applied-ai-018 commited on
Commit
9bee729
·
verified ·
1 Parent(s): 6829d65

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/__init__.py +0 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__init__.py +0 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/__init__.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_constructors.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_formats.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_indexing.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_pickle.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_reshape.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_setops.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_where.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_constructors.py +80 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_formats.py +163 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_indexing.py +104 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_pickle.py +11 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_reshape.py +95 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_setops.py +266 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_where.py +13 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/conftest.py +41 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/conftest.py +27 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_astype.py +30 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_copy.py +96 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_equivalence.py +284 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_get_set.py +384 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_indexing.py +1001 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_integrity.py +289 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_lexsort.py +46 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_missing.py +111 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_partial_indexing.py +148 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_pickle.py +10 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_reindex.py +174 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_setops.py +772 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_sorting.py +349 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_take.py +78 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/__init__.py +0 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/__pycache__/__init__.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/__pycache__/test_astype.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/__pycache__/test_indexing.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/test_astype.py +33 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/test_indexing.py +243 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__init__.py +0 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/__init__.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_constructors.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_indexing.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_join.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_range.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_setops.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/test_constructors.py +164 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/test_indexing.py +137 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/test_join.py +177 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/test_range.py +622 -0
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (204 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (3.35 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_formats.cpython-310.pyc ADDED
Binary file (5.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (4.34 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_pickle.cpython-310.pyc ADDED
Binary file (572 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_reshape.cpython-310.pyc ADDED
Binary file (3.52 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_setops.cpython-310.pyc ADDED
Binary file (8.27 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/__pycache__/test_where.cpython-310.pyc ADDED
Binary file (826 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_constructors.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ Index,
7
+ MultiIndex,
8
+ Series,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ class TestIndexConstructor:
14
+ # Tests for the Index constructor, specifically for cases that do
15
+ # not return a subclass
16
+
17
+ @pytest.mark.parametrize("value", [1, np.int64(1)])
18
+ def test_constructor_corner(self, value):
19
+ # corner case
20
+ msg = (
21
+ r"Index\(\.\.\.\) must be called with a collection of some "
22
+ f"kind, {value} was passed"
23
+ )
24
+ with pytest.raises(TypeError, match=msg):
25
+ Index(value)
26
+
27
+ @pytest.mark.parametrize("index_vals", [[("A", 1), "B"], ["B", ("A", 1)]])
28
+ def test_construction_list_mixed_tuples(self, index_vals):
29
+ # see gh-10697: if we are constructing from a mixed list of tuples,
30
+ # make sure that we are independent of the sorting order.
31
+ index = Index(index_vals)
32
+ assert isinstance(index, Index)
33
+ assert not isinstance(index, MultiIndex)
34
+
35
+ def test_constructor_cast(self):
36
+ msg = "could not convert string to float"
37
+ with pytest.raises(ValueError, match=msg):
38
+ Index(["a", "b", "c"], dtype=float)
39
+
40
+ @pytest.mark.parametrize("tuple_list", [[()], [(), ()]])
41
+ def test_construct_empty_tuples(self, tuple_list):
42
+ # GH #45608
43
+ result = Index(tuple_list)
44
+ expected = MultiIndex.from_tuples(tuple_list)
45
+
46
+ tm.assert_index_equal(result, expected)
47
+
48
+ def test_index_string_inference(self):
49
+ # GH#54430
50
+ pytest.importorskip("pyarrow")
51
+ dtype = "string[pyarrow_numpy]"
52
+ expected = Index(["a", "b"], dtype=dtype)
53
+ with pd.option_context("future.infer_string", True):
54
+ ser = Index(["a", "b"])
55
+ tm.assert_index_equal(ser, expected)
56
+
57
+ expected = Index(["a", 1], dtype="object")
58
+ with pd.option_context("future.infer_string", True):
59
+ ser = Index(["a", 1])
60
+ tm.assert_index_equal(ser, expected)
61
+
62
+ def test_inference_on_pandas_objects(self):
63
+ # GH#56012
64
+ idx = Index([pd.Timestamp("2019-12-31")], dtype=object)
65
+ with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
66
+ result = Index(idx)
67
+ assert result.dtype != np.object_
68
+
69
+ ser = Series([pd.Timestamp("2019-12-31")], dtype=object)
70
+
71
+ with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
72
+ result = Index(ser)
73
+ assert result.dtype != np.object_
74
+
75
+ def test_constructor_not_read_only(self):
76
+ # GH#57130
77
+ ser = Series([1, 2], dtype=object)
78
+ with pd.option_context("mode.copy_on_write", True):
79
+ idx = Index(ser)
80
+ assert idx._values.flags.writeable
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_formats.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._config import using_pyarrow_string_dtype
5
+ import pandas._config.config as cf
6
+
7
+ from pandas import Index
8
+ import pandas._testing as tm
9
+
10
+
11
+ class TestIndexRendering:
12
+ def test_repr_is_valid_construction_code(self):
13
+ # for the case of Index, where the repr is traditional rather than
14
+ # stylized
15
+ idx = Index(["a", "b"])
16
+ res = eval(repr(idx))
17
+ tm.assert_index_equal(res, idx)
18
+
19
+ @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="repr different")
20
+ @pytest.mark.parametrize(
21
+ "index,expected",
22
+ [
23
+ # ASCII
24
+ # short
25
+ (
26
+ Index(["a", "bb", "ccc"]),
27
+ """Index(['a', 'bb', 'ccc'], dtype='object')""",
28
+ ),
29
+ # multiple lines
30
+ (
31
+ Index(["a", "bb", "ccc"] * 10),
32
+ "Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', "
33
+ "'bb', 'ccc', 'a', 'bb', 'ccc',\n"
34
+ " 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', "
35
+ "'bb', 'ccc', 'a', 'bb', 'ccc',\n"
36
+ " 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],\n"
37
+ " dtype='object')",
38
+ ),
39
+ # truncated
40
+ (
41
+ Index(["a", "bb", "ccc"] * 100),
42
+ "Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',\n"
43
+ " ...\n"
44
+ " 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],\n"
45
+ " dtype='object', length=300)",
46
+ ),
47
+ # Non-ASCII
48
+ # short
49
+ (
50
+ Index(["あ", "いい", "ううう"]),
51
+ """Index(['あ', 'いい', 'ううう'], dtype='object')""",
52
+ ),
53
+ # multiple lines
54
+ (
55
+ Index(["あ", "いい", "ううう"] * 10),
56
+ (
57
+ "Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', "
58
+ "'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n"
59
+ " 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', "
60
+ "'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n"
61
+ " 'あ', 'いい', 'ううう', 'あ', 'いい', "
62
+ "'ううう'],\n"
63
+ " dtype='object')"
64
+ ),
65
+ ),
66
+ # truncated
67
+ (
68
+ Index(["あ", "いい", "ううう"] * 100),
69
+ (
70
+ "Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', "
71
+ "'あ', 'いい', 'ううう', 'あ',\n"
72
+ " ...\n"
73
+ " 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', "
74
+ "'ううう', 'あ', 'いい', 'ううう'],\n"
75
+ " dtype='object', length=300)"
76
+ ),
77
+ ),
78
+ ],
79
+ )
80
+ def test_string_index_repr(self, index, expected):
81
+ result = repr(index)
82
+ assert result == expected
83
+
84
+ @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="repr different")
85
+ @pytest.mark.parametrize(
86
+ "index,expected",
87
+ [
88
+ # short
89
+ (
90
+ Index(["あ", "いい", "ううう"]),
91
+ ("Index(['あ', 'いい', 'ううう'], dtype='object')"),
92
+ ),
93
+ # multiple lines
94
+ (
95
+ Index(["あ", "いい", "ううう"] * 10),
96
+ (
97
+ "Index(['あ', 'いい', 'ううう', 'あ', 'いい', "
98
+ "'ううう', 'あ', 'いい', 'ううう',\n"
99
+ " 'あ', 'いい', 'ううう', 'あ', 'いい', "
100
+ "'ううう', 'あ', 'いい', 'ううう',\n"
101
+ " 'あ', 'いい', 'ううう', 'あ', 'いい', "
102
+ "'ううう', 'あ', 'いい', 'ううう',\n"
103
+ " 'あ', 'いい', 'ううう'],\n"
104
+ " dtype='object')"
105
+ ""
106
+ ),
107
+ ),
108
+ # truncated
109
+ (
110
+ Index(["あ", "いい", "ううう"] * 100),
111
+ (
112
+ "Index(['あ', 'いい', 'ううう', 'あ', 'いい', "
113
+ "'ううう', 'あ', 'いい', 'ううう',\n"
114
+ " 'あ',\n"
115
+ " ...\n"
116
+ " 'ううう', 'あ', 'いい', 'ううう', 'あ', "
117
+ "'いい', 'ううう', 'あ', 'いい',\n"
118
+ " 'ううう'],\n"
119
+ " dtype='object', length=300)"
120
+ ),
121
+ ),
122
+ ],
123
+ )
124
+ def test_string_index_repr_with_unicode_option(self, index, expected):
125
+ # Enable Unicode option -----------------------------------------
126
+ with cf.option_context("display.unicode.east_asian_width", True):
127
+ result = repr(index)
128
+ assert result == expected
129
+
130
+ def test_repr_summary(self):
131
+ with cf.option_context("display.max_seq_items", 10):
132
+ result = repr(Index(np.arange(1000)))
133
+ assert len(result) < 200
134
+ assert "..." in result
135
+
136
+ def test_summary_bug(self):
137
+ # GH#3869
138
+ ind = Index(["{other}%s", "~:{range}:0"], name="A")
139
+ result = ind._summary()
140
+ # shouldn't be formatted accidentally.
141
+ assert "~:{range}:0" in result
142
+ assert "{other}%s" in result
143
+
144
+ def test_index_repr_bool_nan(self):
145
+ # GH32146
146
+ arr = Index([True, False, np.nan], dtype=object)
147
+ msg = "Index.format is deprecated"
148
+ with tm.assert_produces_warning(FutureWarning, match=msg):
149
+ exp1 = arr.format()
150
+ out1 = ["True", "False", "NaN"]
151
+ assert out1 == exp1
152
+
153
+ exp2 = repr(arr)
154
+ out2 = "Index([True, False, nan], dtype='object')"
155
+ assert out2 == exp2
156
+
157
+ def test_format_different_scalar_lengths(self):
158
+ # GH#35439
159
+ idx = Index(["aaaaaaaaa", "b"])
160
+ expected = ["aaaaaaaaa", "b"]
161
+ msg = r"Index\.format is deprecated"
162
+ with tm.assert_produces_warning(FutureWarning, match=msg):
163
+ assert idx.format() == expected
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_indexing.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._libs import index as libindex
5
+
6
+ import pandas as pd
7
+ from pandas import (
8
+ Index,
9
+ NaT,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ class TestGetSliceBounds:
15
+ @pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)])
16
+ def test_get_slice_bounds_within(self, side, expected):
17
+ index = Index(list("abcdef"))
18
+ result = index.get_slice_bound("e", side=side)
19
+ assert result == expected
20
+
21
+ @pytest.mark.parametrize("side", ["left", "right"])
22
+ @pytest.mark.parametrize(
23
+ "data, bound, expected", [(list("abcdef"), "x", 6), (list("bcdefg"), "a", 0)]
24
+ )
25
+ def test_get_slice_bounds_outside(self, side, expected, data, bound):
26
+ index = Index(data)
27
+ result = index.get_slice_bound(bound, side=side)
28
+ assert result == expected
29
+
30
+ def test_get_slice_bounds_invalid_side(self):
31
+ with pytest.raises(ValueError, match="Invalid value for side kwarg"):
32
+ Index([]).get_slice_bound("a", side="middle")
33
+
34
+
35
+ class TestGetIndexerNonUnique:
36
+ def test_get_indexer_non_unique_dtype_mismatch(self):
37
+ # GH#25459
38
+ indexes, missing = Index(["A", "B"]).get_indexer_non_unique(Index([0]))
39
+ tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes)
40
+ tm.assert_numpy_array_equal(np.array([0], dtype=np.intp), missing)
41
+
42
+ @pytest.mark.parametrize(
43
+ "idx_values,idx_non_unique",
44
+ [
45
+ ([np.nan, 100, 200, 100], [np.nan, 100]),
46
+ ([np.nan, 100.0, 200.0, 100.0], [np.nan, 100.0]),
47
+ ],
48
+ )
49
+ def test_get_indexer_non_unique_int_index(self, idx_values, idx_non_unique):
50
+ indexes, missing = Index(idx_values).get_indexer_non_unique(Index([np.nan]))
51
+ tm.assert_numpy_array_equal(np.array([0], dtype=np.intp), indexes)
52
+ tm.assert_numpy_array_equal(np.array([], dtype=np.intp), missing)
53
+
54
+ indexes, missing = Index(idx_values).get_indexer_non_unique(
55
+ Index(idx_non_unique)
56
+ )
57
+ tm.assert_numpy_array_equal(np.array([0, 1, 3], dtype=np.intp), indexes)
58
+ tm.assert_numpy_array_equal(np.array([], dtype=np.intp), missing)
59
+
60
+
61
+ class TestGetLoc:
62
+ @pytest.mark.slow # to_flat_index takes a while
63
+ def test_get_loc_tuple_monotonic_above_size_cutoff(self, monkeypatch):
64
+ # Go through the libindex path for which using
65
+ # _bin_search vs ndarray.searchsorted makes a difference
66
+
67
+ with monkeypatch.context():
68
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 100)
69
+ lev = list("ABCD")
70
+ dti = pd.date_range("2016-01-01", periods=10)
71
+
72
+ mi = pd.MultiIndex.from_product([lev, range(5), dti])
73
+ oidx = mi.to_flat_index()
74
+
75
+ loc = len(oidx) // 2
76
+ tup = oidx[loc]
77
+
78
+ res = oidx.get_loc(tup)
79
+ assert res == loc
80
+
81
+ def test_get_loc_nan_object_dtype_nonmonotonic_nonunique(self):
82
+ # case that goes through _maybe_get_bool_indexer
83
+ idx = Index(["foo", np.nan, None, "foo", 1.0, None], dtype=object)
84
+
85
+ # we dont raise KeyError on nan
86
+ res = idx.get_loc(np.nan)
87
+ assert res == 1
88
+
89
+ # we only match on None, not on np.nan
90
+ res = idx.get_loc(None)
91
+ expected = np.array([False, False, True, False, False, True])
92
+ tm.assert_numpy_array_equal(res, expected)
93
+
94
+ # we don't match at all on mismatched NA
95
+ with pytest.raises(KeyError, match="NaT"):
96
+ idx.get_loc(NaT)
97
+
98
+
99
+ def test_getitem_boolean_ea_indexer():
100
+ # GH#45806
101
+ ser = pd.Series([True, False, pd.NA], dtype="boolean")
102
+ result = ser.index[ser]
103
+ expected = Index([0])
104
+ tm.assert_index_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_pickle.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import Index
2
+ import pandas._testing as tm
3
+
4
+
5
+ def test_pickle_preserves_object_dtype():
6
+ # GH#43188, GH#43155 don't infer numeric dtype
7
+ index = Index([1, 2, 3], dtype=object)
8
+
9
+ result = tm.round_trip_pickle(index)
10
+ assert result.dtype == object
11
+ tm.assert_index_equal(index, result)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_reshape.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests for ndarray-like method on the base Index class
3
+ """
4
+ import numpy as np
5
+ import pytest
6
+
7
+ from pandas import Index
8
+ import pandas._testing as tm
9
+
10
+
11
+ class TestReshape:
12
+ def test_repeat(self):
13
+ repeats = 2
14
+ index = Index([1, 2, 3])
15
+ expected = Index([1, 1, 2, 2, 3, 3])
16
+
17
+ result = index.repeat(repeats)
18
+ tm.assert_index_equal(result, expected)
19
+
20
+ def test_insert(self):
21
+ # GH 7256
22
+ # validate neg/pos inserts
23
+ result = Index(["b", "c", "d"])
24
+
25
+ # test 0th element
26
+ tm.assert_index_equal(Index(["a", "b", "c", "d"]), result.insert(0, "a"))
27
+
28
+ # test Nth element that follows Python list behavior
29
+ tm.assert_index_equal(Index(["b", "c", "e", "d"]), result.insert(-1, "e"))
30
+
31
+ # test loc +/- neq (0, -1)
32
+ tm.assert_index_equal(result.insert(1, "z"), result.insert(-2, "z"))
33
+
34
+ # test empty
35
+ null_index = Index([])
36
+ tm.assert_index_equal(Index(["a"], dtype=object), null_index.insert(0, "a"))
37
+
38
+ def test_insert_missing(self, nulls_fixture, using_infer_string):
39
+ # GH#22295
40
+ # test there is no mangling of NA values
41
+ expected = Index(["a", nulls_fixture, "b", "c"], dtype=object)
42
+ result = Index(list("abc"), dtype=object).insert(
43
+ 1, Index([nulls_fixture], dtype=object)
44
+ )
45
+ tm.assert_index_equal(result, expected)
46
+
47
+ @pytest.mark.parametrize(
48
+ "val", [(1, 2), np.datetime64("2019-12-31"), np.timedelta64(1, "D")]
49
+ )
50
+ @pytest.mark.parametrize("loc", [-1, 2])
51
+ def test_insert_datetime_into_object(self, loc, val):
52
+ # GH#44509
53
+ idx = Index(["1", "2", "3"])
54
+ result = idx.insert(loc, val)
55
+ expected = Index(["1", "2", val, "3"])
56
+ tm.assert_index_equal(result, expected)
57
+ assert type(expected[2]) is type(val)
58
+
59
+ def test_insert_none_into_string_numpy(self):
60
+ # GH#55365
61
+ pytest.importorskip("pyarrow")
62
+ index = Index(["a", "b", "c"], dtype="string[pyarrow_numpy]")
63
+ result = index.insert(-1, None)
64
+ expected = Index(["a", "b", None, "c"], dtype="string[pyarrow_numpy]")
65
+ tm.assert_index_equal(result, expected)
66
+
67
+ @pytest.mark.parametrize(
68
+ "pos,expected",
69
+ [
70
+ (0, Index(["b", "c", "d"], name="index")),
71
+ (-1, Index(["a", "b", "c"], name="index")),
72
+ ],
73
+ )
74
+ def test_delete(self, pos, expected):
75
+ index = Index(["a", "b", "c", "d"], name="index")
76
+ result = index.delete(pos)
77
+ tm.assert_index_equal(result, expected)
78
+ assert result.name == expected.name
79
+
80
+ def test_delete_raises(self):
81
+ index = Index(["a", "b", "c", "d"], name="index")
82
+ msg = "index 5 is out of bounds for axis 0 with size 4"
83
+ with pytest.raises(IndexError, match=msg):
84
+ index.delete(5)
85
+
86
+ def test_append_multiple(self):
87
+ index = Index(["a", "b", "c", "d", "e", "f"])
88
+
89
+ foos = [index[:2], index[2:4], index[4:]]
90
+ result = foos[0].append(foos[1:])
91
+ tm.assert_index_equal(result, index)
92
+
93
+ # empty
94
+ result = index.append([])
95
+ tm.assert_index_equal(result, index)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_setops.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ from pandas import (
8
+ Index,
9
+ Series,
10
+ )
11
+ import pandas._testing as tm
12
+ from pandas.core.algorithms import safe_sort
13
+
14
+
15
+ def equal_contents(arr1, arr2) -> bool:
16
+ """
17
+ Checks if the set of unique elements of arr1 and arr2 are equivalent.
18
+ """
19
+ return frozenset(arr1) == frozenset(arr2)
20
+
21
+
22
+ class TestIndexSetOps:
23
+ @pytest.mark.parametrize(
24
+ "method", ["union", "intersection", "difference", "symmetric_difference"]
25
+ )
26
+ def test_setops_sort_validation(self, method):
27
+ idx1 = Index(["a", "b"])
28
+ idx2 = Index(["b", "c"])
29
+
30
+ with pytest.raises(ValueError, match="The 'sort' keyword only takes"):
31
+ getattr(idx1, method)(idx2, sort=2)
32
+
33
+ # sort=True is supported as of GH#??
34
+ getattr(idx1, method)(idx2, sort=True)
35
+
36
+ def test_setops_preserve_object_dtype(self):
37
+ idx = Index([1, 2, 3], dtype=object)
38
+ result = idx.intersection(idx[1:])
39
+ expected = idx[1:]
40
+ tm.assert_index_equal(result, expected)
41
+
42
+ # if other is not monotonic increasing, intersection goes through
43
+ # a different route
44
+ result = idx.intersection(idx[1:][::-1])
45
+ tm.assert_index_equal(result, expected)
46
+
47
+ result = idx._union(idx[1:], sort=None)
48
+ expected = idx
49
+ tm.assert_numpy_array_equal(result, expected.values)
50
+
51
+ result = idx.union(idx[1:], sort=None)
52
+ tm.assert_index_equal(result, expected)
53
+
54
+ # if other is not monotonic increasing, _union goes through
55
+ # a different route
56
+ result = idx._union(idx[1:][::-1], sort=None)
57
+ tm.assert_numpy_array_equal(result, expected.values)
58
+
59
+ result = idx.union(idx[1:][::-1], sort=None)
60
+ tm.assert_index_equal(result, expected)
61
+
62
+ def test_union_base(self):
63
+ index = Index([0, "a", 1, "b", 2, "c"])
64
+ first = index[3:]
65
+ second = index[:5]
66
+
67
+ result = first.union(second)
68
+
69
+ expected = Index([0, 1, 2, "a", "b", "c"])
70
+ tm.assert_index_equal(result, expected)
71
+
72
+ @pytest.mark.parametrize("klass", [np.array, Series, list])
73
+ def test_union_different_type_base(self, klass):
74
+ # GH 10149
75
+ index = Index([0, "a", 1, "b", 2, "c"])
76
+ first = index[3:]
77
+ second = index[:5]
78
+
79
+ result = first.union(klass(second.values))
80
+
81
+ assert equal_contents(result, index)
82
+
83
+ def test_union_sort_other_incomparable(self):
84
+ # https://github.com/pandas-dev/pandas/issues/24959
85
+ idx = Index([1, pd.Timestamp("2000")])
86
+ # default (sort=None)
87
+ with tm.assert_produces_warning(RuntimeWarning):
88
+ result = idx.union(idx[:1])
89
+
90
+ tm.assert_index_equal(result, idx)
91
+
92
+ # sort=None
93
+ with tm.assert_produces_warning(RuntimeWarning):
94
+ result = idx.union(idx[:1], sort=None)
95
+ tm.assert_index_equal(result, idx)
96
+
97
+ # sort=False
98
+ result = idx.union(idx[:1], sort=False)
99
+ tm.assert_index_equal(result, idx)
100
+
101
+ def test_union_sort_other_incomparable_true(self):
102
+ idx = Index([1, pd.Timestamp("2000")])
103
+ with pytest.raises(TypeError, match=".*"):
104
+ idx.union(idx[:1], sort=True)
105
+
106
+ def test_intersection_equal_sort_true(self):
107
+ idx = Index(["c", "a", "b"])
108
+ sorted_ = Index(["a", "b", "c"])
109
+ tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_)
110
+
111
+ def test_intersection_base(self, sort):
112
+ # (same results for py2 and py3 but sortedness not tested elsewhere)
113
+ index = Index([0, "a", 1, "b", 2, "c"])
114
+ first = index[:5]
115
+ second = index[:3]
116
+
117
+ expected = Index([0, 1, "a"]) if sort is None else Index([0, "a", 1])
118
+ result = first.intersection(second, sort=sort)
119
+ tm.assert_index_equal(result, expected)
120
+
121
+ @pytest.mark.parametrize("klass", [np.array, Series, list])
122
+ def test_intersection_different_type_base(self, klass, sort):
123
+ # GH 10149
124
+ index = Index([0, "a", 1, "b", 2, "c"])
125
+ first = index[:5]
126
+ second = index[:3]
127
+
128
+ result = first.intersection(klass(second.values), sort=sort)
129
+ assert equal_contents(result, second)
130
+
131
+ def test_intersection_nosort(self):
132
+ result = Index(["c", "b", "a"]).intersection(["b", "a"])
133
+ expected = Index(["b", "a"])
134
+ tm.assert_index_equal(result, expected)
135
+
136
+ def test_intersection_equal_sort(self):
137
+ idx = Index(["c", "a", "b"])
138
+ tm.assert_index_equal(idx.intersection(idx, sort=False), idx)
139
+ tm.assert_index_equal(idx.intersection(idx, sort=None), idx)
140
+
141
+ def test_intersection_str_dates(self, sort):
142
+ dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)]
143
+
144
+ i1 = Index(dt_dates, dtype=object)
145
+ i2 = Index(["aa"], dtype=object)
146
+ result = i2.intersection(i1, sort=sort)
147
+
148
+ assert len(result) == 0
149
+
150
+ @pytest.mark.parametrize(
151
+ "index2,expected_arr",
152
+ [(Index(["B", "D"]), ["B"]), (Index(["B", "D", "A"]), ["A", "B"])],
153
+ )
154
+ def test_intersection_non_monotonic_non_unique(self, index2, expected_arr, sort):
155
+ # non-monotonic non-unique
156
+ index1 = Index(["A", "B", "A", "C"])
157
+ expected = Index(expected_arr)
158
+ result = index1.intersection(index2, sort=sort)
159
+ if sort is None:
160
+ expected = expected.sort_values()
161
+ tm.assert_index_equal(result, expected)
162
+
163
+ def test_difference_base(self, sort):
164
+ # (same results for py2 and py3 but sortedness not tested elsewhere)
165
+ index = Index([0, "a", 1, "b", 2, "c"])
166
+ first = index[:4]
167
+ second = index[3:]
168
+
169
+ result = first.difference(second, sort)
170
+ expected = Index([0, "a", 1])
171
+ if sort is None:
172
+ expected = Index(safe_sort(expected))
173
+ tm.assert_index_equal(result, expected)
174
+
175
+ def test_symmetric_difference(self):
176
+ # (same results for py2 and py3 but sortedness not tested elsewhere)
177
+ index = Index([0, "a", 1, "b", 2, "c"])
178
+ first = index[:4]
179
+ second = index[3:]
180
+
181
+ result = first.symmetric_difference(second)
182
+ expected = Index([0, 1, 2, "a", "c"])
183
+ tm.assert_index_equal(result, expected)
184
+
185
+ @pytest.mark.parametrize(
186
+ "method,expected,sort",
187
+ [
188
+ (
189
+ "intersection",
190
+ np.array(
191
+ [(1, "A"), (2, "A"), (1, "B"), (2, "B")],
192
+ dtype=[("num", int), ("let", "S1")],
193
+ ),
194
+ False,
195
+ ),
196
+ (
197
+ "intersection",
198
+ np.array(
199
+ [(1, "A"), (1, "B"), (2, "A"), (2, "B")],
200
+ dtype=[("num", int), ("let", "S1")],
201
+ ),
202
+ None,
203
+ ),
204
+ (
205
+ "union",
206
+ np.array(
207
+ [(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")],
208
+ dtype=[("num", int), ("let", "S1")],
209
+ ),
210
+ None,
211
+ ),
212
+ ],
213
+ )
214
+ def test_tuple_union_bug(self, method, expected, sort):
215
+ index1 = Index(
216
+ np.array(
217
+ [(1, "A"), (2, "A"), (1, "B"), (2, "B")],
218
+ dtype=[("num", int), ("let", "S1")],
219
+ )
220
+ )
221
+ index2 = Index(
222
+ np.array(
223
+ [(1, "A"), (2, "A"), (1, "B"), (2, "B"), (1, "C"), (2, "C")],
224
+ dtype=[("num", int), ("let", "S1")],
225
+ )
226
+ )
227
+
228
+ result = getattr(index1, method)(index2, sort=sort)
229
+ assert result.ndim == 1
230
+
231
+ expected = Index(expected)
232
+ tm.assert_index_equal(result, expected)
233
+
234
+ @pytest.mark.parametrize("first_list", [["b", "a"], []])
235
+ @pytest.mark.parametrize("second_list", [["a", "b"], []])
236
+ @pytest.mark.parametrize(
237
+ "first_name, second_name, expected_name",
238
+ [("A", "B", None), (None, "B", None), ("A", None, None)],
239
+ )
240
+ def test_union_name_preservation(
241
+ self, first_list, second_list, first_name, second_name, expected_name, sort
242
+ ):
243
+ first = Index(first_list, name=first_name)
244
+ second = Index(second_list, name=second_name)
245
+ union = first.union(second, sort=sort)
246
+
247
+ vals = set(first_list).union(second_list)
248
+
249
+ if sort is None and len(first_list) > 0 and len(second_list) > 0:
250
+ expected = Index(sorted(vals), name=expected_name)
251
+ tm.assert_index_equal(union, expected)
252
+ else:
253
+ expected = Index(vals, name=expected_name)
254
+ tm.assert_index_equal(union.sort_values(), expected.sort_values())
255
+
256
+ @pytest.mark.parametrize(
257
+ "diff_type, expected",
258
+ [["difference", [1, "B"]], ["symmetric_difference", [1, 2, "B", "C"]]],
259
+ )
260
+ def test_difference_object_type(self, diff_type, expected):
261
+ # GH 13432
262
+ idx1 = Index([0, 1, "A", "B"])
263
+ idx2 = Index([0, 2, "A", "C"])
264
+ result = getattr(idx1, diff_type)(idx2)
265
+ expected = Index(expected)
266
+ tm.assert_index_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/base_class/test_where.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas import Index
4
+ import pandas._testing as tm
5
+
6
+
7
+ class TestWhere:
8
+ def test_where_intlike_str_doesnt_cast_ints(self):
9
+ idx = Index(range(3))
10
+ mask = np.array([True, False, True])
11
+ res = idx.where(mask, "2")
12
+ expected = Index([0, "2", 2])
13
+ tm.assert_index_equal(res, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/conftest.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Series,
6
+ array,
7
+ )
8
+
9
+
10
+ @pytest.fixture(params=[None, False])
11
+ def sort(request):
12
+ """
13
+ Valid values for the 'sort' parameter used in the Index
14
+ setops methods (intersection, union, etc.)
15
+
16
+ Caution:
17
+ Don't confuse this one with the "sort" fixture used
18
+ for DataFrame.append or concat. That one has
19
+ parameters [True, False].
20
+
21
+ We can't combine them as sort=True is not permitted
22
+ in the Index setops methods.
23
+ """
24
+ return request.param
25
+
26
+
27
+ @pytest.fixture(params=["D", "3D", "-3D", "h", "2h", "-2h", "min", "2min", "s", "-3s"])
28
+ def freq_sample(request):
29
+ """
30
+ Valid values for 'freq' parameter used to create date_range and
31
+ timedelta_range..
32
+ """
33
+ return request.param
34
+
35
+
36
+ @pytest.fixture(params=[list, tuple, np.array, array, Series])
37
+ def listlike_box(request):
38
+ """
39
+ Types that may be passed as the indexer to searchsorted.
40
+ """
41
+ return request.param
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/conftest.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Index,
6
+ MultiIndex,
7
+ )
8
+
9
+
10
+ # Note: identical the "multi" entry in the top-level "index" fixture
11
+ @pytest.fixture
12
+ def idx():
13
+ # a MultiIndex used to test the general functionality of the
14
+ # general functionality of this object
15
+ major_axis = Index(["foo", "bar", "baz", "qux"])
16
+ minor_axis = Index(["one", "two"])
17
+
18
+ major_codes = np.array([0, 0, 1, 2, 3, 3])
19
+ minor_codes = np.array([0, 1, 0, 1, 0, 1])
20
+ index_names = ["first", "second"]
21
+ mi = MultiIndex(
22
+ levels=[major_axis, minor_axis],
23
+ codes=[major_codes, minor_codes],
24
+ names=index_names,
25
+ verify_integrity=False,
26
+ )
27
+ return mi
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_astype.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.dtypes import CategoricalDtype
5
+
6
+ import pandas._testing as tm
7
+
8
+
9
+ def test_astype(idx):
10
+ expected = idx.copy()
11
+ actual = idx.astype("O")
12
+ tm.assert_copy(actual.levels, expected.levels)
13
+ tm.assert_copy(actual.codes, expected.codes)
14
+ assert actual.names == list(expected.names)
15
+
16
+ with pytest.raises(TypeError, match="^Setting.*dtype.*object"):
17
+ idx.astype(np.dtype(int))
18
+
19
+
20
+ @pytest.mark.parametrize("ordered", [True, False])
21
+ def test_astype_category(idx, ordered):
22
+ # GH 18630
23
+ msg = "> 1 ndim Categorical are not supported at this time"
24
+ with pytest.raises(NotImplementedError, match=msg):
25
+ idx.astype(CategoricalDtype(ordered=ordered))
26
+
27
+ if ordered is False:
28
+ # dtype='category' defaults to ordered=False, so only test once
29
+ with pytest.raises(NotImplementedError, match=msg):
30
+ idx.astype("category")
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_copy.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from copy import (
2
+ copy,
3
+ deepcopy,
4
+ )
5
+
6
+ import pytest
7
+
8
+ from pandas import MultiIndex
9
+ import pandas._testing as tm
10
+
11
+
12
+ def assert_multiindex_copied(copy, original):
13
+ # Levels should be (at least, shallow copied)
14
+ tm.assert_copy(copy.levels, original.levels)
15
+ tm.assert_almost_equal(copy.codes, original.codes)
16
+
17
+ # Labels doesn't matter which way copied
18
+ tm.assert_almost_equal(copy.codes, original.codes)
19
+ assert copy.codes is not original.codes
20
+
21
+ # Names doesn't matter which way copied
22
+ assert copy.names == original.names
23
+ assert copy.names is not original.names
24
+
25
+ # Sort order should be copied
26
+ assert copy.sortorder == original.sortorder
27
+
28
+
29
+ def test_copy(idx):
30
+ i_copy = idx.copy()
31
+
32
+ assert_multiindex_copied(i_copy, idx)
33
+
34
+
35
+ def test_shallow_copy(idx):
36
+ i_copy = idx._view()
37
+
38
+ assert_multiindex_copied(i_copy, idx)
39
+
40
+
41
+ def test_view(idx):
42
+ i_view = idx.view()
43
+ assert_multiindex_copied(i_view, idx)
44
+
45
+
46
+ @pytest.mark.parametrize("func", [copy, deepcopy])
47
+ def test_copy_and_deepcopy(func):
48
+ idx = MultiIndex(
49
+ levels=[["foo", "bar"], ["fizz", "buzz"]],
50
+ codes=[[0, 0, 0, 1], [0, 0, 1, 1]],
51
+ names=["first", "second"],
52
+ )
53
+ idx_copy = func(idx)
54
+ assert idx_copy is not idx
55
+ assert idx_copy.equals(idx)
56
+
57
+
58
+ @pytest.mark.parametrize("deep", [True, False])
59
+ def test_copy_method(deep):
60
+ idx = MultiIndex(
61
+ levels=[["foo", "bar"], ["fizz", "buzz"]],
62
+ codes=[[0, 0, 0, 1], [0, 0, 1, 1]],
63
+ names=["first", "second"],
64
+ )
65
+ idx_copy = idx.copy(deep=deep)
66
+ assert idx_copy.equals(idx)
67
+
68
+
69
+ @pytest.mark.parametrize("deep", [True, False])
70
+ @pytest.mark.parametrize(
71
+ "kwarg, value",
72
+ [
73
+ ("names", ["third", "fourth"]),
74
+ ],
75
+ )
76
+ def test_copy_method_kwargs(deep, kwarg, value):
77
+ # gh-12309: Check that the "name" argument as well other kwargs are honored
78
+ idx = MultiIndex(
79
+ levels=[["foo", "bar"], ["fizz", "buzz"]],
80
+ codes=[[0, 0, 0, 1], [0, 0, 1, 1]],
81
+ names=["first", "second"],
82
+ )
83
+ idx_copy = idx.copy(**{kwarg: value, "deep": deep})
84
+ assert getattr(idx_copy, kwarg) == value
85
+
86
+
87
+ def test_copy_deep_false_retains_id():
88
+ # GH#47878
89
+ idx = MultiIndex(
90
+ levels=[["foo", "bar"], ["fizz", "buzz"]],
91
+ codes=[[0, 0, 0, 1], [0, 0, 1, 1]],
92
+ names=["first", "second"],
93
+ )
94
+
95
+ res = idx.copy(deep=False)
96
+ assert res._id is idx._id
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_equivalence.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.common import is_any_real_numeric_dtype
5
+
6
+ import pandas as pd
7
+ from pandas import (
8
+ Index,
9
+ MultiIndex,
10
+ Series,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ def test_equals(idx):
16
+ assert idx.equals(idx)
17
+ assert idx.equals(idx.copy())
18
+ assert idx.equals(idx.astype(object))
19
+ assert idx.equals(idx.to_flat_index())
20
+ assert idx.equals(idx.to_flat_index().astype("category"))
21
+
22
+ assert not idx.equals(list(idx))
23
+ assert not idx.equals(np.array(idx))
24
+
25
+ same_values = Index(idx, dtype=object)
26
+ assert idx.equals(same_values)
27
+ assert same_values.equals(idx)
28
+
29
+ if idx.nlevels == 1:
30
+ # do not test MultiIndex
31
+ assert not idx.equals(Series(idx))
32
+
33
+
34
+ def test_equals_op(idx):
35
+ # GH9947, GH10637
36
+ index_a = idx
37
+
38
+ n = len(index_a)
39
+ index_b = index_a[0:-1]
40
+ index_c = index_a[0:-1].append(index_a[-2:-1])
41
+ index_d = index_a[0:1]
42
+ with pytest.raises(ValueError, match="Lengths must match"):
43
+ index_a == index_b
44
+ expected1 = np.array([True] * n)
45
+ expected2 = np.array([True] * (n - 1) + [False])
46
+ tm.assert_numpy_array_equal(index_a == index_a, expected1)
47
+ tm.assert_numpy_array_equal(index_a == index_c, expected2)
48
+
49
+ # test comparisons with numpy arrays
50
+ array_a = np.array(index_a)
51
+ array_b = np.array(index_a[0:-1])
52
+ array_c = np.array(index_a[0:-1].append(index_a[-2:-1]))
53
+ array_d = np.array(index_a[0:1])
54
+ with pytest.raises(ValueError, match="Lengths must match"):
55
+ index_a == array_b
56
+ tm.assert_numpy_array_equal(index_a == array_a, expected1)
57
+ tm.assert_numpy_array_equal(index_a == array_c, expected2)
58
+
59
+ # test comparisons with Series
60
+ series_a = Series(array_a)
61
+ series_b = Series(array_b)
62
+ series_c = Series(array_c)
63
+ series_d = Series(array_d)
64
+ with pytest.raises(ValueError, match="Lengths must match"):
65
+ index_a == series_b
66
+
67
+ tm.assert_numpy_array_equal(index_a == series_a, expected1)
68
+ tm.assert_numpy_array_equal(index_a == series_c, expected2)
69
+
70
+ # cases where length is 1 for one of them
71
+ with pytest.raises(ValueError, match="Lengths must match"):
72
+ index_a == index_d
73
+ with pytest.raises(ValueError, match="Lengths must match"):
74
+ index_a == series_d
75
+ with pytest.raises(ValueError, match="Lengths must match"):
76
+ index_a == array_d
77
+ msg = "Can only compare identically-labeled Series objects"
78
+ with pytest.raises(ValueError, match=msg):
79
+ series_a == series_d
80
+ with pytest.raises(ValueError, match="Lengths must match"):
81
+ series_a == array_d
82
+
83
+ # comparing with a scalar should broadcast; note that we are excluding
84
+ # MultiIndex because in this case each item in the index is a tuple of
85
+ # length 2, and therefore is considered an array of length 2 in the
86
+ # comparison instead of a scalar
87
+ if not isinstance(index_a, MultiIndex):
88
+ expected3 = np.array([False] * (len(index_a) - 2) + [True, False])
89
+ # assuming the 2nd to last item is unique in the data
90
+ item = index_a[-2]
91
+ tm.assert_numpy_array_equal(index_a == item, expected3)
92
+ tm.assert_series_equal(series_a == item, Series(expected3))
93
+
94
+
95
+ def test_compare_tuple():
96
+ # GH#21517
97
+ mi = MultiIndex.from_product([[1, 2]] * 2)
98
+
99
+ all_false = np.array([False, False, False, False])
100
+
101
+ result = mi == mi[0]
102
+ expected = np.array([True, False, False, False])
103
+ tm.assert_numpy_array_equal(result, expected)
104
+
105
+ result = mi != mi[0]
106
+ tm.assert_numpy_array_equal(result, ~expected)
107
+
108
+ result = mi < mi[0]
109
+ tm.assert_numpy_array_equal(result, all_false)
110
+
111
+ result = mi <= mi[0]
112
+ tm.assert_numpy_array_equal(result, expected)
113
+
114
+ result = mi > mi[0]
115
+ tm.assert_numpy_array_equal(result, ~expected)
116
+
117
+ result = mi >= mi[0]
118
+ tm.assert_numpy_array_equal(result, ~all_false)
119
+
120
+
121
+ def test_compare_tuple_strs():
122
+ # GH#34180
123
+
124
+ mi = MultiIndex.from_tuples([("a", "b"), ("b", "c"), ("c", "a")])
125
+
126
+ result = mi == ("c", "a")
127
+ expected = np.array([False, False, True])
128
+ tm.assert_numpy_array_equal(result, expected)
129
+
130
+ result = mi == ("c",)
131
+ expected = np.array([False, False, False])
132
+ tm.assert_numpy_array_equal(result, expected)
133
+
134
+
135
+ def test_equals_multi(idx):
136
+ assert idx.equals(idx)
137
+ assert not idx.equals(idx.values)
138
+ assert idx.equals(Index(idx.values))
139
+
140
+ assert idx.equal_levels(idx)
141
+ assert not idx.equals(idx[:-1])
142
+ assert not idx.equals(idx[-1])
143
+
144
+ # different number of levels
145
+ index = MultiIndex(
146
+ levels=[Index(list(range(4))), Index(list(range(4))), Index(list(range(4)))],
147
+ codes=[
148
+ np.array([0, 0, 1, 2, 2, 2, 3, 3]),
149
+ np.array([0, 1, 0, 0, 0, 1, 0, 1]),
150
+ np.array([1, 0, 1, 1, 0, 0, 1, 0]),
151
+ ],
152
+ )
153
+
154
+ index2 = MultiIndex(levels=index.levels[:-1], codes=index.codes[:-1])
155
+ assert not index.equals(index2)
156
+ assert not index.equal_levels(index2)
157
+
158
+ # levels are different
159
+ major_axis = Index(list(range(4)))
160
+ minor_axis = Index(list(range(2)))
161
+
162
+ major_codes = np.array([0, 0, 1, 2, 2, 3])
163
+ minor_codes = np.array([0, 1, 0, 0, 1, 0])
164
+
165
+ index = MultiIndex(
166
+ levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
167
+ )
168
+ assert not idx.equals(index)
169
+ assert not idx.equal_levels(index)
170
+
171
+ # some of the labels are different
172
+ major_axis = Index(["foo", "bar", "baz", "qux"])
173
+ minor_axis = Index(["one", "two"])
174
+
175
+ major_codes = np.array([0, 0, 2, 2, 3, 3])
176
+ minor_codes = np.array([0, 1, 0, 1, 0, 1])
177
+
178
+ index = MultiIndex(
179
+ levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
180
+ )
181
+ assert not idx.equals(index)
182
+
183
+
184
+ def test_identical(idx):
185
+ mi = idx.copy()
186
+ mi2 = idx.copy()
187
+ assert mi.identical(mi2)
188
+
189
+ mi = mi.set_names(["new1", "new2"])
190
+ assert mi.equals(mi2)
191
+ assert not mi.identical(mi2)
192
+
193
+ mi2 = mi2.set_names(["new1", "new2"])
194
+ assert mi.identical(mi2)
195
+
196
+ mi4 = Index(mi.tolist(), tupleize_cols=False)
197
+ assert not mi.identical(mi4)
198
+ assert mi.equals(mi4)
199
+
200
+
201
+ def test_equals_operator(idx):
202
+ # GH9785
203
+ assert (idx == idx).all()
204
+
205
+
206
+ def test_equals_missing_values():
207
+ # make sure take is not using -1
208
+ i = MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp("20130101"))])
209
+ result = i[0:1].equals(i[0])
210
+ assert not result
211
+ result = i[1:2].equals(i[1])
212
+ assert not result
213
+
214
+
215
+ def test_equals_missing_values_differently_sorted():
216
+ # GH#38439
217
+ mi1 = MultiIndex.from_tuples([(81.0, np.nan), (np.nan, np.nan)])
218
+ mi2 = MultiIndex.from_tuples([(np.nan, np.nan), (81.0, np.nan)])
219
+ assert not mi1.equals(mi2)
220
+
221
+ mi2 = MultiIndex.from_tuples([(81.0, np.nan), (np.nan, np.nan)])
222
+ assert mi1.equals(mi2)
223
+
224
+
225
+ def test_is_():
226
+ mi = MultiIndex.from_tuples(zip(range(10), range(10)))
227
+ assert mi.is_(mi)
228
+ assert mi.is_(mi.view())
229
+ assert mi.is_(mi.view().view().view().view())
230
+ mi2 = mi.view()
231
+ # names are metadata, they don't change id
232
+ mi2.names = ["A", "B"]
233
+ assert mi2.is_(mi)
234
+ assert mi.is_(mi2)
235
+
236
+ assert not mi.is_(mi.set_names(["C", "D"]))
237
+ # levels are inherent properties, they change identity
238
+ mi3 = mi2.set_levels([list(range(10)), list(range(10))])
239
+ assert not mi3.is_(mi2)
240
+ # shouldn't change
241
+ assert mi2.is_(mi)
242
+ mi4 = mi3.view()
243
+
244
+ # GH 17464 - Remove duplicate MultiIndex levels
245
+ mi4 = mi4.set_levels([list(range(10)), list(range(10))])
246
+ assert not mi4.is_(mi3)
247
+ mi5 = mi.view()
248
+ mi5 = mi5.set_levels(mi5.levels)
249
+ assert not mi5.is_(mi)
250
+
251
+
252
+ def test_is_all_dates(idx):
253
+ assert not idx._is_all_dates
254
+
255
+
256
+ def test_is_numeric(idx):
257
+ # MultiIndex is never numeric
258
+ assert not is_any_real_numeric_dtype(idx)
259
+
260
+
261
+ def test_multiindex_compare():
262
+ # GH 21149
263
+ # Ensure comparison operations for MultiIndex with nlevels == 1
264
+ # behave consistently with those for MultiIndex with nlevels > 1
265
+
266
+ midx = MultiIndex.from_product([[0, 1]])
267
+
268
+ # Equality self-test: MultiIndex object vs self
269
+ expected = Series([True, True])
270
+ result = Series(midx == midx)
271
+ tm.assert_series_equal(result, expected)
272
+
273
+ # Greater than comparison: MultiIndex object vs self
274
+ expected = Series([False, False])
275
+ result = Series(midx > midx)
276
+ tm.assert_series_equal(result, expected)
277
+
278
+
279
+ def test_equals_ea_int_regular_int():
280
+ # GH#46026
281
+ mi1 = MultiIndex.from_arrays([Index([1, 2], dtype="Int64"), [3, 4]])
282
+ mi2 = MultiIndex.from_arrays([[1, 2], [3, 4]])
283
+ assert not mi1.equals(mi2)
284
+ assert not mi2.equals(mi1)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_get_set.py ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.compat import PY311
5
+
6
+ from pandas.core.dtypes.dtypes import DatetimeTZDtype
7
+
8
+ import pandas as pd
9
+ from pandas import (
10
+ CategoricalIndex,
11
+ MultiIndex,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ def assert_matching(actual, expected, check_dtype=False):
17
+ # avoid specifying internal representation
18
+ # as much as possible
19
+ assert len(actual) == len(expected)
20
+ for act, exp in zip(actual, expected):
21
+ act = np.asarray(act)
22
+ exp = np.asarray(exp)
23
+ tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype)
24
+
25
+
26
+ def test_get_level_number_integer(idx):
27
+ idx.names = [1, 0]
28
+ assert idx._get_level_number(1) == 0
29
+ assert idx._get_level_number(0) == 1
30
+ msg = "Too many levels: Index has only 2 levels, not 3"
31
+ with pytest.raises(IndexError, match=msg):
32
+ idx._get_level_number(2)
33
+ with pytest.raises(KeyError, match="Level fourth not found"):
34
+ idx._get_level_number("fourth")
35
+
36
+
37
+ def test_get_dtypes(using_infer_string):
38
+ # Test MultiIndex.dtypes (# Gh37062)
39
+ idx_multitype = MultiIndex.from_product(
40
+ [[1, 2, 3], ["a", "b", "c"], pd.date_range("20200101", periods=2, tz="UTC")],
41
+ names=["int", "string", "dt"],
42
+ )
43
+
44
+ exp = "object" if not using_infer_string else "string"
45
+ expected = pd.Series(
46
+ {
47
+ "int": np.dtype("int64"),
48
+ "string": exp,
49
+ "dt": DatetimeTZDtype(tz="utc"),
50
+ }
51
+ )
52
+ tm.assert_series_equal(expected, idx_multitype.dtypes)
53
+
54
+
55
+ def test_get_dtypes_no_level_name(using_infer_string):
56
+ # Test MultiIndex.dtypes (# GH38580 )
57
+ idx_multitype = MultiIndex.from_product(
58
+ [
59
+ [1, 2, 3],
60
+ ["a", "b", "c"],
61
+ pd.date_range("20200101", periods=2, tz="UTC"),
62
+ ],
63
+ )
64
+ exp = "object" if not using_infer_string else "string"
65
+ expected = pd.Series(
66
+ {
67
+ "level_0": np.dtype("int64"),
68
+ "level_1": exp,
69
+ "level_2": DatetimeTZDtype(tz="utc"),
70
+ }
71
+ )
72
+ tm.assert_series_equal(expected, idx_multitype.dtypes)
73
+
74
+
75
+ def test_get_dtypes_duplicate_level_names(using_infer_string):
76
+ # Test MultiIndex.dtypes with non-unique level names (# GH45174)
77
+ result = MultiIndex.from_product(
78
+ [
79
+ [1, 2, 3],
80
+ ["a", "b", "c"],
81
+ pd.date_range("20200101", periods=2, tz="UTC"),
82
+ ],
83
+ names=["A", "A", "A"],
84
+ ).dtypes
85
+ exp = "object" if not using_infer_string else "string"
86
+ expected = pd.Series(
87
+ [np.dtype("int64"), exp, DatetimeTZDtype(tz="utc")],
88
+ index=["A", "A", "A"],
89
+ )
90
+ tm.assert_series_equal(result, expected)
91
+
92
+
93
+ def test_get_level_number_out_of_bounds(multiindex_dataframe_random_data):
94
+ frame = multiindex_dataframe_random_data
95
+
96
+ with pytest.raises(IndexError, match="Too many levels"):
97
+ frame.index._get_level_number(2)
98
+ with pytest.raises(IndexError, match="not a valid level number"):
99
+ frame.index._get_level_number(-3)
100
+
101
+
102
+ def test_set_name_methods(idx):
103
+ # so long as these are synonyms, we don't need to test set_names
104
+ index_names = ["first", "second"]
105
+ assert idx.rename == idx.set_names
106
+ new_names = [name + "SUFFIX" for name in index_names]
107
+ ind = idx.set_names(new_names)
108
+ assert idx.names == index_names
109
+ assert ind.names == new_names
110
+ msg = "Length of names must match number of levels in MultiIndex"
111
+ with pytest.raises(ValueError, match=msg):
112
+ ind.set_names(new_names + new_names)
113
+ new_names2 = [name + "SUFFIX2" for name in new_names]
114
+ res = ind.set_names(new_names2, inplace=True)
115
+ assert res is None
116
+ assert ind.names == new_names2
117
+
118
+ # set names for specific level (# GH7792)
119
+ ind = idx.set_names(new_names[0], level=0)
120
+ assert idx.names == index_names
121
+ assert ind.names == [new_names[0], index_names[1]]
122
+
123
+ res = ind.set_names(new_names2[0], level=0, inplace=True)
124
+ assert res is None
125
+ assert ind.names == [new_names2[0], index_names[1]]
126
+
127
+ # set names for multiple levels
128
+ ind = idx.set_names(new_names, level=[0, 1])
129
+ assert idx.names == index_names
130
+ assert ind.names == new_names
131
+
132
+ res = ind.set_names(new_names2, level=[0, 1], inplace=True)
133
+ assert res is None
134
+ assert ind.names == new_names2
135
+
136
+
137
+ def test_set_levels_codes_directly(idx):
138
+ # setting levels/codes directly raises AttributeError
139
+
140
+ levels = idx.levels
141
+ new_levels = [[lev + "a" for lev in level] for level in levels]
142
+
143
+ codes = idx.codes
144
+ major_codes, minor_codes = codes
145
+ major_codes = [(x + 1) % 3 for x in major_codes]
146
+ minor_codes = [(x + 1) % 1 for x in minor_codes]
147
+ new_codes = [major_codes, minor_codes]
148
+
149
+ msg = "Can't set attribute"
150
+ with pytest.raises(AttributeError, match=msg):
151
+ idx.levels = new_levels
152
+
153
+ msg = (
154
+ "property 'codes' of 'MultiIndex' object has no setter"
155
+ if PY311
156
+ else "can't set attribute"
157
+ )
158
+ with pytest.raises(AttributeError, match=msg):
159
+ idx.codes = new_codes
160
+
161
+
162
+ def test_set_levels(idx):
163
+ # side note - you probably wouldn't want to use levels and codes
164
+ # directly like this - but it is possible.
165
+ levels = idx.levels
166
+ new_levels = [[lev + "a" for lev in level] for level in levels]
167
+
168
+ # level changing [w/o mutation]
169
+ ind2 = idx.set_levels(new_levels)
170
+ assert_matching(ind2.levels, new_levels)
171
+ assert_matching(idx.levels, levels)
172
+
173
+ # level changing specific level [w/o mutation]
174
+ ind2 = idx.set_levels(new_levels[0], level=0)
175
+ assert_matching(ind2.levels, [new_levels[0], levels[1]])
176
+ assert_matching(idx.levels, levels)
177
+
178
+ ind2 = idx.set_levels(new_levels[1], level=1)
179
+ assert_matching(ind2.levels, [levels[0], new_levels[1]])
180
+ assert_matching(idx.levels, levels)
181
+
182
+ # level changing multiple levels [w/o mutation]
183
+ ind2 = idx.set_levels(new_levels, level=[0, 1])
184
+ assert_matching(ind2.levels, new_levels)
185
+ assert_matching(idx.levels, levels)
186
+
187
+ # illegal level changing should not change levels
188
+ # GH 13754
189
+ original_index = idx.copy()
190
+ with pytest.raises(ValueError, match="^On"):
191
+ idx.set_levels(["c"], level=0)
192
+ assert_matching(idx.levels, original_index.levels, check_dtype=True)
193
+
194
+ with pytest.raises(ValueError, match="^On"):
195
+ idx.set_codes([0, 1, 2, 3, 4, 5], level=0)
196
+ assert_matching(idx.codes, original_index.codes, check_dtype=True)
197
+
198
+ with pytest.raises(TypeError, match="^Levels"):
199
+ idx.set_levels("c", level=0)
200
+ assert_matching(idx.levels, original_index.levels, check_dtype=True)
201
+
202
+ with pytest.raises(TypeError, match="^Codes"):
203
+ idx.set_codes(1, level=0)
204
+ assert_matching(idx.codes, original_index.codes, check_dtype=True)
205
+
206
+
207
+ def test_set_codes(idx):
208
+ # side note - you probably wouldn't want to use levels and codes
209
+ # directly like this - but it is possible.
210
+ codes = idx.codes
211
+ major_codes, minor_codes = codes
212
+ major_codes = [(x + 1) % 3 for x in major_codes]
213
+ minor_codes = [(x + 1) % 1 for x in minor_codes]
214
+ new_codes = [major_codes, minor_codes]
215
+
216
+ # changing codes w/o mutation
217
+ ind2 = idx.set_codes(new_codes)
218
+ assert_matching(ind2.codes, new_codes)
219
+ assert_matching(idx.codes, codes)
220
+
221
+ # codes changing specific level w/o mutation
222
+ ind2 = idx.set_codes(new_codes[0], level=0)
223
+ assert_matching(ind2.codes, [new_codes[0], codes[1]])
224
+ assert_matching(idx.codes, codes)
225
+
226
+ ind2 = idx.set_codes(new_codes[1], level=1)
227
+ assert_matching(ind2.codes, [codes[0], new_codes[1]])
228
+ assert_matching(idx.codes, codes)
229
+
230
+ # codes changing multiple levels w/o mutation
231
+ ind2 = idx.set_codes(new_codes, level=[0, 1])
232
+ assert_matching(ind2.codes, new_codes)
233
+ assert_matching(idx.codes, codes)
234
+
235
+ # label changing for levels of different magnitude of categories
236
+ ind = MultiIndex.from_tuples([(0, i) for i in range(130)])
237
+ new_codes = range(129, -1, -1)
238
+ expected = MultiIndex.from_tuples([(0, i) for i in new_codes])
239
+
240
+ # [w/o mutation]
241
+ result = ind.set_codes(codes=new_codes, level=1)
242
+ assert result.equals(expected)
243
+
244
+
245
+ def test_set_levels_codes_names_bad_input(idx):
246
+ levels, codes = idx.levels, idx.codes
247
+ names = idx.names
248
+
249
+ with pytest.raises(ValueError, match="Length of levels"):
250
+ idx.set_levels([levels[0]])
251
+
252
+ with pytest.raises(ValueError, match="Length of codes"):
253
+ idx.set_codes([codes[0]])
254
+
255
+ with pytest.raises(ValueError, match="Length of names"):
256
+ idx.set_names([names[0]])
257
+
258
+ # shouldn't scalar data error, instead should demand list-like
259
+ with pytest.raises(TypeError, match="list of lists-like"):
260
+ idx.set_levels(levels[0])
261
+
262
+ # shouldn't scalar data error, instead should demand list-like
263
+ with pytest.raises(TypeError, match="list of lists-like"):
264
+ idx.set_codes(codes[0])
265
+
266
+ # shouldn't scalar data error, instead should demand list-like
267
+ with pytest.raises(TypeError, match="list-like"):
268
+ idx.set_names(names[0])
269
+
270
+ # should have equal lengths
271
+ with pytest.raises(TypeError, match="list of lists-like"):
272
+ idx.set_levels(levels[0], level=[0, 1])
273
+
274
+ with pytest.raises(TypeError, match="list-like"):
275
+ idx.set_levels(levels, level=0)
276
+
277
+ # should have equal lengths
278
+ with pytest.raises(TypeError, match="list of lists-like"):
279
+ idx.set_codes(codes[0], level=[0, 1])
280
+
281
+ with pytest.raises(TypeError, match="list-like"):
282
+ idx.set_codes(codes, level=0)
283
+
284
+ # should have equal lengths
285
+ with pytest.raises(ValueError, match="Length of names"):
286
+ idx.set_names(names[0], level=[0, 1])
287
+
288
+ with pytest.raises(TypeError, match="Names must be a"):
289
+ idx.set_names(names, level=0)
290
+
291
+
292
+ @pytest.mark.parametrize("inplace", [True, False])
293
+ def test_set_names_with_nlevel_1(inplace):
294
+ # GH 21149
295
+ # Ensure that .set_names for MultiIndex with
296
+ # nlevels == 1 does not raise any errors
297
+ expected = MultiIndex(levels=[[0, 1]], codes=[[0, 1]], names=["first"])
298
+ m = MultiIndex.from_product([[0, 1]])
299
+ result = m.set_names("first", level=0, inplace=inplace)
300
+
301
+ if inplace:
302
+ result = m
303
+
304
+ tm.assert_index_equal(result, expected)
305
+
306
+
307
+ @pytest.mark.parametrize("ordered", [True, False])
308
+ def test_set_levels_categorical(ordered):
309
+ # GH13854
310
+ index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]])
311
+
312
+ cidx = CategoricalIndex(list("bac"), ordered=ordered)
313
+ result = index.set_levels(cidx, level=0)
314
+ expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], codes=index.codes)
315
+ tm.assert_index_equal(result, expected)
316
+
317
+ result_lvl = result.get_level_values(0)
318
+ expected_lvl = CategoricalIndex(
319
+ list("bacb"), categories=cidx.categories, ordered=cidx.ordered
320
+ )
321
+ tm.assert_index_equal(result_lvl, expected_lvl)
322
+
323
+
324
+ def test_set_value_keeps_names():
325
+ # motivating example from #3742
326
+ lev1 = ["hans", "hans", "hans", "grethe", "grethe", "grethe"]
327
+ lev2 = ["1", "2", "3"] * 2
328
+ idx = MultiIndex.from_arrays([lev1, lev2], names=["Name", "Number"])
329
+ df = pd.DataFrame(
330
+ np.random.default_rng(2).standard_normal((6, 4)),
331
+ columns=["one", "two", "three", "four"],
332
+ index=idx,
333
+ )
334
+ df = df.sort_index()
335
+ assert df._is_copy is None
336
+ assert df.index.names == ("Name", "Number")
337
+ df.at[("grethe", "4"), "one"] = 99.34
338
+ assert df._is_copy is None
339
+ assert df.index.names == ("Name", "Number")
340
+
341
+
342
+ def test_set_levels_with_iterable():
343
+ # GH23273
344
+ sizes = [1, 2, 3]
345
+ colors = ["black"] * 3
346
+ index = MultiIndex.from_arrays([sizes, colors], names=["size", "color"])
347
+
348
+ result = index.set_levels(map(int, ["3", "2", "1"]), level="size")
349
+
350
+ expected_sizes = [3, 2, 1]
351
+ expected = MultiIndex.from_arrays([expected_sizes, colors], names=["size", "color"])
352
+ tm.assert_index_equal(result, expected)
353
+
354
+
355
+ def test_set_empty_level():
356
+ # GH#48636
357
+ midx = MultiIndex.from_arrays([[]], names=["A"])
358
+ result = midx.set_levels(pd.DatetimeIndex([]), level=0)
359
+ expected = MultiIndex.from_arrays([pd.DatetimeIndex([])], names=["A"])
360
+ tm.assert_index_equal(result, expected)
361
+
362
+
363
+ def test_set_levels_pos_args_removal():
364
+ # https://github.com/pandas-dev/pandas/issues/41485
365
+ idx = MultiIndex.from_tuples(
366
+ [
367
+ (1, "one"),
368
+ (3, "one"),
369
+ ],
370
+ names=["foo", "bar"],
371
+ )
372
+ with pytest.raises(TypeError, match="positional arguments"):
373
+ idx.set_levels(["a", "b", "c"], 0)
374
+
375
+ with pytest.raises(TypeError, match="positional arguments"):
376
+ idx.set_codes([[0, 1], [1, 0]], 0)
377
+
378
+
379
+ def test_set_levels_categorical_keep_dtype():
380
+ # GH#52125
381
+ midx = MultiIndex.from_arrays([[5, 6]])
382
+ result = midx.set_levels(levels=pd.Categorical([1, 2]), level=0)
383
+ expected = MultiIndex.from_arrays([pd.Categorical([1, 2])])
384
+ tm.assert_index_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_indexing.py ADDED
@@ -0,0 +1,1001 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+ import re
3
+
4
+ import numpy as np
5
+ import pytest
6
+
7
+ from pandas._libs import index as libindex
8
+ from pandas.errors import (
9
+ InvalidIndexError,
10
+ PerformanceWarning,
11
+ )
12
+
13
+ import pandas as pd
14
+ from pandas import (
15
+ Categorical,
16
+ DataFrame,
17
+ Index,
18
+ MultiIndex,
19
+ date_range,
20
+ )
21
+ import pandas._testing as tm
22
+
23
+
24
+ class TestSliceLocs:
25
+ def test_slice_locs_partial(self, idx):
26
+ sorted_idx, _ = idx.sortlevel(0)
27
+
28
+ result = sorted_idx.slice_locs(("foo", "two"), ("qux", "one"))
29
+ assert result == (1, 5)
30
+
31
+ result = sorted_idx.slice_locs(None, ("qux", "one"))
32
+ assert result == (0, 5)
33
+
34
+ result = sorted_idx.slice_locs(("foo", "two"), None)
35
+ assert result == (1, len(sorted_idx))
36
+
37
+ result = sorted_idx.slice_locs("bar", "baz")
38
+ assert result == (2, 4)
39
+
40
+ def test_slice_locs(self):
41
+ df = DataFrame(
42
+ np.random.default_rng(2).standard_normal((50, 4)),
43
+ columns=Index(list("ABCD"), dtype=object),
44
+ index=date_range("2000-01-01", periods=50, freq="B"),
45
+ )
46
+ stacked = df.stack(future_stack=True)
47
+ idx = stacked.index
48
+
49
+ slob = slice(*idx.slice_locs(df.index[5], df.index[15]))
50
+ sliced = stacked[slob]
51
+ expected = df[5:16].stack(future_stack=True)
52
+ tm.assert_almost_equal(sliced.values, expected.values)
53
+
54
+ slob = slice(
55
+ *idx.slice_locs(
56
+ df.index[5] + timedelta(seconds=30),
57
+ df.index[15] - timedelta(seconds=30),
58
+ )
59
+ )
60
+ sliced = stacked[slob]
61
+ expected = df[6:15].stack(future_stack=True)
62
+ tm.assert_almost_equal(sliced.values, expected.values)
63
+
64
+ def test_slice_locs_with_type_mismatch(self):
65
+ df = DataFrame(
66
+ np.random.default_rng(2).standard_normal((10, 4)),
67
+ columns=Index(list("ABCD"), dtype=object),
68
+ index=date_range("2000-01-01", periods=10, freq="B"),
69
+ )
70
+ stacked = df.stack(future_stack=True)
71
+ idx = stacked.index
72
+ with pytest.raises(TypeError, match="^Level type mismatch"):
73
+ idx.slice_locs((1, 3))
74
+ with pytest.raises(TypeError, match="^Level type mismatch"):
75
+ idx.slice_locs(df.index[5] + timedelta(seconds=30), (5, 2))
76
+ df = DataFrame(
77
+ np.ones((5, 5)),
78
+ index=Index([f"i-{i}" for i in range(5)], name="a"),
79
+ columns=Index([f"i-{i}" for i in range(5)], name="a"),
80
+ )
81
+ stacked = df.stack(future_stack=True)
82
+ idx = stacked.index
83
+ with pytest.raises(TypeError, match="^Level type mismatch"):
84
+ idx.slice_locs(timedelta(seconds=30))
85
+ # TODO: Try creating a UnicodeDecodeError in exception message
86
+ with pytest.raises(TypeError, match="^Level type mismatch"):
87
+ idx.slice_locs(df.index[1], (16, "a"))
88
+
89
+ def test_slice_locs_not_sorted(self):
90
+ index = MultiIndex(
91
+ levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))],
92
+ codes=[
93
+ np.array([0, 0, 1, 2, 2, 2, 3, 3]),
94
+ np.array([0, 1, 0, 0, 0, 1, 0, 1]),
95
+ np.array([1, 0, 1, 1, 0, 0, 1, 0]),
96
+ ],
97
+ )
98
+ msg = "[Kk]ey length.*greater than MultiIndex lexsort depth"
99
+ with pytest.raises(KeyError, match=msg):
100
+ index.slice_locs((1, 0, 1), (2, 1, 0))
101
+
102
+ # works
103
+ sorted_index, _ = index.sortlevel(0)
104
+ # should there be a test case here???
105
+ sorted_index.slice_locs((1, 0, 1), (2, 1, 0))
106
+
107
+ def test_slice_locs_not_contained(self):
108
+ # some searchsorted action
109
+
110
+ index = MultiIndex(
111
+ levels=[[0, 2, 4, 6], [0, 2, 4]],
112
+ codes=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]],
113
+ )
114
+
115
+ result = index.slice_locs((1, 0), (5, 2))
116
+ assert result == (3, 6)
117
+
118
+ result = index.slice_locs(1, 5)
119
+ assert result == (3, 6)
120
+
121
+ result = index.slice_locs((2, 2), (5, 2))
122
+ assert result == (3, 6)
123
+
124
+ result = index.slice_locs(2, 5)
125
+ assert result == (3, 6)
126
+
127
+ result = index.slice_locs((1, 0), (6, 3))
128
+ assert result == (3, 8)
129
+
130
+ result = index.slice_locs(-1, 10)
131
+ assert result == (0, len(index))
132
+
133
+ @pytest.mark.parametrize(
134
+ "index_arr,expected,start_idx,end_idx",
135
+ [
136
+ ([[np.nan, "a", "b"], ["c", "d", "e"]], (0, 3), np.nan, None),
137
+ ([[np.nan, "a", "b"], ["c", "d", "e"]], (0, 3), np.nan, "b"),
138
+ ([[np.nan, "a", "b"], ["c", "d", "e"]], (0, 3), np.nan, ("b", "e")),
139
+ ([["a", "b", "c"], ["d", np.nan, "e"]], (1, 3), ("b", np.nan), None),
140
+ ([["a", "b", "c"], ["d", np.nan, "e"]], (1, 3), ("b", np.nan), "c"),
141
+ ([["a", "b", "c"], ["d", np.nan, "e"]], (1, 3), ("b", np.nan), ("c", "e")),
142
+ ],
143
+ )
144
+ def test_slice_locs_with_missing_value(
145
+ self, index_arr, expected, start_idx, end_idx
146
+ ):
147
+ # issue 19132
148
+ idx = MultiIndex.from_arrays(index_arr)
149
+ result = idx.slice_locs(start=start_idx, end=end_idx)
150
+ assert result == expected
151
+
152
+
153
+ class TestPutmask:
154
+ def test_putmask_with_wrong_mask(self, idx):
155
+ # GH18368
156
+
157
+ msg = "putmask: mask and data must be the same size"
158
+ with pytest.raises(ValueError, match=msg):
159
+ idx.putmask(np.ones(len(idx) + 1, np.bool_), 1)
160
+
161
+ with pytest.raises(ValueError, match=msg):
162
+ idx.putmask(np.ones(len(idx) - 1, np.bool_), 1)
163
+
164
+ with pytest.raises(ValueError, match=msg):
165
+ idx.putmask("foo", 1)
166
+
167
+ def test_putmask_multiindex_other(self):
168
+ # GH#43212 `value` is also a MultiIndex
169
+
170
+ left = MultiIndex.from_tuples([(np.nan, 6), (np.nan, 6), ("a", 4)])
171
+ right = MultiIndex.from_tuples([("a", 1), ("a", 1), ("d", 1)])
172
+ mask = np.array([True, True, False])
173
+
174
+ result = left.putmask(mask, right)
175
+
176
+ expected = MultiIndex.from_tuples([right[0], right[1], left[2]])
177
+ tm.assert_index_equal(result, expected)
178
+
179
+ def test_putmask_keep_dtype(self, any_numeric_ea_dtype):
180
+ # GH#49830
181
+ midx = MultiIndex.from_arrays(
182
+ [pd.Series([1, 2, 3], dtype=any_numeric_ea_dtype), [10, 11, 12]]
183
+ )
184
+ midx2 = MultiIndex.from_arrays(
185
+ [pd.Series([5, 6, 7], dtype=any_numeric_ea_dtype), [-1, -2, -3]]
186
+ )
187
+ result = midx.putmask([True, False, False], midx2)
188
+ expected = MultiIndex.from_arrays(
189
+ [pd.Series([5, 2, 3], dtype=any_numeric_ea_dtype), [-1, 11, 12]]
190
+ )
191
+ tm.assert_index_equal(result, expected)
192
+
193
+ def test_putmask_keep_dtype_shorter_value(self, any_numeric_ea_dtype):
194
+ # GH#49830
195
+ midx = MultiIndex.from_arrays(
196
+ [pd.Series([1, 2, 3], dtype=any_numeric_ea_dtype), [10, 11, 12]]
197
+ )
198
+ midx2 = MultiIndex.from_arrays(
199
+ [pd.Series([5], dtype=any_numeric_ea_dtype), [-1]]
200
+ )
201
+ result = midx.putmask([True, False, False], midx2)
202
+ expected = MultiIndex.from_arrays(
203
+ [pd.Series([5, 2, 3], dtype=any_numeric_ea_dtype), [-1, 11, 12]]
204
+ )
205
+ tm.assert_index_equal(result, expected)
206
+
207
+
208
+ class TestGetIndexer:
209
+ def test_get_indexer(self):
210
+ major_axis = Index(np.arange(4))
211
+ minor_axis = Index(np.arange(2))
212
+
213
+ major_codes = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp)
214
+ minor_codes = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp)
215
+
216
+ index = MultiIndex(
217
+ levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
218
+ )
219
+ idx1 = index[:5]
220
+ idx2 = index[[1, 3, 5]]
221
+
222
+ r1 = idx1.get_indexer(idx2)
223
+ tm.assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp))
224
+
225
+ r1 = idx2.get_indexer(idx1, method="pad")
226
+ e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp)
227
+ tm.assert_almost_equal(r1, e1)
228
+
229
+ r2 = idx2.get_indexer(idx1[::-1], method="pad")
230
+ tm.assert_almost_equal(r2, e1[::-1])
231
+
232
+ rffill1 = idx2.get_indexer(idx1, method="ffill")
233
+ tm.assert_almost_equal(r1, rffill1)
234
+
235
+ r1 = idx2.get_indexer(idx1, method="backfill")
236
+ e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp)
237
+ tm.assert_almost_equal(r1, e1)
238
+
239
+ r2 = idx2.get_indexer(idx1[::-1], method="backfill")
240
+ tm.assert_almost_equal(r2, e1[::-1])
241
+
242
+ rbfill1 = idx2.get_indexer(idx1, method="bfill")
243
+ tm.assert_almost_equal(r1, rbfill1)
244
+
245
+ # pass non-MultiIndex
246
+ r1 = idx1.get_indexer(idx2.values)
247
+ rexp1 = idx1.get_indexer(idx2)
248
+ tm.assert_almost_equal(r1, rexp1)
249
+
250
+ r1 = idx1.get_indexer([1, 2, 3])
251
+ assert (r1 == [-1, -1, -1]).all()
252
+
253
+ # create index with duplicates
254
+ idx1 = Index(list(range(10)) + list(range(10)))
255
+ idx2 = Index(list(range(20)))
256
+
257
+ msg = "Reindexing only valid with uniquely valued Index objects"
258
+ with pytest.raises(InvalidIndexError, match=msg):
259
+ idx1.get_indexer(idx2)
260
+
261
+ def test_get_indexer_nearest(self):
262
+ midx = MultiIndex.from_tuples([("a", 1), ("b", 2)])
263
+ msg = (
264
+ "method='nearest' not implemented yet for MultiIndex; "
265
+ "see GitHub issue 9365"
266
+ )
267
+ with pytest.raises(NotImplementedError, match=msg):
268
+ midx.get_indexer(["a"], method="nearest")
269
+ msg = "tolerance not implemented yet for MultiIndex"
270
+ with pytest.raises(NotImplementedError, match=msg):
271
+ midx.get_indexer(["a"], method="pad", tolerance=2)
272
+
273
+ def test_get_indexer_categorical_time(self):
274
+ # https://github.com/pandas-dev/pandas/issues/21390
275
+ midx = MultiIndex.from_product(
276
+ [
277
+ Categorical(["a", "b", "c"]),
278
+ Categorical(date_range("2012-01-01", periods=3, freq="h")),
279
+ ]
280
+ )
281
+ result = midx.get_indexer(midx)
282
+ tm.assert_numpy_array_equal(result, np.arange(9, dtype=np.intp))
283
+
284
+ @pytest.mark.parametrize(
285
+ "index_arr,labels,expected",
286
+ [
287
+ (
288
+ [[1, np.nan, 2], [3, 4, 5]],
289
+ [1, np.nan, 2],
290
+ np.array([-1, -1, -1], dtype=np.intp),
291
+ ),
292
+ ([[1, np.nan, 2], [3, 4, 5]], [(np.nan, 4)], np.array([1], dtype=np.intp)),
293
+ ([[1, 2, 3], [np.nan, 4, 5]], [(1, np.nan)], np.array([0], dtype=np.intp)),
294
+ (
295
+ [[1, 2, 3], [np.nan, 4, 5]],
296
+ [np.nan, 4, 5],
297
+ np.array([-1, -1, -1], dtype=np.intp),
298
+ ),
299
+ ],
300
+ )
301
+ def test_get_indexer_with_missing_value(self, index_arr, labels, expected):
302
+ # issue 19132
303
+ idx = MultiIndex.from_arrays(index_arr)
304
+ result = idx.get_indexer(labels)
305
+ tm.assert_numpy_array_equal(result, expected)
306
+
307
+ def test_get_indexer_methods(self):
308
+ # https://github.com/pandas-dev/pandas/issues/29896
309
+ # test getting an indexer for another index with different methods
310
+ # confirms that getting an indexer without a filling method, getting an
311
+ # indexer and backfilling, and getting an indexer and padding all behave
312
+ # correctly in the case where all of the target values fall in between
313
+ # several levels in the MultiIndex into which they are getting an indexer
314
+ #
315
+ # visually, the MultiIndexes used in this test are:
316
+ # mult_idx_1:
317
+ # 0: -1 0
318
+ # 1: 2
319
+ # 2: 3
320
+ # 3: 4
321
+ # 4: 0 0
322
+ # 5: 2
323
+ # 6: 3
324
+ # 7: 4
325
+ # 8: 1 0
326
+ # 9: 2
327
+ # 10: 3
328
+ # 11: 4
329
+ #
330
+ # mult_idx_2:
331
+ # 0: 0 1
332
+ # 1: 3
333
+ # 2: 4
334
+ mult_idx_1 = MultiIndex.from_product([[-1, 0, 1], [0, 2, 3, 4]])
335
+ mult_idx_2 = MultiIndex.from_product([[0], [1, 3, 4]])
336
+
337
+ indexer = mult_idx_1.get_indexer(mult_idx_2)
338
+ expected = np.array([-1, 6, 7], dtype=indexer.dtype)
339
+ tm.assert_almost_equal(expected, indexer)
340
+
341
+ backfill_indexer = mult_idx_1.get_indexer(mult_idx_2, method="backfill")
342
+ expected = np.array([5, 6, 7], dtype=backfill_indexer.dtype)
343
+ tm.assert_almost_equal(expected, backfill_indexer)
344
+
345
+ # ensure the legacy "bfill" option functions identically to "backfill"
346
+ backfill_indexer = mult_idx_1.get_indexer(mult_idx_2, method="bfill")
347
+ expected = np.array([5, 6, 7], dtype=backfill_indexer.dtype)
348
+ tm.assert_almost_equal(expected, backfill_indexer)
349
+
350
+ pad_indexer = mult_idx_1.get_indexer(mult_idx_2, method="pad")
351
+ expected = np.array([4, 6, 7], dtype=pad_indexer.dtype)
352
+ tm.assert_almost_equal(expected, pad_indexer)
353
+
354
+ # ensure the legacy "ffill" option functions identically to "pad"
355
+ pad_indexer = mult_idx_1.get_indexer(mult_idx_2, method="ffill")
356
+ expected = np.array([4, 6, 7], dtype=pad_indexer.dtype)
357
+ tm.assert_almost_equal(expected, pad_indexer)
358
+
359
+ @pytest.mark.parametrize("method", ["pad", "ffill", "backfill", "bfill", "nearest"])
360
+ def test_get_indexer_methods_raise_for_non_monotonic(self, method):
361
+ # 53452
362
+ mi = MultiIndex.from_arrays([[0, 4, 2], [0, 4, 2]])
363
+ if method == "nearest":
364
+ err = NotImplementedError
365
+ msg = "not implemented yet for MultiIndex"
366
+ else:
367
+ err = ValueError
368
+ msg = "index must be monotonic increasing or decreasing"
369
+ with pytest.raises(err, match=msg):
370
+ mi.get_indexer([(1, 1)], method=method)
371
+
372
+ def test_get_indexer_three_or_more_levels(self):
373
+ # https://github.com/pandas-dev/pandas/issues/29896
374
+ # tests get_indexer() on MultiIndexes with 3+ levels
375
+ # visually, these are
376
+ # mult_idx_1:
377
+ # 0: 1 2 5
378
+ # 1: 7
379
+ # 2: 4 5
380
+ # 3: 7
381
+ # 4: 6 5
382
+ # 5: 7
383
+ # 6: 3 2 5
384
+ # 7: 7
385
+ # 8: 4 5
386
+ # 9: 7
387
+ # 10: 6 5
388
+ # 11: 7
389
+ #
390
+ # mult_idx_2:
391
+ # 0: 1 1 8
392
+ # 1: 1 5 9
393
+ # 2: 1 6 7
394
+ # 3: 2 1 6
395
+ # 4: 2 7 6
396
+ # 5: 2 7 8
397
+ # 6: 3 6 8
398
+ mult_idx_1 = MultiIndex.from_product([[1, 3], [2, 4, 6], [5, 7]])
399
+ mult_idx_2 = MultiIndex.from_tuples(
400
+ [
401
+ (1, 1, 8),
402
+ (1, 5, 9),
403
+ (1, 6, 7),
404
+ (2, 1, 6),
405
+ (2, 7, 7),
406
+ (2, 7, 8),
407
+ (3, 6, 8),
408
+ ]
409
+ )
410
+ # sanity check
411
+ assert mult_idx_1.is_monotonic_increasing
412
+ assert mult_idx_1.is_unique
413
+ assert mult_idx_2.is_monotonic_increasing
414
+ assert mult_idx_2.is_unique
415
+
416
+ # show the relationships between the two
417
+ assert mult_idx_2[0] < mult_idx_1[0]
418
+ assert mult_idx_1[3] < mult_idx_2[1] < mult_idx_1[4]
419
+ assert mult_idx_1[5] == mult_idx_2[2]
420
+ assert mult_idx_1[5] < mult_idx_2[3] < mult_idx_1[6]
421
+ assert mult_idx_1[5] < mult_idx_2[4] < mult_idx_1[6]
422
+ assert mult_idx_1[5] < mult_idx_2[5] < mult_idx_1[6]
423
+ assert mult_idx_1[-1] < mult_idx_2[6]
424
+
425
+ indexer_no_fill = mult_idx_1.get_indexer(mult_idx_2)
426
+ expected = np.array([-1, -1, 5, -1, -1, -1, -1], dtype=indexer_no_fill.dtype)
427
+ tm.assert_almost_equal(expected, indexer_no_fill)
428
+
429
+ # test with backfilling
430
+ indexer_backfilled = mult_idx_1.get_indexer(mult_idx_2, method="backfill")
431
+ expected = np.array([0, 4, 5, 6, 6, 6, -1], dtype=indexer_backfilled.dtype)
432
+ tm.assert_almost_equal(expected, indexer_backfilled)
433
+
434
+ # now, the same thing, but forward-filled (aka "padded")
435
+ indexer_padded = mult_idx_1.get_indexer(mult_idx_2, method="pad")
436
+ expected = np.array([-1, 3, 5, 5, 5, 5, 11], dtype=indexer_padded.dtype)
437
+ tm.assert_almost_equal(expected, indexer_padded)
438
+
439
+ # now, do the indexing in the other direction
440
+ assert mult_idx_2[0] < mult_idx_1[0] < mult_idx_2[1]
441
+ assert mult_idx_2[0] < mult_idx_1[1] < mult_idx_2[1]
442
+ assert mult_idx_2[0] < mult_idx_1[2] < mult_idx_2[1]
443
+ assert mult_idx_2[0] < mult_idx_1[3] < mult_idx_2[1]
444
+ assert mult_idx_2[1] < mult_idx_1[4] < mult_idx_2[2]
445
+ assert mult_idx_2[2] == mult_idx_1[5]
446
+ assert mult_idx_2[5] < mult_idx_1[6] < mult_idx_2[6]
447
+ assert mult_idx_2[5] < mult_idx_1[7] < mult_idx_2[6]
448
+ assert mult_idx_2[5] < mult_idx_1[8] < mult_idx_2[6]
449
+ assert mult_idx_2[5] < mult_idx_1[9] < mult_idx_2[6]
450
+ assert mult_idx_2[5] < mult_idx_1[10] < mult_idx_2[6]
451
+ assert mult_idx_2[5] < mult_idx_1[11] < mult_idx_2[6]
452
+
453
+ indexer = mult_idx_2.get_indexer(mult_idx_1)
454
+ expected = np.array(
455
+ [-1, -1, -1, -1, -1, 2, -1, -1, -1, -1, -1, -1], dtype=indexer.dtype
456
+ )
457
+ tm.assert_almost_equal(expected, indexer)
458
+
459
+ backfill_indexer = mult_idx_2.get_indexer(mult_idx_1, method="bfill")
460
+ expected = np.array(
461
+ [1, 1, 1, 1, 2, 2, 6, 6, 6, 6, 6, 6], dtype=backfill_indexer.dtype
462
+ )
463
+ tm.assert_almost_equal(expected, backfill_indexer)
464
+
465
+ pad_indexer = mult_idx_2.get_indexer(mult_idx_1, method="pad")
466
+ expected = np.array(
467
+ [0, 0, 0, 0, 1, 2, 5, 5, 5, 5, 5, 5], dtype=pad_indexer.dtype
468
+ )
469
+ tm.assert_almost_equal(expected, pad_indexer)
470
+
471
+ def test_get_indexer_crossing_levels(self):
472
+ # https://github.com/pandas-dev/pandas/issues/29896
473
+ # tests a corner case with get_indexer() with MultiIndexes where, when we
474
+ # need to "carry" across levels, proper tuple ordering is respected
475
+ #
476
+ # the MultiIndexes used in this test, visually, are:
477
+ # mult_idx_1:
478
+ # 0: 1 1 1 1
479
+ # 1: 2
480
+ # 2: 2 1
481
+ # 3: 2
482
+ # 4: 1 2 1 1
483
+ # 5: 2
484
+ # 6: 2 1
485
+ # 7: 2
486
+ # 8: 2 1 1 1
487
+ # 9: 2
488
+ # 10: 2 1
489
+ # 11: 2
490
+ # 12: 2 2 1 1
491
+ # 13: 2
492
+ # 14: 2 1
493
+ # 15: 2
494
+ #
495
+ # mult_idx_2:
496
+ # 0: 1 3 2 2
497
+ # 1: 2 3 2 2
498
+ mult_idx_1 = MultiIndex.from_product([[1, 2]] * 4)
499
+ mult_idx_2 = MultiIndex.from_tuples([(1, 3, 2, 2), (2, 3, 2, 2)])
500
+
501
+ # show the tuple orderings, which get_indexer() should respect
502
+ assert mult_idx_1[7] < mult_idx_2[0] < mult_idx_1[8]
503
+ assert mult_idx_1[-1] < mult_idx_2[1]
504
+
505
+ indexer = mult_idx_1.get_indexer(mult_idx_2)
506
+ expected = np.array([-1, -1], dtype=indexer.dtype)
507
+ tm.assert_almost_equal(expected, indexer)
508
+
509
+ backfill_indexer = mult_idx_1.get_indexer(mult_idx_2, method="bfill")
510
+ expected = np.array([8, -1], dtype=backfill_indexer.dtype)
511
+ tm.assert_almost_equal(expected, backfill_indexer)
512
+
513
+ pad_indexer = mult_idx_1.get_indexer(mult_idx_2, method="ffill")
514
+ expected = np.array([7, 15], dtype=pad_indexer.dtype)
515
+ tm.assert_almost_equal(expected, pad_indexer)
516
+
517
+ def test_get_indexer_kwarg_validation(self):
518
+ # GH#41918
519
+ mi = MultiIndex.from_product([range(3), ["A", "B"]])
520
+
521
+ msg = "limit argument only valid if doing pad, backfill or nearest"
522
+ with pytest.raises(ValueError, match=msg):
523
+ mi.get_indexer(mi[:-1], limit=4)
524
+
525
+ msg = "tolerance argument only valid if doing pad, backfill or nearest"
526
+ with pytest.raises(ValueError, match=msg):
527
+ mi.get_indexer(mi[:-1], tolerance="piano")
528
+
529
+ def test_get_indexer_nan(self):
530
+ # GH#37222
531
+ idx1 = MultiIndex.from_product([["A"], [1.0, 2.0]], names=["id1", "id2"])
532
+ idx2 = MultiIndex.from_product([["A"], [np.nan, 2.0]], names=["id1", "id2"])
533
+ expected = np.array([-1, 1])
534
+ result = idx2.get_indexer(idx1)
535
+ tm.assert_numpy_array_equal(result, expected, check_dtype=False)
536
+ result = idx1.get_indexer(idx2)
537
+ tm.assert_numpy_array_equal(result, expected, check_dtype=False)
538
+
539
+
540
+ def test_getitem(idx):
541
+ # scalar
542
+ assert idx[2] == ("bar", "one")
543
+
544
+ # slice
545
+ result = idx[2:5]
546
+ expected = idx[[2, 3, 4]]
547
+ assert result.equals(expected)
548
+
549
+ # boolean
550
+ result = idx[[True, False, True, False, True, True]]
551
+ result2 = idx[np.array([True, False, True, False, True, True])]
552
+ expected = idx[[0, 2, 4, 5]]
553
+ assert result.equals(expected)
554
+ assert result2.equals(expected)
555
+
556
+
557
+ def test_getitem_group_select(idx):
558
+ sorted_idx, _ = idx.sortlevel(0)
559
+ assert sorted_idx.get_loc("baz") == slice(3, 4)
560
+ assert sorted_idx.get_loc("foo") == slice(0, 2)
561
+
562
+
563
+ @pytest.mark.parametrize("ind1", [[True] * 5, Index([True] * 5)])
564
+ @pytest.mark.parametrize(
565
+ "ind2",
566
+ [[True, False, True, False, False], Index([True, False, True, False, False])],
567
+ )
568
+ def test_getitem_bool_index_all(ind1, ind2):
569
+ # GH#22533
570
+ idx = MultiIndex.from_tuples([(10, 1), (20, 2), (30, 3), (40, 4), (50, 5)])
571
+ tm.assert_index_equal(idx[ind1], idx)
572
+
573
+ expected = MultiIndex.from_tuples([(10, 1), (30, 3)])
574
+ tm.assert_index_equal(idx[ind2], expected)
575
+
576
+
577
+ @pytest.mark.parametrize("ind1", [[True], Index([True])])
578
+ @pytest.mark.parametrize("ind2", [[False], Index([False])])
579
+ def test_getitem_bool_index_single(ind1, ind2):
580
+ # GH#22533
581
+ idx = MultiIndex.from_tuples([(10, 1)])
582
+ tm.assert_index_equal(idx[ind1], idx)
583
+
584
+ expected = MultiIndex(
585
+ levels=[np.array([], dtype=np.int64), np.array([], dtype=np.int64)],
586
+ codes=[[], []],
587
+ )
588
+ tm.assert_index_equal(idx[ind2], expected)
589
+
590
+
591
+ class TestGetLoc:
592
+ def test_get_loc(self, idx):
593
+ assert idx.get_loc(("foo", "two")) == 1
594
+ assert idx.get_loc(("baz", "two")) == 3
595
+ with pytest.raises(KeyError, match=r"^\('bar', 'two'\)$"):
596
+ idx.get_loc(("bar", "two"))
597
+ with pytest.raises(KeyError, match=r"^'quux'$"):
598
+ idx.get_loc("quux")
599
+
600
+ # 3 levels
601
+ index = MultiIndex(
602
+ levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))],
603
+ codes=[
604
+ np.array([0, 0, 1, 2, 2, 2, 3, 3]),
605
+ np.array([0, 1, 0, 0, 0, 1, 0, 1]),
606
+ np.array([1, 0, 1, 1, 0, 0, 1, 0]),
607
+ ],
608
+ )
609
+ with pytest.raises(KeyError, match=r"^\(1, 1\)$"):
610
+ index.get_loc((1, 1))
611
+ assert index.get_loc((2, 0)) == slice(3, 5)
612
+
613
+ def test_get_loc_duplicates(self):
614
+ index = Index([2, 2, 2, 2])
615
+ result = index.get_loc(2)
616
+ expected = slice(0, 4)
617
+ assert result == expected
618
+
619
+ index = Index(["c", "a", "a", "b", "b"])
620
+ rs = index.get_loc("c")
621
+ xp = 0
622
+ assert rs == xp
623
+
624
+ with pytest.raises(KeyError, match="2"):
625
+ index.get_loc(2)
626
+
627
+ def test_get_loc_level(self):
628
+ index = MultiIndex(
629
+ levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))],
630
+ codes=[
631
+ np.array([0, 0, 1, 2, 2, 2, 3, 3]),
632
+ np.array([0, 1, 0, 0, 0, 1, 0, 1]),
633
+ np.array([1, 0, 1, 1, 0, 0, 1, 0]),
634
+ ],
635
+ )
636
+ loc, new_index = index.get_loc_level((0, 1))
637
+ expected = slice(1, 2)
638
+ exp_index = index[expected].droplevel(0).droplevel(0)
639
+ assert loc == expected
640
+ assert new_index.equals(exp_index)
641
+
642
+ loc, new_index = index.get_loc_level((0, 1, 0))
643
+ expected = 1
644
+ assert loc == expected
645
+ assert new_index is None
646
+
647
+ with pytest.raises(KeyError, match=r"^\(2, 2\)$"):
648
+ index.get_loc_level((2, 2))
649
+ # GH 22221: unused label
650
+ with pytest.raises(KeyError, match=r"^2$"):
651
+ index.drop(2).get_loc_level(2)
652
+ # Unused label on unsorted level:
653
+ with pytest.raises(KeyError, match=r"^2$"):
654
+ index.drop(1, level=2).get_loc_level(2, level=2)
655
+
656
+ index = MultiIndex(
657
+ levels=[[2000], list(range(4))],
658
+ codes=[np.array([0, 0, 0, 0]), np.array([0, 1, 2, 3])],
659
+ )
660
+ result, new_index = index.get_loc_level((2000, slice(None, None)))
661
+ expected = slice(None, None)
662
+ assert result == expected
663
+ assert new_index.equals(index.droplevel(0))
664
+
665
+ @pytest.mark.parametrize("dtype1", [int, float, bool, str])
666
+ @pytest.mark.parametrize("dtype2", [int, float, bool, str])
667
+ def test_get_loc_multiple_dtypes(self, dtype1, dtype2):
668
+ # GH 18520
669
+ levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)]
670
+ idx = MultiIndex.from_product(levels)
671
+ assert idx.get_loc(idx[2]) == 2
672
+
673
+ @pytest.mark.parametrize("level", [0, 1])
674
+ @pytest.mark.parametrize("dtypes", [[int, float], [float, int]])
675
+ def test_get_loc_implicit_cast(self, level, dtypes):
676
+ # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa
677
+ levels = [["a", "b"], ["c", "d"]]
678
+ key = ["b", "d"]
679
+ lev_dtype, key_dtype = dtypes
680
+ levels[level] = np.array([0, 1], dtype=lev_dtype)
681
+ key[level] = key_dtype(1)
682
+ idx = MultiIndex.from_product(levels)
683
+ assert idx.get_loc(tuple(key)) == 3
684
+
685
+ @pytest.mark.parametrize("dtype", [bool, object])
686
+ def test_get_loc_cast_bool(self, dtype):
687
+ # GH 19086 : int is casted to bool, but not vice-versa (for object dtype)
688
+ # With bool dtype, we don't cast in either direction.
689
+ levels = [Index([False, True], dtype=dtype), np.arange(2, dtype="int64")]
690
+ idx = MultiIndex.from_product(levels)
691
+
692
+ if dtype is bool:
693
+ with pytest.raises(KeyError, match=r"^\(0, 1\)$"):
694
+ assert idx.get_loc((0, 1)) == 1
695
+ with pytest.raises(KeyError, match=r"^\(1, 0\)$"):
696
+ assert idx.get_loc((1, 0)) == 2
697
+ else:
698
+ # We use python object comparisons, which treat 0 == False and 1 == True
699
+ assert idx.get_loc((0, 1)) == 1
700
+ assert idx.get_loc((1, 0)) == 2
701
+
702
+ with pytest.raises(KeyError, match=r"^\(False, True\)$"):
703
+ idx.get_loc((False, True))
704
+ with pytest.raises(KeyError, match=r"^\(True, False\)$"):
705
+ idx.get_loc((True, False))
706
+
707
+ @pytest.mark.parametrize("level", [0, 1])
708
+ def test_get_loc_nan(self, level, nulls_fixture):
709
+ # GH 18485 : NaN in MultiIndex
710
+ levels = [["a", "b"], ["c", "d"]]
711
+ key = ["b", "d"]
712
+ levels[level] = np.array([0, nulls_fixture], dtype=type(nulls_fixture))
713
+ key[level] = nulls_fixture
714
+ idx = MultiIndex.from_product(levels)
715
+ assert idx.get_loc(tuple(key)) == 3
716
+
717
+ def test_get_loc_missing_nan(self):
718
+ # GH 8569
719
+ idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]])
720
+ assert isinstance(idx.get_loc(1), slice)
721
+ with pytest.raises(KeyError, match=r"^3$"):
722
+ idx.get_loc(3)
723
+ with pytest.raises(KeyError, match=r"^nan$"):
724
+ idx.get_loc(np.nan)
725
+ with pytest.raises(InvalidIndexError, match=r"\[nan\]"):
726
+ # listlike/non-hashable raises TypeError
727
+ idx.get_loc([np.nan])
728
+
729
+ def test_get_loc_with_values_including_missing_values(self):
730
+ # issue 19132
731
+ idx = MultiIndex.from_product([[np.nan, 1]] * 2)
732
+ expected = slice(0, 2, None)
733
+ assert idx.get_loc(np.nan) == expected
734
+
735
+ idx = MultiIndex.from_arrays([[np.nan, 1, 2, np.nan]])
736
+ expected = np.array([True, False, False, True])
737
+ tm.assert_numpy_array_equal(idx.get_loc(np.nan), expected)
738
+
739
+ idx = MultiIndex.from_product([[np.nan, 1]] * 3)
740
+ expected = slice(2, 4, None)
741
+ assert idx.get_loc((np.nan, 1)) == expected
742
+
743
+ def test_get_loc_duplicates2(self):
744
+ # TODO: de-duplicate with test_get_loc_duplicates above?
745
+ index = MultiIndex(
746
+ levels=[["D", "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]],
747
+ codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]],
748
+ names=["tag", "day"],
749
+ )
750
+
751
+ assert index.get_loc("D") == slice(0, 3)
752
+
753
+ def test_get_loc_past_lexsort_depth(self):
754
+ # GH#30053
755
+ idx = MultiIndex(
756
+ levels=[["a"], [0, 7], [1]],
757
+ codes=[[0, 0], [1, 0], [0, 0]],
758
+ names=["x", "y", "z"],
759
+ sortorder=0,
760
+ )
761
+ key = ("a", 7)
762
+
763
+ with tm.assert_produces_warning(PerformanceWarning):
764
+ # PerformanceWarning: indexing past lexsort depth may impact performance
765
+ result = idx.get_loc(key)
766
+
767
+ assert result == slice(0, 1, None)
768
+
769
+ def test_multiindex_get_loc_list_raises(self):
770
+ # GH#35878
771
+ idx = MultiIndex.from_tuples([("a", 1), ("b", 2)])
772
+ msg = r"\[\]"
773
+ with pytest.raises(InvalidIndexError, match=msg):
774
+ idx.get_loc([])
775
+
776
+ def test_get_loc_nested_tuple_raises_keyerror(self):
777
+ # raise KeyError, not TypeError
778
+ mi = MultiIndex.from_product([range(3), range(4), range(5), range(6)])
779
+ key = ((2, 3, 4), "foo")
780
+
781
+ with pytest.raises(KeyError, match=re.escape(str(key))):
782
+ mi.get_loc(key)
783
+
784
+
785
+ class TestWhere:
786
+ def test_where(self):
787
+ i = MultiIndex.from_tuples([("A", 1), ("A", 2)])
788
+
789
+ msg = r"\.where is not supported for MultiIndex operations"
790
+ with pytest.raises(NotImplementedError, match=msg):
791
+ i.where(True)
792
+
793
+ def test_where_array_like(self, listlike_box):
794
+ mi = MultiIndex.from_tuples([("A", 1), ("A", 2)])
795
+ cond = [False, True]
796
+ msg = r"\.where is not supported for MultiIndex operations"
797
+ with pytest.raises(NotImplementedError, match=msg):
798
+ mi.where(listlike_box(cond))
799
+
800
+
801
+ class TestContains:
802
+ def test_contains_top_level(self):
803
+ midx = MultiIndex.from_product([["A", "B"], [1, 2]])
804
+ assert "A" in midx
805
+ assert "A" not in midx._engine
806
+
807
+ def test_contains_with_nat(self):
808
+ # MI with a NaT
809
+ mi = MultiIndex(
810
+ levels=[["C"], date_range("2012-01-01", periods=5)],
811
+ codes=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]],
812
+ names=[None, "B"],
813
+ )
814
+ assert ("C", pd.Timestamp("2012-01-01")) in mi
815
+ for val in mi.values:
816
+ assert val in mi
817
+
818
+ def test_contains(self, idx):
819
+ assert ("foo", "two") in idx
820
+ assert ("bar", "two") not in idx
821
+ assert None not in idx
822
+
823
+ def test_contains_with_missing_value(self):
824
+ # GH#19132
825
+ idx = MultiIndex.from_arrays([[1, np.nan, 2]])
826
+ assert np.nan in idx
827
+
828
+ idx = MultiIndex.from_arrays([[1, 2], [np.nan, 3]])
829
+ assert np.nan not in idx
830
+ assert (1, np.nan) in idx
831
+
832
+ def test_multiindex_contains_dropped(self):
833
+ # GH#19027
834
+ # test that dropped MultiIndex levels are not in the MultiIndex
835
+ # despite continuing to be in the MultiIndex's levels
836
+ idx = MultiIndex.from_product([[1, 2], [3, 4]])
837
+ assert 2 in idx
838
+ idx = idx.drop(2)
839
+
840
+ # drop implementation keeps 2 in the levels
841
+ assert 2 in idx.levels[0]
842
+ # but it should no longer be in the index itself
843
+ assert 2 not in idx
844
+
845
+ # also applies to strings
846
+ idx = MultiIndex.from_product([["a", "b"], ["c", "d"]])
847
+ assert "a" in idx
848
+ idx = idx.drop("a")
849
+ assert "a" in idx.levels[0]
850
+ assert "a" not in idx
851
+
852
+ def test_contains_td64_level(self):
853
+ # GH#24570
854
+ tx = pd.timedelta_range("09:30:00", "16:00:00", freq="30 min")
855
+ idx = MultiIndex.from_arrays([tx, np.arange(len(tx))])
856
+ assert tx[0] in idx
857
+ assert "element_not_exit" not in idx
858
+ assert "0 day 09:30:00" in idx
859
+
860
+ def test_large_mi_contains(self, monkeypatch):
861
+ # GH#10645
862
+ with monkeypatch.context():
863
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 10)
864
+ result = MultiIndex.from_arrays([range(10), range(10)])
865
+ assert (10, 0) not in result
866
+
867
+
868
+ def test_timestamp_multiindex_indexer():
869
+ # https://github.com/pandas-dev/pandas/issues/26944
870
+ idx = MultiIndex.from_product(
871
+ [
872
+ date_range("2019-01-01T00:15:33", periods=100, freq="h", name="date"),
873
+ ["x"],
874
+ [3],
875
+ ]
876
+ )
877
+ df = DataFrame({"foo": np.arange(len(idx))}, idx)
878
+ result = df.loc[pd.IndexSlice["2019-1-2":, "x", :], "foo"]
879
+ qidx = MultiIndex.from_product(
880
+ [
881
+ date_range(
882
+ start="2019-01-02T00:15:33",
883
+ end="2019-01-05T03:15:33",
884
+ freq="h",
885
+ name="date",
886
+ ),
887
+ ["x"],
888
+ [3],
889
+ ]
890
+ )
891
+ should_be = pd.Series(data=np.arange(24, len(qidx) + 24), index=qidx, name="foo")
892
+ tm.assert_series_equal(result, should_be)
893
+
894
+
895
+ @pytest.mark.parametrize(
896
+ "index_arr,expected,target,algo",
897
+ [
898
+ ([[np.nan, "a", "b"], ["c", "d", "e"]], 0, np.nan, "left"),
899
+ ([[np.nan, "a", "b"], ["c", "d", "e"]], 1, (np.nan, "c"), "right"),
900
+ ([["a", "b", "c"], ["d", np.nan, "d"]], 1, ("b", np.nan), "left"),
901
+ ],
902
+ )
903
+ def test_get_slice_bound_with_missing_value(index_arr, expected, target, algo):
904
+ # issue 19132
905
+ idx = MultiIndex.from_arrays(index_arr)
906
+ result = idx.get_slice_bound(target, side=algo)
907
+ assert result == expected
908
+
909
+
910
+ @pytest.mark.parametrize(
911
+ "index_arr,expected,start_idx,end_idx",
912
+ [
913
+ ([[np.nan, 1, 2], [3, 4, 5]], slice(0, 2, None), np.nan, 1),
914
+ ([[np.nan, 1, 2], [3, 4, 5]], slice(0, 3, None), np.nan, (2, 5)),
915
+ ([[1, 2, 3], [4, np.nan, 5]], slice(1, 3, None), (2, np.nan), 3),
916
+ ([[1, 2, 3], [4, np.nan, 5]], slice(1, 3, None), (2, np.nan), (3, 5)),
917
+ ],
918
+ )
919
+ def test_slice_indexer_with_missing_value(index_arr, expected, start_idx, end_idx):
920
+ # issue 19132
921
+ idx = MultiIndex.from_arrays(index_arr)
922
+ result = idx.slice_indexer(start=start_idx, end=end_idx)
923
+ assert result == expected
924
+
925
+
926
+ def test_pyint_engine():
927
+ # GH#18519 : when combinations of codes cannot be represented in 64
928
+ # bits, the index underlying the MultiIndex engine works with Python
929
+ # integers, rather than uint64.
930
+ N = 5
931
+ keys = [
932
+ tuple(arr)
933
+ for arr in [
934
+ [0] * 10 * N,
935
+ [1] * 10 * N,
936
+ [2] * 10 * N,
937
+ [np.nan] * N + [2] * 9 * N,
938
+ [0] * N + [2] * 9 * N,
939
+ [np.nan] * N + [2] * 8 * N + [0] * N,
940
+ ]
941
+ ]
942
+ # Each level contains 4 elements (including NaN), so it is represented
943
+ # in 2 bits, for a total of 2*N*10 = 100 > 64 bits. If we were using a
944
+ # 64 bit engine and truncating the first levels, the fourth and fifth
945
+ # keys would collide; if truncating the last levels, the fifth and
946
+ # sixth; if rotating bits rather than shifting, the third and fifth.
947
+
948
+ for idx, key_value in enumerate(keys):
949
+ index = MultiIndex.from_tuples(keys)
950
+ assert index.get_loc(key_value) == idx
951
+
952
+ expected = np.arange(idx + 1, dtype=np.intp)
953
+ result = index.get_indexer([keys[i] for i in expected])
954
+ tm.assert_numpy_array_equal(result, expected)
955
+
956
+ # With missing key:
957
+ idces = range(len(keys))
958
+ expected = np.array([-1] + list(idces), dtype=np.intp)
959
+ missing = tuple([0, 1] * 5 * N)
960
+ result = index.get_indexer([missing] + [keys[i] for i in idces])
961
+ tm.assert_numpy_array_equal(result, expected)
962
+
963
+
964
+ @pytest.mark.parametrize(
965
+ "keys,expected",
966
+ [
967
+ ((slice(None), [5, 4]), [1, 0]),
968
+ ((slice(None), [4, 5]), [0, 1]),
969
+ (([True, False, True], [4, 6]), [0, 2]),
970
+ (([True, False, True], [6, 4]), [0, 2]),
971
+ ((2, [4, 5]), [0, 1]),
972
+ ((2, [5, 4]), [1, 0]),
973
+ (([2], [4, 5]), [0, 1]),
974
+ (([2], [5, 4]), [1, 0]),
975
+ ],
976
+ )
977
+ def test_get_locs_reordering(keys, expected):
978
+ # GH48384
979
+ idx = MultiIndex.from_arrays(
980
+ [
981
+ [2, 2, 1],
982
+ [4, 5, 6],
983
+ ]
984
+ )
985
+ result = idx.get_locs(keys)
986
+ expected = np.array(expected, dtype=np.intp)
987
+ tm.assert_numpy_array_equal(result, expected)
988
+
989
+
990
+ def test_get_indexer_for_multiindex_with_nans(nulls_fixture):
991
+ # GH37222
992
+ idx1 = MultiIndex.from_product([["A"], [1.0, 2.0]], names=["id1", "id2"])
993
+ idx2 = MultiIndex.from_product([["A"], [nulls_fixture, 2.0]], names=["id1", "id2"])
994
+
995
+ result = idx2.get_indexer(idx1)
996
+ expected = np.array([-1, 1], dtype=np.intp)
997
+ tm.assert_numpy_array_equal(result, expected)
998
+
999
+ result = idx1.get_indexer(idx2)
1000
+ expected = np.array([-1, 1], dtype=np.intp)
1001
+ tm.assert_numpy_array_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_integrity.py ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas._libs import index as libindex
7
+
8
+ from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike
9
+
10
+ import pandas as pd
11
+ from pandas import (
12
+ Index,
13
+ IntervalIndex,
14
+ MultiIndex,
15
+ RangeIndex,
16
+ )
17
+ import pandas._testing as tm
18
+
19
+
20
+ def test_labels_dtypes():
21
+ # GH 8456
22
+ i = MultiIndex.from_tuples([("A", 1), ("A", 2)])
23
+ assert i.codes[0].dtype == "int8"
24
+ assert i.codes[1].dtype == "int8"
25
+
26
+ i = MultiIndex.from_product([["a"], range(40)])
27
+ assert i.codes[1].dtype == "int8"
28
+ i = MultiIndex.from_product([["a"], range(400)])
29
+ assert i.codes[1].dtype == "int16"
30
+ i = MultiIndex.from_product([["a"], range(40000)])
31
+ assert i.codes[1].dtype == "int32"
32
+
33
+ i = MultiIndex.from_product([["a"], range(1000)])
34
+ assert (i.codes[0] >= 0).all()
35
+ assert (i.codes[1] >= 0).all()
36
+
37
+
38
+ def test_values_boxed():
39
+ tuples = [
40
+ (1, pd.Timestamp("2000-01-01")),
41
+ (2, pd.NaT),
42
+ (3, pd.Timestamp("2000-01-03")),
43
+ (1, pd.Timestamp("2000-01-04")),
44
+ (2, pd.Timestamp("2000-01-02")),
45
+ (3, pd.Timestamp("2000-01-03")),
46
+ ]
47
+ result = MultiIndex.from_tuples(tuples)
48
+ expected = construct_1d_object_array_from_listlike(tuples)
49
+ tm.assert_numpy_array_equal(result.values, expected)
50
+ # Check that code branches for boxed values produce identical results
51
+ tm.assert_numpy_array_equal(result.values[:4], result[:4].values)
52
+
53
+
54
+ def test_values_multiindex_datetimeindex():
55
+ # Test to ensure we hit the boxing / nobox part of MI.values
56
+ ints = np.arange(10**18, 10**18 + 5)
57
+ naive = pd.DatetimeIndex(ints)
58
+
59
+ aware = pd.DatetimeIndex(ints, tz="US/Central")
60
+
61
+ idx = MultiIndex.from_arrays([naive, aware])
62
+ result = idx.values
63
+
64
+ outer = pd.DatetimeIndex([x[0] for x in result])
65
+ tm.assert_index_equal(outer, naive)
66
+
67
+ inner = pd.DatetimeIndex([x[1] for x in result])
68
+ tm.assert_index_equal(inner, aware)
69
+
70
+ # n_lev > n_lab
71
+ result = idx[:2].values
72
+
73
+ outer = pd.DatetimeIndex([x[0] for x in result])
74
+ tm.assert_index_equal(outer, naive[:2])
75
+
76
+ inner = pd.DatetimeIndex([x[1] for x in result])
77
+ tm.assert_index_equal(inner, aware[:2])
78
+
79
+
80
+ def test_values_multiindex_periodindex():
81
+ # Test to ensure we hit the boxing / nobox part of MI.values
82
+ ints = np.arange(2007, 2012)
83
+ pidx = pd.PeriodIndex(ints, freq="D")
84
+
85
+ idx = MultiIndex.from_arrays([ints, pidx])
86
+ result = idx.values
87
+
88
+ outer = Index([x[0] for x in result])
89
+ tm.assert_index_equal(outer, Index(ints, dtype=np.int64))
90
+
91
+ inner = pd.PeriodIndex([x[1] for x in result])
92
+ tm.assert_index_equal(inner, pidx)
93
+
94
+ # n_lev > n_lab
95
+ result = idx[:2].values
96
+
97
+ outer = Index([x[0] for x in result])
98
+ tm.assert_index_equal(outer, Index(ints[:2], dtype=np.int64))
99
+
100
+ inner = pd.PeriodIndex([x[1] for x in result])
101
+ tm.assert_index_equal(inner, pidx[:2])
102
+
103
+
104
+ def test_consistency():
105
+ # need to construct an overflow
106
+ major_axis = list(range(70000))
107
+ minor_axis = list(range(10))
108
+
109
+ major_codes = np.arange(70000)
110
+ minor_codes = np.repeat(range(10), 7000)
111
+
112
+ # the fact that is works means it's consistent
113
+ index = MultiIndex(
114
+ levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
115
+ )
116
+
117
+ # inconsistent
118
+ major_codes = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3])
119
+ minor_codes = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1])
120
+ index = MultiIndex(
121
+ levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]
122
+ )
123
+
124
+ assert index.is_unique is False
125
+
126
+
127
+ @pytest.mark.slow
128
+ def test_hash_collisions(monkeypatch):
129
+ # non-smoke test that we don't get hash collisions
130
+ size_cutoff = 50
131
+ with monkeypatch.context() as m:
132
+ m.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
133
+ index = MultiIndex.from_product(
134
+ [np.arange(8), np.arange(8)], names=["one", "two"]
135
+ )
136
+ result = index.get_indexer(index.values)
137
+ tm.assert_numpy_array_equal(result, np.arange(len(index), dtype="intp"))
138
+
139
+ for i in [0, 1, len(index) - 2, len(index) - 1]:
140
+ result = index.get_loc(index[i])
141
+ assert result == i
142
+
143
+
144
+ def test_dims():
145
+ pass
146
+
147
+
148
+ def test_take_invalid_kwargs():
149
+ vals = [["A", "B"], [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]]
150
+ idx = MultiIndex.from_product(vals, names=["str", "dt"])
151
+ indices = [1, 2]
152
+
153
+ msg = r"take\(\) got an unexpected keyword argument 'foo'"
154
+ with pytest.raises(TypeError, match=msg):
155
+ idx.take(indices, foo=2)
156
+
157
+ msg = "the 'out' parameter is not supported"
158
+ with pytest.raises(ValueError, match=msg):
159
+ idx.take(indices, out=indices)
160
+
161
+ msg = "the 'mode' parameter is not supported"
162
+ with pytest.raises(ValueError, match=msg):
163
+ idx.take(indices, mode="clip")
164
+
165
+
166
+ def test_isna_behavior(idx):
167
+ # should not segfault GH5123
168
+ # NOTE: if MI representation changes, may make sense to allow
169
+ # isna(MI)
170
+ msg = "isna is not defined for MultiIndex"
171
+ with pytest.raises(NotImplementedError, match=msg):
172
+ pd.isna(idx)
173
+
174
+
175
+ def test_large_multiindex_error(monkeypatch):
176
+ # GH12527
177
+ size_cutoff = 50
178
+ with monkeypatch.context() as m:
179
+ m.setattr(libindex, "_SIZE_CUTOFF", size_cutoff)
180
+ df_below_cutoff = pd.DataFrame(
181
+ 1,
182
+ index=MultiIndex.from_product([[1, 2], range(size_cutoff - 1)]),
183
+ columns=["dest"],
184
+ )
185
+ with pytest.raises(KeyError, match=r"^\(-1, 0\)$"):
186
+ df_below_cutoff.loc[(-1, 0), "dest"]
187
+ with pytest.raises(KeyError, match=r"^\(3, 0\)$"):
188
+ df_below_cutoff.loc[(3, 0), "dest"]
189
+ df_above_cutoff = pd.DataFrame(
190
+ 1,
191
+ index=MultiIndex.from_product([[1, 2], range(size_cutoff + 1)]),
192
+ columns=["dest"],
193
+ )
194
+ with pytest.raises(KeyError, match=r"^\(-1, 0\)$"):
195
+ df_above_cutoff.loc[(-1, 0), "dest"]
196
+ with pytest.raises(KeyError, match=r"^\(3, 0\)$"):
197
+ df_above_cutoff.loc[(3, 0), "dest"]
198
+
199
+
200
+ def test_mi_hashtable_populated_attribute_error(monkeypatch):
201
+ # GH 18165
202
+ monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 50)
203
+ r = range(50)
204
+ df = pd.DataFrame({"a": r, "b": r}, index=MultiIndex.from_arrays([r, r]))
205
+
206
+ msg = "'Series' object has no attribute 'foo'"
207
+ with pytest.raises(AttributeError, match=msg):
208
+ df["a"].foo()
209
+
210
+
211
+ def test_can_hold_identifiers(idx):
212
+ key = idx[0]
213
+ assert idx._can_hold_identifiers_and_holds_name(key) is True
214
+
215
+
216
+ def test_metadata_immutable(idx):
217
+ levels, codes = idx.levels, idx.codes
218
+ # shouldn't be able to set at either the top level or base level
219
+ mutable_regex = re.compile("does not support mutable operations")
220
+ with pytest.raises(TypeError, match=mutable_regex):
221
+ levels[0] = levels[0]
222
+ with pytest.raises(TypeError, match=mutable_regex):
223
+ levels[0][0] = levels[0][0]
224
+ # ditto for labels
225
+ with pytest.raises(TypeError, match=mutable_regex):
226
+ codes[0] = codes[0]
227
+ with pytest.raises(ValueError, match="assignment destination is read-only"):
228
+ codes[0][0] = codes[0][0]
229
+ # and for names
230
+ names = idx.names
231
+ with pytest.raises(TypeError, match=mutable_regex):
232
+ names[0] = names[0]
233
+
234
+
235
+ def test_level_setting_resets_attributes():
236
+ ind = MultiIndex.from_arrays([["A", "A", "B", "B", "B"], [1, 2, 1, 2, 3]])
237
+ assert ind.is_monotonic_increasing
238
+ ind = ind.set_levels([["A", "B"], [1, 3, 2]])
239
+ # if this fails, probably didn't reset the cache correctly.
240
+ assert not ind.is_monotonic_increasing
241
+
242
+
243
+ def test_rangeindex_fallback_coercion_bug():
244
+ # GH 12893
245
+ df1 = pd.DataFrame(np.arange(100).reshape((10, 10)))
246
+ df2 = pd.DataFrame(np.arange(100).reshape((10, 10)))
247
+ df = pd.concat(
248
+ {"df1": df1.stack(future_stack=True), "df2": df2.stack(future_stack=True)},
249
+ axis=1,
250
+ )
251
+ df.index.names = ["fizz", "buzz"]
252
+
253
+ expected = pd.DataFrame(
254
+ {"df2": np.arange(100), "df1": np.arange(100)},
255
+ index=MultiIndex.from_product([range(10), range(10)], names=["fizz", "buzz"]),
256
+ )
257
+ tm.assert_frame_equal(df, expected, check_like=True)
258
+
259
+ result = df.index.get_level_values("fizz")
260
+ expected = Index(np.arange(10, dtype=np.int64), name="fizz").repeat(10)
261
+ tm.assert_index_equal(result, expected)
262
+
263
+ result = df.index.get_level_values("buzz")
264
+ expected = Index(np.tile(np.arange(10, dtype=np.int64), 10), name="buzz")
265
+ tm.assert_index_equal(result, expected)
266
+
267
+
268
+ def test_memory_usage(idx):
269
+ result = idx.memory_usage()
270
+ if len(idx):
271
+ idx.get_loc(idx[0])
272
+ result2 = idx.memory_usage()
273
+ result3 = idx.memory_usage(deep=True)
274
+
275
+ # RangeIndex, IntervalIndex
276
+ # don't have engines
277
+ if not isinstance(idx, (RangeIndex, IntervalIndex)):
278
+ assert result2 > result
279
+
280
+ if idx.inferred_type == "object":
281
+ assert result3 > result2
282
+
283
+ else:
284
+ # we report 0 for no-length
285
+ assert result == 0
286
+
287
+
288
+ def test_nlevels(idx):
289
+ assert idx.nlevels == 2
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_lexsort.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import MultiIndex
2
+
3
+
4
+ class TestIsLexsorted:
5
+ def test_is_lexsorted(self):
6
+ levels = [[0, 1], [0, 1, 2]]
7
+
8
+ index = MultiIndex(
9
+ levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
10
+ )
11
+ assert index._is_lexsorted()
12
+
13
+ index = MultiIndex(
14
+ levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]
15
+ )
16
+ assert not index._is_lexsorted()
17
+
18
+ index = MultiIndex(
19
+ levels=levels, codes=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]
20
+ )
21
+ assert not index._is_lexsorted()
22
+ assert index._lexsort_depth == 0
23
+
24
+
25
+ class TestLexsortDepth:
26
+ def test_lexsort_depth(self):
27
+ # Test that lexsort_depth return the correct sortorder
28
+ # when it was given to the MultiIndex const.
29
+ # GH#28518
30
+
31
+ levels = [[0, 1], [0, 1, 2]]
32
+
33
+ index = MultiIndex(
34
+ levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], sortorder=2
35
+ )
36
+ assert index._lexsort_depth == 2
37
+
38
+ index = MultiIndex(
39
+ levels=levels, codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]], sortorder=1
40
+ )
41
+ assert index._lexsort_depth == 1
42
+
43
+ index = MultiIndex(
44
+ levels=levels, codes=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]], sortorder=0
45
+ )
46
+ assert index._lexsort_depth == 0
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_missing.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import MultiIndex
6
+ import pandas._testing as tm
7
+
8
+
9
+ def test_fillna(idx):
10
+ # GH 11343
11
+ msg = "isna is not defined for MultiIndex"
12
+ with pytest.raises(NotImplementedError, match=msg):
13
+ idx.fillna(idx[0])
14
+
15
+
16
+ def test_dropna():
17
+ # GH 6194
18
+ idx = MultiIndex.from_arrays(
19
+ [
20
+ [1, np.nan, 3, np.nan, 5],
21
+ [1, 2, np.nan, np.nan, 5],
22
+ ["a", "b", "c", np.nan, "e"],
23
+ ]
24
+ )
25
+
26
+ exp = MultiIndex.from_arrays([[1, 5], [1, 5], ["a", "e"]])
27
+ tm.assert_index_equal(idx.dropna(), exp)
28
+ tm.assert_index_equal(idx.dropna(how="any"), exp)
29
+
30
+ exp = MultiIndex.from_arrays(
31
+ [[1, np.nan, 3, 5], [1, 2, np.nan, 5], ["a", "b", "c", "e"]]
32
+ )
33
+ tm.assert_index_equal(idx.dropna(how="all"), exp)
34
+
35
+ msg = "invalid how option: xxx"
36
+ with pytest.raises(ValueError, match=msg):
37
+ idx.dropna(how="xxx")
38
+
39
+ # GH26408
40
+ # test if missing values are dropped for multiindex constructed
41
+ # from codes and values
42
+ idx = MultiIndex(
43
+ levels=[[np.nan, None, pd.NaT, "128", 2], [np.nan, None, pd.NaT, "128", 2]],
44
+ codes=[[0, -1, 1, 2, 3, 4], [0, -1, 3, 3, 3, 4]],
45
+ )
46
+ expected = MultiIndex.from_arrays([["128", 2], ["128", 2]])
47
+ tm.assert_index_equal(idx.dropna(), expected)
48
+ tm.assert_index_equal(idx.dropna(how="any"), expected)
49
+
50
+ expected = MultiIndex.from_arrays(
51
+ [[np.nan, np.nan, "128", 2], ["128", "128", "128", 2]]
52
+ )
53
+ tm.assert_index_equal(idx.dropna(how="all"), expected)
54
+
55
+
56
+ def test_nulls(idx):
57
+ # this is really a smoke test for the methods
58
+ # as these are adequately tested for function elsewhere
59
+
60
+ msg = "isna is not defined for MultiIndex"
61
+ with pytest.raises(NotImplementedError, match=msg):
62
+ idx.isna()
63
+
64
+
65
+ @pytest.mark.xfail(reason="isna is not defined for MultiIndex")
66
+ def test_hasnans_isnans(idx):
67
+ # GH 11343, added tests for hasnans / isnans
68
+ index = idx.copy()
69
+
70
+ # cases in indices doesn't include NaN
71
+ expected = np.array([False] * len(index), dtype=bool)
72
+ tm.assert_numpy_array_equal(index._isnan, expected)
73
+ assert index.hasnans is False
74
+
75
+ index = idx.copy()
76
+ values = index.values
77
+ values[1] = np.nan
78
+
79
+ index = type(idx)(values)
80
+
81
+ expected = np.array([False] * len(index), dtype=bool)
82
+ expected[1] = True
83
+ tm.assert_numpy_array_equal(index._isnan, expected)
84
+ assert index.hasnans is True
85
+
86
+
87
+ def test_nan_stays_float():
88
+ # GH 7031
89
+ idx0 = MultiIndex(levels=[["A", "B"], []], codes=[[1, 0], [-1, -1]], names=[0, 1])
90
+ idx1 = MultiIndex(levels=[["C"], ["D"]], codes=[[0], [0]], names=[0, 1])
91
+ idxm = idx0.join(idx1, how="outer")
92
+ assert pd.isna(idx0.get_level_values(1)).all()
93
+ # the following failed in 0.14.1
94
+ assert pd.isna(idxm.get_level_values(1)[:-1]).all()
95
+
96
+ df0 = pd.DataFrame([[1, 2]], index=idx0)
97
+ df1 = pd.DataFrame([[3, 4]], index=idx1)
98
+ dfm = df0 - df1
99
+ assert pd.isna(df0.index.get_level_values(1)).all()
100
+ # the following failed in 0.14.1
101
+ assert pd.isna(dfm.index.get_level_values(1)[:-1]).all()
102
+
103
+
104
+ def test_tuples_have_na():
105
+ index = MultiIndex(
106
+ levels=[[1, 0], [0, 1, 2, 3]],
107
+ codes=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]],
108
+ )
109
+
110
+ assert pd.isna(index[4][0])
111
+ assert pd.isna(index.values[4][0])
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_partial_indexing.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DataFrame,
6
+ IndexSlice,
7
+ MultiIndex,
8
+ date_range,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ @pytest.fixture
14
+ def df():
15
+ # c1
16
+ # 2016-01-01 00:00:00 a 0
17
+ # b 1
18
+ # c 2
19
+ # 2016-01-01 12:00:00 a 3
20
+ # b 4
21
+ # c 5
22
+ # 2016-01-02 00:00:00 a 6
23
+ # b 7
24
+ # c 8
25
+ # 2016-01-02 12:00:00 a 9
26
+ # b 10
27
+ # c 11
28
+ # 2016-01-03 00:00:00 a 12
29
+ # b 13
30
+ # c 14
31
+ dr = date_range("2016-01-01", "2016-01-03", freq="12h")
32
+ abc = ["a", "b", "c"]
33
+ mi = MultiIndex.from_product([dr, abc])
34
+ frame = DataFrame({"c1": range(15)}, index=mi)
35
+ return frame
36
+
37
+
38
+ def test_partial_string_matching_single_index(df):
39
+ # partial string matching on a single index
40
+ for df_swap in [df.swaplevel(), df.swaplevel(0), df.swaplevel(0, 1)]:
41
+ df_swap = df_swap.sort_index()
42
+ just_a = df_swap.loc["a"]
43
+ result = just_a.loc["2016-01-01"]
44
+ expected = df.loc[IndexSlice[:, "a"], :].iloc[0:2]
45
+ expected.index = expected.index.droplevel(1)
46
+ tm.assert_frame_equal(result, expected)
47
+
48
+
49
+ def test_get_loc_partial_timestamp_multiindex(df):
50
+ mi = df.index
51
+ key = ("2016-01-01", "a")
52
+ loc = mi.get_loc(key)
53
+
54
+ expected = np.zeros(len(mi), dtype=bool)
55
+ expected[[0, 3]] = True
56
+ tm.assert_numpy_array_equal(loc, expected)
57
+
58
+ key2 = ("2016-01-02", "a")
59
+ loc2 = mi.get_loc(key2)
60
+ expected2 = np.zeros(len(mi), dtype=bool)
61
+ expected2[[6, 9]] = True
62
+ tm.assert_numpy_array_equal(loc2, expected2)
63
+
64
+ key3 = ("2016-01", "a")
65
+ loc3 = mi.get_loc(key3)
66
+ expected3 = np.zeros(len(mi), dtype=bool)
67
+ expected3[mi.get_level_values(1).get_loc("a")] = True
68
+ tm.assert_numpy_array_equal(loc3, expected3)
69
+
70
+ key4 = ("2016", "a")
71
+ loc4 = mi.get_loc(key4)
72
+ expected4 = expected3
73
+ tm.assert_numpy_array_equal(loc4, expected4)
74
+
75
+ # non-monotonic
76
+ taker = np.arange(len(mi), dtype=np.intp)
77
+ taker[::2] = taker[::-2]
78
+ mi2 = mi.take(taker)
79
+ loc5 = mi2.get_loc(key)
80
+ expected5 = np.zeros(len(mi2), dtype=bool)
81
+ expected5[[3, 14]] = True
82
+ tm.assert_numpy_array_equal(loc5, expected5)
83
+
84
+
85
+ def test_partial_string_timestamp_multiindex(df):
86
+ # GH10331
87
+ df_swap = df.swaplevel(0, 1).sort_index()
88
+ SLC = IndexSlice
89
+
90
+ # indexing with IndexSlice
91
+ result = df.loc[SLC["2016-01-01":"2016-02-01", :], :]
92
+ expected = df
93
+ tm.assert_frame_equal(result, expected)
94
+
95
+ # match on secondary index
96
+ result = df_swap.loc[SLC[:, "2016-01-01":"2016-01-01"], :]
97
+ expected = df_swap.iloc[[0, 1, 5, 6, 10, 11]]
98
+ tm.assert_frame_equal(result, expected)
99
+
100
+ # partial string match on year only
101
+ result = df.loc["2016"]
102
+ expected = df
103
+ tm.assert_frame_equal(result, expected)
104
+
105
+ # partial string match on date
106
+ result = df.loc["2016-01-01"]
107
+ expected = df.iloc[0:6]
108
+ tm.assert_frame_equal(result, expected)
109
+
110
+ # partial string match on date and hour, from middle
111
+ result = df.loc["2016-01-02 12"]
112
+ # hourly resolution, same as index.levels[0], so we are _not_ slicing on
113
+ # that level, so that level gets dropped
114
+ expected = df.iloc[9:12].droplevel(0)
115
+ tm.assert_frame_equal(result, expected)
116
+
117
+ # partial string match on secondary index
118
+ result = df_swap.loc[SLC[:, "2016-01-02"], :]
119
+ expected = df_swap.iloc[[2, 3, 7, 8, 12, 13]]
120
+ tm.assert_frame_equal(result, expected)
121
+
122
+ # tuple selector with partial string match on date
123
+ # "2016-01-01" has daily resolution, so _is_ a slice on the first level.
124
+ result = df.loc[("2016-01-01", "a"), :]
125
+ expected = df.iloc[[0, 3]]
126
+ expected = df.iloc[[0, 3]].droplevel(1)
127
+ tm.assert_frame_equal(result, expected)
128
+
129
+ # Slicing date on first level should break (of course) bc the DTI is the
130
+ # second level on df_swap
131
+ with pytest.raises(KeyError, match="'2016-01-01'"):
132
+ df_swap.loc["2016-01-01"]
133
+
134
+
135
+ def test_partial_string_timestamp_multiindex_str_key_raises(df):
136
+ # Even though this syntax works on a single index, this is somewhat
137
+ # ambiguous and we don't want to extend this behavior forward to work
138
+ # in multi-indexes. This would amount to selecting a scalar from a
139
+ # column.
140
+ with pytest.raises(KeyError, match="'2016-01-01'"):
141
+ df["2016-01-01"]
142
+
143
+
144
+ def test_partial_string_timestamp_multiindex_daily_resolution(df):
145
+ # GH12685 (partial string with daily resolution or below)
146
+ result = df.loc[IndexSlice["2013-03":"2013-03", :], :]
147
+ expected = df.iloc[118:180]
148
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_pickle.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import MultiIndex
4
+
5
+
6
+ def test_pickle_compat_construction():
7
+ # this is testing for pickle compat
8
+ # need an object to create with
9
+ with pytest.raises(TypeError, match="Must pass both levels and codes"):
10
+ MultiIndex()
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_reindex.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ Index,
7
+ MultiIndex,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ def test_reindex(idx):
13
+ result, indexer = idx.reindex(list(idx[:4]))
14
+ assert isinstance(result, MultiIndex)
15
+ assert result.names == ["first", "second"]
16
+ assert [level.name for level in result.levels] == ["first", "second"]
17
+
18
+ result, indexer = idx.reindex(list(idx))
19
+ assert isinstance(result, MultiIndex)
20
+ assert indexer is None
21
+ assert result.names == ["first", "second"]
22
+ assert [level.name for level in result.levels] == ["first", "second"]
23
+
24
+
25
+ def test_reindex_level(idx):
26
+ index = Index(["one"])
27
+
28
+ target, indexer = idx.reindex(index, level="second")
29
+ target2, indexer2 = index.reindex(idx, level="second")
30
+
31
+ exp_index = idx.join(index, level="second", how="right")
32
+ exp_index2 = idx.join(index, level="second", how="left")
33
+
34
+ assert target.equals(exp_index)
35
+ exp_indexer = np.array([0, 2, 4])
36
+ tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False)
37
+
38
+ assert target2.equals(exp_index2)
39
+ exp_indexer2 = np.array([0, -1, 0, -1, 0, -1])
40
+ tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False)
41
+
42
+ with pytest.raises(TypeError, match="Fill method not supported"):
43
+ idx.reindex(idx, method="pad", level="second")
44
+
45
+
46
+ def test_reindex_preserves_names_when_target_is_list_or_ndarray(idx):
47
+ # GH6552
48
+ idx = idx.copy()
49
+ target = idx.copy()
50
+ idx.names = target.names = [None, None]
51
+
52
+ other_dtype = MultiIndex.from_product([[1, 2], [3, 4]])
53
+
54
+ # list & ndarray cases
55
+ assert idx.reindex([])[0].names == [None, None]
56
+ assert idx.reindex(np.array([]))[0].names == [None, None]
57
+ assert idx.reindex(target.tolist())[0].names == [None, None]
58
+ assert idx.reindex(target.values)[0].names == [None, None]
59
+ assert idx.reindex(other_dtype.tolist())[0].names == [None, None]
60
+ assert idx.reindex(other_dtype.values)[0].names == [None, None]
61
+
62
+ idx.names = ["foo", "bar"]
63
+ assert idx.reindex([])[0].names == ["foo", "bar"]
64
+ assert idx.reindex(np.array([]))[0].names == ["foo", "bar"]
65
+ assert idx.reindex(target.tolist())[0].names == ["foo", "bar"]
66
+ assert idx.reindex(target.values)[0].names == ["foo", "bar"]
67
+ assert idx.reindex(other_dtype.tolist())[0].names == ["foo", "bar"]
68
+ assert idx.reindex(other_dtype.values)[0].names == ["foo", "bar"]
69
+
70
+
71
+ def test_reindex_lvl_preserves_names_when_target_is_list_or_array():
72
+ # GH7774
73
+ idx = MultiIndex.from_product([[0, 1], ["a", "b"]], names=["foo", "bar"])
74
+ assert idx.reindex([], level=0)[0].names == ["foo", "bar"]
75
+ assert idx.reindex([], level=1)[0].names == ["foo", "bar"]
76
+
77
+
78
+ def test_reindex_lvl_preserves_type_if_target_is_empty_list_or_array(
79
+ using_infer_string,
80
+ ):
81
+ # GH7774
82
+ idx = MultiIndex.from_product([[0, 1], ["a", "b"]])
83
+ assert idx.reindex([], level=0)[0].levels[0].dtype.type == np.int64
84
+ exp = np.object_ if not using_infer_string else str
85
+ assert idx.reindex([], level=1)[0].levels[1].dtype.type == exp
86
+
87
+ # case with EA levels
88
+ cat = pd.Categorical(["foo", "bar"])
89
+ dti = pd.date_range("2016-01-01", periods=2, tz="US/Pacific")
90
+ mi = MultiIndex.from_product([cat, dti])
91
+ assert mi.reindex([], level=0)[0].levels[0].dtype == cat.dtype
92
+ assert mi.reindex([], level=1)[0].levels[1].dtype == dti.dtype
93
+
94
+
95
+ def test_reindex_base(idx):
96
+ expected = np.arange(idx.size, dtype=np.intp)
97
+
98
+ actual = idx.get_indexer(idx)
99
+ tm.assert_numpy_array_equal(expected, actual)
100
+
101
+ with pytest.raises(ValueError, match="Invalid fill method"):
102
+ idx.get_indexer(idx, method="invalid")
103
+
104
+
105
+ def test_reindex_non_unique():
106
+ idx = MultiIndex.from_tuples([(0, 0), (1, 1), (1, 1), (2, 2)])
107
+ a = pd.Series(np.arange(4), index=idx)
108
+ new_idx = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 2)])
109
+
110
+ msg = "cannot handle a non-unique multi-index!"
111
+ with pytest.raises(ValueError, match=msg):
112
+ a.reindex(new_idx)
113
+
114
+
115
+ @pytest.mark.parametrize("values", [[["a"], ["x"]], [[], []]])
116
+ def test_reindex_empty_with_level(values):
117
+ # GH41170
118
+ idx = MultiIndex.from_arrays(values)
119
+ result, result_indexer = idx.reindex(np.array(["b"]), level=0)
120
+ expected = MultiIndex(levels=[["b"], values[1]], codes=[[], []])
121
+ expected_indexer = np.array([], dtype=result_indexer.dtype)
122
+ tm.assert_index_equal(result, expected)
123
+ tm.assert_numpy_array_equal(result_indexer, expected_indexer)
124
+
125
+
126
+ def test_reindex_not_all_tuples():
127
+ keys = [("i", "i"), ("i", "j"), ("j", "i"), "j"]
128
+ mi = MultiIndex.from_tuples(keys[:-1])
129
+ idx = Index(keys)
130
+ res, indexer = mi.reindex(idx)
131
+
132
+ tm.assert_index_equal(res, idx)
133
+ expected = np.array([0, 1, 2, -1], dtype=np.intp)
134
+ tm.assert_numpy_array_equal(indexer, expected)
135
+
136
+
137
+ def test_reindex_limit_arg_with_multiindex():
138
+ # GH21247
139
+
140
+ idx = MultiIndex.from_tuples([(3, "A"), (4, "A"), (4, "B")])
141
+
142
+ df = pd.Series([0.02, 0.01, 0.012], index=idx)
143
+
144
+ new_idx = MultiIndex.from_tuples(
145
+ [
146
+ (3, "A"),
147
+ (3, "B"),
148
+ (4, "A"),
149
+ (4, "B"),
150
+ (4, "C"),
151
+ (5, "B"),
152
+ (5, "C"),
153
+ (6, "B"),
154
+ (6, "C"),
155
+ ]
156
+ )
157
+
158
+ with pytest.raises(
159
+ ValueError,
160
+ match="limit argument only valid if doing pad, backfill or nearest reindexing",
161
+ ):
162
+ df.reindex(new_idx, fill_value=0, limit=1)
163
+
164
+
165
+ def test_reindex_with_none_in_nested_multiindex():
166
+ # GH42883
167
+ index = MultiIndex.from_tuples([(("a", None), 1), (("b", None), 2)])
168
+ index2 = MultiIndex.from_tuples([(("b", None), 2), (("a", None), 1)])
169
+ df1_dtype = pd.DataFrame([1, 2], index=index)
170
+ df2_dtype = pd.DataFrame([2, 1], index=index2)
171
+
172
+ result = df1_dtype.reindex_like(df2_dtype)
173
+ expected = df2_dtype
174
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_setops.py ADDED
@@ -0,0 +1,772 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ CategoricalIndex,
7
+ DataFrame,
8
+ Index,
9
+ IntervalIndex,
10
+ MultiIndex,
11
+ Series,
12
+ )
13
+ import pandas._testing as tm
14
+ from pandas.api.types import (
15
+ is_float_dtype,
16
+ is_unsigned_integer_dtype,
17
+ )
18
+
19
+
20
+ @pytest.mark.parametrize("case", [0.5, "xxx"])
21
+ @pytest.mark.parametrize(
22
+ "method", ["intersection", "union", "difference", "symmetric_difference"]
23
+ )
24
+ def test_set_ops_error_cases(idx, case, sort, method):
25
+ # non-iterable input
26
+ msg = "Input must be Index or array-like"
27
+ with pytest.raises(TypeError, match=msg):
28
+ getattr(idx, method)(case, sort=sort)
29
+
30
+
31
+ @pytest.mark.parametrize("klass", [MultiIndex, np.array, Series, list])
32
+ def test_intersection_base(idx, sort, klass):
33
+ first = idx[2::-1] # first 3 elements reversed
34
+ second = idx[:5]
35
+
36
+ if klass is not MultiIndex:
37
+ second = klass(second.values)
38
+
39
+ intersect = first.intersection(second, sort=sort)
40
+ if sort is None:
41
+ expected = first.sort_values()
42
+ else:
43
+ expected = first
44
+ tm.assert_index_equal(intersect, expected)
45
+
46
+ msg = "other must be a MultiIndex or a list of tuples"
47
+ with pytest.raises(TypeError, match=msg):
48
+ first.intersection([1, 2, 3], sort=sort)
49
+
50
+
51
+ @pytest.mark.arm_slow
52
+ @pytest.mark.parametrize("klass", [MultiIndex, np.array, Series, list])
53
+ def test_union_base(idx, sort, klass):
54
+ first = idx[::-1]
55
+ second = idx[:5]
56
+
57
+ if klass is not MultiIndex:
58
+ second = klass(second.values)
59
+
60
+ union = first.union(second, sort=sort)
61
+ if sort is None:
62
+ expected = first.sort_values()
63
+ else:
64
+ expected = first
65
+ tm.assert_index_equal(union, expected)
66
+
67
+ msg = "other must be a MultiIndex or a list of tuples"
68
+ with pytest.raises(TypeError, match=msg):
69
+ first.union([1, 2, 3], sort=sort)
70
+
71
+
72
+ def test_difference_base(idx, sort):
73
+ second = idx[4:]
74
+ answer = idx[:4]
75
+ result = idx.difference(second, sort=sort)
76
+
77
+ if sort is None:
78
+ answer = answer.sort_values()
79
+
80
+ assert result.equals(answer)
81
+ tm.assert_index_equal(result, answer)
82
+
83
+ # GH 10149
84
+ cases = [klass(second.values) for klass in [np.array, Series, list]]
85
+ for case in cases:
86
+ result = idx.difference(case, sort=sort)
87
+ tm.assert_index_equal(result, answer)
88
+
89
+ msg = "other must be a MultiIndex or a list of tuples"
90
+ with pytest.raises(TypeError, match=msg):
91
+ idx.difference([1, 2, 3], sort=sort)
92
+
93
+
94
+ def test_symmetric_difference(idx, sort):
95
+ first = idx[1:]
96
+ second = idx[:-1]
97
+ answer = idx[[-1, 0]]
98
+ result = first.symmetric_difference(second, sort=sort)
99
+
100
+ if sort is None:
101
+ answer = answer.sort_values()
102
+
103
+ tm.assert_index_equal(result, answer)
104
+
105
+ # GH 10149
106
+ cases = [klass(second.values) for klass in [np.array, Series, list]]
107
+ for case in cases:
108
+ result = first.symmetric_difference(case, sort=sort)
109
+ tm.assert_index_equal(result, answer)
110
+
111
+ msg = "other must be a MultiIndex or a list of tuples"
112
+ with pytest.raises(TypeError, match=msg):
113
+ first.symmetric_difference([1, 2, 3], sort=sort)
114
+
115
+
116
+ def test_multiindex_symmetric_difference():
117
+ # GH 13490
118
+ idx = MultiIndex.from_product([["a", "b"], ["A", "B"]], names=["a", "b"])
119
+ result = idx.symmetric_difference(idx)
120
+ assert result.names == idx.names
121
+
122
+ idx2 = idx.copy().rename(["A", "B"])
123
+ result = idx.symmetric_difference(idx2)
124
+ assert result.names == [None, None]
125
+
126
+
127
+ def test_empty(idx):
128
+ # GH 15270
129
+ assert not idx.empty
130
+ assert idx[:0].empty
131
+
132
+
133
+ def test_difference(idx, sort):
134
+ first = idx
135
+ result = first.difference(idx[-3:], sort=sort)
136
+ vals = idx[:-3].values
137
+
138
+ if sort is None:
139
+ vals = sorted(vals)
140
+
141
+ expected = MultiIndex.from_tuples(vals, sortorder=0, names=idx.names)
142
+
143
+ assert isinstance(result, MultiIndex)
144
+ assert result.equals(expected)
145
+ assert result.names == idx.names
146
+ tm.assert_index_equal(result, expected)
147
+
148
+ # empty difference: reflexive
149
+ result = idx.difference(idx, sort=sort)
150
+ expected = idx[:0]
151
+ assert result.equals(expected)
152
+ assert result.names == idx.names
153
+
154
+ # empty difference: superset
155
+ result = idx[-3:].difference(idx, sort=sort)
156
+ expected = idx[:0]
157
+ assert result.equals(expected)
158
+ assert result.names == idx.names
159
+
160
+ # empty difference: degenerate
161
+ result = idx[:0].difference(idx, sort=sort)
162
+ expected = idx[:0]
163
+ assert result.equals(expected)
164
+ assert result.names == idx.names
165
+
166
+ # names not the same
167
+ chunklet = idx[-3:]
168
+ chunklet.names = ["foo", "baz"]
169
+ result = first.difference(chunklet, sort=sort)
170
+ assert result.names == (None, None)
171
+
172
+ # empty, but non-equal
173
+ result = idx.difference(idx.sortlevel(1)[0], sort=sort)
174
+ assert len(result) == 0
175
+
176
+ # raise Exception called with non-MultiIndex
177
+ result = first.difference(first.values, sort=sort)
178
+ assert result.equals(first[:0])
179
+
180
+ # name from empty array
181
+ result = first.difference([], sort=sort)
182
+ assert first.equals(result)
183
+ assert first.names == result.names
184
+
185
+ # name from non-empty array
186
+ result = first.difference([("foo", "one")], sort=sort)
187
+ expected = MultiIndex.from_tuples(
188
+ [("bar", "one"), ("baz", "two"), ("foo", "two"), ("qux", "one"), ("qux", "two")]
189
+ )
190
+ expected.names = first.names
191
+ assert first.names == result.names
192
+
193
+ msg = "other must be a MultiIndex or a list of tuples"
194
+ with pytest.raises(TypeError, match=msg):
195
+ first.difference([1, 2, 3, 4, 5], sort=sort)
196
+
197
+
198
+ def test_difference_sort_special():
199
+ # GH-24959
200
+ idx = MultiIndex.from_product([[1, 0], ["a", "b"]])
201
+ # sort=None, the default
202
+ result = idx.difference([])
203
+ tm.assert_index_equal(result, idx)
204
+
205
+
206
+ def test_difference_sort_special_true():
207
+ idx = MultiIndex.from_product([[1, 0], ["a", "b"]])
208
+ result = idx.difference([], sort=True)
209
+ expected = MultiIndex.from_product([[0, 1], ["a", "b"]])
210
+ tm.assert_index_equal(result, expected)
211
+
212
+
213
+ def test_difference_sort_incomparable():
214
+ # GH-24959
215
+ idx = MultiIndex.from_product([[1, pd.Timestamp("2000"), 2], ["a", "b"]])
216
+
217
+ other = MultiIndex.from_product([[3, pd.Timestamp("2000"), 4], ["c", "d"]])
218
+ # sort=None, the default
219
+ msg = "sort order is undefined for incomparable objects"
220
+ with tm.assert_produces_warning(RuntimeWarning, match=msg):
221
+ result = idx.difference(other)
222
+ tm.assert_index_equal(result, idx)
223
+
224
+ # sort=False
225
+ result = idx.difference(other, sort=False)
226
+ tm.assert_index_equal(result, idx)
227
+
228
+
229
+ def test_difference_sort_incomparable_true():
230
+ idx = MultiIndex.from_product([[1, pd.Timestamp("2000"), 2], ["a", "b"]])
231
+ other = MultiIndex.from_product([[3, pd.Timestamp("2000"), 4], ["c", "d"]])
232
+
233
+ # TODO: this is raising in constructing a Categorical when calling
234
+ # algos.safe_sort. Should we catch and re-raise with a better message?
235
+ msg = "'values' is not ordered, please explicitly specify the categories order "
236
+ with pytest.raises(TypeError, match=msg):
237
+ idx.difference(other, sort=True)
238
+
239
+
240
+ def test_union(idx, sort):
241
+ piece1 = idx[:5][::-1]
242
+ piece2 = idx[3:]
243
+
244
+ the_union = piece1.union(piece2, sort=sort)
245
+
246
+ if sort in (None, False):
247
+ tm.assert_index_equal(the_union.sort_values(), idx.sort_values())
248
+ else:
249
+ tm.assert_index_equal(the_union, idx)
250
+
251
+ # corner case, pass self or empty thing:
252
+ the_union = idx.union(idx, sort=sort)
253
+ tm.assert_index_equal(the_union, idx)
254
+
255
+ the_union = idx.union(idx[:0], sort=sort)
256
+ tm.assert_index_equal(the_union, idx)
257
+
258
+ tuples = idx.values
259
+ result = idx[:4].union(tuples[4:], sort=sort)
260
+ if sort is None:
261
+ tm.assert_index_equal(result.sort_values(), idx.sort_values())
262
+ else:
263
+ assert result.equals(idx)
264
+
265
+
266
+ def test_union_with_regular_index(idx, using_infer_string):
267
+ other = Index(["A", "B", "C"])
268
+
269
+ result = other.union(idx)
270
+ assert ("foo", "one") in result
271
+ assert "B" in result
272
+
273
+ if using_infer_string:
274
+ with pytest.raises(NotImplementedError, match="Can only union"):
275
+ idx.union(other)
276
+ else:
277
+ msg = "The values in the array are unorderable"
278
+ with tm.assert_produces_warning(RuntimeWarning, match=msg):
279
+ result2 = idx.union(other)
280
+ # This is more consistent now, if sorting fails then we don't sort at all
281
+ # in the MultiIndex case.
282
+ assert not result.equals(result2)
283
+
284
+
285
+ def test_intersection(idx, sort):
286
+ piece1 = idx[:5][::-1]
287
+ piece2 = idx[3:]
288
+
289
+ the_int = piece1.intersection(piece2, sort=sort)
290
+
291
+ if sort in (None, True):
292
+ tm.assert_index_equal(the_int, idx[3:5])
293
+ else:
294
+ tm.assert_index_equal(the_int.sort_values(), idx[3:5])
295
+
296
+ # corner case, pass self
297
+ the_int = idx.intersection(idx, sort=sort)
298
+ tm.assert_index_equal(the_int, idx)
299
+
300
+ # empty intersection: disjoint
301
+ empty = idx[:2].intersection(idx[2:], sort=sort)
302
+ expected = idx[:0]
303
+ assert empty.equals(expected)
304
+
305
+ tuples = idx.values
306
+ result = idx.intersection(tuples)
307
+ assert result.equals(idx)
308
+
309
+
310
+ @pytest.mark.parametrize(
311
+ "method", ["intersection", "union", "difference", "symmetric_difference"]
312
+ )
313
+ def test_setop_with_categorical(idx, sort, method):
314
+ other = idx.to_flat_index().astype("category")
315
+ res_names = [None] * idx.nlevels
316
+
317
+ result = getattr(idx, method)(other, sort=sort)
318
+ expected = getattr(idx, method)(idx, sort=sort).rename(res_names)
319
+ tm.assert_index_equal(result, expected)
320
+
321
+ result = getattr(idx, method)(other[:5], sort=sort)
322
+ expected = getattr(idx, method)(idx[:5], sort=sort).rename(res_names)
323
+ tm.assert_index_equal(result, expected)
324
+
325
+
326
+ def test_intersection_non_object(idx, sort):
327
+ other = Index(range(3), name="foo")
328
+
329
+ result = idx.intersection(other, sort=sort)
330
+ expected = MultiIndex(levels=idx.levels, codes=[[]] * idx.nlevels, names=None)
331
+ tm.assert_index_equal(result, expected, exact=True)
332
+
333
+ # if we pass a length-0 ndarray (i.e. no name, we retain our idx.name)
334
+ result = idx.intersection(np.asarray(other)[:0], sort=sort)
335
+ expected = MultiIndex(levels=idx.levels, codes=[[]] * idx.nlevels, names=idx.names)
336
+ tm.assert_index_equal(result, expected, exact=True)
337
+
338
+ msg = "other must be a MultiIndex or a list of tuples"
339
+ with pytest.raises(TypeError, match=msg):
340
+ # With non-zero length non-index, we try and fail to convert to tuples
341
+ idx.intersection(np.asarray(other), sort=sort)
342
+
343
+
344
+ def test_intersect_equal_sort():
345
+ # GH-24959
346
+ idx = MultiIndex.from_product([[1, 0], ["a", "b"]])
347
+ tm.assert_index_equal(idx.intersection(idx, sort=False), idx)
348
+ tm.assert_index_equal(idx.intersection(idx, sort=None), idx)
349
+
350
+
351
+ def test_intersect_equal_sort_true():
352
+ idx = MultiIndex.from_product([[1, 0], ["a", "b"]])
353
+ expected = MultiIndex.from_product([[0, 1], ["a", "b"]])
354
+ result = idx.intersection(idx, sort=True)
355
+ tm.assert_index_equal(result, expected)
356
+
357
+
358
+ @pytest.mark.parametrize("slice_", [slice(None), slice(0)])
359
+ def test_union_sort_other_empty(slice_):
360
+ # https://github.com/pandas-dev/pandas/issues/24959
361
+ idx = MultiIndex.from_product([[1, 0], ["a", "b"]])
362
+
363
+ # default, sort=None
364
+ other = idx[slice_]
365
+ tm.assert_index_equal(idx.union(other), idx)
366
+ tm.assert_index_equal(other.union(idx), idx)
367
+
368
+ # sort=False
369
+ tm.assert_index_equal(idx.union(other, sort=False), idx)
370
+
371
+
372
+ def test_union_sort_other_empty_sort():
373
+ idx = MultiIndex.from_product([[1, 0], ["a", "b"]])
374
+ other = idx[:0]
375
+ result = idx.union(other, sort=True)
376
+ expected = MultiIndex.from_product([[0, 1], ["a", "b"]])
377
+ tm.assert_index_equal(result, expected)
378
+
379
+
380
+ def test_union_sort_other_incomparable():
381
+ # https://github.com/pandas-dev/pandas/issues/24959
382
+ idx = MultiIndex.from_product([[1, pd.Timestamp("2000")], ["a", "b"]])
383
+
384
+ # default, sort=None
385
+ with tm.assert_produces_warning(RuntimeWarning):
386
+ result = idx.union(idx[:1])
387
+ tm.assert_index_equal(result, idx)
388
+
389
+ # sort=False
390
+ result = idx.union(idx[:1], sort=False)
391
+ tm.assert_index_equal(result, idx)
392
+
393
+
394
+ def test_union_sort_other_incomparable_sort():
395
+ idx = MultiIndex.from_product([[1, pd.Timestamp("2000")], ["a", "b"]])
396
+ msg = "'<' not supported between instances of 'Timestamp' and 'int'"
397
+ with pytest.raises(TypeError, match=msg):
398
+ idx.union(idx[:1], sort=True)
399
+
400
+
401
+ def test_union_non_object_dtype_raises():
402
+ # GH#32646 raise NotImplementedError instead of less-informative error
403
+ mi = MultiIndex.from_product([["a", "b"], [1, 2]])
404
+
405
+ idx = mi.levels[1]
406
+
407
+ msg = "Can only union MultiIndex with MultiIndex or Index of tuples"
408
+ with pytest.raises(NotImplementedError, match=msg):
409
+ mi.union(idx)
410
+
411
+
412
+ def test_union_empty_self_different_names():
413
+ # GH#38423
414
+ mi = MultiIndex.from_arrays([[]])
415
+ mi2 = MultiIndex.from_arrays([[1, 2], [3, 4]], names=["a", "b"])
416
+ result = mi.union(mi2)
417
+ expected = MultiIndex.from_arrays([[1, 2], [3, 4]])
418
+ tm.assert_index_equal(result, expected)
419
+
420
+
421
+ def test_union_multiindex_empty_rangeindex():
422
+ # GH#41234
423
+ mi = MultiIndex.from_arrays([[1, 2], [3, 4]], names=["a", "b"])
424
+ ri = pd.RangeIndex(0)
425
+
426
+ result_left = mi.union(ri)
427
+ tm.assert_index_equal(mi, result_left, check_names=False)
428
+
429
+ result_right = ri.union(mi)
430
+ tm.assert_index_equal(mi, result_right, check_names=False)
431
+
432
+
433
+ @pytest.mark.parametrize(
434
+ "method", ["union", "intersection", "difference", "symmetric_difference"]
435
+ )
436
+ def test_setops_sort_validation(method):
437
+ idx1 = MultiIndex.from_product([["a", "b"], [1, 2]])
438
+ idx2 = MultiIndex.from_product([["b", "c"], [1, 2]])
439
+
440
+ with pytest.raises(ValueError, match="The 'sort' keyword only takes"):
441
+ getattr(idx1, method)(idx2, sort=2)
442
+
443
+ # sort=True is supported as of GH#?
444
+ getattr(idx1, method)(idx2, sort=True)
445
+
446
+
447
+ @pytest.mark.parametrize("val", [pd.NA, 100])
448
+ def test_difference_keep_ea_dtypes(any_numeric_ea_dtype, val):
449
+ # GH#48606
450
+ midx = MultiIndex.from_arrays(
451
+ [Series([1, 2], dtype=any_numeric_ea_dtype), [2, 1]], names=["a", None]
452
+ )
453
+ midx2 = MultiIndex.from_arrays(
454
+ [Series([1, 2, val], dtype=any_numeric_ea_dtype), [1, 1, 3]]
455
+ )
456
+ result = midx.difference(midx2)
457
+ expected = MultiIndex.from_arrays([Series([1], dtype=any_numeric_ea_dtype), [2]])
458
+ tm.assert_index_equal(result, expected)
459
+
460
+ result = midx.difference(midx.sort_values(ascending=False))
461
+ expected = MultiIndex.from_arrays(
462
+ [Series([], dtype=any_numeric_ea_dtype), Series([], dtype=np.int64)],
463
+ names=["a", None],
464
+ )
465
+ tm.assert_index_equal(result, expected)
466
+
467
+
468
+ @pytest.mark.parametrize("val", [pd.NA, 5])
469
+ def test_symmetric_difference_keeping_ea_dtype(any_numeric_ea_dtype, val):
470
+ # GH#48607
471
+ midx = MultiIndex.from_arrays(
472
+ [Series([1, 2], dtype=any_numeric_ea_dtype), [2, 1]], names=["a", None]
473
+ )
474
+ midx2 = MultiIndex.from_arrays(
475
+ [Series([1, 2, val], dtype=any_numeric_ea_dtype), [1, 1, 3]]
476
+ )
477
+ result = midx.symmetric_difference(midx2)
478
+ expected = MultiIndex.from_arrays(
479
+ [Series([1, 1, val], dtype=any_numeric_ea_dtype), [1, 2, 3]]
480
+ )
481
+ tm.assert_index_equal(result, expected)
482
+
483
+
484
+ @pytest.mark.parametrize(
485
+ ("tuples", "exp_tuples"),
486
+ [
487
+ ([("val1", "test1")], [("val1", "test1")]),
488
+ ([("val1", "test1"), ("val1", "test1")], [("val1", "test1")]),
489
+ (
490
+ [("val2", "test2"), ("val1", "test1")],
491
+ [("val2", "test2"), ("val1", "test1")],
492
+ ),
493
+ ],
494
+ )
495
+ def test_intersect_with_duplicates(tuples, exp_tuples):
496
+ # GH#36915
497
+ left = MultiIndex.from_tuples(tuples, names=["first", "second"])
498
+ right = MultiIndex.from_tuples(
499
+ [("val1", "test1"), ("val1", "test1"), ("val2", "test2")],
500
+ names=["first", "second"],
501
+ )
502
+ result = left.intersection(right)
503
+ expected = MultiIndex.from_tuples(exp_tuples, names=["first", "second"])
504
+ tm.assert_index_equal(result, expected)
505
+
506
+
507
+ @pytest.mark.parametrize(
508
+ "data, names, expected",
509
+ [
510
+ ((1,), None, [None, None]),
511
+ ((1,), ["a"], [None, None]),
512
+ ((1,), ["b"], [None, None]),
513
+ ((1, 2), ["c", "d"], [None, None]),
514
+ ((1, 2), ["b", "a"], [None, None]),
515
+ ((1, 2, 3), ["a", "b", "c"], [None, None]),
516
+ ((1, 2), ["a", "c"], ["a", None]),
517
+ ((1, 2), ["c", "b"], [None, "b"]),
518
+ ((1, 2), ["a", "b"], ["a", "b"]),
519
+ ((1, 2), [None, "b"], [None, "b"]),
520
+ ],
521
+ )
522
+ def test_maybe_match_names(data, names, expected):
523
+ # GH#38323
524
+ mi = MultiIndex.from_tuples([], names=["a", "b"])
525
+ mi2 = MultiIndex.from_tuples([data], names=names)
526
+ result = mi._maybe_match_names(mi2)
527
+ assert result == expected
528
+
529
+
530
+ def test_intersection_equal_different_names():
531
+ # GH#30302
532
+ mi1 = MultiIndex.from_arrays([[1, 2], [3, 4]], names=["c", "b"])
533
+ mi2 = MultiIndex.from_arrays([[1, 2], [3, 4]], names=["a", "b"])
534
+
535
+ result = mi1.intersection(mi2)
536
+ expected = MultiIndex.from_arrays([[1, 2], [3, 4]], names=[None, "b"])
537
+ tm.assert_index_equal(result, expected)
538
+
539
+
540
+ def test_intersection_different_names():
541
+ # GH#38323
542
+ mi = MultiIndex.from_arrays([[1], [3]], names=["c", "b"])
543
+ mi2 = MultiIndex.from_arrays([[1], [3]])
544
+ result = mi.intersection(mi2)
545
+ tm.assert_index_equal(result, mi2)
546
+
547
+
548
+ def test_intersection_with_missing_values_on_both_sides(nulls_fixture):
549
+ # GH#38623
550
+ mi1 = MultiIndex.from_arrays([[3, nulls_fixture, 4, nulls_fixture], [1, 2, 4, 2]])
551
+ mi2 = MultiIndex.from_arrays([[3, nulls_fixture, 3], [1, 2, 4]])
552
+ result = mi1.intersection(mi2)
553
+ expected = MultiIndex.from_arrays([[3, nulls_fixture], [1, 2]])
554
+ tm.assert_index_equal(result, expected)
555
+
556
+
557
+ def test_union_with_missing_values_on_both_sides(nulls_fixture):
558
+ # GH#38623
559
+ mi1 = MultiIndex.from_arrays([[1, nulls_fixture]])
560
+ mi2 = MultiIndex.from_arrays([[1, nulls_fixture, 3]])
561
+ result = mi1.union(mi2)
562
+ expected = MultiIndex.from_arrays([[1, 3, nulls_fixture]])
563
+ tm.assert_index_equal(result, expected)
564
+
565
+
566
+ @pytest.mark.parametrize("dtype", ["float64", "Float64"])
567
+ @pytest.mark.parametrize("sort", [None, False])
568
+ def test_union_nan_got_duplicated(dtype, sort):
569
+ # GH#38977, GH#49010
570
+ mi1 = MultiIndex.from_arrays([pd.array([1.0, np.nan], dtype=dtype), [2, 3]])
571
+ mi2 = MultiIndex.from_arrays([pd.array([1.0, np.nan, 3.0], dtype=dtype), [2, 3, 4]])
572
+ result = mi1.union(mi2, sort=sort)
573
+ if sort is None:
574
+ expected = MultiIndex.from_arrays(
575
+ [pd.array([1.0, 3.0, np.nan], dtype=dtype), [2, 4, 3]]
576
+ )
577
+ else:
578
+ expected = mi2
579
+ tm.assert_index_equal(result, expected)
580
+
581
+
582
+ @pytest.mark.parametrize("val", [4, 1])
583
+ def test_union_keep_ea_dtype(any_numeric_ea_dtype, val):
584
+ # GH#48505
585
+
586
+ arr1 = Series([val, 2], dtype=any_numeric_ea_dtype)
587
+ arr2 = Series([2, 1], dtype=any_numeric_ea_dtype)
588
+ midx = MultiIndex.from_arrays([arr1, [1, 2]], names=["a", None])
589
+ midx2 = MultiIndex.from_arrays([arr2, [2, 1]])
590
+ result = midx.union(midx2)
591
+ if val == 4:
592
+ expected = MultiIndex.from_arrays(
593
+ [Series([1, 2, 4], dtype=any_numeric_ea_dtype), [1, 2, 1]]
594
+ )
595
+ else:
596
+ expected = MultiIndex.from_arrays(
597
+ [Series([1, 2], dtype=any_numeric_ea_dtype), [1, 2]]
598
+ )
599
+ tm.assert_index_equal(result, expected)
600
+
601
+
602
+ @pytest.mark.parametrize("dupe_val", [3, pd.NA])
603
+ def test_union_with_duplicates_keep_ea_dtype(dupe_val, any_numeric_ea_dtype):
604
+ # GH48900
605
+ mi1 = MultiIndex.from_arrays(
606
+ [
607
+ Series([1, dupe_val, 2], dtype=any_numeric_ea_dtype),
608
+ Series([1, dupe_val, 2], dtype=any_numeric_ea_dtype),
609
+ ]
610
+ )
611
+ mi2 = MultiIndex.from_arrays(
612
+ [
613
+ Series([2, dupe_val, dupe_val], dtype=any_numeric_ea_dtype),
614
+ Series([2, dupe_val, dupe_val], dtype=any_numeric_ea_dtype),
615
+ ]
616
+ )
617
+ result = mi1.union(mi2)
618
+ expected = MultiIndex.from_arrays(
619
+ [
620
+ Series([1, 2, dupe_val, dupe_val], dtype=any_numeric_ea_dtype),
621
+ Series([1, 2, dupe_val, dupe_val], dtype=any_numeric_ea_dtype),
622
+ ]
623
+ )
624
+ tm.assert_index_equal(result, expected)
625
+
626
+
627
+ @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
628
+ def test_union_duplicates(index, request):
629
+ # GH#38977
630
+ if index.empty or isinstance(index, (IntervalIndex, CategoricalIndex)):
631
+ pytest.skip(f"No duplicates in an empty {type(index).__name__}")
632
+
633
+ values = index.unique().values.tolist()
634
+ mi1 = MultiIndex.from_arrays([values, [1] * len(values)])
635
+ mi2 = MultiIndex.from_arrays([[values[0]] + values, [1] * (len(values) + 1)])
636
+ result = mi2.union(mi1)
637
+ expected = mi2.sort_values()
638
+ tm.assert_index_equal(result, expected)
639
+
640
+ if (
641
+ is_unsigned_integer_dtype(mi2.levels[0])
642
+ and (mi2.get_level_values(0) < 2**63).all()
643
+ ):
644
+ # GH#47294 - union uses lib.fast_zip, converting data to Python integers
645
+ # and loses type information. Result is then unsigned only when values are
646
+ # sufficiently large to require unsigned dtype. This happens only if other
647
+ # has dups or one of both have missing values
648
+ expected = expected.set_levels(
649
+ [expected.levels[0].astype(np.int64), expected.levels[1]]
650
+ )
651
+ elif is_float_dtype(mi2.levels[0]):
652
+ # mi2 has duplicates witch is a different path than above, Fix that path
653
+ # to use correct float dtype?
654
+ expected = expected.set_levels(
655
+ [expected.levels[0].astype(float), expected.levels[1]]
656
+ )
657
+
658
+ result = mi1.union(mi2)
659
+ tm.assert_index_equal(result, expected)
660
+
661
+
662
+ def test_union_keep_dtype_precision(any_real_numeric_dtype):
663
+ # GH#48498
664
+ arr1 = Series([4, 1, 1], dtype=any_real_numeric_dtype)
665
+ arr2 = Series([1, 4], dtype=any_real_numeric_dtype)
666
+ midx = MultiIndex.from_arrays([arr1, [2, 1, 1]], names=["a", None])
667
+ midx2 = MultiIndex.from_arrays([arr2, [1, 2]], names=["a", None])
668
+
669
+ result = midx.union(midx2)
670
+ expected = MultiIndex.from_arrays(
671
+ ([Series([1, 1, 4], dtype=any_real_numeric_dtype), [1, 1, 2]]),
672
+ names=["a", None],
673
+ )
674
+ tm.assert_index_equal(result, expected)
675
+
676
+
677
+ def test_union_keep_ea_dtype_with_na(any_numeric_ea_dtype):
678
+ # GH#48498
679
+ arr1 = Series([4, pd.NA], dtype=any_numeric_ea_dtype)
680
+ arr2 = Series([1, pd.NA], dtype=any_numeric_ea_dtype)
681
+ midx = MultiIndex.from_arrays([arr1, [2, 1]], names=["a", None])
682
+ midx2 = MultiIndex.from_arrays([arr2, [1, 2]])
683
+ result = midx.union(midx2)
684
+ expected = MultiIndex.from_arrays(
685
+ [Series([1, 4, pd.NA, pd.NA], dtype=any_numeric_ea_dtype), [1, 2, 1, 2]]
686
+ )
687
+ tm.assert_index_equal(result, expected)
688
+
689
+
690
+ @pytest.mark.parametrize(
691
+ "levels1, levels2, codes1, codes2, names",
692
+ [
693
+ (
694
+ [["a", "b", "c"], [0, ""]],
695
+ [["c", "d", "b"], [""]],
696
+ [[0, 1, 2], [1, 1, 1]],
697
+ [[0, 1, 2], [0, 0, 0]],
698
+ ["name1", "name2"],
699
+ ),
700
+ ],
701
+ )
702
+ def test_intersection_lexsort_depth(levels1, levels2, codes1, codes2, names):
703
+ # GH#25169
704
+ mi1 = MultiIndex(levels=levels1, codes=codes1, names=names)
705
+ mi2 = MultiIndex(levels=levels2, codes=codes2, names=names)
706
+ mi_int = mi1.intersection(mi2)
707
+ assert mi_int._lexsort_depth == 2
708
+
709
+
710
+ @pytest.mark.parametrize(
711
+ "a",
712
+ [pd.Categorical(["a", "b"], categories=["a", "b"]), ["a", "b"]],
713
+ )
714
+ @pytest.mark.parametrize(
715
+ "b",
716
+ [
717
+ pd.Categorical(["a", "b"], categories=["b", "a"], ordered=True),
718
+ pd.Categorical(["a", "b"], categories=["b", "a"]),
719
+ ],
720
+ )
721
+ def test_intersection_with_non_lex_sorted_categories(a, b):
722
+ # GH#49974
723
+ other = ["1", "2"]
724
+
725
+ df1 = DataFrame({"x": a, "y": other})
726
+ df2 = DataFrame({"x": b, "y": other})
727
+
728
+ expected = MultiIndex.from_arrays([a, other], names=["x", "y"])
729
+
730
+ res1 = MultiIndex.from_frame(df1).intersection(
731
+ MultiIndex.from_frame(df2.sort_values(["x", "y"]))
732
+ )
733
+ res2 = MultiIndex.from_frame(df1).intersection(MultiIndex.from_frame(df2))
734
+ res3 = MultiIndex.from_frame(df1.sort_values(["x", "y"])).intersection(
735
+ MultiIndex.from_frame(df2)
736
+ )
737
+ res4 = MultiIndex.from_frame(df1.sort_values(["x", "y"])).intersection(
738
+ MultiIndex.from_frame(df2.sort_values(["x", "y"]))
739
+ )
740
+
741
+ tm.assert_index_equal(res1, expected)
742
+ tm.assert_index_equal(res2, expected)
743
+ tm.assert_index_equal(res3, expected)
744
+ tm.assert_index_equal(res4, expected)
745
+
746
+
747
+ @pytest.mark.parametrize("val", [pd.NA, 100])
748
+ def test_intersection_keep_ea_dtypes(val, any_numeric_ea_dtype):
749
+ # GH#48604
750
+ midx = MultiIndex.from_arrays(
751
+ [Series([1, 2], dtype=any_numeric_ea_dtype), [2, 1]], names=["a", None]
752
+ )
753
+ midx2 = MultiIndex.from_arrays(
754
+ [Series([1, 2, val], dtype=any_numeric_ea_dtype), [1, 1, 3]]
755
+ )
756
+ result = midx.intersection(midx2)
757
+ expected = MultiIndex.from_arrays([Series([2], dtype=any_numeric_ea_dtype), [1]])
758
+ tm.assert_index_equal(result, expected)
759
+
760
+
761
+ def test_union_with_na_when_constructing_dataframe():
762
+ # GH43222
763
+ series1 = Series(
764
+ (1,),
765
+ index=MultiIndex.from_arrays(
766
+ [Series([None], dtype="string"), Series([None], dtype="string")]
767
+ ),
768
+ )
769
+ series2 = Series((10, 20), index=MultiIndex.from_tuples(((None, None), ("a", "b"))))
770
+ result = DataFrame([series1, series2])
771
+ expected = DataFrame({(np.nan, np.nan): [1.0, 10.0], ("a", "b"): [np.nan, 20.0]})
772
+ tm.assert_frame_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_sorting.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.errors import (
5
+ PerformanceWarning,
6
+ UnsortedIndexError,
7
+ )
8
+
9
+ from pandas import (
10
+ CategoricalIndex,
11
+ DataFrame,
12
+ Index,
13
+ MultiIndex,
14
+ RangeIndex,
15
+ Series,
16
+ Timestamp,
17
+ )
18
+ import pandas._testing as tm
19
+ from pandas.core.indexes.frozen import FrozenList
20
+
21
+
22
+ def test_sortlevel(idx):
23
+ tuples = list(idx)
24
+ np.random.default_rng(2).shuffle(tuples)
25
+
26
+ index = MultiIndex.from_tuples(tuples)
27
+
28
+ sorted_idx, _ = index.sortlevel(0)
29
+ expected = MultiIndex.from_tuples(sorted(tuples))
30
+ assert sorted_idx.equals(expected)
31
+
32
+ sorted_idx, _ = index.sortlevel(0, ascending=False)
33
+ assert sorted_idx.equals(expected[::-1])
34
+
35
+ sorted_idx, _ = index.sortlevel(1)
36
+ by1 = sorted(tuples, key=lambda x: (x[1], x[0]))
37
+ expected = MultiIndex.from_tuples(by1)
38
+ assert sorted_idx.equals(expected)
39
+
40
+ sorted_idx, _ = index.sortlevel(1, ascending=False)
41
+ assert sorted_idx.equals(expected[::-1])
42
+
43
+
44
+ def test_sortlevel_not_sort_remaining():
45
+ mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list("ABC"))
46
+ sorted_idx, _ = mi.sortlevel("A", sort_remaining=False)
47
+ assert sorted_idx.equals(mi)
48
+
49
+
50
+ def test_sortlevel_deterministic():
51
+ tuples = [
52
+ ("bar", "one"),
53
+ ("foo", "two"),
54
+ ("qux", "two"),
55
+ ("foo", "one"),
56
+ ("baz", "two"),
57
+ ("qux", "one"),
58
+ ]
59
+
60
+ index = MultiIndex.from_tuples(tuples)
61
+
62
+ sorted_idx, _ = index.sortlevel(0)
63
+ expected = MultiIndex.from_tuples(sorted(tuples))
64
+ assert sorted_idx.equals(expected)
65
+
66
+ sorted_idx, _ = index.sortlevel(0, ascending=False)
67
+ assert sorted_idx.equals(expected[::-1])
68
+
69
+ sorted_idx, _ = index.sortlevel(1)
70
+ by1 = sorted(tuples, key=lambda x: (x[1], x[0]))
71
+ expected = MultiIndex.from_tuples(by1)
72
+ assert sorted_idx.equals(expected)
73
+
74
+ sorted_idx, _ = index.sortlevel(1, ascending=False)
75
+ assert sorted_idx.equals(expected[::-1])
76
+
77
+
78
+ def test_sortlevel_na_position():
79
+ # GH#51612
80
+ midx = MultiIndex.from_tuples([(1, np.nan), (1, 1)])
81
+ result = midx.sortlevel(level=[0, 1], na_position="last")[0]
82
+ expected = MultiIndex.from_tuples([(1, 1), (1, np.nan)])
83
+ tm.assert_index_equal(result, expected)
84
+
85
+
86
+ def test_numpy_argsort(idx):
87
+ result = np.argsort(idx)
88
+ expected = idx.argsort()
89
+ tm.assert_numpy_array_equal(result, expected)
90
+
91
+ # these are the only two types that perform
92
+ # pandas compatibility input validation - the
93
+ # rest already perform separate (or no) such
94
+ # validation via their 'values' attribute as
95
+ # defined in pandas.core.indexes/base.py - they
96
+ # cannot be changed at the moment due to
97
+ # backwards compatibility concerns
98
+ if isinstance(type(idx), (CategoricalIndex, RangeIndex)):
99
+ msg = "the 'axis' parameter is not supported"
100
+ with pytest.raises(ValueError, match=msg):
101
+ np.argsort(idx, axis=1)
102
+
103
+ msg = "the 'kind' parameter is not supported"
104
+ with pytest.raises(ValueError, match=msg):
105
+ np.argsort(idx, kind="mergesort")
106
+
107
+ msg = "the 'order' parameter is not supported"
108
+ with pytest.raises(ValueError, match=msg):
109
+ np.argsort(idx, order=("a", "b"))
110
+
111
+
112
+ def test_unsortedindex():
113
+ # GH 11897
114
+ mi = MultiIndex.from_tuples(
115
+ [("z", "a"), ("x", "a"), ("y", "b"), ("x", "b"), ("y", "a"), ("z", "b")],
116
+ names=["one", "two"],
117
+ )
118
+ df = DataFrame([[i, 10 * i] for i in range(6)], index=mi, columns=["one", "two"])
119
+
120
+ # GH 16734: not sorted, but no real slicing
121
+ result = df.loc(axis=0)["z", "a"]
122
+ expected = df.iloc[0]
123
+ tm.assert_series_equal(result, expected)
124
+
125
+ msg = (
126
+ "MultiIndex slicing requires the index to be lexsorted: "
127
+ r"slicing on levels \[1\], lexsort depth 0"
128
+ )
129
+ with pytest.raises(UnsortedIndexError, match=msg):
130
+ df.loc(axis=0)["z", slice("a")]
131
+ df.sort_index(inplace=True)
132
+ assert len(df.loc(axis=0)["z", :]) == 2
133
+
134
+ with pytest.raises(KeyError, match="'q'"):
135
+ df.loc(axis=0)["q", :]
136
+
137
+
138
+ def test_unsortedindex_doc_examples():
139
+ # https://pandas.pydata.org/pandas-docs/stable/advanced.html#sorting-a-multiindex
140
+ dfm = DataFrame(
141
+ {
142
+ "jim": [0, 0, 1, 1],
143
+ "joe": ["x", "x", "z", "y"],
144
+ "jolie": np.random.default_rng(2).random(4),
145
+ }
146
+ )
147
+
148
+ dfm = dfm.set_index(["jim", "joe"])
149
+ with tm.assert_produces_warning(PerformanceWarning):
150
+ dfm.loc[(1, "z")]
151
+
152
+ msg = r"Key length \(2\) was greater than MultiIndex lexsort depth \(1\)"
153
+ with pytest.raises(UnsortedIndexError, match=msg):
154
+ dfm.loc[(0, "y"):(1, "z")]
155
+
156
+ assert not dfm.index._is_lexsorted()
157
+ assert dfm.index._lexsort_depth == 1
158
+
159
+ # sort it
160
+ dfm = dfm.sort_index()
161
+ dfm.loc[(1, "z")]
162
+ dfm.loc[(0, "y"):(1, "z")]
163
+
164
+ assert dfm.index._is_lexsorted()
165
+ assert dfm.index._lexsort_depth == 2
166
+
167
+
168
+ def test_reconstruct_sort():
169
+ # starts off lexsorted & monotonic
170
+ mi = MultiIndex.from_arrays([["A", "A", "B", "B", "B"], [1, 2, 1, 2, 3]])
171
+ assert mi.is_monotonic_increasing
172
+ recons = mi._sort_levels_monotonic()
173
+ assert recons.is_monotonic_increasing
174
+ assert mi is recons
175
+
176
+ assert mi.equals(recons)
177
+ assert Index(mi.values).equals(Index(recons.values))
178
+
179
+ # cannot convert to lexsorted
180
+ mi = MultiIndex.from_tuples(
181
+ [("z", "a"), ("x", "a"), ("y", "b"), ("x", "b"), ("y", "a"), ("z", "b")],
182
+ names=["one", "two"],
183
+ )
184
+ assert not mi.is_monotonic_increasing
185
+ recons = mi._sort_levels_monotonic()
186
+ assert not recons.is_monotonic_increasing
187
+ assert mi.equals(recons)
188
+ assert Index(mi.values).equals(Index(recons.values))
189
+
190
+ # cannot convert to lexsorted
191
+ mi = MultiIndex(
192
+ levels=[["b", "d", "a"], [1, 2, 3]],
193
+ codes=[[0, 1, 0, 2], [2, 0, 0, 1]],
194
+ names=["col1", "col2"],
195
+ )
196
+ assert not mi.is_monotonic_increasing
197
+ recons = mi._sort_levels_monotonic()
198
+ assert not recons.is_monotonic_increasing
199
+ assert mi.equals(recons)
200
+ assert Index(mi.values).equals(Index(recons.values))
201
+
202
+
203
+ def test_reconstruct_remove_unused():
204
+ # xref to GH 2770
205
+ df = DataFrame(
206
+ [["deleteMe", 1, 9], ["keepMe", 2, 9], ["keepMeToo", 3, 9]],
207
+ columns=["first", "second", "third"],
208
+ )
209
+ df2 = df.set_index(["first", "second"], drop=False)
210
+ df2 = df2[df2["first"] != "deleteMe"]
211
+
212
+ # removed levels are there
213
+ expected = MultiIndex(
214
+ levels=[["deleteMe", "keepMe", "keepMeToo"], [1, 2, 3]],
215
+ codes=[[1, 2], [1, 2]],
216
+ names=["first", "second"],
217
+ )
218
+ result = df2.index
219
+ tm.assert_index_equal(result, expected)
220
+
221
+ expected = MultiIndex(
222
+ levels=[["keepMe", "keepMeToo"], [2, 3]],
223
+ codes=[[0, 1], [0, 1]],
224
+ names=["first", "second"],
225
+ )
226
+ result = df2.index.remove_unused_levels()
227
+ tm.assert_index_equal(result, expected)
228
+
229
+ # idempotent
230
+ result2 = result.remove_unused_levels()
231
+ tm.assert_index_equal(result2, expected)
232
+ assert result2.is_(result)
233
+
234
+
235
+ @pytest.mark.parametrize(
236
+ "first_type,second_type", [("int64", "int64"), ("datetime64[D]", "str")]
237
+ )
238
+ def test_remove_unused_levels_large(first_type, second_type):
239
+ # GH16556
240
+
241
+ # because tests should be deterministic (and this test in particular
242
+ # checks that levels are removed, which is not the case for every
243
+ # random input):
244
+ rng = np.random.default_rng(10) # seed is arbitrary value that works
245
+
246
+ size = 1 << 16
247
+ df = DataFrame(
248
+ {
249
+ "first": rng.integers(0, 1 << 13, size).astype(first_type),
250
+ "second": rng.integers(0, 1 << 10, size).astype(second_type),
251
+ "third": rng.random(size),
252
+ }
253
+ )
254
+ df = df.groupby(["first", "second"]).sum()
255
+ df = df[df.third < 0.1]
256
+
257
+ result = df.index.remove_unused_levels()
258
+ assert len(result.levels[0]) < len(df.index.levels[0])
259
+ assert len(result.levels[1]) < len(df.index.levels[1])
260
+ assert result.equals(df.index)
261
+
262
+ expected = df.reset_index().set_index(["first", "second"]).index
263
+ tm.assert_index_equal(result, expected)
264
+
265
+
266
+ @pytest.mark.parametrize("level0", [["a", "d", "b"], ["a", "d", "b", "unused"]])
267
+ @pytest.mark.parametrize(
268
+ "level1", [["w", "x", "y", "z"], ["w", "x", "y", "z", "unused"]]
269
+ )
270
+ def test_remove_unused_nan(level0, level1):
271
+ # GH 18417
272
+ mi = MultiIndex(levels=[level0, level1], codes=[[0, 2, -1, 1, -1], [0, 1, 2, 3, 2]])
273
+
274
+ result = mi.remove_unused_levels()
275
+ tm.assert_index_equal(result, mi)
276
+ for level in 0, 1:
277
+ assert "unused" not in result.levels[level]
278
+
279
+
280
+ def test_argsort(idx):
281
+ result = idx.argsort()
282
+ expected = idx.values.argsort()
283
+ tm.assert_numpy_array_equal(result, expected)
284
+
285
+
286
+ def test_remove_unused_levels_with_nan():
287
+ # GH 37510
288
+ idx = Index([(1, np.nan), (3, 4)]).rename(["id1", "id2"])
289
+ idx = idx.set_levels(["a", np.nan], level="id1")
290
+ idx = idx.remove_unused_levels()
291
+ result = idx.levels
292
+ expected = FrozenList([["a", np.nan], [4]])
293
+ assert str(result) == str(expected)
294
+
295
+
296
+ def test_sort_values_nan():
297
+ # GH48495, GH48626
298
+ midx = MultiIndex(levels=[["A", "B", "C"], ["D"]], codes=[[1, 0, 2], [-1, -1, 0]])
299
+ result = midx.sort_values()
300
+ expected = MultiIndex(
301
+ levels=[["A", "B", "C"], ["D"]], codes=[[0, 1, 2], [-1, -1, 0]]
302
+ )
303
+ tm.assert_index_equal(result, expected)
304
+
305
+
306
+ def test_sort_values_incomparable():
307
+ # GH48495
308
+ mi = MultiIndex.from_arrays(
309
+ [
310
+ [1, Timestamp("2000-01-01")],
311
+ [3, 4],
312
+ ]
313
+ )
314
+ match = "'<' not supported between instances of 'Timestamp' and 'int'"
315
+ with pytest.raises(TypeError, match=match):
316
+ mi.sort_values()
317
+
318
+
319
+ @pytest.mark.parametrize("na_position", ["first", "last"])
320
+ @pytest.mark.parametrize("dtype", ["float64", "Int64", "Float64"])
321
+ def test_sort_values_with_na_na_position(dtype, na_position):
322
+ # 51612
323
+ arrays = [
324
+ Series([1, 1, 2], dtype=dtype),
325
+ Series([1, None, 3], dtype=dtype),
326
+ ]
327
+ index = MultiIndex.from_arrays(arrays)
328
+ result = index.sort_values(na_position=na_position)
329
+ if na_position == "first":
330
+ arrays = [
331
+ Series([1, 1, 2], dtype=dtype),
332
+ Series([None, 1, 3], dtype=dtype),
333
+ ]
334
+ else:
335
+ arrays = [
336
+ Series([1, 1, 2], dtype=dtype),
337
+ Series([1, None, 3], dtype=dtype),
338
+ ]
339
+ expected = MultiIndex.from_arrays(arrays)
340
+ tm.assert_index_equal(result, expected)
341
+
342
+
343
+ def test_sort_unnecessary_warning():
344
+ # GH#55386
345
+ midx = MultiIndex.from_tuples([(1.5, 2), (3.5, 3), (0, 1)])
346
+ midx = midx.set_levels([2.5, np.nan, 1], level=0)
347
+ result = midx.sort_values()
348
+ expected = MultiIndex.from_tuples([(1, 3), (2.5, 1), (np.nan, 2)])
349
+ tm.assert_index_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/multi/test_take.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+
8
+ def test_take(idx):
9
+ indexer = [4, 3, 0, 2]
10
+ result = idx.take(indexer)
11
+ expected = idx[indexer]
12
+ assert result.equals(expected)
13
+
14
+ # GH 10791
15
+ msg = "'MultiIndex' object has no attribute 'freq'"
16
+ with pytest.raises(AttributeError, match=msg):
17
+ idx.freq
18
+
19
+
20
+ def test_take_invalid_kwargs(idx):
21
+ indices = [1, 2]
22
+
23
+ msg = r"take\(\) got an unexpected keyword argument 'foo'"
24
+ with pytest.raises(TypeError, match=msg):
25
+ idx.take(indices, foo=2)
26
+
27
+ msg = "the 'out' parameter is not supported"
28
+ with pytest.raises(ValueError, match=msg):
29
+ idx.take(indices, out=indices)
30
+
31
+ msg = "the 'mode' parameter is not supported"
32
+ with pytest.raises(ValueError, match=msg):
33
+ idx.take(indices, mode="clip")
34
+
35
+
36
+ def test_take_fill_value():
37
+ # GH 12631
38
+ vals = [["A", "B"], [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]]
39
+ idx = pd.MultiIndex.from_product(vals, names=["str", "dt"])
40
+
41
+ result = idx.take(np.array([1, 0, -1]))
42
+ exp_vals = [
43
+ ("A", pd.Timestamp("2011-01-02")),
44
+ ("A", pd.Timestamp("2011-01-01")),
45
+ ("B", pd.Timestamp("2011-01-02")),
46
+ ]
47
+ expected = pd.MultiIndex.from_tuples(exp_vals, names=["str", "dt"])
48
+ tm.assert_index_equal(result, expected)
49
+
50
+ # fill_value
51
+ result = idx.take(np.array([1, 0, -1]), fill_value=True)
52
+ exp_vals = [
53
+ ("A", pd.Timestamp("2011-01-02")),
54
+ ("A", pd.Timestamp("2011-01-01")),
55
+ (np.nan, pd.NaT),
56
+ ]
57
+ expected = pd.MultiIndex.from_tuples(exp_vals, names=["str", "dt"])
58
+ tm.assert_index_equal(result, expected)
59
+
60
+ # allow_fill=False
61
+ result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
62
+ exp_vals = [
63
+ ("A", pd.Timestamp("2011-01-02")),
64
+ ("A", pd.Timestamp("2011-01-01")),
65
+ ("B", pd.Timestamp("2011-01-02")),
66
+ ]
67
+ expected = pd.MultiIndex.from_tuples(exp_vals, names=["str", "dt"])
68
+ tm.assert_index_equal(result, expected)
69
+
70
+ msg = "When allow_fill=True and fill_value is not None, all indices must be >= -1"
71
+ with pytest.raises(ValueError, match=msg):
72
+ idx.take(np.array([1, 0, -2]), fill_value=True)
73
+ with pytest.raises(ValueError, match=msg):
74
+ idx.take(np.array([1, 0, -5]), fill_value=True)
75
+
76
+ msg = "index -5 is out of bounds for( axis 0 with)? size 4"
77
+ with pytest.raises(IndexError, match=msg):
78
+ idx.take(np.array([1, -5]))
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (200 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (1.05 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (6.52 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/test_astype.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Index,
5
+ NaT,
6
+ Series,
7
+ )
8
+ import pandas._testing as tm
9
+
10
+
11
+ def test_astype_str_from_bytes():
12
+ # https://github.com/pandas-dev/pandas/issues/38607
13
+ # GH#49658 pre-2.0 Index called .values.astype(str) here, which effectively
14
+ # did a .decode() on the bytes object. In 2.0 we go through
15
+ # ensure_string_array which does f"{val}"
16
+ idx = Index(["あ", b"a"], dtype="object")
17
+ result = idx.astype(str)
18
+ expected = Index(["あ", "a"], dtype="object")
19
+ tm.assert_index_equal(result, expected)
20
+
21
+ # while we're here, check that Series.astype behaves the same
22
+ result = Series(idx).astype(str)
23
+ expected = Series(expected, dtype=object)
24
+ tm.assert_series_equal(result, expected)
25
+
26
+
27
+ def test_astype_invalid_nas_to_tdt64_raises():
28
+ # GH#45722 don't cast np.datetime64 NaTs to timedelta64 NaT
29
+ idx = Index([NaT.asm8] * 2, dtype=object)
30
+
31
+ msg = r"Invalid type for timedelta scalar: <class 'numpy.datetime64'>"
32
+ with pytest.raises(TypeError, match=msg):
33
+ idx.astype("m8[ns]")
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/object/test_indexing.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from decimal import Decimal
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas._libs.missing import (
7
+ NA,
8
+ is_matching_na,
9
+ )
10
+ from pandas.compat import pa_version_under16p0
11
+ import pandas.util._test_decorators as td
12
+
13
+ import pandas as pd
14
+ from pandas import Index
15
+ import pandas._testing as tm
16
+
17
+
18
+ class TestGetIndexer:
19
+ @pytest.mark.parametrize(
20
+ "method,expected",
21
+ [
22
+ ("pad", np.array([-1, 0, 1, 1], dtype=np.intp)),
23
+ ("backfill", np.array([0, 0, 1, -1], dtype=np.intp)),
24
+ ],
25
+ )
26
+ def test_get_indexer_strings(self, method, expected):
27
+ index = Index(["b", "c"])
28
+ actual = index.get_indexer(["a", "b", "c", "d"], method=method)
29
+
30
+ tm.assert_numpy_array_equal(actual, expected)
31
+
32
+ def test_get_indexer_strings_raises(self, using_infer_string):
33
+ index = Index(["b", "c"])
34
+
35
+ if using_infer_string:
36
+ import pyarrow as pa
37
+
38
+ msg = "has no kernel"
39
+ with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
40
+ index.get_indexer(["a", "b", "c", "d"], method="nearest")
41
+
42
+ with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
43
+ index.get_indexer(["a", "b", "c", "d"], method="pad", tolerance=2)
44
+
45
+ with pytest.raises(pa.lib.ArrowNotImplementedError, match=msg):
46
+ index.get_indexer(
47
+ ["a", "b", "c", "d"], method="pad", tolerance=[2, 2, 2, 2]
48
+ )
49
+
50
+ else:
51
+ msg = r"unsupported operand type\(s\) for -: 'str' and 'str'"
52
+ with pytest.raises(TypeError, match=msg):
53
+ index.get_indexer(["a", "b", "c", "d"], method="nearest")
54
+
55
+ with pytest.raises(TypeError, match=msg):
56
+ index.get_indexer(["a", "b", "c", "d"], method="pad", tolerance=2)
57
+
58
+ with pytest.raises(TypeError, match=msg):
59
+ index.get_indexer(
60
+ ["a", "b", "c", "d"], method="pad", tolerance=[2, 2, 2, 2]
61
+ )
62
+
63
+ def test_get_indexer_with_NA_values(
64
+ self, unique_nulls_fixture, unique_nulls_fixture2
65
+ ):
66
+ # GH#22332
67
+ # check pairwise, that no pair of na values
68
+ # is mangled
69
+ if unique_nulls_fixture is unique_nulls_fixture2:
70
+ return # skip it, values are not unique
71
+ arr = np.array([unique_nulls_fixture, unique_nulls_fixture2], dtype=object)
72
+ index = Index(arr, dtype=object)
73
+ result = index.get_indexer(
74
+ Index(
75
+ [unique_nulls_fixture, unique_nulls_fixture2, "Unknown"], dtype=object
76
+ )
77
+ )
78
+ expected = np.array([0, 1, -1], dtype=np.intp)
79
+ tm.assert_numpy_array_equal(result, expected)
80
+
81
+
82
+ class TestGetIndexerNonUnique:
83
+ def test_get_indexer_non_unique_nas(
84
+ self, nulls_fixture, request, using_infer_string
85
+ ):
86
+ # even though this isn't non-unique, this should still work
87
+ if using_infer_string and (nulls_fixture is None or nulls_fixture is NA):
88
+ request.applymarker(pytest.mark.xfail(reason="NAs are cast to NaN"))
89
+ index = Index(["a", "b", nulls_fixture])
90
+ indexer, missing = index.get_indexer_non_unique([nulls_fixture])
91
+
92
+ expected_indexer = np.array([2], dtype=np.intp)
93
+ expected_missing = np.array([], dtype=np.intp)
94
+ tm.assert_numpy_array_equal(indexer, expected_indexer)
95
+ tm.assert_numpy_array_equal(missing, expected_missing)
96
+
97
+ # actually non-unique
98
+ index = Index(["a", nulls_fixture, "b", nulls_fixture])
99
+ indexer, missing = index.get_indexer_non_unique([nulls_fixture])
100
+
101
+ expected_indexer = np.array([1, 3], dtype=np.intp)
102
+ tm.assert_numpy_array_equal(indexer, expected_indexer)
103
+ tm.assert_numpy_array_equal(missing, expected_missing)
104
+
105
+ # matching-but-not-identical nans
106
+ if is_matching_na(nulls_fixture, float("NaN")):
107
+ index = Index(["a", float("NaN"), "b", float("NaN")])
108
+ match_but_not_identical = True
109
+ elif is_matching_na(nulls_fixture, Decimal("NaN")):
110
+ index = Index(["a", Decimal("NaN"), "b", Decimal("NaN")])
111
+ match_but_not_identical = True
112
+ else:
113
+ match_but_not_identical = False
114
+
115
+ if match_but_not_identical:
116
+ indexer, missing = index.get_indexer_non_unique([nulls_fixture])
117
+
118
+ expected_indexer = np.array([1, 3], dtype=np.intp)
119
+ tm.assert_numpy_array_equal(indexer, expected_indexer)
120
+ tm.assert_numpy_array_equal(missing, expected_missing)
121
+
122
+ @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning")
123
+ def test_get_indexer_non_unique_np_nats(self, np_nat_fixture, np_nat_fixture2):
124
+ expected_missing = np.array([], dtype=np.intp)
125
+ # matching-but-not-identical nats
126
+ if is_matching_na(np_nat_fixture, np_nat_fixture2):
127
+ # ensure nats are different objects
128
+ index = Index(
129
+ np.array(
130
+ ["2021-10-02", np_nat_fixture.copy(), np_nat_fixture2.copy()],
131
+ dtype=object,
132
+ ),
133
+ dtype=object,
134
+ )
135
+ # pass as index to prevent target from being casted to DatetimeIndex
136
+ indexer, missing = index.get_indexer_non_unique(
137
+ Index([np_nat_fixture], dtype=object)
138
+ )
139
+ expected_indexer = np.array([1, 2], dtype=np.intp)
140
+ tm.assert_numpy_array_equal(indexer, expected_indexer)
141
+ tm.assert_numpy_array_equal(missing, expected_missing)
142
+ # dt64nat vs td64nat
143
+ else:
144
+ try:
145
+ np_nat_fixture == np_nat_fixture2
146
+ except (TypeError, OverflowError):
147
+ # Numpy will raise on uncomparable types, like
148
+ # np.datetime64('NaT', 'Y') and np.datetime64('NaT', 'ps')
149
+ # https://github.com/numpy/numpy/issues/22762
150
+ return
151
+ index = Index(
152
+ np.array(
153
+ [
154
+ "2021-10-02",
155
+ np_nat_fixture,
156
+ np_nat_fixture2,
157
+ np_nat_fixture,
158
+ np_nat_fixture2,
159
+ ],
160
+ dtype=object,
161
+ ),
162
+ dtype=object,
163
+ )
164
+ # pass as index to prevent target from being casted to DatetimeIndex
165
+ indexer, missing = index.get_indexer_non_unique(
166
+ Index([np_nat_fixture], dtype=object)
167
+ )
168
+ expected_indexer = np.array([1, 3], dtype=np.intp)
169
+ tm.assert_numpy_array_equal(indexer, expected_indexer)
170
+ tm.assert_numpy_array_equal(missing, expected_missing)
171
+
172
+
173
+ class TestSliceLocs:
174
+ @pytest.mark.parametrize(
175
+ "dtype",
176
+ [
177
+ "object",
178
+ pytest.param("string[pyarrow_numpy]", marks=td.skip_if_no("pyarrow")),
179
+ ],
180
+ )
181
+ @pytest.mark.parametrize(
182
+ "in_slice,expected",
183
+ [
184
+ # error: Slice index must be an integer or None
185
+ (pd.IndexSlice[::-1], "yxdcb"),
186
+ (pd.IndexSlice["b":"y":-1], ""), # type: ignore[misc]
187
+ (pd.IndexSlice["b"::-1], "b"), # type: ignore[misc]
188
+ (pd.IndexSlice[:"b":-1], "yxdcb"), # type: ignore[misc]
189
+ (pd.IndexSlice[:"y":-1], "y"), # type: ignore[misc]
190
+ (pd.IndexSlice["y"::-1], "yxdcb"), # type: ignore[misc]
191
+ (pd.IndexSlice["y"::-4], "yb"), # type: ignore[misc]
192
+ # absent labels
193
+ (pd.IndexSlice[:"a":-1], "yxdcb"), # type: ignore[misc]
194
+ (pd.IndexSlice[:"a":-2], "ydb"), # type: ignore[misc]
195
+ (pd.IndexSlice["z"::-1], "yxdcb"), # type: ignore[misc]
196
+ (pd.IndexSlice["z"::-3], "yc"), # type: ignore[misc]
197
+ (pd.IndexSlice["m"::-1], "dcb"), # type: ignore[misc]
198
+ (pd.IndexSlice[:"m":-1], "yx"), # type: ignore[misc]
199
+ (pd.IndexSlice["a":"a":-1], ""), # type: ignore[misc]
200
+ (pd.IndexSlice["z":"z":-1], ""), # type: ignore[misc]
201
+ (pd.IndexSlice["m":"m":-1], ""), # type: ignore[misc]
202
+ ],
203
+ )
204
+ def test_slice_locs_negative_step(self, in_slice, expected, dtype, request):
205
+ if (
206
+ not pa_version_under16p0
207
+ and dtype == "string[pyarrow_numpy]"
208
+ and in_slice == slice("a", "a", -1)
209
+ ):
210
+ request.applymarker(
211
+ pytest.mark.xfail(reason="https://github.com/apache/arrow/issues/40642")
212
+ )
213
+
214
+ index = Index(list("bcdxy"), dtype=dtype)
215
+
216
+ s_start, s_stop = index.slice_locs(in_slice.start, in_slice.stop, in_slice.step)
217
+ result = index[s_start : s_stop : in_slice.step]
218
+ expected = Index(list(expected), dtype=dtype)
219
+ tm.assert_index_equal(result, expected)
220
+
221
+ @td.skip_if_no("pyarrow")
222
+ def test_slice_locs_negative_step_oob(self):
223
+ index = Index(list("bcdxy"), dtype="string[pyarrow_numpy]")
224
+
225
+ result = index[-10:5:1]
226
+ tm.assert_index_equal(result, index)
227
+
228
+ result = index[4:-10:-1]
229
+ expected = Index(list("yxdcb"), dtype="string[pyarrow_numpy]")
230
+ tm.assert_index_equal(result, expected)
231
+
232
+ def test_slice_locs_dup(self):
233
+ index = Index(["a", "a", "b", "c", "d", "d"])
234
+ assert index.slice_locs("a", "d") == (0, 6)
235
+ assert index.slice_locs(end="d") == (0, 6)
236
+ assert index.slice_locs("a", "c") == (0, 4)
237
+ assert index.slice_locs("b", "d") == (2, 6)
238
+
239
+ index2 = index[::-1]
240
+ assert index2.slice_locs("d", "a") == (0, 6)
241
+ assert index2.slice_locs(end="a") == (0, 6)
242
+ assert index2.slice_locs("d", "b") == (0, 4)
243
+ assert index2.slice_locs("c", "a") == (2, 6)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (200 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (5.31 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (5.86 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_join.cpython-310.pyc ADDED
Binary file (5.04 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_range.cpython-310.pyc ADDED
Binary file (17.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/__pycache__/test_setops.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/test_constructors.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas import (
7
+ Index,
8
+ RangeIndex,
9
+ Series,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ class TestRangeIndexConstructors:
15
+ @pytest.mark.parametrize("name", [None, "foo"])
16
+ @pytest.mark.parametrize(
17
+ "args, kwargs, start, stop, step",
18
+ [
19
+ ((5,), {}, 0, 5, 1),
20
+ ((1, 5), {}, 1, 5, 1),
21
+ ((1, 5, 2), {}, 1, 5, 2),
22
+ ((0,), {}, 0, 0, 1),
23
+ ((0, 0), {}, 0, 0, 1),
24
+ ((), {"start": 0}, 0, 0, 1),
25
+ ((), {"stop": 0}, 0, 0, 1),
26
+ ],
27
+ )
28
+ def test_constructor(self, args, kwargs, start, stop, step, name):
29
+ result = RangeIndex(*args, name=name, **kwargs)
30
+ expected = Index(np.arange(start, stop, step, dtype=np.int64), name=name)
31
+ assert isinstance(result, RangeIndex)
32
+ assert result.name is name
33
+ assert result._range == range(start, stop, step)
34
+ tm.assert_index_equal(result, expected, exact="equiv")
35
+
36
+ def test_constructor_invalid_args(self):
37
+ msg = "RangeIndex\\(\\.\\.\\.\\) must be called with integers"
38
+ with pytest.raises(TypeError, match=msg):
39
+ RangeIndex()
40
+
41
+ with pytest.raises(TypeError, match=msg):
42
+ RangeIndex(name="Foo")
43
+
44
+ # we don't allow on a bare Index
45
+ msg = (
46
+ r"Index\(\.\.\.\) must be called with a collection of some "
47
+ r"kind, 0 was passed"
48
+ )
49
+ with pytest.raises(TypeError, match=msg):
50
+ Index(0)
51
+
52
+ @pytest.mark.parametrize(
53
+ "args",
54
+ [
55
+ Index(["a", "b"]),
56
+ Series(["a", "b"]),
57
+ np.array(["a", "b"]),
58
+ [],
59
+ np.arange(0, 10),
60
+ np.array([1]),
61
+ [1],
62
+ ],
63
+ )
64
+ def test_constructor_additional_invalid_args(self, args):
65
+ msg = f"Value needs to be a scalar value, was type {type(args).__name__}"
66
+ with pytest.raises(TypeError, match=msg):
67
+ RangeIndex(args)
68
+
69
+ @pytest.mark.parametrize("args", ["foo", datetime(2000, 1, 1, 0, 0)])
70
+ def test_constructor_invalid_args_wrong_type(self, args):
71
+ msg = f"Wrong type {type(args)} for value {args}"
72
+ with pytest.raises(TypeError, match=msg):
73
+ RangeIndex(args)
74
+
75
+ def test_constructor_same(self):
76
+ # pass thru w and w/o copy
77
+ index = RangeIndex(1, 5, 2)
78
+ result = RangeIndex(index, copy=False)
79
+ assert result.identical(index)
80
+
81
+ result = RangeIndex(index, copy=True)
82
+ tm.assert_index_equal(result, index, exact=True)
83
+
84
+ result = RangeIndex(index)
85
+ tm.assert_index_equal(result, index, exact=True)
86
+
87
+ with pytest.raises(
88
+ ValueError,
89
+ match="Incorrect `dtype` passed: expected signed integer, received float64",
90
+ ):
91
+ RangeIndex(index, dtype="float64")
92
+
93
+ def test_constructor_range_object(self):
94
+ result = RangeIndex(range(1, 5, 2))
95
+ expected = RangeIndex(1, 5, 2)
96
+ tm.assert_index_equal(result, expected, exact=True)
97
+
98
+ def test_constructor_range(self):
99
+ result = RangeIndex.from_range(range(1, 5, 2))
100
+ expected = RangeIndex(1, 5, 2)
101
+ tm.assert_index_equal(result, expected, exact=True)
102
+
103
+ result = RangeIndex.from_range(range(5, 6))
104
+ expected = RangeIndex(5, 6, 1)
105
+ tm.assert_index_equal(result, expected, exact=True)
106
+
107
+ # an invalid range
108
+ result = RangeIndex.from_range(range(5, 1))
109
+ expected = RangeIndex(0, 0, 1)
110
+ tm.assert_index_equal(result, expected, exact=True)
111
+
112
+ result = RangeIndex.from_range(range(5))
113
+ expected = RangeIndex(0, 5, 1)
114
+ tm.assert_index_equal(result, expected, exact=True)
115
+
116
+ result = Index(range(1, 5, 2))
117
+ expected = RangeIndex(1, 5, 2)
118
+ tm.assert_index_equal(result, expected, exact=True)
119
+
120
+ msg = (
121
+ r"(RangeIndex.)?from_range\(\) got an unexpected keyword argument( 'copy')?"
122
+ )
123
+ with pytest.raises(TypeError, match=msg):
124
+ RangeIndex.from_range(range(10), copy=True)
125
+
126
+ def test_constructor_name(self):
127
+ # GH#12288
128
+ orig = RangeIndex(10)
129
+ orig.name = "original"
130
+
131
+ copy = RangeIndex(orig)
132
+ copy.name = "copy"
133
+
134
+ assert orig.name == "original"
135
+ assert copy.name == "copy"
136
+
137
+ new = Index(copy)
138
+ assert new.name == "copy"
139
+
140
+ new.name = "new"
141
+ assert orig.name == "original"
142
+ assert copy.name == "copy"
143
+ assert new.name == "new"
144
+
145
+ def test_constructor_corner(self):
146
+ arr = np.array([1, 2, 3, 4], dtype=object)
147
+ index = RangeIndex(1, 5)
148
+ assert index.values.dtype == np.int64
149
+ expected = Index(arr).astype("int64")
150
+
151
+ tm.assert_index_equal(index, expected, exact="equiv")
152
+
153
+ # non-int raise Exception
154
+ with pytest.raises(TypeError, match=r"Wrong type \<class 'str'\>"):
155
+ RangeIndex("1", "10", "1")
156
+ with pytest.raises(TypeError, match=r"Wrong type \<class 'float'\>"):
157
+ RangeIndex(1.1, 10.2, 1.3)
158
+
159
+ # invalid passed type
160
+ with pytest.raises(
161
+ ValueError,
162
+ match="Incorrect `dtype` passed: expected signed integer, received float64",
163
+ ):
164
+ RangeIndex(1, 5, dtype="float64")
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/test_indexing.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Index,
6
+ RangeIndex,
7
+ )
8
+ import pandas._testing as tm
9
+
10
+
11
+ class TestGetIndexer:
12
+ def test_get_indexer(self):
13
+ index = RangeIndex(start=0, stop=20, step=2)
14
+ target = RangeIndex(10)
15
+ indexer = index.get_indexer(target)
16
+ expected = np.array([0, -1, 1, -1, 2, -1, 3, -1, 4, -1], dtype=np.intp)
17
+ tm.assert_numpy_array_equal(indexer, expected)
18
+
19
+ def test_get_indexer_pad(self):
20
+ index = RangeIndex(start=0, stop=20, step=2)
21
+ target = RangeIndex(10)
22
+ indexer = index.get_indexer(target, method="pad")
23
+ expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4], dtype=np.intp)
24
+ tm.assert_numpy_array_equal(indexer, expected)
25
+
26
+ def test_get_indexer_backfill(self):
27
+ index = RangeIndex(start=0, stop=20, step=2)
28
+ target = RangeIndex(10)
29
+ indexer = index.get_indexer(target, method="backfill")
30
+ expected = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 5], dtype=np.intp)
31
+ tm.assert_numpy_array_equal(indexer, expected)
32
+
33
+ def test_get_indexer_limit(self):
34
+ # GH#28631
35
+ idx = RangeIndex(4)
36
+ target = RangeIndex(6)
37
+ result = idx.get_indexer(target, method="pad", limit=1)
38
+ expected = np.array([0, 1, 2, 3, 3, -1], dtype=np.intp)
39
+ tm.assert_numpy_array_equal(result, expected)
40
+
41
+ @pytest.mark.parametrize("stop", [0, -1, -2])
42
+ def test_get_indexer_decreasing(self, stop):
43
+ # GH#28678
44
+ index = RangeIndex(7, stop, -3)
45
+ result = index.get_indexer(range(9))
46
+ expected = np.array([-1, 2, -1, -1, 1, -1, -1, 0, -1], dtype=np.intp)
47
+ tm.assert_numpy_array_equal(result, expected)
48
+
49
+
50
+ class TestTake:
51
+ def test_take_preserve_name(self):
52
+ index = RangeIndex(1, 5, name="foo")
53
+ taken = index.take([3, 0, 1])
54
+ assert index.name == taken.name
55
+
56
+ def test_take_fill_value(self):
57
+ # GH#12631
58
+ idx = RangeIndex(1, 4, name="xxx")
59
+ result = idx.take(np.array([1, 0, -1]))
60
+ expected = Index([2, 1, 3], dtype=np.int64, name="xxx")
61
+ tm.assert_index_equal(result, expected)
62
+
63
+ # fill_value
64
+ msg = "Unable to fill values because RangeIndex cannot contain NA"
65
+ with pytest.raises(ValueError, match=msg):
66
+ idx.take(np.array([1, 0, -1]), fill_value=True)
67
+
68
+ # allow_fill=False
69
+ result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
70
+ expected = Index([2, 1, 3], dtype=np.int64, name="xxx")
71
+ tm.assert_index_equal(result, expected)
72
+
73
+ msg = "Unable to fill values because RangeIndex cannot contain NA"
74
+ with pytest.raises(ValueError, match=msg):
75
+ idx.take(np.array([1, 0, -2]), fill_value=True)
76
+ with pytest.raises(ValueError, match=msg):
77
+ idx.take(np.array([1, 0, -5]), fill_value=True)
78
+
79
+ def test_take_raises_index_error(self):
80
+ idx = RangeIndex(1, 4, name="xxx")
81
+
82
+ msg = "index -5 is out of bounds for (axis 0 with )?size 3"
83
+ with pytest.raises(IndexError, match=msg):
84
+ idx.take(np.array([1, -5]))
85
+
86
+ msg = "index -4 is out of bounds for (axis 0 with )?size 3"
87
+ with pytest.raises(IndexError, match=msg):
88
+ idx.take(np.array([1, -4]))
89
+
90
+ # no errors
91
+ result = idx.take(np.array([1, -3]))
92
+ expected = Index([2, 1], dtype=np.int64, name="xxx")
93
+ tm.assert_index_equal(result, expected)
94
+
95
+ def test_take_accepts_empty_array(self):
96
+ idx = RangeIndex(1, 4, name="foo")
97
+ result = idx.take(np.array([]))
98
+ expected = Index([], dtype=np.int64, name="foo")
99
+ tm.assert_index_equal(result, expected)
100
+
101
+ # empty index
102
+ idx = RangeIndex(0, name="foo")
103
+ result = idx.take(np.array([]))
104
+ expected = Index([], dtype=np.int64, name="foo")
105
+ tm.assert_index_equal(result, expected)
106
+
107
+ def test_take_accepts_non_int64_array(self):
108
+ idx = RangeIndex(1, 4, name="foo")
109
+ result = idx.take(np.array([2, 1], dtype=np.uint32))
110
+ expected = Index([3, 2], dtype=np.int64, name="foo")
111
+ tm.assert_index_equal(result, expected)
112
+
113
+ def test_take_when_index_has_step(self):
114
+ idx = RangeIndex(1, 11, 3, name="foo") # [1, 4, 7, 10]
115
+ result = idx.take(np.array([1, 0, -1, -4]))
116
+ expected = Index([4, 1, 10, 1], dtype=np.int64, name="foo")
117
+ tm.assert_index_equal(result, expected)
118
+
119
+ def test_take_when_index_has_negative_step(self):
120
+ idx = RangeIndex(11, -4, -2, name="foo") # [11, 9, 7, 5, 3, 1, -1, -3]
121
+ result = idx.take(np.array([1, 0, -1, -8]))
122
+ expected = Index([9, 11, -3, 11], dtype=np.int64, name="foo")
123
+ tm.assert_index_equal(result, expected)
124
+
125
+
126
+ class TestWhere:
127
+ def test_where_putmask_range_cast(self):
128
+ # GH#43240
129
+ idx = RangeIndex(0, 5, name="test")
130
+
131
+ mask = np.array([True, True, False, False, False])
132
+ result = idx.putmask(mask, 10)
133
+ expected = Index([10, 10, 2, 3, 4], dtype=np.int64, name="test")
134
+ tm.assert_index_equal(result, expected)
135
+
136
+ result = idx.where(~mask, 10)
137
+ tm.assert_index_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/test_join.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas import (
4
+ Index,
5
+ RangeIndex,
6
+ )
7
+ import pandas._testing as tm
8
+
9
+
10
+ class TestJoin:
11
+ def test_join_outer(self):
12
+ # join with Index[int64]
13
+ index = RangeIndex(start=0, stop=20, step=2)
14
+ other = Index(np.arange(25, 14, -1, dtype=np.int64))
15
+
16
+ res, lidx, ridx = index.join(other, how="outer", return_indexers=True)
17
+ noidx_res = index.join(other, how="outer")
18
+ tm.assert_index_equal(res, noidx_res)
19
+
20
+ eres = Index(
21
+ [0, 2, 4, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
22
+ )
23
+ elidx = np.array(
24
+ [0, 1, 2, 3, 4, 5, 6, 7, -1, 8, -1, 9, -1, -1, -1, -1, -1, -1, -1],
25
+ dtype=np.intp,
26
+ )
27
+ eridx = np.array(
28
+ [-1, -1, -1, -1, -1, -1, -1, -1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
29
+ dtype=np.intp,
30
+ )
31
+
32
+ assert isinstance(res, Index) and res.dtype == np.dtype(np.int64)
33
+ assert not isinstance(res, RangeIndex)
34
+ tm.assert_index_equal(res, eres, exact=True)
35
+ tm.assert_numpy_array_equal(lidx, elidx)
36
+ tm.assert_numpy_array_equal(ridx, eridx)
37
+
38
+ # join with RangeIndex
39
+ other = RangeIndex(25, 14, -1)
40
+
41
+ res, lidx, ridx = index.join(other, how="outer", return_indexers=True)
42
+ noidx_res = index.join(other, how="outer")
43
+ tm.assert_index_equal(res, noidx_res)
44
+
45
+ assert isinstance(res, Index) and res.dtype == np.int64
46
+ assert not isinstance(res, RangeIndex)
47
+ tm.assert_index_equal(res, eres)
48
+ tm.assert_numpy_array_equal(lidx, elidx)
49
+ tm.assert_numpy_array_equal(ridx, eridx)
50
+
51
+ def test_join_inner(self):
52
+ # Join with non-RangeIndex
53
+ index = RangeIndex(start=0, stop=20, step=2)
54
+ other = Index(np.arange(25, 14, -1, dtype=np.int64))
55
+
56
+ res, lidx, ridx = index.join(other, how="inner", return_indexers=True)
57
+
58
+ # no guarantee of sortedness, so sort for comparison purposes
59
+ ind = res.argsort()
60
+ res = res.take(ind)
61
+ lidx = lidx.take(ind)
62
+ ridx = ridx.take(ind)
63
+
64
+ eres = Index([16, 18])
65
+ elidx = np.array([8, 9], dtype=np.intp)
66
+ eridx = np.array([9, 7], dtype=np.intp)
67
+
68
+ assert isinstance(res, Index) and res.dtype == np.int64
69
+ tm.assert_index_equal(res, eres)
70
+ tm.assert_numpy_array_equal(lidx, elidx)
71
+ tm.assert_numpy_array_equal(ridx, eridx)
72
+
73
+ # Join two RangeIndex
74
+ other = RangeIndex(25, 14, -1)
75
+
76
+ res, lidx, ridx = index.join(other, how="inner", return_indexers=True)
77
+
78
+ assert isinstance(res, RangeIndex)
79
+ tm.assert_index_equal(res, eres, exact="equiv")
80
+ tm.assert_numpy_array_equal(lidx, elidx)
81
+ tm.assert_numpy_array_equal(ridx, eridx)
82
+
83
+ def test_join_left(self):
84
+ # Join with Index[int64]
85
+ index = RangeIndex(start=0, stop=20, step=2)
86
+ other = Index(np.arange(25, 14, -1, dtype=np.int64))
87
+
88
+ res, lidx, ridx = index.join(other, how="left", return_indexers=True)
89
+ eres = index
90
+ eridx = np.array([-1, -1, -1, -1, -1, -1, -1, -1, 9, 7], dtype=np.intp)
91
+
92
+ assert isinstance(res, RangeIndex)
93
+ tm.assert_index_equal(res, eres)
94
+ assert lidx is None
95
+ tm.assert_numpy_array_equal(ridx, eridx)
96
+
97
+ # Join withRangeIndex
98
+ other = Index(np.arange(25, 14, -1, dtype=np.int64))
99
+
100
+ res, lidx, ridx = index.join(other, how="left", return_indexers=True)
101
+
102
+ assert isinstance(res, RangeIndex)
103
+ tm.assert_index_equal(res, eres)
104
+ assert lidx is None
105
+ tm.assert_numpy_array_equal(ridx, eridx)
106
+
107
+ def test_join_right(self):
108
+ # Join with Index[int64]
109
+ index = RangeIndex(start=0, stop=20, step=2)
110
+ other = Index(np.arange(25, 14, -1, dtype=np.int64))
111
+
112
+ res, lidx, ridx = index.join(other, how="right", return_indexers=True)
113
+ eres = other
114
+ elidx = np.array([-1, -1, -1, -1, -1, -1, -1, 9, -1, 8, -1], dtype=np.intp)
115
+
116
+ assert isinstance(other, Index) and other.dtype == np.int64
117
+ tm.assert_index_equal(res, eres)
118
+ tm.assert_numpy_array_equal(lidx, elidx)
119
+ assert ridx is None
120
+
121
+ # Join withRangeIndex
122
+ other = RangeIndex(25, 14, -1)
123
+
124
+ res, lidx, ridx = index.join(other, how="right", return_indexers=True)
125
+ eres = other
126
+
127
+ assert isinstance(other, RangeIndex)
128
+ tm.assert_index_equal(res, eres)
129
+ tm.assert_numpy_array_equal(lidx, elidx)
130
+ assert ridx is None
131
+
132
+ def test_join_non_int_index(self):
133
+ index = RangeIndex(start=0, stop=20, step=2)
134
+ other = Index([3, 6, 7, 8, 10], dtype=object)
135
+
136
+ outer = index.join(other, how="outer")
137
+ outer2 = other.join(index, how="outer")
138
+ expected = Index([0, 2, 3, 4, 6, 7, 8, 10, 12, 14, 16, 18])
139
+ tm.assert_index_equal(outer, outer2)
140
+ tm.assert_index_equal(outer, expected)
141
+
142
+ inner = index.join(other, how="inner")
143
+ inner2 = other.join(index, how="inner")
144
+ expected = Index([6, 8, 10])
145
+ tm.assert_index_equal(inner, inner2)
146
+ tm.assert_index_equal(inner, expected)
147
+
148
+ left = index.join(other, how="left")
149
+ tm.assert_index_equal(left, index.astype(object))
150
+
151
+ left2 = other.join(index, how="left")
152
+ tm.assert_index_equal(left2, other)
153
+
154
+ right = index.join(other, how="right")
155
+ tm.assert_index_equal(right, other)
156
+
157
+ right2 = other.join(index, how="right")
158
+ tm.assert_index_equal(right2, index.astype(object))
159
+
160
+ def test_join_non_unique(self):
161
+ index = RangeIndex(start=0, stop=20, step=2)
162
+ other = Index([4, 4, 3, 3])
163
+
164
+ res, lidx, ridx = index.join(other, return_indexers=True)
165
+
166
+ eres = Index([0, 2, 4, 4, 6, 8, 10, 12, 14, 16, 18])
167
+ elidx = np.array([0, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp)
168
+ eridx = np.array([-1, -1, 0, 1, -1, -1, -1, -1, -1, -1, -1], dtype=np.intp)
169
+
170
+ tm.assert_index_equal(res, eres)
171
+ tm.assert_numpy_array_equal(lidx, elidx)
172
+ tm.assert_numpy_array_equal(ridx, eridx)
173
+
174
+ def test_join_self(self, join_type):
175
+ index = RangeIndex(start=0, stop=20, step=2)
176
+ joined = index.join(index, how=join_type)
177
+ assert index is joined
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/ranges/test_range.py ADDED
@@ -0,0 +1,622 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.common import ensure_platform_int
5
+
6
+ import pandas as pd
7
+ from pandas import (
8
+ Index,
9
+ RangeIndex,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ class TestRangeIndex:
15
+ @pytest.fixture
16
+ def simple_index(self):
17
+ return RangeIndex(start=0, stop=20, step=2)
18
+
19
+ def test_constructor_unwraps_index(self):
20
+ result = RangeIndex(1, 3)
21
+ expected = np.array([1, 2], dtype=np.int64)
22
+ tm.assert_numpy_array_equal(result._data, expected)
23
+
24
+ def test_can_hold_identifiers(self, simple_index):
25
+ idx = simple_index
26
+ key = idx[0]
27
+ assert idx._can_hold_identifiers_and_holds_name(key) is False
28
+
29
+ def test_too_many_names(self, simple_index):
30
+ index = simple_index
31
+ with pytest.raises(ValueError, match="^Length"):
32
+ index.names = ["roger", "harold"]
33
+
34
+ @pytest.mark.parametrize(
35
+ "index, start, stop, step",
36
+ [
37
+ (RangeIndex(5), 0, 5, 1),
38
+ (RangeIndex(0, 5), 0, 5, 1),
39
+ (RangeIndex(5, step=2), 0, 5, 2),
40
+ (RangeIndex(1, 5, 2), 1, 5, 2),
41
+ ],
42
+ )
43
+ def test_start_stop_step_attrs(self, index, start, stop, step):
44
+ # GH 25710
45
+ assert index.start == start
46
+ assert index.stop == stop
47
+ assert index.step == step
48
+
49
+ def test_copy(self):
50
+ i = RangeIndex(5, name="Foo")
51
+ i_copy = i.copy()
52
+ assert i_copy is not i
53
+ assert i_copy.identical(i)
54
+ assert i_copy._range == range(0, 5, 1)
55
+ assert i_copy.name == "Foo"
56
+
57
+ def test_repr(self):
58
+ i = RangeIndex(5, name="Foo")
59
+ result = repr(i)
60
+ expected = "RangeIndex(start=0, stop=5, step=1, name='Foo')"
61
+ assert result == expected
62
+
63
+ result = eval(result)
64
+ tm.assert_index_equal(result, i, exact=True)
65
+
66
+ i = RangeIndex(5, 0, -1)
67
+ result = repr(i)
68
+ expected = "RangeIndex(start=5, stop=0, step=-1)"
69
+ assert result == expected
70
+
71
+ result = eval(result)
72
+ tm.assert_index_equal(result, i, exact=True)
73
+
74
+ def test_insert(self):
75
+ idx = RangeIndex(5, name="Foo")
76
+ result = idx[1:4]
77
+
78
+ # test 0th element
79
+ tm.assert_index_equal(idx[0:4], result.insert(0, idx[0]), exact="equiv")
80
+
81
+ # GH 18295 (test missing)
82
+ expected = Index([0, np.nan, 1, 2, 3, 4], dtype=np.float64)
83
+ for na in [np.nan, None, pd.NA]:
84
+ result = RangeIndex(5).insert(1, na)
85
+ tm.assert_index_equal(result, expected)
86
+
87
+ result = RangeIndex(5).insert(1, pd.NaT)
88
+ expected = Index([0, pd.NaT, 1, 2, 3, 4], dtype=object)
89
+ tm.assert_index_equal(result, expected)
90
+
91
+ def test_insert_edges_preserves_rangeindex(self):
92
+ idx = Index(range(4, 9, 2))
93
+
94
+ result = idx.insert(0, 2)
95
+ expected = Index(range(2, 9, 2))
96
+ tm.assert_index_equal(result, expected, exact=True)
97
+
98
+ result = idx.insert(3, 10)
99
+ expected = Index(range(4, 11, 2))
100
+ tm.assert_index_equal(result, expected, exact=True)
101
+
102
+ def test_insert_middle_preserves_rangeindex(self):
103
+ # insert in the middle
104
+ idx = Index(range(0, 3, 2))
105
+ result = idx.insert(1, 1)
106
+ expected = Index(range(3))
107
+ tm.assert_index_equal(result, expected, exact=True)
108
+
109
+ idx = idx * 2
110
+ result = idx.insert(1, 2)
111
+ expected = expected * 2
112
+ tm.assert_index_equal(result, expected, exact=True)
113
+
114
+ def test_delete(self):
115
+ idx = RangeIndex(5, name="Foo")
116
+ expected = idx[1:]
117
+ result = idx.delete(0)
118
+ tm.assert_index_equal(result, expected, exact=True)
119
+ assert result.name == expected.name
120
+
121
+ expected = idx[:-1]
122
+ result = idx.delete(-1)
123
+ tm.assert_index_equal(result, expected, exact=True)
124
+ assert result.name == expected.name
125
+
126
+ msg = "index 5 is out of bounds for axis 0 with size 5"
127
+ with pytest.raises((IndexError, ValueError), match=msg):
128
+ # either depending on numpy version
129
+ result = idx.delete(len(idx))
130
+
131
+ def test_delete_preserves_rangeindex(self):
132
+ idx = Index(range(2), name="foo")
133
+
134
+ result = idx.delete([1])
135
+ expected = Index(range(1), name="foo")
136
+ tm.assert_index_equal(result, expected, exact=True)
137
+
138
+ result = idx.delete(1)
139
+ tm.assert_index_equal(result, expected, exact=True)
140
+
141
+ def test_delete_preserves_rangeindex_middle(self):
142
+ idx = Index(range(3), name="foo")
143
+ result = idx.delete(1)
144
+ expected = idx[::2]
145
+ tm.assert_index_equal(result, expected, exact=True)
146
+
147
+ result = idx.delete(-2)
148
+ tm.assert_index_equal(result, expected, exact=True)
149
+
150
+ def test_delete_preserves_rangeindex_list_at_end(self):
151
+ idx = RangeIndex(0, 6, 1)
152
+
153
+ loc = [2, 3, 4, 5]
154
+ result = idx.delete(loc)
155
+ expected = idx[:2]
156
+ tm.assert_index_equal(result, expected, exact=True)
157
+
158
+ result = idx.delete(loc[::-1])
159
+ tm.assert_index_equal(result, expected, exact=True)
160
+
161
+ def test_delete_preserves_rangeindex_list_middle(self):
162
+ idx = RangeIndex(0, 6, 1)
163
+
164
+ loc = [1, 2, 3, 4]
165
+ result = idx.delete(loc)
166
+ expected = RangeIndex(0, 6, 5)
167
+ tm.assert_index_equal(result, expected, exact=True)
168
+
169
+ result = idx.delete(loc[::-1])
170
+ tm.assert_index_equal(result, expected, exact=True)
171
+
172
+ def test_delete_all_preserves_rangeindex(self):
173
+ idx = RangeIndex(0, 6, 1)
174
+
175
+ loc = [0, 1, 2, 3, 4, 5]
176
+ result = idx.delete(loc)
177
+ expected = idx[:0]
178
+ tm.assert_index_equal(result, expected, exact=True)
179
+
180
+ result = idx.delete(loc[::-1])
181
+ tm.assert_index_equal(result, expected, exact=True)
182
+
183
+ def test_delete_not_preserving_rangeindex(self):
184
+ idx = RangeIndex(0, 6, 1)
185
+
186
+ loc = [0, 3, 5]
187
+ result = idx.delete(loc)
188
+ expected = Index([1, 2, 4])
189
+ tm.assert_index_equal(result, expected, exact=True)
190
+
191
+ result = idx.delete(loc[::-1])
192
+ tm.assert_index_equal(result, expected, exact=True)
193
+
194
+ def test_view(self):
195
+ i = RangeIndex(0, name="Foo")
196
+ i_view = i.view()
197
+ assert i_view.name == "Foo"
198
+
199
+ i_view = i.view("i8")
200
+ tm.assert_numpy_array_equal(i.values, i_view)
201
+
202
+ msg = "Passing a type in RangeIndex.view is deprecated"
203
+ with tm.assert_produces_warning(FutureWarning, match=msg):
204
+ i_view = i.view(RangeIndex)
205
+ tm.assert_index_equal(i, i_view)
206
+
207
+ def test_dtype(self, simple_index):
208
+ index = simple_index
209
+ assert index.dtype == np.int64
210
+
211
+ def test_cache(self):
212
+ # GH 26565, GH26617, GH35432, GH53387
213
+ # This test checks whether _cache has been set.
214
+ # Calling RangeIndex._cache["_data"] creates an int64 array of the same length
215
+ # as the RangeIndex and stores it in _cache.
216
+ idx = RangeIndex(0, 100, 10)
217
+
218
+ assert idx._cache == {}
219
+
220
+ repr(idx)
221
+ assert idx._cache == {}
222
+
223
+ str(idx)
224
+ assert idx._cache == {}
225
+
226
+ idx.get_loc(20)
227
+ assert idx._cache == {}
228
+
229
+ 90 in idx # True
230
+ assert idx._cache == {}
231
+
232
+ 91 in idx # False
233
+ assert idx._cache == {}
234
+
235
+ idx.all()
236
+ assert idx._cache == {}
237
+
238
+ idx.any()
239
+ assert idx._cache == {}
240
+
241
+ for _ in idx:
242
+ pass
243
+ assert idx._cache == {}
244
+
245
+ msg = "RangeIndex.format is deprecated"
246
+ with tm.assert_produces_warning(FutureWarning, match=msg):
247
+ idx.format()
248
+ assert idx._cache == {}
249
+
250
+ df = pd.DataFrame({"a": range(10)}, index=idx)
251
+
252
+ # df.__repr__ should not populate index cache
253
+ str(df)
254
+ assert idx._cache == {}
255
+
256
+ df.loc[50]
257
+ assert idx._cache == {}
258
+
259
+ with pytest.raises(KeyError, match="51"):
260
+ df.loc[51]
261
+ assert idx._cache == {}
262
+
263
+ df.loc[10:50]
264
+ assert idx._cache == {}
265
+
266
+ df.iloc[5:10]
267
+ assert idx._cache == {}
268
+
269
+ # after calling take, _cache may contain other keys, but not "_data"
270
+ idx.take([3, 0, 1])
271
+ assert "_data" not in idx._cache
272
+
273
+ df.loc[[50]]
274
+ assert "_data" not in idx._cache
275
+
276
+ df.iloc[[5, 6, 7, 8, 9]]
277
+ assert "_data" not in idx._cache
278
+
279
+ # idx._cache should contain a _data entry after call to idx._data
280
+ idx._data
281
+ assert isinstance(idx._data, np.ndarray)
282
+ assert idx._data is idx._data # check cached value is reused
283
+ assert "_data" in idx._cache
284
+ expected = np.arange(0, 100, 10, dtype="int64")
285
+ tm.assert_numpy_array_equal(idx._cache["_data"], expected)
286
+
287
+ def test_is_monotonic(self):
288
+ index = RangeIndex(0, 20, 2)
289
+ assert index.is_monotonic_increasing is True
290
+ assert index.is_monotonic_increasing is True
291
+ assert index.is_monotonic_decreasing is False
292
+ assert index._is_strictly_monotonic_increasing is True
293
+ assert index._is_strictly_monotonic_decreasing is False
294
+
295
+ index = RangeIndex(4, 0, -1)
296
+ assert index.is_monotonic_increasing is False
297
+ assert index._is_strictly_monotonic_increasing is False
298
+ assert index.is_monotonic_decreasing is True
299
+ assert index._is_strictly_monotonic_decreasing is True
300
+
301
+ index = RangeIndex(1, 2)
302
+ assert index.is_monotonic_increasing is True
303
+ assert index.is_monotonic_increasing is True
304
+ assert index.is_monotonic_decreasing is True
305
+ assert index._is_strictly_monotonic_increasing is True
306
+ assert index._is_strictly_monotonic_decreasing is True
307
+
308
+ index = RangeIndex(2, 1)
309
+ assert index.is_monotonic_increasing is True
310
+ assert index.is_monotonic_increasing is True
311
+ assert index.is_monotonic_decreasing is True
312
+ assert index._is_strictly_monotonic_increasing is True
313
+ assert index._is_strictly_monotonic_decreasing is True
314
+
315
+ index = RangeIndex(1, 1)
316
+ assert index.is_monotonic_increasing is True
317
+ assert index.is_monotonic_increasing is True
318
+ assert index.is_monotonic_decreasing is True
319
+ assert index._is_strictly_monotonic_increasing is True
320
+ assert index._is_strictly_monotonic_decreasing is True
321
+
322
+ @pytest.mark.parametrize(
323
+ "left,right",
324
+ [
325
+ (RangeIndex(0, 9, 2), RangeIndex(0, 10, 2)),
326
+ (RangeIndex(0), RangeIndex(1, -1, 3)),
327
+ (RangeIndex(1, 2, 3), RangeIndex(1, 3, 4)),
328
+ (RangeIndex(0, -9, -2), RangeIndex(0, -10, -2)),
329
+ ],
330
+ )
331
+ def test_equals_range(self, left, right):
332
+ assert left.equals(right)
333
+ assert right.equals(left)
334
+
335
+ def test_logical_compat(self, simple_index):
336
+ idx = simple_index
337
+ assert idx.all() == idx.values.all()
338
+ assert idx.any() == idx.values.any()
339
+
340
+ def test_identical(self, simple_index):
341
+ index = simple_index
342
+ i = Index(index.copy())
343
+ assert i.identical(index)
344
+
345
+ # we don't allow object dtype for RangeIndex
346
+ if isinstance(index, RangeIndex):
347
+ return
348
+
349
+ same_values_different_type = Index(i, dtype=object)
350
+ assert not i.identical(same_values_different_type)
351
+
352
+ i = index.copy(dtype=object)
353
+ i = i.rename("foo")
354
+ same_values = Index(i, dtype=object)
355
+ assert same_values.identical(index.copy(dtype=object))
356
+
357
+ assert not i.identical(index)
358
+ assert Index(same_values, name="foo", dtype=object).identical(i)
359
+
360
+ assert not index.copy(dtype=object).identical(index.copy(dtype="int64"))
361
+
362
+ def test_nbytes(self):
363
+ # memory savings vs int index
364
+ idx = RangeIndex(0, 1000)
365
+ assert idx.nbytes < Index(idx._values).nbytes / 10
366
+
367
+ # constant memory usage
368
+ i2 = RangeIndex(0, 10)
369
+ assert idx.nbytes == i2.nbytes
370
+
371
+ @pytest.mark.parametrize(
372
+ "start,stop,step",
373
+ [
374
+ # can't
375
+ ("foo", "bar", "baz"),
376
+ # shouldn't
377
+ ("0", "1", "2"),
378
+ ],
379
+ )
380
+ def test_cant_or_shouldnt_cast(self, start, stop, step):
381
+ msg = f"Wrong type {type(start)} for value {start}"
382
+ with pytest.raises(TypeError, match=msg):
383
+ RangeIndex(start, stop, step)
384
+
385
+ def test_view_index(self, simple_index):
386
+ index = simple_index
387
+ msg = "Passing a type in RangeIndex.view is deprecated"
388
+ with tm.assert_produces_warning(FutureWarning, match=msg):
389
+ index.view(Index)
390
+
391
+ def test_prevent_casting(self, simple_index):
392
+ index = simple_index
393
+ result = index.astype("O")
394
+ assert result.dtype == np.object_
395
+
396
+ def test_repr_roundtrip(self, simple_index):
397
+ index = simple_index
398
+ tm.assert_index_equal(eval(repr(index)), index)
399
+
400
+ def test_slice_keep_name(self):
401
+ idx = RangeIndex(1, 2, name="asdf")
402
+ assert idx.name == idx[1:].name
403
+
404
+ @pytest.mark.parametrize(
405
+ "index",
406
+ [
407
+ RangeIndex(start=0, stop=20, step=2, name="foo"),
408
+ RangeIndex(start=18, stop=-1, step=-2, name="bar"),
409
+ ],
410
+ ids=["index_inc", "index_dec"],
411
+ )
412
+ def test_has_duplicates(self, index):
413
+ assert index.is_unique
414
+ assert not index.has_duplicates
415
+
416
+ def test_extended_gcd(self, simple_index):
417
+ index = simple_index
418
+ result = index._extended_gcd(6, 10)
419
+ assert result[0] == result[1] * 6 + result[2] * 10
420
+ assert 2 == result[0]
421
+
422
+ result = index._extended_gcd(10, 6)
423
+ assert 2 == result[1] * 10 + result[2] * 6
424
+ assert 2 == result[0]
425
+
426
+ def test_min_fitting_element(self):
427
+ result = RangeIndex(0, 20, 2)._min_fitting_element(1)
428
+ assert 2 == result
429
+
430
+ result = RangeIndex(1, 6)._min_fitting_element(1)
431
+ assert 1 == result
432
+
433
+ result = RangeIndex(18, -2, -2)._min_fitting_element(1)
434
+ assert 2 == result
435
+
436
+ result = RangeIndex(5, 0, -1)._min_fitting_element(1)
437
+ assert 1 == result
438
+
439
+ big_num = 500000000000000000000000
440
+
441
+ result = RangeIndex(5, big_num * 2, 1)._min_fitting_element(big_num)
442
+ assert big_num == result
443
+
444
+ def test_slice_specialised(self, simple_index):
445
+ index = simple_index
446
+ index.name = "foo"
447
+
448
+ # scalar indexing
449
+ res = index[1]
450
+ expected = 2
451
+ assert res == expected
452
+
453
+ res = index[-1]
454
+ expected = 18
455
+ assert res == expected
456
+
457
+ # slicing
458
+ # slice value completion
459
+ index_slice = index[:]
460
+ expected = index
461
+ tm.assert_index_equal(index_slice, expected)
462
+
463
+ # positive slice values
464
+ index_slice = index[7:10:2]
465
+ expected = Index([14, 18], name="foo")
466
+ tm.assert_index_equal(index_slice, expected, exact="equiv")
467
+
468
+ # negative slice values
469
+ index_slice = index[-1:-5:-2]
470
+ expected = Index([18, 14], name="foo")
471
+ tm.assert_index_equal(index_slice, expected, exact="equiv")
472
+
473
+ # stop overshoot
474
+ index_slice = index[2:100:4]
475
+ expected = Index([4, 12], name="foo")
476
+ tm.assert_index_equal(index_slice, expected, exact="equiv")
477
+
478
+ # reverse
479
+ index_slice = index[::-1]
480
+ expected = Index(index.values[::-1], name="foo")
481
+ tm.assert_index_equal(index_slice, expected, exact="equiv")
482
+
483
+ index_slice = index[-8::-1]
484
+ expected = Index([4, 2, 0], name="foo")
485
+ tm.assert_index_equal(index_slice, expected, exact="equiv")
486
+
487
+ index_slice = index[-40::-1]
488
+ expected = Index(np.array([], dtype=np.int64), name="foo")
489
+ tm.assert_index_equal(index_slice, expected, exact="equiv")
490
+
491
+ index_slice = index[40::-1]
492
+ expected = Index(index.values[40::-1], name="foo")
493
+ tm.assert_index_equal(index_slice, expected, exact="equiv")
494
+
495
+ index_slice = index[10::-1]
496
+ expected = Index(index.values[::-1], name="foo")
497
+ tm.assert_index_equal(index_slice, expected, exact="equiv")
498
+
499
+ @pytest.mark.parametrize("step", set(range(-5, 6)) - {0})
500
+ def test_len_specialised(self, step):
501
+ # make sure that our len is the same as np.arange calc
502
+ start, stop = (0, 5) if step > 0 else (5, 0)
503
+
504
+ arr = np.arange(start, stop, step)
505
+ index = RangeIndex(start, stop, step)
506
+ assert len(index) == len(arr)
507
+
508
+ index = RangeIndex(stop, start, step)
509
+ assert len(index) == 0
510
+
511
+ @pytest.mark.parametrize(
512
+ "indices, expected",
513
+ [
514
+ ([RangeIndex(1, 12, 5)], RangeIndex(1, 12, 5)),
515
+ ([RangeIndex(0, 6, 4)], RangeIndex(0, 6, 4)),
516
+ ([RangeIndex(1, 3), RangeIndex(3, 7)], RangeIndex(1, 7)),
517
+ ([RangeIndex(1, 5, 2), RangeIndex(5, 6)], RangeIndex(1, 6, 2)),
518
+ ([RangeIndex(1, 3, 2), RangeIndex(4, 7, 3)], RangeIndex(1, 7, 3)),
519
+ ([RangeIndex(-4, 3, 2), RangeIndex(4, 7, 2)], RangeIndex(-4, 7, 2)),
520
+ ([RangeIndex(-4, -8), RangeIndex(-8, -12)], RangeIndex(0, 0)),
521
+ ([RangeIndex(-4, -8), RangeIndex(3, -4)], RangeIndex(0, 0)),
522
+ ([RangeIndex(-4, -8), RangeIndex(3, 5)], RangeIndex(3, 5)),
523
+ ([RangeIndex(-4, -2), RangeIndex(3, 5)], Index([-4, -3, 3, 4])),
524
+ ([RangeIndex(-2), RangeIndex(3, 5)], RangeIndex(3, 5)),
525
+ ([RangeIndex(2), RangeIndex(2)], Index([0, 1, 0, 1])),
526
+ ([RangeIndex(2), RangeIndex(2, 5), RangeIndex(5, 8, 4)], RangeIndex(0, 6)),
527
+ (
528
+ [RangeIndex(2), RangeIndex(3, 5), RangeIndex(5, 8, 4)],
529
+ Index([0, 1, 3, 4, 5]),
530
+ ),
531
+ (
532
+ [RangeIndex(-2, 2), RangeIndex(2, 5), RangeIndex(5, 8, 4)],
533
+ RangeIndex(-2, 6),
534
+ ),
535
+ ([RangeIndex(3), Index([-1, 3, 15])], Index([0, 1, 2, -1, 3, 15])),
536
+ ([RangeIndex(3), Index([-1, 3.1, 15.0])], Index([0, 1, 2, -1, 3.1, 15.0])),
537
+ ([RangeIndex(3), Index(["a", None, 14])], Index([0, 1, 2, "a", None, 14])),
538
+ ([RangeIndex(3, 1), Index(["a", None, 14])], Index(["a", None, 14])),
539
+ ],
540
+ )
541
+ def test_append(self, indices, expected):
542
+ # GH16212
543
+ result = indices[0].append(indices[1:])
544
+ tm.assert_index_equal(result, expected, exact=True)
545
+
546
+ if len(indices) == 2:
547
+ # Append single item rather than list
548
+ result2 = indices[0].append(indices[1])
549
+ tm.assert_index_equal(result2, expected, exact=True)
550
+
551
+ def test_engineless_lookup(self):
552
+ # GH 16685
553
+ # Standard lookup on RangeIndex should not require the engine to be
554
+ # created
555
+ idx = RangeIndex(2, 10, 3)
556
+
557
+ assert idx.get_loc(5) == 1
558
+ tm.assert_numpy_array_equal(
559
+ idx.get_indexer([2, 8]), ensure_platform_int(np.array([0, 2]))
560
+ )
561
+ with pytest.raises(KeyError, match="3"):
562
+ idx.get_loc(3)
563
+
564
+ assert "_engine" not in idx._cache
565
+
566
+ # Different types of scalars can be excluded immediately, no need to
567
+ # use the _engine
568
+ with pytest.raises(KeyError, match="'a'"):
569
+ idx.get_loc("a")
570
+
571
+ assert "_engine" not in idx._cache
572
+
573
+ def test_format_empty(self):
574
+ # GH35712
575
+ empty_idx = RangeIndex(0)
576
+ msg = r"RangeIndex\.format is deprecated"
577
+ with tm.assert_produces_warning(FutureWarning, match=msg):
578
+ assert empty_idx.format() == []
579
+ with tm.assert_produces_warning(FutureWarning, match=msg):
580
+ assert empty_idx.format(name=True) == [""]
581
+
582
+ @pytest.mark.parametrize(
583
+ "ri",
584
+ [
585
+ RangeIndex(0, -1, -1),
586
+ RangeIndex(0, 1, 1),
587
+ RangeIndex(1, 3, 2),
588
+ RangeIndex(0, -1, -2),
589
+ RangeIndex(-3, -5, -2),
590
+ ],
591
+ )
592
+ def test_append_len_one(self, ri):
593
+ # GH39401
594
+ result = ri.append([])
595
+ tm.assert_index_equal(result, ri, exact=True)
596
+
597
+ @pytest.mark.parametrize("base", [RangeIndex(0, 2), Index([0, 1])])
598
+ def test_isin_range(self, base):
599
+ # GH#41151
600
+ values = RangeIndex(0, 1)
601
+ result = base.isin(values)
602
+ expected = np.array([True, False])
603
+ tm.assert_numpy_array_equal(result, expected)
604
+
605
+ def test_sort_values_key(self):
606
+ # GH#43666, GH#52764
607
+ sort_order = {8: 2, 6: 0, 4: 8, 2: 10, 0: 12}
608
+ values = RangeIndex(0, 10, 2)
609
+ result = values.sort_values(key=lambda x: x.map(sort_order))
610
+ expected = Index([6, 8, 4, 2, 0], dtype="int64")
611
+ tm.assert_index_equal(result, expected, check_exact=True)
612
+
613
+ # check this matches the Series.sort_values behavior
614
+ ser = values.to_series()
615
+ result2 = ser.sort_values(key=lambda x: x.map(sort_order))
616
+ tm.assert_series_equal(result2, expected.to_series(), check_exact=True)
617
+
618
+ def test_range_index_rsub_by_const(self):
619
+ # GH#53255
620
+ result = 3 - RangeIndex(0, 4, 1)
621
+ expected = RangeIndex(3, -1, -1)
622
+ tm.assert_index_equal(result, expected)