).is_finite
|
531 |
+
assert frac(r).is_real
|
532 |
+
assert frac(r).is_zero is None
|
533 |
+
assert frac(r).is_integer is None
|
534 |
+
|
535 |
+
assert frac(oo).is_finite
|
536 |
+
assert frac(oo).is_real
|
537 |
+
|
538 |
+
|
539 |
+
def test_series():
|
540 |
+
x, y = symbols('x,y')
|
541 |
+
assert floor(x).nseries(x, y, 100) == floor(y)
|
542 |
+
assert ceiling(x).nseries(x, y, 100) == ceiling(y)
|
543 |
+
assert floor(x).nseries(x, pi, 100) == 3
|
544 |
+
assert ceiling(x).nseries(x, pi, 100) == 4
|
545 |
+
assert floor(x).nseries(x, 0, 100) == 0
|
546 |
+
assert ceiling(x).nseries(x, 0, 100) == 1
|
547 |
+
assert floor(-x).nseries(x, 0, 100) == -1
|
548 |
+
assert ceiling(-x).nseries(x, 0, 100) == 0
|
549 |
+
|
550 |
+
|
551 |
+
def test_issue_14355():
|
552 |
+
# This test checks the leading term and series for the floor and ceil
|
553 |
+
# function when arg0 evaluates to S.NaN.
|
554 |
+
assert floor((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = 1) == -2
|
555 |
+
assert floor((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = -1) == -1
|
556 |
+
assert floor((cos(x) - 1)/x).as_leading_term(x, cdir = 1) == -1
|
557 |
+
assert floor((cos(x) - 1)/x).as_leading_term(x, cdir = -1) == 0
|
558 |
+
assert floor(sin(x)/x).as_leading_term(x, cdir = 1) == 0
|
559 |
+
assert floor(sin(x)/x).as_leading_term(x, cdir = -1) == 0
|
560 |
+
assert floor(-tan(x)/x).as_leading_term(x, cdir = 1) == -2
|
561 |
+
assert floor(-tan(x)/x).as_leading_term(x, cdir = -1) == -2
|
562 |
+
assert floor(sin(x)/x/3).as_leading_term(x, cdir = 1) == 0
|
563 |
+
assert floor(sin(x)/x/3).as_leading_term(x, cdir = -1) == 0
|
564 |
+
assert ceiling((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = 1) == -1
|
565 |
+
assert ceiling((x**3 + x)/(x**2 - x)).as_leading_term(x, cdir = -1) == 0
|
566 |
+
assert ceiling((cos(x) - 1)/x).as_leading_term(x, cdir = 1) == 0
|
567 |
+
assert ceiling((cos(x) - 1)/x).as_leading_term(x, cdir = -1) == 1
|
568 |
+
assert ceiling(sin(x)/x).as_leading_term(x, cdir = 1) == 1
|
569 |
+
assert ceiling(sin(x)/x).as_leading_term(x, cdir = -1) == 1
|
570 |
+
assert ceiling(-tan(x)/x).as_leading_term(x, cdir = 1) == -1
|
571 |
+
assert ceiling(-tan(x)/x).as_leading_term(x, cdir = 1) == -1
|
572 |
+
assert ceiling(sin(x)/x/3).as_leading_term(x, cdir = 1) == 1
|
573 |
+
assert ceiling(sin(x)/x/3).as_leading_term(x, cdir = -1) == 1
|
574 |
+
# test for series
|
575 |
+
assert floor(sin(x)/x).series(x, 0, 100, cdir = 1) == 0
|
576 |
+
assert floor(sin(x)/x).series(x, 0, 100, cdir = 1) == 0
|
577 |
+
assert floor((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = 1) == -2
|
578 |
+
assert floor((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = -1) == -1
|
579 |
+
assert ceiling(sin(x)/x).series(x, 0, 100, cdir = 1) == 1
|
580 |
+
assert ceiling(sin(x)/x).series(x, 0, 100, cdir = -1) == 1
|
581 |
+
assert ceiling((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = 1) == -1
|
582 |
+
assert ceiling((x**3 + x)/(x**2 - x)).series(x, 0, 100, cdir = -1) == 0
|
583 |
+
|
584 |
+
|
585 |
+
def test_frac_leading_term():
|
586 |
+
assert frac(x).as_leading_term(x) == x
|
587 |
+
assert frac(x).as_leading_term(x, cdir = 1) == x
|
588 |
+
assert frac(x).as_leading_term(x, cdir = -1) == 1
|
589 |
+
assert frac(x + S.Half).as_leading_term(x, cdir = 1) == S.Half
|
590 |
+
assert frac(x + S.Half).as_leading_term(x, cdir = -1) == S.Half
|
591 |
+
assert frac(-2*x + 1).as_leading_term(x, cdir = 1) == S.One
|
592 |
+
assert frac(-2*x + 1).as_leading_term(x, cdir = -1) == -2*x
|
593 |
+
assert frac(sin(x) + 5).as_leading_term(x, cdir = 1) == x
|
594 |
+
assert frac(sin(x) + 5).as_leading_term(x, cdir = -1) == S.One
|
595 |
+
assert frac(sin(x**2) + 5).as_leading_term(x, cdir = 1) == x**2
|
596 |
+
assert frac(sin(x**2) + 5).as_leading_term(x, cdir = -1) == x**2
|
597 |
+
|
598 |
+
|
599 |
+
@XFAIL
|
600 |
+
def test_issue_4149():
|
601 |
+
assert floor(3 + pi*I + y*I) == 3 + floor(pi + y)*I
|
602 |
+
assert floor(3*I + pi*I + y*I) == floor(3 + pi + y)*I
|
603 |
+
assert floor(3 + E + pi*I + y*I) == 5 + floor(pi + y)*I
|
604 |
+
|
605 |
+
|
606 |
+
def test_issue_21651():
|
607 |
+
k = Symbol('k', positive=True, integer=True)
|
608 |
+
exp = 2*2**(-k)
|
609 |
+
assert isinstance(floor(exp), floor)
|
610 |
+
|
611 |
+
|
612 |
+
def test_issue_11207():
|
613 |
+
assert floor(floor(x)) == floor(x)
|
614 |
+
assert floor(ceiling(x)) == ceiling(x)
|
615 |
+
assert ceiling(floor(x)) == floor(x)
|
616 |
+
assert ceiling(ceiling(x)) == ceiling(x)
|
617 |
+
|
618 |
+
|
619 |
+
def test_nested_floor_ceiling():
|
620 |
+
assert floor(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
|
621 |
+
assert ceiling(-floor(ceiling(x**3)/y)) == -floor(ceiling(x**3)/y)
|
622 |
+
assert floor(ceiling(-floor(x**Rational(7, 2)/y))) == -floor(x**Rational(7, 2)/y)
|
623 |
+
assert -ceiling(-ceiling(floor(x)/y)) == ceiling(floor(x)/y)
|
624 |
+
|
625 |
+
def test_issue_18689():
|
626 |
+
assert floor(floor(floor(x)) + 3) == floor(x) + 3
|
627 |
+
assert ceiling(ceiling(ceiling(x)) + 1) == ceiling(x) + 1
|
628 |
+
assert ceiling(ceiling(floor(x)) + 3) == floor(x) + 3
|
629 |
+
|
630 |
+
def test_issue_18421():
|
631 |
+
assert floor(float(0)) is S.Zero
|
632 |
+
assert ceiling(float(0)) is S.Zero
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_interface.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This test file tests the SymPy function interface, that people use to create
|
2 |
+
# their own new functions. It should be as easy as possible.
|
3 |
+
from sympy.core.function import Function
|
4 |
+
from sympy.core.sympify import sympify
|
5 |
+
from sympy.functions.elementary.hyperbolic import tanh
|
6 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
7 |
+
from sympy.series.limits import limit
|
8 |
+
from sympy.abc import x
|
9 |
+
|
10 |
+
|
11 |
+
def test_function_series1():
|
12 |
+
"""Create our new "sin" function."""
|
13 |
+
|
14 |
+
class my_function(Function):
|
15 |
+
|
16 |
+
def fdiff(self, argindex=1):
|
17 |
+
return cos(self.args[0])
|
18 |
+
|
19 |
+
@classmethod
|
20 |
+
def eval(cls, arg):
|
21 |
+
arg = sympify(arg)
|
22 |
+
if arg == 0:
|
23 |
+
return sympify(0)
|
24 |
+
|
25 |
+
#Test that the taylor series is correct
|
26 |
+
assert my_function(x).series(x, 0, 10) == sin(x).series(x, 0, 10)
|
27 |
+
assert limit(my_function(x)/x, x, 0) == 1
|
28 |
+
|
29 |
+
|
30 |
+
def test_function_series2():
|
31 |
+
"""Create our new "cos" function."""
|
32 |
+
|
33 |
+
class my_function2(Function):
|
34 |
+
|
35 |
+
def fdiff(self, argindex=1):
|
36 |
+
return -sin(self.args[0])
|
37 |
+
|
38 |
+
@classmethod
|
39 |
+
def eval(cls, arg):
|
40 |
+
arg = sympify(arg)
|
41 |
+
if arg == 0:
|
42 |
+
return sympify(1)
|
43 |
+
|
44 |
+
#Test that the taylor series is correct
|
45 |
+
assert my_function2(x).series(x, 0, 10) == cos(x).series(x, 0, 10)
|
46 |
+
|
47 |
+
|
48 |
+
def test_function_series3():
|
49 |
+
"""
|
50 |
+
Test our easy "tanh" function.
|
51 |
+
|
52 |
+
This test tests two things:
|
53 |
+
* that the Function interface works as expected and it's easy to use
|
54 |
+
* that the general algorithm for the series expansion works even when the
|
55 |
+
derivative is defined recursively in terms of the original function,
|
56 |
+
since tanh(x).diff(x) == 1-tanh(x)**2
|
57 |
+
"""
|
58 |
+
|
59 |
+
class mytanh(Function):
|
60 |
+
|
61 |
+
def fdiff(self, argindex=1):
|
62 |
+
return 1 - mytanh(self.args[0])**2
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def eval(cls, arg):
|
66 |
+
arg = sympify(arg)
|
67 |
+
if arg == 0:
|
68 |
+
return sympify(0)
|
69 |
+
|
70 |
+
e = tanh(x)
|
71 |
+
f = mytanh(x)
|
72 |
+
assert e.series(x, 0, 6) == f.series(x, 0, 6)
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_miscellaneous.py
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools as it
|
2 |
+
|
3 |
+
from sympy.core.expr import unchanged
|
4 |
+
from sympy.core.function import Function
|
5 |
+
from sympy.core.numbers import I, oo, Rational
|
6 |
+
from sympy.core.power import Pow
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.core.symbol import Symbol
|
9 |
+
from sympy.external import import_module
|
10 |
+
from sympy.functions.elementary.exponential import log
|
11 |
+
from sympy.functions.elementary.integers import floor, ceiling
|
12 |
+
from sympy.functions.elementary.miscellaneous import (sqrt, cbrt, root, Min,
|
13 |
+
Max, real_root, Rem)
|
14 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
15 |
+
from sympy.functions.special.delta_functions import Heaviside
|
16 |
+
|
17 |
+
from sympy.utilities.lambdify import lambdify
|
18 |
+
from sympy.testing.pytest import raises, skip, ignore_warnings
|
19 |
+
|
20 |
+
def test_Min():
|
21 |
+
from sympy.abc import x, y, z
|
22 |
+
n = Symbol('n', negative=True)
|
23 |
+
n_ = Symbol('n_', negative=True)
|
24 |
+
nn = Symbol('nn', nonnegative=True)
|
25 |
+
nn_ = Symbol('nn_', nonnegative=True)
|
26 |
+
p = Symbol('p', positive=True)
|
27 |
+
p_ = Symbol('p_', positive=True)
|
28 |
+
np = Symbol('np', nonpositive=True)
|
29 |
+
np_ = Symbol('np_', nonpositive=True)
|
30 |
+
r = Symbol('r', real=True)
|
31 |
+
|
32 |
+
assert Min(5, 4) == 4
|
33 |
+
assert Min(-oo, -oo) is -oo
|
34 |
+
assert Min(-oo, n) is -oo
|
35 |
+
assert Min(n, -oo) is -oo
|
36 |
+
assert Min(-oo, np) is -oo
|
37 |
+
assert Min(np, -oo) is -oo
|
38 |
+
assert Min(-oo, 0) is -oo
|
39 |
+
assert Min(0, -oo) is -oo
|
40 |
+
assert Min(-oo, nn) is -oo
|
41 |
+
assert Min(nn, -oo) is -oo
|
42 |
+
assert Min(-oo, p) is -oo
|
43 |
+
assert Min(p, -oo) is -oo
|
44 |
+
assert Min(-oo, oo) is -oo
|
45 |
+
assert Min(oo, -oo) is -oo
|
46 |
+
assert Min(n, n) == n
|
47 |
+
assert unchanged(Min, n, np)
|
48 |
+
assert Min(np, n) == Min(n, np)
|
49 |
+
assert Min(n, 0) == n
|
50 |
+
assert Min(0, n) == n
|
51 |
+
assert Min(n, nn) == n
|
52 |
+
assert Min(nn, n) == n
|
53 |
+
assert Min(n, p) == n
|
54 |
+
assert Min(p, n) == n
|
55 |
+
assert Min(n, oo) == n
|
56 |
+
assert Min(oo, n) == n
|
57 |
+
assert Min(np, np) == np
|
58 |
+
assert Min(np, 0) == np
|
59 |
+
assert Min(0, np) == np
|
60 |
+
assert Min(np, nn) == np
|
61 |
+
assert Min(nn, np) == np
|
62 |
+
assert Min(np, p) == np
|
63 |
+
assert Min(p, np) == np
|
64 |
+
assert Min(np, oo) == np
|
65 |
+
assert Min(oo, np) == np
|
66 |
+
assert Min(0, 0) == 0
|
67 |
+
assert Min(0, nn) == 0
|
68 |
+
assert Min(nn, 0) == 0
|
69 |
+
assert Min(0, p) == 0
|
70 |
+
assert Min(p, 0) == 0
|
71 |
+
assert Min(0, oo) == 0
|
72 |
+
assert Min(oo, 0) == 0
|
73 |
+
assert Min(nn, nn) == nn
|
74 |
+
assert unchanged(Min, nn, p)
|
75 |
+
assert Min(p, nn) == Min(nn, p)
|
76 |
+
assert Min(nn, oo) == nn
|
77 |
+
assert Min(oo, nn) == nn
|
78 |
+
assert Min(p, p) == p
|
79 |
+
assert Min(p, oo) == p
|
80 |
+
assert Min(oo, p) == p
|
81 |
+
assert Min(oo, oo) is oo
|
82 |
+
|
83 |
+
assert Min(n, n_).func is Min
|
84 |
+
assert Min(nn, nn_).func is Min
|
85 |
+
assert Min(np, np_).func is Min
|
86 |
+
assert Min(p, p_).func is Min
|
87 |
+
|
88 |
+
# lists
|
89 |
+
assert Min() is S.Infinity
|
90 |
+
assert Min(x) == x
|
91 |
+
assert Min(x, y) == Min(y, x)
|
92 |
+
assert Min(x, y, z) == Min(z, y, x)
|
93 |
+
assert Min(x, Min(y, z)) == Min(z, y, x)
|
94 |
+
assert Min(x, Max(y, -oo)) == Min(x, y)
|
95 |
+
assert Min(p, oo, n, p, p, p_) == n
|
96 |
+
assert Min(p_, n_, p) == n_
|
97 |
+
assert Min(n, oo, -7, p, p, 2) == Min(n, -7)
|
98 |
+
assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_)
|
99 |
+
assert Min(0, x, 1, y) == Min(0, x, y)
|
100 |
+
assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100)
|
101 |
+
assert unchanged(Min, sin(x), cos(x))
|
102 |
+
assert Min(sin(x), cos(x)) == Min(cos(x), sin(x))
|
103 |
+
assert Min(cos(x), sin(x)).subs(x, 1) == cos(1)
|
104 |
+
assert Min(cos(x), sin(x)).subs(x, S.Half) == sin(S.Half)
|
105 |
+
raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I))
|
106 |
+
raises(ValueError, lambda: Min(I))
|
107 |
+
raises(ValueError, lambda: Min(I, x))
|
108 |
+
raises(ValueError, lambda: Min(S.ComplexInfinity, x))
|
109 |
+
|
110 |
+
assert Min(1, x).diff(x) == Heaviside(1 - x)
|
111 |
+
assert Min(x, 1).diff(x) == Heaviside(1 - x)
|
112 |
+
assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \
|
113 |
+
- 2*Heaviside(2*x + Min(0, -x) - 1)
|
114 |
+
|
115 |
+
# issue 7619
|
116 |
+
f = Function('f')
|
117 |
+
assert Min(1, 2*Min(f(1), 2)) # doesn't fail
|
118 |
+
|
119 |
+
# issue 7233
|
120 |
+
e = Min(0, x)
|
121 |
+
assert e.n().args == (0, x)
|
122 |
+
|
123 |
+
# issue 8643
|
124 |
+
m = Min(n, p_, n_, r)
|
125 |
+
assert m.is_positive is False
|
126 |
+
assert m.is_nonnegative is False
|
127 |
+
assert m.is_negative is True
|
128 |
+
|
129 |
+
m = Min(p, p_)
|
130 |
+
assert m.is_positive is True
|
131 |
+
assert m.is_nonnegative is True
|
132 |
+
assert m.is_negative is False
|
133 |
+
|
134 |
+
m = Min(p, nn_, p_)
|
135 |
+
assert m.is_positive is None
|
136 |
+
assert m.is_nonnegative is True
|
137 |
+
assert m.is_negative is False
|
138 |
+
|
139 |
+
m = Min(nn, p, r)
|
140 |
+
assert m.is_positive is None
|
141 |
+
assert m.is_nonnegative is None
|
142 |
+
assert m.is_negative is None
|
143 |
+
|
144 |
+
|
145 |
+
def test_Max():
|
146 |
+
from sympy.abc import x, y, z
|
147 |
+
n = Symbol('n', negative=True)
|
148 |
+
n_ = Symbol('n_', negative=True)
|
149 |
+
nn = Symbol('nn', nonnegative=True)
|
150 |
+
p = Symbol('p', positive=True)
|
151 |
+
p_ = Symbol('p_', positive=True)
|
152 |
+
r = Symbol('r', real=True)
|
153 |
+
|
154 |
+
assert Max(5, 4) == 5
|
155 |
+
|
156 |
+
# lists
|
157 |
+
|
158 |
+
assert Max() is S.NegativeInfinity
|
159 |
+
assert Max(x) == x
|
160 |
+
assert Max(x, y) == Max(y, x)
|
161 |
+
assert Max(x, y, z) == Max(z, y, x)
|
162 |
+
assert Max(x, Max(y, z)) == Max(z, y, x)
|
163 |
+
assert Max(x, Min(y, oo)) == Max(x, y)
|
164 |
+
assert Max(n, -oo, n_, p, 2) == Max(p, 2)
|
165 |
+
assert Max(n, -oo, n_, p) == p
|
166 |
+
assert Max(2, x, p, n, -oo, S.NegativeInfinity, n_, p, 2) == Max(2, x, p)
|
167 |
+
assert Max(0, x, 1, y) == Max(1, x, y)
|
168 |
+
assert Max(r, r + 1, r - 1) == 1 + r
|
169 |
+
assert Max(1000, 100, -100, x, p, n) == Max(p, x, 1000)
|
170 |
+
assert Max(cos(x), sin(x)) == Max(sin(x), cos(x))
|
171 |
+
assert Max(cos(x), sin(x)).subs(x, 1) == sin(1)
|
172 |
+
assert Max(cos(x), sin(x)).subs(x, S.Half) == cos(S.Half)
|
173 |
+
raises(ValueError, lambda: Max(cos(x), sin(x)).subs(x, I))
|
174 |
+
raises(ValueError, lambda: Max(I))
|
175 |
+
raises(ValueError, lambda: Max(I, x))
|
176 |
+
raises(ValueError, lambda: Max(S.ComplexInfinity, 1))
|
177 |
+
assert Max(n, -oo, n_, p, 2) == Max(p, 2)
|
178 |
+
assert Max(n, -oo, n_, p, 1000) == Max(p, 1000)
|
179 |
+
|
180 |
+
assert Max(1, x).diff(x) == Heaviside(x - 1)
|
181 |
+
assert Max(x, 1).diff(x) == Heaviside(x - 1)
|
182 |
+
assert Max(x**2, 1 + x, 1).diff(x) == \
|
183 |
+
2*x*Heaviside(x**2 - Max(1, x + 1)) \
|
184 |
+
+ Heaviside(x - Max(1, x**2) + 1)
|
185 |
+
|
186 |
+
e = Max(0, x)
|
187 |
+
assert e.n().args == (0, x)
|
188 |
+
|
189 |
+
# issue 8643
|
190 |
+
m = Max(p, p_, n, r)
|
191 |
+
assert m.is_positive is True
|
192 |
+
assert m.is_nonnegative is True
|
193 |
+
assert m.is_negative is False
|
194 |
+
|
195 |
+
m = Max(n, n_)
|
196 |
+
assert m.is_positive is False
|
197 |
+
assert m.is_nonnegative is False
|
198 |
+
assert m.is_negative is True
|
199 |
+
|
200 |
+
m = Max(n, n_, r)
|
201 |
+
assert m.is_positive is None
|
202 |
+
assert m.is_nonnegative is None
|
203 |
+
assert m.is_negative is None
|
204 |
+
|
205 |
+
m = Max(n, nn, r)
|
206 |
+
assert m.is_positive is None
|
207 |
+
assert m.is_nonnegative is True
|
208 |
+
assert m.is_negative is False
|
209 |
+
|
210 |
+
|
211 |
+
def test_minmax_assumptions():
|
212 |
+
r = Symbol('r', real=True)
|
213 |
+
a = Symbol('a', real=True, algebraic=True)
|
214 |
+
t = Symbol('t', real=True, transcendental=True)
|
215 |
+
q = Symbol('q', rational=True)
|
216 |
+
p = Symbol('p', irrational=True)
|
217 |
+
n = Symbol('n', rational=True, integer=False)
|
218 |
+
i = Symbol('i', integer=True)
|
219 |
+
o = Symbol('o', odd=True)
|
220 |
+
e = Symbol('e', even=True)
|
221 |
+
k = Symbol('k', prime=True)
|
222 |
+
reals = [r, a, t, q, p, n, i, o, e, k]
|
223 |
+
|
224 |
+
for ext in (Max, Min):
|
225 |
+
for x, y in it.product(reals, repeat=2):
|
226 |
+
|
227 |
+
# Must be real
|
228 |
+
assert ext(x, y).is_real
|
229 |
+
|
230 |
+
# Algebraic?
|
231 |
+
if x.is_algebraic and y.is_algebraic:
|
232 |
+
assert ext(x, y).is_algebraic
|
233 |
+
elif x.is_transcendental and y.is_transcendental:
|
234 |
+
assert ext(x, y).is_transcendental
|
235 |
+
else:
|
236 |
+
assert ext(x, y).is_algebraic is None
|
237 |
+
|
238 |
+
# Rational?
|
239 |
+
if x.is_rational and y.is_rational:
|
240 |
+
assert ext(x, y).is_rational
|
241 |
+
elif x.is_irrational and y.is_irrational:
|
242 |
+
assert ext(x, y).is_irrational
|
243 |
+
else:
|
244 |
+
assert ext(x, y).is_rational is None
|
245 |
+
|
246 |
+
# Integer?
|
247 |
+
if x.is_integer and y.is_integer:
|
248 |
+
assert ext(x, y).is_integer
|
249 |
+
elif x.is_noninteger and y.is_noninteger:
|
250 |
+
assert ext(x, y).is_noninteger
|
251 |
+
else:
|
252 |
+
assert ext(x, y).is_integer is None
|
253 |
+
|
254 |
+
# Odd?
|
255 |
+
if x.is_odd and y.is_odd:
|
256 |
+
assert ext(x, y).is_odd
|
257 |
+
elif x.is_odd is False and y.is_odd is False:
|
258 |
+
assert ext(x, y).is_odd is False
|
259 |
+
else:
|
260 |
+
assert ext(x, y).is_odd is None
|
261 |
+
|
262 |
+
# Even?
|
263 |
+
if x.is_even and y.is_even:
|
264 |
+
assert ext(x, y).is_even
|
265 |
+
elif x.is_even is False and y.is_even is False:
|
266 |
+
assert ext(x, y).is_even is False
|
267 |
+
else:
|
268 |
+
assert ext(x, y).is_even is None
|
269 |
+
|
270 |
+
# Prime?
|
271 |
+
if x.is_prime and y.is_prime:
|
272 |
+
assert ext(x, y).is_prime
|
273 |
+
elif x.is_prime is False and y.is_prime is False:
|
274 |
+
assert ext(x, y).is_prime is False
|
275 |
+
else:
|
276 |
+
assert ext(x, y).is_prime is None
|
277 |
+
|
278 |
+
|
279 |
+
def test_issue_8413():
|
280 |
+
x = Symbol('x', real=True)
|
281 |
+
# we can't evaluate in general because non-reals are not
|
282 |
+
# comparable: Min(floor(3.2 + I), 3.2 + I) -> ValueError
|
283 |
+
assert Min(floor(x), x) == floor(x)
|
284 |
+
assert Min(ceiling(x), x) == x
|
285 |
+
assert Max(floor(x), x) == x
|
286 |
+
assert Max(ceiling(x), x) == ceiling(x)
|
287 |
+
|
288 |
+
|
289 |
+
def test_root():
|
290 |
+
from sympy.abc import x
|
291 |
+
n = Symbol('n', integer=True)
|
292 |
+
k = Symbol('k', integer=True)
|
293 |
+
|
294 |
+
assert root(2, 2) == sqrt(2)
|
295 |
+
assert root(2, 1) == 2
|
296 |
+
assert root(2, 3) == 2**Rational(1, 3)
|
297 |
+
assert root(2, 3) == cbrt(2)
|
298 |
+
assert root(2, -5) == 2**Rational(4, 5)/2
|
299 |
+
|
300 |
+
assert root(-2, 1) == -2
|
301 |
+
|
302 |
+
assert root(-2, 2) == sqrt(2)*I
|
303 |
+
assert root(-2, 1) == -2
|
304 |
+
|
305 |
+
assert root(x, 2) == sqrt(x)
|
306 |
+
assert root(x, 1) == x
|
307 |
+
assert root(x, 3) == x**Rational(1, 3)
|
308 |
+
assert root(x, 3) == cbrt(x)
|
309 |
+
assert root(x, -5) == x**Rational(-1, 5)
|
310 |
+
|
311 |
+
assert root(x, n) == x**(1/n)
|
312 |
+
assert root(x, -n) == x**(-1/n)
|
313 |
+
|
314 |
+
assert root(x, n, k) == (-1)**(2*k/n)*x**(1/n)
|
315 |
+
|
316 |
+
|
317 |
+
def test_real_root():
|
318 |
+
assert real_root(-8, 3) == -2
|
319 |
+
assert real_root(-16, 4) == root(-16, 4)
|
320 |
+
r = root(-7, 4)
|
321 |
+
assert real_root(r) == r
|
322 |
+
r1 = root(-1, 3)
|
323 |
+
r2 = r1**2
|
324 |
+
r3 = root(-1, 4)
|
325 |
+
assert real_root(r1 + r2 + r3) == -1 + r2 + r3
|
326 |
+
assert real_root(root(-2, 3)) == -root(2, 3)
|
327 |
+
assert real_root(-8., 3) == -2.0
|
328 |
+
x = Symbol('x')
|
329 |
+
n = Symbol('n')
|
330 |
+
g = real_root(x, n)
|
331 |
+
assert g.subs({"x": -8, "n": 3}) == -2
|
332 |
+
assert g.subs({"x": 8, "n": 3}) == 2
|
333 |
+
# give principle root if there is no real root -- if this is not desired
|
334 |
+
# then maybe a Root class is needed to raise an error instead
|
335 |
+
assert g.subs({"x": I, "n": 3}) == cbrt(I)
|
336 |
+
assert g.subs({"x": -8, "n": 2}) == sqrt(-8)
|
337 |
+
assert g.subs({"x": I, "n": 2}) == sqrt(I)
|
338 |
+
|
339 |
+
|
340 |
+
def test_issue_11463():
|
341 |
+
numpy = import_module('numpy')
|
342 |
+
if not numpy:
|
343 |
+
skip("numpy not installed.")
|
344 |
+
x = Symbol('x')
|
345 |
+
f = lambdify(x, real_root((log(x/(x-2))), 3), 'numpy')
|
346 |
+
# numpy.select evaluates all options before considering conditions,
|
347 |
+
# so it raises a warning about root of negative number which does
|
348 |
+
# not affect the outcome. This warning is suppressed here
|
349 |
+
with ignore_warnings(RuntimeWarning):
|
350 |
+
assert f(numpy.array(-1)) < -1
|
351 |
+
|
352 |
+
|
353 |
+
def test_rewrite_MaxMin_as_Heaviside():
|
354 |
+
from sympy.abc import x
|
355 |
+
assert Max(0, x).rewrite(Heaviside) == x*Heaviside(x)
|
356 |
+
assert Max(3, x).rewrite(Heaviside) == x*Heaviside(x - 3) + \
|
357 |
+
3*Heaviside(-x + 3)
|
358 |
+
assert Max(0, x+2, 2*x).rewrite(Heaviside) == \
|
359 |
+
2*x*Heaviside(2*x)*Heaviside(x - 2) + \
|
360 |
+
(x + 2)*Heaviside(-x + 2)*Heaviside(x + 2)
|
361 |
+
|
362 |
+
assert Min(0, x).rewrite(Heaviside) == x*Heaviside(-x)
|
363 |
+
assert Min(3, x).rewrite(Heaviside) == x*Heaviside(-x + 3) + \
|
364 |
+
3*Heaviside(x - 3)
|
365 |
+
assert Min(x, -x, -2).rewrite(Heaviside) == \
|
366 |
+
x*Heaviside(-2*x)*Heaviside(-x - 2) - \
|
367 |
+
x*Heaviside(2*x)*Heaviside(x - 2) \
|
368 |
+
- 2*Heaviside(-x + 2)*Heaviside(x + 2)
|
369 |
+
|
370 |
+
|
371 |
+
def test_rewrite_MaxMin_as_Piecewise():
|
372 |
+
from sympy.core.symbol import symbols
|
373 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
374 |
+
x, y, z, a, b = symbols('x y z a b', real=True)
|
375 |
+
vx, vy, va = symbols('vx vy va')
|
376 |
+
assert Max(a, b).rewrite(Piecewise) == Piecewise((a, a >= b), (b, True))
|
377 |
+
assert Max(x, y, z).rewrite(Piecewise) == Piecewise((x, (x >= y) & (x >= z)), (y, y >= z), (z, True))
|
378 |
+
assert Max(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a >= b) & (a >= x) & (a >= y)),
|
379 |
+
(b, (b >= x) & (b >= y)), (x, x >= y), (y, True))
|
380 |
+
assert Min(a, b).rewrite(Piecewise) == Piecewise((a, a <= b), (b, True))
|
381 |
+
assert Min(x, y, z).rewrite(Piecewise) == Piecewise((x, (x <= y) & (x <= z)), (y, y <= z), (z, True))
|
382 |
+
assert Min(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a <= b) & (a <= x) & (a <= y)),
|
383 |
+
(b, (b <= x) & (b <= y)), (x, x <= y), (y, True))
|
384 |
+
|
385 |
+
# Piecewise rewriting of Min/Max does also takes place for not explicitly real arguments
|
386 |
+
assert Max(vx, vy).rewrite(Piecewise) == Piecewise((vx, vx >= vy), (vy, True))
|
387 |
+
assert Min(va, vx, vy).rewrite(Piecewise) == Piecewise((va, (va <= vx) & (va <= vy)), (vx, vx <= vy), (vy, True))
|
388 |
+
|
389 |
+
|
390 |
+
def test_issue_11099():
|
391 |
+
from sympy.abc import x, y
|
392 |
+
# some fixed value tests
|
393 |
+
fixed_test_data = {x: -2, y: 3}
|
394 |
+
assert Min(x, y).evalf(subs=fixed_test_data) == \
|
395 |
+
Min(x, y).subs(fixed_test_data).evalf()
|
396 |
+
assert Max(x, y).evalf(subs=fixed_test_data) == \
|
397 |
+
Max(x, y).subs(fixed_test_data).evalf()
|
398 |
+
# randomly generate some test data
|
399 |
+
from sympy.core.random import randint
|
400 |
+
for i in range(20):
|
401 |
+
random_test_data = {x: randint(-100, 100), y: randint(-100, 100)}
|
402 |
+
assert Min(x, y).evalf(subs=random_test_data) == \
|
403 |
+
Min(x, y).subs(random_test_data).evalf()
|
404 |
+
assert Max(x, y).evalf(subs=random_test_data) == \
|
405 |
+
Max(x, y).subs(random_test_data).evalf()
|
406 |
+
|
407 |
+
|
408 |
+
def test_issue_12638():
|
409 |
+
from sympy.abc import a, b, c
|
410 |
+
assert Min(a, b, c, Max(a, b)) == Min(a, b, c)
|
411 |
+
assert Min(a, b, Max(a, b, c)) == Min(a, b)
|
412 |
+
assert Min(a, b, Max(a, c)) == Min(a, b)
|
413 |
+
|
414 |
+
def test_issue_21399():
|
415 |
+
from sympy.abc import a, b, c
|
416 |
+
assert Max(Min(a, b), Min(a, b, c)) == Min(a, b)
|
417 |
+
|
418 |
+
|
419 |
+
def test_instantiation_evaluation():
|
420 |
+
from sympy.abc import v, w, x, y, z
|
421 |
+
assert Min(1, Max(2, x)) == 1
|
422 |
+
assert Max(3, Min(2, x)) == 3
|
423 |
+
assert Min(Max(x, y), Max(x, z)) == Max(x, Min(y, z))
|
424 |
+
assert set(Min(Max(w, x), Max(y, z)).args) == {
|
425 |
+
Max(w, x), Max(y, z)}
|
426 |
+
assert Min(Max(x, y), Max(x, z), w) == Min(
|
427 |
+
w, Max(x, Min(y, z)))
|
428 |
+
A, B = Min, Max
|
429 |
+
for i in range(2):
|
430 |
+
assert A(x, B(x, y)) == x
|
431 |
+
assert A(x, B(y, A(x, w, z))) == A(x, B(y, A(w, z)))
|
432 |
+
A, B = B, A
|
433 |
+
assert Min(w, Max(x, y), Max(v, x, z)) == Min(
|
434 |
+
w, Max(x, Min(y, Max(v, z))))
|
435 |
+
|
436 |
+
def test_rewrite_as_Abs():
|
437 |
+
from itertools import permutations
|
438 |
+
from sympy.functions.elementary.complexes import Abs
|
439 |
+
from sympy.abc import x, y, z, w
|
440 |
+
def test(e):
|
441 |
+
free = e.free_symbols
|
442 |
+
a = e.rewrite(Abs)
|
443 |
+
assert not a.has(Min, Max)
|
444 |
+
for i in permutations(range(len(free))):
|
445 |
+
reps = dict(zip(free, i))
|
446 |
+
assert a.xreplace(reps) == e.xreplace(reps)
|
447 |
+
test(Min(x, y))
|
448 |
+
test(Max(x, y))
|
449 |
+
test(Min(x, y, z))
|
450 |
+
test(Min(Max(w, x), Max(y, z)))
|
451 |
+
|
452 |
+
def test_issue_14000():
|
453 |
+
assert isinstance(sqrt(4, evaluate=False), Pow) == True
|
454 |
+
assert isinstance(cbrt(3.5, evaluate=False), Pow) == True
|
455 |
+
assert isinstance(root(16, 4, evaluate=False), Pow) == True
|
456 |
+
|
457 |
+
assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False)
|
458 |
+
assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False)
|
459 |
+
assert root(4, 2, evaluate=False) == Pow(4, S.Half, evaluate=False)
|
460 |
+
|
461 |
+
assert root(16, 4, 2, evaluate=False).has(Pow) == True
|
462 |
+
assert real_root(-8, 3, evaluate=False).has(Pow) == True
|
463 |
+
|
464 |
+
def test_issue_6899():
|
465 |
+
from sympy.core.function import Lambda
|
466 |
+
x = Symbol('x')
|
467 |
+
eqn = Lambda(x, x)
|
468 |
+
assert eqn.func(*eqn.args) == eqn
|
469 |
+
|
470 |
+
def test_Rem():
|
471 |
+
from sympy.abc import x, y
|
472 |
+
assert Rem(5, 3) == 2
|
473 |
+
assert Rem(-5, 3) == -2
|
474 |
+
assert Rem(5, -3) == 2
|
475 |
+
assert Rem(-5, -3) == -2
|
476 |
+
assert Rem(x**3, y) == Rem(x**3, y)
|
477 |
+
assert Rem(Rem(-5, 3) + 3, 3) == 1
|
478 |
+
|
479 |
+
|
480 |
+
def test_minmax_no_evaluate():
|
481 |
+
from sympy import evaluate
|
482 |
+
p = Symbol('p', positive=True)
|
483 |
+
|
484 |
+
assert Max(1, 3) == 3
|
485 |
+
assert Max(1, 3).args == ()
|
486 |
+
assert Max(0, p) == p
|
487 |
+
assert Max(0, p).args == ()
|
488 |
+
assert Min(0, p) == 0
|
489 |
+
assert Min(0, p).args == ()
|
490 |
+
|
491 |
+
assert Max(1, 3, evaluate=False) != 3
|
492 |
+
assert Max(1, 3, evaluate=False).args == (1, 3)
|
493 |
+
assert Max(0, p, evaluate=False) != p
|
494 |
+
assert Max(0, p, evaluate=False).args == (0, p)
|
495 |
+
assert Min(0, p, evaluate=False) != 0
|
496 |
+
assert Min(0, p, evaluate=False).args == (0, p)
|
497 |
+
|
498 |
+
with evaluate(False):
|
499 |
+
assert Max(1, 3) != 3
|
500 |
+
assert Max(1, 3).args == (1, 3)
|
501 |
+
assert Max(0, p) != p
|
502 |
+
assert Max(0, p).args == (0, p)
|
503 |
+
assert Min(0, p) != 0
|
504 |
+
assert Min(0, p).args == (0, p)
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_piecewise.py
ADDED
@@ -0,0 +1,1606 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.concrete.summations import Sum
|
2 |
+
from sympy.core.add import Add
|
3 |
+
from sympy.core.basic import Basic
|
4 |
+
from sympy.core.containers import Tuple
|
5 |
+
from sympy.core.expr import unchanged
|
6 |
+
from sympy.core.function import (Function, diff, expand)
|
7 |
+
from sympy.core.mul import Mul
|
8 |
+
from sympy.core.mod import Mod
|
9 |
+
from sympy.core.numbers import (Float, I, Rational, oo, pi, zoo)
|
10 |
+
from sympy.core.relational import (Eq, Ge, Gt, Ne)
|
11 |
+
from sympy.core.singleton import S
|
12 |
+
from sympy.core.symbol import (Symbol, symbols)
|
13 |
+
from sympy.functions.combinatorial.factorials import factorial
|
14 |
+
from sympy.functions.elementary.complexes import (Abs, adjoint, arg, conjugate, im, re, transpose)
|
15 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
16 |
+
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
|
17 |
+
from sympy.functions.elementary.piecewise import (Piecewise,
|
18 |
+
piecewise_fold, piecewise_exclusive, Undefined, ExprCondPair)
|
19 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
20 |
+
from sympy.functions.special.delta_functions import (DiracDelta, Heaviside)
|
21 |
+
from sympy.functions.special.tensor_functions import KroneckerDelta
|
22 |
+
from sympy.integrals.integrals import (Integral, integrate)
|
23 |
+
from sympy.logic.boolalg import (And, ITE, Not, Or)
|
24 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
25 |
+
from sympy.printing import srepr
|
26 |
+
from sympy.sets.contains import Contains
|
27 |
+
from sympy.sets.sets import Interval
|
28 |
+
from sympy.solvers.solvers import solve
|
29 |
+
from sympy.testing.pytest import raises, slow
|
30 |
+
from sympy.utilities.lambdify import lambdify
|
31 |
+
|
32 |
+
a, b, c, d, x, y = symbols('a:d, x, y')
|
33 |
+
z = symbols('z', nonzero=True)
|
34 |
+
|
35 |
+
|
36 |
+
def test_piecewise1():
|
37 |
+
|
38 |
+
# Test canonicalization
|
39 |
+
assert unchanged(Piecewise, ExprCondPair(x, x < 1), ExprCondPair(0, True))
|
40 |
+
assert Piecewise((x, x < 1), (0, True)) == Piecewise(ExprCondPair(x, x < 1),
|
41 |
+
ExprCondPair(0, True))
|
42 |
+
assert Piecewise((x, x < 1), (0, True), (1, True)) == \
|
43 |
+
Piecewise((x, x < 1), (0, True))
|
44 |
+
assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \
|
45 |
+
Piecewise((x, x < 1))
|
46 |
+
assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \
|
47 |
+
Piecewise((x, x < 1), (0, True))
|
48 |
+
assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \
|
49 |
+
Piecewise((x, x < 1), (0, True))
|
50 |
+
assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \
|
51 |
+
Piecewise((x, Or(x < 1, x < 2)), (0, True))
|
52 |
+
assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x
|
53 |
+
assert Piecewise((x, True)) == x
|
54 |
+
# Explicitly constructed empty Piecewise not accepted
|
55 |
+
raises(TypeError, lambda: Piecewise())
|
56 |
+
# False condition is never retained
|
57 |
+
assert Piecewise((2*x, x < 0), (x, False)) == \
|
58 |
+
Piecewise((2*x, x < 0), (x, False), evaluate=False) == \
|
59 |
+
Piecewise((2*x, x < 0))
|
60 |
+
assert Piecewise((x, False)) == Undefined
|
61 |
+
raises(TypeError, lambda: Piecewise(x))
|
62 |
+
assert Piecewise((x, 1)) == x # 1 and 0 are accepted as True/False
|
63 |
+
raises(TypeError, lambda: Piecewise((x, 2)))
|
64 |
+
raises(TypeError, lambda: Piecewise((x, x**2)))
|
65 |
+
raises(TypeError, lambda: Piecewise(([1], True)))
|
66 |
+
assert Piecewise(((1, 2), True)) == Tuple(1, 2)
|
67 |
+
cond = (Piecewise((1, x < 0), (2, True)) < y)
|
68 |
+
assert Piecewise((1, cond)
|
69 |
+
) == Piecewise((1, ITE(x < 0, y > 1, y > 2)))
|
70 |
+
|
71 |
+
assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1))
|
72 |
+
) == Piecewise((1, x > 0), (2, x > -1))
|
73 |
+
assert Piecewise((1, x <= 0), (2, (x < 0) & (x > -1))
|
74 |
+
) == Piecewise((1, x <= 0))
|
75 |
+
|
76 |
+
# test for supporting Contains in Piecewise
|
77 |
+
pwise = Piecewise(
|
78 |
+
(1, And(x <= 6, x > 1, Contains(x, S.Integers))),
|
79 |
+
(0, True))
|
80 |
+
assert pwise.subs(x, pi) == 0
|
81 |
+
assert pwise.subs(x, 2) == 1
|
82 |
+
assert pwise.subs(x, 7) == 0
|
83 |
+
|
84 |
+
# Test subs
|
85 |
+
p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0))
|
86 |
+
p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0))
|
87 |
+
assert p.subs(x, x**2) == p_x2
|
88 |
+
assert p.subs(x, -5) == -1
|
89 |
+
assert p.subs(x, -1) == 1
|
90 |
+
assert p.subs(x, 1) == log(1)
|
91 |
+
|
92 |
+
# More subs tests
|
93 |
+
p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi))
|
94 |
+
p3 = Piecewise((1, Eq(x, 0)), (1/x, True))
|
95 |
+
p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2))
|
96 |
+
assert p2.subs(x, 2) == 1
|
97 |
+
assert p2.subs(x, 4) == -1
|
98 |
+
assert p2.subs(x, 10) == 0
|
99 |
+
assert p3.subs(x, 0.0) == 1
|
100 |
+
assert p4.subs(x, 0.0) == 1
|
101 |
+
|
102 |
+
|
103 |
+
f, g, h = symbols('f,g,h', cls=Function)
|
104 |
+
pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1))
|
105 |
+
pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1))
|
106 |
+
assert pg.subs(g, f) == pf
|
107 |
+
|
108 |
+
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1
|
109 |
+
assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0
|
110 |
+
assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1
|
111 |
+
assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1
|
112 |
+
assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \
|
113 |
+
Piecewise((1, Eq(exp(z), cos(z))), (0, True))
|
114 |
+
|
115 |
+
p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True))
|
116 |
+
assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True))
|
117 |
+
|
118 |
+
assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True)
|
119 |
+
).subs(x, 1) == Piecewise((-1, y < 1), (2, True))
|
120 |
+
assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1
|
121 |
+
|
122 |
+
p6 = Piecewise((x, x > 0))
|
123 |
+
n = symbols('n', negative=True)
|
124 |
+
assert p6.subs(x, n) == Undefined
|
125 |
+
|
126 |
+
# Test evalf
|
127 |
+
assert p.evalf() == Piecewise((-1.0, x < -1), (x**2, x < 0), (log(x), True))
|
128 |
+
assert p.evalf(subs={x: -2}) == -1.0
|
129 |
+
assert p.evalf(subs={x: -1}) == 1.0
|
130 |
+
assert p.evalf(subs={x: 1}) == log(1)
|
131 |
+
assert p6.evalf(subs={x: -5}) == Undefined
|
132 |
+
|
133 |
+
# Test doit
|
134 |
+
f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1))
|
135 |
+
assert f_int.doit() == Piecewise( (S.Half, x < 1) )
|
136 |
+
|
137 |
+
# Test differentiation
|
138 |
+
f = x
|
139 |
+
fp = x*p
|
140 |
+
dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0))
|
141 |
+
fp_dx = x*dp + p
|
142 |
+
assert diff(p, x) == dp
|
143 |
+
assert diff(f*p, x) == fp_dx
|
144 |
+
|
145 |
+
# Test simple arithmetic
|
146 |
+
assert x*p == fp
|
147 |
+
assert x*p + p == p + x*p
|
148 |
+
assert p + f == f + p
|
149 |
+
assert p + dp == dp + p
|
150 |
+
assert p - dp == -(dp - p)
|
151 |
+
|
152 |
+
# Test power
|
153 |
+
dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0))
|
154 |
+
assert dp**2 == dp2
|
155 |
+
|
156 |
+
# Test _eval_interval
|
157 |
+
f1 = x*y + 2
|
158 |
+
f2 = x*y**2 + 3
|
159 |
+
peval = Piecewise((f1, x < 0), (f2, x > 0))
|
160 |
+
peval_interval = f1.subs(
|
161 |
+
x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0)
|
162 |
+
assert peval._eval_interval(x, 0, 0) == 0
|
163 |
+
assert peval._eval_interval(x, -1, 1) == peval_interval
|
164 |
+
peval2 = Piecewise((f1, x < 0), (f2, True))
|
165 |
+
assert peval2._eval_interval(x, 0, 0) == 0
|
166 |
+
assert peval2._eval_interval(x, 1, -1) == -peval_interval
|
167 |
+
assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1)
|
168 |
+
assert peval2._eval_interval(x, -1, 1) == peval_interval
|
169 |
+
assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0)
|
170 |
+
assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1)
|
171 |
+
|
172 |
+
# Test integration
|
173 |
+
assert p.integrate() == Piecewise(
|
174 |
+
(-x, x < -1),
|
175 |
+
(x**3/3 + Rational(4, 3), x < 0),
|
176 |
+
(x*log(x) - x + Rational(4, 3), True))
|
177 |
+
p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
|
178 |
+
assert integrate(p, (x, -2, 2)) == Rational(5, 6)
|
179 |
+
assert integrate(p, (x, 2, -2)) == Rational(-5, 6)
|
180 |
+
p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True))
|
181 |
+
assert integrate(p, (x, -oo, oo)) == 2
|
182 |
+
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
|
183 |
+
assert integrate(p, (x, -2, 2)) == Undefined
|
184 |
+
|
185 |
+
# Test commutativity
|
186 |
+
assert isinstance(p, Piecewise) and p.is_commutative is True
|
187 |
+
|
188 |
+
|
189 |
+
def test_piecewise_free_symbols():
|
190 |
+
f = Piecewise((x, a < 0), (y, True))
|
191 |
+
assert f.free_symbols == {x, y, a}
|
192 |
+
|
193 |
+
|
194 |
+
def test_piecewise_integrate1():
|
195 |
+
x, y = symbols('x y', real=True)
|
196 |
+
|
197 |
+
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
|
198 |
+
assert integrate(f, (x, -2, 2)) == Rational(14, 3)
|
199 |
+
|
200 |
+
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
|
201 |
+
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
|
202 |
+
assert integrate(g, (x, -2, 5)) == Rational(43, 6)
|
203 |
+
|
204 |
+
assert g == Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
|
205 |
+
|
206 |
+
g = Piecewise(((x - 5)**5, 2 <= x), (f, x < 2))
|
207 |
+
assert integrate(g, (x, -2, 2)) == Rational(14, 3)
|
208 |
+
assert integrate(g, (x, -2, 5)) == Rational(-701, 6)
|
209 |
+
|
210 |
+
assert g == Piecewise(((x - 5)**5, 2 <= x), (f, True))
|
211 |
+
|
212 |
+
g = Piecewise(((x - 5)**5, 2 <= x), (2*f, True))
|
213 |
+
assert integrate(g, (x, -2, 2)) == Rational(28, 3)
|
214 |
+
assert integrate(g, (x, -2, 5)) == Rational(-673, 6)
|
215 |
+
|
216 |
+
|
217 |
+
def test_piecewise_integrate1b():
|
218 |
+
g = Piecewise((1, x > 0), (0, Eq(x, 0)), (-1, x < 0))
|
219 |
+
assert integrate(g, (x, -1, 1)) == 0
|
220 |
+
|
221 |
+
g = Piecewise((1, x - y < 0), (0, True))
|
222 |
+
assert integrate(g, (y, -oo, 0)) == -Min(0, x)
|
223 |
+
assert g.subs(x, -3).integrate((y, -oo, 0)) == 3
|
224 |
+
assert integrate(g, (y, 0, -oo)) == Min(0, x)
|
225 |
+
assert integrate(g, (y, 0, oo)) == -Max(0, x) + oo
|
226 |
+
assert integrate(g, (y, -oo, 42)) == -Min(42, x) + 42
|
227 |
+
assert integrate(g, (y, -oo, oo)) == -x + oo
|
228 |
+
|
229 |
+
g = Piecewise((0, x < 0), (x, x <= 1), (1, True))
|
230 |
+
gy1 = g.integrate((x, y, 1))
|
231 |
+
g1y = g.integrate((x, 1, y))
|
232 |
+
for yy in (-1, S.Half, 2):
|
233 |
+
assert g.integrate((x, yy, 1)) == gy1.subs(y, yy)
|
234 |
+
assert g.integrate((x, 1, yy)) == g1y.subs(y, yy)
|
235 |
+
assert gy1 == Piecewise(
|
236 |
+
(-Min(1, Max(0, y))**2/2 + S.Half, y < 1),
|
237 |
+
(-y + 1, True))
|
238 |
+
assert g1y == Piecewise(
|
239 |
+
(Min(1, Max(0, y))**2/2 - S.Half, y < 1),
|
240 |
+
(y - 1, True))
|
241 |
+
|
242 |
+
|
243 |
+
@slow
|
244 |
+
def test_piecewise_integrate1ca():
|
245 |
+
y = symbols('y', real=True)
|
246 |
+
g = Piecewise(
|
247 |
+
(1 - x, Interval(0, 1).contains(x)),
|
248 |
+
(1 + x, Interval(-1, 0).contains(x)),
|
249 |
+
(0, True)
|
250 |
+
)
|
251 |
+
gy1 = g.integrate((x, y, 1))
|
252 |
+
g1y = g.integrate((x, 1, y))
|
253 |
+
|
254 |
+
assert g.integrate((x, -2, 1)) == gy1.subs(y, -2)
|
255 |
+
assert g.integrate((x, 1, -2)) == g1y.subs(y, -2)
|
256 |
+
assert g.integrate((x, 0, 1)) == gy1.subs(y, 0)
|
257 |
+
assert g.integrate((x, 1, 0)) == g1y.subs(y, 0)
|
258 |
+
assert g.integrate((x, 2, 1)) == gy1.subs(y, 2)
|
259 |
+
assert g.integrate((x, 1, 2)) == g1y.subs(y, 2)
|
260 |
+
assert piecewise_fold(gy1.rewrite(Piecewise)
|
261 |
+
).simplify() == Piecewise(
|
262 |
+
(1, y <= -1),
|
263 |
+
(-y**2/2 - y + S.Half, y <= 0),
|
264 |
+
(y**2/2 - y + S.Half, y < 1),
|
265 |
+
(0, True))
|
266 |
+
assert piecewise_fold(g1y.rewrite(Piecewise)
|
267 |
+
).simplify() == Piecewise(
|
268 |
+
(-1, y <= -1),
|
269 |
+
(y**2/2 + y - S.Half, y <= 0),
|
270 |
+
(-y**2/2 + y - S.Half, y < 1),
|
271 |
+
(0, True))
|
272 |
+
assert gy1 == Piecewise(
|
273 |
+
(
|
274 |
+
-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) +
|
275 |
+
Min(1, Max(0, y))**2 + S.Half, y < 1),
|
276 |
+
(0, True)
|
277 |
+
)
|
278 |
+
assert g1y == Piecewise(
|
279 |
+
(
|
280 |
+
Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) -
|
281 |
+
Min(1, Max(0, y))**2 - S.Half, y < 1),
|
282 |
+
(0, True))
|
283 |
+
|
284 |
+
|
285 |
+
@slow
|
286 |
+
def test_piecewise_integrate1cb():
|
287 |
+
y = symbols('y', real=True)
|
288 |
+
g = Piecewise(
|
289 |
+
(0, Or(x <= -1, x >= 1)),
|
290 |
+
(1 - x, x > 0),
|
291 |
+
(1 + x, True)
|
292 |
+
)
|
293 |
+
gy1 = g.integrate((x, y, 1))
|
294 |
+
g1y = g.integrate((x, 1, y))
|
295 |
+
|
296 |
+
assert g.integrate((x, -2, 1)) == gy1.subs(y, -2)
|
297 |
+
assert g.integrate((x, 1, -2)) == g1y.subs(y, -2)
|
298 |
+
assert g.integrate((x, 0, 1)) == gy1.subs(y, 0)
|
299 |
+
assert g.integrate((x, 1, 0)) == g1y.subs(y, 0)
|
300 |
+
assert g.integrate((x, 2, 1)) == gy1.subs(y, 2)
|
301 |
+
assert g.integrate((x, 1, 2)) == g1y.subs(y, 2)
|
302 |
+
|
303 |
+
assert piecewise_fold(gy1.rewrite(Piecewise)
|
304 |
+
).simplify() == Piecewise(
|
305 |
+
(1, y <= -1),
|
306 |
+
(-y**2/2 - y + S.Half, y <= 0),
|
307 |
+
(y**2/2 - y + S.Half, y < 1),
|
308 |
+
(0, True))
|
309 |
+
assert piecewise_fold(g1y.rewrite(Piecewise)
|
310 |
+
).simplify() == Piecewise(
|
311 |
+
(-1, y <= -1),
|
312 |
+
(y**2/2 + y - S.Half, y <= 0),
|
313 |
+
(-y**2/2 + y - S.Half, y < 1),
|
314 |
+
(0, True))
|
315 |
+
|
316 |
+
# g1y and gy1 should simplify if the condition that y < 1
|
317 |
+
# is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y)
|
318 |
+
assert gy1 == Piecewise(
|
319 |
+
(
|
320 |
+
-Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) +
|
321 |
+
Min(1, Max(0, y))**2 + S.Half, y < 1),
|
322 |
+
(0, True)
|
323 |
+
)
|
324 |
+
assert g1y == Piecewise(
|
325 |
+
(
|
326 |
+
Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) -
|
327 |
+
Min(1, Max(0, y))**2 - S.Half, y < 1),
|
328 |
+
(0, True))
|
329 |
+
|
330 |
+
|
331 |
+
def test_piecewise_integrate2():
|
332 |
+
from itertools import permutations
|
333 |
+
lim = Tuple(x, c, d)
|
334 |
+
p = Piecewise((1, x < a), (2, x > b), (3, True))
|
335 |
+
q = p.integrate(lim)
|
336 |
+
assert q == Piecewise(
|
337 |
+
(-c + 2*d - 2*Min(d, Max(a, c)) + Min(d, Max(a, b, c)), c < d),
|
338 |
+
(-2*c + d + 2*Min(c, Max(a, d)) - Min(c, Max(a, b, d)), True))
|
339 |
+
for v in permutations((1, 2, 3, 4)):
|
340 |
+
r = dict(zip((a, b, c, d), v))
|
341 |
+
assert p.subs(r).integrate(lim.subs(r)) == q.subs(r)
|
342 |
+
|
343 |
+
|
344 |
+
def test_meijer_bypass():
|
345 |
+
# totally bypass meijerg machinery when dealing
|
346 |
+
# with Piecewise in integrate
|
347 |
+
assert Piecewise((1, x < 4), (0, True)).integrate((x, oo, 1)) == -3
|
348 |
+
|
349 |
+
|
350 |
+
def test_piecewise_integrate3_inequality_conditions():
|
351 |
+
from sympy.utilities.iterables import cartes
|
352 |
+
lim = (x, 0, 5)
|
353 |
+
# set below includes two pts below range, 2 pts in range,
|
354 |
+
# 2 pts above range, and the boundaries
|
355 |
+
N = (-2, -1, 0, 1, 2, 5, 6, 7)
|
356 |
+
|
357 |
+
p = Piecewise((1, x > a), (2, x > b), (0, True))
|
358 |
+
ans = p.integrate(lim)
|
359 |
+
for i, j in cartes(N, repeat=2):
|
360 |
+
reps = dict(zip((a, b), (i, j)))
|
361 |
+
assert ans.subs(reps) == p.subs(reps).integrate(lim)
|
362 |
+
assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1
|
363 |
+
|
364 |
+
p = Piecewise((1, x > a), (2, x < b), (0, True))
|
365 |
+
ans = p.integrate(lim)
|
366 |
+
for i, j in cartes(N, repeat=2):
|
367 |
+
reps = dict(zip((a, b), (i, j)))
|
368 |
+
assert ans.subs(reps) == p.subs(reps).integrate(lim)
|
369 |
+
|
370 |
+
# delete old tests that involved c1 and c2 since those
|
371 |
+
# reduce to the above except that a value of 0 was used
|
372 |
+
# for two expressions whereas the above uses 3 different
|
373 |
+
# values
|
374 |
+
|
375 |
+
|
376 |
+
@slow
|
377 |
+
def test_piecewise_integrate4_symbolic_conditions():
|
378 |
+
a = Symbol('a', real=True)
|
379 |
+
b = Symbol('b', real=True)
|
380 |
+
x = Symbol('x', real=True)
|
381 |
+
y = Symbol('y', real=True)
|
382 |
+
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
|
383 |
+
p1 = Piecewise((0, x < a), (0, x > b), (1, True))
|
384 |
+
p2 = Piecewise((0, x > b), (0, x < a), (1, True))
|
385 |
+
p3 = Piecewise((0, x < a), (1, x < b), (0, True))
|
386 |
+
p4 = Piecewise((0, x > b), (1, x > a), (0, True))
|
387 |
+
p5 = Piecewise((1, And(a < x, x < b)), (0, True))
|
388 |
+
|
389 |
+
# check values of a=1, b=3 (and reversed) with values
|
390 |
+
# of y of 0, 1, 2, 3, 4
|
391 |
+
lim = Tuple(x, -oo, y)
|
392 |
+
for p in (p0, p1, p2, p3, p4, p5):
|
393 |
+
ans = p.integrate(lim)
|
394 |
+
for i in range(5):
|
395 |
+
reps = {a:1, b:3, y:i}
|
396 |
+
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
397 |
+
reps = {a: 3, b:1, y:i}
|
398 |
+
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
399 |
+
lim = Tuple(x, y, oo)
|
400 |
+
for p in (p0, p1, p2, p3, p4, p5):
|
401 |
+
ans = p.integrate(lim)
|
402 |
+
for i in range(5):
|
403 |
+
reps = {a:1, b:3, y:i}
|
404 |
+
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
405 |
+
reps = {a:3, b:1, y:i}
|
406 |
+
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
407 |
+
|
408 |
+
ans = Piecewise(
|
409 |
+
(0, x <= Min(a, b)),
|
410 |
+
(x - Min(a, b), x <= b),
|
411 |
+
(b - Min(a, b), True))
|
412 |
+
for i in (p0, p1, p2, p4):
|
413 |
+
assert i.integrate(x) == ans
|
414 |
+
assert p3.integrate(x) == Piecewise(
|
415 |
+
(0, x < a),
|
416 |
+
(-a + x, x <= Max(a, b)),
|
417 |
+
(-a + Max(a, b), True))
|
418 |
+
assert p5.integrate(x) == Piecewise(
|
419 |
+
(0, x <= a),
|
420 |
+
(-a + x, x <= Max(a, b)),
|
421 |
+
(-a + Max(a, b), True))
|
422 |
+
|
423 |
+
p1 = Piecewise((0, x < a), (S.Half, x > b), (1, True))
|
424 |
+
p2 = Piecewise((S.Half, x > b), (0, x < a), (1, True))
|
425 |
+
p3 = Piecewise((0, x < a), (1, x < b), (S.Half, True))
|
426 |
+
p4 = Piecewise((S.Half, x > b), (1, x > a), (0, True))
|
427 |
+
p5 = Piecewise((1, And(a < x, x < b)), (S.Half, x > b), (0, True))
|
428 |
+
|
429 |
+
# check values of a=1, b=3 (and reversed) with values
|
430 |
+
# of y of 0, 1, 2, 3, 4
|
431 |
+
lim = Tuple(x, -oo, y)
|
432 |
+
for p in (p1, p2, p3, p4, p5):
|
433 |
+
ans = p.integrate(lim)
|
434 |
+
for i in range(5):
|
435 |
+
reps = {a:1, b:3, y:i}
|
436 |
+
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
437 |
+
reps = {a: 3, b:1, y:i}
|
438 |
+
assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps))
|
439 |
+
|
440 |
+
|
441 |
+
def test_piecewise_integrate5_independent_conditions():
|
442 |
+
p = Piecewise((0, Eq(y, 0)), (x*y, True))
|
443 |
+
assert integrate(p, (x, 1, 3)) == Piecewise((0, Eq(y, 0)), (4*y, True))
|
444 |
+
|
445 |
+
|
446 |
+
def test_issue_22917():
|
447 |
+
p = (Piecewise((0, ITE((x - y > 1) | (2 * x - 2 * y > 1), False,
|
448 |
+
ITE(x - y > 1, 2 * y - 2 < -1, 2 * x - 2 * y > 1))),
|
449 |
+
(Piecewise((0, ITE(x - y > 1, True, 2 * x - 2 * y > 1)),
|
450 |
+
(2 * Piecewise((0, x - y > 1), (y, True)), True)), True))
|
451 |
+
+ 2 * Piecewise((1, ITE((x - y > 1) | (2 * x - 2 * y > 1), False,
|
452 |
+
ITE(x - y > 1, 2 * y - 2 < -1, 2 * x - 2 * y > 1))),
|
453 |
+
(Piecewise((1, ITE(x - y > 1, True, 2 * x - 2 * y > 1)),
|
454 |
+
(2 * Piecewise((1, x - y > 1), (x, True)), True)), True)))
|
455 |
+
assert piecewise_fold(p) == Piecewise((2, (x - y > S.Half) | (x - y > 1)),
|
456 |
+
(2*y + 4, x - y > 1),
|
457 |
+
(4*x + 2*y, True))
|
458 |
+
assert piecewise_fold(p > 1).rewrite(ITE) == ITE((x - y > S.Half) | (x - y > 1), True,
|
459 |
+
ITE(x - y > 1, 2*y + 4 > 1, 4*x + 2*y > 1))
|
460 |
+
|
461 |
+
|
462 |
+
def test_piecewise_simplify():
|
463 |
+
p = Piecewise(((x**2 + 1)/x**2, Eq(x*(1 + x) - x**2, 0)),
|
464 |
+
((-1)**x*(-1), True))
|
465 |
+
assert p.simplify() == \
|
466 |
+
Piecewise((zoo, Eq(x, 0)), ((-1)**(x + 1), True))
|
467 |
+
# simplify when there are Eq in conditions
|
468 |
+
assert Piecewise(
|
469 |
+
(a, And(Eq(a, 0), Eq(a + b, 0))), (1, True)).simplify(
|
470 |
+
) == Piecewise(
|
471 |
+
(0, And(Eq(a, 0), Eq(b, 0))), (1, True))
|
472 |
+
assert Piecewise((2*x*factorial(a)/(factorial(y)*factorial(-y + a)),
|
473 |
+
Eq(y, 0) & Eq(-y + a, 0)), (2*factorial(a)/(factorial(y)*factorial(-y
|
474 |
+
+ a)), Eq(y, 0) & Eq(-y + a, 1)), (0, True)).simplify(
|
475 |
+
) == Piecewise(
|
476 |
+
(2*x, And(Eq(a, 0), Eq(y, 0))),
|
477 |
+
(2, And(Eq(a, 1), Eq(y, 0))),
|
478 |
+
(0, True))
|
479 |
+
args = (2, And(Eq(x, 2), Ge(y, 0))), (x, True)
|
480 |
+
assert Piecewise(*args).simplify() == Piecewise(*args)
|
481 |
+
args = (1, Eq(x, 0)), (sin(x)/x, True)
|
482 |
+
assert Piecewise(*args).simplify() == Piecewise(*args)
|
483 |
+
assert Piecewise((2 + y, And(Eq(x, 2), Eq(y, 0))), (x, True)
|
484 |
+
).simplify() == x
|
485 |
+
# check that x or f(x) are recognized as being Symbol-like for lhs
|
486 |
+
args = Tuple((1, Eq(x, 0)), (sin(x) + 1 + x, True))
|
487 |
+
ans = x + sin(x) + 1
|
488 |
+
f = Function('f')
|
489 |
+
assert Piecewise(*args).simplify() == ans
|
490 |
+
assert Piecewise(*args.subs(x, f(x))).simplify() == ans.subs(x, f(x))
|
491 |
+
|
492 |
+
# issue 18634
|
493 |
+
d = Symbol("d", integer=True)
|
494 |
+
n = Symbol("n", integer=True)
|
495 |
+
t = Symbol("t", positive=True)
|
496 |
+
expr = Piecewise((-d + 2*n, Eq(1/t, 1)), (t**(1 - 4*n)*t**(4*n - 1)*(-d + 2*n), True))
|
497 |
+
assert expr.simplify() == -d + 2*n
|
498 |
+
|
499 |
+
# issue 22747
|
500 |
+
p = Piecewise((0, (t < -2) & (t < -1) & (t < 0)), ((t/2 + 1)*(t +
|
501 |
+
1)*(t + 2), (t < -1) & (t < 0)), ((S.Half - t/2)*(1 - t)*(t + 1),
|
502 |
+
(t < -2) & (t < -1) & (t < 1)), ((t + 1)*(-t*(t/2 + 1) + (S.Half
|
503 |
+
- t/2)*(1 - t)), (t < -2) & (t < -1) & (t < 0) & (t < 1)), ((t +
|
504 |
+
1)*((S.Half - t/2)*(1 - t) + (t/2 + 1)*(t + 2)), (t < -1) & (t <
|
505 |
+
1)), ((t + 1)*(-t*(t/2 + 1) + (S.Half - t/2)*(1 - t)), (t < -1) &
|
506 |
+
(t < 0) & (t < 1)), (0, (t < -2) & (t < -1)), ((t/2 + 1)*(t +
|
507 |
+
1)*(t + 2), t < -1), ((t + 1)*(-t*(t/2 + 1) + (S.Half - t/2)*(t +
|
508 |
+
1)), (t < 0) & ((t < -2) | (t < 0))), ((S.Half - t/2)*(1 - t)*(t
|
509 |
+
+ 1), (t < 1) & ((t < -2) | (t < 1))), (0, True)) + Piecewise((0,
|
510 |
+
(t < -1) & (t < 0) & (t < 1)), ((1 - t)*(t/2 + S.Half)*(t + 1),
|
511 |
+
(t < 0) & (t < 1)), ((1 - t)*(1 - t/2)*(2 - t), (t < -1) & (t <
|
512 |
+
0) & (t < 2)), ((1 - t)*((1 - t)*(t/2 + S.Half) + (1 - t/2)*(2 -
|
513 |
+
t)), (t < -1) & (t < 0) & (t < 1) & (t < 2)), ((1 - t)*((1 -
|
514 |
+
t/2)*(2 - t) + (t/2 + S.Half)*(t + 1)), (t < 0) & (t < 2)), ((1 -
|
515 |
+
t)*((1 - t)*(t/2 + S.Half) + (1 - t/2)*(2 - t)), (t < 0) & (t <
|
516 |
+
1) & (t < 2)), (0, (t < -1) & (t < 0)), ((1 - t)*(t/2 +
|
517 |
+
S.Half)*(t + 1), t < 0), ((1 - t)*(t*(1 - t/2) + (1 - t)*(t/2 +
|
518 |
+
S.Half)), (t < 1) & ((t < -1) | (t < 1))), ((1 - t)*(1 - t/2)*(2
|
519 |
+
- t), (t < 2) & ((t < -1) | (t < 2))), (0, True))
|
520 |
+
assert p.simplify() == Piecewise(
|
521 |
+
(0, t < -2), ((t + 1)*(t + 2)**2/2, t < -1), (-3*t**3/2
|
522 |
+
- 5*t**2/2 + 1, t < 0), (3*t**3/2 - 5*t**2/2 + 1, t < 1), ((1 -
|
523 |
+
t)*(t - 2)**2/2, t < 2), (0, True))
|
524 |
+
|
525 |
+
# coverage
|
526 |
+
nan = Undefined
|
527 |
+
covered = Piecewise((1, x > 3), (2, x < 2), (3, x > 1))
|
528 |
+
assert covered.simplify().args == covered.args
|
529 |
+
assert Piecewise((1, x < 2), (2, x < 1), (3, True)).simplify(
|
530 |
+
) == Piecewise((1, x < 2), (3, True))
|
531 |
+
assert Piecewise((1, x > 2)).simplify() == Piecewise((1, x > 2),
|
532 |
+
(nan, True))
|
533 |
+
assert Piecewise((1, (x >= 2) & (x < oo))
|
534 |
+
).simplify() == Piecewise((1, (x >= 2) & (x < oo)), (nan, True))
|
535 |
+
assert Piecewise((1, x < 2), (2, (x > 1) & (x < 3)), (3, True)
|
536 |
+
). simplify() == Piecewise((1, x < 2), (2, x < 3), (3, True))
|
537 |
+
assert Piecewise((1, x < 2), (2, (x <= 3) & (x > 1)), (3, True)
|
538 |
+
).simplify() == Piecewise((1, x < 2), (2, x <= 3), (3, True))
|
539 |
+
assert Piecewise((1, x < 2), (2, (x > 2) & (x < 3)), (3, True)
|
540 |
+
).simplify() == Piecewise((1, x < 2), (2, (x > 2) & (x < 3)),
|
541 |
+
(3, True))
|
542 |
+
assert Piecewise((1, x < 2), (2, (x >= 1) & (x <= 3)), (3, True)
|
543 |
+
).simplify() == Piecewise((1, x < 2), (2, x <= 3), (3, True))
|
544 |
+
assert Piecewise((1, x < 1), (2, (x >= 2) & (x <= 3)), (3, True)
|
545 |
+
).simplify() == Piecewise((1, x < 1), (2, (x >= 2) & (x <= 3)),
|
546 |
+
(3, True))
|
547 |
+
|
548 |
+
|
549 |
+
def test_piecewise_solve():
|
550 |
+
abs2 = Piecewise((-x, x <= 0), (x, x > 0))
|
551 |
+
f = abs2.subs(x, x - 2)
|
552 |
+
assert solve(f, x) == [2]
|
553 |
+
assert solve(f - 1, x) == [1, 3]
|
554 |
+
|
555 |
+
f = Piecewise(((x - 2)**2, x >= 0), (1, True))
|
556 |
+
assert solve(f, x) == [2]
|
557 |
+
|
558 |
+
g = Piecewise(((x - 5)**5, x >= 4), (f, True))
|
559 |
+
assert solve(g, x) == [2, 5]
|
560 |
+
|
561 |
+
g = Piecewise(((x - 5)**5, x >= 4), (f, x < 4))
|
562 |
+
assert solve(g, x) == [2, 5]
|
563 |
+
|
564 |
+
g = Piecewise(((x - 5)**5, x >= 2), (f, x < 2))
|
565 |
+
assert solve(g, x) == [5]
|
566 |
+
|
567 |
+
g = Piecewise(((x - 5)**5, x >= 2), (f, True))
|
568 |
+
assert solve(g, x) == [5]
|
569 |
+
|
570 |
+
g = Piecewise(((x - 5)**5, x >= 2), (f, True), (10, False))
|
571 |
+
assert solve(g, x) == [5]
|
572 |
+
|
573 |
+
g = Piecewise(((x - 5)**5, x >= 2),
|
574 |
+
(-x + 2, x - 2 <= 0), (x - 2, x - 2 > 0))
|
575 |
+
assert solve(g, x) == [5]
|
576 |
+
|
577 |
+
# if no symbol is given the piecewise detection must still work
|
578 |
+
assert solve(Piecewise((x - 2, x > 2), (2 - x, True)) - 3) == [-1, 5]
|
579 |
+
|
580 |
+
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
|
581 |
+
raises(NotImplementedError, lambda: solve(f, x))
|
582 |
+
|
583 |
+
def nona(ans):
|
584 |
+
return list(filter(lambda x: x is not S.NaN, ans))
|
585 |
+
p = Piecewise((x**2 - 4, x < y), (x - 2, True))
|
586 |
+
ans = solve(p, x)
|
587 |
+
assert nona([i.subs(y, -2) for i in ans]) == [2]
|
588 |
+
assert nona([i.subs(y, 2) for i in ans]) == [-2, 2]
|
589 |
+
assert nona([i.subs(y, 3) for i in ans]) == [-2, 2]
|
590 |
+
assert ans == [
|
591 |
+
Piecewise((-2, y > -2), (S.NaN, True)),
|
592 |
+
Piecewise((2, y <= 2), (S.NaN, True)),
|
593 |
+
Piecewise((2, y > 2), (S.NaN, True))]
|
594 |
+
|
595 |
+
# issue 6060
|
596 |
+
absxm3 = Piecewise(
|
597 |
+
(x - 3, 0 <= x - 3),
|
598 |
+
(3 - x, 0 > x - 3)
|
599 |
+
)
|
600 |
+
assert solve(absxm3 - y, x) == [
|
601 |
+
Piecewise((-y + 3, -y < 0), (S.NaN, True)),
|
602 |
+
Piecewise((y + 3, y >= 0), (S.NaN, True))]
|
603 |
+
p = Symbol('p', positive=True)
|
604 |
+
assert solve(absxm3 - p, x) == [-p + 3, p + 3]
|
605 |
+
|
606 |
+
# issue 6989
|
607 |
+
f = Function('f')
|
608 |
+
assert solve(Eq(-f(x), Piecewise((1, x > 0), (0, True))), f(x)) == \
|
609 |
+
[Piecewise((-1, x > 0), (0, True))]
|
610 |
+
|
611 |
+
# issue 8587
|
612 |
+
f = Piecewise((2*x**2, And(0 < x, x < 1)), (2, True))
|
613 |
+
assert solve(f - 1) == [1/sqrt(2)]
|
614 |
+
|
615 |
+
|
616 |
+
def test_piecewise_fold():
|
617 |
+
p = Piecewise((x, x < 1), (1, 1 <= x))
|
618 |
+
|
619 |
+
assert piecewise_fold(x*p) == Piecewise((x**2, x < 1), (x, 1 <= x))
|
620 |
+
assert piecewise_fold(p + p) == Piecewise((2*x, x < 1), (2, 1 <= x))
|
621 |
+
assert piecewise_fold(Piecewise((1, x < 0), (2, True))
|
622 |
+
+ Piecewise((10, x < 0), (-10, True))) == \
|
623 |
+
Piecewise((11, x < 0), (-8, True))
|
624 |
+
|
625 |
+
p1 = Piecewise((0, x < 0), (x, x <= 1), (0, True))
|
626 |
+
p2 = Piecewise((0, x < 0), (1 - x, x <= 1), (0, True))
|
627 |
+
|
628 |
+
p = 4*p1 + 2*p2
|
629 |
+
assert integrate(
|
630 |
+
piecewise_fold(p), (x, -oo, oo)) == integrate(2*x + 2, (x, 0, 1))
|
631 |
+
|
632 |
+
assert piecewise_fold(
|
633 |
+
Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True)
|
634 |
+
)) == Piecewise((1, y <= 0), (-2, y >= 0))
|
635 |
+
|
636 |
+
assert piecewise_fold(Piecewise((x, ITE(x > 0, y < 1, y > 1)))
|
637 |
+
) == Piecewise((x, ((x <= 0) | (y < 1)) & ((x > 0) | (y > 1))))
|
638 |
+
|
639 |
+
a, b = (Piecewise((2, Eq(x, 0)), (0, True)),
|
640 |
+
Piecewise((x, Eq(-x + y, 0)), (1, Eq(-x + y, 1)), (0, True)))
|
641 |
+
assert piecewise_fold(Mul(a, b, evaluate=False)
|
642 |
+
) == piecewise_fold(Mul(b, a, evaluate=False))
|
643 |
+
|
644 |
+
|
645 |
+
def test_piecewise_fold_piecewise_in_cond():
|
646 |
+
p1 = Piecewise((cos(x), x < 0), (0, True))
|
647 |
+
p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True))
|
648 |
+
assert p2.subs(x, -pi/2) == 0
|
649 |
+
assert p2.subs(x, 1) == 0
|
650 |
+
assert p2.subs(x, -pi/4) == 1
|
651 |
+
p4 = Piecewise((0, Eq(p1, 0)), (1,True))
|
652 |
+
ans = piecewise_fold(p4)
|
653 |
+
for i in range(-1, 1):
|
654 |
+
assert ans.subs(x, i) == p4.subs(x, i)
|
655 |
+
|
656 |
+
r1 = 1 < Piecewise((1, x < 1), (3, True))
|
657 |
+
ans = piecewise_fold(r1)
|
658 |
+
for i in range(2):
|
659 |
+
assert ans.subs(x, i) == r1.subs(x, i)
|
660 |
+
|
661 |
+
p5 = Piecewise((1, x < 0), (3, True))
|
662 |
+
p6 = Piecewise((1, x < 1), (3, True))
|
663 |
+
p7 = Piecewise((1, p5 < p6), (0, True))
|
664 |
+
ans = piecewise_fold(p7)
|
665 |
+
for i in range(-1, 2):
|
666 |
+
assert ans.subs(x, i) == p7.subs(x, i)
|
667 |
+
|
668 |
+
|
669 |
+
def test_piecewise_fold_piecewise_in_cond_2():
|
670 |
+
p1 = Piecewise((cos(x), x < 0), (0, True))
|
671 |
+
p2 = Piecewise((0, Eq(p1, 0)), (1 / p1, True))
|
672 |
+
p3 = Piecewise(
|
673 |
+
(0, (x >= 0) | Eq(cos(x), 0)),
|
674 |
+
(1/cos(x), x < 0),
|
675 |
+
(zoo, True)) # redundant b/c all x are already covered
|
676 |
+
assert(piecewise_fold(p2) == p3)
|
677 |
+
|
678 |
+
|
679 |
+
def test_piecewise_fold_expand():
|
680 |
+
p1 = Piecewise((1, Interval(0, 1, False, True).contains(x)), (0, True))
|
681 |
+
|
682 |
+
p2 = piecewise_fold(expand((1 - x)*p1))
|
683 |
+
cond = ((x >= 0) & (x < 1))
|
684 |
+
assert piecewise_fold(expand((1 - x)*p1), evaluate=False
|
685 |
+
) == Piecewise((1 - x, cond), (-x, cond), (1, cond), (0, True), evaluate=False)
|
686 |
+
assert piecewise_fold(expand((1 - x)*p1), evaluate=None
|
687 |
+
) == Piecewise((1 - x, cond), (0, True))
|
688 |
+
assert p2 == Piecewise((1 - x, cond), (0, True))
|
689 |
+
assert p2 == expand(piecewise_fold((1 - x)*p1))
|
690 |
+
|
691 |
+
|
692 |
+
def test_piecewise_duplicate():
|
693 |
+
p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x))
|
694 |
+
assert p == Piecewise(*p.args)
|
695 |
+
|
696 |
+
|
697 |
+
def test_doit():
|
698 |
+
p1 = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x))
|
699 |
+
p2 = Piecewise((x, x < 1), (Integral(2 * x), -1 <= x), (x, 3 < x))
|
700 |
+
assert p2.doit() == p1
|
701 |
+
assert p2.doit(deep=False) == p2
|
702 |
+
# issue 17165
|
703 |
+
p1 = Sum(y**x, (x, -1, oo)).doit()
|
704 |
+
assert p1.doit() == p1
|
705 |
+
|
706 |
+
|
707 |
+
def test_piecewise_interval():
|
708 |
+
p1 = Piecewise((x, Interval(0, 1).contains(x)), (0, True))
|
709 |
+
assert p1.subs(x, -0.5) == 0
|
710 |
+
assert p1.subs(x, 0.5) == 0.5
|
711 |
+
assert p1.diff(x) == Piecewise((1, Interval(0, 1).contains(x)), (0, True))
|
712 |
+
assert integrate(p1, x) == Piecewise(
|
713 |
+
(0, x <= 0),
|
714 |
+
(x**2/2, x <= 1),
|
715 |
+
(S.Half, True))
|
716 |
+
|
717 |
+
|
718 |
+
def test_piecewise_exclusive():
|
719 |
+
p = Piecewise((0, x < 0), (S.Half, x <= 0), (1, True))
|
720 |
+
assert piecewise_exclusive(p) == Piecewise((0, x < 0), (S.Half, Eq(x, 0)),
|
721 |
+
(1, x > 0), evaluate=False)
|
722 |
+
assert piecewise_exclusive(p + 2) == Piecewise((0, x < 0), (S.Half, Eq(x, 0)),
|
723 |
+
(1, x > 0), evaluate=False) + 2
|
724 |
+
assert piecewise_exclusive(Piecewise((1, y <= 0),
|
725 |
+
(-Piecewise((2, y >= 0)), True))) == \
|
726 |
+
Piecewise((1, y <= 0),
|
727 |
+
(-Piecewise((2, y >= 0),
|
728 |
+
(S.NaN, y < 0), evaluate=False), y > 0), evaluate=False)
|
729 |
+
assert piecewise_exclusive(Piecewise((1, x > y))) == Piecewise((1, x > y),
|
730 |
+
(S.NaN, x <= y),
|
731 |
+
evaluate=False)
|
732 |
+
assert piecewise_exclusive(Piecewise((1, x > y)),
|
733 |
+
skip_nan=True) == Piecewise((1, x > y))
|
734 |
+
|
735 |
+
xr, yr = symbols('xr, yr', real=True)
|
736 |
+
|
737 |
+
p1 = Piecewise((1, xr < 0), (2, True), evaluate=False)
|
738 |
+
p1x = Piecewise((1, xr < 0), (2, xr >= 0), evaluate=False)
|
739 |
+
|
740 |
+
p2 = Piecewise((p1, yr < 0), (3, True), evaluate=False)
|
741 |
+
p2x = Piecewise((p1, yr < 0), (3, yr >= 0), evaluate=False)
|
742 |
+
p2xx = Piecewise((p1x, yr < 0), (3, yr >= 0), evaluate=False)
|
743 |
+
|
744 |
+
assert piecewise_exclusive(p2) == p2xx
|
745 |
+
assert piecewise_exclusive(p2, deep=False) == p2x
|
746 |
+
|
747 |
+
|
748 |
+
def test_piecewise_collapse():
|
749 |
+
assert Piecewise((x, True)) == x
|
750 |
+
a = x < 1
|
751 |
+
assert Piecewise((x, a), (x + 1, a)) == Piecewise((x, a))
|
752 |
+
assert Piecewise((x, a), (x + 1, a.reversed)) == Piecewise((x, a))
|
753 |
+
b = x < 5
|
754 |
+
def canonical(i):
|
755 |
+
if isinstance(i, Piecewise):
|
756 |
+
return Piecewise(*i.args)
|
757 |
+
return i
|
758 |
+
for args in [
|
759 |
+
((1, a), (Piecewise((2, a), (3, b)), b)),
|
760 |
+
((1, a), (Piecewise((2, a), (3, b.reversed)), b)),
|
761 |
+
((1, a), (Piecewise((2, a), (3, b)), b), (4, True)),
|
762 |
+
((1, a), (Piecewise((2, a), (3, b), (4, True)), b)),
|
763 |
+
((1, a), (Piecewise((2, a), (3, b), (4, True)), b), (5, True))]:
|
764 |
+
for i in (0, 2, 10):
|
765 |
+
assert canonical(
|
766 |
+
Piecewise(*args, evaluate=False).subs(x, i)
|
767 |
+
) == canonical(Piecewise(*args).subs(x, i))
|
768 |
+
r1, r2, r3, r4 = symbols('r1:5')
|
769 |
+
a = x < r1
|
770 |
+
b = x < r2
|
771 |
+
c = x < r3
|
772 |
+
d = x < r4
|
773 |
+
assert Piecewise((1, a), (Piecewise(
|
774 |
+
(2, a), (3, b), (4, c)), b), (5, c)
|
775 |
+
) == Piecewise((1, a), (3, b), (5, c))
|
776 |
+
assert Piecewise((1, a), (Piecewise(
|
777 |
+
(2, a), (3, b), (4, c), (6, True)), c), (5, d)
|
778 |
+
) == Piecewise((1, a), (Piecewise(
|
779 |
+
(3, b), (4, c)), c), (5, d))
|
780 |
+
assert Piecewise((1, Or(a, d)), (Piecewise(
|
781 |
+
(2, d), (3, b), (4, c)), b), (5, c)
|
782 |
+
) == Piecewise((1, Or(a, d)), (Piecewise(
|
783 |
+
(2, d), (3, b)), b), (5, c))
|
784 |
+
assert Piecewise((1, c), (2, ~c), (3, S.true)
|
785 |
+
) == Piecewise((1, c), (2, S.true))
|
786 |
+
assert Piecewise((1, c), (2, And(~c, b)), (3,True)
|
787 |
+
) == Piecewise((1, c), (2, b), (3, True))
|
788 |
+
assert Piecewise((1, c), (2, Or(~c, b)), (3,True)
|
789 |
+
).subs(dict(zip((r1, r2, r3, r4, x), (1, 2, 3, 4, 3.5)))) == 2
|
790 |
+
assert Piecewise((1, c), (2, ~c)) == Piecewise((1, c), (2, True))
|
791 |
+
|
792 |
+
|
793 |
+
def test_piecewise_lambdify():
|
794 |
+
p = Piecewise(
|
795 |
+
(x**2, x < 0),
|
796 |
+
(x, Interval(0, 1, False, True).contains(x)),
|
797 |
+
(2 - x, x >= 1),
|
798 |
+
(0, True)
|
799 |
+
)
|
800 |
+
|
801 |
+
f = lambdify(x, p)
|
802 |
+
assert f(-2.0) == 4.0
|
803 |
+
assert f(0.0) == 0.0
|
804 |
+
assert f(0.5) == 0.5
|
805 |
+
assert f(2.0) == 0.0
|
806 |
+
|
807 |
+
|
808 |
+
def test_piecewise_series():
|
809 |
+
from sympy.series.order import O
|
810 |
+
p1 = Piecewise((sin(x), x < 0), (cos(x), x > 0))
|
811 |
+
p2 = Piecewise((x + O(x**2), x < 0), (1 + O(x**2), x > 0))
|
812 |
+
assert p1.nseries(x, n=2) == p2
|
813 |
+
|
814 |
+
|
815 |
+
def test_piecewise_as_leading_term():
|
816 |
+
p1 = Piecewise((1/x, x > 1), (0, True))
|
817 |
+
p2 = Piecewise((x, x > 1), (0, True))
|
818 |
+
p3 = Piecewise((1/x, x > 1), (x, True))
|
819 |
+
p4 = Piecewise((x, x > 1), (1/x, True))
|
820 |
+
p5 = Piecewise((1/x, x > 1), (x, True))
|
821 |
+
p6 = Piecewise((1/x, x < 1), (x, True))
|
822 |
+
p7 = Piecewise((x, x < 1), (1/x, True))
|
823 |
+
p8 = Piecewise((x, x > 1), (1/x, True))
|
824 |
+
assert p1.as_leading_term(x) == 0
|
825 |
+
assert p2.as_leading_term(x) == 0
|
826 |
+
assert p3.as_leading_term(x) == x
|
827 |
+
assert p4.as_leading_term(x) == 1/x
|
828 |
+
assert p5.as_leading_term(x) == x
|
829 |
+
assert p6.as_leading_term(x) == 1/x
|
830 |
+
assert p7.as_leading_term(x) == x
|
831 |
+
assert p8.as_leading_term(x) == 1/x
|
832 |
+
|
833 |
+
|
834 |
+
def test_piecewise_complex():
|
835 |
+
p1 = Piecewise((2, x < 0), (1, 0 <= x))
|
836 |
+
p2 = Piecewise((2*I, x < 0), (I, 0 <= x))
|
837 |
+
p3 = Piecewise((I*x, x > 1), (1 + I, True))
|
838 |
+
p4 = Piecewise((-I*conjugate(x), x > 1), (1 - I, True))
|
839 |
+
|
840 |
+
assert conjugate(p1) == p1
|
841 |
+
assert conjugate(p2) == piecewise_fold(-p2)
|
842 |
+
assert conjugate(p3) == p4
|
843 |
+
|
844 |
+
assert p1.is_imaginary is False
|
845 |
+
assert p1.is_real is True
|
846 |
+
assert p2.is_imaginary is True
|
847 |
+
assert p2.is_real is False
|
848 |
+
assert p3.is_imaginary is None
|
849 |
+
assert p3.is_real is None
|
850 |
+
|
851 |
+
assert p1.as_real_imag() == (p1, 0)
|
852 |
+
assert p2.as_real_imag() == (0, -I*p2)
|
853 |
+
|
854 |
+
|
855 |
+
def test_conjugate_transpose():
|
856 |
+
A, B = symbols("A B", commutative=False)
|
857 |
+
p = Piecewise((A*B**2, x > 0), (A**2*B, True))
|
858 |
+
assert p.adjoint() == \
|
859 |
+
Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True))
|
860 |
+
assert p.conjugate() == \
|
861 |
+
Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True))
|
862 |
+
assert p.transpose() == \
|
863 |
+
Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True))
|
864 |
+
|
865 |
+
|
866 |
+
def test_piecewise_evaluate():
|
867 |
+
assert Piecewise((x, True)) == x
|
868 |
+
assert Piecewise((x, True), evaluate=True) == x
|
869 |
+
assert Piecewise((1, Eq(1, x))).args == ((1, Eq(x, 1)),)
|
870 |
+
assert Piecewise((1, Eq(1, x)), evaluate=False).args == (
|
871 |
+
(1, Eq(1, x)),)
|
872 |
+
# like the additive and multiplicative identities that
|
873 |
+
# cannot be kept in Add/Mul, we also do not keep a single True
|
874 |
+
p = Piecewise((x, True), evaluate=False)
|
875 |
+
assert p == x
|
876 |
+
|
877 |
+
|
878 |
+
def test_as_expr_set_pairs():
|
879 |
+
assert Piecewise((x, x > 0), (-x, x <= 0)).as_expr_set_pairs() == \
|
880 |
+
[(x, Interval(0, oo, True, True)), (-x, Interval(-oo, 0))]
|
881 |
+
|
882 |
+
assert Piecewise(((x - 2)**2, x >= 0), (0, True)).as_expr_set_pairs() == \
|
883 |
+
[((x - 2)**2, Interval(0, oo)), (0, Interval(-oo, 0, True, True))]
|
884 |
+
|
885 |
+
|
886 |
+
def test_S_srepr_is_identity():
|
887 |
+
p = Piecewise((10, Eq(x, 0)), (12, True))
|
888 |
+
q = S(srepr(p))
|
889 |
+
assert p == q
|
890 |
+
|
891 |
+
|
892 |
+
def test_issue_12587():
|
893 |
+
# sort holes into intervals
|
894 |
+
p = Piecewise((1, x > 4), (2, Not((x <= 3) & (x > -1))), (3, True))
|
895 |
+
assert p.integrate((x, -5, 5)) == 23
|
896 |
+
p = Piecewise((1, x > 1), (2, x < y), (3, True))
|
897 |
+
lim = x, -3, 3
|
898 |
+
ans = p.integrate(lim)
|
899 |
+
for i in range(-1, 3):
|
900 |
+
assert ans.subs(y, i) == p.subs(y, i).integrate(lim)
|
901 |
+
|
902 |
+
|
903 |
+
def test_issue_11045():
|
904 |
+
assert integrate(1/(x*sqrt(x**2 - 1)), (x, 1, 2)) == pi/3
|
905 |
+
|
906 |
+
# handle And with Or arguments
|
907 |
+
assert Piecewise((1, And(Or(x < 1, x > 3), x < 2)), (0, True)
|
908 |
+
).integrate((x, 0, 3)) == 1
|
909 |
+
|
910 |
+
# hidden false
|
911 |
+
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
|
912 |
+
).integrate((x, 0, 3)) == 5
|
913 |
+
# targetcond is Eq
|
914 |
+
assert Piecewise((1, x > 1), (2, Eq(1, x)), (3, True)
|
915 |
+
).integrate((x, 0, 4)) == 6
|
916 |
+
# And has Relational needing to be solved
|
917 |
+
assert Piecewise((1, And(2*x > x + 1, x < 2)), (0, True)
|
918 |
+
).integrate((x, 0, 3)) == 1
|
919 |
+
# Or has Relational needing to be solved
|
920 |
+
assert Piecewise((1, Or(2*x > x + 2, x < 1)), (0, True)
|
921 |
+
).integrate((x, 0, 3)) == 2
|
922 |
+
# ignore hidden false (handled in canonicalization)
|
923 |
+
assert Piecewise((1, x > 1), (2, x > x + 1), (3, True)
|
924 |
+
).integrate((x, 0, 3)) == 5
|
925 |
+
# watch for hidden True Piecewise
|
926 |
+
assert Piecewise((2, Eq(1 - x, x*(1/x - 1))), (0, True)
|
927 |
+
).integrate((x, 0, 3)) == 6
|
928 |
+
|
929 |
+
# overlapping conditions of targetcond are recognized and ignored;
|
930 |
+
# the condition x > 3 will be pre-empted by the first condition
|
931 |
+
assert Piecewise((1, Or(x < 1, x > 2)), (2, x > 3), (3, True)
|
932 |
+
).integrate((x, 0, 4)) == 6
|
933 |
+
|
934 |
+
# convert Ne to Or
|
935 |
+
assert Piecewise((1, Ne(x, 0)), (2, True)
|
936 |
+
).integrate((x, -1, 1)) == 2
|
937 |
+
|
938 |
+
# no default but well defined
|
939 |
+
assert Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4))
|
940 |
+
).integrate((x, 1, 4)) == 5
|
941 |
+
|
942 |
+
p = Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4)))
|
943 |
+
nan = Undefined
|
944 |
+
i = p.integrate((x, 1, y))
|
945 |
+
assert i == Piecewise(
|
946 |
+
(y - 1, y < 1),
|
947 |
+
(Min(3, y)**2/2 - Min(3, y) + Min(4, y) - S.Half,
|
948 |
+
y <= Min(4, y)),
|
949 |
+
(nan, True))
|
950 |
+
assert p.integrate((x, 1, -1)) == i.subs(y, -1)
|
951 |
+
assert p.integrate((x, 1, 4)) == 5
|
952 |
+
assert p.integrate((x, 1, 5)) is nan
|
953 |
+
|
954 |
+
# handle Not
|
955 |
+
p = Piecewise((1, x > 1), (2, Not(And(x > 1, x< 3))), (3, True))
|
956 |
+
assert p.integrate((x, 0, 3)) == 4
|
957 |
+
|
958 |
+
# handle updating of int_expr when there is overlap
|
959 |
+
p = Piecewise(
|
960 |
+
(1, And(5 > x, x > 1)),
|
961 |
+
(2, Or(x < 3, x > 7)),
|
962 |
+
(4, x < 8))
|
963 |
+
assert p.integrate((x, 0, 10)) == 20
|
964 |
+
|
965 |
+
# And with Eq arg handling
|
966 |
+
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1))
|
967 |
+
).integrate((x, 0, 3)) is S.NaN
|
968 |
+
assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)), (3, True)
|
969 |
+
).integrate((x, 0, 3)) == 7
|
970 |
+
assert Piecewise((1, x < 0), (2, And(Eq(x, 3), x < 1)), (3, True)
|
971 |
+
).integrate((x, -1, 1)) == 4
|
972 |
+
# middle condition doesn't matter: it's a zero width interval
|
973 |
+
assert Piecewise((1, x < 1), (2, Eq(x, 3) & (y < x)), (3, True)
|
974 |
+
).integrate((x, 0, 3)) == 7
|
975 |
+
|
976 |
+
|
977 |
+
def test_holes():
|
978 |
+
nan = Undefined
|
979 |
+
assert Piecewise((1, x < 2)).integrate(x) == Piecewise(
|
980 |
+
(x, x < 2), (nan, True))
|
981 |
+
assert Piecewise((1, And(x > 1, x < 2))).integrate(x) == Piecewise(
|
982 |
+
(nan, x < 1), (x, x < 2), (nan, True))
|
983 |
+
assert Piecewise((1, And(x > 1, x < 2))).integrate((x, 0, 3)) is nan
|
984 |
+
assert Piecewise((1, And(x > 0, x < 4))).integrate((x, 1, 3)) == 2
|
985 |
+
|
986 |
+
# this also tests that the integrate method is used on non-Piecwise
|
987 |
+
# arguments in _eval_integral
|
988 |
+
A, B = symbols("A B")
|
989 |
+
a, b = symbols('a b', real=True)
|
990 |
+
assert Piecewise((A, And(x < 0, a < 1)), (B, Or(x < 1, a > 2))
|
991 |
+
).integrate(x) == Piecewise(
|
992 |
+
(B*x, (a > 2)),
|
993 |
+
(Piecewise((A*x, x < 0), (B*x, x < 1), (nan, True)), a < 1),
|
994 |
+
(Piecewise((B*x, x < 1), (nan, True)), True))
|
995 |
+
|
996 |
+
|
997 |
+
def test_issue_11922():
|
998 |
+
def f(x):
|
999 |
+
return Piecewise((0, x < -1), (1 - x**2, x < 1), (0, True))
|
1000 |
+
autocorr = lambda k: (
|
1001 |
+
f(x) * f(x + k)).integrate((x, -1, 1))
|
1002 |
+
assert autocorr(1.9) > 0
|
1003 |
+
k = symbols('k')
|
1004 |
+
good_autocorr = lambda k: (
|
1005 |
+
(1 - x**2) * f(x + k)).integrate((x, -1, 1))
|
1006 |
+
a = good_autocorr(k)
|
1007 |
+
assert a.subs(k, 3) == 0
|
1008 |
+
k = symbols('k', positive=True)
|
1009 |
+
a = good_autocorr(k)
|
1010 |
+
assert a.subs(k, 3) == 0
|
1011 |
+
assert Piecewise((0, x < 1), (10, (x >= 1))
|
1012 |
+
).integrate() == Piecewise((0, x < 1), (10*x - 10, True))
|
1013 |
+
|
1014 |
+
|
1015 |
+
def test_issue_5227():
|
1016 |
+
f = 0.0032513612725229*Piecewise((0, x < -80.8461538461539),
|
1017 |
+
(-0.0160799238820171*x + 1.33215984776403, x < 2),
|
1018 |
+
(Piecewise((0.3, x > 123), (0.7, True)) +
|
1019 |
+
Piecewise((0.4, x > 2), (0.6, True)), x <=
|
1020 |
+
123), (-0.00817409766454352*x + 2.10541401273885, x <
|
1021 |
+
380.571428571429), (0, True))
|
1022 |
+
i = integrate(f, (x, -oo, oo))
|
1023 |
+
assert i == Integral(f, (x, -oo, oo)).doit()
|
1024 |
+
assert str(i) == '1.00195081676351'
|
1025 |
+
assert Piecewise((1, x - y < 0), (0, True)
|
1026 |
+
).integrate(y) == Piecewise((0, y <= x), (-x + y, True))
|
1027 |
+
|
1028 |
+
|
1029 |
+
def test_issue_10137():
|
1030 |
+
a = Symbol('a', real=True)
|
1031 |
+
b = Symbol('b', real=True)
|
1032 |
+
x = Symbol('x', real=True)
|
1033 |
+
y = Symbol('y', real=True)
|
1034 |
+
p0 = Piecewise((0, Or(x < a, x > b)), (1, True))
|
1035 |
+
p1 = Piecewise((0, Or(a > x, b < x)), (1, True))
|
1036 |
+
assert integrate(p0, (x, y, oo)) == integrate(p1, (x, y, oo))
|
1037 |
+
p3 = Piecewise((1, And(0 < x, x < a)), (0, True))
|
1038 |
+
p4 = Piecewise((1, And(a > x, x > 0)), (0, True))
|
1039 |
+
ip3 = integrate(p3, x)
|
1040 |
+
assert ip3 == Piecewise(
|
1041 |
+
(0, x <= 0),
|
1042 |
+
(x, x <= Max(0, a)),
|
1043 |
+
(Max(0, a), True))
|
1044 |
+
ip4 = integrate(p4, x)
|
1045 |
+
assert ip4 == ip3
|
1046 |
+
assert p3.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
|
1047 |
+
assert p4.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2
|
1048 |
+
|
1049 |
+
|
1050 |
+
def test_stackoverflow_43852159():
|
1051 |
+
f = lambda x: Piecewise((1, (x >= -1) & (x <= 1)), (0, True))
|
1052 |
+
Conv = lambda x: integrate(f(x - y)*f(y), (y, -oo, +oo))
|
1053 |
+
cx = Conv(x)
|
1054 |
+
assert cx.subs(x, -1.5) == cx.subs(x, 1.5)
|
1055 |
+
assert cx.subs(x, 3) == 0
|
1056 |
+
assert piecewise_fold(f(x - y)*f(y)) == Piecewise(
|
1057 |
+
(1, (y >= -1) & (y <= 1) & (x - y >= -1) & (x - y <= 1)),
|
1058 |
+
(0, True))
|
1059 |
+
|
1060 |
+
|
1061 |
+
def test_issue_12557():
|
1062 |
+
'''
|
1063 |
+
# 3200 seconds to compute the fourier part of issue
|
1064 |
+
import sympy as sym
|
1065 |
+
x,y,z,t = sym.symbols('x y z t')
|
1066 |
+
k = sym.symbols("k", integer=True)
|
1067 |
+
fourier = sym.fourier_series(sym.cos(k*x)*sym.sqrt(x**2),
|
1068 |
+
(x, -sym.pi, sym.pi))
|
1069 |
+
assert fourier == FourierSeries(
|
1070 |
+
sqrt(x**2)*cos(k*x), (x, -pi, pi), (Piecewise((pi**2,
|
1071 |
+
Eq(k, 0)), (2*(-1)**k/k**2 - 2/k**2, True))/(2*pi),
|
1072 |
+
SeqFormula(Piecewise((pi**2, (Eq(_n, 0) & Eq(k, 0)) | (Eq(_n, 0) &
|
1073 |
+
Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(k, 0) & Eq(_n, -k)) | (Eq(_n,
|
1074 |
+
0) & Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), (pi**2/2, Eq(_n, k) | Eq(_n,
|
1075 |
+
-k) | (Eq(_n, 0) & Eq(_n, k)) | (Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) &
|
1076 |
+
Eq(_n, -k)) | (Eq(_n, k) & Eq(_n, -k)) | (Eq(k, 0) & Eq(_n, -k)) |
|
1077 |
+
(Eq(_n, 0) & Eq(_n, k) & Eq(_n, -k)) | (Eq(_n, k) & Eq(k, 0) & Eq(_n,
|
1078 |
+
-k))), ((-1)**k*pi**2*_n**3*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
|
1079 |
+
pi*k**4) - (-1)**k*pi**2*_n**3*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2
|
1080 |
+
- pi*k**4) + (-1)**k*pi*_n**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
|
1081 |
+
pi*k**4) - (-1)**k*pi*_n**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
|
1082 |
+
pi*k**4) - (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(pi*_n**4 -
|
1083 |
+
2*pi*_n**2*k**2 + pi*k**4) +
|
1084 |
+
(-1)**k*pi**2*_n*k**2*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
|
1085 |
+
pi*k**4) + (-1)**k*pi*k**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 +
|
1086 |
+
pi*k**4) - (-1)**k*pi*k**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 -
|
1087 |
+
pi*k**4) - (2*_n**2 + 2*k**2)/(_n**4 - 2*_n**2*k**2 + k**4),
|
1088 |
+
True))*cos(_n*x)/pi, (_n, 1, oo)), SeqFormula(0, (_k, 1, oo))))
|
1089 |
+
'''
|
1090 |
+
x = symbols("x", real=True)
|
1091 |
+
k = symbols('k', integer=True, finite=True)
|
1092 |
+
abs2 = lambda x: Piecewise((-x, x <= 0), (x, x > 0))
|
1093 |
+
assert integrate(abs2(x), (x, -pi, pi)) == pi**2
|
1094 |
+
func = cos(k*x)*sqrt(x**2)
|
1095 |
+
assert integrate(func, (x, -pi, pi)) == Piecewise(
|
1096 |
+
(2*(-1)**k/k**2 - 2/k**2, Ne(k, 0)), (pi**2, True))
|
1097 |
+
|
1098 |
+
def test_issue_6900():
|
1099 |
+
from itertools import permutations
|
1100 |
+
t0, t1, T, t = symbols('t0, t1 T t')
|
1101 |
+
f = Piecewise((0, t < t0), (x, And(t0 <= t, t < t1)), (0, t >= t1))
|
1102 |
+
g = f.integrate(t)
|
1103 |
+
assert g == Piecewise(
|
1104 |
+
(0, t <= t0),
|
1105 |
+
(t*x - t0*x, t <= Max(t0, t1)),
|
1106 |
+
(-t0*x + x*Max(t0, t1), True))
|
1107 |
+
for i in permutations(range(2)):
|
1108 |
+
reps = dict(zip((t0,t1), i))
|
1109 |
+
for tt in range(-1,3):
|
1110 |
+
assert (g.xreplace(reps).subs(t,tt) ==
|
1111 |
+
f.xreplace(reps).integrate(t).subs(t,tt))
|
1112 |
+
lim = Tuple(t, t0, T)
|
1113 |
+
g = f.integrate(lim)
|
1114 |
+
ans = Piecewise(
|
1115 |
+
(-t0*x + x*Min(T, Max(t0, t1)), T > t0),
|
1116 |
+
(0, True))
|
1117 |
+
for i in permutations(range(3)):
|
1118 |
+
reps = dict(zip((t0,t1,T), i))
|
1119 |
+
tru = f.xreplace(reps).integrate(lim.xreplace(reps))
|
1120 |
+
assert tru == ans.xreplace(reps)
|
1121 |
+
assert g == ans
|
1122 |
+
|
1123 |
+
|
1124 |
+
def test_issue_10122():
|
1125 |
+
assert solve(abs(x) + abs(x - 1) - 1 > 0, x
|
1126 |
+
) == Or(And(-oo < x, x < S.Zero), And(S.One < x, x < oo))
|
1127 |
+
|
1128 |
+
|
1129 |
+
def test_issue_4313():
|
1130 |
+
u = Piecewise((0, x <= 0), (1, x >= a), (x/a, True))
|
1131 |
+
e = (u - u.subs(x, y))**2/(x - y)**2
|
1132 |
+
M = Max(0, a)
|
1133 |
+
assert integrate(e, x).expand() == Piecewise(
|
1134 |
+
(Piecewise(
|
1135 |
+
(0, x <= 0),
|
1136 |
+
(-y**2/(a**2*x - a**2*y) + x/a**2 - 2*y*log(-y)/a**2 +
|
1137 |
+
2*y*log(x - y)/a**2 - y/a**2, x <= M),
|
1138 |
+
(-y**2/(-a**2*y + a**2*M) + 1/(-y + M) -
|
1139 |
+
1/(x - y) - 2*y*log(-y)/a**2 + 2*y*log(-y +
|
1140 |
+
M)/a**2 - y/a**2 + M/a**2, True)),
|
1141 |
+
((a <= y) & (y <= 0)) | ((y <= 0) & (y > -oo))),
|
1142 |
+
(Piecewise(
|
1143 |
+
(-1/(x - y), x <= 0),
|
1144 |
+
(-a**2/(a**2*x - a**2*y) + 2*a*y/(a**2*x - a**2*y) -
|
1145 |
+
y**2/(a**2*x - a**2*y) + 2*log(-y)/a - 2*log(x - y)/a +
|
1146 |
+
2/a + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 -
|
1147 |
+
y/a**2, x <= M),
|
1148 |
+
(-a**2/(-a**2*y + a**2*M) + 2*a*y/(-a**2*y +
|
1149 |
+
a**2*M) - y**2/(-a**2*y + a**2*M) +
|
1150 |
+
2*log(-y)/a - 2*log(-y + M)/a + 2/a -
|
1151 |
+
2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 -
|
1152 |
+
y/a**2 + M/a**2, True)),
|
1153 |
+
a <= y),
|
1154 |
+
(Piecewise(
|
1155 |
+
(-y**2/(a**2*x - a**2*y), x <= 0),
|
1156 |
+
(x/a**2 + y/a**2, x <= M),
|
1157 |
+
(a**2/(-a**2*y + a**2*M) -
|
1158 |
+
a**2/(a**2*x - a**2*y) - 2*a*y/(-a**2*y + a**2*M) +
|
1159 |
+
2*a*y/(a**2*x - a**2*y) + y**2/(-a**2*y + a**2*M) -
|
1160 |
+
y**2/(a**2*x - a**2*y) + y/a**2 + M/a**2, True)),
|
1161 |
+
True))
|
1162 |
+
|
1163 |
+
|
1164 |
+
def test__intervals():
|
1165 |
+
assert Piecewise((x + 2, Eq(x, 3)))._intervals(x) == (True, [])
|
1166 |
+
assert Piecewise(
|
1167 |
+
(1, x > x + 1),
|
1168 |
+
(Piecewise((1, x < x + 1)), 2*x < 2*x + 1),
|
1169 |
+
(1, True))._intervals(x) == (True, [(-oo, oo, 1, 1)])
|
1170 |
+
assert Piecewise((1, Ne(x, I)), (0, True))._intervals(x) == (True,
|
1171 |
+
[(-oo, oo, 1, 0)])
|
1172 |
+
assert Piecewise((-cos(x), sin(x) >= 0), (cos(x), True)
|
1173 |
+
)._intervals(x) == (True,
|
1174 |
+
[(0, pi, -cos(x), 0), (-oo, oo, cos(x), 1)])
|
1175 |
+
# the following tests that duplicates are removed and that non-Eq
|
1176 |
+
# generated zero-width intervals are removed
|
1177 |
+
assert Piecewise((1, Abs(x**(-2)) > 1), (0, True)
|
1178 |
+
)._intervals(x) == (True,
|
1179 |
+
[(-1, 0, 1, 0), (0, 1, 1, 0), (-oo, oo, 0, 1)])
|
1180 |
+
|
1181 |
+
|
1182 |
+
def test_containment():
|
1183 |
+
a, b, c, d, e = [1, 2, 3, 4, 5]
|
1184 |
+
p = (Piecewise((d, x > 1), (e, True))*
|
1185 |
+
Piecewise((a, Abs(x - 1) < 1), (b, Abs(x - 2) < 2), (c, True)))
|
1186 |
+
assert p.integrate(x).diff(x) == Piecewise(
|
1187 |
+
(c*e, x <= 0),
|
1188 |
+
(a*e, x <= 1),
|
1189 |
+
(a*d, x < 2), # this is what we want to get right
|
1190 |
+
(b*d, x < 4),
|
1191 |
+
(c*d, True))
|
1192 |
+
|
1193 |
+
|
1194 |
+
def test_piecewise_with_DiracDelta():
|
1195 |
+
d1 = DiracDelta(x - 1)
|
1196 |
+
assert integrate(d1, (x, -oo, oo)) == 1
|
1197 |
+
assert integrate(d1, (x, 0, 2)) == 1
|
1198 |
+
assert Piecewise((d1, Eq(x, 2)), (0, True)).integrate(x) == 0
|
1199 |
+
assert Piecewise((d1, x < 2), (0, True)).integrate(x) == Piecewise(
|
1200 |
+
(Heaviside(x - 1), x < 2), (1, True))
|
1201 |
+
# TODO raise error if function is discontinuous at limit of
|
1202 |
+
# integration, e.g. integrate(d1, (x, -2, 1)) or Piecewise(
|
1203 |
+
# (d1, Eq(x, 1)
|
1204 |
+
|
1205 |
+
|
1206 |
+
def test_issue_10258():
|
1207 |
+
assert Piecewise((0, x < 1), (1, True)).is_zero is None
|
1208 |
+
assert Piecewise((-1, x < 1), (1, True)).is_zero is False
|
1209 |
+
a = Symbol('a', zero=True)
|
1210 |
+
assert Piecewise((0, x < 1), (a, True)).is_zero
|
1211 |
+
assert Piecewise((1, x < 1), (a, x < 3)).is_zero is None
|
1212 |
+
a = Symbol('a')
|
1213 |
+
assert Piecewise((0, x < 1), (a, True)).is_zero is None
|
1214 |
+
assert Piecewise((0, x < 1), (1, True)).is_nonzero is None
|
1215 |
+
assert Piecewise((1, x < 1), (2, True)).is_nonzero
|
1216 |
+
assert Piecewise((0, x < 1), (oo, True)).is_finite is None
|
1217 |
+
assert Piecewise((0, x < 1), (1, True)).is_finite
|
1218 |
+
b = Basic()
|
1219 |
+
assert Piecewise((b, x < 1)).is_finite is None
|
1220 |
+
|
1221 |
+
# 10258
|
1222 |
+
c = Piecewise((1, x < 0), (2, True)) < 3
|
1223 |
+
assert c != True
|
1224 |
+
assert piecewise_fold(c) == True
|
1225 |
+
|
1226 |
+
|
1227 |
+
def test_issue_10087():
|
1228 |
+
a, b = Piecewise((x, x > 1), (2, True)), Piecewise((x, x > 3), (3, True))
|
1229 |
+
m = a*b
|
1230 |
+
f = piecewise_fold(m)
|
1231 |
+
for i in (0, 2, 4):
|
1232 |
+
assert m.subs(x, i) == f.subs(x, i)
|
1233 |
+
m = a + b
|
1234 |
+
f = piecewise_fold(m)
|
1235 |
+
for i in (0, 2, 4):
|
1236 |
+
assert m.subs(x, i) == f.subs(x, i)
|
1237 |
+
|
1238 |
+
|
1239 |
+
def test_issue_8919():
|
1240 |
+
c = symbols('c:5')
|
1241 |
+
x = symbols("x")
|
1242 |
+
f1 = Piecewise((c[1], x < 1), (c[2], True))
|
1243 |
+
f2 = Piecewise((c[3], x < Rational(1, 3)), (c[4], True))
|
1244 |
+
assert integrate(f1*f2, (x, 0, 2)
|
1245 |
+
) == c[1]*c[3]/3 + 2*c[1]*c[4]/3 + c[2]*c[4]
|
1246 |
+
f1 = Piecewise((0, x < 1), (2, True))
|
1247 |
+
f2 = Piecewise((3, x < 2), (0, True))
|
1248 |
+
assert integrate(f1*f2, (x, 0, 3)) == 6
|
1249 |
+
|
1250 |
+
y = symbols("y", positive=True)
|
1251 |
+
a, b, c, x, z = symbols("a,b,c,x,z", real=True)
|
1252 |
+
I = Integral(Piecewise(
|
1253 |
+
(0, (x >= y) | (x < 0) | (b > c)),
|
1254 |
+
(a, True)), (x, 0, z))
|
1255 |
+
ans = I.doit()
|
1256 |
+
assert ans == Piecewise((0, b > c), (a*Min(y, z) - a*Min(0, z), True))
|
1257 |
+
for cond in (True, False):
|
1258 |
+
for yy in range(1, 3):
|
1259 |
+
for zz in range(-yy, 0, yy):
|
1260 |
+
reps = [(b > c, cond), (y, yy), (z, zz)]
|
1261 |
+
assert ans.subs(reps) == I.subs(reps).doit()
|
1262 |
+
|
1263 |
+
|
1264 |
+
def test_unevaluated_integrals():
|
1265 |
+
f = Function('f')
|
1266 |
+
p = Piecewise((1, Eq(f(x) - 1, 0)), (2, x - 10 < 0), (0, True))
|
1267 |
+
assert p.integrate(x) == Integral(p, x)
|
1268 |
+
assert p.integrate((x, 0, 5)) == Integral(p, (x, 0, 5))
|
1269 |
+
# test it by replacing f(x) with x%2 which will not
|
1270 |
+
# affect the answer: the integrand is essentially 2 over
|
1271 |
+
# the domain of integration
|
1272 |
+
assert Integral(p, (x, 0, 5)).subs(f(x), x%2).n() == 10.0
|
1273 |
+
|
1274 |
+
# this is a test of using _solve_inequality when
|
1275 |
+
# solve_univariate_inequality fails
|
1276 |
+
assert p.integrate(y) == Piecewise(
|
1277 |
+
(y, Eq(f(x), 1) | ((x < 10) & Eq(f(x), 1))),
|
1278 |
+
(2*y, (x > -oo) & (x < 10)), (0, True))
|
1279 |
+
|
1280 |
+
|
1281 |
+
def test_conditions_as_alternate_booleans():
|
1282 |
+
a, b, c = symbols('a:c')
|
1283 |
+
assert Piecewise((x, Piecewise((y < 1, x > 0), (y > 1, True)))
|
1284 |
+
) == Piecewise((x, ITE(x > 0, y < 1, y > 1)))
|
1285 |
+
|
1286 |
+
|
1287 |
+
def test_Piecewise_rewrite_as_ITE():
|
1288 |
+
a, b, c, d = symbols('a:d')
|
1289 |
+
|
1290 |
+
def _ITE(*args):
|
1291 |
+
return Piecewise(*args).rewrite(ITE)
|
1292 |
+
|
1293 |
+
assert _ITE((a, x < 1), (b, x >= 1)) == ITE(x < 1, a, b)
|
1294 |
+
assert _ITE((a, x < 1), (b, x < oo)) == ITE(x < 1, a, b)
|
1295 |
+
assert _ITE((a, x < 1), (b, Or(y < 1, x < oo)), (c, y > 0)
|
1296 |
+
) == ITE(x < 1, a, b)
|
1297 |
+
assert _ITE((a, x < 1), (b, True)) == ITE(x < 1, a, b)
|
1298 |
+
assert _ITE((a, x < 1), (b, x < 2), (c, True)
|
1299 |
+
) == ITE(x < 1, a, ITE(x < 2, b, c))
|
1300 |
+
assert _ITE((a, x < 1), (b, y < 2), (c, True)
|
1301 |
+
) == ITE(x < 1, a, ITE(y < 2, b, c))
|
1302 |
+
assert _ITE((a, x < 1), (b, x < oo), (c, y < 1)
|
1303 |
+
) == ITE(x < 1, a, b)
|
1304 |
+
assert _ITE((a, x < 1), (c, y < 1), (b, x < oo), (d, True)
|
1305 |
+
) == ITE(x < 1, a, ITE(y < 1, c, b))
|
1306 |
+
assert _ITE((a, x < 0), (b, Or(x < oo, y < 1))
|
1307 |
+
) == ITE(x < 0, a, b)
|
1308 |
+
raises(TypeError, lambda: _ITE((x + 1, x < 1), (x, True)))
|
1309 |
+
# if `a` in the following were replaced with y then the coverage
|
1310 |
+
# is complete but something other than as_set would need to be
|
1311 |
+
# used to detect this
|
1312 |
+
raises(NotImplementedError, lambda: _ITE((x, x < y), (y, x >= a)))
|
1313 |
+
raises(ValueError, lambda: _ITE((a, x < 2), (b, x > 3)))
|
1314 |
+
|
1315 |
+
|
1316 |
+
def test_issue_14052():
|
1317 |
+
assert integrate(abs(sin(x)), (x, 0, 2*pi)) == 4
|
1318 |
+
|
1319 |
+
|
1320 |
+
def test_issue_14240():
|
1321 |
+
assert piecewise_fold(
|
1322 |
+
Piecewise((1, a), (2, b), (4, True)) +
|
1323 |
+
Piecewise((8, a), (16, True))
|
1324 |
+
) == Piecewise((9, a), (18, b), (20, True))
|
1325 |
+
assert piecewise_fold(
|
1326 |
+
Piecewise((2, a), (3, b), (5, True)) *
|
1327 |
+
Piecewise((7, a), (11, True))
|
1328 |
+
) == Piecewise((14, a), (33, b), (55, True))
|
1329 |
+
# these will hang if naive folding is used
|
1330 |
+
assert piecewise_fold(Add(*[
|
1331 |
+
Piecewise((i, a), (0, True)) for i in range(40)])
|
1332 |
+
) == Piecewise((780, a), (0, True))
|
1333 |
+
assert piecewise_fold(Mul(*[
|
1334 |
+
Piecewise((i, a), (0, True)) for i in range(1, 41)])
|
1335 |
+
) == Piecewise((factorial(40), a), (0, True))
|
1336 |
+
|
1337 |
+
|
1338 |
+
def test_issue_14787():
|
1339 |
+
x = Symbol('x')
|
1340 |
+
f = Piecewise((x, x < 1), ((S(58) / 7), True))
|
1341 |
+
assert str(f.evalf()) == "Piecewise((x, x < 1), (8.28571428571429, True))"
|
1342 |
+
|
1343 |
+
def test_issue_21481():
|
1344 |
+
b, e = symbols('b e')
|
1345 |
+
C = Piecewise(
|
1346 |
+
(2,
|
1347 |
+
((b > 1) & (e > 0)) |
|
1348 |
+
((b > 0) & (b < 1) & (e < 0)) |
|
1349 |
+
((e >= 2) & (b < -1) & Eq(Mod(e, 2), 0)) |
|
1350 |
+
((e <= -2) & (b > -1) & (b < 0) & Eq(Mod(e, 2), 0))),
|
1351 |
+
(S.Half,
|
1352 |
+
((b > 1) & (e < 0)) |
|
1353 |
+
((b > 0) & (e > 0) & (b < 1)) |
|
1354 |
+
((e <= -2) & (b < -1) & Eq(Mod(e, 2), 0)) |
|
1355 |
+
((e >= 2) & (b > -1) & (b < 0) & Eq(Mod(e, 2), 0))),
|
1356 |
+
(-S.Half,
|
1357 |
+
Eq(Mod(e, 2), 1) &
|
1358 |
+
(((e <= -1) & (b < -1)) | ((e >= 1) & (b > -1) & (b < 0)))),
|
1359 |
+
(-2,
|
1360 |
+
((e >= 1) & (b < -1) & Eq(Mod(e, 2), 1)) |
|
1361 |
+
((e <= -1) & (b > -1) & (b < 0) & Eq(Mod(e, 2), 1)))
|
1362 |
+
)
|
1363 |
+
A = Piecewise(
|
1364 |
+
(1, Eq(b, 1) | Eq(e, 0) | (Eq(b, -1) & Eq(Mod(e, 2), 0))),
|
1365 |
+
(0, Eq(b, 0) & (e > 0)),
|
1366 |
+
(-1, Eq(b, -1) & Eq(Mod(e, 2), 1)),
|
1367 |
+
(C, Eq(im(b), 0) & Eq(im(e), 0))
|
1368 |
+
)
|
1369 |
+
|
1370 |
+
B = piecewise_fold(A)
|
1371 |
+
sa = A.simplify()
|
1372 |
+
sb = B.simplify()
|
1373 |
+
v = (-2, -1, -S.Half, 0, S.Half, 1, 2)
|
1374 |
+
for i in v:
|
1375 |
+
for j in v:
|
1376 |
+
r = {b:i, e:j}
|
1377 |
+
ok = [k.xreplace(r) for k in (A, B, sa, sb)]
|
1378 |
+
assert len(set(ok)) == 1
|
1379 |
+
|
1380 |
+
|
1381 |
+
def test_issue_8458():
|
1382 |
+
x, y = symbols('x y')
|
1383 |
+
# Original issue
|
1384 |
+
p1 = Piecewise((0, Eq(x, 0)), (sin(x), True))
|
1385 |
+
assert p1.simplify() == sin(x)
|
1386 |
+
# Slightly larger variant
|
1387 |
+
p2 = Piecewise((x, Eq(x, 0)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True))
|
1388 |
+
assert p2.simplify() == sin(x)
|
1389 |
+
# Test for problem highlighted during review
|
1390 |
+
p3 = Piecewise((x+1, Eq(x, -1)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True))
|
1391 |
+
assert p3.simplify() == Piecewise((0, Eq(x, -1)), (sin(x), True))
|
1392 |
+
|
1393 |
+
|
1394 |
+
def test_issue_16417():
|
1395 |
+
z = Symbol('z')
|
1396 |
+
assert unchanged(Piecewise, (1, Or(Eq(im(z), 0), Gt(re(z), 0))), (2, True))
|
1397 |
+
|
1398 |
+
x = Symbol('x')
|
1399 |
+
assert unchanged(Piecewise, (S.Pi, re(x) < 0),
|
1400 |
+
(0, Or(re(x) > 0, Ne(im(x), 0))),
|
1401 |
+
(S.NaN, True))
|
1402 |
+
r = Symbol('r', real=True)
|
1403 |
+
p = Piecewise((S.Pi, re(r) < 0),
|
1404 |
+
(0, Or(re(r) > 0, Ne(im(r), 0))),
|
1405 |
+
(S.NaN, True))
|
1406 |
+
assert p == Piecewise((S.Pi, r < 0),
|
1407 |
+
(0, r > 0),
|
1408 |
+
(S.NaN, True), evaluate=False)
|
1409 |
+
# Does not work since imaginary != 0...
|
1410 |
+
#i = Symbol('i', imaginary=True)
|
1411 |
+
#p = Piecewise((S.Pi, re(i) < 0),
|
1412 |
+
# (0, Or(re(i) > 0, Ne(im(i), 0))),
|
1413 |
+
# (S.NaN, True))
|
1414 |
+
#assert p == Piecewise((0, Ne(im(i), 0)),
|
1415 |
+
# (S.NaN, True), evaluate=False)
|
1416 |
+
i = I*r
|
1417 |
+
p = Piecewise((S.Pi, re(i) < 0),
|
1418 |
+
(0, Or(re(i) > 0, Ne(im(i), 0))),
|
1419 |
+
(S.NaN, True))
|
1420 |
+
assert p == Piecewise((0, Ne(im(i), 0)),
|
1421 |
+
(S.NaN, True), evaluate=False)
|
1422 |
+
assert p == Piecewise((0, Ne(r, 0)),
|
1423 |
+
(S.NaN, True), evaluate=False)
|
1424 |
+
|
1425 |
+
|
1426 |
+
def test_eval_rewrite_as_KroneckerDelta():
|
1427 |
+
x, y, z, n, t, m = symbols('x y z n t m')
|
1428 |
+
K = KroneckerDelta
|
1429 |
+
f = lambda p: expand(p.rewrite(K))
|
1430 |
+
|
1431 |
+
p1 = Piecewise((0, Eq(x, y)), (1, True))
|
1432 |
+
assert f(p1) == 1 - K(x, y)
|
1433 |
+
|
1434 |
+
p2 = Piecewise((x, Eq(y,0)), (z, Eq(t,0)), (n, True))
|
1435 |
+
assert f(p2) == n*K(0, t)*K(0, y) - n*K(0, t) - n*K(0, y) + n + \
|
1436 |
+
x*K(0, y) - z*K(0, t)*K(0, y) + z*K(0, t)
|
1437 |
+
|
1438 |
+
p3 = Piecewise((1, Ne(x, y)), (0, True))
|
1439 |
+
assert f(p3) == 1 - K(x, y)
|
1440 |
+
|
1441 |
+
p4 = Piecewise((1, Eq(x, 3)), (4, True), (5, True))
|
1442 |
+
assert f(p4) == 4 - 3*K(3, x)
|
1443 |
+
|
1444 |
+
p5 = Piecewise((3, Ne(x, 2)), (4, Eq(y, 2)), (5, True))
|
1445 |
+
assert f(p5) == -K(2, x)*K(2, y) + 2*K(2, x) + 3
|
1446 |
+
|
1447 |
+
p6 = Piecewise((0, Ne(x, 1) & Ne(y, 4)), (1, True))
|
1448 |
+
assert f(p6) == -K(1, x)*K(4, y) + K(1, x) + K(4, y)
|
1449 |
+
|
1450 |
+
p7 = Piecewise((2, Eq(y, 3) & Ne(x, 2)), (1, True))
|
1451 |
+
assert f(p7) == -K(2, x)*K(3, y) + K(3, y) + 1
|
1452 |
+
|
1453 |
+
p8 = Piecewise((4, Eq(x, 3) & Ne(y, 2)), (1, True))
|
1454 |
+
assert f(p8) == -3*K(2, y)*K(3, x) + 3*K(3, x) + 1
|
1455 |
+
|
1456 |
+
p9 = Piecewise((6, Eq(x, 4) & Eq(y, 1)), (1, True))
|
1457 |
+
assert f(p9) == 5 * K(1, y) * K(4, x) + 1
|
1458 |
+
|
1459 |
+
p10 = Piecewise((4, Ne(x, -4) | Ne(y, 1)), (1, True))
|
1460 |
+
assert f(p10) == -3 * K(-4, x) * K(1, y) + 4
|
1461 |
+
|
1462 |
+
p11 = Piecewise((1, Eq(y, 2) | Ne(x, -3)), (2, True))
|
1463 |
+
assert f(p11) == -K(-3, x)*K(2, y) + K(-3, x) + 1
|
1464 |
+
|
1465 |
+
p12 = Piecewise((-1, Eq(x, 1) | Ne(y, 3)), (1, True))
|
1466 |
+
assert f(p12) == -2*K(1, x)*K(3, y) + 2*K(3, y) - 1
|
1467 |
+
|
1468 |
+
p13 = Piecewise((3, Eq(x, 2) | Eq(y, 4)), (1, True))
|
1469 |
+
assert f(p13) == -2*K(2, x)*K(4, y) + 2*K(2, x) + 2*K(4, y) + 1
|
1470 |
+
|
1471 |
+
p14 = Piecewise((1, Ne(x, 0) | Ne(y, 1)), (3, True))
|
1472 |
+
assert f(p14) == 2 * K(0, x) * K(1, y) + 1
|
1473 |
+
|
1474 |
+
p15 = Piecewise((2, Eq(x, 3) | Ne(y, 2)), (3, Eq(x, 4) & Eq(y, 5)), (1, True))
|
1475 |
+
assert f(p15) == -2*K(2, y)*K(3, x)*K(4, x)*K(5, y) + K(2, y)*K(3, x) + \
|
1476 |
+
2*K(2, y)*K(4, x)*K(5, y) - K(2, y) + 2
|
1477 |
+
|
1478 |
+
p16 = Piecewise((0, Ne(m, n)), (1, True))*Piecewise((0, Ne(n, t)), (1, True))\
|
1479 |
+
*Piecewise((0, Ne(n, x)), (1, True)) - Piecewise((0, Ne(t, x)), (1, True))
|
1480 |
+
assert f(p16) == K(m, n)*K(n, t)*K(n, x) - K(t, x)
|
1481 |
+
|
1482 |
+
p17 = Piecewise((0, Ne(t, x) & (Ne(m, n) | Ne(n, t) | Ne(n, x))),
|
1483 |
+
(1, Ne(t, x)), (-1, Ne(m, n) | Ne(n, t) | Ne(n, x)), (0, True))
|
1484 |
+
assert f(p17) == K(m, n)*K(n, t)*K(n, x) - K(t, x)
|
1485 |
+
|
1486 |
+
p18 = Piecewise((-4, Eq(y, 1) | (Eq(x, -5) & Eq(x, z))), (4, True))
|
1487 |
+
assert f(p18) == 8*K(-5, x)*K(1, y)*K(x, z) - 8*K(-5, x)*K(x, z) - 8*K(1, y) + 4
|
1488 |
+
|
1489 |
+
p19 = Piecewise((0, x > 2), (1, True))
|
1490 |
+
assert f(p19) == p19
|
1491 |
+
|
1492 |
+
p20 = Piecewise((0, And(x < 2, x > -5)), (1, True))
|
1493 |
+
assert f(p20) == p20
|
1494 |
+
|
1495 |
+
p21 = Piecewise((0, Or(x > 1, x < 0)), (1, True))
|
1496 |
+
assert f(p21) == p21
|
1497 |
+
|
1498 |
+
p22 = Piecewise((0, ~((Eq(y, -1) | Ne(x, 0)) & (Ne(x, 1) | Ne(y, -1)))), (1, True))
|
1499 |
+
assert f(p22) == K(-1, y)*K(0, x) - K(-1, y)*K(1, x) - K(0, x) + 1
|
1500 |
+
|
1501 |
+
|
1502 |
+
@slow
|
1503 |
+
def test_identical_conds_issue():
|
1504 |
+
from sympy.stats import Uniform, density
|
1505 |
+
u1 = Uniform('u1', 0, 1)
|
1506 |
+
u2 = Uniform('u2', 0, 1)
|
1507 |
+
# Result is quite big, so not really important here (and should ideally be
|
1508 |
+
# simpler). Should not give an exception though.
|
1509 |
+
density(u1 + u2)
|
1510 |
+
|
1511 |
+
|
1512 |
+
def test_issue_7370():
|
1513 |
+
f = Piecewise((1, x <= 2400))
|
1514 |
+
v = integrate(f, (x, 0, Float("252.4", 30)))
|
1515 |
+
assert str(v) == '252.400000000000000000000000000'
|
1516 |
+
|
1517 |
+
|
1518 |
+
def test_issue_14933():
|
1519 |
+
x = Symbol('x')
|
1520 |
+
y = Symbol('y')
|
1521 |
+
|
1522 |
+
inp = MatrixSymbol('inp', 1, 1)
|
1523 |
+
rep_dict = {y: inp[0, 0], x: inp[0, 0]}
|
1524 |
+
|
1525 |
+
p = Piecewise((1, ITE(y > 0, x < 0, True)))
|
1526 |
+
assert p.xreplace(rep_dict) == Piecewise((1, ITE(inp[0, 0] > 0, inp[0, 0] < 0, True)))
|
1527 |
+
|
1528 |
+
|
1529 |
+
def test_issue_16715():
|
1530 |
+
raises(NotImplementedError, lambda: Piecewise((x, x<0), (0, y>1)).as_expr_set_pairs())
|
1531 |
+
|
1532 |
+
|
1533 |
+
def test_issue_20360():
|
1534 |
+
t, tau = symbols("t tau", real=True)
|
1535 |
+
n = symbols("n", integer=True)
|
1536 |
+
lam = pi * (n - S.Half)
|
1537 |
+
eq = integrate(exp(lam * tau), (tau, 0, t))
|
1538 |
+
assert eq.simplify() == (2*exp(pi*t*(2*n - 1)/2) - 2)/(pi*(2*n - 1))
|
1539 |
+
|
1540 |
+
|
1541 |
+
def test_piecewise_eval():
|
1542 |
+
# XXX these tests might need modification if this
|
1543 |
+
# simplification is moved out of eval and into
|
1544 |
+
# boolalg or Piecewise simplification functions
|
1545 |
+
f = lambda x: x.args[0].cond
|
1546 |
+
# unsimplified
|
1547 |
+
assert f(Piecewise((x, (x > -oo) & (x < 3)))
|
1548 |
+
) == ((x > -oo) & (x < 3))
|
1549 |
+
assert f(Piecewise((x, (x > -oo) & (x < oo)))
|
1550 |
+
) == ((x > -oo) & (x < oo))
|
1551 |
+
assert f(Piecewise((x, (x > -3) & (x < 3)))
|
1552 |
+
) == ((x > -3) & (x < 3))
|
1553 |
+
assert f(Piecewise((x, (x > -3) & (x < oo)))
|
1554 |
+
) == ((x > -3) & (x < oo))
|
1555 |
+
assert f(Piecewise((x, (x <= 3) & (x > -oo)))
|
1556 |
+
) == ((x <= 3) & (x > -oo))
|
1557 |
+
assert f(Piecewise((x, (x <= 3) & (x > -3)))
|
1558 |
+
) == ((x <= 3) & (x > -3))
|
1559 |
+
assert f(Piecewise((x, (x >= -3) & (x < 3)))
|
1560 |
+
) == ((x >= -3) & (x < 3))
|
1561 |
+
assert f(Piecewise((x, (x >= -3) & (x < oo)))
|
1562 |
+
) == ((x >= -3) & (x < oo))
|
1563 |
+
assert f(Piecewise((x, (x >= -3) & (x <= 3)))
|
1564 |
+
) == ((x >= -3) & (x <= 3))
|
1565 |
+
# could simplify by keeping only the first
|
1566 |
+
# arg of result
|
1567 |
+
assert f(Piecewise((x, (x <= oo) & (x > -oo)))
|
1568 |
+
) == (x > -oo) & (x <= oo)
|
1569 |
+
assert f(Piecewise((x, (x <= oo) & (x > -3)))
|
1570 |
+
) == (x > -3) & (x <= oo)
|
1571 |
+
assert f(Piecewise((x, (x >= -oo) & (x < 3)))
|
1572 |
+
) == (x < 3) & (x >= -oo)
|
1573 |
+
assert f(Piecewise((x, (x >= -oo) & (x < oo)))
|
1574 |
+
) == (x < oo) & (x >= -oo)
|
1575 |
+
assert f(Piecewise((x, (x >= -oo) & (x <= 3)))
|
1576 |
+
) == (x <= 3) & (x >= -oo)
|
1577 |
+
assert f(Piecewise((x, (x >= -oo) & (x <= oo)))
|
1578 |
+
) == (x <= oo) & (x >= -oo) # but cannot be True unless x is real
|
1579 |
+
assert f(Piecewise((x, (x >= -3) & (x <= oo)))
|
1580 |
+
) == (x >= -3) & (x <= oo)
|
1581 |
+
assert f(Piecewise((x, (Abs(arg(a)) <= 1) | (Abs(arg(a)) < 1)))
|
1582 |
+
) == (Abs(arg(a)) <= 1) | (Abs(arg(a)) < 1)
|
1583 |
+
|
1584 |
+
|
1585 |
+
def test_issue_22533():
|
1586 |
+
x = Symbol('x', real=True)
|
1587 |
+
f = Piecewise((-1 / x, x <= 0), (1 / x, True))
|
1588 |
+
assert integrate(f, x) == Piecewise((-log(x), x <= 0), (log(x), True))
|
1589 |
+
|
1590 |
+
|
1591 |
+
def test_issue_24072():
|
1592 |
+
assert Piecewise((1, x > 1), (2, x <= 1), (3, x <= 1)
|
1593 |
+
) == Piecewise((1, x > 1), (2, True))
|
1594 |
+
|
1595 |
+
|
1596 |
+
def test_piecewise__eval_is_meromorphic():
|
1597 |
+
""" Issue 24127: Tests eval_is_meromorphic auxiliary method """
|
1598 |
+
x = symbols('x', real=True)
|
1599 |
+
f = Piecewise((1, x < 0), (sqrt(1 - x), True))
|
1600 |
+
assert f.is_meromorphic(x, I) is None
|
1601 |
+
assert f.is_meromorphic(x, -1) == True
|
1602 |
+
assert f.is_meromorphic(x, 0) == None
|
1603 |
+
assert f.is_meromorphic(x, 1) == False
|
1604 |
+
assert f.is_meromorphic(x, 2) == True
|
1605 |
+
assert f.is_meromorphic(x, Symbol('a')) == None
|
1606 |
+
assert f.is_meromorphic(x, Symbol('a', real=True)) == None
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/tests/test_trigonometric.py
ADDED
@@ -0,0 +1,2162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.calculus.accumulationbounds import AccumBounds
|
2 |
+
from sympy.core.add import Add
|
3 |
+
from sympy.core.function import (Lambda, diff)
|
4 |
+
from sympy.core.mod import Mod
|
5 |
+
from sympy.core.mul import Mul
|
6 |
+
from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
|
7 |
+
from sympy.core.power import Pow
|
8 |
+
from sympy.core.singleton import S
|
9 |
+
from sympy.core.symbol import (Symbol, symbols)
|
10 |
+
from sympy.functions.elementary.complexes import (arg, conjugate, im, re)
|
11 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
12 |
+
from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh, coth, sinh, tanh)
|
13 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
14 |
+
from sympy.functions.elementary.trigonometric import (acos, acot, acsc, asec, asin, atan, atan2,
|
15 |
+
cos, cot, csc, sec, sin, sinc, tan)
|
16 |
+
from sympy.functions.special.bessel import (besselj, jn)
|
17 |
+
from sympy.functions.special.delta_functions import Heaviside
|
18 |
+
from sympy.matrices.dense import Matrix
|
19 |
+
from sympy.polys.polytools import (cancel, gcd)
|
20 |
+
from sympy.series.limits import limit
|
21 |
+
from sympy.series.order import O
|
22 |
+
from sympy.series.series import series
|
23 |
+
from sympy.sets.fancysets import ImageSet
|
24 |
+
from sympy.sets.sets import (FiniteSet, Interval)
|
25 |
+
from sympy.simplify.simplify import simplify
|
26 |
+
from sympy.core.expr import unchanged
|
27 |
+
from sympy.core.function import ArgumentIndexError
|
28 |
+
from sympy.core.relational import Ne, Eq
|
29 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
30 |
+
from sympy.sets.setexpr import SetExpr
|
31 |
+
from sympy.testing.pytest import XFAIL, slow, raises
|
32 |
+
|
33 |
+
|
34 |
+
x, y, z = symbols('x y z')
|
35 |
+
r = Symbol('r', real=True)
|
36 |
+
k, m = symbols('k m', integer=True)
|
37 |
+
p = Symbol('p', positive=True)
|
38 |
+
n = Symbol('n', negative=True)
|
39 |
+
np = Symbol('p', nonpositive=True)
|
40 |
+
nn = Symbol('n', nonnegative=True)
|
41 |
+
nz = Symbol('nz', nonzero=True)
|
42 |
+
ep = Symbol('ep', extended_positive=True)
|
43 |
+
en = Symbol('en', extended_negative=True)
|
44 |
+
enp = Symbol('ep', extended_nonpositive=True)
|
45 |
+
enn = Symbol('en', extended_nonnegative=True)
|
46 |
+
enz = Symbol('enz', extended_nonzero=True)
|
47 |
+
a = Symbol('a', algebraic=True)
|
48 |
+
na = Symbol('na', nonzero=True, algebraic=True)
|
49 |
+
|
50 |
+
|
51 |
+
def test_sin():
|
52 |
+
x, y = symbols('x y')
|
53 |
+
z = symbols('z', imaginary=True)
|
54 |
+
|
55 |
+
assert sin.nargs == FiniteSet(1)
|
56 |
+
assert sin(nan) is nan
|
57 |
+
assert sin(zoo) is nan
|
58 |
+
|
59 |
+
assert sin(oo) == AccumBounds(-1, 1)
|
60 |
+
assert sin(oo) - sin(oo) == AccumBounds(-2, 2)
|
61 |
+
assert sin(oo*I) == oo*I
|
62 |
+
assert sin(-oo*I) == -oo*I
|
63 |
+
assert 0*sin(oo) is S.Zero
|
64 |
+
assert 0/sin(oo) is S.Zero
|
65 |
+
assert 0 + sin(oo) == AccumBounds(-1, 1)
|
66 |
+
assert 5 + sin(oo) == AccumBounds(4, 6)
|
67 |
+
|
68 |
+
assert sin(0) == 0
|
69 |
+
|
70 |
+
assert sin(z*I) == I*sinh(z)
|
71 |
+
assert sin(asin(x)) == x
|
72 |
+
assert sin(atan(x)) == x / sqrt(1 + x**2)
|
73 |
+
assert sin(acos(x)) == sqrt(1 - x**2)
|
74 |
+
assert sin(acot(x)) == 1 / (sqrt(1 + 1 / x**2) * x)
|
75 |
+
assert sin(acsc(x)) == 1 / x
|
76 |
+
assert sin(asec(x)) == sqrt(1 - 1 / x**2)
|
77 |
+
assert sin(atan2(y, x)) == y / sqrt(x**2 + y**2)
|
78 |
+
|
79 |
+
assert sin(pi*I) == sinh(pi)*I
|
80 |
+
assert sin(-pi*I) == -sinh(pi)*I
|
81 |
+
assert sin(-2*I) == -sinh(2)*I
|
82 |
+
|
83 |
+
assert sin(pi) == 0
|
84 |
+
assert sin(-pi) == 0
|
85 |
+
assert sin(2*pi) == 0
|
86 |
+
assert sin(-2*pi) == 0
|
87 |
+
assert sin(-3*10**73*pi) == 0
|
88 |
+
assert sin(7*10**103*pi) == 0
|
89 |
+
|
90 |
+
assert sin(pi/2) == 1
|
91 |
+
assert sin(-pi/2) == -1
|
92 |
+
assert sin(pi*Rational(5, 2)) == 1
|
93 |
+
assert sin(pi*Rational(7, 2)) == -1
|
94 |
+
|
95 |
+
ne = symbols('ne', integer=True, even=False)
|
96 |
+
e = symbols('e', even=True)
|
97 |
+
assert sin(pi*ne/2) == (-1)**(ne/2 - S.Half)
|
98 |
+
assert sin(pi*k/2).func == sin
|
99 |
+
assert sin(pi*e/2) == 0
|
100 |
+
assert sin(pi*k) == 0
|
101 |
+
assert sin(pi*k).subs(k, 3) == sin(pi*k/2).subs(k, 6) # issue 8298
|
102 |
+
|
103 |
+
assert sin(pi/3) == S.Half*sqrt(3)
|
104 |
+
assert sin(pi*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3)
|
105 |
+
|
106 |
+
assert sin(pi/4) == S.Half*sqrt(2)
|
107 |
+
assert sin(-pi/4) == Rational(-1, 2)*sqrt(2)
|
108 |
+
assert sin(pi*Rational(17, 4)) == S.Half*sqrt(2)
|
109 |
+
assert sin(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)
|
110 |
+
|
111 |
+
assert sin(pi/6) == S.Half
|
112 |
+
assert sin(-pi/6) == Rational(-1, 2)
|
113 |
+
assert sin(pi*Rational(7, 6)) == Rational(-1, 2)
|
114 |
+
assert sin(pi*Rational(-5, 6)) == Rational(-1, 2)
|
115 |
+
|
116 |
+
assert sin(pi*Rational(1, 5)) == sqrt((5 - sqrt(5)) / 8)
|
117 |
+
assert sin(pi*Rational(2, 5)) == sqrt((5 + sqrt(5)) / 8)
|
118 |
+
assert sin(pi*Rational(3, 5)) == sin(pi*Rational(2, 5))
|
119 |
+
assert sin(pi*Rational(4, 5)) == sin(pi*Rational(1, 5))
|
120 |
+
assert sin(pi*Rational(6, 5)) == -sin(pi*Rational(1, 5))
|
121 |
+
assert sin(pi*Rational(8, 5)) == -sin(pi*Rational(2, 5))
|
122 |
+
|
123 |
+
assert sin(pi*Rational(-1273, 5)) == -sin(pi*Rational(2, 5))
|
124 |
+
|
125 |
+
assert sin(pi/8) == sqrt((2 - sqrt(2))/4)
|
126 |
+
|
127 |
+
assert sin(pi/10) == Rational(-1, 4) + sqrt(5)/4
|
128 |
+
|
129 |
+
assert sin(pi/12) == -sqrt(2)/4 + sqrt(6)/4
|
130 |
+
assert sin(pi*Rational(5, 12)) == sqrt(2)/4 + sqrt(6)/4
|
131 |
+
assert sin(pi*Rational(-7, 12)) == -sqrt(2)/4 - sqrt(6)/4
|
132 |
+
assert sin(pi*Rational(-11, 12)) == sqrt(2)/4 - sqrt(6)/4
|
133 |
+
|
134 |
+
assert sin(pi*Rational(104, 105)) == sin(pi/105)
|
135 |
+
assert sin(pi*Rational(106, 105)) == -sin(pi/105)
|
136 |
+
|
137 |
+
assert sin(pi*Rational(-104, 105)) == -sin(pi/105)
|
138 |
+
assert sin(pi*Rational(-106, 105)) == sin(pi/105)
|
139 |
+
|
140 |
+
assert sin(x*I) == sinh(x)*I
|
141 |
+
|
142 |
+
assert sin(k*pi) == 0
|
143 |
+
assert sin(17*k*pi) == 0
|
144 |
+
assert sin(2*k*pi + 4) == sin(4)
|
145 |
+
assert sin(2*k*pi + m*pi + 1) == (-1)**(m + 2*k)*sin(1)
|
146 |
+
|
147 |
+
assert sin(k*pi*I) == sinh(k*pi)*I
|
148 |
+
|
149 |
+
assert sin(r).is_real is True
|
150 |
+
|
151 |
+
assert sin(0, evaluate=False).is_algebraic
|
152 |
+
assert sin(a).is_algebraic is None
|
153 |
+
assert sin(na).is_algebraic is False
|
154 |
+
q = Symbol('q', rational=True)
|
155 |
+
assert sin(pi*q).is_algebraic
|
156 |
+
qn = Symbol('qn', rational=True, nonzero=True)
|
157 |
+
assert sin(qn).is_rational is False
|
158 |
+
assert sin(q).is_rational is None # issue 8653
|
159 |
+
|
160 |
+
assert isinstance(sin( re(x) - im(y)), sin) is True
|
161 |
+
assert isinstance(sin(-re(x) + im(y)), sin) is False
|
162 |
+
|
163 |
+
assert sin(SetExpr(Interval(0, 1))) == SetExpr(ImageSet(Lambda(x, sin(x)),
|
164 |
+
Interval(0, 1)))
|
165 |
+
|
166 |
+
for d in list(range(1, 22)) + [60, 85]:
|
167 |
+
for n in range(d*2 + 1):
|
168 |
+
x = n*pi/d
|
169 |
+
e = abs( float(sin(x)) - sin(float(x)) )
|
170 |
+
assert e < 1e-12
|
171 |
+
|
172 |
+
assert sin(0, evaluate=False).is_zero is True
|
173 |
+
assert sin(k*pi, evaluate=False).is_zero is True
|
174 |
+
|
175 |
+
assert sin(Add(1, -1, evaluate=False), evaluate=False).is_zero is True
|
176 |
+
|
177 |
+
|
178 |
+
def test_sin_cos():
|
179 |
+
for d in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 24, 30, 40, 60, 120]: # list is not exhaustive...
|
180 |
+
for n in range(-2*d, d*2):
|
181 |
+
x = n*pi/d
|
182 |
+
assert sin(x + pi/2) == cos(x), "fails for %d*pi/%d" % (n, d)
|
183 |
+
assert sin(x - pi/2) == -cos(x), "fails for %d*pi/%d" % (n, d)
|
184 |
+
assert sin(x) == cos(x - pi/2), "fails for %d*pi/%d" % (n, d)
|
185 |
+
assert -sin(x) == cos(x + pi/2), "fails for %d*pi/%d" % (n, d)
|
186 |
+
|
187 |
+
|
188 |
+
def test_sin_series():
|
189 |
+
assert sin(x).series(x, 0, 9) == \
|
190 |
+
x - x**3/6 + x**5/120 - x**7/5040 + O(x**9)
|
191 |
+
|
192 |
+
|
193 |
+
def test_sin_rewrite():
|
194 |
+
assert sin(x).rewrite(exp) == -I*(exp(I*x) - exp(-I*x))/2
|
195 |
+
assert sin(x).rewrite(tan) == 2*tan(x/2)/(1 + tan(x/2)**2)
|
196 |
+
assert sin(x).rewrite(cot) == \
|
197 |
+
Piecewise((0, Eq(im(x), 0) & Eq(Mod(x, pi), 0)),
|
198 |
+
(2*cot(x/2)/(cot(x/2)**2 + 1), True))
|
199 |
+
assert sin(sinh(x)).rewrite(
|
200 |
+
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sinh(3)).n()
|
201 |
+
assert sin(cosh(x)).rewrite(
|
202 |
+
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cosh(3)).n()
|
203 |
+
assert sin(tanh(x)).rewrite(
|
204 |
+
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tanh(3)).n()
|
205 |
+
assert sin(coth(x)).rewrite(
|
206 |
+
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, coth(3)).n()
|
207 |
+
assert sin(sin(x)).rewrite(
|
208 |
+
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sin(3)).n()
|
209 |
+
assert sin(cos(x)).rewrite(
|
210 |
+
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cos(3)).n()
|
211 |
+
assert sin(tan(x)).rewrite(
|
212 |
+
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tan(3)).n()
|
213 |
+
assert sin(cot(x)).rewrite(
|
214 |
+
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cot(3)).n()
|
215 |
+
assert sin(log(x)).rewrite(Pow) == I*x**-I / 2 - I*x**I /2
|
216 |
+
assert sin(x).rewrite(csc) == 1/csc(x)
|
217 |
+
assert sin(x).rewrite(cos) == cos(x - pi / 2, evaluate=False)
|
218 |
+
assert sin(x).rewrite(sec) == 1 / sec(x - pi / 2, evaluate=False)
|
219 |
+
assert sin(cos(x)).rewrite(Pow) == sin(cos(x))
|
220 |
+
|
221 |
+
|
222 |
+
def _test_extrig(f, i, e):
|
223 |
+
from sympy.core.function import expand_trig
|
224 |
+
assert unchanged(f, i)
|
225 |
+
assert expand_trig(f(i)) == f(i)
|
226 |
+
# testing directly instead of with .expand(trig=True)
|
227 |
+
# because the other expansions undo the unevaluated Mul
|
228 |
+
assert expand_trig(f(Mul(i, 1, evaluate=False))) == e
|
229 |
+
assert abs(f(i) - e).n() < 1e-10
|
230 |
+
|
231 |
+
|
232 |
+
def test_sin_expansion():
|
233 |
+
# Note: these formulas are not unique. The ones here come from the
|
234 |
+
# Chebyshev formulas.
|
235 |
+
assert sin(x + y).expand(trig=True) == sin(x)*cos(y) + cos(x)*sin(y)
|
236 |
+
assert sin(x - y).expand(trig=True) == sin(x)*cos(y) - cos(x)*sin(y)
|
237 |
+
assert sin(y - x).expand(trig=True) == cos(x)*sin(y) - sin(x)*cos(y)
|
238 |
+
assert sin(2*x).expand(trig=True) == 2*sin(x)*cos(x)
|
239 |
+
assert sin(3*x).expand(trig=True) == -4*sin(x)**3 + 3*sin(x)
|
240 |
+
assert sin(4*x).expand(trig=True) == -8*sin(x)**3*cos(x) + 4*sin(x)*cos(x)
|
241 |
+
_test_extrig(sin, 2, 2*sin(1)*cos(1))
|
242 |
+
_test_extrig(sin, 3, -4*sin(1)**3 + 3*sin(1))
|
243 |
+
|
244 |
+
|
245 |
+
def test_sin_AccumBounds():
|
246 |
+
assert sin(AccumBounds(-oo, oo)) == AccumBounds(-1, 1)
|
247 |
+
assert sin(AccumBounds(0, oo)) == AccumBounds(-1, 1)
|
248 |
+
assert sin(AccumBounds(-oo, 0)) == AccumBounds(-1, 1)
|
249 |
+
assert sin(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1)
|
250 |
+
assert sin(AccumBounds(0, S.Pi*Rational(3, 4))) == AccumBounds(0, 1)
|
251 |
+
assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(7, 4))) == AccumBounds(-1, sin(S.Pi*Rational(3, 4)))
|
252 |
+
assert sin(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(sin(S.Pi/4), sin(S.Pi/3))
|
253 |
+
assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 6))) == AccumBounds(sin(S.Pi*Rational(5, 6)), sin(S.Pi*Rational(3, 4)))
|
254 |
+
|
255 |
+
|
256 |
+
def test_sin_fdiff():
|
257 |
+
assert sin(x).fdiff() == cos(x)
|
258 |
+
raises(ArgumentIndexError, lambda: sin(x).fdiff(2))
|
259 |
+
|
260 |
+
|
261 |
+
def test_trig_symmetry():
|
262 |
+
assert sin(-x) == -sin(x)
|
263 |
+
assert cos(-x) == cos(x)
|
264 |
+
assert tan(-x) == -tan(x)
|
265 |
+
assert cot(-x) == -cot(x)
|
266 |
+
assert sin(x + pi) == -sin(x)
|
267 |
+
assert sin(x + 2*pi) == sin(x)
|
268 |
+
assert sin(x + 3*pi) == -sin(x)
|
269 |
+
assert sin(x + 4*pi) == sin(x)
|
270 |
+
assert sin(x - 5*pi) == -sin(x)
|
271 |
+
assert cos(x + pi) == -cos(x)
|
272 |
+
assert cos(x + 2*pi) == cos(x)
|
273 |
+
assert cos(x + 3*pi) == -cos(x)
|
274 |
+
assert cos(x + 4*pi) == cos(x)
|
275 |
+
assert cos(x - 5*pi) == -cos(x)
|
276 |
+
assert tan(x + pi) == tan(x)
|
277 |
+
assert tan(x - 3*pi) == tan(x)
|
278 |
+
assert cot(x + pi) == cot(x)
|
279 |
+
assert cot(x - 3*pi) == cot(x)
|
280 |
+
assert sin(pi/2 - x) == cos(x)
|
281 |
+
assert sin(pi*Rational(3, 2) - x) == -cos(x)
|
282 |
+
assert sin(pi*Rational(5, 2) - x) == cos(x)
|
283 |
+
assert cos(pi/2 - x) == sin(x)
|
284 |
+
assert cos(pi*Rational(3, 2) - x) == -sin(x)
|
285 |
+
assert cos(pi*Rational(5, 2) - x) == sin(x)
|
286 |
+
assert tan(pi/2 - x) == cot(x)
|
287 |
+
assert tan(pi*Rational(3, 2) - x) == cot(x)
|
288 |
+
assert tan(pi*Rational(5, 2) - x) == cot(x)
|
289 |
+
assert cot(pi/2 - x) == tan(x)
|
290 |
+
assert cot(pi*Rational(3, 2) - x) == tan(x)
|
291 |
+
assert cot(pi*Rational(5, 2) - x) == tan(x)
|
292 |
+
assert sin(pi/2 + x) == cos(x)
|
293 |
+
assert cos(pi/2 + x) == -sin(x)
|
294 |
+
assert tan(pi/2 + x) == -cot(x)
|
295 |
+
assert cot(pi/2 + x) == -tan(x)
|
296 |
+
|
297 |
+
|
298 |
+
def test_cos():
|
299 |
+
x, y = symbols('x y')
|
300 |
+
|
301 |
+
assert cos.nargs == FiniteSet(1)
|
302 |
+
assert cos(nan) is nan
|
303 |
+
|
304 |
+
assert cos(oo) == AccumBounds(-1, 1)
|
305 |
+
assert cos(oo) - cos(oo) == AccumBounds(-2, 2)
|
306 |
+
assert cos(oo*I) is oo
|
307 |
+
assert cos(-oo*I) is oo
|
308 |
+
assert cos(zoo) is nan
|
309 |
+
|
310 |
+
assert cos(0) == 1
|
311 |
+
|
312 |
+
assert cos(acos(x)) == x
|
313 |
+
assert cos(atan(x)) == 1 / sqrt(1 + x**2)
|
314 |
+
assert cos(asin(x)) == sqrt(1 - x**2)
|
315 |
+
assert cos(acot(x)) == 1 / sqrt(1 + 1 / x**2)
|
316 |
+
assert cos(acsc(x)) == sqrt(1 - 1 / x**2)
|
317 |
+
assert cos(asec(x)) == 1 / x
|
318 |
+
assert cos(atan2(y, x)) == x / sqrt(x**2 + y**2)
|
319 |
+
|
320 |
+
assert cos(pi*I) == cosh(pi)
|
321 |
+
assert cos(-pi*I) == cosh(pi)
|
322 |
+
assert cos(-2*I) == cosh(2)
|
323 |
+
|
324 |
+
assert cos(pi/2) == 0
|
325 |
+
assert cos(-pi/2) == 0
|
326 |
+
assert cos(pi/2) == 0
|
327 |
+
assert cos(-pi/2) == 0
|
328 |
+
assert cos((-3*10**73 + 1)*pi/2) == 0
|
329 |
+
assert cos((7*10**103 + 1)*pi/2) == 0
|
330 |
+
|
331 |
+
n = symbols('n', integer=True, even=False)
|
332 |
+
e = symbols('e', even=True)
|
333 |
+
assert cos(pi*n/2) == 0
|
334 |
+
assert cos(pi*e/2) == (-1)**(e/2)
|
335 |
+
|
336 |
+
assert cos(pi) == -1
|
337 |
+
assert cos(-pi) == -1
|
338 |
+
assert cos(2*pi) == 1
|
339 |
+
assert cos(5*pi) == -1
|
340 |
+
assert cos(8*pi) == 1
|
341 |
+
|
342 |
+
assert cos(pi/3) == S.Half
|
343 |
+
assert cos(pi*Rational(-2, 3)) == Rational(-1, 2)
|
344 |
+
|
345 |
+
assert cos(pi/4) == S.Half*sqrt(2)
|
346 |
+
assert cos(-pi/4) == S.Half*sqrt(2)
|
347 |
+
assert cos(pi*Rational(11, 4)) == Rational(-1, 2)*sqrt(2)
|
348 |
+
assert cos(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)
|
349 |
+
|
350 |
+
assert cos(pi/6) == S.Half*sqrt(3)
|
351 |
+
assert cos(-pi/6) == S.Half*sqrt(3)
|
352 |
+
assert cos(pi*Rational(7, 6)) == Rational(-1, 2)*sqrt(3)
|
353 |
+
assert cos(pi*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3)
|
354 |
+
|
355 |
+
assert cos(pi*Rational(1, 5)) == (sqrt(5) + 1)/4
|
356 |
+
assert cos(pi*Rational(2, 5)) == (sqrt(5) - 1)/4
|
357 |
+
assert cos(pi*Rational(3, 5)) == -cos(pi*Rational(2, 5))
|
358 |
+
assert cos(pi*Rational(4, 5)) == -cos(pi*Rational(1, 5))
|
359 |
+
assert cos(pi*Rational(6, 5)) == -cos(pi*Rational(1, 5))
|
360 |
+
assert cos(pi*Rational(8, 5)) == cos(pi*Rational(2, 5))
|
361 |
+
|
362 |
+
assert cos(pi*Rational(-1273, 5)) == -cos(pi*Rational(2, 5))
|
363 |
+
|
364 |
+
assert cos(pi/8) == sqrt((2 + sqrt(2))/4)
|
365 |
+
|
366 |
+
assert cos(pi/12) == sqrt(2)/4 + sqrt(6)/4
|
367 |
+
assert cos(pi*Rational(5, 12)) == -sqrt(2)/4 + sqrt(6)/4
|
368 |
+
assert cos(pi*Rational(7, 12)) == sqrt(2)/4 - sqrt(6)/4
|
369 |
+
assert cos(pi*Rational(11, 12)) == -sqrt(2)/4 - sqrt(6)/4
|
370 |
+
|
371 |
+
assert cos(pi*Rational(104, 105)) == -cos(pi/105)
|
372 |
+
assert cos(pi*Rational(106, 105)) == -cos(pi/105)
|
373 |
+
|
374 |
+
assert cos(pi*Rational(-104, 105)) == -cos(pi/105)
|
375 |
+
assert cos(pi*Rational(-106, 105)) == -cos(pi/105)
|
376 |
+
|
377 |
+
assert cos(x*I) == cosh(x)
|
378 |
+
assert cos(k*pi*I) == cosh(k*pi)
|
379 |
+
|
380 |
+
assert cos(r).is_real is True
|
381 |
+
|
382 |
+
assert cos(0, evaluate=False).is_algebraic
|
383 |
+
assert cos(a).is_algebraic is None
|
384 |
+
assert cos(na).is_algebraic is False
|
385 |
+
q = Symbol('q', rational=True)
|
386 |
+
assert cos(pi*q).is_algebraic
|
387 |
+
assert cos(pi*Rational(2, 7)).is_algebraic
|
388 |
+
|
389 |
+
assert cos(k*pi) == (-1)**k
|
390 |
+
assert cos(2*k*pi) == 1
|
391 |
+
assert cos(0, evaluate=False).is_zero is False
|
392 |
+
assert cos(Rational(1, 2)).is_zero is False
|
393 |
+
# The following test will return None as the result, but really it should
|
394 |
+
# be True even if it is not always possible to resolve an assumptions query.
|
395 |
+
assert cos(asin(-1, evaluate=False), evaluate=False).is_zero is None
|
396 |
+
for d in list(range(1, 22)) + [60, 85]:
|
397 |
+
for n in range(2*d + 1):
|
398 |
+
x = n*pi/d
|
399 |
+
e = abs( float(cos(x)) - cos(float(x)) )
|
400 |
+
assert e < 1e-12
|
401 |
+
|
402 |
+
|
403 |
+
def test_issue_6190():
|
404 |
+
c = Float('123456789012345678901234567890.25', '')
|
405 |
+
for cls in [sin, cos, tan, cot]:
|
406 |
+
assert cls(c*pi) == cls(pi/4)
|
407 |
+
assert cls(4.125*pi) == cls(pi/8)
|
408 |
+
assert cls(4.7*pi) == cls((4.7 % 2)*pi)
|
409 |
+
|
410 |
+
|
411 |
+
def test_cos_series():
|
412 |
+
assert cos(x).series(x, 0, 9) == \
|
413 |
+
1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**9)
|
414 |
+
|
415 |
+
|
416 |
+
def test_cos_rewrite():
|
417 |
+
assert cos(x).rewrite(exp) == exp(I*x)/2 + exp(-I*x)/2
|
418 |
+
assert cos(x).rewrite(tan) == (1 - tan(x/2)**2)/(1 + tan(x/2)**2)
|
419 |
+
assert cos(x).rewrite(cot) == \
|
420 |
+
Piecewise((1, Eq(im(x), 0) & Eq(Mod(x, 2*pi), 0)),
|
421 |
+
((cot(x/2)**2 - 1)/(cot(x/2)**2 + 1), True))
|
422 |
+
assert cos(sinh(x)).rewrite(
|
423 |
+
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sinh(3)).n()
|
424 |
+
assert cos(cosh(x)).rewrite(
|
425 |
+
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cosh(3)).n()
|
426 |
+
assert cos(tanh(x)).rewrite(
|
427 |
+
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tanh(3)).n()
|
428 |
+
assert cos(coth(x)).rewrite(
|
429 |
+
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, coth(3)).n()
|
430 |
+
assert cos(sin(x)).rewrite(
|
431 |
+
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sin(3)).n()
|
432 |
+
assert cos(cos(x)).rewrite(
|
433 |
+
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cos(3)).n()
|
434 |
+
assert cos(tan(x)).rewrite(
|
435 |
+
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tan(3)).n()
|
436 |
+
assert cos(cot(x)).rewrite(
|
437 |
+
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cot(3)).n()
|
438 |
+
assert cos(log(x)).rewrite(Pow) == x**I/2 + x**-I/2
|
439 |
+
assert cos(x).rewrite(sec) == 1/sec(x)
|
440 |
+
assert cos(x).rewrite(sin) == sin(x + pi/2, evaluate=False)
|
441 |
+
assert cos(x).rewrite(csc) == 1/csc(-x + pi/2, evaluate=False)
|
442 |
+
assert cos(sin(x)).rewrite(Pow) == cos(sin(x))
|
443 |
+
|
444 |
+
|
445 |
+
def test_cos_expansion():
|
446 |
+
assert cos(x + y).expand(trig=True) == cos(x)*cos(y) - sin(x)*sin(y)
|
447 |
+
assert cos(x - y).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y)
|
448 |
+
assert cos(y - x).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y)
|
449 |
+
assert cos(2*x).expand(trig=True) == 2*cos(x)**2 - 1
|
450 |
+
assert cos(3*x).expand(trig=True) == 4*cos(x)**3 - 3*cos(x)
|
451 |
+
assert cos(4*x).expand(trig=True) == 8*cos(x)**4 - 8*cos(x)**2 + 1
|
452 |
+
_test_extrig(cos, 2, 2*cos(1)**2 - 1)
|
453 |
+
_test_extrig(cos, 3, 4*cos(1)**3 - 3*cos(1))
|
454 |
+
|
455 |
+
|
456 |
+
def test_cos_AccumBounds():
|
457 |
+
assert cos(AccumBounds(-oo, oo)) == AccumBounds(-1, 1)
|
458 |
+
assert cos(AccumBounds(0, oo)) == AccumBounds(-1, 1)
|
459 |
+
assert cos(AccumBounds(-oo, 0)) == AccumBounds(-1, 1)
|
460 |
+
assert cos(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1)
|
461 |
+
assert cos(AccumBounds(-S.Pi/3, S.Pi/4)) == AccumBounds(cos(-S.Pi/3), 1)
|
462 |
+
assert cos(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 4))) == AccumBounds(-1, cos(S.Pi*Rational(3, 4)))
|
463 |
+
assert cos(AccumBounds(S.Pi*Rational(5, 4), S.Pi*Rational(4, 3))) == AccumBounds(cos(S.Pi*Rational(5, 4)), cos(S.Pi*Rational(4, 3)))
|
464 |
+
assert cos(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(cos(S.Pi/3), cos(S.Pi/4))
|
465 |
+
|
466 |
+
|
467 |
+
def test_cos_fdiff():
|
468 |
+
assert cos(x).fdiff() == -sin(x)
|
469 |
+
raises(ArgumentIndexError, lambda: cos(x).fdiff(2))
|
470 |
+
|
471 |
+
|
472 |
+
def test_tan():
|
473 |
+
assert tan(nan) is nan
|
474 |
+
|
475 |
+
assert tan(zoo) is nan
|
476 |
+
assert tan(oo) == AccumBounds(-oo, oo)
|
477 |
+
assert tan(oo) - tan(oo) == AccumBounds(-oo, oo)
|
478 |
+
assert tan.nargs == FiniteSet(1)
|
479 |
+
assert tan(oo*I) == I
|
480 |
+
assert tan(-oo*I) == -I
|
481 |
+
|
482 |
+
assert tan(0) == 0
|
483 |
+
|
484 |
+
assert tan(atan(x)) == x
|
485 |
+
assert tan(asin(x)) == x / sqrt(1 - x**2)
|
486 |
+
assert tan(acos(x)) == sqrt(1 - x**2) / x
|
487 |
+
assert tan(acot(x)) == 1 / x
|
488 |
+
assert tan(acsc(x)) == 1 / (sqrt(1 - 1 / x**2) * x)
|
489 |
+
assert tan(asec(x)) == sqrt(1 - 1 / x**2) * x
|
490 |
+
assert tan(atan2(y, x)) == y/x
|
491 |
+
|
492 |
+
assert tan(pi*I) == tanh(pi)*I
|
493 |
+
assert tan(-pi*I) == -tanh(pi)*I
|
494 |
+
assert tan(-2*I) == -tanh(2)*I
|
495 |
+
|
496 |
+
assert tan(pi) == 0
|
497 |
+
assert tan(-pi) == 0
|
498 |
+
assert tan(2*pi) == 0
|
499 |
+
assert tan(-2*pi) == 0
|
500 |
+
assert tan(-3*10**73*pi) == 0
|
501 |
+
|
502 |
+
assert tan(pi/2) is zoo
|
503 |
+
assert tan(pi*Rational(3, 2)) is zoo
|
504 |
+
|
505 |
+
assert tan(pi/3) == sqrt(3)
|
506 |
+
assert tan(pi*Rational(-2, 3)) == sqrt(3)
|
507 |
+
|
508 |
+
assert tan(pi/4) is S.One
|
509 |
+
assert tan(-pi/4) is S.NegativeOne
|
510 |
+
assert tan(pi*Rational(17, 4)) is S.One
|
511 |
+
assert tan(pi*Rational(-3, 4)) is S.One
|
512 |
+
|
513 |
+
assert tan(pi/5) == sqrt(5 - 2*sqrt(5))
|
514 |
+
assert tan(pi*Rational(2, 5)) == sqrt(5 + 2*sqrt(5))
|
515 |
+
assert tan(pi*Rational(18, 5)) == -sqrt(5 + 2*sqrt(5))
|
516 |
+
assert tan(pi*Rational(-16, 5)) == -sqrt(5 - 2*sqrt(5))
|
517 |
+
|
518 |
+
assert tan(pi/6) == 1/sqrt(3)
|
519 |
+
assert tan(-pi/6) == -1/sqrt(3)
|
520 |
+
assert tan(pi*Rational(7, 6)) == 1/sqrt(3)
|
521 |
+
assert tan(pi*Rational(-5, 6)) == 1/sqrt(3)
|
522 |
+
|
523 |
+
assert tan(pi/8) == -1 + sqrt(2)
|
524 |
+
assert tan(pi*Rational(3, 8)) == 1 + sqrt(2) # issue 15959
|
525 |
+
assert tan(pi*Rational(5, 8)) == -1 - sqrt(2)
|
526 |
+
assert tan(pi*Rational(7, 8)) == 1 - sqrt(2)
|
527 |
+
|
528 |
+
assert tan(pi/10) == sqrt(1 - 2*sqrt(5)/5)
|
529 |
+
assert tan(pi*Rational(3, 10)) == sqrt(1 + 2*sqrt(5)/5)
|
530 |
+
assert tan(pi*Rational(17, 10)) == -sqrt(1 + 2*sqrt(5)/5)
|
531 |
+
assert tan(pi*Rational(-31, 10)) == -sqrt(1 - 2*sqrt(5)/5)
|
532 |
+
|
533 |
+
assert tan(pi/12) == -sqrt(3) + 2
|
534 |
+
assert tan(pi*Rational(5, 12)) == sqrt(3) + 2
|
535 |
+
assert tan(pi*Rational(7, 12)) == -sqrt(3) - 2
|
536 |
+
assert tan(pi*Rational(11, 12)) == sqrt(3) - 2
|
537 |
+
|
538 |
+
assert tan(pi/24).radsimp() == -2 - sqrt(3) + sqrt(2) + sqrt(6)
|
539 |
+
assert tan(pi*Rational(5, 24)).radsimp() == -2 + sqrt(3) - sqrt(2) + sqrt(6)
|
540 |
+
assert tan(pi*Rational(7, 24)).radsimp() == 2 - sqrt(3) - sqrt(2) + sqrt(6)
|
541 |
+
assert tan(pi*Rational(11, 24)).radsimp() == 2 + sqrt(3) + sqrt(2) + sqrt(6)
|
542 |
+
assert tan(pi*Rational(13, 24)).radsimp() == -2 - sqrt(3) - sqrt(2) - sqrt(6)
|
543 |
+
assert tan(pi*Rational(17, 24)).radsimp() == -2 + sqrt(3) + sqrt(2) - sqrt(6)
|
544 |
+
assert tan(pi*Rational(19, 24)).radsimp() == 2 - sqrt(3) + sqrt(2) - sqrt(6)
|
545 |
+
assert tan(pi*Rational(23, 24)).radsimp() == 2 + sqrt(3) - sqrt(2) - sqrt(6)
|
546 |
+
|
547 |
+
assert tan(x*I) == tanh(x)*I
|
548 |
+
|
549 |
+
assert tan(k*pi) == 0
|
550 |
+
assert tan(17*k*pi) == 0
|
551 |
+
|
552 |
+
assert tan(k*pi*I) == tanh(k*pi)*I
|
553 |
+
|
554 |
+
assert tan(r).is_real is None
|
555 |
+
assert tan(r).is_extended_real is True
|
556 |
+
|
557 |
+
assert tan(0, evaluate=False).is_algebraic
|
558 |
+
assert tan(a).is_algebraic is None
|
559 |
+
assert tan(na).is_algebraic is False
|
560 |
+
|
561 |
+
assert tan(pi*Rational(10, 7)) == tan(pi*Rational(3, 7))
|
562 |
+
assert tan(pi*Rational(11, 7)) == -tan(pi*Rational(3, 7))
|
563 |
+
assert tan(pi*Rational(-11, 7)) == tan(pi*Rational(3, 7))
|
564 |
+
|
565 |
+
assert tan(pi*Rational(15, 14)) == tan(pi/14)
|
566 |
+
assert tan(pi*Rational(-15, 14)) == -tan(pi/14)
|
567 |
+
|
568 |
+
assert tan(r).is_finite is None
|
569 |
+
assert tan(I*r).is_finite is True
|
570 |
+
|
571 |
+
# https://github.com/sympy/sympy/issues/21177
|
572 |
+
f = tan(pi*(x + S(3)/2))/(3*x)
|
573 |
+
assert f.as_leading_term(x) == -1/(3*pi*x**2)
|
574 |
+
|
575 |
+
|
576 |
+
def test_tan_series():
|
577 |
+
assert tan(x).series(x, 0, 9) == \
|
578 |
+
x + x**3/3 + 2*x**5/15 + 17*x**7/315 + O(x**9)
|
579 |
+
|
580 |
+
|
581 |
+
def test_tan_rewrite():
|
582 |
+
neg_exp, pos_exp = exp(-x*I), exp(x*I)
|
583 |
+
assert tan(x).rewrite(exp) == I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
|
584 |
+
assert tan(x).rewrite(sin) == 2*sin(x)**2/sin(2*x)
|
585 |
+
assert tan(x).rewrite(cos) == cos(x - S.Pi/2, evaluate=False)/cos(x)
|
586 |
+
assert tan(x).rewrite(cot) == 1/cot(x)
|
587 |
+
assert tan(sinh(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sinh(3)).n()
|
588 |
+
assert tan(cosh(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cosh(3)).n()
|
589 |
+
assert tan(tanh(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tanh(3)).n()
|
590 |
+
assert tan(coth(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, coth(3)).n()
|
591 |
+
assert tan(sin(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sin(3)).n()
|
592 |
+
assert tan(cos(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cos(3)).n()
|
593 |
+
assert tan(tan(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tan(3)).n()
|
594 |
+
assert tan(cot(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cot(3)).n()
|
595 |
+
assert tan(log(x)).rewrite(Pow) == I*(x**-I - x**I)/(x**-I + x**I)
|
596 |
+
assert tan(x).rewrite(sec) == sec(x)/sec(x - pi/2, evaluate=False)
|
597 |
+
assert tan(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)/csc(x)
|
598 |
+
assert tan(sin(x)).rewrite(Pow) == tan(sin(x))
|
599 |
+
|
600 |
+
|
601 |
+
@slow
|
602 |
+
def test_tan_rewrite_slow():
|
603 |
+
assert 0 == (cos(pi/34)*tan(pi/34) - sin(pi/34)).rewrite(pow)
|
604 |
+
assert 0 == (cos(pi/17)*tan(pi/17) - sin(pi/17)).rewrite(pow)
|
605 |
+
assert tan(pi/19).rewrite(pow) == tan(pi/19)
|
606 |
+
assert tan(pi*Rational(8, 19)).rewrite(sqrt) == tan(pi*Rational(8, 19))
|
607 |
+
assert tan(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == sqrt(sqrt(5)/8 +
|
608 |
+
Rational(5, 8))/(Rational(-1, 4) + sqrt(5)/4)
|
609 |
+
|
610 |
+
|
611 |
+
def test_tan_subs():
|
612 |
+
assert tan(x).subs(tan(x), y) == y
|
613 |
+
assert tan(x).subs(x, y) == tan(y)
|
614 |
+
assert tan(x).subs(x, S.Pi/2) is zoo
|
615 |
+
assert tan(x).subs(x, S.Pi*Rational(3, 2)) is zoo
|
616 |
+
|
617 |
+
|
618 |
+
def test_tan_expansion():
|
619 |
+
assert tan(x + y).expand(trig=True) == ((tan(x) + tan(y))/(1 - tan(x)*tan(y))).expand()
|
620 |
+
assert tan(x - y).expand(trig=True) == ((tan(x) - tan(y))/(1 + tan(x)*tan(y))).expand()
|
621 |
+
assert tan(x + y + z).expand(trig=True) == (
|
622 |
+
(tan(x) + tan(y) + tan(z) - tan(x)*tan(y)*tan(z))/
|
623 |
+
(1 - tan(x)*tan(y) - tan(x)*tan(z) - tan(y)*tan(z))).expand()
|
624 |
+
assert 0 == tan(2*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 7))])*24 - 7
|
625 |
+
assert 0 == tan(3*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*55 - 37
|
626 |
+
assert 0 == tan(4*x - pi/4).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*239 - 1
|
627 |
+
_test_extrig(tan, 2, 2*tan(1)/(1 - tan(1)**2))
|
628 |
+
_test_extrig(tan, 3, (-tan(1)**3 + 3*tan(1))/(1 - 3*tan(1)**2))
|
629 |
+
|
630 |
+
|
631 |
+
def test_tan_AccumBounds():
|
632 |
+
assert tan(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo)
|
633 |
+
assert tan(AccumBounds(S.Pi/3, S.Pi*Rational(2, 3))) == AccumBounds(-oo, oo)
|
634 |
+
assert tan(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(tan(S.Pi/6), tan(S.Pi/3))
|
635 |
+
|
636 |
+
|
637 |
+
def test_tan_fdiff():
|
638 |
+
assert tan(x).fdiff() == tan(x)**2 + 1
|
639 |
+
raises(ArgumentIndexError, lambda: tan(x).fdiff(2))
|
640 |
+
|
641 |
+
|
642 |
+
def test_cot():
|
643 |
+
assert cot(nan) is nan
|
644 |
+
|
645 |
+
assert cot.nargs == FiniteSet(1)
|
646 |
+
assert cot(oo*I) == -I
|
647 |
+
assert cot(-oo*I) == I
|
648 |
+
assert cot(zoo) is nan
|
649 |
+
|
650 |
+
assert cot(0) is zoo
|
651 |
+
assert cot(2*pi) is zoo
|
652 |
+
|
653 |
+
assert cot(acot(x)) == x
|
654 |
+
assert cot(atan(x)) == 1 / x
|
655 |
+
assert cot(asin(x)) == sqrt(1 - x**2) / x
|
656 |
+
assert cot(acos(x)) == x / sqrt(1 - x**2)
|
657 |
+
assert cot(acsc(x)) == sqrt(1 - 1 / x**2) * x
|
658 |
+
assert cot(asec(x)) == 1 / (sqrt(1 - 1 / x**2) * x)
|
659 |
+
assert cot(atan2(y, x)) == x/y
|
660 |
+
|
661 |
+
assert cot(pi*I) == -coth(pi)*I
|
662 |
+
assert cot(-pi*I) == coth(pi)*I
|
663 |
+
assert cot(-2*I) == coth(2)*I
|
664 |
+
|
665 |
+
assert cot(pi) == cot(2*pi) == cot(3*pi)
|
666 |
+
assert cot(-pi) == cot(-2*pi) == cot(-3*pi)
|
667 |
+
|
668 |
+
assert cot(pi/2) == 0
|
669 |
+
assert cot(-pi/2) == 0
|
670 |
+
assert cot(pi*Rational(5, 2)) == 0
|
671 |
+
assert cot(pi*Rational(7, 2)) == 0
|
672 |
+
|
673 |
+
assert cot(pi/3) == 1/sqrt(3)
|
674 |
+
assert cot(pi*Rational(-2, 3)) == 1/sqrt(3)
|
675 |
+
|
676 |
+
assert cot(pi/4) is S.One
|
677 |
+
assert cot(-pi/4) is S.NegativeOne
|
678 |
+
assert cot(pi*Rational(17, 4)) is S.One
|
679 |
+
assert cot(pi*Rational(-3, 4)) is S.One
|
680 |
+
|
681 |
+
assert cot(pi/6) == sqrt(3)
|
682 |
+
assert cot(-pi/6) == -sqrt(3)
|
683 |
+
assert cot(pi*Rational(7, 6)) == sqrt(3)
|
684 |
+
assert cot(pi*Rational(-5, 6)) == sqrt(3)
|
685 |
+
|
686 |
+
assert cot(pi/8) == 1 + sqrt(2)
|
687 |
+
assert cot(pi*Rational(3, 8)) == -1 + sqrt(2)
|
688 |
+
assert cot(pi*Rational(5, 8)) == 1 - sqrt(2)
|
689 |
+
assert cot(pi*Rational(7, 8)) == -1 - sqrt(2)
|
690 |
+
|
691 |
+
assert cot(pi/12) == sqrt(3) + 2
|
692 |
+
assert cot(pi*Rational(5, 12)) == -sqrt(3) + 2
|
693 |
+
assert cot(pi*Rational(7, 12)) == sqrt(3) - 2
|
694 |
+
assert cot(pi*Rational(11, 12)) == -sqrt(3) - 2
|
695 |
+
|
696 |
+
assert cot(pi/24).radsimp() == sqrt(2) + sqrt(3) + 2 + sqrt(6)
|
697 |
+
assert cot(pi*Rational(5, 24)).radsimp() == -sqrt(2) - sqrt(3) + 2 + sqrt(6)
|
698 |
+
assert cot(pi*Rational(7, 24)).radsimp() == -sqrt(2) + sqrt(3) - 2 + sqrt(6)
|
699 |
+
assert cot(pi*Rational(11, 24)).radsimp() == sqrt(2) - sqrt(3) - 2 + sqrt(6)
|
700 |
+
assert cot(pi*Rational(13, 24)).radsimp() == -sqrt(2) + sqrt(3) + 2 - sqrt(6)
|
701 |
+
assert cot(pi*Rational(17, 24)).radsimp() == sqrt(2) - sqrt(3) + 2 - sqrt(6)
|
702 |
+
assert cot(pi*Rational(19, 24)).radsimp() == sqrt(2) + sqrt(3) - 2 - sqrt(6)
|
703 |
+
assert cot(pi*Rational(23, 24)).radsimp() == -sqrt(2) - sqrt(3) - 2 - sqrt(6)
|
704 |
+
|
705 |
+
assert cot(x*I) == -coth(x)*I
|
706 |
+
assert cot(k*pi*I) == -coth(k*pi)*I
|
707 |
+
|
708 |
+
assert cot(r).is_real is None
|
709 |
+
assert cot(r).is_extended_real is True
|
710 |
+
|
711 |
+
assert cot(a).is_algebraic is None
|
712 |
+
assert cot(na).is_algebraic is False
|
713 |
+
|
714 |
+
assert cot(pi*Rational(10, 7)) == cot(pi*Rational(3, 7))
|
715 |
+
assert cot(pi*Rational(11, 7)) == -cot(pi*Rational(3, 7))
|
716 |
+
assert cot(pi*Rational(-11, 7)) == cot(pi*Rational(3, 7))
|
717 |
+
|
718 |
+
assert cot(pi*Rational(39, 34)) == cot(pi*Rational(5, 34))
|
719 |
+
assert cot(pi*Rational(-41, 34)) == -cot(pi*Rational(7, 34))
|
720 |
+
|
721 |
+
assert cot(x).is_finite is None
|
722 |
+
assert cot(r).is_finite is None
|
723 |
+
i = Symbol('i', imaginary=True)
|
724 |
+
assert cot(i).is_finite is True
|
725 |
+
|
726 |
+
assert cot(x).subs(x, 3*pi) is zoo
|
727 |
+
|
728 |
+
# https://github.com/sympy/sympy/issues/21177
|
729 |
+
f = cot(pi*(x + 4))/(3*x)
|
730 |
+
assert f.as_leading_term(x) == 1/(3*pi*x**2)
|
731 |
+
|
732 |
+
|
733 |
+
def test_tan_cot_sin_cos_evalf():
|
734 |
+
assert abs((tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15)) - 1).evalf()) < 1e-14
|
735 |
+
assert abs((cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15)) - 1).evalf()) < 1e-14
|
736 |
+
|
737 |
+
@XFAIL
|
738 |
+
def test_tan_cot_sin_cos_ratsimp():
|
739 |
+
assert 1 == (tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15))).ratsimp()
|
740 |
+
assert 1 == (cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15))).ratsimp()
|
741 |
+
|
742 |
+
|
743 |
+
def test_cot_series():
|
744 |
+
assert cot(x).series(x, 0, 9) == \
|
745 |
+
1/x - x/3 - x**3/45 - 2*x**5/945 - x**7/4725 + O(x**9)
|
746 |
+
# issue 6210
|
747 |
+
assert cot(x**4 + x**5).series(x, 0, 1) == \
|
748 |
+
x**(-4) - 1/x**3 + x**(-2) - 1/x + 1 + O(x)
|
749 |
+
assert cot(pi*(1-x)).series(x, 0, 3) == -1/(pi*x) + pi*x/3 + O(x**3)
|
750 |
+
assert cot(x).taylor_term(0, x) == 1/x
|
751 |
+
assert cot(x).taylor_term(2, x) is S.Zero
|
752 |
+
assert cot(x).taylor_term(3, x) == -x**3/45
|
753 |
+
|
754 |
+
|
755 |
+
def test_cot_rewrite():
|
756 |
+
neg_exp, pos_exp = exp(-x*I), exp(x*I)
|
757 |
+
assert cot(x).rewrite(exp) == I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
|
758 |
+
assert cot(x).rewrite(sin) == sin(2*x)/(2*(sin(x)**2))
|
759 |
+
assert cot(x).rewrite(cos) == cos(x)/cos(x - pi/2, evaluate=False)
|
760 |
+
assert cot(x).rewrite(tan) == 1/tan(x)
|
761 |
+
def check(func):
|
762 |
+
z = cot(func(x)).rewrite(exp) - cot(x).rewrite(exp).subs(x, func(x))
|
763 |
+
assert z.rewrite(exp).expand() == 0
|
764 |
+
check(sinh)
|
765 |
+
check(cosh)
|
766 |
+
check(tanh)
|
767 |
+
check(coth)
|
768 |
+
check(sin)
|
769 |
+
check(cos)
|
770 |
+
check(tan)
|
771 |
+
assert cot(log(x)).rewrite(Pow) == -I*(x**-I + x**I)/(x**-I - x**I)
|
772 |
+
assert cot(x).rewrite(sec) == sec(x - pi / 2, evaluate=False) / sec(x)
|
773 |
+
assert cot(x).rewrite(csc) == csc(x) / csc(- x + pi / 2, evaluate=False)
|
774 |
+
assert cot(sin(x)).rewrite(Pow) == cot(sin(x))
|
775 |
+
|
776 |
+
|
777 |
+
@slow
|
778 |
+
def test_cot_rewrite_slow():
|
779 |
+
assert cot(pi*Rational(4, 34)).rewrite(pow).ratsimp() == \
|
780 |
+
(cos(pi*Rational(4, 34))/sin(pi*Rational(4, 34))).rewrite(pow).ratsimp()
|
781 |
+
assert cot(pi*Rational(4, 17)).rewrite(pow) == \
|
782 |
+
(cos(pi*Rational(4, 17))/sin(pi*Rational(4, 17))).rewrite(pow)
|
783 |
+
assert cot(pi/19).rewrite(pow) == cot(pi/19)
|
784 |
+
assert cot(pi/19).rewrite(sqrt) == cot(pi/19)
|
785 |
+
assert cot(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == \
|
786 |
+
(Rational(-1, 4) + sqrt(5)/4) / sqrt(sqrt(5)/8 + Rational(5, 8))
|
787 |
+
|
788 |
+
|
789 |
+
def test_cot_subs():
|
790 |
+
assert cot(x).subs(cot(x), y) == y
|
791 |
+
assert cot(x).subs(x, y) == cot(y)
|
792 |
+
assert cot(x).subs(x, 0) is zoo
|
793 |
+
assert cot(x).subs(x, S.Pi) is zoo
|
794 |
+
|
795 |
+
|
796 |
+
def test_cot_expansion():
|
797 |
+
assert cot(x + y).expand(trig=True).together() == (
|
798 |
+
(cot(x)*cot(y) - 1)/(cot(x) + cot(y)))
|
799 |
+
assert cot(x - y).expand(trig=True).together() == (
|
800 |
+
cot(x)*cot(-y) - 1)/(cot(x) + cot(-y))
|
801 |
+
assert cot(x + y + z).expand(trig=True).together() == (
|
802 |
+
(cot(x)*cot(y)*cot(z) - cot(x) - cot(y) - cot(z))/
|
803 |
+
(-1 + cot(x)*cot(y) + cot(x)*cot(z) + cot(y)*cot(z)))
|
804 |
+
assert cot(3*x).expand(trig=True).together() == (
|
805 |
+
(cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1))
|
806 |
+
assert cot(2*x).expand(trig=True) == cot(x)/2 - 1/(2*cot(x))
|
807 |
+
assert cot(3*x).expand(trig=True).together() == (
|
808 |
+
cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1)
|
809 |
+
assert cot(4*x - pi/4).expand(trig=True).cancel() == (
|
810 |
+
-tan(x)**4 + 4*tan(x)**3 + 6*tan(x)**2 - 4*tan(x) - 1
|
811 |
+
)/(tan(x)**4 + 4*tan(x)**3 - 6*tan(x)**2 - 4*tan(x) + 1)
|
812 |
+
_test_extrig(cot, 2, (-1 + cot(1)**2)/(2*cot(1)))
|
813 |
+
_test_extrig(cot, 3, (-3*cot(1) + cot(1)**3)/(-1 + 3*cot(1)**2))
|
814 |
+
|
815 |
+
|
816 |
+
def test_cot_AccumBounds():
|
817 |
+
assert cot(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo)
|
818 |
+
assert cot(AccumBounds(-S.Pi/3, S.Pi/3)) == AccumBounds(-oo, oo)
|
819 |
+
assert cot(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(cot(S.Pi/3), cot(S.Pi/6))
|
820 |
+
|
821 |
+
|
822 |
+
def test_cot_fdiff():
|
823 |
+
assert cot(x).fdiff() == -cot(x)**2 - 1
|
824 |
+
raises(ArgumentIndexError, lambda: cot(x).fdiff(2))
|
825 |
+
|
826 |
+
|
827 |
+
def test_sinc():
|
828 |
+
assert isinstance(sinc(x), sinc)
|
829 |
+
|
830 |
+
s = Symbol('s', zero=True)
|
831 |
+
assert sinc(s) is S.One
|
832 |
+
assert sinc(S.Infinity) is S.Zero
|
833 |
+
assert sinc(S.NegativeInfinity) is S.Zero
|
834 |
+
assert sinc(S.NaN) is S.NaN
|
835 |
+
assert sinc(S.ComplexInfinity) is S.NaN
|
836 |
+
|
837 |
+
n = Symbol('n', integer=True, nonzero=True)
|
838 |
+
assert sinc(n*pi) is S.Zero
|
839 |
+
assert sinc(-n*pi) is S.Zero
|
840 |
+
assert sinc(pi/2) == 2 / pi
|
841 |
+
assert sinc(-pi/2) == 2 / pi
|
842 |
+
assert sinc(pi*Rational(5, 2)) == 2 / (5*pi)
|
843 |
+
assert sinc(pi*Rational(7, 2)) == -2 / (7*pi)
|
844 |
+
|
845 |
+
assert sinc(-x) == sinc(x)
|
846 |
+
|
847 |
+
assert sinc(x).diff(x) == cos(x)/x - sin(x)/x**2
|
848 |
+
assert sinc(x).diff(x) == (sin(x)/x).diff(x)
|
849 |
+
assert sinc(x).diff(x, x) == (-sin(x) - 2*cos(x)/x + 2*sin(x)/x**2)/x
|
850 |
+
assert sinc(x).diff(x, x) == (sin(x)/x).diff(x, x)
|
851 |
+
assert limit(sinc(x).diff(x), x, 0) == 0
|
852 |
+
assert limit(sinc(x).diff(x, x), x, 0) == -S(1)/3
|
853 |
+
|
854 |
+
# https://github.com/sympy/sympy/issues/11402
|
855 |
+
#
|
856 |
+
# assert sinc(x).diff(x) == Piecewise(((x*cos(x) - sin(x)) / x**2, Ne(x, 0)), (0, True))
|
857 |
+
#
|
858 |
+
# assert sinc(x).diff(x).equals(sinc(x).rewrite(sin).diff(x))
|
859 |
+
#
|
860 |
+
# assert sinc(x).diff(x).subs(x, 0) is S.Zero
|
861 |
+
|
862 |
+
assert sinc(x).series() == 1 - x**2/6 + x**4/120 + O(x**6)
|
863 |
+
|
864 |
+
assert sinc(x).rewrite(jn) == jn(0, x)
|
865 |
+
assert sinc(x).rewrite(sin) == Piecewise((sin(x)/x, Ne(x, 0)), (1, True))
|
866 |
+
assert sinc(pi, evaluate=False).is_zero is True
|
867 |
+
assert sinc(0, evaluate=False).is_zero is False
|
868 |
+
assert sinc(n*pi, evaluate=False).is_zero is True
|
869 |
+
assert sinc(x).is_zero is None
|
870 |
+
xr = Symbol('xr', real=True, nonzero=True)
|
871 |
+
assert sinc(x).is_real is None
|
872 |
+
assert sinc(xr).is_real is True
|
873 |
+
assert sinc(I*xr).is_real is True
|
874 |
+
assert sinc(I*100).is_real is True
|
875 |
+
assert sinc(x).is_finite is None
|
876 |
+
assert sinc(xr).is_finite is True
|
877 |
+
|
878 |
+
|
879 |
+
def test_asin():
|
880 |
+
assert asin(nan) is nan
|
881 |
+
|
882 |
+
assert asin.nargs == FiniteSet(1)
|
883 |
+
assert asin(oo) == -I*oo
|
884 |
+
assert asin(-oo) == I*oo
|
885 |
+
assert asin(zoo) is zoo
|
886 |
+
|
887 |
+
# Note: asin(-x) = - asin(x)
|
888 |
+
assert asin(0) == 0
|
889 |
+
assert asin(1) == pi/2
|
890 |
+
assert asin(-1) == -pi/2
|
891 |
+
assert asin(sqrt(3)/2) == pi/3
|
892 |
+
assert asin(-sqrt(3)/2) == -pi/3
|
893 |
+
assert asin(sqrt(2)/2) == pi/4
|
894 |
+
assert asin(-sqrt(2)/2) == -pi/4
|
895 |
+
assert asin(sqrt((5 - sqrt(5))/8)) == pi/5
|
896 |
+
assert asin(-sqrt((5 - sqrt(5))/8)) == -pi/5
|
897 |
+
assert asin(S.Half) == pi/6
|
898 |
+
assert asin(Rational(-1, 2)) == -pi/6
|
899 |
+
assert asin((sqrt(2 - sqrt(2)))/2) == pi/8
|
900 |
+
assert asin(-(sqrt(2 - sqrt(2)))/2) == -pi/8
|
901 |
+
assert asin((sqrt(5) - 1)/4) == pi/10
|
902 |
+
assert asin(-(sqrt(5) - 1)/4) == -pi/10
|
903 |
+
assert asin((sqrt(3) - 1)/sqrt(2**3)) == pi/12
|
904 |
+
assert asin(-(sqrt(3) - 1)/sqrt(2**3)) == -pi/12
|
905 |
+
|
906 |
+
# check round-trip for exact values:
|
907 |
+
for d in [5, 6, 8, 10, 12]:
|
908 |
+
for n in range(-(d//2), d//2 + 1):
|
909 |
+
if gcd(n, d) == 1:
|
910 |
+
assert asin(sin(n*pi/d)) == n*pi/d
|
911 |
+
|
912 |
+
assert asin(x).diff(x) == 1/sqrt(1 - x**2)
|
913 |
+
|
914 |
+
assert asin(0.2, evaluate=False).is_real is True
|
915 |
+
assert asin(-2).is_real is False
|
916 |
+
assert asin(r).is_real is None
|
917 |
+
|
918 |
+
assert asin(-2*I) == -I*asinh(2)
|
919 |
+
|
920 |
+
assert asin(Rational(1, 7), evaluate=False).is_positive is True
|
921 |
+
assert asin(Rational(-1, 7), evaluate=False).is_positive is False
|
922 |
+
assert asin(p).is_positive is None
|
923 |
+
assert asin(sin(Rational(7, 2))) == Rational(-7, 2) + pi
|
924 |
+
assert asin(sin(Rational(-7, 4))) == Rational(7, 4) - pi
|
925 |
+
assert unchanged(asin, cos(x))
|
926 |
+
|
927 |
+
|
928 |
+
def test_asin_series():
|
929 |
+
assert asin(x).series(x, 0, 9) == \
|
930 |
+
x + x**3/6 + 3*x**5/40 + 5*x**7/112 + O(x**9)
|
931 |
+
t5 = asin(x).taylor_term(5, x)
|
932 |
+
assert t5 == 3*x**5/40
|
933 |
+
assert asin(x).taylor_term(7, x, t5, 0) == 5*x**7/112
|
934 |
+
|
935 |
+
|
936 |
+
def test_asin_leading_term():
|
937 |
+
assert asin(x).as_leading_term(x) == x
|
938 |
+
# Tests concerning branch points
|
939 |
+
assert asin(x + 1).as_leading_term(x) == pi/2
|
940 |
+
assert asin(x - 1).as_leading_term(x) == -pi/2
|
941 |
+
assert asin(1/x).as_leading_term(x, cdir=1) == I*log(x) + pi/2 - I*log(2)
|
942 |
+
assert asin(1/x).as_leading_term(x, cdir=-1) == -I*log(x) - 3*pi/2 + I*log(2)
|
943 |
+
# Tests concerning points lying on branch cuts
|
944 |
+
assert asin(I*x + 2).as_leading_term(x, cdir=1) == pi - asin(2)
|
945 |
+
assert asin(-I*x + 2).as_leading_term(x, cdir=1) == asin(2)
|
946 |
+
assert asin(I*x - 2).as_leading_term(x, cdir=1) == -asin(2)
|
947 |
+
assert asin(-I*x - 2).as_leading_term(x, cdir=1) == -pi + asin(2)
|
948 |
+
# Tests concerning im(ndir) == 0
|
949 |
+
assert asin(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == -pi/2 + I*log(2 - sqrt(3))
|
950 |
+
assert asin(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(2 - sqrt(3))
|
951 |
+
|
952 |
+
|
953 |
+
def test_asin_rewrite():
|
954 |
+
assert asin(x).rewrite(log) == -I*log(I*x + sqrt(1 - x**2))
|
955 |
+
assert asin(x).rewrite(atan) == 2*atan(x/(1 + sqrt(1 - x**2)))
|
956 |
+
assert asin(x).rewrite(acos) == S.Pi/2 - acos(x)
|
957 |
+
assert asin(x).rewrite(acot) == 2*acot((sqrt(-x**2 + 1) + 1)/x)
|
958 |
+
assert asin(x).rewrite(asec) == -asec(1/x) + pi/2
|
959 |
+
assert asin(x).rewrite(acsc) == acsc(1/x)
|
960 |
+
|
961 |
+
|
962 |
+
def test_asin_fdiff():
|
963 |
+
assert asin(x).fdiff() == 1/sqrt(1 - x**2)
|
964 |
+
raises(ArgumentIndexError, lambda: asin(x).fdiff(2))
|
965 |
+
|
966 |
+
|
967 |
+
def test_acos():
|
968 |
+
assert acos(nan) is nan
|
969 |
+
assert acos(zoo) is zoo
|
970 |
+
|
971 |
+
assert acos.nargs == FiniteSet(1)
|
972 |
+
assert acos(oo) == I*oo
|
973 |
+
assert acos(-oo) == -I*oo
|
974 |
+
|
975 |
+
# Note: acos(-x) = pi - acos(x)
|
976 |
+
assert acos(0) == pi/2
|
977 |
+
assert acos(S.Half) == pi/3
|
978 |
+
assert acos(Rational(-1, 2)) == pi*Rational(2, 3)
|
979 |
+
assert acos(1) == 0
|
980 |
+
assert acos(-1) == pi
|
981 |
+
assert acos(sqrt(2)/2) == pi/4
|
982 |
+
assert acos(-sqrt(2)/2) == pi*Rational(3, 4)
|
983 |
+
|
984 |
+
# check round-trip for exact values:
|
985 |
+
for d in [5, 6, 8, 10, 12]:
|
986 |
+
for num in range(d):
|
987 |
+
if gcd(num, d) == 1:
|
988 |
+
assert acos(cos(num*pi/d)) == num*pi/d
|
989 |
+
|
990 |
+
assert acos(2*I) == pi/2 - asin(2*I)
|
991 |
+
|
992 |
+
assert acos(x).diff(x) == -1/sqrt(1 - x**2)
|
993 |
+
|
994 |
+
assert acos(0.2).is_real is True
|
995 |
+
assert acos(-2).is_real is False
|
996 |
+
assert acos(r).is_real is None
|
997 |
+
|
998 |
+
assert acos(Rational(1, 7), evaluate=False).is_positive is True
|
999 |
+
assert acos(Rational(-1, 7), evaluate=False).is_positive is True
|
1000 |
+
assert acos(Rational(3, 2), evaluate=False).is_positive is False
|
1001 |
+
assert acos(p).is_positive is None
|
1002 |
+
|
1003 |
+
assert acos(2 + p).conjugate() != acos(10 + p)
|
1004 |
+
assert acos(-3 + n).conjugate() != acos(-3 + n)
|
1005 |
+
assert acos(Rational(1, 3)).conjugate() == acos(Rational(1, 3))
|
1006 |
+
assert acos(Rational(-1, 3)).conjugate() == acos(Rational(-1, 3))
|
1007 |
+
assert acos(p + n*I).conjugate() == acos(p - n*I)
|
1008 |
+
assert acos(z).conjugate() != acos(conjugate(z))
|
1009 |
+
|
1010 |
+
|
1011 |
+
def test_acos_leading_term():
|
1012 |
+
assert acos(x).as_leading_term(x) == pi/2
|
1013 |
+
# Tests concerning branch points
|
1014 |
+
assert acos(x + 1).as_leading_term(x) == sqrt(2)*sqrt(-x)
|
1015 |
+
assert acos(x - 1).as_leading_term(x) == pi
|
1016 |
+
assert acos(1/x).as_leading_term(x, cdir=1) == -I*log(x) + I*log(2)
|
1017 |
+
assert acos(1/x).as_leading_term(x, cdir=-1) == I*log(x) + 2*pi - I*log(2)
|
1018 |
+
# Tests concerning points lying on branch cuts
|
1019 |
+
assert acos(I*x + 2).as_leading_term(x, cdir=1) == -acos(2)
|
1020 |
+
assert acos(-I*x + 2).as_leading_term(x, cdir=1) == acos(2)
|
1021 |
+
assert acos(I*x - 2).as_leading_term(x, cdir=1) == acos(-2)
|
1022 |
+
assert acos(-I*x - 2).as_leading_term(x, cdir=1) == 2*pi - acos(-2)
|
1023 |
+
# Tests concerning im(ndir) == 0
|
1024 |
+
assert acos(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == pi + I*log(sqrt(3) + 2)
|
1025 |
+
assert acos(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == pi + I*log(sqrt(3) + 2)
|
1026 |
+
|
1027 |
+
|
1028 |
+
def test_acos_series():
|
1029 |
+
assert acos(x).series(x, 0, 8) == \
|
1030 |
+
pi/2 - x - x**3/6 - 3*x**5/40 - 5*x**7/112 + O(x**8)
|
1031 |
+
assert acos(x).series(x, 0, 8) == pi/2 - asin(x).series(x, 0, 8)
|
1032 |
+
t5 = acos(x).taylor_term(5, x)
|
1033 |
+
assert t5 == -3*x**5/40
|
1034 |
+
assert acos(x).taylor_term(7, x, t5, 0) == -5*x**7/112
|
1035 |
+
assert acos(x).taylor_term(0, x) == pi/2
|
1036 |
+
assert acos(x).taylor_term(2, x) is S.Zero
|
1037 |
+
|
1038 |
+
|
1039 |
+
def test_acos_rewrite():
|
1040 |
+
assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2))
|
1041 |
+
assert acos(x).rewrite(atan) == pi*(-x*sqrt(x**(-2)) + 1)/2 + atan(sqrt(1 - x**2)/x)
|
1042 |
+
assert acos(0).rewrite(atan) == S.Pi/2
|
1043 |
+
assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log)
|
1044 |
+
assert acos(x).rewrite(asin) == S.Pi/2 - asin(x)
|
1045 |
+
assert acos(x).rewrite(acot) == -2*acot((sqrt(-x**2 + 1) + 1)/x) + pi/2
|
1046 |
+
assert acos(x).rewrite(asec) == asec(1/x)
|
1047 |
+
assert acos(x).rewrite(acsc) == -acsc(1/x) + pi/2
|
1048 |
+
|
1049 |
+
|
1050 |
+
def test_acos_fdiff():
|
1051 |
+
assert acos(x).fdiff() == -1/sqrt(1 - x**2)
|
1052 |
+
raises(ArgumentIndexError, lambda: acos(x).fdiff(2))
|
1053 |
+
|
1054 |
+
|
1055 |
+
def test_atan():
|
1056 |
+
assert atan(nan) is nan
|
1057 |
+
|
1058 |
+
assert atan.nargs == FiniteSet(1)
|
1059 |
+
assert atan(oo) == pi/2
|
1060 |
+
assert atan(-oo) == -pi/2
|
1061 |
+
assert atan(zoo) == AccumBounds(-pi/2, pi/2)
|
1062 |
+
|
1063 |
+
assert atan(0) == 0
|
1064 |
+
assert atan(1) == pi/4
|
1065 |
+
assert atan(sqrt(3)) == pi/3
|
1066 |
+
assert atan(-(1 + sqrt(2))) == pi*Rational(-3, 8)
|
1067 |
+
assert atan(sqrt(5 - 2 * sqrt(5))) == pi/5
|
1068 |
+
assert atan(-sqrt(1 - 2 * sqrt(5)/ 5)) == -pi/10
|
1069 |
+
assert atan(sqrt(1 + 2 * sqrt(5) / 5)) == pi*Rational(3, 10)
|
1070 |
+
assert atan(-2 + sqrt(3)) == -pi/12
|
1071 |
+
assert atan(2 + sqrt(3)) == pi*Rational(5, 12)
|
1072 |
+
assert atan(-2 - sqrt(3)) == pi*Rational(-5, 12)
|
1073 |
+
|
1074 |
+
# check round-trip for exact values:
|
1075 |
+
for d in [5, 6, 8, 10, 12]:
|
1076 |
+
for num in range(-(d//2), d//2 + 1):
|
1077 |
+
if gcd(num, d) == 1:
|
1078 |
+
assert atan(tan(num*pi/d)) == num*pi/d
|
1079 |
+
|
1080 |
+
assert atan(oo) == pi/2
|
1081 |
+
assert atan(x).diff(x) == 1/(1 + x**2)
|
1082 |
+
|
1083 |
+
assert atan(r).is_real is True
|
1084 |
+
|
1085 |
+
assert atan(-2*I) == -I*atanh(2)
|
1086 |
+
assert unchanged(atan, cot(x))
|
1087 |
+
assert atan(cot(Rational(1, 4))) == Rational(-1, 4) + pi/2
|
1088 |
+
assert acot(Rational(1, 4)).is_rational is False
|
1089 |
+
|
1090 |
+
for s in (x, p, n, np, nn, nz, ep, en, enp, enn, enz):
|
1091 |
+
if s.is_real or s.is_extended_real is None:
|
1092 |
+
assert s.is_nonzero is atan(s).is_nonzero
|
1093 |
+
assert s.is_positive is atan(s).is_positive
|
1094 |
+
assert s.is_negative is atan(s).is_negative
|
1095 |
+
assert s.is_nonpositive is atan(s).is_nonpositive
|
1096 |
+
assert s.is_nonnegative is atan(s).is_nonnegative
|
1097 |
+
else:
|
1098 |
+
assert s.is_extended_nonzero is atan(s).is_nonzero
|
1099 |
+
assert s.is_extended_positive is atan(s).is_positive
|
1100 |
+
assert s.is_extended_negative is atan(s).is_negative
|
1101 |
+
assert s.is_extended_nonpositive is atan(s).is_nonpositive
|
1102 |
+
assert s.is_extended_nonnegative is atan(s).is_nonnegative
|
1103 |
+
assert s.is_extended_nonzero is atan(s).is_extended_nonzero
|
1104 |
+
assert s.is_extended_positive is atan(s).is_extended_positive
|
1105 |
+
assert s.is_extended_negative is atan(s).is_extended_negative
|
1106 |
+
assert s.is_extended_nonpositive is atan(s).is_extended_nonpositive
|
1107 |
+
assert s.is_extended_nonnegative is atan(s).is_extended_nonnegative
|
1108 |
+
|
1109 |
+
|
1110 |
+
def test_atan_rewrite():
|
1111 |
+
assert atan(x).rewrite(log) == I*(log(1 - I*x)-log(1 + I*x))/2
|
1112 |
+
assert atan(x).rewrite(asin) == (-asin(1/sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
|
1113 |
+
assert atan(x).rewrite(acos) == sqrt(x**2)*acos(1/sqrt(x**2 + 1))/x
|
1114 |
+
assert atan(x).rewrite(acot) == acot(1/x)
|
1115 |
+
assert atan(x).rewrite(asec) == sqrt(x**2)*asec(sqrt(x**2 + 1))/x
|
1116 |
+
assert atan(x).rewrite(acsc) == (-acsc(sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
|
1117 |
+
|
1118 |
+
assert atan(-5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:-5*I})
|
1119 |
+
assert atan(5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:5*I})
|
1120 |
+
|
1121 |
+
|
1122 |
+
def test_atan_fdiff():
|
1123 |
+
assert atan(x).fdiff() == 1/(x**2 + 1)
|
1124 |
+
raises(ArgumentIndexError, lambda: atan(x).fdiff(2))
|
1125 |
+
|
1126 |
+
|
1127 |
+
def test_atan_leading_term():
|
1128 |
+
assert atan(x).as_leading_term(x) == x
|
1129 |
+
assert atan(1/x).as_leading_term(x, cdir=1) == pi/2
|
1130 |
+
assert atan(1/x).as_leading_term(x, cdir=-1) == -pi/2
|
1131 |
+
# Tests concerning branch points
|
1132 |
+
assert atan(x + I).as_leading_term(x, cdir=1) == -I*log(x)/2 + pi/4 + I*log(2)/2
|
1133 |
+
assert atan(x + I).as_leading_term(x, cdir=-1) == -I*log(x)/2 - 3*pi/4 + I*log(2)/2
|
1134 |
+
assert atan(x - I).as_leading_term(x, cdir=1) == I*log(x)/2 + pi/4 - I*log(2)/2
|
1135 |
+
assert atan(x - I).as_leading_term(x, cdir=-1) == I*log(x)/2 + pi/4 - I*log(2)/2
|
1136 |
+
# Tests concerning points lying on branch cuts
|
1137 |
+
assert atan(x + 2*I).as_leading_term(x, cdir=1) == I*atanh(2)
|
1138 |
+
assert atan(x + 2*I).as_leading_term(x, cdir=-1) == -pi + I*atanh(2)
|
1139 |
+
assert atan(x - 2*I).as_leading_term(x, cdir=1) == pi - I*atanh(2)
|
1140 |
+
assert atan(x - 2*I).as_leading_term(x, cdir=-1) == -I*atanh(2)
|
1141 |
+
# Tests concerning re(ndir) == 0
|
1142 |
+
assert atan(2*I - I*x - x**2).as_leading_term(x, cdir=1) == -pi/2 + I*log(3)/2
|
1143 |
+
assert atan(2*I - I*x - x**2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(3)/2
|
1144 |
+
|
1145 |
+
|
1146 |
+
def test_atan2():
|
1147 |
+
assert atan2.nargs == FiniteSet(2)
|
1148 |
+
assert atan2(0, 0) is S.NaN
|
1149 |
+
assert atan2(0, 1) == 0
|
1150 |
+
assert atan2(1, 1) == pi/4
|
1151 |
+
assert atan2(1, 0) == pi/2
|
1152 |
+
assert atan2(1, -1) == pi*Rational(3, 4)
|
1153 |
+
assert atan2(0, -1) == pi
|
1154 |
+
assert atan2(-1, -1) == pi*Rational(-3, 4)
|
1155 |
+
assert atan2(-1, 0) == -pi/2
|
1156 |
+
assert atan2(-1, 1) == -pi/4
|
1157 |
+
i = symbols('i', imaginary=True)
|
1158 |
+
r = symbols('r', real=True)
|
1159 |
+
eq = atan2(r, i)
|
1160 |
+
ans = -I*log((i + I*r)/sqrt(i**2 + r**2))
|
1161 |
+
reps = ((r, 2), (i, I))
|
1162 |
+
assert eq.subs(reps) == ans.subs(reps)
|
1163 |
+
|
1164 |
+
x = Symbol('x', negative=True)
|
1165 |
+
y = Symbol('y', negative=True)
|
1166 |
+
assert atan2(y, x) == atan(y/x) - pi
|
1167 |
+
y = Symbol('y', nonnegative=True)
|
1168 |
+
assert atan2(y, x) == atan(y/x) + pi
|
1169 |
+
y = Symbol('y')
|
1170 |
+
assert atan2(y, x) == atan2(y, x, evaluate=False)
|
1171 |
+
|
1172 |
+
u = Symbol("u", positive=True)
|
1173 |
+
assert atan2(0, u) == 0
|
1174 |
+
u = Symbol("u", negative=True)
|
1175 |
+
assert atan2(0, u) == pi
|
1176 |
+
|
1177 |
+
assert atan2(y, oo) == 0
|
1178 |
+
assert atan2(y, -oo)== 2*pi*Heaviside(re(y), S.Half) - pi
|
1179 |
+
|
1180 |
+
assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2))
|
1181 |
+
assert atan2(0, 0) is S.NaN
|
1182 |
+
|
1183 |
+
ex = atan2(y, x) - arg(x + I*y)
|
1184 |
+
assert ex.subs({x:2, y:3}).rewrite(arg) == 0
|
1185 |
+
assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5)
|
1186 |
+
assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I)
|
1187 |
+
assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(Rational(2, 3)) + atan(Rational(3, 2))
|
1188 |
+
i = symbols('i', imaginary=True)
|
1189 |
+
r = symbols('r', real=True)
|
1190 |
+
e = atan2(i, r)
|
1191 |
+
rewrite = e.rewrite(arg)
|
1192 |
+
reps = {i: I, r: -2}
|
1193 |
+
assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2))
|
1194 |
+
assert (e - rewrite).subs(reps).equals(0)
|
1195 |
+
|
1196 |
+
assert atan2(0, x).rewrite(atan) == Piecewise((pi, re(x) < 0),
|
1197 |
+
(0, Ne(x, 0)),
|
1198 |
+
(nan, True))
|
1199 |
+
assert atan2(0, r).rewrite(atan) == Piecewise((pi, r < 0), (0, Ne(r, 0)), (S.NaN, True))
|
1200 |
+
assert atan2(0, i),rewrite(atan) == 0
|
1201 |
+
assert atan2(0, r + i).rewrite(atan) == Piecewise((pi, r < 0), (0, True))
|
1202 |
+
|
1203 |
+
assert atan2(y, x).rewrite(atan) == Piecewise(
|
1204 |
+
(2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)),
|
1205 |
+
(pi, re(x) < 0),
|
1206 |
+
(0, (re(x) > 0) | Ne(im(x), 0)),
|
1207 |
+
(nan, True))
|
1208 |
+
assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y))
|
1209 |
+
|
1210 |
+
assert diff(atan2(y, x), x) == -y/(x**2 + y**2)
|
1211 |
+
assert diff(atan2(y, x), y) == x/(x**2 + y**2)
|
1212 |
+
|
1213 |
+
assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2)
|
1214 |
+
assert simplify(diff(atan2(y, x).rewrite(log), y)) == x/(x**2 + y**2)
|
1215 |
+
|
1216 |
+
assert str(atan2(1, 2).evalf(5)) == '0.46365'
|
1217 |
+
raises(ArgumentIndexError, lambda: atan2(x, y).fdiff(3))
|
1218 |
+
|
1219 |
+
def test_issue_17461():
|
1220 |
+
class A(Symbol):
|
1221 |
+
is_extended_real = True
|
1222 |
+
|
1223 |
+
def _eval_evalf(self, prec):
|
1224 |
+
return Float(5.0)
|
1225 |
+
|
1226 |
+
x = A('X')
|
1227 |
+
y = A('Y')
|
1228 |
+
assert abs(atan2(x, y).evalf() - 0.785398163397448) <= 1e-10
|
1229 |
+
|
1230 |
+
def test_acot():
|
1231 |
+
assert acot(nan) is nan
|
1232 |
+
|
1233 |
+
assert acot.nargs == FiniteSet(1)
|
1234 |
+
assert acot(-oo) == 0
|
1235 |
+
assert acot(oo) == 0
|
1236 |
+
assert acot(zoo) == 0
|
1237 |
+
assert acot(1) == pi/4
|
1238 |
+
assert acot(0) == pi/2
|
1239 |
+
assert acot(sqrt(3)/3) == pi/3
|
1240 |
+
assert acot(1/sqrt(3)) == pi/3
|
1241 |
+
assert acot(-1/sqrt(3)) == -pi/3
|
1242 |
+
assert acot(x).diff(x) == -1/(1 + x**2)
|
1243 |
+
|
1244 |
+
assert acot(r).is_extended_real is True
|
1245 |
+
|
1246 |
+
assert acot(I*pi) == -I*acoth(pi)
|
1247 |
+
assert acot(-2*I) == I*acoth(2)
|
1248 |
+
assert acot(x).is_positive is None
|
1249 |
+
assert acot(n).is_positive is False
|
1250 |
+
assert acot(p).is_positive is True
|
1251 |
+
assert acot(I).is_positive is False
|
1252 |
+
assert acot(Rational(1, 4)).is_rational is False
|
1253 |
+
assert unchanged(acot, cot(x))
|
1254 |
+
assert unchanged(acot, tan(x))
|
1255 |
+
assert acot(cot(Rational(1, 4))) == Rational(1, 4)
|
1256 |
+
assert acot(tan(Rational(-1, 4))) == Rational(1, 4) - pi/2
|
1257 |
+
|
1258 |
+
|
1259 |
+
def test_acot_rewrite():
|
1260 |
+
assert acot(x).rewrite(log) == I*(log(1 - I/x)-log(1 + I/x))/2
|
1261 |
+
assert acot(x).rewrite(asin) == x*(-asin(sqrt(-x**2)/sqrt(-x**2 - 1)) + pi/2)*sqrt(x**(-2))
|
1262 |
+
assert acot(x).rewrite(acos) == x*sqrt(x**(-2))*acos(sqrt(-x**2)/sqrt(-x**2 - 1))
|
1263 |
+
assert acot(x).rewrite(atan) == atan(1/x)
|
1264 |
+
assert acot(x).rewrite(asec) == x*sqrt(x**(-2))*asec(sqrt((x**2 + 1)/x**2))
|
1265 |
+
assert acot(x).rewrite(acsc) == x*(-acsc(sqrt((x**2 + 1)/x**2)) + pi/2)*sqrt(x**(-2))
|
1266 |
+
|
1267 |
+
assert acot(-I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:-I/5})
|
1268 |
+
assert acot(I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:I/5})
|
1269 |
+
|
1270 |
+
|
1271 |
+
def test_acot_fdiff():
|
1272 |
+
assert acot(x).fdiff() == -1/(x**2 + 1)
|
1273 |
+
raises(ArgumentIndexError, lambda: acot(x).fdiff(2))
|
1274 |
+
|
1275 |
+
def test_acot_leading_term():
|
1276 |
+
assert acot(1/x).as_leading_term(x) == x
|
1277 |
+
# Tests concerning branch points
|
1278 |
+
assert acot(x + I).as_leading_term(x, cdir=1) == I*log(x)/2 + pi/4 - I*log(2)/2
|
1279 |
+
assert acot(x + I).as_leading_term(x, cdir=-1) == I*log(x)/2 + pi/4 - I*log(2)/2
|
1280 |
+
assert acot(x - I).as_leading_term(x, cdir=1) == -I*log(x)/2 + pi/4 + I*log(2)/2
|
1281 |
+
assert acot(x - I).as_leading_term(x, cdir=-1) == -I*log(x)/2 - 3*pi/4 + I*log(2)/2
|
1282 |
+
# Tests concerning points lying on branch cuts
|
1283 |
+
assert acot(x).as_leading_term(x, cdir=1) == pi/2
|
1284 |
+
assert acot(x).as_leading_term(x, cdir=-1) == -pi/2
|
1285 |
+
assert acot(x + I/2).as_leading_term(x, cdir=1) == pi - I*acoth(S(1)/2)
|
1286 |
+
assert acot(x + I/2).as_leading_term(x, cdir=-1) == -I*acoth(S(1)/2)
|
1287 |
+
assert acot(x - I/2).as_leading_term(x, cdir=1) == I*acoth(S(1)/2)
|
1288 |
+
assert acot(x - I/2).as_leading_term(x, cdir=-1) == -pi + I*acoth(S(1)/2)
|
1289 |
+
# Tests concerning re(ndir) == 0
|
1290 |
+
assert acot(I/2 - I*x - x**2).as_leading_term(x, cdir=1) == -pi/2 - I*log(3)/2
|
1291 |
+
assert acot(I/2 - I*x - x**2).as_leading_term(x, cdir=-1) == -pi/2 - I*log(3)/2
|
1292 |
+
|
1293 |
+
|
1294 |
+
def test_attributes():
|
1295 |
+
assert sin(x).args == (x,)
|
1296 |
+
|
1297 |
+
|
1298 |
+
def test_sincos_rewrite():
|
1299 |
+
assert sin(pi/2 - x) == cos(x)
|
1300 |
+
assert sin(pi - x) == sin(x)
|
1301 |
+
assert cos(pi/2 - x) == sin(x)
|
1302 |
+
assert cos(pi - x) == -cos(x)
|
1303 |
+
|
1304 |
+
|
1305 |
+
def _check_even_rewrite(func, arg):
|
1306 |
+
"""Checks that the expr has been rewritten using f(-x) -> f(x)
|
1307 |
+
arg : -x
|
1308 |
+
"""
|
1309 |
+
return func(arg).args[0] == -arg
|
1310 |
+
|
1311 |
+
|
1312 |
+
def _check_odd_rewrite(func, arg):
|
1313 |
+
"""Checks that the expr has been rewritten using f(-x) -> -f(x)
|
1314 |
+
arg : -x
|
1315 |
+
"""
|
1316 |
+
return func(arg).func.is_Mul
|
1317 |
+
|
1318 |
+
|
1319 |
+
def _check_no_rewrite(func, arg):
|
1320 |
+
"""Checks that the expr is not rewritten"""
|
1321 |
+
return func(arg).args[0] == arg
|
1322 |
+
|
1323 |
+
|
1324 |
+
def test_evenodd_rewrite():
|
1325 |
+
a = cos(2) # negative
|
1326 |
+
b = sin(1) # positive
|
1327 |
+
even = [cos]
|
1328 |
+
odd = [sin, tan, cot, asin, atan, acot]
|
1329 |
+
with_minus = [-1, -2**1024 * E, -pi/105, -x*y, -x - y]
|
1330 |
+
for func in even:
|
1331 |
+
for expr in with_minus:
|
1332 |
+
assert _check_even_rewrite(func, expr)
|
1333 |
+
assert _check_no_rewrite(func, a*b)
|
1334 |
+
assert func(
|
1335 |
+
x - y) == func(y - x) # it doesn't matter which form is canonical
|
1336 |
+
for func in odd:
|
1337 |
+
for expr in with_minus:
|
1338 |
+
assert _check_odd_rewrite(func, expr)
|
1339 |
+
assert _check_no_rewrite(func, a*b)
|
1340 |
+
assert func(
|
1341 |
+
x - y) == -func(y - x) # it doesn't matter which form is canonical
|
1342 |
+
|
1343 |
+
|
1344 |
+
def test_as_leading_term_issue_5272():
|
1345 |
+
assert sin(x).as_leading_term(x) == x
|
1346 |
+
assert cos(x).as_leading_term(x) == 1
|
1347 |
+
assert tan(x).as_leading_term(x) == x
|
1348 |
+
assert cot(x).as_leading_term(x) == 1/x
|
1349 |
+
|
1350 |
+
|
1351 |
+
def test_leading_terms():
|
1352 |
+
assert sin(1/x).as_leading_term(x) == AccumBounds(-1, 1)
|
1353 |
+
assert sin(S.Half).as_leading_term(x) == sin(S.Half)
|
1354 |
+
assert cos(1/x).as_leading_term(x) == AccumBounds(-1, 1)
|
1355 |
+
assert cos(S.Half).as_leading_term(x) == cos(S.Half)
|
1356 |
+
assert sec(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
|
1357 |
+
assert csc(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
|
1358 |
+
assert tan(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
|
1359 |
+
assert cot(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
|
1360 |
+
|
1361 |
+
# https://github.com/sympy/sympy/issues/21038
|
1362 |
+
f = sin(pi*(x + 4))/(3*x)
|
1363 |
+
assert f.as_leading_term(x) == pi/3
|
1364 |
+
|
1365 |
+
|
1366 |
+
def test_atan2_expansion():
|
1367 |
+
assert cancel(atan2(x**2, x + 1).diff(x) - atan(x**2/(x + 1)).diff(x)) == 0
|
1368 |
+
assert cancel(atan(y/x).series(y, 0, 5) - atan2(y, x).series(y, 0, 5)
|
1369 |
+
+ atan2(0, x) - atan(0)) == O(y**5)
|
1370 |
+
assert cancel(atan(y/x).series(x, 1, 4) - atan2(y, x).series(x, 1, 4)
|
1371 |
+
+ atan2(y, 1) - atan(y)) == O((x - 1)**4, (x, 1))
|
1372 |
+
assert cancel(atan((y + x)/x).series(x, 1, 3) - atan2(y + x, x).series(x, 1, 3)
|
1373 |
+
+ atan2(1 + y, 1) - atan(1 + y)) == O((x - 1)**3, (x, 1))
|
1374 |
+
assert Matrix([atan2(y, x)]).jacobian([y, x]) == \
|
1375 |
+
Matrix([[x/(y**2 + x**2), -y/(y**2 + x**2)]])
|
1376 |
+
|
1377 |
+
|
1378 |
+
def test_aseries():
|
1379 |
+
def t(n, v, d, e):
|
1380 |
+
assert abs(
|
1381 |
+
n(1/v).evalf() - n(1/x).series(x, dir=d).removeO().subs(x, v)) < e
|
1382 |
+
t(atan, 0.1, '+', 1e-5)
|
1383 |
+
t(atan, -0.1, '-', 1e-5)
|
1384 |
+
t(acot, 0.1, '+', 1e-5)
|
1385 |
+
t(acot, -0.1, '-', 1e-5)
|
1386 |
+
|
1387 |
+
|
1388 |
+
def test_issue_4420():
|
1389 |
+
i = Symbol('i', integer=True)
|
1390 |
+
e = Symbol('e', even=True)
|
1391 |
+
o = Symbol('o', odd=True)
|
1392 |
+
|
1393 |
+
# unknown parity for variable
|
1394 |
+
assert cos(4*i*pi) == 1
|
1395 |
+
assert sin(4*i*pi) == 0
|
1396 |
+
assert tan(4*i*pi) == 0
|
1397 |
+
assert cot(4*i*pi) is zoo
|
1398 |
+
|
1399 |
+
assert cos(3*i*pi) == cos(pi*i) # +/-1
|
1400 |
+
assert sin(3*i*pi) == 0
|
1401 |
+
assert tan(3*i*pi) == 0
|
1402 |
+
assert cot(3*i*pi) is zoo
|
1403 |
+
|
1404 |
+
assert cos(4.0*i*pi) == 1
|
1405 |
+
assert sin(4.0*i*pi) == 0
|
1406 |
+
assert tan(4.0*i*pi) == 0
|
1407 |
+
assert cot(4.0*i*pi) is zoo
|
1408 |
+
|
1409 |
+
assert cos(3.0*i*pi) == cos(pi*i) # +/-1
|
1410 |
+
assert sin(3.0*i*pi) == 0
|
1411 |
+
assert tan(3.0*i*pi) == 0
|
1412 |
+
assert cot(3.0*i*pi) is zoo
|
1413 |
+
|
1414 |
+
assert cos(4.5*i*pi) == cos(0.5*pi*i)
|
1415 |
+
assert sin(4.5*i*pi) == sin(0.5*pi*i)
|
1416 |
+
assert tan(4.5*i*pi) == tan(0.5*pi*i)
|
1417 |
+
assert cot(4.5*i*pi) == cot(0.5*pi*i)
|
1418 |
+
|
1419 |
+
# parity of variable is known
|
1420 |
+
assert cos(4*e*pi) == 1
|
1421 |
+
assert sin(4*e*pi) == 0
|
1422 |
+
assert tan(4*e*pi) == 0
|
1423 |
+
assert cot(4*e*pi) is zoo
|
1424 |
+
|
1425 |
+
assert cos(3*e*pi) == 1
|
1426 |
+
assert sin(3*e*pi) == 0
|
1427 |
+
assert tan(3*e*pi) == 0
|
1428 |
+
assert cot(3*e*pi) is zoo
|
1429 |
+
|
1430 |
+
assert cos(4.0*e*pi) == 1
|
1431 |
+
assert sin(4.0*e*pi) == 0
|
1432 |
+
assert tan(4.0*e*pi) == 0
|
1433 |
+
assert cot(4.0*e*pi) is zoo
|
1434 |
+
|
1435 |
+
assert cos(3.0*e*pi) == 1
|
1436 |
+
assert sin(3.0*e*pi) == 0
|
1437 |
+
assert tan(3.0*e*pi) == 0
|
1438 |
+
assert cot(3.0*e*pi) is zoo
|
1439 |
+
|
1440 |
+
assert cos(4.5*e*pi) == cos(0.5*pi*e)
|
1441 |
+
assert sin(4.5*e*pi) == sin(0.5*pi*e)
|
1442 |
+
assert tan(4.5*e*pi) == tan(0.5*pi*e)
|
1443 |
+
assert cot(4.5*e*pi) == cot(0.5*pi*e)
|
1444 |
+
|
1445 |
+
assert cos(4*o*pi) == 1
|
1446 |
+
assert sin(4*o*pi) == 0
|
1447 |
+
assert tan(4*o*pi) == 0
|
1448 |
+
assert cot(4*o*pi) is zoo
|
1449 |
+
|
1450 |
+
assert cos(3*o*pi) == -1
|
1451 |
+
assert sin(3*o*pi) == 0
|
1452 |
+
assert tan(3*o*pi) == 0
|
1453 |
+
assert cot(3*o*pi) is zoo
|
1454 |
+
|
1455 |
+
assert cos(4.0*o*pi) == 1
|
1456 |
+
assert sin(4.0*o*pi) == 0
|
1457 |
+
assert tan(4.0*o*pi) == 0
|
1458 |
+
assert cot(4.0*o*pi) is zoo
|
1459 |
+
|
1460 |
+
assert cos(3.0*o*pi) == -1
|
1461 |
+
assert sin(3.0*o*pi) == 0
|
1462 |
+
assert tan(3.0*o*pi) == 0
|
1463 |
+
assert cot(3.0*o*pi) is zoo
|
1464 |
+
|
1465 |
+
assert cos(4.5*o*pi) == cos(0.5*pi*o)
|
1466 |
+
assert sin(4.5*o*pi) == sin(0.5*pi*o)
|
1467 |
+
assert tan(4.5*o*pi) == tan(0.5*pi*o)
|
1468 |
+
assert cot(4.5*o*pi) == cot(0.5*pi*o)
|
1469 |
+
|
1470 |
+
# x could be imaginary
|
1471 |
+
assert cos(4*x*pi) == cos(4*pi*x)
|
1472 |
+
assert sin(4*x*pi) == sin(4*pi*x)
|
1473 |
+
assert tan(4*x*pi) == tan(4*pi*x)
|
1474 |
+
assert cot(4*x*pi) == cot(4*pi*x)
|
1475 |
+
|
1476 |
+
assert cos(3*x*pi) == cos(3*pi*x)
|
1477 |
+
assert sin(3*x*pi) == sin(3*pi*x)
|
1478 |
+
assert tan(3*x*pi) == tan(3*pi*x)
|
1479 |
+
assert cot(3*x*pi) == cot(3*pi*x)
|
1480 |
+
|
1481 |
+
assert cos(4.0*x*pi) == cos(4.0*pi*x)
|
1482 |
+
assert sin(4.0*x*pi) == sin(4.0*pi*x)
|
1483 |
+
assert tan(4.0*x*pi) == tan(4.0*pi*x)
|
1484 |
+
assert cot(4.0*x*pi) == cot(4.0*pi*x)
|
1485 |
+
|
1486 |
+
assert cos(3.0*x*pi) == cos(3.0*pi*x)
|
1487 |
+
assert sin(3.0*x*pi) == sin(3.0*pi*x)
|
1488 |
+
assert tan(3.0*x*pi) == tan(3.0*pi*x)
|
1489 |
+
assert cot(3.0*x*pi) == cot(3.0*pi*x)
|
1490 |
+
|
1491 |
+
assert cos(4.5*x*pi) == cos(4.5*pi*x)
|
1492 |
+
assert sin(4.5*x*pi) == sin(4.5*pi*x)
|
1493 |
+
assert tan(4.5*x*pi) == tan(4.5*pi*x)
|
1494 |
+
assert cot(4.5*x*pi) == cot(4.5*pi*x)
|
1495 |
+
|
1496 |
+
|
1497 |
+
def test_inverses():
|
1498 |
+
raises(AttributeError, lambda: sin(x).inverse())
|
1499 |
+
raises(AttributeError, lambda: cos(x).inverse())
|
1500 |
+
assert tan(x).inverse() == atan
|
1501 |
+
assert cot(x).inverse() == acot
|
1502 |
+
raises(AttributeError, lambda: csc(x).inverse())
|
1503 |
+
raises(AttributeError, lambda: sec(x).inverse())
|
1504 |
+
assert asin(x).inverse() == sin
|
1505 |
+
assert acos(x).inverse() == cos
|
1506 |
+
assert atan(x).inverse() == tan
|
1507 |
+
assert acot(x).inverse() == cot
|
1508 |
+
|
1509 |
+
|
1510 |
+
def test_real_imag():
|
1511 |
+
a, b = symbols('a b', real=True)
|
1512 |
+
z = a + b*I
|
1513 |
+
for deep in [True, False]:
|
1514 |
+
assert sin(
|
1515 |
+
z).as_real_imag(deep=deep) == (sin(a)*cosh(b), cos(a)*sinh(b))
|
1516 |
+
assert cos(
|
1517 |
+
z).as_real_imag(deep=deep) == (cos(a)*cosh(b), -sin(a)*sinh(b))
|
1518 |
+
assert tan(z).as_real_imag(deep=deep) == (sin(2*a)/(cos(2*a) +
|
1519 |
+
cosh(2*b)), sinh(2*b)/(cos(2*a) + cosh(2*b)))
|
1520 |
+
assert cot(z).as_real_imag(deep=deep) == (-sin(2*a)/(cos(2*a) -
|
1521 |
+
cosh(2*b)), sinh(2*b)/(cos(2*a) - cosh(2*b)))
|
1522 |
+
assert sin(a).as_real_imag(deep=deep) == (sin(a), 0)
|
1523 |
+
assert cos(a).as_real_imag(deep=deep) == (cos(a), 0)
|
1524 |
+
assert tan(a).as_real_imag(deep=deep) == (tan(a), 0)
|
1525 |
+
assert cot(a).as_real_imag(deep=deep) == (cot(a), 0)
|
1526 |
+
|
1527 |
+
|
1528 |
+
@XFAIL
|
1529 |
+
def test_sin_cos_with_infinity():
|
1530 |
+
# Test for issue 5196
|
1531 |
+
# https://github.com/sympy/sympy/issues/5196
|
1532 |
+
assert sin(oo) is S.NaN
|
1533 |
+
assert cos(oo) is S.NaN
|
1534 |
+
|
1535 |
+
|
1536 |
+
@slow
|
1537 |
+
def test_sincos_rewrite_sqrt():
|
1538 |
+
# equivalent to testing rewrite(pow)
|
1539 |
+
for p in [1, 3, 5, 17]:
|
1540 |
+
for t in [1, 8]:
|
1541 |
+
n = t*p
|
1542 |
+
# The vertices `exp(i*pi/n)` of a regular `n`-gon can
|
1543 |
+
# be expressed by means of nested square roots if and
|
1544 |
+
# only if `n` is a product of Fermat primes, `p`, and
|
1545 |
+
# powers of 2, `t'. The code aims to check all vertices
|
1546 |
+
# not belonging to an `m`-gon for `m < n`(`gcd(i, n) == 1`).
|
1547 |
+
# For large `n` this makes the test too slow, therefore
|
1548 |
+
# the vertices are limited to those of index `i < 10`.
|
1549 |
+
for i in range(1, min((n + 1)//2 + 1, 10)):
|
1550 |
+
if 1 == gcd(i, n):
|
1551 |
+
x = i*pi/n
|
1552 |
+
s1 = sin(x).rewrite(sqrt)
|
1553 |
+
c1 = cos(x).rewrite(sqrt)
|
1554 |
+
assert not s1.has(cos, sin), "fails for %d*pi/%d" % (i, n)
|
1555 |
+
assert not c1.has(cos, sin), "fails for %d*pi/%d" % (i, n)
|
1556 |
+
assert 1e-3 > abs(sin(x.evalf(5)) - s1.evalf(2)), "fails for %d*pi/%d" % (i, n)
|
1557 |
+
assert 1e-3 > abs(cos(x.evalf(5)) - c1.evalf(2)), "fails for %d*pi/%d" % (i, n)
|
1558 |
+
assert cos(pi/14).rewrite(sqrt) == sqrt(cos(pi/7)/2 + S.Half)
|
1559 |
+
assert cos(pi*Rational(-15, 2)/11, evaluate=False).rewrite(
|
1560 |
+
sqrt) == -sqrt(-cos(pi*Rational(4, 11))/2 + S.Half)
|
1561 |
+
assert cos(Mul(2, pi, S.Half, evaluate=False), evaluate=False).rewrite(
|
1562 |
+
sqrt) == -1
|
1563 |
+
e = cos(pi/3/17) # don't use pi/15 since that is caught at instantiation
|
1564 |
+
a = (
|
1565 |
+
-3*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17) + 17)/64 -
|
1566 |
+
3*sqrt(34)*sqrt(sqrt(17) + 17)/128 - sqrt(sqrt(17) +
|
1567 |
+
17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17)
|
1568 |
+
+ sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - sqrt(-sqrt(17)
|
1569 |
+
+ 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1570 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 - Rational(1, 32) +
|
1571 |
+
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1572 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 +
|
1573 |
+
3*sqrt(2)*sqrt(sqrt(17) + 17)/128 + sqrt(34)*sqrt(-sqrt(17) + 17)/128
|
1574 |
+
+ 13*sqrt(2)*sqrt(-sqrt(17) + 17)/128 + sqrt(17)*sqrt(-sqrt(17) +
|
1575 |
+
17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17)
|
1576 |
+
+ sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 + 5*sqrt(17)/32
|
1577 |
+
+ sqrt(3)*sqrt(-sqrt(2)*sqrt(sqrt(17) + 17)*sqrt(sqrt(17)/32 +
|
1578 |
+
sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
|
1579 |
+
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1580 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/8 -
|
1581 |
+
5*sqrt(2)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
|
1582 |
+
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1583 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
|
1584 |
+
Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1585 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 -
|
1586 |
+
3*sqrt(2)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 +
|
1587 |
+
sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
|
1588 |
+
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1589 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/32
|
1590 |
+
+ sqrt(34)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
|
1591 |
+
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1592 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
|
1593 |
+
Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1594 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 +
|
1595 |
+
sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
|
1596 |
+
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1597 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/2 +
|
1598 |
+
S.Half + sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) +
|
1599 |
+
17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) -
|
1600 |
+
sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) +
|
1601 |
+
6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) -
|
1602 |
+
sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) +
|
1603 |
+
6*sqrt(17) + 34)/32 + sqrt(34)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 +
|
1604 |
+
sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
|
1605 |
+
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
|
1606 |
+
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
|
1607 |
+
Rational(15, 32))/32)/2)
|
1608 |
+
assert e.rewrite(sqrt) == a
|
1609 |
+
assert e.n() == a.n()
|
1610 |
+
# coverage of fermatCoords: multiplicity > 1; the following could be
|
1611 |
+
# different but that portion of the code should be tested in some way
|
1612 |
+
assert cos(pi/9/17).rewrite(sqrt) == \
|
1613 |
+
sin(pi/9)*sin(pi*Rational(2, 17)) + cos(pi/9)*cos(pi*Rational(2, 17))
|
1614 |
+
|
1615 |
+
|
1616 |
+
@slow
|
1617 |
+
def test_sincos_rewrite_sqrt_257():
|
1618 |
+
assert cos(pi/257).rewrite(sqrt).evalf(64) == cos(pi/257).evalf(64)
|
1619 |
+
|
1620 |
+
|
1621 |
+
@slow
|
1622 |
+
def test_tancot_rewrite_sqrt():
|
1623 |
+
# equivalent to testing rewrite(pow)
|
1624 |
+
for p in [1, 3, 5, 17]:
|
1625 |
+
for t in [1, 8]:
|
1626 |
+
n = t*p
|
1627 |
+
for i in range(1, min((n + 1)//2 + 1, 10)):
|
1628 |
+
if 1 == gcd(i, n):
|
1629 |
+
x = i*pi/n
|
1630 |
+
if 2*i != n and 3*i != 2*n:
|
1631 |
+
t1 = tan(x).rewrite(sqrt)
|
1632 |
+
assert not t1.has(cot, tan), "fails for %d*pi/%d" % (i, n)
|
1633 |
+
assert 1e-3 > abs( tan(x.evalf(7)) - t1.evalf(4) ), "fails for %d*pi/%d" % (i, n)
|
1634 |
+
if i != 0 and i != n:
|
1635 |
+
c1 = cot(x).rewrite(sqrt)
|
1636 |
+
assert not c1.has(cot, tan), "fails for %d*pi/%d" % (i, n)
|
1637 |
+
assert 1e-3 > abs( cot(x.evalf(7)) - c1.evalf(4) ), "fails for %d*pi/%d" % (i, n)
|
1638 |
+
|
1639 |
+
|
1640 |
+
def test_sec():
|
1641 |
+
x = symbols('x', real=True)
|
1642 |
+
z = symbols('z')
|
1643 |
+
|
1644 |
+
assert sec.nargs == FiniteSet(1)
|
1645 |
+
|
1646 |
+
assert sec(zoo) is nan
|
1647 |
+
assert sec(0) == 1
|
1648 |
+
assert sec(pi) == -1
|
1649 |
+
assert sec(pi/2) is zoo
|
1650 |
+
assert sec(-pi/2) is zoo
|
1651 |
+
assert sec(pi/6) == 2*sqrt(3)/3
|
1652 |
+
assert sec(pi/3) == 2
|
1653 |
+
assert sec(pi*Rational(5, 2)) is zoo
|
1654 |
+
assert sec(pi*Rational(9, 7)) == -sec(pi*Rational(2, 7))
|
1655 |
+
assert sec(pi*Rational(3, 4)) == -sqrt(2) # issue 8421
|
1656 |
+
assert sec(I) == 1/cosh(1)
|
1657 |
+
assert sec(x*I) == 1/cosh(x)
|
1658 |
+
assert sec(-x) == sec(x)
|
1659 |
+
|
1660 |
+
assert sec(asec(x)) == x
|
1661 |
+
|
1662 |
+
assert sec(z).conjugate() == sec(conjugate(z))
|
1663 |
+
|
1664 |
+
assert (sec(z).as_real_imag() ==
|
1665 |
+
(cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
|
1666 |
+
cos(re(z))**2*cosh(im(z))**2),
|
1667 |
+
sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
|
1668 |
+
cos(re(z))**2*cosh(im(z))**2)))
|
1669 |
+
|
1670 |
+
assert sec(x).expand(trig=True) == 1/cos(x)
|
1671 |
+
assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1)
|
1672 |
+
|
1673 |
+
assert sec(x).is_extended_real == True
|
1674 |
+
assert sec(z).is_real == None
|
1675 |
+
|
1676 |
+
assert sec(a).is_algebraic is None
|
1677 |
+
assert sec(na).is_algebraic is False
|
1678 |
+
|
1679 |
+
assert sec(x).as_leading_term() == sec(x)
|
1680 |
+
|
1681 |
+
assert sec(0, evaluate=False).is_finite == True
|
1682 |
+
assert sec(x).is_finite == None
|
1683 |
+
assert sec(pi/2, evaluate=False).is_finite == False
|
1684 |
+
|
1685 |
+
assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6)
|
1686 |
+
|
1687 |
+
# https://github.com/sympy/sympy/issues/7166
|
1688 |
+
assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6)
|
1689 |
+
|
1690 |
+
# https://github.com/sympy/sympy/issues/7167
|
1691 |
+
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
|
1692 |
+
1/sqrt(x - pi*Rational(3, 2)) + (x - pi*Rational(3, 2))**Rational(3, 2)/12 +
|
1693 |
+
(x - pi*Rational(3, 2))**Rational(7, 2)/160 + O((x - pi*Rational(3, 2))**4, (x, pi*Rational(3, 2))))
|
1694 |
+
|
1695 |
+
assert sec(x).diff(x) == tan(x)*sec(x)
|
1696 |
+
|
1697 |
+
# Taylor Term checks
|
1698 |
+
assert sec(z).taylor_term(4, z) == 5*z**4/24
|
1699 |
+
assert sec(z).taylor_term(6, z) == 61*z**6/720
|
1700 |
+
assert sec(z).taylor_term(5, z) == 0
|
1701 |
+
|
1702 |
+
|
1703 |
+
def test_sec_rewrite():
|
1704 |
+
assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2)
|
1705 |
+
assert sec(x).rewrite(cos) == 1/cos(x)
|
1706 |
+
assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1)
|
1707 |
+
assert sec(x).rewrite(pow) == sec(x)
|
1708 |
+
assert sec(x).rewrite(sqrt) == sec(x)
|
1709 |
+
assert sec(z).rewrite(cot) == (cot(z/2)**2 + 1)/(cot(z/2)**2 - 1)
|
1710 |
+
assert sec(x).rewrite(sin) == 1 / sin(x + pi / 2, evaluate=False)
|
1711 |
+
assert sec(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (-tan(x / 2)**2 + 1)
|
1712 |
+
assert sec(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)
|
1713 |
+
|
1714 |
+
|
1715 |
+
def test_sec_fdiff():
|
1716 |
+
assert sec(x).fdiff() == tan(x)*sec(x)
|
1717 |
+
raises(ArgumentIndexError, lambda: sec(x).fdiff(2))
|
1718 |
+
|
1719 |
+
|
1720 |
+
def test_csc():
|
1721 |
+
x = symbols('x', real=True)
|
1722 |
+
z = symbols('z')
|
1723 |
+
|
1724 |
+
# https://github.com/sympy/sympy/issues/6707
|
1725 |
+
cosecant = csc('x')
|
1726 |
+
alternate = 1/sin('x')
|
1727 |
+
assert cosecant.equals(alternate) == True
|
1728 |
+
assert alternate.equals(cosecant) == True
|
1729 |
+
|
1730 |
+
assert csc.nargs == FiniteSet(1)
|
1731 |
+
|
1732 |
+
assert csc(0) is zoo
|
1733 |
+
assert csc(pi) is zoo
|
1734 |
+
assert csc(zoo) is nan
|
1735 |
+
|
1736 |
+
assert csc(pi/2) == 1
|
1737 |
+
assert csc(-pi/2) == -1
|
1738 |
+
assert csc(pi/6) == 2
|
1739 |
+
assert csc(pi/3) == 2*sqrt(3)/3
|
1740 |
+
assert csc(pi*Rational(5, 2)) == 1
|
1741 |
+
assert csc(pi*Rational(9, 7)) == -csc(pi*Rational(2, 7))
|
1742 |
+
assert csc(pi*Rational(3, 4)) == sqrt(2) # issue 8421
|
1743 |
+
assert csc(I) == -I/sinh(1)
|
1744 |
+
assert csc(x*I) == -I/sinh(x)
|
1745 |
+
assert csc(-x) == -csc(x)
|
1746 |
+
|
1747 |
+
assert csc(acsc(x)) == x
|
1748 |
+
|
1749 |
+
assert csc(z).conjugate() == csc(conjugate(z))
|
1750 |
+
|
1751 |
+
assert (csc(z).as_real_imag() ==
|
1752 |
+
(sin(re(z))*cosh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
|
1753 |
+
cos(re(z))**2*sinh(im(z))**2),
|
1754 |
+
-cos(re(z))*sinh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
|
1755 |
+
cos(re(z))**2*sinh(im(z))**2)))
|
1756 |
+
|
1757 |
+
assert csc(x).expand(trig=True) == 1/sin(x)
|
1758 |
+
assert csc(2*x).expand(trig=True) == 1/(2*sin(x)*cos(x))
|
1759 |
+
|
1760 |
+
assert csc(x).is_extended_real == True
|
1761 |
+
assert csc(z).is_real == None
|
1762 |
+
|
1763 |
+
assert csc(a).is_algebraic is None
|
1764 |
+
assert csc(na).is_algebraic is False
|
1765 |
+
|
1766 |
+
assert csc(x).as_leading_term() == csc(x)
|
1767 |
+
|
1768 |
+
assert csc(0, evaluate=False).is_finite == False
|
1769 |
+
assert csc(x).is_finite == None
|
1770 |
+
assert csc(pi/2, evaluate=False).is_finite == True
|
1771 |
+
|
1772 |
+
assert series(csc(x), x, x0=pi/2, n=6) == \
|
1773 |
+
1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2))
|
1774 |
+
assert series(csc(x), x, x0=0, n=6) == \
|
1775 |
+
1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6)
|
1776 |
+
|
1777 |
+
assert csc(x).diff(x) == -cot(x)*csc(x)
|
1778 |
+
|
1779 |
+
assert csc(x).taylor_term(2, x) == 0
|
1780 |
+
assert csc(x).taylor_term(3, x) == 7*x**3/360
|
1781 |
+
assert csc(x).taylor_term(5, x) == 31*x**5/15120
|
1782 |
+
raises(ArgumentIndexError, lambda: csc(x).fdiff(2))
|
1783 |
+
|
1784 |
+
|
1785 |
+
def test_asec():
|
1786 |
+
z = Symbol('z', zero=True)
|
1787 |
+
assert asec(z) is zoo
|
1788 |
+
assert asec(nan) is nan
|
1789 |
+
assert asec(1) == 0
|
1790 |
+
assert asec(-1) == pi
|
1791 |
+
assert asec(oo) == pi/2
|
1792 |
+
assert asec(-oo) == pi/2
|
1793 |
+
assert asec(zoo) == pi/2
|
1794 |
+
|
1795 |
+
assert asec(sec(pi*Rational(13, 4))) == pi*Rational(3, 4)
|
1796 |
+
assert asec(1 + sqrt(5)) == pi*Rational(2, 5)
|
1797 |
+
assert asec(2/sqrt(3)) == pi/6
|
1798 |
+
assert asec(sqrt(4 - 2*sqrt(2))) == pi/8
|
1799 |
+
assert asec(-sqrt(4 + 2*sqrt(2))) == pi*Rational(5, 8)
|
1800 |
+
assert asec(sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(3, 10)
|
1801 |
+
assert asec(-sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(7, 10)
|
1802 |
+
assert asec(sqrt(2) - sqrt(6)) == pi*Rational(11, 12)
|
1803 |
+
|
1804 |
+
assert asec(x).diff(x) == 1/(x**2*sqrt(1 - 1/x**2))
|
1805 |
+
|
1806 |
+
assert asec(x).rewrite(log) == I*log(sqrt(1 - 1/x**2) + I/x) + pi/2
|
1807 |
+
assert asec(x).rewrite(asin) == -asin(1/x) + pi/2
|
1808 |
+
assert asec(x).rewrite(acos) == acos(1/x)
|
1809 |
+
assert asec(x).rewrite(atan) == \
|
1810 |
+
pi*(1 - sqrt(x**2)/x)/2 + sqrt(x**2)*atan(sqrt(x**2 - 1))/x
|
1811 |
+
assert asec(x).rewrite(acot) == \
|
1812 |
+
pi*(1 - sqrt(x**2)/x)/2 + sqrt(x**2)*acot(1/sqrt(x**2 - 1))/x
|
1813 |
+
assert asec(x).rewrite(acsc) == -acsc(x) + pi/2
|
1814 |
+
raises(ArgumentIndexError, lambda: asec(x).fdiff(2))
|
1815 |
+
|
1816 |
+
|
1817 |
+
def test_asec_is_real():
|
1818 |
+
assert asec(S.Half).is_real is False
|
1819 |
+
n = Symbol('n', positive=True, integer=True)
|
1820 |
+
assert asec(n).is_extended_real is True
|
1821 |
+
assert asec(x).is_real is None
|
1822 |
+
assert asec(r).is_real is None
|
1823 |
+
t = Symbol('t', real=False, finite=True)
|
1824 |
+
assert asec(t).is_real is False
|
1825 |
+
|
1826 |
+
|
1827 |
+
def test_asec_leading_term():
|
1828 |
+
assert asec(1/x).as_leading_term(x) == pi/2
|
1829 |
+
# Tests concerning branch points
|
1830 |
+
assert asec(x + 1).as_leading_term(x) == sqrt(2)*sqrt(x)
|
1831 |
+
assert asec(x - 1).as_leading_term(x) == pi
|
1832 |
+
# Tests concerning points lying on branch cuts
|
1833 |
+
assert asec(x).as_leading_term(x, cdir=1) == -I*log(x) + I*log(2)
|
1834 |
+
assert asec(x).as_leading_term(x, cdir=-1) == I*log(x) + 2*pi - I*log(2)
|
1835 |
+
assert asec(I*x + 1/2).as_leading_term(x, cdir=1) == asec(1/2)
|
1836 |
+
assert asec(-I*x + 1/2).as_leading_term(x, cdir=1) == -asec(1/2)
|
1837 |
+
assert asec(I*x - 1/2).as_leading_term(x, cdir=1) == 2*pi - asec(-1/2)
|
1838 |
+
assert asec(-I*x - 1/2).as_leading_term(x, cdir=1) == asec(-1/2)
|
1839 |
+
# Tests concerning im(ndir) == 0
|
1840 |
+
assert asec(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=1) == pi + I*log(2 - sqrt(3))
|
1841 |
+
assert asec(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=-1) == pi + I*log(2 - sqrt(3))
|
1842 |
+
|
1843 |
+
|
1844 |
+
def test_asec_series():
|
1845 |
+
assert asec(x).series(x, 0, 9) == \
|
1846 |
+
I*log(2) - I*log(x) - I*x**2/4 - 3*I*x**4/32 \
|
1847 |
+
- 5*I*x**6/96 - 35*I*x**8/1024 + O(x**9)
|
1848 |
+
t4 = asec(x).taylor_term(4, x)
|
1849 |
+
assert t4 == -3*I*x**4/32
|
1850 |
+
assert asec(x).taylor_term(6, x, t4, 0) == -5*I*x**6/96
|
1851 |
+
|
1852 |
+
|
1853 |
+
def test_acsc():
|
1854 |
+
assert acsc(nan) is nan
|
1855 |
+
assert acsc(1) == pi/2
|
1856 |
+
assert acsc(-1) == -pi/2
|
1857 |
+
assert acsc(oo) == 0
|
1858 |
+
assert acsc(-oo) == 0
|
1859 |
+
assert acsc(zoo) == 0
|
1860 |
+
assert acsc(0) is zoo
|
1861 |
+
|
1862 |
+
assert acsc(csc(3)) == -3 + pi
|
1863 |
+
assert acsc(csc(4)) == -4 + pi
|
1864 |
+
assert acsc(csc(6)) == 6 - 2*pi
|
1865 |
+
assert unchanged(acsc, csc(x))
|
1866 |
+
assert unchanged(acsc, sec(x))
|
1867 |
+
|
1868 |
+
assert acsc(2/sqrt(3)) == pi/3
|
1869 |
+
assert acsc(csc(pi*Rational(13, 4))) == -pi/4
|
1870 |
+
assert acsc(sqrt(2 + 2*sqrt(5)/5)) == pi/5
|
1871 |
+
assert acsc(-sqrt(2 + 2*sqrt(5)/5)) == -pi/5
|
1872 |
+
assert acsc(-2) == -pi/6
|
1873 |
+
assert acsc(-sqrt(4 + 2*sqrt(2))) == -pi/8
|
1874 |
+
assert acsc(sqrt(4 - 2*sqrt(2))) == pi*Rational(3, 8)
|
1875 |
+
assert acsc(1 + sqrt(5)) == pi/10
|
1876 |
+
assert acsc(sqrt(2) - sqrt(6)) == pi*Rational(-5, 12)
|
1877 |
+
|
1878 |
+
assert acsc(x).diff(x) == -1/(x**2*sqrt(1 - 1/x**2))
|
1879 |
+
|
1880 |
+
assert acsc(x).rewrite(log) == -I*log(sqrt(1 - 1/x**2) + I/x)
|
1881 |
+
assert acsc(x).rewrite(asin) == asin(1/x)
|
1882 |
+
assert acsc(x).rewrite(acos) == -acos(1/x) + pi/2
|
1883 |
+
assert acsc(x).rewrite(atan) == \
|
1884 |
+
(-atan(sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
|
1885 |
+
assert acsc(x).rewrite(acot) == (-acot(1/sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
|
1886 |
+
assert acsc(x).rewrite(asec) == -asec(x) + pi/2
|
1887 |
+
raises(ArgumentIndexError, lambda: acsc(x).fdiff(2))
|
1888 |
+
|
1889 |
+
|
1890 |
+
def test_csc_rewrite():
|
1891 |
+
assert csc(x).rewrite(pow) == csc(x)
|
1892 |
+
assert csc(x).rewrite(sqrt) == csc(x)
|
1893 |
+
|
1894 |
+
assert csc(x).rewrite(exp) == 2*I/(exp(I*x) - exp(-I*x))
|
1895 |
+
assert csc(x).rewrite(sin) == 1/sin(x)
|
1896 |
+
assert csc(x).rewrite(tan) == (tan(x/2)**2 + 1)/(2*tan(x/2))
|
1897 |
+
assert csc(x).rewrite(cot) == (cot(x/2)**2 + 1)/(2*cot(x/2))
|
1898 |
+
assert csc(x).rewrite(cos) == 1/cos(x - pi/2, evaluate=False)
|
1899 |
+
assert csc(x).rewrite(sec) == sec(-x + pi/2, evaluate=False)
|
1900 |
+
|
1901 |
+
# issue 17349
|
1902 |
+
assert csc(1 - exp(-besselj(I, I))).rewrite(cos) == \
|
1903 |
+
-1/cos(-pi/2 - 1 + cos(I*besselj(I, I)) +
|
1904 |
+
I*cos(-pi/2 + I*besselj(I, I), evaluate=False), evaluate=False)
|
1905 |
+
|
1906 |
+
|
1907 |
+
def test_acsc_leading_term():
|
1908 |
+
assert acsc(1/x).as_leading_term(x) == x
|
1909 |
+
# Tests concerning branch points
|
1910 |
+
assert acsc(x + 1).as_leading_term(x) == pi/2
|
1911 |
+
assert acsc(x - 1).as_leading_term(x) == -pi/2
|
1912 |
+
# Tests concerning points lying on branch cuts
|
1913 |
+
assert acsc(x).as_leading_term(x, cdir=1) == I*log(x) + pi/2 - I*log(2)
|
1914 |
+
assert acsc(x).as_leading_term(x, cdir=-1) == -I*log(x) - 3*pi/2 + I*log(2)
|
1915 |
+
assert acsc(I*x + 1/2).as_leading_term(x, cdir=1) == acsc(1/2)
|
1916 |
+
assert acsc(-I*x + 1/2).as_leading_term(x, cdir=1) == pi - acsc(1/2)
|
1917 |
+
assert acsc(I*x - 1/2).as_leading_term(x, cdir=1) == -pi - acsc(-1/2)
|
1918 |
+
assert acsc(-I*x - 1/2).as_leading_term(x, cdir=1) == -acsc(1/2)
|
1919 |
+
# Tests concerning im(ndir) == 0
|
1920 |
+
assert acsc(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=1) == -pi/2 + I*log(sqrt(3) + 2)
|
1921 |
+
assert acsc(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(sqrt(3) + 2)
|
1922 |
+
|
1923 |
+
|
1924 |
+
def test_acsc_series():
|
1925 |
+
assert acsc(x).series(x, 0, 9) == \
|
1926 |
+
-I*log(2) + pi/2 + I*log(x) + I*x**2/4 \
|
1927 |
+
+ 3*I*x**4/32 + 5*I*x**6/96 + 35*I*x**8/1024 + O(x**9)
|
1928 |
+
t6 = acsc(x).taylor_term(6, x)
|
1929 |
+
assert t6 == 5*I*x**6/96
|
1930 |
+
assert acsc(x).taylor_term(8, x, t6, 0) == 35*I*x**8/1024
|
1931 |
+
|
1932 |
+
|
1933 |
+
def test_asin_nseries():
|
1934 |
+
assert asin(x + 2)._eval_nseries(x, 4, None, I) == -asin(2) + pi + \
|
1935 |
+
sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
|
1936 |
+
assert asin(x + 2)._eval_nseries(x, 4, None, -I) == asin(2) - \
|
1937 |
+
sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
|
1938 |
+
assert asin(x - 2)._eval_nseries(x, 4, None, I) == -asin(2) - \
|
1939 |
+
sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
|
1940 |
+
assert asin(x - 2)._eval_nseries(x, 4, None, -I) == asin(2) - pi + \
|
1941 |
+
sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
|
1942 |
+
# testing nseries for asin at branch points
|
1943 |
+
assert asin(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) - \
|
1944 |
+
sqrt(2)*(-x)**(S(3)/2)/12 - 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
|
1945 |
+
assert asin(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) + \
|
1946 |
+
sqrt(2)*x**(S(3)/2)/12 + 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
|
1947 |
+
assert asin(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) + \
|
1948 |
+
sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
|
1949 |
+
assert asin(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - \
|
1950 |
+
sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
|
1951 |
+
|
1952 |
+
|
1953 |
+
def test_acos_nseries():
|
1954 |
+
assert acos(x + 2)._eval_nseries(x, 4, None, I) == -acos(2) - sqrt(3)*I*x/3 + \
|
1955 |
+
sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
|
1956 |
+
assert acos(x + 2)._eval_nseries(x, 4, None, -I) == acos(2) + sqrt(3)*I*x/3 - \
|
1957 |
+
sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
|
1958 |
+
assert acos(x - 2)._eval_nseries(x, 4, None, I) == acos(-2) + sqrt(3)*I*x/3 + \
|
1959 |
+
sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
|
1960 |
+
assert acos(x - 2)._eval_nseries(x, 4, None, -I) == -acos(-2) + 2*pi - \
|
1961 |
+
sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
|
1962 |
+
# testing nseries for acos at branch points
|
1963 |
+
assert acos(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) + \
|
1964 |
+
sqrt(2)*(-x)**(S(3)/2)/12 + 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
|
1965 |
+
assert acos(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) - \
|
1966 |
+
sqrt(2)*x**(S(3)/2)/12 - 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
|
1967 |
+
assert acos(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) - \
|
1968 |
+
sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
|
1969 |
+
assert acos(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + \
|
1970 |
+
sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
|
1971 |
+
|
1972 |
+
|
1973 |
+
def test_atan_nseries():
|
1974 |
+
assert atan(x + 2*I)._eval_nseries(x, 4, None, 1) == I*atanh(2) - x/3 - \
|
1975 |
+
2*I*x**2/9 + 13*x**3/81 + O(x**4)
|
1976 |
+
assert atan(x + 2*I)._eval_nseries(x, 4, None, -1) == I*atanh(2) - pi - \
|
1977 |
+
x/3 - 2*I*x**2/9 + 13*x**3/81 + O(x**4)
|
1978 |
+
assert atan(x - 2*I)._eval_nseries(x, 4, None, 1) == -I*atanh(2) + pi - \
|
1979 |
+
x/3 + 2*I*x**2/9 + 13*x**3/81 + O(x**4)
|
1980 |
+
assert atan(x - 2*I)._eval_nseries(x, 4, None, -1) == -I*atanh(2) - x/3 + \
|
1981 |
+
2*I*x**2/9 + 13*x**3/81 + O(x**4)
|
1982 |
+
assert atan(1/x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2)
|
1983 |
+
assert atan(1/x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2)
|
1984 |
+
# testing nseries for atan at branch points
|
1985 |
+
assert atan(x + I)._eval_nseries(x, 4, None) == I*log(2)/2 + pi/4 - \
|
1986 |
+
I*log(x)/2 + x/4 + I*x**2/16 - x**3/48 + O(x**4)
|
1987 |
+
assert atan(x - I)._eval_nseries(x, 4, None) == -I*log(2)/2 + pi/4 + \
|
1988 |
+
I*log(x)/2 + x/4 - I*x**2/16 - x**3/48 + O(x**4)
|
1989 |
+
|
1990 |
+
|
1991 |
+
def test_acot_nseries():
|
1992 |
+
assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, 1) == -I*acoth(S(1)/2) + \
|
1993 |
+
pi - 4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4)
|
1994 |
+
assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, -1) == -I*acoth(S(1)/2) - \
|
1995 |
+
4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4)
|
1996 |
+
assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, 1) == I*acoth(S(1)/2) - \
|
1997 |
+
4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4)
|
1998 |
+
assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, -1) == I*acoth(S(1)/2) - \
|
1999 |
+
pi - 4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4)
|
2000 |
+
assert acot(x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2)
|
2001 |
+
assert acot(x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2)
|
2002 |
+
# testing nseries for acot at branch points
|
2003 |
+
assert acot(x + I)._eval_nseries(x, 4, None) == -I*log(2)/2 + pi/4 + \
|
2004 |
+
I*log(x)/2 - x/4 - I*x**2/16 + x**3/48 + O(x**4)
|
2005 |
+
assert acot(x - I)._eval_nseries(x, 4, None) == I*log(2)/2 + pi/4 - \
|
2006 |
+
I*log(x)/2 - x/4 + I*x**2/16 + x**3/48 + O(x**4)
|
2007 |
+
|
2008 |
+
|
2009 |
+
def test_asec_nseries():
|
2010 |
+
assert asec(x + S(1)/2)._eval_nseries(x, 4, None, I) == asec(S(1)/2) - \
|
2011 |
+
4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
|
2012 |
+
assert asec(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -asec(S(1)/2) + \
|
2013 |
+
4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
|
2014 |
+
assert asec(x - S(1)/2)._eval_nseries(x, 4, None, I) == -asec(-S(1)/2) + \
|
2015 |
+
2*pi + 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
|
2016 |
+
assert asec(x - S(1)/2)._eval_nseries(x, 4, None, -I) == asec(-S(1)/2) - \
|
2017 |
+
4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
|
2018 |
+
# testing nseries for asec at branch points
|
2019 |
+
assert asec(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - \
|
2020 |
+
5*sqrt(2)*x**(S(3)/2)/12 + 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
|
2021 |
+
assert asec(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + \
|
2022 |
+
5*sqrt(2)*(-x)**(S(3)/2)/12 - 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
|
2023 |
+
assert asec(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - \
|
2024 |
+
sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3)
|
2025 |
+
assert asec(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) + \
|
2026 |
+
sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3)
|
2027 |
+
|
2028 |
+
|
2029 |
+
def test_acsc_nseries():
|
2030 |
+
assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) + \
|
2031 |
+
4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
|
2032 |
+
assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + \
|
2033 |
+
pi - 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
|
2034 |
+
assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) - pi -\
|
2035 |
+
4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
|
2036 |
+
assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + \
|
2037 |
+
4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
|
2038 |
+
# testing nseries for acsc at branch points
|
2039 |
+
assert acsc(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + \
|
2040 |
+
5*sqrt(2)*x**(S(3)/2)/12 - 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
|
2041 |
+
assert acsc(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - \
|
2042 |
+
5*sqrt(2)*(-x)**(S(3)/2)/12 + 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
|
2043 |
+
assert acsc(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + \
|
2044 |
+
sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3)
|
2045 |
+
assert acsc(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) - \
|
2046 |
+
sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3)
|
2047 |
+
|
2048 |
+
|
2049 |
+
def test_issue_8653():
|
2050 |
+
n = Symbol('n', integer=True)
|
2051 |
+
assert sin(n).is_irrational is None
|
2052 |
+
assert cos(n).is_irrational is None
|
2053 |
+
assert tan(n).is_irrational is None
|
2054 |
+
|
2055 |
+
|
2056 |
+
def test_issue_9157():
|
2057 |
+
n = Symbol('n', integer=True, positive=True)
|
2058 |
+
assert atan(n - 1).is_nonnegative is True
|
2059 |
+
|
2060 |
+
|
2061 |
+
def test_trig_period():
|
2062 |
+
x, y = symbols('x, y')
|
2063 |
+
|
2064 |
+
assert sin(x).period() == 2*pi
|
2065 |
+
assert cos(x).period() == 2*pi
|
2066 |
+
assert tan(x).period() == pi
|
2067 |
+
assert cot(x).period() == pi
|
2068 |
+
assert sec(x).period() == 2*pi
|
2069 |
+
assert csc(x).period() == 2*pi
|
2070 |
+
assert sin(2*x).period() == pi
|
2071 |
+
assert cot(4*x - 6).period() == pi/4
|
2072 |
+
assert cos((-3)*x).period() == pi*Rational(2, 3)
|
2073 |
+
assert cos(x*y).period(x) == 2*pi/abs(y)
|
2074 |
+
assert sin(3*x*y + 2*pi).period(y) == 2*pi/abs(3*x)
|
2075 |
+
assert tan(3*x).period(y) is S.Zero
|
2076 |
+
raises(NotImplementedError, lambda: sin(x**2).period(x))
|
2077 |
+
|
2078 |
+
|
2079 |
+
def test_issue_7171():
|
2080 |
+
assert sin(x).rewrite(sqrt) == sin(x)
|
2081 |
+
assert sin(x).rewrite(pow) == sin(x)
|
2082 |
+
|
2083 |
+
|
2084 |
+
def test_issue_11864():
|
2085 |
+
w, k = symbols('w, k', real=True)
|
2086 |
+
F = Piecewise((1, Eq(2*pi*k, 0)), (sin(pi*k)/(pi*k), True))
|
2087 |
+
soln = Piecewise((1, Eq(2*pi*k, 0)), (sinc(pi*k), True))
|
2088 |
+
assert F.rewrite(sinc) == soln
|
2089 |
+
|
2090 |
+
def test_real_assumptions():
|
2091 |
+
z = Symbol('z', real=False, finite=True)
|
2092 |
+
assert sin(z).is_real is None
|
2093 |
+
assert cos(z).is_real is None
|
2094 |
+
assert tan(z).is_real is False
|
2095 |
+
assert sec(z).is_real is None
|
2096 |
+
assert csc(z).is_real is None
|
2097 |
+
assert cot(z).is_real is False
|
2098 |
+
assert asin(p).is_real is None
|
2099 |
+
assert asin(n).is_real is None
|
2100 |
+
assert asec(p).is_real is None
|
2101 |
+
assert asec(n).is_real is None
|
2102 |
+
assert acos(p).is_real is None
|
2103 |
+
assert acos(n).is_real is None
|
2104 |
+
assert acsc(p).is_real is None
|
2105 |
+
assert acsc(n).is_real is None
|
2106 |
+
assert atan(p).is_positive is True
|
2107 |
+
assert atan(n).is_negative is True
|
2108 |
+
assert acot(p).is_positive is True
|
2109 |
+
assert acot(n).is_negative is True
|
2110 |
+
|
2111 |
+
def test_issue_14320():
|
2112 |
+
assert asin(sin(2)) == -2 + pi and (-pi/2 <= -2 + pi <= pi/2) and sin(2) == sin(-2 + pi)
|
2113 |
+
assert asin(cos(2)) == -2 + pi/2 and (-pi/2 <= -2 + pi/2 <= pi/2) and cos(2) == sin(-2 + pi/2)
|
2114 |
+
assert acos(sin(2)) == -pi/2 + 2 and (0 <= -pi/2 + 2 <= pi) and sin(2) == cos(-pi/2 + 2)
|
2115 |
+
assert acos(cos(20)) == -6*pi + 20 and (0 <= -6*pi + 20 <= pi) and cos(20) == cos(-6*pi + 20)
|
2116 |
+
assert acos(cos(30)) == -30 + 10*pi and (0 <= -30 + 10*pi <= pi) and cos(30) == cos(-30 + 10*pi)
|
2117 |
+
|
2118 |
+
assert atan(tan(17)) == -5*pi + 17 and (-pi/2 < -5*pi + 17 < pi/2) and tan(17) == tan(-5*pi + 17)
|
2119 |
+
assert atan(tan(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 < pi/2) and tan(15) == tan(-5*pi + 15)
|
2120 |
+
assert atan(cot(12)) == -12 + pi*Rational(7, 2) and (-pi/2 < -12 + pi*Rational(7, 2) < pi/2) and cot(12) == tan(-12 + pi*Rational(7, 2))
|
2121 |
+
assert acot(cot(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 <= pi/2) and cot(15) == cot(-5*pi + 15)
|
2122 |
+
assert acot(tan(19)) == -19 + pi*Rational(13, 2) and (-pi/2 < -19 + pi*Rational(13, 2) <= pi/2) and tan(19) == cot(-19 + pi*Rational(13, 2))
|
2123 |
+
|
2124 |
+
assert asec(sec(11)) == -11 + 4*pi and (0 <= -11 + 4*pi <= pi) and cos(11) == cos(-11 + 4*pi)
|
2125 |
+
assert asec(csc(13)) == -13 + pi*Rational(9, 2) and (0 <= -13 + pi*Rational(9, 2) <= pi) and sin(13) == cos(-13 + pi*Rational(9, 2))
|
2126 |
+
assert acsc(csc(14)) == -4*pi + 14 and (-pi/2 <= -4*pi + 14 <= pi/2) and sin(14) == sin(-4*pi + 14)
|
2127 |
+
assert acsc(sec(10)) == pi*Rational(-7, 2) + 10 and (-pi/2 <= pi*Rational(-7, 2) + 10 <= pi/2) and cos(10) == sin(pi*Rational(-7, 2) + 10)
|
2128 |
+
|
2129 |
+
def test_issue_14543():
|
2130 |
+
assert sec(2*pi + 11) == sec(11)
|
2131 |
+
assert sec(2*pi - 11) == sec(11)
|
2132 |
+
assert sec(pi + 11) == -sec(11)
|
2133 |
+
assert sec(pi - 11) == -sec(11)
|
2134 |
+
|
2135 |
+
assert csc(2*pi + 17) == csc(17)
|
2136 |
+
assert csc(2*pi - 17) == -csc(17)
|
2137 |
+
assert csc(pi + 17) == -csc(17)
|
2138 |
+
assert csc(pi - 17) == csc(17)
|
2139 |
+
|
2140 |
+
x = Symbol('x')
|
2141 |
+
assert csc(pi/2 + x) == sec(x)
|
2142 |
+
assert csc(pi/2 - x) == sec(x)
|
2143 |
+
assert csc(pi*Rational(3, 2) + x) == -sec(x)
|
2144 |
+
assert csc(pi*Rational(3, 2) - x) == -sec(x)
|
2145 |
+
|
2146 |
+
assert sec(pi/2 - x) == csc(x)
|
2147 |
+
assert sec(pi/2 + x) == -csc(x)
|
2148 |
+
assert sec(pi*Rational(3, 2) + x) == csc(x)
|
2149 |
+
assert sec(pi*Rational(3, 2) - x) == -csc(x)
|
2150 |
+
|
2151 |
+
|
2152 |
+
def test_as_real_imag():
|
2153 |
+
# This is for https://github.com/sympy/sympy/issues/17142
|
2154 |
+
# If it start failing again in irrelevant builds or in the master
|
2155 |
+
# please open up the issue again.
|
2156 |
+
expr = atan(I/(I + I*tan(1)))
|
2157 |
+
assert expr.as_real_imag() == (expr, 0)
|
2158 |
+
|
2159 |
+
|
2160 |
+
def test_issue_18746():
|
2161 |
+
e3 = cos(S.Pi*(x/4 + 1/4))
|
2162 |
+
assert e3.period() == 8
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/elementary/trigonometric.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Stub __init__.py for the sympy.functions.special package
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/bessel.cpython-310.pyc
ADDED
Binary file (58.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/beta_functions.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/elliptic_integrals.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/gamma_functions.cpython-310.pyc
ADDED
Binary file (41.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sympy/functions/special/__pycache__/mathieu_functions.cpython-310.pyc
ADDED
Binary file (7.07 kB). View file
|
|