applied-ai-018 commited on
Commit
a16a983
·
verified ·
1 Parent(s): 77668b1

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc +0 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so +0 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/_libs/arrays.pyi +40 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi +5 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/_libs/groupby.pyi +216 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashing.pyi +9 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi +252 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/_libs/index.cpython-310-x86_64-linux-gnu.so +0 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/_libs/index.pyi +100 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so +0 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/_libs/internals.pyi +94 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/_libs/interval.pyi +174 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.pyi +79 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/_libs/lib.pyi +213 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so +0 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/_libs/ops.cpython-310-x86_64-linux-gnu.so +0 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so +0 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/_libs/parsers.pyi +77 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/_libs/reshape.cpython-310-x86_64-linux-gnu.so +0 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/_libs/reshape.pyi +16 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/_libs/sas.cpython-310-x86_64-linux-gnu.so +0 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/_libs/sas.pyi +7 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/_libs/sparse.pyi +51 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/_libs/testing.cpython-310-x86_64-linux-gnu.so +0 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslib.pyi +37 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py +87 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so +0 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi +12 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so +0 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi +14 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so +0 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi +83 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so +0 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.pyi +62 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.cpython-310-x86_64-linux-gnu.so +0 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi +141 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.cpython-310-x86_64-linux-gnu.so +0 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi +27 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi +287 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.cpython-310-x86_64-linux-gnu.so +0 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.pyi +33 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/period.cpython-310-x86_64-linux-gnu.so +0 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi +135 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.cpython-310-x86_64-linux-gnu.so +0 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.pyi +14 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.cpython-310-x86_64-linux-gnu.so +0 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.pyi +174 -0
llmeval-env/lib/python3.10/site-packages/pandas/_libs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (553 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/arrays.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (133 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/arrays.pyi ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Sequence
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import (
6
+ AxisInt,
7
+ DtypeObj,
8
+ Self,
9
+ Shape,
10
+ )
11
+
12
+ class NDArrayBacked:
13
+ _dtype: DtypeObj
14
+ _ndarray: np.ndarray
15
+ def __init__(self, values: np.ndarray, dtype: DtypeObj) -> None: ...
16
+ @classmethod
17
+ def _simple_new(cls, values: np.ndarray, dtype: DtypeObj): ...
18
+ def _from_backing_data(self, values: np.ndarray): ...
19
+ def __setstate__(self, state): ...
20
+ def __len__(self) -> int: ...
21
+ @property
22
+ def shape(self) -> Shape: ...
23
+ @property
24
+ def ndim(self) -> int: ...
25
+ @property
26
+ def size(self) -> int: ...
27
+ @property
28
+ def nbytes(self) -> int: ...
29
+ def copy(self, order=...): ...
30
+ def delete(self, loc, axis=...): ...
31
+ def swapaxes(self, axis1, axis2): ...
32
+ def repeat(self, repeats: int | Sequence[int], axis: int | None = ...): ...
33
+ def reshape(self, *args, **kwargs): ...
34
+ def ravel(self, order=...): ...
35
+ @property
36
+ def T(self): ...
37
+ @classmethod
38
+ def _concat_same_type(
39
+ cls, to_concat: Sequence[Self], axis: AxisInt = ...
40
+ ) -> Self: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/byteswap.pyi ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ def read_float_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
2
+ def read_double_with_byteswap(data: bytes, offset: int, byteswap: bool) -> float: ...
3
+ def read_uint16_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
4
+ def read_uint32_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
5
+ def read_uint64_with_byteswap(data: bytes, offset: int, byteswap: bool) -> int: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/groupby.pyi ADDED
@@ -0,0 +1,216 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Literal
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import npt
6
+
7
+ def group_median_float64(
8
+ out: np.ndarray, # ndarray[float64_t, ndim=2]
9
+ counts: npt.NDArray[np.int64],
10
+ values: np.ndarray, # ndarray[float64_t, ndim=2]
11
+ labels: npt.NDArray[np.int64],
12
+ min_count: int = ..., # Py_ssize_t
13
+ mask: np.ndarray | None = ...,
14
+ result_mask: np.ndarray | None = ...,
15
+ ) -> None: ...
16
+ def group_cumprod(
17
+ out: np.ndarray, # float64_t[:, ::1]
18
+ values: np.ndarray, # const float64_t[:, :]
19
+ labels: np.ndarray, # const int64_t[:]
20
+ ngroups: int,
21
+ is_datetimelike: bool,
22
+ skipna: bool = ...,
23
+ mask: np.ndarray | None = ...,
24
+ result_mask: np.ndarray | None = ...,
25
+ ) -> None: ...
26
+ def group_cumsum(
27
+ out: np.ndarray, # int64float_t[:, ::1]
28
+ values: np.ndarray, # ndarray[int64float_t, ndim=2]
29
+ labels: np.ndarray, # const int64_t[:]
30
+ ngroups: int,
31
+ is_datetimelike: bool,
32
+ skipna: bool = ...,
33
+ mask: np.ndarray | None = ...,
34
+ result_mask: np.ndarray | None = ...,
35
+ ) -> None: ...
36
+ def group_shift_indexer(
37
+ out: np.ndarray, # int64_t[::1]
38
+ labels: np.ndarray, # const int64_t[:]
39
+ ngroups: int,
40
+ periods: int,
41
+ ) -> None: ...
42
+ def group_fillna_indexer(
43
+ out: np.ndarray, # ndarray[intp_t]
44
+ labels: np.ndarray, # ndarray[int64_t]
45
+ sorted_labels: npt.NDArray[np.intp],
46
+ mask: npt.NDArray[np.uint8],
47
+ limit: int, # int64_t
48
+ dropna: bool,
49
+ ) -> None: ...
50
+ def group_any_all(
51
+ out: np.ndarray, # uint8_t[::1]
52
+ values: np.ndarray, # const uint8_t[::1]
53
+ labels: np.ndarray, # const int64_t[:]
54
+ mask: np.ndarray, # const uint8_t[::1]
55
+ val_test: Literal["any", "all"],
56
+ skipna: bool,
57
+ result_mask: np.ndarray | None,
58
+ ) -> None: ...
59
+ def group_sum(
60
+ out: np.ndarray, # complexfloatingintuint_t[:, ::1]
61
+ counts: np.ndarray, # int64_t[::1]
62
+ values: np.ndarray, # ndarray[complexfloatingintuint_t, ndim=2]
63
+ labels: np.ndarray, # const intp_t[:]
64
+ mask: np.ndarray | None,
65
+ result_mask: np.ndarray | None = ...,
66
+ min_count: int = ...,
67
+ is_datetimelike: bool = ...,
68
+ ) -> None: ...
69
+ def group_prod(
70
+ out: np.ndarray, # int64float_t[:, ::1]
71
+ counts: np.ndarray, # int64_t[::1]
72
+ values: np.ndarray, # ndarray[int64float_t, ndim=2]
73
+ labels: np.ndarray, # const intp_t[:]
74
+ mask: np.ndarray | None,
75
+ result_mask: np.ndarray | None = ...,
76
+ min_count: int = ...,
77
+ ) -> None: ...
78
+ def group_var(
79
+ out: np.ndarray, # floating[:, ::1]
80
+ counts: np.ndarray, # int64_t[::1]
81
+ values: np.ndarray, # ndarray[floating, ndim=2]
82
+ labels: np.ndarray, # const intp_t[:]
83
+ min_count: int = ..., # Py_ssize_t
84
+ ddof: int = ..., # int64_t
85
+ mask: np.ndarray | None = ...,
86
+ result_mask: np.ndarray | None = ...,
87
+ is_datetimelike: bool = ...,
88
+ name: str = ...,
89
+ ) -> None: ...
90
+ def group_skew(
91
+ out: np.ndarray, # float64_t[:, ::1]
92
+ counts: np.ndarray, # int64_t[::1]
93
+ values: np.ndarray, # ndarray[float64_T, ndim=2]
94
+ labels: np.ndarray, # const intp_t[::1]
95
+ mask: np.ndarray | None = ...,
96
+ result_mask: np.ndarray | None = ...,
97
+ skipna: bool = ...,
98
+ ) -> None: ...
99
+ def group_mean(
100
+ out: np.ndarray, # floating[:, ::1]
101
+ counts: np.ndarray, # int64_t[::1]
102
+ values: np.ndarray, # ndarray[floating, ndim=2]
103
+ labels: np.ndarray, # const intp_t[:]
104
+ min_count: int = ..., # Py_ssize_t
105
+ is_datetimelike: bool = ..., # bint
106
+ mask: np.ndarray | None = ...,
107
+ result_mask: np.ndarray | None = ...,
108
+ ) -> None: ...
109
+ def group_ohlc(
110
+ out: np.ndarray, # floatingintuint_t[:, ::1]
111
+ counts: np.ndarray, # int64_t[::1]
112
+ values: np.ndarray, # ndarray[floatingintuint_t, ndim=2]
113
+ labels: np.ndarray, # const intp_t[:]
114
+ min_count: int = ...,
115
+ mask: np.ndarray | None = ...,
116
+ result_mask: np.ndarray | None = ...,
117
+ ) -> None: ...
118
+ def group_quantile(
119
+ out: npt.NDArray[np.float64],
120
+ values: np.ndarray, # ndarray[numeric, ndim=1]
121
+ labels: npt.NDArray[np.intp],
122
+ mask: npt.NDArray[np.uint8],
123
+ qs: npt.NDArray[np.float64], # const
124
+ starts: npt.NDArray[np.int64],
125
+ ends: npt.NDArray[np.int64],
126
+ interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
127
+ result_mask: np.ndarray | None,
128
+ is_datetimelike: bool,
129
+ ) -> None: ...
130
+ def group_last(
131
+ out: np.ndarray, # rank_t[:, ::1]
132
+ counts: np.ndarray, # int64_t[::1]
133
+ values: np.ndarray, # ndarray[rank_t, ndim=2]
134
+ labels: np.ndarray, # const int64_t[:]
135
+ mask: npt.NDArray[np.bool_] | None,
136
+ result_mask: npt.NDArray[np.bool_] | None = ...,
137
+ min_count: int = ..., # Py_ssize_t
138
+ is_datetimelike: bool = ...,
139
+ skipna: bool = ...,
140
+ ) -> None: ...
141
+ def group_nth(
142
+ out: np.ndarray, # rank_t[:, ::1]
143
+ counts: np.ndarray, # int64_t[::1]
144
+ values: np.ndarray, # ndarray[rank_t, ndim=2]
145
+ labels: np.ndarray, # const int64_t[:]
146
+ mask: npt.NDArray[np.bool_] | None,
147
+ result_mask: npt.NDArray[np.bool_] | None = ...,
148
+ min_count: int = ..., # int64_t
149
+ rank: int = ..., # int64_t
150
+ is_datetimelike: bool = ...,
151
+ skipna: bool = ...,
152
+ ) -> None: ...
153
+ def group_rank(
154
+ out: np.ndarray, # float64_t[:, ::1]
155
+ values: np.ndarray, # ndarray[rank_t, ndim=2]
156
+ labels: np.ndarray, # const int64_t[:]
157
+ ngroups: int,
158
+ is_datetimelike: bool,
159
+ ties_method: Literal["average", "min", "max", "first", "dense"] = ...,
160
+ ascending: bool = ...,
161
+ pct: bool = ...,
162
+ na_option: Literal["keep", "top", "bottom"] = ...,
163
+ mask: npt.NDArray[np.bool_] | None = ...,
164
+ ) -> None: ...
165
+ def group_max(
166
+ out: np.ndarray, # groupby_t[:, ::1]
167
+ counts: np.ndarray, # int64_t[::1]
168
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
169
+ labels: np.ndarray, # const int64_t[:]
170
+ min_count: int = ...,
171
+ is_datetimelike: bool = ...,
172
+ mask: np.ndarray | None = ...,
173
+ result_mask: np.ndarray | None = ...,
174
+ ) -> None: ...
175
+ def group_min(
176
+ out: np.ndarray, # groupby_t[:, ::1]
177
+ counts: np.ndarray, # int64_t[::1]
178
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
179
+ labels: np.ndarray, # const int64_t[:]
180
+ min_count: int = ...,
181
+ is_datetimelike: bool = ...,
182
+ mask: np.ndarray | None = ...,
183
+ result_mask: np.ndarray | None = ...,
184
+ ) -> None: ...
185
+ def group_idxmin_idxmax(
186
+ out: npt.NDArray[np.intp],
187
+ counts: npt.NDArray[np.int64],
188
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
189
+ labels: npt.NDArray[np.intp],
190
+ min_count: int = ...,
191
+ is_datetimelike: bool = ...,
192
+ mask: np.ndarray | None = ...,
193
+ name: str = ...,
194
+ skipna: bool = ...,
195
+ result_mask: np.ndarray | None = ...,
196
+ ) -> None: ...
197
+ def group_cummin(
198
+ out: np.ndarray, # groupby_t[:, ::1]
199
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
200
+ labels: np.ndarray, # const int64_t[:]
201
+ ngroups: int,
202
+ is_datetimelike: bool,
203
+ mask: np.ndarray | None = ...,
204
+ result_mask: np.ndarray | None = ...,
205
+ skipna: bool = ...,
206
+ ) -> None: ...
207
+ def group_cummax(
208
+ out: np.ndarray, # groupby_t[:, ::1]
209
+ values: np.ndarray, # ndarray[groupby_t, ndim=2]
210
+ labels: np.ndarray, # const int64_t[:]
211
+ ngroups: int,
212
+ is_datetimelike: bool,
213
+ mask: np.ndarray | None = ...,
214
+ result_mask: np.ndarray | None = ...,
215
+ skipna: bool = ...,
216
+ ) -> None: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashing.pyi ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def hash_object_array(
6
+ arr: npt.NDArray[np.object_],
7
+ key: str,
8
+ encoding: str = ...,
9
+ ) -> npt.NDArray[np.uint64]: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashtable.pyi ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Hashable,
4
+ Literal,
5
+ )
6
+
7
+ import numpy as np
8
+
9
+ from pandas._typing import npt
10
+
11
+ def unique_label_indices(
12
+ labels: np.ndarray, # const int64_t[:]
13
+ ) -> np.ndarray: ...
14
+
15
+ class Factorizer:
16
+ count: int
17
+ uniques: Any
18
+ def __init__(self, size_hint: int) -> None: ...
19
+ def get_count(self) -> int: ...
20
+ def factorize(
21
+ self,
22
+ values: np.ndarray,
23
+ na_sentinel=...,
24
+ na_value=...,
25
+ mask=...,
26
+ ) -> npt.NDArray[np.intp]: ...
27
+
28
+ class ObjectFactorizer(Factorizer):
29
+ table: PyObjectHashTable
30
+ uniques: ObjectVector
31
+
32
+ class Int64Factorizer(Factorizer):
33
+ table: Int64HashTable
34
+ uniques: Int64Vector
35
+
36
+ class UInt64Factorizer(Factorizer):
37
+ table: UInt64HashTable
38
+ uniques: UInt64Vector
39
+
40
+ class Int32Factorizer(Factorizer):
41
+ table: Int32HashTable
42
+ uniques: Int32Vector
43
+
44
+ class UInt32Factorizer(Factorizer):
45
+ table: UInt32HashTable
46
+ uniques: UInt32Vector
47
+
48
+ class Int16Factorizer(Factorizer):
49
+ table: Int16HashTable
50
+ uniques: Int16Vector
51
+
52
+ class UInt16Factorizer(Factorizer):
53
+ table: UInt16HashTable
54
+ uniques: UInt16Vector
55
+
56
+ class Int8Factorizer(Factorizer):
57
+ table: Int8HashTable
58
+ uniques: Int8Vector
59
+
60
+ class UInt8Factorizer(Factorizer):
61
+ table: UInt8HashTable
62
+ uniques: UInt8Vector
63
+
64
+ class Float64Factorizer(Factorizer):
65
+ table: Float64HashTable
66
+ uniques: Float64Vector
67
+
68
+ class Float32Factorizer(Factorizer):
69
+ table: Float32HashTable
70
+ uniques: Float32Vector
71
+
72
+ class Complex64Factorizer(Factorizer):
73
+ table: Complex64HashTable
74
+ uniques: Complex64Vector
75
+
76
+ class Complex128Factorizer(Factorizer):
77
+ table: Complex128HashTable
78
+ uniques: Complex128Vector
79
+
80
+ class Int64Vector:
81
+ def __init__(self, *args) -> None: ...
82
+ def __len__(self) -> int: ...
83
+ def to_array(self) -> npt.NDArray[np.int64]: ...
84
+
85
+ class Int32Vector:
86
+ def __init__(self, *args) -> None: ...
87
+ def __len__(self) -> int: ...
88
+ def to_array(self) -> npt.NDArray[np.int32]: ...
89
+
90
+ class Int16Vector:
91
+ def __init__(self, *args) -> None: ...
92
+ def __len__(self) -> int: ...
93
+ def to_array(self) -> npt.NDArray[np.int16]: ...
94
+
95
+ class Int8Vector:
96
+ def __init__(self, *args) -> None: ...
97
+ def __len__(self) -> int: ...
98
+ def to_array(self) -> npt.NDArray[np.int8]: ...
99
+
100
+ class UInt64Vector:
101
+ def __init__(self, *args) -> None: ...
102
+ def __len__(self) -> int: ...
103
+ def to_array(self) -> npt.NDArray[np.uint64]: ...
104
+
105
+ class UInt32Vector:
106
+ def __init__(self, *args) -> None: ...
107
+ def __len__(self) -> int: ...
108
+ def to_array(self) -> npt.NDArray[np.uint32]: ...
109
+
110
+ class UInt16Vector:
111
+ def __init__(self, *args) -> None: ...
112
+ def __len__(self) -> int: ...
113
+ def to_array(self) -> npt.NDArray[np.uint16]: ...
114
+
115
+ class UInt8Vector:
116
+ def __init__(self, *args) -> None: ...
117
+ def __len__(self) -> int: ...
118
+ def to_array(self) -> npt.NDArray[np.uint8]: ...
119
+
120
+ class Float64Vector:
121
+ def __init__(self, *args) -> None: ...
122
+ def __len__(self) -> int: ...
123
+ def to_array(self) -> npt.NDArray[np.float64]: ...
124
+
125
+ class Float32Vector:
126
+ def __init__(self, *args) -> None: ...
127
+ def __len__(self) -> int: ...
128
+ def to_array(self) -> npt.NDArray[np.float32]: ...
129
+
130
+ class Complex128Vector:
131
+ def __init__(self, *args) -> None: ...
132
+ def __len__(self) -> int: ...
133
+ def to_array(self) -> npt.NDArray[np.complex128]: ...
134
+
135
+ class Complex64Vector:
136
+ def __init__(self, *args) -> None: ...
137
+ def __len__(self) -> int: ...
138
+ def to_array(self) -> npt.NDArray[np.complex64]: ...
139
+
140
+ class StringVector:
141
+ def __init__(self, *args) -> None: ...
142
+ def __len__(self) -> int: ...
143
+ def to_array(self) -> npt.NDArray[np.object_]: ...
144
+
145
+ class ObjectVector:
146
+ def __init__(self, *args) -> None: ...
147
+ def __len__(self) -> int: ...
148
+ def to_array(self) -> npt.NDArray[np.object_]: ...
149
+
150
+ class HashTable:
151
+ # NB: The base HashTable class does _not_ actually have these methods;
152
+ # we are putting them here for the sake of mypy to avoid
153
+ # reproducing them in each subclass below.
154
+ def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ...
155
+ def __len__(self) -> int: ...
156
+ def __contains__(self, key: Hashable) -> bool: ...
157
+ def sizeof(self, deep: bool = ...) -> int: ...
158
+ def get_state(self) -> dict[str, int]: ...
159
+ # TODO: `val/key` type is subclass-specific
160
+ def get_item(self, val): ... # TODO: return type?
161
+ def set_item(self, key, val) -> None: ...
162
+ def get_na(self): ... # TODO: return type?
163
+ def set_na(self, val) -> None: ...
164
+ def map_locations(
165
+ self,
166
+ values: np.ndarray, # np.ndarray[subclass-specific]
167
+ mask: npt.NDArray[np.bool_] | None = ...,
168
+ ) -> None: ...
169
+ def lookup(
170
+ self,
171
+ values: np.ndarray, # np.ndarray[subclass-specific]
172
+ mask: npt.NDArray[np.bool_] | None = ...,
173
+ ) -> npt.NDArray[np.intp]: ...
174
+ def get_labels(
175
+ self,
176
+ values: np.ndarray, # np.ndarray[subclass-specific]
177
+ uniques, # SubclassTypeVector
178
+ count_prior: int = ...,
179
+ na_sentinel: int = ...,
180
+ na_value: object = ...,
181
+ mask=...,
182
+ ) -> npt.NDArray[np.intp]: ...
183
+ def unique(
184
+ self,
185
+ values: np.ndarray, # np.ndarray[subclass-specific]
186
+ return_inverse: bool = ...,
187
+ mask=...,
188
+ ) -> (
189
+ tuple[
190
+ np.ndarray, # np.ndarray[subclass-specific]
191
+ npt.NDArray[np.intp],
192
+ ]
193
+ | np.ndarray
194
+ ): ... # np.ndarray[subclass-specific]
195
+ def factorize(
196
+ self,
197
+ values: np.ndarray, # np.ndarray[subclass-specific]
198
+ na_sentinel: int = ...,
199
+ na_value: object = ...,
200
+ mask=...,
201
+ ignore_na: bool = True,
202
+ ) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... # np.ndarray[subclass-specific]
203
+
204
+ class Complex128HashTable(HashTable): ...
205
+ class Complex64HashTable(HashTable): ...
206
+ class Float64HashTable(HashTable): ...
207
+ class Float32HashTable(HashTable): ...
208
+
209
+ class Int64HashTable(HashTable):
210
+ # Only Int64HashTable has get_labels_groupby, map_keys_to_values
211
+ def get_labels_groupby(
212
+ self,
213
+ values: npt.NDArray[np.int64], # const int64_t[:]
214
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ...
215
+ def map_keys_to_values(
216
+ self,
217
+ keys: npt.NDArray[np.int64],
218
+ values: npt.NDArray[np.int64], # const int64_t[:]
219
+ ) -> None: ...
220
+
221
+ class Int32HashTable(HashTable): ...
222
+ class Int16HashTable(HashTable): ...
223
+ class Int8HashTable(HashTable): ...
224
+ class UInt64HashTable(HashTable): ...
225
+ class UInt32HashTable(HashTable): ...
226
+ class UInt16HashTable(HashTable): ...
227
+ class UInt8HashTable(HashTable): ...
228
+ class StringHashTable(HashTable): ...
229
+ class PyObjectHashTable(HashTable): ...
230
+ class IntpHashTable(HashTable): ...
231
+
232
+ def duplicated(
233
+ values: np.ndarray,
234
+ keep: Literal["last", "first", False] = ...,
235
+ mask: npt.NDArray[np.bool_] | None = ...,
236
+ ) -> npt.NDArray[np.bool_]: ...
237
+ def mode(
238
+ values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ...
239
+ ) -> np.ndarray: ...
240
+ def value_count(
241
+ values: np.ndarray,
242
+ dropna: bool,
243
+ mask: npt.NDArray[np.bool_] | None = ...,
244
+ ) -> tuple[np.ndarray, npt.NDArray[np.int64], int]: ... # np.ndarray[same-as-values]
245
+
246
+ # arr and values should have same dtype
247
+ def ismember(
248
+ arr: np.ndarray,
249
+ values: np.ndarray,
250
+ ) -> npt.NDArray[np.bool_]: ...
251
+ def object_hash(obj) -> int: ...
252
+ def objects_are_equal(a, b) -> bool: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/index.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (988 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/index.pyi ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ from pandas import MultiIndex
6
+ from pandas.core.arrays import ExtensionArray
7
+
8
+ multiindex_nulls_shift: int
9
+
10
+ class IndexEngine:
11
+ over_size_threshold: bool
12
+ def __init__(self, values: np.ndarray) -> None: ...
13
+ def __contains__(self, val: object) -> bool: ...
14
+
15
+ # -> int | slice | np.ndarray[bool]
16
+ def get_loc(self, val: object) -> int | slice | np.ndarray: ...
17
+ def sizeof(self, deep: bool = ...) -> int: ...
18
+ def __sizeof__(self) -> int: ...
19
+ @property
20
+ def is_unique(self) -> bool: ...
21
+ @property
22
+ def is_monotonic_increasing(self) -> bool: ...
23
+ @property
24
+ def is_monotonic_decreasing(self) -> bool: ...
25
+ @property
26
+ def is_mapping_populated(self) -> bool: ...
27
+ def clear_mapping(self): ...
28
+ def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
29
+ def get_indexer_non_unique(
30
+ self,
31
+ targets: np.ndarray,
32
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
33
+
34
+ class MaskedIndexEngine(IndexEngine):
35
+ def __init__(self, values: object) -> None: ...
36
+ def get_indexer_non_unique(
37
+ self, targets: object
38
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
39
+
40
+ class Float64Engine(IndexEngine): ...
41
+ class Float32Engine(IndexEngine): ...
42
+ class Complex128Engine(IndexEngine): ...
43
+ class Complex64Engine(IndexEngine): ...
44
+ class Int64Engine(IndexEngine): ...
45
+ class Int32Engine(IndexEngine): ...
46
+ class Int16Engine(IndexEngine): ...
47
+ class Int8Engine(IndexEngine): ...
48
+ class UInt64Engine(IndexEngine): ...
49
+ class UInt32Engine(IndexEngine): ...
50
+ class UInt16Engine(IndexEngine): ...
51
+ class UInt8Engine(IndexEngine): ...
52
+ class ObjectEngine(IndexEngine): ...
53
+ class DatetimeEngine(Int64Engine): ...
54
+ class TimedeltaEngine(DatetimeEngine): ...
55
+ class PeriodEngine(Int64Engine): ...
56
+ class BoolEngine(UInt8Engine): ...
57
+ class MaskedFloat64Engine(MaskedIndexEngine): ...
58
+ class MaskedFloat32Engine(MaskedIndexEngine): ...
59
+ class MaskedComplex128Engine(MaskedIndexEngine): ...
60
+ class MaskedComplex64Engine(MaskedIndexEngine): ...
61
+ class MaskedInt64Engine(MaskedIndexEngine): ...
62
+ class MaskedInt32Engine(MaskedIndexEngine): ...
63
+ class MaskedInt16Engine(MaskedIndexEngine): ...
64
+ class MaskedInt8Engine(MaskedIndexEngine): ...
65
+ class MaskedUInt64Engine(MaskedIndexEngine): ...
66
+ class MaskedUInt32Engine(MaskedIndexEngine): ...
67
+ class MaskedUInt16Engine(MaskedIndexEngine): ...
68
+ class MaskedUInt8Engine(MaskedIndexEngine): ...
69
+ class MaskedBoolEngine(MaskedUInt8Engine): ...
70
+
71
+ class BaseMultiIndexCodesEngine:
72
+ levels: list[np.ndarray]
73
+ offsets: np.ndarray # ndarray[uint64_t, ndim=1]
74
+
75
+ def __init__(
76
+ self,
77
+ levels: list[np.ndarray], # all entries hashable
78
+ labels: list[np.ndarray], # all entries integer-dtyped
79
+ offsets: np.ndarray, # np.ndarray[np.uint64, ndim=1]
80
+ ) -> None: ...
81
+ def get_indexer(self, target: npt.NDArray[np.object_]) -> npt.NDArray[np.intp]: ...
82
+ def _extract_level_codes(self, target: MultiIndex) -> np.ndarray: ...
83
+
84
+ class ExtensionEngine:
85
+ def __init__(self, values: ExtensionArray) -> None: ...
86
+ def __contains__(self, val: object) -> bool: ...
87
+ def get_loc(self, val: object) -> int | slice | np.ndarray: ...
88
+ def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
89
+ def get_indexer_non_unique(
90
+ self,
91
+ targets: np.ndarray,
92
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
93
+ @property
94
+ def is_unique(self) -> bool: ...
95
+ @property
96
+ def is_monotonic_increasing(self) -> bool: ...
97
+ @property
98
+ def is_monotonic_decreasing(self) -> bool: ...
99
+ def sizeof(self, deep: bool = ...) -> int: ...
100
+ def clear_mapping(self): ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/internals.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (416 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/internals.pyi ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Iterator,
3
+ Sequence,
4
+ final,
5
+ overload,
6
+ )
7
+ import weakref
8
+
9
+ import numpy as np
10
+
11
+ from pandas._typing import (
12
+ ArrayLike,
13
+ Self,
14
+ npt,
15
+ )
16
+
17
+ from pandas import Index
18
+ from pandas.core.internals.blocks import Block as B
19
+
20
+ def slice_len(slc: slice, objlen: int = ...) -> int: ...
21
+ def get_concat_blkno_indexers(
22
+ blknos_list: list[npt.NDArray[np.intp]],
23
+ ) -> list[tuple[npt.NDArray[np.intp], BlockPlacement]]: ...
24
+ def get_blkno_indexers(
25
+ blknos: np.ndarray, # int64_t[:]
26
+ group: bool = ...,
27
+ ) -> list[tuple[int, slice | np.ndarray]]: ...
28
+ def get_blkno_placements(
29
+ blknos: np.ndarray,
30
+ group: bool = ...,
31
+ ) -> Iterator[tuple[int, BlockPlacement]]: ...
32
+ def update_blklocs_and_blknos(
33
+ blklocs: npt.NDArray[np.intp],
34
+ blknos: npt.NDArray[np.intp],
35
+ loc: int,
36
+ nblocks: int,
37
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
38
+ @final
39
+ class BlockPlacement:
40
+ def __init__(self, val: int | slice | np.ndarray) -> None: ...
41
+ @property
42
+ def indexer(self) -> np.ndarray | slice: ...
43
+ @property
44
+ def as_array(self) -> np.ndarray: ...
45
+ @property
46
+ def as_slice(self) -> slice: ...
47
+ @property
48
+ def is_slice_like(self) -> bool: ...
49
+ @overload
50
+ def __getitem__(
51
+ self, loc: slice | Sequence[int] | npt.NDArray[np.intp]
52
+ ) -> BlockPlacement: ...
53
+ @overload
54
+ def __getitem__(self, loc: int) -> int: ...
55
+ def __iter__(self) -> Iterator[int]: ...
56
+ def __len__(self) -> int: ...
57
+ def delete(self, loc) -> BlockPlacement: ...
58
+ def add(self, other) -> BlockPlacement: ...
59
+ def append(self, others: list[BlockPlacement]) -> BlockPlacement: ...
60
+ def tile_for_unstack(self, factor: int) -> npt.NDArray[np.intp]: ...
61
+
62
+ class Block:
63
+ _mgr_locs: BlockPlacement
64
+ ndim: int
65
+ values: ArrayLike
66
+ refs: BlockValuesRefs
67
+ def __init__(
68
+ self,
69
+ values: ArrayLike,
70
+ placement: BlockPlacement,
71
+ ndim: int,
72
+ refs: BlockValuesRefs | None = ...,
73
+ ) -> None: ...
74
+ def slice_block_rows(self, slicer: slice) -> Self: ...
75
+
76
+ class BlockManager:
77
+ blocks: tuple[B, ...]
78
+ axes: list[Index]
79
+ _known_consolidated: bool
80
+ _is_consolidated: bool
81
+ _blknos: np.ndarray
82
+ _blklocs: np.ndarray
83
+ def __init__(
84
+ self, blocks: tuple[B, ...], axes: list[Index], verify_integrity=...
85
+ ) -> None: ...
86
+ def get_slice(self, slobj: slice, axis: int = ...) -> Self: ...
87
+ def _rebuild_blknos_and_blklocs(self) -> None: ...
88
+
89
+ class BlockValuesRefs:
90
+ referenced_blocks: list[weakref.ref]
91
+ def __init__(self, blk: Block | None = ...) -> None: ...
92
+ def add_reference(self, blk: Block) -> None: ...
93
+ def add_index_reference(self, index: Index) -> None: ...
94
+ def has_reference(self) -> bool: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/interval.pyi ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Any,
3
+ Generic,
4
+ TypeVar,
5
+ overload,
6
+ )
7
+
8
+ import numpy as np
9
+ import numpy.typing as npt
10
+
11
+ from pandas._typing import (
12
+ IntervalClosedType,
13
+ Timedelta,
14
+ Timestamp,
15
+ )
16
+
17
+ VALID_CLOSED: frozenset[str]
18
+
19
+ _OrderableScalarT = TypeVar("_OrderableScalarT", int, float)
20
+ _OrderableTimesT = TypeVar("_OrderableTimesT", Timestamp, Timedelta)
21
+ _OrderableT = TypeVar("_OrderableT", int, float, Timestamp, Timedelta)
22
+
23
+ class _LengthDescriptor:
24
+ @overload
25
+ def __get__(
26
+ self, instance: Interval[_OrderableScalarT], owner: Any
27
+ ) -> _OrderableScalarT: ...
28
+ @overload
29
+ def __get__(
30
+ self, instance: Interval[_OrderableTimesT], owner: Any
31
+ ) -> Timedelta: ...
32
+
33
+ class _MidDescriptor:
34
+ @overload
35
+ def __get__(self, instance: Interval[_OrderableScalarT], owner: Any) -> float: ...
36
+ @overload
37
+ def __get__(
38
+ self, instance: Interval[_OrderableTimesT], owner: Any
39
+ ) -> _OrderableTimesT: ...
40
+
41
+ class IntervalMixin:
42
+ @property
43
+ def closed_left(self) -> bool: ...
44
+ @property
45
+ def closed_right(self) -> bool: ...
46
+ @property
47
+ def open_left(self) -> bool: ...
48
+ @property
49
+ def open_right(self) -> bool: ...
50
+ @property
51
+ def is_empty(self) -> bool: ...
52
+ def _check_closed_matches(self, other: IntervalMixin, name: str = ...) -> None: ...
53
+
54
+ class Interval(IntervalMixin, Generic[_OrderableT]):
55
+ @property
56
+ def left(self: Interval[_OrderableT]) -> _OrderableT: ...
57
+ @property
58
+ def right(self: Interval[_OrderableT]) -> _OrderableT: ...
59
+ @property
60
+ def closed(self) -> IntervalClosedType: ...
61
+ mid: _MidDescriptor
62
+ length: _LengthDescriptor
63
+ def __init__(
64
+ self,
65
+ left: _OrderableT,
66
+ right: _OrderableT,
67
+ closed: IntervalClosedType = ...,
68
+ ) -> None: ...
69
+ def __hash__(self) -> int: ...
70
+ @overload
71
+ def __contains__(
72
+ self: Interval[Timedelta], key: Timedelta | Interval[Timedelta]
73
+ ) -> bool: ...
74
+ @overload
75
+ def __contains__(
76
+ self: Interval[Timestamp], key: Timestamp | Interval[Timestamp]
77
+ ) -> bool: ...
78
+ @overload
79
+ def __contains__(
80
+ self: Interval[_OrderableScalarT],
81
+ key: _OrderableScalarT | Interval[_OrderableScalarT],
82
+ ) -> bool: ...
83
+ @overload
84
+ def __add__(
85
+ self: Interval[_OrderableTimesT], y: Timedelta
86
+ ) -> Interval[_OrderableTimesT]: ...
87
+ @overload
88
+ def __add__(
89
+ self: Interval[int], y: _OrderableScalarT
90
+ ) -> Interval[_OrderableScalarT]: ...
91
+ @overload
92
+ def __add__(self: Interval[float], y: float) -> Interval[float]: ...
93
+ @overload
94
+ def __radd__(
95
+ self: Interval[_OrderableTimesT], y: Timedelta
96
+ ) -> Interval[_OrderableTimesT]: ...
97
+ @overload
98
+ def __radd__(
99
+ self: Interval[int], y: _OrderableScalarT
100
+ ) -> Interval[_OrderableScalarT]: ...
101
+ @overload
102
+ def __radd__(self: Interval[float], y: float) -> Interval[float]: ...
103
+ @overload
104
+ def __sub__(
105
+ self: Interval[_OrderableTimesT], y: Timedelta
106
+ ) -> Interval[_OrderableTimesT]: ...
107
+ @overload
108
+ def __sub__(
109
+ self: Interval[int], y: _OrderableScalarT
110
+ ) -> Interval[_OrderableScalarT]: ...
111
+ @overload
112
+ def __sub__(self: Interval[float], y: float) -> Interval[float]: ...
113
+ @overload
114
+ def __rsub__(
115
+ self: Interval[_OrderableTimesT], y: Timedelta
116
+ ) -> Interval[_OrderableTimesT]: ...
117
+ @overload
118
+ def __rsub__(
119
+ self: Interval[int], y: _OrderableScalarT
120
+ ) -> Interval[_OrderableScalarT]: ...
121
+ @overload
122
+ def __rsub__(self: Interval[float], y: float) -> Interval[float]: ...
123
+ @overload
124
+ def __mul__(
125
+ self: Interval[int], y: _OrderableScalarT
126
+ ) -> Interval[_OrderableScalarT]: ...
127
+ @overload
128
+ def __mul__(self: Interval[float], y: float) -> Interval[float]: ...
129
+ @overload
130
+ def __rmul__(
131
+ self: Interval[int], y: _OrderableScalarT
132
+ ) -> Interval[_OrderableScalarT]: ...
133
+ @overload
134
+ def __rmul__(self: Interval[float], y: float) -> Interval[float]: ...
135
+ @overload
136
+ def __truediv__(
137
+ self: Interval[int], y: _OrderableScalarT
138
+ ) -> Interval[_OrderableScalarT]: ...
139
+ @overload
140
+ def __truediv__(self: Interval[float], y: float) -> Interval[float]: ...
141
+ @overload
142
+ def __floordiv__(
143
+ self: Interval[int], y: _OrderableScalarT
144
+ ) -> Interval[_OrderableScalarT]: ...
145
+ @overload
146
+ def __floordiv__(self: Interval[float], y: float) -> Interval[float]: ...
147
+ def overlaps(self: Interval[_OrderableT], other: Interval[_OrderableT]) -> bool: ...
148
+
149
+ def intervals_to_interval_bounds(
150
+ intervals: np.ndarray, validate_closed: bool = ...
151
+ ) -> tuple[np.ndarray, np.ndarray, IntervalClosedType]: ...
152
+
153
+ class IntervalTree(IntervalMixin):
154
+ def __init__(
155
+ self,
156
+ left: np.ndarray,
157
+ right: np.ndarray,
158
+ closed: IntervalClosedType = ...,
159
+ leaf_size: int = ...,
160
+ ) -> None: ...
161
+ @property
162
+ def mid(self) -> np.ndarray: ...
163
+ @property
164
+ def length(self) -> np.ndarray: ...
165
+ def get_indexer(self, target) -> npt.NDArray[np.intp]: ...
166
+ def get_indexer_non_unique(
167
+ self, target
168
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
169
+ _na_count: int
170
+ @property
171
+ def is_overlapping(self) -> bool: ...
172
+ @property
173
+ def is_monotonic_increasing(self) -> bool: ...
174
+ def clear_mapping(self) -> None: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/join.pyi ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def inner_join(
6
+ left: np.ndarray, # const intp_t[:]
7
+ right: np.ndarray, # const intp_t[:]
8
+ max_groups: int,
9
+ sort: bool = ...,
10
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
11
+ def left_outer_join(
12
+ left: np.ndarray, # const intp_t[:]
13
+ right: np.ndarray, # const intp_t[:]
14
+ max_groups: int,
15
+ sort: bool = ...,
16
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
17
+ def full_outer_join(
18
+ left: np.ndarray, # const intp_t[:]
19
+ right: np.ndarray, # const intp_t[:]
20
+ max_groups: int,
21
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
22
+ def ffill_indexer(
23
+ indexer: np.ndarray, # const intp_t[:]
24
+ ) -> npt.NDArray[np.intp]: ...
25
+ def left_join_indexer_unique(
26
+ left: np.ndarray, # ndarray[join_t]
27
+ right: np.ndarray, # ndarray[join_t]
28
+ ) -> npt.NDArray[np.intp]: ...
29
+ def left_join_indexer(
30
+ left: np.ndarray, # ndarray[join_t]
31
+ right: np.ndarray, # ndarray[join_t]
32
+ ) -> tuple[
33
+ np.ndarray, # np.ndarray[join_t]
34
+ npt.NDArray[np.intp],
35
+ npt.NDArray[np.intp],
36
+ ]: ...
37
+ def inner_join_indexer(
38
+ left: np.ndarray, # ndarray[join_t]
39
+ right: np.ndarray, # ndarray[join_t]
40
+ ) -> tuple[
41
+ np.ndarray, # np.ndarray[join_t]
42
+ npt.NDArray[np.intp],
43
+ npt.NDArray[np.intp],
44
+ ]: ...
45
+ def outer_join_indexer(
46
+ left: np.ndarray, # ndarray[join_t]
47
+ right: np.ndarray, # ndarray[join_t]
48
+ ) -> tuple[
49
+ np.ndarray, # np.ndarray[join_t]
50
+ npt.NDArray[np.intp],
51
+ npt.NDArray[np.intp],
52
+ ]: ...
53
+ def asof_join_backward_on_X_by_Y(
54
+ left_values: np.ndarray, # ndarray[numeric_t]
55
+ right_values: np.ndarray, # ndarray[numeric_t]
56
+ left_by_values: np.ndarray, # const int64_t[:]
57
+ right_by_values: np.ndarray, # const int64_t[:]
58
+ allow_exact_matches: bool = ...,
59
+ tolerance: np.number | float | None = ...,
60
+ use_hashtable: bool = ...,
61
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
62
+ def asof_join_forward_on_X_by_Y(
63
+ left_values: np.ndarray, # ndarray[numeric_t]
64
+ right_values: np.ndarray, # ndarray[numeric_t]
65
+ left_by_values: np.ndarray, # const int64_t[:]
66
+ right_by_values: np.ndarray, # const int64_t[:]
67
+ allow_exact_matches: bool = ...,
68
+ tolerance: np.number | float | None = ...,
69
+ use_hashtable: bool = ...,
70
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
71
+ def asof_join_nearest_on_X_by_Y(
72
+ left_values: np.ndarray, # ndarray[numeric_t]
73
+ right_values: np.ndarray, # ndarray[numeric_t]
74
+ left_by_values: np.ndarray, # const int64_t[:]
75
+ right_by_values: np.ndarray, # const int64_t[:]
76
+ allow_exact_matches: bool = ...,
77
+ tolerance: np.number | float | None = ...,
78
+ use_hashtable: bool = ...,
79
+ ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/lib.pyi ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TODO(npdtypes): Many types specified here can be made more specific/accurate;
2
+ # the more specific versions are specified in comments
3
+ from decimal import Decimal
4
+ from typing import (
5
+ Any,
6
+ Callable,
7
+ Final,
8
+ Generator,
9
+ Hashable,
10
+ Literal,
11
+ TypeAlias,
12
+ overload,
13
+ )
14
+
15
+ import numpy as np
16
+
17
+ from pandas._libs.interval import Interval
18
+ from pandas._libs.tslibs import Period
19
+ from pandas._typing import (
20
+ ArrayLike,
21
+ DtypeObj,
22
+ TypeGuard,
23
+ npt,
24
+ )
25
+
26
+ # placeholder until we can specify np.ndarray[object, ndim=2]
27
+ ndarray_obj_2d = np.ndarray
28
+
29
+ from enum import Enum
30
+
31
+ class _NoDefault(Enum):
32
+ no_default = ...
33
+
34
+ no_default: Final = _NoDefault.no_default
35
+ NoDefault: TypeAlias = Literal[_NoDefault.no_default]
36
+
37
+ i8max: int
38
+ u8max: int
39
+
40
+ def is_np_dtype(dtype: object, kinds: str | None = ...) -> TypeGuard[np.dtype]: ...
41
+ def item_from_zerodim(val: object) -> object: ...
42
+ def infer_dtype(value: object, skipna: bool = ...) -> str: ...
43
+ def is_iterator(obj: object) -> bool: ...
44
+ def is_scalar(val: object) -> bool: ...
45
+ def is_list_like(obj: object, allow_sets: bool = ...) -> bool: ...
46
+ def is_pyarrow_array(obj: object) -> bool: ...
47
+ def is_period(val: object) -> TypeGuard[Period]: ...
48
+ def is_interval(obj: object) -> TypeGuard[Interval]: ...
49
+ def is_decimal(obj: object) -> TypeGuard[Decimal]: ...
50
+ def is_complex(obj: object) -> TypeGuard[complex]: ...
51
+ def is_bool(obj: object) -> TypeGuard[bool | np.bool_]: ...
52
+ def is_integer(obj: object) -> TypeGuard[int | np.integer]: ...
53
+ def is_int_or_none(obj) -> bool: ...
54
+ def is_float(obj: object) -> TypeGuard[float]: ...
55
+ def is_interval_array(values: np.ndarray) -> bool: ...
56
+ def is_datetime64_array(values: np.ndarray, skipna: bool = True) -> bool: ...
57
+ def is_timedelta_or_timedelta64_array(
58
+ values: np.ndarray, skipna: bool = True
59
+ ) -> bool: ...
60
+ def is_datetime_with_singletz_array(values: np.ndarray) -> bool: ...
61
+ def is_time_array(values: np.ndarray, skipna: bool = ...): ...
62
+ def is_date_array(values: np.ndarray, skipna: bool = ...): ...
63
+ def is_datetime_array(values: np.ndarray, skipna: bool = ...): ...
64
+ def is_string_array(values: np.ndarray, skipna: bool = ...): ...
65
+ def is_float_array(values: np.ndarray): ...
66
+ def is_integer_array(values: np.ndarray, skipna: bool = ...): ...
67
+ def is_bool_array(values: np.ndarray, skipna: bool = ...): ...
68
+ def fast_multiget(
69
+ mapping: dict,
70
+ keys: np.ndarray, # object[:]
71
+ default=...,
72
+ ) -> np.ndarray: ...
73
+ def fast_unique_multiple_list_gen(gen: Generator, sort: bool = ...) -> list: ...
74
+ def fast_unique_multiple_list(lists: list, sort: bool | None = ...) -> list: ...
75
+ def map_infer(
76
+ arr: np.ndarray,
77
+ f: Callable[[Any], Any],
78
+ convert: bool = ...,
79
+ ignore_na: bool = ...,
80
+ ) -> np.ndarray: ...
81
+ @overload
82
+ def maybe_convert_objects(
83
+ objects: npt.NDArray[np.object_],
84
+ *,
85
+ try_float: bool = ...,
86
+ safe: bool = ...,
87
+ convert_numeric: bool = ...,
88
+ convert_non_numeric: Literal[False] = ...,
89
+ convert_to_nullable_dtype: Literal[False] = ...,
90
+ dtype_if_all_nat: DtypeObj | None = ...,
91
+ ) -> npt.NDArray[np.object_ | np.number]: ...
92
+ @overload
93
+ def maybe_convert_objects(
94
+ objects: npt.NDArray[np.object_],
95
+ *,
96
+ try_float: bool = ...,
97
+ safe: bool = ...,
98
+ convert_numeric: bool = ...,
99
+ convert_non_numeric: bool = ...,
100
+ convert_to_nullable_dtype: Literal[True] = ...,
101
+ dtype_if_all_nat: DtypeObj | None = ...,
102
+ ) -> ArrayLike: ...
103
+ @overload
104
+ def maybe_convert_objects(
105
+ objects: npt.NDArray[np.object_],
106
+ *,
107
+ try_float: bool = ...,
108
+ safe: bool = ...,
109
+ convert_numeric: bool = ...,
110
+ convert_non_numeric: bool = ...,
111
+ convert_to_nullable_dtype: bool = ...,
112
+ dtype_if_all_nat: DtypeObj | None = ...,
113
+ ) -> ArrayLike: ...
114
+ @overload
115
+ def maybe_convert_numeric(
116
+ values: npt.NDArray[np.object_],
117
+ na_values: set,
118
+ convert_empty: bool = ...,
119
+ coerce_numeric: bool = ...,
120
+ convert_to_masked_nullable: Literal[False] = ...,
121
+ ) -> tuple[np.ndarray, None]: ...
122
+ @overload
123
+ def maybe_convert_numeric(
124
+ values: npt.NDArray[np.object_],
125
+ na_values: set,
126
+ convert_empty: bool = ...,
127
+ coerce_numeric: bool = ...,
128
+ *,
129
+ convert_to_masked_nullable: Literal[True],
130
+ ) -> tuple[np.ndarray, np.ndarray]: ...
131
+
132
+ # TODO: restrict `arr`?
133
+ def ensure_string_array(
134
+ arr,
135
+ na_value: object = ...,
136
+ convert_na_value: bool = ...,
137
+ copy: bool = ...,
138
+ skipna: bool = ...,
139
+ ) -> npt.NDArray[np.object_]: ...
140
+ def convert_nans_to_NA(
141
+ arr: npt.NDArray[np.object_],
142
+ ) -> npt.NDArray[np.object_]: ...
143
+ def fast_zip(ndarrays: list) -> npt.NDArray[np.object_]: ...
144
+
145
+ # TODO: can we be more specific about rows?
146
+ def to_object_array_tuples(rows: object) -> ndarray_obj_2d: ...
147
+ def tuples_to_object_array(
148
+ tuples: npt.NDArray[np.object_],
149
+ ) -> ndarray_obj_2d: ...
150
+
151
+ # TODO: can we be more specific about rows?
152
+ def to_object_array(rows: object, min_width: int = ...) -> ndarray_obj_2d: ...
153
+ def dicts_to_array(dicts: list, columns: list) -> ndarray_obj_2d: ...
154
+ def maybe_booleans_to_slice(
155
+ mask: npt.NDArray[np.uint8],
156
+ ) -> slice | npt.NDArray[np.uint8]: ...
157
+ def maybe_indices_to_slice(
158
+ indices: npt.NDArray[np.intp],
159
+ max_len: int,
160
+ ) -> slice | npt.NDArray[np.intp]: ...
161
+ def is_all_arraylike(obj: list) -> bool: ...
162
+
163
+ # -----------------------------------------------------------------
164
+ # Functions which in reality take memoryviews
165
+
166
+ def memory_usage_of_objects(arr: np.ndarray) -> int: ... # object[:] # np.int64
167
+ def map_infer_mask(
168
+ arr: np.ndarray,
169
+ f: Callable[[Any], Any],
170
+ mask: np.ndarray, # const uint8_t[:]
171
+ convert: bool = ...,
172
+ na_value: Any = ...,
173
+ dtype: np.dtype = ...,
174
+ ) -> np.ndarray: ...
175
+ def indices_fast(
176
+ index: npt.NDArray[np.intp],
177
+ labels: np.ndarray, # const int64_t[:]
178
+ keys: list,
179
+ sorted_labels: list[npt.NDArray[np.int64]],
180
+ ) -> dict[Hashable, npt.NDArray[np.intp]]: ...
181
+ def generate_slices(
182
+ labels: np.ndarray, ngroups: int # const intp_t[:]
183
+ ) -> tuple[npt.NDArray[np.int64], npt.NDArray[np.int64]]: ...
184
+ def count_level_2d(
185
+ mask: np.ndarray, # ndarray[uint8_t, ndim=2, cast=True],
186
+ labels: np.ndarray, # const intp_t[:]
187
+ max_bin: int,
188
+ ) -> np.ndarray: ... # np.ndarray[np.int64, ndim=2]
189
+ def get_level_sorter(
190
+ codes: np.ndarray, # const int64_t[:]
191
+ starts: np.ndarray, # const intp_t[:]
192
+ ) -> np.ndarray: ... # np.ndarray[np.intp, ndim=1]
193
+ def generate_bins_dt64(
194
+ values: npt.NDArray[np.int64],
195
+ binner: np.ndarray, # const int64_t[:]
196
+ closed: object = ...,
197
+ hasnans: bool = ...,
198
+ ) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
199
+ def array_equivalent_object(
200
+ left: npt.NDArray[np.object_],
201
+ right: npt.NDArray[np.object_],
202
+ ) -> bool: ...
203
+ def has_infs(arr: np.ndarray) -> bool: ... # const floating[:]
204
+ def has_only_ints_or_nan(arr: np.ndarray) -> bool: ... # const floating[:]
205
+ def get_reverse_indexer(
206
+ indexer: np.ndarray, # const intp_t[:]
207
+ length: int,
208
+ ) -> npt.NDArray[np.intp]: ...
209
+ def is_bool_list(obj: list) -> bool: ...
210
+ def dtypes_all_equal(types: list[DtypeObj]) -> bool: ...
211
+ def is_range_indexer(
212
+ left: np.ndarray, n: int # np.ndarray[np.int64, ndim=1]
213
+ ) -> bool: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/missing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (211 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/ops.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (270 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/pandas_datetime.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (39.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/pandas_parser.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (43.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/parsers.pyi ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import (
2
+ Hashable,
3
+ Literal,
4
+ )
5
+
6
+ import numpy as np
7
+
8
+ from pandas._typing import (
9
+ ArrayLike,
10
+ Dtype,
11
+ npt,
12
+ )
13
+
14
+ STR_NA_VALUES: set[str]
15
+ DEFAULT_BUFFER_HEURISTIC: int
16
+
17
+ def sanitize_objects(
18
+ values: npt.NDArray[np.object_],
19
+ na_values: set,
20
+ ) -> int: ...
21
+
22
+ class TextReader:
23
+ unnamed_cols: set[str]
24
+ table_width: int # int64_t
25
+ leading_cols: int # int64_t
26
+ header: list[list[int]] # non-negative integers
27
+ def __init__(
28
+ self,
29
+ source,
30
+ delimiter: bytes | str = ..., # single-character only
31
+ header=...,
32
+ header_start: int = ..., # int64_t
33
+ header_end: int = ..., # uint64_t
34
+ index_col=...,
35
+ names=...,
36
+ tokenize_chunksize: int = ..., # int64_t
37
+ delim_whitespace: bool = ...,
38
+ converters=...,
39
+ skipinitialspace: bool = ...,
40
+ escapechar: bytes | str | None = ..., # single-character only
41
+ doublequote: bool = ...,
42
+ quotechar: str | bytes | None = ..., # at most 1 character
43
+ quoting: int = ...,
44
+ lineterminator: bytes | str | None = ..., # at most 1 character
45
+ comment=...,
46
+ decimal: bytes | str = ..., # single-character only
47
+ thousands: bytes | str | None = ..., # single-character only
48
+ dtype: Dtype | dict[Hashable, Dtype] = ...,
49
+ usecols=...,
50
+ error_bad_lines: bool = ...,
51
+ warn_bad_lines: bool = ...,
52
+ na_filter: bool = ...,
53
+ na_values=...,
54
+ na_fvalues=...,
55
+ keep_default_na: bool = ...,
56
+ true_values=...,
57
+ false_values=...,
58
+ allow_leading_cols: bool = ...,
59
+ skiprows=...,
60
+ skipfooter: int = ..., # int64_t
61
+ verbose: bool = ...,
62
+ float_precision: Literal["round_trip", "legacy", "high"] | None = ...,
63
+ skip_blank_lines: bool = ...,
64
+ encoding_errors: bytes | str = ...,
65
+ ) -> None: ...
66
+ def set_noconvert(self, i: int) -> None: ...
67
+ def remove_noconvert(self, i: int) -> None: ...
68
+ def close(self) -> None: ...
69
+ def read(self, rows: int | None = ...) -> dict[int, ArrayLike]: ...
70
+ def read_low_memory(self, rows: int | None) -> list[dict[int, ArrayLike]]: ...
71
+
72
+ # _maybe_upcast, na_values are only exposed for testing
73
+ na_values: dict
74
+
75
+ def _maybe_upcast(
76
+ arr, use_dtype_backend: bool = ..., dtype_backend: str = ...
77
+ ) -> np.ndarray: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/reshape.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (310 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/reshape.pyi ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def unstack(
6
+ values: np.ndarray, # reshape_t[:, :]
7
+ mask: np.ndarray, # const uint8_t[:]
8
+ stride: int,
9
+ length: int,
10
+ width: int,
11
+ new_values: np.ndarray, # reshape_t[:, :]
12
+ new_mask: np.ndarray, # uint8_t[:, :]
13
+ ) -> None: ...
14
+ def explode(
15
+ values: npt.NDArray[np.object_],
16
+ ) -> tuple[npt.NDArray[np.object_], npt.NDArray[np.int64]]: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/sas.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (267 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/sas.pyi ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from pandas.io.sas.sas7bdat import SAS7BDATReader
2
+
3
+ class Parser:
4
+ def __init__(self, parser: SAS7BDATReader) -> None: ...
5
+ def read(self, nrows: int) -> None: ...
6
+
7
+ def get_subheader_index(signature: bytes) -> int: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/sparse.pyi ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Sequence
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import (
6
+ Self,
7
+ npt,
8
+ )
9
+
10
+ class SparseIndex:
11
+ length: int
12
+ npoints: int
13
+ def __init__(self) -> None: ...
14
+ @property
15
+ def ngaps(self) -> int: ...
16
+ @property
17
+ def nbytes(self) -> int: ...
18
+ @property
19
+ def indices(self) -> npt.NDArray[np.int32]: ...
20
+ def equals(self, other) -> bool: ...
21
+ def lookup(self, index: int) -> np.int32: ...
22
+ def lookup_array(self, indexer: npt.NDArray[np.int32]) -> npt.NDArray[np.int32]: ...
23
+ def to_int_index(self) -> IntIndex: ...
24
+ def to_block_index(self) -> BlockIndex: ...
25
+ def intersect(self, y_: SparseIndex) -> Self: ...
26
+ def make_union(self, y_: SparseIndex) -> Self: ...
27
+
28
+ class IntIndex(SparseIndex):
29
+ indices: npt.NDArray[np.int32]
30
+ def __init__(
31
+ self, length: int, indices: Sequence[int], check_integrity: bool = ...
32
+ ) -> None: ...
33
+
34
+ class BlockIndex(SparseIndex):
35
+ nblocks: int
36
+ blocs: np.ndarray
37
+ blengths: np.ndarray
38
+ def __init__(
39
+ self, length: int, blocs: np.ndarray, blengths: np.ndarray
40
+ ) -> None: ...
41
+
42
+ # Override to have correct parameters
43
+ def intersect(self, other: SparseIndex) -> Self: ...
44
+ def make_union(self, y: SparseIndex) -> Self: ...
45
+
46
+ def make_mask_object_ndarray(
47
+ arr: npt.NDArray[np.object_], fill_value
48
+ ) -> npt.NDArray[np.bool_]: ...
49
+ def get_blocks(
50
+ indices: npt.NDArray[np.int32],
51
+ ) -> tuple[npt.NDArray[np.int32], npt.NDArray[np.int32]]: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/testing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (132 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslib.pyi ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import tzinfo
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import npt
6
+
7
+ def format_array_from_datetime(
8
+ values: npt.NDArray[np.int64],
9
+ tz: tzinfo | None = ...,
10
+ format: str | None = ...,
11
+ na_rep: str | float = ...,
12
+ reso: int = ..., # NPY_DATETIMEUNIT
13
+ ) -> npt.NDArray[np.object_]: ...
14
+ def array_with_unit_to_datetime(
15
+ values: npt.NDArray[np.object_],
16
+ unit: str,
17
+ errors: str = ...,
18
+ ) -> tuple[np.ndarray, tzinfo | None]: ...
19
+ def first_non_null(values: np.ndarray) -> int: ...
20
+ def array_to_datetime(
21
+ values: npt.NDArray[np.object_],
22
+ errors: str = ...,
23
+ dayfirst: bool = ...,
24
+ yearfirst: bool = ...,
25
+ utc: bool = ...,
26
+ creso: int = ...,
27
+ ) -> tuple[np.ndarray, tzinfo | None]: ...
28
+
29
+ # returned ndarray may be object dtype or datetime64[ns]
30
+
31
+ def array_to_datetime_with_tz(
32
+ values: npt.NDArray[np.object_],
33
+ tz: tzinfo,
34
+ dayfirst: bool,
35
+ yearfirst: bool,
36
+ creso: int,
37
+ ) -> npt.NDArray[np.int64]: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/__init__.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __all__ = [
2
+ "dtypes",
3
+ "localize_pydatetime",
4
+ "NaT",
5
+ "NaTType",
6
+ "iNaT",
7
+ "nat_strings",
8
+ "OutOfBoundsDatetime",
9
+ "OutOfBoundsTimedelta",
10
+ "IncompatibleFrequency",
11
+ "Period",
12
+ "Resolution",
13
+ "Timedelta",
14
+ "normalize_i8_timestamps",
15
+ "is_date_array_normalized",
16
+ "dt64arr_to_periodarr",
17
+ "delta_to_nanoseconds",
18
+ "ints_to_pydatetime",
19
+ "ints_to_pytimedelta",
20
+ "get_resolution",
21
+ "Timestamp",
22
+ "tz_convert_from_utc_single",
23
+ "tz_convert_from_utc",
24
+ "to_offset",
25
+ "Tick",
26
+ "BaseOffset",
27
+ "tz_compare",
28
+ "is_unitless",
29
+ "astype_overflowsafe",
30
+ "get_unit_from_dtype",
31
+ "periods_per_day",
32
+ "periods_per_second",
33
+ "guess_datetime_format",
34
+ "add_overflowsafe",
35
+ "get_supported_dtype",
36
+ "is_supported_dtype",
37
+ ]
38
+
39
+ from pandas._libs.tslibs import dtypes # pylint: disable=import-self
40
+ from pandas._libs.tslibs.conversion import localize_pydatetime
41
+ from pandas._libs.tslibs.dtypes import (
42
+ Resolution,
43
+ periods_per_day,
44
+ periods_per_second,
45
+ )
46
+ from pandas._libs.tslibs.nattype import (
47
+ NaT,
48
+ NaTType,
49
+ iNaT,
50
+ nat_strings,
51
+ )
52
+ from pandas._libs.tslibs.np_datetime import (
53
+ OutOfBoundsDatetime,
54
+ OutOfBoundsTimedelta,
55
+ add_overflowsafe,
56
+ astype_overflowsafe,
57
+ get_supported_dtype,
58
+ is_supported_dtype,
59
+ is_unitless,
60
+ py_get_unit_from_dtype as get_unit_from_dtype,
61
+ )
62
+ from pandas._libs.tslibs.offsets import (
63
+ BaseOffset,
64
+ Tick,
65
+ to_offset,
66
+ )
67
+ from pandas._libs.tslibs.parsing import guess_datetime_format
68
+ from pandas._libs.tslibs.period import (
69
+ IncompatibleFrequency,
70
+ Period,
71
+ )
72
+ from pandas._libs.tslibs.timedeltas import (
73
+ Timedelta,
74
+ delta_to_nanoseconds,
75
+ ints_to_pytimedelta,
76
+ )
77
+ from pandas._libs.tslibs.timestamps import Timestamp
78
+ from pandas._libs.tslibs.timezones import tz_compare
79
+ from pandas._libs.tslibs.tzconversion import tz_convert_from_utc_single
80
+ from pandas._libs.tslibs.vectorized import (
81
+ dt64arr_to_periodarr,
82
+ get_resolution,
83
+ ints_to_pydatetime,
84
+ is_date_array_normalized,
85
+ normalize_i8_timestamps,
86
+ tz_convert_from_utc,
87
+ )
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.86 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/base.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (62.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (103 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/ccalendar.pyi ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DAYS: list[str]
2
+ MONTH_ALIASES: dict[int, str]
3
+ MONTH_NUMBERS: dict[str, int]
4
+ MONTHS: list[str]
5
+ int_to_weekday: dict[int, str]
6
+
7
+ def get_firstbday(year: int, month: int) -> int: ...
8
+ def get_lastbday(year: int, month: int) -> int: ...
9
+ def get_day_of_year(year: int, month: int, day: int) -> int: ...
10
+ def get_iso_calendar(year: int, month: int, day: int) -> tuple[int, int, int]: ...
11
+ def get_week_of_year(year: int, month: int, day: int) -> int: ...
12
+ def get_days_in_month(year: int, month: int) -> int: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (308 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/conversion.pyi ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ tzinfo,
4
+ )
5
+
6
+ import numpy as np
7
+
8
+ DT64NS_DTYPE: np.dtype
9
+ TD64NS_DTYPE: np.dtype
10
+
11
+ def localize_pydatetime(dt: datetime, tz: tzinfo | None) -> datetime: ...
12
+ def cast_from_unit_vectorized(
13
+ values: np.ndarray, unit: str, out_unit: str = ...
14
+ ) -> np.ndarray: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (203 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/dtypes.pyi ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+
3
+ OFFSET_TO_PERIOD_FREQSTR: dict[str, str]
4
+
5
+ def periods_per_day(reso: int = ...) -> int: ...
6
+ def periods_per_second(reso: int) -> int: ...
7
+ def abbrev_to_npy_unit(abbrev: str | None) -> int: ...
8
+ def freq_to_period_freqstr(freq_n: int, freq_name: str) -> str: ...
9
+
10
+ class PeriodDtypeBase:
11
+ _dtype_code: int # PeriodDtypeCode
12
+ _n: int
13
+
14
+ # actually __cinit__
15
+ def __new__(cls, code: int, n: int): ...
16
+ @property
17
+ def _freq_group_code(self) -> int: ...
18
+ @property
19
+ def _resolution_obj(self) -> Resolution: ...
20
+ def _get_to_timestamp_base(self) -> int: ...
21
+ @property
22
+ def _freqstr(self) -> str: ...
23
+ def __hash__(self) -> int: ...
24
+ def _is_tick_like(self) -> bool: ...
25
+ @property
26
+ def _creso(self) -> int: ...
27
+ @property
28
+ def _td64_unit(self) -> str: ...
29
+
30
+ class FreqGroup(Enum):
31
+ FR_ANN: int
32
+ FR_QTR: int
33
+ FR_MTH: int
34
+ FR_WK: int
35
+ FR_BUS: int
36
+ FR_DAY: int
37
+ FR_HR: int
38
+ FR_MIN: int
39
+ FR_SEC: int
40
+ FR_MS: int
41
+ FR_US: int
42
+ FR_NS: int
43
+ FR_UND: int
44
+ @staticmethod
45
+ def from_period_dtype_code(code: int) -> FreqGroup: ...
46
+
47
+ class Resolution(Enum):
48
+ RESO_NS: int
49
+ RESO_US: int
50
+ RESO_MS: int
51
+ RESO_SEC: int
52
+ RESO_MIN: int
53
+ RESO_HR: int
54
+ RESO_DAY: int
55
+ RESO_MTH: int
56
+ RESO_QTR: int
57
+ RESO_YR: int
58
+ def __lt__(self, other: Resolution) -> bool: ...
59
+ def __ge__(self, other: Resolution) -> bool: ...
60
+ @property
61
+ def attrname(self) -> str: ...
62
+ @classmethod
63
+ def from_attrname(cls, attrname: str) -> Resolution: ...
64
+ @classmethod
65
+ def get_reso_from_freqstr(cls, freq: str) -> Resolution: ...
66
+ @property
67
+ def attr_abbrev(self) -> str: ...
68
+
69
+ class NpyDatetimeUnit(Enum):
70
+ NPY_FR_Y: int
71
+ NPY_FR_M: int
72
+ NPY_FR_W: int
73
+ NPY_FR_D: int
74
+ NPY_FR_h: int
75
+ NPY_FR_m: int
76
+ NPY_FR_s: int
77
+ NPY_FR_ms: int
78
+ NPY_FR_us: int
79
+ NPY_FR_ns: int
80
+ NPY_FR_ps: int
81
+ NPY_FR_fs: int
82
+ NPY_FR_as: int
83
+ NPY_FR_GENERIC: int
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (345 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/fields.pyi ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def build_field_sarray(
6
+ dtindex: npt.NDArray[np.int64], # const int64_t[:]
7
+ reso: int, # NPY_DATETIMEUNIT
8
+ ) -> np.ndarray: ...
9
+ def month_position_check(fields, weekdays) -> str | None: ...
10
+ def get_date_name_field(
11
+ dtindex: npt.NDArray[np.int64], # const int64_t[:]
12
+ field: str,
13
+ locale: str | None = ...,
14
+ reso: int = ..., # NPY_DATETIMEUNIT
15
+ ) -> npt.NDArray[np.object_]: ...
16
+ def get_start_end_field(
17
+ dtindex: npt.NDArray[np.int64],
18
+ field: str,
19
+ freqstr: str | None = ...,
20
+ month_kw: int = ...,
21
+ reso: int = ..., # NPY_DATETIMEUNIT
22
+ ) -> npt.NDArray[np.bool_]: ...
23
+ def get_date_field(
24
+ dtindex: npt.NDArray[np.int64], # const int64_t[:]
25
+ field: str,
26
+ reso: int = ..., # NPY_DATETIMEUNIT
27
+ ) -> npt.NDArray[np.int32]: ...
28
+ def get_timedelta_field(
29
+ tdindex: npt.NDArray[np.int64], # const int64_t[:]
30
+ field: str,
31
+ reso: int = ..., # NPY_DATETIMEUNIT
32
+ ) -> npt.NDArray[np.int32]: ...
33
+ def get_timedelta_days(
34
+ tdindex: npt.NDArray[np.int64], # const int64_t[:]
35
+ reso: int = ..., # NPY_DATETIMEUNIT
36
+ ) -> npt.NDArray[np.int64]: ...
37
+ def isleapyear_arr(
38
+ years: np.ndarray,
39
+ ) -> npt.NDArray[np.bool_]: ...
40
+ def build_isocalendar_sarray(
41
+ dtindex: npt.NDArray[np.int64], # const int64_t[:]
42
+ reso: int, # NPY_DATETIMEUNIT
43
+ ) -> np.ndarray: ...
44
+ def _get_locale_names(name_type: str, locale: str | None = ...): ...
45
+
46
+ class RoundTo:
47
+ @property
48
+ def MINUS_INFTY(self) -> int: ...
49
+ @property
50
+ def PLUS_INFTY(self) -> int: ...
51
+ @property
52
+ def NEAREST_HALF_EVEN(self) -> int: ...
53
+ @property
54
+ def NEAREST_HALF_PLUS_INFTY(self) -> int: ...
55
+ @property
56
+ def NEAREST_HALF_MINUS_INFTY(self) -> int: ...
57
+
58
+ def round_nsint64(
59
+ values: npt.NDArray[np.int64],
60
+ mode: RoundTo,
61
+ nanos: int,
62
+ ) -> npt.NDArray[np.int64]: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (237 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/nattype.pyi ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ timedelta,
4
+ tzinfo as _tzinfo,
5
+ )
6
+ import typing
7
+
8
+ import numpy as np
9
+
10
+ from pandas._libs.tslibs.period import Period
11
+ from pandas._typing import Self
12
+
13
+ NaT: NaTType
14
+ iNaT: int
15
+ nat_strings: set[str]
16
+
17
+ _NaTComparisonTypes: typing.TypeAlias = (
18
+ datetime | timedelta | Period | np.datetime64 | np.timedelta64
19
+ )
20
+
21
+ class _NatComparison:
22
+ def __call__(self, other: _NaTComparisonTypes) -> bool: ...
23
+
24
+ class NaTType:
25
+ _value: np.int64
26
+ @property
27
+ def value(self) -> int: ...
28
+ @property
29
+ def asm8(self) -> np.datetime64: ...
30
+ def to_datetime64(self) -> np.datetime64: ...
31
+ def to_numpy(
32
+ self, dtype: np.dtype | str | None = ..., copy: bool = ...
33
+ ) -> np.datetime64 | np.timedelta64: ...
34
+ @property
35
+ def is_leap_year(self) -> bool: ...
36
+ @property
37
+ def is_month_start(self) -> bool: ...
38
+ @property
39
+ def is_quarter_start(self) -> bool: ...
40
+ @property
41
+ def is_year_start(self) -> bool: ...
42
+ @property
43
+ def is_month_end(self) -> bool: ...
44
+ @property
45
+ def is_quarter_end(self) -> bool: ...
46
+ @property
47
+ def is_year_end(self) -> bool: ...
48
+ @property
49
+ def day_of_year(self) -> float: ...
50
+ @property
51
+ def dayofyear(self) -> float: ...
52
+ @property
53
+ def days_in_month(self) -> float: ...
54
+ @property
55
+ def daysinmonth(self) -> float: ...
56
+ @property
57
+ def day_of_week(self) -> float: ...
58
+ @property
59
+ def dayofweek(self) -> float: ...
60
+ @property
61
+ def week(self) -> float: ...
62
+ @property
63
+ def weekofyear(self) -> float: ...
64
+ def day_name(self) -> float: ...
65
+ def month_name(self) -> float: ...
66
+ def weekday(self) -> float: ...
67
+ def isoweekday(self) -> float: ...
68
+ def total_seconds(self) -> float: ...
69
+ def today(self, *args, **kwargs) -> NaTType: ...
70
+ def now(self, *args, **kwargs) -> NaTType: ...
71
+ def to_pydatetime(self) -> NaTType: ...
72
+ def date(self) -> NaTType: ...
73
+ def round(self) -> NaTType: ...
74
+ def floor(self) -> NaTType: ...
75
+ def ceil(self) -> NaTType: ...
76
+ @property
77
+ def tzinfo(self) -> None: ...
78
+ @property
79
+ def tz(self) -> None: ...
80
+ def tz_convert(self, tz: _tzinfo | str | None) -> NaTType: ...
81
+ def tz_localize(
82
+ self,
83
+ tz: _tzinfo | str | None,
84
+ ambiguous: str = ...,
85
+ nonexistent: str = ...,
86
+ ) -> NaTType: ...
87
+ def replace(
88
+ self,
89
+ year: int | None = ...,
90
+ month: int | None = ...,
91
+ day: int | None = ...,
92
+ hour: int | None = ...,
93
+ minute: int | None = ...,
94
+ second: int | None = ...,
95
+ microsecond: int | None = ...,
96
+ nanosecond: int | None = ...,
97
+ tzinfo: _tzinfo | None = ...,
98
+ fold: int | None = ...,
99
+ ) -> NaTType: ...
100
+ @property
101
+ def year(self) -> float: ...
102
+ @property
103
+ def quarter(self) -> float: ...
104
+ @property
105
+ def month(self) -> float: ...
106
+ @property
107
+ def day(self) -> float: ...
108
+ @property
109
+ def hour(self) -> float: ...
110
+ @property
111
+ def minute(self) -> float: ...
112
+ @property
113
+ def second(self) -> float: ...
114
+ @property
115
+ def millisecond(self) -> float: ...
116
+ @property
117
+ def microsecond(self) -> float: ...
118
+ @property
119
+ def nanosecond(self) -> float: ...
120
+ # inject Timedelta properties
121
+ @property
122
+ def days(self) -> float: ...
123
+ @property
124
+ def microseconds(self) -> float: ...
125
+ @property
126
+ def nanoseconds(self) -> float: ...
127
+ # inject Period properties
128
+ @property
129
+ def qyear(self) -> float: ...
130
+ def __eq__(self, other: object) -> bool: ...
131
+ def __ne__(self, other: object) -> bool: ...
132
+ __lt__: _NatComparison
133
+ __le__: _NatComparison
134
+ __gt__: _NatComparison
135
+ __ge__: _NatComparison
136
+ def __sub__(self, other: Self | timedelta | datetime) -> Self: ...
137
+ def __rsub__(self, other: Self | timedelta | datetime) -> Self: ...
138
+ def __add__(self, other: Self | timedelta | datetime) -> Self: ...
139
+ def __radd__(self, other: Self | timedelta | datetime) -> Self: ...
140
+ def __hash__(self) -> int: ...
141
+ def as_unit(self, unit: str, round_ok: bool = ...) -> NaTType: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (152 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/np_datetime.pyi ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ class OutOfBoundsDatetime(ValueError): ...
6
+ class OutOfBoundsTimedelta(ValueError): ...
7
+
8
+ # only exposed for testing
9
+ def py_get_unit_from_dtype(dtype: np.dtype): ...
10
+ def py_td64_to_tdstruct(td64: int, unit: int) -> dict: ...
11
+ def astype_overflowsafe(
12
+ values: np.ndarray,
13
+ dtype: np.dtype,
14
+ copy: bool = ...,
15
+ round_ok: bool = ...,
16
+ is_coerce: bool = ...,
17
+ ) -> np.ndarray: ...
18
+ def is_unitless(dtype: np.dtype) -> bool: ...
19
+ def compare_mismatched_resolutions(
20
+ left: np.ndarray, right: np.ndarray, op
21
+ ) -> npt.NDArray[np.bool_]: ...
22
+ def add_overflowsafe(
23
+ left: npt.NDArray[np.int64],
24
+ right: npt.NDArray[np.int64],
25
+ ) -> npt.NDArray[np.int64]: ...
26
+ def get_supported_dtype(dtype: np.dtype) -> np.dtype: ...
27
+ def is_supported_dtype(dtype: np.dtype) -> bool: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.pyi ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import (
2
+ datetime,
3
+ time,
4
+ timedelta,
5
+ )
6
+ from typing import (
7
+ Any,
8
+ Collection,
9
+ Literal,
10
+ TypeVar,
11
+ overload,
12
+ )
13
+
14
+ import numpy as np
15
+
16
+ from pandas._libs.tslibs.nattype import NaTType
17
+ from pandas._typing import (
18
+ OffsetCalendar,
19
+ Self,
20
+ npt,
21
+ )
22
+
23
+ from .timedeltas import Timedelta
24
+
25
+ _BaseOffsetT = TypeVar("_BaseOffsetT", bound=BaseOffset)
26
+ _DatetimeT = TypeVar("_DatetimeT", bound=datetime)
27
+ _TimedeltaT = TypeVar("_TimedeltaT", bound=timedelta)
28
+
29
+ _relativedelta_kwds: set[str]
30
+ prefix_mapping: dict[str, type]
31
+
32
+ class ApplyTypeError(TypeError): ...
33
+
34
+ class BaseOffset:
35
+ n: int
36
+ normalize: bool
37
+ def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
38
+ def __eq__(self, other) -> bool: ...
39
+ def __ne__(self, other) -> bool: ...
40
+ def __hash__(self) -> int: ...
41
+ @property
42
+ def kwds(self) -> dict: ...
43
+ @property
44
+ def base(self) -> BaseOffset: ...
45
+ @overload
46
+ def __add__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
47
+ @overload
48
+ def __add__(self, other: BaseOffset) -> Self: ...
49
+ @overload
50
+ def __add__(self, other: _DatetimeT) -> _DatetimeT: ...
51
+ @overload
52
+ def __add__(self, other: _TimedeltaT) -> _TimedeltaT: ...
53
+ @overload
54
+ def __radd__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
55
+ @overload
56
+ def __radd__(self, other: BaseOffset) -> Self: ...
57
+ @overload
58
+ def __radd__(self, other: _DatetimeT) -> _DatetimeT: ...
59
+ @overload
60
+ def __radd__(self, other: _TimedeltaT) -> _TimedeltaT: ...
61
+ @overload
62
+ def __radd__(self, other: NaTType) -> NaTType: ...
63
+ def __sub__(self, other: BaseOffset) -> Self: ...
64
+ @overload
65
+ def __rsub__(self, other: npt.NDArray[np.object_]) -> npt.NDArray[np.object_]: ...
66
+ @overload
67
+ def __rsub__(self, other: BaseOffset): ...
68
+ @overload
69
+ def __rsub__(self, other: _DatetimeT) -> _DatetimeT: ...
70
+ @overload
71
+ def __rsub__(self, other: _TimedeltaT) -> _TimedeltaT: ...
72
+ @overload
73
+ def __mul__(self, other: np.ndarray) -> np.ndarray: ...
74
+ @overload
75
+ def __mul__(self, other: int): ...
76
+ @overload
77
+ def __rmul__(self, other: np.ndarray) -> np.ndarray: ...
78
+ @overload
79
+ def __rmul__(self, other: int) -> Self: ...
80
+ def __neg__(self) -> Self: ...
81
+ def copy(self) -> Self: ...
82
+ @property
83
+ def name(self) -> str: ...
84
+ @property
85
+ def rule_code(self) -> str: ...
86
+ @property
87
+ def freqstr(self) -> str: ...
88
+ def _apply(self, other): ...
89
+ def _apply_array(self, dtarr: np.ndarray) -> np.ndarray: ...
90
+ def rollback(self, dt: datetime) -> datetime: ...
91
+ def rollforward(self, dt: datetime) -> datetime: ...
92
+ def is_on_offset(self, dt: datetime) -> bool: ...
93
+ def __setstate__(self, state) -> None: ...
94
+ def __getstate__(self): ...
95
+ @property
96
+ def nanos(self) -> int: ...
97
+ def is_anchored(self) -> bool: ...
98
+
99
+ def _get_offset(name: str) -> BaseOffset: ...
100
+
101
+ class SingleConstructorOffset(BaseOffset):
102
+ @classmethod
103
+ def _from_name(cls, suffix: None = ...): ...
104
+ def __reduce__(self): ...
105
+
106
+ @overload
107
+ def to_offset(freq: None, is_period: bool = ...) -> None: ...
108
+ @overload
109
+ def to_offset(freq: _BaseOffsetT, is_period: bool = ...) -> _BaseOffsetT: ...
110
+ @overload
111
+ def to_offset(freq: timedelta | str, is_period: bool = ...) -> BaseOffset: ...
112
+
113
+ class Tick(SingleConstructorOffset):
114
+ _creso: int
115
+ _prefix: str
116
+ def __init__(self, n: int = ..., normalize: bool = ...) -> None: ...
117
+ @property
118
+ def delta(self) -> Timedelta: ...
119
+ @property
120
+ def nanos(self) -> int: ...
121
+
122
+ def delta_to_tick(delta: timedelta) -> Tick: ...
123
+
124
+ class Day(Tick): ...
125
+ class Hour(Tick): ...
126
+ class Minute(Tick): ...
127
+ class Second(Tick): ...
128
+ class Milli(Tick): ...
129
+ class Micro(Tick): ...
130
+ class Nano(Tick): ...
131
+
132
+ class RelativeDeltaOffset(BaseOffset):
133
+ def __init__(self, n: int = ..., normalize: bool = ..., **kwds: Any) -> None: ...
134
+
135
+ class BusinessMixin(SingleConstructorOffset):
136
+ def __init__(
137
+ self, n: int = ..., normalize: bool = ..., offset: timedelta = ...
138
+ ) -> None: ...
139
+
140
+ class BusinessDay(BusinessMixin): ...
141
+
142
+ class BusinessHour(BusinessMixin):
143
+ def __init__(
144
+ self,
145
+ n: int = ...,
146
+ normalize: bool = ...,
147
+ start: str | time | Collection[str | time] = ...,
148
+ end: str | time | Collection[str | time] = ...,
149
+ offset: timedelta = ...,
150
+ ) -> None: ...
151
+
152
+ class WeekOfMonthMixin(SingleConstructorOffset):
153
+ def __init__(
154
+ self, n: int = ..., normalize: bool = ..., weekday: int = ...
155
+ ) -> None: ...
156
+
157
+ class YearOffset(SingleConstructorOffset):
158
+ def __init__(
159
+ self, n: int = ..., normalize: bool = ..., month: int | None = ...
160
+ ) -> None: ...
161
+
162
+ class BYearEnd(YearOffset): ...
163
+ class BYearBegin(YearOffset): ...
164
+ class YearEnd(YearOffset): ...
165
+ class YearBegin(YearOffset): ...
166
+
167
+ class QuarterOffset(SingleConstructorOffset):
168
+ def __init__(
169
+ self, n: int = ..., normalize: bool = ..., startingMonth: int | None = ...
170
+ ) -> None: ...
171
+
172
+ class BQuarterEnd(QuarterOffset): ...
173
+ class BQuarterBegin(QuarterOffset): ...
174
+ class QuarterEnd(QuarterOffset): ...
175
+ class QuarterBegin(QuarterOffset): ...
176
+ class MonthOffset(SingleConstructorOffset): ...
177
+ class MonthEnd(MonthOffset): ...
178
+ class MonthBegin(MonthOffset): ...
179
+ class BusinessMonthEnd(MonthOffset): ...
180
+ class BusinessMonthBegin(MonthOffset): ...
181
+
182
+ class SemiMonthOffset(SingleConstructorOffset):
183
+ def __init__(
184
+ self, n: int = ..., normalize: bool = ..., day_of_month: int | None = ...
185
+ ) -> None: ...
186
+
187
+ class SemiMonthEnd(SemiMonthOffset): ...
188
+ class SemiMonthBegin(SemiMonthOffset): ...
189
+
190
+ class Week(SingleConstructorOffset):
191
+ def __init__(
192
+ self, n: int = ..., normalize: bool = ..., weekday: int | None = ...
193
+ ) -> None: ...
194
+
195
+ class WeekOfMonth(WeekOfMonthMixin):
196
+ def __init__(
197
+ self, n: int = ..., normalize: bool = ..., week: int = ..., weekday: int = ...
198
+ ) -> None: ...
199
+
200
+ class LastWeekOfMonth(WeekOfMonthMixin): ...
201
+
202
+ class FY5253Mixin(SingleConstructorOffset):
203
+ def __init__(
204
+ self,
205
+ n: int = ...,
206
+ normalize: bool = ...,
207
+ weekday: int = ...,
208
+ startingMonth: int = ...,
209
+ variation: Literal["nearest", "last"] = ...,
210
+ ) -> None: ...
211
+
212
+ class FY5253(FY5253Mixin): ...
213
+
214
+ class FY5253Quarter(FY5253Mixin):
215
+ def __init__(
216
+ self,
217
+ n: int = ...,
218
+ normalize: bool = ...,
219
+ weekday: int = ...,
220
+ startingMonth: int = ...,
221
+ qtr_with_extra_week: int = ...,
222
+ variation: Literal["nearest", "last"] = ...,
223
+ ) -> None: ...
224
+
225
+ class Easter(SingleConstructorOffset): ...
226
+
227
+ class _CustomBusinessMonth(BusinessMixin):
228
+ def __init__(
229
+ self,
230
+ n: int = ...,
231
+ normalize: bool = ...,
232
+ weekmask: str = ...,
233
+ holidays: list | None = ...,
234
+ calendar: OffsetCalendar | None = ...,
235
+ offset: timedelta = ...,
236
+ ) -> None: ...
237
+
238
+ class CustomBusinessDay(BusinessDay):
239
+ def __init__(
240
+ self,
241
+ n: int = ...,
242
+ normalize: bool = ...,
243
+ weekmask: str = ...,
244
+ holidays: list | None = ...,
245
+ calendar: OffsetCalendar | None = ...,
246
+ offset: timedelta = ...,
247
+ ) -> None: ...
248
+
249
+ class CustomBusinessHour(BusinessHour):
250
+ def __init__(
251
+ self,
252
+ n: int = ...,
253
+ normalize: bool = ...,
254
+ weekmask: str = ...,
255
+ holidays: list | None = ...,
256
+ calendar: OffsetCalendar | None = ...,
257
+ start: str | time | Collection[str | time] = ...,
258
+ end: str | time | Collection[str | time] = ...,
259
+ offset: timedelta = ...,
260
+ ) -> None: ...
261
+
262
+ class CustomBusinessMonthEnd(_CustomBusinessMonth): ...
263
+ class CustomBusinessMonthBegin(_CustomBusinessMonth): ...
264
+ class OffsetMeta(type): ...
265
+ class DateOffset(RelativeDeltaOffset, metaclass=OffsetMeta): ...
266
+
267
+ BDay = BusinessDay
268
+ BMonthEnd = BusinessMonthEnd
269
+ BMonthBegin = BusinessMonthBegin
270
+ CBMonthEnd = CustomBusinessMonthEnd
271
+ CBMonthBegin = CustomBusinessMonthBegin
272
+ CDay = CustomBusinessDay
273
+
274
+ def roll_qtrday(
275
+ other: datetime, n: int, month: int, day_opt: str, modby: int
276
+ ) -> int: ...
277
+
278
+ INVALID_FREQ_ERR_MSG: Literal["Invalid frequency: {0}"]
279
+
280
+ def shift_months(
281
+ dtindex: npt.NDArray[np.int64],
282
+ months: int,
283
+ day_opt: str | None = ...,
284
+ reso: int = ...,
285
+ ) -> npt.NDArray[np.int64]: ...
286
+
287
+ _offset_map: dict[str, BaseOffset]
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (457 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/parsing.pyi ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+
3
+ import numpy as np
4
+
5
+ from pandas._typing import npt
6
+
7
+ class DateParseError(ValueError): ...
8
+
9
+ def py_parse_datetime_string(
10
+ date_string: str,
11
+ dayfirst: bool = ...,
12
+ yearfirst: bool = ...,
13
+ ) -> datetime: ...
14
+ def parse_datetime_string_with_reso(
15
+ date_string: str,
16
+ freq: str | None = ...,
17
+ dayfirst: bool | None = ...,
18
+ yearfirst: bool | None = ...,
19
+ ) -> tuple[datetime, str]: ...
20
+ def _does_string_look_like_datetime(py_string: str) -> bool: ...
21
+ def quarter_to_myear(year: int, quarter: int, freq: str) -> tuple[int, int]: ...
22
+ def try_parse_dates(
23
+ values: npt.NDArray[np.object_], # object[:]
24
+ parser,
25
+ ) -> npt.NDArray[np.object_]: ...
26
+ def guess_datetime_format(
27
+ dt_str: str,
28
+ dayfirst: bool | None = ...,
29
+ ) -> str | None: ...
30
+ def concat_date_cols(
31
+ date_cols: tuple,
32
+ ) -> npt.NDArray[np.object_]: ...
33
+ def get_rule_month(source: str) -> str: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/period.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (532 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/period.pyi ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+ from typing import Literal
3
+
4
+ import numpy as np
5
+
6
+ from pandas._libs.tslibs.dtypes import PeriodDtypeBase
7
+ from pandas._libs.tslibs.nattype import NaTType
8
+ from pandas._libs.tslibs.offsets import BaseOffset
9
+ from pandas._libs.tslibs.timestamps import Timestamp
10
+ from pandas._typing import (
11
+ Frequency,
12
+ npt,
13
+ )
14
+
15
+ INVALID_FREQ_ERR_MSG: str
16
+ DIFFERENT_FREQ: str
17
+
18
+ class IncompatibleFrequency(ValueError): ...
19
+
20
+ def periodarr_to_dt64arr(
21
+ periodarr: npt.NDArray[np.int64], # const int64_t[:]
22
+ freq: int,
23
+ ) -> npt.NDArray[np.int64]: ...
24
+ def period_asfreq_arr(
25
+ arr: npt.NDArray[np.int64],
26
+ freq1: int,
27
+ freq2: int,
28
+ end: bool,
29
+ ) -> npt.NDArray[np.int64]: ...
30
+ def get_period_field_arr(
31
+ field: str,
32
+ arr: npt.NDArray[np.int64], # const int64_t[:]
33
+ freq: int,
34
+ ) -> npt.NDArray[np.int64]: ...
35
+ def from_ordinals(
36
+ values: npt.NDArray[np.int64], # const int64_t[:]
37
+ freq: timedelta | BaseOffset | str,
38
+ ) -> npt.NDArray[np.int64]: ...
39
+ def extract_ordinals(
40
+ values: npt.NDArray[np.object_],
41
+ freq: Frequency | int,
42
+ ) -> npt.NDArray[np.int64]: ...
43
+ def extract_freq(
44
+ values: npt.NDArray[np.object_],
45
+ ) -> BaseOffset: ...
46
+ def period_array_strftime(
47
+ values: npt.NDArray[np.int64],
48
+ dtype_code: int,
49
+ na_rep,
50
+ date_format: str | None,
51
+ ) -> npt.NDArray[np.object_]: ...
52
+
53
+ # exposed for tests
54
+ def period_asfreq(ordinal: int, freq1: int, freq2: int, end: bool) -> int: ...
55
+ def period_ordinal(
56
+ y: int, m: int, d: int, h: int, min: int, s: int, us: int, ps: int, freq: int
57
+ ) -> int: ...
58
+ def freq_to_dtype_code(freq: BaseOffset) -> int: ...
59
+ def validate_end_alias(how: str) -> Literal["E", "S"]: ...
60
+
61
+ class PeriodMixin:
62
+ @property
63
+ def end_time(self) -> Timestamp: ...
64
+ @property
65
+ def start_time(self) -> Timestamp: ...
66
+ def _require_matching_freq(self, other: BaseOffset, base: bool = ...) -> None: ...
67
+
68
+ class Period(PeriodMixin):
69
+ ordinal: int # int64_t
70
+ freq: BaseOffset
71
+ _dtype: PeriodDtypeBase
72
+
73
+ # error: "__new__" must return a class instance (got "Union[Period, NaTType]")
74
+ def __new__( # type: ignore[misc]
75
+ cls,
76
+ value=...,
77
+ freq: int | str | BaseOffset | None = ...,
78
+ ordinal: int | None = ...,
79
+ year: int | None = ...,
80
+ month: int | None = ...,
81
+ quarter: int | None = ...,
82
+ day: int | None = ...,
83
+ hour: int | None = ...,
84
+ minute: int | None = ...,
85
+ second: int | None = ...,
86
+ ) -> Period | NaTType: ...
87
+ @classmethod
88
+ def _maybe_convert_freq(cls, freq) -> BaseOffset: ...
89
+ @classmethod
90
+ def _from_ordinal(cls, ordinal: int, freq: BaseOffset) -> Period: ...
91
+ @classmethod
92
+ def now(cls, freq: Frequency) -> Period: ...
93
+ def strftime(self, fmt: str | None) -> str: ...
94
+ def to_timestamp(
95
+ self,
96
+ freq: str | BaseOffset | None = ...,
97
+ how: str = ...,
98
+ ) -> Timestamp: ...
99
+ def asfreq(self, freq: str | BaseOffset, how: str = ...) -> Period: ...
100
+ @property
101
+ def freqstr(self) -> str: ...
102
+ @property
103
+ def is_leap_year(self) -> bool: ...
104
+ @property
105
+ def daysinmonth(self) -> int: ...
106
+ @property
107
+ def days_in_month(self) -> int: ...
108
+ @property
109
+ def qyear(self) -> int: ...
110
+ @property
111
+ def quarter(self) -> int: ...
112
+ @property
113
+ def day_of_year(self) -> int: ...
114
+ @property
115
+ def weekday(self) -> int: ...
116
+ @property
117
+ def day_of_week(self) -> int: ...
118
+ @property
119
+ def week(self) -> int: ...
120
+ @property
121
+ def weekofyear(self) -> int: ...
122
+ @property
123
+ def second(self) -> int: ...
124
+ @property
125
+ def minute(self) -> int: ...
126
+ @property
127
+ def hour(self) -> int: ...
128
+ @property
129
+ def day(self) -> int: ...
130
+ @property
131
+ def month(self) -> int: ...
132
+ @property
133
+ def year(self) -> int: ...
134
+ def __sub__(self, other) -> Period | BaseOffset: ...
135
+ def __add__(self, other) -> Period: ...
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (410 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/strptime.pyi ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas._typing import npt
4
+
5
+ def array_strptime(
6
+ values: npt.NDArray[np.object_],
7
+ fmt: str | None,
8
+ exact: bool = ...,
9
+ errors: str = ...,
10
+ utc: bool = ...,
11
+ creso: int = ..., # NPY_DATETIMEUNIT
12
+ ) -> tuple[np.ndarray, np.ndarray]: ...
13
+
14
+ # first ndarray is M8[ns], second is object ndarray of tzinfo | None
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (652 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/timedeltas.pyi ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+ from typing import (
3
+ ClassVar,
4
+ Literal,
5
+ TypeAlias,
6
+ TypeVar,
7
+ overload,
8
+ )
9
+
10
+ import numpy as np
11
+
12
+ from pandas._libs.tslibs import (
13
+ NaTType,
14
+ Tick,
15
+ )
16
+ from pandas._typing import (
17
+ Frequency,
18
+ Self,
19
+ npt,
20
+ )
21
+
22
+ # This should be kept consistent with the keys in the dict timedelta_abbrevs
23
+ # in pandas/_libs/tslibs/timedeltas.pyx
24
+ UnitChoices: TypeAlias = Literal[
25
+ "Y",
26
+ "y",
27
+ "M",
28
+ "W",
29
+ "w",
30
+ "D",
31
+ "d",
32
+ "days",
33
+ "day",
34
+ "hours",
35
+ "hour",
36
+ "hr",
37
+ "h",
38
+ "m",
39
+ "minute",
40
+ "min",
41
+ "minutes",
42
+ "T",
43
+ "t",
44
+ "s",
45
+ "seconds",
46
+ "sec",
47
+ "second",
48
+ "ms",
49
+ "milliseconds",
50
+ "millisecond",
51
+ "milli",
52
+ "millis",
53
+ "L",
54
+ "l",
55
+ "us",
56
+ "microseconds",
57
+ "microsecond",
58
+ "µs",
59
+ "micro",
60
+ "micros",
61
+ "u",
62
+ "ns",
63
+ "nanoseconds",
64
+ "nano",
65
+ "nanos",
66
+ "nanosecond",
67
+ "n",
68
+ ]
69
+ _S = TypeVar("_S", bound=timedelta)
70
+
71
+ def get_unit_for_round(freq, creso: int) -> int: ...
72
+ def disallow_ambiguous_unit(unit: str | None) -> None: ...
73
+ def ints_to_pytimedelta(
74
+ m8values: npt.NDArray[np.timedelta64],
75
+ box: bool = ...,
76
+ ) -> npt.NDArray[np.object_]: ...
77
+ def array_to_timedelta64(
78
+ values: npt.NDArray[np.object_],
79
+ unit: str | None = ...,
80
+ errors: str = ...,
81
+ ) -> np.ndarray: ... # np.ndarray[m8ns]
82
+ def parse_timedelta_unit(unit: str | None) -> UnitChoices: ...
83
+ def delta_to_nanoseconds(
84
+ delta: np.timedelta64 | timedelta | Tick,
85
+ reso: int = ..., # NPY_DATETIMEUNIT
86
+ round_ok: bool = ...,
87
+ ) -> int: ...
88
+ def floordiv_object_array(
89
+ left: np.ndarray, right: npt.NDArray[np.object_]
90
+ ) -> np.ndarray: ...
91
+ def truediv_object_array(
92
+ left: np.ndarray, right: npt.NDArray[np.object_]
93
+ ) -> np.ndarray: ...
94
+
95
+ class Timedelta(timedelta):
96
+ _creso: int
97
+ min: ClassVar[Timedelta]
98
+ max: ClassVar[Timedelta]
99
+ resolution: ClassVar[Timedelta]
100
+ value: int # np.int64
101
+ _value: int # np.int64
102
+ # error: "__new__" must return a class instance (got "Union[Timestamp, NaTType]")
103
+ def __new__( # type: ignore[misc]
104
+ cls: type[_S],
105
+ value=...,
106
+ unit: str | None = ...,
107
+ **kwargs: float | np.integer | np.floating,
108
+ ) -> _S | NaTType: ...
109
+ @classmethod
110
+ def _from_value_and_reso(cls, value: np.int64, reso: int) -> Timedelta: ...
111
+ @property
112
+ def days(self) -> int: ...
113
+ @property
114
+ def seconds(self) -> int: ...
115
+ @property
116
+ def microseconds(self) -> int: ...
117
+ def total_seconds(self) -> float: ...
118
+ def to_pytimedelta(self) -> timedelta: ...
119
+ def to_timedelta64(self) -> np.timedelta64: ...
120
+ @property
121
+ def asm8(self) -> np.timedelta64: ...
122
+ # TODO: round/floor/ceil could return NaT?
123
+ def round(self, freq: Frequency) -> Self: ...
124
+ def floor(self, freq: Frequency) -> Self: ...
125
+ def ceil(self, freq: Frequency) -> Self: ...
126
+ @property
127
+ def resolution_string(self) -> str: ...
128
+ def __add__(self, other: timedelta) -> Timedelta: ...
129
+ def __radd__(self, other: timedelta) -> Timedelta: ...
130
+ def __sub__(self, other: timedelta) -> Timedelta: ...
131
+ def __rsub__(self, other: timedelta) -> Timedelta: ...
132
+ def __neg__(self) -> Timedelta: ...
133
+ def __pos__(self) -> Timedelta: ...
134
+ def __abs__(self) -> Timedelta: ...
135
+ def __mul__(self, other: float) -> Timedelta: ...
136
+ def __rmul__(self, other: float) -> Timedelta: ...
137
+ # error: Signature of "__floordiv__" incompatible with supertype "timedelta"
138
+ @overload # type: ignore[override]
139
+ def __floordiv__(self, other: timedelta) -> int: ...
140
+ @overload
141
+ def __floordiv__(self, other: float) -> Timedelta: ...
142
+ @overload
143
+ def __floordiv__(
144
+ self, other: npt.NDArray[np.timedelta64]
145
+ ) -> npt.NDArray[np.intp]: ...
146
+ @overload
147
+ def __floordiv__(
148
+ self, other: npt.NDArray[np.number]
149
+ ) -> npt.NDArray[np.timedelta64] | Timedelta: ...
150
+ @overload
151
+ def __rfloordiv__(self, other: timedelta | str) -> int: ...
152
+ @overload
153
+ def __rfloordiv__(self, other: None | NaTType) -> NaTType: ...
154
+ @overload
155
+ def __rfloordiv__(self, other: np.ndarray) -> npt.NDArray[np.timedelta64]: ...
156
+ @overload
157
+ def __truediv__(self, other: timedelta) -> float: ...
158
+ @overload
159
+ def __truediv__(self, other: float) -> Timedelta: ...
160
+ def __mod__(self, other: timedelta) -> Timedelta: ...
161
+ def __divmod__(self, other: timedelta) -> tuple[int, Timedelta]: ...
162
+ def __le__(self, other: timedelta) -> bool: ...
163
+ def __lt__(self, other: timedelta) -> bool: ...
164
+ def __ge__(self, other: timedelta) -> bool: ...
165
+ def __gt__(self, other: timedelta) -> bool: ...
166
+ def __hash__(self) -> int: ...
167
+ def isoformat(self) -> str: ...
168
+ def to_numpy(
169
+ self, dtype: npt.DTypeLike = ..., copy: bool = False
170
+ ) -> np.timedelta64: ...
171
+ def view(self, dtype: npt.DTypeLike) -> object: ...
172
+ @property
173
+ def unit(self) -> str: ...
174
+ def as_unit(self, unit: str, round_ok: bool = ...) -> Timedelta: ...