Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/__init__.py +139 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/formatting.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/jax_formatter.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/np_formatter.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/polars_formatter.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/tf_formatter.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/torch_formatter.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/formatting.py +653 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/jax_formatter.py +160 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/np_formatter.py +106 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/polars_formatter.py +122 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/tf_formatter.py +115 -0
- llmeval-env/lib/python3.10/site-packages/datasets/formatting/torch_formatter.py +115 -0
- llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/automatic_speech_recognition.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/base.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/question_answering.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/text_classification.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/_dataset_viewer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/cache.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/deprecation_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/doc_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/hub.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/logging.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/readme.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/tqdm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/version.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/INSTALLER +1 -0
- llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/LICENSE +13 -0
- llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/METADATA +132 -0
- llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/RECORD +19 -0
- llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/WHEEL +6 -0
- llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/COPYING +28 -0
- llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/INSTALLER +1 -0
- llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/LICENSE +38 -0
- llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/METADATA +203 -0
- llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/RECORD +73 -0
- llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/WHEEL +5 -0
- llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/top_level.txt +2 -0
- llmeval-env/lib/python3.10/site-packages/pytablewriter/__init__.py +133 -0
- llmeval-env/lib/python3.10/site-packages/pytablewriter/__version__.py +6 -0
- llmeval-env/lib/python3.10/site-packages/pytablewriter/_converter.py +11 -0
- llmeval-env/lib/python3.10/site-packages/pytablewriter/_factory.py +274 -0
- llmeval-env/lib/python3.10/site-packages/pytablewriter/_function.py +84 -0
- llmeval-env/lib/python3.10/site-packages/pytablewriter/_table_format.py +353 -0
- llmeval-env/lib/python3.10/site-packages/pytablewriter/_typing.py +0 -0
- llmeval-env/lib/python3.10/site-packages/pytablewriter/error.py +34 -0
- llmeval-env/lib/python3.10/site-packages/pytablewriter/py.typed +0 -0
llmeval-env/lib/python3.10/site-packages/datasets/formatting/__init__.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# ruff: noqa
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Type
|
18 |
+
|
19 |
+
from .. import config
|
20 |
+
from ..utils import logging
|
21 |
+
from .formatting import (
|
22 |
+
ArrowFormatter,
|
23 |
+
CustomFormatter,
|
24 |
+
Formatter,
|
25 |
+
PandasFormatter,
|
26 |
+
PythonFormatter,
|
27 |
+
TensorFormatter,
|
28 |
+
format_table,
|
29 |
+
query_table,
|
30 |
+
)
|
31 |
+
from .np_formatter import NumpyFormatter
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
_FORMAT_TYPES: Dict[Optional[str], Type[Formatter]] = {}
|
37 |
+
_FORMAT_TYPES_ALIASES: Dict[Optional[str], str] = {}
|
38 |
+
_FORMAT_TYPES_ALIASES_UNAVAILABLE: Dict[Optional[str], Exception] = {}
|
39 |
+
|
40 |
+
|
41 |
+
def _register_formatter(
|
42 |
+
formatter_cls: type,
|
43 |
+
format_type: Optional[str],
|
44 |
+
aliases: Optional[List[str]] = None,
|
45 |
+
):
|
46 |
+
"""
|
47 |
+
Register a Formatter object using a name and optional aliases.
|
48 |
+
This function must be used on a Formatter class.
|
49 |
+
"""
|
50 |
+
aliases = aliases if aliases is not None else []
|
51 |
+
if format_type in _FORMAT_TYPES:
|
52 |
+
logger.warning(
|
53 |
+
f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})"
|
54 |
+
)
|
55 |
+
_FORMAT_TYPES[format_type] = formatter_cls
|
56 |
+
for alias in set(aliases + [format_type]):
|
57 |
+
if alias in _FORMAT_TYPES_ALIASES:
|
58 |
+
logger.warning(
|
59 |
+
f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})"
|
60 |
+
)
|
61 |
+
_FORMAT_TYPES_ALIASES[alias] = format_type
|
62 |
+
|
63 |
+
|
64 |
+
def _register_unavailable_formatter(
|
65 |
+
unavailable_error: Exception, format_type: Optional[str], aliases: Optional[List[str]] = None
|
66 |
+
):
|
67 |
+
"""
|
68 |
+
Register an unavailable Formatter object using a name and optional aliases.
|
69 |
+
This function must be used on an Exception object that is raised when trying to get the unavailable formatter.
|
70 |
+
"""
|
71 |
+
aliases = aliases if aliases is not None else []
|
72 |
+
for alias in set(aliases + [format_type]):
|
73 |
+
_FORMAT_TYPES_ALIASES_UNAVAILABLE[alias] = unavailable_error
|
74 |
+
|
75 |
+
|
76 |
+
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
|
77 |
+
_register_formatter(PythonFormatter, None, aliases=["python"])
|
78 |
+
_register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"])
|
79 |
+
_register_formatter(NumpyFormatter, "numpy", aliases=["np"])
|
80 |
+
_register_formatter(PandasFormatter, "pandas", aliases=["pd"])
|
81 |
+
_register_formatter(CustomFormatter, "custom")
|
82 |
+
|
83 |
+
if config.POLARS_AVAILABLE:
|
84 |
+
from .polars_formatter import PolarsFormatter
|
85 |
+
|
86 |
+
_register_formatter(PolarsFormatter, "polars", aliases=["pl"])
|
87 |
+
else:
|
88 |
+
_polars_error = ValueError("Polars needs to be installed to be able to return Polars dataframes.")
|
89 |
+
_register_unavailable_formatter(_polars_error, "polars", aliases=["pl"])
|
90 |
+
|
91 |
+
if config.TORCH_AVAILABLE:
|
92 |
+
from .torch_formatter import TorchFormatter
|
93 |
+
|
94 |
+
_register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"])
|
95 |
+
else:
|
96 |
+
_torch_error = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.")
|
97 |
+
_register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"])
|
98 |
+
|
99 |
+
if config.TF_AVAILABLE:
|
100 |
+
from .tf_formatter import TFFormatter
|
101 |
+
|
102 |
+
_register_formatter(TFFormatter, "tensorflow", aliases=["tf"])
|
103 |
+
else:
|
104 |
+
_tf_error = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.")
|
105 |
+
_register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"])
|
106 |
+
|
107 |
+
if config.JAX_AVAILABLE:
|
108 |
+
from .jax_formatter import JaxFormatter
|
109 |
+
|
110 |
+
_register_formatter(JaxFormatter, "jax", aliases=[])
|
111 |
+
else:
|
112 |
+
_jax_error = ValueError("JAX needs to be installed to be able to return JAX arrays.")
|
113 |
+
_register_unavailable_formatter(_jax_error, "jax", aliases=[])
|
114 |
+
|
115 |
+
|
116 |
+
def get_format_type_from_alias(format_type: Optional[str]) -> Optional[str]:
|
117 |
+
"""If the given format type is a known alias, then return its main type name. Otherwise return the type with no change."""
|
118 |
+
if format_type in _FORMAT_TYPES_ALIASES:
|
119 |
+
return _FORMAT_TYPES_ALIASES[format_type]
|
120 |
+
else:
|
121 |
+
return format_type
|
122 |
+
|
123 |
+
|
124 |
+
def get_formatter(format_type: Optional[str], **format_kwargs) -> Formatter:
|
125 |
+
"""
|
126 |
+
Factory function to get a Formatter given its type name and keyword arguments.
|
127 |
+
A formatter is an object that extracts and formats data from pyarrow table.
|
128 |
+
It defines the formatting for rows, colums and batches.
|
129 |
+
If the formatter for a given type name doesn't exist or is not available, an error is raised.
|
130 |
+
"""
|
131 |
+
format_type = get_format_type_from_alias(format_type)
|
132 |
+
if format_type in _FORMAT_TYPES:
|
133 |
+
return _FORMAT_TYPES[format_type](**format_kwargs)
|
134 |
+
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
|
135 |
+
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
|
136 |
+
else:
|
137 |
+
raise ValueError(
|
138 |
+
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None)}, but got '{format_type}'"
|
139 |
+
)
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/formatting.cpython-310.pyc
ADDED
Binary file (26.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/jax_formatter.cpython-310.pyc
ADDED
Binary file (5.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/np_formatter.cpython-310.pyc
ADDED
Binary file (3.89 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/polars_formatter.cpython-310.pyc
ADDED
Binary file (4.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/tf_formatter.cpython-310.pyc
ADDED
Binary file (4.08 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/__pycache__/torch_formatter.cpython-310.pyc
ADDED
Binary file (3.98 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/formatting.py
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import operator
|
16 |
+
from collections.abc import Mapping, MutableMapping
|
17 |
+
from functools import partial
|
18 |
+
|
19 |
+
# Lint as: python3
|
20 |
+
from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import pandas as pd
|
24 |
+
import pyarrow as pa
|
25 |
+
from packaging import version
|
26 |
+
|
27 |
+
from .. import config
|
28 |
+
from ..features import Features
|
29 |
+
from ..features.features import _ArrayXDExtensionType, _is_zero_copy_only, decode_nested_example, pandas_types_mapper
|
30 |
+
from ..table import Table
|
31 |
+
from ..utils.py_utils import no_op_if_value_is_null
|
32 |
+
|
33 |
+
|
34 |
+
T = TypeVar("T")
|
35 |
+
|
36 |
+
RowFormat = TypeVar("RowFormat")
|
37 |
+
ColumnFormat = TypeVar("ColumnFormat")
|
38 |
+
BatchFormat = TypeVar("BatchFormat")
|
39 |
+
|
40 |
+
|
41 |
+
def _is_range_contiguous(key: range) -> bool:
|
42 |
+
return key.step == 1 and key.stop >= key.start
|
43 |
+
|
44 |
+
|
45 |
+
def _raise_bad_key_type(key: Any):
|
46 |
+
raise TypeError(
|
47 |
+
f"Wrong key type: '{key}' of type '{type(key)}'. Expected one of int, slice, range, str or Iterable."
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
def _query_table_with_indices_mapping(
|
52 |
+
table: Table, key: Union[int, slice, range, str, Iterable], indices: Table
|
53 |
+
) -> pa.Table:
|
54 |
+
"""
|
55 |
+
Query a pyarrow Table to extract the subtable that correspond to the given key.
|
56 |
+
The :obj:`indices` parameter corresponds to the indices mapping in case we cant to take into
|
57 |
+
account a shuffling or an indices selection for example.
|
58 |
+
The indices table must contain one column named "indices" of type uint64.
|
59 |
+
"""
|
60 |
+
if isinstance(key, int):
|
61 |
+
key = indices.fast_slice(key % indices.num_rows, 1).column(0)[0].as_py()
|
62 |
+
return _query_table(table, key)
|
63 |
+
if isinstance(key, slice):
|
64 |
+
key = range(*key.indices(indices.num_rows))
|
65 |
+
if isinstance(key, range):
|
66 |
+
if _is_range_contiguous(key) and key.start >= 0:
|
67 |
+
return _query_table(
|
68 |
+
table, [i.as_py() for i in indices.fast_slice(key.start, key.stop - key.start).column(0)]
|
69 |
+
)
|
70 |
+
else:
|
71 |
+
pass # treat as an iterable
|
72 |
+
if isinstance(key, str):
|
73 |
+
table = table.select([key])
|
74 |
+
return _query_table(table, indices.column(0).to_pylist())
|
75 |
+
if isinstance(key, Iterable):
|
76 |
+
return _query_table(table, [indices.fast_slice(i, 1).column(0)[0].as_py() for i in key])
|
77 |
+
|
78 |
+
_raise_bad_key_type(key)
|
79 |
+
|
80 |
+
|
81 |
+
def _query_table(table: Table, key: Union[int, slice, range, str, Iterable]) -> pa.Table:
|
82 |
+
"""
|
83 |
+
Query a pyarrow Table to extract the subtable that correspond to the given key.
|
84 |
+
"""
|
85 |
+
if isinstance(key, int):
|
86 |
+
return table.fast_slice(key % table.num_rows, 1)
|
87 |
+
if isinstance(key, slice):
|
88 |
+
key = range(*key.indices(table.num_rows))
|
89 |
+
if isinstance(key, range):
|
90 |
+
if _is_range_contiguous(key) and key.start >= 0:
|
91 |
+
return table.fast_slice(key.start, key.stop - key.start)
|
92 |
+
else:
|
93 |
+
pass # treat as an iterable
|
94 |
+
if isinstance(key, str):
|
95 |
+
return table.table.drop([column for column in table.column_names if column != key])
|
96 |
+
if isinstance(key, Iterable):
|
97 |
+
key = np.fromiter(key, np.int64)
|
98 |
+
if len(key) == 0:
|
99 |
+
return table.table.slice(0, 0)
|
100 |
+
# don't use pyarrow.Table.take even for pyarrow >=1.0 (see https://issues.apache.org/jira/browse/ARROW-9773)
|
101 |
+
return table.fast_gather(key % table.num_rows)
|
102 |
+
|
103 |
+
_raise_bad_key_type(key)
|
104 |
+
|
105 |
+
|
106 |
+
def _is_array_with_nulls(pa_array: pa.Array) -> bool:
|
107 |
+
return pa_array.null_count > 0
|
108 |
+
|
109 |
+
|
110 |
+
class BaseArrowExtractor(Generic[RowFormat, ColumnFormat, BatchFormat]):
|
111 |
+
"""
|
112 |
+
Arrow extractor are used to extract data from pyarrow tables.
|
113 |
+
It makes it possible to extract rows, columns and batches.
|
114 |
+
These three extractions types have to be implemented.
|
115 |
+
"""
|
116 |
+
|
117 |
+
def extract_row(self, pa_table: pa.Table) -> RowFormat:
|
118 |
+
raise NotImplementedError
|
119 |
+
|
120 |
+
def extract_column(self, pa_table: pa.Table) -> ColumnFormat:
|
121 |
+
raise NotImplementedError
|
122 |
+
|
123 |
+
def extract_batch(self, pa_table: pa.Table) -> BatchFormat:
|
124 |
+
raise NotImplementedError
|
125 |
+
|
126 |
+
|
127 |
+
def _unnest(py_dict: Dict[str, List[T]]) -> Dict[str, T]:
|
128 |
+
"""Return the first element of a batch (dict) as a row (dict)"""
|
129 |
+
return {key: array[0] for key, array in py_dict.items()}
|
130 |
+
|
131 |
+
|
132 |
+
class SimpleArrowExtractor(BaseArrowExtractor[pa.Table, pa.Array, pa.Table]):
|
133 |
+
def extract_row(self, pa_table: pa.Table) -> pa.Table:
|
134 |
+
return pa_table
|
135 |
+
|
136 |
+
def extract_column(self, pa_table: pa.Table) -> pa.Array:
|
137 |
+
return pa_table.column(0)
|
138 |
+
|
139 |
+
def extract_batch(self, pa_table: pa.Table) -> pa.Table:
|
140 |
+
return pa_table
|
141 |
+
|
142 |
+
|
143 |
+
class PythonArrowExtractor(BaseArrowExtractor[dict, list, dict]):
|
144 |
+
def extract_row(self, pa_table: pa.Table) -> dict:
|
145 |
+
return _unnest(pa_table.to_pydict())
|
146 |
+
|
147 |
+
def extract_column(self, pa_table: pa.Table) -> list:
|
148 |
+
return pa_table.column(0).to_pylist()
|
149 |
+
|
150 |
+
def extract_batch(self, pa_table: pa.Table) -> dict:
|
151 |
+
return pa_table.to_pydict()
|
152 |
+
|
153 |
+
|
154 |
+
class NumpyArrowExtractor(BaseArrowExtractor[dict, np.ndarray, dict]):
|
155 |
+
def __init__(self, **np_array_kwargs):
|
156 |
+
self.np_array_kwargs = np_array_kwargs
|
157 |
+
|
158 |
+
def extract_row(self, pa_table: pa.Table) -> dict:
|
159 |
+
return _unnest(self.extract_batch(pa_table))
|
160 |
+
|
161 |
+
def extract_column(self, pa_table: pa.Table) -> np.ndarray:
|
162 |
+
return self._arrow_array_to_numpy(pa_table[pa_table.column_names[0]])
|
163 |
+
|
164 |
+
def extract_batch(self, pa_table: pa.Table) -> dict:
|
165 |
+
return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names}
|
166 |
+
|
167 |
+
def _arrow_array_to_numpy(self, pa_array: pa.Array) -> np.ndarray:
|
168 |
+
if isinstance(pa_array, pa.ChunkedArray):
|
169 |
+
if isinstance(pa_array.type, _ArrayXDExtensionType):
|
170 |
+
# don't call to_pylist() to preserve dtype of the fixed-size array
|
171 |
+
zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True)
|
172 |
+
array: List = [
|
173 |
+
row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only)
|
174 |
+
]
|
175 |
+
else:
|
176 |
+
zero_copy_only = _is_zero_copy_only(pa_array.type) and all(
|
177 |
+
not _is_array_with_nulls(chunk) for chunk in pa_array.chunks
|
178 |
+
)
|
179 |
+
array: List = [
|
180 |
+
row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only)
|
181 |
+
]
|
182 |
+
else:
|
183 |
+
if isinstance(pa_array.type, _ArrayXDExtensionType):
|
184 |
+
# don't call to_pylist() to preserve dtype of the fixed-size array
|
185 |
+
zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True)
|
186 |
+
array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only)
|
187 |
+
else:
|
188 |
+
zero_copy_only = _is_zero_copy_only(pa_array.type) and not _is_array_with_nulls(pa_array)
|
189 |
+
array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist()
|
190 |
+
if len(array) > 0:
|
191 |
+
if any(
|
192 |
+
(isinstance(x, np.ndarray) and (x.dtype == object or x.shape != array[0].shape))
|
193 |
+
or (isinstance(x, float) and np.isnan(x))
|
194 |
+
for x in array
|
195 |
+
):
|
196 |
+
return np.array(array, copy=False, dtype=object)
|
197 |
+
return np.array(array, copy=False)
|
198 |
+
|
199 |
+
|
200 |
+
class PandasArrowExtractor(BaseArrowExtractor[pd.DataFrame, pd.Series, pd.DataFrame]):
|
201 |
+
def extract_row(self, pa_table: pa.Table) -> pd.DataFrame:
|
202 |
+
return pa_table.slice(length=1).to_pandas(types_mapper=pandas_types_mapper)
|
203 |
+
|
204 |
+
def extract_column(self, pa_table: pa.Table) -> pd.Series:
|
205 |
+
return pa_table.select([0]).to_pandas(types_mapper=pandas_types_mapper)[pa_table.column_names[0]]
|
206 |
+
|
207 |
+
def extract_batch(self, pa_table: pa.Table) -> pd.DataFrame:
|
208 |
+
return pa_table.to_pandas(types_mapper=pandas_types_mapper)
|
209 |
+
|
210 |
+
|
211 |
+
class PythonFeaturesDecoder:
|
212 |
+
def __init__(self, features: Optional[Features]):
|
213 |
+
self.features = features
|
214 |
+
|
215 |
+
def decode_row(self, row: dict) -> dict:
|
216 |
+
return self.features.decode_example(row) if self.features else row
|
217 |
+
|
218 |
+
def decode_column(self, column: list, column_name: str) -> list:
|
219 |
+
return self.features.decode_column(column, column_name) if self.features else column
|
220 |
+
|
221 |
+
def decode_batch(self, batch: dict) -> dict:
|
222 |
+
return self.features.decode_batch(batch) if self.features else batch
|
223 |
+
|
224 |
+
|
225 |
+
class PandasFeaturesDecoder:
|
226 |
+
def __init__(self, features: Optional[Features]):
|
227 |
+
self.features = features
|
228 |
+
|
229 |
+
def decode_row(self, row: pd.DataFrame) -> pd.DataFrame:
|
230 |
+
decode = (
|
231 |
+
{
|
232 |
+
column_name: no_op_if_value_is_null(partial(decode_nested_example, feature))
|
233 |
+
for column_name, feature in self.features.items()
|
234 |
+
if self.features._column_requires_decoding[column_name]
|
235 |
+
}
|
236 |
+
if self.features
|
237 |
+
else {}
|
238 |
+
)
|
239 |
+
if decode:
|
240 |
+
row[list(decode.keys())] = row.transform(decode)
|
241 |
+
return row
|
242 |
+
|
243 |
+
def decode_column(self, column: pd.Series, column_name: str) -> pd.Series:
|
244 |
+
decode = (
|
245 |
+
no_op_if_value_is_null(partial(decode_nested_example, self.features[column_name]))
|
246 |
+
if self.features and column_name in self.features and self.features._column_requires_decoding[column_name]
|
247 |
+
else None
|
248 |
+
)
|
249 |
+
if decode:
|
250 |
+
column = column.transform(decode)
|
251 |
+
return column
|
252 |
+
|
253 |
+
def decode_batch(self, batch: pd.DataFrame) -> pd.DataFrame:
|
254 |
+
return self.decode_row(batch)
|
255 |
+
|
256 |
+
|
257 |
+
class LazyDict(MutableMapping):
|
258 |
+
"""A dictionary backed by Arrow data. The values are formatted on-the-fly when accessing the dictionary."""
|
259 |
+
|
260 |
+
def __init__(self, pa_table: pa.Table, formatter: "Formatter"):
|
261 |
+
self.pa_table = pa_table
|
262 |
+
self.formatter = formatter
|
263 |
+
|
264 |
+
self.data = {key: None for key in pa_table.column_names}
|
265 |
+
self.keys_to_format = set(self.data.keys())
|
266 |
+
|
267 |
+
def __len__(self):
|
268 |
+
return len(self.data)
|
269 |
+
|
270 |
+
def __getitem__(self, key):
|
271 |
+
value = self.data[key]
|
272 |
+
if key in self.keys_to_format:
|
273 |
+
value = self.format(key)
|
274 |
+
self.data[key] = value
|
275 |
+
self.keys_to_format.remove(key)
|
276 |
+
return value
|
277 |
+
|
278 |
+
def __setitem__(self, key, value):
|
279 |
+
if key in self.keys_to_format:
|
280 |
+
self.keys_to_format.remove(key)
|
281 |
+
self.data[key] = value
|
282 |
+
|
283 |
+
def __delitem__(self, key) -> None:
|
284 |
+
if key in self.keys_to_format:
|
285 |
+
self.keys_to_format.remove(key)
|
286 |
+
del self.data[key]
|
287 |
+
|
288 |
+
def __iter__(self):
|
289 |
+
return iter(self.data)
|
290 |
+
|
291 |
+
def __contains__(self, key):
|
292 |
+
return key in self.data
|
293 |
+
|
294 |
+
def __repr__(self):
|
295 |
+
self._format_all()
|
296 |
+
return repr(self.data)
|
297 |
+
|
298 |
+
if config.PY_VERSION >= version.parse("3.9"):
|
299 |
+
# merging with the union ("|") operator is supported in Python 3.9+
|
300 |
+
|
301 |
+
def __or__(self, other):
|
302 |
+
if isinstance(other, LazyDict):
|
303 |
+
inst = self.copy()
|
304 |
+
other = other.copy()
|
305 |
+
other._format_all()
|
306 |
+
inst.keys_to_format -= other.data.keys()
|
307 |
+
inst.data = inst.data | other.data
|
308 |
+
return inst
|
309 |
+
if isinstance(other, dict):
|
310 |
+
inst = self.copy()
|
311 |
+
inst.keys_to_format -= other.keys()
|
312 |
+
inst.data = inst.data | other
|
313 |
+
return inst
|
314 |
+
return NotImplemented
|
315 |
+
|
316 |
+
def __ror__(self, other):
|
317 |
+
if isinstance(other, LazyDict):
|
318 |
+
inst = self.copy()
|
319 |
+
other = other.copy()
|
320 |
+
other._format_all()
|
321 |
+
inst.keys_to_format -= other.data.keys()
|
322 |
+
inst.data = other.data | inst.data
|
323 |
+
return inst
|
324 |
+
if isinstance(other, dict):
|
325 |
+
inst = self.copy()
|
326 |
+
inst.keys_to_format -= other.keys()
|
327 |
+
inst.data = other | inst.data
|
328 |
+
return inst
|
329 |
+
return NotImplemented
|
330 |
+
|
331 |
+
def __ior__(self, other):
|
332 |
+
if isinstance(other, LazyDict):
|
333 |
+
other = other.copy()
|
334 |
+
other._format_all()
|
335 |
+
self.keys_to_format -= other.data.keys()
|
336 |
+
self.data |= other.data
|
337 |
+
else:
|
338 |
+
self.keys_to_format -= other.keys()
|
339 |
+
self.data |= other
|
340 |
+
return self
|
341 |
+
|
342 |
+
def __copy__(self):
|
343 |
+
# Identical to `UserDict.__copy__`
|
344 |
+
inst = self.__class__.__new__(self.__class__)
|
345 |
+
inst.__dict__.update(self.__dict__)
|
346 |
+
# Create a copy and avoid triggering descriptors
|
347 |
+
inst.__dict__["data"] = self.__dict__["data"].copy()
|
348 |
+
inst.__dict__["keys_to_format"] = self.__dict__["keys_to_format"].copy()
|
349 |
+
return inst
|
350 |
+
|
351 |
+
def copy(self):
|
352 |
+
import copy
|
353 |
+
|
354 |
+
return copy.copy(self)
|
355 |
+
|
356 |
+
@classmethod
|
357 |
+
def fromkeys(cls, iterable, value=None):
|
358 |
+
raise NotImplementedError
|
359 |
+
|
360 |
+
def format(self, key):
|
361 |
+
raise NotImplementedError
|
362 |
+
|
363 |
+
def _format_all(self):
|
364 |
+
for key in self.keys_to_format:
|
365 |
+
self.data[key] = self.format(key)
|
366 |
+
self.keys_to_format.clear()
|
367 |
+
|
368 |
+
|
369 |
+
class LazyRow(LazyDict):
|
370 |
+
def format(self, key):
|
371 |
+
return self.formatter.format_column(self.pa_table.select([key]))[0]
|
372 |
+
|
373 |
+
|
374 |
+
class LazyBatch(LazyDict):
|
375 |
+
def format(self, key):
|
376 |
+
return self.formatter.format_column(self.pa_table.select([key]))
|
377 |
+
|
378 |
+
|
379 |
+
class Formatter(Generic[RowFormat, ColumnFormat, BatchFormat]):
|
380 |
+
"""
|
381 |
+
A formatter is an object that extracts and formats data from pyarrow tables.
|
382 |
+
It defines the formatting for rows, columns and batches.
|
383 |
+
"""
|
384 |
+
|
385 |
+
simple_arrow_extractor = SimpleArrowExtractor
|
386 |
+
python_arrow_extractor = PythonArrowExtractor
|
387 |
+
numpy_arrow_extractor = NumpyArrowExtractor
|
388 |
+
pandas_arrow_extractor = PandasArrowExtractor
|
389 |
+
|
390 |
+
def __init__(self, features: Optional[Features] = None):
|
391 |
+
self.features = features
|
392 |
+
self.python_features_decoder = PythonFeaturesDecoder(self.features)
|
393 |
+
self.pandas_features_decoder = PandasFeaturesDecoder(self.features)
|
394 |
+
|
395 |
+
def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]:
|
396 |
+
if query_type == "row":
|
397 |
+
return self.format_row(pa_table)
|
398 |
+
elif query_type == "column":
|
399 |
+
return self.format_column(pa_table)
|
400 |
+
elif query_type == "batch":
|
401 |
+
return self.format_batch(pa_table)
|
402 |
+
|
403 |
+
def format_row(self, pa_table: pa.Table) -> RowFormat:
|
404 |
+
raise NotImplementedError
|
405 |
+
|
406 |
+
def format_column(self, pa_table: pa.Table) -> ColumnFormat:
|
407 |
+
raise NotImplementedError
|
408 |
+
|
409 |
+
def format_batch(self, pa_table: pa.Table) -> BatchFormat:
|
410 |
+
raise NotImplementedError
|
411 |
+
|
412 |
+
|
413 |
+
class TensorFormatter(Formatter[RowFormat, ColumnFormat, BatchFormat]):
|
414 |
+
def recursive_tensorize(self, data_struct: dict):
|
415 |
+
raise NotImplementedError
|
416 |
+
|
417 |
+
|
418 |
+
class ArrowFormatter(Formatter[pa.Table, pa.Array, pa.Table]):
|
419 |
+
def format_row(self, pa_table: pa.Table) -> pa.Table:
|
420 |
+
return self.simple_arrow_extractor().extract_row(pa_table)
|
421 |
+
|
422 |
+
def format_column(self, pa_table: pa.Table) -> pa.Array:
|
423 |
+
return self.simple_arrow_extractor().extract_column(pa_table)
|
424 |
+
|
425 |
+
def format_batch(self, pa_table: pa.Table) -> pa.Table:
|
426 |
+
return self.simple_arrow_extractor().extract_batch(pa_table)
|
427 |
+
|
428 |
+
|
429 |
+
class PythonFormatter(Formatter[Mapping, list, Mapping]):
|
430 |
+
def __init__(self, features=None, lazy=False):
|
431 |
+
super().__init__(features)
|
432 |
+
self.lazy = lazy
|
433 |
+
|
434 |
+
def format_row(self, pa_table: pa.Table) -> Mapping:
|
435 |
+
if self.lazy:
|
436 |
+
return LazyRow(pa_table, self)
|
437 |
+
row = self.python_arrow_extractor().extract_row(pa_table)
|
438 |
+
row = self.python_features_decoder.decode_row(row)
|
439 |
+
return row
|
440 |
+
|
441 |
+
def format_column(self, pa_table: pa.Table) -> list:
|
442 |
+
column = self.python_arrow_extractor().extract_column(pa_table)
|
443 |
+
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
|
444 |
+
return column
|
445 |
+
|
446 |
+
def format_batch(self, pa_table: pa.Table) -> Mapping:
|
447 |
+
if self.lazy:
|
448 |
+
return LazyBatch(pa_table, self)
|
449 |
+
batch = self.python_arrow_extractor().extract_batch(pa_table)
|
450 |
+
batch = self.python_features_decoder.decode_batch(batch)
|
451 |
+
return batch
|
452 |
+
|
453 |
+
|
454 |
+
class PandasFormatter(Formatter[pd.DataFrame, pd.Series, pd.DataFrame]):
|
455 |
+
def format_row(self, pa_table: pa.Table) -> pd.DataFrame:
|
456 |
+
row = self.pandas_arrow_extractor().extract_row(pa_table)
|
457 |
+
row = self.pandas_features_decoder.decode_row(row)
|
458 |
+
return row
|
459 |
+
|
460 |
+
def format_column(self, pa_table: pa.Table) -> pd.Series:
|
461 |
+
column = self.pandas_arrow_extractor().extract_column(pa_table)
|
462 |
+
column = self.pandas_features_decoder.decode_column(column, pa_table.column_names[0])
|
463 |
+
return column
|
464 |
+
|
465 |
+
def format_batch(self, pa_table: pa.Table) -> pd.DataFrame:
|
466 |
+
row = self.pandas_arrow_extractor().extract_batch(pa_table)
|
467 |
+
row = self.pandas_features_decoder.decode_batch(row)
|
468 |
+
return row
|
469 |
+
|
470 |
+
|
471 |
+
class CustomFormatter(Formatter[dict, ColumnFormat, dict]):
|
472 |
+
"""
|
473 |
+
A user-defined custom formatter function defined by a ``transform``.
|
474 |
+
The transform must take as input a batch of data extracted for an arrow table using the python extractor,
|
475 |
+
and return a batch.
|
476 |
+
If the output batch is not a dict, then output_all_columns won't work.
|
477 |
+
If the ouput batch has several fields, then querying a single column won't work since we don't know which field
|
478 |
+
to return.
|
479 |
+
"""
|
480 |
+
|
481 |
+
def __init__(self, transform: Callable[[dict], dict], features=None, **kwargs):
|
482 |
+
super().__init__(features=features)
|
483 |
+
self.transform = transform
|
484 |
+
|
485 |
+
def format_row(self, pa_table: pa.Table) -> dict:
|
486 |
+
formatted_batch = self.format_batch(pa_table)
|
487 |
+
try:
|
488 |
+
return _unnest(formatted_batch)
|
489 |
+
except Exception as exc:
|
490 |
+
raise TypeError(
|
491 |
+
f"Custom formatting function must return a dict of sequences to be able to pick a row, but got {formatted_batch}"
|
492 |
+
) from exc
|
493 |
+
|
494 |
+
def format_column(self, pa_table: pa.Table) -> ColumnFormat:
|
495 |
+
formatted_batch = self.format_batch(pa_table)
|
496 |
+
if hasattr(formatted_batch, "keys"):
|
497 |
+
if len(formatted_batch.keys()) > 1:
|
498 |
+
raise TypeError(
|
499 |
+
"Tried to query a column but the custom formatting function returns too many columns. "
|
500 |
+
f"Only one column was expected but got columns {list(formatted_batch.keys())}."
|
501 |
+
)
|
502 |
+
else:
|
503 |
+
raise TypeError(
|
504 |
+
f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}"
|
505 |
+
)
|
506 |
+
try:
|
507 |
+
return formatted_batch[pa_table.column_names[0]]
|
508 |
+
except Exception as exc:
|
509 |
+
raise TypeError(
|
510 |
+
f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}"
|
511 |
+
) from exc
|
512 |
+
|
513 |
+
def format_batch(self, pa_table: pa.Table) -> dict:
|
514 |
+
batch = self.python_arrow_extractor().extract_batch(pa_table)
|
515 |
+
batch = self.python_features_decoder.decode_batch(batch)
|
516 |
+
return self.transform(batch)
|
517 |
+
|
518 |
+
|
519 |
+
def _check_valid_column_key(key: str, columns: List[str]) -> None:
|
520 |
+
if key not in columns:
|
521 |
+
raise KeyError(f"Column {key} not in the dataset. Current columns in the dataset: {columns}")
|
522 |
+
|
523 |
+
|
524 |
+
def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None:
|
525 |
+
if isinstance(key, int):
|
526 |
+
if (key < 0 and key + size < 0) or (key >= size):
|
527 |
+
raise IndexError(f"Invalid key: {key} is out of bounds for size {size}")
|
528 |
+
return
|
529 |
+
elif isinstance(key, slice):
|
530 |
+
pass
|
531 |
+
elif isinstance(key, range):
|
532 |
+
if len(key) > 0:
|
533 |
+
_check_valid_index_key(max(key), size=size)
|
534 |
+
_check_valid_index_key(min(key), size=size)
|
535 |
+
elif isinstance(key, Iterable):
|
536 |
+
if len(key) > 0:
|
537 |
+
_check_valid_index_key(int(max(key)), size=size)
|
538 |
+
_check_valid_index_key(int(min(key)), size=size)
|
539 |
+
else:
|
540 |
+
_raise_bad_key_type(key)
|
541 |
+
|
542 |
+
|
543 |
+
def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str:
|
544 |
+
if isinstance(key, int):
|
545 |
+
return "row"
|
546 |
+
elif isinstance(key, str):
|
547 |
+
return "column"
|
548 |
+
elif isinstance(key, (slice, range, Iterable)):
|
549 |
+
return "batch"
|
550 |
+
_raise_bad_key_type(key)
|
551 |
+
|
552 |
+
|
553 |
+
def query_table(
|
554 |
+
table: Table,
|
555 |
+
key: Union[int, slice, range, str, Iterable],
|
556 |
+
indices: Optional[Table] = None,
|
557 |
+
) -> pa.Table:
|
558 |
+
"""
|
559 |
+
Query a Table to extract the subtable that correspond to the given key.
|
560 |
+
|
561 |
+
Args:
|
562 |
+
table (``datasets.table.Table``): The input Table to query from
|
563 |
+
key (``Union[int, slice, range, str, Iterable]``): The key can be of different types:
|
564 |
+
- an integer i: the subtable containing only the i-th row
|
565 |
+
- a slice [i:j:k]: the subtable containing the rows that correspond to this slice
|
566 |
+
- a range(i, j, k): the subtable containing the rows that correspond to this range
|
567 |
+
- a string c: the subtable containing all the rows but only the column c
|
568 |
+
- an iterable l: the subtable that is the concatenation of all the i-th rows for all i in the iterable
|
569 |
+
indices (Optional ``datasets.table.Table``): If not None, it is used to re-map the given key to the table rows.
|
570 |
+
The indices table must contain one column named "indices" of type uint64.
|
571 |
+
This is used in case of shuffling or rows selection.
|
572 |
+
|
573 |
+
|
574 |
+
Returns:
|
575 |
+
``pyarrow.Table``: the result of the query on the input table
|
576 |
+
"""
|
577 |
+
# Check if key is valid
|
578 |
+
if not isinstance(key, (int, slice, range, str, Iterable)):
|
579 |
+
try:
|
580 |
+
key = operator.index(key)
|
581 |
+
except TypeError:
|
582 |
+
_raise_bad_key_type(key)
|
583 |
+
if isinstance(key, str):
|
584 |
+
_check_valid_column_key(key, table.column_names)
|
585 |
+
else:
|
586 |
+
size = indices.num_rows if indices is not None else table.num_rows
|
587 |
+
_check_valid_index_key(key, size)
|
588 |
+
# Query the main table
|
589 |
+
if indices is None:
|
590 |
+
pa_subtable = _query_table(table, key)
|
591 |
+
else:
|
592 |
+
pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices)
|
593 |
+
return pa_subtable
|
594 |
+
|
595 |
+
|
596 |
+
def format_table(
|
597 |
+
table: Table,
|
598 |
+
key: Union[int, slice, range, str, Iterable],
|
599 |
+
formatter: Formatter,
|
600 |
+
format_columns: Optional[list] = None,
|
601 |
+
output_all_columns=False,
|
602 |
+
):
|
603 |
+
"""
|
604 |
+
Format a Table depending on the key that was used and a Formatter object.
|
605 |
+
|
606 |
+
Args:
|
607 |
+
table (``datasets.table.Table``): The input Table to format
|
608 |
+
key (``Union[int, slice, range, str, Iterable]``): Depending on the key that was used, the formatter formats
|
609 |
+
the table as either a row, a column or a batch.
|
610 |
+
formatter (``datasets.formatting.formatting.Formatter``): Any subclass of a Formatter such as
|
611 |
+
PythonFormatter, NumpyFormatter, etc.
|
612 |
+
format_columns (:obj:`List[str]`, optional): if not None, it defines the columns that will be formatted using the
|
613 |
+
given formatter. Other columns are discarded (unless ``output_all_columns`` is True)
|
614 |
+
output_all_columns (:obj:`bool`, defaults to False). If True, the formatted output is completed using the columns
|
615 |
+
that are not in the ``format_columns`` list. For these columns, the PythonFormatter is used.
|
616 |
+
|
617 |
+
|
618 |
+
Returns:
|
619 |
+
A row, column or batch formatted object defined by the Formatter:
|
620 |
+
- the PythonFormatter returns a dictionary for a row or a batch, and a list for a column.
|
621 |
+
- the NumpyFormatter returns a dictionary for a row or a batch, and a np.array for a column.
|
622 |
+
- the PandasFormatter returns a pd.DataFrame for a row or a batch, and a pd.Series for a column.
|
623 |
+
- the TorchFormatter returns a dictionary for a row or a batch, and a torch.Tensor for a column.
|
624 |
+
- the TFFormatter returns a dictionary for a row or a batch, and a tf.Tensor for a column.
|
625 |
+
"""
|
626 |
+
if isinstance(table, Table):
|
627 |
+
pa_table = table.table
|
628 |
+
else:
|
629 |
+
pa_table = table
|
630 |
+
query_type = key_to_query_type(key)
|
631 |
+
python_formatter = PythonFormatter(features=formatter.features)
|
632 |
+
if format_columns is None:
|
633 |
+
return formatter(pa_table, query_type=query_type)
|
634 |
+
elif query_type == "column":
|
635 |
+
if key in format_columns:
|
636 |
+
return formatter(pa_table, query_type)
|
637 |
+
else:
|
638 |
+
return python_formatter(pa_table, query_type=query_type)
|
639 |
+
else:
|
640 |
+
pa_table_to_format = pa_table.drop(col for col in pa_table.column_names if col not in format_columns)
|
641 |
+
formatted_output = formatter(pa_table_to_format, query_type=query_type)
|
642 |
+
if output_all_columns:
|
643 |
+
if isinstance(formatted_output, MutableMapping):
|
644 |
+
pa_table_with_remaining_columns = pa_table.drop(
|
645 |
+
col for col in pa_table.column_names if col in format_columns
|
646 |
+
)
|
647 |
+
remaining_columns_dict = python_formatter(pa_table_with_remaining_columns, query_type=query_type)
|
648 |
+
formatted_output.update(remaining_columns_dict)
|
649 |
+
else:
|
650 |
+
raise TypeError(
|
651 |
+
f"Custom formatting function must return a dict to work with output_all_columns=True, but got {formatted_output}"
|
652 |
+
)
|
653 |
+
return formatted_output
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/jax_formatter.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The HuggingFace Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
import sys
|
17 |
+
from collections.abc import Mapping
|
18 |
+
from typing import TYPE_CHECKING, Dict, Optional
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import pyarrow as pa
|
22 |
+
|
23 |
+
from .. import config
|
24 |
+
from ..utils.logging import get_logger
|
25 |
+
from ..utils.py_utils import map_nested
|
26 |
+
from .formatting import TensorFormatter
|
27 |
+
|
28 |
+
|
29 |
+
if TYPE_CHECKING:
|
30 |
+
import jax
|
31 |
+
import jaxlib
|
32 |
+
|
33 |
+
logger = get_logger()
|
34 |
+
|
35 |
+
DEVICE_MAPPING: Optional[dict] = None
|
36 |
+
|
37 |
+
|
38 |
+
class JaxFormatter(TensorFormatter[Mapping, "jax.Array", Mapping]):
|
39 |
+
def __init__(self, features=None, device=None, **jnp_array_kwargs):
|
40 |
+
super().__init__(features=features)
|
41 |
+
import jax
|
42 |
+
from jaxlib.xla_client import Device
|
43 |
+
|
44 |
+
if isinstance(device, Device):
|
45 |
+
raise ValueError(
|
46 |
+
f"Expected {device} to be a `str` not {type(device)}, as `jaxlib.xla_extension.Device` "
|
47 |
+
"is not serializable neither with `pickle` nor with `dill`. Instead you can surround "
|
48 |
+
"the device with `str()` to get its string identifier that will be internally mapped "
|
49 |
+
"to the actual `jaxlib.xla_extension.Device`."
|
50 |
+
)
|
51 |
+
self.device = device if isinstance(device, str) else str(jax.devices()[0])
|
52 |
+
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
|
53 |
+
# with `pickle` nor with `dill`, so we need to use a global variable instead
|
54 |
+
global DEVICE_MAPPING
|
55 |
+
if DEVICE_MAPPING is None:
|
56 |
+
DEVICE_MAPPING = self._map_devices_to_str()
|
57 |
+
if self.device not in list(DEVICE_MAPPING.keys()):
|
58 |
+
logger.warning(
|
59 |
+
f"Device with string identifier {self.device} not listed among the available "
|
60 |
+
f"devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default "
|
61 |
+
f"device: {str(jax.devices()[0])}."
|
62 |
+
)
|
63 |
+
self.device = str(jax.devices()[0])
|
64 |
+
self.jnp_array_kwargs = jnp_array_kwargs
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def _map_devices_to_str() -> Dict[str, "jaxlib.xla_extension.Device"]:
|
68 |
+
import jax
|
69 |
+
|
70 |
+
return {str(device): device for device in jax.devices()}
|
71 |
+
|
72 |
+
def _consolidate(self, column):
|
73 |
+
import jax
|
74 |
+
import jax.numpy as jnp
|
75 |
+
|
76 |
+
if isinstance(column, list) and column:
|
77 |
+
if all(
|
78 |
+
isinstance(x, jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column
|
79 |
+
):
|
80 |
+
return jnp.stack(column, axis=0)
|
81 |
+
return column
|
82 |
+
|
83 |
+
def _tensorize(self, value):
|
84 |
+
import jax
|
85 |
+
import jax.numpy as jnp
|
86 |
+
|
87 |
+
if isinstance(value, (str, bytes, type(None))):
|
88 |
+
return value
|
89 |
+
elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character):
|
90 |
+
return value.tolist()
|
91 |
+
|
92 |
+
default_dtype = {}
|
93 |
+
|
94 |
+
if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer):
|
95 |
+
# the default int precision depends on the jax config
|
96 |
+
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
|
97 |
+
if jax.config.jax_enable_x64:
|
98 |
+
default_dtype = {"dtype": jnp.int64}
|
99 |
+
else:
|
100 |
+
default_dtype = {"dtype": jnp.int32}
|
101 |
+
elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating):
|
102 |
+
default_dtype = {"dtype": jnp.float32}
|
103 |
+
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
|
104 |
+
import PIL.Image
|
105 |
+
|
106 |
+
if isinstance(value, PIL.Image.Image):
|
107 |
+
value = np.asarray(value)
|
108 |
+
|
109 |
+
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
|
110 |
+
# with `pickle` nor with `dill`, so we need to use a global variable instead
|
111 |
+
global DEVICE_MAPPING
|
112 |
+
if DEVICE_MAPPING is None:
|
113 |
+
DEVICE_MAPPING = self._map_devices_to_str()
|
114 |
+
|
115 |
+
with jax.default_device(DEVICE_MAPPING[self.device]):
|
116 |
+
# calling jnp.array on a np.ndarray does copy the data
|
117 |
+
# see https://github.com/google/jax/issues/4486
|
118 |
+
return jnp.array(value, **{**default_dtype, **self.jnp_array_kwargs})
|
119 |
+
|
120 |
+
def _recursive_tensorize(self, data_struct):
|
121 |
+
import jax
|
122 |
+
|
123 |
+
# support for torch, tf, jax etc.
|
124 |
+
if config.TORCH_AVAILABLE and "torch" in sys.modules:
|
125 |
+
import torch
|
126 |
+
|
127 |
+
if isinstance(data_struct, torch.Tensor):
|
128 |
+
return self._tensorize(data_struct.detach().cpu().numpy()[()])
|
129 |
+
if hasattr(data_struct, "__array__") and not isinstance(data_struct, jax.Array):
|
130 |
+
data_struct = data_struct.__array__()
|
131 |
+
# support for nested types like struct of list of struct
|
132 |
+
if isinstance(data_struct, np.ndarray):
|
133 |
+
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
|
134 |
+
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
|
135 |
+
elif isinstance(data_struct, (list, tuple)):
|
136 |
+
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
|
137 |
+
return self._tensorize(data_struct)
|
138 |
+
|
139 |
+
def recursive_tensorize(self, data_struct: dict):
|
140 |
+
return map_nested(self._recursive_tensorize, data_struct, map_list=False)
|
141 |
+
|
142 |
+
def format_row(self, pa_table: pa.Table) -> Mapping:
|
143 |
+
row = self.numpy_arrow_extractor().extract_row(pa_table)
|
144 |
+
row = self.python_features_decoder.decode_row(row)
|
145 |
+
return self.recursive_tensorize(row)
|
146 |
+
|
147 |
+
def format_column(self, pa_table: pa.Table) -> "jax.Array":
|
148 |
+
column = self.numpy_arrow_extractor().extract_column(pa_table)
|
149 |
+
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
|
150 |
+
column = self.recursive_tensorize(column)
|
151 |
+
column = self._consolidate(column)
|
152 |
+
return column
|
153 |
+
|
154 |
+
def format_batch(self, pa_table: pa.Table) -> Mapping:
|
155 |
+
batch = self.numpy_arrow_extractor().extract_batch(pa_table)
|
156 |
+
batch = self.python_features_decoder.decode_batch(batch)
|
157 |
+
batch = self.recursive_tensorize(batch)
|
158 |
+
for column_name in batch:
|
159 |
+
batch[column_name] = self._consolidate(batch[column_name])
|
160 |
+
return batch
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/np_formatter.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import sys
|
16 |
+
from collections.abc import Mapping
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import pyarrow as pa
|
20 |
+
|
21 |
+
from .. import config
|
22 |
+
from ..utils.py_utils import map_nested
|
23 |
+
from .formatting import TensorFormatter
|
24 |
+
|
25 |
+
|
26 |
+
class NumpyFormatter(TensorFormatter[Mapping, np.ndarray, Mapping]):
|
27 |
+
def __init__(self, features=None, **np_array_kwargs):
|
28 |
+
super().__init__(features=features)
|
29 |
+
self.np_array_kwargs = np_array_kwargs
|
30 |
+
|
31 |
+
def _consolidate(self, column):
|
32 |
+
if isinstance(column, list):
|
33 |
+
if column and all(
|
34 |
+
isinstance(x, np.ndarray) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column
|
35 |
+
):
|
36 |
+
return np.stack(column)
|
37 |
+
else:
|
38 |
+
# don't use np.array(column, dtype=object)
|
39 |
+
# since it fails in certain cases
|
40 |
+
# see https://stackoverflow.com/q/51005699
|
41 |
+
out = np.empty(len(column), dtype=object)
|
42 |
+
out[:] = column
|
43 |
+
return out
|
44 |
+
return column
|
45 |
+
|
46 |
+
def _tensorize(self, value):
|
47 |
+
if isinstance(value, (str, bytes, type(None))):
|
48 |
+
return value
|
49 |
+
elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character):
|
50 |
+
return value
|
51 |
+
elif isinstance(value, np.number):
|
52 |
+
return value
|
53 |
+
|
54 |
+
default_dtype = {}
|
55 |
+
|
56 |
+
if isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.integer):
|
57 |
+
default_dtype = {"dtype": np.int64}
|
58 |
+
elif isinstance(value, np.ndarray) and np.issubdtype(value.dtype, np.floating):
|
59 |
+
default_dtype = {"dtype": np.float32}
|
60 |
+
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
|
61 |
+
import PIL.Image
|
62 |
+
|
63 |
+
if isinstance(value, PIL.Image.Image):
|
64 |
+
return np.asarray(value, **self.np_array_kwargs)
|
65 |
+
|
66 |
+
return np.asarray(value, **{**default_dtype, **self.np_array_kwargs})
|
67 |
+
|
68 |
+
def _recursive_tensorize(self, data_struct):
|
69 |
+
# support for torch, tf, jax etc.
|
70 |
+
if config.TORCH_AVAILABLE and "torch" in sys.modules:
|
71 |
+
import torch
|
72 |
+
|
73 |
+
if isinstance(data_struct, torch.Tensor):
|
74 |
+
return self._tensorize(data_struct.detach().cpu().numpy()[()])
|
75 |
+
if hasattr(data_struct, "__array__") and not isinstance(data_struct, (np.ndarray, np.character, np.number)):
|
76 |
+
data_struct = data_struct.__array__()
|
77 |
+
# support for nested types like struct of list of struct
|
78 |
+
if isinstance(data_struct, np.ndarray):
|
79 |
+
if data_struct.dtype == object:
|
80 |
+
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
|
81 |
+
if isinstance(data_struct, (list, tuple)):
|
82 |
+
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
|
83 |
+
return self._tensorize(data_struct)
|
84 |
+
|
85 |
+
def recursive_tensorize(self, data_struct: dict):
|
86 |
+
return map_nested(self._recursive_tensorize, data_struct, map_list=False)
|
87 |
+
|
88 |
+
def format_row(self, pa_table: pa.Table) -> Mapping:
|
89 |
+
row = self.numpy_arrow_extractor().extract_row(pa_table)
|
90 |
+
row = self.python_features_decoder.decode_row(row)
|
91 |
+
return self.recursive_tensorize(row)
|
92 |
+
|
93 |
+
def format_column(self, pa_table: pa.Table) -> np.ndarray:
|
94 |
+
column = self.numpy_arrow_extractor().extract_column(pa_table)
|
95 |
+
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
|
96 |
+
column = self.recursive_tensorize(column)
|
97 |
+
column = self._consolidate(column)
|
98 |
+
return column
|
99 |
+
|
100 |
+
def format_batch(self, pa_table: pa.Table) -> Mapping:
|
101 |
+
batch = self.numpy_arrow_extractor().extract_batch(pa_table)
|
102 |
+
batch = self.python_features_decoder.decode_batch(batch)
|
103 |
+
batch = self.recursive_tensorize(batch)
|
104 |
+
for column_name in batch:
|
105 |
+
batch[column_name] = self._consolidate(batch[column_name])
|
106 |
+
return batch
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/polars_formatter.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import sys
|
16 |
+
from collections.abc import Mapping
|
17 |
+
from functools import partial
|
18 |
+
from typing import TYPE_CHECKING, Optional
|
19 |
+
|
20 |
+
import pyarrow as pa
|
21 |
+
|
22 |
+
from .. import config
|
23 |
+
from ..features import Features
|
24 |
+
from ..features.features import decode_nested_example
|
25 |
+
from ..utils.py_utils import no_op_if_value_is_null
|
26 |
+
from .formatting import BaseArrowExtractor, TensorFormatter
|
27 |
+
|
28 |
+
|
29 |
+
if TYPE_CHECKING:
|
30 |
+
import polars as pl
|
31 |
+
|
32 |
+
|
33 |
+
class PolarsArrowExtractor(BaseArrowExtractor["pl.DataFrame", "pl.Series", "pl.DataFrame"]):
|
34 |
+
def extract_row(self, pa_table: pa.Table) -> "pl.DataFrame":
|
35 |
+
if config.POLARS_AVAILABLE:
|
36 |
+
if "polars" not in sys.modules:
|
37 |
+
import polars
|
38 |
+
else:
|
39 |
+
polars = sys.modules["polars"]
|
40 |
+
|
41 |
+
return polars.from_arrow(pa_table.slice(length=1))
|
42 |
+
else:
|
43 |
+
raise ValueError("Polars needs to be installed to be able to return Polars dataframes.")
|
44 |
+
|
45 |
+
def extract_column(self, pa_table: pa.Table) -> "pl.Series":
|
46 |
+
if config.POLARS_AVAILABLE:
|
47 |
+
if "polars" not in sys.modules:
|
48 |
+
import polars
|
49 |
+
else:
|
50 |
+
polars = sys.modules["polars"]
|
51 |
+
|
52 |
+
return polars.from_arrow(pa_table.select([0]))[pa_table.column_names[0]]
|
53 |
+
else:
|
54 |
+
raise ValueError("Polars needs to be installed to be able to return Polars dataframes.")
|
55 |
+
|
56 |
+
def extract_batch(self, pa_table: pa.Table) -> "pl.DataFrame":
|
57 |
+
if config.POLARS_AVAILABLE:
|
58 |
+
if "polars" not in sys.modules:
|
59 |
+
import polars
|
60 |
+
else:
|
61 |
+
polars = sys.modules["polars"]
|
62 |
+
|
63 |
+
return polars.from_arrow(pa_table)
|
64 |
+
else:
|
65 |
+
raise ValueError("Polars needs to be installed to be able to return Polars dataframes.")
|
66 |
+
|
67 |
+
|
68 |
+
class PolarsFeaturesDecoder:
|
69 |
+
def __init__(self, features: Optional[Features]):
|
70 |
+
self.features = features
|
71 |
+
import polars as pl # noqa: F401 - import pl at initialization
|
72 |
+
|
73 |
+
def decode_row(self, row: "pl.DataFrame") -> "pl.DataFrame":
|
74 |
+
decode = (
|
75 |
+
{
|
76 |
+
column_name: no_op_if_value_is_null(partial(decode_nested_example, feature))
|
77 |
+
for column_name, feature in self.features.items()
|
78 |
+
if self.features._column_requires_decoding[column_name]
|
79 |
+
}
|
80 |
+
if self.features
|
81 |
+
else {}
|
82 |
+
)
|
83 |
+
if decode:
|
84 |
+
row[list(decode.keys())] = row.map_rows(decode)
|
85 |
+
return row
|
86 |
+
|
87 |
+
def decode_column(self, column: "pl.Series", column_name: str) -> "pl.Series":
|
88 |
+
decode = (
|
89 |
+
no_op_if_value_is_null(partial(decode_nested_example, self.features[column_name]))
|
90 |
+
if self.features and column_name in self.features and self.features._column_requires_decoding[column_name]
|
91 |
+
else None
|
92 |
+
)
|
93 |
+
if decode:
|
94 |
+
column = column.map_elements(decode)
|
95 |
+
return column
|
96 |
+
|
97 |
+
def decode_batch(self, batch: "pl.DataFrame") -> "pl.DataFrame":
|
98 |
+
return self.decode_row(batch)
|
99 |
+
|
100 |
+
|
101 |
+
class PolarsFormatter(TensorFormatter[Mapping, "pl.DataFrame", Mapping]):
|
102 |
+
def __init__(self, features=None, **np_array_kwargs):
|
103 |
+
super().__init__(features=features)
|
104 |
+
self.np_array_kwargs = np_array_kwargs
|
105 |
+
self.polars_arrow_extractor = PolarsArrowExtractor
|
106 |
+
self.polars_features_decoder = PolarsFeaturesDecoder(features)
|
107 |
+
import polars as pl # noqa: F401 - import pl at initialization
|
108 |
+
|
109 |
+
def format_row(self, pa_table: pa.Table) -> "pl.DataFrame":
|
110 |
+
row = self.polars_arrow_extractor().extract_row(pa_table)
|
111 |
+
row = self.polars_features_decoder.decode_row(row)
|
112 |
+
return row
|
113 |
+
|
114 |
+
def format_column(self, pa_table: pa.Table) -> "pl.Series":
|
115 |
+
column = self.polars_arrow_extractor().extract_column(pa_table)
|
116 |
+
column = self.polars_features_decoder.decode_column(column, pa_table.column_names[0])
|
117 |
+
return column
|
118 |
+
|
119 |
+
def format_batch(self, pa_table: pa.Table) -> "pl.DataFrame":
|
120 |
+
row = self.polars_arrow_extractor().extract_batch(pa_table)
|
121 |
+
row = self.polars_features_decoder.decode_batch(row)
|
122 |
+
return row
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/tf_formatter.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
import sys
|
17 |
+
from collections.abc import Mapping
|
18 |
+
from typing import TYPE_CHECKING
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import pyarrow as pa
|
22 |
+
|
23 |
+
from .. import config
|
24 |
+
from ..utils.py_utils import map_nested
|
25 |
+
from .formatting import TensorFormatter
|
26 |
+
|
27 |
+
|
28 |
+
if TYPE_CHECKING:
|
29 |
+
import tensorflow as tf
|
30 |
+
|
31 |
+
|
32 |
+
class TFFormatter(TensorFormatter[Mapping, "tf.Tensor", Mapping]):
|
33 |
+
def __init__(self, features=None, **tf_tensor_kwargs):
|
34 |
+
super().__init__(features=features)
|
35 |
+
self.tf_tensor_kwargs = tf_tensor_kwargs
|
36 |
+
import tensorflow as tf # noqa: F401 - import tf at initialization
|
37 |
+
|
38 |
+
def _consolidate(self, column):
|
39 |
+
import tensorflow as tf
|
40 |
+
|
41 |
+
if isinstance(column, list) and column:
|
42 |
+
if all(
|
43 |
+
isinstance(x, tf.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column
|
44 |
+
):
|
45 |
+
return tf.stack(column)
|
46 |
+
elif all(
|
47 |
+
isinstance(x, (tf.Tensor, tf.RaggedTensor)) and x.ndim == 1 and x.dtype == column[0].dtype
|
48 |
+
for x in column
|
49 |
+
):
|
50 |
+
# only rag 1-D tensors, otherwise some dimensions become ragged even though they were consolidated
|
51 |
+
return tf.ragged.stack(column)
|
52 |
+
|
53 |
+
return column
|
54 |
+
|
55 |
+
def _tensorize(self, value):
|
56 |
+
import tensorflow as tf
|
57 |
+
|
58 |
+
if value is None:
|
59 |
+
return value
|
60 |
+
|
61 |
+
default_dtype = {}
|
62 |
+
|
63 |
+
if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer):
|
64 |
+
default_dtype = {"dtype": tf.int64}
|
65 |
+
elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating):
|
66 |
+
default_dtype = {"dtype": tf.float32}
|
67 |
+
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
|
68 |
+
import PIL.Image
|
69 |
+
|
70 |
+
if isinstance(value, PIL.Image.Image):
|
71 |
+
value = np.asarray(value)
|
72 |
+
|
73 |
+
return tf.convert_to_tensor(value, **{**default_dtype, **self.tf_tensor_kwargs})
|
74 |
+
|
75 |
+
def _recursive_tensorize(self, data_struct):
|
76 |
+
import tensorflow as tf
|
77 |
+
|
78 |
+
# support for torch, tf, jax etc.
|
79 |
+
if config.TORCH_AVAILABLE and "torch" in sys.modules:
|
80 |
+
import torch
|
81 |
+
|
82 |
+
if isinstance(data_struct, torch.Tensor):
|
83 |
+
return self._tensorize(data_struct.detach().cpu().numpy()[()])
|
84 |
+
if hasattr(data_struct, "__array__") and not isinstance(data_struct, tf.Tensor):
|
85 |
+
data_struct = data_struct.__array__()
|
86 |
+
# support for nested types like struct of list of struct
|
87 |
+
if isinstance(data_struct, np.ndarray):
|
88 |
+
if data_struct.dtype == object: # tf tensors cannot be instantied from an array of objects
|
89 |
+
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
|
90 |
+
elif isinstance(data_struct, (list, tuple)):
|
91 |
+
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
|
92 |
+
return self._tensorize(data_struct)
|
93 |
+
|
94 |
+
def recursive_tensorize(self, data_struct: dict):
|
95 |
+
return map_nested(self._recursive_tensorize, data_struct, map_list=False)
|
96 |
+
|
97 |
+
def format_row(self, pa_table: pa.Table) -> Mapping:
|
98 |
+
row = self.numpy_arrow_extractor().extract_row(pa_table)
|
99 |
+
row = self.python_features_decoder.decode_row(row)
|
100 |
+
return self.recursive_tensorize(row)
|
101 |
+
|
102 |
+
def format_column(self, pa_table: pa.Table) -> "tf.Tensor":
|
103 |
+
column = self.numpy_arrow_extractor().extract_column(pa_table)
|
104 |
+
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
|
105 |
+
column = self.recursive_tensorize(column)
|
106 |
+
column = self._consolidate(column)
|
107 |
+
return column
|
108 |
+
|
109 |
+
def format_batch(self, pa_table: pa.Table) -> Mapping:
|
110 |
+
batch = self.numpy_arrow_extractor().extract_batch(pa_table)
|
111 |
+
batch = self.python_features_decoder.decode_batch(batch)
|
112 |
+
batch = self.recursive_tensorize(batch)
|
113 |
+
for column_name in batch:
|
114 |
+
batch[column_name] = self._consolidate(batch[column_name])
|
115 |
+
return batch
|
llmeval-env/lib/python3.10/site-packages/datasets/formatting/torch_formatter.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
import sys
|
17 |
+
from collections.abc import Mapping
|
18 |
+
from typing import TYPE_CHECKING
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import pyarrow as pa
|
22 |
+
|
23 |
+
from .. import config
|
24 |
+
from ..utils.py_utils import map_nested
|
25 |
+
from .formatting import TensorFormatter
|
26 |
+
|
27 |
+
|
28 |
+
if TYPE_CHECKING:
|
29 |
+
import torch
|
30 |
+
|
31 |
+
|
32 |
+
class TorchFormatter(TensorFormatter[Mapping, "torch.Tensor", Mapping]):
|
33 |
+
def __init__(self, features=None, **torch_tensor_kwargs):
|
34 |
+
super().__init__(features=features)
|
35 |
+
self.torch_tensor_kwargs = torch_tensor_kwargs
|
36 |
+
import torch # noqa import torch at initialization
|
37 |
+
|
38 |
+
def _consolidate(self, column):
|
39 |
+
import torch
|
40 |
+
|
41 |
+
if isinstance(column, list) and column:
|
42 |
+
if all(
|
43 |
+
isinstance(x, torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype
|
44 |
+
for x in column
|
45 |
+
):
|
46 |
+
return torch.stack(column)
|
47 |
+
return column
|
48 |
+
|
49 |
+
def _tensorize(self, value):
|
50 |
+
import torch
|
51 |
+
|
52 |
+
if isinstance(value, (str, bytes, type(None))):
|
53 |
+
return value
|
54 |
+
elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character):
|
55 |
+
return value.tolist()
|
56 |
+
|
57 |
+
default_dtype = {}
|
58 |
+
|
59 |
+
if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer):
|
60 |
+
default_dtype = {"dtype": torch.int64}
|
61 |
+
|
62 |
+
# Convert dtype to np.int64 if it's either np.uint16 or np.uint32 to ensure compatibility.
|
63 |
+
# np.uint64 is excluded from this conversion as there is no compatible PyTorch dtype that can handle it without loss.
|
64 |
+
if value.dtype in [np.uint16, np.uint32]:
|
65 |
+
value = value.astype(np.int64)
|
66 |
+
|
67 |
+
elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating):
|
68 |
+
default_dtype = {"dtype": torch.float32}
|
69 |
+
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
|
70 |
+
import PIL.Image
|
71 |
+
|
72 |
+
if isinstance(value, PIL.Image.Image):
|
73 |
+
value = np.asarray(value)
|
74 |
+
if value.ndim == 2:
|
75 |
+
value = value[:, :, np.newaxis]
|
76 |
+
|
77 |
+
value = value.transpose((2, 0, 1))
|
78 |
+
return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs})
|
79 |
+
|
80 |
+
def _recursive_tensorize(self, data_struct):
|
81 |
+
import torch
|
82 |
+
|
83 |
+
# support for torch, tf, jax etc.
|
84 |
+
if hasattr(data_struct, "__array__") and not isinstance(data_struct, torch.Tensor):
|
85 |
+
data_struct = data_struct.__array__()
|
86 |
+
# support for nested types like struct of list of struct
|
87 |
+
if isinstance(data_struct, np.ndarray):
|
88 |
+
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
|
89 |
+
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
|
90 |
+
elif isinstance(data_struct, (list, tuple)):
|
91 |
+
return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct])
|
92 |
+
return self._tensorize(data_struct)
|
93 |
+
|
94 |
+
def recursive_tensorize(self, data_struct: dict):
|
95 |
+
return map_nested(self._recursive_tensorize, data_struct, map_list=False)
|
96 |
+
|
97 |
+
def format_row(self, pa_table: pa.Table) -> Mapping:
|
98 |
+
row = self.numpy_arrow_extractor().extract_row(pa_table)
|
99 |
+
row = self.python_features_decoder.decode_row(row)
|
100 |
+
return self.recursive_tensorize(row)
|
101 |
+
|
102 |
+
def format_column(self, pa_table: pa.Table) -> "torch.Tensor":
|
103 |
+
column = self.numpy_arrow_extractor().extract_column(pa_table)
|
104 |
+
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
|
105 |
+
column = self.recursive_tensorize(column)
|
106 |
+
column = self._consolidate(column)
|
107 |
+
return column
|
108 |
+
|
109 |
+
def format_batch(self, pa_table: pa.Table) -> Mapping:
|
110 |
+
batch = self.numpy_arrow_extractor().extract_batch(pa_table)
|
111 |
+
batch = self.python_features_decoder.decode_batch(batch)
|
112 |
+
batch = self.recursive_tensorize(batch)
|
113 |
+
for column_name in batch:
|
114 |
+
batch[column_name] = self._consolidate(batch[column_name])
|
115 |
+
return batch
|
llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/automatic_speech_recognition.cpython-310.pyc
ADDED
Binary file (1.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/base.cpython-310.pyc
ADDED
Binary file (1.97 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/question_answering.cpython-310.pyc
ADDED
Binary file (1.37 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/tasks/__pycache__/text_classification.cpython-310.pyc
ADDED
Binary file (1.65 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (585 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/_dataset_viewer.cpython-310.pyc
ADDED
Binary file (3.22 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/cache.cpython-310.pyc
ADDED
Binary file (6.45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/deprecation_utils.cpython-310.pyc
ADDED
Binary file (3.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/doc_utils.cpython-310.pyc
ADDED
Binary file (697 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/hub.cpython-310.pyc
ADDED
Binary file (325 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/logging.cpython-310.pyc
ADDED
Binary file (5.14 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/readme.cpython-310.pyc
ADDED
Binary file (8.96 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/tqdm.cpython-310.pyc
ADDED
Binary file (4.03 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/version.cpython-310.pyc
ADDED
Binary file (4.03 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/LICENSE
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2016 Andrew Svetlov and aio-libs contributors
|
2 |
+
|
3 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
you may not use this file except in compliance with the License.
|
5 |
+
You may obtain a copy of the License at
|
6 |
+
|
7 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
Unless required by applicable law or agreed to in writing, software
|
10 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
See the License for the specific language governing permissions and
|
13 |
+
limitations under the License.
|
llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/METADATA
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: multidict
|
3 |
+
Version: 6.0.5
|
4 |
+
Summary: multidict implementation
|
5 |
+
Home-page: https://github.com/aio-libs/multidict
|
6 |
+
Author: Andrew Svetlov
|
7 |
+
Author-email: [email protected]
|
8 |
+
License: Apache 2
|
9 |
+
Project-URL: Chat: Gitter, https://gitter.im/aio-libs/Lobby
|
10 |
+
Project-URL: CI: GitHub, https://github.com/aio-libs/multidict/actions
|
11 |
+
Project-URL: Coverage: codecov, https://codecov.io/github/aio-libs/multidict
|
12 |
+
Project-URL: Docs: RTD, https://multidict.aio-libs.org
|
13 |
+
Project-URL: GitHub: issues, https://github.com/aio-libs/multidict/issues
|
14 |
+
Project-URL: GitHub: repo, https://github.com/aio-libs/multidict
|
15 |
+
Classifier: Development Status :: 5 - Production/Stable
|
16 |
+
Classifier: Intended Audience :: Developers
|
17 |
+
Classifier: License :: OSI Approved :: Apache Software License
|
18 |
+
Classifier: Programming Language :: Python
|
19 |
+
Classifier: Programming Language :: Python :: 3
|
20 |
+
Classifier: Programming Language :: Python :: 3.7
|
21 |
+
Classifier: Programming Language :: Python :: 3.8
|
22 |
+
Classifier: Programming Language :: Python :: 3.9
|
23 |
+
Classifier: Programming Language :: Python :: 3.10
|
24 |
+
Classifier: Programming Language :: Python :: 3.11
|
25 |
+
Classifier: Programming Language :: Python :: 3.12
|
26 |
+
Requires-Python: >=3.7
|
27 |
+
Description-Content-Type: text/x-rst
|
28 |
+
License-File: LICENSE
|
29 |
+
|
30 |
+
=========
|
31 |
+
multidict
|
32 |
+
=========
|
33 |
+
|
34 |
+
.. image:: https://github.com/aio-libs/multidict/workflows/CI/badge.svg
|
35 |
+
:target: https://github.com/aio-libs/multidict/actions?query=workflow%3ACI
|
36 |
+
:alt: GitHub status for master branch
|
37 |
+
|
38 |
+
.. image:: https://codecov.io/gh/aio-libs/multidict/branch/master/graph/badge.svg
|
39 |
+
:target: https://codecov.io/gh/aio-libs/multidict
|
40 |
+
:alt: Coverage metrics
|
41 |
+
|
42 |
+
.. image:: https://img.shields.io/pypi/v/multidict.svg
|
43 |
+
:target: https://pypi.org/project/multidict
|
44 |
+
:alt: PyPI
|
45 |
+
|
46 |
+
.. image:: https://readthedocs.org/projects/multidict/badge/?version=latest
|
47 |
+
:target: http://multidict.aio-libs.org/en/latest/?badge=latest
|
48 |
+
:alt: Documentation
|
49 |
+
|
50 |
+
.. image:: https://img.shields.io/pypi/pyversions/multidict.svg
|
51 |
+
:target: https://pypi.org/project/multidict
|
52 |
+
:alt: Python versions
|
53 |
+
|
54 |
+
.. image:: https://badges.gitter.im/Join%20Chat.svg
|
55 |
+
:target: https://gitter.im/aio-libs/Lobby
|
56 |
+
:alt: Chat on Gitter
|
57 |
+
|
58 |
+
Multidict is dict-like collection of *key-value pairs* where key
|
59 |
+
might occur more than once in the container.
|
60 |
+
|
61 |
+
Introduction
|
62 |
+
------------
|
63 |
+
|
64 |
+
*HTTP Headers* and *URL query string* require specific data structure:
|
65 |
+
*multidict*. It behaves mostly like a regular ``dict`` but it may have
|
66 |
+
several *values* for the same *key* and *preserves insertion ordering*.
|
67 |
+
|
68 |
+
The *key* is ``str`` (or ``istr`` for case-insensitive dictionaries).
|
69 |
+
|
70 |
+
``multidict`` has four multidict classes:
|
71 |
+
``MultiDict``, ``MultiDictProxy``, ``CIMultiDict``
|
72 |
+
and ``CIMultiDictProxy``.
|
73 |
+
|
74 |
+
Immutable proxies (``MultiDictProxy`` and
|
75 |
+
``CIMultiDictProxy``) provide a dynamic view for the
|
76 |
+
proxied multidict, the view reflects underlying collection changes. They
|
77 |
+
implement the ``collections.abc.Mapping`` interface.
|
78 |
+
|
79 |
+
Regular mutable (``MultiDict`` and ``CIMultiDict``) classes
|
80 |
+
implement ``collections.abc.MutableMapping`` and allows them to change
|
81 |
+
their own content.
|
82 |
+
|
83 |
+
|
84 |
+
*Case insensitive* (``CIMultiDict`` and
|
85 |
+
``CIMultiDictProxy``) assume the *keys* are case
|
86 |
+
insensitive, e.g.::
|
87 |
+
|
88 |
+
>>> dct = CIMultiDict(key='val')
|
89 |
+
>>> 'Key' in dct
|
90 |
+
True
|
91 |
+
>>> dct['Key']
|
92 |
+
'val'
|
93 |
+
|
94 |
+
*Keys* should be ``str`` or ``istr`` instances.
|
95 |
+
|
96 |
+
The library has optional C Extensions for speed.
|
97 |
+
|
98 |
+
|
99 |
+
License
|
100 |
+
-------
|
101 |
+
|
102 |
+
Apache 2
|
103 |
+
|
104 |
+
Library Installation
|
105 |
+
--------------------
|
106 |
+
|
107 |
+
.. code-block:: bash
|
108 |
+
|
109 |
+
$ pip install multidict
|
110 |
+
|
111 |
+
The library is Python 3 only!
|
112 |
+
|
113 |
+
PyPI contains binary wheels for Linux, Windows and MacOS. If you want to install
|
114 |
+
``multidict`` on another operating system (or *Alpine Linux* inside a Docker) the
|
115 |
+
tarball will be used to compile the library from source. It requires a C compiler and
|
116 |
+
Python headers to be installed.
|
117 |
+
|
118 |
+
To skip the compilation, please use the `MULTIDICT_NO_EXTENSIONS` environment variable,
|
119 |
+
e.g.:
|
120 |
+
|
121 |
+
.. code-block:: bash
|
122 |
+
|
123 |
+
$ MULTIDICT_NO_EXTENSIONS=1 pip install multidict
|
124 |
+
|
125 |
+
Please note, the pure Python (uncompiled) version is about 20-50 times slower depending on
|
126 |
+
the usage scenario!!!
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
Changelog
|
131 |
+
---------
|
132 |
+
See `RTD page <http://multidict.aio-libs.org/en/latest/changes>`_.
|
llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/RECORD
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
multidict-6.0.5.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
2 |
+
multidict-6.0.5.dist-info/LICENSE,sha256=k9Ealo4vDzY3PECBH_bSDhc_WMPKtYhM1mF7v9eVSSo,611
|
3 |
+
multidict-6.0.5.dist-info/METADATA,sha256=fGbYCQYEMcDtxEz2H6GLf1np9JtMhNTaLVzgAhsQYzU,4214
|
4 |
+
multidict-6.0.5.dist-info/RECORD,,
|
5 |
+
multidict-6.0.5.dist-info/WHEEL,sha256=1FEjxEYgybphwh9S0FO9IcZ0B-NIeM2ko8OzhFZeOeQ,152
|
6 |
+
multidict-6.0.5.dist-info/top_level.txt,sha256=-euDElkk5_qkmfIJ7WiqCab02ZlSFZWynejKg59qZQQ,10
|
7 |
+
multidict/__init__.py,sha256=psbRrP64CD22Wjoc_OoqG9QlkRGcaZfOFCoPmoUiMig,928
|
8 |
+
multidict/__init__.pyi,sha256=SbgC2ew1NvNXWlRKs9o0KhW4moozgMqgQ0OA4Re5JQQ,4840
|
9 |
+
multidict/__pycache__/__init__.cpython-310.pyc,,
|
10 |
+
multidict/__pycache__/_abc.cpython-310.pyc,,
|
11 |
+
multidict/__pycache__/_compat.cpython-310.pyc,,
|
12 |
+
multidict/__pycache__/_multidict_base.cpython-310.pyc,,
|
13 |
+
multidict/__pycache__/_multidict_py.cpython-310.pyc,,
|
14 |
+
multidict/_abc.py,sha256=Zvnrn4SBkrv4QTD7-ZzqNcoxw0f8KStLMPzGvBuGT2w,1190
|
15 |
+
multidict/_compat.py,sha256=tjUGdP9ooiH6c2KJrvUbPRwcvjWerKlKU6InIviwh7w,316
|
16 |
+
multidict/_multidict.cpython-310-x86_64-linux-gnu.so,sha256=BmNKiShRM0HlwDp_fjuenfzDjBlo6C0BEfpi55TRp-k,394656
|
17 |
+
multidict/_multidict_base.py,sha256=XugkE78fXBmtzDdg2Yi9TrEhDexmL-6qJbFIG0viLMg,3791
|
18 |
+
multidict/_multidict_py.py,sha256=57h4sYrRIu7EjMX4YpHVIZVrV9-q1KCW3F6rao10D3U,15050
|
19 |
+
multidict/py.typed,sha256=e9bmbH3UFxsabQrnNFPG9qxIXztwbcM6IKDYnvZwprY,15
|
llmeval-env/lib/python3.10/site-packages/multidict-6.0.5.dist-info/WHEEL
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.42.0)
|
3 |
+
Root-Is-Purelib: false
|
4 |
+
Tag: cp310-cp310-manylinux_2_17_x86_64
|
5 |
+
Tag: cp310-cp310-manylinux2014_x86_64
|
6 |
+
|
llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/COPYING
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2006-2008, R Oudkerk
|
2 |
+
|
3 |
+
All rights reserved.
|
4 |
+
|
5 |
+
Redistribution and use in source and binary forms, with or without
|
6 |
+
modification, are permitted provided that the following conditions
|
7 |
+
are met:
|
8 |
+
|
9 |
+
1. Redistributions of source code must retain the above copyright
|
10 |
+
notice, this list of conditions and the following disclaimer.
|
11 |
+
2. Redistributions in binary form must reproduce the above copyright
|
12 |
+
notice, this list of conditions and the following disclaimer in the
|
13 |
+
documentation and/or other materials provided with the distribution.
|
14 |
+
3. Neither the name of author nor the names of any contributors may be
|
15 |
+
used to endorse or promote products derived from this software
|
16 |
+
without specific prior written permission.
|
17 |
+
|
18 |
+
THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
|
19 |
+
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
20 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
21 |
+
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
22 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
23 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
24 |
+
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
25 |
+
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
26 |
+
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
27 |
+
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
28 |
+
SUCH DAMAGE.
|
llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/INSTALLER
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip
|
llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/LICENSE
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2008-2016 California Institute of Technology.
|
2 |
+
Copyright (c) 2016-2024 The Uncertainty Quantification Foundation.
|
3 |
+
All rights reserved.
|
4 |
+
|
5 |
+
This software forks the python package "multiprocessing". Licence and
|
6 |
+
copyright information for multiprocessing can be found in "COPYING".
|
7 |
+
|
8 |
+
This software is available subject to the conditions and terms laid
|
9 |
+
out below. By downloading and using this software you are agreeing
|
10 |
+
to the following conditions.
|
11 |
+
|
12 |
+
Redistribution and use in source and binary forms, with or without
|
13 |
+
modification, are permitted provided that the following conditions
|
14 |
+
are met:
|
15 |
+
|
16 |
+
- Redistributions of source code must retain the above copyright
|
17 |
+
notice, this list of conditions and the following disclaimer.
|
18 |
+
|
19 |
+
- Redistributions in binary form must reproduce the above copyright
|
20 |
+
notice, this list of conditions and the following disclaimer in the
|
21 |
+
documentation and/or other materials provided with the distribution.
|
22 |
+
|
23 |
+
- Neither the names of the copyright holders nor the names of any of
|
24 |
+
the contributors may be used to endorse or promote products derived
|
25 |
+
from this software without specific prior written permission.
|
26 |
+
|
27 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
28 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
29 |
+
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
30 |
+
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
31 |
+
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
32 |
+
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
33 |
+
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
34 |
+
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
35 |
+
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
36 |
+
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
37 |
+
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
38 |
+
|
llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/METADATA
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: multiprocess
|
3 |
+
Version: 0.70.16
|
4 |
+
Summary: better multiprocessing and multithreading in Python
|
5 |
+
Home-page: https://github.com/uqfoundation/multiprocess
|
6 |
+
Download-URL: https://pypi.org/project/multiprocess/#files
|
7 |
+
Author: Mike McKerns
|
8 |
+
Author-email: [email protected]
|
9 |
+
Maintainer: Mike McKerns
|
10 |
+
Maintainer-email: [email protected]
|
11 |
+
License: BSD-3-Clause
|
12 |
+
Project-URL: Documentation, http://multiprocess.rtfd.io
|
13 |
+
Project-URL: Source Code, https://github.com/uqfoundation/multiprocess
|
14 |
+
Project-URL: Bug Tracker, https://github.com/uqfoundation/multiprocess/issues
|
15 |
+
Platform: Linux
|
16 |
+
Platform: Windows
|
17 |
+
Platform: Mac
|
18 |
+
Classifier: Development Status :: 5 - Production/Stable
|
19 |
+
Classifier: Intended Audience :: Developers
|
20 |
+
Classifier: Intended Audience :: Science/Research
|
21 |
+
Classifier: License :: OSI Approved :: BSD License
|
22 |
+
Classifier: Programming Language :: Python :: 3
|
23 |
+
Classifier: Programming Language :: Python :: 3.8
|
24 |
+
Classifier: Programming Language :: Python :: 3.9
|
25 |
+
Classifier: Programming Language :: Python :: 3.10
|
26 |
+
Classifier: Programming Language :: Python :: 3.11
|
27 |
+
Classifier: Programming Language :: Python :: 3.12
|
28 |
+
Classifier: Programming Language :: Python :: Implementation :: CPython
|
29 |
+
Classifier: Programming Language :: Python :: Implementation :: PyPy
|
30 |
+
Classifier: Topic :: Scientific/Engineering
|
31 |
+
Classifier: Topic :: Software Development
|
32 |
+
Requires-Python: >=3.8
|
33 |
+
License-File: LICENSE
|
34 |
+
License-File: COPYING
|
35 |
+
Requires-Dist: dill (>=0.3.8)
|
36 |
+
|
37 |
+
-----------------------------------------------------------------
|
38 |
+
multiprocess: better multiprocessing and multithreading in Python
|
39 |
+
-----------------------------------------------------------------
|
40 |
+
|
41 |
+
About Multiprocess
|
42 |
+
==================
|
43 |
+
|
44 |
+
``multiprocess`` is a fork of ``multiprocessing``. ``multiprocess`` extends ``multiprocessing`` to provide enhanced serialization, using `dill`. ``multiprocess`` leverages ``multiprocessing`` to support the spawning of processes using the API of the Python standard library's ``threading`` module. ``multiprocessing`` has been distributed as part of the standard library since Python 2.6.
|
45 |
+
|
46 |
+
``multiprocess`` is part of ``pathos``, a Python framework for heterogeneous computing.
|
47 |
+
``multiprocess`` is in active development, so any user feedback, bug reports, comments,
|
48 |
+
or suggestions are highly appreciated. A list of issues is located at https://github.com/uqfoundation/multiprocess/issues, with a legacy list maintained at https://uqfoundation.github.io/project/pathos/query.
|
49 |
+
|
50 |
+
|
51 |
+
Major Features
|
52 |
+
==============
|
53 |
+
|
54 |
+
``multiprocess`` enables:
|
55 |
+
|
56 |
+
- objects to be transferred between processes using pipes or multi-producer/multi-consumer queues
|
57 |
+
- objects to be shared between processes using a server process or (for simple data) shared memory
|
58 |
+
|
59 |
+
``multiprocess`` provides:
|
60 |
+
|
61 |
+
- equivalents of all the synchronization primitives in ``threading``
|
62 |
+
- a ``Pool`` class to facilitate submitting tasks to worker processes
|
63 |
+
- enhanced serialization, using ``dill``
|
64 |
+
|
65 |
+
|
66 |
+
Current Release
|
67 |
+
===============
|
68 |
+
|
69 |
+
The latest released version of ``multiprocess`` is available from:
|
70 |
+
|
71 |
+
https://pypi.org/project/multiprocess
|
72 |
+
|
73 |
+
``multiprocess`` is distributed under a 3-clause BSD license, and is a fork of ``multiprocessing``.
|
74 |
+
|
75 |
+
|
76 |
+
Development Version
|
77 |
+
===================
|
78 |
+
|
79 |
+
You can get the latest development version with all the shiny new features at:
|
80 |
+
|
81 |
+
https://github.com/uqfoundation
|
82 |
+
|
83 |
+
If you have a new contribution, please submit a pull request.
|
84 |
+
|
85 |
+
|
86 |
+
Installation
|
87 |
+
============
|
88 |
+
|
89 |
+
``multiprocess`` can be installed with ``pip``::
|
90 |
+
|
91 |
+
$ pip install multiprocess
|
92 |
+
|
93 |
+
For Python 2, a C compiler is required to build the included extension module from source. Python 3 and binary installs do not require a C compiler.
|
94 |
+
|
95 |
+
|
96 |
+
Requirements
|
97 |
+
============
|
98 |
+
|
99 |
+
``multiprocess`` requires:
|
100 |
+
|
101 |
+
- ``python`` (or ``pypy``), **>=3.8**
|
102 |
+
- ``setuptools``, **>=42**
|
103 |
+
- ``dill``, **>=0.3.8**
|
104 |
+
|
105 |
+
|
106 |
+
Basic Usage
|
107 |
+
===========
|
108 |
+
|
109 |
+
The ``multiprocess.Process`` class follows the API of ``threading.Thread``.
|
110 |
+
For example ::
|
111 |
+
|
112 |
+
from multiprocess import Process, Queue
|
113 |
+
|
114 |
+
def f(q):
|
115 |
+
q.put('hello world')
|
116 |
+
|
117 |
+
if __name__ == '__main__':
|
118 |
+
q = Queue()
|
119 |
+
p = Process(target=f, args=[q])
|
120 |
+
p.start()
|
121 |
+
print (q.get())
|
122 |
+
p.join()
|
123 |
+
|
124 |
+
Synchronization primitives like locks, semaphores and conditions are
|
125 |
+
available, for example ::
|
126 |
+
|
127 |
+
>>> from multiprocess import Condition
|
128 |
+
>>> c = Condition()
|
129 |
+
>>> print (c)
|
130 |
+
<Condition(<RLock(None, 0)>), 0>
|
131 |
+
>>> c.acquire()
|
132 |
+
True
|
133 |
+
>>> print (c)
|
134 |
+
<Condition(<RLock(MainProcess, 1)>), 0>
|
135 |
+
|
136 |
+
One can also use a manager to create shared objects either in shared
|
137 |
+
memory or in a server process, for example ::
|
138 |
+
|
139 |
+
>>> from multiprocess import Manager
|
140 |
+
>>> manager = Manager()
|
141 |
+
>>> l = manager.list(range(10))
|
142 |
+
>>> l.reverse()
|
143 |
+
>>> print (l)
|
144 |
+
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
|
145 |
+
>>> print (repr(l))
|
146 |
+
<Proxy[list] object at 0x00E1B3B0>
|
147 |
+
|
148 |
+
Tasks can be offloaded to a pool of worker processes in various ways,
|
149 |
+
for example ::
|
150 |
+
|
151 |
+
>>> from multiprocess import Pool
|
152 |
+
>>> def f(x): return x*x
|
153 |
+
...
|
154 |
+
>>> p = Pool(4)
|
155 |
+
>>> result = p.map_async(f, range(10))
|
156 |
+
>>> print (result.get(timeout=1))
|
157 |
+
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
|
158 |
+
|
159 |
+
When ``dill`` is installed, serialization is extended to most objects,
|
160 |
+
for example ::
|
161 |
+
|
162 |
+
>>> from multiprocess import Pool
|
163 |
+
>>> p = Pool(4)
|
164 |
+
>>> print (p.map(lambda x: (lambda y:y**2)(x) + x, xrange(10)))
|
165 |
+
[0, 2, 6, 12, 20, 30, 42, 56, 72, 90]
|
166 |
+
|
167 |
+
|
168 |
+
More Information
|
169 |
+
================
|
170 |
+
|
171 |
+
Probably the best way to get started is to look at the documentation at
|
172 |
+
http://multiprocess.rtfd.io. Also see ``multiprocess.tests`` for scripts that
|
173 |
+
demonstrate how ``multiprocess`` can be used to leverge multiple processes
|
174 |
+
to execute Python in parallel. You can run the test suite with
|
175 |
+
``python -m multiprocess.tests``. As ``multiprocess`` conforms to the
|
176 |
+
``multiprocessing`` interface, the examples and documentation found at
|
177 |
+
http://docs.python.org/library/multiprocessing.html also apply to
|
178 |
+
``multiprocess`` if one will ``import multiprocessing as multiprocess``.
|
179 |
+
See https://github.com/uqfoundation/multiprocess/tree/master/py3.12/examples
|
180 |
+
for a set of examples that demonstrate some basic use cases and benchmarking
|
181 |
+
for running Python code in parallel. Please feel free to submit a ticket on
|
182 |
+
github, or ask a question on stackoverflow (**@Mike McKerns**). If you would
|
183 |
+
like to share how you use ``multiprocess`` in your work, please send an email
|
184 |
+
(to **mmckerns at uqfoundation dot org**).
|
185 |
+
|
186 |
+
|
187 |
+
Citation
|
188 |
+
========
|
189 |
+
|
190 |
+
If you use ``multiprocess`` to do research that leads to publication, we ask that you
|
191 |
+
acknowledge use of ``multiprocess`` by citing the following in your publication::
|
192 |
+
|
193 |
+
M.M. McKerns, L. Strand, T. Sullivan, A. Fang, M.A.G. Aivazis,
|
194 |
+
"Building a framework for predictive science", Proceedings of
|
195 |
+
the 10th Python in Science Conference, 2011;
|
196 |
+
http://arxiv.org/pdf/1202.1056
|
197 |
+
|
198 |
+
Michael McKerns and Michael Aivazis,
|
199 |
+
"pathos: a framework for heterogeneous computing", 2010- ;
|
200 |
+
https://uqfoundation.github.io/project/pathos
|
201 |
+
|
202 |
+
Please see https://uqfoundation.github.io/project/pathos or
|
203 |
+
http://arxiv.org/pdf/1202.1056 for further information.
|
llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/RECORD
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_multiprocess/__init__.py,sha256=zX5_h36TGSL0brHRtBvCL5E59ccW7yjL79i-Y399ODM,321
|
2 |
+
_multiprocess/__pycache__/__init__.cpython-310.pyc,,
|
3 |
+
multiprocess-0.70.16.dist-info/COPYING,sha256=n3_yfLkw0sMgLuB-PS1hRvTeZ20GmjPaMWbJjNuoOpU,1493
|
4 |
+
multiprocess-0.70.16.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
|
5 |
+
multiprocess-0.70.16.dist-info/LICENSE,sha256=6XUJedJKg2dhI98BD3PMtVtZvRFT-oGczkOr5B4tEEA,1930
|
6 |
+
multiprocess-0.70.16.dist-info/METADATA,sha256=Sv2eH2CjjyjVYaryTKqHkbJTlxlVA-SbmziCgkBJeQ0,7151
|
7 |
+
multiprocess-0.70.16.dist-info/RECORD,,
|
8 |
+
multiprocess-0.70.16.dist-info/WHEEL,sha256=KxatxaZA14OswIJTdImHhiM2tdZgU-xLZEzs-sYveVc,94
|
9 |
+
multiprocess-0.70.16.dist-info/top_level.txt,sha256=qtJc8GNdvi6suNpISX0Myln9AXJBYrNuas1MCqRPPqg,27
|
10 |
+
multiprocess/__info__.py,sha256=84TUBn1oJMNpbVvXKs0lKyfLYaZvRr-ZVh1zHM9VeCY,7997
|
11 |
+
multiprocess/__init__.py,sha256=XWUBDGorUkDW04h64xe51pUV9N5gzvSDj3tNT2ekifw,1856
|
12 |
+
multiprocess/__pycache__/__info__.cpython-310.pyc,,
|
13 |
+
multiprocess/__pycache__/__init__.cpython-310.pyc,,
|
14 |
+
multiprocess/__pycache__/connection.cpython-310.pyc,,
|
15 |
+
multiprocess/__pycache__/context.cpython-310.pyc,,
|
16 |
+
multiprocess/__pycache__/forkserver.cpython-310.pyc,,
|
17 |
+
multiprocess/__pycache__/heap.cpython-310.pyc,,
|
18 |
+
multiprocess/__pycache__/managers.cpython-310.pyc,,
|
19 |
+
multiprocess/__pycache__/pool.cpython-310.pyc,,
|
20 |
+
multiprocess/__pycache__/popen_fork.cpython-310.pyc,,
|
21 |
+
multiprocess/__pycache__/popen_forkserver.cpython-310.pyc,,
|
22 |
+
multiprocess/__pycache__/popen_spawn_posix.cpython-310.pyc,,
|
23 |
+
multiprocess/__pycache__/popen_spawn_win32.cpython-310.pyc,,
|
24 |
+
multiprocess/__pycache__/process.cpython-310.pyc,,
|
25 |
+
multiprocess/__pycache__/queues.cpython-310.pyc,,
|
26 |
+
multiprocess/__pycache__/reduction.cpython-310.pyc,,
|
27 |
+
multiprocess/__pycache__/resource_sharer.cpython-310.pyc,,
|
28 |
+
multiprocess/__pycache__/resource_tracker.cpython-310.pyc,,
|
29 |
+
multiprocess/__pycache__/shared_memory.cpython-310.pyc,,
|
30 |
+
multiprocess/__pycache__/sharedctypes.cpython-310.pyc,,
|
31 |
+
multiprocess/__pycache__/spawn.cpython-310.pyc,,
|
32 |
+
multiprocess/__pycache__/synchronize.cpython-310.pyc,,
|
33 |
+
multiprocess/__pycache__/util.cpython-310.pyc,,
|
34 |
+
multiprocess/connection.py,sha256=TO9BbLVlLVjTjr0fP7lIumBgiLwaFVnpqMBgFG6iL9s,31843
|
35 |
+
multiprocess/context.py,sha256=2fYvgfnu3B8wj8UyNndHUHgeuVDoVxlkFFKryycstaU,11610
|
36 |
+
multiprocess/dummy/__init__.py,sha256=kSekDqD_NCy0FDg7XnxZSgW-Ldg1_iRr07sNwDajKpA,3061
|
37 |
+
multiprocess/dummy/__pycache__/__init__.cpython-310.pyc,,
|
38 |
+
multiprocess/dummy/__pycache__/connection.cpython-310.pyc,,
|
39 |
+
multiprocess/dummy/connection.py,sha256=1j3Rl5_enBM-_kMO6HDmum3kPAoFE4Zs485HV5H-V6s,1598
|
40 |
+
multiprocess/forkserver.py,sha256=hiltKfLImDYJyAcezNAgMDaQznB2LtYWgwre0QroLRg,12138
|
41 |
+
multiprocess/heap.py,sha256=9rt5u5m5rkhJNfDWiCLpYDoWIt0LbElmx52yMqk7phQ,11626
|
42 |
+
multiprocess/managers.py,sha256=Y5m_aCdLE4mSCuyVrwMWg5Nh9f4OdSHDlSajyOgyGao,47562
|
43 |
+
multiprocess/pool.py,sha256=FTmtfoqkuN8Dd48f5TgdkokoxYN75xcnR78Hw-bLSng,32759
|
44 |
+
multiprocess/popen_fork.py,sha256=Nvq5vVId24UfkOQxXhxZbcXuo8d6YMc409yRXAamTd0,2374
|
45 |
+
multiprocess/popen_forkserver.py,sha256=SrEbV8Wv0Uu_UegkaW-cayXRdjTGXr560Yyy90pj-yE,2227
|
46 |
+
multiprocess/popen_spawn_posix.py,sha256=l7XSWqR5UWiUSJh35qeSElLuNfUeEYwvH5HzKRnnyqg,2029
|
47 |
+
multiprocess/popen_spawn_win32.py,sha256=A9uvlPmhO8JBzNcEU_Gmix2Q_qYJW1NXZgXPwtN5Ao0,4011
|
48 |
+
multiprocess/process.py,sha256=GIIo2NiBsX1r_m0J1TcnbdeSulGLWHElRCuYRkkdgQ4,12083
|
49 |
+
multiprocess/queues.py,sha256=sgXCXnIOVrPScqI3lwRD9t3IshqIBMEksLtouPH9Nzc,12139
|
50 |
+
multiprocess/reduction.py,sha256=NQQ6KbDhmuAyaDeWaIarTZQokGPhcFda1poNnPm5uNc,9637
|
51 |
+
multiprocess/resource_sharer.py,sha256=nEApLhMQqd8KunfaNKl3n8vdeiCGPxKrSL1Ja0nNAEk,5132
|
52 |
+
multiprocess/resource_tracker.py,sha256=_D2iX4IWRe3dOwLoLjfCnXNbDAM4pRzA8qEMTcRfutw,9056
|
53 |
+
multiprocess/shared_memory.py,sha256=UTAecHECIOHElP9Tg6yURCo4pKZiLy65TkASjEXeGus,18458
|
54 |
+
multiprocess/sharedctypes.py,sha256=d-9SKRJHRlJJC331IxEoWOUXIeY9zxCbhWejXOmzGw0,6306
|
55 |
+
multiprocess/spawn.py,sha256=cgtV66HhV_yIVzvdblc8bVdSpem16Ks0BOFu_bV5PDQ,9293
|
56 |
+
multiprocess/synchronize.py,sha256=6q1ijwWyWLWLO8uUtaYT9MKepAYKfdzWPSEZGyJFP4s,11829
|
57 |
+
multiprocess/tests/__init__.py,sha256=k00IjwhAUV_O1bp81895vN1gLnFzBM3iM-QTn5VrQnU,199087
|
58 |
+
multiprocess/tests/__main__.py,sha256=RauIRQrO0HwRq_clLqbBk4gwo5Xw3-ASLuC029XaHeA,912
|
59 |
+
multiprocess/tests/__pycache__/__init__.cpython-310.pyc,,
|
60 |
+
multiprocess/tests/__pycache__/__main__.cpython-310.pyc,,
|
61 |
+
multiprocess/tests/__pycache__/mp_fork_bomb.cpython-310.pyc,,
|
62 |
+
multiprocess/tests/__pycache__/mp_preload.cpython-310.pyc,,
|
63 |
+
multiprocess/tests/__pycache__/test_multiprocessing_fork.cpython-310.pyc,,
|
64 |
+
multiprocess/tests/__pycache__/test_multiprocessing_forkserver.cpython-310.pyc,,
|
65 |
+
multiprocess/tests/__pycache__/test_multiprocessing_main_handling.cpython-310.pyc,,
|
66 |
+
multiprocess/tests/__pycache__/test_multiprocessing_spawn.cpython-310.pyc,,
|
67 |
+
multiprocess/tests/mp_fork_bomb.py,sha256=6ADOEzh1aXHZ21aOGoBPhKcgB5sj15G9tQVgSc6GrlY,448
|
68 |
+
multiprocess/tests/mp_preload.py,sha256=1-WvLFMaPoH-vZbpUaJvvZHFxTpA9tgmct2vblQy99M,365
|
69 |
+
multiprocess/tests/test_multiprocessing_fork.py,sha256=ue1SQLJFxm1oc_3F2gR_WRtt39jhaj0l_Ht6Y1MBmFo,476
|
70 |
+
multiprocess/tests/test_multiprocessing_forkserver.py,sha256=VFlUuZI60gyRbNxfHWDlgmy3zm-dPTldLWuKQZ8KObs,391
|
71 |
+
multiprocess/tests/test_multiprocessing_main_handling.py,sha256=mtmN0K-spqZCcZVNLf_HrhP186-knpY6eaoFonL1U4U,12018
|
72 |
+
multiprocess/tests/test_multiprocessing_spawn.py,sha256=2UAisJX58GZCbYuDFay_x97R9akhzzjIA4VuUUzITOY,276
|
73 |
+
multiprocess/util.py,sha256=OPI3CZ34BNwwwa7AqW-eGhnuSUsu-ozy2NRU8BYKuwg,14012
|
llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/WHEEL
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Wheel-Version: 1.0
|
2 |
+
Generator: bdist_wheel (0.37.1)
|
3 |
+
Root-Is-Purelib: true
|
4 |
+
Tag: py310-none-any
|
5 |
+
|
llmeval-env/lib/python3.10/site-packages/multiprocess-0.70.16.dist-info/top_level.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
_multiprocess
|
2 |
+
multiprocess
|
llmeval-env/lib/python3.10/site-packages/pytablewriter/__init__.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
.. codeauthor:: Tsuyoshi Hombashi <[email protected]>
|
3 |
+
"""
|
4 |
+
|
5 |
+
from dataproperty import LineBreakHandling
|
6 |
+
|
7 |
+
from .__version__ import __author__, __copyright__, __email__, __license__, __version__
|
8 |
+
from ._factory import TableWriterFactory
|
9 |
+
from ._function import dumps_tabledata
|
10 |
+
from ._logger import set_logger
|
11 |
+
from ._table_format import FormatAttr, TableFormat
|
12 |
+
from .error import (
|
13 |
+
EmptyTableDataError,
|
14 |
+
EmptyTableNameError,
|
15 |
+
EmptyValueError,
|
16 |
+
NotSupportedError,
|
17 |
+
WriterNotFoundError,
|
18 |
+
)
|
19 |
+
from .style import Align, Format
|
20 |
+
from .typehint import (
|
21 |
+
Bool,
|
22 |
+
DateTime,
|
23 |
+
Dictionary,
|
24 |
+
Infinity,
|
25 |
+
Integer,
|
26 |
+
IpAddress,
|
27 |
+
List,
|
28 |
+
Nan,
|
29 |
+
NoneType,
|
30 |
+
NullString,
|
31 |
+
RealNumber,
|
32 |
+
String,
|
33 |
+
)
|
34 |
+
from .writer import (
|
35 |
+
AbstractTableWriter,
|
36 |
+
AsciiDocTableWriter,
|
37 |
+
BoldUnicodeTableWriter,
|
38 |
+
BorderlessTableWriter,
|
39 |
+
CssTableWriter,
|
40 |
+
CsvTableWriter,
|
41 |
+
ElasticsearchWriter,
|
42 |
+
ExcelXlsTableWriter,
|
43 |
+
ExcelXlsxTableWriter,
|
44 |
+
HtmlTableWriter,
|
45 |
+
JavaScriptTableWriter,
|
46 |
+
JsonLinesTableWriter,
|
47 |
+
JsonTableWriter,
|
48 |
+
LatexMatrixWriter,
|
49 |
+
LatexTableWriter,
|
50 |
+
LtsvTableWriter,
|
51 |
+
MarkdownTableWriter,
|
52 |
+
MediaWikiTableWriter,
|
53 |
+
NullTableWriter,
|
54 |
+
NumpyTableWriter,
|
55 |
+
PandasDataFramePickleWriter,
|
56 |
+
PandasDataFrameWriter,
|
57 |
+
PythonCodeTableWriter,
|
58 |
+
RstCsvTableWriter,
|
59 |
+
RstGridTableWriter,
|
60 |
+
RstSimpleTableWriter,
|
61 |
+
SpaceAlignedTableWriter,
|
62 |
+
SqliteTableWriter,
|
63 |
+
TomlTableWriter,
|
64 |
+
TsvTableWriter,
|
65 |
+
UnicodeTableWriter,
|
66 |
+
YamlTableWriter,
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
__all__ = (
|
71 |
+
"__author__",
|
72 |
+
"__copyright__",
|
73 |
+
"__email__",
|
74 |
+
"__license__",
|
75 |
+
"__version__",
|
76 |
+
"LineBreakHandling",
|
77 |
+
"TableWriterFactory",
|
78 |
+
"dumps_tabledata",
|
79 |
+
"set_logger",
|
80 |
+
"FormatAttr",
|
81 |
+
"TableFormat",
|
82 |
+
"Align",
|
83 |
+
"Format",
|
84 |
+
"Bool",
|
85 |
+
"DateTime",
|
86 |
+
"Dictionary",
|
87 |
+
"Infinity",
|
88 |
+
"Integer",
|
89 |
+
"IpAddress",
|
90 |
+
"List",
|
91 |
+
"Nan",
|
92 |
+
"NoneType",
|
93 |
+
"NullString",
|
94 |
+
"RealNumber",
|
95 |
+
"String",
|
96 |
+
"EmptyTableDataError",
|
97 |
+
"EmptyTableNameError",
|
98 |
+
"EmptyValueError",
|
99 |
+
"NotSupportedError",
|
100 |
+
"WriterNotFoundError",
|
101 |
+
"AbstractTableWriter",
|
102 |
+
"AsciiDocTableWriter",
|
103 |
+
"BoldUnicodeTableWriter",
|
104 |
+
"BorderlessTableWriter",
|
105 |
+
"CssTableWriter",
|
106 |
+
"CsvTableWriter",
|
107 |
+
"ElasticsearchWriter",
|
108 |
+
"ExcelXlsTableWriter",
|
109 |
+
"ExcelXlsxTableWriter",
|
110 |
+
"HtmlTableWriter",
|
111 |
+
"JavaScriptTableWriter",
|
112 |
+
"JsonLinesTableWriter",
|
113 |
+
"JsonTableWriter",
|
114 |
+
"LatexMatrixWriter",
|
115 |
+
"LatexTableWriter",
|
116 |
+
"LtsvTableWriter",
|
117 |
+
"MarkdownTableWriter",
|
118 |
+
"MediaWikiTableWriter",
|
119 |
+
"NullTableWriter",
|
120 |
+
"NumpyTableWriter",
|
121 |
+
"PandasDataFramePickleWriter",
|
122 |
+
"PandasDataFrameWriter",
|
123 |
+
"PythonCodeTableWriter",
|
124 |
+
"RstCsvTableWriter",
|
125 |
+
"RstGridTableWriter",
|
126 |
+
"RstSimpleTableWriter",
|
127 |
+
"SpaceAlignedTableWriter",
|
128 |
+
"SqliteTableWriter",
|
129 |
+
"TomlTableWriter",
|
130 |
+
"TsvTableWriter",
|
131 |
+
"UnicodeTableWriter",
|
132 |
+
"YamlTableWriter",
|
133 |
+
)
|
llmeval-env/lib/python3.10/site-packages/pytablewriter/__version__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__author__ = "Tsuyoshi Hombashi"
|
2 |
+
__copyright__ = f"Copyright 2016, {__author__}"
|
3 |
+
__license__ = "MIT License"
|
4 |
+
__version__ = "1.2.0"
|
5 |
+
__maintainer__ = __author__
|
6 |
+
__email__ = "[email protected]"
|
llmeval-env/lib/python3.10/site-packages/pytablewriter/_converter.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
.. codeauthor:: Tsuyoshi Hombashi <[email protected]>
|
3 |
+
"""
|
4 |
+
|
5 |
+
import re
|
6 |
+
|
7 |
+
|
8 |
+
def strip_quote(text: str, value: str) -> str:
|
9 |
+
re_replace = re.compile(f"[\"']{value:s}[\"']", re.MULTILINE)
|
10 |
+
|
11 |
+
return re_replace.sub(value, text)
|
llmeval-env/lib/python3.10/site-packages/pytablewriter/_factory.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
.. codeauthor:: Tsuyoshi Hombashi <[email protected]>
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
from itertools import chain
|
7 |
+
from typing import Any, List
|
8 |
+
|
9 |
+
import typepy
|
10 |
+
|
11 |
+
from ._logger import logger
|
12 |
+
from ._table_format import FormatAttr, TableFormat
|
13 |
+
from .error import WriterNotFoundError
|
14 |
+
from .writer import AbstractTableWriter
|
15 |
+
|
16 |
+
|
17 |
+
class TableWriterFactory:
|
18 |
+
"""
|
19 |
+
A factory class of table writer classes.
|
20 |
+
"""
|
21 |
+
|
22 |
+
@classmethod
|
23 |
+
def create_from_file_extension(cls, file_extension: str, **kwargs: Any) -> AbstractTableWriter:
|
24 |
+
"""
|
25 |
+
Create a table writer class instance from a file extension.
|
26 |
+
Supported file extensions are as follows:
|
27 |
+
|
28 |
+
================== ===================================
|
29 |
+
Extension Writer Class
|
30 |
+
================== ===================================
|
31 |
+
``".adoc"`` :py:class:`~.AsciiDocTableWriter`
|
32 |
+
``".asciidoc"`` :py:class:`~.AsciiDocTableWriter`
|
33 |
+
``".asc"`` :py:class:`~.AsciiDocTableWriter`
|
34 |
+
``".css"`` :py:class:`~.CssTableWriter`
|
35 |
+
``".csv"`` :py:class:`~.CsvTableWriter`
|
36 |
+
``".htm"`` :py:class:`~.HtmlTableWriter`
|
37 |
+
``".html"`` :py:class:`~.HtmlTableWriter`
|
38 |
+
``".js"`` :py:class:`~.JavaScriptTableWriter`
|
39 |
+
``".json"`` :py:class:`~.JsonTableWriter`
|
40 |
+
``".jsonl"`` :py:class:`~.JsonLinesTableWriter`
|
41 |
+
``".ltsv"`` :py:class:`~.LtsvTableWriter`
|
42 |
+
``".ldjson"`` :py:class:`~.JsonLinesTableWriter`
|
43 |
+
``".md"`` :py:class:`~.MarkdownTableWriter`
|
44 |
+
``".ndjson"`` :py:class:`~.JsonLinesTableWriter`
|
45 |
+
``".py"`` :py:class:`~.PythonCodeTableWriter`
|
46 |
+
``".rst"`` :py:class:`~.RstGridTableWriter`
|
47 |
+
``".tsv"`` :py:class:`~.TsvTableWriter`
|
48 |
+
``".xls"`` :py:class:`~.ExcelXlsTableWriter`
|
49 |
+
``".xlsx"`` :py:class:`~.ExcelXlsxTableWriter`
|
50 |
+
``".sqlite"`` :py:class:`~.SqliteTableWriter`
|
51 |
+
``".sqlite3"`` :py:class:`~.SqliteTableWriter`
|
52 |
+
``".tsv"`` :py:class:`~.TsvTableWriter`
|
53 |
+
``".toml"`` :py:class:`~.TomlTableWriter`
|
54 |
+
``".yml"`` :py:class:`~.YamlTableWriter`
|
55 |
+
================== ===================================
|
56 |
+
|
57 |
+
:param str file_extension:
|
58 |
+
File extension string (case insensitive).
|
59 |
+
:param kwargs:
|
60 |
+
Keyword arguments that pass to a writer class constructor.
|
61 |
+
:return:
|
62 |
+
Writer instance that coincides with the ``file_extension``.
|
63 |
+
:rtype:
|
64 |
+
:py:class:`~pytablewriter.writer._table_writer.TableWriterInterface`
|
65 |
+
:raises pytablewriter.WriterNotFoundError:
|
66 |
+
|WriterNotFoundError_desc| the file extension.
|
67 |
+
"""
|
68 |
+
|
69 |
+
ext = os.path.splitext(file_extension)[1]
|
70 |
+
if typepy.is_null_string(ext):
|
71 |
+
file_extension = file_extension
|
72 |
+
else:
|
73 |
+
file_extension = ext
|
74 |
+
|
75 |
+
file_extension = file_extension.lstrip(".").lower()
|
76 |
+
|
77 |
+
for table_format in TableFormat:
|
78 |
+
if file_extension not in table_format.file_extensions:
|
79 |
+
continue
|
80 |
+
|
81 |
+
if table_format.format_attribute & FormatAttr.SECONDARY_EXT:
|
82 |
+
continue
|
83 |
+
|
84 |
+
logger.debug(f"create a {table_format.writer_class} instance")
|
85 |
+
|
86 |
+
return table_format.writer_class(**kwargs) # type: ignore
|
87 |
+
|
88 |
+
raise WriterNotFoundError(
|
89 |
+
"\n".join(
|
90 |
+
[
|
91 |
+
f"{file_extension:s} (unknown file extension).",
|
92 |
+
"",
|
93 |
+
"acceptable file extensions are: {}.".format(", ".join(cls.get_extensions())),
|
94 |
+
]
|
95 |
+
)
|
96 |
+
)
|
97 |
+
|
98 |
+
@classmethod
|
99 |
+
def create_from_format_name(cls, format_name: str, **kwargs: Any) -> AbstractTableWriter:
|
100 |
+
"""
|
101 |
+
Create a table writer class instance from a format name.
|
102 |
+
Supported file format names are as follows:
|
103 |
+
|
104 |
+
============================================= ===================================
|
105 |
+
Format name Writer Class
|
106 |
+
============================================= ===================================
|
107 |
+
``"adoc"`` :py:class:`~.AsciiDocTableWriter`
|
108 |
+
``"asciidoc"`` :py:class:`~.AsciiDocTableWriter`
|
109 |
+
``"css"`` :py:class:`~.CssTableWriter`
|
110 |
+
``"csv"`` :py:class:`~.CsvTableWriter`
|
111 |
+
``"elasticsearch"`` :py:class:`~.ElasticsearchWriter`
|
112 |
+
``"excel"`` :py:class:`~.ExcelXlsxTableWriter`
|
113 |
+
``"html"``/``"htm"`` :py:class:`~.HtmlTableWriter`
|
114 |
+
``"javascript"``/``"js"`` :py:class:`~.JavaScriptTableWriter`
|
115 |
+
``"json"`` :py:class:`~.JsonTableWriter`
|
116 |
+
``"json_lines"`` :py:class:`~.JsonLinesTableWriter`
|
117 |
+
``"latex_matrix"`` :py:class:`~.LatexMatrixWriter`
|
118 |
+
``"latex_table"`` :py:class:`~.LatexTableWriter`
|
119 |
+
``"ldjson"`` :py:class:`~.JsonLinesTableWriter`
|
120 |
+
``"ltsv"`` :py:class:`~.LtsvTableWriter`
|
121 |
+
``"markdown"``/``"md"`` :py:class:`~.MarkdownTableWriter`
|
122 |
+
``"mediawiki"`` :py:class:`~.MediaWikiTableWriter`
|
123 |
+
``"null"`` :py:class:`~.NullTableWriter`
|
124 |
+
``"pandas"`` :py:class:`~.PandasDataFrameWriter`
|
125 |
+
``"py"``/``"python"`` :py:class:`~.PythonCodeTableWriter`
|
126 |
+
``"rst"``/``"rst_grid"``/``"rst_grid_table"`` :py:class:`~.RstGridTableWriter`
|
127 |
+
``"rst_simple"``/``"rst_simple_table"`` :py:class:`~.RstSimpleTableWriter`
|
128 |
+
``"rst_csv"``/``"rst_csv_table"`` :py:class:`~.RstCsvTableWriter`
|
129 |
+
``"sqlite"`` :py:class:`~.SqliteTableWriter`
|
130 |
+
``"ssv"`` :py:class:`~.SpaceAlignedTableWriter`
|
131 |
+
``"tsv"`` :py:class:`~.TsvTableWriter`
|
132 |
+
``"toml"`` :py:class:`~.TomlTableWriter`
|
133 |
+
``"unicode"`` :py:class:`~.UnicodeTableWriter`
|
134 |
+
``"yaml"`` :py:class:`~.YamlTableWriter`
|
135 |
+
============================================= ===================================
|
136 |
+
|
137 |
+
:param str format_name:
|
138 |
+
Format name string (case insensitive).
|
139 |
+
:param kwargs:
|
140 |
+
Keyword arguments that pass to a writer class constructor.
|
141 |
+
:return:
|
142 |
+
Writer instance that coincides with the ``format_name``:
|
143 |
+
:rtype:
|
144 |
+
:py:class:`~pytablewriter.writer._table_writer.TableWriterInterface`
|
145 |
+
:raises pytablewriter.WriterNotFoundError:
|
146 |
+
|WriterNotFoundError_desc| for the format.
|
147 |
+
"""
|
148 |
+
|
149 |
+
format_name = format_name.casefold()
|
150 |
+
|
151 |
+
for table_format in TableFormat:
|
152 |
+
if format_name in table_format.names and not (
|
153 |
+
table_format.format_attribute & FormatAttr.SECONDARY_NAME
|
154 |
+
):
|
155 |
+
writer = table_format.writer_class(**kwargs) # type: ignore
|
156 |
+
logger.debug(f"create a {writer.FORMAT_NAME} instance")
|
157 |
+
|
158 |
+
return writer
|
159 |
+
|
160 |
+
raise WriterNotFoundError(
|
161 |
+
"\n".join(
|
162 |
+
[
|
163 |
+
f"{format_name} (unknown format name).",
|
164 |
+
"acceptable format names are: {}.".format(", ".join(cls.get_format_names())),
|
165 |
+
]
|
166 |
+
)
|
167 |
+
)
|
168 |
+
|
169 |
+
@classmethod
|
170 |
+
def get_format_names(cls) -> List[str]:
|
171 |
+
"""
|
172 |
+
:return: Available format names.
|
173 |
+
:rtype: list
|
174 |
+
|
175 |
+
:Example:
|
176 |
+
.. code:: python
|
177 |
+
|
178 |
+
>>> import pytablewriter as ptw
|
179 |
+
>>> for name in ptw.TableWriterFactory.get_format_names():
|
180 |
+
... print(name)
|
181 |
+
...
|
182 |
+
adoc
|
183 |
+
asciidoc
|
184 |
+
bold_unicode
|
185 |
+
borderless
|
186 |
+
css
|
187 |
+
csv
|
188 |
+
elasticsearch
|
189 |
+
excel
|
190 |
+
htm
|
191 |
+
html
|
192 |
+
javascript
|
193 |
+
js
|
194 |
+
json
|
195 |
+
json_lines
|
196 |
+
jsonl
|
197 |
+
latex_matrix
|
198 |
+
latex_table
|
199 |
+
ldjson
|
200 |
+
ltsv
|
201 |
+
markdown
|
202 |
+
md
|
203 |
+
mediawiki
|
204 |
+
ndjson
|
205 |
+
null
|
206 |
+
numpy
|
207 |
+
pandas
|
208 |
+
pandas_pickle
|
209 |
+
py
|
210 |
+
python
|
211 |
+
rst
|
212 |
+
rst_csv
|
213 |
+
rst_csv_table
|
214 |
+
rst_grid
|
215 |
+
rst_grid_table
|
216 |
+
rst_simple
|
217 |
+
rst_simple_table
|
218 |
+
space_aligned
|
219 |
+
sqlite
|
220 |
+
ssv
|
221 |
+
toml
|
222 |
+
tsv
|
223 |
+
unicode
|
224 |
+
yaml
|
225 |
+
|
226 |
+
"""
|
227 |
+
|
228 |
+
return sorted(list(set(chain(*(table_format.names for table_format in TableFormat)))))
|
229 |
+
|
230 |
+
@classmethod
|
231 |
+
def get_extensions(cls) -> List[str]:
|
232 |
+
"""
|
233 |
+
:return: Available file extensions.
|
234 |
+
:rtype: list
|
235 |
+
|
236 |
+
:Example:
|
237 |
+
.. code:: python
|
238 |
+
|
239 |
+
>>> import pytablewriter as ptw
|
240 |
+
>>> for name in ptw.TableWriterFactory.get_extensions():
|
241 |
+
... print(name)
|
242 |
+
...
|
243 |
+
adoc
|
244 |
+
asc
|
245 |
+
asciidoc
|
246 |
+
css
|
247 |
+
csv
|
248 |
+
htm
|
249 |
+
html
|
250 |
+
js
|
251 |
+
json
|
252 |
+
jsonl
|
253 |
+
ldjson
|
254 |
+
ltsv
|
255 |
+
md
|
256 |
+
ndjson
|
257 |
+
py
|
258 |
+
rst
|
259 |
+
sqlite
|
260 |
+
sqlite3
|
261 |
+
tex
|
262 |
+
toml
|
263 |
+
tsv
|
264 |
+
xls
|
265 |
+
xlsx
|
266 |
+
yml
|
267 |
+
"""
|
268 |
+
|
269 |
+
file_extension_set = set()
|
270 |
+
for table_format in TableFormat:
|
271 |
+
for file_extension in table_format.file_extensions:
|
272 |
+
file_extension_set.add(file_extension)
|
273 |
+
|
274 |
+
return sorted(list(file_extension_set))
|
llmeval-env/lib/python3.10/site-packages/pytablewriter/_function.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
.. codeauthor:: Tsuyoshi Hombashi <[email protected]>
|
3 |
+
"""
|
4 |
+
|
5 |
+
from datetime import datetime
|
6 |
+
from enum import Enum
|
7 |
+
from typing import Any, Optional, Type
|
8 |
+
|
9 |
+
import dataproperty
|
10 |
+
from pathvalidate import replace_symbol
|
11 |
+
from tabledata._core import TableData
|
12 |
+
|
13 |
+
|
14 |
+
def quote_datetime_formatter(value: datetime) -> str:
|
15 |
+
return f'"{value.strftime(dataproperty.DefaultValue.DATETIME_FORMAT):s}"'
|
16 |
+
|
17 |
+
|
18 |
+
def dateutil_datetime_formatter(value: datetime) -> str:
|
19 |
+
return 'dateutil.parser.parse("{:s}")'.format(
|
20 |
+
value.strftime(dataproperty.DefaultValue.DATETIME_FORMAT)
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def dumps_tabledata(value: TableData, format_name: str = "rst_grid_table", **kwargs: Any) -> str:
|
25 |
+
"""
|
26 |
+
:param tabledata.TableData value: Tabular data to dump.
|
27 |
+
:param str format_name:
|
28 |
+
Dumped format name of tabular data.
|
29 |
+
Available formats are described in
|
30 |
+
:py:meth:`~pytablewriter.TableWriterFactory.create_from_format_name`
|
31 |
+
|
32 |
+
:Example:
|
33 |
+
.. code:: python
|
34 |
+
|
35 |
+
>>> dumps_tabledata(value)
|
36 |
+
.. table:: sample_data
|
37 |
+
|
38 |
+
====== ====== ======
|
39 |
+
attr_a attr_b attr_c
|
40 |
+
====== ====== ======
|
41 |
+
1 4.0 a
|
42 |
+
2 2.1 bb
|
43 |
+
3 120.9 ccc
|
44 |
+
====== ====== ======
|
45 |
+
"""
|
46 |
+
|
47 |
+
from ._factory import TableWriterFactory
|
48 |
+
|
49 |
+
if not value:
|
50 |
+
raise TypeError("value must be a tabledata.TableData instance")
|
51 |
+
|
52 |
+
writer = TableWriterFactory.create_from_format_name(format_name)
|
53 |
+
|
54 |
+
for attr_name, attr_value in kwargs.items():
|
55 |
+
setattr(writer, attr_name, attr_value)
|
56 |
+
|
57 |
+
writer.from_tabledata(value)
|
58 |
+
|
59 |
+
return writer.dumps()
|
60 |
+
|
61 |
+
|
62 |
+
def normalize_enum(
|
63 |
+
value: Any, enum_class: Type[Enum], validate: bool = True, default: Optional[Enum] = None
|
64 |
+
) -> Any:
|
65 |
+
if value is None:
|
66 |
+
return default
|
67 |
+
|
68 |
+
if isinstance(value, enum_class):
|
69 |
+
return value
|
70 |
+
|
71 |
+
try:
|
72 |
+
return enum_class[replace_symbol(value.strip(), "_").upper()]
|
73 |
+
except AttributeError:
|
74 |
+
if validate:
|
75 |
+
raise TypeError(f"value must be a {enum_class} or a str: actual={type(value)}")
|
76 |
+
except KeyError:
|
77 |
+
if validate:
|
78 |
+
raise ValueError(
|
79 |
+
"invalid valid found: expected={}, actual={}".format(
|
80 |
+
"/".join(item.name for item in enum_class), value
|
81 |
+
)
|
82 |
+
)
|
83 |
+
|
84 |
+
return value
|
llmeval-env/lib/python3.10/site-packages/pytablewriter/_table_format.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
.. codeauthor:: Tsuyoshi Hombashi <[email protected]>
|
3 |
+
"""
|
4 |
+
|
5 |
+
import enum
|
6 |
+
from typing import List, Optional, Sequence
|
7 |
+
|
8 |
+
from .writer import (
|
9 |
+
AbstractTableWriter,
|
10 |
+
AsciiDocTableWriter,
|
11 |
+
BoldUnicodeTableWriter,
|
12 |
+
BorderlessTableWriter,
|
13 |
+
CssTableWriter,
|
14 |
+
CsvTableWriter,
|
15 |
+
ElasticsearchWriter,
|
16 |
+
ExcelXlsTableWriter,
|
17 |
+
ExcelXlsxTableWriter,
|
18 |
+
HtmlTableWriter,
|
19 |
+
JavaScriptTableWriter,
|
20 |
+
JsonLinesTableWriter,
|
21 |
+
JsonTableWriter,
|
22 |
+
LatexMatrixWriter,
|
23 |
+
LatexTableWriter,
|
24 |
+
LtsvTableWriter,
|
25 |
+
MarkdownTableWriter,
|
26 |
+
MediaWikiTableWriter,
|
27 |
+
NullTableWriter,
|
28 |
+
NumpyTableWriter,
|
29 |
+
PandasDataFramePickleWriter,
|
30 |
+
PandasDataFrameWriter,
|
31 |
+
PythonCodeTableWriter,
|
32 |
+
RstCsvTableWriter,
|
33 |
+
RstGridTableWriter,
|
34 |
+
RstSimpleTableWriter,
|
35 |
+
SpaceAlignedTableWriter,
|
36 |
+
SqliteTableWriter,
|
37 |
+
TomlTableWriter,
|
38 |
+
TsvTableWriter,
|
39 |
+
UnicodeTableWriter,
|
40 |
+
YamlTableWriter,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
class FormatAttr:
|
45 |
+
"""
|
46 |
+
Bitmaps to represent table attributes.
|
47 |
+
"""
|
48 |
+
|
49 |
+
NONE = 1 << 1
|
50 |
+
|
51 |
+
#: Can create a file with the format.
|
52 |
+
FILE = 1 << 2
|
53 |
+
|
54 |
+
#: Table format that can represent as a text.
|
55 |
+
TEXT = 1 << 3
|
56 |
+
|
57 |
+
#: Table format that can represent as a binary file.
|
58 |
+
BIN = 1 << 4
|
59 |
+
|
60 |
+
#: Can create a source code (variables definition)
|
61 |
+
#: one of the programming language.
|
62 |
+
SOURCECODE = 1 << 5
|
63 |
+
|
64 |
+
#: Can call API for external service.
|
65 |
+
API = 1 << 6
|
66 |
+
|
67 |
+
SECONDARY_EXT = 1 << 10
|
68 |
+
SECONDARY_NAME = 1 << 11
|
69 |
+
|
70 |
+
|
71 |
+
@enum.unique
|
72 |
+
class TableFormat(enum.Enum):
|
73 |
+
"""
|
74 |
+
Enum to represent table format attributes.
|
75 |
+
"""
|
76 |
+
|
77 |
+
ASCIIDOC = (
|
78 |
+
[AsciiDocTableWriter.FORMAT_NAME, "adoc"],
|
79 |
+
AsciiDocTableWriter,
|
80 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
81 |
+
["adoc", "asciidoc", "asc"],
|
82 |
+
)
|
83 |
+
CSV = ([CsvTableWriter.FORMAT_NAME], CsvTableWriter, FormatAttr.FILE | FormatAttr.TEXT, ["csv"])
|
84 |
+
CSS = (
|
85 |
+
[CssTableWriter.FORMAT_NAME],
|
86 |
+
CssTableWriter,
|
87 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
88 |
+
["css"],
|
89 |
+
)
|
90 |
+
ELASTICSEARCH = (
|
91 |
+
[ElasticsearchWriter.FORMAT_NAME], # type: ignore
|
92 |
+
ElasticsearchWriter,
|
93 |
+
FormatAttr.API,
|
94 |
+
[],
|
95 |
+
)
|
96 |
+
EXCEL_XLSX = (
|
97 |
+
[ExcelXlsxTableWriter.FORMAT_NAME],
|
98 |
+
ExcelXlsxTableWriter,
|
99 |
+
FormatAttr.FILE | FormatAttr.BIN,
|
100 |
+
["xlsx"],
|
101 |
+
)
|
102 |
+
EXCEL_XLS = (
|
103 |
+
[ExcelXlsTableWriter.FORMAT_NAME],
|
104 |
+
ExcelXlsTableWriter,
|
105 |
+
FormatAttr.FILE | FormatAttr.BIN | FormatAttr.SECONDARY_NAME,
|
106 |
+
["xls"],
|
107 |
+
)
|
108 |
+
HTML = (
|
109 |
+
[HtmlTableWriter.FORMAT_NAME, "htm"],
|
110 |
+
HtmlTableWriter,
|
111 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
112 |
+
["html", "htm"],
|
113 |
+
)
|
114 |
+
JAVASCRIPT = (
|
115 |
+
[JavaScriptTableWriter.FORMAT_NAME, "js"],
|
116 |
+
JavaScriptTableWriter,
|
117 |
+
FormatAttr.FILE | FormatAttr.TEXT | FormatAttr.SOURCECODE,
|
118 |
+
["js"],
|
119 |
+
)
|
120 |
+
JSON = (
|
121 |
+
[JsonTableWriter.FORMAT_NAME],
|
122 |
+
JsonTableWriter,
|
123 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
124 |
+
["json"],
|
125 |
+
)
|
126 |
+
JSON_LINES = (
|
127 |
+
[JsonLinesTableWriter.FORMAT_NAME, "jsonl", "ldjson", "ndjson"],
|
128 |
+
JsonLinesTableWriter,
|
129 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
130 |
+
["jsonl", "ldjson", "ndjson"],
|
131 |
+
)
|
132 |
+
LATEX_MATRIX = (
|
133 |
+
[LatexMatrixWriter.FORMAT_NAME],
|
134 |
+
LatexMatrixWriter,
|
135 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
136 |
+
["tex"],
|
137 |
+
)
|
138 |
+
LATEX_TABLE = (
|
139 |
+
[LatexTableWriter.FORMAT_NAME],
|
140 |
+
LatexTableWriter,
|
141 |
+
FormatAttr.FILE | FormatAttr.TEXT | FormatAttr.SECONDARY_EXT,
|
142 |
+
["tex"],
|
143 |
+
)
|
144 |
+
LTSV = (
|
145 |
+
[LtsvTableWriter.FORMAT_NAME],
|
146 |
+
LtsvTableWriter,
|
147 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
148 |
+
["ltsv"],
|
149 |
+
)
|
150 |
+
MARKDOWN = (
|
151 |
+
[MarkdownTableWriter.FORMAT_NAME, "md"],
|
152 |
+
MarkdownTableWriter,
|
153 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
154 |
+
["md"],
|
155 |
+
)
|
156 |
+
MEDIAWIKI = (
|
157 |
+
[MediaWikiTableWriter.FORMAT_NAME], # type: ignore
|
158 |
+
MediaWikiTableWriter,
|
159 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
160 |
+
[],
|
161 |
+
)
|
162 |
+
NULL = (
|
163 |
+
[NullTableWriter.FORMAT_NAME], # type: ignore
|
164 |
+
NullTableWriter,
|
165 |
+
FormatAttr.NONE,
|
166 |
+
[],
|
167 |
+
)
|
168 |
+
NUMPY = (
|
169 |
+
[NumpyTableWriter.FORMAT_NAME],
|
170 |
+
NumpyTableWriter,
|
171 |
+
FormatAttr.FILE | FormatAttr.TEXT | FormatAttr.SOURCECODE | FormatAttr.SECONDARY_EXT,
|
172 |
+
["py"],
|
173 |
+
)
|
174 |
+
PANDAS = (
|
175 |
+
[PandasDataFrameWriter.FORMAT_NAME],
|
176 |
+
PandasDataFrameWriter,
|
177 |
+
FormatAttr.FILE | FormatAttr.TEXT | FormatAttr.SOURCECODE | FormatAttr.SECONDARY_EXT,
|
178 |
+
["py"],
|
179 |
+
)
|
180 |
+
PANDAS_PICKLE = (
|
181 |
+
[PandasDataFramePickleWriter.FORMAT_NAME], # type: ignore
|
182 |
+
PandasDataFramePickleWriter,
|
183 |
+
FormatAttr.FILE | FormatAttr.BIN,
|
184 |
+
[],
|
185 |
+
)
|
186 |
+
PYTHON = (
|
187 |
+
[PythonCodeTableWriter.FORMAT_NAME, "py"],
|
188 |
+
PythonCodeTableWriter,
|
189 |
+
FormatAttr.FILE | FormatAttr.TEXT | FormatAttr.SOURCECODE,
|
190 |
+
["py"],
|
191 |
+
)
|
192 |
+
RST_CSV_TABLE = (
|
193 |
+
[RstCsvTableWriter.FORMAT_NAME, "rst_csv"],
|
194 |
+
RstCsvTableWriter,
|
195 |
+
FormatAttr.FILE | FormatAttr.TEXT | FormatAttr.SECONDARY_EXT,
|
196 |
+
["rst"],
|
197 |
+
)
|
198 |
+
RST_GRID_TABLE = (
|
199 |
+
[RstGridTableWriter.FORMAT_NAME, "rst_grid", "rst"],
|
200 |
+
RstGridTableWriter,
|
201 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
202 |
+
["rst"],
|
203 |
+
)
|
204 |
+
RST_SIMPLE_TABLE = (
|
205 |
+
[RstSimpleTableWriter.FORMAT_NAME, "rst_simple"],
|
206 |
+
RstSimpleTableWriter,
|
207 |
+
FormatAttr.FILE | FormatAttr.TEXT | FormatAttr.SECONDARY_EXT,
|
208 |
+
["rst"],
|
209 |
+
)
|
210 |
+
SPACE_ALIGNED = (
|
211 |
+
[SpaceAlignedTableWriter.FORMAT_NAME, "ssv"], # type: ignore
|
212 |
+
SpaceAlignedTableWriter,
|
213 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
214 |
+
[],
|
215 |
+
)
|
216 |
+
SQLITE = (
|
217 |
+
[SqliteTableWriter.FORMAT_NAME],
|
218 |
+
SqliteTableWriter,
|
219 |
+
FormatAttr.FILE | FormatAttr.BIN,
|
220 |
+
["sqlite", "sqlite3"],
|
221 |
+
)
|
222 |
+
TOML = (
|
223 |
+
[TomlTableWriter.FORMAT_NAME],
|
224 |
+
TomlTableWriter,
|
225 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
226 |
+
["toml"],
|
227 |
+
)
|
228 |
+
TSV = ([TsvTableWriter.FORMAT_NAME], TsvTableWriter, FormatAttr.FILE | FormatAttr.TEXT, ["tsv"])
|
229 |
+
UNICODE = (
|
230 |
+
[UnicodeTableWriter.FORMAT_NAME], # type: ignore
|
231 |
+
UnicodeTableWriter,
|
232 |
+
FormatAttr.TEXT,
|
233 |
+
[],
|
234 |
+
)
|
235 |
+
YAML = (
|
236 |
+
[YamlTableWriter.FORMAT_NAME],
|
237 |
+
YamlTableWriter,
|
238 |
+
FormatAttr.FILE | FormatAttr.TEXT,
|
239 |
+
["yml"],
|
240 |
+
)
|
241 |
+
BOLD_UNICODE = (
|
242 |
+
[BoldUnicodeTableWriter.FORMAT_NAME], # type: ignore
|
243 |
+
BoldUnicodeTableWriter,
|
244 |
+
FormatAttr.TEXT,
|
245 |
+
[],
|
246 |
+
)
|
247 |
+
BORDERLESS = (
|
248 |
+
[BorderlessTableWriter.FORMAT_NAME], # type: ignore
|
249 |
+
BorderlessTableWriter,
|
250 |
+
FormatAttr.TEXT,
|
251 |
+
[],
|
252 |
+
)
|
253 |
+
|
254 |
+
@property
|
255 |
+
def names(self) -> List[str]:
|
256 |
+
"""
|
257 |
+
List[str]: Names associated with the table format.
|
258 |
+
"""
|
259 |
+
|
260 |
+
return self.__names
|
261 |
+
|
262 |
+
@property
|
263 |
+
def writer_class(self) -> AbstractTableWriter:
|
264 |
+
"""
|
265 |
+
Type[AbstractTableWriter]: Table writer class object associated with the table format.
|
266 |
+
"""
|
267 |
+
|
268 |
+
return self.__writer_class
|
269 |
+
|
270 |
+
@property
|
271 |
+
def format_attribute(self) -> int:
|
272 |
+
"""
|
273 |
+
FormatAttr: Table attributes bitmap.
|
274 |
+
"""
|
275 |
+
|
276 |
+
return self.__format_attribute
|
277 |
+
|
278 |
+
@property
|
279 |
+
def file_extensions(self) -> List[str]:
|
280 |
+
"""
|
281 |
+
List[str]: File extensions associated with the table format.
|
282 |
+
"""
|
283 |
+
|
284 |
+
return self.__file_extensions
|
285 |
+
|
286 |
+
def __init__(
|
287 |
+
self,
|
288 |
+
names: Sequence[str],
|
289 |
+
writer_class: AbstractTableWriter,
|
290 |
+
format_attribute: int,
|
291 |
+
file_extensions: Sequence[str],
|
292 |
+
) -> None:
|
293 |
+
self.__names = list(names)
|
294 |
+
self.__writer_class = writer_class
|
295 |
+
self.__format_attribute = format_attribute
|
296 |
+
self.__file_extensions = list(file_extensions)
|
297 |
+
|
298 |
+
@classmethod
|
299 |
+
def find_all_attr(cls, format_attribute: int) -> List["TableFormat"]:
|
300 |
+
"""Searching table formats that have specific attributes.
|
301 |
+
|
302 |
+
Args:
|
303 |
+
format_attribute (FormatAttr):
|
304 |
+
Table format attributes to look for.
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
List[TableFormat]: Table formats that matched the attribute.
|
308 |
+
"""
|
309 |
+
|
310 |
+
return [
|
311 |
+
table_format
|
312 |
+
for table_format in TableFormat
|
313 |
+
if table_format.format_attribute & format_attribute
|
314 |
+
]
|
315 |
+
|
316 |
+
@classmethod
|
317 |
+
def from_name(cls, format_name: str) -> Optional["TableFormat"]:
|
318 |
+
"""Get a table format from a format name.
|
319 |
+
|
320 |
+
Args:
|
321 |
+
format_name (str): Table format specifier.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
Optional[TableFormat]: A table format enum value corresponding to the ``format_name``.
|
325 |
+
"""
|
326 |
+
|
327 |
+
format_name = format_name.casefold().strip()
|
328 |
+
|
329 |
+
for table_format in TableFormat:
|
330 |
+
if format_name in table_format.names:
|
331 |
+
return table_format
|
332 |
+
|
333 |
+
return None
|
334 |
+
|
335 |
+
@classmethod
|
336 |
+
def from_file_extension(cls, file_extension: str) -> Optional["TableFormat"]:
|
337 |
+
"""Get a table format from a file extension.
|
338 |
+
|
339 |
+
Args:
|
340 |
+
file_extension (str): File extension.
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
Optional[TableFormat]:
|
344 |
+
A table format enum value corresponding to the ``file_extension``.
|
345 |
+
"""
|
346 |
+
|
347 |
+
ext = file_extension.lower().strip().lstrip(".")
|
348 |
+
|
349 |
+
for table_format in TableFormat:
|
350 |
+
if ext in table_format.file_extensions:
|
351 |
+
return table_format
|
352 |
+
|
353 |
+
return None
|
llmeval-env/lib/python3.10/site-packages/pytablewriter/_typing.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/pytablewriter/error.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
.. codeauthor:: Tsuyoshi Hombashi <[email protected]>
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
6 |
+
class NotSupportedError(Exception):
|
7 |
+
pass
|
8 |
+
|
9 |
+
|
10 |
+
class EmptyTableNameError(Exception):
|
11 |
+
"""
|
12 |
+
Exception raised when a table writer class of the |table_name| attribute
|
13 |
+
is null and the class is not accepted null |table_name|.
|
14 |
+
"""
|
15 |
+
|
16 |
+
|
17 |
+
class EmptyValueError(Exception):
|
18 |
+
"""
|
19 |
+
Exception raised when a table writer class of the |value_matrix| attribute
|
20 |
+
is null, and the class is not accepted null |value_matrix|.
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
class EmptyTableDataError(Exception):
|
25 |
+
"""
|
26 |
+
Exception raised when a table writer class of the |headers| and
|
27 |
+
|value_matrix| attributes are null.
|
28 |
+
"""
|
29 |
+
|
30 |
+
|
31 |
+
class WriterNotFoundError(Exception):
|
32 |
+
"""
|
33 |
+
Exception raised when appropriate loader writer found.
|
34 |
+
"""
|
llmeval-env/lib/python3.10/site-packages/pytablewriter/py.typed
ADDED
File without changes
|