Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/arrays.pyi +40 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi +5 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/groupby.pyi +216 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashing.pyi +9 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi +252 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/index.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/index.pyi +100 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/internals.pyi +94 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/interval.pyi +174 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.pyi +79 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/lib.pyi +213 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/ops.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/parsers.pyi +77 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/reshape.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/reshape.pyi +16 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/sas.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/sas.pyi +7 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/sparse.pyi +51 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/testing.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslib.pyi +37 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py +87 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi +12 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi +14 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi +83 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.pyi +62 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi +141 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi +27 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi +287 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.pyi +33 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/period.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi +135 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.pyi +14 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.cpython-310-x86_64-linux-gnu.so +0 -0
- llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.pyi +174 -0
llmeval-env/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (553 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (133 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/arrays.pyi
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Sequence
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas._typing import (
|
6 |
+
AxisInt,
|
7 |
+
DtypeObj,
|
8 |
+
Self,
|
9 |
+
Shape,
|
10 |
+
)
|
11 |
+
|
12 |
+
class NDArrayBacked:
|
13 |
+
_dtype: DtypeObj
|
14 |
+
_ndarray: np.ndarray
|
15 |
+
def __init__(self, values: np.ndarray, dtype: DtypeObj) -> None: ...
|
16 |
+
@classmethod
|
17 |
+
def _simple_new(cls, values: np.ndarray, dtype: DtypeObj): ...
|
18 |
+
def _from_backing_data(self, values: np.ndarray): ...
|
19 |
+
def __setstate__(self, state): ...
|
20 |
+
def __len__(self) -> int: ...
|
21 |
+
@property
|
22 |
+
def shape(self) -> Shape: ...
|
23 |
+
@property
|
24 |
+
def ndim(self) -> int: ...
|
25 |
+
@property
|
26 |
+
def size(self) -> int: ...
|
27 |
+
@property
|
28 |
+
def nbytes(self) -> int: ...
|
29 |
+
def copy(self, order=...): ...
|
30 |
+
def delete(self, loc, axis=...): ...
|
31 |
+
def swapaxes(self, axis1, axis2): ...
|
32 |
+
def repeat(self, repeats: int | Sequence[int], axis: int | None = ...): ...
|
33 |
+
def reshape(self, *args, **kwargs): ...
|
34 |
+
def ravel(self, order=...): ...
|
35 |
+
@property
|
36 |
+
def T(self): ...
|
37 |
+
@classmethod
|
38 |
+
def _concat_same_type(
|
39 |
+
cls, to_concat: Sequence[Self], axis: AxisInt = ...
|
40 |
+
) -> Self: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def read_float_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
|
2 |
+
def read_double_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
|
3 |
+
def read_uint16_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
|
4 |
+
def read_uint32_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
|
5 |
+
def read_uint64_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/groupby.pyi
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas._typing import npt
|
6 |
+
|
7 |
+
def group_median_float64(
|
8 |
+
out: np.ndarray, # ndarray[float64_t, ndim=2]
|
9 |
+
counts: npt.NDArray[np.int64],
|
10 |
+
values: np.ndarray, # ndarray[float64_t, ndim=2]
|
11 |
+
labels: npt.NDArray[np.int64],
|
12 |
+
min_count: int = ..., # Py_ssize_t
|
13 |
+
mask: np.ndarray | None = ...,
|
14 |
+
result_mask: np.ndarray | None = ...,
|
15 |
+
) -> None: ...
|
16 |
+
def group_cumprod(
|
17 |
+
out: np.ndarray, # float64_t[:, ::1]
|
18 |
+
values: np.ndarray, # const float64_t[:, :]
|
19 |
+
labels: np.ndarray, # const int64_t[:]
|
20 |
+
ngroups: int,
|
21 |
+
is_datetimelike: bool,
|
22 |
+
skipna: bool = ...,
|
23 |
+
mask: np.ndarray | None = ...,
|
24 |
+
result_mask: np.ndarray | None = ...,
|
25 |
+
) -> None: ...
|
26 |
+
def group_cumsum(
|
27 |
+
out: np.ndarray, # int64float_t[:, ::1]
|
28 |
+
values: np.ndarray, # ndarray[int64float_t, ndim=2]
|
29 |
+
labels: np.ndarray, # const int64_t[:]
|
30 |
+
ngroups: int,
|
31 |
+
is_datetimelike: bool,
|
32 |
+
skipna: bool = ...,
|
33 |
+
mask: np.ndarray | None = ...,
|
34 |
+
result_mask: np.ndarray | None = ...,
|
35 |
+
) -> None: ...
|
36 |
+
def group_shift_indexer(
|
37 |
+
out: np.ndarray, # int64_t[::1]
|
38 |
+
labels: np.ndarray, # const int64_t[:]
|
39 |
+
ngroups: int,
|
40 |
+
periods: int,
|
41 |
+
) -> None: ...
|
42 |
+
def group_fillna_indexer(
|
43 |
+
out: np.ndarray, # ndarray[intp_t]
|
44 |
+
labels: np.ndarray, # ndarray[int64_t]
|
45 |
+
sorted_labels: npt.NDArray[np.intp],
|
46 |
+
mask: npt.NDArray[np.uint8],
|
47 |
+
limit: int, # int64_t
|
48 |
+
dropna: bool,
|
49 |
+
) -> None: ...
|
50 |
+
def group_any_all(
|
51 |
+
out: np.ndarray, # uint8_t[::1]
|
52 |
+
values: np.ndarray, # const uint8_t[::1]
|
53 |
+
labels: np.ndarray, # const int64_t[:]
|
54 |
+
mask: np.ndarray, # const uint8_t[::1]
|
55 |
+
val_test: Literal["any", "all"],
|
56 |
+
skipna: bool,
|
57 |
+
result_mask: np.ndarray | None,
|
58 |
+
) -> None: ...
|
59 |
+
def group_sum(
|
60 |
+
out: np.ndarray, # complexfloatingintuint_t[:, ::1]
|
61 |
+
counts: np.ndarray, # int64_t[::1]
|
62 |
+
values: np.ndarray, # ndarray[complexfloatingintuint_t, ndim=2]
|
63 |
+
labels: np.ndarray, # const intp_t[:]
|
64 |
+
mask: np.ndarray | None,
|
65 |
+
result_mask: np.ndarray | None = ...,
|
66 |
+
min_count: int = ...,
|
67 |
+
is_datetimelike: bool = ...,
|
68 |
+
) -> None: ...
|
69 |
+
def group_prod(
|
70 |
+
out: np.ndarray, # int64float_t[:, ::1]
|
71 |
+
counts: np.ndarray, # int64_t[::1]
|
72 |
+
values: np.ndarray, # ndarray[int64float_t, ndim=2]
|
73 |
+
labels: np.ndarray, # const intp_t[:]
|
74 |
+
mask: np.ndarray | None,
|
75 |
+
result_mask: np.ndarray | None = ...,
|
76 |
+
min_count: int = ...,
|
77 |
+
) -> None: ...
|
78 |
+
def group_var(
|
79 |
+
out: np.ndarray, # floating[:, ::1]
|
80 |
+
counts: np.ndarray, # int64_t[::1]
|
81 |
+
values: np.ndarray, # ndarray[floating, ndim=2]
|
82 |
+
labels: np.ndarray, # const intp_t[:]
|
83 |
+
min_count: int = ..., # Py_ssize_t
|
84 |
+
ddof: int = ..., # int64_t
|
85 |
+
mask: np.ndarray | None = ...,
|
86 |
+
result_mask: np.ndarray | None = ...,
|
87 |
+
is_datetimelike: bool = ...,
|
88 |
+
name: str = ...,
|
89 |
+
) -> None: ...
|
90 |
+
def group_skew(
|
91 |
+
out: np.ndarray, # float64_t[:, ::1]
|
92 |
+
counts: np.ndarray, # int64_t[::1]
|
93 |
+
values: np.ndarray, # ndarray[float64_T, ndim=2]
|
94 |
+
labels: np.ndarray, # const intp_t[::1]
|
95 |
+
mask: np.ndarray | None = ...,
|
96 |
+
result_mask: np.ndarray | None = ...,
|
97 |
+
skipna: bool = ...,
|
98 |
+
) -> None: ...
|
99 |
+
def group_mean(
|
100 |
+
out: np.ndarray, # floating[:, ::1]
|
101 |
+
counts: np.ndarray, # int64_t[::1]
|
102 |
+
values: np.ndarray, # ndarray[floating, ndim=2]
|
103 |
+
labels: np.ndarray, # const intp_t[:]
|
104 |
+
min_count: int = ..., # Py_ssize_t
|
105 |
+
is_datetimelike: bool = ..., # bint
|
106 |
+
mask: np.ndarray | None = ...,
|
107 |
+
result_mask: np.ndarray | None = ...,
|
108 |
+
) -> None: ...
|
109 |
+
def group_ohlc(
|
110 |
+
out: np.ndarray, # floatingintuint_t[:, ::1]
|
111 |
+
counts: np.ndarray, # int64_t[::1]
|
112 |
+
values: np.ndarray, # ndarray[floatingintuint_t, ndim=2]
|
113 |
+
labels: np.ndarray, # const intp_t[:]
|
114 |
+
min_count: int = ...,
|
115 |
+
mask: np.ndarray | None = ...,
|
116 |
+
result_mask: np.ndarray | None = ...,
|
117 |
+
) -> None: ...
|
118 |
+
def group_quantile(
|
119 |
+
out: npt.NDArray[np.float64],
|
120 |
+
values: np.ndarray, # ndarray[numeric, ndim=1]
|
121 |
+
labels: npt.NDArray[np.intp],
|
122 |
+
mask: npt.NDArray[np.uint8],
|
123 |
+
qs: npt.NDArray[np.float64], # const
|
124 |
+
starts: npt.NDArray[np.int64],
|
125 |
+
ends: npt.NDArray[np.int64],
|
126 |
+
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
|
127 |
+
result_mask: np.ndarray | None,
|
128 |
+
is_datetimelike: bool,
|
129 |
+
) -> None: ...
|
130 |
+
def group_last(
|
131 |
+
out: np.ndarray, # rank_t[:, ::1]
|
132 |
+
counts: np.ndarray, # int64_t[::1]
|
133 |
+
values: np.ndarray, # ndarray[rank_t, ndim=2]
|
134 |
+
labels: np.ndarray, # const int64_t[:]
|
135 |
+
mask: npt.NDArray[np.bool_] | None,
|
136 |
+
result_mask: npt.NDArray[np.bool_] | None = ...,
|
137 |
+
min_count: int = ..., # Py_ssize_t
|
138 |
+
is_datetimelike: bool = ...,
|
139 |
+
skipna: bool = ...,
|
140 |
+
) -> None: ...
|
141 |
+
def group_nth(
|
142 |
+
out: np.ndarray, # rank_t[:, ::1]
|
143 |
+
counts: np.ndarray, # int64_t[::1]
|
144 |
+
values: np.ndarray, # ndarray[rank_t, ndim=2]
|
145 |
+
labels: np.ndarray, # const int64_t[:]
|
146 |
+
mask: npt.NDArray[np.bool_] | None,
|
147 |
+
result_mask: npt.NDArray[np.bool_] | None = ...,
|
148 |
+
min_count: int = ..., # int64_t
|
149 |
+
rank: int = ..., # int64_t
|
150 |
+
is_datetimelike: bool = ...,
|
151 |
+
skipna: bool = ...,
|
152 |
+
) -> None: ...
|
153 |
+
def group_rank(
|
154 |
+
out: np.ndarray, # float64_t[:, ::1]
|
155 |
+
values: np.ndarray, # ndarray[rank_t, ndim=2]
|
156 |
+
labels: np.ndarray, # const int64_t[:]
|
157 |
+
ngroups: int,
|
158 |
+
is_datetimelike: bool,
|
159 |
+
ties_method: Literal["average", "min", "max", "first", "dense"] = ...,
|
160 |
+
ascending: bool = ...,
|
161 |
+
pct: bool = ...,
|
162 |
+
na_option: Literal["keep", "top", "bottom"] = ...,
|
163 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
164 |
+
) -> None: ...
|
165 |
+
def group_max(
|
166 |
+
out: np.ndarray, # groupby_t[:, ::1]
|
167 |
+
counts: np.ndarray, # int64_t[::1]
|
168 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
169 |
+
labels: np.ndarray, # const int64_t[:]
|
170 |
+
min_count: int = ...,
|
171 |
+
is_datetimelike: bool = ...,
|
172 |
+
mask: np.ndarray | None = ...,
|
173 |
+
result_mask: np.ndarray | None = ...,
|
174 |
+
) -> None: ...
|
175 |
+
def group_min(
|
176 |
+
out: np.ndarray, # groupby_t[:, ::1]
|
177 |
+
counts: np.ndarray, # int64_t[::1]
|
178 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
179 |
+
labels: np.ndarray, # const int64_t[:]
|
180 |
+
min_count: int = ...,
|
181 |
+
is_datetimelike: bool = ...,
|
182 |
+
mask: np.ndarray | None = ...,
|
183 |
+
result_mask: np.ndarray | None = ...,
|
184 |
+
) -> None: ...
|
185 |
+
def group_idxmin_idxmax(
|
186 |
+
out: npt.NDArray[np.intp],
|
187 |
+
counts: npt.NDArray[np.int64],
|
188 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
189 |
+
labels: npt.NDArray[np.intp],
|
190 |
+
min_count: int = ...,
|
191 |
+
is_datetimelike: bool = ...,
|
192 |
+
mask: np.ndarray | None = ...,
|
193 |
+
name: str = ...,
|
194 |
+
skipna: bool = ...,
|
195 |
+
result_mask: np.ndarray | None = ...,
|
196 |
+
) -> None: ...
|
197 |
+
def group_cummin(
|
198 |
+
out: np.ndarray, # groupby_t[:, ::1]
|
199 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
200 |
+
labels: np.ndarray, # const int64_t[:]
|
201 |
+
ngroups: int,
|
202 |
+
is_datetimelike: bool,
|
203 |
+
mask: np.ndarray | None = ...,
|
204 |
+
result_mask: np.ndarray | None = ...,
|
205 |
+
skipna: bool = ...,
|
206 |
+
) -> None: ...
|
207 |
+
def group_cummax(
|
208 |
+
out: np.ndarray, # groupby_t[:, ::1]
|
209 |
+
values: np.ndarray, # ndarray[groupby_t, ndim=2]
|
210 |
+
labels: np.ndarray, # const int64_t[:]
|
211 |
+
ngroups: int,
|
212 |
+
is_datetimelike: bool,
|
213 |
+
mask: np.ndarray | None = ...,
|
214 |
+
result_mask: np.ndarray | None = ...,
|
215 |
+
skipna: bool = ...,
|
216 |
+
) -> None: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashing.pyi
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def hash_object_array(
|
6 |
+
arr: npt.NDArray[np.object_],
|
7 |
+
key: str,
|
8 |
+
encoding: str = ...,
|
9 |
+
) -> npt.NDArray[np.uint64]: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Hashable,
|
4 |
+
Literal,
|
5 |
+
)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from pandas._typing import npt
|
10 |
+
|
11 |
+
def unique_label_indices(
|
12 |
+
labels: np.ndarray, # const int64_t[:]
|
13 |
+
) -> np.ndarray: ...
|
14 |
+
|
15 |
+
class Factorizer:
|
16 |
+
count: int
|
17 |
+
uniques: Any
|
18 |
+
def __init__(self, size_hint: int) -> None: ...
|
19 |
+
def get_count(self) -> int: ...
|
20 |
+
def factorize(
|
21 |
+
self,
|
22 |
+
values: np.ndarray,
|
23 |
+
na_sentinel=...,
|
24 |
+
na_value=...,
|
25 |
+
mask=...,
|
26 |
+
) -> npt.NDArray[np.intp]: ...
|
27 |
+
|
28 |
+
class ObjectFactorizer(Factorizer):
|
29 |
+
table: PyObjectHashTable
|
30 |
+
uniques: ObjectVector
|
31 |
+
|
32 |
+
class Int64Factorizer(Factorizer):
|
33 |
+
table: Int64HashTable
|
34 |
+
uniques: Int64Vector
|
35 |
+
|
36 |
+
class UInt64Factorizer(Factorizer):
|
37 |
+
table: UInt64HashTable
|
38 |
+
uniques: UInt64Vector
|
39 |
+
|
40 |
+
class Int32Factorizer(Factorizer):
|
41 |
+
table: Int32HashTable
|
42 |
+
uniques: Int32Vector
|
43 |
+
|
44 |
+
class UInt32Factorizer(Factorizer):
|
45 |
+
table: UInt32HashTable
|
46 |
+
uniques: UInt32Vector
|
47 |
+
|
48 |
+
class Int16Factorizer(Factorizer):
|
49 |
+
table: Int16HashTable
|
50 |
+
uniques: Int16Vector
|
51 |
+
|
52 |
+
class UInt16Factorizer(Factorizer):
|
53 |
+
table: UInt16HashTable
|
54 |
+
uniques: UInt16Vector
|
55 |
+
|
56 |
+
class Int8Factorizer(Factorizer):
|
57 |
+
table: Int8HashTable
|
58 |
+
uniques: Int8Vector
|
59 |
+
|
60 |
+
class UInt8Factorizer(Factorizer):
|
61 |
+
table: UInt8HashTable
|
62 |
+
uniques: UInt8Vector
|
63 |
+
|
64 |
+
class Float64Factorizer(Factorizer):
|
65 |
+
table: Float64HashTable
|
66 |
+
uniques: Float64Vector
|
67 |
+
|
68 |
+
class Float32Factorizer(Factorizer):
|
69 |
+
table: Float32HashTable
|
70 |
+
uniques: Float32Vector
|
71 |
+
|
72 |
+
class Complex64Factorizer(Factorizer):
|
73 |
+
table: Complex64HashTable
|
74 |
+
uniques: Complex64Vector
|
75 |
+
|
76 |
+
class Complex128Factorizer(Factorizer):
|
77 |
+
table: Complex128HashTable
|
78 |
+
uniques: Complex128Vector
|
79 |
+
|
80 |
+
class Int64Vector:
|
81 |
+
def __init__(self, *args) -> None: ...
|
82 |
+
def __len__(self) -> int: ...
|
83 |
+
def to_array(self) -> npt.NDArray[np.int64]: ...
|
84 |
+
|
85 |
+
class Int32Vector:
|
86 |
+
def __init__(self, *args) -> None: ...
|
87 |
+
def __len__(self) -> int: ...
|
88 |
+
def to_array(self) -> npt.NDArray[np.int32]: ...
|
89 |
+
|
90 |
+
class Int16Vector:
|
91 |
+
def __init__(self, *args) -> None: ...
|
92 |
+
def __len__(self) -> int: ...
|
93 |
+
def to_array(self) -> npt.NDArray[np.int16]: ...
|
94 |
+
|
95 |
+
class Int8Vector:
|
96 |
+
def __init__(self, *args) -> None: ...
|
97 |
+
def __len__(self) -> int: ...
|
98 |
+
def to_array(self) -> npt.NDArray[np.int8]: ...
|
99 |
+
|
100 |
+
class UInt64Vector:
|
101 |
+
def __init__(self, *args) -> None: ...
|
102 |
+
def __len__(self) -> int: ...
|
103 |
+
def to_array(self) -> npt.NDArray[np.uint64]: ...
|
104 |
+
|
105 |
+
class UInt32Vector:
|
106 |
+
def __init__(self, *args) -> None: ...
|
107 |
+
def __len__(self) -> int: ...
|
108 |
+
def to_array(self) -> npt.NDArray[np.uint32]: ...
|
109 |
+
|
110 |
+
class UInt16Vector:
|
111 |
+
def __init__(self, *args) -> None: ...
|
112 |
+
def __len__(self) -> int: ...
|
113 |
+
def to_array(self) -> npt.NDArray[np.uint16]: ...
|
114 |
+
|
115 |
+
class UInt8Vector:
|
116 |
+
def __init__(self, *args) -> None: ...
|
117 |
+
def __len__(self) -> int: ...
|
118 |
+
def to_array(self) -> npt.NDArray[np.uint8]: ...
|
119 |
+
|
120 |
+
class Float64Vector:
|
121 |
+
def __init__(self, *args) -> None: ...
|
122 |
+
def __len__(self) -> int: ...
|
123 |
+
def to_array(self) -> npt.NDArray[np.float64]: ...
|
124 |
+
|
125 |
+
class Float32Vector:
|
126 |
+
def __init__(self, *args) -> None: ...
|
127 |
+
def __len__(self) -> int: ...
|
128 |
+
def to_array(self) -> npt.NDArray[np.float32]: ...
|
129 |
+
|
130 |
+
class Complex128Vector:
|
131 |
+
def __init__(self, *args) -> None: ...
|
132 |
+
def __len__(self) -> int: ...
|
133 |
+
def to_array(self) -> npt.NDArray[np.complex128]: ...
|
134 |
+
|
135 |
+
class Complex64Vector:
|
136 |
+
def __init__(self, *args) -> None: ...
|
137 |
+
def __len__(self) -> int: ...
|
138 |
+
def to_array(self) -> npt.NDArray[np.complex64]: ...
|
139 |
+
|
140 |
+
class StringVector:
|
141 |
+
def __init__(self, *args) -> None: ...
|
142 |
+
def __len__(self) -> int: ...
|
143 |
+
def to_array(self) -> npt.NDArray[np.object_]: ...
|
144 |
+
|
145 |
+
class ObjectVector:
|
146 |
+
def __init__(self, *args) -> None: ...
|
147 |
+
def __len__(self) -> int: ...
|
148 |
+
def to_array(self) -> npt.NDArray[np.object_]: ...
|
149 |
+
|
150 |
+
class HashTable:
|
151 |
+
# NB: The base HashTable class does _not_ actually have these methods;
|
152 |
+
# we are putting them here for the sake of mypy to avoid
|
153 |
+
# reproducing them in each subclass below.
|
154 |
+
def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ...
|
155 |
+
def __len__(self) -> int: ...
|
156 |
+
def __contains__(self, key: Hashable) -> bool: ...
|
157 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
158 |
+
def get_state(self) -> dict[str, int]: ...
|
159 |
+
# TODO: `val/key` type is subclass-specific
|
160 |
+
def get_item(self, val): ... # TODO: return type?
|
161 |
+
def set_item(self, key, val) -> None: ...
|
162 |
+
def get_na(self): ... # TODO: return type?
|
163 |
+
def set_na(self, val) -> None: ...
|
164 |
+
def map_locations(
|
165 |
+
self,
|
166 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
167 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
168 |
+
) -> None: ...
|
169 |
+
def lookup(
|
170 |
+
self,
|
171 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
172 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
173 |
+
) -> npt.NDArray[np.intp]: ...
|
174 |
+
def get_labels(
|
175 |
+
self,
|
176 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
177 |
+
uniques, # SubclassTypeVector
|
178 |
+
count_prior: int = ...,
|
179 |
+
na_sentinel: int = ...,
|
180 |
+
na_value: object = ...,
|
181 |
+
mask=...,
|
182 |
+
) -> npt.NDArray[np.intp]: ...
|
183 |
+
def unique(
|
184 |
+
self,
|
185 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
186 |
+
return_inverse: bool = ...,
|
187 |
+
mask=...,
|
188 |
+
) -> (
|
189 |
+
tuple[
|
190 |
+
np.ndarray, # np.ndarray[subclass-specific]
|
191 |
+
npt.NDArray[np.intp],
|
192 |
+
]
|
193 |
+
| np.ndarray
|
194 |
+
): ... # np.ndarray[subclass-specific]
|
195 |
+
def factorize(
|
196 |
+
self,
|
197 |
+
values: np.ndarray, # np.ndarray[subclass-specific]
|
198 |
+
na_sentinel: int = ...,
|
199 |
+
na_value: object = ...,
|
200 |
+
mask=...,
|
201 |
+
ignore_na: bool = True,
|
202 |
+
) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... # np.ndarray[subclass-specific]
|
203 |
+
|
204 |
+
class Complex128HashTable(HashTable): ...
|
205 |
+
class Complex64HashTable(HashTable): ...
|
206 |
+
class Float64HashTable(HashTable): ...
|
207 |
+
class Float32HashTable(HashTable): ...
|
208 |
+
|
209 |
+
class Int64HashTable(HashTable):
|
210 |
+
# Only Int64HashTable has get_labels_groupby, map_keys_to_values
|
211 |
+
def get_labels_groupby(
|
212 |
+
self,
|
213 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
214 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ...
|
215 |
+
def map_keys_to_values(
|
216 |
+
self,
|
217 |
+
keys: npt.NDArray[np.int64],
|
218 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
219 |
+
) -> None: ...
|
220 |
+
|
221 |
+
class Int32HashTable(HashTable): ...
|
222 |
+
class Int16HashTable(HashTable): ...
|
223 |
+
class Int8HashTable(HashTable): ...
|
224 |
+
class UInt64HashTable(HashTable): ...
|
225 |
+
class UInt32HashTable(HashTable): ...
|
226 |
+
class UInt16HashTable(HashTable): ...
|
227 |
+
class UInt8HashTable(HashTable): ...
|
228 |
+
class StringHashTable(HashTable): ...
|
229 |
+
class PyObjectHashTable(HashTable): ...
|
230 |
+
class IntpHashTable(HashTable): ...
|
231 |
+
|
232 |
+
def duplicated(
|
233 |
+
values: np.ndarray,
|
234 |
+
keep: Literal["last", "first", False] = ...,
|
235 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
236 |
+
) -> npt.NDArray[np.bool_]: ...
|
237 |
+
def mode(
|
238 |
+
values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ...
|
239 |
+
) -> np.ndarray: ...
|
240 |
+
def value_count(
|
241 |
+
values: np.ndarray,
|
242 |
+
dropna: bool,
|
243 |
+
mask: npt.NDArray[np.bool_] | None = ...,
|
244 |
+
) -> tuple[np.ndarray, npt.NDArray[np.int64], int]: ... # np.ndarray[same-as-values]
|
245 |
+
|
246 |
+
# arr and values should have same dtype
|
247 |
+
def ismember(
|
248 |
+
arr: np.ndarray,
|
249 |
+
values: np.ndarray,
|
250 |
+
) -> npt.NDArray[np.bool_]: ...
|
251 |
+
def object_hash(obj) -> int: ...
|
252 |
+
def objects_are_equal(a, b) -> bool: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/index.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (988 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/index.pyi
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
from pandas import MultiIndex
|
6 |
+
from pandas.core.arrays import ExtensionArray
|
7 |
+
|
8 |
+
multiindex_nulls_shift: int
|
9 |
+
|
10 |
+
class IndexEngine:
|
11 |
+
over_size_threshold: bool
|
12 |
+
def __init__(self, values: np.ndarray) -> None: ...
|
13 |
+
def __contains__(self, val: object) -> bool: ...
|
14 |
+
|
15 |
+
# -> int | slice | np.ndarray[bool]
|
16 |
+
def get_loc(self, val: object) -> int | slice | np.ndarray: ...
|
17 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
18 |
+
def __sizeof__(self) -> int: ...
|
19 |
+
@property
|
20 |
+
def is_unique(self) -> bool: ...
|
21 |
+
@property
|
22 |
+
def is_monotonic_increasing(self) -> bool: ...
|
23 |
+
@property
|
24 |
+
def is_monotonic_decreasing(self) -> bool: ...
|
25 |
+
@property
|
26 |
+
def is_mapping_populated(self) -> bool: ...
|
27 |
+
def clear_mapping(self): ...
|
28 |
+
def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
|
29 |
+
def get_indexer_non_unique(
|
30 |
+
self,
|
31 |
+
targets: np.ndarray,
|
32 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
33 |
+
|
34 |
+
class MaskedIndexEngine(IndexEngine):
|
35 |
+
def __init__(self, values: object) -> None: ...
|
36 |
+
def get_indexer_non_unique(
|
37 |
+
self, targets: object
|
38 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
39 |
+
|
40 |
+
class Float64Engine(IndexEngine): ...
|
41 |
+
class Float32Engine(IndexEngine): ...
|
42 |
+
class Complex128Engine(IndexEngine): ...
|
43 |
+
class Complex64Engine(IndexEngine): ...
|
44 |
+
class Int64Engine(IndexEngine): ...
|
45 |
+
class Int32Engine(IndexEngine): ...
|
46 |
+
class Int16Engine(IndexEngine): ...
|
47 |
+
class Int8Engine(IndexEngine): ...
|
48 |
+
class UInt64Engine(IndexEngine): ...
|
49 |
+
class UInt32Engine(IndexEngine): ...
|
50 |
+
class UInt16Engine(IndexEngine): ...
|
51 |
+
class UInt8Engine(IndexEngine): ...
|
52 |
+
class ObjectEngine(IndexEngine): ...
|
53 |
+
class DatetimeEngine(Int64Engine): ...
|
54 |
+
class TimedeltaEngine(DatetimeEngine): ...
|
55 |
+
class PeriodEngine(Int64Engine): ...
|
56 |
+
class BoolEngine(UInt8Engine): ...
|
57 |
+
class MaskedFloat64Engine(MaskedIndexEngine): ...
|
58 |
+
class MaskedFloat32Engine(MaskedIndexEngine): ...
|
59 |
+
class MaskedComplex128Engine(MaskedIndexEngine): ...
|
60 |
+
class MaskedComplex64Engine(MaskedIndexEngine): ...
|
61 |
+
class MaskedInt64Engine(MaskedIndexEngine): ...
|
62 |
+
class MaskedInt32Engine(MaskedIndexEngine): ...
|
63 |
+
class MaskedInt16Engine(MaskedIndexEngine): ...
|
64 |
+
class MaskedInt8Engine(MaskedIndexEngine): ...
|
65 |
+
class MaskedUInt64Engine(MaskedIndexEngine): ...
|
66 |
+
class MaskedUInt32Engine(MaskedIndexEngine): ...
|
67 |
+
class MaskedUInt16Engine(MaskedIndexEngine): ...
|
68 |
+
class MaskedUInt8Engine(MaskedIndexEngine): ...
|
69 |
+
class MaskedBoolEngine(MaskedUInt8Engine): ...
|
70 |
+
|
71 |
+
class BaseMultiIndexCodesEngine:
|
72 |
+
levels: list[np.ndarray]
|
73 |
+
offsets: np.ndarray # ndarray[uint64_t, ndim=1]
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
levels: list[np.ndarray], # all entries hashable
|
78 |
+
labels: list[np.ndarray], # all entries integer-dtyped
|
79 |
+
offsets: np.ndarray, # np.ndarray[np.uint64, ndim=1]
|
80 |
+
) -> None: ...
|
81 |
+
def get_indexer(self, target: npt.NDArray[np.object_]) -> npt.NDArray[np.intp]: ...
|
82 |
+
def _extract_level_codes(self, target: MultiIndex) -> np.ndarray: ...
|
83 |
+
|
84 |
+
class ExtensionEngine:
|
85 |
+
def __init__(self, values: ExtensionArray) -> None: ...
|
86 |
+
def __contains__(self, val: object) -> bool: ...
|
87 |
+
def get_loc(self, val: object) -> int | slice | np.ndarray: ...
|
88 |
+
def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
|
89 |
+
def get_indexer_non_unique(
|
90 |
+
self,
|
91 |
+
targets: np.ndarray,
|
92 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
93 |
+
@property
|
94 |
+
def is_unique(self) -> bool: ...
|
95 |
+
@property
|
96 |
+
def is_monotonic_increasing(self) -> bool: ...
|
97 |
+
@property
|
98 |
+
def is_monotonic_decreasing(self) -> bool: ...
|
99 |
+
def sizeof(self, deep: bool = ...) -> int: ...
|
100 |
+
def clear_mapping(self): ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (416 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/internals.pyi
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Iterator,
|
3 |
+
Sequence,
|
4 |
+
final,
|
5 |
+
overload,
|
6 |
+
)
|
7 |
+
import weakref
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from pandas._typing import (
|
12 |
+
ArrayLike,
|
13 |
+
Self,
|
14 |
+
npt,
|
15 |
+
)
|
16 |
+
|
17 |
+
from pandas import Index
|
18 |
+
from pandas.core.internals.blocks import Block as B
|
19 |
+
|
20 |
+
def slice_len(slc: slice, objlen: int = ...) -> int: ...
|
21 |
+
def get_concat_blkno_indexers(
|
22 |
+
blknos_list: list[npt.NDArray[np.intp]],
|
23 |
+
) -> list[tuple[npt.NDArray[np.intp], BlockPlacement]]: ...
|
24 |
+
def get_blkno_indexers(
|
25 |
+
blknos: np.ndarray, # int64_t[:]
|
26 |
+
group: bool = ...,
|
27 |
+
) -> list[tuple[int, slice | np.ndarray]]: ...
|
28 |
+
def get_blkno_placements(
|
29 |
+
blknos: np.ndarray,
|
30 |
+
group: bool = ...,
|
31 |
+
) -> Iterator[tuple[int, BlockPlacement]]: ...
|
32 |
+
def update_blklocs_and_blknos(
|
33 |
+
blklocs: npt.NDArray[np.intp],
|
34 |
+
blknos: npt.NDArray[np.intp],
|
35 |
+
loc: int,
|
36 |
+
nblocks: int,
|
37 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
38 |
+
@final
|
39 |
+
class BlockPlacement:
|
40 |
+
def __init__(self, val: int | slice | np.ndarray) -> None: ...
|
41 |
+
@property
|
42 |
+
def indexer(self) -> np.ndarray | slice: ...
|
43 |
+
@property
|
44 |
+
def as_array(self) -> np.ndarray: ...
|
45 |
+
@property
|
46 |
+
def as_slice(self) -> slice: ...
|
47 |
+
@property
|
48 |
+
def is_slice_like(self) -> bool: ...
|
49 |
+
@overload
|
50 |
+
def __getitem__(
|
51 |
+
self, loc: slice | Sequence[int] | npt.NDArray[np.intp]
|
52 |
+
) -> BlockPlacement: ...
|
53 |
+
@overload
|
54 |
+
def __getitem__(self, loc: int) -> int: ...
|
55 |
+
def __iter__(self) -> Iterator[int]: ...
|
56 |
+
def __len__(self) -> int: ...
|
57 |
+
def delete(self, loc) -> BlockPlacement: ...
|
58 |
+
def add(self, other) -> BlockPlacement: ...
|
59 |
+
def append(self, others: list[BlockPlacement]) -> BlockPlacement: ...
|
60 |
+
def tile_for_unstack(self, factor: int) -> npt.NDArray[np.intp]: ...
|
61 |
+
|
62 |
+
class Block:
|
63 |
+
_mgr_locs: BlockPlacement
|
64 |
+
ndim: int
|
65 |
+
values: ArrayLike
|
66 |
+
refs: BlockValuesRefs
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
values: ArrayLike,
|
70 |
+
placement: BlockPlacement,
|
71 |
+
ndim: int,
|
72 |
+
refs: BlockValuesRefs | None = ...,
|
73 |
+
) -> None: ...
|
74 |
+
def slice_block_rows(self, slicer: slice) -> Self: ...
|
75 |
+
|
76 |
+
class BlockManager:
|
77 |
+
blocks: tuple[B, ...]
|
78 |
+
axes: list[Index]
|
79 |
+
_known_consolidated: bool
|
80 |
+
_is_consolidated: bool
|
81 |
+
_blknos: np.ndarray
|
82 |
+
_blklocs: np.ndarray
|
83 |
+
def __init__(
|
84 |
+
self, blocks: tuple[B, ...], axes: list[Index], verify_integrity=...
|
85 |
+
) -> None: ...
|
86 |
+
def get_slice(self, slobj: slice, axis: int = ...) -> Self: ...
|
87 |
+
def _rebuild_blknos_and_blklocs(self) -> None: ...
|
88 |
+
|
89 |
+
class BlockValuesRefs:
|
90 |
+
referenced_blocks: list[weakref.ref]
|
91 |
+
def __init__(self, blk: Block | None = ...) -> None: ...
|
92 |
+
def add_reference(self, blk: Block) -> None: ...
|
93 |
+
def add_index_reference(self, index: Index) -> None: ...
|
94 |
+
def has_reference(self) -> bool: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/interval.pyi
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Any,
|
3 |
+
Generic,
|
4 |
+
TypeVar,
|
5 |
+
overload,
|
6 |
+
)
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import numpy.typing as npt
|
10 |
+
|
11 |
+
from pandas._typing import (
|
12 |
+
IntervalClosedType,
|
13 |
+
Timedelta,
|
14 |
+
Timestamp,
|
15 |
+
)
|
16 |
+
|
17 |
+
VALID_CLOSED: frozenset[str]
|
18 |
+
|
19 |
+
_OrderableScalarT = TypeVar("_OrderableScalarT", int, float)
|
20 |
+
_OrderableTimesT = TypeVar("_OrderableTimesT", Timestamp, Timedelta)
|
21 |
+
_OrderableT = TypeVar("_OrderableT", int, float, Timestamp, Timedelta)
|
22 |
+
|
23 |
+
class _LengthDescriptor:
|
24 |
+
@overload
|
25 |
+
def __get__(
|
26 |
+
self, instance: Interval[_OrderableScalarT], owner: Any
|
27 |
+
) -> _OrderableScalarT: ...
|
28 |
+
@overload
|
29 |
+
def __get__(
|
30 |
+
self, instance: Interval[_OrderableTimesT], owner: Any
|
31 |
+
) -> Timedelta: ...
|
32 |
+
|
33 |
+
class _MidDescriptor:
|
34 |
+
@overload
|
35 |
+
def __get__(self, instance: Interval[_OrderableScalarT], owner: Any) -> float: ...
|
36 |
+
@overload
|
37 |
+
def __get__(
|
38 |
+
self, instance: Interval[_OrderableTimesT], owner: Any
|
39 |
+
) -> _OrderableTimesT: ...
|
40 |
+
|
41 |
+
class IntervalMixin:
|
42 |
+
@property
|
43 |
+
def closed_left(self) -> bool: ...
|
44 |
+
@property
|
45 |
+
def closed_right(self) -> bool: ...
|
46 |
+
@property
|
47 |
+
def open_left(self) -> bool: ...
|
48 |
+
@property
|
49 |
+
def open_right(self) -> bool: ...
|
50 |
+
@property
|
51 |
+
def is_empty(self) -> bool: ...
|
52 |
+
def _check_closed_matches(self, other: IntervalMixin, name: str = ...) -> None: ...
|
53 |
+
|
54 |
+
class Interval(IntervalMixin, Generic[_OrderableT]):
|
55 |
+
@property
|
56 |
+
def left(self: Interval[_OrderableT]) -> _OrderableT: ...
|
57 |
+
@property
|
58 |
+
def right(self: Interval[_OrderableT]) -> _OrderableT: ...
|
59 |
+
@property
|
60 |
+
def closed(self) -> IntervalClosedType: ...
|
61 |
+
mid: _MidDescriptor
|
62 |
+
length: _LengthDescriptor
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
left: _OrderableT,
|
66 |
+
right: _OrderableT,
|
67 |
+
closed: IntervalClosedType = ...,
|
68 |
+
) -> None: ...
|
69 |
+
def __hash__(self) -> int: ...
|
70 |
+
@overload
|
71 |
+
def __contains__(
|
72 |
+
self: Interval[Timedelta], key: Timedelta | Interval[Timedelta]
|
73 |
+
) -> bool: ...
|
74 |
+
@overload
|
75 |
+
def __contains__(
|
76 |
+
self: Interval[Timestamp], key: Timestamp | Interval[Timestamp]
|
77 |
+
) -> bool: ...
|
78 |
+
@overload
|
79 |
+
def __contains__(
|
80 |
+
self: Interval[_OrderableScalarT],
|
81 |
+
key: _OrderableScalarT | Interval[_OrderableScalarT],
|
82 |
+
) -> bool: ...
|
83 |
+
@overload
|
84 |
+
def __add__(
|
85 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
86 |
+
) -> Interval[_OrderableTimesT]: ...
|
87 |
+
@overload
|
88 |
+
def __add__(
|
89 |
+
self: Interval[int], y: _OrderableScalarT
|
90 |
+
) -> Interval[_OrderableScalarT]: ...
|
91 |
+
@overload
|
92 |
+
def __add__(self: Interval[float], y: float) -> Interval[float]: ...
|
93 |
+
@overload
|
94 |
+
def __radd__(
|
95 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
96 |
+
) -> Interval[_OrderableTimesT]: ...
|
97 |
+
@overload
|
98 |
+
def __radd__(
|
99 |
+
self: Interval[int], y: _OrderableScalarT
|
100 |
+
) -> Interval[_OrderableScalarT]: ...
|
101 |
+
@overload
|
102 |
+
def __radd__(self: Interval[float], y: float) -> Interval[float]: ...
|
103 |
+
@overload
|
104 |
+
def __sub__(
|
105 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
106 |
+
) -> Interval[_OrderableTimesT]: ...
|
107 |
+
@overload
|
108 |
+
def __sub__(
|
109 |
+
self: Interval[int], y: _OrderableScalarT
|
110 |
+
) -> Interval[_OrderableScalarT]: ...
|
111 |
+
@overload
|
112 |
+
def __sub__(self: Interval[float], y: float) -> Interval[float]: ...
|
113 |
+
@overload
|
114 |
+
def __rsub__(
|
115 |
+
self: Interval[_OrderableTimesT], y: Timedelta
|
116 |
+
) -> Interval[_OrderableTimesT]: ...
|
117 |
+
@overload
|
118 |
+
def __rsub__(
|
119 |
+
self: Interval[int], y: _OrderableScalarT
|
120 |
+
) -> Interval[_OrderableScalarT]: ...
|
121 |
+
@overload
|
122 |
+
def __rsub__(self: Interval[float], y: float) -> Interval[float]: ...
|
123 |
+
@overload
|
124 |
+
def __mul__(
|
125 |
+
self: Interval[int], y: _OrderableScalarT
|
126 |
+
) -> Interval[_OrderableScalarT]: ...
|
127 |
+
@overload
|
128 |
+
def __mul__(self: Interval[float], y: float) -> Interval[float]: ...
|
129 |
+
@overload
|
130 |
+
def __rmul__(
|
131 |
+
self: Interval[int], y: _OrderableScalarT
|
132 |
+
) -> Interval[_OrderableScalarT]: ...
|
133 |
+
@overload
|
134 |
+
def __rmul__(self: Interval[float], y: float) -> Interval[float]: ...
|
135 |
+
@overload
|
136 |
+
def __truediv__(
|
137 |
+
self: Interval[int], y: _OrderableScalarT
|
138 |
+
) -> Interval[_OrderableScalarT]: ...
|
139 |
+
@overload
|
140 |
+
def __truediv__(self: Interval[float], y: float) -> Interval[float]: ...
|
141 |
+
@overload
|
142 |
+
def __floordiv__(
|
143 |
+
self: Interval[int], y: _OrderableScalarT
|
144 |
+
) -> Interval[_OrderableScalarT]: ...
|
145 |
+
@overload
|
146 |
+
def __floordiv__(self: Interval[float], y: float) -> Interval[float]: ...
|
147 |
+
def overlaps(self: Interval[_OrderableT], other: Interval[_OrderableT]) -> bool: ...
|
148 |
+
|
149 |
+
def intervals_to_interval_bounds(
|
150 |
+
intervals: np.ndarray, validate_closed: bool = ...
|
151 |
+
) -> tuple[np.ndarray, np.ndarray, IntervalClosedType]: ...
|
152 |
+
|
153 |
+
class IntervalTree(IntervalMixin):
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
left: np.ndarray,
|
157 |
+
right: np.ndarray,
|
158 |
+
closed: IntervalClosedType = ...,
|
159 |
+
leaf_size: int = ...,
|
160 |
+
) -> None: ...
|
161 |
+
@property
|
162 |
+
def mid(self) -> np.ndarray: ...
|
163 |
+
@property
|
164 |
+
def length(self) -> np.ndarray: ...
|
165 |
+
def get_indexer(self, target) -> npt.NDArray[np.intp]: ...
|
166 |
+
def get_indexer_non_unique(
|
167 |
+
self, target
|
168 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
169 |
+
_na_count: int
|
170 |
+
@property
|
171 |
+
def is_overlapping(self) -> bool: ...
|
172 |
+
@property
|
173 |
+
def is_monotonic_increasing(self) -> bool: ...
|
174 |
+
def clear_mapping(self) -> None: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.pyi
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def inner_join(
|
6 |
+
left: np.ndarray, # const intp_t[:]
|
7 |
+
right: np.ndarray, # const intp_t[:]
|
8 |
+
max_groups: int,
|
9 |
+
sort: bool = ...,
|
10 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
11 |
+
def left_outer_join(
|
12 |
+
left: np.ndarray, # const intp_t[:]
|
13 |
+
right: np.ndarray, # const intp_t[:]
|
14 |
+
max_groups: int,
|
15 |
+
sort: bool = ...,
|
16 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
17 |
+
def full_outer_join(
|
18 |
+
left: np.ndarray, # const intp_t[:]
|
19 |
+
right: np.ndarray, # const intp_t[:]
|
20 |
+
max_groups: int,
|
21 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
22 |
+
def ffill_indexer(
|
23 |
+
indexer: np.ndarray, # const intp_t[:]
|
24 |
+
) -> npt.NDArray[np.intp]: ...
|
25 |
+
def left_join_indexer_unique(
|
26 |
+
left: np.ndarray, # ndarray[join_t]
|
27 |
+
right: np.ndarray, # ndarray[join_t]
|
28 |
+
) -> npt.NDArray[np.intp]: ...
|
29 |
+
def left_join_indexer(
|
30 |
+
left: np.ndarray, # ndarray[join_t]
|
31 |
+
right: np.ndarray, # ndarray[join_t]
|
32 |
+
) -> tuple[
|
33 |
+
np.ndarray, # np.ndarray[join_t]
|
34 |
+
npt.NDArray[np.intp],
|
35 |
+
npt.NDArray[np.intp],
|
36 |
+
]: ...
|
37 |
+
def inner_join_indexer(
|
38 |
+
left: np.ndarray, # ndarray[join_t]
|
39 |
+
right: np.ndarray, # ndarray[join_t]
|
40 |
+
) -> tuple[
|
41 |
+
np.ndarray, # np.ndarray[join_t]
|
42 |
+
npt.NDArray[np.intp],
|
43 |
+
npt.NDArray[np.intp],
|
44 |
+
]: ...
|
45 |
+
def outer_join_indexer(
|
46 |
+
left: np.ndarray, # ndarray[join_t]
|
47 |
+
right: np.ndarray, # ndarray[join_t]
|
48 |
+
) -> tuple[
|
49 |
+
np.ndarray, # np.ndarray[join_t]
|
50 |
+
npt.NDArray[np.intp],
|
51 |
+
npt.NDArray[np.intp],
|
52 |
+
]: ...
|
53 |
+
def asof_join_backward_on_X_by_Y(
|
54 |
+
left_values: np.ndarray, # ndarray[numeric_t]
|
55 |
+
right_values: np.ndarray, # ndarray[numeric_t]
|
56 |
+
left_by_values: np.ndarray, # const int64_t[:]
|
57 |
+
right_by_values: np.ndarray, # const int64_t[:]
|
58 |
+
allow_exact_matches: bool = ...,
|
59 |
+
tolerance: np.number | float | None = ...,
|
60 |
+
use_hashtable: bool = ...,
|
61 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
62 |
+
def asof_join_forward_on_X_by_Y(
|
63 |
+
left_values: np.ndarray, # ndarray[numeric_t]
|
64 |
+
right_values: np.ndarray, # ndarray[numeric_t]
|
65 |
+
left_by_values: np.ndarray, # const int64_t[:]
|
66 |
+
right_by_values: np.ndarray, # const int64_t[:]
|
67 |
+
allow_exact_matches: bool = ...,
|
68 |
+
tolerance: np.number | float | None = ...,
|
69 |
+
use_hashtable: bool = ...,
|
70 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
71 |
+
def asof_join_nearest_on_X_by_Y(
|
72 |
+
left_values: np.ndarray, # ndarray[numeric_t]
|
73 |
+
right_values: np.ndarray, # ndarray[numeric_t]
|
74 |
+
left_by_values: np.ndarray, # const int64_t[:]
|
75 |
+
right_by_values: np.ndarray, # const int64_t[:]
|
76 |
+
allow_exact_matches: bool = ...,
|
77 |
+
tolerance: np.number | float | None = ...,
|
78 |
+
use_hashtable: bool = ...,
|
79 |
+
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/lib.pyi
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO(npdtypes): Many types specified here can be made more specific/accurate;
|
2 |
+
# the more specific versions are specified in comments
|
3 |
+
from decimal import Decimal
|
4 |
+
from typing import (
|
5 |
+
Any,
|
6 |
+
Callable,
|
7 |
+
Final,
|
8 |
+
Generator,
|
9 |
+
Hashable,
|
10 |
+
Literal,
|
11 |
+
TypeAlias,
|
12 |
+
overload,
|
13 |
+
)
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
from pandas._libs.interval import Interval
|
18 |
+
from pandas._libs.tslibs import Period
|
19 |
+
from pandas._typing import (
|
20 |
+
ArrayLike,
|
21 |
+
DtypeObj,
|
22 |
+
TypeGuard,
|
23 |
+
npt,
|
24 |
+
)
|
25 |
+
|
26 |
+
# placeholder until we can specify np.ndarray[object, ndim=2]
|
27 |
+
ndarray_obj_2d = np.ndarray
|
28 |
+
|
29 |
+
from enum import Enum
|
30 |
+
|
31 |
+
class _NoDefault(Enum):
|
32 |
+
no_default = ...
|
33 |
+
|
34 |
+
no_default: Final = _NoDefault.no_default
|
35 |
+
NoDefault: TypeAlias = Literal[_NoDefault.no_default]
|
36 |
+
|
37 |
+
i8max: int
|
38 |
+
u8max: int
|
39 |
+
|
40 |
+
def is_np_dtype(dtype: object, kinds: str | None = ...) -> TypeGuard[np.dtype]: ...
|
41 |
+
def item_from_zerodim(val: object) -> object: ...
|
42 |
+
def infer_dtype(value: object, skipna: bool = ...) -> str: ...
|
43 |
+
def is_iterator(obj: object) -> bool: ...
|
44 |
+
def is_scalar(val: object) -> bool: ...
|
45 |
+
def is_list_like(obj: object, allow_sets: bool = ...) -> bool: ...
|
46 |
+
def is_pyarrow_array(obj: object) -> bool: ...
|
47 |
+
def is_period(val: object) -> TypeGuard[Period]: ...
|
48 |
+
def is_interval(obj: object) -> TypeGuard[Interval]: ...
|
49 |
+
def is_decimal(obj: object) -> TypeGuard[Decimal]: ...
|
50 |
+
def is_complex(obj: object) -> TypeGuard[complex]: ...
|
51 |
+
def is_bool(obj: object) -> TypeGuard[bool | np.bool_]: ...
|
52 |
+
def is_integer(obj: object) -> TypeGuard[int | np.integer]: ...
|
53 |
+
def is_int_or_none(obj) -> bool: ...
|
54 |
+
def is_float(obj: object) -> TypeGuard[float]: ...
|
55 |
+
def is_interval_array(values: np.ndarray) -> bool: ...
|
56 |
+
def is_datetime64_array(values: np.ndarray, skipna: bool = True) -> bool: ...
|
57 |
+
def is_timedelta_or_timedelta64_array(
|
58 |
+
values: np.ndarray, skipna: bool = True
|
59 |
+
) -> bool: ...
|
60 |
+
def is_datetime_with_singletz_array(values: np.ndarray) -> bool: ...
|
61 |
+
def is_time_array(values: np.ndarray, skipna: bool = ...): ...
|
62 |
+
def is_date_array(values: np.ndarray, skipna: bool = ...): ...
|
63 |
+
def is_datetime_array(values: np.ndarray, skipna: bool = ...): ...
|
64 |
+
def is_string_array(values: np.ndarray, skipna: bool = ...): ...
|
65 |
+
def is_float_array(values: np.ndarray): ...
|
66 |
+
def is_integer_array(values: np.ndarray, skipna: bool = ...): ...
|
67 |
+
def is_bool_array(values: np.ndarray, skipna: bool = ...): ...
|
68 |
+
def fast_multiget(
|
69 |
+
mapping: dict,
|
70 |
+
keys: np.ndarray, # object[:]
|
71 |
+
default=...,
|
72 |
+
) -> np.ndarray: ...
|
73 |
+
def fast_unique_multiple_list_gen(gen: Generator, sort: bool = ...) -> list: ...
|
74 |
+
def fast_unique_multiple_list(lists: list, sort: bool | None = ...) -> list: ...
|
75 |
+
def map_infer(
|
76 |
+
arr: np.ndarray,
|
77 |
+
f: Callable[[Any], Any],
|
78 |
+
convert: bool = ...,
|
79 |
+
ignore_na: bool = ...,
|
80 |
+
) -> np.ndarray: ...
|
81 |
+
@overload
|
82 |
+
def maybe_convert_objects(
|
83 |
+
objects: npt.NDArray[np.object_],
|
84 |
+
*,
|
85 |
+
try_float: bool = ...,
|
86 |
+
safe: bool = ...,
|
87 |
+
convert_numeric: bool = ...,
|
88 |
+
convert_non_numeric: Literal[False] = ...,
|
89 |
+
convert_to_nullable_dtype: Literal[False] = ...,
|
90 |
+
dtype_if_all_nat: DtypeObj | None = ...,
|
91 |
+
) -> npt.NDArray[np.object_ | np.number]: ...
|
92 |
+
@overload
|
93 |
+
def maybe_convert_objects(
|
94 |
+
objects: npt.NDArray[np.object_],
|
95 |
+
*,
|
96 |
+
try_float: bool = ...,
|
97 |
+
safe: bool = ...,
|
98 |
+
convert_numeric: bool = ...,
|
99 |
+
convert_non_numeric: bool = ...,
|
100 |
+
convert_to_nullable_dtype: Literal[True] = ...,
|
101 |
+
dtype_if_all_nat: DtypeObj | None = ...,
|
102 |
+
) -> ArrayLike: ...
|
103 |
+
@overload
|
104 |
+
def maybe_convert_objects(
|
105 |
+
objects: npt.NDArray[np.object_],
|
106 |
+
*,
|
107 |
+
try_float: bool = ...,
|
108 |
+
safe: bool = ...,
|
109 |
+
convert_numeric: bool = ...,
|
110 |
+
convert_non_numeric: bool = ...,
|
111 |
+
convert_to_nullable_dtype: bool = ...,
|
112 |
+
dtype_if_all_nat: DtypeObj | None = ...,
|
113 |
+
) -> ArrayLike: ...
|
114 |
+
@overload
|
115 |
+
def maybe_convert_numeric(
|
116 |
+
values: npt.NDArray[np.object_],
|
117 |
+
na_values: set,
|
118 |
+
convert_empty: bool = ...,
|
119 |
+
coerce_numeric: bool = ...,
|
120 |
+
convert_to_masked_nullable: Literal[False] = ...,
|
121 |
+
) -> tuple[np.ndarray, None]: ...
|
122 |
+
@overload
|
123 |
+
def maybe_convert_numeric(
|
124 |
+
values: npt.NDArray[np.object_],
|
125 |
+
na_values: set,
|
126 |
+
convert_empty: bool = ...,
|
127 |
+
coerce_numeric: bool = ...,
|
128 |
+
*,
|
129 |
+
convert_to_masked_nullable: Literal[True],
|
130 |
+
) -> tuple[np.ndarray, np.ndarray]: ...
|
131 |
+
|
132 |
+
# TODO: restrict `arr`?
|
133 |
+
def ensure_string_array(
|
134 |
+
arr,
|
135 |
+
na_value: object = ...,
|
136 |
+
convert_na_value: bool = ...,
|
137 |
+
copy: bool = ...,
|
138 |
+
skipna: bool = ...,
|
139 |
+
) -> npt.NDArray[np.object_]: ...
|
140 |
+
def convert_nans_to_NA(
|
141 |
+
arr: npt.NDArray[np.object_],
|
142 |
+
) -> npt.NDArray[np.object_]: ...
|
143 |
+
def fast_zip(ndarrays: list) -> npt.NDArray[np.object_]: ...
|
144 |
+
|
145 |
+
# TODO: can we be more specific about rows?
|
146 |
+
def to_object_array_tuples(rows: object) -> ndarray_obj_2d: ...
|
147 |
+
def tuples_to_object_array(
|
148 |
+
tuples: npt.NDArray[np.object_],
|
149 |
+
) -> ndarray_obj_2d: ...
|
150 |
+
|
151 |
+
# TODO: can we be more specific about rows?
|
152 |
+
def to_object_array(rows: object, min_width: int = ...) -> ndarray_obj_2d: ...
|
153 |
+
def dicts_to_array(dicts: list, columns: list) -> ndarray_obj_2d: ...
|
154 |
+
def maybe_booleans_to_slice(
|
155 |
+
mask: npt.NDArray[np.uint8],
|
156 |
+
) -> slice | npt.NDArray[np.uint8]: ...
|
157 |
+
def maybe_indices_to_slice(
|
158 |
+
indices: npt.NDArray[np.intp],
|
159 |
+
max_len: int,
|
160 |
+
) -> slice | npt.NDArray[np.intp]: ...
|
161 |
+
def is_all_arraylike(obj: list) -> bool: ...
|
162 |
+
|
163 |
+
# -----------------------------------------------------------------
|
164 |
+
# Functions which in reality take memoryviews
|
165 |
+
|
166 |
+
def memory_usage_of_objects(arr: np.ndarray) -> int: ... # object[:] # np.int64
|
167 |
+
def map_infer_mask(
|
168 |
+
arr: np.ndarray,
|
169 |
+
f: Callable[[Any], Any],
|
170 |
+
mask: np.ndarray, # const uint8_t[:]
|
171 |
+
convert: bool = ...,
|
172 |
+
na_value: Any = ...,
|
173 |
+
dtype: np.dtype = ...,
|
174 |
+
) -> np.ndarray: ...
|
175 |
+
def indices_fast(
|
176 |
+
index: npt.NDArray[np.intp],
|
177 |
+
labels: np.ndarray, # const int64_t[:]
|
178 |
+
keys: list,
|
179 |
+
sorted_labels: list[npt.NDArray[np.int64]],
|
180 |
+
) -> dict[Hashable, npt.NDArray[np.intp]]: ...
|
181 |
+
def generate_slices(
|
182 |
+
labels: np.ndarray, ngroups: int # const intp_t[:]
|
183 |
+
) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ...
|
184 |
+
def count_level_2d(
|
185 |
+
mask: np.ndarray, # ndarray[uint8_t, ndim=2, cast=True],
|
186 |
+
labels: np.ndarray, # const intp_t[:]
|
187 |
+
max_bin: int,
|
188 |
+
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=2]
|
189 |
+
def get_level_sorter(
|
190 |
+
codes: np.ndarray, # const int64_t[:]
|
191 |
+
starts: np.ndarray, # const intp_t[:]
|
192 |
+
) -> np.ndarray: ... # np.ndarray[np.intp, ndim=1]
|
193 |
+
def generate_bins_dt64(
|
194 |
+
values: npt.NDArray[np.int64],
|
195 |
+
binner: np.ndarray, # const int64_t[:]
|
196 |
+
closed: object = ...,
|
197 |
+
hasnans: bool = ...,
|
198 |
+
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
|
199 |
+
def array_equivalent_object(
|
200 |
+
left: npt.NDArray[np.object_],
|
201 |
+
right: npt.NDArray[np.object_],
|
202 |
+
) -> bool: ...
|
203 |
+
def has_infs(arr: np.ndarray) -> bool: ... # const floating[:]
|
204 |
+
def has_only_ints_or_nan(arr: np.ndarray) -> bool: ... # const floating[:]
|
205 |
+
def get_reverse_indexer(
|
206 |
+
indexer: np.ndarray, # const intp_t[:]
|
207 |
+
length: int,
|
208 |
+
) -> npt.NDArray[np.intp]: ...
|
209 |
+
def is_bool_list(obj: list) -> bool: ...
|
210 |
+
def dtypes_all_equal(types: list[DtypeObj]) -> bool: ...
|
211 |
+
def is_range_indexer(
|
212 |
+
left: np.ndarray, n: int # np.ndarray[np.int64, ndim=1]
|
213 |
+
) -> bool: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (211 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/ops.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (270 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (39.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (43.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/parsers.pyi
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import (
|
2 |
+
Hashable,
|
3 |
+
Literal,
|
4 |
+
)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from pandas._typing import (
|
9 |
+
ArrayLike,
|
10 |
+
Dtype,
|
11 |
+
npt,
|
12 |
+
)
|
13 |
+
|
14 |
+
STR_NA_VALUES: set[str]
|
15 |
+
DEFAULT_BUFFER_HEURISTIC: int
|
16 |
+
|
17 |
+
def sanitize_objects(
|
18 |
+
values: npt.NDArray[np.object_],
|
19 |
+
na_values: set,
|
20 |
+
) -> int: ...
|
21 |
+
|
22 |
+
class TextReader:
|
23 |
+
unnamed_cols: set[str]
|
24 |
+
table_width: int # int64_t
|
25 |
+
leading_cols: int # int64_t
|
26 |
+
header: list[list[int]] # non-negative integers
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
source,
|
30 |
+
delimiter: bytes | str = ..., # single-character only
|
31 |
+
header=...,
|
32 |
+
header_start: int = ..., # int64_t
|
33 |
+
header_end: int = ..., # uint64_t
|
34 |
+
index_col=...,
|
35 |
+
names=...,
|
36 |
+
tokenize_chunksize: int = ..., # int64_t
|
37 |
+
delim_whitespace: bool = ...,
|
38 |
+
converters=...,
|
39 |
+
skipinitialspace: bool = ...,
|
40 |
+
escapechar: bytes | str | None = ..., # single-character only
|
41 |
+
doublequote: bool = ...,
|
42 |
+
quotechar: str | bytes | None = ..., # at most 1 character
|
43 |
+
quoting: int = ...,
|
44 |
+
lineterminator: bytes | str | None = ..., # at most 1 character
|
45 |
+
comment=...,
|
46 |
+
decimal: bytes | str = ..., # single-character only
|
47 |
+
thousands: bytes | str | None = ..., # single-character only
|
48 |
+
dtype: Dtype | dict[Hashable, Dtype] = ...,
|
49 |
+
usecols=...,
|
50 |
+
error_bad_lines: bool = ...,
|
51 |
+
warn_bad_lines: bool = ...,
|
52 |
+
na_filter: bool = ...,
|
53 |
+
na_values=...,
|
54 |
+
na_fvalues=...,
|
55 |
+
keep_default_na: bool = ...,
|
56 |
+
true_values=...,
|
57 |
+
false_values=...,
|
58 |
+
allow_leading_cols: bool = ...,
|
59 |
+
skiprows=...,
|
60 |
+
skipfooter: int = ..., # int64_t
|
61 |
+
verbose: bool = ...,
|
62 |
+
float_precision: Literal["round_trip", "legacy", "high"] | None = ...,
|
63 |
+
skip_blank_lines: bool = ...,
|
64 |
+
encoding_errors: bytes | str = ...,
|
65 |
+
) -> None: ...
|
66 |
+
def set_noconvert(self, i: int) -> None: ...
|
67 |
+
def remove_noconvert(self, i: int) -> None: ...
|
68 |
+
def close(self) -> None: ...
|
69 |
+
def read(self, rows: int | None = ...) -> dict[int, ArrayLike]: ...
|
70 |
+
def read_low_memory(self, rows: int | None) -> list[dict[int, ArrayLike]]: ...
|
71 |
+
|
72 |
+
# _maybe_upcast, na_values are only exposed for testing
|
73 |
+
na_values: dict
|
74 |
+
|
75 |
+
def _maybe_upcast(
|
76 |
+
arr, use_dtype_backend: bool = ..., dtype_backend: str = ...
|
77 |
+
) -> np.ndarray: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/reshape.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (310 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/reshape.pyi
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def unstack(
|
6 |
+
values: np.ndarray, # reshape_t[:, :]
|
7 |
+
mask: np.ndarray, # const uint8_t[:]
|
8 |
+
stride: int,
|
9 |
+
length: int,
|
10 |
+
width: int,
|
11 |
+
new_values: np.ndarray, # reshape_t[:, :]
|
12 |
+
new_mask: np.ndarray, # uint8_t[:, :]
|
13 |
+
) -> None: ...
|
14 |
+
def explode(
|
15 |
+
values: npt.NDArray[np.object_],
|
16 |
+
) -> tuple[npt.NDArray[np.object_], npt.NDArray[np.int64]]: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/sas.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (267 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/sas.pyi
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas.io.sas.sas7bdat import SAS7BDATReader
|
2 |
+
|
3 |
+
class Parser:
|
4 |
+
def __init__(self, parser: SAS7BDATReader) -> None: ...
|
5 |
+
def read(self, nrows: int) -> None: ...
|
6 |
+
|
7 |
+
def get_subheader_index(signature: bytes) -> int: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/sparse.pyi
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Sequence
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas._typing import (
|
6 |
+
Self,
|
7 |
+
npt,
|
8 |
+
)
|
9 |
+
|
10 |
+
class SparseIndex:
|
11 |
+
length: int
|
12 |
+
npoints: int
|
13 |
+
def __init__(self) -> None: ...
|
14 |
+
@property
|
15 |
+
def ngaps(self) -> int: ...
|
16 |
+
@property
|
17 |
+
def nbytes(self) -> int: ...
|
18 |
+
@property
|
19 |
+
def indices(self) -> npt.NDArray[np.int32]: ...
|
20 |
+
def equals(self, other) -> bool: ...
|
21 |
+
def lookup(self, index: int) -> np.int32: ...
|
22 |
+
def lookup_array(self, indexer: npt.NDArray[np.int32]) -> npt.NDArray[np.int32]: ...
|
23 |
+
def to_int_index(self) -> IntIndex: ...
|
24 |
+
def to_block_index(self) -> BlockIndex: ...
|
25 |
+
def intersect(self, y_: SparseIndex) -> Self: ...
|
26 |
+
def make_union(self, y_: SparseIndex) -> Self: ...
|
27 |
+
|
28 |
+
class IntIndex(SparseIndex):
|
29 |
+
indices: npt.NDArray[np.int32]
|
30 |
+
def __init__(
|
31 |
+
self, length: int, indices: Sequence[int], check_integrity: bool = ...
|
32 |
+
) -> None: ...
|
33 |
+
|
34 |
+
class BlockIndex(SparseIndex):
|
35 |
+
nblocks: int
|
36 |
+
blocs: np.ndarray
|
37 |
+
blengths: np.ndarray
|
38 |
+
def __init__(
|
39 |
+
self, length: int, blocs: np.ndarray, blengths: np.ndarray
|
40 |
+
) -> None: ...
|
41 |
+
|
42 |
+
# Override to have correct parameters
|
43 |
+
def intersect(self, other: SparseIndex) -> Self: ...
|
44 |
+
def make_union(self, y: SparseIndex) -> Self: ...
|
45 |
+
|
46 |
+
def make_mask_object_ndarray(
|
47 |
+
arr: npt.NDArray[np.object_], fill_value
|
48 |
+
) -> npt.NDArray[np.bool_]: ...
|
49 |
+
def get_blocks(
|
50 |
+
indices: npt.NDArray[np.int32],
|
51 |
+
) -> tuple[npt.NDArray[np.int32], npt.NDArray[np.int32]]: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/testing.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (132 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslib.pyi
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import tzinfo
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas._typing import npt
|
6 |
+
|
7 |
+
def format_array_from_datetime(
|
8 |
+
values: npt.NDArray[np.int64],
|
9 |
+
tz: tzinfo | None = ...,
|
10 |
+
format: str | None = ...,
|
11 |
+
na_rep: str | float = ...,
|
12 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
13 |
+
) -> npt.NDArray[np.object_]: ...
|
14 |
+
def array_with_unit_to_datetime(
|
15 |
+
values: npt.NDArray[np.object_],
|
16 |
+
unit: str,
|
17 |
+
errors: str = ...,
|
18 |
+
) -> tuple[np.ndarray, tzinfo | None]: ...
|
19 |
+
def first_non_null(values: np.ndarray) -> int: ...
|
20 |
+
def array_to_datetime(
|
21 |
+
values: npt.NDArray[np.object_],
|
22 |
+
errors: str = ...,
|
23 |
+
dayfirst: bool = ...,
|
24 |
+
yearfirst: bool = ...,
|
25 |
+
utc: bool = ...,
|
26 |
+
creso: int = ...,
|
27 |
+
) -> tuple[np.ndarray, tzinfo | None]: ...
|
28 |
+
|
29 |
+
# returned ndarray may be object dtype or datetime64[ns]
|
30 |
+
|
31 |
+
def array_to_datetime_with_tz(
|
32 |
+
values: npt.NDArray[np.object_],
|
33 |
+
tz: tzinfo,
|
34 |
+
dayfirst: bool,
|
35 |
+
yearfirst: bool,
|
36 |
+
creso: int,
|
37 |
+
) -> npt.NDArray[np.int64]: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
"dtypes",
|
3 |
+
"localize_pydatetime",
|
4 |
+
"NaT",
|
5 |
+
"NaTType",
|
6 |
+
"iNaT",
|
7 |
+
"nat_strings",
|
8 |
+
"OutOfBoundsDatetime",
|
9 |
+
"OutOfBoundsTimedelta",
|
10 |
+
"IncompatibleFrequency",
|
11 |
+
"Period",
|
12 |
+
"Resolution",
|
13 |
+
"Timedelta",
|
14 |
+
"normalize_i8_timestamps",
|
15 |
+
"is_date_array_normalized",
|
16 |
+
"dt64arr_to_periodarr",
|
17 |
+
"delta_to_nanoseconds",
|
18 |
+
"ints_to_pydatetime",
|
19 |
+
"ints_to_pytimedelta",
|
20 |
+
"get_resolution",
|
21 |
+
"Timestamp",
|
22 |
+
"tz_convert_from_utc_single",
|
23 |
+
"tz_convert_from_utc",
|
24 |
+
"to_offset",
|
25 |
+
"Tick",
|
26 |
+
"BaseOffset",
|
27 |
+
"tz_compare",
|
28 |
+
"is_unitless",
|
29 |
+
"astype_overflowsafe",
|
30 |
+
"get_unit_from_dtype",
|
31 |
+
"periods_per_day",
|
32 |
+
"periods_per_second",
|
33 |
+
"guess_datetime_format",
|
34 |
+
"add_overflowsafe",
|
35 |
+
"get_supported_dtype",
|
36 |
+
"is_supported_dtype",
|
37 |
+
]
|
38 |
+
|
39 |
+
from pandas._libs.tslibs import dtypes # pylint: disable=import-self
|
40 |
+
from pandas._libs.tslibs.conversion import localize_pydatetime
|
41 |
+
from pandas._libs.tslibs.dtypes import (
|
42 |
+
Resolution,
|
43 |
+
periods_per_day,
|
44 |
+
periods_per_second,
|
45 |
+
)
|
46 |
+
from pandas._libs.tslibs.nattype import (
|
47 |
+
NaT,
|
48 |
+
NaTType,
|
49 |
+
iNaT,
|
50 |
+
nat_strings,
|
51 |
+
)
|
52 |
+
from pandas._libs.tslibs.np_datetime import (
|
53 |
+
OutOfBoundsDatetime,
|
54 |
+
OutOfBoundsTimedelta,
|
55 |
+
add_overflowsafe,
|
56 |
+
astype_overflowsafe,
|
57 |
+
get_supported_dtype,
|
58 |
+
is_supported_dtype,
|
59 |
+
is_unitless,
|
60 |
+
py_get_unit_from_dtype as get_unit_from_dtype,
|
61 |
+
)
|
62 |
+
from pandas._libs.tslibs.offsets import (
|
63 |
+
BaseOffset,
|
64 |
+
Tick,
|
65 |
+
to_offset,
|
66 |
+
)
|
67 |
+
from pandas._libs.tslibs.parsing import guess_datetime_format
|
68 |
+
from pandas._libs.tslibs.period import (
|
69 |
+
IncompatibleFrequency,
|
70 |
+
Period,
|
71 |
+
)
|
72 |
+
from pandas._libs.tslibs.timedeltas import (
|
73 |
+
Timedelta,
|
74 |
+
delta_to_nanoseconds,
|
75 |
+
ints_to_pytimedelta,
|
76 |
+
)
|
77 |
+
from pandas._libs.tslibs.timestamps import Timestamp
|
78 |
+
from pandas._libs.tslibs.timezones import tz_compare
|
79 |
+
from pandas._libs.tslibs.tzconversion import tz_convert_from_utc_single
|
80 |
+
from pandas._libs.tslibs.vectorized import (
|
81 |
+
dt64arr_to_periodarr,
|
82 |
+
get_resolution,
|
83 |
+
ints_to_pydatetime,
|
84 |
+
is_date_array_normalized,
|
85 |
+
normalize_i8_timestamps,
|
86 |
+
tz_convert_from_utc,
|
87 |
+
)
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.86 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (62.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (103 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DAYS: list[str]
|
2 |
+
MONTH_ALIASES: dict[int, str]
|
3 |
+
MONTH_NUMBERS: dict[str, int]
|
4 |
+
MONTHS: list[str]
|
5 |
+
int_to_weekday: dict[int, str]
|
6 |
+
|
7 |
+
def get_firstbday(year: int, month: int) -> int: ...
|
8 |
+
def get_lastbday(year: int, month: int) -> int: ...
|
9 |
+
def get_day_of_year(year: int, month: int, day: int) -> int: ...
|
10 |
+
def get_iso_calendar(year: int, month: int, day: int) -> tuple[int, int, int]: ...
|
11 |
+
def get_week_of_year(year: int, month: int, day: int) -> int: ...
|
12 |
+
def get_days_in_month(year: int, month: int) -> int: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (308 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
tzinfo,
|
4 |
+
)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
DT64NS_DTYPE: np.dtype
|
9 |
+
TD64NS_DTYPE: np.dtype
|
10 |
+
|
11 |
+
def localize_pydatetime(dt: datetime, tz: tzinfo | None) -> datetime: ...
|
12 |
+
def cast_from_unit_vectorized(
|
13 |
+
values: np.ndarray, unit: str, out_unit: str = ...
|
14 |
+
) -> np.ndarray: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (203 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
OFFSET_TO_PERIOD_FREQSTR: dict[str, str]
|
4 |
+
|
5 |
+
def periods_per_day(reso: int = ...) -> int: ...
|
6 |
+
def periods_per_second(reso: int) -> int: ...
|
7 |
+
def abbrev_to_npy_unit(abbrev: str | None) -> int: ...
|
8 |
+
def freq_to_period_freqstr(freq_n: int, freq_name: str) -> str: ...
|
9 |
+
|
10 |
+
class PeriodDtypeBase:
|
11 |
+
_dtype_code: int # PeriodDtypeCode
|
12 |
+
_n: int
|
13 |
+
|
14 |
+
# actually __cinit__
|
15 |
+
def __new__(cls, code: int, n: int): ...
|
16 |
+
@property
|
17 |
+
def _freq_group_code(self) -> int: ...
|
18 |
+
@property
|
19 |
+
def _resolution_obj(self) -> Resolution: ...
|
20 |
+
def _get_to_timestamp_base(self) -> int: ...
|
21 |
+
@property
|
22 |
+
def _freqstr(self) -> str: ...
|
23 |
+
def __hash__(self) -> int: ...
|
24 |
+
def _is_tick_like(self) -> bool: ...
|
25 |
+
@property
|
26 |
+
def _creso(self) -> int: ...
|
27 |
+
@property
|
28 |
+
def _td64_unit(self) -> str: ...
|
29 |
+
|
30 |
+
class FreqGroup(Enum):
|
31 |
+
FR_ANN: int
|
32 |
+
FR_QTR: int
|
33 |
+
FR_MTH: int
|
34 |
+
FR_WK: int
|
35 |
+
FR_BUS: int
|
36 |
+
FR_DAY: int
|
37 |
+
FR_HR: int
|
38 |
+
FR_MIN: int
|
39 |
+
FR_SEC: int
|
40 |
+
FR_MS: int
|
41 |
+
FR_US: int
|
42 |
+
FR_NS: int
|
43 |
+
FR_UND: int
|
44 |
+
@staticmethod
|
45 |
+
def from_period_dtype_code(code: int) -> FreqGroup: ...
|
46 |
+
|
47 |
+
class Resolution(Enum):
|
48 |
+
RESO_NS: int
|
49 |
+
RESO_US: int
|
50 |
+
RESO_MS: int
|
51 |
+
RESO_SEC: int
|
52 |
+
RESO_MIN: int
|
53 |
+
RESO_HR: int
|
54 |
+
RESO_DAY: int
|
55 |
+
RESO_MTH: int
|
56 |
+
RESO_QTR: int
|
57 |
+
RESO_YR: int
|
58 |
+
def __lt__(self, other: Resolution) -> bool: ...
|
59 |
+
def __ge__(self, other: Resolution) -> bool: ...
|
60 |
+
@property
|
61 |
+
def attrname(self) -> str: ...
|
62 |
+
@classmethod
|
63 |
+
def from_attrname(cls, attrname: str) -> Resolution: ...
|
64 |
+
@classmethod
|
65 |
+
def get_reso_from_freqstr(cls, freq: str) -> Resolution: ...
|
66 |
+
@property
|
67 |
+
def attr_abbrev(self) -> str: ...
|
68 |
+
|
69 |
+
class NpyDatetimeUnit(Enum):
|
70 |
+
NPY_FR_Y: int
|
71 |
+
NPY_FR_M: int
|
72 |
+
NPY_FR_W: int
|
73 |
+
NPY_FR_D: int
|
74 |
+
NPY_FR_h: int
|
75 |
+
NPY_FR_m: int
|
76 |
+
NPY_FR_s: int
|
77 |
+
NPY_FR_ms: int
|
78 |
+
NPY_FR_us: int
|
79 |
+
NPY_FR_ns: int
|
80 |
+
NPY_FR_ps: int
|
81 |
+
NPY_FR_fs: int
|
82 |
+
NPY_FR_as: int
|
83 |
+
NPY_FR_GENERIC: int
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (345 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.pyi
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def build_field_sarray(
|
6 |
+
dtindex: npt.NDArray[np.int64], # const int64_t[:]
|
7 |
+
reso: int, # NPY_DATETIMEUNIT
|
8 |
+
) -> np.ndarray: ...
|
9 |
+
def month_position_check(fields, weekdays) -> str | None: ...
|
10 |
+
def get_date_name_field(
|
11 |
+
dtindex: npt.NDArray[np.int64], # const int64_t[:]
|
12 |
+
field: str,
|
13 |
+
locale: str | None = ...,
|
14 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
15 |
+
) -> npt.NDArray[np.object_]: ...
|
16 |
+
def get_start_end_field(
|
17 |
+
dtindex: npt.NDArray[np.int64],
|
18 |
+
field: str,
|
19 |
+
freqstr: str | None = ...,
|
20 |
+
month_kw: int = ...,
|
21 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
22 |
+
) -> npt.NDArray[np.bool_]: ...
|
23 |
+
def get_date_field(
|
24 |
+
dtindex: npt.NDArray[np.int64], # const int64_t[:]
|
25 |
+
field: str,
|
26 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
27 |
+
) -> npt.NDArray[np.int32]: ...
|
28 |
+
def get_timedelta_field(
|
29 |
+
tdindex: npt.NDArray[np.int64], # const int64_t[:]
|
30 |
+
field: str,
|
31 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
32 |
+
) -> npt.NDArray[np.int32]: ...
|
33 |
+
def get_timedelta_days(
|
34 |
+
tdindex: npt.NDArray[np.int64], # const int64_t[:]
|
35 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
36 |
+
) -> npt.NDArray[np.int64]: ...
|
37 |
+
def isleapyear_arr(
|
38 |
+
years: np.ndarray,
|
39 |
+
) -> npt.NDArray[np.bool_]: ...
|
40 |
+
def build_isocalendar_sarray(
|
41 |
+
dtindex: npt.NDArray[np.int64], # const int64_t[:]
|
42 |
+
reso: int, # NPY_DATETIMEUNIT
|
43 |
+
) -> np.ndarray: ...
|
44 |
+
def _get_locale_names(name_type: str, locale: str | None = ...): ...
|
45 |
+
|
46 |
+
class RoundTo:
|
47 |
+
@property
|
48 |
+
def MINUS_INFTY(self) -> int: ...
|
49 |
+
@property
|
50 |
+
def PLUS_INFTY(self) -> int: ...
|
51 |
+
@property
|
52 |
+
def NEAREST_HALF_EVEN(self) -> int: ...
|
53 |
+
@property
|
54 |
+
def NEAREST_HALF_PLUS_INFTY(self) -> int: ...
|
55 |
+
@property
|
56 |
+
def NEAREST_HALF_MINUS_INFTY(self) -> int: ...
|
57 |
+
|
58 |
+
def round_nsint64(
|
59 |
+
values: npt.NDArray[np.int64],
|
60 |
+
mode: RoundTo,
|
61 |
+
nanos: int,
|
62 |
+
) -> npt.NDArray[np.int64]: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (237 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
timedelta,
|
4 |
+
tzinfo as _tzinfo,
|
5 |
+
)
|
6 |
+
import typing
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
from pandas._libs.tslibs.period import Period
|
11 |
+
from pandas._typing import Self
|
12 |
+
|
13 |
+
NaT: NaTType
|
14 |
+
iNaT: int
|
15 |
+
nat_strings: set[str]
|
16 |
+
|
17 |
+
_NaTComparisonTypes: typing.TypeAlias = (
|
18 |
+
datetime | timedelta | Period | np.datetime64 | np.timedelta64
|
19 |
+
)
|
20 |
+
|
21 |
+
class _NatComparison:
|
22 |
+
def __call__(self, other: _NaTComparisonTypes) -> bool: ...
|
23 |
+
|
24 |
+
class NaTType:
|
25 |
+
_value: np.int64
|
26 |
+
@property
|
27 |
+
def value(self) -> int: ...
|
28 |
+
@property
|
29 |
+
def asm8(self) -> np.datetime64: ...
|
30 |
+
def to_datetime64(self) -> np.datetime64: ...
|
31 |
+
def to_numpy(
|
32 |
+
self, dtype: np.dtype | str | None = ..., copy: bool = ...
|
33 |
+
) -> np.datetime64 | np.timedelta64: ...
|
34 |
+
@property
|
35 |
+
def is_leap_year(self) -> bool: ...
|
36 |
+
@property
|
37 |
+
def is_month_start(self) -> bool: ...
|
38 |
+
@property
|
39 |
+
def is_quarter_start(self) -> bool: ...
|
40 |
+
@property
|
41 |
+
def is_year_start(self) -> bool: ...
|
42 |
+
@property
|
43 |
+
def is_month_end(self) -> bool: ...
|
44 |
+
@property
|
45 |
+
def is_quarter_end(self) -> bool: ...
|
46 |
+
@property
|
47 |
+
def is_year_end(self) -> bool: ...
|
48 |
+
@property
|
49 |
+
def day_of_year(self) -> float: ...
|
50 |
+
@property
|
51 |
+
def dayofyear(self) -> float: ...
|
52 |
+
@property
|
53 |
+
def days_in_month(self) -> float: ...
|
54 |
+
@property
|
55 |
+
def daysinmonth(self) -> float: ...
|
56 |
+
@property
|
57 |
+
def day_of_week(self) -> float: ...
|
58 |
+
@property
|
59 |
+
def dayofweek(self) -> float: ...
|
60 |
+
@property
|
61 |
+
def week(self) -> float: ...
|
62 |
+
@property
|
63 |
+
def weekofyear(self) -> float: ...
|
64 |
+
def day_name(self) -> float: ...
|
65 |
+
def month_name(self) -> float: ...
|
66 |
+
def weekday(self) -> float: ...
|
67 |
+
def isoweekday(self) -> float: ...
|
68 |
+
def total_seconds(self) -> float: ...
|
69 |
+
def today(self, *args, **kwargs) -> NaTType: ...
|
70 |
+
def now(self, *args, **kwargs) -> NaTType: ...
|
71 |
+
def to_pydatetime(self) -> NaTType: ...
|
72 |
+
def date(self) -> NaTType: ...
|
73 |
+
def round(self) -> NaTType: ...
|
74 |
+
def floor(self) -> NaTType: ...
|
75 |
+
def ceil(self) -> NaTType: ...
|
76 |
+
@property
|
77 |
+
def tzinfo(self) -> None: ...
|
78 |
+
@property
|
79 |
+
def tz(self) -> None: ...
|
80 |
+
def tz_convert(self, tz: _tzinfo | str | None) -> NaTType: ...
|
81 |
+
def tz_localize(
|
82 |
+
self,
|
83 |
+
tz: _tzinfo | str | None,
|
84 |
+
ambiguous: str = ...,
|
85 |
+
nonexistent: str = ...,
|
86 |
+
) -> NaTType: ...
|
87 |
+
def replace(
|
88 |
+
self,
|
89 |
+
year: int | None = ...,
|
90 |
+
month: int | None = ...,
|
91 |
+
day: int | None = ...,
|
92 |
+
hour: int | None = ...,
|
93 |
+
minute: int | None = ...,
|
94 |
+
second: int | None = ...,
|
95 |
+
microsecond: int | None = ...,
|
96 |
+
nanosecond: int | None = ...,
|
97 |
+
tzinfo: _tzinfo | None = ...,
|
98 |
+
fold: int | None = ...,
|
99 |
+
) -> NaTType: ...
|
100 |
+
@property
|
101 |
+
def year(self) -> float: ...
|
102 |
+
@property
|
103 |
+
def quarter(self) -> float: ...
|
104 |
+
@property
|
105 |
+
def month(self) -> float: ...
|
106 |
+
@property
|
107 |
+
def day(self) -> float: ...
|
108 |
+
@property
|
109 |
+
def hour(self) -> float: ...
|
110 |
+
@property
|
111 |
+
def minute(self) -> float: ...
|
112 |
+
@property
|
113 |
+
def second(self) -> float: ...
|
114 |
+
@property
|
115 |
+
def millisecond(self) -> float: ...
|
116 |
+
@property
|
117 |
+
def microsecond(self) -> float: ...
|
118 |
+
@property
|
119 |
+
def nanosecond(self) -> float: ...
|
120 |
+
# inject Timedelta properties
|
121 |
+
@property
|
122 |
+
def days(self) -> float: ...
|
123 |
+
@property
|
124 |
+
def microseconds(self) -> float: ...
|
125 |
+
@property
|
126 |
+
def nanoseconds(self) -> float: ...
|
127 |
+
# inject Period properties
|
128 |
+
@property
|
129 |
+
def qyear(self) -> float: ...
|
130 |
+
def __eq__(self, other: object) -> bool: ...
|
131 |
+
def __ne__(self, other: object) -> bool: ...
|
132 |
+
__lt__: _NatComparison
|
133 |
+
__le__: _NatComparison
|
134 |
+
__gt__: _NatComparison
|
135 |
+
__ge__: _NatComparison
|
136 |
+
def __sub__(self, other: Self | timedelta | datetime) -> Self: ...
|
137 |
+
def __rsub__(self, other: Self | timedelta | datetime) -> Self: ...
|
138 |
+
def __add__(self, other: Self | timedelta | datetime) -> Self: ...
|
139 |
+
def __radd__(self, other: Self | timedelta | datetime) -> Self: ...
|
140 |
+
def __hash__(self) -> int: ...
|
141 |
+
def as_unit(self, unit: str, round_ok: bool = ...) -> NaTType: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (152 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
class OutOfBoundsDatetime(ValueError): ...
|
6 |
+
class OutOfBoundsTimedelta(ValueError): ...
|
7 |
+
|
8 |
+
# only exposed for testing
|
9 |
+
def py_get_unit_from_dtype(dtype: np.dtype): ...
|
10 |
+
def py_td64_to_tdstruct(td64: int, unit: int) -> dict: ...
|
11 |
+
def astype_overflowsafe(
|
12 |
+
values: np.ndarray,
|
13 |
+
dtype: np.dtype,
|
14 |
+
copy: bool = ...,
|
15 |
+
round_ok: bool = ...,
|
16 |
+
is_coerce: bool = ...,
|
17 |
+
) -> np.ndarray: ...
|
18 |
+
def is_unitless(dtype: np.dtype) -> bool: ...
|
19 |
+
def compare_mismatched_resolutions(
|
20 |
+
left: np.ndarray, right: np.ndarray, op
|
21 |
+
) -> npt.NDArray[np.bool_]: ...
|
22 |
+
def add_overflowsafe(
|
23 |
+
left: npt.NDArray[np.int64],
|
24 |
+
right: npt.NDArray[np.int64],
|
25 |
+
) -> npt.NDArray[np.int64]: ...
|
26 |
+
def get_supported_dtype(dtype: np.dtype) -> np.dtype: ...
|
27 |
+
def is_supported_dtype(dtype: np.dtype) -> bool: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import (
|
2 |
+
datetime,
|
3 |
+
time,
|
4 |
+
timedelta,
|
5 |
+
)
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
Collection,
|
9 |
+
Literal,
|
10 |
+
TypeVar,
|
11 |
+
overload,
|
12 |
+
)
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from pandas._libs.tslibs.nattype import NaTType
|
17 |
+
from pandas._typing import (
|
18 |
+
OffsetCalendar,
|
19 |
+
Self,
|
20 |
+
npt,
|
21 |
+
)
|
22 |
+
|
23 |
+
from .timedeltas import Timedelta
|
24 |
+
|
25 |
+
_BaseOffsetT = TypeVar("_BaseOffsetT", bound=BaseOffset)
|
26 |
+
_DatetimeT = TypeVar("_DatetimeT", bound=datetime)
|
27 |
+
_TimedeltaT = TypeVar("_TimedeltaT", bound=timedelta)
|
28 |
+
|
29 |
+
_relativedelta_kwds: set[str]
|
30 |
+
prefix_mapping: dict[str, type]
|
31 |
+
|
32 |
+
class ApplyTypeError(TypeError): ...
|
33 |
+
|
34 |
+
class BaseOffset:
|
35 |
+
n: int
|
36 |
+
normalize: bool
|
37 |
+
def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
|
38 |
+
def __eq__(self, other) -> bool: ...
|
39 |
+
def __ne__(self, other) -> bool: ...
|
40 |
+
def __hash__(self) -> int: ...
|
41 |
+
@property
|
42 |
+
def kwds(self) -> dict: ...
|
43 |
+
@property
|
44 |
+
def base(self) -> BaseOffset: ...
|
45 |
+
@overload
|
46 |
+
def __add__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
|
47 |
+
@overload
|
48 |
+
def __add__(self, other: BaseOffset) -> Self: ...
|
49 |
+
@overload
|
50 |
+
def __add__(self, other: _DatetimeT) -> _DatetimeT: ...
|
51 |
+
@overload
|
52 |
+
def __add__(self, other: _TimedeltaT) -> _TimedeltaT: ...
|
53 |
+
@overload
|
54 |
+
def __radd__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
|
55 |
+
@overload
|
56 |
+
def __radd__(self, other: BaseOffset) -> Self: ...
|
57 |
+
@overload
|
58 |
+
def __radd__(self, other: _DatetimeT) -> _DatetimeT: ...
|
59 |
+
@overload
|
60 |
+
def __radd__(self, other: _TimedeltaT) -> _TimedeltaT: ...
|
61 |
+
@overload
|
62 |
+
def __radd__(self, other: NaTType) -> NaTType: ...
|
63 |
+
def __sub__(self, other: BaseOffset) -> Self: ...
|
64 |
+
@overload
|
65 |
+
def __rsub__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
|
66 |
+
@overload
|
67 |
+
def __rsub__(self, other: BaseOffset): ...
|
68 |
+
@overload
|
69 |
+
def __rsub__(self, other: _DatetimeT) -> _DatetimeT: ...
|
70 |
+
@overload
|
71 |
+
def __rsub__(self, other: _TimedeltaT) -> _TimedeltaT: ...
|
72 |
+
@overload
|
73 |
+
def __mul__(self, other: np.ndarray) -> np.ndarray: ...
|
74 |
+
@overload
|
75 |
+
def __mul__(self, other: int): ...
|
76 |
+
@overload
|
77 |
+
def __rmul__(self, other: np.ndarray) -> np.ndarray: ...
|
78 |
+
@overload
|
79 |
+
def __rmul__(self, other: int) -> Self: ...
|
80 |
+
def __neg__(self) -> Self: ...
|
81 |
+
def copy(self) -> Self: ...
|
82 |
+
@property
|
83 |
+
def name(self) -> str: ...
|
84 |
+
@property
|
85 |
+
def rule_code(self) -> str: ...
|
86 |
+
@property
|
87 |
+
def freqstr(self) -> str: ...
|
88 |
+
def _apply(self, other): ...
|
89 |
+
def _apply_array(self, dtarr: np.ndarray) -> np.ndarray: ...
|
90 |
+
def rollback(self, dt: datetime) -> datetime: ...
|
91 |
+
def rollforward(self, dt: datetime) -> datetime: ...
|
92 |
+
def is_on_offset(self, dt: datetime) -> bool: ...
|
93 |
+
def __setstate__(self, state) -> None: ...
|
94 |
+
def __getstate__(self): ...
|
95 |
+
@property
|
96 |
+
def nanos(self) -> int: ...
|
97 |
+
def is_anchored(self) -> bool: ...
|
98 |
+
|
99 |
+
def _get_offset(name: str) -> BaseOffset: ...
|
100 |
+
|
101 |
+
class SingleConstructorOffset(BaseOffset):
|
102 |
+
@classmethod
|
103 |
+
def _from_name(cls, suffix: None = ...): ...
|
104 |
+
def __reduce__(self): ...
|
105 |
+
|
106 |
+
@overload
|
107 |
+
def to_offset(freq: None, is_period: bool = ...) -> None: ...
|
108 |
+
@overload
|
109 |
+
def to_offset(freq: _BaseOffsetT, is_period: bool = ...) -> _BaseOffsetT: ...
|
110 |
+
@overload
|
111 |
+
def to_offset(freq: timedelta | str, is_period: bool = ...) -> BaseOffset: ...
|
112 |
+
|
113 |
+
class Tick(SingleConstructorOffset):
|
114 |
+
_creso: int
|
115 |
+
_prefix: str
|
116 |
+
def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
|
117 |
+
@property
|
118 |
+
def delta(self) -> Timedelta: ...
|
119 |
+
@property
|
120 |
+
def nanos(self) -> int: ...
|
121 |
+
|
122 |
+
def delta_to_tick(delta: timedelta) -> Tick: ...
|
123 |
+
|
124 |
+
class Day(Tick): ...
|
125 |
+
class Hour(Tick): ...
|
126 |
+
class Minute(Tick): ...
|
127 |
+
class Second(Tick): ...
|
128 |
+
class Milli(Tick): ...
|
129 |
+
class Micro(Tick): ...
|
130 |
+
class Nano(Tick): ...
|
131 |
+
|
132 |
+
class RelativeDeltaOffset(BaseOffset):
|
133 |
+
def __init__(self, n: int = ..., normalize: bool = ..., **kwds: Any) -> None: ...
|
134 |
+
|
135 |
+
class BusinessMixin(SingleConstructorOffset):
|
136 |
+
def __init__(
|
137 |
+
self, n: int = ..., normalize: bool = ..., offset: timedelta = ...
|
138 |
+
) -> None: ...
|
139 |
+
|
140 |
+
class BusinessDay(BusinessMixin): ...
|
141 |
+
|
142 |
+
class BusinessHour(BusinessMixin):
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
n: int = ...,
|
146 |
+
normalize: bool = ...,
|
147 |
+
start: str | time | Collection[str | time] = ...,
|
148 |
+
end: str | time | Collection[str | time] = ...,
|
149 |
+
offset: timedelta = ...,
|
150 |
+
) -> None: ...
|
151 |
+
|
152 |
+
class WeekOfMonthMixin(SingleConstructorOffset):
|
153 |
+
def __init__(
|
154 |
+
self, n: int = ..., normalize: bool = ..., weekday: int = ...
|
155 |
+
) -> None: ...
|
156 |
+
|
157 |
+
class YearOffset(SingleConstructorOffset):
|
158 |
+
def __init__(
|
159 |
+
self, n: int = ..., normalize: bool = ..., month: int | None = ...
|
160 |
+
) -> None: ...
|
161 |
+
|
162 |
+
class BYearEnd(YearOffset): ...
|
163 |
+
class BYearBegin(YearOffset): ...
|
164 |
+
class YearEnd(YearOffset): ...
|
165 |
+
class YearBegin(YearOffset): ...
|
166 |
+
|
167 |
+
class QuarterOffset(SingleConstructorOffset):
|
168 |
+
def __init__(
|
169 |
+
self, n: int = ..., normalize: bool = ..., startingMonth: int | None = ...
|
170 |
+
) -> None: ...
|
171 |
+
|
172 |
+
class BQuarterEnd(QuarterOffset): ...
|
173 |
+
class BQuarterBegin(QuarterOffset): ...
|
174 |
+
class QuarterEnd(QuarterOffset): ...
|
175 |
+
class QuarterBegin(QuarterOffset): ...
|
176 |
+
class MonthOffset(SingleConstructorOffset): ...
|
177 |
+
class MonthEnd(MonthOffset): ...
|
178 |
+
class MonthBegin(MonthOffset): ...
|
179 |
+
class BusinessMonthEnd(MonthOffset): ...
|
180 |
+
class BusinessMonthBegin(MonthOffset): ...
|
181 |
+
|
182 |
+
class SemiMonthOffset(SingleConstructorOffset):
|
183 |
+
def __init__(
|
184 |
+
self, n: int = ..., normalize: bool = ..., day_of_month: int | None = ...
|
185 |
+
) -> None: ...
|
186 |
+
|
187 |
+
class SemiMonthEnd(SemiMonthOffset): ...
|
188 |
+
class SemiMonthBegin(SemiMonthOffset): ...
|
189 |
+
|
190 |
+
class Week(SingleConstructorOffset):
|
191 |
+
def __init__(
|
192 |
+
self, n: int = ..., normalize: bool = ..., weekday: int | None = ...
|
193 |
+
) -> None: ...
|
194 |
+
|
195 |
+
class WeekOfMonth(WeekOfMonthMixin):
|
196 |
+
def __init__(
|
197 |
+
self, n: int = ..., normalize: bool = ..., week: int = ..., weekday: int = ...
|
198 |
+
) -> None: ...
|
199 |
+
|
200 |
+
class LastWeekOfMonth(WeekOfMonthMixin): ...
|
201 |
+
|
202 |
+
class FY5253Mixin(SingleConstructorOffset):
|
203 |
+
def __init__(
|
204 |
+
self,
|
205 |
+
n: int = ...,
|
206 |
+
normalize: bool = ...,
|
207 |
+
weekday: int = ...,
|
208 |
+
startingMonth: int = ...,
|
209 |
+
variation: Literal["nearest", "last"] = ...,
|
210 |
+
) -> None: ...
|
211 |
+
|
212 |
+
class FY5253(FY5253Mixin): ...
|
213 |
+
|
214 |
+
class FY5253Quarter(FY5253Mixin):
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
n: int = ...,
|
218 |
+
normalize: bool = ...,
|
219 |
+
weekday: int = ...,
|
220 |
+
startingMonth: int = ...,
|
221 |
+
qtr_with_extra_week: int = ...,
|
222 |
+
variation: Literal["nearest", "last"] = ...,
|
223 |
+
) -> None: ...
|
224 |
+
|
225 |
+
class Easter(SingleConstructorOffset): ...
|
226 |
+
|
227 |
+
class _CustomBusinessMonth(BusinessMixin):
|
228 |
+
def __init__(
|
229 |
+
self,
|
230 |
+
n: int = ...,
|
231 |
+
normalize: bool = ...,
|
232 |
+
weekmask: str = ...,
|
233 |
+
holidays: list | None = ...,
|
234 |
+
calendar: OffsetCalendar | None = ...,
|
235 |
+
offset: timedelta = ...,
|
236 |
+
) -> None: ...
|
237 |
+
|
238 |
+
class CustomBusinessDay(BusinessDay):
|
239 |
+
def __init__(
|
240 |
+
self,
|
241 |
+
n: int = ...,
|
242 |
+
normalize: bool = ...,
|
243 |
+
weekmask: str = ...,
|
244 |
+
holidays: list | None = ...,
|
245 |
+
calendar: OffsetCalendar | None = ...,
|
246 |
+
offset: timedelta = ...,
|
247 |
+
) -> None: ...
|
248 |
+
|
249 |
+
class CustomBusinessHour(BusinessHour):
|
250 |
+
def __init__(
|
251 |
+
self,
|
252 |
+
n: int = ...,
|
253 |
+
normalize: bool = ...,
|
254 |
+
weekmask: str = ...,
|
255 |
+
holidays: list | None = ...,
|
256 |
+
calendar: OffsetCalendar | None = ...,
|
257 |
+
start: str | time | Collection[str | time] = ...,
|
258 |
+
end: str | time | Collection[str | time] = ...,
|
259 |
+
offset: timedelta = ...,
|
260 |
+
) -> None: ...
|
261 |
+
|
262 |
+
class CustomBusinessMonthEnd(_CustomBusinessMonth): ...
|
263 |
+
class CustomBusinessMonthBegin(_CustomBusinessMonth): ...
|
264 |
+
class OffsetMeta(type): ...
|
265 |
+
class DateOffset(RelativeDeltaOffset, metaclass=OffsetMeta): ...
|
266 |
+
|
267 |
+
BDay = BusinessDay
|
268 |
+
BMonthEnd = BusinessMonthEnd
|
269 |
+
BMonthBegin = BusinessMonthBegin
|
270 |
+
CBMonthEnd = CustomBusinessMonthEnd
|
271 |
+
CBMonthBegin = CustomBusinessMonthBegin
|
272 |
+
CDay = CustomBusinessDay
|
273 |
+
|
274 |
+
def roll_qtrday(
|
275 |
+
other: datetime, n: int, month: int, day_opt: str, modby: int
|
276 |
+
) -> int: ...
|
277 |
+
|
278 |
+
INVALID_FREQ_ERR_MSG: Literal["Invalid frequency: {0}"]
|
279 |
+
|
280 |
+
def shift_months(
|
281 |
+
dtindex: npt.NDArray[np.int64],
|
282 |
+
months: int,
|
283 |
+
day_opt: str | None = ...,
|
284 |
+
reso: int = ...,
|
285 |
+
) -> npt.NDArray[np.int64]: ...
|
286 |
+
|
287 |
+
_offset_map: dict[str, BaseOffset]
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (457 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.pyi
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas._typing import npt
|
6 |
+
|
7 |
+
class DateParseError(ValueError): ...
|
8 |
+
|
9 |
+
def py_parse_datetime_string(
|
10 |
+
date_string: str,
|
11 |
+
dayfirst: bool = ...,
|
12 |
+
yearfirst: bool = ...,
|
13 |
+
) -> datetime: ...
|
14 |
+
def parse_datetime_string_with_reso(
|
15 |
+
date_string: str,
|
16 |
+
freq: str | None = ...,
|
17 |
+
dayfirst: bool | None = ...,
|
18 |
+
yearfirst: bool | None = ...,
|
19 |
+
) -> tuple[datetime, str]: ...
|
20 |
+
def _does_string_look_like_datetime(py_string: str) -> bool: ...
|
21 |
+
def quarter_to_myear(year: int, quarter: int, freq: str) -> tuple[int, int]: ...
|
22 |
+
def try_parse_dates(
|
23 |
+
values: npt.NDArray[np.object_], # object[:]
|
24 |
+
parser,
|
25 |
+
) -> npt.NDArray[np.object_]: ...
|
26 |
+
def guess_datetime_format(
|
27 |
+
dt_str: str,
|
28 |
+
dayfirst: bool | None = ...,
|
29 |
+
) -> str | None: ...
|
30 |
+
def concat_date_cols(
|
31 |
+
date_cols: tuple,
|
32 |
+
) -> npt.NDArray[np.object_]: ...
|
33 |
+
def get_rule_month(source: str) -> str: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/period.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (532 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
from typing import Literal
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from pandas._libs.tslibs.dtypes import PeriodDtypeBase
|
7 |
+
from pandas._libs.tslibs.nattype import NaTType
|
8 |
+
from pandas._libs.tslibs.offsets import BaseOffset
|
9 |
+
from pandas._libs.tslibs.timestamps import Timestamp
|
10 |
+
from pandas._typing import (
|
11 |
+
Frequency,
|
12 |
+
npt,
|
13 |
+
)
|
14 |
+
|
15 |
+
INVALID_FREQ_ERR_MSG: str
|
16 |
+
DIFFERENT_FREQ: str
|
17 |
+
|
18 |
+
class IncompatibleFrequency(ValueError): ...
|
19 |
+
|
20 |
+
def periodarr_to_dt64arr(
|
21 |
+
periodarr: npt.NDArray[np.int64], # const int64_t[:]
|
22 |
+
freq: int,
|
23 |
+
) -> npt.NDArray[np.int64]: ...
|
24 |
+
def period_asfreq_arr(
|
25 |
+
arr: npt.NDArray[np.int64],
|
26 |
+
freq1: int,
|
27 |
+
freq2: int,
|
28 |
+
end: bool,
|
29 |
+
) -> npt.NDArray[np.int64]: ...
|
30 |
+
def get_period_field_arr(
|
31 |
+
field: str,
|
32 |
+
arr: npt.NDArray[np.int64], # const int64_t[:]
|
33 |
+
freq: int,
|
34 |
+
) -> npt.NDArray[np.int64]: ...
|
35 |
+
def from_ordinals(
|
36 |
+
values: npt.NDArray[np.int64], # const int64_t[:]
|
37 |
+
freq: timedelta | BaseOffset | str,
|
38 |
+
) -> npt.NDArray[np.int64]: ...
|
39 |
+
def extract_ordinals(
|
40 |
+
values: npt.NDArray[np.object_],
|
41 |
+
freq: Frequency | int,
|
42 |
+
) -> npt.NDArray[np.int64]: ...
|
43 |
+
def extract_freq(
|
44 |
+
values: npt.NDArray[np.object_],
|
45 |
+
) -> BaseOffset: ...
|
46 |
+
def period_array_strftime(
|
47 |
+
values: npt.NDArray[np.int64],
|
48 |
+
dtype_code: int,
|
49 |
+
na_rep,
|
50 |
+
date_format: str | None,
|
51 |
+
) -> npt.NDArray[np.object_]: ...
|
52 |
+
|
53 |
+
# exposed for tests
|
54 |
+
def period_asfreq(ordinal: int, freq1: int, freq2: int, end: bool) -> int: ...
|
55 |
+
def period_ordinal(
|
56 |
+
y: int, m: int, d: int, h: int, min: int, s: int, us: int, ps: int, freq: int
|
57 |
+
) -> int: ...
|
58 |
+
def freq_to_dtype_code(freq: BaseOffset) -> int: ...
|
59 |
+
def validate_end_alias(how: str) -> Literal["E", "S"]: ...
|
60 |
+
|
61 |
+
class PeriodMixin:
|
62 |
+
@property
|
63 |
+
def end_time(self) -> Timestamp: ...
|
64 |
+
@property
|
65 |
+
def start_time(self) -> Timestamp: ...
|
66 |
+
def _require_matching_freq(self, other: BaseOffset, base: bool = ...) -> None: ...
|
67 |
+
|
68 |
+
class Period(PeriodMixin):
|
69 |
+
ordinal: int # int64_t
|
70 |
+
freq: BaseOffset
|
71 |
+
_dtype: PeriodDtypeBase
|
72 |
+
|
73 |
+
# error: "__new__" must return a class instance (got "Union[Period, NaTType]")
|
74 |
+
def __new__( # type: ignore[misc]
|
75 |
+
cls,
|
76 |
+
value=...,
|
77 |
+
freq: int | str | BaseOffset | None = ...,
|
78 |
+
ordinal: int | None = ...,
|
79 |
+
year: int | None = ...,
|
80 |
+
month: int | None = ...,
|
81 |
+
quarter: int | None = ...,
|
82 |
+
day: int | None = ...,
|
83 |
+
hour: int | None = ...,
|
84 |
+
minute: int | None = ...,
|
85 |
+
second: int | None = ...,
|
86 |
+
) -> Period | NaTType: ...
|
87 |
+
@classmethod
|
88 |
+
def _maybe_convert_freq(cls, freq) -> BaseOffset: ...
|
89 |
+
@classmethod
|
90 |
+
def _from_ordinal(cls, ordinal: int, freq: BaseOffset) -> Period: ...
|
91 |
+
@classmethod
|
92 |
+
def now(cls, freq: Frequency) -> Period: ...
|
93 |
+
def strftime(self, fmt: str | None) -> str: ...
|
94 |
+
def to_timestamp(
|
95 |
+
self,
|
96 |
+
freq: str | BaseOffset | None = ...,
|
97 |
+
how: str = ...,
|
98 |
+
) -> Timestamp: ...
|
99 |
+
def asfreq(self, freq: str | BaseOffset, how: str = ...) -> Period: ...
|
100 |
+
@property
|
101 |
+
def freqstr(self) -> str: ...
|
102 |
+
@property
|
103 |
+
def is_leap_year(self) -> bool: ...
|
104 |
+
@property
|
105 |
+
def daysinmonth(self) -> int: ...
|
106 |
+
@property
|
107 |
+
def days_in_month(self) -> int: ...
|
108 |
+
@property
|
109 |
+
def qyear(self) -> int: ...
|
110 |
+
@property
|
111 |
+
def quarter(self) -> int: ...
|
112 |
+
@property
|
113 |
+
def day_of_year(self) -> int: ...
|
114 |
+
@property
|
115 |
+
def weekday(self) -> int: ...
|
116 |
+
@property
|
117 |
+
def day_of_week(self) -> int: ...
|
118 |
+
@property
|
119 |
+
def week(self) -> int: ...
|
120 |
+
@property
|
121 |
+
def weekofyear(self) -> int: ...
|
122 |
+
@property
|
123 |
+
def second(self) -> int: ...
|
124 |
+
@property
|
125 |
+
def minute(self) -> int: ...
|
126 |
+
@property
|
127 |
+
def hour(self) -> int: ...
|
128 |
+
@property
|
129 |
+
def day(self) -> int: ...
|
130 |
+
@property
|
131 |
+
def month(self) -> int: ...
|
132 |
+
@property
|
133 |
+
def year(self) -> int: ...
|
134 |
+
def __sub__(self, other) -> Period | BaseOffset: ...
|
135 |
+
def __add__(self, other) -> Period: ...
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (410 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.pyi
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from pandas._typing import npt
|
4 |
+
|
5 |
+
def array_strptime(
|
6 |
+
values: npt.NDArray[np.object_],
|
7 |
+
fmt: str | None,
|
8 |
+
exact: bool = ...,
|
9 |
+
errors: str = ...,
|
10 |
+
utc: bool = ...,
|
11 |
+
creso: int = ..., # NPY_DATETIMEUNIT
|
12 |
+
) -> tuple[np.ndarray, np.ndarray]: ...
|
13 |
+
|
14 |
+
# first ndarray is M8[ns], second is object ndarray of tzinfo | None
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (652 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.pyi
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
from typing import (
|
3 |
+
ClassVar,
|
4 |
+
Literal,
|
5 |
+
TypeAlias,
|
6 |
+
TypeVar,
|
7 |
+
overload,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas._libs.tslibs import (
|
13 |
+
NaTType,
|
14 |
+
Tick,
|
15 |
+
)
|
16 |
+
from pandas._typing import (
|
17 |
+
Frequency,
|
18 |
+
Self,
|
19 |
+
npt,
|
20 |
+
)
|
21 |
+
|
22 |
+
# This should be kept consistent with the keys in the dict timedelta_abbrevs
|
23 |
+
# in pandas/_libs/tslibs/timedeltas.pyx
|
24 |
+
UnitChoices: TypeAlias = Literal[
|
25 |
+
"Y",
|
26 |
+
"y",
|
27 |
+
"M",
|
28 |
+
"W",
|
29 |
+
"w",
|
30 |
+
"D",
|
31 |
+
"d",
|
32 |
+
"days",
|
33 |
+
"day",
|
34 |
+
"hours",
|
35 |
+
"hour",
|
36 |
+
"hr",
|
37 |
+
"h",
|
38 |
+
"m",
|
39 |
+
"minute",
|
40 |
+
"min",
|
41 |
+
"minutes",
|
42 |
+
"T",
|
43 |
+
"t",
|
44 |
+
"s",
|
45 |
+
"seconds",
|
46 |
+
"sec",
|
47 |
+
"second",
|
48 |
+
"ms",
|
49 |
+
"milliseconds",
|
50 |
+
"millisecond",
|
51 |
+
"milli",
|
52 |
+
"millis",
|
53 |
+
"L",
|
54 |
+
"l",
|
55 |
+
"us",
|
56 |
+
"microseconds",
|
57 |
+
"microsecond",
|
58 |
+
"µs",
|
59 |
+
"micro",
|
60 |
+
"micros",
|
61 |
+
"u",
|
62 |
+
"ns",
|
63 |
+
"nanoseconds",
|
64 |
+
"nano",
|
65 |
+
"nanos",
|
66 |
+
"nanosecond",
|
67 |
+
"n",
|
68 |
+
]
|
69 |
+
_S = TypeVar("_S", bound=timedelta)
|
70 |
+
|
71 |
+
def get_unit_for_round(freq, creso: int) -> int: ...
|
72 |
+
def disallow_ambiguous_unit(unit: str | None) -> None: ...
|
73 |
+
def ints_to_pytimedelta(
|
74 |
+
m8values: npt.NDArray[np.timedelta64],
|
75 |
+
box: bool = ...,
|
76 |
+
) -> npt.NDArray[np.object_]: ...
|
77 |
+
def array_to_timedelta64(
|
78 |
+
values: npt.NDArray[np.object_],
|
79 |
+
unit: str | None = ...,
|
80 |
+
errors: str = ...,
|
81 |
+
) -> np.ndarray: ... # np.ndarray[m8ns]
|
82 |
+
def parse_timedelta_unit(unit: str | None) -> UnitChoices: ...
|
83 |
+
def delta_to_nanoseconds(
|
84 |
+
delta: np.timedelta64 | timedelta | Tick,
|
85 |
+
reso: int = ..., # NPY_DATETIMEUNIT
|
86 |
+
round_ok: bool = ...,
|
87 |
+
) -> int: ...
|
88 |
+
def floordiv_object_array(
|
89 |
+
left: np.ndarray, right: npt.NDArray[np.object_]
|
90 |
+
) -> np.ndarray: ...
|
91 |
+
def truediv_object_array(
|
92 |
+
left: np.ndarray, right: npt.NDArray[np.object_]
|
93 |
+
) -> np.ndarray: ...
|
94 |
+
|
95 |
+
class Timedelta(timedelta):
|
96 |
+
_creso: int
|
97 |
+
min: ClassVar[Timedelta]
|
98 |
+
max: ClassVar[Timedelta]
|
99 |
+
resolution: ClassVar[Timedelta]
|
100 |
+
value: int # np.int64
|
101 |
+
_value: int # np.int64
|
102 |
+
# error: "__new__" must return a class instance (got "Union[Timestamp, NaTType]")
|
103 |
+
def __new__( # type: ignore[misc]
|
104 |
+
cls: type[_S],
|
105 |
+
value=...,
|
106 |
+
unit: str | None = ...,
|
107 |
+
**kwargs: float | np.integer | np.floating,
|
108 |
+
) -> _S | NaTType: ...
|
109 |
+
@classmethod
|
110 |
+
def _from_value_and_reso(cls, value: np.int64, reso: int) -> Timedelta: ...
|
111 |
+
@property
|
112 |
+
def days(self) -> int: ...
|
113 |
+
@property
|
114 |
+
def seconds(self) -> int: ...
|
115 |
+
@property
|
116 |
+
def microseconds(self) -> int: ...
|
117 |
+
def total_seconds(self) -> float: ...
|
118 |
+
def to_pytimedelta(self) -> timedelta: ...
|
119 |
+
def to_timedelta64(self) -> np.timedelta64: ...
|
120 |
+
@property
|
121 |
+
def asm8(self) -> np.timedelta64: ...
|
122 |
+
# TODO: round/floor/ceil could return NaT?
|
123 |
+
def round(self, freq: Frequency) -> Self: ...
|
124 |
+
def floor(self, freq: Frequency) -> Self: ...
|
125 |
+
def ceil(self, freq: Frequency) -> Self: ...
|
126 |
+
@property
|
127 |
+
def resolution_string(self) -> str: ...
|
128 |
+
def __add__(self, other: timedelta) -> Timedelta: ...
|
129 |
+
def __radd__(self, other: timedelta) -> Timedelta: ...
|
130 |
+
def __sub__(self, other: timedelta) -> Timedelta: ...
|
131 |
+
def __rsub__(self, other: timedelta) -> Timedelta: ...
|
132 |
+
def __neg__(self) -> Timedelta: ...
|
133 |
+
def __pos__(self) -> Timedelta: ...
|
134 |
+
def __abs__(self) -> Timedelta: ...
|
135 |
+
def __mul__(self, other: float) -> Timedelta: ...
|
136 |
+
def __rmul__(self, other: float) -> Timedelta: ...
|
137 |
+
# error: Signature of "__floordiv__" incompatible with supertype "timedelta"
|
138 |
+
@overload # type: ignore[override]
|
139 |
+
def __floordiv__(self, other: timedelta) -> int: ...
|
140 |
+
@overload
|
141 |
+
def __floordiv__(self, other: float) -> Timedelta: ...
|
142 |
+
@overload
|
143 |
+
def __floordiv__(
|
144 |
+
self, other: npt.NDArray[np.timedelta64]
|
145 |
+
) -> npt.NDArray[np.intp]: ...
|
146 |
+
@overload
|
147 |
+
def __floordiv__(
|
148 |
+
self, other: npt.NDArray[np.number]
|
149 |
+
) -> npt.NDArray[np.timedelta64] | Timedelta: ...
|
150 |
+
@overload
|
151 |
+
def __rfloordiv__(self, other: timedelta | str) -> int: ...
|
152 |
+
@overload
|
153 |
+
def __rfloordiv__(self, other: None | NaTType) -> NaTType: ...
|
154 |
+
@overload
|
155 |
+
def __rfloordiv__(self, other: np.ndarray) -> npt.NDArray[np.timedelta64]: ...
|
156 |
+
@overload
|
157 |
+
def __truediv__(self, other: timedelta) -> float: ...
|
158 |
+
@overload
|
159 |
+
def __truediv__(self, other: float) -> Timedelta: ...
|
160 |
+
def __mod__(self, other: timedelta) -> Timedelta: ...
|
161 |
+
def __divmod__(self, other: timedelta) -> tuple[int, Timedelta]: ...
|
162 |
+
def __le__(self, other: timedelta) -> bool: ...
|
163 |
+
def __lt__(self, other: timedelta) -> bool: ...
|
164 |
+
def __ge__(self, other: timedelta) -> bool: ...
|
165 |
+
def __gt__(self, other: timedelta) -> bool: ...
|
166 |
+
def __hash__(self) -> int: ...
|
167 |
+
def isoformat(self) -> str: ...
|
168 |
+
def to_numpy(
|
169 |
+
self, dtype: npt.DTypeLike = ..., copy: bool = False
|
170 |
+
) -> np.timedelta64: ...
|
171 |
+
def view(self, dtype: npt.DTypeLike) -> object: ...
|
172 |
+
@property
|
173 |
+
def unit(self) -> str: ...
|
174 |
+
def as_unit(self, unit: str, round_ok: bool = ...) -> Timedelta: ...
|