Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/layout.py +1358 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_agraph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_latex.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_layout.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_pydot.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_pylab.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_latex.py +292 -0
- env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_layout.py +515 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/__init__.py +33 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/atlas.py +179 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/classic.py +1054 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/cographs.py +67 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/community.py +1069 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/degree_seq.py +868 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/directed.py +501 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/duplication.py +163 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/ego.py +65 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/expanders.py +475 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/geometric.py +1047 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/harary_graph.py +199 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/internet_as_graphs.py +441 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/intersection.py +124 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/interval_graph.py +69 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/joint_degree_seq.py +664 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/lattice.py +367 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/line.py +499 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/mycielski.py +110 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/nonisomorphic_trees.py +212 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/random_clustered.py +117 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/random_graphs.py +1331 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/small.py +993 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/social.py +546 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/spectral_graph_forge.py +121 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/stochastic.py +54 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/sudoku.py +131 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_atlas.py +75 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_classic.py +635 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_cographs.py +20 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_community.py +362 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_degree_seq.py +230 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_duplication.py +84 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_ego.py +39 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_geometric.py +488 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_harary_graph.py +134 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_internet_as_graphs.py +176 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_intersection.py +28 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_joint_degree_seq.py +125 -0
- env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_lattice.py +246 -0
env-llmeval/lib/python3.10/site-packages/networkx/drawing/layout.py
ADDED
@@ -0,0 +1,1358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
******
|
3 |
+
Layout
|
4 |
+
******
|
5 |
+
|
6 |
+
Node positioning algorithms for graph drawing.
|
7 |
+
|
8 |
+
For `random_layout()` the possible resulting shape
|
9 |
+
is a square of side [0, scale] (default: [0, 1])
|
10 |
+
Changing `center` shifts the layout by that amount.
|
11 |
+
|
12 |
+
For the other layout routines, the extent is
|
13 |
+
[center - scale, center + scale] (default: [-1, 1]).
|
14 |
+
|
15 |
+
Warning: Most layout routines have only been tested in 2-dimensions.
|
16 |
+
|
17 |
+
"""
|
18 |
+
import networkx as nx
|
19 |
+
from networkx.utils import np_random_state
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
"bipartite_layout",
|
23 |
+
"circular_layout",
|
24 |
+
"kamada_kawai_layout",
|
25 |
+
"random_layout",
|
26 |
+
"rescale_layout",
|
27 |
+
"rescale_layout_dict",
|
28 |
+
"shell_layout",
|
29 |
+
"spring_layout",
|
30 |
+
"spectral_layout",
|
31 |
+
"planar_layout",
|
32 |
+
"fruchterman_reingold_layout",
|
33 |
+
"spiral_layout",
|
34 |
+
"multipartite_layout",
|
35 |
+
"bfs_layout",
|
36 |
+
"arf_layout",
|
37 |
+
]
|
38 |
+
|
39 |
+
|
40 |
+
def _process_params(G, center, dim):
|
41 |
+
# Some boilerplate code.
|
42 |
+
import numpy as np
|
43 |
+
|
44 |
+
if not isinstance(G, nx.Graph):
|
45 |
+
empty_graph = nx.Graph()
|
46 |
+
empty_graph.add_nodes_from(G)
|
47 |
+
G = empty_graph
|
48 |
+
|
49 |
+
if center is None:
|
50 |
+
center = np.zeros(dim)
|
51 |
+
else:
|
52 |
+
center = np.asarray(center)
|
53 |
+
|
54 |
+
if len(center) != dim:
|
55 |
+
msg = "length of center coordinates must match dimension of layout"
|
56 |
+
raise ValueError(msg)
|
57 |
+
|
58 |
+
return G, center
|
59 |
+
|
60 |
+
|
61 |
+
@np_random_state(3)
|
62 |
+
def random_layout(G, center=None, dim=2, seed=None):
|
63 |
+
"""Position nodes uniformly at random in the unit square.
|
64 |
+
|
65 |
+
For every node, a position is generated by choosing each of dim
|
66 |
+
coordinates uniformly at random on the interval [0.0, 1.0).
|
67 |
+
|
68 |
+
NumPy (http://scipy.org) is required for this function.
|
69 |
+
|
70 |
+
Parameters
|
71 |
+
----------
|
72 |
+
G : NetworkX graph or list of nodes
|
73 |
+
A position will be assigned to every node in G.
|
74 |
+
|
75 |
+
center : array-like or None
|
76 |
+
Coordinate pair around which to center the layout.
|
77 |
+
|
78 |
+
dim : int
|
79 |
+
Dimension of layout.
|
80 |
+
|
81 |
+
seed : int, RandomState instance or None optional (default=None)
|
82 |
+
Set the random state for deterministic node layouts.
|
83 |
+
If int, `seed` is the seed used by the random number generator,
|
84 |
+
if numpy.random.RandomState instance, `seed` is the random
|
85 |
+
number generator,
|
86 |
+
if None, the random number generator is the RandomState instance used
|
87 |
+
by numpy.random.
|
88 |
+
|
89 |
+
Returns
|
90 |
+
-------
|
91 |
+
pos : dict
|
92 |
+
A dictionary of positions keyed by node
|
93 |
+
|
94 |
+
Examples
|
95 |
+
--------
|
96 |
+
>>> G = nx.lollipop_graph(4, 3)
|
97 |
+
>>> pos = nx.random_layout(G)
|
98 |
+
|
99 |
+
"""
|
100 |
+
import numpy as np
|
101 |
+
|
102 |
+
G, center = _process_params(G, center, dim)
|
103 |
+
pos = seed.rand(len(G), dim) + center
|
104 |
+
pos = pos.astype(np.float32)
|
105 |
+
pos = dict(zip(G, pos))
|
106 |
+
|
107 |
+
return pos
|
108 |
+
|
109 |
+
|
110 |
+
def circular_layout(G, scale=1, center=None, dim=2):
|
111 |
+
# dim=2 only
|
112 |
+
"""Position nodes on a circle.
|
113 |
+
|
114 |
+
Parameters
|
115 |
+
----------
|
116 |
+
G : NetworkX graph or list of nodes
|
117 |
+
A position will be assigned to every node in G.
|
118 |
+
|
119 |
+
scale : number (default: 1)
|
120 |
+
Scale factor for positions.
|
121 |
+
|
122 |
+
center : array-like or None
|
123 |
+
Coordinate pair around which to center the layout.
|
124 |
+
|
125 |
+
dim : int
|
126 |
+
Dimension of layout.
|
127 |
+
If dim>2, the remaining dimensions are set to zero
|
128 |
+
in the returned positions.
|
129 |
+
If dim<2, a ValueError is raised.
|
130 |
+
|
131 |
+
Returns
|
132 |
+
-------
|
133 |
+
pos : dict
|
134 |
+
A dictionary of positions keyed by node
|
135 |
+
|
136 |
+
Raises
|
137 |
+
------
|
138 |
+
ValueError
|
139 |
+
If dim < 2
|
140 |
+
|
141 |
+
Examples
|
142 |
+
--------
|
143 |
+
>>> G = nx.path_graph(4)
|
144 |
+
>>> pos = nx.circular_layout(G)
|
145 |
+
|
146 |
+
Notes
|
147 |
+
-----
|
148 |
+
This algorithm currently only works in two dimensions and does not
|
149 |
+
try to minimize edge crossings.
|
150 |
+
|
151 |
+
"""
|
152 |
+
import numpy as np
|
153 |
+
|
154 |
+
if dim < 2:
|
155 |
+
raise ValueError("cannot handle dimensions < 2")
|
156 |
+
|
157 |
+
G, center = _process_params(G, center, dim)
|
158 |
+
|
159 |
+
paddims = max(0, (dim - 2))
|
160 |
+
|
161 |
+
if len(G) == 0:
|
162 |
+
pos = {}
|
163 |
+
elif len(G) == 1:
|
164 |
+
pos = {nx.utils.arbitrary_element(G): center}
|
165 |
+
else:
|
166 |
+
# Discard the extra angle since it matches 0 radians.
|
167 |
+
theta = np.linspace(0, 1, len(G) + 1)[:-1] * 2 * np.pi
|
168 |
+
theta = theta.astype(np.float32)
|
169 |
+
pos = np.column_stack(
|
170 |
+
[np.cos(theta), np.sin(theta), np.zeros((len(G), paddims))]
|
171 |
+
)
|
172 |
+
pos = rescale_layout(pos, scale=scale) + center
|
173 |
+
pos = dict(zip(G, pos))
|
174 |
+
|
175 |
+
return pos
|
176 |
+
|
177 |
+
|
178 |
+
def shell_layout(G, nlist=None, rotate=None, scale=1, center=None, dim=2):
|
179 |
+
"""Position nodes in concentric circles.
|
180 |
+
|
181 |
+
Parameters
|
182 |
+
----------
|
183 |
+
G : NetworkX graph or list of nodes
|
184 |
+
A position will be assigned to every node in G.
|
185 |
+
|
186 |
+
nlist : list of lists
|
187 |
+
List of node lists for each shell.
|
188 |
+
|
189 |
+
rotate : angle in radians (default=pi/len(nlist))
|
190 |
+
Angle by which to rotate the starting position of each shell
|
191 |
+
relative to the starting position of the previous shell.
|
192 |
+
To recreate behavior before v2.5 use rotate=0.
|
193 |
+
|
194 |
+
scale : number (default: 1)
|
195 |
+
Scale factor for positions.
|
196 |
+
|
197 |
+
center : array-like or None
|
198 |
+
Coordinate pair around which to center the layout.
|
199 |
+
|
200 |
+
dim : int
|
201 |
+
Dimension of layout, currently only dim=2 is supported.
|
202 |
+
Other dimension values result in a ValueError.
|
203 |
+
|
204 |
+
Returns
|
205 |
+
-------
|
206 |
+
pos : dict
|
207 |
+
A dictionary of positions keyed by node
|
208 |
+
|
209 |
+
Raises
|
210 |
+
------
|
211 |
+
ValueError
|
212 |
+
If dim != 2
|
213 |
+
|
214 |
+
Examples
|
215 |
+
--------
|
216 |
+
>>> G = nx.path_graph(4)
|
217 |
+
>>> shells = [[0], [1, 2, 3]]
|
218 |
+
>>> pos = nx.shell_layout(G, shells)
|
219 |
+
|
220 |
+
Notes
|
221 |
+
-----
|
222 |
+
This algorithm currently only works in two dimensions and does not
|
223 |
+
try to minimize edge crossings.
|
224 |
+
|
225 |
+
"""
|
226 |
+
import numpy as np
|
227 |
+
|
228 |
+
if dim != 2:
|
229 |
+
raise ValueError("can only handle 2 dimensions")
|
230 |
+
|
231 |
+
G, center = _process_params(G, center, dim)
|
232 |
+
|
233 |
+
if len(G) == 0:
|
234 |
+
return {}
|
235 |
+
if len(G) == 1:
|
236 |
+
return {nx.utils.arbitrary_element(G): center}
|
237 |
+
|
238 |
+
if nlist is None:
|
239 |
+
# draw the whole graph in one shell
|
240 |
+
nlist = [list(G)]
|
241 |
+
|
242 |
+
radius_bump = scale / len(nlist)
|
243 |
+
|
244 |
+
if len(nlist[0]) == 1:
|
245 |
+
# single node at center
|
246 |
+
radius = 0.0
|
247 |
+
else:
|
248 |
+
# else start at r=1
|
249 |
+
radius = radius_bump
|
250 |
+
|
251 |
+
if rotate is None:
|
252 |
+
rotate = np.pi / len(nlist)
|
253 |
+
first_theta = rotate
|
254 |
+
npos = {}
|
255 |
+
for nodes in nlist:
|
256 |
+
# Discard the last angle (endpoint=False) since 2*pi matches 0 radians
|
257 |
+
theta = (
|
258 |
+
np.linspace(0, 2 * np.pi, len(nodes), endpoint=False, dtype=np.float32)
|
259 |
+
+ first_theta
|
260 |
+
)
|
261 |
+
pos = radius * np.column_stack([np.cos(theta), np.sin(theta)]) + center
|
262 |
+
npos.update(zip(nodes, pos))
|
263 |
+
radius += radius_bump
|
264 |
+
first_theta += rotate
|
265 |
+
|
266 |
+
return npos
|
267 |
+
|
268 |
+
|
269 |
+
def bipartite_layout(
|
270 |
+
G, nodes, align="vertical", scale=1, center=None, aspect_ratio=4 / 3
|
271 |
+
):
|
272 |
+
"""Position nodes in two straight lines.
|
273 |
+
|
274 |
+
Parameters
|
275 |
+
----------
|
276 |
+
G : NetworkX graph or list of nodes
|
277 |
+
A position will be assigned to every node in G.
|
278 |
+
|
279 |
+
nodes : list or container
|
280 |
+
Nodes in one node set of the bipartite graph.
|
281 |
+
This set will be placed on left or top.
|
282 |
+
|
283 |
+
align : string (default='vertical')
|
284 |
+
The alignment of nodes. Vertical or horizontal.
|
285 |
+
|
286 |
+
scale : number (default: 1)
|
287 |
+
Scale factor for positions.
|
288 |
+
|
289 |
+
center : array-like or None
|
290 |
+
Coordinate pair around which to center the layout.
|
291 |
+
|
292 |
+
aspect_ratio : number (default=4/3):
|
293 |
+
The ratio of the width to the height of the layout.
|
294 |
+
|
295 |
+
Returns
|
296 |
+
-------
|
297 |
+
pos : dict
|
298 |
+
A dictionary of positions keyed by node.
|
299 |
+
|
300 |
+
Examples
|
301 |
+
--------
|
302 |
+
>>> G = nx.bipartite.gnmk_random_graph(3, 5, 10, seed=123)
|
303 |
+
>>> top = nx.bipartite.sets(G)[0]
|
304 |
+
>>> pos = nx.bipartite_layout(G, top)
|
305 |
+
|
306 |
+
Notes
|
307 |
+
-----
|
308 |
+
This algorithm currently only works in two dimensions and does not
|
309 |
+
try to minimize edge crossings.
|
310 |
+
|
311 |
+
"""
|
312 |
+
|
313 |
+
import numpy as np
|
314 |
+
|
315 |
+
if align not in ("vertical", "horizontal"):
|
316 |
+
msg = "align must be either vertical or horizontal."
|
317 |
+
raise ValueError(msg)
|
318 |
+
|
319 |
+
G, center = _process_params(G, center=center, dim=2)
|
320 |
+
if len(G) == 0:
|
321 |
+
return {}
|
322 |
+
|
323 |
+
height = 1
|
324 |
+
width = aspect_ratio * height
|
325 |
+
offset = (width / 2, height / 2)
|
326 |
+
|
327 |
+
top = dict.fromkeys(nodes)
|
328 |
+
bottom = [v for v in G if v not in top]
|
329 |
+
nodes = list(top) + bottom
|
330 |
+
|
331 |
+
left_xs = np.repeat(0, len(top))
|
332 |
+
right_xs = np.repeat(width, len(bottom))
|
333 |
+
left_ys = np.linspace(0, height, len(top))
|
334 |
+
right_ys = np.linspace(0, height, len(bottom))
|
335 |
+
|
336 |
+
top_pos = np.column_stack([left_xs, left_ys]) - offset
|
337 |
+
bottom_pos = np.column_stack([right_xs, right_ys]) - offset
|
338 |
+
|
339 |
+
pos = np.concatenate([top_pos, bottom_pos])
|
340 |
+
pos = rescale_layout(pos, scale=scale) + center
|
341 |
+
if align == "horizontal":
|
342 |
+
pos = pos[:, ::-1] # swap x and y coords
|
343 |
+
pos = dict(zip(nodes, pos))
|
344 |
+
return pos
|
345 |
+
|
346 |
+
|
347 |
+
@np_random_state(10)
|
348 |
+
def spring_layout(
|
349 |
+
G,
|
350 |
+
k=None,
|
351 |
+
pos=None,
|
352 |
+
fixed=None,
|
353 |
+
iterations=50,
|
354 |
+
threshold=1e-4,
|
355 |
+
weight="weight",
|
356 |
+
scale=1,
|
357 |
+
center=None,
|
358 |
+
dim=2,
|
359 |
+
seed=None,
|
360 |
+
):
|
361 |
+
"""Position nodes using Fruchterman-Reingold force-directed algorithm.
|
362 |
+
|
363 |
+
The algorithm simulates a force-directed representation of the network
|
364 |
+
treating edges as springs holding nodes close, while treating nodes
|
365 |
+
as repelling objects, sometimes called an anti-gravity force.
|
366 |
+
Simulation continues until the positions are close to an equilibrium.
|
367 |
+
|
368 |
+
There are some hard-coded values: minimal distance between
|
369 |
+
nodes (0.01) and "temperature" of 0.1 to ensure nodes don't fly away.
|
370 |
+
During the simulation, `k` helps determine the distance between nodes,
|
371 |
+
though `scale` and `center` determine the size and place after
|
372 |
+
rescaling occurs at the end of the simulation.
|
373 |
+
|
374 |
+
Fixing some nodes doesn't allow them to move in the simulation.
|
375 |
+
It also turns off the rescaling feature at the simulation's end.
|
376 |
+
In addition, setting `scale` to `None` turns off rescaling.
|
377 |
+
|
378 |
+
Parameters
|
379 |
+
----------
|
380 |
+
G : NetworkX graph or list of nodes
|
381 |
+
A position will be assigned to every node in G.
|
382 |
+
|
383 |
+
k : float (default=None)
|
384 |
+
Optimal distance between nodes. If None the distance is set to
|
385 |
+
1/sqrt(n) where n is the number of nodes. Increase this value
|
386 |
+
to move nodes farther apart.
|
387 |
+
|
388 |
+
pos : dict or None optional (default=None)
|
389 |
+
Initial positions for nodes as a dictionary with node as keys
|
390 |
+
and values as a coordinate list or tuple. If None, then use
|
391 |
+
random initial positions.
|
392 |
+
|
393 |
+
fixed : list or None optional (default=None)
|
394 |
+
Nodes to keep fixed at initial position.
|
395 |
+
Nodes not in ``G.nodes`` are ignored.
|
396 |
+
ValueError raised if `fixed` specified and `pos` not.
|
397 |
+
|
398 |
+
iterations : int optional (default=50)
|
399 |
+
Maximum number of iterations taken
|
400 |
+
|
401 |
+
threshold: float optional (default = 1e-4)
|
402 |
+
Threshold for relative error in node position changes.
|
403 |
+
The iteration stops if the error is below this threshold.
|
404 |
+
|
405 |
+
weight : string or None optional (default='weight')
|
406 |
+
The edge attribute that holds the numerical value used for
|
407 |
+
the edge weight. Larger means a stronger attractive force.
|
408 |
+
If None, then all edge weights are 1.
|
409 |
+
|
410 |
+
scale : number or None (default: 1)
|
411 |
+
Scale factor for positions. Not used unless `fixed is None`.
|
412 |
+
If scale is None, no rescaling is performed.
|
413 |
+
|
414 |
+
center : array-like or None
|
415 |
+
Coordinate pair around which to center the layout.
|
416 |
+
Not used unless `fixed is None`.
|
417 |
+
|
418 |
+
dim : int
|
419 |
+
Dimension of layout.
|
420 |
+
|
421 |
+
seed : int, RandomState instance or None optional (default=None)
|
422 |
+
Set the random state for deterministic node layouts.
|
423 |
+
If int, `seed` is the seed used by the random number generator,
|
424 |
+
if numpy.random.RandomState instance, `seed` is the random
|
425 |
+
number generator,
|
426 |
+
if None, the random number generator is the RandomState instance used
|
427 |
+
by numpy.random.
|
428 |
+
|
429 |
+
Returns
|
430 |
+
-------
|
431 |
+
pos : dict
|
432 |
+
A dictionary of positions keyed by node
|
433 |
+
|
434 |
+
Examples
|
435 |
+
--------
|
436 |
+
>>> G = nx.path_graph(4)
|
437 |
+
>>> pos = nx.spring_layout(G)
|
438 |
+
|
439 |
+
# The same using longer but equivalent function name
|
440 |
+
>>> pos = nx.fruchterman_reingold_layout(G)
|
441 |
+
"""
|
442 |
+
import numpy as np
|
443 |
+
|
444 |
+
G, center = _process_params(G, center, dim)
|
445 |
+
|
446 |
+
if fixed is not None:
|
447 |
+
if pos is None:
|
448 |
+
raise ValueError("nodes are fixed without positions given")
|
449 |
+
for node in fixed:
|
450 |
+
if node not in pos:
|
451 |
+
raise ValueError("nodes are fixed without positions given")
|
452 |
+
nfixed = {node: i for i, node in enumerate(G)}
|
453 |
+
fixed = np.asarray([nfixed[node] for node in fixed if node in nfixed])
|
454 |
+
|
455 |
+
if pos is not None:
|
456 |
+
# Determine size of existing domain to adjust initial positions
|
457 |
+
dom_size = max(coord for pos_tup in pos.values() for coord in pos_tup)
|
458 |
+
if dom_size == 0:
|
459 |
+
dom_size = 1
|
460 |
+
pos_arr = seed.rand(len(G), dim) * dom_size + center
|
461 |
+
|
462 |
+
for i, n in enumerate(G):
|
463 |
+
if n in pos:
|
464 |
+
pos_arr[i] = np.asarray(pos[n])
|
465 |
+
else:
|
466 |
+
pos_arr = None
|
467 |
+
dom_size = 1
|
468 |
+
|
469 |
+
if len(G) == 0:
|
470 |
+
return {}
|
471 |
+
if len(G) == 1:
|
472 |
+
return {nx.utils.arbitrary_element(G.nodes()): center}
|
473 |
+
|
474 |
+
try:
|
475 |
+
# Sparse matrix
|
476 |
+
if len(G) < 500: # sparse solver for large graphs
|
477 |
+
raise ValueError
|
478 |
+
A = nx.to_scipy_sparse_array(G, weight=weight, dtype="f")
|
479 |
+
if k is None and fixed is not None:
|
480 |
+
# We must adjust k by domain size for layouts not near 1x1
|
481 |
+
nnodes, _ = A.shape
|
482 |
+
k = dom_size / np.sqrt(nnodes)
|
483 |
+
pos = _sparse_fruchterman_reingold(
|
484 |
+
A, k, pos_arr, fixed, iterations, threshold, dim, seed
|
485 |
+
)
|
486 |
+
except ValueError:
|
487 |
+
A = nx.to_numpy_array(G, weight=weight)
|
488 |
+
if k is None and fixed is not None:
|
489 |
+
# We must adjust k by domain size for layouts not near 1x1
|
490 |
+
nnodes, _ = A.shape
|
491 |
+
k = dom_size / np.sqrt(nnodes)
|
492 |
+
pos = _fruchterman_reingold(
|
493 |
+
A, k, pos_arr, fixed, iterations, threshold, dim, seed
|
494 |
+
)
|
495 |
+
if fixed is None and scale is not None:
|
496 |
+
pos = rescale_layout(pos, scale=scale) + center
|
497 |
+
pos = dict(zip(G, pos))
|
498 |
+
return pos
|
499 |
+
|
500 |
+
|
501 |
+
fruchterman_reingold_layout = spring_layout
|
502 |
+
|
503 |
+
|
504 |
+
@np_random_state(7)
|
505 |
+
def _fruchterman_reingold(
|
506 |
+
A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None
|
507 |
+
):
|
508 |
+
# Position nodes in adjacency matrix A using Fruchterman-Reingold
|
509 |
+
# Entry point for NetworkX graph is fruchterman_reingold_layout()
|
510 |
+
import numpy as np
|
511 |
+
|
512 |
+
try:
|
513 |
+
nnodes, _ = A.shape
|
514 |
+
except AttributeError as err:
|
515 |
+
msg = "fruchterman_reingold() takes an adjacency matrix as input"
|
516 |
+
raise nx.NetworkXError(msg) from err
|
517 |
+
|
518 |
+
if pos is None:
|
519 |
+
# random initial positions
|
520 |
+
pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype)
|
521 |
+
else:
|
522 |
+
# make sure positions are of same type as matrix
|
523 |
+
pos = pos.astype(A.dtype)
|
524 |
+
|
525 |
+
# optimal distance between nodes
|
526 |
+
if k is None:
|
527 |
+
k = np.sqrt(1.0 / nnodes)
|
528 |
+
# the initial "temperature" is about .1 of domain area (=1x1)
|
529 |
+
# this is the largest step allowed in the dynamics.
|
530 |
+
# We need to calculate this in case our fixed positions force our domain
|
531 |
+
# to be much bigger than 1x1
|
532 |
+
t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1
|
533 |
+
# simple cooling scheme.
|
534 |
+
# linearly step down by dt on each iteration so last iteration is size dt.
|
535 |
+
dt = t / (iterations + 1)
|
536 |
+
delta = np.zeros((pos.shape[0], pos.shape[0], pos.shape[1]), dtype=A.dtype)
|
537 |
+
# the inscrutable (but fast) version
|
538 |
+
# this is still O(V^2)
|
539 |
+
# could use multilevel methods to speed this up significantly
|
540 |
+
for iteration in range(iterations):
|
541 |
+
# matrix of difference between points
|
542 |
+
delta = pos[:, np.newaxis, :] - pos[np.newaxis, :, :]
|
543 |
+
# distance between points
|
544 |
+
distance = np.linalg.norm(delta, axis=-1)
|
545 |
+
# enforce minimum distance of 0.01
|
546 |
+
np.clip(distance, 0.01, None, out=distance)
|
547 |
+
# displacement "force"
|
548 |
+
displacement = np.einsum(
|
549 |
+
"ijk,ij->ik", delta, (k * k / distance**2 - A * distance / k)
|
550 |
+
)
|
551 |
+
# update positions
|
552 |
+
length = np.linalg.norm(displacement, axis=-1)
|
553 |
+
length = np.where(length < 0.01, 0.1, length)
|
554 |
+
delta_pos = np.einsum("ij,i->ij", displacement, t / length)
|
555 |
+
if fixed is not None:
|
556 |
+
# don't change positions of fixed nodes
|
557 |
+
delta_pos[fixed] = 0.0
|
558 |
+
pos += delta_pos
|
559 |
+
# cool temperature
|
560 |
+
t -= dt
|
561 |
+
if (np.linalg.norm(delta_pos) / nnodes) < threshold:
|
562 |
+
break
|
563 |
+
return pos
|
564 |
+
|
565 |
+
|
566 |
+
@np_random_state(7)
|
567 |
+
def _sparse_fruchterman_reingold(
|
568 |
+
A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None
|
569 |
+
):
|
570 |
+
# Position nodes in adjacency matrix A using Fruchterman-Reingold
|
571 |
+
# Entry point for NetworkX graph is fruchterman_reingold_layout()
|
572 |
+
# Sparse version
|
573 |
+
import numpy as np
|
574 |
+
import scipy as sp
|
575 |
+
|
576 |
+
try:
|
577 |
+
nnodes, _ = A.shape
|
578 |
+
except AttributeError as err:
|
579 |
+
msg = "fruchterman_reingold() takes an adjacency matrix as input"
|
580 |
+
raise nx.NetworkXError(msg) from err
|
581 |
+
# make sure we have a LIst of Lists representation
|
582 |
+
try:
|
583 |
+
A = A.tolil()
|
584 |
+
except AttributeError:
|
585 |
+
A = (sp.sparse.coo_array(A)).tolil()
|
586 |
+
|
587 |
+
if pos is None:
|
588 |
+
# random initial positions
|
589 |
+
pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype)
|
590 |
+
else:
|
591 |
+
# make sure positions are of same type as matrix
|
592 |
+
pos = pos.astype(A.dtype)
|
593 |
+
|
594 |
+
# no fixed nodes
|
595 |
+
if fixed is None:
|
596 |
+
fixed = []
|
597 |
+
|
598 |
+
# optimal distance between nodes
|
599 |
+
if k is None:
|
600 |
+
k = np.sqrt(1.0 / nnodes)
|
601 |
+
# the initial "temperature" is about .1 of domain area (=1x1)
|
602 |
+
# this is the largest step allowed in the dynamics.
|
603 |
+
t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1
|
604 |
+
# simple cooling scheme.
|
605 |
+
# linearly step down by dt on each iteration so last iteration is size dt.
|
606 |
+
dt = t / (iterations + 1)
|
607 |
+
|
608 |
+
displacement = np.zeros((dim, nnodes))
|
609 |
+
for iteration in range(iterations):
|
610 |
+
displacement *= 0
|
611 |
+
# loop over rows
|
612 |
+
for i in range(A.shape[0]):
|
613 |
+
if i in fixed:
|
614 |
+
continue
|
615 |
+
# difference between this row's node position and all others
|
616 |
+
delta = (pos[i] - pos).T
|
617 |
+
# distance between points
|
618 |
+
distance = np.sqrt((delta**2).sum(axis=0))
|
619 |
+
# enforce minimum distance of 0.01
|
620 |
+
distance = np.where(distance < 0.01, 0.01, distance)
|
621 |
+
# the adjacency matrix row
|
622 |
+
Ai = A.getrowview(i).toarray() # TODO: revisit w/ sparse 1D container
|
623 |
+
# displacement "force"
|
624 |
+
displacement[:, i] += (
|
625 |
+
delta * (k * k / distance**2 - Ai * distance / k)
|
626 |
+
).sum(axis=1)
|
627 |
+
# update positions
|
628 |
+
length = np.sqrt((displacement**2).sum(axis=0))
|
629 |
+
length = np.where(length < 0.01, 0.1, length)
|
630 |
+
delta_pos = (displacement * t / length).T
|
631 |
+
pos += delta_pos
|
632 |
+
# cool temperature
|
633 |
+
t -= dt
|
634 |
+
if (np.linalg.norm(delta_pos) / nnodes) < threshold:
|
635 |
+
break
|
636 |
+
return pos
|
637 |
+
|
638 |
+
|
639 |
+
def kamada_kawai_layout(
|
640 |
+
G, dist=None, pos=None, weight="weight", scale=1, center=None, dim=2
|
641 |
+
):
|
642 |
+
"""Position nodes using Kamada-Kawai path-length cost-function.
|
643 |
+
|
644 |
+
Parameters
|
645 |
+
----------
|
646 |
+
G : NetworkX graph or list of nodes
|
647 |
+
A position will be assigned to every node in G.
|
648 |
+
|
649 |
+
dist : dict (default=None)
|
650 |
+
A two-level dictionary of optimal distances between nodes,
|
651 |
+
indexed by source and destination node.
|
652 |
+
If None, the distance is computed using shortest_path_length().
|
653 |
+
|
654 |
+
pos : dict or None optional (default=None)
|
655 |
+
Initial positions for nodes as a dictionary with node as keys
|
656 |
+
and values as a coordinate list or tuple. If None, then use
|
657 |
+
circular_layout() for dim >= 2 and a linear layout for dim == 1.
|
658 |
+
|
659 |
+
weight : string or None optional (default='weight')
|
660 |
+
The edge attribute that holds the numerical value used for
|
661 |
+
the edge weight. If None, then all edge weights are 1.
|
662 |
+
|
663 |
+
scale : number (default: 1)
|
664 |
+
Scale factor for positions.
|
665 |
+
|
666 |
+
center : array-like or None
|
667 |
+
Coordinate pair around which to center the layout.
|
668 |
+
|
669 |
+
dim : int
|
670 |
+
Dimension of layout.
|
671 |
+
|
672 |
+
Returns
|
673 |
+
-------
|
674 |
+
pos : dict
|
675 |
+
A dictionary of positions keyed by node
|
676 |
+
|
677 |
+
Examples
|
678 |
+
--------
|
679 |
+
>>> G = nx.path_graph(4)
|
680 |
+
>>> pos = nx.kamada_kawai_layout(G)
|
681 |
+
"""
|
682 |
+
import numpy as np
|
683 |
+
|
684 |
+
G, center = _process_params(G, center, dim)
|
685 |
+
nNodes = len(G)
|
686 |
+
if nNodes == 0:
|
687 |
+
return {}
|
688 |
+
|
689 |
+
if dist is None:
|
690 |
+
dist = dict(nx.shortest_path_length(G, weight=weight))
|
691 |
+
dist_mtx = 1e6 * np.ones((nNodes, nNodes))
|
692 |
+
for row, nr in enumerate(G):
|
693 |
+
if nr not in dist:
|
694 |
+
continue
|
695 |
+
rdist = dist[nr]
|
696 |
+
for col, nc in enumerate(G):
|
697 |
+
if nc not in rdist:
|
698 |
+
continue
|
699 |
+
dist_mtx[row][col] = rdist[nc]
|
700 |
+
|
701 |
+
if pos is None:
|
702 |
+
if dim >= 3:
|
703 |
+
pos = random_layout(G, dim=dim)
|
704 |
+
elif dim == 2:
|
705 |
+
pos = circular_layout(G, dim=dim)
|
706 |
+
else:
|
707 |
+
pos = dict(zip(G, np.linspace(0, 1, len(G))))
|
708 |
+
pos_arr = np.array([pos[n] for n in G])
|
709 |
+
|
710 |
+
pos = _kamada_kawai_solve(dist_mtx, pos_arr, dim)
|
711 |
+
|
712 |
+
pos = rescale_layout(pos, scale=scale) + center
|
713 |
+
return dict(zip(G, pos))
|
714 |
+
|
715 |
+
|
716 |
+
def _kamada_kawai_solve(dist_mtx, pos_arr, dim):
|
717 |
+
# Anneal node locations based on the Kamada-Kawai cost-function,
|
718 |
+
# using the supplied matrix of preferred inter-node distances,
|
719 |
+
# and starting locations.
|
720 |
+
|
721 |
+
import numpy as np
|
722 |
+
import scipy as sp
|
723 |
+
|
724 |
+
meanwt = 1e-3
|
725 |
+
costargs = (np, 1 / (dist_mtx + np.eye(dist_mtx.shape[0]) * 1e-3), meanwt, dim)
|
726 |
+
|
727 |
+
optresult = sp.optimize.minimize(
|
728 |
+
_kamada_kawai_costfn,
|
729 |
+
pos_arr.ravel(),
|
730 |
+
method="L-BFGS-B",
|
731 |
+
args=costargs,
|
732 |
+
jac=True,
|
733 |
+
)
|
734 |
+
|
735 |
+
return optresult.x.reshape((-1, dim))
|
736 |
+
|
737 |
+
|
738 |
+
def _kamada_kawai_costfn(pos_vec, np, invdist, meanweight, dim):
|
739 |
+
# Cost-function and gradient for Kamada-Kawai layout algorithm
|
740 |
+
nNodes = invdist.shape[0]
|
741 |
+
pos_arr = pos_vec.reshape((nNodes, dim))
|
742 |
+
|
743 |
+
delta = pos_arr[:, np.newaxis, :] - pos_arr[np.newaxis, :, :]
|
744 |
+
nodesep = np.linalg.norm(delta, axis=-1)
|
745 |
+
direction = np.einsum("ijk,ij->ijk", delta, 1 / (nodesep + np.eye(nNodes) * 1e-3))
|
746 |
+
|
747 |
+
offset = nodesep * invdist - 1.0
|
748 |
+
offset[np.diag_indices(nNodes)] = 0
|
749 |
+
|
750 |
+
cost = 0.5 * np.sum(offset**2)
|
751 |
+
grad = np.einsum("ij,ij,ijk->ik", invdist, offset, direction) - np.einsum(
|
752 |
+
"ij,ij,ijk->jk", invdist, offset, direction
|
753 |
+
)
|
754 |
+
|
755 |
+
# Additional parabolic term to encourage mean position to be near origin:
|
756 |
+
sumpos = np.sum(pos_arr, axis=0)
|
757 |
+
cost += 0.5 * meanweight * np.sum(sumpos**2)
|
758 |
+
grad += meanweight * sumpos
|
759 |
+
|
760 |
+
return (cost, grad.ravel())
|
761 |
+
|
762 |
+
|
763 |
+
def spectral_layout(G, weight="weight", scale=1, center=None, dim=2):
|
764 |
+
"""Position nodes using the eigenvectors of the graph Laplacian.
|
765 |
+
|
766 |
+
Using the unnormalized Laplacian, the layout shows possible clusters of
|
767 |
+
nodes which are an approximation of the ratio cut. If dim is the number of
|
768 |
+
dimensions then the positions are the entries of the dim eigenvectors
|
769 |
+
corresponding to the ascending eigenvalues starting from the second one.
|
770 |
+
|
771 |
+
Parameters
|
772 |
+
----------
|
773 |
+
G : NetworkX graph or list of nodes
|
774 |
+
A position will be assigned to every node in G.
|
775 |
+
|
776 |
+
weight : string or None optional (default='weight')
|
777 |
+
The edge attribute that holds the numerical value used for
|
778 |
+
the edge weight. If None, then all edge weights are 1.
|
779 |
+
|
780 |
+
scale : number (default: 1)
|
781 |
+
Scale factor for positions.
|
782 |
+
|
783 |
+
center : array-like or None
|
784 |
+
Coordinate pair around which to center the layout.
|
785 |
+
|
786 |
+
dim : int
|
787 |
+
Dimension of layout.
|
788 |
+
|
789 |
+
Returns
|
790 |
+
-------
|
791 |
+
pos : dict
|
792 |
+
A dictionary of positions keyed by node
|
793 |
+
|
794 |
+
Examples
|
795 |
+
--------
|
796 |
+
>>> G = nx.path_graph(4)
|
797 |
+
>>> pos = nx.spectral_layout(G)
|
798 |
+
|
799 |
+
Notes
|
800 |
+
-----
|
801 |
+
Directed graphs will be considered as undirected graphs when
|
802 |
+
positioning the nodes.
|
803 |
+
|
804 |
+
For larger graphs (>500 nodes) this will use the SciPy sparse
|
805 |
+
eigenvalue solver (ARPACK).
|
806 |
+
"""
|
807 |
+
# handle some special cases that break the eigensolvers
|
808 |
+
import numpy as np
|
809 |
+
|
810 |
+
G, center = _process_params(G, center, dim)
|
811 |
+
|
812 |
+
if len(G) <= 2:
|
813 |
+
if len(G) == 0:
|
814 |
+
pos = np.array([])
|
815 |
+
elif len(G) == 1:
|
816 |
+
pos = np.array([center])
|
817 |
+
else:
|
818 |
+
pos = np.array([np.zeros(dim), np.array(center) * 2.0])
|
819 |
+
return dict(zip(G, pos))
|
820 |
+
try:
|
821 |
+
# Sparse matrix
|
822 |
+
if len(G) < 500: # dense solver is faster for small graphs
|
823 |
+
raise ValueError
|
824 |
+
A = nx.to_scipy_sparse_array(G, weight=weight, dtype="d")
|
825 |
+
# Symmetrize directed graphs
|
826 |
+
if G.is_directed():
|
827 |
+
A = A + np.transpose(A)
|
828 |
+
pos = _sparse_spectral(A, dim)
|
829 |
+
except (ImportError, ValueError):
|
830 |
+
# Dense matrix
|
831 |
+
A = nx.to_numpy_array(G, weight=weight)
|
832 |
+
# Symmetrize directed graphs
|
833 |
+
if G.is_directed():
|
834 |
+
A += A.T
|
835 |
+
pos = _spectral(A, dim)
|
836 |
+
|
837 |
+
pos = rescale_layout(pos, scale=scale) + center
|
838 |
+
pos = dict(zip(G, pos))
|
839 |
+
return pos
|
840 |
+
|
841 |
+
|
842 |
+
def _spectral(A, dim=2):
|
843 |
+
# Input adjacency matrix A
|
844 |
+
# Uses dense eigenvalue solver from numpy
|
845 |
+
import numpy as np
|
846 |
+
|
847 |
+
try:
|
848 |
+
nnodes, _ = A.shape
|
849 |
+
except AttributeError as err:
|
850 |
+
msg = "spectral() takes an adjacency matrix as input"
|
851 |
+
raise nx.NetworkXError(msg) from err
|
852 |
+
|
853 |
+
# form Laplacian matrix where D is diagonal of degrees
|
854 |
+
D = np.identity(nnodes, dtype=A.dtype) * np.sum(A, axis=1)
|
855 |
+
L = D - A
|
856 |
+
|
857 |
+
eigenvalues, eigenvectors = np.linalg.eig(L)
|
858 |
+
# sort and keep smallest nonzero
|
859 |
+
index = np.argsort(eigenvalues)[1 : dim + 1] # 0 index is zero eigenvalue
|
860 |
+
return np.real(eigenvectors[:, index])
|
861 |
+
|
862 |
+
|
863 |
+
def _sparse_spectral(A, dim=2):
|
864 |
+
# Input adjacency matrix A
|
865 |
+
# Uses sparse eigenvalue solver from scipy
|
866 |
+
# Could use multilevel methods here, see Koren "On spectral graph drawing"
|
867 |
+
import numpy as np
|
868 |
+
import scipy as sp
|
869 |
+
|
870 |
+
try:
|
871 |
+
nnodes, _ = A.shape
|
872 |
+
except AttributeError as err:
|
873 |
+
msg = "sparse_spectral() takes an adjacency matrix as input"
|
874 |
+
raise nx.NetworkXError(msg) from err
|
875 |
+
|
876 |
+
# form Laplacian matrix
|
877 |
+
# TODO: Rm csr_array wrapper in favor of spdiags array constructor when available
|
878 |
+
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, nnodes, nnodes))
|
879 |
+
L = D - A
|
880 |
+
|
881 |
+
k = dim + 1
|
882 |
+
# number of Lanczos vectors for ARPACK solver.What is the right scaling?
|
883 |
+
ncv = max(2 * k + 1, int(np.sqrt(nnodes)))
|
884 |
+
# return smallest k eigenvalues and eigenvectors
|
885 |
+
eigenvalues, eigenvectors = sp.sparse.linalg.eigsh(L, k, which="SM", ncv=ncv)
|
886 |
+
index = np.argsort(eigenvalues)[1:k] # 0 index is zero eigenvalue
|
887 |
+
return np.real(eigenvectors[:, index])
|
888 |
+
|
889 |
+
|
890 |
+
def planar_layout(G, scale=1, center=None, dim=2):
|
891 |
+
"""Position nodes without edge intersections.
|
892 |
+
|
893 |
+
Parameters
|
894 |
+
----------
|
895 |
+
G : NetworkX graph or list of nodes
|
896 |
+
A position will be assigned to every node in G. If G is of type
|
897 |
+
nx.PlanarEmbedding, the positions are selected accordingly.
|
898 |
+
|
899 |
+
scale : number (default: 1)
|
900 |
+
Scale factor for positions.
|
901 |
+
|
902 |
+
center : array-like or None
|
903 |
+
Coordinate pair around which to center the layout.
|
904 |
+
|
905 |
+
dim : int
|
906 |
+
Dimension of layout.
|
907 |
+
|
908 |
+
Returns
|
909 |
+
-------
|
910 |
+
pos : dict
|
911 |
+
A dictionary of positions keyed by node
|
912 |
+
|
913 |
+
Raises
|
914 |
+
------
|
915 |
+
NetworkXException
|
916 |
+
If G is not planar
|
917 |
+
|
918 |
+
Examples
|
919 |
+
--------
|
920 |
+
>>> G = nx.path_graph(4)
|
921 |
+
>>> pos = nx.planar_layout(G)
|
922 |
+
"""
|
923 |
+
import numpy as np
|
924 |
+
|
925 |
+
if dim != 2:
|
926 |
+
raise ValueError("can only handle 2 dimensions")
|
927 |
+
|
928 |
+
G, center = _process_params(G, center, dim)
|
929 |
+
|
930 |
+
if len(G) == 0:
|
931 |
+
return {}
|
932 |
+
|
933 |
+
if isinstance(G, nx.PlanarEmbedding):
|
934 |
+
embedding = G
|
935 |
+
else:
|
936 |
+
is_planar, embedding = nx.check_planarity(G)
|
937 |
+
if not is_planar:
|
938 |
+
raise nx.NetworkXException("G is not planar.")
|
939 |
+
pos = nx.combinatorial_embedding_to_pos(embedding)
|
940 |
+
node_list = list(embedding)
|
941 |
+
pos = np.vstack([pos[x] for x in node_list])
|
942 |
+
pos = pos.astype(np.float64)
|
943 |
+
pos = rescale_layout(pos, scale=scale) + center
|
944 |
+
return dict(zip(node_list, pos))
|
945 |
+
|
946 |
+
|
947 |
+
def spiral_layout(G, scale=1, center=None, dim=2, resolution=0.35, equidistant=False):
|
948 |
+
"""Position nodes in a spiral layout.
|
949 |
+
|
950 |
+
Parameters
|
951 |
+
----------
|
952 |
+
G : NetworkX graph or list of nodes
|
953 |
+
A position will be assigned to every node in G.
|
954 |
+
scale : number (default: 1)
|
955 |
+
Scale factor for positions.
|
956 |
+
center : array-like or None
|
957 |
+
Coordinate pair around which to center the layout.
|
958 |
+
dim : int, default=2
|
959 |
+
Dimension of layout, currently only dim=2 is supported.
|
960 |
+
Other dimension values result in a ValueError.
|
961 |
+
resolution : float, default=0.35
|
962 |
+
The compactness of the spiral layout returned.
|
963 |
+
Lower values result in more compressed spiral layouts.
|
964 |
+
equidistant : bool, default=False
|
965 |
+
If True, nodes will be positioned equidistant from each other
|
966 |
+
by decreasing angle further from center.
|
967 |
+
If False, nodes will be positioned at equal angles
|
968 |
+
from each other by increasing separation further from center.
|
969 |
+
|
970 |
+
Returns
|
971 |
+
-------
|
972 |
+
pos : dict
|
973 |
+
A dictionary of positions keyed by node
|
974 |
+
|
975 |
+
Raises
|
976 |
+
------
|
977 |
+
ValueError
|
978 |
+
If dim != 2
|
979 |
+
|
980 |
+
Examples
|
981 |
+
--------
|
982 |
+
>>> G = nx.path_graph(4)
|
983 |
+
>>> pos = nx.spiral_layout(G)
|
984 |
+
>>> nx.draw(G, pos=pos)
|
985 |
+
|
986 |
+
Notes
|
987 |
+
-----
|
988 |
+
This algorithm currently only works in two dimensions.
|
989 |
+
|
990 |
+
"""
|
991 |
+
import numpy as np
|
992 |
+
|
993 |
+
if dim != 2:
|
994 |
+
raise ValueError("can only handle 2 dimensions")
|
995 |
+
|
996 |
+
G, center = _process_params(G, center, dim)
|
997 |
+
|
998 |
+
if len(G) == 0:
|
999 |
+
return {}
|
1000 |
+
if len(G) == 1:
|
1001 |
+
return {nx.utils.arbitrary_element(G): center}
|
1002 |
+
|
1003 |
+
pos = []
|
1004 |
+
if equidistant:
|
1005 |
+
chord = 1
|
1006 |
+
step = 0.5
|
1007 |
+
theta = resolution
|
1008 |
+
theta += chord / (step * theta)
|
1009 |
+
for _ in range(len(G)):
|
1010 |
+
r = step * theta
|
1011 |
+
theta += chord / r
|
1012 |
+
pos.append([np.cos(theta) * r, np.sin(theta) * r])
|
1013 |
+
|
1014 |
+
else:
|
1015 |
+
dist = np.arange(len(G), dtype=float)
|
1016 |
+
angle = resolution * dist
|
1017 |
+
pos = np.transpose(dist * np.array([np.cos(angle), np.sin(angle)]))
|
1018 |
+
|
1019 |
+
pos = rescale_layout(np.array(pos), scale=scale) + center
|
1020 |
+
|
1021 |
+
pos = dict(zip(G, pos))
|
1022 |
+
|
1023 |
+
return pos
|
1024 |
+
|
1025 |
+
|
1026 |
+
def multipartite_layout(G, subset_key="subset", align="vertical", scale=1, center=None):
|
1027 |
+
"""Position nodes in layers of straight lines.
|
1028 |
+
|
1029 |
+
Parameters
|
1030 |
+
----------
|
1031 |
+
G : NetworkX graph or list of nodes
|
1032 |
+
A position will be assigned to every node in G.
|
1033 |
+
|
1034 |
+
subset_key : string or dict (default='subset')
|
1035 |
+
If a string, the key of node data in G that holds the node subset.
|
1036 |
+
If a dict, keyed by layer number to the nodes in that layer/subset.
|
1037 |
+
|
1038 |
+
align : string (default='vertical')
|
1039 |
+
The alignment of nodes. Vertical or horizontal.
|
1040 |
+
|
1041 |
+
scale : number (default: 1)
|
1042 |
+
Scale factor for positions.
|
1043 |
+
|
1044 |
+
center : array-like or None
|
1045 |
+
Coordinate pair around which to center the layout.
|
1046 |
+
|
1047 |
+
Returns
|
1048 |
+
-------
|
1049 |
+
pos : dict
|
1050 |
+
A dictionary of positions keyed by node.
|
1051 |
+
|
1052 |
+
Examples
|
1053 |
+
--------
|
1054 |
+
>>> G = nx.complete_multipartite_graph(28, 16, 10)
|
1055 |
+
>>> pos = nx.multipartite_layout(G)
|
1056 |
+
|
1057 |
+
or use a dict to provide the layers of the layout
|
1058 |
+
|
1059 |
+
>>> G = nx.Graph([(0, 1), (1, 2), (1, 3), (3, 4)])
|
1060 |
+
>>> layers = {"a": [0], "b": [1], "c": [2, 3], "d": [4]}
|
1061 |
+
>>> pos = nx.multipartite_layout(G, subset_key=layers)
|
1062 |
+
|
1063 |
+
Notes
|
1064 |
+
-----
|
1065 |
+
This algorithm currently only works in two dimensions and does not
|
1066 |
+
try to minimize edge crossings.
|
1067 |
+
|
1068 |
+
Network does not need to be a complete multipartite graph. As long as nodes
|
1069 |
+
have subset_key data, they will be placed in the corresponding layers.
|
1070 |
+
|
1071 |
+
"""
|
1072 |
+
import numpy as np
|
1073 |
+
|
1074 |
+
if align not in ("vertical", "horizontal"):
|
1075 |
+
msg = "align must be either vertical or horizontal."
|
1076 |
+
raise ValueError(msg)
|
1077 |
+
|
1078 |
+
G, center = _process_params(G, center=center, dim=2)
|
1079 |
+
if len(G) == 0:
|
1080 |
+
return {}
|
1081 |
+
|
1082 |
+
try:
|
1083 |
+
# check if subset_key is dict-like
|
1084 |
+
if len(G) != sum(len(nodes) for nodes in subset_key.values()):
|
1085 |
+
raise nx.NetworkXError(
|
1086 |
+
"all nodes must be in one subset of `subset_key` dict"
|
1087 |
+
)
|
1088 |
+
except AttributeError:
|
1089 |
+
# subset_key is not a dict, hence a string
|
1090 |
+
node_to_subset = nx.get_node_attributes(G, subset_key)
|
1091 |
+
if len(node_to_subset) != len(G):
|
1092 |
+
raise nx.NetworkXError(
|
1093 |
+
f"all nodes need a subset_key attribute: {subset_key}"
|
1094 |
+
)
|
1095 |
+
subset_key = nx.utils.groups(node_to_subset)
|
1096 |
+
|
1097 |
+
# Sort by layer, if possible
|
1098 |
+
try:
|
1099 |
+
layers = dict(sorted(subset_key.items()))
|
1100 |
+
except TypeError:
|
1101 |
+
layers = subset_key
|
1102 |
+
|
1103 |
+
pos = None
|
1104 |
+
nodes = []
|
1105 |
+
width = len(layers)
|
1106 |
+
for i, layer in enumerate(layers.values()):
|
1107 |
+
height = len(layer)
|
1108 |
+
xs = np.repeat(i, height)
|
1109 |
+
ys = np.arange(0, height, dtype=float)
|
1110 |
+
offset = ((width - 1) / 2, (height - 1) / 2)
|
1111 |
+
layer_pos = np.column_stack([xs, ys]) - offset
|
1112 |
+
if pos is None:
|
1113 |
+
pos = layer_pos
|
1114 |
+
else:
|
1115 |
+
pos = np.concatenate([pos, layer_pos])
|
1116 |
+
nodes.extend(layer)
|
1117 |
+
pos = rescale_layout(pos, scale=scale) + center
|
1118 |
+
if align == "horizontal":
|
1119 |
+
pos = pos[:, ::-1] # swap x and y coords
|
1120 |
+
pos = dict(zip(nodes, pos))
|
1121 |
+
return pos
|
1122 |
+
|
1123 |
+
|
1124 |
+
def arf_layout(
|
1125 |
+
G,
|
1126 |
+
pos=None,
|
1127 |
+
scaling=1,
|
1128 |
+
a=1.1,
|
1129 |
+
etol=1e-6,
|
1130 |
+
dt=1e-3,
|
1131 |
+
max_iter=1000,
|
1132 |
+
):
|
1133 |
+
"""Arf layout for networkx
|
1134 |
+
|
1135 |
+
The attractive and repulsive forces (arf) layout [1]
|
1136 |
+
improves the spring layout in three ways. First, it
|
1137 |
+
prevents congestion of highly connected nodes due to
|
1138 |
+
strong forcing between nodes. Second, it utilizes the
|
1139 |
+
layout space more effectively by preventing large gaps
|
1140 |
+
that spring layout tends to create. Lastly, the arf
|
1141 |
+
layout represents symmetries in the layout better than
|
1142 |
+
the default spring layout.
|
1143 |
+
|
1144 |
+
Parameters
|
1145 |
+
----------
|
1146 |
+
G : nx.Graph or nx.DiGraph
|
1147 |
+
Networkx graph.
|
1148 |
+
pos : dict
|
1149 |
+
Initial position of the nodes. If set to None a
|
1150 |
+
random layout will be used.
|
1151 |
+
scaling : float
|
1152 |
+
Scales the radius of the circular layout space.
|
1153 |
+
a : float
|
1154 |
+
Strength of springs between connected nodes. Should be larger than 1. The greater a, the clearer the separation ofunconnected sub clusters.
|
1155 |
+
etol : float
|
1156 |
+
Gradient sum of spring forces must be larger than `etol` before successful termination.
|
1157 |
+
dt : float
|
1158 |
+
Time step for force differential equation simulations.
|
1159 |
+
max_iter : int
|
1160 |
+
Max iterations before termination of the algorithm.
|
1161 |
+
|
1162 |
+
References
|
1163 |
+
.. [1] "Self-Organization Applied to Dynamic Network Layout", M. Geipel,
|
1164 |
+
International Journal of Modern Physics C, 2007, Vol 18, No 10, pp. 1537-1549.
|
1165 |
+
https://doi.org/10.1142/S0129183107011558 https://arxiv.org/abs/0704.1748
|
1166 |
+
|
1167 |
+
Returns
|
1168 |
+
-------
|
1169 |
+
pos : dict
|
1170 |
+
A dictionary of positions keyed by node.
|
1171 |
+
|
1172 |
+
Examples
|
1173 |
+
--------
|
1174 |
+
>>> G = nx.grid_graph((5, 5))
|
1175 |
+
>>> pos = nx.arf_layout(G)
|
1176 |
+
|
1177 |
+
"""
|
1178 |
+
import warnings
|
1179 |
+
|
1180 |
+
import numpy as np
|
1181 |
+
|
1182 |
+
if a <= 1:
|
1183 |
+
msg = "The parameter a should be larger than 1"
|
1184 |
+
raise ValueError(msg)
|
1185 |
+
|
1186 |
+
pos_tmp = nx.random_layout(G)
|
1187 |
+
if pos is None:
|
1188 |
+
pos = pos_tmp
|
1189 |
+
else:
|
1190 |
+
for node in G.nodes():
|
1191 |
+
if node not in pos:
|
1192 |
+
pos[node] = pos_tmp[node].copy()
|
1193 |
+
|
1194 |
+
# Initialize spring constant matrix
|
1195 |
+
N = len(G)
|
1196 |
+
# No nodes no computation
|
1197 |
+
if N == 0:
|
1198 |
+
return pos
|
1199 |
+
|
1200 |
+
# init force of springs
|
1201 |
+
K = np.ones((N, N)) - np.eye(N)
|
1202 |
+
node_order = {node: i for i, node in enumerate(G)}
|
1203 |
+
for x, y in G.edges():
|
1204 |
+
if x != y:
|
1205 |
+
idx, jdx = (node_order[i] for i in (x, y))
|
1206 |
+
K[idx, jdx] = a
|
1207 |
+
|
1208 |
+
# vectorize values
|
1209 |
+
p = np.asarray(list(pos.values()))
|
1210 |
+
|
1211 |
+
# equation 10 in [1]
|
1212 |
+
rho = scaling * np.sqrt(N)
|
1213 |
+
|
1214 |
+
# looping variables
|
1215 |
+
error = etol + 1
|
1216 |
+
n_iter = 0
|
1217 |
+
while error > etol:
|
1218 |
+
diff = p[:, np.newaxis] - p[np.newaxis]
|
1219 |
+
A = np.linalg.norm(diff, axis=-1)[..., np.newaxis]
|
1220 |
+
# attraction_force - repulsions force
|
1221 |
+
# suppress nans due to division; caused by diagonal set to zero.
|
1222 |
+
# Does not affect the computation due to nansum
|
1223 |
+
with warnings.catch_warnings():
|
1224 |
+
warnings.simplefilter("ignore")
|
1225 |
+
change = K[..., np.newaxis] * diff - rho / A * diff
|
1226 |
+
change = np.nansum(change, axis=0)
|
1227 |
+
p += change * dt
|
1228 |
+
|
1229 |
+
error = np.linalg.norm(change, axis=-1).sum()
|
1230 |
+
if n_iter > max_iter:
|
1231 |
+
break
|
1232 |
+
n_iter += 1
|
1233 |
+
return dict(zip(G.nodes(), p))
|
1234 |
+
|
1235 |
+
|
1236 |
+
def rescale_layout(pos, scale=1):
|
1237 |
+
"""Returns scaled position array to (-scale, scale) in all axes.
|
1238 |
+
|
1239 |
+
The function acts on NumPy arrays which hold position information.
|
1240 |
+
Each position is one row of the array. The dimension of the space
|
1241 |
+
equals the number of columns. Each coordinate in one column.
|
1242 |
+
|
1243 |
+
To rescale, the mean (center) is subtracted from each axis separately.
|
1244 |
+
Then all values are scaled so that the largest magnitude value
|
1245 |
+
from all axes equals `scale` (thus, the aspect ratio is preserved).
|
1246 |
+
The resulting NumPy Array is returned (order of rows unchanged).
|
1247 |
+
|
1248 |
+
Parameters
|
1249 |
+
----------
|
1250 |
+
pos : numpy array
|
1251 |
+
positions to be scaled. Each row is a position.
|
1252 |
+
|
1253 |
+
scale : number (default: 1)
|
1254 |
+
The size of the resulting extent in all directions.
|
1255 |
+
|
1256 |
+
Returns
|
1257 |
+
-------
|
1258 |
+
pos : numpy array
|
1259 |
+
scaled positions. Each row is a position.
|
1260 |
+
|
1261 |
+
See Also
|
1262 |
+
--------
|
1263 |
+
rescale_layout_dict
|
1264 |
+
"""
|
1265 |
+
import numpy as np
|
1266 |
+
|
1267 |
+
# Find max length over all dimensions
|
1268 |
+
pos -= pos.mean(axis=0)
|
1269 |
+
lim = np.abs(pos).max() # max coordinate for all axes
|
1270 |
+
# rescale to (-scale, scale) in all directions, preserves aspect
|
1271 |
+
if lim > 0:
|
1272 |
+
pos *= scale / lim
|
1273 |
+
return pos
|
1274 |
+
|
1275 |
+
|
1276 |
+
def rescale_layout_dict(pos, scale=1):
|
1277 |
+
"""Return a dictionary of scaled positions keyed by node
|
1278 |
+
|
1279 |
+
Parameters
|
1280 |
+
----------
|
1281 |
+
pos : A dictionary of positions keyed by node
|
1282 |
+
|
1283 |
+
scale : number (default: 1)
|
1284 |
+
The size of the resulting extent in all directions.
|
1285 |
+
|
1286 |
+
Returns
|
1287 |
+
-------
|
1288 |
+
pos : A dictionary of positions keyed by node
|
1289 |
+
|
1290 |
+
Examples
|
1291 |
+
--------
|
1292 |
+
>>> import numpy as np
|
1293 |
+
>>> pos = {0: np.array((0, 0)), 1: np.array((1, 1)), 2: np.array((0.5, 0.5))}
|
1294 |
+
>>> nx.rescale_layout_dict(pos)
|
1295 |
+
{0: array([-1., -1.]), 1: array([1., 1.]), 2: array([0., 0.])}
|
1296 |
+
|
1297 |
+
>>> pos = {0: np.array((0, 0)), 1: np.array((-1, 1)), 2: np.array((-0.5, 0.5))}
|
1298 |
+
>>> nx.rescale_layout_dict(pos, scale=2)
|
1299 |
+
{0: array([ 2., -2.]), 1: array([-2., 2.]), 2: array([0., 0.])}
|
1300 |
+
|
1301 |
+
See Also
|
1302 |
+
--------
|
1303 |
+
rescale_layout
|
1304 |
+
"""
|
1305 |
+
import numpy as np
|
1306 |
+
|
1307 |
+
if not pos: # empty_graph
|
1308 |
+
return {}
|
1309 |
+
pos_v = np.array(list(pos.values()))
|
1310 |
+
pos_v = rescale_layout(pos_v, scale=scale)
|
1311 |
+
return dict(zip(pos, pos_v))
|
1312 |
+
|
1313 |
+
|
1314 |
+
def bfs_layout(G, start, *, align="vertical", scale=1, center=None):
|
1315 |
+
"""Position nodes according to breadth-first search algorithm.
|
1316 |
+
|
1317 |
+
Parameters
|
1318 |
+
----------
|
1319 |
+
G : NetworkX graph
|
1320 |
+
A position will be assigned to every node in G.
|
1321 |
+
|
1322 |
+
start : node in `G`
|
1323 |
+
Starting node for bfs
|
1324 |
+
|
1325 |
+
center : array-like or None
|
1326 |
+
Coordinate pair around which to center the layout.
|
1327 |
+
|
1328 |
+
Returns
|
1329 |
+
-------
|
1330 |
+
pos : dict
|
1331 |
+
A dictionary of positions keyed by node.
|
1332 |
+
|
1333 |
+
Examples
|
1334 |
+
--------
|
1335 |
+
>>> G = nx.path_graph(4)
|
1336 |
+
>>> pos = nx.bfs_layout(G, 0)
|
1337 |
+
|
1338 |
+
Notes
|
1339 |
+
-----
|
1340 |
+
This algorithm currently only works in two dimensions and does not
|
1341 |
+
try to minimize edge crossings.
|
1342 |
+
|
1343 |
+
"""
|
1344 |
+
G, center = _process_params(G, center, 2)
|
1345 |
+
|
1346 |
+
# Compute layers with BFS
|
1347 |
+
layers = dict(enumerate(nx.bfs_layers(G, start)))
|
1348 |
+
|
1349 |
+
if len(G) != sum(len(nodes) for nodes in layers.values()):
|
1350 |
+
raise nx.NetworkXError(
|
1351 |
+
"bfs_layout didn't include all nodes. Perhaps use input graph:\n"
|
1352 |
+
" G.subgraph(nx.node_connected_component(G, start))"
|
1353 |
+
)
|
1354 |
+
|
1355 |
+
# Compute node positions with multipartite_layout
|
1356 |
+
return multipartite_layout(
|
1357 |
+
G, subset_key=layers, align=align, scale=scale, center=center
|
1358 |
+
)
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_agraph.cpython-310.pyc
ADDED
Binary file (9.75 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_latex.cpython-310.pyc
ADDED
Binary file (7.38 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_layout.cpython-310.pyc
ADDED
Binary file (18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_pydot.cpython-310.pyc
ADDED
Binary file (5.27 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/__pycache__/test_pylab.cpython-310.pyc
ADDED
Binary file (26.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_latex.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
|
6 |
+
def test_tikz_attributes():
|
7 |
+
G = nx.path_graph(4, create_using=nx.DiGraph)
|
8 |
+
pos = {n: (n, n) for n in G}
|
9 |
+
|
10 |
+
G.add_edge(0, 0)
|
11 |
+
G.edges[(0, 0)]["label"] = "Loop"
|
12 |
+
G.edges[(0, 0)]["label_options"] = "midway"
|
13 |
+
|
14 |
+
G.nodes[0]["style"] = "blue"
|
15 |
+
G.nodes[1]["style"] = "line width=3,draw"
|
16 |
+
G.nodes[2]["style"] = "circle,draw,blue!50"
|
17 |
+
G.nodes[3]["label"] = "Stop"
|
18 |
+
G.edges[(0, 1)]["label"] = "1st Step"
|
19 |
+
G.edges[(0, 1)]["label_options"] = "near end"
|
20 |
+
G.edges[(2, 3)]["label"] = "3rd Step"
|
21 |
+
G.edges[(2, 3)]["label_options"] = "near start"
|
22 |
+
G.edges[(2, 3)]["style"] = "bend left,green"
|
23 |
+
G.edges[(1, 2)]["label"] = "2nd"
|
24 |
+
G.edges[(1, 2)]["label_options"] = "pos=0.5"
|
25 |
+
G.edges[(1, 2)]["style"] = ">->,bend right,line width=3,green!90"
|
26 |
+
|
27 |
+
output_tex = nx.to_latex(
|
28 |
+
G,
|
29 |
+
pos=pos,
|
30 |
+
as_document=False,
|
31 |
+
tikz_options="[scale=3]",
|
32 |
+
node_options="style",
|
33 |
+
edge_options="style",
|
34 |
+
node_label="label",
|
35 |
+
edge_label="label",
|
36 |
+
edge_label_options="label_options",
|
37 |
+
)
|
38 |
+
expected_tex = r"""\begin{figure}
|
39 |
+
\begin{tikzpicture}[scale=3]
|
40 |
+
\draw
|
41 |
+
(0, 0) node[blue] (0){0}
|
42 |
+
(1, 1) node[line width=3,draw] (1){1}
|
43 |
+
(2, 2) node[circle,draw,blue!50] (2){2}
|
44 |
+
(3, 3) node (3){Stop};
|
45 |
+
\begin{scope}[->]
|
46 |
+
\draw (0) to node[near end] {1st Step} (1);
|
47 |
+
\draw[loop,] (0) to node[midway] {Loop} (0);
|
48 |
+
\draw[>->,bend right,line width=3,green!90] (1) to node[pos=0.5] {2nd} (2);
|
49 |
+
\draw[bend left,green] (2) to node[near start] {3rd Step} (3);
|
50 |
+
\end{scope}
|
51 |
+
\end{tikzpicture}
|
52 |
+
\end{figure}"""
|
53 |
+
|
54 |
+
assert output_tex == expected_tex
|
55 |
+
# print(output_tex)
|
56 |
+
# # Pretty way to assert that A.to_document() == expected_tex
|
57 |
+
# content_same = True
|
58 |
+
# for aa, bb in zip(expected_tex.split("\n"), output_tex.split("\n")):
|
59 |
+
# if aa != bb:
|
60 |
+
# content_same = False
|
61 |
+
# print(f"-{aa}|\n+{bb}|")
|
62 |
+
# assert content_same
|
63 |
+
|
64 |
+
|
65 |
+
def test_basic_multiple_graphs():
|
66 |
+
H1 = nx.path_graph(4)
|
67 |
+
H2 = nx.complete_graph(4)
|
68 |
+
H3 = nx.path_graph(8)
|
69 |
+
H4 = nx.complete_graph(8)
|
70 |
+
captions = [
|
71 |
+
"Path on 4 nodes",
|
72 |
+
"Complete graph on 4 nodes",
|
73 |
+
"Path on 8 nodes",
|
74 |
+
"Complete graph on 8 nodes",
|
75 |
+
]
|
76 |
+
labels = ["fig2a", "fig2b", "fig2c", "fig2d"]
|
77 |
+
latex_code = nx.to_latex(
|
78 |
+
[H1, H2, H3, H4],
|
79 |
+
n_rows=2,
|
80 |
+
sub_captions=captions,
|
81 |
+
sub_labels=labels,
|
82 |
+
)
|
83 |
+
# print(latex_code)
|
84 |
+
assert "begin{document}" in latex_code
|
85 |
+
assert "begin{figure}" in latex_code
|
86 |
+
assert latex_code.count("begin{subfigure}") == 4
|
87 |
+
assert latex_code.count("tikzpicture") == 8
|
88 |
+
assert latex_code.count("[-]") == 4
|
89 |
+
|
90 |
+
|
91 |
+
def test_basic_tikz():
|
92 |
+
expected_tex = r"""\documentclass{report}
|
93 |
+
\usepackage{tikz}
|
94 |
+
\usepackage{subcaption}
|
95 |
+
|
96 |
+
\begin{document}
|
97 |
+
\begin{figure}
|
98 |
+
\begin{subfigure}{0.5\textwidth}
|
99 |
+
\begin{tikzpicture}[scale=2]
|
100 |
+
\draw[gray!90]
|
101 |
+
(0.749, 0.702) node[red!90] (0){0}
|
102 |
+
(1.0, -0.014) node[red!90] (1){1}
|
103 |
+
(-0.777, -0.705) node (2){2}
|
104 |
+
(-0.984, 0.042) node (3){3}
|
105 |
+
(-0.028, 0.375) node[cyan!90] (4){4}
|
106 |
+
(-0.412, 0.888) node (5){5}
|
107 |
+
(0.448, -0.856) node (6){6}
|
108 |
+
(0.003, -0.431) node[cyan!90] (7){7};
|
109 |
+
\begin{scope}[->,gray!90]
|
110 |
+
\draw (0) to (4);
|
111 |
+
\draw (0) to (5);
|
112 |
+
\draw (0) to (6);
|
113 |
+
\draw (0) to (7);
|
114 |
+
\draw (1) to (4);
|
115 |
+
\draw (1) to (5);
|
116 |
+
\draw (1) to (6);
|
117 |
+
\draw (1) to (7);
|
118 |
+
\draw (2) to (4);
|
119 |
+
\draw (2) to (5);
|
120 |
+
\draw (2) to (6);
|
121 |
+
\draw (2) to (7);
|
122 |
+
\draw (3) to (4);
|
123 |
+
\draw (3) to (5);
|
124 |
+
\draw (3) to (6);
|
125 |
+
\draw (3) to (7);
|
126 |
+
\end{scope}
|
127 |
+
\end{tikzpicture}
|
128 |
+
\caption{My tikz number 1 of 2}\label{tikz_1_2}
|
129 |
+
\end{subfigure}
|
130 |
+
\begin{subfigure}{0.5\textwidth}
|
131 |
+
\begin{tikzpicture}[scale=2]
|
132 |
+
\draw[gray!90]
|
133 |
+
(0.749, 0.702) node[green!90] (0){0}
|
134 |
+
(1.0, -0.014) node[green!90] (1){1}
|
135 |
+
(-0.777, -0.705) node (2){2}
|
136 |
+
(-0.984, 0.042) node (3){3}
|
137 |
+
(-0.028, 0.375) node[purple!90] (4){4}
|
138 |
+
(-0.412, 0.888) node (5){5}
|
139 |
+
(0.448, -0.856) node (6){6}
|
140 |
+
(0.003, -0.431) node[purple!90] (7){7};
|
141 |
+
\begin{scope}[->,gray!90]
|
142 |
+
\draw (0) to (4);
|
143 |
+
\draw (0) to (5);
|
144 |
+
\draw (0) to (6);
|
145 |
+
\draw (0) to (7);
|
146 |
+
\draw (1) to (4);
|
147 |
+
\draw (1) to (5);
|
148 |
+
\draw (1) to (6);
|
149 |
+
\draw (1) to (7);
|
150 |
+
\draw (2) to (4);
|
151 |
+
\draw (2) to (5);
|
152 |
+
\draw (2) to (6);
|
153 |
+
\draw (2) to (7);
|
154 |
+
\draw (3) to (4);
|
155 |
+
\draw (3) to (5);
|
156 |
+
\draw (3) to (6);
|
157 |
+
\draw (3) to (7);
|
158 |
+
\end{scope}
|
159 |
+
\end{tikzpicture}
|
160 |
+
\caption{My tikz number 2 of 2}\label{tikz_2_2}
|
161 |
+
\end{subfigure}
|
162 |
+
\caption{A graph generated with python and latex.}
|
163 |
+
\end{figure}
|
164 |
+
\end{document}"""
|
165 |
+
|
166 |
+
edges = [
|
167 |
+
(0, 4),
|
168 |
+
(0, 5),
|
169 |
+
(0, 6),
|
170 |
+
(0, 7),
|
171 |
+
(1, 4),
|
172 |
+
(1, 5),
|
173 |
+
(1, 6),
|
174 |
+
(1, 7),
|
175 |
+
(2, 4),
|
176 |
+
(2, 5),
|
177 |
+
(2, 6),
|
178 |
+
(2, 7),
|
179 |
+
(3, 4),
|
180 |
+
(3, 5),
|
181 |
+
(3, 6),
|
182 |
+
(3, 7),
|
183 |
+
]
|
184 |
+
G = nx.DiGraph()
|
185 |
+
G.add_nodes_from(range(8))
|
186 |
+
G.add_edges_from(edges)
|
187 |
+
pos = {
|
188 |
+
0: (0.7490296171687696, 0.702353520257394),
|
189 |
+
1: (1.0, -0.014221357723796535),
|
190 |
+
2: (-0.7765783344161441, -0.7054170966808919),
|
191 |
+
3: (-0.9842690223417624, 0.04177547602465483),
|
192 |
+
4: (-0.02768523817180917, 0.3745724439551441),
|
193 |
+
5: (-0.41154855146767433, 0.8880106515525136),
|
194 |
+
6: (0.44780153389148264, -0.8561492709269164),
|
195 |
+
7: (0.0032499953371383505, -0.43092436645809945),
|
196 |
+
}
|
197 |
+
|
198 |
+
rc_node_color = {0: "red!90", 1: "red!90", 4: "cyan!90", 7: "cyan!90"}
|
199 |
+
gp_node_color = {0: "green!90", 1: "green!90", 4: "purple!90", 7: "purple!90"}
|
200 |
+
|
201 |
+
H = G.copy()
|
202 |
+
nx.set_node_attributes(G, rc_node_color, "color")
|
203 |
+
nx.set_node_attributes(H, gp_node_color, "color")
|
204 |
+
|
205 |
+
sub_captions = ["My tikz number 1 of 2", "My tikz number 2 of 2"]
|
206 |
+
sub_labels = ["tikz_1_2", "tikz_2_2"]
|
207 |
+
|
208 |
+
output_tex = nx.to_latex(
|
209 |
+
[G, H],
|
210 |
+
[pos, pos],
|
211 |
+
tikz_options="[scale=2]",
|
212 |
+
default_node_options="gray!90",
|
213 |
+
default_edge_options="gray!90",
|
214 |
+
node_options="color",
|
215 |
+
sub_captions=sub_captions,
|
216 |
+
sub_labels=sub_labels,
|
217 |
+
caption="A graph generated with python and latex.",
|
218 |
+
n_rows=2,
|
219 |
+
as_document=True,
|
220 |
+
)
|
221 |
+
|
222 |
+
assert output_tex == expected_tex
|
223 |
+
# print(output_tex)
|
224 |
+
# # Pretty way to assert that A.to_document() == expected_tex
|
225 |
+
# content_same = True
|
226 |
+
# for aa, bb in zip(expected_tex.split("\n"), output_tex.split("\n")):
|
227 |
+
# if aa != bb:
|
228 |
+
# content_same = False
|
229 |
+
# print(f"-{aa}|\n+{bb}|")
|
230 |
+
# assert content_same
|
231 |
+
|
232 |
+
|
233 |
+
def test_exception_pos_single_graph(to_latex=nx.to_latex):
|
234 |
+
# smoke test that pos can be a string
|
235 |
+
G = nx.path_graph(4)
|
236 |
+
to_latex(G, pos="pos")
|
237 |
+
|
238 |
+
# must include all nodes
|
239 |
+
pos = {0: (1, 2), 1: (0, 1), 2: (2, 1)}
|
240 |
+
with pytest.raises(nx.NetworkXError):
|
241 |
+
to_latex(G, pos)
|
242 |
+
|
243 |
+
# must have 2 values
|
244 |
+
pos[3] = (1, 2, 3)
|
245 |
+
with pytest.raises(nx.NetworkXError):
|
246 |
+
to_latex(G, pos)
|
247 |
+
pos[3] = 2
|
248 |
+
with pytest.raises(nx.NetworkXError):
|
249 |
+
to_latex(G, pos)
|
250 |
+
|
251 |
+
# check that passes with 2 values
|
252 |
+
pos[3] = (3, 2)
|
253 |
+
to_latex(G, pos)
|
254 |
+
|
255 |
+
|
256 |
+
def test_exception_multiple_graphs(to_latex=nx.to_latex):
|
257 |
+
G = nx.path_graph(3)
|
258 |
+
pos_bad = {0: (1, 2), 1: (0, 1)}
|
259 |
+
pos_OK = {0: (1, 2), 1: (0, 1), 2: (2, 1)}
|
260 |
+
fourG = [G, G, G, G]
|
261 |
+
fourpos = [pos_OK, pos_OK, pos_OK, pos_OK]
|
262 |
+
|
263 |
+
# input single dict to use for all graphs
|
264 |
+
to_latex(fourG, pos_OK)
|
265 |
+
with pytest.raises(nx.NetworkXError):
|
266 |
+
to_latex(fourG, pos_bad)
|
267 |
+
|
268 |
+
# input list of dicts to use for all graphs
|
269 |
+
to_latex(fourG, fourpos)
|
270 |
+
with pytest.raises(nx.NetworkXError):
|
271 |
+
to_latex(fourG, [pos_bad, pos_bad, pos_bad, pos_bad])
|
272 |
+
|
273 |
+
# every pos dict must include all nodes
|
274 |
+
with pytest.raises(nx.NetworkXError):
|
275 |
+
to_latex(fourG, [pos_OK, pos_OK, pos_bad, pos_OK])
|
276 |
+
|
277 |
+
# test sub_captions and sub_labels (len must match Gbunch)
|
278 |
+
with pytest.raises(nx.NetworkXError):
|
279 |
+
to_latex(fourG, fourpos, sub_captions=["hi", "hi"])
|
280 |
+
|
281 |
+
with pytest.raises(nx.NetworkXError):
|
282 |
+
to_latex(fourG, fourpos, sub_labels=["hi", "hi"])
|
283 |
+
|
284 |
+
# all pass
|
285 |
+
to_latex(fourG, fourpos, sub_captions=["hi"] * 4, sub_labels=["lbl"] * 4)
|
286 |
+
|
287 |
+
|
288 |
+
def test_exception_multigraph():
|
289 |
+
G = nx.path_graph(4, create_using=nx.MultiGraph)
|
290 |
+
G.add_edge(1, 2)
|
291 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
292 |
+
nx.to_latex(G)
|
env-llmeval/lib/python3.10/site-packages/networkx/drawing/tests/test_layout.py
ADDED
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unit tests for layout functions."""
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import networkx as nx
|
5 |
+
|
6 |
+
np = pytest.importorskip("numpy")
|
7 |
+
pytest.importorskip("scipy")
|
8 |
+
|
9 |
+
|
10 |
+
class TestLayout:
|
11 |
+
@classmethod
|
12 |
+
def setup_class(cls):
|
13 |
+
cls.Gi = nx.grid_2d_graph(5, 5)
|
14 |
+
cls.Gs = nx.Graph()
|
15 |
+
nx.add_path(cls.Gs, "abcdef")
|
16 |
+
cls.bigG = nx.grid_2d_graph(25, 25) # > 500 nodes for sparse
|
17 |
+
|
18 |
+
def test_spring_fixed_without_pos(self):
|
19 |
+
G = nx.path_graph(4)
|
20 |
+
pytest.raises(ValueError, nx.spring_layout, G, fixed=[0])
|
21 |
+
pos = {0: (1, 1), 2: (0, 0)}
|
22 |
+
pytest.raises(ValueError, nx.spring_layout, G, fixed=[0, 1], pos=pos)
|
23 |
+
nx.spring_layout(G, fixed=[0, 2], pos=pos) # No ValueError
|
24 |
+
|
25 |
+
def test_spring_init_pos(self):
|
26 |
+
# Tests GH #2448
|
27 |
+
import math
|
28 |
+
|
29 |
+
G = nx.Graph()
|
30 |
+
G.add_edges_from([(0, 1), (1, 2), (2, 0), (2, 3)])
|
31 |
+
|
32 |
+
init_pos = {0: (0.0, 0.0)}
|
33 |
+
fixed_pos = [0]
|
34 |
+
pos = nx.fruchterman_reingold_layout(G, pos=init_pos, fixed=fixed_pos)
|
35 |
+
has_nan = any(math.isnan(c) for coords in pos.values() for c in coords)
|
36 |
+
assert not has_nan, "values should not be nan"
|
37 |
+
|
38 |
+
def test_smoke_empty_graph(self):
|
39 |
+
G = []
|
40 |
+
nx.random_layout(G)
|
41 |
+
nx.circular_layout(G)
|
42 |
+
nx.planar_layout(G)
|
43 |
+
nx.spring_layout(G)
|
44 |
+
nx.fruchterman_reingold_layout(G)
|
45 |
+
nx.spectral_layout(G)
|
46 |
+
nx.shell_layout(G)
|
47 |
+
nx.bipartite_layout(G, G)
|
48 |
+
nx.spiral_layout(G)
|
49 |
+
nx.multipartite_layout(G)
|
50 |
+
nx.kamada_kawai_layout(G)
|
51 |
+
|
52 |
+
def test_smoke_int(self):
|
53 |
+
G = self.Gi
|
54 |
+
nx.random_layout(G)
|
55 |
+
nx.circular_layout(G)
|
56 |
+
nx.planar_layout(G)
|
57 |
+
nx.spring_layout(G)
|
58 |
+
nx.fruchterman_reingold_layout(G)
|
59 |
+
nx.fruchterman_reingold_layout(self.bigG)
|
60 |
+
nx.spectral_layout(G)
|
61 |
+
nx.spectral_layout(G.to_directed())
|
62 |
+
nx.spectral_layout(self.bigG)
|
63 |
+
nx.spectral_layout(self.bigG.to_directed())
|
64 |
+
nx.shell_layout(G)
|
65 |
+
nx.spiral_layout(G)
|
66 |
+
nx.kamada_kawai_layout(G)
|
67 |
+
nx.kamada_kawai_layout(G, dim=1)
|
68 |
+
nx.kamada_kawai_layout(G, dim=3)
|
69 |
+
nx.arf_layout(G)
|
70 |
+
|
71 |
+
def test_smoke_string(self):
|
72 |
+
G = self.Gs
|
73 |
+
nx.random_layout(G)
|
74 |
+
nx.circular_layout(G)
|
75 |
+
nx.planar_layout(G)
|
76 |
+
nx.spring_layout(G)
|
77 |
+
nx.fruchterman_reingold_layout(G)
|
78 |
+
nx.spectral_layout(G)
|
79 |
+
nx.shell_layout(G)
|
80 |
+
nx.spiral_layout(G)
|
81 |
+
nx.kamada_kawai_layout(G)
|
82 |
+
nx.kamada_kawai_layout(G, dim=1)
|
83 |
+
nx.kamada_kawai_layout(G, dim=3)
|
84 |
+
nx.arf_layout(G)
|
85 |
+
|
86 |
+
def check_scale_and_center(self, pos, scale, center):
|
87 |
+
center = np.array(center)
|
88 |
+
low = center - scale
|
89 |
+
hi = center + scale
|
90 |
+
vpos = np.array(list(pos.values()))
|
91 |
+
length = vpos.max(0) - vpos.min(0)
|
92 |
+
assert (length <= 2 * scale).all()
|
93 |
+
assert (vpos >= low).all()
|
94 |
+
assert (vpos <= hi).all()
|
95 |
+
|
96 |
+
def test_scale_and_center_arg(self):
|
97 |
+
sc = self.check_scale_and_center
|
98 |
+
c = (4, 5)
|
99 |
+
G = nx.complete_graph(9)
|
100 |
+
G.add_node(9)
|
101 |
+
sc(nx.random_layout(G, center=c), scale=0.5, center=(4.5, 5.5))
|
102 |
+
# rest can have 2*scale length: [-scale, scale]
|
103 |
+
sc(nx.spring_layout(G, scale=2, center=c), scale=2, center=c)
|
104 |
+
sc(nx.spectral_layout(G, scale=2, center=c), scale=2, center=c)
|
105 |
+
sc(nx.circular_layout(G, scale=2, center=c), scale=2, center=c)
|
106 |
+
sc(nx.shell_layout(G, scale=2, center=c), scale=2, center=c)
|
107 |
+
sc(nx.spiral_layout(G, scale=2, center=c), scale=2, center=c)
|
108 |
+
sc(nx.kamada_kawai_layout(G, scale=2, center=c), scale=2, center=c)
|
109 |
+
|
110 |
+
c = (2, 3, 5)
|
111 |
+
sc(nx.kamada_kawai_layout(G, dim=3, scale=2, center=c), scale=2, center=c)
|
112 |
+
|
113 |
+
def test_planar_layout_non_planar_input(self):
|
114 |
+
G = nx.complete_graph(9)
|
115 |
+
pytest.raises(nx.NetworkXException, nx.planar_layout, G)
|
116 |
+
|
117 |
+
def test_smoke_planar_layout_embedding_input(self):
|
118 |
+
embedding = nx.PlanarEmbedding()
|
119 |
+
embedding.set_data({0: [1, 2], 1: [0, 2], 2: [0, 1]})
|
120 |
+
nx.planar_layout(embedding)
|
121 |
+
|
122 |
+
def test_default_scale_and_center(self):
|
123 |
+
sc = self.check_scale_and_center
|
124 |
+
c = (0, 0)
|
125 |
+
G = nx.complete_graph(9)
|
126 |
+
G.add_node(9)
|
127 |
+
sc(nx.random_layout(G), scale=0.5, center=(0.5, 0.5))
|
128 |
+
sc(nx.spring_layout(G), scale=1, center=c)
|
129 |
+
sc(nx.spectral_layout(G), scale=1, center=c)
|
130 |
+
sc(nx.circular_layout(G), scale=1, center=c)
|
131 |
+
sc(nx.shell_layout(G), scale=1, center=c)
|
132 |
+
sc(nx.spiral_layout(G), scale=1, center=c)
|
133 |
+
sc(nx.kamada_kawai_layout(G), scale=1, center=c)
|
134 |
+
|
135 |
+
c = (0, 0, 0)
|
136 |
+
sc(nx.kamada_kawai_layout(G, dim=3), scale=1, center=c)
|
137 |
+
|
138 |
+
def test_circular_planar_and_shell_dim_error(self):
|
139 |
+
G = nx.path_graph(4)
|
140 |
+
pytest.raises(ValueError, nx.circular_layout, G, dim=1)
|
141 |
+
pytest.raises(ValueError, nx.shell_layout, G, dim=1)
|
142 |
+
pytest.raises(ValueError, nx.shell_layout, G, dim=3)
|
143 |
+
pytest.raises(ValueError, nx.planar_layout, G, dim=1)
|
144 |
+
pytest.raises(ValueError, nx.planar_layout, G, dim=3)
|
145 |
+
|
146 |
+
def test_adjacency_interface_numpy(self):
|
147 |
+
A = nx.to_numpy_array(self.Gs)
|
148 |
+
pos = nx.drawing.layout._fruchterman_reingold(A)
|
149 |
+
assert pos.shape == (6, 2)
|
150 |
+
pos = nx.drawing.layout._fruchterman_reingold(A, dim=3)
|
151 |
+
assert pos.shape == (6, 3)
|
152 |
+
pos = nx.drawing.layout._sparse_fruchterman_reingold(A)
|
153 |
+
assert pos.shape == (6, 2)
|
154 |
+
|
155 |
+
def test_adjacency_interface_scipy(self):
|
156 |
+
A = nx.to_scipy_sparse_array(self.Gs, dtype="d")
|
157 |
+
pos = nx.drawing.layout._sparse_fruchterman_reingold(A)
|
158 |
+
assert pos.shape == (6, 2)
|
159 |
+
pos = nx.drawing.layout._sparse_spectral(A)
|
160 |
+
assert pos.shape == (6, 2)
|
161 |
+
pos = nx.drawing.layout._sparse_fruchterman_reingold(A, dim=3)
|
162 |
+
assert pos.shape == (6, 3)
|
163 |
+
|
164 |
+
def test_single_nodes(self):
|
165 |
+
G = nx.path_graph(1)
|
166 |
+
vpos = nx.shell_layout(G)
|
167 |
+
assert not vpos[0].any()
|
168 |
+
G = nx.path_graph(4)
|
169 |
+
vpos = nx.shell_layout(G, [[0], [1, 2], [3]])
|
170 |
+
assert not vpos[0].any()
|
171 |
+
assert vpos[3].any() # ensure node 3 not at origin (#3188)
|
172 |
+
assert np.linalg.norm(vpos[3]) <= 1 # ensure node 3 fits (#3753)
|
173 |
+
vpos = nx.shell_layout(G, [[0], [1, 2], [3]], rotate=0)
|
174 |
+
assert np.linalg.norm(vpos[3]) <= 1 # ensure node 3 fits (#3753)
|
175 |
+
|
176 |
+
def test_smoke_initial_pos_fruchterman_reingold(self):
|
177 |
+
pos = nx.circular_layout(self.Gi)
|
178 |
+
npos = nx.fruchterman_reingold_layout(self.Gi, pos=pos)
|
179 |
+
|
180 |
+
def test_smoke_initial_pos_arf(self):
|
181 |
+
pos = nx.circular_layout(self.Gi)
|
182 |
+
npos = nx.arf_layout(self.Gi, pos=pos)
|
183 |
+
|
184 |
+
def test_fixed_node_fruchterman_reingold(self):
|
185 |
+
# Dense version (numpy based)
|
186 |
+
pos = nx.circular_layout(self.Gi)
|
187 |
+
npos = nx.spring_layout(self.Gi, pos=pos, fixed=[(0, 0)])
|
188 |
+
assert tuple(pos[(0, 0)]) == tuple(npos[(0, 0)])
|
189 |
+
# Sparse version (scipy based)
|
190 |
+
pos = nx.circular_layout(self.bigG)
|
191 |
+
npos = nx.spring_layout(self.bigG, pos=pos, fixed=[(0, 0)])
|
192 |
+
for axis in range(2):
|
193 |
+
assert pos[(0, 0)][axis] == pytest.approx(npos[(0, 0)][axis], abs=1e-7)
|
194 |
+
|
195 |
+
def test_center_parameter(self):
|
196 |
+
G = nx.path_graph(1)
|
197 |
+
nx.random_layout(G, center=(1, 1))
|
198 |
+
vpos = nx.circular_layout(G, center=(1, 1))
|
199 |
+
assert tuple(vpos[0]) == (1, 1)
|
200 |
+
vpos = nx.planar_layout(G, center=(1, 1))
|
201 |
+
assert tuple(vpos[0]) == (1, 1)
|
202 |
+
vpos = nx.spring_layout(G, center=(1, 1))
|
203 |
+
assert tuple(vpos[0]) == (1, 1)
|
204 |
+
vpos = nx.fruchterman_reingold_layout(G, center=(1, 1))
|
205 |
+
assert tuple(vpos[0]) == (1, 1)
|
206 |
+
vpos = nx.spectral_layout(G, center=(1, 1))
|
207 |
+
assert tuple(vpos[0]) == (1, 1)
|
208 |
+
vpos = nx.shell_layout(G, center=(1, 1))
|
209 |
+
assert tuple(vpos[0]) == (1, 1)
|
210 |
+
vpos = nx.spiral_layout(G, center=(1, 1))
|
211 |
+
assert tuple(vpos[0]) == (1, 1)
|
212 |
+
|
213 |
+
def test_center_wrong_dimensions(self):
|
214 |
+
G = nx.path_graph(1)
|
215 |
+
assert id(nx.spring_layout) == id(nx.fruchterman_reingold_layout)
|
216 |
+
pytest.raises(ValueError, nx.random_layout, G, center=(1, 1, 1))
|
217 |
+
pytest.raises(ValueError, nx.circular_layout, G, center=(1, 1, 1))
|
218 |
+
pytest.raises(ValueError, nx.planar_layout, G, center=(1, 1, 1))
|
219 |
+
pytest.raises(ValueError, nx.spring_layout, G, center=(1, 1, 1))
|
220 |
+
pytest.raises(ValueError, nx.spring_layout, G, dim=3, center=(1, 1))
|
221 |
+
pytest.raises(ValueError, nx.spectral_layout, G, center=(1, 1, 1))
|
222 |
+
pytest.raises(ValueError, nx.spectral_layout, G, dim=3, center=(1, 1))
|
223 |
+
pytest.raises(ValueError, nx.shell_layout, G, center=(1, 1, 1))
|
224 |
+
pytest.raises(ValueError, nx.spiral_layout, G, center=(1, 1, 1))
|
225 |
+
pytest.raises(ValueError, nx.kamada_kawai_layout, G, center=(1, 1, 1))
|
226 |
+
|
227 |
+
def test_empty_graph(self):
|
228 |
+
G = nx.empty_graph()
|
229 |
+
vpos = nx.random_layout(G, center=(1, 1))
|
230 |
+
assert vpos == {}
|
231 |
+
vpos = nx.circular_layout(G, center=(1, 1))
|
232 |
+
assert vpos == {}
|
233 |
+
vpos = nx.planar_layout(G, center=(1, 1))
|
234 |
+
assert vpos == {}
|
235 |
+
vpos = nx.bipartite_layout(G, G)
|
236 |
+
assert vpos == {}
|
237 |
+
vpos = nx.spring_layout(G, center=(1, 1))
|
238 |
+
assert vpos == {}
|
239 |
+
vpos = nx.fruchterman_reingold_layout(G, center=(1, 1))
|
240 |
+
assert vpos == {}
|
241 |
+
vpos = nx.spectral_layout(G, center=(1, 1))
|
242 |
+
assert vpos == {}
|
243 |
+
vpos = nx.shell_layout(G, center=(1, 1))
|
244 |
+
assert vpos == {}
|
245 |
+
vpos = nx.spiral_layout(G, center=(1, 1))
|
246 |
+
assert vpos == {}
|
247 |
+
vpos = nx.multipartite_layout(G, center=(1, 1))
|
248 |
+
assert vpos == {}
|
249 |
+
vpos = nx.kamada_kawai_layout(G, center=(1, 1))
|
250 |
+
assert vpos == {}
|
251 |
+
vpos = nx.arf_layout(G)
|
252 |
+
assert vpos == {}
|
253 |
+
|
254 |
+
def test_bipartite_layout(self):
|
255 |
+
G = nx.complete_bipartite_graph(3, 5)
|
256 |
+
top, bottom = nx.bipartite.sets(G)
|
257 |
+
|
258 |
+
vpos = nx.bipartite_layout(G, top)
|
259 |
+
assert len(vpos) == len(G)
|
260 |
+
|
261 |
+
top_x = vpos[list(top)[0]][0]
|
262 |
+
bottom_x = vpos[list(bottom)[0]][0]
|
263 |
+
for node in top:
|
264 |
+
assert vpos[node][0] == top_x
|
265 |
+
for node in bottom:
|
266 |
+
assert vpos[node][0] == bottom_x
|
267 |
+
|
268 |
+
vpos = nx.bipartite_layout(
|
269 |
+
G, top, align="horizontal", center=(2, 2), scale=2, aspect_ratio=1
|
270 |
+
)
|
271 |
+
assert len(vpos) == len(G)
|
272 |
+
|
273 |
+
top_y = vpos[list(top)[0]][1]
|
274 |
+
bottom_y = vpos[list(bottom)[0]][1]
|
275 |
+
for node in top:
|
276 |
+
assert vpos[node][1] == top_y
|
277 |
+
for node in bottom:
|
278 |
+
assert vpos[node][1] == bottom_y
|
279 |
+
|
280 |
+
pytest.raises(ValueError, nx.bipartite_layout, G, top, align="foo")
|
281 |
+
|
282 |
+
def test_multipartite_layout(self):
|
283 |
+
sizes = (0, 5, 7, 2, 8)
|
284 |
+
G = nx.complete_multipartite_graph(*sizes)
|
285 |
+
|
286 |
+
vpos = nx.multipartite_layout(G)
|
287 |
+
assert len(vpos) == len(G)
|
288 |
+
|
289 |
+
start = 0
|
290 |
+
for n in sizes:
|
291 |
+
end = start + n
|
292 |
+
assert all(vpos[start][0] == vpos[i][0] for i in range(start + 1, end))
|
293 |
+
start += n
|
294 |
+
|
295 |
+
vpos = nx.multipartite_layout(G, align="horizontal", scale=2, center=(2, 2))
|
296 |
+
assert len(vpos) == len(G)
|
297 |
+
|
298 |
+
start = 0
|
299 |
+
for n in sizes:
|
300 |
+
end = start + n
|
301 |
+
assert all(vpos[start][1] == vpos[i][1] for i in range(start + 1, end))
|
302 |
+
start += n
|
303 |
+
|
304 |
+
pytest.raises(ValueError, nx.multipartite_layout, G, align="foo")
|
305 |
+
|
306 |
+
def test_kamada_kawai_costfn_1d(self):
|
307 |
+
costfn = nx.drawing.layout._kamada_kawai_costfn
|
308 |
+
|
309 |
+
pos = np.array([4.0, 7.0])
|
310 |
+
invdist = 1 / np.array([[0.1, 2.0], [2.0, 0.3]])
|
311 |
+
|
312 |
+
cost, grad = costfn(pos, np, invdist, meanweight=0, dim=1)
|
313 |
+
|
314 |
+
assert cost == pytest.approx(((3 / 2.0 - 1) ** 2), abs=1e-7)
|
315 |
+
assert grad[0] == pytest.approx((-0.5), abs=1e-7)
|
316 |
+
assert grad[1] == pytest.approx(0.5, abs=1e-7)
|
317 |
+
|
318 |
+
def check_kamada_kawai_costfn(self, pos, invdist, meanwt, dim):
|
319 |
+
costfn = nx.drawing.layout._kamada_kawai_costfn
|
320 |
+
|
321 |
+
cost, grad = costfn(pos.ravel(), np, invdist, meanweight=meanwt, dim=dim)
|
322 |
+
|
323 |
+
expected_cost = 0.5 * meanwt * np.sum(np.sum(pos, axis=0) ** 2)
|
324 |
+
for i in range(pos.shape[0]):
|
325 |
+
for j in range(i + 1, pos.shape[0]):
|
326 |
+
diff = np.linalg.norm(pos[i] - pos[j])
|
327 |
+
expected_cost += (diff * invdist[i][j] - 1.0) ** 2
|
328 |
+
|
329 |
+
assert cost == pytest.approx(expected_cost, abs=1e-7)
|
330 |
+
|
331 |
+
dx = 1e-4
|
332 |
+
for nd in range(pos.shape[0]):
|
333 |
+
for dm in range(pos.shape[1]):
|
334 |
+
idx = nd * pos.shape[1] + dm
|
335 |
+
ps = pos.flatten()
|
336 |
+
|
337 |
+
ps[idx] += dx
|
338 |
+
cplus = costfn(ps, np, invdist, meanweight=meanwt, dim=pos.shape[1])[0]
|
339 |
+
|
340 |
+
ps[idx] -= 2 * dx
|
341 |
+
cminus = costfn(ps, np, invdist, meanweight=meanwt, dim=pos.shape[1])[0]
|
342 |
+
|
343 |
+
assert grad[idx] == pytest.approx((cplus - cminus) / (2 * dx), abs=1e-5)
|
344 |
+
|
345 |
+
def test_kamada_kawai_costfn(self):
|
346 |
+
invdist = 1 / np.array([[0.1, 2.1, 1.7], [2.1, 0.2, 0.6], [1.7, 0.6, 0.3]])
|
347 |
+
meanwt = 0.3
|
348 |
+
|
349 |
+
# 2d
|
350 |
+
pos = np.array([[1.3, -3.2], [2.7, -0.3], [5.1, 2.5]])
|
351 |
+
|
352 |
+
self.check_kamada_kawai_costfn(pos, invdist, meanwt, 2)
|
353 |
+
|
354 |
+
# 3d
|
355 |
+
pos = np.array([[0.9, 8.6, -8.7], [-10, -0.5, -7.1], [9.1, -8.1, 1.6]])
|
356 |
+
|
357 |
+
self.check_kamada_kawai_costfn(pos, invdist, meanwt, 3)
|
358 |
+
|
359 |
+
def test_spiral_layout(self):
|
360 |
+
G = self.Gs
|
361 |
+
|
362 |
+
# a lower value of resolution should result in a more compact layout
|
363 |
+
# intuitively, the total distance from the start and end nodes
|
364 |
+
# via each node in between (transiting through each) will be less,
|
365 |
+
# assuming rescaling does not occur on the computed node positions
|
366 |
+
pos_standard = np.array(list(nx.spiral_layout(G, resolution=0.35).values()))
|
367 |
+
pos_tighter = np.array(list(nx.spiral_layout(G, resolution=0.34).values()))
|
368 |
+
distances = np.linalg.norm(pos_standard[:-1] - pos_standard[1:], axis=1)
|
369 |
+
distances_tighter = np.linalg.norm(pos_tighter[:-1] - pos_tighter[1:], axis=1)
|
370 |
+
assert sum(distances) > sum(distances_tighter)
|
371 |
+
|
372 |
+
# return near-equidistant points after the first value if set to true
|
373 |
+
pos_equidistant = np.array(list(nx.spiral_layout(G, equidistant=True).values()))
|
374 |
+
distances_equidistant = np.linalg.norm(
|
375 |
+
pos_equidistant[:-1] - pos_equidistant[1:], axis=1
|
376 |
+
)
|
377 |
+
assert np.allclose(
|
378 |
+
distances_equidistant[1:], distances_equidistant[-1], atol=0.01
|
379 |
+
)
|
380 |
+
|
381 |
+
def test_spiral_layout_equidistant(self):
|
382 |
+
G = nx.path_graph(10)
|
383 |
+
pos = nx.spiral_layout(G, equidistant=True)
|
384 |
+
# Extract individual node positions as an array
|
385 |
+
p = np.array(list(pos.values()))
|
386 |
+
# Elementwise-distance between node positions
|
387 |
+
dist = np.linalg.norm(p[1:] - p[:-1], axis=1)
|
388 |
+
assert np.allclose(np.diff(dist), 0, atol=1e-3)
|
389 |
+
|
390 |
+
def test_rescale_layout_dict(self):
|
391 |
+
G = nx.empty_graph()
|
392 |
+
vpos = nx.random_layout(G, center=(1, 1))
|
393 |
+
assert nx.rescale_layout_dict(vpos) == {}
|
394 |
+
|
395 |
+
G = nx.empty_graph(2)
|
396 |
+
vpos = {0: (0.0, 0.0), 1: (1.0, 1.0)}
|
397 |
+
s_vpos = nx.rescale_layout_dict(vpos)
|
398 |
+
assert np.linalg.norm([sum(x) for x in zip(*s_vpos.values())]) < 1e-6
|
399 |
+
|
400 |
+
G = nx.empty_graph(3)
|
401 |
+
vpos = {0: (0, 0), 1: (1, 1), 2: (0.5, 0.5)}
|
402 |
+
s_vpos = nx.rescale_layout_dict(vpos)
|
403 |
+
|
404 |
+
expectation = {
|
405 |
+
0: np.array((-1, -1)),
|
406 |
+
1: np.array((1, 1)),
|
407 |
+
2: np.array((0, 0)),
|
408 |
+
}
|
409 |
+
for k, v in expectation.items():
|
410 |
+
assert (s_vpos[k] == v).all()
|
411 |
+
s_vpos = nx.rescale_layout_dict(vpos, scale=2)
|
412 |
+
expectation = {
|
413 |
+
0: np.array((-2, -2)),
|
414 |
+
1: np.array((2, 2)),
|
415 |
+
2: np.array((0, 0)),
|
416 |
+
}
|
417 |
+
for k, v in expectation.items():
|
418 |
+
assert (s_vpos[k] == v).all()
|
419 |
+
|
420 |
+
def test_arf_layout_partial_input_test(self):
|
421 |
+
"""
|
422 |
+
Checks whether partial pos input still returns a proper position.
|
423 |
+
"""
|
424 |
+
G = self.Gs
|
425 |
+
node = nx.utils.arbitrary_element(G)
|
426 |
+
pos = nx.circular_layout(G)
|
427 |
+
del pos[node]
|
428 |
+
pos = nx.arf_layout(G, pos=pos)
|
429 |
+
assert len(pos) == len(G)
|
430 |
+
|
431 |
+
def test_arf_layout_negative_a_check(self):
|
432 |
+
"""
|
433 |
+
Checks input parameters correctly raises errors. For example, `a` should be larger than 1
|
434 |
+
"""
|
435 |
+
G = self.Gs
|
436 |
+
pytest.raises(ValueError, nx.arf_layout, G=G, a=-1)
|
437 |
+
|
438 |
+
|
439 |
+
def test_multipartite_layout_nonnumeric_partition_labels():
|
440 |
+
"""See gh-5123."""
|
441 |
+
G = nx.Graph()
|
442 |
+
G.add_node(0, subset="s0")
|
443 |
+
G.add_node(1, subset="s0")
|
444 |
+
G.add_node(2, subset="s1")
|
445 |
+
G.add_node(3, subset="s1")
|
446 |
+
G.add_edges_from([(0, 2), (0, 3), (1, 2)])
|
447 |
+
pos = nx.multipartite_layout(G)
|
448 |
+
assert len(pos) == len(G)
|
449 |
+
|
450 |
+
|
451 |
+
def test_multipartite_layout_layer_order():
|
452 |
+
"""Return the layers in sorted order if the layers of the multipartite
|
453 |
+
graph are sortable. See gh-5691"""
|
454 |
+
G = nx.Graph()
|
455 |
+
node_group = dict(zip(("a", "b", "c", "d", "e"), (2, 3, 1, 2, 4)))
|
456 |
+
for node, layer in node_group.items():
|
457 |
+
G.add_node(node, subset=layer)
|
458 |
+
|
459 |
+
# Horizontal alignment, therefore y-coord determines layers
|
460 |
+
pos = nx.multipartite_layout(G, align="horizontal")
|
461 |
+
|
462 |
+
layers = nx.utils.groups(node_group)
|
463 |
+
pos_from_layers = nx.multipartite_layout(G, align="horizontal", subset_key=layers)
|
464 |
+
for (n1, p1), (n2, p2) in zip(pos.items(), pos_from_layers.items()):
|
465 |
+
assert n1 == n2 and (p1 == p2).all()
|
466 |
+
|
467 |
+
# Nodes "a" and "d" are in the same layer
|
468 |
+
assert pos["a"][-1] == pos["d"][-1]
|
469 |
+
# positions should be sorted according to layer
|
470 |
+
assert pos["c"][-1] < pos["a"][-1] < pos["b"][-1] < pos["e"][-1]
|
471 |
+
|
472 |
+
# Make sure that multipartite_layout still works when layers are not sortable
|
473 |
+
G.nodes["a"]["subset"] = "layer_0" # Can't sort mixed strs/ints
|
474 |
+
pos_nosort = nx.multipartite_layout(G) # smoke test: this should not raise
|
475 |
+
assert pos_nosort.keys() == pos.keys()
|
476 |
+
|
477 |
+
|
478 |
+
def _num_nodes_per_bfs_layer(pos):
|
479 |
+
"""Helper function to extract the number of nodes in each layer of bfs_layout"""
|
480 |
+
x = np.array(list(pos.values()))[:, 0] # node positions in layered dimension
|
481 |
+
_, layer_count = np.unique(x, return_counts=True)
|
482 |
+
return layer_count
|
483 |
+
|
484 |
+
|
485 |
+
@pytest.mark.parametrize("n", range(2, 7))
|
486 |
+
def test_bfs_layout_complete_graph(n):
|
487 |
+
"""The complete graph should result in two layers: the starting node and
|
488 |
+
a second layer containing all neighbors."""
|
489 |
+
G = nx.complete_graph(n)
|
490 |
+
pos = nx.bfs_layout(G, start=0)
|
491 |
+
assert np.array_equal(_num_nodes_per_bfs_layer(pos), [1, n - 1])
|
492 |
+
|
493 |
+
|
494 |
+
def test_bfs_layout_barbell():
|
495 |
+
G = nx.barbell_graph(5, 3)
|
496 |
+
# Start in one of the "bells"
|
497 |
+
pos = nx.bfs_layout(G, start=0)
|
498 |
+
# start, bell-1, [1] * len(bar)+1, bell-1
|
499 |
+
expected_nodes_per_layer = [1, 4, 1, 1, 1, 1, 4]
|
500 |
+
assert np.array_equal(_num_nodes_per_bfs_layer(pos), expected_nodes_per_layer)
|
501 |
+
# Start in the other "bell" - expect same layer pattern
|
502 |
+
pos = nx.bfs_layout(G, start=12)
|
503 |
+
assert np.array_equal(_num_nodes_per_bfs_layer(pos), expected_nodes_per_layer)
|
504 |
+
# Starting in the center of the bar, expect layers to be symmetric
|
505 |
+
pos = nx.bfs_layout(G, start=6)
|
506 |
+
# Expected layers: {6 (start)}, {5, 7}, {4, 8}, {8 nodes from remainder of bells}
|
507 |
+
expected_nodes_per_layer = [1, 2, 2, 8]
|
508 |
+
assert np.array_equal(_num_nodes_per_bfs_layer(pos), expected_nodes_per_layer)
|
509 |
+
|
510 |
+
|
511 |
+
def test_bfs_layout_disconnected():
|
512 |
+
G = nx.complete_graph(5)
|
513 |
+
G.add_edges_from([(10, 11), (11, 12)])
|
514 |
+
with pytest.raises(nx.NetworkXError, match="bfs_layout didn't include all nodes"):
|
515 |
+
nx.bfs_layout(G, start=0)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/__init__.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A package for generating various graphs in networkx.
|
3 |
+
|
4 |
+
"""
|
5 |
+
from networkx.generators.atlas import *
|
6 |
+
from networkx.generators.classic import *
|
7 |
+
from networkx.generators.cographs import *
|
8 |
+
from networkx.generators.community import *
|
9 |
+
from networkx.generators.degree_seq import *
|
10 |
+
from networkx.generators.directed import *
|
11 |
+
from networkx.generators.duplication import *
|
12 |
+
from networkx.generators.ego import *
|
13 |
+
from networkx.generators.expanders import *
|
14 |
+
from networkx.generators.geometric import *
|
15 |
+
from networkx.generators.harary_graph import *
|
16 |
+
from networkx.generators.internet_as_graphs import *
|
17 |
+
from networkx.generators.intersection import *
|
18 |
+
from networkx.generators.interval_graph import *
|
19 |
+
from networkx.generators.joint_degree_seq import *
|
20 |
+
from networkx.generators.lattice import *
|
21 |
+
from networkx.generators.line import *
|
22 |
+
from networkx.generators.mycielski import *
|
23 |
+
from networkx.generators.nonisomorphic_trees import *
|
24 |
+
from networkx.generators.random_clustered import *
|
25 |
+
from networkx.generators.random_graphs import *
|
26 |
+
from networkx.generators.small import *
|
27 |
+
from networkx.generators.social import *
|
28 |
+
from networkx.generators.spectral_graph_forge import *
|
29 |
+
from networkx.generators.stochastic import *
|
30 |
+
from networkx.generators.sudoku import *
|
31 |
+
from networkx.generators.time_series import *
|
32 |
+
from networkx.generators.trees import *
|
33 |
+
from networkx.generators.triads import *
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/atlas.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Generators for the small graph atlas.
|
3 |
+
"""
|
4 |
+
import gzip
|
5 |
+
import importlib.resources
|
6 |
+
import os
|
7 |
+
import os.path
|
8 |
+
from itertools import islice
|
9 |
+
|
10 |
+
import networkx as nx
|
11 |
+
|
12 |
+
__all__ = ["graph_atlas", "graph_atlas_g"]
|
13 |
+
|
14 |
+
#: The total number of graphs in the atlas.
|
15 |
+
#:
|
16 |
+
#: The graphs are labeled starting from 0 and extending to (but not
|
17 |
+
#: including) this number.
|
18 |
+
NUM_GRAPHS = 1253
|
19 |
+
|
20 |
+
#: The path to the data file containing the graph edge lists.
|
21 |
+
#:
|
22 |
+
#: This is the absolute path of the gzipped text file containing the
|
23 |
+
#: edge list for each graph in the atlas. The file contains one entry
|
24 |
+
#: per graph in the atlas, in sequential order, starting from graph
|
25 |
+
#: number 0 and extending through graph number 1252 (see
|
26 |
+
#: :data:`NUM_GRAPHS`). Each entry looks like
|
27 |
+
#:
|
28 |
+
#: .. sourcecode:: text
|
29 |
+
#:
|
30 |
+
#: GRAPH 6
|
31 |
+
#: NODES 3
|
32 |
+
#: 0 1
|
33 |
+
#: 0 2
|
34 |
+
#:
|
35 |
+
#: where the first two lines are the graph's index in the atlas and the
|
36 |
+
#: number of nodes in the graph, and the remaining lines are the edge
|
37 |
+
#: list.
|
38 |
+
#:
|
39 |
+
#: This file was generated from a Python list of graphs via code like
|
40 |
+
#: the following::
|
41 |
+
#:
|
42 |
+
#: import gzip
|
43 |
+
#: from networkx.generators.atlas import graph_atlas_g
|
44 |
+
#: from networkx.readwrite.edgelist import write_edgelist
|
45 |
+
#:
|
46 |
+
#: with gzip.open('atlas.dat.gz', 'wb') as f:
|
47 |
+
#: for i, G in enumerate(graph_atlas_g()):
|
48 |
+
#: f.write(bytes(f'GRAPH {i}\n', encoding='utf-8'))
|
49 |
+
#: f.write(bytes(f'NODES {len(G)}\n', encoding='utf-8'))
|
50 |
+
#: write_edgelist(G, f, data=False)
|
51 |
+
#:
|
52 |
+
|
53 |
+
# Path to the atlas file
|
54 |
+
ATLAS_FILE = importlib.resources.files("networkx.generators") / "atlas.dat.gz"
|
55 |
+
|
56 |
+
|
57 |
+
def _generate_graphs():
|
58 |
+
"""Sequentially read the file containing the edge list data for the
|
59 |
+
graphs in the atlas and generate the graphs one at a time.
|
60 |
+
|
61 |
+
This function reads the file given in :data:`.ATLAS_FILE`.
|
62 |
+
|
63 |
+
"""
|
64 |
+
with gzip.open(ATLAS_FILE, "rb") as f:
|
65 |
+
line = f.readline()
|
66 |
+
while line and line.startswith(b"GRAPH"):
|
67 |
+
# The first two lines of each entry tell us the index of the
|
68 |
+
# graph in the list and the number of nodes in the graph.
|
69 |
+
# They look like this:
|
70 |
+
#
|
71 |
+
# GRAPH 3
|
72 |
+
# NODES 2
|
73 |
+
#
|
74 |
+
graph_index = int(line[6:].rstrip())
|
75 |
+
line = f.readline()
|
76 |
+
num_nodes = int(line[6:].rstrip())
|
77 |
+
# The remaining lines contain the edge list, until the next
|
78 |
+
# GRAPH line (or until the end of the file).
|
79 |
+
edgelist = []
|
80 |
+
line = f.readline()
|
81 |
+
while line and not line.startswith(b"GRAPH"):
|
82 |
+
edgelist.append(line.rstrip())
|
83 |
+
line = f.readline()
|
84 |
+
G = nx.Graph()
|
85 |
+
G.name = f"G{graph_index}"
|
86 |
+
G.add_nodes_from(range(num_nodes))
|
87 |
+
G.add_edges_from(tuple(map(int, e.split())) for e in edgelist)
|
88 |
+
yield G
|
89 |
+
|
90 |
+
|
91 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
92 |
+
def graph_atlas(i):
|
93 |
+
"""Returns graph number `i` from the Graph Atlas.
|
94 |
+
|
95 |
+
For more information, see :func:`.graph_atlas_g`.
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
----------
|
99 |
+
i : int
|
100 |
+
The index of the graph from the atlas to get. The graph at index
|
101 |
+
0 is assumed to be the null graph.
|
102 |
+
|
103 |
+
Returns
|
104 |
+
-------
|
105 |
+
list
|
106 |
+
A list of :class:`~networkx.Graph` objects, the one at index *i*
|
107 |
+
corresponding to the graph *i* in the Graph Atlas.
|
108 |
+
|
109 |
+
See also
|
110 |
+
--------
|
111 |
+
graph_atlas_g
|
112 |
+
|
113 |
+
Notes
|
114 |
+
-----
|
115 |
+
The time required by this function increases linearly with the
|
116 |
+
argument `i`, since it reads a large file sequentially in order to
|
117 |
+
generate the graph [1]_.
|
118 |
+
|
119 |
+
References
|
120 |
+
----------
|
121 |
+
.. [1] Ronald C. Read and Robin J. Wilson, *An Atlas of Graphs*.
|
122 |
+
Oxford University Press, 1998.
|
123 |
+
|
124 |
+
"""
|
125 |
+
if not (0 <= i < NUM_GRAPHS):
|
126 |
+
raise ValueError(f"index must be between 0 and {NUM_GRAPHS}")
|
127 |
+
return next(islice(_generate_graphs(), i, None))
|
128 |
+
|
129 |
+
|
130 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
131 |
+
def graph_atlas_g():
|
132 |
+
"""Returns the list of all graphs with up to seven nodes named in the
|
133 |
+
Graph Atlas.
|
134 |
+
|
135 |
+
The graphs are listed in increasing order by
|
136 |
+
|
137 |
+
1. number of nodes,
|
138 |
+
2. number of edges,
|
139 |
+
3. degree sequence (for example 111223 < 112222),
|
140 |
+
4. number of automorphisms,
|
141 |
+
|
142 |
+
in that order, with three exceptions as described in the *Notes*
|
143 |
+
section below. This causes the list to correspond with the index of
|
144 |
+
the graphs in the Graph Atlas [atlas]_, with the first graph,
|
145 |
+
``G[0]``, being the null graph.
|
146 |
+
|
147 |
+
Returns
|
148 |
+
-------
|
149 |
+
list
|
150 |
+
A list of :class:`~networkx.Graph` objects, the one at index *i*
|
151 |
+
corresponding to the graph *i* in the Graph Atlas.
|
152 |
+
|
153 |
+
See also
|
154 |
+
--------
|
155 |
+
graph_atlas
|
156 |
+
|
157 |
+
Notes
|
158 |
+
-----
|
159 |
+
This function may be expensive in both time and space, since it
|
160 |
+
reads a large file sequentially in order to populate the list.
|
161 |
+
|
162 |
+
Although the NetworkX atlas functions match the order of graphs
|
163 |
+
given in the "Atlas of Graphs" book, there are (at least) three
|
164 |
+
errors in the ordering described in the book. The following three
|
165 |
+
pairs of nodes violate the lexicographically nondecreasing sorted
|
166 |
+
degree sequence rule:
|
167 |
+
|
168 |
+
- graphs 55 and 56 with degree sequences 001111 and 000112,
|
169 |
+
- graphs 1007 and 1008 with degree sequences 3333444 and 3333336,
|
170 |
+
- graphs 1012 and 1213 with degree sequences 1244555 and 1244456.
|
171 |
+
|
172 |
+
References
|
173 |
+
----------
|
174 |
+
.. [atlas] Ronald C. Read and Robin J. Wilson,
|
175 |
+
*An Atlas of Graphs*.
|
176 |
+
Oxford University Press, 1998.
|
177 |
+
|
178 |
+
"""
|
179 |
+
return list(_generate_graphs())
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/classic.py
ADDED
@@ -0,0 +1,1054 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generators for some classic graphs.
|
2 |
+
|
3 |
+
The typical graph builder function is called as follows:
|
4 |
+
|
5 |
+
>>> G = nx.complete_graph(100)
|
6 |
+
|
7 |
+
returning the complete graph on n nodes labeled 0, .., 99
|
8 |
+
as a simple graph. Except for `empty_graph`, all the functions
|
9 |
+
in this module return a Graph class (i.e. a simple, undirected graph).
|
10 |
+
|
11 |
+
"""
|
12 |
+
|
13 |
+
import itertools
|
14 |
+
import numbers
|
15 |
+
|
16 |
+
import networkx as nx
|
17 |
+
from networkx.classes import Graph
|
18 |
+
from networkx.exception import NetworkXError
|
19 |
+
from networkx.utils import nodes_or_number, pairwise
|
20 |
+
|
21 |
+
__all__ = [
|
22 |
+
"balanced_tree",
|
23 |
+
"barbell_graph",
|
24 |
+
"binomial_tree",
|
25 |
+
"complete_graph",
|
26 |
+
"complete_multipartite_graph",
|
27 |
+
"circular_ladder_graph",
|
28 |
+
"circulant_graph",
|
29 |
+
"cycle_graph",
|
30 |
+
"dorogovtsev_goltsev_mendes_graph",
|
31 |
+
"empty_graph",
|
32 |
+
"full_rary_tree",
|
33 |
+
"kneser_graph",
|
34 |
+
"ladder_graph",
|
35 |
+
"lollipop_graph",
|
36 |
+
"null_graph",
|
37 |
+
"path_graph",
|
38 |
+
"star_graph",
|
39 |
+
"tadpole_graph",
|
40 |
+
"trivial_graph",
|
41 |
+
"turan_graph",
|
42 |
+
"wheel_graph",
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
# -------------------------------------------------------------------
|
47 |
+
# Some Classic Graphs
|
48 |
+
# -------------------------------------------------------------------
|
49 |
+
|
50 |
+
|
51 |
+
def _tree_edges(n, r):
|
52 |
+
if n == 0:
|
53 |
+
return
|
54 |
+
# helper function for trees
|
55 |
+
# yields edges in rooted tree at 0 with n nodes and branching ratio r
|
56 |
+
nodes = iter(range(n))
|
57 |
+
parents = [next(nodes)] # stack of max length r
|
58 |
+
while parents:
|
59 |
+
source = parents.pop(0)
|
60 |
+
for i in range(r):
|
61 |
+
try:
|
62 |
+
target = next(nodes)
|
63 |
+
parents.append(target)
|
64 |
+
yield source, target
|
65 |
+
except StopIteration:
|
66 |
+
break
|
67 |
+
|
68 |
+
|
69 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
70 |
+
def full_rary_tree(r, n, create_using=None):
|
71 |
+
"""Creates a full r-ary tree of `n` nodes.
|
72 |
+
|
73 |
+
Sometimes called a k-ary, n-ary, or m-ary tree.
|
74 |
+
"... all non-leaf nodes have exactly r children and all levels
|
75 |
+
are full except for some rightmost position of the bottom level
|
76 |
+
(if a leaf at the bottom level is missing, then so are all of the
|
77 |
+
leaves to its right." [1]_
|
78 |
+
|
79 |
+
.. plot::
|
80 |
+
|
81 |
+
>>> nx.draw(nx.full_rary_tree(2, 10))
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
r : int
|
86 |
+
branching factor of the tree
|
87 |
+
n : int
|
88 |
+
Number of nodes in the tree
|
89 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
90 |
+
Graph type to create. If graph instance, then cleared before populated.
|
91 |
+
|
92 |
+
Returns
|
93 |
+
-------
|
94 |
+
G : networkx Graph
|
95 |
+
An r-ary tree with n nodes
|
96 |
+
|
97 |
+
References
|
98 |
+
----------
|
99 |
+
.. [1] An introduction to data structures and algorithms,
|
100 |
+
James Andrew Storer, Birkhauser Boston 2001, (page 225).
|
101 |
+
"""
|
102 |
+
G = empty_graph(n, create_using)
|
103 |
+
G.add_edges_from(_tree_edges(n, r))
|
104 |
+
return G
|
105 |
+
|
106 |
+
|
107 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
108 |
+
def kneser_graph(n, k):
|
109 |
+
"""Returns the Kneser Graph with parameters `n` and `k`.
|
110 |
+
|
111 |
+
The Kneser Graph has nodes that are k-tuples (subsets) of the integers
|
112 |
+
between 0 and ``n-1``. Nodes are adjacent if their corresponding sets are disjoint.
|
113 |
+
|
114 |
+
Parameters
|
115 |
+
----------
|
116 |
+
n: int
|
117 |
+
Number of integers from which to make node subsets.
|
118 |
+
Subsets are drawn from ``set(range(n))``.
|
119 |
+
k: int
|
120 |
+
Size of the subsets.
|
121 |
+
|
122 |
+
Returns
|
123 |
+
-------
|
124 |
+
G : NetworkX Graph
|
125 |
+
|
126 |
+
Examples
|
127 |
+
--------
|
128 |
+
>>> G = nx.kneser_graph(5, 2)
|
129 |
+
>>> G.number_of_nodes()
|
130 |
+
10
|
131 |
+
>>> G.number_of_edges()
|
132 |
+
15
|
133 |
+
>>> nx.is_isomorphic(G, nx.petersen_graph())
|
134 |
+
True
|
135 |
+
"""
|
136 |
+
if n <= 0:
|
137 |
+
raise NetworkXError("n should be greater than zero")
|
138 |
+
if k <= 0 or k > n:
|
139 |
+
raise NetworkXError("k should be greater than zero and smaller than n")
|
140 |
+
|
141 |
+
G = nx.Graph()
|
142 |
+
# Create all k-subsets of [0, 1, ..., n-1]
|
143 |
+
subsets = list(itertools.combinations(range(n), k))
|
144 |
+
|
145 |
+
if 2 * k > n:
|
146 |
+
G.add_nodes_from(subsets)
|
147 |
+
|
148 |
+
universe = set(range(n))
|
149 |
+
comb = itertools.combinations # only to make it all fit on one line
|
150 |
+
G.add_edges_from((s, t) for s in subsets for t in comb(universe - set(s), k))
|
151 |
+
return G
|
152 |
+
|
153 |
+
|
154 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
155 |
+
def balanced_tree(r, h, create_using=None):
|
156 |
+
"""Returns the perfectly balanced `r`-ary tree of height `h`.
|
157 |
+
|
158 |
+
.. plot::
|
159 |
+
|
160 |
+
>>> nx.draw(nx.balanced_tree(2, 3))
|
161 |
+
|
162 |
+
Parameters
|
163 |
+
----------
|
164 |
+
r : int
|
165 |
+
Branching factor of the tree; each node will have `r`
|
166 |
+
children.
|
167 |
+
|
168 |
+
h : int
|
169 |
+
Height of the tree.
|
170 |
+
|
171 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
172 |
+
Graph type to create. If graph instance, then cleared before populated.
|
173 |
+
|
174 |
+
Returns
|
175 |
+
-------
|
176 |
+
G : NetworkX graph
|
177 |
+
A balanced `r`-ary tree of height `h`.
|
178 |
+
|
179 |
+
Notes
|
180 |
+
-----
|
181 |
+
This is the rooted tree where all leaves are at distance `h` from
|
182 |
+
the root. The root has degree `r` and all other internal nodes
|
183 |
+
have degree `r + 1`.
|
184 |
+
|
185 |
+
Node labels are integers, starting from zero.
|
186 |
+
|
187 |
+
A balanced tree is also known as a *complete r-ary tree*.
|
188 |
+
|
189 |
+
"""
|
190 |
+
# The number of nodes in the balanced tree is `1 + r + ... + r^h`,
|
191 |
+
# which is computed by using the closed-form formula for a geometric
|
192 |
+
# sum with ratio `r`. In the special case that `r` is 1, the number
|
193 |
+
# of nodes is simply `h + 1` (since the tree is actually a path
|
194 |
+
# graph).
|
195 |
+
if r == 1:
|
196 |
+
n = h + 1
|
197 |
+
else:
|
198 |
+
# This must be an integer if both `r` and `h` are integers. If
|
199 |
+
# they are not, we force integer division anyway.
|
200 |
+
n = (1 - r ** (h + 1)) // (1 - r)
|
201 |
+
return full_rary_tree(r, n, create_using=create_using)
|
202 |
+
|
203 |
+
|
204 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
205 |
+
def barbell_graph(m1, m2, create_using=None):
|
206 |
+
"""Returns the Barbell Graph: two complete graphs connected by a path.
|
207 |
+
|
208 |
+
.. plot::
|
209 |
+
|
210 |
+
>>> nx.draw(nx.barbell_graph(4, 2))
|
211 |
+
|
212 |
+
Parameters
|
213 |
+
----------
|
214 |
+
m1 : int
|
215 |
+
Size of the left and right barbells, must be greater than 2.
|
216 |
+
|
217 |
+
m2 : int
|
218 |
+
Length of the path connecting the barbells.
|
219 |
+
|
220 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
221 |
+
Graph type to create. If graph instance, then cleared before populated.
|
222 |
+
Only undirected Graphs are supported.
|
223 |
+
|
224 |
+
Returns
|
225 |
+
-------
|
226 |
+
G : NetworkX graph
|
227 |
+
A barbell graph.
|
228 |
+
|
229 |
+
Notes
|
230 |
+
-----
|
231 |
+
|
232 |
+
|
233 |
+
Two identical complete graphs $K_{m1}$ form the left and right bells,
|
234 |
+
and are connected by a path $P_{m2}$.
|
235 |
+
|
236 |
+
The `2*m1+m2` nodes are numbered
|
237 |
+
`0, ..., m1-1` for the left barbell,
|
238 |
+
`m1, ..., m1+m2-1` for the path,
|
239 |
+
and `m1+m2, ..., 2*m1+m2-1` for the right barbell.
|
240 |
+
|
241 |
+
The 3 subgraphs are joined via the edges `(m1-1, m1)` and
|
242 |
+
`(m1+m2-1, m1+m2)`. If `m2=0`, this is merely two complete
|
243 |
+
graphs joined together.
|
244 |
+
|
245 |
+
This graph is an extremal example in David Aldous
|
246 |
+
and Jim Fill's e-text on Random Walks on Graphs.
|
247 |
+
|
248 |
+
"""
|
249 |
+
if m1 < 2:
|
250 |
+
raise NetworkXError("Invalid graph description, m1 should be >=2")
|
251 |
+
if m2 < 0:
|
252 |
+
raise NetworkXError("Invalid graph description, m2 should be >=0")
|
253 |
+
|
254 |
+
# left barbell
|
255 |
+
G = complete_graph(m1, create_using)
|
256 |
+
if G.is_directed():
|
257 |
+
raise NetworkXError("Directed Graph not supported")
|
258 |
+
|
259 |
+
# connecting path
|
260 |
+
G.add_nodes_from(range(m1, m1 + m2 - 1))
|
261 |
+
if m2 > 1:
|
262 |
+
G.add_edges_from(pairwise(range(m1, m1 + m2)))
|
263 |
+
|
264 |
+
# right barbell
|
265 |
+
G.add_edges_from(
|
266 |
+
(u, v) for u in range(m1 + m2, 2 * m1 + m2) for v in range(u + 1, 2 * m1 + m2)
|
267 |
+
)
|
268 |
+
|
269 |
+
# connect it up
|
270 |
+
G.add_edge(m1 - 1, m1)
|
271 |
+
if m2 > 0:
|
272 |
+
G.add_edge(m1 + m2 - 1, m1 + m2)
|
273 |
+
|
274 |
+
return G
|
275 |
+
|
276 |
+
|
277 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
278 |
+
def binomial_tree(n, create_using=None):
|
279 |
+
"""Returns the Binomial Tree of order n.
|
280 |
+
|
281 |
+
The binomial tree of order 0 consists of a single node. A binomial tree of order k
|
282 |
+
is defined recursively by linking two binomial trees of order k-1: the root of one is
|
283 |
+
the leftmost child of the root of the other.
|
284 |
+
|
285 |
+
.. plot::
|
286 |
+
|
287 |
+
>>> nx.draw(nx.binomial_tree(3))
|
288 |
+
|
289 |
+
Parameters
|
290 |
+
----------
|
291 |
+
n : int
|
292 |
+
Order of the binomial tree.
|
293 |
+
|
294 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
295 |
+
Graph type to create. If graph instance, then cleared before populated.
|
296 |
+
|
297 |
+
Returns
|
298 |
+
-------
|
299 |
+
G : NetworkX graph
|
300 |
+
A binomial tree of $2^n$ nodes and $2^n - 1$ edges.
|
301 |
+
|
302 |
+
"""
|
303 |
+
G = nx.empty_graph(1, create_using)
|
304 |
+
|
305 |
+
N = 1
|
306 |
+
for i in range(n):
|
307 |
+
# Use G.edges() to ensure 2-tuples. G.edges is 3-tuple for MultiGraph
|
308 |
+
edges = [(u + N, v + N) for (u, v) in G.edges()]
|
309 |
+
G.add_edges_from(edges)
|
310 |
+
G.add_edge(0, N)
|
311 |
+
N *= 2
|
312 |
+
return G
|
313 |
+
|
314 |
+
|
315 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
316 |
+
@nodes_or_number(0)
|
317 |
+
def complete_graph(n, create_using=None):
|
318 |
+
"""Return the complete graph `K_n` with n nodes.
|
319 |
+
|
320 |
+
A complete graph on `n` nodes means that all pairs
|
321 |
+
of distinct nodes have an edge connecting them.
|
322 |
+
|
323 |
+
.. plot::
|
324 |
+
|
325 |
+
>>> nx.draw(nx.complete_graph(5))
|
326 |
+
|
327 |
+
Parameters
|
328 |
+
----------
|
329 |
+
n : int or iterable container of nodes
|
330 |
+
If n is an integer, nodes are from range(n).
|
331 |
+
If n is a container of nodes, those nodes appear in the graph.
|
332 |
+
Warning: n is not checked for duplicates and if present the
|
333 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
334 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
335 |
+
Graph type to create. If graph instance, then cleared before populated.
|
336 |
+
|
337 |
+
Examples
|
338 |
+
--------
|
339 |
+
>>> G = nx.complete_graph(9)
|
340 |
+
>>> len(G)
|
341 |
+
9
|
342 |
+
>>> G.size()
|
343 |
+
36
|
344 |
+
>>> G = nx.complete_graph(range(11, 14))
|
345 |
+
>>> list(G.nodes())
|
346 |
+
[11, 12, 13]
|
347 |
+
>>> G = nx.complete_graph(4, nx.DiGraph())
|
348 |
+
>>> G.is_directed()
|
349 |
+
True
|
350 |
+
|
351 |
+
"""
|
352 |
+
_, nodes = n
|
353 |
+
G = empty_graph(nodes, create_using)
|
354 |
+
if len(nodes) > 1:
|
355 |
+
if G.is_directed():
|
356 |
+
edges = itertools.permutations(nodes, 2)
|
357 |
+
else:
|
358 |
+
edges = itertools.combinations(nodes, 2)
|
359 |
+
G.add_edges_from(edges)
|
360 |
+
return G
|
361 |
+
|
362 |
+
|
363 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
364 |
+
def circular_ladder_graph(n, create_using=None):
|
365 |
+
"""Returns the circular ladder graph $CL_n$ of length n.
|
366 |
+
|
367 |
+
$CL_n$ consists of two concentric n-cycles in which
|
368 |
+
each of the n pairs of concentric nodes are joined by an edge.
|
369 |
+
|
370 |
+
Node labels are the integers 0 to n-1
|
371 |
+
|
372 |
+
.. plot::
|
373 |
+
|
374 |
+
>>> nx.draw(nx.circular_ladder_graph(5))
|
375 |
+
|
376 |
+
"""
|
377 |
+
G = ladder_graph(n, create_using)
|
378 |
+
G.add_edge(0, n - 1)
|
379 |
+
G.add_edge(n, 2 * n - 1)
|
380 |
+
return G
|
381 |
+
|
382 |
+
|
383 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
384 |
+
def circulant_graph(n, offsets, create_using=None):
|
385 |
+
r"""Returns the circulant graph $Ci_n(x_1, x_2, ..., x_m)$ with $n$ nodes.
|
386 |
+
|
387 |
+
The circulant graph $Ci_n(x_1, ..., x_m)$ consists of $n$ nodes $0, ..., n-1$
|
388 |
+
such that node $i$ is connected to nodes $(i + x) \mod n$ and $(i - x) \mod n$
|
389 |
+
for all $x$ in $x_1, ..., x_m$. Thus $Ci_n(1)$ is a cycle graph.
|
390 |
+
|
391 |
+
.. plot::
|
392 |
+
|
393 |
+
>>> nx.draw(nx.circulant_graph(10, [1]))
|
394 |
+
|
395 |
+
Parameters
|
396 |
+
----------
|
397 |
+
n : integer
|
398 |
+
The number of nodes in the graph.
|
399 |
+
offsets : list of integers
|
400 |
+
A list of node offsets, $x_1$ up to $x_m$, as described above.
|
401 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
402 |
+
Graph type to create. If graph instance, then cleared before populated.
|
403 |
+
|
404 |
+
Returns
|
405 |
+
-------
|
406 |
+
NetworkX Graph of type create_using
|
407 |
+
|
408 |
+
Examples
|
409 |
+
--------
|
410 |
+
Many well-known graph families are subfamilies of the circulant graphs;
|
411 |
+
for example, to create the cycle graph on n points, we connect every
|
412 |
+
node to nodes on either side (with offset plus or minus one). For n = 10,
|
413 |
+
|
414 |
+
>>> G = nx.circulant_graph(10, [1])
|
415 |
+
>>> edges = [
|
416 |
+
... (0, 9),
|
417 |
+
... (0, 1),
|
418 |
+
... (1, 2),
|
419 |
+
... (2, 3),
|
420 |
+
... (3, 4),
|
421 |
+
... (4, 5),
|
422 |
+
... (5, 6),
|
423 |
+
... (6, 7),
|
424 |
+
... (7, 8),
|
425 |
+
... (8, 9),
|
426 |
+
... ]
|
427 |
+
>>> sorted(edges) == sorted(G.edges())
|
428 |
+
True
|
429 |
+
|
430 |
+
Similarly, we can create the complete graph
|
431 |
+
on 5 points with the set of offsets [1, 2]:
|
432 |
+
|
433 |
+
>>> G = nx.circulant_graph(5, [1, 2])
|
434 |
+
>>> edges = [
|
435 |
+
... (0, 1),
|
436 |
+
... (0, 2),
|
437 |
+
... (0, 3),
|
438 |
+
... (0, 4),
|
439 |
+
... (1, 2),
|
440 |
+
... (1, 3),
|
441 |
+
... (1, 4),
|
442 |
+
... (2, 3),
|
443 |
+
... (2, 4),
|
444 |
+
... (3, 4),
|
445 |
+
... ]
|
446 |
+
>>> sorted(edges) == sorted(G.edges())
|
447 |
+
True
|
448 |
+
|
449 |
+
"""
|
450 |
+
G = empty_graph(n, create_using)
|
451 |
+
for i in range(n):
|
452 |
+
for j in offsets:
|
453 |
+
G.add_edge(i, (i - j) % n)
|
454 |
+
G.add_edge(i, (i + j) % n)
|
455 |
+
return G
|
456 |
+
|
457 |
+
|
458 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
459 |
+
@nodes_or_number(0)
|
460 |
+
def cycle_graph(n, create_using=None):
|
461 |
+
"""Returns the cycle graph $C_n$ of cyclically connected nodes.
|
462 |
+
|
463 |
+
$C_n$ is a path with its two end-nodes connected.
|
464 |
+
|
465 |
+
.. plot::
|
466 |
+
|
467 |
+
>>> nx.draw(nx.cycle_graph(5))
|
468 |
+
|
469 |
+
Parameters
|
470 |
+
----------
|
471 |
+
n : int or iterable container of nodes
|
472 |
+
If n is an integer, nodes are from `range(n)`.
|
473 |
+
If n is a container of nodes, those nodes appear in the graph.
|
474 |
+
Warning: n is not checked for duplicates and if present the
|
475 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
476 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
477 |
+
Graph type to create. If graph instance, then cleared before populated.
|
478 |
+
|
479 |
+
Notes
|
480 |
+
-----
|
481 |
+
If create_using is directed, the direction is in increasing order.
|
482 |
+
|
483 |
+
"""
|
484 |
+
_, nodes = n
|
485 |
+
G = empty_graph(nodes, create_using)
|
486 |
+
G.add_edges_from(pairwise(nodes, cyclic=True))
|
487 |
+
return G
|
488 |
+
|
489 |
+
|
490 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
491 |
+
def dorogovtsev_goltsev_mendes_graph(n, create_using=None):
|
492 |
+
"""Returns the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.
|
493 |
+
|
494 |
+
The Dorogovtsev-Goltsev-Mendes [1]_ procedure produces a scale-free graph
|
495 |
+
deterministically with the following properties for a given `n`:
|
496 |
+
- Total number of nodes = ``3 * (3**n + 1) / 2``
|
497 |
+
- Total number of edges = ``3 ** (n + 1)``
|
498 |
+
|
499 |
+
.. plot::
|
500 |
+
|
501 |
+
>>> nx.draw(nx.dorogovtsev_goltsev_mendes_graph(3))
|
502 |
+
|
503 |
+
Parameters
|
504 |
+
----------
|
505 |
+
n : integer
|
506 |
+
The generation number.
|
507 |
+
|
508 |
+
create_using : NetworkX Graph, optional
|
509 |
+
Graph type to be returned. Directed graphs and multi graphs are not
|
510 |
+
supported.
|
511 |
+
|
512 |
+
Returns
|
513 |
+
-------
|
514 |
+
G : NetworkX Graph
|
515 |
+
|
516 |
+
Examples
|
517 |
+
--------
|
518 |
+
>>> G = nx.dorogovtsev_goltsev_mendes_graph(3)
|
519 |
+
>>> G.number_of_nodes()
|
520 |
+
15
|
521 |
+
>>> G.number_of_edges()
|
522 |
+
27
|
523 |
+
>>> nx.is_planar(G)
|
524 |
+
True
|
525 |
+
|
526 |
+
References
|
527 |
+
----------
|
528 |
+
.. [1] S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes,
|
529 |
+
"Pseudofractal scale-free web", Physical Review E 65, 066122, 2002.
|
530 |
+
https://arxiv.org/pdf/cond-mat/0112143.pdf
|
531 |
+
"""
|
532 |
+
G = empty_graph(0, create_using)
|
533 |
+
if G.is_directed():
|
534 |
+
raise NetworkXError("Directed Graph not supported")
|
535 |
+
if G.is_multigraph():
|
536 |
+
raise NetworkXError("Multigraph not supported")
|
537 |
+
|
538 |
+
G.add_edge(0, 1)
|
539 |
+
if n == 0:
|
540 |
+
return G
|
541 |
+
new_node = 2 # next node to be added
|
542 |
+
for i in range(1, n + 1): # iterate over number of generations.
|
543 |
+
last_generation_edges = list(G.edges())
|
544 |
+
number_of_edges_in_last_generation = len(last_generation_edges)
|
545 |
+
for j in range(number_of_edges_in_last_generation):
|
546 |
+
G.add_edge(new_node, last_generation_edges[j][0])
|
547 |
+
G.add_edge(new_node, last_generation_edges[j][1])
|
548 |
+
new_node += 1
|
549 |
+
return G
|
550 |
+
|
551 |
+
|
552 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
553 |
+
@nodes_or_number(0)
|
554 |
+
def empty_graph(n=0, create_using=None, default=Graph):
|
555 |
+
"""Returns the empty graph with n nodes and zero edges.
|
556 |
+
|
557 |
+
.. plot::
|
558 |
+
|
559 |
+
>>> nx.draw(nx.empty_graph(5))
|
560 |
+
|
561 |
+
Parameters
|
562 |
+
----------
|
563 |
+
n : int or iterable container of nodes (default = 0)
|
564 |
+
If n is an integer, nodes are from `range(n)`.
|
565 |
+
If n is a container of nodes, those nodes appear in the graph.
|
566 |
+
create_using : Graph Instance, Constructor or None
|
567 |
+
Indicator of type of graph to return.
|
568 |
+
If a Graph-type instance, then clear and use it.
|
569 |
+
If None, use the `default` constructor.
|
570 |
+
If a constructor, call it to create an empty graph.
|
571 |
+
default : Graph constructor (optional, default = nx.Graph)
|
572 |
+
The constructor to use if create_using is None.
|
573 |
+
If None, then nx.Graph is used.
|
574 |
+
This is used when passing an unknown `create_using` value
|
575 |
+
through your home-grown function to `empty_graph` and
|
576 |
+
you want a default constructor other than nx.Graph.
|
577 |
+
|
578 |
+
Examples
|
579 |
+
--------
|
580 |
+
>>> G = nx.empty_graph(10)
|
581 |
+
>>> G.number_of_nodes()
|
582 |
+
10
|
583 |
+
>>> G.number_of_edges()
|
584 |
+
0
|
585 |
+
>>> G = nx.empty_graph("ABC")
|
586 |
+
>>> G.number_of_nodes()
|
587 |
+
3
|
588 |
+
>>> sorted(G)
|
589 |
+
['A', 'B', 'C']
|
590 |
+
|
591 |
+
Notes
|
592 |
+
-----
|
593 |
+
The variable create_using should be a Graph Constructor or a
|
594 |
+
"graph"-like object. Constructors, e.g. `nx.Graph` or `nx.MultiGraph`
|
595 |
+
will be used to create the returned graph. "graph"-like objects
|
596 |
+
will be cleared (nodes and edges will be removed) and refitted as
|
597 |
+
an empty "graph" with nodes specified in n. This capability
|
598 |
+
is useful for specifying the class-nature of the resulting empty
|
599 |
+
"graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).
|
600 |
+
|
601 |
+
The variable create_using has three main uses:
|
602 |
+
Firstly, the variable create_using can be used to create an
|
603 |
+
empty digraph, multigraph, etc. For example,
|
604 |
+
|
605 |
+
>>> n = 10
|
606 |
+
>>> G = nx.empty_graph(n, create_using=nx.DiGraph)
|
607 |
+
|
608 |
+
will create an empty digraph on n nodes.
|
609 |
+
|
610 |
+
Secondly, one can pass an existing graph (digraph, multigraph,
|
611 |
+
etc.) via create_using. For example, if G is an existing graph
|
612 |
+
(resp. digraph, multigraph, etc.), then empty_graph(n, create_using=G)
|
613 |
+
will empty G (i.e. delete all nodes and edges using G.clear())
|
614 |
+
and then add n nodes and zero edges, and return the modified graph.
|
615 |
+
|
616 |
+
Thirdly, when constructing your home-grown graph creation function
|
617 |
+
you can use empty_graph to construct the graph by passing a user
|
618 |
+
defined create_using to empty_graph. In this case, if you want the
|
619 |
+
default constructor to be other than nx.Graph, specify `default`.
|
620 |
+
|
621 |
+
>>> def mygraph(n, create_using=None):
|
622 |
+
... G = nx.empty_graph(n, create_using, nx.MultiGraph)
|
623 |
+
... G.add_edges_from([(0, 1), (0, 1)])
|
624 |
+
... return G
|
625 |
+
>>> G = mygraph(3)
|
626 |
+
>>> G.is_multigraph()
|
627 |
+
True
|
628 |
+
>>> G = mygraph(3, nx.Graph)
|
629 |
+
>>> G.is_multigraph()
|
630 |
+
False
|
631 |
+
|
632 |
+
See also create_empty_copy(G).
|
633 |
+
|
634 |
+
"""
|
635 |
+
if create_using is None:
|
636 |
+
G = default()
|
637 |
+
elif isinstance(create_using, type):
|
638 |
+
G = create_using()
|
639 |
+
elif not hasattr(create_using, "adj"):
|
640 |
+
raise TypeError("create_using is not a valid NetworkX graph type or instance")
|
641 |
+
else:
|
642 |
+
# create_using is a NetworkX style Graph
|
643 |
+
create_using.clear()
|
644 |
+
G = create_using
|
645 |
+
|
646 |
+
_, nodes = n
|
647 |
+
G.add_nodes_from(nodes)
|
648 |
+
return G
|
649 |
+
|
650 |
+
|
651 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
652 |
+
def ladder_graph(n, create_using=None):
|
653 |
+
"""Returns the Ladder graph of length n.
|
654 |
+
|
655 |
+
This is two paths of n nodes, with
|
656 |
+
each pair connected by a single edge.
|
657 |
+
|
658 |
+
Node labels are the integers 0 to 2*n - 1.
|
659 |
+
|
660 |
+
.. plot::
|
661 |
+
|
662 |
+
>>> nx.draw(nx.ladder_graph(5))
|
663 |
+
|
664 |
+
"""
|
665 |
+
G = empty_graph(2 * n, create_using)
|
666 |
+
if G.is_directed():
|
667 |
+
raise NetworkXError("Directed Graph not supported")
|
668 |
+
G.add_edges_from(pairwise(range(n)))
|
669 |
+
G.add_edges_from(pairwise(range(n, 2 * n)))
|
670 |
+
G.add_edges_from((v, v + n) for v in range(n))
|
671 |
+
return G
|
672 |
+
|
673 |
+
|
674 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
675 |
+
@nodes_or_number([0, 1])
|
676 |
+
def lollipop_graph(m, n, create_using=None):
|
677 |
+
"""Returns the Lollipop Graph; ``K_m`` connected to ``P_n``.
|
678 |
+
|
679 |
+
This is the Barbell Graph without the right barbell.
|
680 |
+
|
681 |
+
.. plot::
|
682 |
+
|
683 |
+
>>> nx.draw(nx.lollipop_graph(3, 4))
|
684 |
+
|
685 |
+
Parameters
|
686 |
+
----------
|
687 |
+
m, n : int or iterable container of nodes
|
688 |
+
If an integer, nodes are from ``range(m)`` and ``range(m, m+n)``.
|
689 |
+
If a container of nodes, those nodes appear in the graph.
|
690 |
+
Warning: `m` and `n` are not checked for duplicates and if present the
|
691 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
692 |
+
|
693 |
+
The nodes for `m` appear in the complete graph $K_m$ and the nodes
|
694 |
+
for `n` appear in the path $P_n$
|
695 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
696 |
+
Graph type to create. If graph instance, then cleared before populated.
|
697 |
+
|
698 |
+
Returns
|
699 |
+
-------
|
700 |
+
Networkx graph
|
701 |
+
A complete graph with `m` nodes connected to a path of length `n`.
|
702 |
+
|
703 |
+
Notes
|
704 |
+
-----
|
705 |
+
The 2 subgraphs are joined via an edge ``(m-1, m)``.
|
706 |
+
If ``n=0``, this is merely a complete graph.
|
707 |
+
|
708 |
+
(This graph is an extremal example in David Aldous and Jim
|
709 |
+
Fill's etext on Random Walks on Graphs.)
|
710 |
+
|
711 |
+
"""
|
712 |
+
m, m_nodes = m
|
713 |
+
M = len(m_nodes)
|
714 |
+
if M < 2:
|
715 |
+
raise NetworkXError("Invalid description: m should indicate at least 2 nodes")
|
716 |
+
|
717 |
+
n, n_nodes = n
|
718 |
+
if isinstance(m, numbers.Integral) and isinstance(n, numbers.Integral):
|
719 |
+
n_nodes = list(range(M, M + n))
|
720 |
+
N = len(n_nodes)
|
721 |
+
|
722 |
+
# the ball
|
723 |
+
G = complete_graph(m_nodes, create_using)
|
724 |
+
if G.is_directed():
|
725 |
+
raise NetworkXError("Directed Graph not supported")
|
726 |
+
|
727 |
+
# the stick
|
728 |
+
G.add_nodes_from(n_nodes)
|
729 |
+
if N > 1:
|
730 |
+
G.add_edges_from(pairwise(n_nodes))
|
731 |
+
|
732 |
+
if len(G) != M + N:
|
733 |
+
raise NetworkXError("Nodes must be distinct in containers m and n")
|
734 |
+
|
735 |
+
# connect ball to stick
|
736 |
+
if M > 0 and N > 0:
|
737 |
+
G.add_edge(m_nodes[-1], n_nodes[0])
|
738 |
+
return G
|
739 |
+
|
740 |
+
|
741 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
742 |
+
def null_graph(create_using=None):
|
743 |
+
"""Returns the Null graph with no nodes or edges.
|
744 |
+
|
745 |
+
See empty_graph for the use of create_using.
|
746 |
+
|
747 |
+
"""
|
748 |
+
G = empty_graph(0, create_using)
|
749 |
+
return G
|
750 |
+
|
751 |
+
|
752 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
753 |
+
@nodes_or_number(0)
|
754 |
+
def path_graph(n, create_using=None):
|
755 |
+
"""Returns the Path graph `P_n` of linearly connected nodes.
|
756 |
+
|
757 |
+
.. plot::
|
758 |
+
|
759 |
+
>>> nx.draw(nx.path_graph(5))
|
760 |
+
|
761 |
+
Parameters
|
762 |
+
----------
|
763 |
+
n : int or iterable
|
764 |
+
If an integer, nodes are 0 to n - 1.
|
765 |
+
If an iterable of nodes, in the order they appear in the path.
|
766 |
+
Warning: n is not checked for duplicates and if present the
|
767 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
768 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
769 |
+
Graph type to create. If graph instance, then cleared before populated.
|
770 |
+
|
771 |
+
"""
|
772 |
+
_, nodes = n
|
773 |
+
G = empty_graph(nodes, create_using)
|
774 |
+
G.add_edges_from(pairwise(nodes))
|
775 |
+
return G
|
776 |
+
|
777 |
+
|
778 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
779 |
+
@nodes_or_number(0)
|
780 |
+
def star_graph(n, create_using=None):
|
781 |
+
"""Return the star graph
|
782 |
+
|
783 |
+
The star graph consists of one center node connected to n outer nodes.
|
784 |
+
|
785 |
+
.. plot::
|
786 |
+
|
787 |
+
>>> nx.draw(nx.star_graph(6))
|
788 |
+
|
789 |
+
Parameters
|
790 |
+
----------
|
791 |
+
n : int or iterable
|
792 |
+
If an integer, node labels are 0 to n with center 0.
|
793 |
+
If an iterable of nodes, the center is the first.
|
794 |
+
Warning: n is not checked for duplicates and if present the
|
795 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
796 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
797 |
+
Graph type to create. If graph instance, then cleared before populated.
|
798 |
+
|
799 |
+
Notes
|
800 |
+
-----
|
801 |
+
The graph has n+1 nodes for integer n.
|
802 |
+
So star_graph(3) is the same as star_graph(range(4)).
|
803 |
+
"""
|
804 |
+
n, nodes = n
|
805 |
+
if isinstance(n, numbers.Integral):
|
806 |
+
nodes.append(int(n)) # there should be n+1 nodes
|
807 |
+
G = empty_graph(nodes, create_using)
|
808 |
+
if G.is_directed():
|
809 |
+
raise NetworkXError("Directed Graph not supported")
|
810 |
+
|
811 |
+
if len(nodes) > 1:
|
812 |
+
hub, *spokes = nodes
|
813 |
+
G.add_edges_from((hub, node) for node in spokes)
|
814 |
+
return G
|
815 |
+
|
816 |
+
|
817 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
818 |
+
@nodes_or_number([0, 1])
|
819 |
+
def tadpole_graph(m, n, create_using=None):
|
820 |
+
"""Returns the (m,n)-tadpole graph; ``C_m`` connected to ``P_n``.
|
821 |
+
|
822 |
+
This graph on m+n nodes connects a cycle of size `m` to a path of length `n`.
|
823 |
+
It looks like a tadpole. It is also called a kite graph or a dragon graph.
|
824 |
+
|
825 |
+
.. plot::
|
826 |
+
|
827 |
+
>>> nx.draw(nx.tadpole_graph(3, 5))
|
828 |
+
|
829 |
+
Parameters
|
830 |
+
----------
|
831 |
+
m, n : int or iterable container of nodes
|
832 |
+
If an integer, nodes are from ``range(m)`` and ``range(m,m+n)``.
|
833 |
+
If a container of nodes, those nodes appear in the graph.
|
834 |
+
Warning: `m` and `n` are not checked for duplicates and if present the
|
835 |
+
resulting graph may not be as desired.
|
836 |
+
|
837 |
+
The nodes for `m` appear in the cycle graph $C_m$ and the nodes
|
838 |
+
for `n` appear in the path $P_n$.
|
839 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
840 |
+
Graph type to create. If graph instance, then cleared before populated.
|
841 |
+
|
842 |
+
Returns
|
843 |
+
-------
|
844 |
+
Networkx graph
|
845 |
+
A cycle of size `m` connected to a path of length `n`.
|
846 |
+
|
847 |
+
Raises
|
848 |
+
------
|
849 |
+
NetworkXError
|
850 |
+
If ``m < 2``. The tadpole graph is undefined for ``m<2``.
|
851 |
+
|
852 |
+
Notes
|
853 |
+
-----
|
854 |
+
The 2 subgraphs are joined via an edge ``(m-1, m)``.
|
855 |
+
If ``n=0``, this is a cycle graph.
|
856 |
+
`m` and/or `n` can be a container of nodes instead of an integer.
|
857 |
+
|
858 |
+
"""
|
859 |
+
m, m_nodes = m
|
860 |
+
M = len(m_nodes)
|
861 |
+
if M < 2:
|
862 |
+
raise NetworkXError("Invalid description: m should indicate at least 2 nodes")
|
863 |
+
|
864 |
+
n, n_nodes = n
|
865 |
+
if isinstance(m, numbers.Integral) and isinstance(n, numbers.Integral):
|
866 |
+
n_nodes = list(range(M, M + n))
|
867 |
+
|
868 |
+
# the circle
|
869 |
+
G = cycle_graph(m_nodes, create_using)
|
870 |
+
if G.is_directed():
|
871 |
+
raise NetworkXError("Directed Graph not supported")
|
872 |
+
|
873 |
+
# the stick
|
874 |
+
nx.add_path(G, [m_nodes[-1]] + list(n_nodes))
|
875 |
+
|
876 |
+
return G
|
877 |
+
|
878 |
+
|
879 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
880 |
+
def trivial_graph(create_using=None):
|
881 |
+
"""Return the Trivial graph with one node (with label 0) and no edges.
|
882 |
+
|
883 |
+
.. plot::
|
884 |
+
|
885 |
+
>>> nx.draw(nx.trivial_graph(), with_labels=True)
|
886 |
+
|
887 |
+
"""
|
888 |
+
G = empty_graph(1, create_using)
|
889 |
+
return G
|
890 |
+
|
891 |
+
|
892 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
893 |
+
def turan_graph(n, r):
|
894 |
+
r"""Return the Turan Graph
|
895 |
+
|
896 |
+
The Turan Graph is a complete multipartite graph on $n$ nodes
|
897 |
+
with $r$ disjoint subsets. That is, edges connect each node to
|
898 |
+
every node not in its subset.
|
899 |
+
|
900 |
+
Given $n$ and $r$, we create a complete multipartite graph with
|
901 |
+
$r-(n \mod r)$ partitions of size $n/r$, rounded down, and
|
902 |
+
$n \mod r$ partitions of size $n/r+1$, rounded down.
|
903 |
+
|
904 |
+
.. plot::
|
905 |
+
|
906 |
+
>>> nx.draw(nx.turan_graph(6, 2))
|
907 |
+
|
908 |
+
Parameters
|
909 |
+
----------
|
910 |
+
n : int
|
911 |
+
The number of nodes.
|
912 |
+
r : int
|
913 |
+
The number of partitions.
|
914 |
+
Must be less than or equal to n.
|
915 |
+
|
916 |
+
Notes
|
917 |
+
-----
|
918 |
+
Must satisfy $1 <= r <= n$.
|
919 |
+
The graph has $(r-1)(n^2)/(2r)$ edges, rounded down.
|
920 |
+
"""
|
921 |
+
|
922 |
+
if not 1 <= r <= n:
|
923 |
+
raise NetworkXError("Must satisfy 1 <= r <= n")
|
924 |
+
|
925 |
+
partitions = [n // r] * (r - (n % r)) + [n // r + 1] * (n % r)
|
926 |
+
G = complete_multipartite_graph(*partitions)
|
927 |
+
return G
|
928 |
+
|
929 |
+
|
930 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
931 |
+
@nodes_or_number(0)
|
932 |
+
def wheel_graph(n, create_using=None):
|
933 |
+
"""Return the wheel graph
|
934 |
+
|
935 |
+
The wheel graph consists of a hub node connected to a cycle of (n-1) nodes.
|
936 |
+
|
937 |
+
.. plot::
|
938 |
+
|
939 |
+
>>> nx.draw(nx.wheel_graph(5))
|
940 |
+
|
941 |
+
Parameters
|
942 |
+
----------
|
943 |
+
n : int or iterable
|
944 |
+
If an integer, node labels are 0 to n with center 0.
|
945 |
+
If an iterable of nodes, the center is the first.
|
946 |
+
Warning: n is not checked for duplicates and if present the
|
947 |
+
resulting graph may not be as desired. Make sure you have no duplicates.
|
948 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
949 |
+
Graph type to create. If graph instance, then cleared before populated.
|
950 |
+
|
951 |
+
Node labels are the integers 0 to n - 1.
|
952 |
+
"""
|
953 |
+
_, nodes = n
|
954 |
+
G = empty_graph(nodes, create_using)
|
955 |
+
if G.is_directed():
|
956 |
+
raise NetworkXError("Directed Graph not supported")
|
957 |
+
|
958 |
+
if len(nodes) > 1:
|
959 |
+
hub, *rim = nodes
|
960 |
+
G.add_edges_from((hub, node) for node in rim)
|
961 |
+
if len(rim) > 1:
|
962 |
+
G.add_edges_from(pairwise(rim, cyclic=True))
|
963 |
+
return G
|
964 |
+
|
965 |
+
|
966 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
967 |
+
def complete_multipartite_graph(*subset_sizes):
|
968 |
+
"""Returns the complete multipartite graph with the specified subset sizes.
|
969 |
+
|
970 |
+
.. plot::
|
971 |
+
|
972 |
+
>>> nx.draw(nx.complete_multipartite_graph(1, 2, 3))
|
973 |
+
|
974 |
+
Parameters
|
975 |
+
----------
|
976 |
+
subset_sizes : tuple of integers or tuple of node iterables
|
977 |
+
The arguments can either all be integer number of nodes or they
|
978 |
+
can all be iterables of nodes. If integers, they represent the
|
979 |
+
number of nodes in each subset of the multipartite graph.
|
980 |
+
If iterables, each is used to create the nodes for that subset.
|
981 |
+
The length of subset_sizes is the number of subsets.
|
982 |
+
|
983 |
+
Returns
|
984 |
+
-------
|
985 |
+
G : NetworkX Graph
|
986 |
+
Returns the complete multipartite graph with the specified subsets.
|
987 |
+
|
988 |
+
For each node, the node attribute 'subset' is an integer
|
989 |
+
indicating which subset contains the node.
|
990 |
+
|
991 |
+
Examples
|
992 |
+
--------
|
993 |
+
Creating a complete tripartite graph, with subsets of one, two, and three
|
994 |
+
nodes, respectively.
|
995 |
+
|
996 |
+
>>> G = nx.complete_multipartite_graph(1, 2, 3)
|
997 |
+
>>> [G.nodes[u]["subset"] for u in G]
|
998 |
+
[0, 1, 1, 2, 2, 2]
|
999 |
+
>>> list(G.edges(0))
|
1000 |
+
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
|
1001 |
+
>>> list(G.edges(2))
|
1002 |
+
[(2, 0), (2, 3), (2, 4), (2, 5)]
|
1003 |
+
>>> list(G.edges(4))
|
1004 |
+
[(4, 0), (4, 1), (4, 2)]
|
1005 |
+
|
1006 |
+
>>> G = nx.complete_multipartite_graph("a", "bc", "def")
|
1007 |
+
>>> [G.nodes[u]["subset"] for u in sorted(G)]
|
1008 |
+
[0, 1, 1, 2, 2, 2]
|
1009 |
+
|
1010 |
+
Notes
|
1011 |
+
-----
|
1012 |
+
This function generalizes several other graph builder functions.
|
1013 |
+
|
1014 |
+
- If no subset sizes are given, this returns the null graph.
|
1015 |
+
- If a single subset size `n` is given, this returns the empty graph on
|
1016 |
+
`n` nodes.
|
1017 |
+
- If two subset sizes `m` and `n` are given, this returns the complete
|
1018 |
+
bipartite graph on `m + n` nodes.
|
1019 |
+
- If subset sizes `1` and `n` are given, this returns the star graph on
|
1020 |
+
`n + 1` nodes.
|
1021 |
+
|
1022 |
+
See also
|
1023 |
+
--------
|
1024 |
+
complete_bipartite_graph
|
1025 |
+
"""
|
1026 |
+
# The complete multipartite graph is an undirected simple graph.
|
1027 |
+
G = Graph()
|
1028 |
+
|
1029 |
+
if len(subset_sizes) == 0:
|
1030 |
+
return G
|
1031 |
+
|
1032 |
+
# set up subsets of nodes
|
1033 |
+
try:
|
1034 |
+
extents = pairwise(itertools.accumulate((0,) + subset_sizes))
|
1035 |
+
subsets = [range(start, end) for start, end in extents]
|
1036 |
+
except TypeError:
|
1037 |
+
subsets = subset_sizes
|
1038 |
+
else:
|
1039 |
+
if any(size < 0 for size in subset_sizes):
|
1040 |
+
raise NetworkXError(f"Negative number of nodes not valid: {subset_sizes}")
|
1041 |
+
|
1042 |
+
# add nodes with subset attribute
|
1043 |
+
# while checking that ints are not mixed with iterables
|
1044 |
+
try:
|
1045 |
+
for i, subset in enumerate(subsets):
|
1046 |
+
G.add_nodes_from(subset, subset=i)
|
1047 |
+
except TypeError as err:
|
1048 |
+
raise NetworkXError("Arguments must be all ints or all iterables") from err
|
1049 |
+
|
1050 |
+
# Across subsets, all nodes should be adjacent.
|
1051 |
+
# We can use itertools.combinations() because undirected.
|
1052 |
+
for subset1, subset2 in itertools.combinations(subsets, 2):
|
1053 |
+
G.add_edges_from(itertools.product(subset1, subset2))
|
1054 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/cographs.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""Generators for cographs
|
2 |
+
|
3 |
+
A cograph is a graph containing no path on four vertices.
|
4 |
+
Cographs or $P_4$-free graphs can be obtained from a single vertex
|
5 |
+
by disjoint union and complementation operations.
|
6 |
+
|
7 |
+
References
|
8 |
+
----------
|
9 |
+
.. [0] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
|
10 |
+
"Complement reducible graphs",
|
11 |
+
Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
|
12 |
+
ISSN 0166-218X.
|
13 |
+
"""
|
14 |
+
import networkx as nx
|
15 |
+
from networkx.utils import py_random_state
|
16 |
+
|
17 |
+
__all__ = ["random_cograph"]
|
18 |
+
|
19 |
+
|
20 |
+
@py_random_state(1)
|
21 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
22 |
+
def random_cograph(n, seed=None):
|
23 |
+
r"""Returns a random cograph with $2 ^ n$ nodes.
|
24 |
+
|
25 |
+
A cograph is a graph containing no path on four vertices.
|
26 |
+
Cographs or $P_4$-free graphs can be obtained from a single vertex
|
27 |
+
by disjoint union and complementation operations.
|
28 |
+
|
29 |
+
This generator starts off from a single vertex and performs disjoint
|
30 |
+
union and full join operations on itself.
|
31 |
+
The decision on which operation will take place is random.
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
n : int
|
36 |
+
The order of the cograph.
|
37 |
+
seed : integer, random_state, or None (default)
|
38 |
+
Indicator of random number generation state.
|
39 |
+
See :ref:`Randomness<randomness>`.
|
40 |
+
|
41 |
+
Returns
|
42 |
+
-------
|
43 |
+
G : A random graph containing no path on four vertices.
|
44 |
+
|
45 |
+
See Also
|
46 |
+
--------
|
47 |
+
full_join
|
48 |
+
union
|
49 |
+
|
50 |
+
References
|
51 |
+
----------
|
52 |
+
.. [1] D.G. Corneil, H. Lerchs, L.Stewart Burlingham,
|
53 |
+
"Complement reducible graphs",
|
54 |
+
Discrete Applied Mathematics, Volume 3, Issue 3, 1981, Pages 163-174,
|
55 |
+
ISSN 0166-218X.
|
56 |
+
"""
|
57 |
+
R = nx.empty_graph(1)
|
58 |
+
|
59 |
+
for i in range(n):
|
60 |
+
RR = nx.relabel_nodes(R.copy(), lambda x: x + len(R))
|
61 |
+
|
62 |
+
if seed.randint(0, 1) == 0:
|
63 |
+
R = nx.full_join(R, RR)
|
64 |
+
else:
|
65 |
+
R = nx.disjoint_union(R, RR)
|
66 |
+
|
67 |
+
return R
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/community.py
ADDED
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generators for classes of graphs used in studying social networks."""
|
2 |
+
import itertools
|
3 |
+
import math
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx.utils import py_random_state
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"caveman_graph",
|
10 |
+
"connected_caveman_graph",
|
11 |
+
"relaxed_caveman_graph",
|
12 |
+
"random_partition_graph",
|
13 |
+
"planted_partition_graph",
|
14 |
+
"gaussian_random_partition_graph",
|
15 |
+
"ring_of_cliques",
|
16 |
+
"windmill_graph",
|
17 |
+
"stochastic_block_model",
|
18 |
+
"LFR_benchmark_graph",
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
23 |
+
def caveman_graph(l, k):
|
24 |
+
"""Returns a caveman graph of `l` cliques of size `k`.
|
25 |
+
|
26 |
+
Parameters
|
27 |
+
----------
|
28 |
+
l : int
|
29 |
+
Number of cliques
|
30 |
+
k : int
|
31 |
+
Size of cliques
|
32 |
+
|
33 |
+
Returns
|
34 |
+
-------
|
35 |
+
G : NetworkX Graph
|
36 |
+
caveman graph
|
37 |
+
|
38 |
+
Notes
|
39 |
+
-----
|
40 |
+
This returns an undirected graph, it can be converted to a directed
|
41 |
+
graph using :func:`nx.to_directed`, or a multigraph using
|
42 |
+
``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
|
43 |
+
described in [1]_ and it is unclear which of the directed
|
44 |
+
generalizations is most useful.
|
45 |
+
|
46 |
+
Examples
|
47 |
+
--------
|
48 |
+
>>> G = nx.caveman_graph(3, 3)
|
49 |
+
|
50 |
+
See also
|
51 |
+
--------
|
52 |
+
|
53 |
+
connected_caveman_graph
|
54 |
+
|
55 |
+
References
|
56 |
+
----------
|
57 |
+
.. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
|
58 |
+
Amer. J. Soc. 105, 493-527, 1999.
|
59 |
+
"""
|
60 |
+
# l disjoint cliques of size k
|
61 |
+
G = nx.empty_graph(l * k)
|
62 |
+
if k > 1:
|
63 |
+
for start in range(0, l * k, k):
|
64 |
+
edges = itertools.combinations(range(start, start + k), 2)
|
65 |
+
G.add_edges_from(edges)
|
66 |
+
return G
|
67 |
+
|
68 |
+
|
69 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
70 |
+
def connected_caveman_graph(l, k):
|
71 |
+
"""Returns a connected caveman graph of `l` cliques of size `k`.
|
72 |
+
|
73 |
+
The connected caveman graph is formed by creating `n` cliques of size
|
74 |
+
`k`, then a single edge in each clique is rewired to a node in an
|
75 |
+
adjacent clique.
|
76 |
+
|
77 |
+
Parameters
|
78 |
+
----------
|
79 |
+
l : int
|
80 |
+
number of cliques
|
81 |
+
k : int
|
82 |
+
size of cliques (k at least 2 or NetworkXError is raised)
|
83 |
+
|
84 |
+
Returns
|
85 |
+
-------
|
86 |
+
G : NetworkX Graph
|
87 |
+
connected caveman graph
|
88 |
+
|
89 |
+
Raises
|
90 |
+
------
|
91 |
+
NetworkXError
|
92 |
+
If the size of cliques `k` is smaller than 2.
|
93 |
+
|
94 |
+
Notes
|
95 |
+
-----
|
96 |
+
This returns an undirected graph, it can be converted to a directed
|
97 |
+
graph using :func:`nx.to_directed`, or a multigraph using
|
98 |
+
``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
|
99 |
+
described in [1]_ and it is unclear which of the directed
|
100 |
+
generalizations is most useful.
|
101 |
+
|
102 |
+
Examples
|
103 |
+
--------
|
104 |
+
>>> G = nx.connected_caveman_graph(3, 3)
|
105 |
+
|
106 |
+
References
|
107 |
+
----------
|
108 |
+
.. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
|
109 |
+
Amer. J. Soc. 105, 493-527, 1999.
|
110 |
+
"""
|
111 |
+
if k < 2:
|
112 |
+
raise nx.NetworkXError(
|
113 |
+
"The size of cliques in a connected caveman graph must be at least 2."
|
114 |
+
)
|
115 |
+
|
116 |
+
G = nx.caveman_graph(l, k)
|
117 |
+
for start in range(0, l * k, k):
|
118 |
+
G.remove_edge(start, start + 1)
|
119 |
+
G.add_edge(start, (start - 1) % (l * k))
|
120 |
+
return G
|
121 |
+
|
122 |
+
|
123 |
+
@py_random_state(3)
|
124 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
125 |
+
def relaxed_caveman_graph(l, k, p, seed=None):
|
126 |
+
"""Returns a relaxed caveman graph.
|
127 |
+
|
128 |
+
A relaxed caveman graph starts with `l` cliques of size `k`. Edges are
|
129 |
+
then randomly rewired with probability `p` to link different cliques.
|
130 |
+
|
131 |
+
Parameters
|
132 |
+
----------
|
133 |
+
l : int
|
134 |
+
Number of groups
|
135 |
+
k : int
|
136 |
+
Size of cliques
|
137 |
+
p : float
|
138 |
+
Probability of rewiring each edge.
|
139 |
+
seed : integer, random_state, or None (default)
|
140 |
+
Indicator of random number generation state.
|
141 |
+
See :ref:`Randomness<randomness>`.
|
142 |
+
|
143 |
+
Returns
|
144 |
+
-------
|
145 |
+
G : NetworkX Graph
|
146 |
+
Relaxed Caveman Graph
|
147 |
+
|
148 |
+
Raises
|
149 |
+
------
|
150 |
+
NetworkXError
|
151 |
+
If p is not in [0,1]
|
152 |
+
|
153 |
+
Examples
|
154 |
+
--------
|
155 |
+
>>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42)
|
156 |
+
|
157 |
+
References
|
158 |
+
----------
|
159 |
+
.. [1] Santo Fortunato, Community Detection in Graphs,
|
160 |
+
Physics Reports Volume 486, Issues 3-5, February 2010, Pages 75-174.
|
161 |
+
https://arxiv.org/abs/0906.0612
|
162 |
+
"""
|
163 |
+
G = nx.caveman_graph(l, k)
|
164 |
+
nodes = list(G)
|
165 |
+
for u, v in G.edges():
|
166 |
+
if seed.random() < p: # rewire the edge
|
167 |
+
x = seed.choice(nodes)
|
168 |
+
if G.has_edge(u, x):
|
169 |
+
continue
|
170 |
+
G.remove_edge(u, v)
|
171 |
+
G.add_edge(u, x)
|
172 |
+
return G
|
173 |
+
|
174 |
+
|
175 |
+
@py_random_state(3)
|
176 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
177 |
+
def random_partition_graph(sizes, p_in, p_out, seed=None, directed=False):
|
178 |
+
"""Returns the random partition graph with a partition of sizes.
|
179 |
+
|
180 |
+
A partition graph is a graph of communities with sizes defined by
|
181 |
+
s in sizes. Nodes in the same group are connected with probability
|
182 |
+
p_in and nodes of different groups are connected with probability
|
183 |
+
p_out.
|
184 |
+
|
185 |
+
Parameters
|
186 |
+
----------
|
187 |
+
sizes : list of ints
|
188 |
+
Sizes of groups
|
189 |
+
p_in : float
|
190 |
+
probability of edges with in groups
|
191 |
+
p_out : float
|
192 |
+
probability of edges between groups
|
193 |
+
directed : boolean optional, default=False
|
194 |
+
Whether to create a directed graph
|
195 |
+
seed : integer, random_state, or None (default)
|
196 |
+
Indicator of random number generation state.
|
197 |
+
See :ref:`Randomness<randomness>`.
|
198 |
+
|
199 |
+
Returns
|
200 |
+
-------
|
201 |
+
G : NetworkX Graph or DiGraph
|
202 |
+
random partition graph of size sum(gs)
|
203 |
+
|
204 |
+
Raises
|
205 |
+
------
|
206 |
+
NetworkXError
|
207 |
+
If p_in or p_out is not in [0,1]
|
208 |
+
|
209 |
+
Examples
|
210 |
+
--------
|
211 |
+
>>> G = nx.random_partition_graph([10, 10, 10], 0.25, 0.01)
|
212 |
+
>>> len(G)
|
213 |
+
30
|
214 |
+
>>> partition = G.graph["partition"]
|
215 |
+
>>> len(partition)
|
216 |
+
3
|
217 |
+
|
218 |
+
Notes
|
219 |
+
-----
|
220 |
+
This is a generalization of the planted-l-partition described in
|
221 |
+
[1]_. It allows for the creation of groups of any size.
|
222 |
+
|
223 |
+
The partition is store as a graph attribute 'partition'.
|
224 |
+
|
225 |
+
References
|
226 |
+
----------
|
227 |
+
.. [1] Santo Fortunato 'Community Detection in Graphs' Physical Reports
|
228 |
+
Volume 486, Issue 3-5 p. 75-174. https://arxiv.org/abs/0906.0612
|
229 |
+
"""
|
230 |
+
# Use geometric method for O(n+m) complexity algorithm
|
231 |
+
# partition = nx.community_sets(nx.get_node_attributes(G, 'affiliation'))
|
232 |
+
if not 0.0 <= p_in <= 1.0:
|
233 |
+
raise nx.NetworkXError("p_in must be in [0,1]")
|
234 |
+
if not 0.0 <= p_out <= 1.0:
|
235 |
+
raise nx.NetworkXError("p_out must be in [0,1]")
|
236 |
+
|
237 |
+
# create connection matrix
|
238 |
+
num_blocks = len(sizes)
|
239 |
+
p = [[p_out for s in range(num_blocks)] for r in range(num_blocks)]
|
240 |
+
for r in range(num_blocks):
|
241 |
+
p[r][r] = p_in
|
242 |
+
|
243 |
+
return stochastic_block_model(
|
244 |
+
sizes,
|
245 |
+
p,
|
246 |
+
nodelist=None,
|
247 |
+
seed=seed,
|
248 |
+
directed=directed,
|
249 |
+
selfloops=False,
|
250 |
+
sparse=True,
|
251 |
+
)
|
252 |
+
|
253 |
+
|
254 |
+
@py_random_state(4)
|
255 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
256 |
+
def planted_partition_graph(l, k, p_in, p_out, seed=None, directed=False):
|
257 |
+
"""Returns the planted l-partition graph.
|
258 |
+
|
259 |
+
This model partitions a graph with n=l*k vertices in
|
260 |
+
l groups with k vertices each. Vertices of the same
|
261 |
+
group are linked with a probability p_in, and vertices
|
262 |
+
of different groups are linked with probability p_out.
|
263 |
+
|
264 |
+
Parameters
|
265 |
+
----------
|
266 |
+
l : int
|
267 |
+
Number of groups
|
268 |
+
k : int
|
269 |
+
Number of vertices in each group
|
270 |
+
p_in : float
|
271 |
+
probability of connecting vertices within a group
|
272 |
+
p_out : float
|
273 |
+
probability of connected vertices between groups
|
274 |
+
seed : integer, random_state, or None (default)
|
275 |
+
Indicator of random number generation state.
|
276 |
+
See :ref:`Randomness<randomness>`.
|
277 |
+
directed : bool,optional (default=False)
|
278 |
+
If True return a directed graph
|
279 |
+
|
280 |
+
Returns
|
281 |
+
-------
|
282 |
+
G : NetworkX Graph or DiGraph
|
283 |
+
planted l-partition graph
|
284 |
+
|
285 |
+
Raises
|
286 |
+
------
|
287 |
+
NetworkXError
|
288 |
+
If `p_in`, `p_out` are not in `[0, 1]`
|
289 |
+
|
290 |
+
Examples
|
291 |
+
--------
|
292 |
+
>>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1, seed=42)
|
293 |
+
|
294 |
+
See Also
|
295 |
+
--------
|
296 |
+
random_partition_model
|
297 |
+
|
298 |
+
References
|
299 |
+
----------
|
300 |
+
.. [1] A. Condon, R.M. Karp, Algorithms for graph partitioning
|
301 |
+
on the planted partition model,
|
302 |
+
Random Struct. Algor. 18 (2001) 116-140.
|
303 |
+
|
304 |
+
.. [2] Santo Fortunato 'Community Detection in Graphs' Physical Reports
|
305 |
+
Volume 486, Issue 3-5 p. 75-174. https://arxiv.org/abs/0906.0612
|
306 |
+
"""
|
307 |
+
return random_partition_graph([k] * l, p_in, p_out, seed=seed, directed=directed)
|
308 |
+
|
309 |
+
|
310 |
+
@py_random_state(6)
|
311 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
312 |
+
def gaussian_random_partition_graph(n, s, v, p_in, p_out, directed=False, seed=None):
|
313 |
+
"""Generate a Gaussian random partition graph.
|
314 |
+
|
315 |
+
A Gaussian random partition graph is created by creating k partitions
|
316 |
+
each with a size drawn from a normal distribution with mean s and variance
|
317 |
+
s/v. Nodes are connected within clusters with probability p_in and
|
318 |
+
between clusters with probability p_out[1]
|
319 |
+
|
320 |
+
Parameters
|
321 |
+
----------
|
322 |
+
n : int
|
323 |
+
Number of nodes in the graph
|
324 |
+
s : float
|
325 |
+
Mean cluster size
|
326 |
+
v : float
|
327 |
+
Shape parameter. The variance of cluster size distribution is s/v.
|
328 |
+
p_in : float
|
329 |
+
Probability of intra cluster connection.
|
330 |
+
p_out : float
|
331 |
+
Probability of inter cluster connection.
|
332 |
+
directed : boolean, optional default=False
|
333 |
+
Whether to create a directed graph or not
|
334 |
+
seed : integer, random_state, or None (default)
|
335 |
+
Indicator of random number generation state.
|
336 |
+
See :ref:`Randomness<randomness>`.
|
337 |
+
|
338 |
+
Returns
|
339 |
+
-------
|
340 |
+
G : NetworkX Graph or DiGraph
|
341 |
+
gaussian random partition graph
|
342 |
+
|
343 |
+
Raises
|
344 |
+
------
|
345 |
+
NetworkXError
|
346 |
+
If s is > n
|
347 |
+
If p_in or p_out is not in [0,1]
|
348 |
+
|
349 |
+
Notes
|
350 |
+
-----
|
351 |
+
Note the number of partitions is dependent on s,v and n, and that the
|
352 |
+
last partition may be considerably smaller, as it is sized to simply
|
353 |
+
fill out the nodes [1]
|
354 |
+
|
355 |
+
See Also
|
356 |
+
--------
|
357 |
+
random_partition_graph
|
358 |
+
|
359 |
+
Examples
|
360 |
+
--------
|
361 |
+
>>> G = nx.gaussian_random_partition_graph(100, 10, 10, 0.25, 0.1)
|
362 |
+
>>> len(G)
|
363 |
+
100
|
364 |
+
|
365 |
+
References
|
366 |
+
----------
|
367 |
+
.. [1] Ulrik Brandes, Marco Gaertler, Dorothea Wagner,
|
368 |
+
Experiments on Graph Clustering Algorithms,
|
369 |
+
In the proceedings of the 11th Europ. Symp. Algorithms, 2003.
|
370 |
+
"""
|
371 |
+
if s > n:
|
372 |
+
raise nx.NetworkXError("s must be <= n")
|
373 |
+
assigned = 0
|
374 |
+
sizes = []
|
375 |
+
while True:
|
376 |
+
size = int(seed.gauss(s, s / v + 0.5))
|
377 |
+
if size < 1: # how to handle 0 or negative sizes?
|
378 |
+
continue
|
379 |
+
if assigned + size >= n:
|
380 |
+
sizes.append(n - assigned)
|
381 |
+
break
|
382 |
+
assigned += size
|
383 |
+
sizes.append(size)
|
384 |
+
return random_partition_graph(sizes, p_in, p_out, seed=seed, directed=directed)
|
385 |
+
|
386 |
+
|
387 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
388 |
+
def ring_of_cliques(num_cliques, clique_size):
|
389 |
+
"""Defines a "ring of cliques" graph.
|
390 |
+
|
391 |
+
A ring of cliques graph is consisting of cliques, connected through single
|
392 |
+
links. Each clique is a complete graph.
|
393 |
+
|
394 |
+
Parameters
|
395 |
+
----------
|
396 |
+
num_cliques : int
|
397 |
+
Number of cliques
|
398 |
+
clique_size : int
|
399 |
+
Size of cliques
|
400 |
+
|
401 |
+
Returns
|
402 |
+
-------
|
403 |
+
G : NetworkX Graph
|
404 |
+
ring of cliques graph
|
405 |
+
|
406 |
+
Raises
|
407 |
+
------
|
408 |
+
NetworkXError
|
409 |
+
If the number of cliques is lower than 2 or
|
410 |
+
if the size of cliques is smaller than 2.
|
411 |
+
|
412 |
+
Examples
|
413 |
+
--------
|
414 |
+
>>> G = nx.ring_of_cliques(8, 4)
|
415 |
+
|
416 |
+
See Also
|
417 |
+
--------
|
418 |
+
connected_caveman_graph
|
419 |
+
|
420 |
+
Notes
|
421 |
+
-----
|
422 |
+
The `connected_caveman_graph` graph removes a link from each clique to
|
423 |
+
connect it with the next clique. Instead, the `ring_of_cliques` graph
|
424 |
+
simply adds the link without removing any link from the cliques.
|
425 |
+
"""
|
426 |
+
if num_cliques < 2:
|
427 |
+
raise nx.NetworkXError("A ring of cliques must have at least two cliques")
|
428 |
+
if clique_size < 2:
|
429 |
+
raise nx.NetworkXError("The cliques must have at least two nodes")
|
430 |
+
|
431 |
+
G = nx.Graph()
|
432 |
+
for i in range(num_cliques):
|
433 |
+
edges = itertools.combinations(
|
434 |
+
range(i * clique_size, i * clique_size + clique_size), 2
|
435 |
+
)
|
436 |
+
G.add_edges_from(edges)
|
437 |
+
G.add_edge(
|
438 |
+
i * clique_size + 1, (i + 1) * clique_size % (num_cliques * clique_size)
|
439 |
+
)
|
440 |
+
return G
|
441 |
+
|
442 |
+
|
443 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
444 |
+
def windmill_graph(n, k):
|
445 |
+
"""Generate a windmill graph.
|
446 |
+
A windmill graph is a graph of `n` cliques each of size `k` that are all
|
447 |
+
joined at one node.
|
448 |
+
It can be thought of as taking a disjoint union of `n` cliques of size `k`,
|
449 |
+
selecting one point from each, and contracting all of the selected points.
|
450 |
+
Alternatively, one could generate `n` cliques of size `k-1` and one node
|
451 |
+
that is connected to all other nodes in the graph.
|
452 |
+
|
453 |
+
Parameters
|
454 |
+
----------
|
455 |
+
n : int
|
456 |
+
Number of cliques
|
457 |
+
k : int
|
458 |
+
Size of cliques
|
459 |
+
|
460 |
+
Returns
|
461 |
+
-------
|
462 |
+
G : NetworkX Graph
|
463 |
+
windmill graph with n cliques of size k
|
464 |
+
|
465 |
+
Raises
|
466 |
+
------
|
467 |
+
NetworkXError
|
468 |
+
If the number of cliques is less than two
|
469 |
+
If the size of the cliques are less than two
|
470 |
+
|
471 |
+
Examples
|
472 |
+
--------
|
473 |
+
>>> G = nx.windmill_graph(4, 5)
|
474 |
+
|
475 |
+
Notes
|
476 |
+
-----
|
477 |
+
The node labeled `0` will be the node connected to all other nodes.
|
478 |
+
Note that windmill graphs are usually denoted `Wd(k,n)`, so the parameters
|
479 |
+
are in the opposite order as the parameters of this method.
|
480 |
+
"""
|
481 |
+
if n < 2:
|
482 |
+
msg = "A windmill graph must have at least two cliques"
|
483 |
+
raise nx.NetworkXError(msg)
|
484 |
+
if k < 2:
|
485 |
+
raise nx.NetworkXError("The cliques must have at least two nodes")
|
486 |
+
|
487 |
+
G = nx.disjoint_union_all(
|
488 |
+
itertools.chain(
|
489 |
+
[nx.complete_graph(k)], (nx.complete_graph(k - 1) for _ in range(n - 1))
|
490 |
+
)
|
491 |
+
)
|
492 |
+
G.add_edges_from((0, i) for i in range(k, G.number_of_nodes()))
|
493 |
+
return G
|
494 |
+
|
495 |
+
|
496 |
+
@py_random_state(3)
|
497 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
498 |
+
def stochastic_block_model(
|
499 |
+
sizes, p, nodelist=None, seed=None, directed=False, selfloops=False, sparse=True
|
500 |
+
):
|
501 |
+
"""Returns a stochastic block model graph.
|
502 |
+
|
503 |
+
This model partitions the nodes in blocks of arbitrary sizes, and places
|
504 |
+
edges between pairs of nodes independently, with a probability that depends
|
505 |
+
on the blocks.
|
506 |
+
|
507 |
+
Parameters
|
508 |
+
----------
|
509 |
+
sizes : list of ints
|
510 |
+
Sizes of blocks
|
511 |
+
p : list of list of floats
|
512 |
+
Element (r,s) gives the density of edges going from the nodes
|
513 |
+
of group r to nodes of group s.
|
514 |
+
p must match the number of groups (len(sizes) == len(p)),
|
515 |
+
and it must be symmetric if the graph is undirected.
|
516 |
+
nodelist : list, optional
|
517 |
+
The block tags are assigned according to the node identifiers
|
518 |
+
in nodelist. If nodelist is None, then the ordering is the
|
519 |
+
range [0,sum(sizes)-1].
|
520 |
+
seed : integer, random_state, or None (default)
|
521 |
+
Indicator of random number generation state.
|
522 |
+
See :ref:`Randomness<randomness>`.
|
523 |
+
directed : boolean optional, default=False
|
524 |
+
Whether to create a directed graph or not.
|
525 |
+
selfloops : boolean optional, default=False
|
526 |
+
Whether to include self-loops or not.
|
527 |
+
sparse: boolean optional, default=True
|
528 |
+
Use the sparse heuristic to speed up the generator.
|
529 |
+
|
530 |
+
Returns
|
531 |
+
-------
|
532 |
+
g : NetworkX Graph or DiGraph
|
533 |
+
Stochastic block model graph of size sum(sizes)
|
534 |
+
|
535 |
+
Raises
|
536 |
+
------
|
537 |
+
NetworkXError
|
538 |
+
If probabilities are not in [0,1].
|
539 |
+
If the probability matrix is not square (directed case).
|
540 |
+
If the probability matrix is not symmetric (undirected case).
|
541 |
+
If the sizes list does not match nodelist or the probability matrix.
|
542 |
+
If nodelist contains duplicate.
|
543 |
+
|
544 |
+
Examples
|
545 |
+
--------
|
546 |
+
>>> sizes = [75, 75, 300]
|
547 |
+
>>> probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
|
548 |
+
>>> g = nx.stochastic_block_model(sizes, probs, seed=0)
|
549 |
+
>>> len(g)
|
550 |
+
450
|
551 |
+
>>> H = nx.quotient_graph(g, g.graph["partition"], relabel=True)
|
552 |
+
>>> for v in H.nodes(data=True):
|
553 |
+
... print(round(v[1]["density"], 3))
|
554 |
+
0.245
|
555 |
+
0.348
|
556 |
+
0.405
|
557 |
+
>>> for v in H.edges(data=True):
|
558 |
+
... print(round(1.0 * v[2]["weight"] / (sizes[v[0]] * sizes[v[1]]), 3))
|
559 |
+
0.051
|
560 |
+
0.022
|
561 |
+
0.07
|
562 |
+
|
563 |
+
See Also
|
564 |
+
--------
|
565 |
+
random_partition_graph
|
566 |
+
planted_partition_graph
|
567 |
+
gaussian_random_partition_graph
|
568 |
+
gnp_random_graph
|
569 |
+
|
570 |
+
References
|
571 |
+
----------
|
572 |
+
.. [1] Holland, P. W., Laskey, K. B., & Leinhardt, S.,
|
573 |
+
"Stochastic blockmodels: First steps",
|
574 |
+
Social networks, 5(2), 109-137, 1983.
|
575 |
+
"""
|
576 |
+
# Check if dimensions match
|
577 |
+
if len(sizes) != len(p):
|
578 |
+
raise nx.NetworkXException("'sizes' and 'p' do not match.")
|
579 |
+
# Check for probability symmetry (undirected) and shape (directed)
|
580 |
+
for row in p:
|
581 |
+
if len(p) != len(row):
|
582 |
+
raise nx.NetworkXException("'p' must be a square matrix.")
|
583 |
+
if not directed:
|
584 |
+
p_transpose = [list(i) for i in zip(*p)]
|
585 |
+
for i in zip(p, p_transpose):
|
586 |
+
for j in zip(i[0], i[1]):
|
587 |
+
if abs(j[0] - j[1]) > 1e-08:
|
588 |
+
raise nx.NetworkXException("'p' must be symmetric.")
|
589 |
+
# Check for probability range
|
590 |
+
for row in p:
|
591 |
+
for prob in row:
|
592 |
+
if prob < 0 or prob > 1:
|
593 |
+
raise nx.NetworkXException("Entries of 'p' not in [0,1].")
|
594 |
+
# Check for nodelist consistency
|
595 |
+
if nodelist is not None:
|
596 |
+
if len(nodelist) != sum(sizes):
|
597 |
+
raise nx.NetworkXException("'nodelist' and 'sizes' do not match.")
|
598 |
+
if len(nodelist) != len(set(nodelist)):
|
599 |
+
raise nx.NetworkXException("nodelist contains duplicate.")
|
600 |
+
else:
|
601 |
+
nodelist = range(sum(sizes))
|
602 |
+
|
603 |
+
# Setup the graph conditionally to the directed switch.
|
604 |
+
block_range = range(len(sizes))
|
605 |
+
if directed:
|
606 |
+
g = nx.DiGraph()
|
607 |
+
block_iter = itertools.product(block_range, block_range)
|
608 |
+
else:
|
609 |
+
g = nx.Graph()
|
610 |
+
block_iter = itertools.combinations_with_replacement(block_range, 2)
|
611 |
+
# Split nodelist in a partition (list of sets).
|
612 |
+
size_cumsum = [sum(sizes[0:x]) for x in range(len(sizes) + 1)]
|
613 |
+
g.graph["partition"] = [
|
614 |
+
set(nodelist[size_cumsum[x] : size_cumsum[x + 1]])
|
615 |
+
for x in range(len(size_cumsum) - 1)
|
616 |
+
]
|
617 |
+
# Setup nodes and graph name
|
618 |
+
for block_id, nodes in enumerate(g.graph["partition"]):
|
619 |
+
for node in nodes:
|
620 |
+
g.add_node(node, block=block_id)
|
621 |
+
|
622 |
+
g.name = "stochastic_block_model"
|
623 |
+
|
624 |
+
# Test for edge existence
|
625 |
+
parts = g.graph["partition"]
|
626 |
+
for i, j in block_iter:
|
627 |
+
if i == j:
|
628 |
+
if directed:
|
629 |
+
if selfloops:
|
630 |
+
edges = itertools.product(parts[i], parts[i])
|
631 |
+
else:
|
632 |
+
edges = itertools.permutations(parts[i], 2)
|
633 |
+
else:
|
634 |
+
edges = itertools.combinations(parts[i], 2)
|
635 |
+
if selfloops:
|
636 |
+
edges = itertools.chain(edges, zip(parts[i], parts[i]))
|
637 |
+
for e in edges:
|
638 |
+
if seed.random() < p[i][j]:
|
639 |
+
g.add_edge(*e)
|
640 |
+
else:
|
641 |
+
edges = itertools.product(parts[i], parts[j])
|
642 |
+
if sparse:
|
643 |
+
if p[i][j] == 1: # Test edges cases p_ij = 0 or 1
|
644 |
+
for e in edges:
|
645 |
+
g.add_edge(*e)
|
646 |
+
elif p[i][j] > 0:
|
647 |
+
while True:
|
648 |
+
try:
|
649 |
+
logrand = math.log(seed.random())
|
650 |
+
skip = math.floor(logrand / math.log(1 - p[i][j]))
|
651 |
+
# consume "skip" edges
|
652 |
+
next(itertools.islice(edges, skip, skip), None)
|
653 |
+
e = next(edges)
|
654 |
+
g.add_edge(*e) # __safe
|
655 |
+
except StopIteration:
|
656 |
+
break
|
657 |
+
else:
|
658 |
+
for e in edges:
|
659 |
+
if seed.random() < p[i][j]:
|
660 |
+
g.add_edge(*e) # __safe
|
661 |
+
return g
|
662 |
+
|
663 |
+
|
664 |
+
def _zipf_rv_below(gamma, xmin, threshold, seed):
|
665 |
+
"""Returns a random value chosen from the bounded Zipf distribution.
|
666 |
+
|
667 |
+
Repeatedly draws values from the Zipf distribution until the
|
668 |
+
threshold is met, then returns that value.
|
669 |
+
"""
|
670 |
+
result = nx.utils.zipf_rv(gamma, xmin, seed)
|
671 |
+
while result > threshold:
|
672 |
+
result = nx.utils.zipf_rv(gamma, xmin, seed)
|
673 |
+
return result
|
674 |
+
|
675 |
+
|
676 |
+
def _powerlaw_sequence(gamma, low, high, condition, length, max_iters, seed):
|
677 |
+
"""Returns a list of numbers obeying a constrained power law distribution.
|
678 |
+
|
679 |
+
``gamma`` and ``low`` are the parameters for the Zipf distribution.
|
680 |
+
|
681 |
+
``high`` is the maximum allowed value for values draw from the Zipf
|
682 |
+
distribution. For more information, see :func:`_zipf_rv_below`.
|
683 |
+
|
684 |
+
``condition`` and ``length`` are Boolean-valued functions on
|
685 |
+
lists. While generating the list, random values are drawn and
|
686 |
+
appended to the list until ``length`` is satisfied by the created
|
687 |
+
list. Once ``condition`` is satisfied, the sequence generated in
|
688 |
+
this way is returned.
|
689 |
+
|
690 |
+
``max_iters`` indicates the number of times to generate a list
|
691 |
+
satisfying ``length``. If the number of iterations exceeds this
|
692 |
+
value, :exc:`~networkx.exception.ExceededMaxIterations` is raised.
|
693 |
+
|
694 |
+
seed : integer, random_state, or None (default)
|
695 |
+
Indicator of random number generation state.
|
696 |
+
See :ref:`Randomness<randomness>`.
|
697 |
+
"""
|
698 |
+
for i in range(max_iters):
|
699 |
+
seq = []
|
700 |
+
while not length(seq):
|
701 |
+
seq.append(_zipf_rv_below(gamma, low, high, seed))
|
702 |
+
if condition(seq):
|
703 |
+
return seq
|
704 |
+
raise nx.ExceededMaxIterations("Could not create power law sequence")
|
705 |
+
|
706 |
+
|
707 |
+
def _hurwitz_zeta(x, q, tolerance):
|
708 |
+
"""The Hurwitz zeta function, or the Riemann zeta function of two arguments.
|
709 |
+
|
710 |
+
``x`` must be greater than one and ``q`` must be positive.
|
711 |
+
|
712 |
+
This function repeatedly computes subsequent partial sums until
|
713 |
+
convergence, as decided by ``tolerance``.
|
714 |
+
"""
|
715 |
+
z = 0
|
716 |
+
z_prev = -float("inf")
|
717 |
+
k = 0
|
718 |
+
while abs(z - z_prev) > tolerance:
|
719 |
+
z_prev = z
|
720 |
+
z += 1 / ((k + q) ** x)
|
721 |
+
k += 1
|
722 |
+
return z
|
723 |
+
|
724 |
+
|
725 |
+
def _generate_min_degree(gamma, average_degree, max_degree, tolerance, max_iters):
|
726 |
+
"""Returns a minimum degree from the given average degree."""
|
727 |
+
# Defines zeta function whether or not Scipy is available
|
728 |
+
try:
|
729 |
+
from scipy.special import zeta
|
730 |
+
except ImportError:
|
731 |
+
|
732 |
+
def zeta(x, q):
|
733 |
+
return _hurwitz_zeta(x, q, tolerance)
|
734 |
+
|
735 |
+
min_deg_top = max_degree
|
736 |
+
min_deg_bot = 1
|
737 |
+
min_deg_mid = (min_deg_top - min_deg_bot) / 2 + min_deg_bot
|
738 |
+
itrs = 0
|
739 |
+
mid_avg_deg = 0
|
740 |
+
while abs(mid_avg_deg - average_degree) > tolerance:
|
741 |
+
if itrs > max_iters:
|
742 |
+
raise nx.ExceededMaxIterations("Could not match average_degree")
|
743 |
+
mid_avg_deg = 0
|
744 |
+
for x in range(int(min_deg_mid), max_degree + 1):
|
745 |
+
mid_avg_deg += (x ** (-gamma + 1)) / zeta(gamma, min_deg_mid)
|
746 |
+
if mid_avg_deg > average_degree:
|
747 |
+
min_deg_top = min_deg_mid
|
748 |
+
min_deg_mid = (min_deg_top - min_deg_bot) / 2 + min_deg_bot
|
749 |
+
else:
|
750 |
+
min_deg_bot = min_deg_mid
|
751 |
+
min_deg_mid = (min_deg_top - min_deg_bot) / 2 + min_deg_bot
|
752 |
+
itrs += 1
|
753 |
+
# return int(min_deg_mid + 0.5)
|
754 |
+
return round(min_deg_mid)
|
755 |
+
|
756 |
+
|
757 |
+
def _generate_communities(degree_seq, community_sizes, mu, max_iters, seed):
|
758 |
+
"""Returns a list of sets, each of which represents a community.
|
759 |
+
|
760 |
+
``degree_seq`` is the degree sequence that must be met by the
|
761 |
+
graph.
|
762 |
+
|
763 |
+
``community_sizes`` is the community size distribution that must be
|
764 |
+
met by the generated list of sets.
|
765 |
+
|
766 |
+
``mu`` is a float in the interval [0, 1] indicating the fraction of
|
767 |
+
intra-community edges incident to each node.
|
768 |
+
|
769 |
+
``max_iters`` is the number of times to try to add a node to a
|
770 |
+
community. This must be greater than the length of
|
771 |
+
``degree_seq``, otherwise this function will always fail. If
|
772 |
+
the number of iterations exceeds this value,
|
773 |
+
:exc:`~networkx.exception.ExceededMaxIterations` is raised.
|
774 |
+
|
775 |
+
seed : integer, random_state, or None (default)
|
776 |
+
Indicator of random number generation state.
|
777 |
+
See :ref:`Randomness<randomness>`.
|
778 |
+
|
779 |
+
The communities returned by this are sets of integers in the set {0,
|
780 |
+
..., *n* - 1}, where *n* is the length of ``degree_seq``.
|
781 |
+
|
782 |
+
"""
|
783 |
+
# This assumes the nodes in the graph will be natural numbers.
|
784 |
+
result = [set() for _ in community_sizes]
|
785 |
+
n = len(degree_seq)
|
786 |
+
free = list(range(n))
|
787 |
+
for i in range(max_iters):
|
788 |
+
v = free.pop()
|
789 |
+
c = seed.choice(range(len(community_sizes)))
|
790 |
+
# s = int(degree_seq[v] * (1 - mu) + 0.5)
|
791 |
+
s = round(degree_seq[v] * (1 - mu))
|
792 |
+
# If the community is large enough, add the node to the chosen
|
793 |
+
# community. Otherwise, return it to the list of unaffiliated
|
794 |
+
# nodes.
|
795 |
+
if s < community_sizes[c]:
|
796 |
+
result[c].add(v)
|
797 |
+
else:
|
798 |
+
free.append(v)
|
799 |
+
# If the community is too big, remove a node from it.
|
800 |
+
if len(result[c]) > community_sizes[c]:
|
801 |
+
free.append(result[c].pop())
|
802 |
+
if not free:
|
803 |
+
return result
|
804 |
+
msg = "Could not assign communities; try increasing min_community"
|
805 |
+
raise nx.ExceededMaxIterations(msg)
|
806 |
+
|
807 |
+
|
808 |
+
@py_random_state(11)
|
809 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
810 |
+
def LFR_benchmark_graph(
|
811 |
+
n,
|
812 |
+
tau1,
|
813 |
+
tau2,
|
814 |
+
mu,
|
815 |
+
average_degree=None,
|
816 |
+
min_degree=None,
|
817 |
+
max_degree=None,
|
818 |
+
min_community=None,
|
819 |
+
max_community=None,
|
820 |
+
tol=1.0e-7,
|
821 |
+
max_iters=500,
|
822 |
+
seed=None,
|
823 |
+
):
|
824 |
+
r"""Returns the LFR benchmark graph.
|
825 |
+
|
826 |
+
This algorithm proceeds as follows:
|
827 |
+
|
828 |
+
1) Find a degree sequence with a power law distribution, and minimum
|
829 |
+
value ``min_degree``, which has approximate average degree
|
830 |
+
``average_degree``. This is accomplished by either
|
831 |
+
|
832 |
+
a) specifying ``min_degree`` and not ``average_degree``,
|
833 |
+
b) specifying ``average_degree`` and not ``min_degree``, in which
|
834 |
+
case a suitable minimum degree will be found.
|
835 |
+
|
836 |
+
``max_degree`` can also be specified, otherwise it will be set to
|
837 |
+
``n``. Each node *u* will have $\mu \mathrm{deg}(u)$ edges
|
838 |
+
joining it to nodes in communities other than its own and $(1 -
|
839 |
+
\mu) \mathrm{deg}(u)$ edges joining it to nodes in its own
|
840 |
+
community.
|
841 |
+
2) Generate community sizes according to a power law distribution
|
842 |
+
with exponent ``tau2``. If ``min_community`` and
|
843 |
+
``max_community`` are not specified they will be selected to be
|
844 |
+
``min_degree`` and ``max_degree``, respectively. Community sizes
|
845 |
+
are generated until the sum of their sizes equals ``n``.
|
846 |
+
3) Each node will be randomly assigned a community with the
|
847 |
+
condition that the community is large enough for the node's
|
848 |
+
intra-community degree, $(1 - \mu) \mathrm{deg}(u)$ as
|
849 |
+
described in step 2. If a community grows too large, a random node
|
850 |
+
will be selected for reassignment to a new community, until all
|
851 |
+
nodes have been assigned a community.
|
852 |
+
4) Each node *u* then adds $(1 - \mu) \mathrm{deg}(u)$
|
853 |
+
intra-community edges and $\mu \mathrm{deg}(u)$ inter-community
|
854 |
+
edges.
|
855 |
+
|
856 |
+
Parameters
|
857 |
+
----------
|
858 |
+
n : int
|
859 |
+
Number of nodes in the created graph.
|
860 |
+
|
861 |
+
tau1 : float
|
862 |
+
Power law exponent for the degree distribution of the created
|
863 |
+
graph. This value must be strictly greater than one.
|
864 |
+
|
865 |
+
tau2 : float
|
866 |
+
Power law exponent for the community size distribution in the
|
867 |
+
created graph. This value must be strictly greater than one.
|
868 |
+
|
869 |
+
mu : float
|
870 |
+
Fraction of inter-community edges incident to each node. This
|
871 |
+
value must be in the interval [0, 1].
|
872 |
+
|
873 |
+
average_degree : float
|
874 |
+
Desired average degree of nodes in the created graph. This value
|
875 |
+
must be in the interval [0, *n*]. Exactly one of this and
|
876 |
+
``min_degree`` must be specified, otherwise a
|
877 |
+
:exc:`NetworkXError` is raised.
|
878 |
+
|
879 |
+
min_degree : int
|
880 |
+
Minimum degree of nodes in the created graph. This value must be
|
881 |
+
in the interval [0, *n*]. Exactly one of this and
|
882 |
+
``average_degree`` must be specified, otherwise a
|
883 |
+
:exc:`NetworkXError` is raised.
|
884 |
+
|
885 |
+
max_degree : int
|
886 |
+
Maximum degree of nodes in the created graph. If not specified,
|
887 |
+
this is set to ``n``, the total number of nodes in the graph.
|
888 |
+
|
889 |
+
min_community : int
|
890 |
+
Minimum size of communities in the graph. If not specified, this
|
891 |
+
is set to ``min_degree``.
|
892 |
+
|
893 |
+
max_community : int
|
894 |
+
Maximum size of communities in the graph. If not specified, this
|
895 |
+
is set to ``n``, the total number of nodes in the graph.
|
896 |
+
|
897 |
+
tol : float
|
898 |
+
Tolerance when comparing floats, specifically when comparing
|
899 |
+
average degree values.
|
900 |
+
|
901 |
+
max_iters : int
|
902 |
+
Maximum number of iterations to try to create the community sizes,
|
903 |
+
degree distribution, and community affiliations.
|
904 |
+
|
905 |
+
seed : integer, random_state, or None (default)
|
906 |
+
Indicator of random number generation state.
|
907 |
+
See :ref:`Randomness<randomness>`.
|
908 |
+
|
909 |
+
Returns
|
910 |
+
-------
|
911 |
+
G : NetworkX graph
|
912 |
+
The LFR benchmark graph generated according to the specified
|
913 |
+
parameters.
|
914 |
+
|
915 |
+
Each node in the graph has a node attribute ``'community'`` that
|
916 |
+
stores the community (that is, the set of nodes) that includes
|
917 |
+
it.
|
918 |
+
|
919 |
+
Raises
|
920 |
+
------
|
921 |
+
NetworkXError
|
922 |
+
If any of the parameters do not meet their upper and lower bounds:
|
923 |
+
|
924 |
+
- ``tau1`` and ``tau2`` must be strictly greater than 1.
|
925 |
+
- ``mu`` must be in [0, 1].
|
926 |
+
- ``max_degree`` must be in {1, ..., *n*}.
|
927 |
+
- ``min_community`` and ``max_community`` must be in {0, ...,
|
928 |
+
*n*}.
|
929 |
+
|
930 |
+
If not exactly one of ``average_degree`` and ``min_degree`` is
|
931 |
+
specified.
|
932 |
+
|
933 |
+
If ``min_degree`` is not specified and a suitable ``min_degree``
|
934 |
+
cannot be found.
|
935 |
+
|
936 |
+
ExceededMaxIterations
|
937 |
+
If a valid degree sequence cannot be created within
|
938 |
+
``max_iters`` number of iterations.
|
939 |
+
|
940 |
+
If a valid set of community sizes cannot be created within
|
941 |
+
``max_iters`` number of iterations.
|
942 |
+
|
943 |
+
If a valid community assignment cannot be created within ``10 *
|
944 |
+
n * max_iters`` number of iterations.
|
945 |
+
|
946 |
+
Examples
|
947 |
+
--------
|
948 |
+
Basic usage::
|
949 |
+
|
950 |
+
>>> from networkx.generators.community import LFR_benchmark_graph
|
951 |
+
>>> n = 250
|
952 |
+
>>> tau1 = 3
|
953 |
+
>>> tau2 = 1.5
|
954 |
+
>>> mu = 0.1
|
955 |
+
>>> G = LFR_benchmark_graph(
|
956 |
+
... n, tau1, tau2, mu, average_degree=5, min_community=20, seed=10
|
957 |
+
... )
|
958 |
+
|
959 |
+
Continuing the example above, you can get the communities from the
|
960 |
+
node attributes of the graph::
|
961 |
+
|
962 |
+
>>> communities = {frozenset(G.nodes[v]["community"]) for v in G}
|
963 |
+
|
964 |
+
Notes
|
965 |
+
-----
|
966 |
+
This algorithm differs slightly from the original way it was
|
967 |
+
presented in [1].
|
968 |
+
|
969 |
+
1) Rather than connecting the graph via a configuration model then
|
970 |
+
rewiring to match the intra-community and inter-community
|
971 |
+
degrees, we do this wiring explicitly at the end, which should be
|
972 |
+
equivalent.
|
973 |
+
2) The code posted on the author's website [2] calculates the random
|
974 |
+
power law distributed variables and their average using
|
975 |
+
continuous approximations, whereas we use the discrete
|
976 |
+
distributions here as both degree and community size are
|
977 |
+
discrete.
|
978 |
+
|
979 |
+
Though the authors describe the algorithm as quite robust, testing
|
980 |
+
during development indicates that a somewhat narrower parameter set
|
981 |
+
is likely to successfully produce a graph. Some suggestions have
|
982 |
+
been provided in the event of exceptions.
|
983 |
+
|
984 |
+
References
|
985 |
+
----------
|
986 |
+
.. [1] "Benchmark graphs for testing community detection algorithms",
|
987 |
+
Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi,
|
988 |
+
Phys. Rev. E 78, 046110 2008
|
989 |
+
.. [2] https://www.santofortunato.net/resources
|
990 |
+
|
991 |
+
"""
|
992 |
+
# Perform some basic parameter validation.
|
993 |
+
if not tau1 > 1:
|
994 |
+
raise nx.NetworkXError("tau1 must be greater than one")
|
995 |
+
if not tau2 > 1:
|
996 |
+
raise nx.NetworkXError("tau2 must be greater than one")
|
997 |
+
if not 0 <= mu <= 1:
|
998 |
+
raise nx.NetworkXError("mu must be in the interval [0, 1]")
|
999 |
+
|
1000 |
+
# Validate parameters for generating the degree sequence.
|
1001 |
+
if max_degree is None:
|
1002 |
+
max_degree = n
|
1003 |
+
elif not 0 < max_degree <= n:
|
1004 |
+
raise nx.NetworkXError("max_degree must be in the interval (0, n]")
|
1005 |
+
if not ((min_degree is None) ^ (average_degree is None)):
|
1006 |
+
raise nx.NetworkXError(
|
1007 |
+
"Must assign exactly one of min_degree and average_degree"
|
1008 |
+
)
|
1009 |
+
if min_degree is None:
|
1010 |
+
min_degree = _generate_min_degree(
|
1011 |
+
tau1, average_degree, max_degree, tol, max_iters
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
# Generate a degree sequence with a power law distribution.
|
1015 |
+
low, high = min_degree, max_degree
|
1016 |
+
|
1017 |
+
def condition(seq):
|
1018 |
+
return sum(seq) % 2 == 0
|
1019 |
+
|
1020 |
+
def length(seq):
|
1021 |
+
return len(seq) >= n
|
1022 |
+
|
1023 |
+
deg_seq = _powerlaw_sequence(tau1, low, high, condition, length, max_iters, seed)
|
1024 |
+
|
1025 |
+
# Validate parameters for generating the community size sequence.
|
1026 |
+
if min_community is None:
|
1027 |
+
min_community = min(deg_seq)
|
1028 |
+
if max_community is None:
|
1029 |
+
max_community = max(deg_seq)
|
1030 |
+
|
1031 |
+
# Generate a community size sequence with a power law distribution.
|
1032 |
+
#
|
1033 |
+
# TODO The original code incremented the number of iterations each
|
1034 |
+
# time a new Zipf random value was drawn from the distribution. This
|
1035 |
+
# differed from the way the number of iterations was incremented in
|
1036 |
+
# `_powerlaw_degree_sequence`, so this code was changed to match
|
1037 |
+
# that one. As a result, this code is allowed many more chances to
|
1038 |
+
# generate a valid community size sequence.
|
1039 |
+
low, high = min_community, max_community
|
1040 |
+
|
1041 |
+
def condition(seq):
|
1042 |
+
return sum(seq) == n
|
1043 |
+
|
1044 |
+
def length(seq):
|
1045 |
+
return sum(seq) >= n
|
1046 |
+
|
1047 |
+
comms = _powerlaw_sequence(tau2, low, high, condition, length, max_iters, seed)
|
1048 |
+
|
1049 |
+
# Generate the communities based on the given degree sequence and
|
1050 |
+
# community sizes.
|
1051 |
+
max_iters *= 10 * n
|
1052 |
+
communities = _generate_communities(deg_seq, comms, mu, max_iters, seed)
|
1053 |
+
|
1054 |
+
# Finally, generate the benchmark graph based on the given
|
1055 |
+
# communities, joining nodes according to the intra- and
|
1056 |
+
# inter-community degrees.
|
1057 |
+
G = nx.Graph()
|
1058 |
+
G.add_nodes_from(range(n))
|
1059 |
+
for c in communities:
|
1060 |
+
for u in c:
|
1061 |
+
while G.degree(u) < round(deg_seq[u] * (1 - mu)):
|
1062 |
+
v = seed.choice(list(c))
|
1063 |
+
G.add_edge(u, v)
|
1064 |
+
while G.degree(u) < deg_seq[u]:
|
1065 |
+
v = seed.choice(range(n))
|
1066 |
+
if v not in c:
|
1067 |
+
G.add_edge(u, v)
|
1068 |
+
G.nodes[u]["community"] = c
|
1069 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/degree_seq.py
ADDED
@@ -0,0 +1,868 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generate graphs with a given degree sequence or expected degree sequence.
|
2 |
+
"""
|
3 |
+
|
4 |
+
import heapq
|
5 |
+
import math
|
6 |
+
from itertools import chain, combinations, zip_longest
|
7 |
+
from operator import itemgetter
|
8 |
+
|
9 |
+
import networkx as nx
|
10 |
+
from networkx.utils import py_random_state, random_weighted_sample
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"configuration_model",
|
14 |
+
"directed_configuration_model",
|
15 |
+
"expected_degree_graph",
|
16 |
+
"havel_hakimi_graph",
|
17 |
+
"directed_havel_hakimi_graph",
|
18 |
+
"degree_sequence_tree",
|
19 |
+
"random_degree_sequence_graph",
|
20 |
+
]
|
21 |
+
|
22 |
+
chaini = chain.from_iterable
|
23 |
+
|
24 |
+
|
25 |
+
def _to_stublist(degree_sequence):
|
26 |
+
"""Returns a list of degree-repeated node numbers.
|
27 |
+
|
28 |
+
``degree_sequence`` is a list of nonnegative integers representing
|
29 |
+
the degrees of nodes in a graph.
|
30 |
+
|
31 |
+
This function returns a list of node numbers with multiplicities
|
32 |
+
according to the given degree sequence. For example, if the first
|
33 |
+
element of ``degree_sequence`` is ``3``, then the first node number,
|
34 |
+
``0``, will appear at the head of the returned list three times. The
|
35 |
+
node numbers are assumed to be the numbers zero through
|
36 |
+
``len(degree_sequence) - 1``.
|
37 |
+
|
38 |
+
Examples
|
39 |
+
--------
|
40 |
+
|
41 |
+
>>> degree_sequence = [1, 2, 3]
|
42 |
+
>>> _to_stublist(degree_sequence)
|
43 |
+
[0, 1, 1, 2, 2, 2]
|
44 |
+
|
45 |
+
If a zero appears in the sequence, that means the node exists but
|
46 |
+
has degree zero, so that number will be skipped in the returned
|
47 |
+
list::
|
48 |
+
|
49 |
+
>>> degree_sequence = [2, 0, 1]
|
50 |
+
>>> _to_stublist(degree_sequence)
|
51 |
+
[0, 0, 2]
|
52 |
+
|
53 |
+
"""
|
54 |
+
return list(chaini([n] * d for n, d in enumerate(degree_sequence)))
|
55 |
+
|
56 |
+
|
57 |
+
def _configuration_model(
|
58 |
+
deg_sequence, create_using, directed=False, in_deg_sequence=None, seed=None
|
59 |
+
):
|
60 |
+
"""Helper function for generating either undirected or directed
|
61 |
+
configuration model graphs.
|
62 |
+
|
63 |
+
``deg_sequence`` is a list of nonnegative integers representing the
|
64 |
+
degree of the node whose label is the index of the list element.
|
65 |
+
|
66 |
+
``create_using`` see :func:`~networkx.empty_graph`.
|
67 |
+
|
68 |
+
``directed`` and ``in_deg_sequence`` are required if you want the
|
69 |
+
returned graph to be generated using the directed configuration
|
70 |
+
model algorithm. If ``directed`` is ``False``, then ``deg_sequence``
|
71 |
+
is interpreted as the degree sequence of an undirected graph and
|
72 |
+
``in_deg_sequence`` is ignored. Otherwise, if ``directed`` is
|
73 |
+
``True``, then ``deg_sequence`` is interpreted as the out-degree
|
74 |
+
sequence and ``in_deg_sequence`` as the in-degree sequence of a
|
75 |
+
directed graph.
|
76 |
+
|
77 |
+
.. note::
|
78 |
+
|
79 |
+
``deg_sequence`` and ``in_deg_sequence`` need not be the same
|
80 |
+
length.
|
81 |
+
|
82 |
+
``seed`` is a random.Random or numpy.random.RandomState instance
|
83 |
+
|
84 |
+
This function returns a graph, directed if and only if ``directed``
|
85 |
+
is ``True``, generated according to the configuration model
|
86 |
+
algorithm. For more information on the algorithm, see the
|
87 |
+
:func:`configuration_model` or :func:`directed_configuration_model`
|
88 |
+
functions.
|
89 |
+
|
90 |
+
"""
|
91 |
+
n = len(deg_sequence)
|
92 |
+
G = nx.empty_graph(n, create_using)
|
93 |
+
# If empty, return the null graph immediately.
|
94 |
+
if n == 0:
|
95 |
+
return G
|
96 |
+
# Build a list of available degree-repeated nodes. For example,
|
97 |
+
# for degree sequence [3, 2, 1, 1, 1], the "stub list" is
|
98 |
+
# initially [0, 0, 0, 1, 1, 2, 3, 4], that is, node 0 has degree
|
99 |
+
# 3 and thus is repeated 3 times, etc.
|
100 |
+
#
|
101 |
+
# Also, shuffle the stub list in order to get a random sequence of
|
102 |
+
# node pairs.
|
103 |
+
if directed:
|
104 |
+
pairs = zip_longest(deg_sequence, in_deg_sequence, fillvalue=0)
|
105 |
+
# Unzip the list of pairs into a pair of lists.
|
106 |
+
out_deg, in_deg = zip(*pairs)
|
107 |
+
|
108 |
+
out_stublist = _to_stublist(out_deg)
|
109 |
+
in_stublist = _to_stublist(in_deg)
|
110 |
+
|
111 |
+
seed.shuffle(out_stublist)
|
112 |
+
seed.shuffle(in_stublist)
|
113 |
+
else:
|
114 |
+
stublist = _to_stublist(deg_sequence)
|
115 |
+
# Choose a random balanced bipartition of the stublist, which
|
116 |
+
# gives a random pairing of nodes. In this implementation, we
|
117 |
+
# shuffle the list and then split it in half.
|
118 |
+
n = len(stublist)
|
119 |
+
half = n // 2
|
120 |
+
seed.shuffle(stublist)
|
121 |
+
out_stublist, in_stublist = stublist[:half], stublist[half:]
|
122 |
+
G.add_edges_from(zip(out_stublist, in_stublist))
|
123 |
+
return G
|
124 |
+
|
125 |
+
|
126 |
+
@py_random_state(2)
|
127 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
128 |
+
def configuration_model(deg_sequence, create_using=None, seed=None):
|
129 |
+
"""Returns a random graph with the given degree sequence.
|
130 |
+
|
131 |
+
The configuration model generates a random pseudograph (graph with
|
132 |
+
parallel edges and self loops) by randomly assigning edges to
|
133 |
+
match the given degree sequence.
|
134 |
+
|
135 |
+
Parameters
|
136 |
+
----------
|
137 |
+
deg_sequence : list of nonnegative integers
|
138 |
+
Each list entry corresponds to the degree of a node.
|
139 |
+
create_using : NetworkX graph constructor, optional (default MultiGraph)
|
140 |
+
Graph type to create. If graph instance, then cleared before populated.
|
141 |
+
seed : integer, random_state, or None (default)
|
142 |
+
Indicator of random number generation state.
|
143 |
+
See :ref:`Randomness<randomness>`.
|
144 |
+
|
145 |
+
Returns
|
146 |
+
-------
|
147 |
+
G : MultiGraph
|
148 |
+
A graph with the specified degree sequence.
|
149 |
+
Nodes are labeled starting at 0 with an index
|
150 |
+
corresponding to the position in deg_sequence.
|
151 |
+
|
152 |
+
Raises
|
153 |
+
------
|
154 |
+
NetworkXError
|
155 |
+
If the degree sequence does not have an even sum.
|
156 |
+
|
157 |
+
See Also
|
158 |
+
--------
|
159 |
+
is_graphical
|
160 |
+
|
161 |
+
Notes
|
162 |
+
-----
|
163 |
+
As described by Newman [1]_.
|
164 |
+
|
165 |
+
A non-graphical degree sequence (not realizable by some simple
|
166 |
+
graph) is allowed since this function returns graphs with self
|
167 |
+
loops and parallel edges. An exception is raised if the degree
|
168 |
+
sequence does not have an even sum.
|
169 |
+
|
170 |
+
This configuration model construction process can lead to
|
171 |
+
duplicate edges and loops. You can remove the self-loops and
|
172 |
+
parallel edges (see below) which will likely result in a graph
|
173 |
+
that doesn't have the exact degree sequence specified.
|
174 |
+
|
175 |
+
The density of self-loops and parallel edges tends to decrease as
|
176 |
+
the number of nodes increases. However, typically the number of
|
177 |
+
self-loops will approach a Poisson distribution with a nonzero mean,
|
178 |
+
and similarly for the number of parallel edges. Consider a node
|
179 |
+
with *k* stubs. The probability of being joined to another stub of
|
180 |
+
the same node is basically (*k* - *1*) / *N*, where *k* is the
|
181 |
+
degree and *N* is the number of nodes. So the probability of a
|
182 |
+
self-loop scales like *c* / *N* for some constant *c*. As *N* grows,
|
183 |
+
this means we expect *c* self-loops. Similarly for parallel edges.
|
184 |
+
|
185 |
+
References
|
186 |
+
----------
|
187 |
+
.. [1] M.E.J. Newman, "The structure and function of complex networks",
|
188 |
+
SIAM REVIEW 45-2, pp 167-256, 2003.
|
189 |
+
|
190 |
+
Examples
|
191 |
+
--------
|
192 |
+
You can create a degree sequence following a particular distribution
|
193 |
+
by using the one of the distribution functions in
|
194 |
+
:mod:`~networkx.utils.random_sequence` (or one of your own). For
|
195 |
+
example, to create an undirected multigraph on one hundred nodes
|
196 |
+
with degree sequence chosen from the power law distribution:
|
197 |
+
|
198 |
+
>>> sequence = nx.random_powerlaw_tree_sequence(100, tries=5000)
|
199 |
+
>>> G = nx.configuration_model(sequence)
|
200 |
+
>>> len(G)
|
201 |
+
100
|
202 |
+
>>> actual_degrees = [d for v, d in G.degree()]
|
203 |
+
>>> actual_degrees == sequence
|
204 |
+
True
|
205 |
+
|
206 |
+
The returned graph is a multigraph, which may have parallel
|
207 |
+
edges. To remove any parallel edges from the returned graph:
|
208 |
+
|
209 |
+
>>> G = nx.Graph(G)
|
210 |
+
|
211 |
+
Similarly, to remove self-loops:
|
212 |
+
|
213 |
+
>>> G.remove_edges_from(nx.selfloop_edges(G))
|
214 |
+
|
215 |
+
"""
|
216 |
+
if sum(deg_sequence) % 2 != 0:
|
217 |
+
msg = "Invalid degree sequence: sum of degrees must be even, not odd"
|
218 |
+
raise nx.NetworkXError(msg)
|
219 |
+
|
220 |
+
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
|
221 |
+
if G.is_directed():
|
222 |
+
raise nx.NetworkXNotImplemented("not implemented for directed graphs")
|
223 |
+
|
224 |
+
G = _configuration_model(deg_sequence, G, seed=seed)
|
225 |
+
|
226 |
+
return G
|
227 |
+
|
228 |
+
|
229 |
+
@py_random_state(3)
|
230 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
231 |
+
def directed_configuration_model(
|
232 |
+
in_degree_sequence, out_degree_sequence, create_using=None, seed=None
|
233 |
+
):
|
234 |
+
"""Returns a directed_random graph with the given degree sequences.
|
235 |
+
|
236 |
+
The configuration model generates a random directed pseudograph
|
237 |
+
(graph with parallel edges and self loops) by randomly assigning
|
238 |
+
edges to match the given degree sequences.
|
239 |
+
|
240 |
+
Parameters
|
241 |
+
----------
|
242 |
+
in_degree_sequence : list of nonnegative integers
|
243 |
+
Each list entry corresponds to the in-degree of a node.
|
244 |
+
out_degree_sequence : list of nonnegative integers
|
245 |
+
Each list entry corresponds to the out-degree of a node.
|
246 |
+
create_using : NetworkX graph constructor, optional (default MultiDiGraph)
|
247 |
+
Graph type to create. If graph instance, then cleared before populated.
|
248 |
+
seed : integer, random_state, or None (default)
|
249 |
+
Indicator of random number generation state.
|
250 |
+
See :ref:`Randomness<randomness>`.
|
251 |
+
|
252 |
+
Returns
|
253 |
+
-------
|
254 |
+
G : MultiDiGraph
|
255 |
+
A graph with the specified degree sequences.
|
256 |
+
Nodes are labeled starting at 0 with an index
|
257 |
+
corresponding to the position in deg_sequence.
|
258 |
+
|
259 |
+
Raises
|
260 |
+
------
|
261 |
+
NetworkXError
|
262 |
+
If the degree sequences do not have the same sum.
|
263 |
+
|
264 |
+
See Also
|
265 |
+
--------
|
266 |
+
configuration_model
|
267 |
+
|
268 |
+
Notes
|
269 |
+
-----
|
270 |
+
Algorithm as described by Newman [1]_.
|
271 |
+
|
272 |
+
A non-graphical degree sequence (not realizable by some simple
|
273 |
+
graph) is allowed since this function returns graphs with self
|
274 |
+
loops and parallel edges. An exception is raised if the degree
|
275 |
+
sequences does not have the same sum.
|
276 |
+
|
277 |
+
This configuration model construction process can lead to
|
278 |
+
duplicate edges and loops. You can remove the self-loops and
|
279 |
+
parallel edges (see below) which will likely result in a graph
|
280 |
+
that doesn't have the exact degree sequence specified. This
|
281 |
+
"finite-size effect" decreases as the size of the graph increases.
|
282 |
+
|
283 |
+
References
|
284 |
+
----------
|
285 |
+
.. [1] Newman, M. E. J. and Strogatz, S. H. and Watts, D. J.
|
286 |
+
Random graphs with arbitrary degree distributions and their applications
|
287 |
+
Phys. Rev. E, 64, 026118 (2001)
|
288 |
+
|
289 |
+
Examples
|
290 |
+
--------
|
291 |
+
One can modify the in- and out-degree sequences from an existing
|
292 |
+
directed graph in order to create a new directed graph. For example,
|
293 |
+
here we modify the directed path graph:
|
294 |
+
|
295 |
+
>>> D = nx.DiGraph([(0, 1), (1, 2), (2, 3)])
|
296 |
+
>>> din = list(d for n, d in D.in_degree())
|
297 |
+
>>> dout = list(d for n, d in D.out_degree())
|
298 |
+
>>> din.append(1)
|
299 |
+
>>> dout[0] = 2
|
300 |
+
>>> # We now expect an edge from node 0 to a new node, node 3.
|
301 |
+
... D = nx.directed_configuration_model(din, dout)
|
302 |
+
|
303 |
+
The returned graph is a directed multigraph, which may have parallel
|
304 |
+
edges. To remove any parallel edges from the returned graph:
|
305 |
+
|
306 |
+
>>> D = nx.DiGraph(D)
|
307 |
+
|
308 |
+
Similarly, to remove self-loops:
|
309 |
+
|
310 |
+
>>> D.remove_edges_from(nx.selfloop_edges(D))
|
311 |
+
|
312 |
+
"""
|
313 |
+
if sum(in_degree_sequence) != sum(out_degree_sequence):
|
314 |
+
msg = "Invalid degree sequences: sequences must have equal sums"
|
315 |
+
raise nx.NetworkXError(msg)
|
316 |
+
|
317 |
+
if create_using is None:
|
318 |
+
create_using = nx.MultiDiGraph
|
319 |
+
|
320 |
+
G = _configuration_model(
|
321 |
+
out_degree_sequence,
|
322 |
+
create_using,
|
323 |
+
directed=True,
|
324 |
+
in_deg_sequence=in_degree_sequence,
|
325 |
+
seed=seed,
|
326 |
+
)
|
327 |
+
|
328 |
+
name = "directed configuration_model {} nodes {} edges"
|
329 |
+
return G
|
330 |
+
|
331 |
+
|
332 |
+
@py_random_state(1)
|
333 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
334 |
+
def expected_degree_graph(w, seed=None, selfloops=True):
|
335 |
+
r"""Returns a random graph with given expected degrees.
|
336 |
+
|
337 |
+
Given a sequence of expected degrees $W=(w_0,w_1,\ldots,w_{n-1})$
|
338 |
+
of length $n$ this algorithm assigns an edge between node $u$ and
|
339 |
+
node $v$ with probability
|
340 |
+
|
341 |
+
.. math::
|
342 |
+
|
343 |
+
p_{uv} = \frac{w_u w_v}{\sum_k w_k} .
|
344 |
+
|
345 |
+
Parameters
|
346 |
+
----------
|
347 |
+
w : list
|
348 |
+
The list of expected degrees.
|
349 |
+
selfloops: bool (default=True)
|
350 |
+
Set to False to remove the possibility of self-loop edges.
|
351 |
+
seed : integer, random_state, or None (default)
|
352 |
+
Indicator of random number generation state.
|
353 |
+
See :ref:`Randomness<randomness>`.
|
354 |
+
|
355 |
+
Returns
|
356 |
+
-------
|
357 |
+
Graph
|
358 |
+
|
359 |
+
Examples
|
360 |
+
--------
|
361 |
+
>>> z = [10 for i in range(100)]
|
362 |
+
>>> G = nx.expected_degree_graph(z)
|
363 |
+
|
364 |
+
Notes
|
365 |
+
-----
|
366 |
+
The nodes have integer labels corresponding to index of expected degrees
|
367 |
+
input sequence.
|
368 |
+
|
369 |
+
The complexity of this algorithm is $\mathcal{O}(n+m)$ where $n$ is the
|
370 |
+
number of nodes and $m$ is the expected number of edges.
|
371 |
+
|
372 |
+
The model in [1]_ includes the possibility of self-loop edges.
|
373 |
+
Set selfloops=False to produce a graph without self loops.
|
374 |
+
|
375 |
+
For finite graphs this model doesn't produce exactly the given
|
376 |
+
expected degree sequence. Instead the expected degrees are as
|
377 |
+
follows.
|
378 |
+
|
379 |
+
For the case without self loops (selfloops=False),
|
380 |
+
|
381 |
+
.. math::
|
382 |
+
|
383 |
+
E[deg(u)] = \sum_{v \ne u} p_{uv}
|
384 |
+
= w_u \left( 1 - \frac{w_u}{\sum_k w_k} \right) .
|
385 |
+
|
386 |
+
|
387 |
+
NetworkX uses the standard convention that a self-loop edge counts 2
|
388 |
+
in the degree of a node, so with self loops (selfloops=True),
|
389 |
+
|
390 |
+
.. math::
|
391 |
+
|
392 |
+
E[deg(u)] = \sum_{v \ne u} p_{uv} + 2 p_{uu}
|
393 |
+
= w_u \left( 1 + \frac{w_u}{\sum_k w_k} \right) .
|
394 |
+
|
395 |
+
References
|
396 |
+
----------
|
397 |
+
.. [1] Fan Chung and L. Lu, Connected components in random graphs with
|
398 |
+
given expected degree sequences, Ann. Combinatorics, 6,
|
399 |
+
pp. 125-145, 2002.
|
400 |
+
.. [2] Joel Miller and Aric Hagberg,
|
401 |
+
Efficient generation of networks with given expected degrees,
|
402 |
+
in Algorithms and Models for the Web-Graph (WAW 2011),
|
403 |
+
Alan Frieze, Paul Horn, and Paweł Prałat (Eds), LNCS 6732,
|
404 |
+
pp. 115-126, 2011.
|
405 |
+
"""
|
406 |
+
n = len(w)
|
407 |
+
G = nx.empty_graph(n)
|
408 |
+
|
409 |
+
# If there are no nodes are no edges in the graph, return the empty graph.
|
410 |
+
if n == 0 or max(w) == 0:
|
411 |
+
return G
|
412 |
+
|
413 |
+
rho = 1 / sum(w)
|
414 |
+
# Sort the weights in decreasing order. The original order of the
|
415 |
+
# weights dictates the order of the (integer) node labels, so we
|
416 |
+
# need to remember the permutation applied in the sorting.
|
417 |
+
order = sorted(enumerate(w), key=itemgetter(1), reverse=True)
|
418 |
+
mapping = {c: u for c, (u, v) in enumerate(order)}
|
419 |
+
seq = [v for u, v in order]
|
420 |
+
last = n
|
421 |
+
if not selfloops:
|
422 |
+
last -= 1
|
423 |
+
for u in range(last):
|
424 |
+
v = u
|
425 |
+
if not selfloops:
|
426 |
+
v += 1
|
427 |
+
factor = seq[u] * rho
|
428 |
+
p = min(seq[v] * factor, 1)
|
429 |
+
while v < n and p > 0:
|
430 |
+
if p != 1:
|
431 |
+
r = seed.random()
|
432 |
+
v += math.floor(math.log(r, 1 - p))
|
433 |
+
if v < n:
|
434 |
+
q = min(seq[v] * factor, 1)
|
435 |
+
if seed.random() < q / p:
|
436 |
+
G.add_edge(mapping[u], mapping[v])
|
437 |
+
v += 1
|
438 |
+
p = q
|
439 |
+
return G
|
440 |
+
|
441 |
+
|
442 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
443 |
+
def havel_hakimi_graph(deg_sequence, create_using=None):
|
444 |
+
"""Returns a simple graph with given degree sequence constructed
|
445 |
+
using the Havel-Hakimi algorithm.
|
446 |
+
|
447 |
+
Parameters
|
448 |
+
----------
|
449 |
+
deg_sequence: list of integers
|
450 |
+
Each integer corresponds to the degree of a node (need not be sorted).
|
451 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
452 |
+
Graph type to create. If graph instance, then cleared before populated.
|
453 |
+
Directed graphs are not allowed.
|
454 |
+
|
455 |
+
Raises
|
456 |
+
------
|
457 |
+
NetworkXException
|
458 |
+
For a non-graphical degree sequence (i.e. one
|
459 |
+
not realizable by some simple graph).
|
460 |
+
|
461 |
+
Notes
|
462 |
+
-----
|
463 |
+
The Havel-Hakimi algorithm constructs a simple graph by
|
464 |
+
successively connecting the node of highest degree to other nodes
|
465 |
+
of highest degree, resorting remaining nodes by degree, and
|
466 |
+
repeating the process. The resulting graph has a high
|
467 |
+
degree-associativity. Nodes are labeled 1,.., len(deg_sequence),
|
468 |
+
corresponding to their position in deg_sequence.
|
469 |
+
|
470 |
+
The basic algorithm is from Hakimi [1]_ and was generalized by
|
471 |
+
Kleitman and Wang [2]_.
|
472 |
+
|
473 |
+
References
|
474 |
+
----------
|
475 |
+
.. [1] Hakimi S., On Realizability of a Set of Integers as
|
476 |
+
Degrees of the Vertices of a Linear Graph. I,
|
477 |
+
Journal of SIAM, 10(3), pp. 496-506 (1962)
|
478 |
+
.. [2] Kleitman D.J. and Wang D.L.
|
479 |
+
Algorithms for Constructing Graphs and Digraphs with Given Valences
|
480 |
+
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
|
481 |
+
"""
|
482 |
+
if not nx.is_graphical(deg_sequence):
|
483 |
+
raise nx.NetworkXError("Invalid degree sequence")
|
484 |
+
|
485 |
+
p = len(deg_sequence)
|
486 |
+
G = nx.empty_graph(p, create_using)
|
487 |
+
if G.is_directed():
|
488 |
+
raise nx.NetworkXError("Directed graphs are not supported")
|
489 |
+
num_degs = [[] for i in range(p)]
|
490 |
+
dmax, dsum, n = 0, 0, 0
|
491 |
+
for d in deg_sequence:
|
492 |
+
# Process only the non-zero integers
|
493 |
+
if d > 0:
|
494 |
+
num_degs[d].append(n)
|
495 |
+
dmax, dsum, n = max(dmax, d), dsum + d, n + 1
|
496 |
+
# Return graph if no edges
|
497 |
+
if n == 0:
|
498 |
+
return G
|
499 |
+
|
500 |
+
modstubs = [(0, 0)] * (dmax + 1)
|
501 |
+
# Successively reduce degree sequence by removing the maximum degree
|
502 |
+
while n > 0:
|
503 |
+
# Retrieve the maximum degree in the sequence
|
504 |
+
while len(num_degs[dmax]) == 0:
|
505 |
+
dmax -= 1
|
506 |
+
# If there are not enough stubs to connect to, then the sequence is
|
507 |
+
# not graphical
|
508 |
+
if dmax > n - 1:
|
509 |
+
raise nx.NetworkXError("Non-graphical integer sequence")
|
510 |
+
|
511 |
+
# Remove largest stub in list
|
512 |
+
source = num_degs[dmax].pop()
|
513 |
+
n -= 1
|
514 |
+
# Reduce the next dmax largest stubs
|
515 |
+
mslen = 0
|
516 |
+
k = dmax
|
517 |
+
for i in range(dmax):
|
518 |
+
while len(num_degs[k]) == 0:
|
519 |
+
k -= 1
|
520 |
+
target = num_degs[k].pop()
|
521 |
+
G.add_edge(source, target)
|
522 |
+
n -= 1
|
523 |
+
if k > 1:
|
524 |
+
modstubs[mslen] = (k - 1, target)
|
525 |
+
mslen += 1
|
526 |
+
# Add back to the list any nonzero stubs that were removed
|
527 |
+
for i in range(mslen):
|
528 |
+
(stubval, stubtarget) = modstubs[i]
|
529 |
+
num_degs[stubval].append(stubtarget)
|
530 |
+
n += 1
|
531 |
+
|
532 |
+
return G
|
533 |
+
|
534 |
+
|
535 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
536 |
+
def directed_havel_hakimi_graph(in_deg_sequence, out_deg_sequence, create_using=None):
|
537 |
+
"""Returns a directed graph with the given degree sequences.
|
538 |
+
|
539 |
+
Parameters
|
540 |
+
----------
|
541 |
+
in_deg_sequence : list of integers
|
542 |
+
Each list entry corresponds to the in-degree of a node.
|
543 |
+
out_deg_sequence : list of integers
|
544 |
+
Each list entry corresponds to the out-degree of a node.
|
545 |
+
create_using : NetworkX graph constructor, optional (default DiGraph)
|
546 |
+
Graph type to create. If graph instance, then cleared before populated.
|
547 |
+
|
548 |
+
Returns
|
549 |
+
-------
|
550 |
+
G : DiGraph
|
551 |
+
A graph with the specified degree sequences.
|
552 |
+
Nodes are labeled starting at 0 with an index
|
553 |
+
corresponding to the position in deg_sequence
|
554 |
+
|
555 |
+
Raises
|
556 |
+
------
|
557 |
+
NetworkXError
|
558 |
+
If the degree sequences are not digraphical.
|
559 |
+
|
560 |
+
See Also
|
561 |
+
--------
|
562 |
+
configuration_model
|
563 |
+
|
564 |
+
Notes
|
565 |
+
-----
|
566 |
+
Algorithm as described by Kleitman and Wang [1]_.
|
567 |
+
|
568 |
+
References
|
569 |
+
----------
|
570 |
+
.. [1] D.J. Kleitman and D.L. Wang
|
571 |
+
Algorithms for Constructing Graphs and Digraphs with Given Valences
|
572 |
+
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
|
573 |
+
"""
|
574 |
+
in_deg_sequence = nx.utils.make_list_of_ints(in_deg_sequence)
|
575 |
+
out_deg_sequence = nx.utils.make_list_of_ints(out_deg_sequence)
|
576 |
+
|
577 |
+
# Process the sequences and form two heaps to store degree pairs with
|
578 |
+
# either zero or nonzero out degrees
|
579 |
+
sumin, sumout = 0, 0
|
580 |
+
nin, nout = len(in_deg_sequence), len(out_deg_sequence)
|
581 |
+
maxn = max(nin, nout)
|
582 |
+
G = nx.empty_graph(maxn, create_using, default=nx.DiGraph)
|
583 |
+
if maxn == 0:
|
584 |
+
return G
|
585 |
+
maxin = 0
|
586 |
+
stubheap, zeroheap = [], []
|
587 |
+
for n in range(maxn):
|
588 |
+
in_deg, out_deg = 0, 0
|
589 |
+
if n < nout:
|
590 |
+
out_deg = out_deg_sequence[n]
|
591 |
+
if n < nin:
|
592 |
+
in_deg = in_deg_sequence[n]
|
593 |
+
if in_deg < 0 or out_deg < 0:
|
594 |
+
raise nx.NetworkXError(
|
595 |
+
"Invalid degree sequences. Sequence values must be positive."
|
596 |
+
)
|
597 |
+
sumin, sumout, maxin = sumin + in_deg, sumout + out_deg, max(maxin, in_deg)
|
598 |
+
if in_deg > 0:
|
599 |
+
stubheap.append((-1 * out_deg, -1 * in_deg, n))
|
600 |
+
elif out_deg > 0:
|
601 |
+
zeroheap.append((-1 * out_deg, n))
|
602 |
+
if sumin != sumout:
|
603 |
+
raise nx.NetworkXError(
|
604 |
+
"Invalid degree sequences. Sequences must have equal sums."
|
605 |
+
)
|
606 |
+
heapq.heapify(stubheap)
|
607 |
+
heapq.heapify(zeroheap)
|
608 |
+
|
609 |
+
modstubs = [(0, 0, 0)] * (maxin + 1)
|
610 |
+
# Successively reduce degree sequence by removing the maximum
|
611 |
+
while stubheap:
|
612 |
+
# Remove first value in the sequence with a non-zero in degree
|
613 |
+
(freeout, freein, target) = heapq.heappop(stubheap)
|
614 |
+
freein *= -1
|
615 |
+
if freein > len(stubheap) + len(zeroheap):
|
616 |
+
raise nx.NetworkXError("Non-digraphical integer sequence")
|
617 |
+
|
618 |
+
# Attach arcs from the nodes with the most stubs
|
619 |
+
mslen = 0
|
620 |
+
for i in range(freein):
|
621 |
+
if zeroheap and (not stubheap or stubheap[0][0] > zeroheap[0][0]):
|
622 |
+
(stubout, stubsource) = heapq.heappop(zeroheap)
|
623 |
+
stubin = 0
|
624 |
+
else:
|
625 |
+
(stubout, stubin, stubsource) = heapq.heappop(stubheap)
|
626 |
+
if stubout == 0:
|
627 |
+
raise nx.NetworkXError("Non-digraphical integer sequence")
|
628 |
+
G.add_edge(stubsource, target)
|
629 |
+
# Check if source is now totally connected
|
630 |
+
if stubout + 1 < 0 or stubin < 0:
|
631 |
+
modstubs[mslen] = (stubout + 1, stubin, stubsource)
|
632 |
+
mslen += 1
|
633 |
+
|
634 |
+
# Add the nodes back to the heaps that still have available stubs
|
635 |
+
for i in range(mslen):
|
636 |
+
stub = modstubs[i]
|
637 |
+
if stub[1] < 0:
|
638 |
+
heapq.heappush(stubheap, stub)
|
639 |
+
else:
|
640 |
+
heapq.heappush(zeroheap, (stub[0], stub[2]))
|
641 |
+
if freeout < 0:
|
642 |
+
heapq.heappush(zeroheap, (freeout, target))
|
643 |
+
|
644 |
+
return G
|
645 |
+
|
646 |
+
|
647 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
648 |
+
def degree_sequence_tree(deg_sequence, create_using=None):
|
649 |
+
"""Make a tree for the given degree sequence.
|
650 |
+
|
651 |
+
A tree has #nodes-#edges=1 so
|
652 |
+
the degree sequence must have
|
653 |
+
len(deg_sequence)-sum(deg_sequence)/2=1
|
654 |
+
"""
|
655 |
+
# The sum of the degree sequence must be even (for any undirected graph).
|
656 |
+
degree_sum = sum(deg_sequence)
|
657 |
+
if degree_sum % 2 != 0:
|
658 |
+
msg = "Invalid degree sequence: sum of degrees must be even, not odd"
|
659 |
+
raise nx.NetworkXError(msg)
|
660 |
+
if len(deg_sequence) - degree_sum // 2 != 1:
|
661 |
+
msg = (
|
662 |
+
"Invalid degree sequence: tree must have number of nodes equal"
|
663 |
+
" to one less than the number of edges"
|
664 |
+
)
|
665 |
+
raise nx.NetworkXError(msg)
|
666 |
+
G = nx.empty_graph(0, create_using)
|
667 |
+
if G.is_directed():
|
668 |
+
raise nx.NetworkXError("Directed Graph not supported")
|
669 |
+
|
670 |
+
# Sort all degrees greater than 1 in decreasing order.
|
671 |
+
#
|
672 |
+
# TODO Does this need to be sorted in reverse order?
|
673 |
+
deg = sorted((s for s in deg_sequence if s > 1), reverse=True)
|
674 |
+
|
675 |
+
# make path graph as backbone
|
676 |
+
n = len(deg) + 2
|
677 |
+
nx.add_path(G, range(n))
|
678 |
+
last = n
|
679 |
+
|
680 |
+
# add the leaves
|
681 |
+
for source in range(1, n - 1):
|
682 |
+
nedges = deg.pop() - 2
|
683 |
+
for target in range(last, last + nedges):
|
684 |
+
G.add_edge(source, target)
|
685 |
+
last += nedges
|
686 |
+
|
687 |
+
# in case we added one too many
|
688 |
+
if len(G) > len(deg_sequence):
|
689 |
+
G.remove_node(0)
|
690 |
+
return G
|
691 |
+
|
692 |
+
|
693 |
+
@py_random_state(1)
|
694 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
695 |
+
def random_degree_sequence_graph(sequence, seed=None, tries=10):
|
696 |
+
r"""Returns a simple random graph with the given degree sequence.
|
697 |
+
|
698 |
+
If the maximum degree $d_m$ in the sequence is $O(m^{1/4})$ then the
|
699 |
+
algorithm produces almost uniform random graphs in $O(m d_m)$ time
|
700 |
+
where $m$ is the number of edges.
|
701 |
+
|
702 |
+
Parameters
|
703 |
+
----------
|
704 |
+
sequence : list of integers
|
705 |
+
Sequence of degrees
|
706 |
+
seed : integer, random_state, or None (default)
|
707 |
+
Indicator of random number generation state.
|
708 |
+
See :ref:`Randomness<randomness>`.
|
709 |
+
tries : int, optional
|
710 |
+
Maximum number of tries to create a graph
|
711 |
+
|
712 |
+
Returns
|
713 |
+
-------
|
714 |
+
G : Graph
|
715 |
+
A graph with the specified degree sequence.
|
716 |
+
Nodes are labeled starting at 0 with an index
|
717 |
+
corresponding to the position in the sequence.
|
718 |
+
|
719 |
+
Raises
|
720 |
+
------
|
721 |
+
NetworkXUnfeasible
|
722 |
+
If the degree sequence is not graphical.
|
723 |
+
NetworkXError
|
724 |
+
If a graph is not produced in specified number of tries
|
725 |
+
|
726 |
+
See Also
|
727 |
+
--------
|
728 |
+
is_graphical, configuration_model
|
729 |
+
|
730 |
+
Notes
|
731 |
+
-----
|
732 |
+
The generator algorithm [1]_ is not guaranteed to produce a graph.
|
733 |
+
|
734 |
+
References
|
735 |
+
----------
|
736 |
+
.. [1] Moshen Bayati, Jeong Han Kim, and Amin Saberi,
|
737 |
+
A sequential algorithm for generating random graphs.
|
738 |
+
Algorithmica, Volume 58, Number 4, 860-910,
|
739 |
+
DOI: 10.1007/s00453-009-9340-1
|
740 |
+
|
741 |
+
Examples
|
742 |
+
--------
|
743 |
+
>>> sequence = [1, 2, 2, 3]
|
744 |
+
>>> G = nx.random_degree_sequence_graph(sequence, seed=42)
|
745 |
+
>>> sorted(d for n, d in G.degree())
|
746 |
+
[1, 2, 2, 3]
|
747 |
+
"""
|
748 |
+
DSRG = DegreeSequenceRandomGraph(sequence, seed)
|
749 |
+
for try_n in range(tries):
|
750 |
+
try:
|
751 |
+
return DSRG.generate()
|
752 |
+
except nx.NetworkXUnfeasible:
|
753 |
+
pass
|
754 |
+
raise nx.NetworkXError(f"failed to generate graph in {tries} tries")
|
755 |
+
|
756 |
+
|
757 |
+
class DegreeSequenceRandomGraph:
|
758 |
+
# class to generate random graphs with a given degree sequence
|
759 |
+
# use random_degree_sequence_graph()
|
760 |
+
def __init__(self, degree, rng):
|
761 |
+
if not nx.is_graphical(degree):
|
762 |
+
raise nx.NetworkXUnfeasible("degree sequence is not graphical")
|
763 |
+
self.rng = rng
|
764 |
+
self.degree = list(degree)
|
765 |
+
# node labels are integers 0,...,n-1
|
766 |
+
self.m = sum(self.degree) / 2.0 # number of edges
|
767 |
+
try:
|
768 |
+
self.dmax = max(self.degree) # maximum degree
|
769 |
+
except ValueError:
|
770 |
+
self.dmax = 0
|
771 |
+
|
772 |
+
def generate(self):
|
773 |
+
# remaining_degree is mapping from int->remaining degree
|
774 |
+
self.remaining_degree = dict(enumerate(self.degree))
|
775 |
+
# add all nodes to make sure we get isolated nodes
|
776 |
+
self.graph = nx.Graph()
|
777 |
+
self.graph.add_nodes_from(self.remaining_degree)
|
778 |
+
# remove zero degree nodes
|
779 |
+
for n, d in list(self.remaining_degree.items()):
|
780 |
+
if d == 0:
|
781 |
+
del self.remaining_degree[n]
|
782 |
+
if len(self.remaining_degree) > 0:
|
783 |
+
# build graph in three phases according to how many unmatched edges
|
784 |
+
self.phase1()
|
785 |
+
self.phase2()
|
786 |
+
self.phase3()
|
787 |
+
return self.graph
|
788 |
+
|
789 |
+
def update_remaining(self, u, v, aux_graph=None):
|
790 |
+
# decrement remaining nodes, modify auxiliary graph if in phase3
|
791 |
+
if aux_graph is not None:
|
792 |
+
# remove edges from auxiliary graph
|
793 |
+
aux_graph.remove_edge(u, v)
|
794 |
+
if self.remaining_degree[u] == 1:
|
795 |
+
del self.remaining_degree[u]
|
796 |
+
if aux_graph is not None:
|
797 |
+
aux_graph.remove_node(u)
|
798 |
+
else:
|
799 |
+
self.remaining_degree[u] -= 1
|
800 |
+
if self.remaining_degree[v] == 1:
|
801 |
+
del self.remaining_degree[v]
|
802 |
+
if aux_graph is not None:
|
803 |
+
aux_graph.remove_node(v)
|
804 |
+
else:
|
805 |
+
self.remaining_degree[v] -= 1
|
806 |
+
|
807 |
+
def p(self, u, v):
|
808 |
+
# degree probability
|
809 |
+
return 1 - self.degree[u] * self.degree[v] / (4.0 * self.m)
|
810 |
+
|
811 |
+
def q(self, u, v):
|
812 |
+
# remaining degree probability
|
813 |
+
norm = max(self.remaining_degree.values()) ** 2
|
814 |
+
return self.remaining_degree[u] * self.remaining_degree[v] / norm
|
815 |
+
|
816 |
+
def suitable_edge(self):
|
817 |
+
"""Returns True if and only if an arbitrary remaining node can
|
818 |
+
potentially be joined with some other remaining node.
|
819 |
+
|
820 |
+
"""
|
821 |
+
nodes = iter(self.remaining_degree)
|
822 |
+
u = next(nodes)
|
823 |
+
return any(v not in self.graph[u] for v in nodes)
|
824 |
+
|
825 |
+
def phase1(self):
|
826 |
+
# choose node pairs from (degree) weighted distribution
|
827 |
+
rem_deg = self.remaining_degree
|
828 |
+
while sum(rem_deg.values()) >= 2 * self.dmax**2:
|
829 |
+
u, v = sorted(random_weighted_sample(rem_deg, 2, self.rng))
|
830 |
+
if self.graph.has_edge(u, v):
|
831 |
+
continue
|
832 |
+
if self.rng.random() < self.p(u, v): # accept edge
|
833 |
+
self.graph.add_edge(u, v)
|
834 |
+
self.update_remaining(u, v)
|
835 |
+
|
836 |
+
def phase2(self):
|
837 |
+
# choose remaining nodes uniformly at random and use rejection sampling
|
838 |
+
remaining_deg = self.remaining_degree
|
839 |
+
rng = self.rng
|
840 |
+
while len(remaining_deg) >= 2 * self.dmax:
|
841 |
+
while True:
|
842 |
+
u, v = sorted(rng.sample(list(remaining_deg.keys()), 2))
|
843 |
+
if self.graph.has_edge(u, v):
|
844 |
+
continue
|
845 |
+
if rng.random() < self.q(u, v):
|
846 |
+
break
|
847 |
+
if rng.random() < self.p(u, v): # accept edge
|
848 |
+
self.graph.add_edge(u, v)
|
849 |
+
self.update_remaining(u, v)
|
850 |
+
|
851 |
+
def phase3(self):
|
852 |
+
# build potential remaining edges and choose with rejection sampling
|
853 |
+
potential_edges = combinations(self.remaining_degree, 2)
|
854 |
+
# build auxiliary graph of potential edges not already in graph
|
855 |
+
H = nx.Graph(
|
856 |
+
[(u, v) for (u, v) in potential_edges if not self.graph.has_edge(u, v)]
|
857 |
+
)
|
858 |
+
rng = self.rng
|
859 |
+
while self.remaining_degree:
|
860 |
+
if not self.suitable_edge():
|
861 |
+
raise nx.NetworkXUnfeasible("no suitable edges left")
|
862 |
+
while True:
|
863 |
+
u, v = sorted(rng.choice(list(H.edges())))
|
864 |
+
if rng.random() < self.q(u, v):
|
865 |
+
break
|
866 |
+
if rng.random() < self.p(u, v): # accept edge
|
867 |
+
self.graph.add_edge(u, v)
|
868 |
+
self.update_remaining(u, v, aux_graph=H)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/directed.py
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Generators for some directed graphs, including growing network (GN) graphs and
|
3 |
+
scale-free graphs.
|
4 |
+
|
5 |
+
"""
|
6 |
+
|
7 |
+
import numbers
|
8 |
+
from collections import Counter
|
9 |
+
|
10 |
+
import networkx as nx
|
11 |
+
from networkx.generators.classic import empty_graph
|
12 |
+
from networkx.utils import discrete_sequence, py_random_state, weighted_choice
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"gn_graph",
|
16 |
+
"gnc_graph",
|
17 |
+
"gnr_graph",
|
18 |
+
"random_k_out_graph",
|
19 |
+
"scale_free_graph",
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
@py_random_state(3)
|
24 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
25 |
+
def gn_graph(n, kernel=None, create_using=None, seed=None):
|
26 |
+
"""Returns the growing network (GN) digraph with `n` nodes.
|
27 |
+
|
28 |
+
The GN graph is built by adding nodes one at a time with a link to one
|
29 |
+
previously added node. The target node for the link is chosen with
|
30 |
+
probability based on degree. The default attachment kernel is a linear
|
31 |
+
function of the degree of a node.
|
32 |
+
|
33 |
+
The graph is always a (directed) tree.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
----------
|
37 |
+
n : int
|
38 |
+
The number of nodes for the generated graph.
|
39 |
+
kernel : function
|
40 |
+
The attachment kernel.
|
41 |
+
create_using : NetworkX graph constructor, optional (default DiGraph)
|
42 |
+
Graph type to create. If graph instance, then cleared before populated.
|
43 |
+
seed : integer, random_state, or None (default)
|
44 |
+
Indicator of random number generation state.
|
45 |
+
See :ref:`Randomness<randomness>`.
|
46 |
+
|
47 |
+
Examples
|
48 |
+
--------
|
49 |
+
To create the undirected GN graph, use the :meth:`~DiGraph.to_directed`
|
50 |
+
method::
|
51 |
+
|
52 |
+
>>> D = nx.gn_graph(10) # the GN graph
|
53 |
+
>>> G = D.to_undirected() # the undirected version
|
54 |
+
|
55 |
+
To specify an attachment kernel, use the `kernel` keyword argument::
|
56 |
+
|
57 |
+
>>> D = nx.gn_graph(10, kernel=lambda x: x**1.5) # A_k = k^1.5
|
58 |
+
|
59 |
+
References
|
60 |
+
----------
|
61 |
+
.. [1] P. L. Krapivsky and S. Redner,
|
62 |
+
Organization of Growing Random Networks,
|
63 |
+
Phys. Rev. E, 63, 066123, 2001.
|
64 |
+
"""
|
65 |
+
G = empty_graph(1, create_using, default=nx.DiGraph)
|
66 |
+
if not G.is_directed():
|
67 |
+
raise nx.NetworkXError("create_using must indicate a Directed Graph")
|
68 |
+
|
69 |
+
if kernel is None:
|
70 |
+
|
71 |
+
def kernel(x):
|
72 |
+
return x
|
73 |
+
|
74 |
+
if n == 1:
|
75 |
+
return G
|
76 |
+
|
77 |
+
G.add_edge(1, 0) # get started
|
78 |
+
ds = [1, 1] # degree sequence
|
79 |
+
|
80 |
+
for source in range(2, n):
|
81 |
+
# compute distribution from kernel and degree
|
82 |
+
dist = [kernel(d) for d in ds]
|
83 |
+
# choose target from discrete distribution
|
84 |
+
target = discrete_sequence(1, distribution=dist, seed=seed)[0]
|
85 |
+
G.add_edge(source, target)
|
86 |
+
ds.append(1) # the source has only one link (degree one)
|
87 |
+
ds[target] += 1 # add one to the target link degree
|
88 |
+
return G
|
89 |
+
|
90 |
+
|
91 |
+
@py_random_state(3)
|
92 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
93 |
+
def gnr_graph(n, p, create_using=None, seed=None):
|
94 |
+
"""Returns the growing network with redirection (GNR) digraph with `n`
|
95 |
+
nodes and redirection probability `p`.
|
96 |
+
|
97 |
+
The GNR graph is built by adding nodes one at a time with a link to one
|
98 |
+
previously added node. The previous target node is chosen uniformly at
|
99 |
+
random. With probability `p` the link is instead "redirected" to the
|
100 |
+
successor node of the target.
|
101 |
+
|
102 |
+
The graph is always a (directed) tree.
|
103 |
+
|
104 |
+
Parameters
|
105 |
+
----------
|
106 |
+
n : int
|
107 |
+
The number of nodes for the generated graph.
|
108 |
+
p : float
|
109 |
+
The redirection probability.
|
110 |
+
create_using : NetworkX graph constructor, optional (default DiGraph)
|
111 |
+
Graph type to create. If graph instance, then cleared before populated.
|
112 |
+
seed : integer, random_state, or None (default)
|
113 |
+
Indicator of random number generation state.
|
114 |
+
See :ref:`Randomness<randomness>`.
|
115 |
+
|
116 |
+
Examples
|
117 |
+
--------
|
118 |
+
To create the undirected GNR graph, use the :meth:`~DiGraph.to_directed`
|
119 |
+
method::
|
120 |
+
|
121 |
+
>>> D = nx.gnr_graph(10, 0.5) # the GNR graph
|
122 |
+
>>> G = D.to_undirected() # the undirected version
|
123 |
+
|
124 |
+
References
|
125 |
+
----------
|
126 |
+
.. [1] P. L. Krapivsky and S. Redner,
|
127 |
+
Organization of Growing Random Networks,
|
128 |
+
Phys. Rev. E, 63, 066123, 2001.
|
129 |
+
"""
|
130 |
+
G = empty_graph(1, create_using, default=nx.DiGraph)
|
131 |
+
if not G.is_directed():
|
132 |
+
raise nx.NetworkXError("create_using must indicate a Directed Graph")
|
133 |
+
|
134 |
+
if n == 1:
|
135 |
+
return G
|
136 |
+
|
137 |
+
for source in range(1, n):
|
138 |
+
target = seed.randrange(0, source)
|
139 |
+
if seed.random() < p and target != 0:
|
140 |
+
target = next(G.successors(target))
|
141 |
+
G.add_edge(source, target)
|
142 |
+
return G
|
143 |
+
|
144 |
+
|
145 |
+
@py_random_state(2)
|
146 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
147 |
+
def gnc_graph(n, create_using=None, seed=None):
|
148 |
+
"""Returns the growing network with copying (GNC) digraph with `n` nodes.
|
149 |
+
|
150 |
+
The GNC graph is built by adding nodes one at a time with a link to one
|
151 |
+
previously added node (chosen uniformly at random) and to all of that
|
152 |
+
node's successors.
|
153 |
+
|
154 |
+
Parameters
|
155 |
+
----------
|
156 |
+
n : int
|
157 |
+
The number of nodes for the generated graph.
|
158 |
+
create_using : NetworkX graph constructor, optional (default DiGraph)
|
159 |
+
Graph type to create. If graph instance, then cleared before populated.
|
160 |
+
seed : integer, random_state, or None (default)
|
161 |
+
Indicator of random number generation state.
|
162 |
+
See :ref:`Randomness<randomness>`.
|
163 |
+
|
164 |
+
References
|
165 |
+
----------
|
166 |
+
.. [1] P. L. Krapivsky and S. Redner,
|
167 |
+
Network Growth by Copying,
|
168 |
+
Phys. Rev. E, 71, 036118, 2005k.},
|
169 |
+
"""
|
170 |
+
G = empty_graph(1, create_using, default=nx.DiGraph)
|
171 |
+
if not G.is_directed():
|
172 |
+
raise nx.NetworkXError("create_using must indicate a Directed Graph")
|
173 |
+
|
174 |
+
if n == 1:
|
175 |
+
return G
|
176 |
+
|
177 |
+
for source in range(1, n):
|
178 |
+
target = seed.randrange(0, source)
|
179 |
+
for succ in G.successors(target):
|
180 |
+
G.add_edge(source, succ)
|
181 |
+
G.add_edge(source, target)
|
182 |
+
return G
|
183 |
+
|
184 |
+
|
185 |
+
@py_random_state(6)
|
186 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
187 |
+
def scale_free_graph(
|
188 |
+
n,
|
189 |
+
alpha=0.41,
|
190 |
+
beta=0.54,
|
191 |
+
gamma=0.05,
|
192 |
+
delta_in=0.2,
|
193 |
+
delta_out=0,
|
194 |
+
seed=None,
|
195 |
+
initial_graph=None,
|
196 |
+
):
|
197 |
+
"""Returns a scale-free directed graph.
|
198 |
+
|
199 |
+
Parameters
|
200 |
+
----------
|
201 |
+
n : integer
|
202 |
+
Number of nodes in graph
|
203 |
+
alpha : float
|
204 |
+
Probability for adding a new node connected to an existing node
|
205 |
+
chosen randomly according to the in-degree distribution.
|
206 |
+
beta : float
|
207 |
+
Probability for adding an edge between two existing nodes.
|
208 |
+
One existing node is chosen randomly according the in-degree
|
209 |
+
distribution and the other chosen randomly according to the out-degree
|
210 |
+
distribution.
|
211 |
+
gamma : float
|
212 |
+
Probability for adding a new node connected to an existing node
|
213 |
+
chosen randomly according to the out-degree distribution.
|
214 |
+
delta_in : float
|
215 |
+
Bias for choosing nodes from in-degree distribution.
|
216 |
+
delta_out : float
|
217 |
+
Bias for choosing nodes from out-degree distribution.
|
218 |
+
seed : integer, random_state, or None (default)
|
219 |
+
Indicator of random number generation state.
|
220 |
+
See :ref:`Randomness<randomness>`.
|
221 |
+
initial_graph : MultiDiGraph instance, optional
|
222 |
+
Build the scale-free graph starting from this initial MultiDiGraph,
|
223 |
+
if provided.
|
224 |
+
|
225 |
+
Returns
|
226 |
+
-------
|
227 |
+
MultiDiGraph
|
228 |
+
|
229 |
+
Examples
|
230 |
+
--------
|
231 |
+
Create a scale-free graph on one hundred nodes::
|
232 |
+
|
233 |
+
>>> G = nx.scale_free_graph(100)
|
234 |
+
|
235 |
+
Notes
|
236 |
+
-----
|
237 |
+
The sum of `alpha`, `beta`, and `gamma` must be 1.
|
238 |
+
|
239 |
+
References
|
240 |
+
----------
|
241 |
+
.. [1] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan,
|
242 |
+
Directed scale-free graphs,
|
243 |
+
Proceedings of the fourteenth annual ACM-SIAM Symposium on
|
244 |
+
Discrete Algorithms, 132--139, 2003.
|
245 |
+
"""
|
246 |
+
|
247 |
+
def _choose_node(candidates, node_list, delta):
|
248 |
+
if delta > 0:
|
249 |
+
bias_sum = len(node_list) * delta
|
250 |
+
p_delta = bias_sum / (bias_sum + len(candidates))
|
251 |
+
if seed.random() < p_delta:
|
252 |
+
return seed.choice(node_list)
|
253 |
+
return seed.choice(candidates)
|
254 |
+
|
255 |
+
if initial_graph is not None and hasattr(initial_graph, "_adj"):
|
256 |
+
if not isinstance(initial_graph, nx.MultiDiGraph):
|
257 |
+
raise nx.NetworkXError("initial_graph must be a MultiDiGraph.")
|
258 |
+
G = initial_graph
|
259 |
+
else:
|
260 |
+
# Start with 3-cycle
|
261 |
+
G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 0)])
|
262 |
+
|
263 |
+
if alpha <= 0:
|
264 |
+
raise ValueError("alpha must be > 0.")
|
265 |
+
if beta <= 0:
|
266 |
+
raise ValueError("beta must be > 0.")
|
267 |
+
if gamma <= 0:
|
268 |
+
raise ValueError("gamma must be > 0.")
|
269 |
+
|
270 |
+
if abs(alpha + beta + gamma - 1.0) >= 1e-9:
|
271 |
+
raise ValueError("alpha+beta+gamma must equal 1.")
|
272 |
+
|
273 |
+
if delta_in < 0:
|
274 |
+
raise ValueError("delta_in must be >= 0.")
|
275 |
+
|
276 |
+
if delta_out < 0:
|
277 |
+
raise ValueError("delta_out must be >= 0.")
|
278 |
+
|
279 |
+
# pre-populate degree states
|
280 |
+
vs = sum((count * [idx] for idx, count in G.out_degree()), [])
|
281 |
+
ws = sum((count * [idx] for idx, count in G.in_degree()), [])
|
282 |
+
|
283 |
+
# pre-populate node state
|
284 |
+
node_list = list(G.nodes())
|
285 |
+
|
286 |
+
# see if there already are number-based nodes
|
287 |
+
numeric_nodes = [n for n in node_list if isinstance(n, numbers.Number)]
|
288 |
+
if len(numeric_nodes) > 0:
|
289 |
+
# set cursor for new nodes appropriately
|
290 |
+
cursor = max(int(n.real) for n in numeric_nodes) + 1
|
291 |
+
else:
|
292 |
+
# or start at zero
|
293 |
+
cursor = 0
|
294 |
+
|
295 |
+
while len(G) < n:
|
296 |
+
r = seed.random()
|
297 |
+
|
298 |
+
# random choice in alpha,beta,gamma ranges
|
299 |
+
if r < alpha:
|
300 |
+
# alpha
|
301 |
+
# add new node v
|
302 |
+
v = cursor
|
303 |
+
cursor += 1
|
304 |
+
# also add to node state
|
305 |
+
node_list.append(v)
|
306 |
+
# choose w according to in-degree and delta_in
|
307 |
+
w = _choose_node(ws, node_list, delta_in)
|
308 |
+
|
309 |
+
elif r < alpha + beta:
|
310 |
+
# beta
|
311 |
+
# choose v according to out-degree and delta_out
|
312 |
+
v = _choose_node(vs, node_list, delta_out)
|
313 |
+
# choose w according to in-degree and delta_in
|
314 |
+
w = _choose_node(ws, node_list, delta_in)
|
315 |
+
|
316 |
+
else:
|
317 |
+
# gamma
|
318 |
+
# choose v according to out-degree and delta_out
|
319 |
+
v = _choose_node(vs, node_list, delta_out)
|
320 |
+
# add new node w
|
321 |
+
w = cursor
|
322 |
+
cursor += 1
|
323 |
+
# also add to node state
|
324 |
+
node_list.append(w)
|
325 |
+
|
326 |
+
# add edge to graph
|
327 |
+
G.add_edge(v, w)
|
328 |
+
|
329 |
+
# update degree states
|
330 |
+
vs.append(v)
|
331 |
+
ws.append(w)
|
332 |
+
|
333 |
+
return G
|
334 |
+
|
335 |
+
|
336 |
+
@py_random_state(4)
|
337 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
338 |
+
def random_uniform_k_out_graph(n, k, self_loops=True, with_replacement=True, seed=None):
|
339 |
+
"""Returns a random `k`-out graph with uniform attachment.
|
340 |
+
|
341 |
+
A random `k`-out graph with uniform attachment is a multidigraph
|
342 |
+
generated by the following algorithm. For each node *u*, choose
|
343 |
+
`k` nodes *v* uniformly at random (with replacement). Add a
|
344 |
+
directed edge joining *u* to *v*.
|
345 |
+
|
346 |
+
Parameters
|
347 |
+
----------
|
348 |
+
n : int
|
349 |
+
The number of nodes in the returned graph.
|
350 |
+
|
351 |
+
k : int
|
352 |
+
The out-degree of each node in the returned graph.
|
353 |
+
|
354 |
+
self_loops : bool
|
355 |
+
If True, self-loops are allowed when generating the graph.
|
356 |
+
|
357 |
+
with_replacement : bool
|
358 |
+
If True, neighbors are chosen with replacement and the
|
359 |
+
returned graph will be a directed multigraph. Otherwise,
|
360 |
+
neighbors are chosen without replacement and the returned graph
|
361 |
+
will be a directed graph.
|
362 |
+
|
363 |
+
seed : integer, random_state, or None (default)
|
364 |
+
Indicator of random number generation state.
|
365 |
+
See :ref:`Randomness<randomness>`.
|
366 |
+
|
367 |
+
Returns
|
368 |
+
-------
|
369 |
+
NetworkX graph
|
370 |
+
A `k`-out-regular directed graph generated according to the
|
371 |
+
above algorithm. It will be a multigraph if and only if
|
372 |
+
`with_replacement` is True.
|
373 |
+
|
374 |
+
Raises
|
375 |
+
------
|
376 |
+
ValueError
|
377 |
+
If `with_replacement` is False and `k` is greater than
|
378 |
+
`n`.
|
379 |
+
|
380 |
+
See also
|
381 |
+
--------
|
382 |
+
random_k_out_graph
|
383 |
+
|
384 |
+
Notes
|
385 |
+
-----
|
386 |
+
The return digraph or multidigraph may not be strongly connected, or
|
387 |
+
even weakly connected.
|
388 |
+
|
389 |
+
If `with_replacement` is True, this function is similar to
|
390 |
+
:func:`random_k_out_graph`, if that function had parameter `alpha`
|
391 |
+
set to positive infinity.
|
392 |
+
|
393 |
+
"""
|
394 |
+
if with_replacement:
|
395 |
+
create_using = nx.MultiDiGraph()
|
396 |
+
|
397 |
+
def sample(v, nodes):
|
398 |
+
if not self_loops:
|
399 |
+
nodes = nodes - {v}
|
400 |
+
return (seed.choice(list(nodes)) for i in range(k))
|
401 |
+
|
402 |
+
else:
|
403 |
+
create_using = nx.DiGraph()
|
404 |
+
|
405 |
+
def sample(v, nodes):
|
406 |
+
if not self_loops:
|
407 |
+
nodes = nodes - {v}
|
408 |
+
return seed.sample(list(nodes), k)
|
409 |
+
|
410 |
+
G = nx.empty_graph(n, create_using)
|
411 |
+
nodes = set(G)
|
412 |
+
for u in G:
|
413 |
+
G.add_edges_from((u, v) for v in sample(u, nodes))
|
414 |
+
return G
|
415 |
+
|
416 |
+
|
417 |
+
@py_random_state(4)
|
418 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
419 |
+
def random_k_out_graph(n, k, alpha, self_loops=True, seed=None):
|
420 |
+
"""Returns a random `k`-out graph with preferential attachment.
|
421 |
+
|
422 |
+
A random `k`-out graph with preferential attachment is a
|
423 |
+
multidigraph generated by the following algorithm.
|
424 |
+
|
425 |
+
1. Begin with an empty digraph, and initially set each node to have
|
426 |
+
weight `alpha`.
|
427 |
+
2. Choose a node `u` with out-degree less than `k` uniformly at
|
428 |
+
random.
|
429 |
+
3. Choose a node `v` from with probability proportional to its
|
430 |
+
weight.
|
431 |
+
4. Add a directed edge from `u` to `v`, and increase the weight
|
432 |
+
of `v` by one.
|
433 |
+
5. If each node has out-degree `k`, halt, otherwise repeat from
|
434 |
+
step 2.
|
435 |
+
|
436 |
+
For more information on this model of random graph, see [1].
|
437 |
+
|
438 |
+
Parameters
|
439 |
+
----------
|
440 |
+
n : int
|
441 |
+
The number of nodes in the returned graph.
|
442 |
+
|
443 |
+
k : int
|
444 |
+
The out-degree of each node in the returned graph.
|
445 |
+
|
446 |
+
alpha : float
|
447 |
+
A positive :class:`float` representing the initial weight of
|
448 |
+
each vertex. A higher number means that in step 3 above, nodes
|
449 |
+
will be chosen more like a true uniformly random sample, and a
|
450 |
+
lower number means that nodes are more likely to be chosen as
|
451 |
+
their in-degree increases. If this parameter is not positive, a
|
452 |
+
:exc:`ValueError` is raised.
|
453 |
+
|
454 |
+
self_loops : bool
|
455 |
+
If True, self-loops are allowed when generating the graph.
|
456 |
+
|
457 |
+
seed : integer, random_state, or None (default)
|
458 |
+
Indicator of random number generation state.
|
459 |
+
See :ref:`Randomness<randomness>`.
|
460 |
+
|
461 |
+
Returns
|
462 |
+
-------
|
463 |
+
:class:`~networkx.classes.MultiDiGraph`
|
464 |
+
A `k`-out-regular multidigraph generated according to the above
|
465 |
+
algorithm.
|
466 |
+
|
467 |
+
Raises
|
468 |
+
------
|
469 |
+
ValueError
|
470 |
+
If `alpha` is not positive.
|
471 |
+
|
472 |
+
Notes
|
473 |
+
-----
|
474 |
+
The returned multidigraph may not be strongly connected, or even
|
475 |
+
weakly connected.
|
476 |
+
|
477 |
+
References
|
478 |
+
----------
|
479 |
+
[1]: Peterson, Nicholas R., and Boris Pittel.
|
480 |
+
"Distance between two random `k`-out digraphs, with and without
|
481 |
+
preferential attachment."
|
482 |
+
arXiv preprint arXiv:1311.5961 (2013).
|
483 |
+
<https://arxiv.org/abs/1311.5961>
|
484 |
+
|
485 |
+
"""
|
486 |
+
if alpha < 0:
|
487 |
+
raise ValueError("alpha must be positive")
|
488 |
+
G = nx.empty_graph(n, create_using=nx.MultiDiGraph)
|
489 |
+
weights = Counter({v: alpha for v in G})
|
490 |
+
for i in range(k * n):
|
491 |
+
u = seed.choice([v for v, d in G.out_degree() if d < k])
|
492 |
+
# If self-loops are not allowed, make the source node `u` have
|
493 |
+
# weight zero.
|
494 |
+
if not self_loops:
|
495 |
+
adjustment = Counter({u: weights[u]})
|
496 |
+
else:
|
497 |
+
adjustment = Counter()
|
498 |
+
v = weighted_choice(weights - adjustment, seed=seed)
|
499 |
+
G.add_edge(u, v)
|
500 |
+
weights[v] += 1
|
501 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/duplication.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for generating graphs based on the "duplication" method.
|
2 |
+
|
3 |
+
These graph generators start with a small initial graph then duplicate
|
4 |
+
nodes and (partially) duplicate their edges. These functions are
|
5 |
+
generally inspired by biological networks.
|
6 |
+
|
7 |
+
"""
|
8 |
+
import networkx as nx
|
9 |
+
from networkx.exception import NetworkXError
|
10 |
+
from networkx.utils import py_random_state
|
11 |
+
|
12 |
+
__all__ = ["partial_duplication_graph", "duplication_divergence_graph"]
|
13 |
+
|
14 |
+
|
15 |
+
@py_random_state(4)
|
16 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
17 |
+
def partial_duplication_graph(N, n, p, q, seed=None):
|
18 |
+
"""Returns a random graph using the partial duplication model.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
----------
|
22 |
+
N : int
|
23 |
+
The total number of nodes in the final graph.
|
24 |
+
|
25 |
+
n : int
|
26 |
+
The number of nodes in the initial clique.
|
27 |
+
|
28 |
+
p : float
|
29 |
+
The probability of joining each neighbor of a node to the
|
30 |
+
duplicate node. Must be a number in the between zero and one,
|
31 |
+
inclusive.
|
32 |
+
|
33 |
+
q : float
|
34 |
+
The probability of joining the source node to the duplicate
|
35 |
+
node. Must be a number in the between zero and one, inclusive.
|
36 |
+
|
37 |
+
seed : integer, random_state, or None (default)
|
38 |
+
Indicator of random number generation state.
|
39 |
+
See :ref:`Randomness<randomness>`.
|
40 |
+
|
41 |
+
Notes
|
42 |
+
-----
|
43 |
+
A graph of nodes is grown by creating a fully connected graph
|
44 |
+
of size `n`. The following procedure is then repeated until
|
45 |
+
a total of `N` nodes have been reached.
|
46 |
+
|
47 |
+
1. A random node, *u*, is picked and a new node, *v*, is created.
|
48 |
+
2. For each neighbor of *u* an edge from the neighbor to *v* is created
|
49 |
+
with probability `p`.
|
50 |
+
3. An edge from *u* to *v* is created with probability `q`.
|
51 |
+
|
52 |
+
This algorithm appears in [1].
|
53 |
+
|
54 |
+
This implementation allows the possibility of generating
|
55 |
+
disconnected graphs.
|
56 |
+
|
57 |
+
References
|
58 |
+
----------
|
59 |
+
.. [1] Knudsen Michael, and Carsten Wiuf. "A Markov chain approach to
|
60 |
+
randomly grown graphs." Journal of Applied Mathematics 2008.
|
61 |
+
<https://doi.org/10.1155/2008/190836>
|
62 |
+
|
63 |
+
"""
|
64 |
+
if p < 0 or p > 1 or q < 0 or q > 1:
|
65 |
+
msg = "partial duplication graph must have 0 <= p, q <= 1."
|
66 |
+
raise NetworkXError(msg)
|
67 |
+
if n > N:
|
68 |
+
raise NetworkXError("partial duplication graph must have n <= N.")
|
69 |
+
|
70 |
+
G = nx.complete_graph(n)
|
71 |
+
for new_node in range(n, N):
|
72 |
+
# Pick a random vertex, u, already in the graph.
|
73 |
+
src_node = seed.randint(0, new_node - 1)
|
74 |
+
|
75 |
+
# Add a new vertex, v, to the graph.
|
76 |
+
G.add_node(new_node)
|
77 |
+
|
78 |
+
# For each neighbor of u...
|
79 |
+
for nbr_node in list(nx.all_neighbors(G, src_node)):
|
80 |
+
# Add the neighbor to v with probability p.
|
81 |
+
if seed.random() < p:
|
82 |
+
G.add_edge(new_node, nbr_node)
|
83 |
+
|
84 |
+
# Join v and u with probability q.
|
85 |
+
if seed.random() < q:
|
86 |
+
G.add_edge(new_node, src_node)
|
87 |
+
return G
|
88 |
+
|
89 |
+
|
90 |
+
@py_random_state(2)
|
91 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
92 |
+
def duplication_divergence_graph(n, p, seed=None):
|
93 |
+
"""Returns an undirected graph using the duplication-divergence model.
|
94 |
+
|
95 |
+
A graph of `n` nodes is created by duplicating the initial nodes
|
96 |
+
and retaining edges incident to the original nodes with a retention
|
97 |
+
probability `p`.
|
98 |
+
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
n : int
|
102 |
+
The desired number of nodes in the graph.
|
103 |
+
p : float
|
104 |
+
The probability for retaining the edge of the replicated node.
|
105 |
+
seed : integer, random_state, or None (default)
|
106 |
+
Indicator of random number generation state.
|
107 |
+
See :ref:`Randomness<randomness>`.
|
108 |
+
|
109 |
+
Returns
|
110 |
+
-------
|
111 |
+
G : Graph
|
112 |
+
|
113 |
+
Raises
|
114 |
+
------
|
115 |
+
NetworkXError
|
116 |
+
If `p` is not a valid probability.
|
117 |
+
If `n` is less than 2.
|
118 |
+
|
119 |
+
Notes
|
120 |
+
-----
|
121 |
+
This algorithm appears in [1].
|
122 |
+
|
123 |
+
This implementation disallows the possibility of generating
|
124 |
+
disconnected graphs.
|
125 |
+
|
126 |
+
References
|
127 |
+
----------
|
128 |
+
.. [1] I. Ispolatov, P. L. Krapivsky, A. Yuryev,
|
129 |
+
"Duplication-divergence model of protein interaction network",
|
130 |
+
Phys. Rev. E, 71, 061911, 2005.
|
131 |
+
|
132 |
+
"""
|
133 |
+
if p > 1 or p < 0:
|
134 |
+
msg = f"NetworkXError p={p} is not in [0,1]."
|
135 |
+
raise nx.NetworkXError(msg)
|
136 |
+
if n < 2:
|
137 |
+
msg = "n must be greater than or equal to 2"
|
138 |
+
raise nx.NetworkXError(msg)
|
139 |
+
|
140 |
+
G = nx.Graph()
|
141 |
+
|
142 |
+
# Initialize the graph with two connected nodes.
|
143 |
+
G.add_edge(0, 1)
|
144 |
+
i = 2
|
145 |
+
while i < n:
|
146 |
+
# Choose a random node from current graph to duplicate.
|
147 |
+
random_node = seed.choice(list(G))
|
148 |
+
# Make the replica.
|
149 |
+
G.add_node(i)
|
150 |
+
# flag indicates whether at least one edge is connected on the replica.
|
151 |
+
flag = False
|
152 |
+
for nbr in G.neighbors(random_node):
|
153 |
+
if seed.random() < p:
|
154 |
+
# Link retention step.
|
155 |
+
G.add_edge(i, nbr)
|
156 |
+
flag = True
|
157 |
+
if not flag:
|
158 |
+
# Delete replica if no edges retained.
|
159 |
+
G.remove_node(i)
|
160 |
+
else:
|
161 |
+
# Successful duplication.
|
162 |
+
i += 1
|
163 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/ego.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Ego graph.
|
3 |
+
"""
|
4 |
+
__all__ = ["ego_graph"]
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
|
8 |
+
|
9 |
+
@nx._dispatchable(preserve_all_attrs=True, returns_graph=True)
|
10 |
+
def ego_graph(G, n, radius=1, center=True, undirected=False, distance=None):
|
11 |
+
"""Returns induced subgraph of neighbors centered at node n within
|
12 |
+
a given radius.
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
G : graph
|
17 |
+
A NetworkX Graph or DiGraph
|
18 |
+
|
19 |
+
n : node
|
20 |
+
A single node
|
21 |
+
|
22 |
+
radius : number, optional
|
23 |
+
Include all neighbors of distance<=radius from n.
|
24 |
+
|
25 |
+
center : bool, optional
|
26 |
+
If False, do not include center node in graph
|
27 |
+
|
28 |
+
undirected : bool, optional
|
29 |
+
If True use both in- and out-neighbors of directed graphs.
|
30 |
+
|
31 |
+
distance : key, optional
|
32 |
+
Use specified edge data key as distance. For example, setting
|
33 |
+
distance='weight' will use the edge weight to measure the
|
34 |
+
distance from the node n.
|
35 |
+
|
36 |
+
Notes
|
37 |
+
-----
|
38 |
+
For directed graphs D this produces the "out" neighborhood
|
39 |
+
or successors. If you want the neighborhood of predecessors
|
40 |
+
first reverse the graph with D.reverse(). If you want both
|
41 |
+
directions use the keyword argument undirected=True.
|
42 |
+
|
43 |
+
Node, edge, and graph attributes are copied to the returned subgraph.
|
44 |
+
"""
|
45 |
+
if undirected:
|
46 |
+
if distance is not None:
|
47 |
+
sp, _ = nx.single_source_dijkstra(
|
48 |
+
G.to_undirected(), n, cutoff=radius, weight=distance
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
sp = dict(
|
52 |
+
nx.single_source_shortest_path_length(
|
53 |
+
G.to_undirected(), n, cutoff=radius
|
54 |
+
)
|
55 |
+
)
|
56 |
+
else:
|
57 |
+
if distance is not None:
|
58 |
+
sp, _ = nx.single_source_dijkstra(G, n, cutoff=radius, weight=distance)
|
59 |
+
else:
|
60 |
+
sp = dict(nx.single_source_shortest_path_length(G, n, cutoff=radius))
|
61 |
+
|
62 |
+
H = G.subgraph(sp).copy()
|
63 |
+
if not center:
|
64 |
+
H.remove_node(n)
|
65 |
+
return H
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/expanders.py
ADDED
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Provides explicit constructions of expander graphs.
|
2 |
+
|
3 |
+
"""
|
4 |
+
import itertools
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"margulis_gabber_galil_graph",
|
10 |
+
"chordal_cycle_graph",
|
11 |
+
"paley_graph",
|
12 |
+
"maybe_regular_expander",
|
13 |
+
"is_regular_expander",
|
14 |
+
"random_regular_expander_graph",
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
# Other discrete torus expanders can be constructed by using the following edge
|
19 |
+
# sets. For more information, see Chapter 4, "Expander Graphs", in
|
20 |
+
# "Pseudorandomness", by Salil Vadhan.
|
21 |
+
#
|
22 |
+
# For a directed expander, add edges from (x, y) to:
|
23 |
+
#
|
24 |
+
# (x, y),
|
25 |
+
# ((x + 1) % n, y),
|
26 |
+
# (x, (y + 1) % n),
|
27 |
+
# (x, (x + y) % n),
|
28 |
+
# (-y % n, x)
|
29 |
+
#
|
30 |
+
# For an undirected expander, add the reverse edges.
|
31 |
+
#
|
32 |
+
# Also appearing in the paper of Gabber and Galil:
|
33 |
+
#
|
34 |
+
# (x, y),
|
35 |
+
# (x, (x + y) % n),
|
36 |
+
# (x, (x + y + 1) % n),
|
37 |
+
# ((x + y) % n, y),
|
38 |
+
# ((x + y + 1) % n, y)
|
39 |
+
#
|
40 |
+
# and:
|
41 |
+
#
|
42 |
+
# (x, y),
|
43 |
+
# ((x + 2*y) % n, y),
|
44 |
+
# ((x + (2*y + 1)) % n, y),
|
45 |
+
# ((x + (2*y + 2)) % n, y),
|
46 |
+
# (x, (y + 2*x) % n),
|
47 |
+
# (x, (y + (2*x + 1)) % n),
|
48 |
+
# (x, (y + (2*x + 2)) % n),
|
49 |
+
#
|
50 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
51 |
+
def margulis_gabber_galil_graph(n, create_using=None):
|
52 |
+
r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes.
|
53 |
+
|
54 |
+
The undirected MultiGraph is regular with degree `8`. Nodes are integer
|
55 |
+
pairs. The second-largest eigenvalue of the adjacency matrix of the graph
|
56 |
+
is at most `5 \sqrt{2}`, regardless of `n`.
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
----------
|
60 |
+
n : int
|
61 |
+
Determines the number of nodes in the graph: `n^2`.
|
62 |
+
create_using : NetworkX graph constructor, optional (default MultiGraph)
|
63 |
+
Graph type to create. If graph instance, then cleared before populated.
|
64 |
+
|
65 |
+
Returns
|
66 |
+
-------
|
67 |
+
G : graph
|
68 |
+
The constructed undirected multigraph.
|
69 |
+
|
70 |
+
Raises
|
71 |
+
------
|
72 |
+
NetworkXError
|
73 |
+
If the graph is directed or not a multigraph.
|
74 |
+
|
75 |
+
"""
|
76 |
+
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
|
77 |
+
if G.is_directed() or not G.is_multigraph():
|
78 |
+
msg = "`create_using` must be an undirected multigraph."
|
79 |
+
raise nx.NetworkXError(msg)
|
80 |
+
|
81 |
+
for x, y in itertools.product(range(n), repeat=2):
|
82 |
+
for u, v in (
|
83 |
+
((x + 2 * y) % n, y),
|
84 |
+
((x + (2 * y + 1)) % n, y),
|
85 |
+
(x, (y + 2 * x) % n),
|
86 |
+
(x, (y + (2 * x + 1)) % n),
|
87 |
+
):
|
88 |
+
G.add_edge((x, y), (u, v))
|
89 |
+
G.graph["name"] = f"margulis_gabber_galil_graph({n})"
|
90 |
+
return G
|
91 |
+
|
92 |
+
|
93 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
94 |
+
def chordal_cycle_graph(p, create_using=None):
|
95 |
+
"""Returns the chordal cycle graph on `p` nodes.
|
96 |
+
|
97 |
+
The returned graph is a cycle graph on `p` nodes with chords joining each
|
98 |
+
vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit)
|
99 |
+
3-regular expander [1]_.
|
100 |
+
|
101 |
+
`p` *must* be a prime number.
|
102 |
+
|
103 |
+
Parameters
|
104 |
+
----------
|
105 |
+
p : a prime number
|
106 |
+
|
107 |
+
The number of vertices in the graph. This also indicates where the
|
108 |
+
chordal edges in the cycle will be created.
|
109 |
+
|
110 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
111 |
+
Graph type to create. If graph instance, then cleared before populated.
|
112 |
+
|
113 |
+
Returns
|
114 |
+
-------
|
115 |
+
G : graph
|
116 |
+
The constructed undirected multigraph.
|
117 |
+
|
118 |
+
Raises
|
119 |
+
------
|
120 |
+
NetworkXError
|
121 |
+
|
122 |
+
If `create_using` indicates directed or not a multigraph.
|
123 |
+
|
124 |
+
References
|
125 |
+
----------
|
126 |
+
|
127 |
+
.. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and
|
128 |
+
invariant measures", volume 125 of Progress in Mathematics.
|
129 |
+
Birkhäuser Verlag, Basel, 1994.
|
130 |
+
|
131 |
+
"""
|
132 |
+
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
|
133 |
+
if G.is_directed() or not G.is_multigraph():
|
134 |
+
msg = "`create_using` must be an undirected multigraph."
|
135 |
+
raise nx.NetworkXError(msg)
|
136 |
+
|
137 |
+
for x in range(p):
|
138 |
+
left = (x - 1) % p
|
139 |
+
right = (x + 1) % p
|
140 |
+
# Here we apply Fermat's Little Theorem to compute the multiplicative
|
141 |
+
# inverse of x in Z/pZ. By Fermat's Little Theorem,
|
142 |
+
#
|
143 |
+
# x^p = x (mod p)
|
144 |
+
#
|
145 |
+
# Therefore,
|
146 |
+
#
|
147 |
+
# x * x^(p - 2) = 1 (mod p)
|
148 |
+
#
|
149 |
+
# The number 0 is a special case: we just let its inverse be itself.
|
150 |
+
chord = pow(x, p - 2, p) if x > 0 else 0
|
151 |
+
for y in (left, right, chord):
|
152 |
+
G.add_edge(x, y)
|
153 |
+
G.graph["name"] = f"chordal_cycle_graph({p})"
|
154 |
+
return G
|
155 |
+
|
156 |
+
|
157 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
158 |
+
def paley_graph(p, create_using=None):
|
159 |
+
r"""Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes.
|
160 |
+
|
161 |
+
The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$
|
162 |
+
if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$.
|
163 |
+
|
164 |
+
If $p \equiv 1 \pmod 4$, $-1$ is a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and
|
165 |
+
only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric.
|
166 |
+
|
167 |
+
If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore either $x-y$ or $y-x$
|
168 |
+
is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both.
|
169 |
+
|
170 |
+
Note that a more general definition of Paley graphs extends this construction
|
171 |
+
to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of $\mathbb{Z}/p\mathbb{Z}$.
|
172 |
+
This construction requires to compute squares in general finite fields and is
|
173 |
+
not what is implemented here (i.e `paley_graph(25)` does not return the true
|
174 |
+
Paley graph associated with $5^2$).
|
175 |
+
|
176 |
+
Parameters
|
177 |
+
----------
|
178 |
+
p : int, an odd prime number.
|
179 |
+
|
180 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
181 |
+
Graph type to create. If graph instance, then cleared before populated.
|
182 |
+
|
183 |
+
Returns
|
184 |
+
-------
|
185 |
+
G : graph
|
186 |
+
The constructed directed graph.
|
187 |
+
|
188 |
+
Raises
|
189 |
+
------
|
190 |
+
NetworkXError
|
191 |
+
If the graph is a multigraph.
|
192 |
+
|
193 |
+
References
|
194 |
+
----------
|
195 |
+
Chapter 13 in B. Bollobas, Random Graphs. Second edition.
|
196 |
+
Cambridge Studies in Advanced Mathematics, 73.
|
197 |
+
Cambridge University Press, Cambridge (2001).
|
198 |
+
"""
|
199 |
+
G = nx.empty_graph(0, create_using, default=nx.DiGraph)
|
200 |
+
if G.is_multigraph():
|
201 |
+
msg = "`create_using` cannot be a multigraph."
|
202 |
+
raise nx.NetworkXError(msg)
|
203 |
+
|
204 |
+
# Compute the squares in Z/pZ.
|
205 |
+
# Make it a set to uniquify (there are exactly (p-1)/2 squares in Z/pZ
|
206 |
+
# when is prime).
|
207 |
+
square_set = {(x**2) % p for x in range(1, p) if (x**2) % p != 0}
|
208 |
+
|
209 |
+
for x in range(p):
|
210 |
+
for x2 in square_set:
|
211 |
+
G.add_edge(x, (x + x2) % p)
|
212 |
+
G.graph["name"] = f"paley({p})"
|
213 |
+
return G
|
214 |
+
|
215 |
+
|
216 |
+
@nx.utils.decorators.np_random_state("seed")
|
217 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
218 |
+
def maybe_regular_expander(n, d, *, create_using=None, max_tries=100, seed=None):
|
219 |
+
r"""Utility for creating a random regular expander.
|
220 |
+
|
221 |
+
Returns a random $d$-regular graph on $n$ nodes which is an expander
|
222 |
+
graph with very good probability.
|
223 |
+
|
224 |
+
Parameters
|
225 |
+
----------
|
226 |
+
n : int
|
227 |
+
The number of nodes.
|
228 |
+
d : int
|
229 |
+
The degree of each node.
|
230 |
+
create_using : Graph Instance or Constructor
|
231 |
+
Indicator of type of graph to return.
|
232 |
+
If a Graph-type instance, then clear and use it.
|
233 |
+
If a constructor, call it to create an empty graph.
|
234 |
+
Use the Graph constructor by default.
|
235 |
+
max_tries : int. (default: 100)
|
236 |
+
The number of allowed loops when generating each independent cycle
|
237 |
+
seed : (default: None)
|
238 |
+
Seed used to set random number generation state. See :ref`Randomness<randomness>`.
|
239 |
+
|
240 |
+
Notes
|
241 |
+
-----
|
242 |
+
The nodes are numbered from $0$ to $n - 1$.
|
243 |
+
|
244 |
+
The graph is generated by taking $d / 2$ random independent cycles.
|
245 |
+
|
246 |
+
Joel Friedman proved that in this model the resulting
|
247 |
+
graph is an expander with probability
|
248 |
+
$1 - O(n^{-\tau})$ where $\tau = \lceil (\sqrt{d - 1}) / 2 \rceil - 1$. [1]_
|
249 |
+
|
250 |
+
Examples
|
251 |
+
--------
|
252 |
+
>>> G = nx.maybe_regular_expander(n=200, d=6, seed=8020)
|
253 |
+
|
254 |
+
Returns
|
255 |
+
-------
|
256 |
+
G : graph
|
257 |
+
The constructed undirected graph.
|
258 |
+
|
259 |
+
Raises
|
260 |
+
------
|
261 |
+
NetworkXError
|
262 |
+
If $d % 2 != 0$ as the degree must be even.
|
263 |
+
If $n - 1$ is less than $ 2d $ as the graph is complete at most.
|
264 |
+
If max_tries is reached
|
265 |
+
|
266 |
+
See Also
|
267 |
+
--------
|
268 |
+
is_regular_expander
|
269 |
+
random_regular_expander_graph
|
270 |
+
|
271 |
+
References
|
272 |
+
----------
|
273 |
+
.. [1] Joel Friedman,
|
274 |
+
A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems, 2004
|
275 |
+
https://arxiv.org/abs/cs/0405020
|
276 |
+
|
277 |
+
"""
|
278 |
+
|
279 |
+
import numpy as np
|
280 |
+
|
281 |
+
if n < 1:
|
282 |
+
raise nx.NetworkXError("n must be a positive integer")
|
283 |
+
|
284 |
+
if not (d >= 2):
|
285 |
+
raise nx.NetworkXError("d must be greater than or equal to 2")
|
286 |
+
|
287 |
+
if not (d % 2 == 0):
|
288 |
+
raise nx.NetworkXError("d must be even")
|
289 |
+
|
290 |
+
if not (n - 1 >= d):
|
291 |
+
raise nx.NetworkXError(
|
292 |
+
f"Need n-1>= d to have room for {d//2} independent cycles with {n} nodes"
|
293 |
+
)
|
294 |
+
|
295 |
+
G = nx.empty_graph(n, create_using)
|
296 |
+
|
297 |
+
if n < 2:
|
298 |
+
return G
|
299 |
+
|
300 |
+
cycles = []
|
301 |
+
edges = set()
|
302 |
+
|
303 |
+
# Create d / 2 cycles
|
304 |
+
for i in range(d // 2):
|
305 |
+
iterations = max_tries
|
306 |
+
# Make sure the cycles are independent to have a regular graph
|
307 |
+
while len(edges) != (i + 1) * n:
|
308 |
+
iterations -= 1
|
309 |
+
# Faster than random.permutation(n) since there are only
|
310 |
+
# (n-1)! distinct cycles against n! permutations of size n
|
311 |
+
cycle = seed.permutation(n - 1).tolist()
|
312 |
+
cycle.append(n - 1)
|
313 |
+
|
314 |
+
new_edges = {
|
315 |
+
(u, v)
|
316 |
+
for u, v in nx.utils.pairwise(cycle, cyclic=True)
|
317 |
+
if (u, v) not in edges and (v, u) not in edges
|
318 |
+
}
|
319 |
+
# If the new cycle has no edges in common with previous cycles
|
320 |
+
# then add it to the list otherwise try again
|
321 |
+
if len(new_edges) == n:
|
322 |
+
cycles.append(cycle)
|
323 |
+
edges.update(new_edges)
|
324 |
+
|
325 |
+
if iterations == 0:
|
326 |
+
raise nx.NetworkXError("Too many iterations in maybe_regular_expander")
|
327 |
+
|
328 |
+
G.add_edges_from(edges)
|
329 |
+
|
330 |
+
return G
|
331 |
+
|
332 |
+
|
333 |
+
@nx.utils.not_implemented_for("directed")
|
334 |
+
@nx.utils.not_implemented_for("multigraph")
|
335 |
+
@nx._dispatchable(preserve_edge_attrs={"G": {"weight": 1}})
|
336 |
+
def is_regular_expander(G, *, epsilon=0):
|
337 |
+
r"""Determines whether the graph G is a regular expander. [1]_
|
338 |
+
|
339 |
+
An expander graph is a sparse graph with strong connectivity properties.
|
340 |
+
|
341 |
+
More precisely, this helper checks whether the graph is a
|
342 |
+
regular $(n, d, \lambda)$-expander with $\lambda$ close to
|
343 |
+
the Alon-Boppana bound and given by
|
344 |
+
$\lambda = 2 \sqrt{d - 1} + \epsilon$. [2]_
|
345 |
+
|
346 |
+
In the case where $\epsilon = 0$ then if the graph successfully passes the test
|
347 |
+
it is a Ramanujan graph. [3]_
|
348 |
+
|
349 |
+
A Ramanujan graph has spectral gap almost as large as possible, which makes them
|
350 |
+
excellent expanders.
|
351 |
+
|
352 |
+
Parameters
|
353 |
+
----------
|
354 |
+
G : NetworkX graph
|
355 |
+
epsilon : int, float, default=0
|
356 |
+
|
357 |
+
Returns
|
358 |
+
-------
|
359 |
+
bool
|
360 |
+
Whether the given graph is a regular $(n, d, \lambda)$-expander
|
361 |
+
where $\lambda = 2 \sqrt{d - 1} + \epsilon$.
|
362 |
+
|
363 |
+
Examples
|
364 |
+
--------
|
365 |
+
>>> G = nx.random_regular_expander_graph(20, 4)
|
366 |
+
>>> nx.is_regular_expander(G)
|
367 |
+
True
|
368 |
+
|
369 |
+
See Also
|
370 |
+
--------
|
371 |
+
maybe_regular_expander
|
372 |
+
random_regular_expander_graph
|
373 |
+
|
374 |
+
References
|
375 |
+
----------
|
376 |
+
.. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
|
377 |
+
.. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
|
378 |
+
.. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph
|
379 |
+
|
380 |
+
"""
|
381 |
+
|
382 |
+
import numpy as np
|
383 |
+
from scipy.sparse.linalg import eigsh
|
384 |
+
|
385 |
+
if epsilon < 0:
|
386 |
+
raise nx.NetworkXError("epsilon must be non negative")
|
387 |
+
|
388 |
+
if not nx.is_regular(G):
|
389 |
+
return False
|
390 |
+
|
391 |
+
_, d = nx.utils.arbitrary_element(G.degree)
|
392 |
+
|
393 |
+
A = nx.adjacency_matrix(G, dtype=float)
|
394 |
+
lams = eigsh(A, which="LM", k=2, return_eigenvectors=False)
|
395 |
+
|
396 |
+
# lambda2 is the second biggest eigenvalue
|
397 |
+
lambda2 = min(lams)
|
398 |
+
|
399 |
+
# Use bool() to convert numpy scalar to Python Boolean
|
400 |
+
return bool(abs(lambda2) < 2 ** np.sqrt(d - 1) + epsilon)
|
401 |
+
|
402 |
+
|
403 |
+
@nx.utils.decorators.np_random_state("seed")
|
404 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
405 |
+
def random_regular_expander_graph(
|
406 |
+
n, d, *, epsilon=0, create_using=None, max_tries=100, seed=None
|
407 |
+
):
|
408 |
+
r"""Returns a random regular expander graph on $n$ nodes with degree $d$.
|
409 |
+
|
410 |
+
An expander graph is a sparse graph with strong connectivity properties. [1]_
|
411 |
+
|
412 |
+
More precisely the returned graph is a $(n, d, \lambda)$-expander with
|
413 |
+
$\lambda = 2 \sqrt{d - 1} + \epsilon$, close to the Alon-Boppana bound. [2]_
|
414 |
+
|
415 |
+
In the case where $\epsilon = 0$ it returns a Ramanujan graph.
|
416 |
+
A Ramanujan graph has spectral gap almost as large as possible,
|
417 |
+
which makes them excellent expanders. [3]_
|
418 |
+
|
419 |
+
Parameters
|
420 |
+
----------
|
421 |
+
n : int
|
422 |
+
The number of nodes.
|
423 |
+
d : int
|
424 |
+
The degree of each node.
|
425 |
+
epsilon : int, float, default=0
|
426 |
+
max_tries : int, (default: 100)
|
427 |
+
The number of allowed loops, also used in the maybe_regular_expander utility
|
428 |
+
seed : (default: None)
|
429 |
+
Seed used to set random number generation state. See :ref`Randomness<randomness>`.
|
430 |
+
|
431 |
+
Raises
|
432 |
+
------
|
433 |
+
NetworkXError
|
434 |
+
If max_tries is reached
|
435 |
+
|
436 |
+
Examples
|
437 |
+
--------
|
438 |
+
>>> G = nx.random_regular_expander_graph(20, 4)
|
439 |
+
>>> nx.is_regular_expander(G)
|
440 |
+
True
|
441 |
+
|
442 |
+
Notes
|
443 |
+
-----
|
444 |
+
This loops over `maybe_regular_expander` and can be slow when
|
445 |
+
$n$ is too big or $\epsilon$ too small.
|
446 |
+
|
447 |
+
See Also
|
448 |
+
--------
|
449 |
+
maybe_regular_expander
|
450 |
+
is_regular_expander
|
451 |
+
|
452 |
+
References
|
453 |
+
----------
|
454 |
+
.. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
|
455 |
+
.. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
|
456 |
+
.. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph
|
457 |
+
|
458 |
+
"""
|
459 |
+
G = maybe_regular_expander(
|
460 |
+
n, d, create_using=create_using, max_tries=max_tries, seed=seed
|
461 |
+
)
|
462 |
+
iterations = max_tries
|
463 |
+
|
464 |
+
while not is_regular_expander(G, epsilon=epsilon):
|
465 |
+
iterations -= 1
|
466 |
+
G = maybe_regular_expander(
|
467 |
+
n=n, d=d, create_using=create_using, max_tries=max_tries, seed=seed
|
468 |
+
)
|
469 |
+
|
470 |
+
if iterations == 0:
|
471 |
+
raise nx.NetworkXError(
|
472 |
+
"Too many iterations in random_regular_expander_graph"
|
473 |
+
)
|
474 |
+
|
475 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/geometric.py
ADDED
@@ -0,0 +1,1047 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generators for geometric graphs.
|
2 |
+
"""
|
3 |
+
|
4 |
+
import math
|
5 |
+
from bisect import bisect_left
|
6 |
+
from itertools import accumulate, combinations, product
|
7 |
+
|
8 |
+
import networkx as nx
|
9 |
+
from networkx.utils import py_random_state
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"geometric_edges",
|
13 |
+
"geographical_threshold_graph",
|
14 |
+
"navigable_small_world_graph",
|
15 |
+
"random_geometric_graph",
|
16 |
+
"soft_random_geometric_graph",
|
17 |
+
"thresholded_random_geometric_graph",
|
18 |
+
"waxman_graph",
|
19 |
+
"geometric_soft_configuration_graph",
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
@nx._dispatchable(node_attrs="pos_name")
|
24 |
+
def geometric_edges(G, radius, p=2, *, pos_name="pos"):
|
25 |
+
"""Returns edge list of node pairs within `radius` of each other.
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
G : networkx graph
|
30 |
+
The graph from which to generate the edge list. The nodes in `G` should
|
31 |
+
have an attribute ``pos`` corresponding to the node position, which is
|
32 |
+
used to compute the distance to other nodes.
|
33 |
+
radius : scalar
|
34 |
+
The distance threshold. Edges are included in the edge list if the
|
35 |
+
distance between the two nodes is less than `radius`.
|
36 |
+
pos_name : string, default="pos"
|
37 |
+
The name of the node attribute which represents the position of each
|
38 |
+
node in 2D coordinates. Every node in the Graph must have this attribute.
|
39 |
+
p : scalar, default=2
|
40 |
+
The `Minkowski distance metric
|
41 |
+
<https://en.wikipedia.org/wiki/Minkowski_distance>`_ used to compute
|
42 |
+
distances. The default value is 2, i.e. Euclidean distance.
|
43 |
+
|
44 |
+
Returns
|
45 |
+
-------
|
46 |
+
edges : list
|
47 |
+
List of edges whose distances are less than `radius`
|
48 |
+
|
49 |
+
Notes
|
50 |
+
-----
|
51 |
+
Radius uses Minkowski distance metric `p`.
|
52 |
+
If scipy is available, `scipy.spatial.cKDTree` is used to speed computation.
|
53 |
+
|
54 |
+
Examples
|
55 |
+
--------
|
56 |
+
Create a graph with nodes that have a "pos" attribute representing 2D
|
57 |
+
coordinates.
|
58 |
+
|
59 |
+
>>> G = nx.Graph()
|
60 |
+
>>> G.add_nodes_from(
|
61 |
+
... [
|
62 |
+
... (0, {"pos": (0, 0)}),
|
63 |
+
... (1, {"pos": (3, 0)}),
|
64 |
+
... (2, {"pos": (8, 0)}),
|
65 |
+
... ]
|
66 |
+
... )
|
67 |
+
>>> nx.geometric_edges(G, radius=1)
|
68 |
+
[]
|
69 |
+
>>> nx.geometric_edges(G, radius=4)
|
70 |
+
[(0, 1)]
|
71 |
+
>>> nx.geometric_edges(G, radius=6)
|
72 |
+
[(0, 1), (1, 2)]
|
73 |
+
>>> nx.geometric_edges(G, radius=9)
|
74 |
+
[(0, 1), (0, 2), (1, 2)]
|
75 |
+
"""
|
76 |
+
# Input validation - every node must have a "pos" attribute
|
77 |
+
for n, pos in G.nodes(data=pos_name):
|
78 |
+
if pos is None:
|
79 |
+
raise nx.NetworkXError(
|
80 |
+
f"Node {n} (and all nodes) must have a '{pos_name}' attribute."
|
81 |
+
)
|
82 |
+
|
83 |
+
# NOTE: See _geometric_edges for the actual implementation. The reason this
|
84 |
+
# is split into two functions is to avoid the overhead of input validation
|
85 |
+
# every time the function is called internally in one of the other
|
86 |
+
# geometric generators
|
87 |
+
return _geometric_edges(G, radius, p, pos_name)
|
88 |
+
|
89 |
+
|
90 |
+
def _geometric_edges(G, radius, p, pos_name):
|
91 |
+
"""
|
92 |
+
Implements `geometric_edges` without input validation. See `geometric_edges`
|
93 |
+
for complete docstring.
|
94 |
+
"""
|
95 |
+
nodes_pos = G.nodes(data=pos_name)
|
96 |
+
try:
|
97 |
+
import scipy as sp
|
98 |
+
except ImportError:
|
99 |
+
# no scipy KDTree so compute by for-loop
|
100 |
+
radius_p = radius**p
|
101 |
+
edges = [
|
102 |
+
(u, v)
|
103 |
+
for (u, pu), (v, pv) in combinations(nodes_pos, 2)
|
104 |
+
if sum(abs(a - b) ** p for a, b in zip(pu, pv)) <= radius_p
|
105 |
+
]
|
106 |
+
return edges
|
107 |
+
# scipy KDTree is available
|
108 |
+
nodes, coords = list(zip(*nodes_pos))
|
109 |
+
kdtree = sp.spatial.cKDTree(coords) # Cannot provide generator.
|
110 |
+
edge_indexes = kdtree.query_pairs(radius, p)
|
111 |
+
edges = [(nodes[u], nodes[v]) for u, v in sorted(edge_indexes)]
|
112 |
+
return edges
|
113 |
+
|
114 |
+
|
115 |
+
@py_random_state(5)
|
116 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
117 |
+
def random_geometric_graph(
|
118 |
+
n, radius, dim=2, pos=None, p=2, seed=None, *, pos_name="pos"
|
119 |
+
):
|
120 |
+
"""Returns a random geometric graph in the unit cube of dimensions `dim`.
|
121 |
+
|
122 |
+
The random geometric graph model places `n` nodes uniformly at
|
123 |
+
random in the unit cube. Two nodes are joined by an edge if the
|
124 |
+
distance between the nodes is at most `radius`.
|
125 |
+
|
126 |
+
Edges are determined using a KDTree when SciPy is available.
|
127 |
+
This reduces the time complexity from $O(n^2)$ to $O(n)$.
|
128 |
+
|
129 |
+
Parameters
|
130 |
+
----------
|
131 |
+
n : int or iterable
|
132 |
+
Number of nodes or iterable of nodes
|
133 |
+
radius: float
|
134 |
+
Distance threshold value
|
135 |
+
dim : int, optional
|
136 |
+
Dimension of graph
|
137 |
+
pos : dict, optional
|
138 |
+
A dictionary keyed by node with node positions as values.
|
139 |
+
p : float, optional
|
140 |
+
Which Minkowski distance metric to use. `p` has to meet the condition
|
141 |
+
``1 <= p <= infinity``.
|
142 |
+
|
143 |
+
If this argument is not specified, the :math:`L^2` metric
|
144 |
+
(the Euclidean distance metric), p = 2 is used.
|
145 |
+
This should not be confused with the `p` of an Erdős-Rényi random
|
146 |
+
graph, which represents probability.
|
147 |
+
seed : integer, random_state, or None (default)
|
148 |
+
Indicator of random number generation state.
|
149 |
+
See :ref:`Randomness<randomness>`.
|
150 |
+
pos_name : string, default="pos"
|
151 |
+
The name of the node attribute which represents the position
|
152 |
+
in 2D coordinates of the node in the returned graph.
|
153 |
+
|
154 |
+
Returns
|
155 |
+
-------
|
156 |
+
Graph
|
157 |
+
A random geometric graph, undirected and without self-loops.
|
158 |
+
Each node has a node attribute ``'pos'`` that stores the
|
159 |
+
position of that node in Euclidean space as provided by the
|
160 |
+
``pos`` keyword argument or, if ``pos`` was not provided, as
|
161 |
+
generated by this function.
|
162 |
+
|
163 |
+
Examples
|
164 |
+
--------
|
165 |
+
Create a random geometric graph on twenty nodes where nodes are joined by
|
166 |
+
an edge if their distance is at most 0.1::
|
167 |
+
|
168 |
+
>>> G = nx.random_geometric_graph(20, 0.1)
|
169 |
+
|
170 |
+
Notes
|
171 |
+
-----
|
172 |
+
This uses a *k*-d tree to build the graph.
|
173 |
+
|
174 |
+
The `pos` keyword argument can be used to specify node positions so you
|
175 |
+
can create an arbitrary distribution and domain for positions.
|
176 |
+
|
177 |
+
For example, to use a 2D Gaussian distribution of node positions with mean
|
178 |
+
(0, 0) and standard deviation 2::
|
179 |
+
|
180 |
+
>>> import random
|
181 |
+
>>> n = 20
|
182 |
+
>>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
|
183 |
+
>>> G = nx.random_geometric_graph(n, 0.2, pos=pos)
|
184 |
+
|
185 |
+
References
|
186 |
+
----------
|
187 |
+
.. [1] Penrose, Mathew, *Random Geometric Graphs*,
|
188 |
+
Oxford Studies in Probability, 5, 2003.
|
189 |
+
|
190 |
+
"""
|
191 |
+
# TODO Is this function just a special case of the geographical
|
192 |
+
# threshold graph?
|
193 |
+
#
|
194 |
+
# half_radius = {v: radius / 2 for v in n}
|
195 |
+
# return geographical_threshold_graph(nodes, theta=1, alpha=1,
|
196 |
+
# weight=half_radius)
|
197 |
+
#
|
198 |
+
G = nx.empty_graph(n)
|
199 |
+
# If no positions are provided, choose uniformly random vectors in
|
200 |
+
# Euclidean space of the specified dimension.
|
201 |
+
if pos is None:
|
202 |
+
pos = {v: [seed.random() for i in range(dim)] for v in G}
|
203 |
+
nx.set_node_attributes(G, pos, pos_name)
|
204 |
+
|
205 |
+
G.add_edges_from(_geometric_edges(G, radius, p, pos_name))
|
206 |
+
return G
|
207 |
+
|
208 |
+
|
209 |
+
@py_random_state(6)
|
210 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
211 |
+
def soft_random_geometric_graph(
|
212 |
+
n, radius, dim=2, pos=None, p=2, p_dist=None, seed=None, *, pos_name="pos"
|
213 |
+
):
|
214 |
+
r"""Returns a soft random geometric graph in the unit cube.
|
215 |
+
|
216 |
+
The soft random geometric graph [1] model places `n` nodes uniformly at
|
217 |
+
random in the unit cube in dimension `dim`. Two nodes of distance, `dist`,
|
218 |
+
computed by the `p`-Minkowski distance metric are joined by an edge with
|
219 |
+
probability `p_dist` if the computed distance metric value of the nodes
|
220 |
+
is at most `radius`, otherwise they are not joined.
|
221 |
+
|
222 |
+
Edges within `radius` of each other are determined using a KDTree when
|
223 |
+
SciPy is available. This reduces the time complexity from :math:`O(n^2)`
|
224 |
+
to :math:`O(n)`.
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
n : int or iterable
|
229 |
+
Number of nodes or iterable of nodes
|
230 |
+
radius: float
|
231 |
+
Distance threshold value
|
232 |
+
dim : int, optional
|
233 |
+
Dimension of graph
|
234 |
+
pos : dict, optional
|
235 |
+
A dictionary keyed by node with node positions as values.
|
236 |
+
p : float, optional
|
237 |
+
Which Minkowski distance metric to use.
|
238 |
+
`p` has to meet the condition ``1 <= p <= infinity``.
|
239 |
+
|
240 |
+
If this argument is not specified, the :math:`L^2` metric
|
241 |
+
(the Euclidean distance metric), p = 2 is used.
|
242 |
+
|
243 |
+
This should not be confused with the `p` of an Erdős-Rényi random
|
244 |
+
graph, which represents probability.
|
245 |
+
p_dist : function, optional
|
246 |
+
A probability density function computing the probability of
|
247 |
+
connecting two nodes that are of distance, dist, computed by the
|
248 |
+
Minkowski distance metric. The probability density function, `p_dist`,
|
249 |
+
must be any function that takes the metric value as input
|
250 |
+
and outputs a single probability value between 0-1. The scipy.stats
|
251 |
+
package has many probability distribution functions implemented and
|
252 |
+
tools for custom probability distribution definitions [2], and passing
|
253 |
+
the .pdf method of scipy.stats distributions can be used here. If the
|
254 |
+
probability function, `p_dist`, is not supplied, the default function
|
255 |
+
is an exponential distribution with rate parameter :math:`\lambda=1`.
|
256 |
+
seed : integer, random_state, or None (default)
|
257 |
+
Indicator of random number generation state.
|
258 |
+
See :ref:`Randomness<randomness>`.
|
259 |
+
pos_name : string, default="pos"
|
260 |
+
The name of the node attribute which represents the position
|
261 |
+
in 2D coordinates of the node in the returned graph.
|
262 |
+
|
263 |
+
Returns
|
264 |
+
-------
|
265 |
+
Graph
|
266 |
+
A soft random geometric graph, undirected and without self-loops.
|
267 |
+
Each node has a node attribute ``'pos'`` that stores the
|
268 |
+
position of that node in Euclidean space as provided by the
|
269 |
+
``pos`` keyword argument or, if ``pos`` was not provided, as
|
270 |
+
generated by this function.
|
271 |
+
|
272 |
+
Examples
|
273 |
+
--------
|
274 |
+
Default Graph:
|
275 |
+
|
276 |
+
G = nx.soft_random_geometric_graph(50, 0.2)
|
277 |
+
|
278 |
+
Custom Graph:
|
279 |
+
|
280 |
+
Create a soft random geometric graph on 100 uniformly distributed nodes
|
281 |
+
where nodes are joined by an edge with probability computed from an
|
282 |
+
exponential distribution with rate parameter :math:`\lambda=1` if their
|
283 |
+
Euclidean distance is at most 0.2.
|
284 |
+
|
285 |
+
Notes
|
286 |
+
-----
|
287 |
+
This uses a *k*-d tree to build the graph.
|
288 |
+
|
289 |
+
The `pos` keyword argument can be used to specify node positions so you
|
290 |
+
can create an arbitrary distribution and domain for positions.
|
291 |
+
|
292 |
+
For example, to use a 2D Gaussian distribution of node positions with mean
|
293 |
+
(0, 0) and standard deviation 2
|
294 |
+
|
295 |
+
The scipy.stats package can be used to define the probability distribution
|
296 |
+
with the .pdf method used as `p_dist`.
|
297 |
+
|
298 |
+
::
|
299 |
+
|
300 |
+
>>> import random
|
301 |
+
>>> import math
|
302 |
+
>>> n = 100
|
303 |
+
>>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
|
304 |
+
>>> p_dist = lambda dist: math.exp(-dist)
|
305 |
+
>>> G = nx.soft_random_geometric_graph(n, 0.2, pos=pos, p_dist=p_dist)
|
306 |
+
|
307 |
+
References
|
308 |
+
----------
|
309 |
+
.. [1] Penrose, Mathew D. "Connectivity of soft random geometric graphs."
|
310 |
+
The Annals of Applied Probability 26.2 (2016): 986-1028.
|
311 |
+
.. [2] scipy.stats -
|
312 |
+
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
|
313 |
+
|
314 |
+
"""
|
315 |
+
G = nx.empty_graph(n)
|
316 |
+
G.name = f"soft_random_geometric_graph({n}, {radius}, {dim})"
|
317 |
+
# If no positions are provided, choose uniformly random vectors in
|
318 |
+
# Euclidean space of the specified dimension.
|
319 |
+
if pos is None:
|
320 |
+
pos = {v: [seed.random() for i in range(dim)] for v in G}
|
321 |
+
nx.set_node_attributes(G, pos, pos_name)
|
322 |
+
|
323 |
+
# if p_dist function not supplied the default function is an exponential
|
324 |
+
# distribution with rate parameter :math:`\lambda=1`.
|
325 |
+
if p_dist is None:
|
326 |
+
|
327 |
+
def p_dist(dist):
|
328 |
+
return math.exp(-dist)
|
329 |
+
|
330 |
+
def should_join(edge):
|
331 |
+
u, v = edge
|
332 |
+
dist = (sum(abs(a - b) ** p for a, b in zip(pos[u], pos[v]))) ** (1 / p)
|
333 |
+
return seed.random() < p_dist(dist)
|
334 |
+
|
335 |
+
G.add_edges_from(filter(should_join, _geometric_edges(G, radius, p, pos_name)))
|
336 |
+
return G
|
337 |
+
|
338 |
+
|
339 |
+
@py_random_state(7)
|
340 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
341 |
+
def geographical_threshold_graph(
|
342 |
+
n,
|
343 |
+
theta,
|
344 |
+
dim=2,
|
345 |
+
pos=None,
|
346 |
+
weight=None,
|
347 |
+
metric=None,
|
348 |
+
p_dist=None,
|
349 |
+
seed=None,
|
350 |
+
*,
|
351 |
+
pos_name="pos",
|
352 |
+
weight_name="weight",
|
353 |
+
):
|
354 |
+
r"""Returns a geographical threshold graph.
|
355 |
+
|
356 |
+
The geographical threshold graph model places $n$ nodes uniformly at
|
357 |
+
random in a rectangular domain. Each node $u$ is assigned a weight
|
358 |
+
$w_u$. Two nodes $u$ and $v$ are joined by an edge if
|
359 |
+
|
360 |
+
.. math::
|
361 |
+
|
362 |
+
(w_u + w_v)p_{dist}(r) \ge \theta
|
363 |
+
|
364 |
+
where `r` is the distance between `u` and `v`, `p_dist` is any function of
|
365 |
+
`r`, and :math:`\theta` as the threshold parameter. `p_dist` is used to
|
366 |
+
give weight to the distance between nodes when deciding whether or not
|
367 |
+
they should be connected. The larger `p_dist` is, the more prone nodes
|
368 |
+
separated by `r` are to be connected, and vice versa.
|
369 |
+
|
370 |
+
Parameters
|
371 |
+
----------
|
372 |
+
n : int or iterable
|
373 |
+
Number of nodes or iterable of nodes
|
374 |
+
theta: float
|
375 |
+
Threshold value
|
376 |
+
dim : int, optional
|
377 |
+
Dimension of graph
|
378 |
+
pos : dict
|
379 |
+
Node positions as a dictionary of tuples keyed by node.
|
380 |
+
weight : dict
|
381 |
+
Node weights as a dictionary of numbers keyed by node.
|
382 |
+
metric : function
|
383 |
+
A metric on vectors of numbers (represented as lists or
|
384 |
+
tuples). This must be a function that accepts two lists (or
|
385 |
+
tuples) as input and yields a number as output. The function
|
386 |
+
must also satisfy the four requirements of a `metric`_.
|
387 |
+
Specifically, if $d$ is the function and $x$, $y$,
|
388 |
+
and $z$ are vectors in the graph, then $d$ must satisfy
|
389 |
+
|
390 |
+
1. $d(x, y) \ge 0$,
|
391 |
+
2. $d(x, y) = 0$ if and only if $x = y$,
|
392 |
+
3. $d(x, y) = d(y, x)$,
|
393 |
+
4. $d(x, z) \le d(x, y) + d(y, z)$.
|
394 |
+
|
395 |
+
If this argument is not specified, the Euclidean distance metric is
|
396 |
+
used.
|
397 |
+
|
398 |
+
.. _metric: https://en.wikipedia.org/wiki/Metric_%28mathematics%29
|
399 |
+
p_dist : function, optional
|
400 |
+
Any function used to give weight to the distance between nodes when
|
401 |
+
deciding whether or not they should be connected. `p_dist` was
|
402 |
+
originally conceived as a probability density function giving the
|
403 |
+
probability of connecting two nodes that are of metric distance `r`
|
404 |
+
apart. The implementation here allows for more arbitrary definitions
|
405 |
+
of `p_dist` that do not need to correspond to valid probability
|
406 |
+
density functions. The :mod:`scipy.stats` package has many
|
407 |
+
probability density functions implemented and tools for custom
|
408 |
+
probability density definitions, and passing the ``.pdf`` method of
|
409 |
+
scipy.stats distributions can be used here. If ``p_dist=None``
|
410 |
+
(the default), the exponential function :math:`r^{-2}` is used.
|
411 |
+
seed : integer, random_state, or None (default)
|
412 |
+
Indicator of random number generation state.
|
413 |
+
See :ref:`Randomness<randomness>`.
|
414 |
+
pos_name : string, default="pos"
|
415 |
+
The name of the node attribute which represents the position
|
416 |
+
in 2D coordinates of the node in the returned graph.
|
417 |
+
weight_name : string, default="weight"
|
418 |
+
The name of the node attribute which represents the weight
|
419 |
+
of the node in the returned graph.
|
420 |
+
|
421 |
+
Returns
|
422 |
+
-------
|
423 |
+
Graph
|
424 |
+
A random geographic threshold graph, undirected and without
|
425 |
+
self-loops.
|
426 |
+
|
427 |
+
Each node has a node attribute ``pos`` that stores the
|
428 |
+
position of that node in Euclidean space as provided by the
|
429 |
+
``pos`` keyword argument or, if ``pos`` was not provided, as
|
430 |
+
generated by this function. Similarly, each node has a node
|
431 |
+
attribute ``weight`` that stores the weight of that node as
|
432 |
+
provided or as generated.
|
433 |
+
|
434 |
+
Examples
|
435 |
+
--------
|
436 |
+
Specify an alternate distance metric using the ``metric`` keyword
|
437 |
+
argument. For example, to use the `taxicab metric`_ instead of the
|
438 |
+
default `Euclidean metric`_::
|
439 |
+
|
440 |
+
>>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y))
|
441 |
+
>>> G = nx.geographical_threshold_graph(10, 0.1, metric=dist)
|
442 |
+
|
443 |
+
.. _taxicab metric: https://en.wikipedia.org/wiki/Taxicab_geometry
|
444 |
+
.. _Euclidean metric: https://en.wikipedia.org/wiki/Euclidean_distance
|
445 |
+
|
446 |
+
Notes
|
447 |
+
-----
|
448 |
+
If weights are not specified they are assigned to nodes by drawing randomly
|
449 |
+
from the exponential distribution with rate parameter $\lambda=1$.
|
450 |
+
To specify weights from a different distribution, use the `weight` keyword
|
451 |
+
argument::
|
452 |
+
|
453 |
+
>>> import random
|
454 |
+
>>> n = 20
|
455 |
+
>>> w = {i: random.expovariate(5.0) for i in range(n)}
|
456 |
+
>>> G = nx.geographical_threshold_graph(20, 50, weight=w)
|
457 |
+
|
458 |
+
If node positions are not specified they are randomly assigned from the
|
459 |
+
uniform distribution.
|
460 |
+
|
461 |
+
References
|
462 |
+
----------
|
463 |
+
.. [1] Masuda, N., Miwa, H., Konno, N.:
|
464 |
+
Geographical threshold graphs with small-world and scale-free
|
465 |
+
properties.
|
466 |
+
Physical Review E 71, 036108 (2005)
|
467 |
+
.. [2] Milan Bradonjić, Aric Hagberg and Allon G. Percus,
|
468 |
+
Giant component and connectivity in geographical threshold graphs,
|
469 |
+
in Algorithms and Models for the Web-Graph (WAW 2007),
|
470 |
+
Antony Bonato and Fan Chung (Eds), pp. 209--216, 2007
|
471 |
+
"""
|
472 |
+
G = nx.empty_graph(n)
|
473 |
+
# If no weights are provided, choose them from an exponential
|
474 |
+
# distribution.
|
475 |
+
if weight is None:
|
476 |
+
weight = {v: seed.expovariate(1) for v in G}
|
477 |
+
# If no positions are provided, choose uniformly random vectors in
|
478 |
+
# Euclidean space of the specified dimension.
|
479 |
+
if pos is None:
|
480 |
+
pos = {v: [seed.random() for i in range(dim)] for v in G}
|
481 |
+
# If no distance metric is provided, use Euclidean distance.
|
482 |
+
if metric is None:
|
483 |
+
metric = math.dist
|
484 |
+
nx.set_node_attributes(G, weight, weight_name)
|
485 |
+
nx.set_node_attributes(G, pos, pos_name)
|
486 |
+
|
487 |
+
# if p_dist is not supplied, use default r^-2
|
488 |
+
if p_dist is None:
|
489 |
+
|
490 |
+
def p_dist(r):
|
491 |
+
return r**-2
|
492 |
+
|
493 |
+
# Returns ``True`` if and only if the nodes whose attributes are
|
494 |
+
# ``du`` and ``dv`` should be joined, according to the threshold
|
495 |
+
# condition.
|
496 |
+
def should_join(pair):
|
497 |
+
u, v = pair
|
498 |
+
u_pos, v_pos = pos[u], pos[v]
|
499 |
+
u_weight, v_weight = weight[u], weight[v]
|
500 |
+
return (u_weight + v_weight) * p_dist(metric(u_pos, v_pos)) >= theta
|
501 |
+
|
502 |
+
G.add_edges_from(filter(should_join, combinations(G, 2)))
|
503 |
+
return G
|
504 |
+
|
505 |
+
|
506 |
+
@py_random_state(6)
|
507 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
508 |
+
def waxman_graph(
|
509 |
+
n,
|
510 |
+
beta=0.4,
|
511 |
+
alpha=0.1,
|
512 |
+
L=None,
|
513 |
+
domain=(0, 0, 1, 1),
|
514 |
+
metric=None,
|
515 |
+
seed=None,
|
516 |
+
*,
|
517 |
+
pos_name="pos",
|
518 |
+
):
|
519 |
+
r"""Returns a Waxman random graph.
|
520 |
+
|
521 |
+
The Waxman random graph model places `n` nodes uniformly at random
|
522 |
+
in a rectangular domain. Each pair of nodes at distance `d` is
|
523 |
+
joined by an edge with probability
|
524 |
+
|
525 |
+
.. math::
|
526 |
+
p = \beta \exp(-d / \alpha L).
|
527 |
+
|
528 |
+
This function implements both Waxman models, using the `L` keyword
|
529 |
+
argument.
|
530 |
+
|
531 |
+
* Waxman-1: if `L` is not specified, it is set to be the maximum distance
|
532 |
+
between any pair of nodes.
|
533 |
+
* Waxman-2: if `L` is specified, the distance between a pair of nodes is
|
534 |
+
chosen uniformly at random from the interval `[0, L]`.
|
535 |
+
|
536 |
+
Parameters
|
537 |
+
----------
|
538 |
+
n : int or iterable
|
539 |
+
Number of nodes or iterable of nodes
|
540 |
+
beta: float
|
541 |
+
Model parameter
|
542 |
+
alpha: float
|
543 |
+
Model parameter
|
544 |
+
L : float, optional
|
545 |
+
Maximum distance between nodes. If not specified, the actual distance
|
546 |
+
is calculated.
|
547 |
+
domain : four-tuple of numbers, optional
|
548 |
+
Domain size, given as a tuple of the form `(x_min, y_min, x_max,
|
549 |
+
y_max)`.
|
550 |
+
metric : function
|
551 |
+
A metric on vectors of numbers (represented as lists or
|
552 |
+
tuples). This must be a function that accepts two lists (or
|
553 |
+
tuples) as input and yields a number as output. The function
|
554 |
+
must also satisfy the four requirements of a `metric`_.
|
555 |
+
Specifically, if $d$ is the function and $x$, $y$,
|
556 |
+
and $z$ are vectors in the graph, then $d$ must satisfy
|
557 |
+
|
558 |
+
1. $d(x, y) \ge 0$,
|
559 |
+
2. $d(x, y) = 0$ if and only if $x = y$,
|
560 |
+
3. $d(x, y) = d(y, x)$,
|
561 |
+
4. $d(x, z) \le d(x, y) + d(y, z)$.
|
562 |
+
|
563 |
+
If this argument is not specified, the Euclidean distance metric is
|
564 |
+
used.
|
565 |
+
|
566 |
+
.. _metric: https://en.wikipedia.org/wiki/Metric_%28mathematics%29
|
567 |
+
|
568 |
+
seed : integer, random_state, or None (default)
|
569 |
+
Indicator of random number generation state.
|
570 |
+
See :ref:`Randomness<randomness>`.
|
571 |
+
pos_name : string, default="pos"
|
572 |
+
The name of the node attribute which represents the position
|
573 |
+
in 2D coordinates of the node in the returned graph.
|
574 |
+
|
575 |
+
Returns
|
576 |
+
-------
|
577 |
+
Graph
|
578 |
+
A random Waxman graph, undirected and without self-loops. Each
|
579 |
+
node has a node attribute ``'pos'`` that stores the position of
|
580 |
+
that node in Euclidean space as generated by this function.
|
581 |
+
|
582 |
+
Examples
|
583 |
+
--------
|
584 |
+
Specify an alternate distance metric using the ``metric`` keyword
|
585 |
+
argument. For example, to use the "`taxicab metric`_" instead of the
|
586 |
+
default `Euclidean metric`_::
|
587 |
+
|
588 |
+
>>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y))
|
589 |
+
>>> G = nx.waxman_graph(10, 0.5, 0.1, metric=dist)
|
590 |
+
|
591 |
+
.. _taxicab metric: https://en.wikipedia.org/wiki/Taxicab_geometry
|
592 |
+
.. _Euclidean metric: https://en.wikipedia.org/wiki/Euclidean_distance
|
593 |
+
|
594 |
+
Notes
|
595 |
+
-----
|
596 |
+
Starting in NetworkX 2.0 the parameters alpha and beta align with their
|
597 |
+
usual roles in the probability distribution. In earlier versions their
|
598 |
+
positions in the expression were reversed. Their position in the calling
|
599 |
+
sequence reversed as well to minimize backward incompatibility.
|
600 |
+
|
601 |
+
References
|
602 |
+
----------
|
603 |
+
.. [1] B. M. Waxman, *Routing of multipoint connections*.
|
604 |
+
IEEE J. Select. Areas Commun. 6(9),(1988) 1617--1622.
|
605 |
+
"""
|
606 |
+
G = nx.empty_graph(n)
|
607 |
+
(xmin, ymin, xmax, ymax) = domain
|
608 |
+
# Each node gets a uniformly random position in the given rectangle.
|
609 |
+
pos = {v: (seed.uniform(xmin, xmax), seed.uniform(ymin, ymax)) for v in G}
|
610 |
+
nx.set_node_attributes(G, pos, pos_name)
|
611 |
+
# If no distance metric is provided, use Euclidean distance.
|
612 |
+
if metric is None:
|
613 |
+
metric = math.dist
|
614 |
+
# If the maximum distance L is not specified (that is, we are in the
|
615 |
+
# Waxman-1 model), then find the maximum distance between any pair
|
616 |
+
# of nodes.
|
617 |
+
#
|
618 |
+
# In the Waxman-1 model, join nodes randomly based on distance. In
|
619 |
+
# the Waxman-2 model, join randomly based on random l.
|
620 |
+
if L is None:
|
621 |
+
L = max(metric(x, y) for x, y in combinations(pos.values(), 2))
|
622 |
+
|
623 |
+
def dist(u, v):
|
624 |
+
return metric(pos[u], pos[v])
|
625 |
+
|
626 |
+
else:
|
627 |
+
|
628 |
+
def dist(u, v):
|
629 |
+
return seed.random() * L
|
630 |
+
|
631 |
+
# `pair` is the pair of nodes to decide whether to join.
|
632 |
+
def should_join(pair):
|
633 |
+
return seed.random() < beta * math.exp(-dist(*pair) / (alpha * L))
|
634 |
+
|
635 |
+
G.add_edges_from(filter(should_join, combinations(G, 2)))
|
636 |
+
return G
|
637 |
+
|
638 |
+
|
639 |
+
@py_random_state(5)
|
640 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
641 |
+
def navigable_small_world_graph(n, p=1, q=1, r=2, dim=2, seed=None):
|
642 |
+
r"""Returns a navigable small-world graph.
|
643 |
+
|
644 |
+
A navigable small-world graph is a directed grid with additional long-range
|
645 |
+
connections that are chosen randomly.
|
646 |
+
|
647 |
+
[...] we begin with a set of nodes [...] that are identified with the set
|
648 |
+
of lattice points in an $n \times n$ square,
|
649 |
+
$\{(i, j): i \in \{1, 2, \ldots, n\}, j \in \{1, 2, \ldots, n\}\}$,
|
650 |
+
and we define the *lattice distance* between two nodes $(i, j)$ and
|
651 |
+
$(k, l)$ to be the number of "lattice steps" separating them:
|
652 |
+
$d((i, j), (k, l)) = |k - i| + |l - j|$.
|
653 |
+
|
654 |
+
For a universal constant $p >= 1$, the node $u$ has a directed edge to
|
655 |
+
every other node within lattice distance $p$---these are its *local
|
656 |
+
contacts*. For universal constants $q >= 0$ and $r >= 0$ we also
|
657 |
+
construct directed edges from $u$ to $q$ other nodes (the *long-range
|
658 |
+
contacts*) using independent random trials; the $i$th directed edge from
|
659 |
+
$u$ has endpoint $v$ with probability proportional to $[d(u,v)]^{-r}$.
|
660 |
+
|
661 |
+
-- [1]_
|
662 |
+
|
663 |
+
Parameters
|
664 |
+
----------
|
665 |
+
n : int
|
666 |
+
The length of one side of the lattice; the number of nodes in
|
667 |
+
the graph is therefore $n^2$.
|
668 |
+
p : int
|
669 |
+
The diameter of short range connections. Each node is joined with every
|
670 |
+
other node within this lattice distance.
|
671 |
+
q : int
|
672 |
+
The number of long-range connections for each node.
|
673 |
+
r : float
|
674 |
+
Exponent for decaying probability of connections. The probability of
|
675 |
+
connecting to a node at lattice distance $d$ is $1/d^r$.
|
676 |
+
dim : int
|
677 |
+
Dimension of grid
|
678 |
+
seed : integer, random_state, or None (default)
|
679 |
+
Indicator of random number generation state.
|
680 |
+
See :ref:`Randomness<randomness>`.
|
681 |
+
|
682 |
+
References
|
683 |
+
----------
|
684 |
+
.. [1] J. Kleinberg. The small-world phenomenon: An algorithmic
|
685 |
+
perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000.
|
686 |
+
"""
|
687 |
+
if p < 1:
|
688 |
+
raise nx.NetworkXException("p must be >= 1")
|
689 |
+
if q < 0:
|
690 |
+
raise nx.NetworkXException("q must be >= 0")
|
691 |
+
if r < 0:
|
692 |
+
raise nx.NetworkXException("r must be >= 0")
|
693 |
+
|
694 |
+
G = nx.DiGraph()
|
695 |
+
nodes = list(product(range(n), repeat=dim))
|
696 |
+
for p1 in nodes:
|
697 |
+
probs = [0]
|
698 |
+
for p2 in nodes:
|
699 |
+
if p1 == p2:
|
700 |
+
continue
|
701 |
+
d = sum((abs(b - a) for a, b in zip(p1, p2)))
|
702 |
+
if d <= p:
|
703 |
+
G.add_edge(p1, p2)
|
704 |
+
probs.append(d**-r)
|
705 |
+
cdf = list(accumulate(probs))
|
706 |
+
for _ in range(q):
|
707 |
+
target = nodes[bisect_left(cdf, seed.uniform(0, cdf[-1]))]
|
708 |
+
G.add_edge(p1, target)
|
709 |
+
return G
|
710 |
+
|
711 |
+
|
712 |
+
@py_random_state(7)
|
713 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
714 |
+
def thresholded_random_geometric_graph(
|
715 |
+
n,
|
716 |
+
radius,
|
717 |
+
theta,
|
718 |
+
dim=2,
|
719 |
+
pos=None,
|
720 |
+
weight=None,
|
721 |
+
p=2,
|
722 |
+
seed=None,
|
723 |
+
*,
|
724 |
+
pos_name="pos",
|
725 |
+
weight_name="weight",
|
726 |
+
):
|
727 |
+
r"""Returns a thresholded random geometric graph in the unit cube.
|
728 |
+
|
729 |
+
The thresholded random geometric graph [1] model places `n` nodes
|
730 |
+
uniformly at random in the unit cube of dimensions `dim`. Each node
|
731 |
+
`u` is assigned a weight :math:`w_u`. Two nodes `u` and `v` are
|
732 |
+
joined by an edge if they are within the maximum connection distance,
|
733 |
+
`radius` computed by the `p`-Minkowski distance and the summation of
|
734 |
+
weights :math:`w_u` + :math:`w_v` is greater than or equal
|
735 |
+
to the threshold parameter `theta`.
|
736 |
+
|
737 |
+
Edges within `radius` of each other are determined using a KDTree when
|
738 |
+
SciPy is available. This reduces the time complexity from :math:`O(n^2)`
|
739 |
+
to :math:`O(n)`.
|
740 |
+
|
741 |
+
Parameters
|
742 |
+
----------
|
743 |
+
n : int or iterable
|
744 |
+
Number of nodes or iterable of nodes
|
745 |
+
radius: float
|
746 |
+
Distance threshold value
|
747 |
+
theta: float
|
748 |
+
Threshold value
|
749 |
+
dim : int, optional
|
750 |
+
Dimension of graph
|
751 |
+
pos : dict, optional
|
752 |
+
A dictionary keyed by node with node positions as values.
|
753 |
+
weight : dict, optional
|
754 |
+
Node weights as a dictionary of numbers keyed by node.
|
755 |
+
p : float, optional (default 2)
|
756 |
+
Which Minkowski distance metric to use. `p` has to meet the condition
|
757 |
+
``1 <= p <= infinity``.
|
758 |
+
|
759 |
+
If this argument is not specified, the :math:`L^2` metric
|
760 |
+
(the Euclidean distance metric), p = 2 is used.
|
761 |
+
|
762 |
+
This should not be confused with the `p` of an Erdős-Rényi random
|
763 |
+
graph, which represents probability.
|
764 |
+
seed : integer, random_state, or None (default)
|
765 |
+
Indicator of random number generation state.
|
766 |
+
See :ref:`Randomness<randomness>`.
|
767 |
+
pos_name : string, default="pos"
|
768 |
+
The name of the node attribute which represents the position
|
769 |
+
in 2D coordinates of the node in the returned graph.
|
770 |
+
weight_name : string, default="weight"
|
771 |
+
The name of the node attribute which represents the weight
|
772 |
+
of the node in the returned graph.
|
773 |
+
|
774 |
+
Returns
|
775 |
+
-------
|
776 |
+
Graph
|
777 |
+
A thresholded random geographic graph, undirected and without
|
778 |
+
self-loops.
|
779 |
+
|
780 |
+
Each node has a node attribute ``'pos'`` that stores the
|
781 |
+
position of that node in Euclidean space as provided by the
|
782 |
+
``pos`` keyword argument or, if ``pos`` was not provided, as
|
783 |
+
generated by this function. Similarly, each node has a nodethre
|
784 |
+
attribute ``'weight'`` that stores the weight of that node as
|
785 |
+
provided or as generated.
|
786 |
+
|
787 |
+
Examples
|
788 |
+
--------
|
789 |
+
Default Graph:
|
790 |
+
|
791 |
+
G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1)
|
792 |
+
|
793 |
+
Custom Graph:
|
794 |
+
|
795 |
+
Create a thresholded random geometric graph on 50 uniformly distributed
|
796 |
+
nodes where nodes are joined by an edge if their sum weights drawn from
|
797 |
+
a exponential distribution with rate = 5 are >= theta = 0.1 and their
|
798 |
+
Euclidean distance is at most 0.2.
|
799 |
+
|
800 |
+
Notes
|
801 |
+
-----
|
802 |
+
This uses a *k*-d tree to build the graph.
|
803 |
+
|
804 |
+
The `pos` keyword argument can be used to specify node positions so you
|
805 |
+
can create an arbitrary distribution and domain for positions.
|
806 |
+
|
807 |
+
For example, to use a 2D Gaussian distribution of node positions with mean
|
808 |
+
(0, 0) and standard deviation 2
|
809 |
+
|
810 |
+
If weights are not specified they are assigned to nodes by drawing randomly
|
811 |
+
from the exponential distribution with rate parameter :math:`\lambda=1`.
|
812 |
+
To specify weights from a different distribution, use the `weight` keyword
|
813 |
+
argument::
|
814 |
+
|
815 |
+
::
|
816 |
+
|
817 |
+
>>> import random
|
818 |
+
>>> import math
|
819 |
+
>>> n = 50
|
820 |
+
>>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
|
821 |
+
>>> w = {i: random.expovariate(5.0) for i in range(n)}
|
822 |
+
>>> G = nx.thresholded_random_geometric_graph(n, 0.2, 0.1, 2, pos, w)
|
823 |
+
|
824 |
+
References
|
825 |
+
----------
|
826 |
+
.. [1] http://cole-maclean.github.io/blog/files/thesis.pdf
|
827 |
+
|
828 |
+
"""
|
829 |
+
G = nx.empty_graph(n)
|
830 |
+
G.name = f"thresholded_random_geometric_graph({n}, {radius}, {theta}, {dim})"
|
831 |
+
# If no weights are provided, choose them from an exponential
|
832 |
+
# distribution.
|
833 |
+
if weight is None:
|
834 |
+
weight = {v: seed.expovariate(1) for v in G}
|
835 |
+
# If no positions are provided, choose uniformly random vectors in
|
836 |
+
# Euclidean space of the specified dimension.
|
837 |
+
if pos is None:
|
838 |
+
pos = {v: [seed.random() for i in range(dim)] for v in G}
|
839 |
+
# If no distance metric is provided, use Euclidean distance.
|
840 |
+
nx.set_node_attributes(G, weight, weight_name)
|
841 |
+
nx.set_node_attributes(G, pos, pos_name)
|
842 |
+
|
843 |
+
edges = (
|
844 |
+
(u, v)
|
845 |
+
for u, v in _geometric_edges(G, radius, p, pos_name)
|
846 |
+
if weight[u] + weight[v] >= theta
|
847 |
+
)
|
848 |
+
G.add_edges_from(edges)
|
849 |
+
return G
|
850 |
+
|
851 |
+
|
852 |
+
@py_random_state(5)
|
853 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
854 |
+
def geometric_soft_configuration_graph(
|
855 |
+
*, beta, n=None, gamma=None, mean_degree=None, kappas=None, seed=None
|
856 |
+
):
|
857 |
+
r"""Returns a random graph from the geometric soft configuration model.
|
858 |
+
|
859 |
+
The $\mathbb{S}^1$ model [1]_ is the geometric soft configuration model
|
860 |
+
which is able to explain many fundamental features of real networks such as
|
861 |
+
small-world property, heteregenous degree distributions, high level of
|
862 |
+
clustering, and self-similarity.
|
863 |
+
|
864 |
+
In the geometric soft configuration model, a node $i$ is assigned two hidden
|
865 |
+
variables: a hidden degree $\kappa_i$, quantifying its popularity, influence,
|
866 |
+
or importance, and an angular position $\theta_i$ in a circle abstracting the
|
867 |
+
similarity space, where angular distances between nodes are a proxy for their
|
868 |
+
similarity. Focusing on the angular position, this model is often called
|
869 |
+
the $\mathbb{S}^1$ model (a one-dimensional sphere). The circle's radius is
|
870 |
+
adjusted to $R = N/2\pi$, where $N$ is the number of nodes, so that the density
|
871 |
+
is set to 1 without loss of generality.
|
872 |
+
|
873 |
+
The connection probability between any pair of nodes increases with
|
874 |
+
the product of their hidden degrees (i.e., their combined popularities),
|
875 |
+
and decreases with the angular distance between the two nodes.
|
876 |
+
Specifically, nodes $i$ and $j$ are connected with the probability
|
877 |
+
|
878 |
+
$p_{ij} = \frac{1}{1 + \frac{d_{ij}^\beta}{\left(\mu \kappa_i \kappa_j\right)^{\max(1, \beta)}}}$
|
879 |
+
|
880 |
+
where $d_{ij} = R\Delta\theta_{ij}$ is the arc length of the circle between
|
881 |
+
nodes $i$ and $j$ separated by an angular distance $\Delta\theta_{ij}$.
|
882 |
+
Parameters $\mu$ and $\beta$ (also called inverse temperature) control the
|
883 |
+
average degree and the clustering coefficient, respectively.
|
884 |
+
|
885 |
+
It can be shown [2]_ that the model undergoes a structural phase transition
|
886 |
+
at $\beta=1$ so that for $\beta<1$ networks are unclustered in the thermodynamic
|
887 |
+
limit (when $N\to \infty$) whereas for $\beta>1$ the ensemble generates
|
888 |
+
networks with finite clustering coefficient.
|
889 |
+
|
890 |
+
The $\mathbb{S}^1$ model can be expressed as a purely geometric model
|
891 |
+
$\mathbb{H}^2$ in the hyperbolic plane [3]_ by mapping the hidden degree of
|
892 |
+
each node into a radial coordinate as
|
893 |
+
|
894 |
+
$r_i = \hat{R} - \frac{2 \max(1, \beta)}{\beta \zeta} \ln \left(\frac{\kappa_i}{\kappa_0}\right)$
|
895 |
+
|
896 |
+
where $\hat{R}$ is the radius of the hyperbolic disk and $\zeta$ is the curvature,
|
897 |
+
|
898 |
+
$\hat{R} = \frac{2}{\zeta} \ln \left(\frac{N}{\pi}\right)
|
899 |
+
- \frac{2\max(1, \beta)}{\beta \zeta} \ln (\mu \kappa_0^2)$
|
900 |
+
|
901 |
+
The connection probability then reads
|
902 |
+
|
903 |
+
$p_{ij} = \frac{1}{1 + \exp\left({\frac{\beta\zeta}{2} (x_{ij} - \hat{R})}\right)}$
|
904 |
+
|
905 |
+
where
|
906 |
+
|
907 |
+
$x_{ij} = r_i + r_j + \frac{2}{\zeta} \ln \frac{\Delta\theta_{ij}}{2}$
|
908 |
+
|
909 |
+
is a good approximation of the hyperbolic distance between two nodes separated
|
910 |
+
by an angular distance $\Delta\theta_{ij}$ with radial coordinates $r_i$ and $r_j$.
|
911 |
+
For $\beta > 1$, the curvature $\zeta = 1$, for $\beta < 1$, $\zeta = \beta^{-1}$.
|
912 |
+
|
913 |
+
|
914 |
+
Parameters
|
915 |
+
----------
|
916 |
+
Either `n`, `gamma`, `mean_degree` are provided or `kappas`. The values of
|
917 |
+
`n`, `gamma`, `mean_degree` (if provided) are used to construct a random
|
918 |
+
kappa-dict keyed by node with values sampled from a power-law distribution.
|
919 |
+
|
920 |
+
beta : positive number
|
921 |
+
Inverse temperature, controlling the clustering coefficient.
|
922 |
+
n : int (default: None)
|
923 |
+
Size of the network (number of nodes).
|
924 |
+
If not provided, `kappas` must be provided and holds the nodes.
|
925 |
+
gamma : float (default: None)
|
926 |
+
Exponent of the power-law distribution for hidden degrees `kappas`.
|
927 |
+
If not provided, `kappas` must be provided directly.
|
928 |
+
mean_degree : float (default: None)
|
929 |
+
The mean degree in the network.
|
930 |
+
If not provided, `kappas` must be provided directly.
|
931 |
+
kappas : dict (default: None)
|
932 |
+
A dict keyed by node to its hidden degree value.
|
933 |
+
If not provided, random values are computed based on a power-law
|
934 |
+
distribution using `n`, `gamma` and `mean_degree`.
|
935 |
+
seed : int, random_state, or None (default)
|
936 |
+
Indicator of random number generation state.
|
937 |
+
See :ref:`Randomness<randomness>`.
|
938 |
+
|
939 |
+
Returns
|
940 |
+
-------
|
941 |
+
Graph
|
942 |
+
A random geometric soft configuration graph (undirected with no self-loops).
|
943 |
+
Each node has three node-attributes:
|
944 |
+
|
945 |
+
- ``kappa`` that represents the hidden degree.
|
946 |
+
|
947 |
+
- ``theta`` the position in the similarity space ($\mathbb{S}^1$) which is
|
948 |
+
also the angular position in the hyperbolic plane.
|
949 |
+
|
950 |
+
- ``radius`` the radial position in the hyperbolic plane
|
951 |
+
(based on the hidden degree).
|
952 |
+
|
953 |
+
|
954 |
+
Examples
|
955 |
+
--------
|
956 |
+
Generate a network with specified parameters:
|
957 |
+
|
958 |
+
>>> G = nx.geometric_soft_configuration_graph(beta=1.5, n=100, gamma=2.7, mean_degree=5)
|
959 |
+
|
960 |
+
Create a geometric soft configuration graph with 100 nodes. The $\beta$ parameter
|
961 |
+
is set to 1.5 and the exponent of the powerlaw distribution of the hidden
|
962 |
+
degrees is 2.7 with mean value of 5.
|
963 |
+
|
964 |
+
Generate a network with predefined hidden degrees:
|
965 |
+
|
966 |
+
>>> kappas = {i: 10 for i in range(100)}
|
967 |
+
>>> G = nx.geometric_soft_configuration_graph(beta=2.5, kappas=kappas)
|
968 |
+
|
969 |
+
Create a geometric soft configuration graph with 100 nodes. The $\beta$ parameter
|
970 |
+
is set to 2.5 and all nodes with hidden degree $\kappa=10$.
|
971 |
+
|
972 |
+
|
973 |
+
References
|
974 |
+
----------
|
975 |
+
.. [1] Serrano, M. Á., Krioukov, D., & Boguñá, M. (2008). Self-similarity
|
976 |
+
of complex networks and hidden metric spaces. Physical review letters, 100(7), 078701.
|
977 |
+
|
978 |
+
.. [2] van der Kolk, J., Serrano, M. Á., & Boguñá, M. (2022). An anomalous
|
979 |
+
topological phase transition in spatial random graphs. Communications Physics, 5(1), 245.
|
980 |
+
|
981 |
+
.. [3] Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., & Boguná, M. (2010).
|
982 |
+
Hyperbolic geometry of complex networks. Physical Review E, 82(3), 036106.
|
983 |
+
|
984 |
+
"""
|
985 |
+
if beta <= 0:
|
986 |
+
raise nx.NetworkXError("The parameter beta cannot be smaller or equal to 0.")
|
987 |
+
|
988 |
+
if kappas is not None:
|
989 |
+
if not all((n is None, gamma is None, mean_degree is None)):
|
990 |
+
raise nx.NetworkXError(
|
991 |
+
"When kappas is input, n, gamma and mean_degree must not be."
|
992 |
+
)
|
993 |
+
|
994 |
+
n = len(kappas)
|
995 |
+
mean_degree = sum(kappas) / len(kappas)
|
996 |
+
else:
|
997 |
+
if any((n is None, gamma is None, mean_degree is None)):
|
998 |
+
raise nx.NetworkXError(
|
999 |
+
"Please provide either kappas, or all 3 of: n, gamma and mean_degree."
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
# Generate `n` hidden degrees from a powerlaw distribution
|
1003 |
+
# with given exponent `gamma` and mean value `mean_degree`
|
1004 |
+
gam_ratio = (gamma - 2) / (gamma - 1)
|
1005 |
+
kappa_0 = mean_degree * gam_ratio * (1 - 1 / n) / (1 - 1 / n**gam_ratio)
|
1006 |
+
base = 1 - 1 / n
|
1007 |
+
power = 1 / (1 - gamma)
|
1008 |
+
kappas = {i: kappa_0 * (1 - seed.random() * base) ** power for i in range(n)}
|
1009 |
+
|
1010 |
+
G = nx.Graph()
|
1011 |
+
R = n / (2 * math.pi)
|
1012 |
+
|
1013 |
+
# Approximate values for mu in the thermodynamic limit (when n -> infinity)
|
1014 |
+
if beta > 1:
|
1015 |
+
mu = beta * math.sin(math.pi / beta) / (2 * math.pi * mean_degree)
|
1016 |
+
elif beta == 1:
|
1017 |
+
mu = 1 / (2 * mean_degree * math.log(n))
|
1018 |
+
else:
|
1019 |
+
mu = (1 - beta) / (2**beta * mean_degree * n ** (1 - beta))
|
1020 |
+
|
1021 |
+
# Generate random positions on a circle
|
1022 |
+
thetas = {k: seed.uniform(0, 2 * math.pi) for k in kappas}
|
1023 |
+
|
1024 |
+
for u in kappas:
|
1025 |
+
for v in list(G):
|
1026 |
+
angle = math.pi - math.fabs(math.pi - math.fabs(thetas[u] - thetas[v]))
|
1027 |
+
dij = math.pow(R * angle, beta)
|
1028 |
+
mu_kappas = math.pow(mu * kappas[u] * kappas[v], max(1, beta))
|
1029 |
+
p_ij = 1 / (1 + dij / mu_kappas)
|
1030 |
+
|
1031 |
+
# Create an edge with a certain connection probability
|
1032 |
+
if seed.random() < p_ij:
|
1033 |
+
G.add_edge(u, v)
|
1034 |
+
G.add_node(u)
|
1035 |
+
|
1036 |
+
nx.set_node_attributes(G, thetas, "theta")
|
1037 |
+
nx.set_node_attributes(G, kappas, "kappa")
|
1038 |
+
|
1039 |
+
# Map hidden degrees into the radial coordiantes
|
1040 |
+
zeta = 1 if beta > 1 else 1 / beta
|
1041 |
+
kappa_min = min(kappas.values())
|
1042 |
+
R_c = 2 * max(1, beta) / (beta * zeta)
|
1043 |
+
R_hat = (2 / zeta) * math.log(n / math.pi) - R_c * math.log(mu * kappa_min)
|
1044 |
+
radii = {node: R_hat - R_c * math.log(kappa) for node, kappa in kappas.items()}
|
1045 |
+
nx.set_node_attributes(G, radii, "radius")
|
1046 |
+
|
1047 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/harary_graph.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generators for Harary graphs
|
2 |
+
|
3 |
+
This module gives two generators for the Harary graph, which was
|
4 |
+
introduced by the famous mathematician Frank Harary in his 1962 work [H]_.
|
5 |
+
The first generator gives the Harary graph that maximizes the node
|
6 |
+
connectivity with given number of nodes and given number of edges.
|
7 |
+
The second generator gives the Harary graph that minimizes
|
8 |
+
the number of edges in the graph with given node connectivity and
|
9 |
+
number of nodes.
|
10 |
+
|
11 |
+
References
|
12 |
+
----------
|
13 |
+
.. [H] Harary, F. "The Maximum Connectivity of a Graph."
|
14 |
+
Proc. Nat. Acad. Sci. USA 48, 1142-1146, 1962.
|
15 |
+
|
16 |
+
"""
|
17 |
+
|
18 |
+
import networkx as nx
|
19 |
+
from networkx.exception import NetworkXError
|
20 |
+
|
21 |
+
__all__ = ["hnm_harary_graph", "hkn_harary_graph"]
|
22 |
+
|
23 |
+
|
24 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
25 |
+
def hnm_harary_graph(n, m, create_using=None):
|
26 |
+
"""Returns the Harary graph with given numbers of nodes and edges.
|
27 |
+
|
28 |
+
The Harary graph $H_{n,m}$ is the graph that maximizes node connectivity
|
29 |
+
with $n$ nodes and $m$ edges.
|
30 |
+
|
31 |
+
This maximum node connectivity is known to be floor($2m/n$). [1]_
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
n: integer
|
36 |
+
The number of nodes the generated graph is to contain
|
37 |
+
|
38 |
+
m: integer
|
39 |
+
The number of edges the generated graph is to contain
|
40 |
+
|
41 |
+
create_using : NetworkX graph constructor, optional Graph type
|
42 |
+
to create (default=nx.Graph). If graph instance, then cleared
|
43 |
+
before populated.
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
NetworkX graph
|
48 |
+
The Harary graph $H_{n,m}$.
|
49 |
+
|
50 |
+
See Also
|
51 |
+
--------
|
52 |
+
hkn_harary_graph
|
53 |
+
|
54 |
+
Notes
|
55 |
+
-----
|
56 |
+
This algorithm runs in $O(m)$ time.
|
57 |
+
It is implemented by following the Reference [2]_.
|
58 |
+
|
59 |
+
References
|
60 |
+
----------
|
61 |
+
.. [1] F. T. Boesch, A. Satyanarayana, and C. L. Suffel,
|
62 |
+
"A Survey of Some Network Reliability Analysis and Synthesis Results,"
|
63 |
+
Networks, pp. 99-107, 2009.
|
64 |
+
|
65 |
+
.. [2] Harary, F. "The Maximum Connectivity of a Graph."
|
66 |
+
Proc. Nat. Acad. Sci. USA 48, 1142-1146, 1962.
|
67 |
+
"""
|
68 |
+
|
69 |
+
if n < 1:
|
70 |
+
raise NetworkXError("The number of nodes must be >= 1!")
|
71 |
+
if m < n - 1:
|
72 |
+
raise NetworkXError("The number of edges must be >= n - 1 !")
|
73 |
+
if m > n * (n - 1) // 2:
|
74 |
+
raise NetworkXError("The number of edges must be <= n(n-1)/2")
|
75 |
+
|
76 |
+
# Construct an empty graph with n nodes first
|
77 |
+
H = nx.empty_graph(n, create_using)
|
78 |
+
# Get the floor of average node degree
|
79 |
+
d = 2 * m // n
|
80 |
+
|
81 |
+
# Test the parity of n and d
|
82 |
+
if (n % 2 == 0) or (d % 2 == 0):
|
83 |
+
# Start with a regular graph of d degrees
|
84 |
+
offset = d // 2
|
85 |
+
for i in range(n):
|
86 |
+
for j in range(1, offset + 1):
|
87 |
+
H.add_edge(i, (i - j) % n)
|
88 |
+
H.add_edge(i, (i + j) % n)
|
89 |
+
if d & 1:
|
90 |
+
# in case d is odd; n must be even in this case
|
91 |
+
half = n // 2
|
92 |
+
for i in range(half):
|
93 |
+
# add edges diagonally
|
94 |
+
H.add_edge(i, i + half)
|
95 |
+
# Get the remainder of 2*m modulo n
|
96 |
+
r = 2 * m % n
|
97 |
+
if r > 0:
|
98 |
+
# add remaining edges at offset+1
|
99 |
+
for i in range(r // 2):
|
100 |
+
H.add_edge(i, i + offset + 1)
|
101 |
+
else:
|
102 |
+
# Start with a regular graph of (d - 1) degrees
|
103 |
+
offset = (d - 1) // 2
|
104 |
+
for i in range(n):
|
105 |
+
for j in range(1, offset + 1):
|
106 |
+
H.add_edge(i, (i - j) % n)
|
107 |
+
H.add_edge(i, (i + j) % n)
|
108 |
+
half = n // 2
|
109 |
+
for i in range(m - n * offset):
|
110 |
+
# add the remaining m - n*offset edges between i and i+half
|
111 |
+
H.add_edge(i, (i + half) % n)
|
112 |
+
|
113 |
+
return H
|
114 |
+
|
115 |
+
|
116 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
117 |
+
def hkn_harary_graph(k, n, create_using=None):
|
118 |
+
"""Returns the Harary graph with given node connectivity and node number.
|
119 |
+
|
120 |
+
The Harary graph $H_{k,n}$ is the graph that minimizes the number of
|
121 |
+
edges needed with given node connectivity $k$ and node number $n$.
|
122 |
+
|
123 |
+
This smallest number of edges is known to be ceil($kn/2$) [1]_.
|
124 |
+
|
125 |
+
Parameters
|
126 |
+
----------
|
127 |
+
k: integer
|
128 |
+
The node connectivity of the generated graph
|
129 |
+
|
130 |
+
n: integer
|
131 |
+
The number of nodes the generated graph is to contain
|
132 |
+
|
133 |
+
create_using : NetworkX graph constructor, optional Graph type
|
134 |
+
to create (default=nx.Graph). If graph instance, then cleared
|
135 |
+
before populated.
|
136 |
+
|
137 |
+
Returns
|
138 |
+
-------
|
139 |
+
NetworkX graph
|
140 |
+
The Harary graph $H_{k,n}$.
|
141 |
+
|
142 |
+
See Also
|
143 |
+
--------
|
144 |
+
hnm_harary_graph
|
145 |
+
|
146 |
+
Notes
|
147 |
+
-----
|
148 |
+
This algorithm runs in $O(kn)$ time.
|
149 |
+
It is implemented by following the Reference [2]_.
|
150 |
+
|
151 |
+
References
|
152 |
+
----------
|
153 |
+
.. [1] Weisstein, Eric W. "Harary Graph." From MathWorld--A Wolfram Web
|
154 |
+
Resource. http://mathworld.wolfram.com/HararyGraph.html.
|
155 |
+
|
156 |
+
.. [2] Harary, F. "The Maximum Connectivity of a Graph."
|
157 |
+
Proc. Nat. Acad. Sci. USA 48, 1142-1146, 1962.
|
158 |
+
"""
|
159 |
+
|
160 |
+
if k < 1:
|
161 |
+
raise NetworkXError("The node connectivity must be >= 1!")
|
162 |
+
if n < k + 1:
|
163 |
+
raise NetworkXError("The number of nodes must be >= k+1 !")
|
164 |
+
|
165 |
+
# in case of connectivity 1, simply return the path graph
|
166 |
+
if k == 1:
|
167 |
+
H = nx.path_graph(n, create_using)
|
168 |
+
return H
|
169 |
+
|
170 |
+
# Construct an empty graph with n nodes first
|
171 |
+
H = nx.empty_graph(n, create_using)
|
172 |
+
|
173 |
+
# Test the parity of k and n
|
174 |
+
if (k % 2 == 0) or (n % 2 == 0):
|
175 |
+
# Construct a regular graph with k degrees
|
176 |
+
offset = k // 2
|
177 |
+
for i in range(n):
|
178 |
+
for j in range(1, offset + 1):
|
179 |
+
H.add_edge(i, (i - j) % n)
|
180 |
+
H.add_edge(i, (i + j) % n)
|
181 |
+
if k & 1:
|
182 |
+
# odd degree; n must be even in this case
|
183 |
+
half = n // 2
|
184 |
+
for i in range(half):
|
185 |
+
# add edges diagonally
|
186 |
+
H.add_edge(i, i + half)
|
187 |
+
else:
|
188 |
+
# Construct a regular graph with (k - 1) degrees
|
189 |
+
offset = (k - 1) // 2
|
190 |
+
for i in range(n):
|
191 |
+
for j in range(1, offset + 1):
|
192 |
+
H.add_edge(i, (i - j) % n)
|
193 |
+
H.add_edge(i, (i + j) % n)
|
194 |
+
half = n // 2
|
195 |
+
for i in range(half + 1):
|
196 |
+
# add half+1 edges between i and i+half
|
197 |
+
H.add_edge(i, (i + half) % n)
|
198 |
+
|
199 |
+
return H
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/internet_as_graphs.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generates graphs resembling the Internet Autonomous System network"""
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.utils import py_random_state
|
5 |
+
|
6 |
+
__all__ = ["random_internet_as_graph"]
|
7 |
+
|
8 |
+
|
9 |
+
def uniform_int_from_avg(a, m, seed):
|
10 |
+
"""Pick a random integer with uniform probability.
|
11 |
+
|
12 |
+
Returns a random integer uniformly taken from a distribution with
|
13 |
+
minimum value 'a' and average value 'm', X~U(a,b), E[X]=m, X in N where
|
14 |
+
b = 2*m - a.
|
15 |
+
|
16 |
+
Notes
|
17 |
+
-----
|
18 |
+
p = (b-floor(b))/2
|
19 |
+
X = X1 + X2; X1~U(a,floor(b)), X2~B(p)
|
20 |
+
E[X] = E[X1] + E[X2] = (floor(b)+a)/2 + (b-floor(b))/2 = (b+a)/2 = m
|
21 |
+
"""
|
22 |
+
|
23 |
+
from math import floor
|
24 |
+
|
25 |
+
assert m >= a
|
26 |
+
b = 2 * m - a
|
27 |
+
p = (b - floor(b)) / 2
|
28 |
+
X1 = round(seed.random() * (floor(b) - a) + a)
|
29 |
+
if seed.random() < p:
|
30 |
+
X2 = 1
|
31 |
+
else:
|
32 |
+
X2 = 0
|
33 |
+
return X1 + X2
|
34 |
+
|
35 |
+
|
36 |
+
def choose_pref_attach(degs, seed):
|
37 |
+
"""Pick a random value, with a probability given by its weight.
|
38 |
+
|
39 |
+
Returns a random choice among degs keys, each of which has a
|
40 |
+
probability proportional to the corresponding dictionary value.
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
degs: dictionary
|
45 |
+
It contains the possible values (keys) and the corresponding
|
46 |
+
probabilities (values)
|
47 |
+
seed: random state
|
48 |
+
|
49 |
+
Returns
|
50 |
+
-------
|
51 |
+
v: object
|
52 |
+
A key of degs or None if degs is empty
|
53 |
+
"""
|
54 |
+
|
55 |
+
if len(degs) == 0:
|
56 |
+
return None
|
57 |
+
s = sum(degs.values())
|
58 |
+
if s == 0:
|
59 |
+
return seed.choice(list(degs.keys()))
|
60 |
+
v = seed.random() * s
|
61 |
+
|
62 |
+
nodes = list(degs.keys())
|
63 |
+
i = 0
|
64 |
+
acc = degs[nodes[i]]
|
65 |
+
while v > acc:
|
66 |
+
i += 1
|
67 |
+
acc += degs[nodes[i]]
|
68 |
+
return nodes[i]
|
69 |
+
|
70 |
+
|
71 |
+
class AS_graph_generator:
|
72 |
+
"""Generates random internet AS graphs."""
|
73 |
+
|
74 |
+
def __init__(self, n, seed):
|
75 |
+
"""Initializes variables. Immediate numbers are taken from [1].
|
76 |
+
|
77 |
+
Parameters
|
78 |
+
----------
|
79 |
+
n: integer
|
80 |
+
Number of graph nodes
|
81 |
+
seed: random state
|
82 |
+
Indicator of random number generation state.
|
83 |
+
See :ref:`Randomness<randomness>`.
|
84 |
+
|
85 |
+
Returns
|
86 |
+
-------
|
87 |
+
GG: AS_graph_generator object
|
88 |
+
|
89 |
+
References
|
90 |
+
----------
|
91 |
+
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
|
92 |
+
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
|
93 |
+
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
|
94 |
+
"""
|
95 |
+
|
96 |
+
self.seed = seed
|
97 |
+
self.n_t = min(n, round(self.seed.random() * 2 + 4)) # num of T nodes
|
98 |
+
self.n_m = round(0.15 * n) # number of M nodes
|
99 |
+
self.n_cp = round(0.05 * n) # number of CP nodes
|
100 |
+
self.n_c = max(0, n - self.n_t - self.n_m - self.n_cp) # number of C nodes
|
101 |
+
|
102 |
+
self.d_m = 2 + (2.5 * n) / 10000 # average multihoming degree for M nodes
|
103 |
+
self.d_cp = 2 + (1.5 * n) / 10000 # avg multihoming degree for CP nodes
|
104 |
+
self.d_c = 1 + (5 * n) / 100000 # average multihoming degree for C nodes
|
105 |
+
|
106 |
+
self.p_m_m = 1 + (2 * n) / 10000 # avg num of peer edges between M and M
|
107 |
+
self.p_cp_m = 0.2 + (2 * n) / 10000 # avg num of peer edges between CP, M
|
108 |
+
self.p_cp_cp = 0.05 + (2 * n) / 100000 # avg num of peer edges btwn CP, CP
|
109 |
+
|
110 |
+
self.t_m = 0.375 # probability M's provider is T
|
111 |
+
self.t_cp = 0.375 # probability CP's provider is T
|
112 |
+
self.t_c = 0.125 # probability C's provider is T
|
113 |
+
|
114 |
+
def t_graph(self):
|
115 |
+
"""Generates the core mesh network of tier one nodes of a AS graph.
|
116 |
+
|
117 |
+
Returns
|
118 |
+
-------
|
119 |
+
G: Networkx Graph
|
120 |
+
Core network
|
121 |
+
"""
|
122 |
+
|
123 |
+
self.G = nx.Graph()
|
124 |
+
for i in range(self.n_t):
|
125 |
+
self.G.add_node(i, type="T")
|
126 |
+
for r in self.regions:
|
127 |
+
self.regions[r].add(i)
|
128 |
+
for j in self.G.nodes():
|
129 |
+
if i != j:
|
130 |
+
self.add_edge(i, j, "peer")
|
131 |
+
self.customers[i] = set()
|
132 |
+
self.providers[i] = set()
|
133 |
+
return self.G
|
134 |
+
|
135 |
+
def add_edge(self, i, j, kind):
|
136 |
+
if kind == "transit":
|
137 |
+
customer = str(i)
|
138 |
+
else:
|
139 |
+
customer = "none"
|
140 |
+
self.G.add_edge(i, j, type=kind, customer=customer)
|
141 |
+
|
142 |
+
def choose_peer_pref_attach(self, node_list):
|
143 |
+
"""Pick a node with a probability weighted by its peer degree.
|
144 |
+
|
145 |
+
Pick a node from node_list with preferential attachment
|
146 |
+
computed only on their peer degree
|
147 |
+
"""
|
148 |
+
|
149 |
+
d = {}
|
150 |
+
for n in node_list:
|
151 |
+
d[n] = self.G.nodes[n]["peers"]
|
152 |
+
return choose_pref_attach(d, self.seed)
|
153 |
+
|
154 |
+
def choose_node_pref_attach(self, node_list):
|
155 |
+
"""Pick a node with a probability weighted by its degree.
|
156 |
+
|
157 |
+
Pick a node from node_list with preferential attachment
|
158 |
+
computed on their degree
|
159 |
+
"""
|
160 |
+
|
161 |
+
degs = dict(self.G.degree(node_list))
|
162 |
+
return choose_pref_attach(degs, self.seed)
|
163 |
+
|
164 |
+
def add_customer(self, i, j):
|
165 |
+
"""Keep the dictionaries 'customers' and 'providers' consistent."""
|
166 |
+
|
167 |
+
self.customers[j].add(i)
|
168 |
+
self.providers[i].add(j)
|
169 |
+
for z in self.providers[j]:
|
170 |
+
self.customers[z].add(i)
|
171 |
+
self.providers[i].add(z)
|
172 |
+
|
173 |
+
def add_node(self, i, kind, reg2prob, avg_deg, t_edge_prob):
|
174 |
+
"""Add a node and its customer transit edges to the graph.
|
175 |
+
|
176 |
+
Parameters
|
177 |
+
----------
|
178 |
+
i: object
|
179 |
+
Identifier of the new node
|
180 |
+
kind: string
|
181 |
+
Type of the new node. Options are: 'M' for middle node, 'CP' for
|
182 |
+
content provider and 'C' for customer.
|
183 |
+
reg2prob: float
|
184 |
+
Probability the new node can be in two different regions.
|
185 |
+
avg_deg: float
|
186 |
+
Average number of transit nodes of which node i is customer.
|
187 |
+
t_edge_prob: float
|
188 |
+
Probability node i establish a customer transit edge with a tier
|
189 |
+
one (T) node
|
190 |
+
|
191 |
+
Returns
|
192 |
+
-------
|
193 |
+
i: object
|
194 |
+
Identifier of the new node
|
195 |
+
"""
|
196 |
+
|
197 |
+
regs = 1 # regions in which node resides
|
198 |
+
if self.seed.random() < reg2prob: # node is in two regions
|
199 |
+
regs = 2
|
200 |
+
node_options = set()
|
201 |
+
|
202 |
+
self.G.add_node(i, type=kind, peers=0)
|
203 |
+
self.customers[i] = set()
|
204 |
+
self.providers[i] = set()
|
205 |
+
self.nodes[kind].add(i)
|
206 |
+
for r in self.seed.sample(list(self.regions), regs):
|
207 |
+
node_options = node_options.union(self.regions[r])
|
208 |
+
self.regions[r].add(i)
|
209 |
+
|
210 |
+
edge_num = uniform_int_from_avg(1, avg_deg, self.seed)
|
211 |
+
|
212 |
+
t_options = node_options.intersection(self.nodes["T"])
|
213 |
+
m_options = node_options.intersection(self.nodes["M"])
|
214 |
+
if i in m_options:
|
215 |
+
m_options.remove(i)
|
216 |
+
d = 0
|
217 |
+
while d < edge_num and (len(t_options) > 0 or len(m_options) > 0):
|
218 |
+
if len(m_options) == 0 or (
|
219 |
+
len(t_options) > 0 and self.seed.random() < t_edge_prob
|
220 |
+
): # add edge to a T node
|
221 |
+
j = self.choose_node_pref_attach(t_options)
|
222 |
+
t_options.remove(j)
|
223 |
+
else:
|
224 |
+
j = self.choose_node_pref_attach(m_options)
|
225 |
+
m_options.remove(j)
|
226 |
+
self.add_edge(i, j, "transit")
|
227 |
+
self.add_customer(i, j)
|
228 |
+
d += 1
|
229 |
+
|
230 |
+
return i
|
231 |
+
|
232 |
+
def add_m_peering_link(self, m, to_kind):
|
233 |
+
"""Add a peering link between two middle tier (M) nodes.
|
234 |
+
|
235 |
+
Target node j is drawn considering a preferential attachment based on
|
236 |
+
other M node peering degree.
|
237 |
+
|
238 |
+
Parameters
|
239 |
+
----------
|
240 |
+
m: object
|
241 |
+
Node identifier
|
242 |
+
to_kind: string
|
243 |
+
type for target node j (must be always M)
|
244 |
+
|
245 |
+
Returns
|
246 |
+
-------
|
247 |
+
success: boolean
|
248 |
+
"""
|
249 |
+
|
250 |
+
# candidates are of type 'M' and are not customers of m
|
251 |
+
node_options = self.nodes["M"].difference(self.customers[m])
|
252 |
+
# candidates are not providers of m
|
253 |
+
node_options = node_options.difference(self.providers[m])
|
254 |
+
# remove self
|
255 |
+
if m in node_options:
|
256 |
+
node_options.remove(m)
|
257 |
+
|
258 |
+
# remove candidates we are already connected to
|
259 |
+
for j in self.G.neighbors(m):
|
260 |
+
if j in node_options:
|
261 |
+
node_options.remove(j)
|
262 |
+
|
263 |
+
if len(node_options) > 0:
|
264 |
+
j = self.choose_peer_pref_attach(node_options)
|
265 |
+
self.add_edge(m, j, "peer")
|
266 |
+
self.G.nodes[m]["peers"] += 1
|
267 |
+
self.G.nodes[j]["peers"] += 1
|
268 |
+
return True
|
269 |
+
else:
|
270 |
+
return False
|
271 |
+
|
272 |
+
def add_cp_peering_link(self, cp, to_kind):
|
273 |
+
"""Add a peering link to a content provider (CP) node.
|
274 |
+
|
275 |
+
Target node j can be CP or M and it is drawn uniformly among the nodes
|
276 |
+
belonging to the same region as cp.
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
----------
|
280 |
+
cp: object
|
281 |
+
Node identifier
|
282 |
+
to_kind: string
|
283 |
+
type for target node j (must be M or CP)
|
284 |
+
|
285 |
+
Returns
|
286 |
+
-------
|
287 |
+
success: boolean
|
288 |
+
"""
|
289 |
+
|
290 |
+
node_options = set()
|
291 |
+
for r in self.regions: # options include nodes in the same region(s)
|
292 |
+
if cp in self.regions[r]:
|
293 |
+
node_options = node_options.union(self.regions[r])
|
294 |
+
|
295 |
+
# options are restricted to the indicated kind ('M' or 'CP')
|
296 |
+
node_options = self.nodes[to_kind].intersection(node_options)
|
297 |
+
|
298 |
+
# remove self
|
299 |
+
if cp in node_options:
|
300 |
+
node_options.remove(cp)
|
301 |
+
|
302 |
+
# remove nodes that are cp's providers
|
303 |
+
node_options = node_options.difference(self.providers[cp])
|
304 |
+
|
305 |
+
# remove nodes we are already connected to
|
306 |
+
for j in self.G.neighbors(cp):
|
307 |
+
if j in node_options:
|
308 |
+
node_options.remove(j)
|
309 |
+
|
310 |
+
if len(node_options) > 0:
|
311 |
+
j = self.seed.sample(list(node_options), 1)[0]
|
312 |
+
self.add_edge(cp, j, "peer")
|
313 |
+
self.G.nodes[cp]["peers"] += 1
|
314 |
+
self.G.nodes[j]["peers"] += 1
|
315 |
+
return True
|
316 |
+
else:
|
317 |
+
return False
|
318 |
+
|
319 |
+
def graph_regions(self, rn):
|
320 |
+
"""Initializes AS network regions.
|
321 |
+
|
322 |
+
Parameters
|
323 |
+
----------
|
324 |
+
rn: integer
|
325 |
+
Number of regions
|
326 |
+
"""
|
327 |
+
|
328 |
+
self.regions = {}
|
329 |
+
for i in range(rn):
|
330 |
+
self.regions["REG" + str(i)] = set()
|
331 |
+
|
332 |
+
def add_peering_links(self, from_kind, to_kind):
|
333 |
+
"""Utility function to add peering links among node groups."""
|
334 |
+
peer_link_method = None
|
335 |
+
if from_kind == "M":
|
336 |
+
peer_link_method = self.add_m_peering_link
|
337 |
+
m = self.p_m_m
|
338 |
+
if from_kind == "CP":
|
339 |
+
peer_link_method = self.add_cp_peering_link
|
340 |
+
if to_kind == "M":
|
341 |
+
m = self.p_cp_m
|
342 |
+
else:
|
343 |
+
m = self.p_cp_cp
|
344 |
+
|
345 |
+
for i in self.nodes[from_kind]:
|
346 |
+
num = uniform_int_from_avg(0, m, self.seed)
|
347 |
+
for _ in range(num):
|
348 |
+
peer_link_method(i, to_kind)
|
349 |
+
|
350 |
+
def generate(self):
|
351 |
+
"""Generates a random AS network graph as described in [1].
|
352 |
+
|
353 |
+
Returns
|
354 |
+
-------
|
355 |
+
G: Graph object
|
356 |
+
|
357 |
+
Notes
|
358 |
+
-----
|
359 |
+
The process steps are the following: first we create the core network
|
360 |
+
of tier one nodes, then we add the middle tier (M), the content
|
361 |
+
provider (CP) and the customer (C) nodes along with their transit edges
|
362 |
+
(link i,j means i is customer of j). Finally we add peering links
|
363 |
+
between M nodes, between M and CP nodes and between CP node couples.
|
364 |
+
For a detailed description of the algorithm, please refer to [1].
|
365 |
+
|
366 |
+
References
|
367 |
+
----------
|
368 |
+
[1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
|
369 |
+
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
|
370 |
+
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
|
371 |
+
"""
|
372 |
+
|
373 |
+
self.graph_regions(5)
|
374 |
+
self.customers = {}
|
375 |
+
self.providers = {}
|
376 |
+
self.nodes = {"T": set(), "M": set(), "CP": set(), "C": set()}
|
377 |
+
|
378 |
+
self.t_graph()
|
379 |
+
self.nodes["T"] = set(self.G.nodes())
|
380 |
+
|
381 |
+
i = len(self.nodes["T"])
|
382 |
+
for _ in range(self.n_m):
|
383 |
+
self.nodes["M"].add(self.add_node(i, "M", 0.2, self.d_m, self.t_m))
|
384 |
+
i += 1
|
385 |
+
for _ in range(self.n_cp):
|
386 |
+
self.nodes["CP"].add(self.add_node(i, "CP", 0.05, self.d_cp, self.t_cp))
|
387 |
+
i += 1
|
388 |
+
for _ in range(self.n_c):
|
389 |
+
self.nodes["C"].add(self.add_node(i, "C", 0, self.d_c, self.t_c))
|
390 |
+
i += 1
|
391 |
+
|
392 |
+
self.add_peering_links("M", "M")
|
393 |
+
self.add_peering_links("CP", "M")
|
394 |
+
self.add_peering_links("CP", "CP")
|
395 |
+
|
396 |
+
return self.G
|
397 |
+
|
398 |
+
|
399 |
+
@py_random_state(1)
|
400 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
401 |
+
def random_internet_as_graph(n, seed=None):
|
402 |
+
"""Generates a random undirected graph resembling the Internet AS network
|
403 |
+
|
404 |
+
Parameters
|
405 |
+
----------
|
406 |
+
n: integer in [1000, 10000]
|
407 |
+
Number of graph nodes
|
408 |
+
seed : integer, random_state, or None (default)
|
409 |
+
Indicator of random number generation state.
|
410 |
+
See :ref:`Randomness<randomness>`.
|
411 |
+
|
412 |
+
Returns
|
413 |
+
-------
|
414 |
+
G: Networkx Graph object
|
415 |
+
A randomly generated undirected graph
|
416 |
+
|
417 |
+
Notes
|
418 |
+
-----
|
419 |
+
This algorithm returns an undirected graph resembling the Internet
|
420 |
+
Autonomous System (AS) network, it uses the approach by Elmokashfi et al.
|
421 |
+
[1]_ and it grants the properties described in the related paper [1]_.
|
422 |
+
|
423 |
+
Each node models an autonomous system, with an attribute 'type' specifying
|
424 |
+
its kind; tier-1 (T), mid-level (M), customer (C) or content-provider (CP).
|
425 |
+
Each edge models an ADV communication link (hence, bidirectional) with
|
426 |
+
attributes:
|
427 |
+
|
428 |
+
- type: transit|peer, the kind of commercial agreement between nodes;
|
429 |
+
- customer: <node id>, the identifier of the node acting as customer
|
430 |
+
('none' if type is peer).
|
431 |
+
|
432 |
+
References
|
433 |
+
----------
|
434 |
+
.. [1] A. Elmokashfi, A. Kvalbein and C. Dovrolis, "On the Scalability of
|
435 |
+
BGP: The Role of Topology Growth," in IEEE Journal on Selected Areas
|
436 |
+
in Communications, vol. 28, no. 8, pp. 1250-1261, October 2010.
|
437 |
+
"""
|
438 |
+
|
439 |
+
GG = AS_graph_generator(n, seed)
|
440 |
+
G = GG.generate()
|
441 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/intersection.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Generators for random intersection graphs.
|
3 |
+
"""
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.utils import py_random_state
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"uniform_random_intersection_graph",
|
9 |
+
"k_random_intersection_graph",
|
10 |
+
"general_random_intersection_graph",
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
@py_random_state(3)
|
15 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
16 |
+
def uniform_random_intersection_graph(n, m, p, seed=None):
|
17 |
+
"""Returns a uniform random intersection graph.
|
18 |
+
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
n : int
|
22 |
+
The number of nodes in the first bipartite set (nodes)
|
23 |
+
m : int
|
24 |
+
The number of nodes in the second bipartite set (attributes)
|
25 |
+
p : float
|
26 |
+
Probability of connecting nodes between bipartite sets
|
27 |
+
seed : integer, random_state, or None (default)
|
28 |
+
Indicator of random number generation state.
|
29 |
+
See :ref:`Randomness<randomness>`.
|
30 |
+
|
31 |
+
See Also
|
32 |
+
--------
|
33 |
+
gnp_random_graph
|
34 |
+
|
35 |
+
References
|
36 |
+
----------
|
37 |
+
.. [1] K.B. Singer-Cohen, Random Intersection Graphs, 1995,
|
38 |
+
PhD thesis, Johns Hopkins University
|
39 |
+
.. [2] Fill, J. A., Scheinerman, E. R., and Singer-Cohen, K. B.,
|
40 |
+
Random intersection graphs when m = !(n):
|
41 |
+
An equivalence theorem relating the evolution of the g(n, m, p)
|
42 |
+
and g(n, p) models. Random Struct. Algorithms 16, 2 (2000), 156–176.
|
43 |
+
"""
|
44 |
+
from networkx.algorithms import bipartite
|
45 |
+
|
46 |
+
G = bipartite.random_graph(n, m, p, seed)
|
47 |
+
return nx.projected_graph(G, range(n))
|
48 |
+
|
49 |
+
|
50 |
+
@py_random_state(3)
|
51 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
52 |
+
def k_random_intersection_graph(n, m, k, seed=None):
|
53 |
+
"""Returns a intersection graph with randomly chosen attribute sets for
|
54 |
+
each node that are of equal size (k).
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
n : int
|
59 |
+
The number of nodes in the first bipartite set (nodes)
|
60 |
+
m : int
|
61 |
+
The number of nodes in the second bipartite set (attributes)
|
62 |
+
k : float
|
63 |
+
Size of attribute set to assign to each node.
|
64 |
+
seed : integer, random_state, or None (default)
|
65 |
+
Indicator of random number generation state.
|
66 |
+
See :ref:`Randomness<randomness>`.
|
67 |
+
|
68 |
+
See Also
|
69 |
+
--------
|
70 |
+
gnp_random_graph, uniform_random_intersection_graph
|
71 |
+
|
72 |
+
References
|
73 |
+
----------
|
74 |
+
.. [1] Godehardt, E., and Jaworski, J.
|
75 |
+
Two models of random intersection graphs and their applications.
|
76 |
+
Electronic Notes in Discrete Mathematics 10 (2001), 129--132.
|
77 |
+
"""
|
78 |
+
G = nx.empty_graph(n + m)
|
79 |
+
mset = range(n, n + m)
|
80 |
+
for v in range(n):
|
81 |
+
targets = seed.sample(mset, k)
|
82 |
+
G.add_edges_from(zip([v] * len(targets), targets))
|
83 |
+
return nx.projected_graph(G, range(n))
|
84 |
+
|
85 |
+
|
86 |
+
@py_random_state(3)
|
87 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
88 |
+
def general_random_intersection_graph(n, m, p, seed=None):
|
89 |
+
"""Returns a random intersection graph with independent probabilities
|
90 |
+
for connections between node and attribute sets.
|
91 |
+
|
92 |
+
Parameters
|
93 |
+
----------
|
94 |
+
n : int
|
95 |
+
The number of nodes in the first bipartite set (nodes)
|
96 |
+
m : int
|
97 |
+
The number of nodes in the second bipartite set (attributes)
|
98 |
+
p : list of floats of length m
|
99 |
+
Probabilities for connecting nodes to each attribute
|
100 |
+
seed : integer, random_state, or None (default)
|
101 |
+
Indicator of random number generation state.
|
102 |
+
See :ref:`Randomness<randomness>`.
|
103 |
+
|
104 |
+
See Also
|
105 |
+
--------
|
106 |
+
gnp_random_graph, uniform_random_intersection_graph
|
107 |
+
|
108 |
+
References
|
109 |
+
----------
|
110 |
+
.. [1] Nikoletseas, S. E., Raptopoulos, C., and Spirakis, P. G.
|
111 |
+
The existence and efficient construction of large independent sets
|
112 |
+
in general random intersection graphs. In ICALP (2004), J. D´ıaz,
|
113 |
+
J. Karhum¨aki, A. Lepist¨o, and D. Sannella, Eds., vol. 3142
|
114 |
+
of Lecture Notes in Computer Science, Springer, pp. 1029–1040.
|
115 |
+
"""
|
116 |
+
if len(p) != m:
|
117 |
+
raise ValueError("Probability list p must have m elements.")
|
118 |
+
G = nx.empty_graph(n + m)
|
119 |
+
mset = range(n, n + m)
|
120 |
+
for u in range(n):
|
121 |
+
for v, q in zip(mset, p):
|
122 |
+
if seed.random() < q:
|
123 |
+
G.add_edge(u, v)
|
124 |
+
return nx.projected_graph(G, range(n))
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/interval_graph.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Generators for interval graph.
|
3 |
+
"""
|
4 |
+
from collections.abc import Sequence
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
|
8 |
+
__all__ = ["interval_graph"]
|
9 |
+
|
10 |
+
|
11 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
12 |
+
def interval_graph(intervals):
|
13 |
+
"""Generates an interval graph for a list of intervals given.
|
14 |
+
|
15 |
+
In graph theory, an interval graph is an undirected graph formed from a set
|
16 |
+
of closed intervals on the real line, with a vertex for each interval
|
17 |
+
and an edge between vertices whose intervals intersect.
|
18 |
+
It is the intersection graph of the intervals.
|
19 |
+
|
20 |
+
More information can be found at:
|
21 |
+
https://en.wikipedia.org/wiki/Interval_graph
|
22 |
+
|
23 |
+
Parameters
|
24 |
+
----------
|
25 |
+
intervals : a sequence of intervals, say (l, r) where l is the left end,
|
26 |
+
and r is the right end of the closed interval.
|
27 |
+
|
28 |
+
Returns
|
29 |
+
-------
|
30 |
+
G : networkx graph
|
31 |
+
|
32 |
+
Examples
|
33 |
+
--------
|
34 |
+
>>> intervals = [(-2, 3), [1, 4], (2, 3), (4, 6)]
|
35 |
+
>>> G = nx.interval_graph(intervals)
|
36 |
+
>>> sorted(G.edges)
|
37 |
+
[((-2, 3), (1, 4)), ((-2, 3), (2, 3)), ((1, 4), (2, 3)), ((1, 4), (4, 6))]
|
38 |
+
|
39 |
+
Raises
|
40 |
+
------
|
41 |
+
:exc:`TypeError`
|
42 |
+
if `intervals` contains None or an element which is not
|
43 |
+
collections.abc.Sequence or not a length of 2.
|
44 |
+
:exc:`ValueError`
|
45 |
+
if `intervals` contains an interval such that min1 > max1
|
46 |
+
where min1,max1 = interval
|
47 |
+
"""
|
48 |
+
intervals = list(intervals)
|
49 |
+
for interval in intervals:
|
50 |
+
if not (isinstance(interval, Sequence) and len(interval) == 2):
|
51 |
+
raise TypeError(
|
52 |
+
"Each interval must have length 2, and be a "
|
53 |
+
"collections.abc.Sequence such as tuple or list."
|
54 |
+
)
|
55 |
+
if interval[0] > interval[1]:
|
56 |
+
raise ValueError(f"Interval must have lower value first. Got {interval}")
|
57 |
+
|
58 |
+
graph = nx.Graph()
|
59 |
+
|
60 |
+
tupled_intervals = [tuple(interval) for interval in intervals]
|
61 |
+
graph.add_nodes_from(tupled_intervals)
|
62 |
+
|
63 |
+
while tupled_intervals:
|
64 |
+
min1, max1 = interval1 = tupled_intervals.pop()
|
65 |
+
for interval2 in tupled_intervals:
|
66 |
+
min2, max2 = interval2
|
67 |
+
if max1 >= min2 and max2 >= min1:
|
68 |
+
graph.add_edge(interval1, interval2)
|
69 |
+
return graph
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/joint_degree_seq.py
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generate graphs with a given joint degree and directed joint degree"""
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.utils import py_random_state
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"is_valid_joint_degree",
|
8 |
+
"is_valid_directed_joint_degree",
|
9 |
+
"joint_degree_graph",
|
10 |
+
"directed_joint_degree_graph",
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
@nx._dispatchable(graphs=None)
|
15 |
+
def is_valid_joint_degree(joint_degrees):
|
16 |
+
"""Checks whether the given joint degree dictionary is realizable.
|
17 |
+
|
18 |
+
A *joint degree dictionary* is a dictionary of dictionaries, in
|
19 |
+
which entry ``joint_degrees[k][l]`` is an integer representing the
|
20 |
+
number of edges joining nodes of degree *k* with nodes of degree
|
21 |
+
*l*. Such a dictionary is realizable as a simple graph if and only
|
22 |
+
if the following conditions are satisfied.
|
23 |
+
|
24 |
+
- each entry must be an integer,
|
25 |
+
- the total number of nodes of degree *k*, computed by
|
26 |
+
``sum(joint_degrees[k].values()) / k``, must be an integer,
|
27 |
+
- the total number of edges joining nodes of degree *k* with
|
28 |
+
nodes of degree *l* cannot exceed the total number of possible edges,
|
29 |
+
- each diagonal entry ``joint_degrees[k][k]`` must be even (this is
|
30 |
+
a convention assumed by the :func:`joint_degree_graph` function).
|
31 |
+
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
joint_degrees : dictionary of dictionary of integers
|
36 |
+
A joint degree dictionary in which entry ``joint_degrees[k][l]``
|
37 |
+
is the number of edges joining nodes of degree *k* with nodes of
|
38 |
+
degree *l*.
|
39 |
+
|
40 |
+
Returns
|
41 |
+
-------
|
42 |
+
bool
|
43 |
+
Whether the given joint degree dictionary is realizable as a
|
44 |
+
simple graph.
|
45 |
+
|
46 |
+
References
|
47 |
+
----------
|
48 |
+
.. [1] M. Gjoka, M. Kurant, A. Markopoulou, "2.5K Graphs: from Sampling
|
49 |
+
to Generation", IEEE Infocom, 2013.
|
50 |
+
.. [2] I. Stanton, A. Pinar, "Constructing and sampling graphs with a
|
51 |
+
prescribed joint degree distribution", Journal of Experimental
|
52 |
+
Algorithmics, 2012.
|
53 |
+
"""
|
54 |
+
|
55 |
+
degree_count = {}
|
56 |
+
for k in joint_degrees:
|
57 |
+
if k > 0:
|
58 |
+
k_size = sum(joint_degrees[k].values()) / k
|
59 |
+
if not k_size.is_integer():
|
60 |
+
return False
|
61 |
+
degree_count[k] = k_size
|
62 |
+
|
63 |
+
for k in joint_degrees:
|
64 |
+
for l in joint_degrees[k]:
|
65 |
+
if not float(joint_degrees[k][l]).is_integer():
|
66 |
+
return False
|
67 |
+
|
68 |
+
if (k != l) and (joint_degrees[k][l] > degree_count[k] * degree_count[l]):
|
69 |
+
return False
|
70 |
+
elif k == l:
|
71 |
+
if joint_degrees[k][k] > degree_count[k] * (degree_count[k] - 1):
|
72 |
+
return False
|
73 |
+
if joint_degrees[k][k] % 2 != 0:
|
74 |
+
return False
|
75 |
+
|
76 |
+
# if all above conditions have been satisfied then the input
|
77 |
+
# joint degree is realizable as a simple graph.
|
78 |
+
return True
|
79 |
+
|
80 |
+
|
81 |
+
def _neighbor_switch(G, w, unsat, h_node_residual, avoid_node_id=None):
|
82 |
+
"""Releases one free stub for ``w``, while preserving joint degree in G.
|
83 |
+
|
84 |
+
Parameters
|
85 |
+
----------
|
86 |
+
G : NetworkX graph
|
87 |
+
Graph in which the neighbor switch will take place.
|
88 |
+
w : integer
|
89 |
+
Node id for which we will execute this neighbor switch.
|
90 |
+
unsat : set of integers
|
91 |
+
Set of unsaturated node ids that have the same degree as w.
|
92 |
+
h_node_residual: dictionary of integers
|
93 |
+
Keeps track of the remaining stubs for a given node.
|
94 |
+
avoid_node_id: integer
|
95 |
+
Node id to avoid when selecting w_prime.
|
96 |
+
|
97 |
+
Notes
|
98 |
+
-----
|
99 |
+
First, it selects *w_prime*, an unsaturated node that has the same degree
|
100 |
+
as ``w``. Second, it selects *switch_node*, a neighbor node of ``w`` that
|
101 |
+
is not connected to *w_prime*. Then it executes an edge swap i.e. removes
|
102 |
+
(``w``,*switch_node*) and adds (*w_prime*,*switch_node*). Gjoka et. al. [1]
|
103 |
+
prove that such an edge swap is always possible.
|
104 |
+
|
105 |
+
References
|
106 |
+
----------
|
107 |
+
.. [1] M. Gjoka, B. Tillman, A. Markopoulou, "Construction of Simple
|
108 |
+
Graphs with a Target Joint Degree Matrix and Beyond", IEEE Infocom, '15
|
109 |
+
"""
|
110 |
+
|
111 |
+
if (avoid_node_id is None) or (h_node_residual[avoid_node_id] > 1):
|
112 |
+
# select unsaturated node w_prime that has the same degree as w
|
113 |
+
w_prime = next(iter(unsat))
|
114 |
+
else:
|
115 |
+
# assume that the node pair (v,w) has been selected for connection. if
|
116 |
+
# - neighbor_switch is called for node w,
|
117 |
+
# - nodes v and w have the same degree,
|
118 |
+
# - node v=avoid_node_id has only one stub left,
|
119 |
+
# then prevent v=avoid_node_id from being selected as w_prime.
|
120 |
+
|
121 |
+
iter_var = iter(unsat)
|
122 |
+
while True:
|
123 |
+
w_prime = next(iter_var)
|
124 |
+
if w_prime != avoid_node_id:
|
125 |
+
break
|
126 |
+
|
127 |
+
# select switch_node, a neighbor of w, that is not connected to w_prime
|
128 |
+
w_prime_neighbs = G[w_prime] # slightly faster declaring this variable
|
129 |
+
for v in G[w]:
|
130 |
+
if (v not in w_prime_neighbs) and (v != w_prime):
|
131 |
+
switch_node = v
|
132 |
+
break
|
133 |
+
|
134 |
+
# remove edge (w,switch_node), add edge (w_prime,switch_node) and update
|
135 |
+
# data structures
|
136 |
+
G.remove_edge(w, switch_node)
|
137 |
+
G.add_edge(w_prime, switch_node)
|
138 |
+
h_node_residual[w] += 1
|
139 |
+
h_node_residual[w_prime] -= 1
|
140 |
+
if h_node_residual[w_prime] == 0:
|
141 |
+
unsat.remove(w_prime)
|
142 |
+
|
143 |
+
|
144 |
+
@py_random_state(1)
|
145 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
146 |
+
def joint_degree_graph(joint_degrees, seed=None):
|
147 |
+
"""Generates a random simple graph with the given joint degree dictionary.
|
148 |
+
|
149 |
+
Parameters
|
150 |
+
----------
|
151 |
+
joint_degrees : dictionary of dictionary of integers
|
152 |
+
A joint degree dictionary in which entry ``joint_degrees[k][l]`` is the
|
153 |
+
number of edges joining nodes of degree *k* with nodes of degree *l*.
|
154 |
+
seed : integer, random_state, or None (default)
|
155 |
+
Indicator of random number generation state.
|
156 |
+
See :ref:`Randomness<randomness>`.
|
157 |
+
|
158 |
+
Returns
|
159 |
+
-------
|
160 |
+
G : Graph
|
161 |
+
A graph with the specified joint degree dictionary.
|
162 |
+
|
163 |
+
Raises
|
164 |
+
------
|
165 |
+
NetworkXError
|
166 |
+
If *joint_degrees* dictionary is not realizable.
|
167 |
+
|
168 |
+
Notes
|
169 |
+
-----
|
170 |
+
In each iteration of the "while loop" the algorithm picks two disconnected
|
171 |
+
nodes *v* and *w*, of degree *k* and *l* correspondingly, for which
|
172 |
+
``joint_degrees[k][l]`` has not reached its target yet. It then adds
|
173 |
+
edge (*v*, *w*) and increases the number of edges in graph G by one.
|
174 |
+
|
175 |
+
The intelligence of the algorithm lies in the fact that it is always
|
176 |
+
possible to add an edge between such disconnected nodes *v* and *w*,
|
177 |
+
even if one or both nodes do not have free stubs. That is made possible by
|
178 |
+
executing a "neighbor switch", an edge rewiring move that releases
|
179 |
+
a free stub while keeping the joint degree of G the same.
|
180 |
+
|
181 |
+
The algorithm continues for E (number of edges) iterations of
|
182 |
+
the "while loop", at the which point all entries of the given
|
183 |
+
``joint_degrees[k][l]`` have reached their target values and the
|
184 |
+
construction is complete.
|
185 |
+
|
186 |
+
References
|
187 |
+
----------
|
188 |
+
.. [1] M. Gjoka, B. Tillman, A. Markopoulou, "Construction of Simple
|
189 |
+
Graphs with a Target Joint Degree Matrix and Beyond", IEEE Infocom, '15
|
190 |
+
|
191 |
+
Examples
|
192 |
+
--------
|
193 |
+
>>> joint_degrees = {
|
194 |
+
... 1: {4: 1},
|
195 |
+
... 2: {2: 2, 3: 2, 4: 2},
|
196 |
+
... 3: {2: 2, 4: 1},
|
197 |
+
... 4: {1: 1, 2: 2, 3: 1},
|
198 |
+
... }
|
199 |
+
>>> G = nx.joint_degree_graph(joint_degrees)
|
200 |
+
>>>
|
201 |
+
"""
|
202 |
+
|
203 |
+
if not is_valid_joint_degree(joint_degrees):
|
204 |
+
msg = "Input joint degree dict not realizable as a simple graph"
|
205 |
+
raise nx.NetworkXError(msg)
|
206 |
+
|
207 |
+
# compute degree count from joint_degrees
|
208 |
+
degree_count = {k: sum(l.values()) // k for k, l in joint_degrees.items() if k > 0}
|
209 |
+
|
210 |
+
# start with empty N-node graph
|
211 |
+
N = sum(degree_count.values())
|
212 |
+
G = nx.empty_graph(N)
|
213 |
+
|
214 |
+
# for a given degree group, keep the list of all node ids
|
215 |
+
h_degree_nodelist = {}
|
216 |
+
|
217 |
+
# for a given node, keep track of the remaining stubs
|
218 |
+
h_node_residual = {}
|
219 |
+
|
220 |
+
# populate h_degree_nodelist and h_node_residual
|
221 |
+
nodeid = 0
|
222 |
+
for degree, num_nodes in degree_count.items():
|
223 |
+
h_degree_nodelist[degree] = range(nodeid, nodeid + num_nodes)
|
224 |
+
for v in h_degree_nodelist[degree]:
|
225 |
+
h_node_residual[v] = degree
|
226 |
+
nodeid += int(num_nodes)
|
227 |
+
|
228 |
+
# iterate over every degree pair (k,l) and add the number of edges given
|
229 |
+
# for each pair
|
230 |
+
for k in joint_degrees:
|
231 |
+
for l in joint_degrees[k]:
|
232 |
+
# n_edges_add is the number of edges to add for the
|
233 |
+
# degree pair (k,l)
|
234 |
+
n_edges_add = joint_degrees[k][l]
|
235 |
+
|
236 |
+
if (n_edges_add > 0) and (k >= l):
|
237 |
+
# number of nodes with degree k and l
|
238 |
+
k_size = degree_count[k]
|
239 |
+
l_size = degree_count[l]
|
240 |
+
|
241 |
+
# k_nodes and l_nodes consist of all nodes of degree k and l
|
242 |
+
k_nodes = h_degree_nodelist[k]
|
243 |
+
l_nodes = h_degree_nodelist[l]
|
244 |
+
|
245 |
+
# k_unsat and l_unsat consist of nodes of degree k and l that
|
246 |
+
# are unsaturated (nodes that have at least 1 available stub)
|
247 |
+
k_unsat = {v for v in k_nodes if h_node_residual[v] > 0}
|
248 |
+
|
249 |
+
if k != l:
|
250 |
+
l_unsat = {w for w in l_nodes if h_node_residual[w] > 0}
|
251 |
+
else:
|
252 |
+
l_unsat = k_unsat
|
253 |
+
n_edges_add = joint_degrees[k][l] // 2
|
254 |
+
|
255 |
+
while n_edges_add > 0:
|
256 |
+
# randomly pick nodes v and w that have degrees k and l
|
257 |
+
v = k_nodes[seed.randrange(k_size)]
|
258 |
+
w = l_nodes[seed.randrange(l_size)]
|
259 |
+
|
260 |
+
# if nodes v and w are disconnected then attempt to connect
|
261 |
+
if not G.has_edge(v, w) and (v != w):
|
262 |
+
# if node v has no free stubs then do neighbor switch
|
263 |
+
if h_node_residual[v] == 0:
|
264 |
+
_neighbor_switch(G, v, k_unsat, h_node_residual)
|
265 |
+
|
266 |
+
# if node w has no free stubs then do neighbor switch
|
267 |
+
if h_node_residual[w] == 0:
|
268 |
+
if k != l:
|
269 |
+
_neighbor_switch(G, w, l_unsat, h_node_residual)
|
270 |
+
else:
|
271 |
+
_neighbor_switch(
|
272 |
+
G, w, l_unsat, h_node_residual, avoid_node_id=v
|
273 |
+
)
|
274 |
+
|
275 |
+
# add edge (v, w) and update data structures
|
276 |
+
G.add_edge(v, w)
|
277 |
+
h_node_residual[v] -= 1
|
278 |
+
h_node_residual[w] -= 1
|
279 |
+
n_edges_add -= 1
|
280 |
+
|
281 |
+
if h_node_residual[v] == 0:
|
282 |
+
k_unsat.discard(v)
|
283 |
+
if h_node_residual[w] == 0:
|
284 |
+
l_unsat.discard(w)
|
285 |
+
return G
|
286 |
+
|
287 |
+
|
288 |
+
@nx._dispatchable(graphs=None)
|
289 |
+
def is_valid_directed_joint_degree(in_degrees, out_degrees, nkk):
|
290 |
+
"""Checks whether the given directed joint degree input is realizable
|
291 |
+
|
292 |
+
Parameters
|
293 |
+
----------
|
294 |
+
in_degrees : list of integers
|
295 |
+
in degree sequence contains the in degrees of nodes.
|
296 |
+
out_degrees : list of integers
|
297 |
+
out degree sequence contains the out degrees of nodes.
|
298 |
+
nkk : dictionary of dictionary of integers
|
299 |
+
directed joint degree dictionary. for nodes of out degree k (first
|
300 |
+
level of dict) and nodes of in degree l (second level of dict)
|
301 |
+
describes the number of edges.
|
302 |
+
|
303 |
+
Returns
|
304 |
+
-------
|
305 |
+
boolean
|
306 |
+
returns true if given input is realizable, else returns false.
|
307 |
+
|
308 |
+
Notes
|
309 |
+
-----
|
310 |
+
Here is the list of conditions that the inputs (in/out degree sequences,
|
311 |
+
nkk) need to satisfy for simple directed graph realizability:
|
312 |
+
|
313 |
+
- Condition 0: in_degrees and out_degrees have the same length
|
314 |
+
- Condition 1: nkk[k][l] is integer for all k,l
|
315 |
+
- Condition 2: sum(nkk[k])/k = number of nodes with partition id k, is an
|
316 |
+
integer and matching degree sequence
|
317 |
+
- Condition 3: number of edges and non-chords between k and l cannot exceed
|
318 |
+
maximum possible number of edges
|
319 |
+
|
320 |
+
|
321 |
+
References
|
322 |
+
----------
|
323 |
+
[1] B. Tillman, A. Markopoulou, C. T. Butts & M. Gjoka,
|
324 |
+
"Construction of Directed 2K Graphs". In Proc. of KDD 2017.
|
325 |
+
"""
|
326 |
+
V = {} # number of nodes with in/out degree.
|
327 |
+
forbidden = {}
|
328 |
+
if len(in_degrees) != len(out_degrees):
|
329 |
+
return False
|
330 |
+
|
331 |
+
for idx in range(len(in_degrees)):
|
332 |
+
i = in_degrees[idx]
|
333 |
+
o = out_degrees[idx]
|
334 |
+
V[(i, 0)] = V.get((i, 0), 0) + 1
|
335 |
+
V[(o, 1)] = V.get((o, 1), 0) + 1
|
336 |
+
|
337 |
+
forbidden[(o, i)] = forbidden.get((o, i), 0) + 1
|
338 |
+
|
339 |
+
S = {} # number of edges going from in/out degree nodes.
|
340 |
+
for k in nkk:
|
341 |
+
for l in nkk[k]:
|
342 |
+
val = nkk[k][l]
|
343 |
+
if not float(val).is_integer(): # condition 1
|
344 |
+
return False
|
345 |
+
|
346 |
+
if val > 0:
|
347 |
+
S[(k, 1)] = S.get((k, 1), 0) + val
|
348 |
+
S[(l, 0)] = S.get((l, 0), 0) + val
|
349 |
+
# condition 3
|
350 |
+
if val + forbidden.get((k, l), 0) > V[(k, 1)] * V[(l, 0)]:
|
351 |
+
return False
|
352 |
+
|
353 |
+
return all(S[s] / s[0] == V[s] for s in S)
|
354 |
+
|
355 |
+
|
356 |
+
def _directed_neighbor_switch(
|
357 |
+
G, w, unsat, h_node_residual_out, chords, h_partition_in, partition
|
358 |
+
):
|
359 |
+
"""Releases one free stub for node w, while preserving joint degree in G.
|
360 |
+
|
361 |
+
Parameters
|
362 |
+
----------
|
363 |
+
G : networkx directed graph
|
364 |
+
graph within which the edge swap will take place.
|
365 |
+
w : integer
|
366 |
+
node id for which we need to perform a neighbor switch.
|
367 |
+
unsat: set of integers
|
368 |
+
set of node ids that have the same degree as w and are unsaturated.
|
369 |
+
h_node_residual_out: dict of integers
|
370 |
+
for a given node, keeps track of the remaining stubs to be added.
|
371 |
+
chords: set of tuples
|
372 |
+
keeps track of available positions to add edges.
|
373 |
+
h_partition_in: dict of integers
|
374 |
+
for a given node, keeps track of its partition id (in degree).
|
375 |
+
partition: integer
|
376 |
+
partition id to check if chords have to be updated.
|
377 |
+
|
378 |
+
Notes
|
379 |
+
-----
|
380 |
+
First, it selects node w_prime that (1) has the same degree as w and
|
381 |
+
(2) is unsaturated. Then, it selects node v, a neighbor of w, that is
|
382 |
+
not connected to w_prime and does an edge swap i.e. removes (w,v) and
|
383 |
+
adds (w_prime,v). If neighbor switch is not possible for w using
|
384 |
+
w_prime and v, then return w_prime; in [1] it's proven that
|
385 |
+
such unsaturated nodes can be used.
|
386 |
+
|
387 |
+
References
|
388 |
+
----------
|
389 |
+
[1] B. Tillman, A. Markopoulou, C. T. Butts & M. Gjoka,
|
390 |
+
"Construction of Directed 2K Graphs". In Proc. of KDD 2017.
|
391 |
+
"""
|
392 |
+
w_prime = unsat.pop()
|
393 |
+
unsat.add(w_prime)
|
394 |
+
# select node t, a neighbor of w, that is not connected to w_prime
|
395 |
+
w_neighbs = list(G.successors(w))
|
396 |
+
# slightly faster declaring this variable
|
397 |
+
w_prime_neighbs = list(G.successors(w_prime))
|
398 |
+
|
399 |
+
for v in w_neighbs:
|
400 |
+
if (v not in w_prime_neighbs) and w_prime != v:
|
401 |
+
# removes (w,v), add (w_prime,v) and update data structures
|
402 |
+
G.remove_edge(w, v)
|
403 |
+
G.add_edge(w_prime, v)
|
404 |
+
|
405 |
+
if h_partition_in[v] == partition:
|
406 |
+
chords.add((w, v))
|
407 |
+
chords.discard((w_prime, v))
|
408 |
+
|
409 |
+
h_node_residual_out[w] += 1
|
410 |
+
h_node_residual_out[w_prime] -= 1
|
411 |
+
if h_node_residual_out[w_prime] == 0:
|
412 |
+
unsat.remove(w_prime)
|
413 |
+
return None
|
414 |
+
|
415 |
+
# If neighbor switch didn't work, use unsaturated node
|
416 |
+
return w_prime
|
417 |
+
|
418 |
+
|
419 |
+
def _directed_neighbor_switch_rev(
|
420 |
+
G, w, unsat, h_node_residual_in, chords, h_partition_out, partition
|
421 |
+
):
|
422 |
+
"""The reverse of directed_neighbor_switch.
|
423 |
+
|
424 |
+
Parameters
|
425 |
+
----------
|
426 |
+
G : networkx directed graph
|
427 |
+
graph within which the edge swap will take place.
|
428 |
+
w : integer
|
429 |
+
node id for which we need to perform a neighbor switch.
|
430 |
+
unsat: set of integers
|
431 |
+
set of node ids that have the same degree as w and are unsaturated.
|
432 |
+
h_node_residual_in: dict of integers
|
433 |
+
for a given node, keeps track of the remaining stubs to be added.
|
434 |
+
chords: set of tuples
|
435 |
+
keeps track of available positions to add edges.
|
436 |
+
h_partition_out: dict of integers
|
437 |
+
for a given node, keeps track of its partition id (out degree).
|
438 |
+
partition: integer
|
439 |
+
partition id to check if chords have to be updated.
|
440 |
+
|
441 |
+
Notes
|
442 |
+
-----
|
443 |
+
Same operation as directed_neighbor_switch except it handles this operation
|
444 |
+
for incoming edges instead of outgoing.
|
445 |
+
"""
|
446 |
+
w_prime = unsat.pop()
|
447 |
+
unsat.add(w_prime)
|
448 |
+
# slightly faster declaring these as variables.
|
449 |
+
w_neighbs = list(G.predecessors(w))
|
450 |
+
w_prime_neighbs = list(G.predecessors(w_prime))
|
451 |
+
# select node v, a neighbor of w, that is not connected to w_prime.
|
452 |
+
for v in w_neighbs:
|
453 |
+
if (v not in w_prime_neighbs) and w_prime != v:
|
454 |
+
# removes (v,w), add (v,w_prime) and update data structures.
|
455 |
+
G.remove_edge(v, w)
|
456 |
+
G.add_edge(v, w_prime)
|
457 |
+
if h_partition_out[v] == partition:
|
458 |
+
chords.add((v, w))
|
459 |
+
chords.discard((v, w_prime))
|
460 |
+
|
461 |
+
h_node_residual_in[w] += 1
|
462 |
+
h_node_residual_in[w_prime] -= 1
|
463 |
+
if h_node_residual_in[w_prime] == 0:
|
464 |
+
unsat.remove(w_prime)
|
465 |
+
return None
|
466 |
+
|
467 |
+
# If neighbor switch didn't work, use the unsaturated node.
|
468 |
+
return w_prime
|
469 |
+
|
470 |
+
|
471 |
+
@py_random_state(3)
|
472 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
473 |
+
def directed_joint_degree_graph(in_degrees, out_degrees, nkk, seed=None):
|
474 |
+
"""Generates a random simple directed graph with the joint degree.
|
475 |
+
|
476 |
+
Parameters
|
477 |
+
----------
|
478 |
+
degree_seq : list of tuples (of size 3)
|
479 |
+
degree sequence contains tuples of nodes with node id, in degree and
|
480 |
+
out degree.
|
481 |
+
nkk : dictionary of dictionary of integers
|
482 |
+
directed joint degree dictionary, for nodes of out degree k (first
|
483 |
+
level of dict) and nodes of in degree l (second level of dict)
|
484 |
+
describes the number of edges.
|
485 |
+
seed : hashable object, optional
|
486 |
+
Seed for random number generator.
|
487 |
+
|
488 |
+
Returns
|
489 |
+
-------
|
490 |
+
G : Graph
|
491 |
+
A directed graph with the specified inputs.
|
492 |
+
|
493 |
+
Raises
|
494 |
+
------
|
495 |
+
NetworkXError
|
496 |
+
If degree_seq and nkk are not realizable as a simple directed graph.
|
497 |
+
|
498 |
+
|
499 |
+
Notes
|
500 |
+
-----
|
501 |
+
Similarly to the undirected version:
|
502 |
+
In each iteration of the "while loop" the algorithm picks two disconnected
|
503 |
+
nodes v and w, of degree k and l correspondingly, for which nkk[k][l] has
|
504 |
+
not reached its target yet i.e. (for given k,l): n_edges_add < nkk[k][l].
|
505 |
+
It then adds edge (v,w) and always increases the number of edges in graph G
|
506 |
+
by one.
|
507 |
+
|
508 |
+
The intelligence of the algorithm lies in the fact that it is always
|
509 |
+
possible to add an edge between disconnected nodes v and w, for which
|
510 |
+
nkk[degree(v)][degree(w)] has not reached its target, even if one or both
|
511 |
+
nodes do not have free stubs. If either node v or w does not have a free
|
512 |
+
stub, we perform a "neighbor switch", an edge rewiring move that releases a
|
513 |
+
free stub while keeping nkk the same.
|
514 |
+
|
515 |
+
The difference for the directed version lies in the fact that neighbor
|
516 |
+
switches might not be able to rewire, but in these cases unsaturated nodes
|
517 |
+
can be reassigned to use instead, see [1] for detailed description and
|
518 |
+
proofs.
|
519 |
+
|
520 |
+
The algorithm continues for E (number of edges in the graph) iterations of
|
521 |
+
the "while loop", at which point all entries of the given nkk[k][l] have
|
522 |
+
reached their target values and the construction is complete.
|
523 |
+
|
524 |
+
References
|
525 |
+
----------
|
526 |
+
[1] B. Tillman, A. Markopoulou, C. T. Butts & M. Gjoka,
|
527 |
+
"Construction of Directed 2K Graphs". In Proc. of KDD 2017.
|
528 |
+
|
529 |
+
Examples
|
530 |
+
--------
|
531 |
+
>>> in_degrees = [0, 1, 1, 2]
|
532 |
+
>>> out_degrees = [1, 1, 1, 1]
|
533 |
+
>>> nkk = {1: {1: 2, 2: 2}}
|
534 |
+
>>> G = nx.directed_joint_degree_graph(in_degrees, out_degrees, nkk)
|
535 |
+
>>>
|
536 |
+
"""
|
537 |
+
if not is_valid_directed_joint_degree(in_degrees, out_degrees, nkk):
|
538 |
+
msg = "Input is not realizable as a simple graph"
|
539 |
+
raise nx.NetworkXError(msg)
|
540 |
+
|
541 |
+
# start with an empty directed graph.
|
542 |
+
G = nx.DiGraph()
|
543 |
+
|
544 |
+
# for a given group, keep the list of all node ids.
|
545 |
+
h_degree_nodelist_in = {}
|
546 |
+
h_degree_nodelist_out = {}
|
547 |
+
# for a given group, keep the list of all unsaturated node ids.
|
548 |
+
h_degree_nodelist_in_unsat = {}
|
549 |
+
h_degree_nodelist_out_unsat = {}
|
550 |
+
# for a given node, keep track of the remaining stubs to be added.
|
551 |
+
h_node_residual_out = {}
|
552 |
+
h_node_residual_in = {}
|
553 |
+
# for a given node, keep track of the partition id.
|
554 |
+
h_partition_out = {}
|
555 |
+
h_partition_in = {}
|
556 |
+
# keep track of non-chords between pairs of partition ids.
|
557 |
+
non_chords = {}
|
558 |
+
|
559 |
+
# populate data structures
|
560 |
+
for idx, i in enumerate(in_degrees):
|
561 |
+
idx = int(idx)
|
562 |
+
if i > 0:
|
563 |
+
h_degree_nodelist_in.setdefault(i, [])
|
564 |
+
h_degree_nodelist_in_unsat.setdefault(i, set())
|
565 |
+
h_degree_nodelist_in[i].append(idx)
|
566 |
+
h_degree_nodelist_in_unsat[i].add(idx)
|
567 |
+
h_node_residual_in[idx] = i
|
568 |
+
h_partition_in[idx] = i
|
569 |
+
|
570 |
+
for idx, o in enumerate(out_degrees):
|
571 |
+
o = out_degrees[idx]
|
572 |
+
non_chords[(o, in_degrees[idx])] = non_chords.get((o, in_degrees[idx]), 0) + 1
|
573 |
+
idx = int(idx)
|
574 |
+
if o > 0:
|
575 |
+
h_degree_nodelist_out.setdefault(o, [])
|
576 |
+
h_degree_nodelist_out_unsat.setdefault(o, set())
|
577 |
+
h_degree_nodelist_out[o].append(idx)
|
578 |
+
h_degree_nodelist_out_unsat[o].add(idx)
|
579 |
+
h_node_residual_out[idx] = o
|
580 |
+
h_partition_out[idx] = o
|
581 |
+
|
582 |
+
G.add_node(idx)
|
583 |
+
|
584 |
+
nk_in = {}
|
585 |
+
nk_out = {}
|
586 |
+
for p in h_degree_nodelist_in:
|
587 |
+
nk_in[p] = len(h_degree_nodelist_in[p])
|
588 |
+
for p in h_degree_nodelist_out:
|
589 |
+
nk_out[p] = len(h_degree_nodelist_out[p])
|
590 |
+
|
591 |
+
# iterate over every degree pair (k,l) and add the number of edges given
|
592 |
+
# for each pair.
|
593 |
+
for k in nkk:
|
594 |
+
for l in nkk[k]:
|
595 |
+
n_edges_add = nkk[k][l]
|
596 |
+
|
597 |
+
if n_edges_add > 0:
|
598 |
+
# chords contains a random set of potential edges.
|
599 |
+
chords = set()
|
600 |
+
|
601 |
+
k_len = nk_out[k]
|
602 |
+
l_len = nk_in[l]
|
603 |
+
chords_sample = seed.sample(
|
604 |
+
range(k_len * l_len), n_edges_add + non_chords.get((k, l), 0)
|
605 |
+
)
|
606 |
+
|
607 |
+
num = 0
|
608 |
+
while len(chords) < n_edges_add:
|
609 |
+
i = h_degree_nodelist_out[k][chords_sample[num] % k_len]
|
610 |
+
j = h_degree_nodelist_in[l][chords_sample[num] // k_len]
|
611 |
+
num += 1
|
612 |
+
if i != j:
|
613 |
+
chords.add((i, j))
|
614 |
+
|
615 |
+
# k_unsat and l_unsat consist of nodes of in/out degree k and l
|
616 |
+
# that are unsaturated i.e. those nodes that have at least one
|
617 |
+
# available stub
|
618 |
+
k_unsat = h_degree_nodelist_out_unsat[k]
|
619 |
+
l_unsat = h_degree_nodelist_in_unsat[l]
|
620 |
+
|
621 |
+
while n_edges_add > 0:
|
622 |
+
v, w = chords.pop()
|
623 |
+
chords.add((v, w))
|
624 |
+
|
625 |
+
# if node v has no free stubs then do neighbor switch.
|
626 |
+
if h_node_residual_out[v] == 0:
|
627 |
+
_v = _directed_neighbor_switch(
|
628 |
+
G,
|
629 |
+
v,
|
630 |
+
k_unsat,
|
631 |
+
h_node_residual_out,
|
632 |
+
chords,
|
633 |
+
h_partition_in,
|
634 |
+
l,
|
635 |
+
)
|
636 |
+
if _v is not None:
|
637 |
+
v = _v
|
638 |
+
|
639 |
+
# if node w has no free stubs then do neighbor switch.
|
640 |
+
if h_node_residual_in[w] == 0:
|
641 |
+
_w = _directed_neighbor_switch_rev(
|
642 |
+
G,
|
643 |
+
w,
|
644 |
+
l_unsat,
|
645 |
+
h_node_residual_in,
|
646 |
+
chords,
|
647 |
+
h_partition_out,
|
648 |
+
k,
|
649 |
+
)
|
650 |
+
if _w is not None:
|
651 |
+
w = _w
|
652 |
+
|
653 |
+
# add edge (v,w) and update data structures.
|
654 |
+
G.add_edge(v, w)
|
655 |
+
h_node_residual_out[v] -= 1
|
656 |
+
h_node_residual_in[w] -= 1
|
657 |
+
n_edges_add -= 1
|
658 |
+
chords.discard((v, w))
|
659 |
+
|
660 |
+
if h_node_residual_out[v] == 0:
|
661 |
+
k_unsat.discard(v)
|
662 |
+
if h_node_residual_in[w] == 0:
|
663 |
+
l_unsat.discard(w)
|
664 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/lattice.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for generating grid graphs and lattices
|
2 |
+
|
3 |
+
The :func:`grid_2d_graph`, :func:`triangular_lattice_graph`, and
|
4 |
+
:func:`hexagonal_lattice_graph` functions correspond to the three
|
5 |
+
`regular tilings of the plane`_, the square, triangular, and hexagonal
|
6 |
+
tilings, respectively. :func:`grid_graph` and :func:`hypercube_graph`
|
7 |
+
are similar for arbitrary dimensions. Useful relevant discussion can
|
8 |
+
be found about `Triangular Tiling`_, and `Square, Hex and Triangle Grids`_
|
9 |
+
|
10 |
+
.. _regular tilings of the plane: https://en.wikipedia.org/wiki/List_of_regular_polytopes_and_compounds#Euclidean_tilings
|
11 |
+
.. _Square, Hex and Triangle Grids: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
|
12 |
+
.. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling
|
13 |
+
|
14 |
+
"""
|
15 |
+
|
16 |
+
from itertools import repeat
|
17 |
+
from math import sqrt
|
18 |
+
|
19 |
+
import networkx as nx
|
20 |
+
from networkx.classes import set_node_attributes
|
21 |
+
from networkx.exception import NetworkXError
|
22 |
+
from networkx.generators.classic import cycle_graph, empty_graph, path_graph
|
23 |
+
from networkx.relabel import relabel_nodes
|
24 |
+
from networkx.utils import flatten, nodes_or_number, pairwise
|
25 |
+
|
26 |
+
__all__ = [
|
27 |
+
"grid_2d_graph",
|
28 |
+
"grid_graph",
|
29 |
+
"hypercube_graph",
|
30 |
+
"triangular_lattice_graph",
|
31 |
+
"hexagonal_lattice_graph",
|
32 |
+
]
|
33 |
+
|
34 |
+
|
35 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
36 |
+
@nodes_or_number([0, 1])
|
37 |
+
def grid_2d_graph(m, n, periodic=False, create_using=None):
|
38 |
+
"""Returns the two-dimensional grid graph.
|
39 |
+
|
40 |
+
The grid graph has each node connected to its four nearest neighbors.
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
m, n : int or iterable container of nodes
|
45 |
+
If an integer, nodes are from `range(n)`.
|
46 |
+
If a container, elements become the coordinate of the nodes.
|
47 |
+
|
48 |
+
periodic : bool or iterable
|
49 |
+
If `periodic` is True, both dimensions are periodic. If False, none
|
50 |
+
are periodic. If `periodic` is iterable, it should yield 2 bool
|
51 |
+
values indicating whether the 1st and 2nd axes, respectively, are
|
52 |
+
periodic.
|
53 |
+
|
54 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
55 |
+
Graph type to create. If graph instance, then cleared before populated.
|
56 |
+
|
57 |
+
Returns
|
58 |
+
-------
|
59 |
+
NetworkX graph
|
60 |
+
The (possibly periodic) grid graph of the specified dimensions.
|
61 |
+
|
62 |
+
"""
|
63 |
+
G = empty_graph(0, create_using)
|
64 |
+
row_name, rows = m
|
65 |
+
col_name, cols = n
|
66 |
+
G.add_nodes_from((i, j) for i in rows for j in cols)
|
67 |
+
G.add_edges_from(((i, j), (pi, j)) for pi, i in pairwise(rows) for j in cols)
|
68 |
+
G.add_edges_from(((i, j), (i, pj)) for i in rows for pj, j in pairwise(cols))
|
69 |
+
|
70 |
+
try:
|
71 |
+
periodic_r, periodic_c = periodic
|
72 |
+
except TypeError:
|
73 |
+
periodic_r = periodic_c = periodic
|
74 |
+
|
75 |
+
if periodic_r and len(rows) > 2:
|
76 |
+
first = rows[0]
|
77 |
+
last = rows[-1]
|
78 |
+
G.add_edges_from(((first, j), (last, j)) for j in cols)
|
79 |
+
if periodic_c and len(cols) > 2:
|
80 |
+
first = cols[0]
|
81 |
+
last = cols[-1]
|
82 |
+
G.add_edges_from(((i, first), (i, last)) for i in rows)
|
83 |
+
# both directions for directed
|
84 |
+
if G.is_directed():
|
85 |
+
G.add_edges_from((v, u) for u, v in G.edges())
|
86 |
+
return G
|
87 |
+
|
88 |
+
|
89 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
90 |
+
def grid_graph(dim, periodic=False):
|
91 |
+
"""Returns the *n*-dimensional grid graph.
|
92 |
+
|
93 |
+
The dimension *n* is the length of the list `dim` and the size in
|
94 |
+
each dimension is the value of the corresponding list element.
|
95 |
+
|
96 |
+
Parameters
|
97 |
+
----------
|
98 |
+
dim : list or tuple of numbers or iterables of nodes
|
99 |
+
'dim' is a tuple or list with, for each dimension, either a number
|
100 |
+
that is the size of that dimension or an iterable of nodes for
|
101 |
+
that dimension. The dimension of the grid_graph is the length
|
102 |
+
of `dim`.
|
103 |
+
|
104 |
+
periodic : bool or iterable
|
105 |
+
If `periodic` is True, all dimensions are periodic. If False all
|
106 |
+
dimensions are not periodic. If `periodic` is iterable, it should
|
107 |
+
yield `dim` bool values each of which indicates whether the
|
108 |
+
corresponding axis is periodic.
|
109 |
+
|
110 |
+
Returns
|
111 |
+
-------
|
112 |
+
NetworkX graph
|
113 |
+
The (possibly periodic) grid graph of the specified dimensions.
|
114 |
+
|
115 |
+
Examples
|
116 |
+
--------
|
117 |
+
To produce a 2 by 3 by 4 grid graph, a graph on 24 nodes:
|
118 |
+
|
119 |
+
>>> from networkx import grid_graph
|
120 |
+
>>> G = grid_graph(dim=(2, 3, 4))
|
121 |
+
>>> len(G)
|
122 |
+
24
|
123 |
+
>>> G = grid_graph(dim=(range(7, 9), range(3, 6)))
|
124 |
+
>>> len(G)
|
125 |
+
6
|
126 |
+
"""
|
127 |
+
from networkx.algorithms.operators.product import cartesian_product
|
128 |
+
|
129 |
+
if not dim:
|
130 |
+
return empty_graph(0)
|
131 |
+
|
132 |
+
try:
|
133 |
+
func = (cycle_graph if p else path_graph for p in periodic)
|
134 |
+
except TypeError:
|
135 |
+
func = repeat(cycle_graph if periodic else path_graph)
|
136 |
+
|
137 |
+
G = next(func)(dim[0])
|
138 |
+
for current_dim in dim[1:]:
|
139 |
+
Gnew = next(func)(current_dim)
|
140 |
+
G = cartesian_product(Gnew, G)
|
141 |
+
# graph G is done but has labels of the form (1, (2, (3, 1))) so relabel
|
142 |
+
H = relabel_nodes(G, flatten)
|
143 |
+
return H
|
144 |
+
|
145 |
+
|
146 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
147 |
+
def hypercube_graph(n):
|
148 |
+
"""Returns the *n*-dimensional hypercube graph.
|
149 |
+
|
150 |
+
The nodes are the integers between 0 and ``2 ** n - 1``, inclusive.
|
151 |
+
|
152 |
+
For more information on the hypercube graph, see the Wikipedia
|
153 |
+
article `Hypercube graph`_.
|
154 |
+
|
155 |
+
.. _Hypercube graph: https://en.wikipedia.org/wiki/Hypercube_graph
|
156 |
+
|
157 |
+
Parameters
|
158 |
+
----------
|
159 |
+
n : int
|
160 |
+
The dimension of the hypercube.
|
161 |
+
The number of nodes in the graph will be ``2 ** n``.
|
162 |
+
|
163 |
+
Returns
|
164 |
+
-------
|
165 |
+
NetworkX graph
|
166 |
+
The hypercube graph of dimension *n*.
|
167 |
+
"""
|
168 |
+
dim = n * [2]
|
169 |
+
G = grid_graph(dim)
|
170 |
+
return G
|
171 |
+
|
172 |
+
|
173 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
174 |
+
def triangular_lattice_graph(
|
175 |
+
m, n, periodic=False, with_positions=True, create_using=None
|
176 |
+
):
|
177 |
+
r"""Returns the $m$ by $n$ triangular lattice graph.
|
178 |
+
|
179 |
+
The `triangular lattice graph`_ is a two-dimensional `grid graph`_ in
|
180 |
+
which each square unit has a diagonal edge (each grid unit has a chord).
|
181 |
+
|
182 |
+
The returned graph has $m$ rows and $n$ columns of triangles. Rows and
|
183 |
+
columns include both triangles pointing up and down. Rows form a strip
|
184 |
+
of constant height. Columns form a series of diamond shapes, staggered
|
185 |
+
with the columns on either side. Another way to state the size is that
|
186 |
+
the nodes form a grid of `m+1` rows and `(n + 1) // 2` columns.
|
187 |
+
The odd row nodes are shifted horizontally relative to the even rows.
|
188 |
+
|
189 |
+
Directed graph types have edges pointed up or right.
|
190 |
+
|
191 |
+
Positions of nodes are computed by default or `with_positions is True`.
|
192 |
+
The position of each node (embedded in a euclidean plane) is stored in
|
193 |
+
the graph using equilateral triangles with sidelength 1.
|
194 |
+
The height between rows of nodes is thus $\sqrt(3)/2$.
|
195 |
+
Nodes lie in the first quadrant with the node $(0, 0)$ at the origin.
|
196 |
+
|
197 |
+
.. _triangular lattice graph: http://mathworld.wolfram.com/TriangularGrid.html
|
198 |
+
.. _grid graph: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
|
199 |
+
.. _Triangular Tiling: https://en.wikipedia.org/wiki/Triangular_tiling
|
200 |
+
|
201 |
+
Parameters
|
202 |
+
----------
|
203 |
+
m : int
|
204 |
+
The number of rows in the lattice.
|
205 |
+
|
206 |
+
n : int
|
207 |
+
The number of columns in the lattice.
|
208 |
+
|
209 |
+
periodic : bool (default: False)
|
210 |
+
If True, join the boundary vertices of the grid using periodic
|
211 |
+
boundary conditions. The join between boundaries is the final row
|
212 |
+
and column of triangles. This means there is one row and one column
|
213 |
+
fewer nodes for the periodic lattice. Periodic lattices require
|
214 |
+
`m >= 3`, `n >= 5` and are allowed but misaligned if `m` or `n` are odd
|
215 |
+
|
216 |
+
with_positions : bool (default: True)
|
217 |
+
Store the coordinates of each node in the graph node attribute 'pos'.
|
218 |
+
The coordinates provide a lattice with equilateral triangles.
|
219 |
+
Periodic positions shift the nodes vertically in a nonlinear way so
|
220 |
+
the edges don't overlap so much.
|
221 |
+
|
222 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
223 |
+
Graph type to create. If graph instance, then cleared before populated.
|
224 |
+
|
225 |
+
Returns
|
226 |
+
-------
|
227 |
+
NetworkX graph
|
228 |
+
The *m* by *n* triangular lattice graph.
|
229 |
+
"""
|
230 |
+
H = empty_graph(0, create_using)
|
231 |
+
if n == 0 or m == 0:
|
232 |
+
return H
|
233 |
+
if periodic:
|
234 |
+
if n < 5 or m < 3:
|
235 |
+
msg = f"m > 2 and n > 4 required for periodic. m={m}, n={n}"
|
236 |
+
raise NetworkXError(msg)
|
237 |
+
|
238 |
+
N = (n + 1) // 2 # number of nodes in row
|
239 |
+
rows = range(m + 1)
|
240 |
+
cols = range(N + 1)
|
241 |
+
# Make grid
|
242 |
+
H.add_edges_from(((i, j), (i + 1, j)) for j in rows for i in cols[:N])
|
243 |
+
H.add_edges_from(((i, j), (i, j + 1)) for j in rows[:m] for i in cols)
|
244 |
+
# add diagonals
|
245 |
+
H.add_edges_from(((i, j), (i + 1, j + 1)) for j in rows[1:m:2] for i in cols[:N])
|
246 |
+
H.add_edges_from(((i + 1, j), (i, j + 1)) for j in rows[:m:2] for i in cols[:N])
|
247 |
+
# identify boundary nodes if periodic
|
248 |
+
from networkx.algorithms.minors import contracted_nodes
|
249 |
+
|
250 |
+
if periodic is True:
|
251 |
+
for i in cols:
|
252 |
+
H = contracted_nodes(H, (i, 0), (i, m))
|
253 |
+
for j in rows[:m]:
|
254 |
+
H = contracted_nodes(H, (0, j), (N, j))
|
255 |
+
elif n % 2:
|
256 |
+
# remove extra nodes
|
257 |
+
H.remove_nodes_from((N, j) for j in rows[1::2])
|
258 |
+
|
259 |
+
# Add position node attributes
|
260 |
+
if with_positions:
|
261 |
+
ii = (i for i in cols for j in rows)
|
262 |
+
jj = (j for i in cols for j in rows)
|
263 |
+
xx = (0.5 * (j % 2) + i for i in cols for j in rows)
|
264 |
+
h = sqrt(3) / 2
|
265 |
+
if periodic:
|
266 |
+
yy = (h * j + 0.01 * i * i for i in cols for j in rows)
|
267 |
+
else:
|
268 |
+
yy = (h * j for i in cols for j in rows)
|
269 |
+
pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in H}
|
270 |
+
set_node_attributes(H, pos, "pos")
|
271 |
+
return H
|
272 |
+
|
273 |
+
|
274 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
275 |
+
def hexagonal_lattice_graph(
|
276 |
+
m, n, periodic=False, with_positions=True, create_using=None
|
277 |
+
):
|
278 |
+
"""Returns an `m` by `n` hexagonal lattice graph.
|
279 |
+
|
280 |
+
The *hexagonal lattice graph* is a graph whose nodes and edges are
|
281 |
+
the `hexagonal tiling`_ of the plane.
|
282 |
+
|
283 |
+
The returned graph will have `m` rows and `n` columns of hexagons.
|
284 |
+
`Odd numbered columns`_ are shifted up relative to even numbered columns.
|
285 |
+
|
286 |
+
Positions of nodes are computed by default or `with_positions is True`.
|
287 |
+
Node positions creating the standard embedding in the plane
|
288 |
+
with sidelength 1 and are stored in the node attribute 'pos'.
|
289 |
+
`pos = nx.get_node_attributes(G, 'pos')` creates a dict ready for drawing.
|
290 |
+
|
291 |
+
.. _hexagonal tiling: https://en.wikipedia.org/wiki/Hexagonal_tiling
|
292 |
+
.. _Odd numbered columns: http://www-cs-students.stanford.edu/~amitp/game-programming/grids/
|
293 |
+
|
294 |
+
Parameters
|
295 |
+
----------
|
296 |
+
m : int
|
297 |
+
The number of rows of hexagons in the lattice.
|
298 |
+
|
299 |
+
n : int
|
300 |
+
The number of columns of hexagons in the lattice.
|
301 |
+
|
302 |
+
periodic : bool
|
303 |
+
Whether to make a periodic grid by joining the boundary vertices.
|
304 |
+
For this to work `n` must be even and both `n > 1` and `m > 1`.
|
305 |
+
The periodic connections create another row and column of hexagons
|
306 |
+
so these graphs have fewer nodes as boundary nodes are identified.
|
307 |
+
|
308 |
+
with_positions : bool (default: True)
|
309 |
+
Store the coordinates of each node in the graph node attribute 'pos'.
|
310 |
+
The coordinates provide a lattice with vertical columns of hexagons
|
311 |
+
offset to interleave and cover the plane.
|
312 |
+
Periodic positions shift the nodes vertically in a nonlinear way so
|
313 |
+
the edges don't overlap so much.
|
314 |
+
|
315 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
316 |
+
Graph type to create. If graph instance, then cleared before populated.
|
317 |
+
If graph is directed, edges will point up or right.
|
318 |
+
|
319 |
+
Returns
|
320 |
+
-------
|
321 |
+
NetworkX graph
|
322 |
+
The *m* by *n* hexagonal lattice graph.
|
323 |
+
"""
|
324 |
+
G = empty_graph(0, create_using)
|
325 |
+
if m == 0 or n == 0:
|
326 |
+
return G
|
327 |
+
if periodic and (n % 2 == 1 or m < 2 or n < 2):
|
328 |
+
msg = "periodic hexagonal lattice needs m > 1, n > 1 and even n"
|
329 |
+
raise NetworkXError(msg)
|
330 |
+
|
331 |
+
M = 2 * m # twice as many nodes as hexagons vertically
|
332 |
+
rows = range(M + 2)
|
333 |
+
cols = range(n + 1)
|
334 |
+
# make lattice
|
335 |
+
col_edges = (((i, j), (i, j + 1)) for i in cols for j in rows[: M + 1])
|
336 |
+
row_edges = (((i, j), (i + 1, j)) for i in cols[:n] for j in rows if i % 2 == j % 2)
|
337 |
+
G.add_edges_from(col_edges)
|
338 |
+
G.add_edges_from(row_edges)
|
339 |
+
# Remove corner nodes with one edge
|
340 |
+
G.remove_node((0, M + 1))
|
341 |
+
G.remove_node((n, (M + 1) * (n % 2)))
|
342 |
+
|
343 |
+
# identify boundary nodes if periodic
|
344 |
+
from networkx.algorithms.minors import contracted_nodes
|
345 |
+
|
346 |
+
if periodic:
|
347 |
+
for i in cols[:n]:
|
348 |
+
G = contracted_nodes(G, (i, 0), (i, M))
|
349 |
+
for i in cols[1:]:
|
350 |
+
G = contracted_nodes(G, (i, 1), (i, M + 1))
|
351 |
+
for j in rows[1:M]:
|
352 |
+
G = contracted_nodes(G, (0, j), (n, j))
|
353 |
+
G.remove_node((n, M))
|
354 |
+
|
355 |
+
# calc position in embedded space
|
356 |
+
ii = (i for i in cols for j in rows)
|
357 |
+
jj = (j for i in cols for j in rows)
|
358 |
+
xx = (0.5 + i + i // 2 + (j % 2) * ((i % 2) - 0.5) for i in cols for j in rows)
|
359 |
+
h = sqrt(3) / 2
|
360 |
+
if periodic:
|
361 |
+
yy = (h * j + 0.01 * i * i for i in cols for j in rows)
|
362 |
+
else:
|
363 |
+
yy = (h * j for i in cols for j in rows)
|
364 |
+
# exclude nodes not in G
|
365 |
+
pos = {(i, j): (x, y) for i, j, x, y in zip(ii, jj, xx, yy) if (i, j) in G}
|
366 |
+
set_node_attributes(G, pos, "pos")
|
367 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/line.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for generating line graphs."""
|
2 |
+
from collections import defaultdict
|
3 |
+
from functools import partial
|
4 |
+
from itertools import combinations
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import arbitrary_element
|
8 |
+
from networkx.utils.decorators import not_implemented_for
|
9 |
+
|
10 |
+
__all__ = ["line_graph", "inverse_line_graph"]
|
11 |
+
|
12 |
+
|
13 |
+
@nx._dispatchable(returns_graph=True)
|
14 |
+
def line_graph(G, create_using=None):
|
15 |
+
r"""Returns the line graph of the graph or digraph `G`.
|
16 |
+
|
17 |
+
The line graph of a graph `G` has a node for each edge in `G` and an
|
18 |
+
edge joining those nodes if the two edges in `G` share a common node. For
|
19 |
+
directed graphs, nodes are adjacent exactly when the edges they represent
|
20 |
+
form a directed path of length two.
|
21 |
+
|
22 |
+
The nodes of the line graph are 2-tuples of nodes in the original graph (or
|
23 |
+
3-tuples for multigraphs, with the key of the edge as the third element).
|
24 |
+
|
25 |
+
For information about self-loops and more discussion, see the **Notes**
|
26 |
+
section below.
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
G : graph
|
31 |
+
A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph.
|
32 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
33 |
+
Graph type to create. If graph instance, then cleared before populated.
|
34 |
+
|
35 |
+
Returns
|
36 |
+
-------
|
37 |
+
L : graph
|
38 |
+
The line graph of G.
|
39 |
+
|
40 |
+
Examples
|
41 |
+
--------
|
42 |
+
>>> G = nx.star_graph(3)
|
43 |
+
>>> L = nx.line_graph(G)
|
44 |
+
>>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3
|
45 |
+
[[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]]
|
46 |
+
|
47 |
+
Edge attributes from `G` are not copied over as node attributes in `L`, but
|
48 |
+
attributes can be copied manually:
|
49 |
+
|
50 |
+
>>> G = nx.path_graph(4)
|
51 |
+
>>> G.add_edges_from((u, v, {"tot": u + v}) for u, v in G.edges)
|
52 |
+
>>> G.edges(data=True)
|
53 |
+
EdgeDataView([(0, 1, {'tot': 1}), (1, 2, {'tot': 3}), (2, 3, {'tot': 5})])
|
54 |
+
>>> H = nx.line_graph(G)
|
55 |
+
>>> H.add_nodes_from((node, G.edges[node]) for node in H)
|
56 |
+
>>> H.nodes(data=True)
|
57 |
+
NodeDataView({(0, 1): {'tot': 1}, (2, 3): {'tot': 5}, (1, 2): {'tot': 3}})
|
58 |
+
|
59 |
+
Notes
|
60 |
+
-----
|
61 |
+
Graph, node, and edge data are not propagated to the new graph. For
|
62 |
+
undirected graphs, the nodes in G must be sortable, otherwise the
|
63 |
+
constructed line graph may not be correct.
|
64 |
+
|
65 |
+
*Self-loops in undirected graphs*
|
66 |
+
|
67 |
+
For an undirected graph `G` without multiple edges, each edge can be
|
68 |
+
written as a set `\{u, v\}`. Its line graph `L` has the edges of `G` as
|
69 |
+
its nodes. If `x` and `y` are two nodes in `L`, then `\{x, y\}` is an edge
|
70 |
+
in `L` if and only if the intersection of `x` and `y` is nonempty. Thus,
|
71 |
+
the set of all edges is determined by the set of all pairwise intersections
|
72 |
+
of edges in `G`.
|
73 |
+
|
74 |
+
Trivially, every edge in G would have a nonzero intersection with itself,
|
75 |
+
and so every node in `L` should have a self-loop. This is not so
|
76 |
+
interesting, and the original context of line graphs was with simple
|
77 |
+
graphs, which had no self-loops or multiple edges. The line graph was also
|
78 |
+
meant to be a simple graph and thus, self-loops in `L` are not part of the
|
79 |
+
standard definition of a line graph. In a pairwise intersection matrix,
|
80 |
+
this is analogous to excluding the diagonal entries from the line graph
|
81 |
+
definition.
|
82 |
+
|
83 |
+
Self-loops and multiple edges in `G` add nodes to `L` in a natural way, and
|
84 |
+
do not require any fundamental changes to the definition. It might be
|
85 |
+
argued that the self-loops we excluded before should now be included.
|
86 |
+
However, the self-loops are still "trivial" in some sense and thus, are
|
87 |
+
usually excluded.
|
88 |
+
|
89 |
+
*Self-loops in directed graphs*
|
90 |
+
|
91 |
+
For a directed graph `G` without multiple edges, each edge can be written
|
92 |
+
as a tuple `(u, v)`. Its line graph `L` has the edges of `G` as its
|
93 |
+
nodes. If `x` and `y` are two nodes in `L`, then `(x, y)` is an edge in `L`
|
94 |
+
if and only if the tail of `x` matches the head of `y`, for example, if `x
|
95 |
+
= (a, b)` and `y = (b, c)` for some vertices `a`, `b`, and `c` in `G`.
|
96 |
+
|
97 |
+
Due to the directed nature of the edges, it is no longer the case that
|
98 |
+
every edge in `G` should have a self-loop in `L`. Now, the only time
|
99 |
+
self-loops arise is if a node in `G` itself has a self-loop. So such
|
100 |
+
self-loops are no longer "trivial" but instead, represent essential
|
101 |
+
features of the topology of `G`. For this reason, the historical
|
102 |
+
development of line digraphs is such that self-loops are included. When the
|
103 |
+
graph `G` has multiple edges, once again only superficial changes are
|
104 |
+
required to the definition.
|
105 |
+
|
106 |
+
References
|
107 |
+
----------
|
108 |
+
* Harary, Frank, and Norman, Robert Z., "Some properties of line digraphs",
|
109 |
+
Rend. Circ. Mat. Palermo, II. Ser. 9 (1960), 161--168.
|
110 |
+
* Hemminger, R. L.; Beineke, L. W. (1978), "Line graphs and line digraphs",
|
111 |
+
in Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory,
|
112 |
+
Academic Press Inc., pp. 271--305.
|
113 |
+
|
114 |
+
"""
|
115 |
+
if G.is_directed():
|
116 |
+
L = _lg_directed(G, create_using=create_using)
|
117 |
+
else:
|
118 |
+
L = _lg_undirected(G, selfloops=False, create_using=create_using)
|
119 |
+
return L
|
120 |
+
|
121 |
+
|
122 |
+
def _lg_directed(G, create_using=None):
|
123 |
+
"""Returns the line graph L of the (multi)digraph G.
|
124 |
+
|
125 |
+
Edges in G appear as nodes in L, represented as tuples of the form (u,v)
|
126 |
+
or (u,v,key) if G is a multidigraph. A node in L corresponding to the edge
|
127 |
+
(u,v) is connected to every node corresponding to an edge (v,w).
|
128 |
+
|
129 |
+
Parameters
|
130 |
+
----------
|
131 |
+
G : digraph
|
132 |
+
A directed graph or directed multigraph.
|
133 |
+
create_using : NetworkX graph constructor, optional
|
134 |
+
Graph type to create. If graph instance, then cleared before populated.
|
135 |
+
Default is to use the same graph class as `G`.
|
136 |
+
|
137 |
+
"""
|
138 |
+
L = nx.empty_graph(0, create_using, default=G.__class__)
|
139 |
+
|
140 |
+
# Create a graph specific edge function.
|
141 |
+
get_edges = partial(G.edges, keys=True) if G.is_multigraph() else G.edges
|
142 |
+
|
143 |
+
for from_node in get_edges():
|
144 |
+
# from_node is: (u,v) or (u,v,key)
|
145 |
+
L.add_node(from_node)
|
146 |
+
for to_node in get_edges(from_node[1]):
|
147 |
+
L.add_edge(from_node, to_node)
|
148 |
+
|
149 |
+
return L
|
150 |
+
|
151 |
+
|
152 |
+
def _lg_undirected(G, selfloops=False, create_using=None):
|
153 |
+
"""Returns the line graph L of the (multi)graph G.
|
154 |
+
|
155 |
+
Edges in G appear as nodes in L, represented as sorted tuples of the form
|
156 |
+
(u,v), or (u,v,key) if G is a multigraph. A node in L corresponding to
|
157 |
+
the edge {u,v} is connected to every node corresponding to an edge that
|
158 |
+
involves u or v.
|
159 |
+
|
160 |
+
Parameters
|
161 |
+
----------
|
162 |
+
G : graph
|
163 |
+
An undirected graph or multigraph.
|
164 |
+
selfloops : bool
|
165 |
+
If `True`, then self-loops are included in the line graph. If `False`,
|
166 |
+
they are excluded.
|
167 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
168 |
+
Graph type to create. If graph instance, then cleared before populated.
|
169 |
+
|
170 |
+
Notes
|
171 |
+
-----
|
172 |
+
The standard algorithm for line graphs of undirected graphs does not
|
173 |
+
produce self-loops.
|
174 |
+
|
175 |
+
"""
|
176 |
+
L = nx.empty_graph(0, create_using, default=G.__class__)
|
177 |
+
|
178 |
+
# Graph specific functions for edges.
|
179 |
+
get_edges = partial(G.edges, keys=True) if G.is_multigraph() else G.edges
|
180 |
+
|
181 |
+
# Determine if we include self-loops or not.
|
182 |
+
shift = 0 if selfloops else 1
|
183 |
+
|
184 |
+
# Introduce numbering of nodes
|
185 |
+
node_index = {n: i for i, n in enumerate(G)}
|
186 |
+
|
187 |
+
# Lift canonical representation of nodes to edges in line graph
|
188 |
+
edge_key_function = lambda edge: (node_index[edge[0]], node_index[edge[1]])
|
189 |
+
|
190 |
+
edges = set()
|
191 |
+
for u in G:
|
192 |
+
# Label nodes as a sorted tuple of nodes in original graph.
|
193 |
+
# Decide on representation of {u, v} as (u, v) or (v, u) depending on node_index.
|
194 |
+
# -> This ensures a canonical representation and avoids comparing values of different types.
|
195 |
+
nodes = [tuple(sorted(x[:2], key=node_index.get)) + x[2:] for x in get_edges(u)]
|
196 |
+
|
197 |
+
if len(nodes) == 1:
|
198 |
+
# Then the edge will be an isolated node in L.
|
199 |
+
L.add_node(nodes[0])
|
200 |
+
|
201 |
+
# Add a clique of `nodes` to graph. To prevent double adding edges,
|
202 |
+
# especially important for multigraphs, we store the edges in
|
203 |
+
# canonical form in a set.
|
204 |
+
for i, a in enumerate(nodes):
|
205 |
+
edges.update(
|
206 |
+
[
|
207 |
+
tuple(sorted((a, b), key=edge_key_function))
|
208 |
+
for b in nodes[i + shift :]
|
209 |
+
]
|
210 |
+
)
|
211 |
+
|
212 |
+
L.add_edges_from(edges)
|
213 |
+
return L
|
214 |
+
|
215 |
+
|
216 |
+
@not_implemented_for("directed")
|
217 |
+
@not_implemented_for("multigraph")
|
218 |
+
@nx._dispatchable(returns_graph=True)
|
219 |
+
def inverse_line_graph(G):
|
220 |
+
"""Returns the inverse line graph of graph G.
|
221 |
+
|
222 |
+
If H is a graph, and G is the line graph of H, such that G = L(H).
|
223 |
+
Then H is the inverse line graph of G.
|
224 |
+
|
225 |
+
Not all graphs are line graphs and these do not have an inverse line graph.
|
226 |
+
In these cases this function raises a NetworkXError.
|
227 |
+
|
228 |
+
Parameters
|
229 |
+
----------
|
230 |
+
G : graph
|
231 |
+
A NetworkX Graph
|
232 |
+
|
233 |
+
Returns
|
234 |
+
-------
|
235 |
+
H : graph
|
236 |
+
The inverse line graph of G.
|
237 |
+
|
238 |
+
Raises
|
239 |
+
------
|
240 |
+
NetworkXNotImplemented
|
241 |
+
If G is directed or a multigraph
|
242 |
+
|
243 |
+
NetworkXError
|
244 |
+
If G is not a line graph
|
245 |
+
|
246 |
+
Notes
|
247 |
+
-----
|
248 |
+
This is an implementation of the Roussopoulos algorithm[1]_.
|
249 |
+
|
250 |
+
If G consists of multiple components, then the algorithm doesn't work.
|
251 |
+
You should invert every component separately:
|
252 |
+
|
253 |
+
>>> K5 = nx.complete_graph(5)
|
254 |
+
>>> P4 = nx.Graph([("a", "b"), ("b", "c"), ("c", "d")])
|
255 |
+
>>> G = nx.union(K5, P4)
|
256 |
+
>>> root_graphs = []
|
257 |
+
>>> for comp in nx.connected_components(G):
|
258 |
+
... root_graphs.append(nx.inverse_line_graph(G.subgraph(comp)))
|
259 |
+
>>> len(root_graphs)
|
260 |
+
2
|
261 |
+
|
262 |
+
References
|
263 |
+
----------
|
264 |
+
.. [1] Roussopoulos, N.D. , "A max {m, n} algorithm for determining the graph H from
|
265 |
+
its line graph G", Information Processing Letters 2, (1973), 108--112, ISSN 0020-0190,
|
266 |
+
`DOI link <https://doi.org/10.1016/0020-0190(73)90029-X>`_
|
267 |
+
|
268 |
+
"""
|
269 |
+
if G.number_of_nodes() == 0:
|
270 |
+
return nx.empty_graph(1)
|
271 |
+
elif G.number_of_nodes() == 1:
|
272 |
+
v = arbitrary_element(G)
|
273 |
+
a = (v, 0)
|
274 |
+
b = (v, 1)
|
275 |
+
H = nx.Graph([(a, b)])
|
276 |
+
return H
|
277 |
+
elif G.number_of_nodes() > 1 and G.number_of_edges() == 0:
|
278 |
+
msg = (
|
279 |
+
"inverse_line_graph() doesn't work on an edgeless graph. "
|
280 |
+
"Please use this function on each component separately."
|
281 |
+
)
|
282 |
+
raise nx.NetworkXError(msg)
|
283 |
+
|
284 |
+
if nx.number_of_selfloops(G) != 0:
|
285 |
+
msg = (
|
286 |
+
"A line graph as generated by NetworkX has no selfloops, so G has no "
|
287 |
+
"inverse line graph. Please remove the selfloops from G and try again."
|
288 |
+
)
|
289 |
+
raise nx.NetworkXError(msg)
|
290 |
+
|
291 |
+
starting_cell = _select_starting_cell(G)
|
292 |
+
P = _find_partition(G, starting_cell)
|
293 |
+
# count how many times each vertex appears in the partition set
|
294 |
+
P_count = {u: 0 for u in G.nodes}
|
295 |
+
for p in P:
|
296 |
+
for u in p:
|
297 |
+
P_count[u] += 1
|
298 |
+
|
299 |
+
if max(P_count.values()) > 2:
|
300 |
+
msg = "G is not a line graph (vertex found in more than two partition cells)"
|
301 |
+
raise nx.NetworkXError(msg)
|
302 |
+
W = tuple((u,) for u in P_count if P_count[u] == 1)
|
303 |
+
H = nx.Graph()
|
304 |
+
H.add_nodes_from(P)
|
305 |
+
H.add_nodes_from(W)
|
306 |
+
for a, b in combinations(H.nodes, 2):
|
307 |
+
if any(a_bit in b for a_bit in a):
|
308 |
+
H.add_edge(a, b)
|
309 |
+
return H
|
310 |
+
|
311 |
+
|
312 |
+
def _triangles(G, e):
|
313 |
+
"""Return list of all triangles containing edge e"""
|
314 |
+
u, v = e
|
315 |
+
if u not in G:
|
316 |
+
raise nx.NetworkXError(f"Vertex {u} not in graph")
|
317 |
+
if v not in G[u]:
|
318 |
+
raise nx.NetworkXError(f"Edge ({u}, {v}) not in graph")
|
319 |
+
triangle_list = []
|
320 |
+
for x in G[u]:
|
321 |
+
if x in G[v]:
|
322 |
+
triangle_list.append((u, v, x))
|
323 |
+
return triangle_list
|
324 |
+
|
325 |
+
|
326 |
+
def _odd_triangle(G, T):
|
327 |
+
"""Test whether T is an odd triangle in G
|
328 |
+
|
329 |
+
Parameters
|
330 |
+
----------
|
331 |
+
G : NetworkX Graph
|
332 |
+
T : 3-tuple of vertices forming triangle in G
|
333 |
+
|
334 |
+
Returns
|
335 |
+
-------
|
336 |
+
True is T is an odd triangle
|
337 |
+
False otherwise
|
338 |
+
|
339 |
+
Raises
|
340 |
+
------
|
341 |
+
NetworkXError
|
342 |
+
T is not a triangle in G
|
343 |
+
|
344 |
+
Notes
|
345 |
+
-----
|
346 |
+
An odd triangle is one in which there exists another vertex in G which is
|
347 |
+
adjacent to either exactly one or exactly all three of the vertices in the
|
348 |
+
triangle.
|
349 |
+
|
350 |
+
"""
|
351 |
+
for u in T:
|
352 |
+
if u not in G.nodes():
|
353 |
+
raise nx.NetworkXError(f"Vertex {u} not in graph")
|
354 |
+
for e in list(combinations(T, 2)):
|
355 |
+
if e[0] not in G[e[1]]:
|
356 |
+
raise nx.NetworkXError(f"Edge ({e[0]}, {e[1]}) not in graph")
|
357 |
+
|
358 |
+
T_nbrs = defaultdict(int)
|
359 |
+
for t in T:
|
360 |
+
for v in G[t]:
|
361 |
+
if v not in T:
|
362 |
+
T_nbrs[v] += 1
|
363 |
+
return any(T_nbrs[v] in [1, 3] for v in T_nbrs)
|
364 |
+
|
365 |
+
|
366 |
+
def _find_partition(G, starting_cell):
|
367 |
+
"""Find a partition of the vertices of G into cells of complete graphs
|
368 |
+
|
369 |
+
Parameters
|
370 |
+
----------
|
371 |
+
G : NetworkX Graph
|
372 |
+
starting_cell : tuple of vertices in G which form a cell
|
373 |
+
|
374 |
+
Returns
|
375 |
+
-------
|
376 |
+
List of tuples of vertices of G
|
377 |
+
|
378 |
+
Raises
|
379 |
+
------
|
380 |
+
NetworkXError
|
381 |
+
If a cell is not a complete subgraph then G is not a line graph
|
382 |
+
"""
|
383 |
+
G_partition = G.copy()
|
384 |
+
P = [starting_cell] # partition set
|
385 |
+
G_partition.remove_edges_from(list(combinations(starting_cell, 2)))
|
386 |
+
# keep list of partitioned nodes which might have an edge in G_partition
|
387 |
+
partitioned_vertices = list(starting_cell)
|
388 |
+
while G_partition.number_of_edges() > 0:
|
389 |
+
# there are still edges left and so more cells to be made
|
390 |
+
u = partitioned_vertices.pop()
|
391 |
+
deg_u = len(G_partition[u])
|
392 |
+
if deg_u != 0:
|
393 |
+
# if u still has edges then we need to find its other cell
|
394 |
+
# this other cell must be a complete subgraph or else G is
|
395 |
+
# not a line graph
|
396 |
+
new_cell = [u] + list(G_partition[u])
|
397 |
+
for u in new_cell:
|
398 |
+
for v in new_cell:
|
399 |
+
if (u != v) and (v not in G_partition[u]):
|
400 |
+
msg = (
|
401 |
+
"G is not a line graph "
|
402 |
+
"(partition cell not a complete subgraph)"
|
403 |
+
)
|
404 |
+
raise nx.NetworkXError(msg)
|
405 |
+
P.append(tuple(new_cell))
|
406 |
+
G_partition.remove_edges_from(list(combinations(new_cell, 2)))
|
407 |
+
partitioned_vertices += new_cell
|
408 |
+
return P
|
409 |
+
|
410 |
+
|
411 |
+
def _select_starting_cell(G, starting_edge=None):
|
412 |
+
"""Select a cell to initiate _find_partition
|
413 |
+
|
414 |
+
Parameters
|
415 |
+
----------
|
416 |
+
G : NetworkX Graph
|
417 |
+
starting_edge: an edge to build the starting cell from
|
418 |
+
|
419 |
+
Returns
|
420 |
+
-------
|
421 |
+
Tuple of vertices in G
|
422 |
+
|
423 |
+
Raises
|
424 |
+
------
|
425 |
+
NetworkXError
|
426 |
+
If it is determined that G is not a line graph
|
427 |
+
|
428 |
+
Notes
|
429 |
+
-----
|
430 |
+
If starting edge not specified then pick an arbitrary edge - doesn't
|
431 |
+
matter which. However, this function may call itself requiring a
|
432 |
+
specific starting edge. Note that the r, s notation for counting
|
433 |
+
triangles is the same as in the Roussopoulos paper cited above.
|
434 |
+
"""
|
435 |
+
if starting_edge is None:
|
436 |
+
e = arbitrary_element(G.edges())
|
437 |
+
else:
|
438 |
+
e = starting_edge
|
439 |
+
if e[0] not in G.nodes():
|
440 |
+
raise nx.NetworkXError(f"Vertex {e[0]} not in graph")
|
441 |
+
if e[1] not in G[e[0]]:
|
442 |
+
msg = f"starting_edge ({e[0]}, {e[1]}) is not in the Graph"
|
443 |
+
raise nx.NetworkXError(msg)
|
444 |
+
e_triangles = _triangles(G, e)
|
445 |
+
r = len(e_triangles)
|
446 |
+
if r == 0:
|
447 |
+
# there are no triangles containing e, so the starting cell is just e
|
448 |
+
starting_cell = e
|
449 |
+
elif r == 1:
|
450 |
+
# there is exactly one triangle, T, containing e. If other 2 edges
|
451 |
+
# of T belong only to this triangle then T is starting cell
|
452 |
+
T = e_triangles[0]
|
453 |
+
a, b, c = T
|
454 |
+
# ab was original edge so check the other 2 edges
|
455 |
+
ac_edges = len(_triangles(G, (a, c)))
|
456 |
+
bc_edges = len(_triangles(G, (b, c)))
|
457 |
+
if ac_edges == 1:
|
458 |
+
if bc_edges == 1:
|
459 |
+
starting_cell = T
|
460 |
+
else:
|
461 |
+
return _select_starting_cell(G, starting_edge=(b, c))
|
462 |
+
else:
|
463 |
+
return _select_starting_cell(G, starting_edge=(a, c))
|
464 |
+
else:
|
465 |
+
# r >= 2 so we need to count the number of odd triangles, s
|
466 |
+
s = 0
|
467 |
+
odd_triangles = []
|
468 |
+
for T in e_triangles:
|
469 |
+
if _odd_triangle(G, T):
|
470 |
+
s += 1
|
471 |
+
odd_triangles.append(T)
|
472 |
+
if r == 2 and s == 0:
|
473 |
+
# in this case either triangle works, so just use T
|
474 |
+
starting_cell = T
|
475 |
+
elif r - 1 <= s <= r:
|
476 |
+
# check if odd triangles containing e form complete subgraph
|
477 |
+
triangle_nodes = set()
|
478 |
+
for T in odd_triangles:
|
479 |
+
for x in T:
|
480 |
+
triangle_nodes.add(x)
|
481 |
+
|
482 |
+
for u in triangle_nodes:
|
483 |
+
for v in triangle_nodes:
|
484 |
+
if u != v and (v not in G[u]):
|
485 |
+
msg = (
|
486 |
+
"G is not a line graph (odd triangles "
|
487 |
+
"do not form complete subgraph)"
|
488 |
+
)
|
489 |
+
raise nx.NetworkXError(msg)
|
490 |
+
# otherwise then we can use this as the starting cell
|
491 |
+
starting_cell = tuple(triangle_nodes)
|
492 |
+
|
493 |
+
else:
|
494 |
+
msg = (
|
495 |
+
"G is not a line graph (incorrect number of "
|
496 |
+
"odd triangles around starting edge)"
|
497 |
+
)
|
498 |
+
raise nx.NetworkXError(msg)
|
499 |
+
return starting_cell
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/mycielski.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions related to the Mycielski Operation and the Mycielskian family
|
2 |
+
of graphs.
|
3 |
+
|
4 |
+
"""
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import not_implemented_for
|
8 |
+
|
9 |
+
__all__ = ["mycielskian", "mycielski_graph"]
|
10 |
+
|
11 |
+
|
12 |
+
@not_implemented_for("directed")
|
13 |
+
@not_implemented_for("multigraph")
|
14 |
+
@nx._dispatchable(returns_graph=True)
|
15 |
+
def mycielskian(G, iterations=1):
|
16 |
+
r"""Returns the Mycielskian of a simple, undirected graph G
|
17 |
+
|
18 |
+
The Mycielskian of graph preserves a graph's triangle free
|
19 |
+
property while increasing the chromatic number by 1.
|
20 |
+
|
21 |
+
The Mycielski Operation on a graph, :math:`G=(V, E)`, constructs a new
|
22 |
+
graph with :math:`2|V| + 1` nodes and :math:`3|E| + |V|` edges.
|
23 |
+
|
24 |
+
The construction is as follows:
|
25 |
+
|
26 |
+
Let :math:`V = {0, ..., n-1}`. Construct another vertex set
|
27 |
+
:math:`U = {n, ..., 2n}` and a vertex, `w`.
|
28 |
+
Construct a new graph, `M`, with vertices :math:`U \bigcup V \bigcup w`.
|
29 |
+
For edges, :math:`(u, v) \in E` add edges :math:`(u, v), (u, v + n)`, and
|
30 |
+
:math:`(u + n, v)` to M. Finally, for all vertices :math:`u \in U`, add
|
31 |
+
edge :math:`(u, w)` to M.
|
32 |
+
|
33 |
+
The Mycielski Operation can be done multiple times by repeating the above
|
34 |
+
process iteratively.
|
35 |
+
|
36 |
+
More information can be found at https://en.wikipedia.org/wiki/Mycielskian
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
G : graph
|
41 |
+
A simple, undirected NetworkX graph
|
42 |
+
iterations : int
|
43 |
+
The number of iterations of the Mycielski operation to
|
44 |
+
perform on G. Defaults to 1. Must be a non-negative integer.
|
45 |
+
|
46 |
+
Returns
|
47 |
+
-------
|
48 |
+
M : graph
|
49 |
+
The Mycielskian of G after the specified number of iterations.
|
50 |
+
|
51 |
+
Notes
|
52 |
+
-----
|
53 |
+
Graph, node, and edge data are not necessarily propagated to the new graph.
|
54 |
+
|
55 |
+
"""
|
56 |
+
|
57 |
+
M = nx.convert_node_labels_to_integers(G)
|
58 |
+
|
59 |
+
for i in range(iterations):
|
60 |
+
n = M.number_of_nodes()
|
61 |
+
M.add_nodes_from(range(n, 2 * n))
|
62 |
+
old_edges = list(M.edges())
|
63 |
+
M.add_edges_from((u, v + n) for u, v in old_edges)
|
64 |
+
M.add_edges_from((u + n, v) for u, v in old_edges)
|
65 |
+
M.add_node(2 * n)
|
66 |
+
M.add_edges_from((u + n, 2 * n) for u in range(n))
|
67 |
+
|
68 |
+
return M
|
69 |
+
|
70 |
+
|
71 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
72 |
+
def mycielski_graph(n):
|
73 |
+
"""Generator for the n_th Mycielski Graph.
|
74 |
+
|
75 |
+
The Mycielski family of graphs is an infinite set of graphs.
|
76 |
+
:math:`M_1` is the singleton graph, :math:`M_2` is two vertices with an
|
77 |
+
edge, and, for :math:`i > 2`, :math:`M_i` is the Mycielskian of
|
78 |
+
:math:`M_{i-1}`.
|
79 |
+
|
80 |
+
More information can be found at
|
81 |
+
http://mathworld.wolfram.com/MycielskiGraph.html
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
n : int
|
86 |
+
The desired Mycielski Graph.
|
87 |
+
|
88 |
+
Returns
|
89 |
+
-------
|
90 |
+
M : graph
|
91 |
+
The n_th Mycielski Graph
|
92 |
+
|
93 |
+
Notes
|
94 |
+
-----
|
95 |
+
The first graph in the Mycielski sequence is the singleton graph.
|
96 |
+
The Mycielskian of this graph is not the :math:`P_2` graph, but rather the
|
97 |
+
:math:`P_2` graph with an extra, isolated vertex. The second Mycielski
|
98 |
+
graph is the :math:`P_2` graph, so the first two are hard coded.
|
99 |
+
The remaining graphs are generated using the Mycielski operation.
|
100 |
+
|
101 |
+
"""
|
102 |
+
|
103 |
+
if n < 1:
|
104 |
+
raise nx.NetworkXError("must satisfy n >= 1")
|
105 |
+
|
106 |
+
if n == 1:
|
107 |
+
return nx.empty_graph(1)
|
108 |
+
|
109 |
+
else:
|
110 |
+
return mycielskian(nx.path_graph(2), n - 2)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/nonisomorphic_trees.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of the Wright, Richmond, Odlyzko and McKay (WROM)
|
3 |
+
algorithm for the enumeration of all non-isomorphic free trees of a
|
4 |
+
given order. Rooted trees are represented by level sequences, i.e.,
|
5 |
+
lists in which the i-th element specifies the distance of vertex i to
|
6 |
+
the root.
|
7 |
+
|
8 |
+
"""
|
9 |
+
|
10 |
+
__all__ = ["nonisomorphic_trees", "number_of_nonisomorphic_trees"]
|
11 |
+
|
12 |
+
import networkx as nx
|
13 |
+
|
14 |
+
|
15 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
16 |
+
def nonisomorphic_trees(order, create="graph"):
|
17 |
+
"""Generates lists of nonisomorphic trees
|
18 |
+
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
order : int
|
22 |
+
order of the desired tree(s)
|
23 |
+
|
24 |
+
create : one of {"graph", "matrix"} (default="graph")
|
25 |
+
If ``"graph"`` is selected a list of ``Graph`` instances will be returned,
|
26 |
+
if matrix is selected a list of adjacency matrices will be returned.
|
27 |
+
|
28 |
+
.. deprecated:: 3.3
|
29 |
+
|
30 |
+
The `create` argument is deprecated and will be removed in NetworkX
|
31 |
+
version 3.5. In the future, `nonisomorphic_trees` will yield graph
|
32 |
+
instances by default. To generate adjacency matrices, call
|
33 |
+
``nx.to_numpy_array`` on the output, e.g.::
|
34 |
+
|
35 |
+
[nx.to_numpy_array(G) for G in nx.nonisomorphic_trees(N)]
|
36 |
+
|
37 |
+
Yields
|
38 |
+
------
|
39 |
+
list
|
40 |
+
A list of nonisomorphic trees, in one of two formats depending on the
|
41 |
+
value of the `create` parameter:
|
42 |
+
- ``create="graph"``: yields a list of `networkx.Graph` instances
|
43 |
+
- ``create="matrix"``: yields a list of list-of-lists representing adjacency matrices
|
44 |
+
"""
|
45 |
+
|
46 |
+
if order < 2:
|
47 |
+
raise ValueError
|
48 |
+
# start at the path graph rooted at its center
|
49 |
+
layout = list(range(order // 2 + 1)) + list(range(1, (order + 1) // 2))
|
50 |
+
|
51 |
+
while layout is not None:
|
52 |
+
layout = _next_tree(layout)
|
53 |
+
if layout is not None:
|
54 |
+
if create == "graph":
|
55 |
+
yield _layout_to_graph(layout)
|
56 |
+
elif create == "matrix":
|
57 |
+
import warnings
|
58 |
+
|
59 |
+
warnings.warn(
|
60 |
+
(
|
61 |
+
"\n\nThe 'create=matrix' argument of nonisomorphic_trees\n"
|
62 |
+
"is deprecated and will be removed in version 3.5.\n"
|
63 |
+
"Use ``nx.to_numpy_array`` to convert graphs to adjacency "
|
64 |
+
"matrices, e.g.::\n\n"
|
65 |
+
" [nx.to_numpy_array(G) for G in nx.nonisomorphic_trees(N)]"
|
66 |
+
),
|
67 |
+
category=DeprecationWarning,
|
68 |
+
stacklevel=2,
|
69 |
+
)
|
70 |
+
|
71 |
+
yield _layout_to_matrix(layout)
|
72 |
+
layout = _next_rooted_tree(layout)
|
73 |
+
|
74 |
+
|
75 |
+
@nx._dispatchable(graphs=None)
|
76 |
+
def number_of_nonisomorphic_trees(order):
|
77 |
+
"""Returns the number of nonisomorphic trees
|
78 |
+
|
79 |
+
Parameters
|
80 |
+
----------
|
81 |
+
order : int
|
82 |
+
order of the desired tree(s)
|
83 |
+
|
84 |
+
Returns
|
85 |
+
-------
|
86 |
+
length : Number of nonisomorphic graphs for the given order
|
87 |
+
|
88 |
+
References
|
89 |
+
----------
|
90 |
+
|
91 |
+
"""
|
92 |
+
return sum(1 for _ in nonisomorphic_trees(order))
|
93 |
+
|
94 |
+
|
95 |
+
def _next_rooted_tree(predecessor, p=None):
|
96 |
+
"""One iteration of the Beyer-Hedetniemi algorithm."""
|
97 |
+
|
98 |
+
if p is None:
|
99 |
+
p = len(predecessor) - 1
|
100 |
+
while predecessor[p] == 1:
|
101 |
+
p -= 1
|
102 |
+
if p == 0:
|
103 |
+
return None
|
104 |
+
|
105 |
+
q = p - 1
|
106 |
+
while predecessor[q] != predecessor[p] - 1:
|
107 |
+
q -= 1
|
108 |
+
result = list(predecessor)
|
109 |
+
for i in range(p, len(result)):
|
110 |
+
result[i] = result[i - p + q]
|
111 |
+
return result
|
112 |
+
|
113 |
+
|
114 |
+
def _next_tree(candidate):
|
115 |
+
"""One iteration of the Wright, Richmond, Odlyzko and McKay
|
116 |
+
algorithm."""
|
117 |
+
|
118 |
+
# valid representation of a free tree if:
|
119 |
+
# there are at least two vertices at layer 1
|
120 |
+
# (this is always the case because we start at the path graph)
|
121 |
+
left, rest = _split_tree(candidate)
|
122 |
+
|
123 |
+
# and the left subtree of the root
|
124 |
+
# is less high than the tree with the left subtree removed
|
125 |
+
left_height = max(left)
|
126 |
+
rest_height = max(rest)
|
127 |
+
valid = rest_height >= left_height
|
128 |
+
|
129 |
+
if valid and rest_height == left_height:
|
130 |
+
# and, if left and rest are of the same height,
|
131 |
+
# if left does not encompass more vertices
|
132 |
+
if len(left) > len(rest):
|
133 |
+
valid = False
|
134 |
+
# and, if they have the same number or vertices,
|
135 |
+
# if left does not come after rest lexicographically
|
136 |
+
elif len(left) == len(rest) and left > rest:
|
137 |
+
valid = False
|
138 |
+
|
139 |
+
if valid:
|
140 |
+
return candidate
|
141 |
+
else:
|
142 |
+
# jump to the next valid free tree
|
143 |
+
p = len(left)
|
144 |
+
new_candidate = _next_rooted_tree(candidate, p)
|
145 |
+
if candidate[p] > 2:
|
146 |
+
new_left, new_rest = _split_tree(new_candidate)
|
147 |
+
new_left_height = max(new_left)
|
148 |
+
suffix = range(1, new_left_height + 2)
|
149 |
+
new_candidate[-len(suffix) :] = suffix
|
150 |
+
return new_candidate
|
151 |
+
|
152 |
+
|
153 |
+
def _split_tree(layout):
|
154 |
+
"""Returns a tuple of two layouts, one containing the left
|
155 |
+
subtree of the root vertex, and one containing the original tree
|
156 |
+
with the left subtree removed."""
|
157 |
+
|
158 |
+
one_found = False
|
159 |
+
m = None
|
160 |
+
for i in range(len(layout)):
|
161 |
+
if layout[i] == 1:
|
162 |
+
if one_found:
|
163 |
+
m = i
|
164 |
+
break
|
165 |
+
else:
|
166 |
+
one_found = True
|
167 |
+
|
168 |
+
if m is None:
|
169 |
+
m = len(layout)
|
170 |
+
|
171 |
+
left = [layout[i] - 1 for i in range(1, m)]
|
172 |
+
rest = [0] + [layout[i] for i in range(m, len(layout))]
|
173 |
+
return (left, rest)
|
174 |
+
|
175 |
+
|
176 |
+
def _layout_to_matrix(layout):
|
177 |
+
"""Create the adjacency matrix for the tree specified by the
|
178 |
+
given layout (level sequence)."""
|
179 |
+
|
180 |
+
result = [[0] * len(layout) for i in range(len(layout))]
|
181 |
+
stack = []
|
182 |
+
for i in range(len(layout)):
|
183 |
+
i_level = layout[i]
|
184 |
+
if stack:
|
185 |
+
j = stack[-1]
|
186 |
+
j_level = layout[j]
|
187 |
+
while j_level >= i_level:
|
188 |
+
stack.pop()
|
189 |
+
j = stack[-1]
|
190 |
+
j_level = layout[j]
|
191 |
+
result[i][j] = result[j][i] = 1
|
192 |
+
stack.append(i)
|
193 |
+
return result
|
194 |
+
|
195 |
+
|
196 |
+
def _layout_to_graph(layout):
|
197 |
+
"""Create a NetworkX Graph for the tree specified by the
|
198 |
+
given layout(level sequence)"""
|
199 |
+
G = nx.Graph()
|
200 |
+
stack = []
|
201 |
+
for i in range(len(layout)):
|
202 |
+
i_level = layout[i]
|
203 |
+
if stack:
|
204 |
+
j = stack[-1]
|
205 |
+
j_level = layout[j]
|
206 |
+
while j_level >= i_level:
|
207 |
+
stack.pop()
|
208 |
+
j = stack[-1]
|
209 |
+
j_level = layout[j]
|
210 |
+
G.add_edge(i, j)
|
211 |
+
stack.append(i)
|
212 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/random_clustered.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generate graphs with given degree and triangle sequence.
|
2 |
+
"""
|
3 |
+
import networkx as nx
|
4 |
+
from networkx.utils import py_random_state
|
5 |
+
|
6 |
+
__all__ = ["random_clustered_graph"]
|
7 |
+
|
8 |
+
|
9 |
+
@py_random_state(2)
|
10 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
11 |
+
def random_clustered_graph(joint_degree_sequence, create_using=None, seed=None):
|
12 |
+
r"""Generate a random graph with the given joint independent edge degree and
|
13 |
+
triangle degree sequence.
|
14 |
+
|
15 |
+
This uses a configuration model-like approach to generate a random graph
|
16 |
+
(with parallel edges and self-loops) by randomly assigning edges to match
|
17 |
+
the given joint degree sequence.
|
18 |
+
|
19 |
+
The joint degree sequence is a list of pairs of integers of the form
|
20 |
+
$[(d_{1,i}, d_{1,t}), \dotsc, (d_{n,i}, d_{n,t})]$. According to this list,
|
21 |
+
vertex $u$ is a member of $d_{u,t}$ triangles and has $d_{u, i}$ other
|
22 |
+
edges. The number $d_{u,t}$ is the *triangle degree* of $u$ and the number
|
23 |
+
$d_{u,i}$ is the *independent edge degree*.
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
joint_degree_sequence : list of integer pairs
|
28 |
+
Each list entry corresponds to the independent edge degree and
|
29 |
+
triangle degree of a node.
|
30 |
+
create_using : NetworkX graph constructor, optional (default MultiGraph)
|
31 |
+
Graph type to create. If graph instance, then cleared before populated.
|
32 |
+
seed : integer, random_state, or None (default)
|
33 |
+
Indicator of random number generation state.
|
34 |
+
See :ref:`Randomness<randomness>`.
|
35 |
+
|
36 |
+
Returns
|
37 |
+
-------
|
38 |
+
G : MultiGraph
|
39 |
+
A graph with the specified degree sequence. Nodes are labeled
|
40 |
+
starting at 0 with an index corresponding to the position in
|
41 |
+
deg_sequence.
|
42 |
+
|
43 |
+
Raises
|
44 |
+
------
|
45 |
+
NetworkXError
|
46 |
+
If the independent edge degree sequence sum is not even
|
47 |
+
or the triangle degree sequence sum is not divisible by 3.
|
48 |
+
|
49 |
+
Notes
|
50 |
+
-----
|
51 |
+
As described by Miller [1]_ (see also Newman [2]_ for an equivalent
|
52 |
+
description).
|
53 |
+
|
54 |
+
A non-graphical degree sequence (not realizable by some simple
|
55 |
+
graph) is allowed since this function returns graphs with self
|
56 |
+
loops and parallel edges. An exception is raised if the
|
57 |
+
independent degree sequence does not have an even sum or the
|
58 |
+
triangle degree sequence sum is not divisible by 3.
|
59 |
+
|
60 |
+
This configuration model-like construction process can lead to
|
61 |
+
duplicate edges and loops. You can remove the self-loops and
|
62 |
+
parallel edges (see below) which will likely result in a graph
|
63 |
+
that doesn't have the exact degree sequence specified. This
|
64 |
+
"finite-size effect" decreases as the size of the graph increases.
|
65 |
+
|
66 |
+
References
|
67 |
+
----------
|
68 |
+
.. [1] Joel C. Miller. "Percolation and epidemics in random clustered
|
69 |
+
networks". In: Physical review. E, Statistical, nonlinear, and soft
|
70 |
+
matter physics 80 (2 Part 1 August 2009).
|
71 |
+
.. [2] M. E. J. Newman. "Random Graphs with Clustering".
|
72 |
+
In: Physical Review Letters 103 (5 July 2009)
|
73 |
+
|
74 |
+
Examples
|
75 |
+
--------
|
76 |
+
>>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
|
77 |
+
>>> G = nx.random_clustered_graph(deg)
|
78 |
+
|
79 |
+
To remove parallel edges:
|
80 |
+
|
81 |
+
>>> G = nx.Graph(G)
|
82 |
+
|
83 |
+
To remove self loops:
|
84 |
+
|
85 |
+
>>> G.remove_edges_from(nx.selfloop_edges(G))
|
86 |
+
|
87 |
+
"""
|
88 |
+
# In Python 3, zip() returns an iterator. Make this into a list.
|
89 |
+
joint_degree_sequence = list(joint_degree_sequence)
|
90 |
+
|
91 |
+
N = len(joint_degree_sequence)
|
92 |
+
G = nx.empty_graph(N, create_using, default=nx.MultiGraph)
|
93 |
+
if G.is_directed():
|
94 |
+
raise nx.NetworkXError("Directed Graph not supported")
|
95 |
+
|
96 |
+
ilist = []
|
97 |
+
tlist = []
|
98 |
+
for n in G:
|
99 |
+
degrees = joint_degree_sequence[n]
|
100 |
+
for icount in range(degrees[0]):
|
101 |
+
ilist.append(n)
|
102 |
+
for tcount in range(degrees[1]):
|
103 |
+
tlist.append(n)
|
104 |
+
|
105 |
+
if len(ilist) % 2 != 0 or len(tlist) % 3 != 0:
|
106 |
+
raise nx.NetworkXError("Invalid degree sequence")
|
107 |
+
|
108 |
+
seed.shuffle(ilist)
|
109 |
+
seed.shuffle(tlist)
|
110 |
+
while ilist:
|
111 |
+
G.add_edge(ilist.pop(), ilist.pop())
|
112 |
+
while tlist:
|
113 |
+
n1 = tlist.pop()
|
114 |
+
n2 = tlist.pop()
|
115 |
+
n3 = tlist.pop()
|
116 |
+
G.add_edges_from([(n1, n2), (n1, n3), (n2, n3)])
|
117 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/random_graphs.py
ADDED
@@ -0,0 +1,1331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Generators for random graphs.
|
3 |
+
|
4 |
+
"""
|
5 |
+
|
6 |
+
import itertools
|
7 |
+
import math
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
import networkx as nx
|
11 |
+
from networkx.utils import py_random_state
|
12 |
+
|
13 |
+
from .classic import complete_graph, empty_graph, path_graph, star_graph
|
14 |
+
from .degree_seq import degree_sequence_tree
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
"fast_gnp_random_graph",
|
18 |
+
"gnp_random_graph",
|
19 |
+
"dense_gnm_random_graph",
|
20 |
+
"gnm_random_graph",
|
21 |
+
"erdos_renyi_graph",
|
22 |
+
"binomial_graph",
|
23 |
+
"newman_watts_strogatz_graph",
|
24 |
+
"watts_strogatz_graph",
|
25 |
+
"connected_watts_strogatz_graph",
|
26 |
+
"random_regular_graph",
|
27 |
+
"barabasi_albert_graph",
|
28 |
+
"dual_barabasi_albert_graph",
|
29 |
+
"extended_barabasi_albert_graph",
|
30 |
+
"powerlaw_cluster_graph",
|
31 |
+
"random_lobster",
|
32 |
+
"random_shell_graph",
|
33 |
+
"random_powerlaw_tree",
|
34 |
+
"random_powerlaw_tree_sequence",
|
35 |
+
"random_kernel_graph",
|
36 |
+
]
|
37 |
+
|
38 |
+
|
39 |
+
@py_random_state(2)
|
40 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
41 |
+
def fast_gnp_random_graph(n, p, seed=None, directed=False):
|
42 |
+
"""Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or
|
43 |
+
a binomial graph.
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
----------
|
47 |
+
n : int
|
48 |
+
The number of nodes.
|
49 |
+
p : float
|
50 |
+
Probability for edge creation.
|
51 |
+
seed : integer, random_state, or None (default)
|
52 |
+
Indicator of random number generation state.
|
53 |
+
See :ref:`Randomness<randomness>`.
|
54 |
+
directed : bool, optional (default=False)
|
55 |
+
If True, this function returns a directed graph.
|
56 |
+
|
57 |
+
Notes
|
58 |
+
-----
|
59 |
+
The $G_{n,p}$ graph algorithm chooses each of the $[n (n - 1)] / 2$
|
60 |
+
(undirected) or $n (n - 1)$ (directed) possible edges with probability $p$.
|
61 |
+
|
62 |
+
This algorithm [1]_ runs in $O(n + m)$ time, where `m` is the expected number of
|
63 |
+
edges, which equals $p n (n - 1) / 2$. This should be faster than
|
64 |
+
:func:`gnp_random_graph` when $p$ is small and the expected number of edges
|
65 |
+
is small (that is, the graph is sparse).
|
66 |
+
|
67 |
+
See Also
|
68 |
+
--------
|
69 |
+
gnp_random_graph
|
70 |
+
|
71 |
+
References
|
72 |
+
----------
|
73 |
+
.. [1] Vladimir Batagelj and Ulrik Brandes,
|
74 |
+
"Efficient generation of large random networks",
|
75 |
+
Phys. Rev. E, 71, 036113, 2005.
|
76 |
+
"""
|
77 |
+
G = empty_graph(n)
|
78 |
+
|
79 |
+
if p <= 0 or p >= 1:
|
80 |
+
return nx.gnp_random_graph(n, p, seed=seed, directed=directed)
|
81 |
+
|
82 |
+
lp = math.log(1.0 - p)
|
83 |
+
|
84 |
+
if directed:
|
85 |
+
G = nx.DiGraph(G)
|
86 |
+
v = 1
|
87 |
+
w = -1
|
88 |
+
while v < n:
|
89 |
+
lr = math.log(1.0 - seed.random())
|
90 |
+
w = w + 1 + int(lr / lp)
|
91 |
+
while w >= v and v < n:
|
92 |
+
w = w - v
|
93 |
+
v = v + 1
|
94 |
+
if v < n:
|
95 |
+
G.add_edge(w, v)
|
96 |
+
|
97 |
+
# Nodes in graph are from 0,n-1 (start with v as the second node index).
|
98 |
+
v = 1
|
99 |
+
w = -1
|
100 |
+
while v < n:
|
101 |
+
lr = math.log(1.0 - seed.random())
|
102 |
+
w = w + 1 + int(lr / lp)
|
103 |
+
while w >= v and v < n:
|
104 |
+
w = w - v
|
105 |
+
v = v + 1
|
106 |
+
if v < n:
|
107 |
+
G.add_edge(v, w)
|
108 |
+
return G
|
109 |
+
|
110 |
+
|
111 |
+
@py_random_state(2)
|
112 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
113 |
+
def gnp_random_graph(n, p, seed=None, directed=False):
|
114 |
+
"""Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph
|
115 |
+
or a binomial graph.
|
116 |
+
|
117 |
+
The $G_{n,p}$ model chooses each of the possible edges with probability $p$.
|
118 |
+
|
119 |
+
Parameters
|
120 |
+
----------
|
121 |
+
n : int
|
122 |
+
The number of nodes.
|
123 |
+
p : float
|
124 |
+
Probability for edge creation.
|
125 |
+
seed : integer, random_state, or None (default)
|
126 |
+
Indicator of random number generation state.
|
127 |
+
See :ref:`Randomness<randomness>`.
|
128 |
+
directed : bool, optional (default=False)
|
129 |
+
If True, this function returns a directed graph.
|
130 |
+
|
131 |
+
See Also
|
132 |
+
--------
|
133 |
+
fast_gnp_random_graph
|
134 |
+
|
135 |
+
Notes
|
136 |
+
-----
|
137 |
+
This algorithm [2]_ runs in $O(n^2)$ time. For sparse graphs (that is, for
|
138 |
+
small values of $p$), :func:`fast_gnp_random_graph` is a faster algorithm.
|
139 |
+
|
140 |
+
:func:`binomial_graph` and :func:`erdos_renyi_graph` are
|
141 |
+
aliases for :func:`gnp_random_graph`.
|
142 |
+
|
143 |
+
>>> nx.binomial_graph is nx.gnp_random_graph
|
144 |
+
True
|
145 |
+
>>> nx.erdos_renyi_graph is nx.gnp_random_graph
|
146 |
+
True
|
147 |
+
|
148 |
+
References
|
149 |
+
----------
|
150 |
+
.. [1] P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
|
151 |
+
.. [2] E. N. Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
|
152 |
+
"""
|
153 |
+
if directed:
|
154 |
+
edges = itertools.permutations(range(n), 2)
|
155 |
+
G = nx.DiGraph()
|
156 |
+
else:
|
157 |
+
edges = itertools.combinations(range(n), 2)
|
158 |
+
G = nx.Graph()
|
159 |
+
G.add_nodes_from(range(n))
|
160 |
+
if p <= 0:
|
161 |
+
return G
|
162 |
+
if p >= 1:
|
163 |
+
return complete_graph(n, create_using=G)
|
164 |
+
|
165 |
+
for e in edges:
|
166 |
+
if seed.random() < p:
|
167 |
+
G.add_edge(*e)
|
168 |
+
return G
|
169 |
+
|
170 |
+
|
171 |
+
# add some aliases to common names
|
172 |
+
binomial_graph = gnp_random_graph
|
173 |
+
erdos_renyi_graph = gnp_random_graph
|
174 |
+
|
175 |
+
|
176 |
+
@py_random_state(2)
|
177 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
178 |
+
def dense_gnm_random_graph(n, m, seed=None):
|
179 |
+
"""Returns a $G_{n,m}$ random graph.
|
180 |
+
|
181 |
+
In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set
|
182 |
+
of all graphs with $n$ nodes and $m$ edges.
|
183 |
+
|
184 |
+
This algorithm should be faster than :func:`gnm_random_graph` for dense
|
185 |
+
graphs.
|
186 |
+
|
187 |
+
Parameters
|
188 |
+
----------
|
189 |
+
n : int
|
190 |
+
The number of nodes.
|
191 |
+
m : int
|
192 |
+
The number of edges.
|
193 |
+
seed : integer, random_state, or None (default)
|
194 |
+
Indicator of random number generation state.
|
195 |
+
See :ref:`Randomness<randomness>`.
|
196 |
+
|
197 |
+
See Also
|
198 |
+
--------
|
199 |
+
gnm_random_graph
|
200 |
+
|
201 |
+
Notes
|
202 |
+
-----
|
203 |
+
Algorithm by Keith M. Briggs Mar 31, 2006.
|
204 |
+
Inspired by Knuth's Algorithm S (Selection sampling technique),
|
205 |
+
in section 3.4.2 of [1]_.
|
206 |
+
|
207 |
+
References
|
208 |
+
----------
|
209 |
+
.. [1] Donald E. Knuth, The Art of Computer Programming,
|
210 |
+
Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.
|
211 |
+
"""
|
212 |
+
mmax = n * (n - 1) // 2
|
213 |
+
if m >= mmax:
|
214 |
+
G = complete_graph(n)
|
215 |
+
else:
|
216 |
+
G = empty_graph(n)
|
217 |
+
|
218 |
+
if n == 1 or m >= mmax:
|
219 |
+
return G
|
220 |
+
|
221 |
+
u = 0
|
222 |
+
v = 1
|
223 |
+
t = 0
|
224 |
+
k = 0
|
225 |
+
while True:
|
226 |
+
if seed.randrange(mmax - t) < m - k:
|
227 |
+
G.add_edge(u, v)
|
228 |
+
k += 1
|
229 |
+
if k == m:
|
230 |
+
return G
|
231 |
+
t += 1
|
232 |
+
v += 1
|
233 |
+
if v == n: # go to next row of adjacency matrix
|
234 |
+
u += 1
|
235 |
+
v = u + 1
|
236 |
+
|
237 |
+
|
238 |
+
@py_random_state(2)
|
239 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
240 |
+
def gnm_random_graph(n, m, seed=None, directed=False):
|
241 |
+
"""Returns a $G_{n,m}$ random graph.
|
242 |
+
|
243 |
+
In the $G_{n,m}$ model, a graph is chosen uniformly at random from the set
|
244 |
+
of all graphs with $n$ nodes and $m$ edges.
|
245 |
+
|
246 |
+
This algorithm should be faster than :func:`dense_gnm_random_graph` for
|
247 |
+
sparse graphs.
|
248 |
+
|
249 |
+
Parameters
|
250 |
+
----------
|
251 |
+
n : int
|
252 |
+
The number of nodes.
|
253 |
+
m : int
|
254 |
+
The number of edges.
|
255 |
+
seed : integer, random_state, or None (default)
|
256 |
+
Indicator of random number generation state.
|
257 |
+
See :ref:`Randomness<randomness>`.
|
258 |
+
directed : bool, optional (default=False)
|
259 |
+
If True return a directed graph
|
260 |
+
|
261 |
+
See also
|
262 |
+
--------
|
263 |
+
dense_gnm_random_graph
|
264 |
+
|
265 |
+
"""
|
266 |
+
if directed:
|
267 |
+
G = nx.DiGraph()
|
268 |
+
else:
|
269 |
+
G = nx.Graph()
|
270 |
+
G.add_nodes_from(range(n))
|
271 |
+
|
272 |
+
if n == 1:
|
273 |
+
return G
|
274 |
+
max_edges = n * (n - 1)
|
275 |
+
if not directed:
|
276 |
+
max_edges /= 2.0
|
277 |
+
if m >= max_edges:
|
278 |
+
return complete_graph(n, create_using=G)
|
279 |
+
|
280 |
+
nlist = list(G)
|
281 |
+
edge_count = 0
|
282 |
+
while edge_count < m:
|
283 |
+
# generate random edge,u,v
|
284 |
+
u = seed.choice(nlist)
|
285 |
+
v = seed.choice(nlist)
|
286 |
+
if u == v or G.has_edge(u, v):
|
287 |
+
continue
|
288 |
+
else:
|
289 |
+
G.add_edge(u, v)
|
290 |
+
edge_count = edge_count + 1
|
291 |
+
return G
|
292 |
+
|
293 |
+
|
294 |
+
@py_random_state(3)
|
295 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
296 |
+
def newman_watts_strogatz_graph(n, k, p, seed=None):
|
297 |
+
"""Returns a Newman–Watts–Strogatz small-world graph.
|
298 |
+
|
299 |
+
Parameters
|
300 |
+
----------
|
301 |
+
n : int
|
302 |
+
The number of nodes.
|
303 |
+
k : int
|
304 |
+
Each node is joined with its `k` nearest neighbors in a ring
|
305 |
+
topology.
|
306 |
+
p : float
|
307 |
+
The probability of adding a new edge for each edge.
|
308 |
+
seed : integer, random_state, or None (default)
|
309 |
+
Indicator of random number generation state.
|
310 |
+
See :ref:`Randomness<randomness>`.
|
311 |
+
|
312 |
+
Notes
|
313 |
+
-----
|
314 |
+
First create a ring over $n$ nodes [1]_. Then each node in the ring is
|
315 |
+
connected with its $k$ nearest neighbors (or $k - 1$ neighbors if $k$
|
316 |
+
is odd). Then shortcuts are created by adding new edges as follows: for
|
317 |
+
each edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest
|
318 |
+
neighbors" with probability $p$ add a new edge $(u, w)$ with
|
319 |
+
randomly-chosen existing node $w$. In contrast with
|
320 |
+
:func:`watts_strogatz_graph`, no edges are removed.
|
321 |
+
|
322 |
+
See Also
|
323 |
+
--------
|
324 |
+
watts_strogatz_graph
|
325 |
+
|
326 |
+
References
|
327 |
+
----------
|
328 |
+
.. [1] M. E. J. Newman and D. J. Watts,
|
329 |
+
Renormalization group analysis of the small-world network model,
|
330 |
+
Physics Letters A, 263, 341, 1999.
|
331 |
+
https://doi.org/10.1016/S0375-9601(99)00757-4
|
332 |
+
"""
|
333 |
+
if k > n:
|
334 |
+
raise nx.NetworkXError("k>=n, choose smaller k or larger n")
|
335 |
+
|
336 |
+
# If k == n the graph return is a complete graph
|
337 |
+
if k == n:
|
338 |
+
return nx.complete_graph(n)
|
339 |
+
|
340 |
+
G = empty_graph(n)
|
341 |
+
nlist = list(G.nodes())
|
342 |
+
fromv = nlist
|
343 |
+
# connect the k/2 neighbors
|
344 |
+
for j in range(1, k // 2 + 1):
|
345 |
+
tov = fromv[j:] + fromv[0:j] # the first j are now last
|
346 |
+
for i in range(len(fromv)):
|
347 |
+
G.add_edge(fromv[i], tov[i])
|
348 |
+
# for each edge u-v, with probability p, randomly select existing
|
349 |
+
# node w and add new edge u-w
|
350 |
+
e = list(G.edges())
|
351 |
+
for u, v in e:
|
352 |
+
if seed.random() < p:
|
353 |
+
w = seed.choice(nlist)
|
354 |
+
# no self-loops and reject if edge u-w exists
|
355 |
+
# is that the correct NWS model?
|
356 |
+
while w == u or G.has_edge(u, w):
|
357 |
+
w = seed.choice(nlist)
|
358 |
+
if G.degree(u) >= n - 1:
|
359 |
+
break # skip this rewiring
|
360 |
+
else:
|
361 |
+
G.add_edge(u, w)
|
362 |
+
return G
|
363 |
+
|
364 |
+
|
365 |
+
@py_random_state(3)
|
366 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
367 |
+
def watts_strogatz_graph(n, k, p, seed=None):
|
368 |
+
"""Returns a Watts–Strogatz small-world graph.
|
369 |
+
|
370 |
+
Parameters
|
371 |
+
----------
|
372 |
+
n : int
|
373 |
+
The number of nodes
|
374 |
+
k : int
|
375 |
+
Each node is joined with its `k` nearest neighbors in a ring
|
376 |
+
topology.
|
377 |
+
p : float
|
378 |
+
The probability of rewiring each edge
|
379 |
+
seed : integer, random_state, or None (default)
|
380 |
+
Indicator of random number generation state.
|
381 |
+
See :ref:`Randomness<randomness>`.
|
382 |
+
|
383 |
+
See Also
|
384 |
+
--------
|
385 |
+
newman_watts_strogatz_graph
|
386 |
+
connected_watts_strogatz_graph
|
387 |
+
|
388 |
+
Notes
|
389 |
+
-----
|
390 |
+
First create a ring over $n$ nodes [1]_. Then each node in the ring is joined
|
391 |
+
to its $k$ nearest neighbors (or $k - 1$ neighbors if $k$ is odd).
|
392 |
+
Then shortcuts are created by replacing some edges as follows: for each
|
393 |
+
edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest neighbors"
|
394 |
+
with probability $p$ replace it with a new edge $(u, w)$ with uniformly
|
395 |
+
random choice of existing node $w$.
|
396 |
+
|
397 |
+
In contrast with :func:`newman_watts_strogatz_graph`, the random rewiring
|
398 |
+
does not increase the number of edges. The rewired graph is not guaranteed
|
399 |
+
to be connected as in :func:`connected_watts_strogatz_graph`.
|
400 |
+
|
401 |
+
References
|
402 |
+
----------
|
403 |
+
.. [1] Duncan J. Watts and Steven H. Strogatz,
|
404 |
+
Collective dynamics of small-world networks,
|
405 |
+
Nature, 393, pp. 440--442, 1998.
|
406 |
+
"""
|
407 |
+
if k > n:
|
408 |
+
raise nx.NetworkXError("k>n, choose smaller k or larger n")
|
409 |
+
|
410 |
+
# If k == n, the graph is complete not Watts-Strogatz
|
411 |
+
if k == n:
|
412 |
+
return nx.complete_graph(n)
|
413 |
+
|
414 |
+
G = nx.Graph()
|
415 |
+
nodes = list(range(n)) # nodes are labeled 0 to n-1
|
416 |
+
# connect each node to k/2 neighbors
|
417 |
+
for j in range(1, k // 2 + 1):
|
418 |
+
targets = nodes[j:] + nodes[0:j] # first j nodes are now last in list
|
419 |
+
G.add_edges_from(zip(nodes, targets))
|
420 |
+
# rewire edges from each node
|
421 |
+
# loop over all nodes in order (label) and neighbors in order (distance)
|
422 |
+
# no self loops or multiple edges allowed
|
423 |
+
for j in range(1, k // 2 + 1): # outer loop is neighbors
|
424 |
+
targets = nodes[j:] + nodes[0:j] # first j nodes are now last in list
|
425 |
+
# inner loop in node order
|
426 |
+
for u, v in zip(nodes, targets):
|
427 |
+
if seed.random() < p:
|
428 |
+
w = seed.choice(nodes)
|
429 |
+
# Enforce no self-loops or multiple edges
|
430 |
+
while w == u or G.has_edge(u, w):
|
431 |
+
w = seed.choice(nodes)
|
432 |
+
if G.degree(u) >= n - 1:
|
433 |
+
break # skip this rewiring
|
434 |
+
else:
|
435 |
+
G.remove_edge(u, v)
|
436 |
+
G.add_edge(u, w)
|
437 |
+
return G
|
438 |
+
|
439 |
+
|
440 |
+
@py_random_state(4)
|
441 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
442 |
+
def connected_watts_strogatz_graph(n, k, p, tries=100, seed=None):
|
443 |
+
"""Returns a connected Watts–Strogatz small-world graph.
|
444 |
+
|
445 |
+
Attempts to generate a connected graph by repeated generation of
|
446 |
+
Watts–Strogatz small-world graphs. An exception is raised if the maximum
|
447 |
+
number of tries is exceeded.
|
448 |
+
|
449 |
+
Parameters
|
450 |
+
----------
|
451 |
+
n : int
|
452 |
+
The number of nodes
|
453 |
+
k : int
|
454 |
+
Each node is joined with its `k` nearest neighbors in a ring
|
455 |
+
topology.
|
456 |
+
p : float
|
457 |
+
The probability of rewiring each edge
|
458 |
+
tries : int
|
459 |
+
Number of attempts to generate a connected graph.
|
460 |
+
seed : integer, random_state, or None (default)
|
461 |
+
Indicator of random number generation state.
|
462 |
+
See :ref:`Randomness<randomness>`.
|
463 |
+
|
464 |
+
Notes
|
465 |
+
-----
|
466 |
+
First create a ring over $n$ nodes [1]_. Then each node in the ring is joined
|
467 |
+
to its $k$ nearest neighbors (or $k - 1$ neighbors if $k$ is odd).
|
468 |
+
Then shortcuts are created by replacing some edges as follows: for each
|
469 |
+
edge $(u, v)$ in the underlying "$n$-ring with $k$ nearest neighbors"
|
470 |
+
with probability $p$ replace it with a new edge $(u, w)$ with uniformly
|
471 |
+
random choice of existing node $w$.
|
472 |
+
The entire process is repeated until a connected graph results.
|
473 |
+
|
474 |
+
See Also
|
475 |
+
--------
|
476 |
+
newman_watts_strogatz_graph
|
477 |
+
watts_strogatz_graph
|
478 |
+
|
479 |
+
References
|
480 |
+
----------
|
481 |
+
.. [1] Duncan J. Watts and Steven H. Strogatz,
|
482 |
+
Collective dynamics of small-world networks,
|
483 |
+
Nature, 393, pp. 440--442, 1998.
|
484 |
+
"""
|
485 |
+
for i in range(tries):
|
486 |
+
# seed is an RNG so should change sequence each call
|
487 |
+
G = watts_strogatz_graph(n, k, p, seed)
|
488 |
+
if nx.is_connected(G):
|
489 |
+
return G
|
490 |
+
raise nx.NetworkXError("Maximum number of tries exceeded")
|
491 |
+
|
492 |
+
|
493 |
+
@py_random_state(2)
|
494 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
495 |
+
def random_regular_graph(d, n, seed=None):
|
496 |
+
r"""Returns a random $d$-regular graph on $n$ nodes.
|
497 |
+
|
498 |
+
A regular graph is a graph where each node has the same number of neighbors.
|
499 |
+
|
500 |
+
The resulting graph has no self-loops or parallel edges.
|
501 |
+
|
502 |
+
Parameters
|
503 |
+
----------
|
504 |
+
d : int
|
505 |
+
The degree of each node.
|
506 |
+
n : integer
|
507 |
+
The number of nodes. The value of $n \times d$ must be even.
|
508 |
+
seed : integer, random_state, or None (default)
|
509 |
+
Indicator of random number generation state.
|
510 |
+
See :ref:`Randomness<randomness>`.
|
511 |
+
|
512 |
+
Notes
|
513 |
+
-----
|
514 |
+
The nodes are numbered from $0$ to $n - 1$.
|
515 |
+
|
516 |
+
Kim and Vu's paper [2]_ shows that this algorithm samples in an
|
517 |
+
asymptotically uniform way from the space of random graphs when
|
518 |
+
$d = O(n^{1 / 3 - \epsilon})$.
|
519 |
+
|
520 |
+
Raises
|
521 |
+
------
|
522 |
+
|
523 |
+
NetworkXError
|
524 |
+
If $n \times d$ is odd or $d$ is greater than or equal to $n$.
|
525 |
+
|
526 |
+
References
|
527 |
+
----------
|
528 |
+
.. [1] A. Steger and N. Wormald,
|
529 |
+
Generating random regular graphs quickly,
|
530 |
+
Probability and Computing 8 (1999), 377-396, 1999.
|
531 |
+
https://doi.org/10.1017/S0963548399003867
|
532 |
+
|
533 |
+
.. [2] Jeong Han Kim and Van H. Vu,
|
534 |
+
Generating random regular graphs,
|
535 |
+
Proceedings of the thirty-fifth ACM symposium on Theory of computing,
|
536 |
+
San Diego, CA, USA, pp 213--222, 2003.
|
537 |
+
http://portal.acm.org/citation.cfm?id=780542.780576
|
538 |
+
"""
|
539 |
+
if (n * d) % 2 != 0:
|
540 |
+
raise nx.NetworkXError("n * d must be even")
|
541 |
+
|
542 |
+
if not 0 <= d < n:
|
543 |
+
raise nx.NetworkXError("the 0 <= d < n inequality must be satisfied")
|
544 |
+
|
545 |
+
if d == 0:
|
546 |
+
return empty_graph(n)
|
547 |
+
|
548 |
+
def _suitable(edges, potential_edges):
|
549 |
+
# Helper subroutine to check if there are suitable edges remaining
|
550 |
+
# If False, the generation of the graph has failed
|
551 |
+
if not potential_edges:
|
552 |
+
return True
|
553 |
+
for s1 in potential_edges:
|
554 |
+
for s2 in potential_edges:
|
555 |
+
# Two iterators on the same dictionary are guaranteed
|
556 |
+
# to visit it in the same order if there are no
|
557 |
+
# intervening modifications.
|
558 |
+
if s1 == s2:
|
559 |
+
# Only need to consider s1-s2 pair one time
|
560 |
+
break
|
561 |
+
if s1 > s2:
|
562 |
+
s1, s2 = s2, s1
|
563 |
+
if (s1, s2) not in edges:
|
564 |
+
return True
|
565 |
+
return False
|
566 |
+
|
567 |
+
def _try_creation():
|
568 |
+
# Attempt to create an edge set
|
569 |
+
|
570 |
+
edges = set()
|
571 |
+
stubs = list(range(n)) * d
|
572 |
+
|
573 |
+
while stubs:
|
574 |
+
potential_edges = defaultdict(lambda: 0)
|
575 |
+
seed.shuffle(stubs)
|
576 |
+
stubiter = iter(stubs)
|
577 |
+
for s1, s2 in zip(stubiter, stubiter):
|
578 |
+
if s1 > s2:
|
579 |
+
s1, s2 = s2, s1
|
580 |
+
if s1 != s2 and ((s1, s2) not in edges):
|
581 |
+
edges.add((s1, s2))
|
582 |
+
else:
|
583 |
+
potential_edges[s1] += 1
|
584 |
+
potential_edges[s2] += 1
|
585 |
+
|
586 |
+
if not _suitable(edges, potential_edges):
|
587 |
+
return None # failed to find suitable edge set
|
588 |
+
|
589 |
+
stubs = [
|
590 |
+
node
|
591 |
+
for node, potential in potential_edges.items()
|
592 |
+
for _ in range(potential)
|
593 |
+
]
|
594 |
+
return edges
|
595 |
+
|
596 |
+
# Even though a suitable edge set exists,
|
597 |
+
# the generation of such a set is not guaranteed.
|
598 |
+
# Try repeatedly to find one.
|
599 |
+
edges = _try_creation()
|
600 |
+
while edges is None:
|
601 |
+
edges = _try_creation()
|
602 |
+
|
603 |
+
G = nx.Graph()
|
604 |
+
G.add_edges_from(edges)
|
605 |
+
|
606 |
+
return G
|
607 |
+
|
608 |
+
|
609 |
+
def _random_subset(seq, m, rng):
|
610 |
+
"""Return m unique elements from seq.
|
611 |
+
|
612 |
+
This differs from random.sample which can return repeated
|
613 |
+
elements if seq holds repeated elements.
|
614 |
+
|
615 |
+
Note: rng is a random.Random or numpy.random.RandomState instance.
|
616 |
+
"""
|
617 |
+
targets = set()
|
618 |
+
while len(targets) < m:
|
619 |
+
x = rng.choice(seq)
|
620 |
+
targets.add(x)
|
621 |
+
return targets
|
622 |
+
|
623 |
+
|
624 |
+
@py_random_state(2)
|
625 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
626 |
+
def barabasi_albert_graph(n, m, seed=None, initial_graph=None):
|
627 |
+
"""Returns a random graph using Barabási–Albert preferential attachment
|
628 |
+
|
629 |
+
A graph of $n$ nodes is grown by attaching new nodes each with $m$
|
630 |
+
edges that are preferentially attached to existing nodes with high degree.
|
631 |
+
|
632 |
+
Parameters
|
633 |
+
----------
|
634 |
+
n : int
|
635 |
+
Number of nodes
|
636 |
+
m : int
|
637 |
+
Number of edges to attach from a new node to existing nodes
|
638 |
+
seed : integer, random_state, or None (default)
|
639 |
+
Indicator of random number generation state.
|
640 |
+
See :ref:`Randomness<randomness>`.
|
641 |
+
initial_graph : Graph or None (default)
|
642 |
+
Initial network for Barabási–Albert algorithm.
|
643 |
+
It should be a connected graph for most use cases.
|
644 |
+
A copy of `initial_graph` is used.
|
645 |
+
If None, starts from a star graph on (m+1) nodes.
|
646 |
+
|
647 |
+
Returns
|
648 |
+
-------
|
649 |
+
G : Graph
|
650 |
+
|
651 |
+
Raises
|
652 |
+
------
|
653 |
+
NetworkXError
|
654 |
+
If `m` does not satisfy ``1 <= m < n``, or
|
655 |
+
the initial graph number of nodes m0 does not satisfy ``m <= m0 <= n``.
|
656 |
+
|
657 |
+
References
|
658 |
+
----------
|
659 |
+
.. [1] A. L. Barabási and R. Albert "Emergence of scaling in
|
660 |
+
random networks", Science 286, pp 509-512, 1999.
|
661 |
+
"""
|
662 |
+
|
663 |
+
if m < 1 or m >= n:
|
664 |
+
raise nx.NetworkXError(
|
665 |
+
f"Barabási–Albert network must have m >= 1 and m < n, m = {m}, n = {n}"
|
666 |
+
)
|
667 |
+
|
668 |
+
if initial_graph is None:
|
669 |
+
# Default initial graph : star graph on (m + 1) nodes
|
670 |
+
G = star_graph(m)
|
671 |
+
else:
|
672 |
+
if len(initial_graph) < m or len(initial_graph) > n:
|
673 |
+
raise nx.NetworkXError(
|
674 |
+
f"Barabási–Albert initial graph needs between m={m} and n={n} nodes"
|
675 |
+
)
|
676 |
+
G = initial_graph.copy()
|
677 |
+
|
678 |
+
# List of existing nodes, with nodes repeated once for each adjacent edge
|
679 |
+
repeated_nodes = [n for n, d in G.degree() for _ in range(d)]
|
680 |
+
# Start adding the other n - m0 nodes.
|
681 |
+
source = len(G)
|
682 |
+
while source < n:
|
683 |
+
# Now choose m unique nodes from the existing nodes
|
684 |
+
# Pick uniformly from repeated_nodes (preferential attachment)
|
685 |
+
targets = _random_subset(repeated_nodes, m, seed)
|
686 |
+
# Add edges to m nodes from the source.
|
687 |
+
G.add_edges_from(zip([source] * m, targets))
|
688 |
+
# Add one node to the list for each new edge just created.
|
689 |
+
repeated_nodes.extend(targets)
|
690 |
+
# And the new node "source" has m edges to add to the list.
|
691 |
+
repeated_nodes.extend([source] * m)
|
692 |
+
|
693 |
+
source += 1
|
694 |
+
return G
|
695 |
+
|
696 |
+
|
697 |
+
@py_random_state(4)
|
698 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
699 |
+
def dual_barabasi_albert_graph(n, m1, m2, p, seed=None, initial_graph=None):
|
700 |
+
"""Returns a random graph using dual Barabási–Albert preferential attachment
|
701 |
+
|
702 |
+
A graph of $n$ nodes is grown by attaching new nodes each with either $m_1$
|
703 |
+
edges (with probability $p$) or $m_2$ edges (with probability $1-p$) that
|
704 |
+
are preferentially attached to existing nodes with high degree.
|
705 |
+
|
706 |
+
Parameters
|
707 |
+
----------
|
708 |
+
n : int
|
709 |
+
Number of nodes
|
710 |
+
m1 : int
|
711 |
+
Number of edges to link each new node to existing nodes with probability $p$
|
712 |
+
m2 : int
|
713 |
+
Number of edges to link each new node to existing nodes with probability $1-p$
|
714 |
+
p : float
|
715 |
+
The probability of attaching $m_1$ edges (as opposed to $m_2$ edges)
|
716 |
+
seed : integer, random_state, or None (default)
|
717 |
+
Indicator of random number generation state.
|
718 |
+
See :ref:`Randomness<randomness>`.
|
719 |
+
initial_graph : Graph or None (default)
|
720 |
+
Initial network for Barabási–Albert algorithm.
|
721 |
+
A copy of `initial_graph` is used.
|
722 |
+
It should be connected for most use cases.
|
723 |
+
If None, starts from an star graph on max(m1, m2) + 1 nodes.
|
724 |
+
|
725 |
+
Returns
|
726 |
+
-------
|
727 |
+
G : Graph
|
728 |
+
|
729 |
+
Raises
|
730 |
+
------
|
731 |
+
NetworkXError
|
732 |
+
If `m1` and `m2` do not satisfy ``1 <= m1,m2 < n``, or
|
733 |
+
`p` does not satisfy ``0 <= p <= 1``, or
|
734 |
+
the initial graph number of nodes m0 does not satisfy m1, m2 <= m0 <= n.
|
735 |
+
|
736 |
+
References
|
737 |
+
----------
|
738 |
+
.. [1] N. Moshiri "The dual-Barabasi-Albert model", arXiv:1810.10538.
|
739 |
+
"""
|
740 |
+
|
741 |
+
if m1 < 1 or m1 >= n:
|
742 |
+
raise nx.NetworkXError(
|
743 |
+
f"Dual Barabási–Albert must have m1 >= 1 and m1 < n, m1 = {m1}, n = {n}"
|
744 |
+
)
|
745 |
+
if m2 < 1 or m2 >= n:
|
746 |
+
raise nx.NetworkXError(
|
747 |
+
f"Dual Barabási–Albert must have m2 >= 1 and m2 < n, m2 = {m2}, n = {n}"
|
748 |
+
)
|
749 |
+
if p < 0 or p > 1:
|
750 |
+
raise nx.NetworkXError(
|
751 |
+
f"Dual Barabási–Albert network must have 0 <= p <= 1, p = {p}"
|
752 |
+
)
|
753 |
+
|
754 |
+
# For simplicity, if p == 0 or 1, just return BA
|
755 |
+
if p == 1:
|
756 |
+
return barabasi_albert_graph(n, m1, seed)
|
757 |
+
elif p == 0:
|
758 |
+
return barabasi_albert_graph(n, m2, seed)
|
759 |
+
|
760 |
+
if initial_graph is None:
|
761 |
+
# Default initial graph : empty graph on max(m1, m2) nodes
|
762 |
+
G = star_graph(max(m1, m2))
|
763 |
+
else:
|
764 |
+
if len(initial_graph) < max(m1, m2) or len(initial_graph) > n:
|
765 |
+
raise nx.NetworkXError(
|
766 |
+
f"Barabási–Albert initial graph must have between "
|
767 |
+
f"max(m1, m2) = {max(m1, m2)} and n = {n} nodes"
|
768 |
+
)
|
769 |
+
G = initial_graph.copy()
|
770 |
+
|
771 |
+
# Target nodes for new edges
|
772 |
+
targets = list(G)
|
773 |
+
# List of existing nodes, with nodes repeated once for each adjacent edge
|
774 |
+
repeated_nodes = [n for n, d in G.degree() for _ in range(d)]
|
775 |
+
# Start adding the remaining nodes.
|
776 |
+
source = len(G)
|
777 |
+
while source < n:
|
778 |
+
# Pick which m to use (m1 or m2)
|
779 |
+
if seed.random() < p:
|
780 |
+
m = m1
|
781 |
+
else:
|
782 |
+
m = m2
|
783 |
+
# Now choose m unique nodes from the existing nodes
|
784 |
+
# Pick uniformly from repeated_nodes (preferential attachment)
|
785 |
+
targets = _random_subset(repeated_nodes, m, seed)
|
786 |
+
# Add edges to m nodes from the source.
|
787 |
+
G.add_edges_from(zip([source] * m, targets))
|
788 |
+
# Add one node to the list for each new edge just created.
|
789 |
+
repeated_nodes.extend(targets)
|
790 |
+
# And the new node "source" has m edges to add to the list.
|
791 |
+
repeated_nodes.extend([source] * m)
|
792 |
+
|
793 |
+
source += 1
|
794 |
+
return G
|
795 |
+
|
796 |
+
|
797 |
+
@py_random_state(4)
|
798 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
799 |
+
def extended_barabasi_albert_graph(n, m, p, q, seed=None):
|
800 |
+
"""Returns an extended Barabási–Albert model graph.
|
801 |
+
|
802 |
+
An extended Barabási–Albert model graph is a random graph constructed
|
803 |
+
using preferential attachment. The extended model allows new edges,
|
804 |
+
rewired edges or new nodes. Based on the probabilities $p$ and $q$
|
805 |
+
with $p + q < 1$, the growing behavior of the graph is determined as:
|
806 |
+
|
807 |
+
1) With $p$ probability, $m$ new edges are added to the graph,
|
808 |
+
starting from randomly chosen existing nodes and attached preferentially at the other end.
|
809 |
+
|
810 |
+
2) With $q$ probability, $m$ existing edges are rewired
|
811 |
+
by randomly choosing an edge and rewiring one end to a preferentially chosen node.
|
812 |
+
|
813 |
+
3) With $(1 - p - q)$ probability, $m$ new nodes are added to the graph
|
814 |
+
with edges attached preferentially.
|
815 |
+
|
816 |
+
When $p = q = 0$, the model behaves just like the Barabási–Alber model.
|
817 |
+
|
818 |
+
Parameters
|
819 |
+
----------
|
820 |
+
n : int
|
821 |
+
Number of nodes
|
822 |
+
m : int
|
823 |
+
Number of edges with which a new node attaches to existing nodes
|
824 |
+
p : float
|
825 |
+
Probability value for adding an edge between existing nodes. p + q < 1
|
826 |
+
q : float
|
827 |
+
Probability value of rewiring of existing edges. p + q < 1
|
828 |
+
seed : integer, random_state, or None (default)
|
829 |
+
Indicator of random number generation state.
|
830 |
+
See :ref:`Randomness<randomness>`.
|
831 |
+
|
832 |
+
Returns
|
833 |
+
-------
|
834 |
+
G : Graph
|
835 |
+
|
836 |
+
Raises
|
837 |
+
------
|
838 |
+
NetworkXError
|
839 |
+
If `m` does not satisfy ``1 <= m < n`` or ``1 >= p + q``
|
840 |
+
|
841 |
+
References
|
842 |
+
----------
|
843 |
+
.. [1] Albert, R., & Barabási, A. L. (2000)
|
844 |
+
Topology of evolving networks: local events and universality
|
845 |
+
Physical review letters, 85(24), 5234.
|
846 |
+
"""
|
847 |
+
if m < 1 or m >= n:
|
848 |
+
msg = f"Extended Barabasi-Albert network needs m>=1 and m<n, m={m}, n={n}"
|
849 |
+
raise nx.NetworkXError(msg)
|
850 |
+
if p + q >= 1:
|
851 |
+
msg = f"Extended Barabasi-Albert network needs p + q <= 1, p={p}, q={q}"
|
852 |
+
raise nx.NetworkXError(msg)
|
853 |
+
|
854 |
+
# Add m initial nodes (m0 in barabasi-speak)
|
855 |
+
G = empty_graph(m)
|
856 |
+
|
857 |
+
# List of nodes to represent the preferential attachment random selection.
|
858 |
+
# At the creation of the graph, all nodes are added to the list
|
859 |
+
# so that even nodes that are not connected have a chance to get selected,
|
860 |
+
# for rewiring and adding of edges.
|
861 |
+
# With each new edge, nodes at the ends of the edge are added to the list.
|
862 |
+
attachment_preference = []
|
863 |
+
attachment_preference.extend(range(m))
|
864 |
+
|
865 |
+
# Start adding the other n-m nodes. The first node is m.
|
866 |
+
new_node = m
|
867 |
+
while new_node < n:
|
868 |
+
a_probability = seed.random()
|
869 |
+
|
870 |
+
# Total number of edges of a Clique of all the nodes
|
871 |
+
clique_degree = len(G) - 1
|
872 |
+
clique_size = (len(G) * clique_degree) / 2
|
873 |
+
|
874 |
+
# Adding m new edges, if there is room to add them
|
875 |
+
if a_probability < p and G.size() <= clique_size - m:
|
876 |
+
# Select the nodes where an edge can be added
|
877 |
+
eligible_nodes = [nd for nd, deg in G.degree() if deg < clique_degree]
|
878 |
+
for i in range(m):
|
879 |
+
# Choosing a random source node from eligible_nodes
|
880 |
+
src_node = seed.choice(eligible_nodes)
|
881 |
+
|
882 |
+
# Picking a possible node that is not 'src_node' or
|
883 |
+
# neighbor with 'src_node', with preferential attachment
|
884 |
+
prohibited_nodes = list(G[src_node])
|
885 |
+
prohibited_nodes.append(src_node)
|
886 |
+
# This will raise an exception if the sequence is empty
|
887 |
+
dest_node = seed.choice(
|
888 |
+
[nd for nd in attachment_preference if nd not in prohibited_nodes]
|
889 |
+
)
|
890 |
+
# Adding the new edge
|
891 |
+
G.add_edge(src_node, dest_node)
|
892 |
+
|
893 |
+
# Appending both nodes to add to their preferential attachment
|
894 |
+
attachment_preference.append(src_node)
|
895 |
+
attachment_preference.append(dest_node)
|
896 |
+
|
897 |
+
# Adjusting the eligible nodes. Degree may be saturated.
|
898 |
+
if G.degree(src_node) == clique_degree:
|
899 |
+
eligible_nodes.remove(src_node)
|
900 |
+
if G.degree(dest_node) == clique_degree and dest_node in eligible_nodes:
|
901 |
+
eligible_nodes.remove(dest_node)
|
902 |
+
|
903 |
+
# Rewiring m edges, if there are enough edges
|
904 |
+
elif p <= a_probability < (p + q) and m <= G.size() < clique_size:
|
905 |
+
# Selecting nodes that have at least 1 edge but that are not
|
906 |
+
# fully connected to ALL other nodes (center of star).
|
907 |
+
# These nodes are the pivot nodes of the edges to rewire
|
908 |
+
eligible_nodes = [nd for nd, deg in G.degree() if 0 < deg < clique_degree]
|
909 |
+
for i in range(m):
|
910 |
+
# Choosing a random source node
|
911 |
+
node = seed.choice(eligible_nodes)
|
912 |
+
|
913 |
+
# The available nodes do have a neighbor at least.
|
914 |
+
nbr_nodes = list(G[node])
|
915 |
+
|
916 |
+
# Choosing the other end that will get detached
|
917 |
+
src_node = seed.choice(nbr_nodes)
|
918 |
+
|
919 |
+
# Picking a target node that is not 'node' or
|
920 |
+
# neighbor with 'node', with preferential attachment
|
921 |
+
nbr_nodes.append(node)
|
922 |
+
dest_node = seed.choice(
|
923 |
+
[nd for nd in attachment_preference if nd not in nbr_nodes]
|
924 |
+
)
|
925 |
+
# Rewire
|
926 |
+
G.remove_edge(node, src_node)
|
927 |
+
G.add_edge(node, dest_node)
|
928 |
+
|
929 |
+
# Adjusting the preferential attachment list
|
930 |
+
attachment_preference.remove(src_node)
|
931 |
+
attachment_preference.append(dest_node)
|
932 |
+
|
933 |
+
# Adjusting the eligible nodes.
|
934 |
+
# nodes may be saturated or isolated.
|
935 |
+
if G.degree(src_node) == 0 and src_node in eligible_nodes:
|
936 |
+
eligible_nodes.remove(src_node)
|
937 |
+
if dest_node in eligible_nodes:
|
938 |
+
if G.degree(dest_node) == clique_degree:
|
939 |
+
eligible_nodes.remove(dest_node)
|
940 |
+
else:
|
941 |
+
if G.degree(dest_node) == 1:
|
942 |
+
eligible_nodes.append(dest_node)
|
943 |
+
|
944 |
+
# Adding new node with m edges
|
945 |
+
else:
|
946 |
+
# Select the edges' nodes by preferential attachment
|
947 |
+
targets = _random_subset(attachment_preference, m, seed)
|
948 |
+
G.add_edges_from(zip([new_node] * m, targets))
|
949 |
+
|
950 |
+
# Add one node to the list for each new edge just created.
|
951 |
+
attachment_preference.extend(targets)
|
952 |
+
# The new node has m edges to it, plus itself: m + 1
|
953 |
+
attachment_preference.extend([new_node] * (m + 1))
|
954 |
+
new_node += 1
|
955 |
+
return G
|
956 |
+
|
957 |
+
|
958 |
+
@py_random_state(3)
|
959 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
960 |
+
def powerlaw_cluster_graph(n, m, p, seed=None):
|
961 |
+
"""Holme and Kim algorithm for growing graphs with powerlaw
|
962 |
+
degree distribution and approximate average clustering.
|
963 |
+
|
964 |
+
Parameters
|
965 |
+
----------
|
966 |
+
n : int
|
967 |
+
the number of nodes
|
968 |
+
m : int
|
969 |
+
the number of random edges to add for each new node
|
970 |
+
p : float,
|
971 |
+
Probability of adding a triangle after adding a random edge
|
972 |
+
seed : integer, random_state, or None (default)
|
973 |
+
Indicator of random number generation state.
|
974 |
+
See :ref:`Randomness<randomness>`.
|
975 |
+
|
976 |
+
Notes
|
977 |
+
-----
|
978 |
+
The average clustering has a hard time getting above a certain
|
979 |
+
cutoff that depends on `m`. This cutoff is often quite low. The
|
980 |
+
transitivity (fraction of triangles to possible triangles) seems to
|
981 |
+
decrease with network size.
|
982 |
+
|
983 |
+
It is essentially the Barabási–Albert (BA) growth model with an
|
984 |
+
extra step that each random edge is followed by a chance of
|
985 |
+
making an edge to one of its neighbors too (and thus a triangle).
|
986 |
+
|
987 |
+
This algorithm improves on BA in the sense that it enables a
|
988 |
+
higher average clustering to be attained if desired.
|
989 |
+
|
990 |
+
It seems possible to have a disconnected graph with this algorithm
|
991 |
+
since the initial `m` nodes may not be all linked to a new node
|
992 |
+
on the first iteration like the BA model.
|
993 |
+
|
994 |
+
Raises
|
995 |
+
------
|
996 |
+
NetworkXError
|
997 |
+
If `m` does not satisfy ``1 <= m <= n`` or `p` does not
|
998 |
+
satisfy ``0 <= p <= 1``.
|
999 |
+
|
1000 |
+
References
|
1001 |
+
----------
|
1002 |
+
.. [1] P. Holme and B. J. Kim,
|
1003 |
+
"Growing scale-free networks with tunable clustering",
|
1004 |
+
Phys. Rev. E, 65, 026107, 2002.
|
1005 |
+
"""
|
1006 |
+
|
1007 |
+
if m < 1 or n < m:
|
1008 |
+
raise nx.NetworkXError(f"NetworkXError must have m>1 and m<n, m={m},n={n}")
|
1009 |
+
|
1010 |
+
if p > 1 or p < 0:
|
1011 |
+
raise nx.NetworkXError(f"NetworkXError p must be in [0,1], p={p}")
|
1012 |
+
|
1013 |
+
G = empty_graph(m) # add m initial nodes (m0 in barabasi-speak)
|
1014 |
+
repeated_nodes = list(G.nodes()) # list of existing nodes to sample from
|
1015 |
+
# with nodes repeated once for each adjacent edge
|
1016 |
+
source = m # next node is m
|
1017 |
+
while source < n: # Now add the other n-1 nodes
|
1018 |
+
possible_targets = _random_subset(repeated_nodes, m, seed)
|
1019 |
+
# do one preferential attachment for new node
|
1020 |
+
target = possible_targets.pop()
|
1021 |
+
G.add_edge(source, target)
|
1022 |
+
repeated_nodes.append(target) # add one node to list for each new link
|
1023 |
+
count = 1
|
1024 |
+
while count < m: # add m-1 more new links
|
1025 |
+
if seed.random() < p: # clustering step: add triangle
|
1026 |
+
neighborhood = [
|
1027 |
+
nbr
|
1028 |
+
for nbr in G.neighbors(target)
|
1029 |
+
if not G.has_edge(source, nbr) and nbr != source
|
1030 |
+
]
|
1031 |
+
if neighborhood: # if there is a neighbor without a link
|
1032 |
+
nbr = seed.choice(neighborhood)
|
1033 |
+
G.add_edge(source, nbr) # add triangle
|
1034 |
+
repeated_nodes.append(nbr)
|
1035 |
+
count = count + 1
|
1036 |
+
continue # go to top of while loop
|
1037 |
+
# else do preferential attachment step if above fails
|
1038 |
+
target = possible_targets.pop()
|
1039 |
+
G.add_edge(source, target)
|
1040 |
+
repeated_nodes.append(target)
|
1041 |
+
count = count + 1
|
1042 |
+
|
1043 |
+
repeated_nodes.extend([source] * m) # add source node to list m times
|
1044 |
+
source += 1
|
1045 |
+
return G
|
1046 |
+
|
1047 |
+
|
1048 |
+
@py_random_state(3)
|
1049 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
1050 |
+
def random_lobster(n, p1, p2, seed=None):
|
1051 |
+
"""Returns a random lobster graph.
|
1052 |
+
|
1053 |
+
A lobster is a tree that reduces to a caterpillar when pruning all
|
1054 |
+
leaf nodes. A caterpillar is a tree that reduces to a path graph
|
1055 |
+
when pruning all leaf nodes; setting `p2` to zero produces a caterpillar.
|
1056 |
+
|
1057 |
+
This implementation iterates on the probabilities `p1` and `p2` to add
|
1058 |
+
edges at levels 1 and 2, respectively. Graphs are therefore constructed
|
1059 |
+
iteratively with uniform randomness at each level rather than being selected
|
1060 |
+
uniformly at random from the set of all possible lobsters.
|
1061 |
+
|
1062 |
+
Parameters
|
1063 |
+
----------
|
1064 |
+
n : int
|
1065 |
+
The expected number of nodes in the backbone
|
1066 |
+
p1 : float
|
1067 |
+
Probability of adding an edge to the backbone
|
1068 |
+
p2 : float
|
1069 |
+
Probability of adding an edge one level beyond backbone
|
1070 |
+
seed : integer, random_state, or None (default)
|
1071 |
+
Indicator of random number generation state.
|
1072 |
+
See :ref:`Randomness<randomness>`.
|
1073 |
+
|
1074 |
+
Raises
|
1075 |
+
------
|
1076 |
+
NetworkXError
|
1077 |
+
If `p1` or `p2` parameters are >= 1 because the while loops would never finish.
|
1078 |
+
"""
|
1079 |
+
p1, p2 = abs(p1), abs(p2)
|
1080 |
+
if any(p >= 1 for p in [p1, p2]):
|
1081 |
+
raise nx.NetworkXError("Probability values for `p1` and `p2` must both be < 1.")
|
1082 |
+
|
1083 |
+
# a necessary ingredient in any self-respecting graph library
|
1084 |
+
llen = int(2 * seed.random() * n + 0.5)
|
1085 |
+
L = path_graph(llen)
|
1086 |
+
# build caterpillar: add edges to path graph with probability p1
|
1087 |
+
current_node = llen - 1
|
1088 |
+
for n in range(llen):
|
1089 |
+
while seed.random() < p1: # add fuzzy caterpillar parts
|
1090 |
+
current_node += 1
|
1091 |
+
L.add_edge(n, current_node)
|
1092 |
+
cat_node = current_node
|
1093 |
+
while seed.random() < p2: # add crunchy lobster bits
|
1094 |
+
current_node += 1
|
1095 |
+
L.add_edge(cat_node, current_node)
|
1096 |
+
return L # voila, un lobster!
|
1097 |
+
|
1098 |
+
|
1099 |
+
@py_random_state(1)
|
1100 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
1101 |
+
def random_shell_graph(constructor, seed=None):
|
1102 |
+
"""Returns a random shell graph for the constructor given.
|
1103 |
+
|
1104 |
+
Parameters
|
1105 |
+
----------
|
1106 |
+
constructor : list of three-tuples
|
1107 |
+
Represents the parameters for a shell, starting at the center
|
1108 |
+
shell. Each element of the list must be of the form `(n, m,
|
1109 |
+
d)`, where `n` is the number of nodes in the shell, `m` is
|
1110 |
+
the number of edges in the shell, and `d` is the ratio of
|
1111 |
+
inter-shell (next) edges to intra-shell edges. If `d` is zero,
|
1112 |
+
there will be no intra-shell edges, and if `d` is one there
|
1113 |
+
will be all possible intra-shell edges.
|
1114 |
+
seed : integer, random_state, or None (default)
|
1115 |
+
Indicator of random number generation state.
|
1116 |
+
See :ref:`Randomness<randomness>`.
|
1117 |
+
|
1118 |
+
Examples
|
1119 |
+
--------
|
1120 |
+
>>> constructor = [(10, 20, 0.8), (20, 40, 0.8)]
|
1121 |
+
>>> G = nx.random_shell_graph(constructor)
|
1122 |
+
|
1123 |
+
"""
|
1124 |
+
G = empty_graph(0)
|
1125 |
+
|
1126 |
+
glist = []
|
1127 |
+
intra_edges = []
|
1128 |
+
nnodes = 0
|
1129 |
+
# create gnm graphs for each shell
|
1130 |
+
for n, m, d in constructor:
|
1131 |
+
inter_edges = int(m * d)
|
1132 |
+
intra_edges.append(m - inter_edges)
|
1133 |
+
g = nx.convert_node_labels_to_integers(
|
1134 |
+
gnm_random_graph(n, inter_edges, seed=seed), first_label=nnodes
|
1135 |
+
)
|
1136 |
+
glist.append(g)
|
1137 |
+
nnodes += n
|
1138 |
+
G = nx.operators.union(G, g)
|
1139 |
+
|
1140 |
+
# connect the shells randomly
|
1141 |
+
for gi in range(len(glist) - 1):
|
1142 |
+
nlist1 = list(glist[gi])
|
1143 |
+
nlist2 = list(glist[gi + 1])
|
1144 |
+
total_edges = intra_edges[gi]
|
1145 |
+
edge_count = 0
|
1146 |
+
while edge_count < total_edges:
|
1147 |
+
u = seed.choice(nlist1)
|
1148 |
+
v = seed.choice(nlist2)
|
1149 |
+
if u == v or G.has_edge(u, v):
|
1150 |
+
continue
|
1151 |
+
else:
|
1152 |
+
G.add_edge(u, v)
|
1153 |
+
edge_count = edge_count + 1
|
1154 |
+
return G
|
1155 |
+
|
1156 |
+
|
1157 |
+
@py_random_state(2)
|
1158 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
1159 |
+
def random_powerlaw_tree(n, gamma=3, seed=None, tries=100):
|
1160 |
+
"""Returns a tree with a power law degree distribution.
|
1161 |
+
|
1162 |
+
Parameters
|
1163 |
+
----------
|
1164 |
+
n : int
|
1165 |
+
The number of nodes.
|
1166 |
+
gamma : float
|
1167 |
+
Exponent of the power law.
|
1168 |
+
seed : integer, random_state, or None (default)
|
1169 |
+
Indicator of random number generation state.
|
1170 |
+
See :ref:`Randomness<randomness>`.
|
1171 |
+
tries : int
|
1172 |
+
Number of attempts to adjust the sequence to make it a tree.
|
1173 |
+
|
1174 |
+
Raises
|
1175 |
+
------
|
1176 |
+
NetworkXError
|
1177 |
+
If no valid sequence is found within the maximum number of
|
1178 |
+
attempts.
|
1179 |
+
|
1180 |
+
Notes
|
1181 |
+
-----
|
1182 |
+
A trial power law degree sequence is chosen and then elements are
|
1183 |
+
swapped with new elements from a powerlaw distribution until the
|
1184 |
+
sequence makes a tree (by checking, for example, that the number of
|
1185 |
+
edges is one smaller than the number of nodes).
|
1186 |
+
|
1187 |
+
"""
|
1188 |
+
# This call may raise a NetworkXError if the number of tries is succeeded.
|
1189 |
+
seq = random_powerlaw_tree_sequence(n, gamma=gamma, seed=seed, tries=tries)
|
1190 |
+
G = degree_sequence_tree(seq)
|
1191 |
+
return G
|
1192 |
+
|
1193 |
+
|
1194 |
+
@py_random_state(2)
|
1195 |
+
@nx._dispatchable(graphs=None)
|
1196 |
+
def random_powerlaw_tree_sequence(n, gamma=3, seed=None, tries=100):
|
1197 |
+
"""Returns a degree sequence for a tree with a power law distribution.
|
1198 |
+
|
1199 |
+
Parameters
|
1200 |
+
----------
|
1201 |
+
n : int,
|
1202 |
+
The number of nodes.
|
1203 |
+
gamma : float
|
1204 |
+
Exponent of the power law.
|
1205 |
+
seed : integer, random_state, or None (default)
|
1206 |
+
Indicator of random number generation state.
|
1207 |
+
See :ref:`Randomness<randomness>`.
|
1208 |
+
tries : int
|
1209 |
+
Number of attempts to adjust the sequence to make it a tree.
|
1210 |
+
|
1211 |
+
Raises
|
1212 |
+
------
|
1213 |
+
NetworkXError
|
1214 |
+
If no valid sequence is found within the maximum number of
|
1215 |
+
attempts.
|
1216 |
+
|
1217 |
+
Notes
|
1218 |
+
-----
|
1219 |
+
A trial power law degree sequence is chosen and then elements are
|
1220 |
+
swapped with new elements from a power law distribution until
|
1221 |
+
the sequence makes a tree (by checking, for example, that the number of
|
1222 |
+
edges is one smaller than the number of nodes).
|
1223 |
+
|
1224 |
+
"""
|
1225 |
+
# get trial sequence
|
1226 |
+
z = nx.utils.powerlaw_sequence(n, exponent=gamma, seed=seed)
|
1227 |
+
# round to integer values in the range [0,n]
|
1228 |
+
zseq = [min(n, max(round(s), 0)) for s in z]
|
1229 |
+
|
1230 |
+
# another sequence to swap values from
|
1231 |
+
z = nx.utils.powerlaw_sequence(tries, exponent=gamma, seed=seed)
|
1232 |
+
# round to integer values in the range [0,n]
|
1233 |
+
swap = [min(n, max(round(s), 0)) for s in z]
|
1234 |
+
|
1235 |
+
for deg in swap:
|
1236 |
+
# If this degree sequence can be the degree sequence of a tree, return
|
1237 |
+
# it. It can be a tree if the number of edges is one fewer than the
|
1238 |
+
# number of nodes, or in other words, `n - sum(zseq) / 2 == 1`. We
|
1239 |
+
# use an equivalent condition below that avoids floating point
|
1240 |
+
# operations.
|
1241 |
+
if 2 * n - sum(zseq) == 2:
|
1242 |
+
return zseq
|
1243 |
+
index = seed.randint(0, n - 1)
|
1244 |
+
zseq[index] = swap.pop()
|
1245 |
+
|
1246 |
+
raise nx.NetworkXError(
|
1247 |
+
f"Exceeded max ({tries}) attempts for a valid tree sequence."
|
1248 |
+
)
|
1249 |
+
|
1250 |
+
|
1251 |
+
@py_random_state(3)
|
1252 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
1253 |
+
def random_kernel_graph(n, kernel_integral, kernel_root=None, seed=None):
|
1254 |
+
r"""Returns an random graph based on the specified kernel.
|
1255 |
+
|
1256 |
+
The algorithm chooses each of the $[n(n-1)]/2$ possible edges with
|
1257 |
+
probability specified by a kernel $\kappa(x,y)$ [1]_. The kernel
|
1258 |
+
$\kappa(x,y)$ must be a symmetric (in $x,y$), non-negative,
|
1259 |
+
bounded function.
|
1260 |
+
|
1261 |
+
Parameters
|
1262 |
+
----------
|
1263 |
+
n : int
|
1264 |
+
The number of nodes
|
1265 |
+
kernel_integral : function
|
1266 |
+
Function that returns the definite integral of the kernel $\kappa(x,y)$,
|
1267 |
+
$F(y,a,b) := \int_a^b \kappa(x,y)dx$
|
1268 |
+
kernel_root: function (optional)
|
1269 |
+
Function that returns the root $b$ of the equation $F(y,a,b) = r$.
|
1270 |
+
If None, the root is found using :func:`scipy.optimize.brentq`
|
1271 |
+
(this requires SciPy).
|
1272 |
+
seed : integer, random_state, or None (default)
|
1273 |
+
Indicator of random number generation state.
|
1274 |
+
See :ref:`Randomness<randomness>`.
|
1275 |
+
|
1276 |
+
Notes
|
1277 |
+
-----
|
1278 |
+
The kernel is specified through its definite integral which must be
|
1279 |
+
provided as one of the arguments. If the integral and root of the
|
1280 |
+
kernel integral can be found in $O(1)$ time then this algorithm runs in
|
1281 |
+
time $O(n+m)$ where m is the expected number of edges [2]_.
|
1282 |
+
|
1283 |
+
The nodes are set to integers from $0$ to $n-1$.
|
1284 |
+
|
1285 |
+
Examples
|
1286 |
+
--------
|
1287 |
+
Generate an Erdős–Rényi random graph $G(n,c/n)$, with kernel
|
1288 |
+
$\kappa(x,y)=c$ where $c$ is the mean expected degree.
|
1289 |
+
|
1290 |
+
>>> def integral(u, w, z):
|
1291 |
+
... return c * (z - w)
|
1292 |
+
>>> def root(u, w, r):
|
1293 |
+
... return r / c + w
|
1294 |
+
>>> c = 1
|
1295 |
+
>>> graph = nx.random_kernel_graph(1000, integral, root)
|
1296 |
+
|
1297 |
+
See Also
|
1298 |
+
--------
|
1299 |
+
gnp_random_graph
|
1300 |
+
expected_degree_graph
|
1301 |
+
|
1302 |
+
References
|
1303 |
+
----------
|
1304 |
+
.. [1] Bollobás, Béla, Janson, S. and Riordan, O.
|
1305 |
+
"The phase transition in inhomogeneous random graphs",
|
1306 |
+
*Random Structures Algorithms*, 31, 3--122, 2007.
|
1307 |
+
|
1308 |
+
.. [2] Hagberg A, Lemons N (2015),
|
1309 |
+
"Fast Generation of Sparse Random Kernel Graphs".
|
1310 |
+
PLoS ONE 10(9): e0135177, 2015. doi:10.1371/journal.pone.0135177
|
1311 |
+
"""
|
1312 |
+
if kernel_root is None:
|
1313 |
+
import scipy as sp
|
1314 |
+
|
1315 |
+
def kernel_root(y, a, r):
|
1316 |
+
def my_function(b):
|
1317 |
+
return kernel_integral(y, a, b) - r
|
1318 |
+
|
1319 |
+
return sp.optimize.brentq(my_function, a, 1)
|
1320 |
+
|
1321 |
+
graph = nx.Graph()
|
1322 |
+
graph.add_nodes_from(range(n))
|
1323 |
+
(i, j) = (1, 1)
|
1324 |
+
while i < n:
|
1325 |
+
r = -math.log(1 - seed.random()) # (1-seed.random()) in (0, 1]
|
1326 |
+
if kernel_integral(i / n, j / n, 1) <= r:
|
1327 |
+
i, j = i + 1, i + 1
|
1328 |
+
else:
|
1329 |
+
j = math.ceil(n * kernel_root(i / n, j / n, r))
|
1330 |
+
graph.add_edge(i - 1, j - 1)
|
1331 |
+
return graph
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/small.py
ADDED
@@ -0,0 +1,993 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Various small and named graphs, together with some compact generators.
|
3 |
+
|
4 |
+
"""
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"LCF_graph",
|
8 |
+
"bull_graph",
|
9 |
+
"chvatal_graph",
|
10 |
+
"cubical_graph",
|
11 |
+
"desargues_graph",
|
12 |
+
"diamond_graph",
|
13 |
+
"dodecahedral_graph",
|
14 |
+
"frucht_graph",
|
15 |
+
"heawood_graph",
|
16 |
+
"hoffman_singleton_graph",
|
17 |
+
"house_graph",
|
18 |
+
"house_x_graph",
|
19 |
+
"icosahedral_graph",
|
20 |
+
"krackhardt_kite_graph",
|
21 |
+
"moebius_kantor_graph",
|
22 |
+
"octahedral_graph",
|
23 |
+
"pappus_graph",
|
24 |
+
"petersen_graph",
|
25 |
+
"sedgewick_maze_graph",
|
26 |
+
"tetrahedral_graph",
|
27 |
+
"truncated_cube_graph",
|
28 |
+
"truncated_tetrahedron_graph",
|
29 |
+
"tutte_graph",
|
30 |
+
]
|
31 |
+
|
32 |
+
from functools import wraps
|
33 |
+
|
34 |
+
import networkx as nx
|
35 |
+
from networkx.exception import NetworkXError
|
36 |
+
from networkx.generators.classic import (
|
37 |
+
complete_graph,
|
38 |
+
cycle_graph,
|
39 |
+
empty_graph,
|
40 |
+
path_graph,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
def _raise_on_directed(func):
|
45 |
+
"""
|
46 |
+
A decorator which inspects the `create_using` argument and raises a
|
47 |
+
NetworkX exception when `create_using` is a DiGraph (class or instance) for
|
48 |
+
graph generators that do not support directed outputs.
|
49 |
+
"""
|
50 |
+
|
51 |
+
@wraps(func)
|
52 |
+
def wrapper(*args, **kwargs):
|
53 |
+
if kwargs.get("create_using") is not None:
|
54 |
+
G = nx.empty_graph(create_using=kwargs["create_using"])
|
55 |
+
if G.is_directed():
|
56 |
+
raise NetworkXError("Directed Graph not supported")
|
57 |
+
return func(*args, **kwargs)
|
58 |
+
|
59 |
+
return wrapper
|
60 |
+
|
61 |
+
|
62 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
63 |
+
def LCF_graph(n, shift_list, repeats, create_using=None):
|
64 |
+
"""
|
65 |
+
Return the cubic graph specified in LCF notation.
|
66 |
+
|
67 |
+
LCF (Lederberg-Coxeter-Fruchte) notation[1]_ is a compressed
|
68 |
+
notation used in the generation of various cubic Hamiltonian
|
69 |
+
graphs of high symmetry. See, for example, `dodecahedral_graph`,
|
70 |
+
`desargues_graph`, `heawood_graph` and `pappus_graph`.
|
71 |
+
|
72 |
+
Nodes are drawn from ``range(n)``. Each node ``n_i`` is connected with
|
73 |
+
node ``n_i + shift % n`` where ``shift`` is given by cycling through
|
74 |
+
the input `shift_list` `repeat` s times.
|
75 |
+
|
76 |
+
Parameters
|
77 |
+
----------
|
78 |
+
n : int
|
79 |
+
The starting graph is the `n`-cycle with nodes ``0, ..., n-1``.
|
80 |
+
The null graph is returned if `n` < 1.
|
81 |
+
|
82 |
+
shift_list : list
|
83 |
+
A list of integer shifts mod `n`, ``[s1, s2, .., sk]``
|
84 |
+
|
85 |
+
repeats : int
|
86 |
+
Integer specifying the number of times that shifts in `shift_list`
|
87 |
+
are successively applied to each current node in the n-cycle
|
88 |
+
to generate an edge between ``n_current`` and ``n_current + shift mod n``.
|
89 |
+
|
90 |
+
Returns
|
91 |
+
-------
|
92 |
+
G : Graph
|
93 |
+
A graph instance created from the specified LCF notation.
|
94 |
+
|
95 |
+
Examples
|
96 |
+
--------
|
97 |
+
The utility graph $K_{3,3}$
|
98 |
+
|
99 |
+
>>> G = nx.LCF_graph(6, [3, -3], 3)
|
100 |
+
>>> G.edges()
|
101 |
+
EdgeView([(0, 1), (0, 5), (0, 3), (1, 2), (1, 4), (2, 3), (2, 5), (3, 4), (4, 5)])
|
102 |
+
|
103 |
+
The Heawood graph:
|
104 |
+
|
105 |
+
>>> G = nx.LCF_graph(14, [5, -5], 7)
|
106 |
+
>>> nx.is_isomorphic(G, nx.heawood_graph())
|
107 |
+
True
|
108 |
+
|
109 |
+
References
|
110 |
+
----------
|
111 |
+
.. [1] https://en.wikipedia.org/wiki/LCF_notation
|
112 |
+
|
113 |
+
"""
|
114 |
+
if n <= 0:
|
115 |
+
return empty_graph(0, create_using)
|
116 |
+
|
117 |
+
# start with the n-cycle
|
118 |
+
G = cycle_graph(n, create_using)
|
119 |
+
if G.is_directed():
|
120 |
+
raise NetworkXError("Directed Graph not supported")
|
121 |
+
G.name = "LCF_graph"
|
122 |
+
nodes = sorted(G)
|
123 |
+
|
124 |
+
n_extra_edges = repeats * len(shift_list)
|
125 |
+
# edges are added n_extra_edges times
|
126 |
+
# (not all of these need be new)
|
127 |
+
if n_extra_edges < 1:
|
128 |
+
return G
|
129 |
+
|
130 |
+
for i in range(n_extra_edges):
|
131 |
+
shift = shift_list[i % len(shift_list)] # cycle through shift_list
|
132 |
+
v1 = nodes[i % n] # cycle repeatedly through nodes
|
133 |
+
v2 = nodes[(i + shift) % n]
|
134 |
+
G.add_edge(v1, v2)
|
135 |
+
return G
|
136 |
+
|
137 |
+
|
138 |
+
# -------------------------------------------------------------------------------
|
139 |
+
# Various small and named graphs
|
140 |
+
# -------------------------------------------------------------------------------
|
141 |
+
|
142 |
+
|
143 |
+
@_raise_on_directed
|
144 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
145 |
+
def bull_graph(create_using=None):
|
146 |
+
"""
|
147 |
+
Returns the Bull Graph
|
148 |
+
|
149 |
+
The Bull Graph has 5 nodes and 5 edges. It is a planar undirected
|
150 |
+
graph in the form of a triangle with two disjoint pendant edges [1]_
|
151 |
+
The name comes from the triangle and pendant edges representing
|
152 |
+
respectively the body and legs of a bull.
|
153 |
+
|
154 |
+
Parameters
|
155 |
+
----------
|
156 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
157 |
+
Graph type to create. If graph instance, then cleared before populated.
|
158 |
+
|
159 |
+
Returns
|
160 |
+
-------
|
161 |
+
G : networkx Graph
|
162 |
+
A bull graph with 5 nodes
|
163 |
+
|
164 |
+
References
|
165 |
+
----------
|
166 |
+
.. [1] https://en.wikipedia.org/wiki/Bull_graph.
|
167 |
+
|
168 |
+
"""
|
169 |
+
G = nx.from_dict_of_lists(
|
170 |
+
{0: [1, 2], 1: [0, 2, 3], 2: [0, 1, 4], 3: [1], 4: [2]},
|
171 |
+
create_using=create_using,
|
172 |
+
)
|
173 |
+
G.name = "Bull Graph"
|
174 |
+
return G
|
175 |
+
|
176 |
+
|
177 |
+
@_raise_on_directed
|
178 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
179 |
+
def chvatal_graph(create_using=None):
|
180 |
+
"""
|
181 |
+
Returns the Chvátal Graph
|
182 |
+
|
183 |
+
The Chvátal Graph is an undirected graph with 12 nodes and 24 edges [1]_.
|
184 |
+
It has 370 distinct (directed) Hamiltonian cycles, giving a unique generalized
|
185 |
+
LCF notation of order 4, two of order 6 , and 43 of order 1 [2]_.
|
186 |
+
|
187 |
+
Parameters
|
188 |
+
----------
|
189 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
190 |
+
Graph type to create. If graph instance, then cleared before populated.
|
191 |
+
|
192 |
+
Returns
|
193 |
+
-------
|
194 |
+
G : networkx Graph
|
195 |
+
The Chvátal graph with 12 nodes and 24 edges
|
196 |
+
|
197 |
+
References
|
198 |
+
----------
|
199 |
+
.. [1] https://en.wikipedia.org/wiki/Chv%C3%A1tal_graph
|
200 |
+
.. [2] https://mathworld.wolfram.com/ChvatalGraph.html
|
201 |
+
|
202 |
+
"""
|
203 |
+
G = nx.from_dict_of_lists(
|
204 |
+
{
|
205 |
+
0: [1, 4, 6, 9],
|
206 |
+
1: [2, 5, 7],
|
207 |
+
2: [3, 6, 8],
|
208 |
+
3: [4, 7, 9],
|
209 |
+
4: [5, 8],
|
210 |
+
5: [10, 11],
|
211 |
+
6: [10, 11],
|
212 |
+
7: [8, 11],
|
213 |
+
8: [10],
|
214 |
+
9: [10, 11],
|
215 |
+
},
|
216 |
+
create_using=create_using,
|
217 |
+
)
|
218 |
+
G.name = "Chvatal Graph"
|
219 |
+
return G
|
220 |
+
|
221 |
+
|
222 |
+
@_raise_on_directed
|
223 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
224 |
+
def cubical_graph(create_using=None):
|
225 |
+
"""
|
226 |
+
Returns the 3-regular Platonic Cubical Graph
|
227 |
+
|
228 |
+
The skeleton of the cube (the nodes and edges) form a graph, with 8
|
229 |
+
nodes, and 12 edges. It is a special case of the hypercube graph.
|
230 |
+
It is one of 5 Platonic graphs, each a skeleton of its
|
231 |
+
Platonic solid [1]_.
|
232 |
+
Such graphs arise in parallel processing in computers.
|
233 |
+
|
234 |
+
Parameters
|
235 |
+
----------
|
236 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
237 |
+
Graph type to create. If graph instance, then cleared before populated.
|
238 |
+
|
239 |
+
Returns
|
240 |
+
-------
|
241 |
+
G : networkx Graph
|
242 |
+
A cubical graph with 8 nodes and 12 edges
|
243 |
+
|
244 |
+
References
|
245 |
+
----------
|
246 |
+
.. [1] https://en.wikipedia.org/wiki/Cube#Cubical_graph
|
247 |
+
|
248 |
+
"""
|
249 |
+
G = nx.from_dict_of_lists(
|
250 |
+
{
|
251 |
+
0: [1, 3, 4],
|
252 |
+
1: [0, 2, 7],
|
253 |
+
2: [1, 3, 6],
|
254 |
+
3: [0, 2, 5],
|
255 |
+
4: [0, 5, 7],
|
256 |
+
5: [3, 4, 6],
|
257 |
+
6: [2, 5, 7],
|
258 |
+
7: [1, 4, 6],
|
259 |
+
},
|
260 |
+
create_using=create_using,
|
261 |
+
)
|
262 |
+
G.name = "Platonic Cubical Graph"
|
263 |
+
return G
|
264 |
+
|
265 |
+
|
266 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
267 |
+
def desargues_graph(create_using=None):
|
268 |
+
"""
|
269 |
+
Returns the Desargues Graph
|
270 |
+
|
271 |
+
The Desargues Graph is a non-planar, distance-transitive cubic graph
|
272 |
+
with 20 nodes and 30 edges [1]_.
|
273 |
+
It is a symmetric graph. It can be represented in LCF notation
|
274 |
+
as [5,-5,9,-9]^5 [2]_.
|
275 |
+
|
276 |
+
Parameters
|
277 |
+
----------
|
278 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
279 |
+
Graph type to create. If graph instance, then cleared before populated.
|
280 |
+
|
281 |
+
Returns
|
282 |
+
-------
|
283 |
+
G : networkx Graph
|
284 |
+
Desargues Graph with 20 nodes and 30 edges
|
285 |
+
|
286 |
+
References
|
287 |
+
----------
|
288 |
+
.. [1] https://en.wikipedia.org/wiki/Desargues_graph
|
289 |
+
.. [2] https://mathworld.wolfram.com/DesarguesGraph.html
|
290 |
+
"""
|
291 |
+
G = LCF_graph(20, [5, -5, 9, -9], 5, create_using)
|
292 |
+
G.name = "Desargues Graph"
|
293 |
+
return G
|
294 |
+
|
295 |
+
|
296 |
+
@_raise_on_directed
|
297 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
298 |
+
def diamond_graph(create_using=None):
|
299 |
+
"""
|
300 |
+
Returns the Diamond graph
|
301 |
+
|
302 |
+
The Diamond Graph is planar undirected graph with 4 nodes and 5 edges.
|
303 |
+
It is also sometimes known as the double triangle graph or kite graph [1]_.
|
304 |
+
|
305 |
+
Parameters
|
306 |
+
----------
|
307 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
308 |
+
Graph type to create. If graph instance, then cleared before populated.
|
309 |
+
|
310 |
+
Returns
|
311 |
+
-------
|
312 |
+
G : networkx Graph
|
313 |
+
Diamond Graph with 4 nodes and 5 edges
|
314 |
+
|
315 |
+
References
|
316 |
+
----------
|
317 |
+
.. [1] https://mathworld.wolfram.com/DiamondGraph.html
|
318 |
+
"""
|
319 |
+
G = nx.from_dict_of_lists(
|
320 |
+
{0: [1, 2], 1: [0, 2, 3], 2: [0, 1, 3], 3: [1, 2]}, create_using=create_using
|
321 |
+
)
|
322 |
+
G.name = "Diamond Graph"
|
323 |
+
return G
|
324 |
+
|
325 |
+
|
326 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
327 |
+
def dodecahedral_graph(create_using=None):
|
328 |
+
"""
|
329 |
+
Returns the Platonic Dodecahedral graph.
|
330 |
+
|
331 |
+
The dodecahedral graph has 20 nodes and 30 edges. The skeleton of the
|
332 |
+
dodecahedron forms a graph. It is one of 5 Platonic graphs [1]_.
|
333 |
+
It can be described in LCF notation as:
|
334 |
+
``[10, 7, 4, -4, -7, 10, -4, 7, -7, 4]^2`` [2]_.
|
335 |
+
|
336 |
+
Parameters
|
337 |
+
----------
|
338 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
339 |
+
Graph type to create. If graph instance, then cleared before populated.
|
340 |
+
|
341 |
+
Returns
|
342 |
+
-------
|
343 |
+
G : networkx Graph
|
344 |
+
Dodecahedral Graph with 20 nodes and 30 edges
|
345 |
+
|
346 |
+
References
|
347 |
+
----------
|
348 |
+
.. [1] https://en.wikipedia.org/wiki/Regular_dodecahedron#Dodecahedral_graph
|
349 |
+
.. [2] https://mathworld.wolfram.com/DodecahedralGraph.html
|
350 |
+
|
351 |
+
"""
|
352 |
+
G = LCF_graph(20, [10, 7, 4, -4, -7, 10, -4, 7, -7, 4], 2, create_using)
|
353 |
+
G.name = "Dodecahedral Graph"
|
354 |
+
return G
|
355 |
+
|
356 |
+
|
357 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
358 |
+
def frucht_graph(create_using=None):
|
359 |
+
"""
|
360 |
+
Returns the Frucht Graph.
|
361 |
+
|
362 |
+
The Frucht Graph is the smallest cubical graph whose
|
363 |
+
automorphism group consists only of the identity element [1]_.
|
364 |
+
It has 12 nodes and 18 edges and no nontrivial symmetries.
|
365 |
+
It is planar and Hamiltonian [2]_.
|
366 |
+
|
367 |
+
Parameters
|
368 |
+
----------
|
369 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
370 |
+
Graph type to create. If graph instance, then cleared before populated.
|
371 |
+
|
372 |
+
Returns
|
373 |
+
-------
|
374 |
+
G : networkx Graph
|
375 |
+
Frucht Graph with 12 nodes and 18 edges
|
376 |
+
|
377 |
+
References
|
378 |
+
----------
|
379 |
+
.. [1] https://en.wikipedia.org/wiki/Frucht_graph
|
380 |
+
.. [2] https://mathworld.wolfram.com/FruchtGraph.html
|
381 |
+
|
382 |
+
"""
|
383 |
+
G = cycle_graph(7, create_using)
|
384 |
+
G.add_edges_from(
|
385 |
+
[
|
386 |
+
[0, 7],
|
387 |
+
[1, 7],
|
388 |
+
[2, 8],
|
389 |
+
[3, 9],
|
390 |
+
[4, 9],
|
391 |
+
[5, 10],
|
392 |
+
[6, 10],
|
393 |
+
[7, 11],
|
394 |
+
[8, 11],
|
395 |
+
[8, 9],
|
396 |
+
[10, 11],
|
397 |
+
]
|
398 |
+
)
|
399 |
+
|
400 |
+
G.name = "Frucht Graph"
|
401 |
+
return G
|
402 |
+
|
403 |
+
|
404 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
405 |
+
def heawood_graph(create_using=None):
|
406 |
+
"""
|
407 |
+
Returns the Heawood Graph, a (3,6) cage.
|
408 |
+
|
409 |
+
The Heawood Graph is an undirected graph with 14 nodes and 21 edges,
|
410 |
+
named after Percy John Heawood [1]_.
|
411 |
+
It is cubic symmetric, nonplanar, Hamiltonian, and can be represented
|
412 |
+
in LCF notation as ``[5,-5]^7`` [2]_.
|
413 |
+
It is the unique (3,6)-cage: the regular cubic graph of girth 6 with
|
414 |
+
minimal number of vertices [3]_.
|
415 |
+
|
416 |
+
Parameters
|
417 |
+
----------
|
418 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
419 |
+
Graph type to create. If graph instance, then cleared before populated.
|
420 |
+
|
421 |
+
Returns
|
422 |
+
-------
|
423 |
+
G : networkx Graph
|
424 |
+
Heawood Graph with 14 nodes and 21 edges
|
425 |
+
|
426 |
+
References
|
427 |
+
----------
|
428 |
+
.. [1] https://en.wikipedia.org/wiki/Heawood_graph
|
429 |
+
.. [2] https://mathworld.wolfram.com/HeawoodGraph.html
|
430 |
+
.. [3] https://www.win.tue.nl/~aeb/graphs/Heawood.html
|
431 |
+
|
432 |
+
"""
|
433 |
+
G = LCF_graph(14, [5, -5], 7, create_using)
|
434 |
+
G.name = "Heawood Graph"
|
435 |
+
return G
|
436 |
+
|
437 |
+
|
438 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
439 |
+
def hoffman_singleton_graph():
|
440 |
+
"""
|
441 |
+
Returns the Hoffman-Singleton Graph.
|
442 |
+
|
443 |
+
The Hoffman–Singleton graph is a symmetrical undirected graph
|
444 |
+
with 50 nodes and 175 edges.
|
445 |
+
All indices lie in ``Z % 5``: that is, the integers mod 5 [1]_.
|
446 |
+
It is the only regular graph of vertex degree 7, diameter 2, and girth 5.
|
447 |
+
It is the unique (7,5)-cage graph and Moore graph, and contains many
|
448 |
+
copies of the Petersen graph [2]_.
|
449 |
+
|
450 |
+
Returns
|
451 |
+
-------
|
452 |
+
G : networkx Graph
|
453 |
+
Hoffman–Singleton Graph with 50 nodes and 175 edges
|
454 |
+
|
455 |
+
Notes
|
456 |
+
-----
|
457 |
+
Constructed from pentagon and pentagram as follows: Take five pentagons $P_h$
|
458 |
+
and five pentagrams $Q_i$ . Join vertex $j$ of $P_h$ to vertex $h·i+j$ of $Q_i$ [3]_.
|
459 |
+
|
460 |
+
References
|
461 |
+
----------
|
462 |
+
.. [1] https://blogs.ams.org/visualinsight/2016/02/01/hoffman-singleton-graph/
|
463 |
+
.. [2] https://mathworld.wolfram.com/Hoffman-SingletonGraph.html
|
464 |
+
.. [3] https://en.wikipedia.org/wiki/Hoffman%E2%80%93Singleton_graph
|
465 |
+
|
466 |
+
"""
|
467 |
+
G = nx.Graph()
|
468 |
+
for i in range(5):
|
469 |
+
for j in range(5):
|
470 |
+
G.add_edge(("pentagon", i, j), ("pentagon", i, (j - 1) % 5))
|
471 |
+
G.add_edge(("pentagon", i, j), ("pentagon", i, (j + 1) % 5))
|
472 |
+
G.add_edge(("pentagram", i, j), ("pentagram", i, (j - 2) % 5))
|
473 |
+
G.add_edge(("pentagram", i, j), ("pentagram", i, (j + 2) % 5))
|
474 |
+
for k in range(5):
|
475 |
+
G.add_edge(("pentagon", i, j), ("pentagram", k, (i * k + j) % 5))
|
476 |
+
G = nx.convert_node_labels_to_integers(G)
|
477 |
+
G.name = "Hoffman-Singleton Graph"
|
478 |
+
return G
|
479 |
+
|
480 |
+
|
481 |
+
@_raise_on_directed
|
482 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
483 |
+
def house_graph(create_using=None):
|
484 |
+
"""
|
485 |
+
Returns the House graph (square with triangle on top)
|
486 |
+
|
487 |
+
The house graph is a simple undirected graph with
|
488 |
+
5 nodes and 6 edges [1]_.
|
489 |
+
|
490 |
+
Parameters
|
491 |
+
----------
|
492 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
493 |
+
Graph type to create. If graph instance, then cleared before populated.
|
494 |
+
|
495 |
+
Returns
|
496 |
+
-------
|
497 |
+
G : networkx Graph
|
498 |
+
House graph in the form of a square with a triangle on top
|
499 |
+
|
500 |
+
References
|
501 |
+
----------
|
502 |
+
.. [1] https://mathworld.wolfram.com/HouseGraph.html
|
503 |
+
"""
|
504 |
+
G = nx.from_dict_of_lists(
|
505 |
+
{0: [1, 2], 1: [0, 3], 2: [0, 3, 4], 3: [1, 2, 4], 4: [2, 3]},
|
506 |
+
create_using=create_using,
|
507 |
+
)
|
508 |
+
G.name = "House Graph"
|
509 |
+
return G
|
510 |
+
|
511 |
+
|
512 |
+
@_raise_on_directed
|
513 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
514 |
+
def house_x_graph(create_using=None):
|
515 |
+
"""
|
516 |
+
Returns the House graph with a cross inside the house square.
|
517 |
+
|
518 |
+
The House X-graph is the House graph plus the two edges connecting diagonally
|
519 |
+
opposite vertices of the square base. It is also one of the two graphs
|
520 |
+
obtained by removing two edges from the pentatope graph [1]_.
|
521 |
+
|
522 |
+
Parameters
|
523 |
+
----------
|
524 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
525 |
+
Graph type to create. If graph instance, then cleared before populated.
|
526 |
+
|
527 |
+
Returns
|
528 |
+
-------
|
529 |
+
G : networkx Graph
|
530 |
+
House graph with diagonal vertices connected
|
531 |
+
|
532 |
+
References
|
533 |
+
----------
|
534 |
+
.. [1] https://mathworld.wolfram.com/HouseGraph.html
|
535 |
+
"""
|
536 |
+
G = house_graph(create_using)
|
537 |
+
G.add_edges_from([(0, 3), (1, 2)])
|
538 |
+
G.name = "House-with-X-inside Graph"
|
539 |
+
return G
|
540 |
+
|
541 |
+
|
542 |
+
@_raise_on_directed
|
543 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
544 |
+
def icosahedral_graph(create_using=None):
|
545 |
+
"""
|
546 |
+
Returns the Platonic Icosahedral graph.
|
547 |
+
|
548 |
+
The icosahedral graph has 12 nodes and 30 edges. It is a Platonic graph
|
549 |
+
whose nodes have the connectivity of the icosahedron. It is undirected,
|
550 |
+
regular and Hamiltonian [1]_.
|
551 |
+
|
552 |
+
Parameters
|
553 |
+
----------
|
554 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
555 |
+
Graph type to create. If graph instance, then cleared before populated.
|
556 |
+
|
557 |
+
Returns
|
558 |
+
-------
|
559 |
+
G : networkx Graph
|
560 |
+
Icosahedral graph with 12 nodes and 30 edges.
|
561 |
+
|
562 |
+
References
|
563 |
+
----------
|
564 |
+
.. [1] https://mathworld.wolfram.com/IcosahedralGraph.html
|
565 |
+
"""
|
566 |
+
G = nx.from_dict_of_lists(
|
567 |
+
{
|
568 |
+
0: [1, 5, 7, 8, 11],
|
569 |
+
1: [2, 5, 6, 8],
|
570 |
+
2: [3, 6, 8, 9],
|
571 |
+
3: [4, 6, 9, 10],
|
572 |
+
4: [5, 6, 10, 11],
|
573 |
+
5: [6, 11],
|
574 |
+
7: [8, 9, 10, 11],
|
575 |
+
8: [9],
|
576 |
+
9: [10],
|
577 |
+
10: [11],
|
578 |
+
},
|
579 |
+
create_using=create_using,
|
580 |
+
)
|
581 |
+
G.name = "Platonic Icosahedral Graph"
|
582 |
+
return G
|
583 |
+
|
584 |
+
|
585 |
+
@_raise_on_directed
|
586 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
587 |
+
def krackhardt_kite_graph(create_using=None):
|
588 |
+
"""
|
589 |
+
Returns the Krackhardt Kite Social Network.
|
590 |
+
|
591 |
+
A 10 actor social network introduced by David Krackhardt
|
592 |
+
to illustrate different centrality measures [1]_.
|
593 |
+
|
594 |
+
Parameters
|
595 |
+
----------
|
596 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
597 |
+
Graph type to create. If graph instance, then cleared before populated.
|
598 |
+
|
599 |
+
Returns
|
600 |
+
-------
|
601 |
+
G : networkx Graph
|
602 |
+
Krackhardt Kite graph with 10 nodes and 18 edges
|
603 |
+
|
604 |
+
Notes
|
605 |
+
-----
|
606 |
+
The traditional labeling is:
|
607 |
+
Andre=1, Beverley=2, Carol=3, Diane=4,
|
608 |
+
Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.
|
609 |
+
|
610 |
+
References
|
611 |
+
----------
|
612 |
+
.. [1] Krackhardt, David. "Assessing the Political Landscape: Structure,
|
613 |
+
Cognition, and Power in Organizations". Administrative Science Quarterly.
|
614 |
+
35 (2): 342–369. doi:10.2307/2393394. JSTOR 2393394. June 1990.
|
615 |
+
|
616 |
+
"""
|
617 |
+
G = nx.from_dict_of_lists(
|
618 |
+
{
|
619 |
+
0: [1, 2, 3, 5],
|
620 |
+
1: [0, 3, 4, 6],
|
621 |
+
2: [0, 3, 5],
|
622 |
+
3: [0, 1, 2, 4, 5, 6],
|
623 |
+
4: [1, 3, 6],
|
624 |
+
5: [0, 2, 3, 6, 7],
|
625 |
+
6: [1, 3, 4, 5, 7],
|
626 |
+
7: [5, 6, 8],
|
627 |
+
8: [7, 9],
|
628 |
+
9: [8],
|
629 |
+
},
|
630 |
+
create_using=create_using,
|
631 |
+
)
|
632 |
+
G.name = "Krackhardt Kite Social Network"
|
633 |
+
return G
|
634 |
+
|
635 |
+
|
636 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
637 |
+
def moebius_kantor_graph(create_using=None):
|
638 |
+
"""
|
639 |
+
Returns the Moebius-Kantor graph.
|
640 |
+
|
641 |
+
The Möbius-Kantor graph is the cubic symmetric graph on 16 nodes.
|
642 |
+
Its LCF notation is [5,-5]^8, and it is isomorphic to the generalized
|
643 |
+
Petersen graph [1]_.
|
644 |
+
|
645 |
+
Parameters
|
646 |
+
----------
|
647 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
648 |
+
Graph type to create. If graph instance, then cleared before populated.
|
649 |
+
|
650 |
+
Returns
|
651 |
+
-------
|
652 |
+
G : networkx Graph
|
653 |
+
Moebius-Kantor graph
|
654 |
+
|
655 |
+
References
|
656 |
+
----------
|
657 |
+
.. [1] https://en.wikipedia.org/wiki/M%C3%B6bius%E2%80%93Kantor_graph
|
658 |
+
|
659 |
+
"""
|
660 |
+
G = LCF_graph(16, [5, -5], 8, create_using)
|
661 |
+
G.name = "Moebius-Kantor Graph"
|
662 |
+
return G
|
663 |
+
|
664 |
+
|
665 |
+
@_raise_on_directed
|
666 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
667 |
+
def octahedral_graph(create_using=None):
|
668 |
+
"""
|
669 |
+
Returns the Platonic Octahedral graph.
|
670 |
+
|
671 |
+
The octahedral graph is the 6-node 12-edge Platonic graph having the
|
672 |
+
connectivity of the octahedron [1]_. If 6 couples go to a party,
|
673 |
+
and each person shakes hands with every person except his or her partner,
|
674 |
+
then this graph describes the set of handshakes that take place;
|
675 |
+
for this reason it is also called the cocktail party graph [2]_.
|
676 |
+
|
677 |
+
Parameters
|
678 |
+
----------
|
679 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
680 |
+
Graph type to create. If graph instance, then cleared before populated.
|
681 |
+
|
682 |
+
Returns
|
683 |
+
-------
|
684 |
+
G : networkx Graph
|
685 |
+
Octahedral graph
|
686 |
+
|
687 |
+
References
|
688 |
+
----------
|
689 |
+
.. [1] https://mathworld.wolfram.com/OctahedralGraph.html
|
690 |
+
.. [2] https://en.wikipedia.org/wiki/Tur%C3%A1n_graph#Special_cases
|
691 |
+
|
692 |
+
"""
|
693 |
+
G = nx.from_dict_of_lists(
|
694 |
+
{0: [1, 2, 3, 4], 1: [2, 3, 5], 2: [4, 5], 3: [4, 5], 4: [5]},
|
695 |
+
create_using=create_using,
|
696 |
+
)
|
697 |
+
G.name = "Platonic Octahedral Graph"
|
698 |
+
return G
|
699 |
+
|
700 |
+
|
701 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
702 |
+
def pappus_graph():
|
703 |
+
"""
|
704 |
+
Returns the Pappus graph.
|
705 |
+
|
706 |
+
The Pappus graph is a cubic symmetric distance-regular graph with 18 nodes
|
707 |
+
and 27 edges. It is Hamiltonian and can be represented in LCF notation as
|
708 |
+
[5,7,-7,7,-7,-5]^3 [1]_.
|
709 |
+
|
710 |
+
Returns
|
711 |
+
-------
|
712 |
+
G : networkx Graph
|
713 |
+
Pappus graph
|
714 |
+
|
715 |
+
References
|
716 |
+
----------
|
717 |
+
.. [1] https://en.wikipedia.org/wiki/Pappus_graph
|
718 |
+
"""
|
719 |
+
G = LCF_graph(18, [5, 7, -7, 7, -7, -5], 3)
|
720 |
+
G.name = "Pappus Graph"
|
721 |
+
return G
|
722 |
+
|
723 |
+
|
724 |
+
@_raise_on_directed
|
725 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
726 |
+
def petersen_graph(create_using=None):
|
727 |
+
"""
|
728 |
+
Returns the Petersen graph.
|
729 |
+
|
730 |
+
The Peterson graph is a cubic, undirected graph with 10 nodes and 15 edges [1]_.
|
731 |
+
Julius Petersen constructed the graph as the smallest counterexample
|
732 |
+
against the claim that a connected bridgeless cubic graph
|
733 |
+
has an edge colouring with three colours [2]_.
|
734 |
+
|
735 |
+
Parameters
|
736 |
+
----------
|
737 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
738 |
+
Graph type to create. If graph instance, then cleared before populated.
|
739 |
+
|
740 |
+
Returns
|
741 |
+
-------
|
742 |
+
G : networkx Graph
|
743 |
+
Petersen graph
|
744 |
+
|
745 |
+
References
|
746 |
+
----------
|
747 |
+
.. [1] https://en.wikipedia.org/wiki/Petersen_graph
|
748 |
+
.. [2] https://www.win.tue.nl/~aeb/drg/graphs/Petersen.html
|
749 |
+
"""
|
750 |
+
G = nx.from_dict_of_lists(
|
751 |
+
{
|
752 |
+
0: [1, 4, 5],
|
753 |
+
1: [0, 2, 6],
|
754 |
+
2: [1, 3, 7],
|
755 |
+
3: [2, 4, 8],
|
756 |
+
4: [3, 0, 9],
|
757 |
+
5: [0, 7, 8],
|
758 |
+
6: [1, 8, 9],
|
759 |
+
7: [2, 5, 9],
|
760 |
+
8: [3, 5, 6],
|
761 |
+
9: [4, 6, 7],
|
762 |
+
},
|
763 |
+
create_using=create_using,
|
764 |
+
)
|
765 |
+
G.name = "Petersen Graph"
|
766 |
+
return G
|
767 |
+
|
768 |
+
|
769 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
770 |
+
def sedgewick_maze_graph(create_using=None):
|
771 |
+
"""
|
772 |
+
Return a small maze with a cycle.
|
773 |
+
|
774 |
+
This is the maze used in Sedgewick, 3rd Edition, Part 5, Graph
|
775 |
+
Algorithms, Chapter 18, e.g. Figure 18.2 and following [1]_.
|
776 |
+
Nodes are numbered 0,..,7
|
777 |
+
|
778 |
+
Parameters
|
779 |
+
----------
|
780 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
781 |
+
Graph type to create. If graph instance, then cleared before populated.
|
782 |
+
|
783 |
+
Returns
|
784 |
+
-------
|
785 |
+
G : networkx Graph
|
786 |
+
Small maze with a cycle
|
787 |
+
|
788 |
+
References
|
789 |
+
----------
|
790 |
+
.. [1] Figure 18.2, Chapter 18, Graph Algorithms (3rd Ed), Sedgewick
|
791 |
+
"""
|
792 |
+
G = empty_graph(0, create_using)
|
793 |
+
G.add_nodes_from(range(8))
|
794 |
+
G.add_edges_from([[0, 2], [0, 7], [0, 5]])
|
795 |
+
G.add_edges_from([[1, 7], [2, 6]])
|
796 |
+
G.add_edges_from([[3, 4], [3, 5]])
|
797 |
+
G.add_edges_from([[4, 5], [4, 7], [4, 6]])
|
798 |
+
G.name = "Sedgewick Maze"
|
799 |
+
return G
|
800 |
+
|
801 |
+
|
802 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
803 |
+
def tetrahedral_graph(create_using=None):
|
804 |
+
"""
|
805 |
+
Returns the 3-regular Platonic Tetrahedral graph.
|
806 |
+
|
807 |
+
Tetrahedral graph has 4 nodes and 6 edges. It is a
|
808 |
+
special case of the complete graph, K4, and wheel graph, W4.
|
809 |
+
It is one of the 5 platonic graphs [1]_.
|
810 |
+
|
811 |
+
Parameters
|
812 |
+
----------
|
813 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
814 |
+
Graph type to create. If graph instance, then cleared before populated.
|
815 |
+
|
816 |
+
Returns
|
817 |
+
-------
|
818 |
+
G : networkx Graph
|
819 |
+
Tetrahedral Graph
|
820 |
+
|
821 |
+
References
|
822 |
+
----------
|
823 |
+
.. [1] https://en.wikipedia.org/wiki/Tetrahedron#Tetrahedral_graph
|
824 |
+
|
825 |
+
"""
|
826 |
+
G = complete_graph(4, create_using)
|
827 |
+
G.name = "Platonic Tetrahedral Graph"
|
828 |
+
return G
|
829 |
+
|
830 |
+
|
831 |
+
@_raise_on_directed
|
832 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
833 |
+
def truncated_cube_graph(create_using=None):
|
834 |
+
"""
|
835 |
+
Returns the skeleton of the truncated cube.
|
836 |
+
|
837 |
+
The truncated cube is an Archimedean solid with 14 regular
|
838 |
+
faces (6 octagonal and 8 triangular), 36 edges and 24 nodes [1]_.
|
839 |
+
The truncated cube is created by truncating (cutting off) the tips
|
840 |
+
of the cube one third of the way into each edge [2]_.
|
841 |
+
|
842 |
+
Parameters
|
843 |
+
----------
|
844 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
845 |
+
Graph type to create. If graph instance, then cleared before populated.
|
846 |
+
|
847 |
+
Returns
|
848 |
+
-------
|
849 |
+
G : networkx Graph
|
850 |
+
Skeleton of the truncated cube
|
851 |
+
|
852 |
+
References
|
853 |
+
----------
|
854 |
+
.. [1] https://en.wikipedia.org/wiki/Truncated_cube
|
855 |
+
.. [2] https://www.coolmath.com/reference/polyhedra-truncated-cube
|
856 |
+
|
857 |
+
"""
|
858 |
+
G = nx.from_dict_of_lists(
|
859 |
+
{
|
860 |
+
0: [1, 2, 4],
|
861 |
+
1: [11, 14],
|
862 |
+
2: [3, 4],
|
863 |
+
3: [6, 8],
|
864 |
+
4: [5],
|
865 |
+
5: [16, 18],
|
866 |
+
6: [7, 8],
|
867 |
+
7: [10, 12],
|
868 |
+
8: [9],
|
869 |
+
9: [17, 20],
|
870 |
+
10: [11, 12],
|
871 |
+
11: [14],
|
872 |
+
12: [13],
|
873 |
+
13: [21, 22],
|
874 |
+
14: [15],
|
875 |
+
15: [19, 23],
|
876 |
+
16: [17, 18],
|
877 |
+
17: [20],
|
878 |
+
18: [19],
|
879 |
+
19: [23],
|
880 |
+
20: [21],
|
881 |
+
21: [22],
|
882 |
+
22: [23],
|
883 |
+
},
|
884 |
+
create_using=create_using,
|
885 |
+
)
|
886 |
+
G.name = "Truncated Cube Graph"
|
887 |
+
return G
|
888 |
+
|
889 |
+
|
890 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
891 |
+
def truncated_tetrahedron_graph(create_using=None):
|
892 |
+
"""
|
893 |
+
Returns the skeleton of the truncated Platonic tetrahedron.
|
894 |
+
|
895 |
+
The truncated tetrahedron is an Archimedean solid with 4 regular hexagonal faces,
|
896 |
+
4 equilateral triangle faces, 12 nodes and 18 edges. It can be constructed by truncating
|
897 |
+
all 4 vertices of a regular tetrahedron at one third of the original edge length [1]_.
|
898 |
+
|
899 |
+
Parameters
|
900 |
+
----------
|
901 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
902 |
+
Graph type to create. If graph instance, then cleared before populated.
|
903 |
+
|
904 |
+
Returns
|
905 |
+
-------
|
906 |
+
G : networkx Graph
|
907 |
+
Skeleton of the truncated tetrahedron
|
908 |
+
|
909 |
+
References
|
910 |
+
----------
|
911 |
+
.. [1] https://en.wikipedia.org/wiki/Truncated_tetrahedron
|
912 |
+
|
913 |
+
"""
|
914 |
+
G = path_graph(12, create_using)
|
915 |
+
G.add_edges_from([(0, 2), (0, 9), (1, 6), (3, 11), (4, 11), (5, 7), (8, 10)])
|
916 |
+
G.name = "Truncated Tetrahedron Graph"
|
917 |
+
return G
|
918 |
+
|
919 |
+
|
920 |
+
@_raise_on_directed
|
921 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
922 |
+
def tutte_graph(create_using=None):
|
923 |
+
"""
|
924 |
+
Returns the Tutte graph.
|
925 |
+
|
926 |
+
The Tutte graph is a cubic polyhedral, non-Hamiltonian graph. It has
|
927 |
+
46 nodes and 69 edges.
|
928 |
+
It is a counterexample to Tait's conjecture that every 3-regular polyhedron
|
929 |
+
has a Hamiltonian cycle.
|
930 |
+
It can be realized geometrically from a tetrahedron by multiply truncating
|
931 |
+
three of its vertices [1]_.
|
932 |
+
|
933 |
+
Parameters
|
934 |
+
----------
|
935 |
+
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
936 |
+
Graph type to create. If graph instance, then cleared before populated.
|
937 |
+
|
938 |
+
Returns
|
939 |
+
-------
|
940 |
+
G : networkx Graph
|
941 |
+
Tutte graph
|
942 |
+
|
943 |
+
References
|
944 |
+
----------
|
945 |
+
.. [1] https://en.wikipedia.org/wiki/Tutte_graph
|
946 |
+
"""
|
947 |
+
G = nx.from_dict_of_lists(
|
948 |
+
{
|
949 |
+
0: [1, 2, 3],
|
950 |
+
1: [4, 26],
|
951 |
+
2: [10, 11],
|
952 |
+
3: [18, 19],
|
953 |
+
4: [5, 33],
|
954 |
+
5: [6, 29],
|
955 |
+
6: [7, 27],
|
956 |
+
7: [8, 14],
|
957 |
+
8: [9, 38],
|
958 |
+
9: [10, 37],
|
959 |
+
10: [39],
|
960 |
+
11: [12, 39],
|
961 |
+
12: [13, 35],
|
962 |
+
13: [14, 15],
|
963 |
+
14: [34],
|
964 |
+
15: [16, 22],
|
965 |
+
16: [17, 44],
|
966 |
+
17: [18, 43],
|
967 |
+
18: [45],
|
968 |
+
19: [20, 45],
|
969 |
+
20: [21, 41],
|
970 |
+
21: [22, 23],
|
971 |
+
22: [40],
|
972 |
+
23: [24, 27],
|
973 |
+
24: [25, 32],
|
974 |
+
25: [26, 31],
|
975 |
+
26: [33],
|
976 |
+
27: [28],
|
977 |
+
28: [29, 32],
|
978 |
+
29: [30],
|
979 |
+
30: [31, 33],
|
980 |
+
31: [32],
|
981 |
+
34: [35, 38],
|
982 |
+
35: [36],
|
983 |
+
36: [37, 39],
|
984 |
+
37: [38],
|
985 |
+
40: [41, 44],
|
986 |
+
41: [42],
|
987 |
+
42: [43, 45],
|
988 |
+
43: [44],
|
989 |
+
},
|
990 |
+
create_using=create_using,
|
991 |
+
)
|
992 |
+
G.name = "Tutte's Graph"
|
993 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/social.py
ADDED
@@ -0,0 +1,546 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Famous social networks.
|
3 |
+
"""
|
4 |
+
import networkx as nx
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"karate_club_graph",
|
8 |
+
"davis_southern_women_graph",
|
9 |
+
"florentine_families_graph",
|
10 |
+
"les_miserables_graph",
|
11 |
+
]
|
12 |
+
|
13 |
+
|
14 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
15 |
+
def karate_club_graph():
|
16 |
+
"""Returns Zachary's Karate Club graph.
|
17 |
+
|
18 |
+
Each node in the returned graph has a node attribute 'club' that
|
19 |
+
indicates the name of the club to which the member represented by that node
|
20 |
+
belongs, either 'Mr. Hi' or 'Officer'. Each edge has a weight based on the
|
21 |
+
number of contexts in which that edge's incident node members interacted.
|
22 |
+
|
23 |
+
Examples
|
24 |
+
--------
|
25 |
+
To get the name of the club to which a node belongs::
|
26 |
+
|
27 |
+
>>> G = nx.karate_club_graph()
|
28 |
+
>>> G.nodes[5]["club"]
|
29 |
+
'Mr. Hi'
|
30 |
+
>>> G.nodes[9]["club"]
|
31 |
+
'Officer'
|
32 |
+
|
33 |
+
References
|
34 |
+
----------
|
35 |
+
.. [1] Zachary, Wayne W.
|
36 |
+
"An Information Flow Model for Conflict and Fission in Small Groups."
|
37 |
+
*Journal of Anthropological Research*, 33, 452--473, (1977).
|
38 |
+
"""
|
39 |
+
# Create the set of all members, and the members of each club.
|
40 |
+
all_members = set(range(34))
|
41 |
+
club1 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 19, 21}
|
42 |
+
# club2 = all_members - club1
|
43 |
+
|
44 |
+
G = nx.Graph()
|
45 |
+
G.add_nodes_from(all_members)
|
46 |
+
G.name = "Zachary's Karate Club"
|
47 |
+
|
48 |
+
zacharydat = """\
|
49 |
+
0 4 5 3 3 3 3 2 2 0 2 3 2 3 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 2 0 0
|
50 |
+
4 0 6 3 0 0 0 4 0 0 0 0 0 5 0 0 0 1 0 2 0 2 0 0 0 0 0 0 0 0 2 0 0 0
|
51 |
+
5 6 0 3 0 0 0 4 5 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 3 0
|
52 |
+
3 3 3 0 0 0 0 3 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
53 |
+
3 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
54 |
+
3 0 0 0 0 0 5 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
55 |
+
3 0 0 0 2 5 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
56 |
+
2 4 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
57 |
+
2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 3
|
58 |
+
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
|
59 |
+
2 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
60 |
+
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
61 |
+
1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
62 |
+
3 5 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
|
63 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2
|
64 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4
|
65 |
+
0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
66 |
+
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
67 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
|
68 |
+
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
|
69 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1
|
70 |
+
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
71 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
|
72 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 4 0 2 0 0 5 4
|
73 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 2 0 0
|
74 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 0 0 0 0 0 0 7 0 0
|
75 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 2
|
76 |
+
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 0 0 0 0 0 0 4
|
77 |
+
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2
|
78 |
+
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 4 0 0 0 0 0 3 2
|
79 |
+
0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3
|
80 |
+
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 7 0 0 2 0 0 0 4 4
|
81 |
+
0 0 2 0 0 0 0 0 3 0 0 0 0 0 3 3 0 0 1 0 3 0 2 5 0 0 0 0 0 4 3 4 0 5
|
82 |
+
0 0 0 0 0 0 0 0 4 2 0 0 0 3 2 4 0 0 2 1 1 0 3 4 0 0 2 4 2 2 3 4 5 0"""
|
83 |
+
|
84 |
+
for row, line in enumerate(zacharydat.split("\n")):
|
85 |
+
thisrow = [int(b) for b in line.split()]
|
86 |
+
for col, entry in enumerate(thisrow):
|
87 |
+
if entry >= 1:
|
88 |
+
G.add_edge(row, col, weight=entry)
|
89 |
+
|
90 |
+
# Add the name of each member's club as a node attribute.
|
91 |
+
for v in G:
|
92 |
+
G.nodes[v]["club"] = "Mr. Hi" if v in club1 else "Officer"
|
93 |
+
return G
|
94 |
+
|
95 |
+
|
96 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
97 |
+
def davis_southern_women_graph():
|
98 |
+
"""Returns Davis Southern women social network.
|
99 |
+
|
100 |
+
This is a bipartite graph.
|
101 |
+
|
102 |
+
References
|
103 |
+
----------
|
104 |
+
.. [1] A. Davis, Gardner, B. B., Gardner, M. R., 1941. Deep South.
|
105 |
+
University of Chicago Press, Chicago, IL.
|
106 |
+
"""
|
107 |
+
G = nx.Graph()
|
108 |
+
# Top nodes
|
109 |
+
women = [
|
110 |
+
"Evelyn Jefferson",
|
111 |
+
"Laura Mandeville",
|
112 |
+
"Theresa Anderson",
|
113 |
+
"Brenda Rogers",
|
114 |
+
"Charlotte McDowd",
|
115 |
+
"Frances Anderson",
|
116 |
+
"Eleanor Nye",
|
117 |
+
"Pearl Oglethorpe",
|
118 |
+
"Ruth DeSand",
|
119 |
+
"Verne Sanderson",
|
120 |
+
"Myra Liddel",
|
121 |
+
"Katherina Rogers",
|
122 |
+
"Sylvia Avondale",
|
123 |
+
"Nora Fayette",
|
124 |
+
"Helen Lloyd",
|
125 |
+
"Dorothy Murchison",
|
126 |
+
"Olivia Carleton",
|
127 |
+
"Flora Price",
|
128 |
+
]
|
129 |
+
G.add_nodes_from(women, bipartite=0)
|
130 |
+
# Bottom nodes
|
131 |
+
events = [
|
132 |
+
"E1",
|
133 |
+
"E2",
|
134 |
+
"E3",
|
135 |
+
"E4",
|
136 |
+
"E5",
|
137 |
+
"E6",
|
138 |
+
"E7",
|
139 |
+
"E8",
|
140 |
+
"E9",
|
141 |
+
"E10",
|
142 |
+
"E11",
|
143 |
+
"E12",
|
144 |
+
"E13",
|
145 |
+
"E14",
|
146 |
+
]
|
147 |
+
G.add_nodes_from(events, bipartite=1)
|
148 |
+
|
149 |
+
G.add_edges_from(
|
150 |
+
[
|
151 |
+
("Evelyn Jefferson", "E1"),
|
152 |
+
("Evelyn Jefferson", "E2"),
|
153 |
+
("Evelyn Jefferson", "E3"),
|
154 |
+
("Evelyn Jefferson", "E4"),
|
155 |
+
("Evelyn Jefferson", "E5"),
|
156 |
+
("Evelyn Jefferson", "E6"),
|
157 |
+
("Evelyn Jefferson", "E8"),
|
158 |
+
("Evelyn Jefferson", "E9"),
|
159 |
+
("Laura Mandeville", "E1"),
|
160 |
+
("Laura Mandeville", "E2"),
|
161 |
+
("Laura Mandeville", "E3"),
|
162 |
+
("Laura Mandeville", "E5"),
|
163 |
+
("Laura Mandeville", "E6"),
|
164 |
+
("Laura Mandeville", "E7"),
|
165 |
+
("Laura Mandeville", "E8"),
|
166 |
+
("Theresa Anderson", "E2"),
|
167 |
+
("Theresa Anderson", "E3"),
|
168 |
+
("Theresa Anderson", "E4"),
|
169 |
+
("Theresa Anderson", "E5"),
|
170 |
+
("Theresa Anderson", "E6"),
|
171 |
+
("Theresa Anderson", "E7"),
|
172 |
+
("Theresa Anderson", "E8"),
|
173 |
+
("Theresa Anderson", "E9"),
|
174 |
+
("Brenda Rogers", "E1"),
|
175 |
+
("Brenda Rogers", "E3"),
|
176 |
+
("Brenda Rogers", "E4"),
|
177 |
+
("Brenda Rogers", "E5"),
|
178 |
+
("Brenda Rogers", "E6"),
|
179 |
+
("Brenda Rogers", "E7"),
|
180 |
+
("Brenda Rogers", "E8"),
|
181 |
+
("Charlotte McDowd", "E3"),
|
182 |
+
("Charlotte McDowd", "E4"),
|
183 |
+
("Charlotte McDowd", "E5"),
|
184 |
+
("Charlotte McDowd", "E7"),
|
185 |
+
("Frances Anderson", "E3"),
|
186 |
+
("Frances Anderson", "E5"),
|
187 |
+
("Frances Anderson", "E6"),
|
188 |
+
("Frances Anderson", "E8"),
|
189 |
+
("Eleanor Nye", "E5"),
|
190 |
+
("Eleanor Nye", "E6"),
|
191 |
+
("Eleanor Nye", "E7"),
|
192 |
+
("Eleanor Nye", "E8"),
|
193 |
+
("Pearl Oglethorpe", "E6"),
|
194 |
+
("Pearl Oglethorpe", "E8"),
|
195 |
+
("Pearl Oglethorpe", "E9"),
|
196 |
+
("Ruth DeSand", "E5"),
|
197 |
+
("Ruth DeSand", "E7"),
|
198 |
+
("Ruth DeSand", "E8"),
|
199 |
+
("Ruth DeSand", "E9"),
|
200 |
+
("Verne Sanderson", "E7"),
|
201 |
+
("Verne Sanderson", "E8"),
|
202 |
+
("Verne Sanderson", "E9"),
|
203 |
+
("Verne Sanderson", "E12"),
|
204 |
+
("Myra Liddel", "E8"),
|
205 |
+
("Myra Liddel", "E9"),
|
206 |
+
("Myra Liddel", "E10"),
|
207 |
+
("Myra Liddel", "E12"),
|
208 |
+
("Katherina Rogers", "E8"),
|
209 |
+
("Katherina Rogers", "E9"),
|
210 |
+
("Katherina Rogers", "E10"),
|
211 |
+
("Katherina Rogers", "E12"),
|
212 |
+
("Katherina Rogers", "E13"),
|
213 |
+
("Katherina Rogers", "E14"),
|
214 |
+
("Sylvia Avondale", "E7"),
|
215 |
+
("Sylvia Avondale", "E8"),
|
216 |
+
("Sylvia Avondale", "E9"),
|
217 |
+
("Sylvia Avondale", "E10"),
|
218 |
+
("Sylvia Avondale", "E12"),
|
219 |
+
("Sylvia Avondale", "E13"),
|
220 |
+
("Sylvia Avondale", "E14"),
|
221 |
+
("Nora Fayette", "E6"),
|
222 |
+
("Nora Fayette", "E7"),
|
223 |
+
("Nora Fayette", "E9"),
|
224 |
+
("Nora Fayette", "E10"),
|
225 |
+
("Nora Fayette", "E11"),
|
226 |
+
("Nora Fayette", "E12"),
|
227 |
+
("Nora Fayette", "E13"),
|
228 |
+
("Nora Fayette", "E14"),
|
229 |
+
("Helen Lloyd", "E7"),
|
230 |
+
("Helen Lloyd", "E8"),
|
231 |
+
("Helen Lloyd", "E10"),
|
232 |
+
("Helen Lloyd", "E11"),
|
233 |
+
("Helen Lloyd", "E12"),
|
234 |
+
("Dorothy Murchison", "E8"),
|
235 |
+
("Dorothy Murchison", "E9"),
|
236 |
+
("Olivia Carleton", "E9"),
|
237 |
+
("Olivia Carleton", "E11"),
|
238 |
+
("Flora Price", "E9"),
|
239 |
+
("Flora Price", "E11"),
|
240 |
+
]
|
241 |
+
)
|
242 |
+
G.graph["top"] = women
|
243 |
+
G.graph["bottom"] = events
|
244 |
+
return G
|
245 |
+
|
246 |
+
|
247 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
248 |
+
def florentine_families_graph():
|
249 |
+
"""Returns Florentine families graph.
|
250 |
+
|
251 |
+
References
|
252 |
+
----------
|
253 |
+
.. [1] Ronald L. Breiger and Philippa E. Pattison
|
254 |
+
Cumulated social roles: The duality of persons and their algebras,1
|
255 |
+
Social Networks, Volume 8, Issue 3, September 1986, Pages 215-256
|
256 |
+
"""
|
257 |
+
G = nx.Graph()
|
258 |
+
G.add_edge("Acciaiuoli", "Medici")
|
259 |
+
G.add_edge("Castellani", "Peruzzi")
|
260 |
+
G.add_edge("Castellani", "Strozzi")
|
261 |
+
G.add_edge("Castellani", "Barbadori")
|
262 |
+
G.add_edge("Medici", "Barbadori")
|
263 |
+
G.add_edge("Medici", "Ridolfi")
|
264 |
+
G.add_edge("Medici", "Tornabuoni")
|
265 |
+
G.add_edge("Medici", "Albizzi")
|
266 |
+
G.add_edge("Medici", "Salviati")
|
267 |
+
G.add_edge("Salviati", "Pazzi")
|
268 |
+
G.add_edge("Peruzzi", "Strozzi")
|
269 |
+
G.add_edge("Peruzzi", "Bischeri")
|
270 |
+
G.add_edge("Strozzi", "Ridolfi")
|
271 |
+
G.add_edge("Strozzi", "Bischeri")
|
272 |
+
G.add_edge("Ridolfi", "Tornabuoni")
|
273 |
+
G.add_edge("Tornabuoni", "Guadagni")
|
274 |
+
G.add_edge("Albizzi", "Ginori")
|
275 |
+
G.add_edge("Albizzi", "Guadagni")
|
276 |
+
G.add_edge("Bischeri", "Guadagni")
|
277 |
+
G.add_edge("Guadagni", "Lamberteschi")
|
278 |
+
return G
|
279 |
+
|
280 |
+
|
281 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
282 |
+
def les_miserables_graph():
|
283 |
+
"""Returns coappearance network of characters in the novel Les Miserables.
|
284 |
+
|
285 |
+
References
|
286 |
+
----------
|
287 |
+
.. [1] D. E. Knuth, 1993.
|
288 |
+
The Stanford GraphBase: a platform for combinatorial computing,
|
289 |
+
pp. 74-87. New York: AcM Press.
|
290 |
+
"""
|
291 |
+
G = nx.Graph()
|
292 |
+
G.add_edge("Napoleon", "Myriel", weight=1)
|
293 |
+
G.add_edge("MlleBaptistine", "Myriel", weight=8)
|
294 |
+
G.add_edge("MmeMagloire", "Myriel", weight=10)
|
295 |
+
G.add_edge("MmeMagloire", "MlleBaptistine", weight=6)
|
296 |
+
G.add_edge("CountessDeLo", "Myriel", weight=1)
|
297 |
+
G.add_edge("Geborand", "Myriel", weight=1)
|
298 |
+
G.add_edge("Champtercier", "Myriel", weight=1)
|
299 |
+
G.add_edge("Cravatte", "Myriel", weight=1)
|
300 |
+
G.add_edge("Count", "Myriel", weight=2)
|
301 |
+
G.add_edge("OldMan", "Myriel", weight=1)
|
302 |
+
G.add_edge("Valjean", "Labarre", weight=1)
|
303 |
+
G.add_edge("Valjean", "MmeMagloire", weight=3)
|
304 |
+
G.add_edge("Valjean", "MlleBaptistine", weight=3)
|
305 |
+
G.add_edge("Valjean", "Myriel", weight=5)
|
306 |
+
G.add_edge("Marguerite", "Valjean", weight=1)
|
307 |
+
G.add_edge("MmeDeR", "Valjean", weight=1)
|
308 |
+
G.add_edge("Isabeau", "Valjean", weight=1)
|
309 |
+
G.add_edge("Gervais", "Valjean", weight=1)
|
310 |
+
G.add_edge("Listolier", "Tholomyes", weight=4)
|
311 |
+
G.add_edge("Fameuil", "Tholomyes", weight=4)
|
312 |
+
G.add_edge("Fameuil", "Listolier", weight=4)
|
313 |
+
G.add_edge("Blacheville", "Tholomyes", weight=4)
|
314 |
+
G.add_edge("Blacheville", "Listolier", weight=4)
|
315 |
+
G.add_edge("Blacheville", "Fameuil", weight=4)
|
316 |
+
G.add_edge("Favourite", "Tholomyes", weight=3)
|
317 |
+
G.add_edge("Favourite", "Listolier", weight=3)
|
318 |
+
G.add_edge("Favourite", "Fameuil", weight=3)
|
319 |
+
G.add_edge("Favourite", "Blacheville", weight=4)
|
320 |
+
G.add_edge("Dahlia", "Tholomyes", weight=3)
|
321 |
+
G.add_edge("Dahlia", "Listolier", weight=3)
|
322 |
+
G.add_edge("Dahlia", "Fameuil", weight=3)
|
323 |
+
G.add_edge("Dahlia", "Blacheville", weight=3)
|
324 |
+
G.add_edge("Dahlia", "Favourite", weight=5)
|
325 |
+
G.add_edge("Zephine", "Tholomyes", weight=3)
|
326 |
+
G.add_edge("Zephine", "Listolier", weight=3)
|
327 |
+
G.add_edge("Zephine", "Fameuil", weight=3)
|
328 |
+
G.add_edge("Zephine", "Blacheville", weight=3)
|
329 |
+
G.add_edge("Zephine", "Favourite", weight=4)
|
330 |
+
G.add_edge("Zephine", "Dahlia", weight=4)
|
331 |
+
G.add_edge("Fantine", "Tholomyes", weight=3)
|
332 |
+
G.add_edge("Fantine", "Listolier", weight=3)
|
333 |
+
G.add_edge("Fantine", "Fameuil", weight=3)
|
334 |
+
G.add_edge("Fantine", "Blacheville", weight=3)
|
335 |
+
G.add_edge("Fantine", "Favourite", weight=4)
|
336 |
+
G.add_edge("Fantine", "Dahlia", weight=4)
|
337 |
+
G.add_edge("Fantine", "Zephine", weight=4)
|
338 |
+
G.add_edge("Fantine", "Marguerite", weight=2)
|
339 |
+
G.add_edge("Fantine", "Valjean", weight=9)
|
340 |
+
G.add_edge("MmeThenardier", "Fantine", weight=2)
|
341 |
+
G.add_edge("MmeThenardier", "Valjean", weight=7)
|
342 |
+
G.add_edge("Thenardier", "MmeThenardier", weight=13)
|
343 |
+
G.add_edge("Thenardier", "Fantine", weight=1)
|
344 |
+
G.add_edge("Thenardier", "Valjean", weight=12)
|
345 |
+
G.add_edge("Cosette", "MmeThenardier", weight=4)
|
346 |
+
G.add_edge("Cosette", "Valjean", weight=31)
|
347 |
+
G.add_edge("Cosette", "Tholomyes", weight=1)
|
348 |
+
G.add_edge("Cosette", "Thenardier", weight=1)
|
349 |
+
G.add_edge("Javert", "Valjean", weight=17)
|
350 |
+
G.add_edge("Javert", "Fantine", weight=5)
|
351 |
+
G.add_edge("Javert", "Thenardier", weight=5)
|
352 |
+
G.add_edge("Javert", "MmeThenardier", weight=1)
|
353 |
+
G.add_edge("Javert", "Cosette", weight=1)
|
354 |
+
G.add_edge("Fauchelevent", "Valjean", weight=8)
|
355 |
+
G.add_edge("Fauchelevent", "Javert", weight=1)
|
356 |
+
G.add_edge("Bamatabois", "Fantine", weight=1)
|
357 |
+
G.add_edge("Bamatabois", "Javert", weight=1)
|
358 |
+
G.add_edge("Bamatabois", "Valjean", weight=2)
|
359 |
+
G.add_edge("Perpetue", "Fantine", weight=1)
|
360 |
+
G.add_edge("Simplice", "Perpetue", weight=2)
|
361 |
+
G.add_edge("Simplice", "Valjean", weight=3)
|
362 |
+
G.add_edge("Simplice", "Fantine", weight=2)
|
363 |
+
G.add_edge("Simplice", "Javert", weight=1)
|
364 |
+
G.add_edge("Scaufflaire", "Valjean", weight=1)
|
365 |
+
G.add_edge("Woman1", "Valjean", weight=2)
|
366 |
+
G.add_edge("Woman1", "Javert", weight=1)
|
367 |
+
G.add_edge("Judge", "Valjean", weight=3)
|
368 |
+
G.add_edge("Judge", "Bamatabois", weight=2)
|
369 |
+
G.add_edge("Champmathieu", "Valjean", weight=3)
|
370 |
+
G.add_edge("Champmathieu", "Judge", weight=3)
|
371 |
+
G.add_edge("Champmathieu", "Bamatabois", weight=2)
|
372 |
+
G.add_edge("Brevet", "Judge", weight=2)
|
373 |
+
G.add_edge("Brevet", "Champmathieu", weight=2)
|
374 |
+
G.add_edge("Brevet", "Valjean", weight=2)
|
375 |
+
G.add_edge("Brevet", "Bamatabois", weight=1)
|
376 |
+
G.add_edge("Chenildieu", "Judge", weight=2)
|
377 |
+
G.add_edge("Chenildieu", "Champmathieu", weight=2)
|
378 |
+
G.add_edge("Chenildieu", "Brevet", weight=2)
|
379 |
+
G.add_edge("Chenildieu", "Valjean", weight=2)
|
380 |
+
G.add_edge("Chenildieu", "Bamatabois", weight=1)
|
381 |
+
G.add_edge("Cochepaille", "Judge", weight=2)
|
382 |
+
G.add_edge("Cochepaille", "Champmathieu", weight=2)
|
383 |
+
G.add_edge("Cochepaille", "Brevet", weight=2)
|
384 |
+
G.add_edge("Cochepaille", "Chenildieu", weight=2)
|
385 |
+
G.add_edge("Cochepaille", "Valjean", weight=2)
|
386 |
+
G.add_edge("Cochepaille", "Bamatabois", weight=1)
|
387 |
+
G.add_edge("Pontmercy", "Thenardier", weight=1)
|
388 |
+
G.add_edge("Boulatruelle", "Thenardier", weight=1)
|
389 |
+
G.add_edge("Eponine", "MmeThenardier", weight=2)
|
390 |
+
G.add_edge("Eponine", "Thenardier", weight=3)
|
391 |
+
G.add_edge("Anzelma", "Eponine", weight=2)
|
392 |
+
G.add_edge("Anzelma", "Thenardier", weight=2)
|
393 |
+
G.add_edge("Anzelma", "MmeThenardier", weight=1)
|
394 |
+
G.add_edge("Woman2", "Valjean", weight=3)
|
395 |
+
G.add_edge("Woman2", "Cosette", weight=1)
|
396 |
+
G.add_edge("Woman2", "Javert", weight=1)
|
397 |
+
G.add_edge("MotherInnocent", "Fauchelevent", weight=3)
|
398 |
+
G.add_edge("MotherInnocent", "Valjean", weight=1)
|
399 |
+
G.add_edge("Gribier", "Fauchelevent", weight=2)
|
400 |
+
G.add_edge("MmeBurgon", "Jondrette", weight=1)
|
401 |
+
G.add_edge("Gavroche", "MmeBurgon", weight=2)
|
402 |
+
G.add_edge("Gavroche", "Thenardier", weight=1)
|
403 |
+
G.add_edge("Gavroche", "Javert", weight=1)
|
404 |
+
G.add_edge("Gavroche", "Valjean", weight=1)
|
405 |
+
G.add_edge("Gillenormand", "Cosette", weight=3)
|
406 |
+
G.add_edge("Gillenormand", "Valjean", weight=2)
|
407 |
+
G.add_edge("Magnon", "Gillenormand", weight=1)
|
408 |
+
G.add_edge("Magnon", "MmeThenardier", weight=1)
|
409 |
+
G.add_edge("MlleGillenormand", "Gillenormand", weight=9)
|
410 |
+
G.add_edge("MlleGillenormand", "Cosette", weight=2)
|
411 |
+
G.add_edge("MlleGillenormand", "Valjean", weight=2)
|
412 |
+
G.add_edge("MmePontmercy", "MlleGillenormand", weight=1)
|
413 |
+
G.add_edge("MmePontmercy", "Pontmercy", weight=1)
|
414 |
+
G.add_edge("MlleVaubois", "MlleGillenormand", weight=1)
|
415 |
+
G.add_edge("LtGillenormand", "MlleGillenormand", weight=2)
|
416 |
+
G.add_edge("LtGillenormand", "Gillenormand", weight=1)
|
417 |
+
G.add_edge("LtGillenormand", "Cosette", weight=1)
|
418 |
+
G.add_edge("Marius", "MlleGillenormand", weight=6)
|
419 |
+
G.add_edge("Marius", "Gillenormand", weight=12)
|
420 |
+
G.add_edge("Marius", "Pontmercy", weight=1)
|
421 |
+
G.add_edge("Marius", "LtGillenormand", weight=1)
|
422 |
+
G.add_edge("Marius", "Cosette", weight=21)
|
423 |
+
G.add_edge("Marius", "Valjean", weight=19)
|
424 |
+
G.add_edge("Marius", "Tholomyes", weight=1)
|
425 |
+
G.add_edge("Marius", "Thenardier", weight=2)
|
426 |
+
G.add_edge("Marius", "Eponine", weight=5)
|
427 |
+
G.add_edge("Marius", "Gavroche", weight=4)
|
428 |
+
G.add_edge("BaronessT", "Gillenormand", weight=1)
|
429 |
+
G.add_edge("BaronessT", "Marius", weight=1)
|
430 |
+
G.add_edge("Mabeuf", "Marius", weight=1)
|
431 |
+
G.add_edge("Mabeuf", "Eponine", weight=1)
|
432 |
+
G.add_edge("Mabeuf", "Gavroche", weight=1)
|
433 |
+
G.add_edge("Enjolras", "Marius", weight=7)
|
434 |
+
G.add_edge("Enjolras", "Gavroche", weight=7)
|
435 |
+
G.add_edge("Enjolras", "Javert", weight=6)
|
436 |
+
G.add_edge("Enjolras", "Mabeuf", weight=1)
|
437 |
+
G.add_edge("Enjolras", "Valjean", weight=4)
|
438 |
+
G.add_edge("Combeferre", "Enjolras", weight=15)
|
439 |
+
G.add_edge("Combeferre", "Marius", weight=5)
|
440 |
+
G.add_edge("Combeferre", "Gavroche", weight=6)
|
441 |
+
G.add_edge("Combeferre", "Mabeuf", weight=2)
|
442 |
+
G.add_edge("Prouvaire", "Gavroche", weight=1)
|
443 |
+
G.add_edge("Prouvaire", "Enjolras", weight=4)
|
444 |
+
G.add_edge("Prouvaire", "Combeferre", weight=2)
|
445 |
+
G.add_edge("Feuilly", "Gavroche", weight=2)
|
446 |
+
G.add_edge("Feuilly", "Enjolras", weight=6)
|
447 |
+
G.add_edge("Feuilly", "Prouvaire", weight=2)
|
448 |
+
G.add_edge("Feuilly", "Combeferre", weight=5)
|
449 |
+
G.add_edge("Feuilly", "Mabeuf", weight=1)
|
450 |
+
G.add_edge("Feuilly", "Marius", weight=1)
|
451 |
+
G.add_edge("Courfeyrac", "Marius", weight=9)
|
452 |
+
G.add_edge("Courfeyrac", "Enjolras", weight=17)
|
453 |
+
G.add_edge("Courfeyrac", "Combeferre", weight=13)
|
454 |
+
G.add_edge("Courfeyrac", "Gavroche", weight=7)
|
455 |
+
G.add_edge("Courfeyrac", "Mabeuf", weight=2)
|
456 |
+
G.add_edge("Courfeyrac", "Eponine", weight=1)
|
457 |
+
G.add_edge("Courfeyrac", "Feuilly", weight=6)
|
458 |
+
G.add_edge("Courfeyrac", "Prouvaire", weight=3)
|
459 |
+
G.add_edge("Bahorel", "Combeferre", weight=5)
|
460 |
+
G.add_edge("Bahorel", "Gavroche", weight=5)
|
461 |
+
G.add_edge("Bahorel", "Courfeyrac", weight=6)
|
462 |
+
G.add_edge("Bahorel", "Mabeuf", weight=2)
|
463 |
+
G.add_edge("Bahorel", "Enjolras", weight=4)
|
464 |
+
G.add_edge("Bahorel", "Feuilly", weight=3)
|
465 |
+
G.add_edge("Bahorel", "Prouvaire", weight=2)
|
466 |
+
G.add_edge("Bahorel", "Marius", weight=1)
|
467 |
+
G.add_edge("Bossuet", "Marius", weight=5)
|
468 |
+
G.add_edge("Bossuet", "Courfeyrac", weight=12)
|
469 |
+
G.add_edge("Bossuet", "Gavroche", weight=5)
|
470 |
+
G.add_edge("Bossuet", "Bahorel", weight=4)
|
471 |
+
G.add_edge("Bossuet", "Enjolras", weight=10)
|
472 |
+
G.add_edge("Bossuet", "Feuilly", weight=6)
|
473 |
+
G.add_edge("Bossuet", "Prouvaire", weight=2)
|
474 |
+
G.add_edge("Bossuet", "Combeferre", weight=9)
|
475 |
+
G.add_edge("Bossuet", "Mabeuf", weight=1)
|
476 |
+
G.add_edge("Bossuet", "Valjean", weight=1)
|
477 |
+
G.add_edge("Joly", "Bahorel", weight=5)
|
478 |
+
G.add_edge("Joly", "Bossuet", weight=7)
|
479 |
+
G.add_edge("Joly", "Gavroche", weight=3)
|
480 |
+
G.add_edge("Joly", "Courfeyrac", weight=5)
|
481 |
+
G.add_edge("Joly", "Enjolras", weight=5)
|
482 |
+
G.add_edge("Joly", "Feuilly", weight=5)
|
483 |
+
G.add_edge("Joly", "Prouvaire", weight=2)
|
484 |
+
G.add_edge("Joly", "Combeferre", weight=5)
|
485 |
+
G.add_edge("Joly", "Mabeuf", weight=1)
|
486 |
+
G.add_edge("Joly", "Marius", weight=2)
|
487 |
+
G.add_edge("Grantaire", "Bossuet", weight=3)
|
488 |
+
G.add_edge("Grantaire", "Enjolras", weight=3)
|
489 |
+
G.add_edge("Grantaire", "Combeferre", weight=1)
|
490 |
+
G.add_edge("Grantaire", "Courfeyrac", weight=2)
|
491 |
+
G.add_edge("Grantaire", "Joly", weight=2)
|
492 |
+
G.add_edge("Grantaire", "Gavroche", weight=1)
|
493 |
+
G.add_edge("Grantaire", "Bahorel", weight=1)
|
494 |
+
G.add_edge("Grantaire", "Feuilly", weight=1)
|
495 |
+
G.add_edge("Grantaire", "Prouvaire", weight=1)
|
496 |
+
G.add_edge("MotherPlutarch", "Mabeuf", weight=3)
|
497 |
+
G.add_edge("Gueulemer", "Thenardier", weight=5)
|
498 |
+
G.add_edge("Gueulemer", "Valjean", weight=1)
|
499 |
+
G.add_edge("Gueulemer", "MmeThenardier", weight=1)
|
500 |
+
G.add_edge("Gueulemer", "Javert", weight=1)
|
501 |
+
G.add_edge("Gueulemer", "Gavroche", weight=1)
|
502 |
+
G.add_edge("Gueulemer", "Eponine", weight=1)
|
503 |
+
G.add_edge("Babet", "Thenardier", weight=6)
|
504 |
+
G.add_edge("Babet", "Gueulemer", weight=6)
|
505 |
+
G.add_edge("Babet", "Valjean", weight=1)
|
506 |
+
G.add_edge("Babet", "MmeThenardier", weight=1)
|
507 |
+
G.add_edge("Babet", "Javert", weight=2)
|
508 |
+
G.add_edge("Babet", "Gavroche", weight=1)
|
509 |
+
G.add_edge("Babet", "Eponine", weight=1)
|
510 |
+
G.add_edge("Claquesous", "Thenardier", weight=4)
|
511 |
+
G.add_edge("Claquesous", "Babet", weight=4)
|
512 |
+
G.add_edge("Claquesous", "Gueulemer", weight=4)
|
513 |
+
G.add_edge("Claquesous", "Valjean", weight=1)
|
514 |
+
G.add_edge("Claquesous", "MmeThenardier", weight=1)
|
515 |
+
G.add_edge("Claquesous", "Javert", weight=1)
|
516 |
+
G.add_edge("Claquesous", "Eponine", weight=1)
|
517 |
+
G.add_edge("Claquesous", "Enjolras", weight=1)
|
518 |
+
G.add_edge("Montparnasse", "Javert", weight=1)
|
519 |
+
G.add_edge("Montparnasse", "Babet", weight=2)
|
520 |
+
G.add_edge("Montparnasse", "Gueulemer", weight=2)
|
521 |
+
G.add_edge("Montparnasse", "Claquesous", weight=2)
|
522 |
+
G.add_edge("Montparnasse", "Valjean", weight=1)
|
523 |
+
G.add_edge("Montparnasse", "Gavroche", weight=1)
|
524 |
+
G.add_edge("Montparnasse", "Eponine", weight=1)
|
525 |
+
G.add_edge("Montparnasse", "Thenardier", weight=1)
|
526 |
+
G.add_edge("Toussaint", "Cosette", weight=2)
|
527 |
+
G.add_edge("Toussaint", "Javert", weight=1)
|
528 |
+
G.add_edge("Toussaint", "Valjean", weight=1)
|
529 |
+
G.add_edge("Child1", "Gavroche", weight=2)
|
530 |
+
G.add_edge("Child2", "Gavroche", weight=2)
|
531 |
+
G.add_edge("Child2", "Child1", weight=3)
|
532 |
+
G.add_edge("Brujon", "Babet", weight=3)
|
533 |
+
G.add_edge("Brujon", "Gueulemer", weight=3)
|
534 |
+
G.add_edge("Brujon", "Thenardier", weight=3)
|
535 |
+
G.add_edge("Brujon", "Gavroche", weight=1)
|
536 |
+
G.add_edge("Brujon", "Eponine", weight=1)
|
537 |
+
G.add_edge("Brujon", "Claquesous", weight=1)
|
538 |
+
G.add_edge("Brujon", "Montparnasse", weight=1)
|
539 |
+
G.add_edge("MmeHucheloup", "Bossuet", weight=1)
|
540 |
+
G.add_edge("MmeHucheloup", "Joly", weight=1)
|
541 |
+
G.add_edge("MmeHucheloup", "Grantaire", weight=1)
|
542 |
+
G.add_edge("MmeHucheloup", "Bahorel", weight=1)
|
543 |
+
G.add_edge("MmeHucheloup", "Courfeyrac", weight=1)
|
544 |
+
G.add_edge("MmeHucheloup", "Gavroche", weight=1)
|
545 |
+
G.add_edge("MmeHucheloup", "Enjolras", weight=1)
|
546 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/spectral_graph_forge.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generates graphs with a given eigenvector structure"""
|
2 |
+
|
3 |
+
|
4 |
+
import networkx as nx
|
5 |
+
from networkx.utils import np_random_state
|
6 |
+
|
7 |
+
__all__ = ["spectral_graph_forge"]
|
8 |
+
|
9 |
+
|
10 |
+
@np_random_state(3)
|
11 |
+
@nx._dispatchable(returns_graph=True)
|
12 |
+
def spectral_graph_forge(G, alpha, transformation="identity", seed=None):
|
13 |
+
"""Returns a random simple graph with spectrum resembling that of `G`
|
14 |
+
|
15 |
+
This algorithm, called Spectral Graph Forge (SGF), computes the
|
16 |
+
eigenvectors of a given graph adjacency matrix, filters them and
|
17 |
+
builds a random graph with a similar eigenstructure.
|
18 |
+
SGF has been proved to be particularly useful for synthesizing
|
19 |
+
realistic social networks and it can also be used to anonymize
|
20 |
+
graph sensitive data.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
G : Graph
|
25 |
+
alpha : float
|
26 |
+
Ratio representing the percentage of eigenvectors of G to consider,
|
27 |
+
values in [0,1].
|
28 |
+
transformation : string, optional
|
29 |
+
Represents the intended matrix linear transformation, possible values
|
30 |
+
are 'identity' and 'modularity'
|
31 |
+
seed : integer, random_state, or None (default)
|
32 |
+
Indicator of numpy random number generation state.
|
33 |
+
See :ref:`Randomness<randomness>`.
|
34 |
+
|
35 |
+
Returns
|
36 |
+
-------
|
37 |
+
H : Graph
|
38 |
+
A graph with a similar eigenvector structure of the input one.
|
39 |
+
|
40 |
+
Raises
|
41 |
+
------
|
42 |
+
NetworkXError
|
43 |
+
If transformation has a value different from 'identity' or 'modularity'
|
44 |
+
|
45 |
+
Notes
|
46 |
+
-----
|
47 |
+
Spectral Graph Forge (SGF) generates a random simple graph resembling the
|
48 |
+
global properties of the given one.
|
49 |
+
It leverages the low-rank approximation of the associated adjacency matrix
|
50 |
+
driven by the *alpha* precision parameter.
|
51 |
+
SGF preserves the number of nodes of the input graph and their ordering.
|
52 |
+
This way, nodes of output graphs resemble the properties of the input one
|
53 |
+
and attributes can be directly mapped.
|
54 |
+
|
55 |
+
It considers the graph adjacency matrices which can optionally be
|
56 |
+
transformed to other symmetric real matrices (currently transformation
|
57 |
+
options include *identity* and *modularity*).
|
58 |
+
The *modularity* transformation, in the sense of Newman's modularity matrix
|
59 |
+
allows the focusing on community structure related properties of the graph.
|
60 |
+
|
61 |
+
SGF applies a low-rank approximation whose fixed rank is computed from the
|
62 |
+
ratio *alpha* of the input graph adjacency matrix dimension.
|
63 |
+
This step performs a filtering on the input eigenvectors similar to the low
|
64 |
+
pass filtering common in telecommunications.
|
65 |
+
|
66 |
+
The filtered values (after truncation) are used as input to a Bernoulli
|
67 |
+
sampling for constructing a random adjacency matrix.
|
68 |
+
|
69 |
+
References
|
70 |
+
----------
|
71 |
+
.. [1] L. Baldesi, C. T. Butts, A. Markopoulou, "Spectral Graph Forge:
|
72 |
+
Graph Generation Targeting Modularity", IEEE Infocom, '18.
|
73 |
+
https://arxiv.org/abs/1801.01715
|
74 |
+
.. [2] M. Newman, "Networks: an introduction", Oxford university press,
|
75 |
+
2010
|
76 |
+
|
77 |
+
Examples
|
78 |
+
--------
|
79 |
+
>>> G = nx.karate_club_graph()
|
80 |
+
>>> H = nx.spectral_graph_forge(G, 0.3)
|
81 |
+
>>>
|
82 |
+
"""
|
83 |
+
import numpy as np
|
84 |
+
import scipy as sp
|
85 |
+
|
86 |
+
available_transformations = ["identity", "modularity"]
|
87 |
+
alpha = np.clip(alpha, 0, 1)
|
88 |
+
A = nx.to_numpy_array(G)
|
89 |
+
n = A.shape[1]
|
90 |
+
level = round(n * alpha)
|
91 |
+
|
92 |
+
if transformation not in available_transformations:
|
93 |
+
msg = f"{transformation!r} is not a valid transformation. "
|
94 |
+
msg += f"Transformations: {available_transformations}"
|
95 |
+
raise nx.NetworkXError(msg)
|
96 |
+
|
97 |
+
K = np.ones((1, n)) @ A
|
98 |
+
|
99 |
+
B = A
|
100 |
+
if transformation == "modularity":
|
101 |
+
B -= K.T @ K / K.sum()
|
102 |
+
|
103 |
+
# Compute low-rank approximation of B
|
104 |
+
evals, evecs = np.linalg.eigh(B)
|
105 |
+
k = np.argsort(np.abs(evals))[::-1] # indices of evals in descending order
|
106 |
+
evecs[:, k[np.arange(level, n)]] = 0 # set smallest eigenvectors to 0
|
107 |
+
B = evecs @ np.diag(evals) @ evecs.T
|
108 |
+
|
109 |
+
if transformation == "modularity":
|
110 |
+
B += K.T @ K / K.sum()
|
111 |
+
|
112 |
+
B = np.clip(B, 0, 1)
|
113 |
+
np.fill_diagonal(B, 0)
|
114 |
+
|
115 |
+
for i in range(n - 1):
|
116 |
+
B[i, i + 1 :] = sp.stats.bernoulli.rvs(B[i, i + 1 :], random_state=seed)
|
117 |
+
B[i + 1 :, i] = np.transpose(B[i, i + 1 :])
|
118 |
+
|
119 |
+
H = nx.from_numpy_array(B)
|
120 |
+
|
121 |
+
return H
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/stochastic.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for generating stochastic graphs from a given weighted directed
|
2 |
+
graph.
|
3 |
+
|
4 |
+
"""
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.classes import DiGraph, MultiDiGraph
|
8 |
+
from networkx.utils import not_implemented_for
|
9 |
+
|
10 |
+
__all__ = ["stochastic_graph"]
|
11 |
+
|
12 |
+
|
13 |
+
@not_implemented_for("undirected")
|
14 |
+
@nx._dispatchable(
|
15 |
+
edge_attrs="weight", mutates_input={"not copy": 1}, returns_graph=True
|
16 |
+
)
|
17 |
+
def stochastic_graph(G, copy=True, weight="weight"):
|
18 |
+
"""Returns a right-stochastic representation of directed graph `G`.
|
19 |
+
|
20 |
+
A right-stochastic graph is a weighted digraph in which for each
|
21 |
+
node, the sum of the weights of all the out-edges of that node is
|
22 |
+
1. If the graph is already weighted (for example, via a 'weight'
|
23 |
+
edge attribute), the reweighting takes that into account.
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
G : directed graph
|
28 |
+
A :class:`~networkx.DiGraph` or :class:`~networkx.MultiDiGraph`.
|
29 |
+
|
30 |
+
copy : boolean, optional
|
31 |
+
If this is True, then this function returns a new graph with
|
32 |
+
the stochastic reweighting. Otherwise, the original graph is
|
33 |
+
modified in-place (and also returned, for convenience).
|
34 |
+
|
35 |
+
weight : edge attribute key (optional, default='weight')
|
36 |
+
Edge attribute key used for reading the existing weight and
|
37 |
+
setting the new weight. If no attribute with this key is found
|
38 |
+
for an edge, then the edge weight is assumed to be 1. If an edge
|
39 |
+
has a weight, it must be a positive number.
|
40 |
+
|
41 |
+
"""
|
42 |
+
if copy:
|
43 |
+
G = MultiDiGraph(G) if G.is_multigraph() else DiGraph(G)
|
44 |
+
# There is a tradeoff here: the dictionary of node degrees may
|
45 |
+
# require a lot of memory, whereas making a call to `G.out_degree`
|
46 |
+
# inside the loop may be costly in computation time.
|
47 |
+
degree = dict(G.out_degree(weight=weight))
|
48 |
+
for u, v, d in G.edges(data=True):
|
49 |
+
if degree[u] == 0:
|
50 |
+
d[weight] = 0
|
51 |
+
else:
|
52 |
+
d[weight] = d.get(weight, 1) / degree[u]
|
53 |
+
nx._clear_cache(G)
|
54 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/sudoku.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generator for Sudoku graphs
|
2 |
+
|
3 |
+
This module gives a generator for n-Sudoku graphs. It can be used to develop
|
4 |
+
algorithms for solving or generating Sudoku puzzles.
|
5 |
+
|
6 |
+
A completed Sudoku grid is a 9x9 array of integers between 1 and 9, with no
|
7 |
+
number appearing twice in the same row, column, or 3x3 box.
|
8 |
+
|
9 |
+
+---------+---------+---------+
|
10 |
+
| | 8 6 4 | | 3 7 1 | | 2 5 9 |
|
11 |
+
| | 3 2 5 | | 8 4 9 | | 7 6 1 |
|
12 |
+
| | 9 7 1 | | 2 6 5 | | 8 4 3 |
|
13 |
+
+---------+---------+---------+
|
14 |
+
| | 4 3 6 | | 1 9 2 | | 5 8 7 |
|
15 |
+
| | 1 9 8 | | 6 5 7 | | 4 3 2 |
|
16 |
+
| | 2 5 7 | | 4 8 3 | | 9 1 6 |
|
17 |
+
+---------+---------+---------+
|
18 |
+
| | 6 8 9 | | 7 3 4 | | 1 2 5 |
|
19 |
+
| | 7 1 3 | | 5 2 8 | | 6 9 4 |
|
20 |
+
| | 5 4 2 | | 9 1 6 | | 3 7 8 |
|
21 |
+
+---------+---------+---------+
|
22 |
+
|
23 |
+
|
24 |
+
The Sudoku graph is an undirected graph with 81 vertices, corresponding to
|
25 |
+
the cells of a Sudoku grid. It is a regular graph of degree 20. Two distinct
|
26 |
+
vertices are adjacent if and only if the corresponding cells belong to the
|
27 |
+
same row, column, or box. A completed Sudoku grid corresponds to a vertex
|
28 |
+
coloring of the Sudoku graph with nine colors.
|
29 |
+
|
30 |
+
More generally, the n-Sudoku graph is a graph with n^4 vertices, corresponding
|
31 |
+
to the cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
|
32 |
+
only if they belong to the same row, column, or n by n box.
|
33 |
+
|
34 |
+
References
|
35 |
+
----------
|
36 |
+
.. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
|
37 |
+
polynomials. Notices of the AMS, 54(6), 708-717.
|
38 |
+
.. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
|
39 |
+
Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
|
40 |
+
.. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
|
41 |
+
Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
|
42 |
+
"""
|
43 |
+
|
44 |
+
import networkx as nx
|
45 |
+
from networkx.exception import NetworkXError
|
46 |
+
|
47 |
+
__all__ = ["sudoku_graph"]
|
48 |
+
|
49 |
+
|
50 |
+
@nx._dispatchable(graphs=None, returns_graph=True)
|
51 |
+
def sudoku_graph(n=3):
|
52 |
+
"""Returns the n-Sudoku graph. The default value of n is 3.
|
53 |
+
|
54 |
+
The n-Sudoku graph is a graph with n^4 vertices, corresponding to the
|
55 |
+
cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and
|
56 |
+
only if they belong to the same row, column, or n-by-n box.
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
----------
|
60 |
+
n: integer
|
61 |
+
The order of the Sudoku graph, equal to the square root of the
|
62 |
+
number of rows. The default is 3.
|
63 |
+
|
64 |
+
Returns
|
65 |
+
-------
|
66 |
+
NetworkX graph
|
67 |
+
The n-Sudoku graph Sud(n).
|
68 |
+
|
69 |
+
Examples
|
70 |
+
--------
|
71 |
+
>>> G = nx.sudoku_graph()
|
72 |
+
>>> G.number_of_nodes()
|
73 |
+
81
|
74 |
+
>>> G.number_of_edges()
|
75 |
+
810
|
76 |
+
>>> sorted(G.neighbors(42))
|
77 |
+
[6, 15, 24, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 51, 52, 53, 60, 69, 78]
|
78 |
+
>>> G = nx.sudoku_graph(2)
|
79 |
+
>>> G.number_of_nodes()
|
80 |
+
16
|
81 |
+
>>> G.number_of_edges()
|
82 |
+
56
|
83 |
+
|
84 |
+
References
|
85 |
+
----------
|
86 |
+
.. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic
|
87 |
+
polynomials. Notices of the AMS, 54(6), 708-717.
|
88 |
+
.. [2] Sander, Torsten (2009), "Sudoku graphs are integral",
|
89 |
+
Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816
|
90 |
+
.. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free
|
91 |
+
Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019.
|
92 |
+
"""
|
93 |
+
|
94 |
+
if n < 0:
|
95 |
+
raise NetworkXError("The order must be greater than or equal to zero.")
|
96 |
+
|
97 |
+
n2 = n * n
|
98 |
+
n3 = n2 * n
|
99 |
+
n4 = n3 * n
|
100 |
+
|
101 |
+
# Construct an empty graph with n^4 nodes
|
102 |
+
G = nx.empty_graph(n4)
|
103 |
+
|
104 |
+
# A Sudoku graph of order 0 or 1 has no edges
|
105 |
+
if n < 2:
|
106 |
+
return G
|
107 |
+
|
108 |
+
# Add edges for cells in the same row
|
109 |
+
for row_no in range(n2):
|
110 |
+
row_start = row_no * n2
|
111 |
+
for j in range(1, n2):
|
112 |
+
for i in range(j):
|
113 |
+
G.add_edge(row_start + i, row_start + j)
|
114 |
+
|
115 |
+
# Add edges for cells in the same column
|
116 |
+
for col_no in range(n2):
|
117 |
+
for j in range(col_no, n4, n2):
|
118 |
+
for i in range(col_no, j, n2):
|
119 |
+
G.add_edge(i, j)
|
120 |
+
|
121 |
+
# Add edges for cells in the same box
|
122 |
+
for band_no in range(n):
|
123 |
+
for stack_no in range(n):
|
124 |
+
box_start = n3 * band_no + n * stack_no
|
125 |
+
for j in range(1, n2):
|
126 |
+
for i in range(j):
|
127 |
+
u = box_start + (i % n) + n2 * (i // n)
|
128 |
+
v = box_start + (j % n) + n2 * (j // n)
|
129 |
+
G.add_edge(u, v)
|
130 |
+
|
131 |
+
return G
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_atlas.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import groupby
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
from networkx import graph_atlas, graph_atlas_g
|
7 |
+
from networkx.generators.atlas import NUM_GRAPHS
|
8 |
+
from networkx.utils import edges_equal, nodes_equal, pairwise
|
9 |
+
|
10 |
+
|
11 |
+
class TestAtlasGraph:
|
12 |
+
"""Unit tests for the :func:`~networkx.graph_atlas` function."""
|
13 |
+
|
14 |
+
def test_index_too_small(self):
|
15 |
+
with pytest.raises(ValueError):
|
16 |
+
graph_atlas(-1)
|
17 |
+
|
18 |
+
def test_index_too_large(self):
|
19 |
+
with pytest.raises(ValueError):
|
20 |
+
graph_atlas(NUM_GRAPHS)
|
21 |
+
|
22 |
+
def test_graph(self):
|
23 |
+
G = graph_atlas(6)
|
24 |
+
assert nodes_equal(G.nodes(), range(3))
|
25 |
+
assert edges_equal(G.edges(), [(0, 1), (0, 2)])
|
26 |
+
|
27 |
+
|
28 |
+
class TestAtlasGraphG:
|
29 |
+
"""Unit tests for the :func:`~networkx.graph_atlas_g` function."""
|
30 |
+
|
31 |
+
@classmethod
|
32 |
+
def setup_class(cls):
|
33 |
+
cls.GAG = graph_atlas_g()
|
34 |
+
|
35 |
+
def test_sizes(self):
|
36 |
+
G = self.GAG[0]
|
37 |
+
assert G.number_of_nodes() == 0
|
38 |
+
assert G.number_of_edges() == 0
|
39 |
+
|
40 |
+
G = self.GAG[7]
|
41 |
+
assert G.number_of_nodes() == 3
|
42 |
+
assert G.number_of_edges() == 3
|
43 |
+
|
44 |
+
def test_names(self):
|
45 |
+
for i, G in enumerate(self.GAG):
|
46 |
+
assert int(G.name[1:]) == i
|
47 |
+
|
48 |
+
def test_nondecreasing_nodes(self):
|
49 |
+
# check for nondecreasing number of nodes
|
50 |
+
for n1, n2 in pairwise(map(len, self.GAG)):
|
51 |
+
assert n2 <= n1 + 1
|
52 |
+
|
53 |
+
def test_nondecreasing_edges(self):
|
54 |
+
# check for nondecreasing number of edges (for fixed number of
|
55 |
+
# nodes)
|
56 |
+
for n, group in groupby(self.GAG, key=nx.number_of_nodes):
|
57 |
+
for m1, m2 in pairwise(map(nx.number_of_edges, group)):
|
58 |
+
assert m2 <= m1 + 1
|
59 |
+
|
60 |
+
def test_nondecreasing_degree_sequence(self):
|
61 |
+
# Check for lexicographically nondecreasing degree sequences
|
62 |
+
# (for fixed number of nodes and edges).
|
63 |
+
#
|
64 |
+
# There are three exceptions to this rule in the order given in
|
65 |
+
# the "Atlas of Graphs" book, so we need to manually exclude
|
66 |
+
# those.
|
67 |
+
exceptions = [("G55", "G56"), ("G1007", "G1008"), ("G1012", "G1013")]
|
68 |
+
for n, group in groupby(self.GAG, key=nx.number_of_nodes):
|
69 |
+
for m, group in groupby(group, key=nx.number_of_edges):
|
70 |
+
for G1, G2 in pairwise(group):
|
71 |
+
if (G1.name, G2.name) in exceptions:
|
72 |
+
continue
|
73 |
+
d1 = sorted(d for v, d in G1.degree())
|
74 |
+
d2 = sorted(d for v, d in G2.degree())
|
75 |
+
assert d1 <= d2
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_classic.py
ADDED
@@ -0,0 +1,635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
====================
|
3 |
+
Generators - Classic
|
4 |
+
====================
|
5 |
+
|
6 |
+
Unit tests for various classic graph generators in generators/classic.py
|
7 |
+
"""
|
8 |
+
import itertools
|
9 |
+
import typing
|
10 |
+
|
11 |
+
import pytest
|
12 |
+
|
13 |
+
import networkx as nx
|
14 |
+
from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic
|
15 |
+
from networkx.utils import edges_equal, nodes_equal
|
16 |
+
|
17 |
+
is_isomorphic = graph_could_be_isomorphic
|
18 |
+
|
19 |
+
|
20 |
+
class TestGeneratorClassic:
|
21 |
+
def test_balanced_tree(self):
|
22 |
+
# balanced_tree(r,h) is a tree with (r**(h+1)-1)/(r-1) edges
|
23 |
+
for r, h in [(2, 2), (3, 3), (6, 2)]:
|
24 |
+
t = nx.balanced_tree(r, h)
|
25 |
+
order = t.order()
|
26 |
+
assert order == (r ** (h + 1) - 1) / (r - 1)
|
27 |
+
assert nx.is_connected(t)
|
28 |
+
assert t.size() == order - 1
|
29 |
+
dh = nx.degree_histogram(t)
|
30 |
+
assert dh[0] == 0 # no nodes of 0
|
31 |
+
assert dh[1] == r**h # nodes of degree 1 are leaves
|
32 |
+
assert dh[r] == 1 # root is degree r
|
33 |
+
assert dh[r + 1] == order - r**h - 1 # everyone else is degree r+1
|
34 |
+
assert len(dh) == r + 2
|
35 |
+
|
36 |
+
def test_balanced_tree_star(self):
|
37 |
+
# balanced_tree(r,1) is the r-star
|
38 |
+
t = nx.balanced_tree(r=2, h=1)
|
39 |
+
assert is_isomorphic(t, nx.star_graph(2))
|
40 |
+
t = nx.balanced_tree(r=5, h=1)
|
41 |
+
assert is_isomorphic(t, nx.star_graph(5))
|
42 |
+
t = nx.balanced_tree(r=10, h=1)
|
43 |
+
assert is_isomorphic(t, nx.star_graph(10))
|
44 |
+
|
45 |
+
def test_balanced_tree_path(self):
|
46 |
+
"""Tests that the balanced tree with branching factor one is the
|
47 |
+
path graph.
|
48 |
+
|
49 |
+
"""
|
50 |
+
# A tree of height four has five levels.
|
51 |
+
T = nx.balanced_tree(1, 4)
|
52 |
+
P = nx.path_graph(5)
|
53 |
+
assert is_isomorphic(T, P)
|
54 |
+
|
55 |
+
def test_full_rary_tree(self):
|
56 |
+
r = 2
|
57 |
+
n = 9
|
58 |
+
t = nx.full_rary_tree(r, n)
|
59 |
+
assert t.order() == n
|
60 |
+
assert nx.is_connected(t)
|
61 |
+
dh = nx.degree_histogram(t)
|
62 |
+
assert dh[0] == 0 # no nodes of 0
|
63 |
+
assert dh[1] == 5 # nodes of degree 1 are leaves
|
64 |
+
assert dh[r] == 1 # root is degree r
|
65 |
+
assert dh[r + 1] == 9 - 5 - 1 # everyone else is degree r+1
|
66 |
+
assert len(dh) == r + 2
|
67 |
+
|
68 |
+
def test_full_rary_tree_balanced(self):
|
69 |
+
t = nx.full_rary_tree(2, 15)
|
70 |
+
th = nx.balanced_tree(2, 3)
|
71 |
+
assert is_isomorphic(t, th)
|
72 |
+
|
73 |
+
def test_full_rary_tree_path(self):
|
74 |
+
t = nx.full_rary_tree(1, 10)
|
75 |
+
assert is_isomorphic(t, nx.path_graph(10))
|
76 |
+
|
77 |
+
def test_full_rary_tree_empty(self):
|
78 |
+
t = nx.full_rary_tree(0, 10)
|
79 |
+
assert is_isomorphic(t, nx.empty_graph(10))
|
80 |
+
t = nx.full_rary_tree(3, 0)
|
81 |
+
assert is_isomorphic(t, nx.empty_graph(0))
|
82 |
+
|
83 |
+
def test_full_rary_tree_3_20(self):
|
84 |
+
t = nx.full_rary_tree(3, 20)
|
85 |
+
assert t.order() == 20
|
86 |
+
|
87 |
+
def test_barbell_graph(self):
|
88 |
+
# number of nodes = 2*m1 + m2 (2 m1-complete graphs + m2-path + 2 edges)
|
89 |
+
# number of edges = 2*(nx.number_of_edges(m1-complete graph) + m2 + 1
|
90 |
+
m1 = 3
|
91 |
+
m2 = 5
|
92 |
+
b = nx.barbell_graph(m1, m2)
|
93 |
+
assert nx.number_of_nodes(b) == 2 * m1 + m2
|
94 |
+
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
|
95 |
+
|
96 |
+
m1 = 4
|
97 |
+
m2 = 10
|
98 |
+
b = nx.barbell_graph(m1, m2)
|
99 |
+
assert nx.number_of_nodes(b) == 2 * m1 + m2
|
100 |
+
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
|
101 |
+
|
102 |
+
m1 = 3
|
103 |
+
m2 = 20
|
104 |
+
b = nx.barbell_graph(m1, m2)
|
105 |
+
assert nx.number_of_nodes(b) == 2 * m1 + m2
|
106 |
+
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1
|
107 |
+
|
108 |
+
# Raise NetworkXError if m1<2
|
109 |
+
m1 = 1
|
110 |
+
m2 = 20
|
111 |
+
pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
|
112 |
+
|
113 |
+
# Raise NetworkXError if m2<0
|
114 |
+
m1 = 5
|
115 |
+
m2 = -2
|
116 |
+
pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2)
|
117 |
+
|
118 |
+
# nx.barbell_graph(2,m) = nx.path_graph(m+4)
|
119 |
+
m1 = 2
|
120 |
+
m2 = 5
|
121 |
+
b = nx.barbell_graph(m1, m2)
|
122 |
+
assert is_isomorphic(b, nx.path_graph(m2 + 4))
|
123 |
+
|
124 |
+
m1 = 2
|
125 |
+
m2 = 10
|
126 |
+
b = nx.barbell_graph(m1, m2)
|
127 |
+
assert is_isomorphic(b, nx.path_graph(m2 + 4))
|
128 |
+
|
129 |
+
m1 = 2
|
130 |
+
m2 = 20
|
131 |
+
b = nx.barbell_graph(m1, m2)
|
132 |
+
assert is_isomorphic(b, nx.path_graph(m2 + 4))
|
133 |
+
|
134 |
+
pytest.raises(
|
135 |
+
nx.NetworkXError, nx.barbell_graph, m1, m2, create_using=nx.DiGraph()
|
136 |
+
)
|
137 |
+
|
138 |
+
mb = nx.barbell_graph(m1, m2, create_using=nx.MultiGraph())
|
139 |
+
assert edges_equal(mb.edges(), b.edges())
|
140 |
+
|
141 |
+
def test_binomial_tree(self):
|
142 |
+
graphs = (None, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)
|
143 |
+
for create_using in graphs:
|
144 |
+
for n in range(4):
|
145 |
+
b = nx.binomial_tree(n, create_using)
|
146 |
+
assert nx.number_of_nodes(b) == 2**n
|
147 |
+
assert nx.number_of_edges(b) == (2**n - 1)
|
148 |
+
|
149 |
+
def test_complete_graph(self):
|
150 |
+
# complete_graph(m) is a connected graph with
|
151 |
+
# m nodes and m*(m+1)/2 edges
|
152 |
+
for m in [0, 1, 3, 5]:
|
153 |
+
g = nx.complete_graph(m)
|
154 |
+
assert nx.number_of_nodes(g) == m
|
155 |
+
assert nx.number_of_edges(g) == m * (m - 1) // 2
|
156 |
+
|
157 |
+
mg = nx.complete_graph(m, create_using=nx.MultiGraph)
|
158 |
+
assert edges_equal(mg.edges(), g.edges())
|
159 |
+
|
160 |
+
g = nx.complete_graph("abc")
|
161 |
+
assert nodes_equal(g.nodes(), ["a", "b", "c"])
|
162 |
+
assert g.size() == 3
|
163 |
+
|
164 |
+
# creates a self-loop... should it? <backward compatible says yes>
|
165 |
+
g = nx.complete_graph("abcb")
|
166 |
+
assert nodes_equal(g.nodes(), ["a", "b", "c"])
|
167 |
+
assert g.size() == 4
|
168 |
+
|
169 |
+
g = nx.complete_graph("abcb", create_using=nx.MultiGraph)
|
170 |
+
assert nodes_equal(g.nodes(), ["a", "b", "c"])
|
171 |
+
assert g.size() == 6
|
172 |
+
|
173 |
+
def test_complete_digraph(self):
|
174 |
+
# complete_graph(m) is a connected graph with
|
175 |
+
# m nodes and m*(m+1)/2 edges
|
176 |
+
for m in [0, 1, 3, 5]:
|
177 |
+
g = nx.complete_graph(m, create_using=nx.DiGraph)
|
178 |
+
assert nx.number_of_nodes(g) == m
|
179 |
+
assert nx.number_of_edges(g) == m * (m - 1)
|
180 |
+
|
181 |
+
g = nx.complete_graph("abc", create_using=nx.DiGraph)
|
182 |
+
assert len(g) == 3
|
183 |
+
assert g.size() == 6
|
184 |
+
assert g.is_directed()
|
185 |
+
|
186 |
+
def test_circular_ladder_graph(self):
|
187 |
+
G = nx.circular_ladder_graph(5)
|
188 |
+
pytest.raises(
|
189 |
+
nx.NetworkXError, nx.circular_ladder_graph, 5, create_using=nx.DiGraph
|
190 |
+
)
|
191 |
+
mG = nx.circular_ladder_graph(5, create_using=nx.MultiGraph)
|
192 |
+
assert edges_equal(mG.edges(), G.edges())
|
193 |
+
|
194 |
+
def test_circulant_graph(self):
|
195 |
+
# Ci_n(1) is the cycle graph for all n
|
196 |
+
Ci6_1 = nx.circulant_graph(6, [1])
|
197 |
+
C6 = nx.cycle_graph(6)
|
198 |
+
assert edges_equal(Ci6_1.edges(), C6.edges())
|
199 |
+
|
200 |
+
# Ci_n(1, 2, ..., n div 2) is the complete graph for all n
|
201 |
+
Ci7 = nx.circulant_graph(7, [1, 2, 3])
|
202 |
+
K7 = nx.complete_graph(7)
|
203 |
+
assert edges_equal(Ci7.edges(), K7.edges())
|
204 |
+
|
205 |
+
# Ci_6(1, 3) is K_3,3 i.e. the utility graph
|
206 |
+
Ci6_1_3 = nx.circulant_graph(6, [1, 3])
|
207 |
+
K3_3 = nx.complete_bipartite_graph(3, 3)
|
208 |
+
assert is_isomorphic(Ci6_1_3, K3_3)
|
209 |
+
|
210 |
+
def test_cycle_graph(self):
|
211 |
+
G = nx.cycle_graph(4)
|
212 |
+
assert edges_equal(G.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
|
213 |
+
mG = nx.cycle_graph(4, create_using=nx.MultiGraph)
|
214 |
+
assert edges_equal(mG.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)])
|
215 |
+
G = nx.cycle_graph(4, create_using=nx.DiGraph)
|
216 |
+
assert not G.has_edge(2, 1)
|
217 |
+
assert G.has_edge(1, 2)
|
218 |
+
assert G.is_directed()
|
219 |
+
|
220 |
+
G = nx.cycle_graph("abc")
|
221 |
+
assert len(G) == 3
|
222 |
+
assert G.size() == 3
|
223 |
+
G = nx.cycle_graph("abcb")
|
224 |
+
assert len(G) == 3
|
225 |
+
assert G.size() == 2
|
226 |
+
g = nx.cycle_graph("abc", nx.DiGraph)
|
227 |
+
assert len(g) == 3
|
228 |
+
assert g.size() == 3
|
229 |
+
assert g.is_directed()
|
230 |
+
g = nx.cycle_graph("abcb", nx.DiGraph)
|
231 |
+
assert len(g) == 3
|
232 |
+
assert g.size() == 4
|
233 |
+
|
234 |
+
def test_dorogovtsev_goltsev_mendes_graph(self):
|
235 |
+
G = nx.dorogovtsev_goltsev_mendes_graph(0)
|
236 |
+
assert edges_equal(G.edges(), [(0, 1)])
|
237 |
+
assert nodes_equal(list(G), [0, 1])
|
238 |
+
G = nx.dorogovtsev_goltsev_mendes_graph(1)
|
239 |
+
assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
|
240 |
+
assert nx.average_clustering(G) == 1.0
|
241 |
+
assert sorted(nx.triangles(G).values()) == [1, 1, 1]
|
242 |
+
G = nx.dorogovtsev_goltsev_mendes_graph(10)
|
243 |
+
assert nx.number_of_nodes(G) == 29526
|
244 |
+
assert nx.number_of_edges(G) == 59049
|
245 |
+
assert G.degree(0) == 1024
|
246 |
+
assert G.degree(1) == 1024
|
247 |
+
assert G.degree(2) == 1024
|
248 |
+
|
249 |
+
pytest.raises(
|
250 |
+
nx.NetworkXError,
|
251 |
+
nx.dorogovtsev_goltsev_mendes_graph,
|
252 |
+
7,
|
253 |
+
create_using=nx.DiGraph,
|
254 |
+
)
|
255 |
+
pytest.raises(
|
256 |
+
nx.NetworkXError,
|
257 |
+
nx.dorogovtsev_goltsev_mendes_graph,
|
258 |
+
7,
|
259 |
+
create_using=nx.MultiGraph,
|
260 |
+
)
|
261 |
+
|
262 |
+
def test_create_using(self):
|
263 |
+
G = nx.empty_graph()
|
264 |
+
assert isinstance(G, nx.Graph)
|
265 |
+
pytest.raises(TypeError, nx.empty_graph, create_using=0.0)
|
266 |
+
pytest.raises(TypeError, nx.empty_graph, create_using="Graph")
|
267 |
+
|
268 |
+
G = nx.empty_graph(create_using=nx.MultiGraph)
|
269 |
+
assert isinstance(G, nx.MultiGraph)
|
270 |
+
G = nx.empty_graph(create_using=nx.DiGraph)
|
271 |
+
assert isinstance(G, nx.DiGraph)
|
272 |
+
|
273 |
+
G = nx.empty_graph(create_using=nx.DiGraph, default=nx.MultiGraph)
|
274 |
+
assert isinstance(G, nx.DiGraph)
|
275 |
+
G = nx.empty_graph(create_using=None, default=nx.MultiGraph)
|
276 |
+
assert isinstance(G, nx.MultiGraph)
|
277 |
+
G = nx.empty_graph(default=nx.MultiGraph)
|
278 |
+
assert isinstance(G, nx.MultiGraph)
|
279 |
+
|
280 |
+
G = nx.path_graph(5)
|
281 |
+
H = nx.empty_graph(create_using=G)
|
282 |
+
assert not H.is_multigraph()
|
283 |
+
assert not H.is_directed()
|
284 |
+
assert len(H) == 0
|
285 |
+
assert G is H
|
286 |
+
|
287 |
+
H = nx.empty_graph(create_using=nx.MultiGraph())
|
288 |
+
assert H.is_multigraph()
|
289 |
+
assert not H.is_directed()
|
290 |
+
assert G is not H
|
291 |
+
|
292 |
+
# test for subclasses that also use typing.Protocol. See gh-6243
|
293 |
+
class Mixin(typing.Protocol):
|
294 |
+
pass
|
295 |
+
|
296 |
+
class MyGraph(Mixin, nx.DiGraph):
|
297 |
+
pass
|
298 |
+
|
299 |
+
G = nx.empty_graph(create_using=MyGraph)
|
300 |
+
|
301 |
+
def test_empty_graph(self):
|
302 |
+
G = nx.empty_graph()
|
303 |
+
assert nx.number_of_nodes(G) == 0
|
304 |
+
G = nx.empty_graph(42)
|
305 |
+
assert nx.number_of_nodes(G) == 42
|
306 |
+
assert nx.number_of_edges(G) == 0
|
307 |
+
|
308 |
+
G = nx.empty_graph("abc")
|
309 |
+
assert len(G) == 3
|
310 |
+
assert G.size() == 0
|
311 |
+
|
312 |
+
# create empty digraph
|
313 |
+
G = nx.empty_graph(42, create_using=nx.DiGraph(name="duh"))
|
314 |
+
assert nx.number_of_nodes(G) == 42
|
315 |
+
assert nx.number_of_edges(G) == 0
|
316 |
+
assert isinstance(G, nx.DiGraph)
|
317 |
+
|
318 |
+
# create empty multigraph
|
319 |
+
G = nx.empty_graph(42, create_using=nx.MultiGraph(name="duh"))
|
320 |
+
assert nx.number_of_nodes(G) == 42
|
321 |
+
assert nx.number_of_edges(G) == 0
|
322 |
+
assert isinstance(G, nx.MultiGraph)
|
323 |
+
|
324 |
+
# create empty graph from another
|
325 |
+
pete = nx.petersen_graph()
|
326 |
+
G = nx.empty_graph(42, create_using=pete)
|
327 |
+
assert nx.number_of_nodes(G) == 42
|
328 |
+
assert nx.number_of_edges(G) == 0
|
329 |
+
assert isinstance(G, nx.Graph)
|
330 |
+
|
331 |
+
def test_ladder_graph(self):
|
332 |
+
for i, G in [
|
333 |
+
(0, nx.empty_graph(0)),
|
334 |
+
(1, nx.path_graph(2)),
|
335 |
+
(2, nx.hypercube_graph(2)),
|
336 |
+
(10, nx.grid_graph([2, 10])),
|
337 |
+
]:
|
338 |
+
assert is_isomorphic(nx.ladder_graph(i), G)
|
339 |
+
|
340 |
+
pytest.raises(nx.NetworkXError, nx.ladder_graph, 2, create_using=nx.DiGraph)
|
341 |
+
|
342 |
+
g = nx.ladder_graph(2)
|
343 |
+
mg = nx.ladder_graph(2, create_using=nx.MultiGraph)
|
344 |
+
assert edges_equal(mg.edges(), g.edges())
|
345 |
+
|
346 |
+
@pytest.mark.parametrize(("m", "n"), [(3, 5), (4, 10), (3, 20)])
|
347 |
+
def test_lollipop_graph_right_sizes(self, m, n):
|
348 |
+
G = nx.lollipop_graph(m, n)
|
349 |
+
assert nx.number_of_nodes(G) == m + n
|
350 |
+
assert nx.number_of_edges(G) == m * (m - 1) / 2 + n
|
351 |
+
|
352 |
+
@pytest.mark.parametrize(("m", "n"), [("ab", ""), ("abc", "defg")])
|
353 |
+
def test_lollipop_graph_size_node_sequence(self, m, n):
|
354 |
+
G = nx.lollipop_graph(m, n)
|
355 |
+
assert nx.number_of_nodes(G) == len(m) + len(n)
|
356 |
+
assert nx.number_of_edges(G) == len(m) * (len(m) - 1) / 2 + len(n)
|
357 |
+
|
358 |
+
def test_lollipop_graph_exceptions(self):
|
359 |
+
# Raise NetworkXError if m<2
|
360 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, -1, 2)
|
361 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, 1, 20)
|
362 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, "", 20)
|
363 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, "a", 20)
|
364 |
+
|
365 |
+
# Raise NetworkXError if n<0
|
366 |
+
pytest.raises(nx.NetworkXError, nx.lollipop_graph, 5, -2)
|
367 |
+
|
368 |
+
# raise NetworkXError if create_using is directed
|
369 |
+
with pytest.raises(nx.NetworkXError):
|
370 |
+
nx.lollipop_graph(2, 20, create_using=nx.DiGraph)
|
371 |
+
with pytest.raises(nx.NetworkXError):
|
372 |
+
nx.lollipop_graph(2, 20, create_using=nx.MultiDiGraph)
|
373 |
+
|
374 |
+
@pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
|
375 |
+
def test_lollipop_graph_same_as_path_when_m1_is_2(self, m, n):
|
376 |
+
G = nx.lollipop_graph(m, n)
|
377 |
+
assert is_isomorphic(G, nx.path_graph(n + 2))
|
378 |
+
|
379 |
+
def test_lollipop_graph_for_multigraph(self):
|
380 |
+
G = nx.lollipop_graph(5, 20)
|
381 |
+
MG = nx.lollipop_graph(5, 20, create_using=nx.MultiGraph)
|
382 |
+
assert edges_equal(MG.edges(), G.edges())
|
383 |
+
|
384 |
+
@pytest.mark.parametrize(
|
385 |
+
("m", "n"),
|
386 |
+
[(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
|
387 |
+
)
|
388 |
+
def test_lollipop_graph_mixing_input_types(self, m, n):
|
389 |
+
expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
|
390 |
+
expected.add_edge(0, 100) # Connect complete graph and path graph
|
391 |
+
assert is_isomorphic(nx.lollipop_graph(m, n), expected)
|
392 |
+
|
393 |
+
def test_lollipop_graph_non_builtin_ints(self):
|
394 |
+
np = pytest.importorskip("numpy")
|
395 |
+
G = nx.lollipop_graph(np.int32(4), np.int64(3))
|
396 |
+
expected = nx.compose(nx.complete_graph(4), nx.path_graph(range(100, 103)))
|
397 |
+
expected.add_edge(0, 100) # Connect complete graph and path graph
|
398 |
+
assert is_isomorphic(G, expected)
|
399 |
+
|
400 |
+
def test_null_graph(self):
|
401 |
+
assert nx.number_of_nodes(nx.null_graph()) == 0
|
402 |
+
|
403 |
+
def test_path_graph(self):
|
404 |
+
p = nx.path_graph(0)
|
405 |
+
assert is_isomorphic(p, nx.null_graph())
|
406 |
+
|
407 |
+
p = nx.path_graph(1)
|
408 |
+
assert is_isomorphic(p, nx.empty_graph(1))
|
409 |
+
|
410 |
+
p = nx.path_graph(10)
|
411 |
+
assert nx.is_connected(p)
|
412 |
+
assert sorted(d for n, d in p.degree()) == [1, 1, 2, 2, 2, 2, 2, 2, 2, 2]
|
413 |
+
assert p.order() - 1 == p.size()
|
414 |
+
|
415 |
+
dp = nx.path_graph(3, create_using=nx.DiGraph)
|
416 |
+
assert dp.has_edge(0, 1)
|
417 |
+
assert not dp.has_edge(1, 0)
|
418 |
+
|
419 |
+
mp = nx.path_graph(10, create_using=nx.MultiGraph)
|
420 |
+
assert edges_equal(mp.edges(), p.edges())
|
421 |
+
|
422 |
+
G = nx.path_graph("abc")
|
423 |
+
assert len(G) == 3
|
424 |
+
assert G.size() == 2
|
425 |
+
G = nx.path_graph("abcb")
|
426 |
+
assert len(G) == 3
|
427 |
+
assert G.size() == 2
|
428 |
+
g = nx.path_graph("abc", nx.DiGraph)
|
429 |
+
assert len(g) == 3
|
430 |
+
assert g.size() == 2
|
431 |
+
assert g.is_directed()
|
432 |
+
g = nx.path_graph("abcb", nx.DiGraph)
|
433 |
+
assert len(g) == 3
|
434 |
+
assert g.size() == 3
|
435 |
+
|
436 |
+
G = nx.path_graph((1, 2, 3, 2, 4))
|
437 |
+
assert G.has_edge(2, 4)
|
438 |
+
|
439 |
+
def test_star_graph(self):
|
440 |
+
assert is_isomorphic(nx.star_graph(""), nx.empty_graph(0))
|
441 |
+
assert is_isomorphic(nx.star_graph([]), nx.empty_graph(0))
|
442 |
+
assert is_isomorphic(nx.star_graph(0), nx.empty_graph(1))
|
443 |
+
assert is_isomorphic(nx.star_graph(1), nx.path_graph(2))
|
444 |
+
assert is_isomorphic(nx.star_graph(2), nx.path_graph(3))
|
445 |
+
assert is_isomorphic(nx.star_graph(5), nx.complete_bipartite_graph(1, 5))
|
446 |
+
|
447 |
+
s = nx.star_graph(10)
|
448 |
+
assert sorted(d for n, d in s.degree()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10]
|
449 |
+
|
450 |
+
pytest.raises(nx.NetworkXError, nx.star_graph, 10, create_using=nx.DiGraph)
|
451 |
+
|
452 |
+
ms = nx.star_graph(10, create_using=nx.MultiGraph)
|
453 |
+
assert edges_equal(ms.edges(), s.edges())
|
454 |
+
|
455 |
+
G = nx.star_graph("abc")
|
456 |
+
assert len(G) == 3
|
457 |
+
assert G.size() == 2
|
458 |
+
|
459 |
+
G = nx.star_graph("abcb")
|
460 |
+
assert len(G) == 3
|
461 |
+
assert G.size() == 2
|
462 |
+
G = nx.star_graph("abcb", create_using=nx.MultiGraph)
|
463 |
+
assert len(G) == 3
|
464 |
+
assert G.size() == 3
|
465 |
+
|
466 |
+
G = nx.star_graph("abcdefg")
|
467 |
+
assert len(G) == 7
|
468 |
+
assert G.size() == 6
|
469 |
+
|
470 |
+
def test_non_int_integers_for_star_graph(self):
|
471 |
+
np = pytest.importorskip("numpy")
|
472 |
+
G = nx.star_graph(np.int32(3))
|
473 |
+
assert len(G) == 4
|
474 |
+
assert G.size() == 3
|
475 |
+
|
476 |
+
@pytest.mark.parametrize(("m", "n"), [(3, 0), (3, 5), (4, 10), (3, 20)])
|
477 |
+
def test_tadpole_graph_right_sizes(self, m, n):
|
478 |
+
G = nx.tadpole_graph(m, n)
|
479 |
+
assert nx.number_of_nodes(G) == m + n
|
480 |
+
assert nx.number_of_edges(G) == m + n - (m == 2)
|
481 |
+
|
482 |
+
@pytest.mark.parametrize(("m", "n"), [("ab", ""), ("ab", "c"), ("abc", "defg")])
|
483 |
+
def test_tadpole_graph_size_node_sequences(self, m, n):
|
484 |
+
G = nx.tadpole_graph(m, n)
|
485 |
+
assert nx.number_of_nodes(G) == len(m) + len(n)
|
486 |
+
assert nx.number_of_edges(G) == len(m) + len(n) - (len(m) == 2)
|
487 |
+
|
488 |
+
def test_tadpole_graph_exceptions(self):
|
489 |
+
# Raise NetworkXError if m<2
|
490 |
+
pytest.raises(nx.NetworkXError, nx.tadpole_graph, -1, 3)
|
491 |
+
pytest.raises(nx.NetworkXError, nx.tadpole_graph, 0, 3)
|
492 |
+
pytest.raises(nx.NetworkXError, nx.tadpole_graph, 1, 3)
|
493 |
+
|
494 |
+
# Raise NetworkXError if n<0
|
495 |
+
pytest.raises(nx.NetworkXError, nx.tadpole_graph, 5, -2)
|
496 |
+
|
497 |
+
# Raise NetworkXError for digraphs
|
498 |
+
with pytest.raises(nx.NetworkXError):
|
499 |
+
nx.tadpole_graph(2, 20, create_using=nx.DiGraph)
|
500 |
+
with pytest.raises(nx.NetworkXError):
|
501 |
+
nx.tadpole_graph(2, 20, create_using=nx.MultiDiGraph)
|
502 |
+
|
503 |
+
@pytest.mark.parametrize(("m", "n"), [(2, 0), (2, 5), (2, 10), ("ab", 20)])
|
504 |
+
def test_tadpole_graph_same_as_path_when_m_is_2(self, m, n):
|
505 |
+
G = nx.tadpole_graph(m, n)
|
506 |
+
assert is_isomorphic(G, nx.path_graph(n + 2))
|
507 |
+
|
508 |
+
@pytest.mark.parametrize("m", [4, 7])
|
509 |
+
def test_tadpole_graph_same_as_cycle_when_m2_is_0(self, m):
|
510 |
+
G = nx.tadpole_graph(m, 0)
|
511 |
+
assert is_isomorphic(G, nx.cycle_graph(m))
|
512 |
+
|
513 |
+
def test_tadpole_graph_for_multigraph(self):
|
514 |
+
G = nx.tadpole_graph(5, 20)
|
515 |
+
MG = nx.tadpole_graph(5, 20, create_using=nx.MultiGraph)
|
516 |
+
assert edges_equal(MG.edges(), G.edges())
|
517 |
+
|
518 |
+
@pytest.mark.parametrize(
|
519 |
+
("m", "n"),
|
520 |
+
[(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])],
|
521 |
+
)
|
522 |
+
def test_tadpole_graph_mixing_input_types(self, m, n):
|
523 |
+
expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
|
524 |
+
expected.add_edge(0, 100) # Connect cycle and path
|
525 |
+
assert is_isomorphic(nx.tadpole_graph(m, n), expected)
|
526 |
+
|
527 |
+
def test_tadpole_graph_non_builtin_integers(self):
|
528 |
+
np = pytest.importorskip("numpy")
|
529 |
+
G = nx.tadpole_graph(np.int32(4), np.int64(3))
|
530 |
+
expected = nx.compose(nx.cycle_graph(4), nx.path_graph(range(100, 103)))
|
531 |
+
expected.add_edge(0, 100) # Connect cycle and path
|
532 |
+
assert is_isomorphic(G, expected)
|
533 |
+
|
534 |
+
def test_trivial_graph(self):
|
535 |
+
assert nx.number_of_nodes(nx.trivial_graph()) == 1
|
536 |
+
|
537 |
+
def test_turan_graph(self):
|
538 |
+
assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63
|
539 |
+
assert is_isomorphic(
|
540 |
+
nx.turan_graph(13, 4), nx.complete_multipartite_graph(3, 4, 3, 3)
|
541 |
+
)
|
542 |
+
|
543 |
+
def test_wheel_graph(self):
|
544 |
+
for n, G in [
|
545 |
+
("", nx.null_graph()),
|
546 |
+
(0, nx.null_graph()),
|
547 |
+
(1, nx.empty_graph(1)),
|
548 |
+
(2, nx.path_graph(2)),
|
549 |
+
(3, nx.complete_graph(3)),
|
550 |
+
(4, nx.complete_graph(4)),
|
551 |
+
]:
|
552 |
+
g = nx.wheel_graph(n)
|
553 |
+
assert is_isomorphic(g, G)
|
554 |
+
|
555 |
+
g = nx.wheel_graph(10)
|
556 |
+
assert sorted(d for n, d in g.degree()) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 9]
|
557 |
+
|
558 |
+
pytest.raises(nx.NetworkXError, nx.wheel_graph, 10, create_using=nx.DiGraph)
|
559 |
+
|
560 |
+
mg = nx.wheel_graph(10, create_using=nx.MultiGraph())
|
561 |
+
assert edges_equal(mg.edges(), g.edges())
|
562 |
+
|
563 |
+
G = nx.wheel_graph("abc")
|
564 |
+
assert len(G) == 3
|
565 |
+
assert G.size() == 3
|
566 |
+
|
567 |
+
G = nx.wheel_graph("abcb")
|
568 |
+
assert len(G) == 3
|
569 |
+
assert G.size() == 4
|
570 |
+
G = nx.wheel_graph("abcb", nx.MultiGraph)
|
571 |
+
assert len(G) == 3
|
572 |
+
assert G.size() == 6
|
573 |
+
|
574 |
+
def test_non_int_integers_for_wheel_graph(self):
|
575 |
+
np = pytest.importorskip("numpy")
|
576 |
+
G = nx.wheel_graph(np.int32(3))
|
577 |
+
assert len(G) == 3
|
578 |
+
assert G.size() == 3
|
579 |
+
|
580 |
+
def test_complete_0_partite_graph(self):
|
581 |
+
"""Tests that the complete 0-partite graph is the null graph."""
|
582 |
+
G = nx.complete_multipartite_graph()
|
583 |
+
H = nx.null_graph()
|
584 |
+
assert nodes_equal(G, H)
|
585 |
+
assert edges_equal(G.edges(), H.edges())
|
586 |
+
|
587 |
+
def test_complete_1_partite_graph(self):
|
588 |
+
"""Tests that the complete 1-partite graph is the empty graph."""
|
589 |
+
G = nx.complete_multipartite_graph(3)
|
590 |
+
H = nx.empty_graph(3)
|
591 |
+
assert nodes_equal(G, H)
|
592 |
+
assert edges_equal(G.edges(), H.edges())
|
593 |
+
|
594 |
+
def test_complete_2_partite_graph(self):
|
595 |
+
"""Tests that the complete 2-partite graph is the complete bipartite
|
596 |
+
graph.
|
597 |
+
|
598 |
+
"""
|
599 |
+
G = nx.complete_multipartite_graph(2, 3)
|
600 |
+
H = nx.complete_bipartite_graph(2, 3)
|
601 |
+
assert nodes_equal(G, H)
|
602 |
+
assert edges_equal(G.edges(), H.edges())
|
603 |
+
|
604 |
+
def test_complete_multipartite_graph(self):
|
605 |
+
"""Tests for generating the complete multipartite graph."""
|
606 |
+
G = nx.complete_multipartite_graph(2, 3, 4)
|
607 |
+
blocks = [(0, 1), (2, 3, 4), (5, 6, 7, 8)]
|
608 |
+
# Within each block, no two vertices should be adjacent.
|
609 |
+
for block in blocks:
|
610 |
+
for u, v in itertools.combinations_with_replacement(block, 2):
|
611 |
+
assert v not in G[u]
|
612 |
+
assert G.nodes[u] == G.nodes[v]
|
613 |
+
# Across blocks, all vertices should be adjacent.
|
614 |
+
for block1, block2 in itertools.combinations(blocks, 2):
|
615 |
+
for u, v in itertools.product(block1, block2):
|
616 |
+
assert v in G[u]
|
617 |
+
assert G.nodes[u] != G.nodes[v]
|
618 |
+
with pytest.raises(nx.NetworkXError, match="Negative number of nodes"):
|
619 |
+
nx.complete_multipartite_graph(2, -3, 4)
|
620 |
+
|
621 |
+
def test_kneser_graph(self):
|
622 |
+
# the petersen graph is a special case of the kneser graph when n=5 and k=2
|
623 |
+
assert is_isomorphic(nx.kneser_graph(5, 2), nx.petersen_graph())
|
624 |
+
|
625 |
+
# when k is 1, the kneser graph returns a complete graph with n vertices
|
626 |
+
for i in range(1, 7):
|
627 |
+
assert is_isomorphic(nx.kneser_graph(i, 1), nx.complete_graph(i))
|
628 |
+
|
629 |
+
# the kneser graph of n and n-1 is the empty graph with n vertices
|
630 |
+
for j in range(3, 7):
|
631 |
+
assert is_isomorphic(nx.kneser_graph(j, j - 1), nx.empty_graph(j))
|
632 |
+
|
633 |
+
# in general the number of edges of the kneser graph is equal to
|
634 |
+
# (n choose k) times (n-k choose k) divided by 2
|
635 |
+
assert nx.number_of_edges(nx.kneser_graph(8, 3)) == 280
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_cographs.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unit tests for the :mod:`networkx.generators.cographs` module.
|
2 |
+
|
3 |
+
"""
|
4 |
+
|
5 |
+
import networkx as nx
|
6 |
+
|
7 |
+
|
8 |
+
def test_random_cograph():
|
9 |
+
n = 3
|
10 |
+
G = nx.random_cograph(n)
|
11 |
+
|
12 |
+
assert len(G) == 2**n
|
13 |
+
|
14 |
+
# Every connected subgraph of G has diameter <= 2
|
15 |
+
if nx.is_connected(G):
|
16 |
+
assert nx.diameter(G) <= 2
|
17 |
+
else:
|
18 |
+
components = nx.connected_components(G)
|
19 |
+
for component in components:
|
20 |
+
assert nx.diameter(G.subgraph(component)) <= 2
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_community.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
|
6 |
+
def test_random_partition_graph():
|
7 |
+
G = nx.random_partition_graph([3, 3, 3], 1, 0, seed=42)
|
8 |
+
C = G.graph["partition"]
|
9 |
+
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
|
10 |
+
assert len(G) == 9
|
11 |
+
assert len(list(G.edges())) == 9
|
12 |
+
|
13 |
+
G = nx.random_partition_graph([3, 3, 3], 0, 1)
|
14 |
+
C = G.graph["partition"]
|
15 |
+
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
|
16 |
+
assert len(G) == 9
|
17 |
+
assert len(list(G.edges())) == 27
|
18 |
+
|
19 |
+
G = nx.random_partition_graph([3, 3, 3], 1, 0, directed=True)
|
20 |
+
C = G.graph["partition"]
|
21 |
+
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
|
22 |
+
assert len(G) == 9
|
23 |
+
assert len(list(G.edges())) == 18
|
24 |
+
|
25 |
+
G = nx.random_partition_graph([3, 3, 3], 0, 1, directed=True)
|
26 |
+
C = G.graph["partition"]
|
27 |
+
assert C == [{0, 1, 2}, {3, 4, 5}, {6, 7, 8}]
|
28 |
+
assert len(G) == 9
|
29 |
+
assert len(list(G.edges())) == 54
|
30 |
+
|
31 |
+
G = nx.random_partition_graph([1, 2, 3, 4, 5], 0.5, 0.1)
|
32 |
+
C = G.graph["partition"]
|
33 |
+
assert C == [{0}, {1, 2}, {3, 4, 5}, {6, 7, 8, 9}, {10, 11, 12, 13, 14}]
|
34 |
+
assert len(G) == 15
|
35 |
+
|
36 |
+
rpg = nx.random_partition_graph
|
37 |
+
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 1.1, 0.1)
|
38 |
+
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], -0.1, 0.1)
|
39 |
+
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, 1.1)
|
40 |
+
pytest.raises(nx.NetworkXError, rpg, [1, 2, 3], 0.1, -0.1)
|
41 |
+
|
42 |
+
|
43 |
+
def test_planted_partition_graph():
|
44 |
+
G = nx.planted_partition_graph(4, 3, 1, 0, seed=42)
|
45 |
+
C = G.graph["partition"]
|
46 |
+
assert len(C) == 4
|
47 |
+
assert len(G) == 12
|
48 |
+
assert len(list(G.edges())) == 12
|
49 |
+
|
50 |
+
G = nx.planted_partition_graph(4, 3, 0, 1)
|
51 |
+
C = G.graph["partition"]
|
52 |
+
assert len(C) == 4
|
53 |
+
assert len(G) == 12
|
54 |
+
assert len(list(G.edges())) == 54
|
55 |
+
|
56 |
+
G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42)
|
57 |
+
C = G.graph["partition"]
|
58 |
+
assert len(C) == 10
|
59 |
+
assert len(G) == 40
|
60 |
+
|
61 |
+
G = nx.planted_partition_graph(4, 3, 1, 0, directed=True)
|
62 |
+
C = G.graph["partition"]
|
63 |
+
assert len(C) == 4
|
64 |
+
assert len(G) == 12
|
65 |
+
assert len(list(G.edges())) == 24
|
66 |
+
|
67 |
+
G = nx.planted_partition_graph(4, 3, 0, 1, directed=True)
|
68 |
+
C = G.graph["partition"]
|
69 |
+
assert len(C) == 4
|
70 |
+
assert len(G) == 12
|
71 |
+
assert len(list(G.edges())) == 108
|
72 |
+
|
73 |
+
G = nx.planted_partition_graph(10, 4, 0.5, 0.1, seed=42, directed=True)
|
74 |
+
C = G.graph["partition"]
|
75 |
+
assert len(C) == 10
|
76 |
+
assert len(G) == 40
|
77 |
+
|
78 |
+
ppg = nx.planted_partition_graph
|
79 |
+
pytest.raises(nx.NetworkXError, ppg, 3, 3, 1.1, 0.1)
|
80 |
+
pytest.raises(nx.NetworkXError, ppg, 3, 3, -0.1, 0.1)
|
81 |
+
pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, 1.1)
|
82 |
+
pytest.raises(nx.NetworkXError, ppg, 3, 3, 0.1, -0.1)
|
83 |
+
|
84 |
+
|
85 |
+
def test_relaxed_caveman_graph():
|
86 |
+
G = nx.relaxed_caveman_graph(4, 3, 0)
|
87 |
+
assert len(G) == 12
|
88 |
+
G = nx.relaxed_caveman_graph(4, 3, 1)
|
89 |
+
assert len(G) == 12
|
90 |
+
G = nx.relaxed_caveman_graph(4, 3, 0.5)
|
91 |
+
assert len(G) == 12
|
92 |
+
G = nx.relaxed_caveman_graph(4, 3, 0.5, seed=42)
|
93 |
+
assert len(G) == 12
|
94 |
+
|
95 |
+
|
96 |
+
def test_connected_caveman_graph():
|
97 |
+
G = nx.connected_caveman_graph(4, 3)
|
98 |
+
assert len(G) == 12
|
99 |
+
|
100 |
+
G = nx.connected_caveman_graph(1, 5)
|
101 |
+
K5 = nx.complete_graph(5)
|
102 |
+
K5.remove_edge(3, 4)
|
103 |
+
assert nx.is_isomorphic(G, K5)
|
104 |
+
|
105 |
+
# need at least 2 nodes in each clique
|
106 |
+
pytest.raises(nx.NetworkXError, nx.connected_caveman_graph, 4, 1)
|
107 |
+
|
108 |
+
|
109 |
+
def test_caveman_graph():
|
110 |
+
G = nx.caveman_graph(4, 3)
|
111 |
+
assert len(G) == 12
|
112 |
+
|
113 |
+
G = nx.caveman_graph(5, 1)
|
114 |
+
E5 = nx.empty_graph(5)
|
115 |
+
assert nx.is_isomorphic(G, E5)
|
116 |
+
|
117 |
+
G = nx.caveman_graph(1, 5)
|
118 |
+
K5 = nx.complete_graph(5)
|
119 |
+
assert nx.is_isomorphic(G, K5)
|
120 |
+
|
121 |
+
|
122 |
+
def test_gaussian_random_partition_graph():
|
123 |
+
G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01)
|
124 |
+
assert len(G) == 100
|
125 |
+
G = nx.gaussian_random_partition_graph(100, 10, 10, 0.3, 0.01, directed=True)
|
126 |
+
assert len(G) == 100
|
127 |
+
G = nx.gaussian_random_partition_graph(
|
128 |
+
100, 10, 10, 0.3, 0.01, directed=False, seed=42
|
129 |
+
)
|
130 |
+
assert len(G) == 100
|
131 |
+
assert not isinstance(G, nx.DiGraph)
|
132 |
+
G = nx.gaussian_random_partition_graph(
|
133 |
+
100, 10, 10, 0.3, 0.01, directed=True, seed=42
|
134 |
+
)
|
135 |
+
assert len(G) == 100
|
136 |
+
assert isinstance(G, nx.DiGraph)
|
137 |
+
pytest.raises(
|
138 |
+
nx.NetworkXError, nx.gaussian_random_partition_graph, 100, 101, 10, 1, 0
|
139 |
+
)
|
140 |
+
# Test when clusters are likely less than 1
|
141 |
+
G = nx.gaussian_random_partition_graph(10, 0.5, 0.5, 0.5, 0.5, seed=1)
|
142 |
+
assert len(G) == 10
|
143 |
+
|
144 |
+
|
145 |
+
def test_ring_of_cliques():
|
146 |
+
for i in range(2, 20, 3):
|
147 |
+
for j in range(2, 20, 3):
|
148 |
+
G = nx.ring_of_cliques(i, j)
|
149 |
+
assert G.number_of_nodes() == i * j
|
150 |
+
if i != 2 or j != 1:
|
151 |
+
expected_num_edges = i * (((j * (j - 1)) // 2) + 1)
|
152 |
+
else:
|
153 |
+
# the edge that already exists cannot be duplicated
|
154 |
+
expected_num_edges = i * (((j * (j - 1)) // 2) + 1) - 1
|
155 |
+
assert G.number_of_edges() == expected_num_edges
|
156 |
+
with pytest.raises(
|
157 |
+
nx.NetworkXError, match="A ring of cliques must have at least two cliques"
|
158 |
+
):
|
159 |
+
nx.ring_of_cliques(1, 5)
|
160 |
+
with pytest.raises(
|
161 |
+
nx.NetworkXError, match="The cliques must have at least two nodes"
|
162 |
+
):
|
163 |
+
nx.ring_of_cliques(3, 0)
|
164 |
+
|
165 |
+
|
166 |
+
def test_windmill_graph():
|
167 |
+
for n in range(2, 20, 3):
|
168 |
+
for k in range(2, 20, 3):
|
169 |
+
G = nx.windmill_graph(n, k)
|
170 |
+
assert G.number_of_nodes() == (k - 1) * n + 1
|
171 |
+
assert G.number_of_edges() == n * k * (k - 1) / 2
|
172 |
+
assert G.degree(0) == G.number_of_nodes() - 1
|
173 |
+
for i in range(1, G.number_of_nodes()):
|
174 |
+
assert G.degree(i) == k - 1
|
175 |
+
with pytest.raises(
|
176 |
+
nx.NetworkXError, match="A windmill graph must have at least two cliques"
|
177 |
+
):
|
178 |
+
nx.windmill_graph(1, 3)
|
179 |
+
with pytest.raises(
|
180 |
+
nx.NetworkXError, match="The cliques must have at least two nodes"
|
181 |
+
):
|
182 |
+
nx.windmill_graph(3, 0)
|
183 |
+
|
184 |
+
|
185 |
+
def test_stochastic_block_model():
|
186 |
+
sizes = [75, 75, 300]
|
187 |
+
probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
|
188 |
+
G = nx.stochastic_block_model(sizes, probs, seed=0)
|
189 |
+
C = G.graph["partition"]
|
190 |
+
assert len(C) == 3
|
191 |
+
assert len(G) == 450
|
192 |
+
assert G.size() == 22160
|
193 |
+
|
194 |
+
GG = nx.stochastic_block_model(sizes, probs, range(450), seed=0)
|
195 |
+
assert G.nodes == GG.nodes
|
196 |
+
|
197 |
+
# Test Exceptions
|
198 |
+
sbm = nx.stochastic_block_model
|
199 |
+
badnodelist = list(range(400)) # not enough nodes to match sizes
|
200 |
+
badprobs1 = [[0.25, 0.05, 1.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
|
201 |
+
badprobs2 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
|
202 |
+
probs_rect1 = [[0.25, 0.05, 0.02], [0.05, -0.35, 0.07]]
|
203 |
+
probs_rect2 = [[0.25, 0.05], [0.05, -0.35], [0.02, 0.07]]
|
204 |
+
asymprobs = [[0.25, 0.05, 0.01], [0.05, -0.35, 0.07], [0.02, 0.07, 0.40]]
|
205 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, badprobs1)
|
206 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, badprobs2)
|
207 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect1, directed=True)
|
208 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, probs_rect2, directed=True)
|
209 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, asymprobs, directed=False)
|
210 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, probs, badnodelist)
|
211 |
+
nodelist = [0] + list(range(449)) # repeated node name in nodelist
|
212 |
+
pytest.raises(nx.NetworkXException, sbm, sizes, probs, nodelist)
|
213 |
+
|
214 |
+
# Extra keyword arguments test
|
215 |
+
GG = nx.stochastic_block_model(sizes, probs, seed=0, selfloops=True)
|
216 |
+
assert G.nodes == GG.nodes
|
217 |
+
GG = nx.stochastic_block_model(sizes, probs, selfloops=True, directed=True)
|
218 |
+
assert G.nodes == GG.nodes
|
219 |
+
GG = nx.stochastic_block_model(sizes, probs, seed=0, sparse=False)
|
220 |
+
assert G.nodes == GG.nodes
|
221 |
+
|
222 |
+
|
223 |
+
def test_generator():
|
224 |
+
n = 250
|
225 |
+
tau1 = 3
|
226 |
+
tau2 = 1.5
|
227 |
+
mu = 0.1
|
228 |
+
G = nx.LFR_benchmark_graph(
|
229 |
+
n, tau1, tau2, mu, average_degree=5, min_community=20, seed=10
|
230 |
+
)
|
231 |
+
assert len(G) == 250
|
232 |
+
C = {frozenset(G.nodes[v]["community"]) for v in G}
|
233 |
+
assert nx.community.is_partition(G.nodes(), C)
|
234 |
+
|
235 |
+
|
236 |
+
def test_invalid_tau1():
|
237 |
+
with pytest.raises(nx.NetworkXError, match="tau2 must be greater than one"):
|
238 |
+
n = 100
|
239 |
+
tau1 = 2
|
240 |
+
tau2 = 1
|
241 |
+
mu = 0.1
|
242 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
|
243 |
+
|
244 |
+
|
245 |
+
def test_invalid_tau2():
|
246 |
+
with pytest.raises(nx.NetworkXError, match="tau1 must be greater than one"):
|
247 |
+
n = 100
|
248 |
+
tau1 = 1
|
249 |
+
tau2 = 2
|
250 |
+
mu = 0.1
|
251 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
|
252 |
+
|
253 |
+
|
254 |
+
def test_mu_too_large():
|
255 |
+
with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"):
|
256 |
+
n = 100
|
257 |
+
tau1 = 2
|
258 |
+
tau2 = 2
|
259 |
+
mu = 1.1
|
260 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
|
261 |
+
|
262 |
+
|
263 |
+
def test_mu_too_small():
|
264 |
+
with pytest.raises(nx.NetworkXError, match="mu must be in the interval \\[0, 1\\]"):
|
265 |
+
n = 100
|
266 |
+
tau1 = 2
|
267 |
+
tau2 = 2
|
268 |
+
mu = -1
|
269 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2)
|
270 |
+
|
271 |
+
|
272 |
+
def test_both_degrees_none():
|
273 |
+
with pytest.raises(
|
274 |
+
nx.NetworkXError,
|
275 |
+
match="Must assign exactly one of min_degree and average_degree",
|
276 |
+
):
|
277 |
+
n = 100
|
278 |
+
tau1 = 2
|
279 |
+
tau2 = 2
|
280 |
+
mu = 1
|
281 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu)
|
282 |
+
|
283 |
+
|
284 |
+
def test_neither_degrees_none():
|
285 |
+
with pytest.raises(
|
286 |
+
nx.NetworkXError,
|
287 |
+
match="Must assign exactly one of min_degree and average_degree",
|
288 |
+
):
|
289 |
+
n = 100
|
290 |
+
tau1 = 2
|
291 |
+
tau2 = 2
|
292 |
+
mu = 1
|
293 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, average_degree=5)
|
294 |
+
|
295 |
+
|
296 |
+
def test_max_iters_exceeded():
|
297 |
+
with pytest.raises(
|
298 |
+
nx.ExceededMaxIterations,
|
299 |
+
match="Could not assign communities; try increasing min_community",
|
300 |
+
):
|
301 |
+
n = 10
|
302 |
+
tau1 = 2
|
303 |
+
tau2 = 2
|
304 |
+
mu = 0.1
|
305 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=10, seed=1)
|
306 |
+
|
307 |
+
|
308 |
+
def test_max_deg_out_of_range():
|
309 |
+
with pytest.raises(
|
310 |
+
nx.NetworkXError, match="max_degree must be in the interval \\(0, n\\]"
|
311 |
+
):
|
312 |
+
n = 10
|
313 |
+
tau1 = 2
|
314 |
+
tau2 = 2
|
315 |
+
mu = 0.1
|
316 |
+
nx.LFR_benchmark_graph(
|
317 |
+
n, tau1, tau2, mu, max_degree=n + 1, max_iters=10, seed=1
|
318 |
+
)
|
319 |
+
|
320 |
+
|
321 |
+
def test_max_community():
|
322 |
+
n = 250
|
323 |
+
tau1 = 3
|
324 |
+
tau2 = 1.5
|
325 |
+
mu = 0.1
|
326 |
+
G = nx.LFR_benchmark_graph(
|
327 |
+
n,
|
328 |
+
tau1,
|
329 |
+
tau2,
|
330 |
+
mu,
|
331 |
+
average_degree=5,
|
332 |
+
max_degree=100,
|
333 |
+
min_community=50,
|
334 |
+
max_community=200,
|
335 |
+
seed=10,
|
336 |
+
)
|
337 |
+
assert len(G) == 250
|
338 |
+
C = {frozenset(G.nodes[v]["community"]) for v in G}
|
339 |
+
assert nx.community.is_partition(G.nodes(), C)
|
340 |
+
|
341 |
+
|
342 |
+
def test_powerlaw_iterations_exceeded():
|
343 |
+
with pytest.raises(
|
344 |
+
nx.ExceededMaxIterations, match="Could not create power law sequence"
|
345 |
+
):
|
346 |
+
n = 100
|
347 |
+
tau1 = 2
|
348 |
+
tau2 = 2
|
349 |
+
mu = 1
|
350 |
+
nx.LFR_benchmark_graph(n, tau1, tau2, mu, min_degree=2, max_iters=0)
|
351 |
+
|
352 |
+
|
353 |
+
def test_no_scipy_zeta():
|
354 |
+
zeta2 = 1.6449340668482264
|
355 |
+
assert abs(zeta2 - nx.generators.community._hurwitz_zeta(2, 1, 0.0001)) < 0.01
|
356 |
+
|
357 |
+
|
358 |
+
def test_generate_min_degree_itr():
|
359 |
+
with pytest.raises(
|
360 |
+
nx.ExceededMaxIterations, match="Could not match average_degree"
|
361 |
+
):
|
362 |
+
nx.generators.community._generate_min_degree(2, 2, 1, 0.01, 0)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_degree_seq.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
|
6 |
+
class TestConfigurationModel:
|
7 |
+
"""Unit tests for the :func:`~networkx.configuration_model`
|
8 |
+
function.
|
9 |
+
|
10 |
+
"""
|
11 |
+
|
12 |
+
def test_empty_degree_sequence(self):
|
13 |
+
"""Tests that an empty degree sequence yields the null graph."""
|
14 |
+
G = nx.configuration_model([])
|
15 |
+
assert len(G) == 0
|
16 |
+
|
17 |
+
def test_degree_zero(self):
|
18 |
+
"""Tests that a degree sequence of all zeros yields the empty
|
19 |
+
graph.
|
20 |
+
|
21 |
+
"""
|
22 |
+
G = nx.configuration_model([0, 0, 0])
|
23 |
+
assert len(G) == 3
|
24 |
+
assert G.number_of_edges() == 0
|
25 |
+
|
26 |
+
def test_degree_sequence(self):
|
27 |
+
"""Tests that the degree sequence of the generated graph matches
|
28 |
+
the input degree sequence.
|
29 |
+
|
30 |
+
"""
|
31 |
+
deg_seq = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
|
32 |
+
G = nx.configuration_model(deg_seq, seed=12345678)
|
33 |
+
assert sorted((d for n, d in G.degree()), reverse=True) == [
|
34 |
+
5,
|
35 |
+
3,
|
36 |
+
3,
|
37 |
+
3,
|
38 |
+
3,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
1,
|
43 |
+
1,
|
44 |
+
1,
|
45 |
+
]
|
46 |
+
assert sorted((d for n, d in G.degree(range(len(deg_seq)))), reverse=True) == [
|
47 |
+
5,
|
48 |
+
3,
|
49 |
+
3,
|
50 |
+
3,
|
51 |
+
3,
|
52 |
+
2,
|
53 |
+
2,
|
54 |
+
2,
|
55 |
+
1,
|
56 |
+
1,
|
57 |
+
1,
|
58 |
+
]
|
59 |
+
|
60 |
+
def test_random_seed(self):
|
61 |
+
"""Tests that each call with the same random seed generates the
|
62 |
+
same graph.
|
63 |
+
|
64 |
+
"""
|
65 |
+
deg_seq = [3] * 12
|
66 |
+
G1 = nx.configuration_model(deg_seq, seed=1000)
|
67 |
+
G2 = nx.configuration_model(deg_seq, seed=1000)
|
68 |
+
assert nx.is_isomorphic(G1, G2)
|
69 |
+
G1 = nx.configuration_model(deg_seq, seed=10)
|
70 |
+
G2 = nx.configuration_model(deg_seq, seed=10)
|
71 |
+
assert nx.is_isomorphic(G1, G2)
|
72 |
+
|
73 |
+
def test_directed_disallowed(self):
|
74 |
+
"""Tests that attempting to create a configuration model graph
|
75 |
+
using a directed graph yields an exception.
|
76 |
+
|
77 |
+
"""
|
78 |
+
with pytest.raises(nx.NetworkXNotImplemented):
|
79 |
+
nx.configuration_model([], create_using=nx.DiGraph())
|
80 |
+
|
81 |
+
def test_odd_degree_sum(self):
|
82 |
+
"""Tests that a degree sequence whose sum is odd yields an
|
83 |
+
exception.
|
84 |
+
|
85 |
+
"""
|
86 |
+
with pytest.raises(nx.NetworkXError):
|
87 |
+
nx.configuration_model([1, 2])
|
88 |
+
|
89 |
+
|
90 |
+
def test_directed_configuration_raise_unequal():
|
91 |
+
with pytest.raises(nx.NetworkXError):
|
92 |
+
zin = [5, 3, 3, 3, 3, 2, 2, 2, 1, 1]
|
93 |
+
zout = [5, 3, 3, 3, 3, 2, 2, 2, 1, 2]
|
94 |
+
nx.directed_configuration_model(zin, zout)
|
95 |
+
|
96 |
+
|
97 |
+
def test_directed_configuration_model():
|
98 |
+
G = nx.directed_configuration_model([], [], seed=0)
|
99 |
+
assert len(G) == 0
|
100 |
+
|
101 |
+
|
102 |
+
def test_simple_directed_configuration_model():
|
103 |
+
G = nx.directed_configuration_model([1, 1], [1, 1], seed=0)
|
104 |
+
assert len(G) == 2
|
105 |
+
|
106 |
+
|
107 |
+
def test_expected_degree_graph_empty():
|
108 |
+
# empty graph has empty degree sequence
|
109 |
+
deg_seq = []
|
110 |
+
G = nx.expected_degree_graph(deg_seq)
|
111 |
+
assert dict(G.degree()) == {}
|
112 |
+
|
113 |
+
|
114 |
+
def test_expected_degree_graph():
|
115 |
+
# test that fixed seed delivers the same graph
|
116 |
+
deg_seq = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
|
117 |
+
G1 = nx.expected_degree_graph(deg_seq, seed=1000)
|
118 |
+
assert len(G1) == 12
|
119 |
+
|
120 |
+
G2 = nx.expected_degree_graph(deg_seq, seed=1000)
|
121 |
+
assert nx.is_isomorphic(G1, G2)
|
122 |
+
|
123 |
+
G1 = nx.expected_degree_graph(deg_seq, seed=10)
|
124 |
+
G2 = nx.expected_degree_graph(deg_seq, seed=10)
|
125 |
+
assert nx.is_isomorphic(G1, G2)
|
126 |
+
|
127 |
+
|
128 |
+
def test_expected_degree_graph_selfloops():
|
129 |
+
deg_seq = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
|
130 |
+
G1 = nx.expected_degree_graph(deg_seq, seed=1000, selfloops=False)
|
131 |
+
G2 = nx.expected_degree_graph(deg_seq, seed=1000, selfloops=False)
|
132 |
+
assert nx.is_isomorphic(G1, G2)
|
133 |
+
assert len(G1) == 12
|
134 |
+
|
135 |
+
|
136 |
+
def test_expected_degree_graph_skew():
|
137 |
+
deg_seq = [10, 2, 2, 2, 2]
|
138 |
+
G1 = nx.expected_degree_graph(deg_seq, seed=1000)
|
139 |
+
G2 = nx.expected_degree_graph(deg_seq, seed=1000)
|
140 |
+
assert nx.is_isomorphic(G1, G2)
|
141 |
+
assert len(G1) == 5
|
142 |
+
|
143 |
+
|
144 |
+
def test_havel_hakimi_construction():
|
145 |
+
G = nx.havel_hakimi_graph([])
|
146 |
+
assert len(G) == 0
|
147 |
+
|
148 |
+
z = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
|
149 |
+
pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z)
|
150 |
+
z = ["A", 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
|
151 |
+
pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z)
|
152 |
+
|
153 |
+
z = [5, 4, 3, 3, 3, 2, 2, 2]
|
154 |
+
G = nx.havel_hakimi_graph(z)
|
155 |
+
G = nx.configuration_model(z)
|
156 |
+
z = [6, 5, 4, 4, 2, 1, 1, 1]
|
157 |
+
pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z)
|
158 |
+
|
159 |
+
z = [10, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2]
|
160 |
+
|
161 |
+
G = nx.havel_hakimi_graph(z)
|
162 |
+
|
163 |
+
pytest.raises(nx.NetworkXError, nx.havel_hakimi_graph, z, create_using=nx.DiGraph())
|
164 |
+
|
165 |
+
|
166 |
+
def test_directed_havel_hakimi():
|
167 |
+
# Test range of valid directed degree sequences
|
168 |
+
n, r = 100, 10
|
169 |
+
p = 1.0 / r
|
170 |
+
for i in range(r):
|
171 |
+
G1 = nx.erdos_renyi_graph(n, p * (i + 1), None, True)
|
172 |
+
din1 = [d for n, d in G1.in_degree()]
|
173 |
+
dout1 = [d for n, d in G1.out_degree()]
|
174 |
+
G2 = nx.directed_havel_hakimi_graph(din1, dout1)
|
175 |
+
din2 = [d for n, d in G2.in_degree()]
|
176 |
+
dout2 = [d for n, d in G2.out_degree()]
|
177 |
+
assert sorted(din1) == sorted(din2)
|
178 |
+
assert sorted(dout1) == sorted(dout2)
|
179 |
+
|
180 |
+
# Test non-graphical sequence
|
181 |
+
dout = [1000, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
|
182 |
+
din = [103, 102, 102, 102, 102, 102, 102, 102, 102, 102]
|
183 |
+
pytest.raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout)
|
184 |
+
# Test valid sequences
|
185 |
+
dout = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
|
186 |
+
din = [2, 2, 2, 2, 2, 2, 2, 2, 0, 2]
|
187 |
+
G2 = nx.directed_havel_hakimi_graph(din, dout)
|
188 |
+
dout2 = (d for n, d in G2.out_degree())
|
189 |
+
din2 = (d for n, d in G2.in_degree())
|
190 |
+
assert sorted(dout) == sorted(dout2)
|
191 |
+
assert sorted(din) == sorted(din2)
|
192 |
+
# Test unequal sums
|
193 |
+
din = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
|
194 |
+
pytest.raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout)
|
195 |
+
# Test for negative values
|
196 |
+
din = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2]
|
197 |
+
pytest.raises(nx.exception.NetworkXError, nx.directed_havel_hakimi_graph, din, dout)
|
198 |
+
|
199 |
+
|
200 |
+
def test_degree_sequence_tree():
|
201 |
+
z = [1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
|
202 |
+
G = nx.degree_sequence_tree(z)
|
203 |
+
assert len(G) == len(z)
|
204 |
+
assert len(list(G.edges())) == sum(z) / 2
|
205 |
+
|
206 |
+
pytest.raises(
|
207 |
+
nx.NetworkXError, nx.degree_sequence_tree, z, create_using=nx.DiGraph()
|
208 |
+
)
|
209 |
+
|
210 |
+
z = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
|
211 |
+
pytest.raises(nx.NetworkXError, nx.degree_sequence_tree, z)
|
212 |
+
|
213 |
+
|
214 |
+
def test_random_degree_sequence_graph():
|
215 |
+
d = [1, 2, 2, 3]
|
216 |
+
G = nx.random_degree_sequence_graph(d, seed=42)
|
217 |
+
assert d == sorted(d for n, d in G.degree())
|
218 |
+
|
219 |
+
|
220 |
+
def test_random_degree_sequence_graph_raise():
|
221 |
+
z = [1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4]
|
222 |
+
pytest.raises(nx.NetworkXUnfeasible, nx.random_degree_sequence_graph, z)
|
223 |
+
|
224 |
+
|
225 |
+
def test_random_degree_sequence_large():
|
226 |
+
G1 = nx.fast_gnp_random_graph(100, 0.1, seed=42)
|
227 |
+
d1 = (d for n, d in G1.degree())
|
228 |
+
G2 = nx.random_degree_sequence_graph(d1, seed=42)
|
229 |
+
d2 = (d for n, d in G2.degree())
|
230 |
+
assert sorted(d1) == sorted(d2)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_duplication.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unit tests for the :mod:`networkx.generators.duplication` module.
|
2 |
+
|
3 |
+
"""
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from networkx.exception import NetworkXError
|
7 |
+
from networkx.generators.duplication import (
|
8 |
+
duplication_divergence_graph,
|
9 |
+
partial_duplication_graph,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
class TestDuplicationDivergenceGraph:
|
14 |
+
"""Unit tests for the
|
15 |
+
:func:`networkx.generators.duplication.duplication_divergence_graph`
|
16 |
+
function.
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
def test_final_size(self):
|
21 |
+
G = duplication_divergence_graph(3, p=1)
|
22 |
+
assert len(G) == 3
|
23 |
+
G = duplication_divergence_graph(3, p=1, seed=42)
|
24 |
+
assert len(G) == 3
|
25 |
+
|
26 |
+
def test_probability_too_large(self):
|
27 |
+
with pytest.raises(NetworkXError):
|
28 |
+
duplication_divergence_graph(3, p=2)
|
29 |
+
|
30 |
+
def test_probability_too_small(self):
|
31 |
+
with pytest.raises(NetworkXError):
|
32 |
+
duplication_divergence_graph(3, p=-1)
|
33 |
+
|
34 |
+
def test_non_extreme_probability_value(self):
|
35 |
+
G = duplication_divergence_graph(6, p=0.3, seed=42)
|
36 |
+
assert len(G) == 6
|
37 |
+
assert list(G.degree()) == [(0, 2), (1, 3), (2, 2), (3, 3), (4, 1), (5, 1)]
|
38 |
+
|
39 |
+
def test_minimum_desired_nodes(self):
|
40 |
+
with pytest.raises(
|
41 |
+
NetworkXError, match=".*n must be greater than or equal to 2"
|
42 |
+
):
|
43 |
+
duplication_divergence_graph(1, p=1)
|
44 |
+
|
45 |
+
|
46 |
+
class TestPartialDuplicationGraph:
|
47 |
+
"""Unit tests for the
|
48 |
+
:func:`networkx.generators.duplication.partial_duplication_graph`
|
49 |
+
function.
|
50 |
+
|
51 |
+
"""
|
52 |
+
|
53 |
+
def test_final_size(self):
|
54 |
+
N = 10
|
55 |
+
n = 5
|
56 |
+
p = 0.5
|
57 |
+
q = 0.5
|
58 |
+
G = partial_duplication_graph(N, n, p, q)
|
59 |
+
assert len(G) == N
|
60 |
+
G = partial_duplication_graph(N, n, p, q, seed=42)
|
61 |
+
assert len(G) == N
|
62 |
+
|
63 |
+
def test_initial_clique_size(self):
|
64 |
+
N = 10
|
65 |
+
n = 10
|
66 |
+
p = 0.5
|
67 |
+
q = 0.5
|
68 |
+
G = partial_duplication_graph(N, n, p, q)
|
69 |
+
assert len(G) == n
|
70 |
+
|
71 |
+
def test_invalid_initial_size(self):
|
72 |
+
with pytest.raises(NetworkXError):
|
73 |
+
N = 5
|
74 |
+
n = 10
|
75 |
+
p = 0.5
|
76 |
+
q = 0.5
|
77 |
+
G = partial_duplication_graph(N, n, p, q)
|
78 |
+
|
79 |
+
def test_invalid_probabilities(self):
|
80 |
+
N = 1
|
81 |
+
n = 1
|
82 |
+
for p, q in [(0.5, 2), (0.5, -1), (2, 0.5), (-1, 0.5)]:
|
83 |
+
args = (N, n, p, q)
|
84 |
+
pytest.raises(NetworkXError, partial_duplication_graph, *args)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_ego.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ego graph
|
3 |
+
---------
|
4 |
+
"""
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.utils import edges_equal, nodes_equal
|
8 |
+
|
9 |
+
|
10 |
+
class TestGeneratorEgo:
|
11 |
+
def test_ego(self):
|
12 |
+
G = nx.star_graph(3)
|
13 |
+
H = nx.ego_graph(G, 0)
|
14 |
+
assert nx.is_isomorphic(G, H)
|
15 |
+
G.add_edge(1, 11)
|
16 |
+
G.add_edge(2, 22)
|
17 |
+
G.add_edge(3, 33)
|
18 |
+
H = nx.ego_graph(G, 0)
|
19 |
+
assert nx.is_isomorphic(nx.star_graph(3), H)
|
20 |
+
G = nx.path_graph(3)
|
21 |
+
H = nx.ego_graph(G, 0)
|
22 |
+
assert edges_equal(H.edges(), [(0, 1)])
|
23 |
+
H = nx.ego_graph(G, 0, undirected=True)
|
24 |
+
assert edges_equal(H.edges(), [(0, 1)])
|
25 |
+
H = nx.ego_graph(G, 0, center=False)
|
26 |
+
assert edges_equal(H.edges(), [])
|
27 |
+
|
28 |
+
def test_ego_distance(self):
|
29 |
+
G = nx.Graph()
|
30 |
+
G.add_edge(0, 1, weight=2, distance=1)
|
31 |
+
G.add_edge(1, 2, weight=2, distance=2)
|
32 |
+
G.add_edge(2, 3, weight=2, distance=1)
|
33 |
+
assert nodes_equal(nx.ego_graph(G, 0, radius=3).nodes(), [0, 1, 2, 3])
|
34 |
+
eg = nx.ego_graph(G, 0, radius=3, distance="weight")
|
35 |
+
assert nodes_equal(eg.nodes(), [0, 1])
|
36 |
+
eg = nx.ego_graph(G, 0, radius=3, distance="weight", undirected=True)
|
37 |
+
assert nodes_equal(eg.nodes(), [0, 1])
|
38 |
+
eg = nx.ego_graph(G, 0, radius=3, distance="distance")
|
39 |
+
assert nodes_equal(eg.nodes(), [0, 1, 2])
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_geometric.py
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
from itertools import combinations
|
4 |
+
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import networkx as nx
|
8 |
+
|
9 |
+
|
10 |
+
def l1dist(x, y):
|
11 |
+
return sum(abs(a - b) for a, b in zip(x, y))
|
12 |
+
|
13 |
+
|
14 |
+
class TestRandomGeometricGraph:
|
15 |
+
"""Unit tests for :func:`~networkx.random_geometric_graph`"""
|
16 |
+
|
17 |
+
def test_number_of_nodes(self):
|
18 |
+
G = nx.random_geometric_graph(50, 0.25, seed=42)
|
19 |
+
assert len(G) == 50
|
20 |
+
G = nx.random_geometric_graph(range(50), 0.25, seed=42)
|
21 |
+
assert len(G) == 50
|
22 |
+
|
23 |
+
def test_distances(self):
|
24 |
+
"""Tests that pairs of vertices adjacent if and only if they are
|
25 |
+
within the prescribed radius.
|
26 |
+
"""
|
27 |
+
# Use the Euclidean metric, the default according to the
|
28 |
+
# documentation.
|
29 |
+
G = nx.random_geometric_graph(50, 0.25)
|
30 |
+
for u, v in combinations(G, 2):
|
31 |
+
# Adjacent vertices must be within the given distance.
|
32 |
+
if v in G[u]:
|
33 |
+
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
34 |
+
# Nonadjacent vertices must be at greater distance.
|
35 |
+
else:
|
36 |
+
assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
37 |
+
|
38 |
+
def test_p(self):
|
39 |
+
"""Tests for providing an alternate distance metric to the generator."""
|
40 |
+
# Use the L1 metric.
|
41 |
+
G = nx.random_geometric_graph(50, 0.25, p=1)
|
42 |
+
for u, v in combinations(G, 2):
|
43 |
+
# Adjacent vertices must be within the given distance.
|
44 |
+
if v in G[u]:
|
45 |
+
assert l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
46 |
+
# Nonadjacent vertices must be at greater distance.
|
47 |
+
else:
|
48 |
+
assert not l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
49 |
+
|
50 |
+
def test_node_names(self):
|
51 |
+
"""Tests using values other than sequential numbers as node IDs."""
|
52 |
+
import string
|
53 |
+
|
54 |
+
nodes = list(string.ascii_lowercase)
|
55 |
+
G = nx.random_geometric_graph(nodes, 0.25)
|
56 |
+
assert len(G) == len(nodes)
|
57 |
+
|
58 |
+
for u, v in combinations(G, 2):
|
59 |
+
# Adjacent vertices must be within the given distance.
|
60 |
+
if v in G[u]:
|
61 |
+
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
62 |
+
# Nonadjacent vertices must be at greater distance.
|
63 |
+
else:
|
64 |
+
assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
65 |
+
|
66 |
+
def test_pos_name(self):
|
67 |
+
G = nx.random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
|
68 |
+
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
|
69 |
+
|
70 |
+
|
71 |
+
class TestSoftRandomGeometricGraph:
|
72 |
+
"""Unit tests for :func:`~networkx.soft_random_geometric_graph`"""
|
73 |
+
|
74 |
+
def test_number_of_nodes(self):
|
75 |
+
G = nx.soft_random_geometric_graph(50, 0.25, seed=42)
|
76 |
+
assert len(G) == 50
|
77 |
+
G = nx.soft_random_geometric_graph(range(50), 0.25, seed=42)
|
78 |
+
assert len(G) == 50
|
79 |
+
|
80 |
+
def test_distances(self):
|
81 |
+
"""Tests that pairs of vertices adjacent if and only if they are
|
82 |
+
within the prescribed radius.
|
83 |
+
"""
|
84 |
+
# Use the Euclidean metric, the default according to the
|
85 |
+
# documentation.
|
86 |
+
G = nx.soft_random_geometric_graph(50, 0.25)
|
87 |
+
for u, v in combinations(G, 2):
|
88 |
+
# Adjacent vertices must be within the given distance.
|
89 |
+
if v in G[u]:
|
90 |
+
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
91 |
+
|
92 |
+
def test_p(self):
|
93 |
+
"""Tests for providing an alternate distance metric to the generator."""
|
94 |
+
|
95 |
+
# Use the L1 metric.
|
96 |
+
def dist(x, y):
|
97 |
+
return sum(abs(a - b) for a, b in zip(x, y))
|
98 |
+
|
99 |
+
G = nx.soft_random_geometric_graph(50, 0.25, p=1)
|
100 |
+
for u, v in combinations(G, 2):
|
101 |
+
# Adjacent vertices must be within the given distance.
|
102 |
+
if v in G[u]:
|
103 |
+
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
104 |
+
|
105 |
+
def test_node_names(self):
|
106 |
+
"""Tests using values other than sequential numbers as node IDs."""
|
107 |
+
import string
|
108 |
+
|
109 |
+
nodes = list(string.ascii_lowercase)
|
110 |
+
G = nx.soft_random_geometric_graph(nodes, 0.25)
|
111 |
+
assert len(G) == len(nodes)
|
112 |
+
|
113 |
+
for u, v in combinations(G, 2):
|
114 |
+
# Adjacent vertices must be within the given distance.
|
115 |
+
if v in G[u]:
|
116 |
+
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
117 |
+
|
118 |
+
def test_p_dist_default(self):
|
119 |
+
"""Tests default p_dict = 0.5 returns graph with edge count <= RGG with
|
120 |
+
same n, radius, dim and positions
|
121 |
+
"""
|
122 |
+
nodes = 50
|
123 |
+
dim = 2
|
124 |
+
pos = {v: [random.random() for i in range(dim)] for v in range(nodes)}
|
125 |
+
RGG = nx.random_geometric_graph(50, 0.25, pos=pos)
|
126 |
+
SRGG = nx.soft_random_geometric_graph(50, 0.25, pos=pos)
|
127 |
+
assert len(SRGG.edges()) <= len(RGG.edges())
|
128 |
+
|
129 |
+
def test_p_dist_zero(self):
|
130 |
+
"""Tests if p_dict = 0 returns disconnected graph with 0 edges"""
|
131 |
+
|
132 |
+
def p_dist(dist):
|
133 |
+
return 0
|
134 |
+
|
135 |
+
G = nx.soft_random_geometric_graph(50, 0.25, p_dist=p_dist)
|
136 |
+
assert len(G.edges) == 0
|
137 |
+
|
138 |
+
def test_pos_name(self):
|
139 |
+
G = nx.soft_random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
|
140 |
+
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
|
141 |
+
|
142 |
+
|
143 |
+
def join(G, u, v, theta, alpha, metric):
|
144 |
+
"""Returns ``True`` if and only if the nodes whose attributes are
|
145 |
+
``du`` and ``dv`` should be joined, according to the threshold
|
146 |
+
condition for geographical threshold graphs.
|
147 |
+
|
148 |
+
``G`` is an undirected NetworkX graph, and ``u`` and ``v`` are nodes
|
149 |
+
in that graph. The nodes must have node attributes ``'pos'`` and
|
150 |
+
``'weight'``.
|
151 |
+
|
152 |
+
``metric`` is a distance metric.
|
153 |
+
"""
|
154 |
+
du, dv = G.nodes[u], G.nodes[v]
|
155 |
+
u_pos, v_pos = du["pos"], dv["pos"]
|
156 |
+
u_weight, v_weight = du["weight"], dv["weight"]
|
157 |
+
return (u_weight + v_weight) * metric(u_pos, v_pos) ** alpha >= theta
|
158 |
+
|
159 |
+
|
160 |
+
class TestGeographicalThresholdGraph:
|
161 |
+
"""Unit tests for :func:`~networkx.geographical_threshold_graph`"""
|
162 |
+
|
163 |
+
def test_number_of_nodes(self):
|
164 |
+
G = nx.geographical_threshold_graph(50, 100, seed=42)
|
165 |
+
assert len(G) == 50
|
166 |
+
G = nx.geographical_threshold_graph(range(50), 100, seed=42)
|
167 |
+
assert len(G) == 50
|
168 |
+
|
169 |
+
def test_distances(self):
|
170 |
+
"""Tests that pairs of vertices adjacent if and only if their
|
171 |
+
distances meet the given threshold.
|
172 |
+
"""
|
173 |
+
# Use the Euclidean metric and alpha = -2
|
174 |
+
# the default according to the documentation.
|
175 |
+
G = nx.geographical_threshold_graph(50, 10)
|
176 |
+
for u, v in combinations(G, 2):
|
177 |
+
# Adjacent vertices must exceed the threshold.
|
178 |
+
if v in G[u]:
|
179 |
+
assert join(G, u, v, 10, -2, math.dist)
|
180 |
+
# Nonadjacent vertices must not exceed the threshold.
|
181 |
+
else:
|
182 |
+
assert not join(G, u, v, 10, -2, math.dist)
|
183 |
+
|
184 |
+
def test_metric(self):
|
185 |
+
"""Tests for providing an alternate distance metric to the generator."""
|
186 |
+
# Use the L1 metric.
|
187 |
+
G = nx.geographical_threshold_graph(50, 10, metric=l1dist)
|
188 |
+
for u, v in combinations(G, 2):
|
189 |
+
# Adjacent vertices must exceed the threshold.
|
190 |
+
if v in G[u]:
|
191 |
+
assert join(G, u, v, 10, -2, l1dist)
|
192 |
+
# Nonadjacent vertices must not exceed the threshold.
|
193 |
+
else:
|
194 |
+
assert not join(G, u, v, 10, -2, l1dist)
|
195 |
+
|
196 |
+
def test_p_dist_zero(self):
|
197 |
+
"""Tests if p_dict = 0 returns disconnected graph with 0 edges"""
|
198 |
+
|
199 |
+
def p_dist(dist):
|
200 |
+
return 0
|
201 |
+
|
202 |
+
G = nx.geographical_threshold_graph(50, 1, p_dist=p_dist)
|
203 |
+
assert len(G.edges) == 0
|
204 |
+
|
205 |
+
def test_pos_weight_name(self):
|
206 |
+
gtg = nx.geographical_threshold_graph
|
207 |
+
G = gtg(50, 100, seed=42, pos_name="coords", weight_name="wt")
|
208 |
+
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
|
209 |
+
assert all(d["wt"] > 0 for n, d in G.nodes.items())
|
210 |
+
|
211 |
+
|
212 |
+
class TestWaxmanGraph:
|
213 |
+
"""Unit tests for the :func:`~networkx.waxman_graph` function."""
|
214 |
+
|
215 |
+
def test_number_of_nodes_1(self):
|
216 |
+
G = nx.waxman_graph(50, 0.5, 0.1, seed=42)
|
217 |
+
assert len(G) == 50
|
218 |
+
G = nx.waxman_graph(range(50), 0.5, 0.1, seed=42)
|
219 |
+
assert len(G) == 50
|
220 |
+
|
221 |
+
def test_number_of_nodes_2(self):
|
222 |
+
G = nx.waxman_graph(50, 0.5, 0.1, L=1)
|
223 |
+
assert len(G) == 50
|
224 |
+
G = nx.waxman_graph(range(50), 0.5, 0.1, L=1)
|
225 |
+
assert len(G) == 50
|
226 |
+
|
227 |
+
def test_metric(self):
|
228 |
+
"""Tests for providing an alternate distance metric to the generator."""
|
229 |
+
# Use the L1 metric.
|
230 |
+
G = nx.waxman_graph(50, 0.5, 0.1, metric=l1dist)
|
231 |
+
assert len(G) == 50
|
232 |
+
|
233 |
+
def test_pos_name(self):
|
234 |
+
G = nx.waxman_graph(50, 0.5, 0.1, seed=42, pos_name="coords")
|
235 |
+
assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
|
236 |
+
|
237 |
+
|
238 |
+
class TestNavigableSmallWorldGraph:
|
239 |
+
def test_navigable_small_world(self):
|
240 |
+
G = nx.navigable_small_world_graph(5, p=1, q=0, seed=42)
|
241 |
+
gg = nx.grid_2d_graph(5, 5).to_directed()
|
242 |
+
assert nx.is_isomorphic(G, gg)
|
243 |
+
|
244 |
+
G = nx.navigable_small_world_graph(5, p=1, q=0, dim=3)
|
245 |
+
gg = nx.grid_graph([5, 5, 5]).to_directed()
|
246 |
+
assert nx.is_isomorphic(G, gg)
|
247 |
+
|
248 |
+
G = nx.navigable_small_world_graph(5, p=1, q=0, dim=1)
|
249 |
+
gg = nx.grid_graph([5]).to_directed()
|
250 |
+
assert nx.is_isomorphic(G, gg)
|
251 |
+
|
252 |
+
def test_invalid_diameter_value(self):
|
253 |
+
with pytest.raises(nx.NetworkXException, match=".*p must be >= 1"):
|
254 |
+
nx.navigable_small_world_graph(5, p=0, q=0, dim=1)
|
255 |
+
|
256 |
+
def test_invalid_long_range_connections_value(self):
|
257 |
+
with pytest.raises(nx.NetworkXException, match=".*q must be >= 0"):
|
258 |
+
nx.navigable_small_world_graph(5, p=1, q=-1, dim=1)
|
259 |
+
|
260 |
+
def test_invalid_exponent_for_decaying_probability_value(self):
|
261 |
+
with pytest.raises(nx.NetworkXException, match=".*r must be >= 0"):
|
262 |
+
nx.navigable_small_world_graph(5, p=1, q=0, r=-1, dim=1)
|
263 |
+
|
264 |
+
def test_r_between_0_and_1(self):
|
265 |
+
"""Smoke test for radius in range [0, 1]"""
|
266 |
+
# q=0 means no long-range connections
|
267 |
+
G = nx.navigable_small_world_graph(3, p=1, q=0, r=0.5, dim=2, seed=42)
|
268 |
+
expected = nx.grid_2d_graph(3, 3, create_using=nx.DiGraph)
|
269 |
+
assert nx.utils.graphs_equal(G, expected)
|
270 |
+
|
271 |
+
@pytest.mark.parametrize("seed", range(2478, 2578, 10))
|
272 |
+
def test_r_general_scaling(self, seed):
|
273 |
+
"""The probability of adding a long-range edge scales with `1 / dist**r`,
|
274 |
+
so a navigable_small_world graph created with r < 1 should generally
|
275 |
+
result in more edges than a navigable_small_world graph with r >= 1
|
276 |
+
(for 0 < q << n).
|
277 |
+
|
278 |
+
N.B. this is probabilistic, so this test may not hold for all seeds."""
|
279 |
+
G1 = nx.navigable_small_world_graph(7, q=3, r=0.5, seed=seed)
|
280 |
+
G2 = nx.navigable_small_world_graph(7, q=3, r=1, seed=seed)
|
281 |
+
G3 = nx.navigable_small_world_graph(7, q=3, r=2, seed=seed)
|
282 |
+
assert G1.number_of_edges() > G2.number_of_edges()
|
283 |
+
assert G2.number_of_edges() > G3.number_of_edges()
|
284 |
+
|
285 |
+
|
286 |
+
class TestThresholdedRandomGeometricGraph:
|
287 |
+
"""Unit tests for :func:`~networkx.thresholded_random_geometric_graph`"""
|
288 |
+
|
289 |
+
def test_number_of_nodes(self):
|
290 |
+
G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1, seed=42)
|
291 |
+
assert len(G) == 50
|
292 |
+
G = nx.thresholded_random_geometric_graph(range(50), 0.2, 0.1, seed=42)
|
293 |
+
assert len(G) == 50
|
294 |
+
|
295 |
+
def test_distances(self):
|
296 |
+
"""Tests that pairs of vertices adjacent if and only if they are
|
297 |
+
within the prescribed radius.
|
298 |
+
"""
|
299 |
+
# Use the Euclidean metric, the default according to the
|
300 |
+
# documentation.
|
301 |
+
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
|
302 |
+
for u, v in combinations(G, 2):
|
303 |
+
# Adjacent vertices must be within the given distance.
|
304 |
+
if v in G[u]:
|
305 |
+
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
306 |
+
|
307 |
+
def test_p(self):
|
308 |
+
"""Tests for providing an alternate distance metric to the generator."""
|
309 |
+
|
310 |
+
# Use the L1 metric.
|
311 |
+
def dist(x, y):
|
312 |
+
return sum(abs(a - b) for a, b in zip(x, y))
|
313 |
+
|
314 |
+
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, p=1, seed=42)
|
315 |
+
for u, v in combinations(G, 2):
|
316 |
+
# Adjacent vertices must be within the given distance.
|
317 |
+
if v in G[u]:
|
318 |
+
assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
319 |
+
|
320 |
+
def test_node_names(self):
|
321 |
+
"""Tests using values other than sequential numbers as node IDs."""
|
322 |
+
import string
|
323 |
+
|
324 |
+
nodes = list(string.ascii_lowercase)
|
325 |
+
G = nx.thresholded_random_geometric_graph(nodes, 0.25, 0.1, seed=42)
|
326 |
+
assert len(G) == len(nodes)
|
327 |
+
|
328 |
+
for u, v in combinations(G, 2):
|
329 |
+
# Adjacent vertices must be within the given distance.
|
330 |
+
if v in G[u]:
|
331 |
+
assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
|
332 |
+
|
333 |
+
def test_theta(self):
|
334 |
+
"""Tests that pairs of vertices adjacent if and only if their sum
|
335 |
+
weights exceeds the threshold parameter theta.
|
336 |
+
"""
|
337 |
+
G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
|
338 |
+
|
339 |
+
for u, v in combinations(G, 2):
|
340 |
+
# Adjacent vertices must be within the given distance.
|
341 |
+
if v in G[u]:
|
342 |
+
assert (G.nodes[u]["weight"] + G.nodes[v]["weight"]) >= 0.1
|
343 |
+
|
344 |
+
def test_pos_name(self):
|
345 |
+
trgg = nx.thresholded_random_geometric_graph
|
346 |
+
G = trgg(50, 0.25, 0.1, seed=42, pos_name="p", weight_name="wt")
|
347 |
+
assert all(len(d["p"]) == 2 for n, d in G.nodes.items())
|
348 |
+
assert all(d["wt"] > 0 for n, d in G.nodes.items())
|
349 |
+
|
350 |
+
|
351 |
+
def test_geometric_edges_pos_attribute():
|
352 |
+
G = nx.Graph()
|
353 |
+
G.add_nodes_from(
|
354 |
+
[
|
355 |
+
(0, {"position": (0, 0)}),
|
356 |
+
(1, {"position": (0, 1)}),
|
357 |
+
(2, {"position": (1, 0)}),
|
358 |
+
]
|
359 |
+
)
|
360 |
+
expected_edges = [(0, 1), (0, 2)]
|
361 |
+
assert expected_edges == nx.geometric_edges(G, radius=1, pos_name="position")
|
362 |
+
|
363 |
+
|
364 |
+
def test_geometric_edges_raises_no_pos():
|
365 |
+
G = nx.path_graph(3)
|
366 |
+
msg = "all nodes. must have a '"
|
367 |
+
with pytest.raises(nx.NetworkXError, match=msg):
|
368 |
+
nx.geometric_edges(G, radius=1)
|
369 |
+
|
370 |
+
|
371 |
+
def test_number_of_nodes_S1():
|
372 |
+
G = nx.geometric_soft_configuration_graph(
|
373 |
+
beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
|
374 |
+
)
|
375 |
+
assert len(G) == 100
|
376 |
+
|
377 |
+
|
378 |
+
def test_set_attributes_S1():
|
379 |
+
G = nx.geometric_soft_configuration_graph(
|
380 |
+
beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
|
381 |
+
)
|
382 |
+
kappas = nx.get_node_attributes(G, "kappa")
|
383 |
+
assert len(kappas) == 100
|
384 |
+
thetas = nx.get_node_attributes(G, "theta")
|
385 |
+
assert len(thetas) == 100
|
386 |
+
radii = nx.get_node_attributes(G, "radius")
|
387 |
+
assert len(radii) == 100
|
388 |
+
|
389 |
+
|
390 |
+
def test_mean_kappas_mean_degree_S1():
|
391 |
+
G = nx.geometric_soft_configuration_graph(
|
392 |
+
beta=2.5, n=50, gamma=2.7, mean_degree=10, seed=8023
|
393 |
+
)
|
394 |
+
|
395 |
+
kappas = nx.get_node_attributes(G, "kappa")
|
396 |
+
mean_kappas = sum(kappas.values()) / len(kappas)
|
397 |
+
assert math.fabs(mean_kappas - 10) < 0.5
|
398 |
+
|
399 |
+
degrees = dict(G.degree())
|
400 |
+
mean_degree = sum(degrees.values()) / len(degrees)
|
401 |
+
assert math.fabs(mean_degree - 10) < 1
|
402 |
+
|
403 |
+
|
404 |
+
def test_dict_kappas_S1():
|
405 |
+
kappas = {i: 10 for i in range(1000)}
|
406 |
+
G = nx.geometric_soft_configuration_graph(beta=1, kappas=kappas)
|
407 |
+
assert len(G) == 1000
|
408 |
+
kappas = nx.get_node_attributes(G, "kappa")
|
409 |
+
assert all(kappa == 10 for kappa in kappas.values())
|
410 |
+
|
411 |
+
|
412 |
+
def test_beta_clustering_S1():
|
413 |
+
G1 = nx.geometric_soft_configuration_graph(
|
414 |
+
beta=1.5, n=100, gamma=3.5, mean_degree=10, seed=42
|
415 |
+
)
|
416 |
+
G2 = nx.geometric_soft_configuration_graph(
|
417 |
+
beta=3.0, n=100, gamma=3.5, mean_degree=10, seed=42
|
418 |
+
)
|
419 |
+
assert nx.average_clustering(G1) < nx.average_clustering(G2)
|
420 |
+
|
421 |
+
|
422 |
+
def test_wrong_parameters_S1():
|
423 |
+
with pytest.raises(
|
424 |
+
nx.NetworkXError,
|
425 |
+
match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
|
426 |
+
):
|
427 |
+
G = nx.geometric_soft_configuration_graph(
|
428 |
+
beta=1.5, gamma=3.5, mean_degree=10, seed=42
|
429 |
+
)
|
430 |
+
|
431 |
+
with pytest.raises(
|
432 |
+
nx.NetworkXError,
|
433 |
+
match="When kappas is input, n, gamma and mean_degree must not be.",
|
434 |
+
):
|
435 |
+
kappas = {i: 10 for i in range(1000)}
|
436 |
+
G = nx.geometric_soft_configuration_graph(
|
437 |
+
beta=1.5, kappas=kappas, gamma=2.3, seed=42
|
438 |
+
)
|
439 |
+
|
440 |
+
with pytest.raises(
|
441 |
+
nx.NetworkXError,
|
442 |
+
match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
|
443 |
+
):
|
444 |
+
G = nx.geometric_soft_configuration_graph(beta=1.5, seed=42)
|
445 |
+
|
446 |
+
|
447 |
+
def test_negative_beta_S1():
|
448 |
+
with pytest.raises(
|
449 |
+
nx.NetworkXError, match="The parameter beta cannot be smaller or equal to 0."
|
450 |
+
):
|
451 |
+
G = nx.geometric_soft_configuration_graph(
|
452 |
+
beta=-1, n=100, gamma=2.3, mean_degree=10, seed=42
|
453 |
+
)
|
454 |
+
|
455 |
+
|
456 |
+
def test_non_zero_clustering_beta_lower_one_S1():
|
457 |
+
G = nx.geometric_soft_configuration_graph(
|
458 |
+
beta=0.5, n=100, gamma=3.5, mean_degree=10, seed=42
|
459 |
+
)
|
460 |
+
assert nx.average_clustering(G) > 0
|
461 |
+
|
462 |
+
|
463 |
+
def test_mean_degree_influence_on_connectivity_S1():
|
464 |
+
low_mean_degree = 2
|
465 |
+
high_mean_degree = 20
|
466 |
+
G_low = nx.geometric_soft_configuration_graph(
|
467 |
+
beta=1.2, n=100, gamma=2.7, mean_degree=low_mean_degree, seed=42
|
468 |
+
)
|
469 |
+
G_high = nx.geometric_soft_configuration_graph(
|
470 |
+
beta=1.2, n=100, gamma=2.7, mean_degree=high_mean_degree, seed=42
|
471 |
+
)
|
472 |
+
assert nx.number_connected_components(G_low) > nx.number_connected_components(
|
473 |
+
G_high
|
474 |
+
)
|
475 |
+
|
476 |
+
|
477 |
+
def test_compare_mean_kappas_different_gammas_S1():
|
478 |
+
G1 = nx.geometric_soft_configuration_graph(
|
479 |
+
beta=1.5, n=20, gamma=2.7, mean_degree=5, seed=42
|
480 |
+
)
|
481 |
+
G2 = nx.geometric_soft_configuration_graph(
|
482 |
+
beta=1.5, n=20, gamma=3.5, mean_degree=5, seed=42
|
483 |
+
)
|
484 |
+
kappas1 = nx.get_node_attributes(G1, "kappa")
|
485 |
+
mean_kappas1 = sum(kappas1.values()) / len(kappas1)
|
486 |
+
kappas2 = nx.get_node_attributes(G2, "kappa")
|
487 |
+
mean_kappas2 = sum(kappas2.values()) / len(kappas2)
|
488 |
+
assert math.fabs(mean_kappas1 - mean_kappas2) < 1
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_harary_graph.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unit tests for the :mod:`networkx.generators.harary_graph` module.
|
2 |
+
"""
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
import networkx as nx
|
7 |
+
from networkx.algorithms.isomorphism.isomorph import is_isomorphic
|
8 |
+
from networkx.generators.harary_graph import hkn_harary_graph, hnm_harary_graph
|
9 |
+
|
10 |
+
|
11 |
+
class TestHararyGraph:
|
12 |
+
"""
|
13 |
+
Suppose n nodes, m >= n-1 edges, d = 2m // n, r = 2m % n
|
14 |
+
"""
|
15 |
+
|
16 |
+
def test_hnm_harary_graph(self):
|
17 |
+
# When d is even and r = 0, the hnm_harary_graph(n,m) is
|
18 |
+
# the circulant_graph(n, list(range(1,d/2+1)))
|
19 |
+
for n, m in [(5, 5), (6, 12), (7, 14)]:
|
20 |
+
G1 = hnm_harary_graph(n, m)
|
21 |
+
d = 2 * m // n
|
22 |
+
G2 = nx.circulant_graph(n, list(range(1, d // 2 + 1)))
|
23 |
+
assert is_isomorphic(G1, G2)
|
24 |
+
|
25 |
+
# When d is even and r > 0, the hnm_harary_graph(n,m) is
|
26 |
+
# the circulant_graph(n, list(range(1,d/2+1)))
|
27 |
+
# with r edges added arbitrarily
|
28 |
+
for n, m in [(5, 7), (6, 13), (7, 16)]:
|
29 |
+
G1 = hnm_harary_graph(n, m)
|
30 |
+
d = 2 * m // n
|
31 |
+
G2 = nx.circulant_graph(n, list(range(1, d // 2 + 1)))
|
32 |
+
assert set(G2.edges) < set(G1.edges)
|
33 |
+
assert G1.number_of_edges() == m
|
34 |
+
|
35 |
+
# When d is odd and n is even and r = 0, the hnm_harary_graph(n,m)
|
36 |
+
# is the circulant_graph(n, list(range(1,(d+1)/2) plus [n//2])
|
37 |
+
for n, m in [(6, 9), (8, 12), (10, 15)]:
|
38 |
+
G1 = hnm_harary_graph(n, m)
|
39 |
+
d = 2 * m // n
|
40 |
+
L = list(range(1, (d + 1) // 2))
|
41 |
+
L.append(n // 2)
|
42 |
+
G2 = nx.circulant_graph(n, L)
|
43 |
+
assert is_isomorphic(G1, G2)
|
44 |
+
|
45 |
+
# When d is odd and n is even and r > 0, the hnm_harary_graph(n,m)
|
46 |
+
# is the circulant_graph(n, list(range(1,(d+1)/2) plus [n//2])
|
47 |
+
# with r edges added arbitrarily
|
48 |
+
for n, m in [(6, 10), (8, 13), (10, 17)]:
|
49 |
+
G1 = hnm_harary_graph(n, m)
|
50 |
+
d = 2 * m // n
|
51 |
+
L = list(range(1, (d + 1) // 2))
|
52 |
+
L.append(n // 2)
|
53 |
+
G2 = nx.circulant_graph(n, L)
|
54 |
+
assert set(G2.edges) < set(G1.edges)
|
55 |
+
assert G1.number_of_edges() == m
|
56 |
+
|
57 |
+
# When d is odd and n is odd, the hnm_harary_graph(n,m) is
|
58 |
+
# the circulant_graph(n, list(range(1,(d+1)/2))
|
59 |
+
# with m - n*(d-1)/2 edges added arbitrarily
|
60 |
+
for n, m in [(5, 4), (7, 12), (9, 14)]:
|
61 |
+
G1 = hnm_harary_graph(n, m)
|
62 |
+
d = 2 * m // n
|
63 |
+
L = list(range(1, (d + 1) // 2))
|
64 |
+
G2 = nx.circulant_graph(n, L)
|
65 |
+
assert set(G2.edges) < set(G1.edges)
|
66 |
+
assert G1.number_of_edges() == m
|
67 |
+
|
68 |
+
# Raise NetworkXError if n<1
|
69 |
+
n = 0
|
70 |
+
m = 0
|
71 |
+
pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m)
|
72 |
+
|
73 |
+
# Raise NetworkXError if m < n-1
|
74 |
+
n = 6
|
75 |
+
m = 4
|
76 |
+
pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m)
|
77 |
+
|
78 |
+
# Raise NetworkXError if m > n(n-1)/2
|
79 |
+
n = 6
|
80 |
+
m = 16
|
81 |
+
pytest.raises(nx.NetworkXError, hnm_harary_graph, n, m)
|
82 |
+
|
83 |
+
"""
|
84 |
+
Suppose connectivity k, number of nodes n
|
85 |
+
"""
|
86 |
+
|
87 |
+
def test_hkn_harary_graph(self):
|
88 |
+
# When k == 1, the hkn_harary_graph(k,n) is
|
89 |
+
# the path_graph(n)
|
90 |
+
for k, n in [(1, 6), (1, 7)]:
|
91 |
+
G1 = hkn_harary_graph(k, n)
|
92 |
+
G2 = nx.path_graph(n)
|
93 |
+
assert is_isomorphic(G1, G2)
|
94 |
+
|
95 |
+
# When k is even, the hkn_harary_graph(k,n) is
|
96 |
+
# the circulant_graph(n, list(range(1,k/2+1)))
|
97 |
+
for k, n in [(2, 6), (2, 7), (4, 6), (4, 7)]:
|
98 |
+
G1 = hkn_harary_graph(k, n)
|
99 |
+
G2 = nx.circulant_graph(n, list(range(1, k // 2 + 1)))
|
100 |
+
assert is_isomorphic(G1, G2)
|
101 |
+
|
102 |
+
# When k is odd and n is even, the hkn_harary_graph(k,n) is
|
103 |
+
# the circulant_graph(n, list(range(1,(k+1)/2)) plus [n/2])
|
104 |
+
for k, n in [(3, 6), (5, 8), (7, 10)]:
|
105 |
+
G1 = hkn_harary_graph(k, n)
|
106 |
+
L = list(range(1, (k + 1) // 2))
|
107 |
+
L.append(n // 2)
|
108 |
+
G2 = nx.circulant_graph(n, L)
|
109 |
+
assert is_isomorphic(G1, G2)
|
110 |
+
|
111 |
+
# When k is odd and n is odd, the hkn_harary_graph(k,n) is
|
112 |
+
# the circulant_graph(n, list(range(1,(k+1)/2))) with
|
113 |
+
# n//2+1 edges added between node i and node i+n//2+1
|
114 |
+
for k, n in [(3, 5), (5, 9), (7, 11)]:
|
115 |
+
G1 = hkn_harary_graph(k, n)
|
116 |
+
G2 = nx.circulant_graph(n, list(range(1, (k + 1) // 2)))
|
117 |
+
eSet1 = set(G1.edges)
|
118 |
+
eSet2 = set(G2.edges)
|
119 |
+
eSet3 = set()
|
120 |
+
half = n // 2
|
121 |
+
for i in range(half + 1):
|
122 |
+
# add half+1 edges between i and i+half
|
123 |
+
eSet3.add((i, (i + half) % n))
|
124 |
+
assert eSet1 == eSet2 | eSet3
|
125 |
+
|
126 |
+
# Raise NetworkXError if k<1
|
127 |
+
k = 0
|
128 |
+
n = 0
|
129 |
+
pytest.raises(nx.NetworkXError, hkn_harary_graph, k, n)
|
130 |
+
|
131 |
+
# Raise NetworkXError if n<k+1
|
132 |
+
k = 6
|
133 |
+
n = 6
|
134 |
+
pytest.raises(nx.NetworkXError, hkn_harary_graph, k, n)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_internet_as_graphs.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pytest import approx
|
2 |
+
|
3 |
+
from networkx import is_connected, neighbors
|
4 |
+
from networkx.generators.internet_as_graphs import random_internet_as_graph
|
5 |
+
|
6 |
+
|
7 |
+
class TestInternetASTopology:
|
8 |
+
@classmethod
|
9 |
+
def setup_class(cls):
|
10 |
+
cls.n = 1000
|
11 |
+
cls.seed = 42
|
12 |
+
cls.G = random_internet_as_graph(cls.n, cls.seed)
|
13 |
+
cls.T = []
|
14 |
+
cls.M = []
|
15 |
+
cls.C = []
|
16 |
+
cls.CP = []
|
17 |
+
cls.customers = {}
|
18 |
+
cls.providers = {}
|
19 |
+
|
20 |
+
for i in cls.G.nodes():
|
21 |
+
if cls.G.nodes[i]["type"] == "T":
|
22 |
+
cls.T.append(i)
|
23 |
+
elif cls.G.nodes[i]["type"] == "M":
|
24 |
+
cls.M.append(i)
|
25 |
+
elif cls.G.nodes[i]["type"] == "C":
|
26 |
+
cls.C.append(i)
|
27 |
+
elif cls.G.nodes[i]["type"] == "CP":
|
28 |
+
cls.CP.append(i)
|
29 |
+
else:
|
30 |
+
raise ValueError("Inconsistent data in the graph node attributes")
|
31 |
+
cls.set_customers(i)
|
32 |
+
cls.set_providers(i)
|
33 |
+
|
34 |
+
@classmethod
|
35 |
+
def set_customers(cls, i):
|
36 |
+
if i not in cls.customers:
|
37 |
+
cls.customers[i] = set()
|
38 |
+
for j in neighbors(cls.G, i):
|
39 |
+
e = cls.G.edges[(i, j)]
|
40 |
+
if e["type"] == "transit":
|
41 |
+
customer = int(e["customer"])
|
42 |
+
if j == customer:
|
43 |
+
cls.set_customers(j)
|
44 |
+
cls.customers[i] = cls.customers[i].union(cls.customers[j])
|
45 |
+
cls.customers[i].add(j)
|
46 |
+
elif i != customer:
|
47 |
+
raise ValueError(
|
48 |
+
"Inconsistent data in the graph edge attributes"
|
49 |
+
)
|
50 |
+
|
51 |
+
@classmethod
|
52 |
+
def set_providers(cls, i):
|
53 |
+
if i not in cls.providers:
|
54 |
+
cls.providers[i] = set()
|
55 |
+
for j in neighbors(cls.G, i):
|
56 |
+
e = cls.G.edges[(i, j)]
|
57 |
+
if e["type"] == "transit":
|
58 |
+
customer = int(e["customer"])
|
59 |
+
if i == customer:
|
60 |
+
cls.set_providers(j)
|
61 |
+
cls.providers[i] = cls.providers[i].union(cls.providers[j])
|
62 |
+
cls.providers[i].add(j)
|
63 |
+
elif j != customer:
|
64 |
+
raise ValueError(
|
65 |
+
"Inconsistent data in the graph edge attributes"
|
66 |
+
)
|
67 |
+
|
68 |
+
def test_wrong_input(self):
|
69 |
+
G = random_internet_as_graph(0)
|
70 |
+
assert len(G.nodes()) == 0
|
71 |
+
|
72 |
+
G = random_internet_as_graph(-1)
|
73 |
+
assert len(G.nodes()) == 0
|
74 |
+
|
75 |
+
G = random_internet_as_graph(1)
|
76 |
+
assert len(G.nodes()) == 1
|
77 |
+
|
78 |
+
def test_node_numbers(self):
|
79 |
+
assert len(self.G.nodes()) == self.n
|
80 |
+
assert len(self.T) < 7
|
81 |
+
assert len(self.M) == round(self.n * 0.15)
|
82 |
+
assert len(self.CP) == round(self.n * 0.05)
|
83 |
+
numb = self.n - len(self.T) - len(self.M) - len(self.CP)
|
84 |
+
assert len(self.C) == numb
|
85 |
+
|
86 |
+
def test_connectivity(self):
|
87 |
+
assert is_connected(self.G)
|
88 |
+
|
89 |
+
def test_relationships(self):
|
90 |
+
# T nodes are not customers of anyone
|
91 |
+
for i in self.T:
|
92 |
+
assert len(self.providers[i]) == 0
|
93 |
+
|
94 |
+
# C nodes are not providers of anyone
|
95 |
+
for i in self.C:
|
96 |
+
assert len(self.customers[i]) == 0
|
97 |
+
|
98 |
+
# CP nodes are not providers of anyone
|
99 |
+
for i in self.CP:
|
100 |
+
assert len(self.customers[i]) == 0
|
101 |
+
|
102 |
+
# test whether there is a customer-provider loop
|
103 |
+
for i in self.G.nodes():
|
104 |
+
assert len(self.customers[i].intersection(self.providers[i])) == 0
|
105 |
+
|
106 |
+
# test whether there is a peering with a customer or provider
|
107 |
+
for i, j in self.G.edges():
|
108 |
+
if self.G.edges[(i, j)]["type"] == "peer":
|
109 |
+
assert j not in self.customers[i]
|
110 |
+
assert i not in self.customers[j]
|
111 |
+
assert j not in self.providers[i]
|
112 |
+
assert i not in self.providers[j]
|
113 |
+
|
114 |
+
def test_degree_values(self):
|
115 |
+
d_m = 0 # multihoming degree for M nodes
|
116 |
+
d_cp = 0 # multihoming degree for CP nodes
|
117 |
+
d_c = 0 # multihoming degree for C nodes
|
118 |
+
p_m_m = 0 # avg number of peering edges between M and M
|
119 |
+
p_cp_m = 0 # avg number of peering edges between CP and M
|
120 |
+
p_cp_cp = 0 # avg number of peering edges between CP and CP
|
121 |
+
t_m = 0 # probability M's provider is T
|
122 |
+
t_cp = 0 # probability CP's provider is T
|
123 |
+
t_c = 0 # probability C's provider is T
|
124 |
+
|
125 |
+
for i, j in self.G.edges():
|
126 |
+
e = self.G.edges[(i, j)]
|
127 |
+
if e["type"] == "transit":
|
128 |
+
cust = int(e["customer"])
|
129 |
+
if i == cust:
|
130 |
+
prov = j
|
131 |
+
elif j == cust:
|
132 |
+
prov = i
|
133 |
+
else:
|
134 |
+
raise ValueError("Inconsistent data in the graph edge attributes")
|
135 |
+
if cust in self.M:
|
136 |
+
d_m += 1
|
137 |
+
if self.G.nodes[prov]["type"] == "T":
|
138 |
+
t_m += 1
|
139 |
+
elif cust in self.C:
|
140 |
+
d_c += 1
|
141 |
+
if self.G.nodes[prov]["type"] == "T":
|
142 |
+
t_c += 1
|
143 |
+
elif cust in self.CP:
|
144 |
+
d_cp += 1
|
145 |
+
if self.G.nodes[prov]["type"] == "T":
|
146 |
+
t_cp += 1
|
147 |
+
else:
|
148 |
+
raise ValueError("Inconsistent data in the graph edge attributes")
|
149 |
+
elif e["type"] == "peer":
|
150 |
+
if self.G.nodes[i]["type"] == "M" and self.G.nodes[j]["type"] == "M":
|
151 |
+
p_m_m += 1
|
152 |
+
if self.G.nodes[i]["type"] == "CP" and self.G.nodes[j]["type"] == "CP":
|
153 |
+
p_cp_cp += 1
|
154 |
+
if (
|
155 |
+
self.G.nodes[i]["type"] == "M"
|
156 |
+
and self.G.nodes[j]["type"] == "CP"
|
157 |
+
or self.G.nodes[i]["type"] == "CP"
|
158 |
+
and self.G.nodes[j]["type"] == "M"
|
159 |
+
):
|
160 |
+
p_cp_m += 1
|
161 |
+
else:
|
162 |
+
raise ValueError("Unexpected data in the graph edge attributes")
|
163 |
+
|
164 |
+
assert d_m / len(self.M) == approx((2 + (2.5 * self.n) / 10000), abs=1e-0)
|
165 |
+
assert d_cp / len(self.CP) == approx((2 + (1.5 * self.n) / 10000), abs=1e-0)
|
166 |
+
assert d_c / len(self.C) == approx((1 + (5 * self.n) / 100000), abs=1e-0)
|
167 |
+
|
168 |
+
assert p_m_m / len(self.M) == approx((1 + (2 * self.n) / 10000), abs=1e-0)
|
169 |
+
assert p_cp_m / len(self.CP) == approx((0.2 + (2 * self.n) / 10000), abs=1e-0)
|
170 |
+
assert p_cp_cp / len(self.CP) == approx(
|
171 |
+
(0.05 + (2 * self.n) / 100000), abs=1e-0
|
172 |
+
)
|
173 |
+
|
174 |
+
assert t_m / d_m == approx(0.375, abs=1e-1)
|
175 |
+
assert t_cp / d_cp == approx(0.375, abs=1e-1)
|
176 |
+
assert t_c / d_c == approx(0.125, abs=1e-1)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_intersection.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import networkx as nx
|
4 |
+
|
5 |
+
|
6 |
+
class TestIntersectionGraph:
|
7 |
+
def test_random_intersection_graph(self):
|
8 |
+
G = nx.uniform_random_intersection_graph(10, 5, 0.5)
|
9 |
+
assert len(G) == 10
|
10 |
+
|
11 |
+
def test_k_random_intersection_graph(self):
|
12 |
+
G = nx.k_random_intersection_graph(10, 5, 2)
|
13 |
+
assert len(G) == 10
|
14 |
+
|
15 |
+
def test_k_random_intersection_graph_seeded(self):
|
16 |
+
G = nx.k_random_intersection_graph(10, 5, 2, seed=1234)
|
17 |
+
assert len(G) == 10
|
18 |
+
|
19 |
+
def test_general_random_intersection_graph(self):
|
20 |
+
G = nx.general_random_intersection_graph(10, 5, [0.1, 0.2, 0.2, 0.1, 0.1])
|
21 |
+
assert len(G) == 10
|
22 |
+
pytest.raises(
|
23 |
+
ValueError,
|
24 |
+
nx.general_random_intersection_graph,
|
25 |
+
10,
|
26 |
+
5,
|
27 |
+
[0.1, 0.2, 0.2, 0.1],
|
28 |
+
)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_joint_degree_seq.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
from networkx.algorithms.assortativity import degree_mixing_dict
|
4 |
+
from networkx.generators import gnm_random_graph, powerlaw_cluster_graph
|
5 |
+
from networkx.generators.joint_degree_seq import (
|
6 |
+
directed_joint_degree_graph,
|
7 |
+
is_valid_directed_joint_degree,
|
8 |
+
is_valid_joint_degree,
|
9 |
+
joint_degree_graph,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
def test_is_valid_joint_degree():
|
14 |
+
"""Tests for conditions that invalidate a joint degree dict"""
|
15 |
+
|
16 |
+
# valid joint degree that satisfies all five conditions
|
17 |
+
joint_degrees = {
|
18 |
+
1: {4: 1},
|
19 |
+
2: {2: 2, 3: 2, 4: 2},
|
20 |
+
3: {2: 2, 4: 1},
|
21 |
+
4: {1: 1, 2: 2, 3: 1},
|
22 |
+
}
|
23 |
+
assert is_valid_joint_degree(joint_degrees)
|
24 |
+
|
25 |
+
# test condition 1
|
26 |
+
# joint_degrees_1[1][4] not integer
|
27 |
+
joint_degrees_1 = {
|
28 |
+
1: {4: 1.5},
|
29 |
+
2: {2: 2, 3: 2, 4: 2},
|
30 |
+
3: {2: 2, 4: 1},
|
31 |
+
4: {1: 1.5, 2: 2, 3: 1},
|
32 |
+
}
|
33 |
+
assert not is_valid_joint_degree(joint_degrees_1)
|
34 |
+
|
35 |
+
# test condition 2
|
36 |
+
# degree_count[2] = sum(joint_degrees_2[2][j)/2, is not an int
|
37 |
+
# degree_count[4] = sum(joint_degrees_2[4][j)/4, is not an int
|
38 |
+
joint_degrees_2 = {
|
39 |
+
1: {4: 1},
|
40 |
+
2: {2: 2, 3: 2, 4: 3},
|
41 |
+
3: {2: 2, 4: 1},
|
42 |
+
4: {1: 1, 2: 3, 3: 1},
|
43 |
+
}
|
44 |
+
assert not is_valid_joint_degree(joint_degrees_2)
|
45 |
+
|
46 |
+
# test conditions 3 and 4
|
47 |
+
# joint_degrees_3[1][4]>degree_count[1]*degree_count[4]
|
48 |
+
joint_degrees_3 = {
|
49 |
+
1: {4: 2},
|
50 |
+
2: {2: 2, 3: 2, 4: 2},
|
51 |
+
3: {2: 2, 4: 1},
|
52 |
+
4: {1: 2, 2: 2, 3: 1},
|
53 |
+
}
|
54 |
+
assert not is_valid_joint_degree(joint_degrees_3)
|
55 |
+
|
56 |
+
# test condition 5
|
57 |
+
# joint_degrees_5[1][1] not even
|
58 |
+
joint_degrees_5 = {1: {1: 9}}
|
59 |
+
assert not is_valid_joint_degree(joint_degrees_5)
|
60 |
+
|
61 |
+
|
62 |
+
def test_joint_degree_graph(ntimes=10):
|
63 |
+
for _ in range(ntimes):
|
64 |
+
seed = int(time.time())
|
65 |
+
|
66 |
+
n, m, p = 20, 10, 1
|
67 |
+
# generate random graph with model powerlaw_cluster and calculate
|
68 |
+
# its joint degree
|
69 |
+
g = powerlaw_cluster_graph(n, m, p, seed=seed)
|
70 |
+
joint_degrees_g = degree_mixing_dict(g, normalized=False)
|
71 |
+
|
72 |
+
# generate simple undirected graph with given joint degree
|
73 |
+
# joint_degrees_g
|
74 |
+
G = joint_degree_graph(joint_degrees_g)
|
75 |
+
joint_degrees_G = degree_mixing_dict(G, normalized=False)
|
76 |
+
|
77 |
+
# assert that the given joint degree is equal to the generated
|
78 |
+
# graph's joint degree
|
79 |
+
assert joint_degrees_g == joint_degrees_G
|
80 |
+
|
81 |
+
|
82 |
+
def test_is_valid_directed_joint_degree():
|
83 |
+
in_degrees = [0, 1, 1, 2]
|
84 |
+
out_degrees = [1, 1, 1, 1]
|
85 |
+
nkk = {1: {1: 2, 2: 2}}
|
86 |
+
assert is_valid_directed_joint_degree(in_degrees, out_degrees, nkk)
|
87 |
+
|
88 |
+
# not realizable, values are not integers.
|
89 |
+
nkk = {1: {1: 1.5, 2: 2.5}}
|
90 |
+
assert not is_valid_directed_joint_degree(in_degrees, out_degrees, nkk)
|
91 |
+
|
92 |
+
# not realizable, number of edges between 1-2 are insufficient.
|
93 |
+
nkk = {1: {1: 2, 2: 1}}
|
94 |
+
assert not is_valid_directed_joint_degree(in_degrees, out_degrees, nkk)
|
95 |
+
|
96 |
+
# not realizable, in/out degree sequences have different number of nodes.
|
97 |
+
out_degrees = [1, 1, 1]
|
98 |
+
nkk = {1: {1: 2, 2: 2}}
|
99 |
+
assert not is_valid_directed_joint_degree(in_degrees, out_degrees, nkk)
|
100 |
+
|
101 |
+
# not realizable, degree sequences have fewer than required nodes.
|
102 |
+
in_degrees = [0, 1, 2]
|
103 |
+
assert not is_valid_directed_joint_degree(in_degrees, out_degrees, nkk)
|
104 |
+
|
105 |
+
|
106 |
+
def test_directed_joint_degree_graph(n=15, m=100, ntimes=1000):
|
107 |
+
for _ in range(ntimes):
|
108 |
+
# generate gnm random graph and calculate its joint degree.
|
109 |
+
g = gnm_random_graph(n, m, None, directed=True)
|
110 |
+
|
111 |
+
# in-degree sequence of g as a list of integers.
|
112 |
+
in_degrees = list(dict(g.in_degree()).values())
|
113 |
+
# out-degree sequence of g as a list of integers.
|
114 |
+
out_degrees = list(dict(g.out_degree()).values())
|
115 |
+
nkk = degree_mixing_dict(g)
|
116 |
+
|
117 |
+
# generate simple directed graph with given degree sequence and joint
|
118 |
+
# degree matrix.
|
119 |
+
G = directed_joint_degree_graph(in_degrees, out_degrees, nkk)
|
120 |
+
|
121 |
+
# assert degree sequence correctness.
|
122 |
+
assert in_degrees == list(dict(G.in_degree()).values())
|
123 |
+
assert out_degrees == list(dict(G.out_degree()).values())
|
124 |
+
# assert joint degree matrix correctness.
|
125 |
+
assert nkk == degree_mixing_dict(G)
|
env-llmeval/lib/python3.10/site-packages/networkx/generators/tests/test_lattice.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unit tests for the :mod:`networkx.generators.lattice` module."""
|
2 |
+
|
3 |
+
from itertools import product
|
4 |
+
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
import networkx as nx
|
8 |
+
from networkx.utils import edges_equal
|
9 |
+
|
10 |
+
|
11 |
+
class TestGrid2DGraph:
|
12 |
+
"""Unit tests for :func:`networkx.generators.lattice.grid_2d_graph`"""
|
13 |
+
|
14 |
+
def test_number_of_vertices(self):
|
15 |
+
m, n = 5, 6
|
16 |
+
G = nx.grid_2d_graph(m, n)
|
17 |
+
assert len(G) == m * n
|
18 |
+
|
19 |
+
def test_degree_distribution(self):
|
20 |
+
m, n = 5, 6
|
21 |
+
G = nx.grid_2d_graph(m, n)
|
22 |
+
expected_histogram = [0, 0, 4, 2 * (m + n) - 8, (m - 2) * (n - 2)]
|
23 |
+
assert nx.degree_histogram(G) == expected_histogram
|
24 |
+
|
25 |
+
def test_directed(self):
|
26 |
+
m, n = 5, 6
|
27 |
+
G = nx.grid_2d_graph(m, n)
|
28 |
+
H = nx.grid_2d_graph(m, n, create_using=nx.DiGraph())
|
29 |
+
assert H.succ == G.adj
|
30 |
+
assert H.pred == G.adj
|
31 |
+
|
32 |
+
def test_multigraph(self):
|
33 |
+
m, n = 5, 6
|
34 |
+
G = nx.grid_2d_graph(m, n)
|
35 |
+
H = nx.grid_2d_graph(m, n, create_using=nx.MultiGraph())
|
36 |
+
assert list(H.edges()) == list(G.edges())
|
37 |
+
|
38 |
+
def test_periodic(self):
|
39 |
+
G = nx.grid_2d_graph(0, 0, periodic=True)
|
40 |
+
assert dict(G.degree()) == {}
|
41 |
+
|
42 |
+
for m, n, H in [
|
43 |
+
(2, 2, nx.cycle_graph(4)),
|
44 |
+
(1, 7, nx.cycle_graph(7)),
|
45 |
+
(7, 1, nx.cycle_graph(7)),
|
46 |
+
(2, 5, nx.circular_ladder_graph(5)),
|
47 |
+
(5, 2, nx.circular_ladder_graph(5)),
|
48 |
+
(2, 4, nx.cubical_graph()),
|
49 |
+
(4, 2, nx.cubical_graph()),
|
50 |
+
]:
|
51 |
+
G = nx.grid_2d_graph(m, n, periodic=True)
|
52 |
+
assert nx.could_be_isomorphic(G, H)
|
53 |
+
|
54 |
+
def test_periodic_iterable(self):
|
55 |
+
m, n = 3, 7
|
56 |
+
for a, b in product([0, 1], [0, 1]):
|
57 |
+
G = nx.grid_2d_graph(m, n, periodic=(a, b))
|
58 |
+
assert G.number_of_nodes() == m * n
|
59 |
+
assert G.number_of_edges() == (m + a - 1) * n + (n + b - 1) * m
|
60 |
+
|
61 |
+
def test_periodic_directed(self):
|
62 |
+
G = nx.grid_2d_graph(4, 2, periodic=True)
|
63 |
+
H = nx.grid_2d_graph(4, 2, periodic=True, create_using=nx.DiGraph())
|
64 |
+
assert H.succ == G.adj
|
65 |
+
assert H.pred == G.adj
|
66 |
+
|
67 |
+
def test_periodic_multigraph(self):
|
68 |
+
G = nx.grid_2d_graph(4, 2, periodic=True)
|
69 |
+
H = nx.grid_2d_graph(4, 2, periodic=True, create_using=nx.MultiGraph())
|
70 |
+
assert list(G.edges()) == list(H.edges())
|
71 |
+
|
72 |
+
def test_exceptions(self):
|
73 |
+
pytest.raises(nx.NetworkXError, nx.grid_2d_graph, -3, 2)
|
74 |
+
pytest.raises(nx.NetworkXError, nx.grid_2d_graph, 3, -2)
|
75 |
+
pytest.raises(TypeError, nx.grid_2d_graph, 3.3, 2)
|
76 |
+
pytest.raises(TypeError, nx.grid_2d_graph, 3, 2.2)
|
77 |
+
|
78 |
+
def test_node_input(self):
|
79 |
+
G = nx.grid_2d_graph(4, 2, periodic=True)
|
80 |
+
H = nx.grid_2d_graph(range(4), range(2), periodic=True)
|
81 |
+
assert nx.is_isomorphic(H, G)
|
82 |
+
H = nx.grid_2d_graph("abcd", "ef", periodic=True)
|
83 |
+
assert nx.is_isomorphic(H, G)
|
84 |
+
G = nx.grid_2d_graph(5, 6)
|
85 |
+
H = nx.grid_2d_graph(range(5), range(6))
|
86 |
+
assert edges_equal(H, G)
|
87 |
+
|
88 |
+
|
89 |
+
class TestGridGraph:
|
90 |
+
"""Unit tests for :func:`networkx.generators.lattice.grid_graph`"""
|
91 |
+
|
92 |
+
def test_grid_graph(self):
|
93 |
+
"""grid_graph([n,m]) is a connected simple graph with the
|
94 |
+
following properties:
|
95 |
+
number_of_nodes = n*m
|
96 |
+
degree_histogram = [0,0,4,2*(n+m)-8,(n-2)*(m-2)]
|
97 |
+
"""
|
98 |
+
for n, m in [(3, 5), (5, 3), (4, 5), (5, 4)]:
|
99 |
+
dim = [n, m]
|
100 |
+
g = nx.grid_graph(dim)
|
101 |
+
assert len(g) == n * m
|
102 |
+
assert nx.degree_histogram(g) == [
|
103 |
+
0,
|
104 |
+
0,
|
105 |
+
4,
|
106 |
+
2 * (n + m) - 8,
|
107 |
+
(n - 2) * (m - 2),
|
108 |
+
]
|
109 |
+
|
110 |
+
for n, m in [(1, 5), (5, 1)]:
|
111 |
+
dim = [n, m]
|
112 |
+
g = nx.grid_graph(dim)
|
113 |
+
assert len(g) == n * m
|
114 |
+
assert nx.is_isomorphic(g, nx.path_graph(5))
|
115 |
+
|
116 |
+
# mg = nx.grid_graph([n,m], create_using=MultiGraph())
|
117 |
+
# assert_equal(mg.edges(), g.edges())
|
118 |
+
|
119 |
+
def test_node_input(self):
|
120 |
+
G = nx.grid_graph([range(7, 9), range(3, 6)])
|
121 |
+
assert len(G) == 2 * 3
|
122 |
+
assert nx.is_isomorphic(G, nx.grid_graph([2, 3]))
|
123 |
+
|
124 |
+
def test_periodic_iterable(self):
|
125 |
+
m, n, k = 3, 7, 5
|
126 |
+
for a, b, c in product([0, 1], [0, 1], [0, 1]):
|
127 |
+
G = nx.grid_graph([m, n, k], periodic=(a, b, c))
|
128 |
+
num_e = (m + a - 1) * n * k + (n + b - 1) * m * k + (k + c - 1) * m * n
|
129 |
+
assert G.number_of_nodes() == m * n * k
|
130 |
+
assert G.number_of_edges() == num_e
|
131 |
+
|
132 |
+
|
133 |
+
class TestHypercubeGraph:
|
134 |
+
"""Unit tests for :func:`networkx.generators.lattice.hypercube_graph`"""
|
135 |
+
|
136 |
+
def test_special_cases(self):
|
137 |
+
for n, H in [
|
138 |
+
(0, nx.null_graph()),
|
139 |
+
(1, nx.path_graph(2)),
|
140 |
+
(2, nx.cycle_graph(4)),
|
141 |
+
(3, nx.cubical_graph()),
|
142 |
+
]:
|
143 |
+
G = nx.hypercube_graph(n)
|
144 |
+
assert nx.could_be_isomorphic(G, H)
|
145 |
+
|
146 |
+
def test_degree_distribution(self):
|
147 |
+
for n in range(1, 10):
|
148 |
+
G = nx.hypercube_graph(n)
|
149 |
+
expected_histogram = [0] * n + [2**n]
|
150 |
+
assert nx.degree_histogram(G) == expected_histogram
|
151 |
+
|
152 |
+
|
153 |
+
class TestTriangularLatticeGraph:
|
154 |
+
"Tests for :func:`networkx.generators.lattice.triangular_lattice_graph`"
|
155 |
+
|
156 |
+
def test_lattice_points(self):
|
157 |
+
"""Tests that the graph is really a triangular lattice."""
|
158 |
+
for m, n in [(2, 3), (2, 2), (2, 1), (3, 3), (3, 2), (3, 4)]:
|
159 |
+
G = nx.triangular_lattice_graph(m, n)
|
160 |
+
N = (n + 1) // 2
|
161 |
+
assert len(G) == (m + 1) * (1 + N) - (n % 2) * ((m + 1) // 2)
|
162 |
+
for i, j in G.nodes():
|
163 |
+
nbrs = G[(i, j)]
|
164 |
+
if i < N:
|
165 |
+
assert (i + 1, j) in nbrs
|
166 |
+
if j < m:
|
167 |
+
assert (i, j + 1) in nbrs
|
168 |
+
if j < m and (i > 0 or j % 2) and (i < N or (j + 1) % 2):
|
169 |
+
assert (i + 1, j + 1) in nbrs or (i - 1, j + 1) in nbrs
|
170 |
+
|
171 |
+
def test_directed(self):
|
172 |
+
"""Tests for creating a directed triangular lattice."""
|
173 |
+
G = nx.triangular_lattice_graph(3, 4, create_using=nx.Graph())
|
174 |
+
H = nx.triangular_lattice_graph(3, 4, create_using=nx.DiGraph())
|
175 |
+
assert H.is_directed()
|
176 |
+
for u, v in H.edges():
|
177 |
+
assert v[1] >= u[1]
|
178 |
+
if v[1] == u[1]:
|
179 |
+
assert v[0] > u[0]
|
180 |
+
|
181 |
+
def test_multigraph(self):
|
182 |
+
"""Tests for creating a triangular lattice multigraph."""
|
183 |
+
G = nx.triangular_lattice_graph(3, 4, create_using=nx.Graph())
|
184 |
+
H = nx.triangular_lattice_graph(3, 4, create_using=nx.MultiGraph())
|
185 |
+
assert list(H.edges()) == list(G.edges())
|
186 |
+
|
187 |
+
def test_periodic(self):
|
188 |
+
G = nx.triangular_lattice_graph(4, 6, periodic=True)
|
189 |
+
assert len(G) == 12
|
190 |
+
assert G.size() == 36
|
191 |
+
# all degrees are 6
|
192 |
+
assert len([n for n, d in G.degree() if d != 6]) == 0
|
193 |
+
G = nx.triangular_lattice_graph(5, 7, periodic=True)
|
194 |
+
TLG = nx.triangular_lattice_graph
|
195 |
+
pytest.raises(nx.NetworkXError, TLG, 2, 4, periodic=True)
|
196 |
+
pytest.raises(nx.NetworkXError, TLG, 4, 4, periodic=True)
|
197 |
+
pytest.raises(nx.NetworkXError, TLG, 2, 6, periodic=True)
|
198 |
+
|
199 |
+
|
200 |
+
class TestHexagonalLatticeGraph:
|
201 |
+
"Tests for :func:`networkx.generators.lattice.hexagonal_lattice_graph`"
|
202 |
+
|
203 |
+
def test_lattice_points(self):
|
204 |
+
"""Tests that the graph is really a hexagonal lattice."""
|
205 |
+
for m, n in [(4, 5), (4, 4), (4, 3), (3, 2), (3, 3), (3, 5)]:
|
206 |
+
G = nx.hexagonal_lattice_graph(m, n)
|
207 |
+
assert len(G) == 2 * (m + 1) * (n + 1) - 2
|
208 |
+
C_6 = nx.cycle_graph(6)
|
209 |
+
hexagons = [
|
210 |
+
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)],
|
211 |
+
[(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)],
|
212 |
+
[(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)],
|
213 |
+
[(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)],
|
214 |
+
[(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)],
|
215 |
+
]
|
216 |
+
for hexagon in hexagons:
|
217 |
+
assert nx.is_isomorphic(G.subgraph(hexagon), C_6)
|
218 |
+
|
219 |
+
def test_directed(self):
|
220 |
+
"""Tests for creating a directed hexagonal lattice."""
|
221 |
+
G = nx.hexagonal_lattice_graph(3, 5, create_using=nx.Graph())
|
222 |
+
H = nx.hexagonal_lattice_graph(3, 5, create_using=nx.DiGraph())
|
223 |
+
assert H.is_directed()
|
224 |
+
pos = nx.get_node_attributes(H, "pos")
|
225 |
+
for u, v in H.edges():
|
226 |
+
assert pos[v][1] >= pos[u][1]
|
227 |
+
if pos[v][1] == pos[u][1]:
|
228 |
+
assert pos[v][0] > pos[u][0]
|
229 |
+
|
230 |
+
def test_multigraph(self):
|
231 |
+
"""Tests for creating a hexagonal lattice multigraph."""
|
232 |
+
G = nx.hexagonal_lattice_graph(3, 5, create_using=nx.Graph())
|
233 |
+
H = nx.hexagonal_lattice_graph(3, 5, create_using=nx.MultiGraph())
|
234 |
+
assert list(H.edges()) == list(G.edges())
|
235 |
+
|
236 |
+
def test_periodic(self):
|
237 |
+
G = nx.hexagonal_lattice_graph(4, 6, periodic=True)
|
238 |
+
assert len(G) == 48
|
239 |
+
assert G.size() == 72
|
240 |
+
# all degrees are 3
|
241 |
+
assert len([n for n, d in G.degree() if d != 3]) == 0
|
242 |
+
G = nx.hexagonal_lattice_graph(5, 8, periodic=True)
|
243 |
+
HLG = nx.hexagonal_lattice_graph
|
244 |
+
pytest.raises(nx.NetworkXError, HLG, 2, 7, periodic=True)
|
245 |
+
pytest.raises(nx.NetworkXError, HLG, 1, 4, periodic=True)
|
246 |
+
pytest.raises(nx.NetworkXError, HLG, 2, 1, periodic=True)
|