diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..32e8617e8270e98a29522c0ea95b421eef6cef7f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__init__.py
@@ -0,0 +1,103 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"],
+}
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_bloom_fast"] = ["BloomTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_bloom"] = [
+ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "BloomForCausalLM",
+ "BloomModel",
+ "BloomPreTrainedModel",
+ "BloomForSequenceClassification",
+ "BloomForTokenClassification",
+ "BloomForQuestionAnswering",
+ ]
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_bloom"] = [
+ "FlaxBloomForCausalLM",
+ "FlaxBloomModel",
+ "FlaxBloomPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_bloom_fast import BloomTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_bloom import (
+ BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
+ BloomForCausalLM,
+ BloomForQuestionAnswering,
+ BloomForSequenceClassification,
+ BloomForTokenClassification,
+ BloomModel,
+ BloomPreTrainedModel,
+ )
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_bloom import FlaxBloomForCausalLM, FlaxBloomModel, FlaxBloomPreTrainedModel
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..773e8b727fdc681e22d38d697f2d5103789f3868
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7969f44898c3b76879d7d44f03cb3df807862dd2
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/configuration_bloom.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..de500e2d914d1759717241ea7f8d2448a0fa0da3
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/convert_bloom_original_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c3516e72c1d4b407f97d1f4f2b67dbd7e54b06fb
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_bloom.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8486682fbac8b62ae1df585a9681b1a3ab3fa122
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/modeling_flax_bloom.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ea0cae2054c45e5bfd6eb2eeb4f5c3408fb0a25d
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/__pycache__/tokenization_bloom_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/configuration_bloom.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/configuration_bloom.py
new file mode 100644
index 0000000000000000000000000000000000000000..e04877485e3f541e5af1f1fe697af0af849dc90b
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/configuration_bloom.py
@@ -0,0 +1,236 @@
+# coding=utf-8
+# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Bloom configuration"""
+from collections import OrderedDict
+from typing import TYPE_CHECKING, Any, List, Mapping, Optional
+
+from packaging import version
+
+
+if TYPE_CHECKING:
+ from ... import PreTrainedTokenizer, TensorType
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfigWithPast, PatchingSpec
+from ...utils import is_torch_available, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class BloomConfig(PretrainedConfig):
+ """
+ This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to the Bloom architecture
+ [bigscience/bloom](https://huggingface.co/bigscience/bloom).
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 250880):
+ Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented
+ by the `inputs_ids` passed when calling [`BloomModel`]. Check [this
+ discussion](https://huggingface.co/bigscience/bloom/discussions/120#633d28389addb8530b406c2a) on how the
+ `vocab_size` has been defined.
+ hidden_size (`int`, *optional*, defaults to 64):
+ Dimensionality of the embeddings and hidden states.
+ n_layer (`int`, *optional*, defaults to 2):
+ Number of hidden layers in the Transformer encoder.
+ n_head (`int`, *optional*, defaults to 8):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
+ The epsilon to use in the layer normalization layers.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`):
+ If enabled, use the layer norm of the hidden states as the residual in the transformer blocks
+ hidden_dropout (`float`, *optional*, defaults to 0.1):
+ Dropout rate of the dropout function on the bias dropout.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ Dropout rate applied to the attention probs
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ pretraining_tp (`int`, *optional*, defaults to `1`):
+ Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
+ issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when
+ `slow_but_exact=True`.
+ slow_but_exact (`bool`, *optional*, defaults to `False`):
+ Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While
+ merging the TP rank tensors, due to slicing operations the results may be slightly different between the
+ model trained on Megatron and our model. Please refer to [this
+ issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to
+ enable this feature. Enabling this will hurt the computational time of the inference. Will be probably
+ resolved in the future once the main model has been fine-tuned with TP_rank=1.
+
+ Example:
+
+ ```python
+ >>> from transformers import BloomConfig, BloomModel
+
+ >>> # Initializing a Bloom configuration
+ >>> configuration = BloomConfig()
+
+ >>> # Initializing a model (with random weights) from the configuration
+ >>> model = BloomModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "bloom"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {
+ "num_hidden_layers": "n_layer",
+ "num_attention_heads": "n_head",
+ }
+
+ def __init__(
+ self,
+ vocab_size=250880,
+ hidden_size=64,
+ n_layer=2,
+ n_head=8,
+ layer_norm_epsilon=1e-5,
+ initializer_range=0.02,
+ use_cache=True,
+ bos_token_id=1,
+ eos_token_id=2,
+ apply_residual_connection_post_layernorm=False,
+ hidden_dropout=0.0,
+ attention_dropout=0.0,
+ pretraining_tp=1, # TP rank used when training with megatron
+ slow_but_exact=False,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ # Backward compatibility with n_embed kwarg
+ n_embed = kwargs.pop("n_embed", None)
+ self.hidden_size = hidden_size if n_embed is None else n_embed
+ self.n_layer = n_layer
+ self.n_head = n_head
+ self.layer_norm_epsilon = layer_norm_epsilon
+ self.initializer_range = initializer_range
+ self.use_cache = use_cache
+ self.pretraining_tp = pretraining_tp
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
+ self.hidden_dropout = hidden_dropout
+ self.attention_dropout = attention_dropout
+
+ self.bos_token_id = bos_token_id
+ self.eos_token_id = eos_token_id
+ self.slow_but_exact = slow_but_exact
+
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+
+class BloomOnnxConfig(OnnxConfigWithPast):
+ torch_onnx_minimum_version = version.parse("1.12")
+
+ def __init__(
+ self,
+ config: PretrainedConfig,
+ task: str = "default",
+ patching_specs: List[PatchingSpec] = None,
+ use_past: bool = False,
+ ):
+ super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
+ if not getattr(self._config, "pad_token_id", None):
+ # TODO: how to do that better?
+ self._config.pad_token_id = 0
+
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
+ if self.use_past:
+ # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
+ self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True)
+ common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
+ else:
+ common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
+
+ return common_inputs
+
+ @property
+ def num_layers(self) -> int:
+ return self._config.n_layer
+
+ @property
+ def num_attention_heads(self) -> int:
+ return self._config.n_head
+
+ @property
+ def atol_for_validation(self) -> float:
+ return 1e-3
+
+ def generate_dummy_inputs(
+ self,
+ tokenizer: "PreTrainedTokenizer",
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional["TensorType"] = None,
+ ) -> Mapping[str, Any]:
+ common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
+ )
+
+ # We need to order the input in the way they appears in the forward()
+ ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
+
+ # Need to add the past_keys
+ if self.use_past:
+ if not is_torch_available():
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
+ else:
+ import torch
+
+ batch, seqlen = common_inputs["input_ids"].shape
+ # Not using the same length for past_key_values
+ past_key_values_length = seqlen + 2
+ head_dim = self._config.hidden_size // self.num_attention_heads
+ past_key_shape = (
+ batch * self.num_attention_heads,
+ head_dim,
+ past_key_values_length,
+ )
+ past_value_shape = (
+ batch * self.num_attention_heads,
+ past_key_values_length,
+ head_dim,
+ )
+ ordered_inputs["past_key_values"] = [
+ (torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers)
+ ]
+
+ ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
+ if self.use_past:
+ mask_dtype = ordered_inputs["attention_mask"].dtype
+ ordered_inputs["attention_mask"] = torch.cat(
+ [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
+ )
+
+ return ordered_inputs
+
+ @property
+ def default_onnx_opset(self) -> int:
+ return 13
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..eda9a2d815e6b82add587035f9e8f2797bd5c748
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py
@@ -0,0 +1,255 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert BigScience BLOOM checkpoint."""
+
+
+import argparse
+import json
+import os
+import re
+
+import torch
+
+from transformers import BloomConfig, BloomModel
+from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+
+WEIGHTS_TO_AVERAGE_ENDSWITH = [
+ "word_embeddings_layernorm.weight",
+ "word_embeddings_layernorm.bias",
+ "input_layernorm.weight",
+ "input_layernorm.bias",
+ "post_attention_layernorm.weight",
+ "post_attention_layernorm.bias",
+ "self_attention.dense.bias",
+ "mlp.dense_4h_to_h.bias",
+ "ln_f.weight",
+ "ln_f.bias",
+]
+
+WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN = [
+ "mlp.dense_4h_to_h.weight",
+ "self_attention.dense.weight",
+]
+
+
+def layer_name_mapping(key, file):
+ """Convert Megatron-DeepSpeed TP/PP weights mapping in transformers PP only"""
+ # Handle first and last layers
+ layer_rename_map = {
+ "word_embeddings.weight": "word_embeddings.weight",
+ "word_embeddings.norm.weight": "word_embeddings_layernorm.weight",
+ "word_embeddings.norm.bias": "word_embeddings_layernorm.bias",
+ "weight": "ln_f.weight",
+ "bias": "ln_f.bias",
+ }
+
+ if key in layer_rename_map:
+ return layer_rename_map[key]
+
+ # Handle transformer blocks
+ layer_number = int(re.match(r".*layer_(\d*).*", file)[1])
+ layer_number -= 3
+ return f"h.{layer_number}." + key
+
+
+def get_dtype_size(dtype):
+ if dtype == torch.bool:
+ return 1 / 8
+ bit_search = re.search(r"[^\d](\d+)$", str(dtype))
+ if bit_search is None:
+ raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
+ bit_size = int(bit_search.groups()[0])
+ return bit_size // 8
+
+
+def convert_bloom_checkpoint_to_pytorch(
+ bloom_checkpoint_path, bloom_config_file, pytorch_dump_folder_path, shard_model, pretraining_tp
+):
+ # Construct model
+ if bloom_config_file == "":
+ config = BloomConfig()
+ else:
+ config = BloomConfig.from_json_file(bloom_config_file)
+
+ if shard_model:
+ file_names = os.listdir(bloom_checkpoint_path)
+ file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))
+
+ index_dict = {"weight_map": {}, "metadata": {}}
+ total_size = 0
+
+ missing_keys = None
+
+ config = BloomConfig()
+
+ for j, file in enumerate(file_names):
+ print("Processing file: {}".format(file))
+ tensors = None
+
+ for i in range(pretraining_tp):
+ # load all TP files
+ f_name = file.replace("model_00", f"model_0{i}")
+ temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu")
+
+ # Rename keys in the transformers names
+ keys = list(temp.keys())
+ for key in keys:
+ temp[layer_name_mapping(key, file)] = temp.pop(key)
+
+ if tensors is None:
+ tensors = temp
+ else:
+ for key in tensors.keys():
+ if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
+ # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
+ tensors[key] += temp[key]
+ else:
+ # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
+ cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0
+ # We concatenate these weights accross TP ranks
+ tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim)
+
+ # Divide by the number of TP the weights we want to average
+ for key in tensors.keys():
+ if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
+ tensors[key] = tensors[key] / pretraining_tp
+ torch.save(
+ tensors,
+ os.path.join(
+ pytorch_dump_folder_path,
+ "pytorch_model_{}-of-{}.bin".format(str(j + 1).zfill(5), str(len(file_names)).zfill(5)),
+ ),
+ )
+
+ for key in tensors.keys():
+ value = tensors[key]
+ total_size += value.numel() * get_dtype_size(value.dtype)
+ if key not in index_dict["weight_map"]:
+ index_dict["weight_map"][key] = "pytorch_model_{}-of-{}.bin".format(
+ str(j + 1).zfill(5), str(len(file_names)).zfill(5)
+ )
+
+ config = BloomConfig()
+ pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
+ index_dict["metadata"]["total_size"] = total_size
+ with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
+ f.write(config.to_json_string())
+ with open(os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME + ".index.json"), "w", encoding="utf-8") as f:
+ json_config = json.dumps(index_dict, indent=2, sort_keys=True) + "\n"
+ f.write(json_config)
+ else:
+ model = BloomModel(config)
+
+ file_names = os.listdir(bloom_checkpoint_path)
+ file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names))
+
+ missing_keys = None
+ for i, file in enumerate(file_names):
+ tensors = None
+ for i in range(pretraining_tp):
+ # load all TP files
+ f_name = file.replace("model_00", f"model_0{i}")
+ temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu")
+
+ # Rename keys in the transformers names
+ keys = list(temp.keys())
+ for key in keys:
+ temp[layer_name_mapping(key, file)] = temp.pop(key)
+
+ if tensors is None:
+ tensors = temp
+ else:
+ for key in tensors.keys():
+ # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
+ if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
+ tensors[key] += temp[key]
+ else:
+ # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
+ cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0
+ # We concatenate these weights accross TP ranks
+ tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim)
+
+ # Divide by the number of TP the weights we want to average
+ for key in tensors.keys():
+ if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH):
+ tensors[key] = tensors[key] / pretraining_tp
+
+ other_keys = model.load_state_dict(tensors, strict=False)
+ assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected"
+ if missing_keys is None:
+ missing_keys = set(other_keys.missing_keys)
+ else:
+ missing_keys = missing_keys.intersection(set(other_keys.missing_keys))
+
+ assert not missing_keys, f"The keys {missing_keys} are missing"
+
+ # Save pytorch-model
+ os.makedirs(pytorch_dump_folder_path, exist_ok=True)
+ pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
+ pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
+ print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}")
+ if config.torch_dtype is not None:
+ model = model.to(config.torch_dtype)
+ torch.save(model.state_dict(), pytorch_weights_dump_path)
+ print(f"Save configuration file to {pytorch_config_dump_path}")
+ with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
+ f.write(config.to_json_string())
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--bloom_checkpoint_path",
+ default=None,
+ type=str,
+ required=True,
+ help="Path to the Megatron-LM checkpoint path.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ parser.add_argument(
+ "--bloom_config_file",
+ default="",
+ type=str,
+ help=(
+ "An optional config json file corresponding to the pre-trained model. \n"
+ "This specifies the model architecture."
+ ),
+ )
+ parser.add_argument(
+ "--shard_model",
+ action="store_true",
+ help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint",
+ )
+ parser.add_argument(
+ "--pretraining_tp",
+ default=4,
+ type=int,
+ help="Pretraining TP rank that has been used when training the model in Megatron-LM \n",
+ )
+ args = parser.parse_args()
+ convert_bloom_checkpoint_to_pytorch(
+ args.bloom_checkpoint_path,
+ args.bloom_config_file,
+ args.pytorch_dump_folder_path,
+ args.shard_model,
+ args.pretraining_tp,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py
new file mode 100644
index 0000000000000000000000000000000000000000..05b18f5938106e11ddb6bef4db60310078354029
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_bloom.py
@@ -0,0 +1,1243 @@
+# coding=utf-8
+# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch BLOOM model."""
+
+import math
+import warnings
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
+from torch.nn import functional as F
+
+from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
+from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutputWithPast,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import logging
+from .configuration_bloom import BloomConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "bigscience/bloom-560m"
+_CONFIG_FOR_DOC = "BloomConfig"
+
+
+from ..deprecated._archive_maps import BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
+ """
+ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
+ relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
+ `softmax(l+a) = softmax(l)`. Based on
+ https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
+ TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
+
+ Args:
+ Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
+ attention_mask (`torch.Tensor`):
+ Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
+ num_heads (`int`, *required*):
+ number of heads
+ dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
+ dtype of the output tensor
+ """
+ batch_size, seq_length = attention_mask.shape
+ closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
+ base = torch.tensor(
+ 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
+ )
+ powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
+ slopes = torch.pow(base, powers)
+
+ if closest_power_of_2 != num_heads:
+ extra_base = torch.tensor(
+ 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
+ )
+ num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
+ extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
+ slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
+
+ # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
+ # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
+ # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
+ # => the query_length dimension will then be broadcasted correctly
+ # This is more or less identical to T5's relative position bias:
+ # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
+ arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
+ alibi = slopes[..., None] * arange_tensor
+ return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
+
+
+def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
+ """
+ Dropout add function
+
+ Args:
+ x (`torch.tensor`, *required*):
+ input tensor
+ residual (`torch.tensor`, *required*):
+ residual tensor
+ prob (`float`, *required*):
+ dropout probability
+ training (`bool`, *required*):
+ training mode
+ """
+ out = F.dropout(x, p=prob, training=training)
+ out = residual + out
+ return out
+
+
+def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor:
+ """
+ Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
+ make the model jitable.
+
+ Args:
+ x (`torch.tensor`, *required*):
+ input hidden states
+ """
+ return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
+
+
+def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
+ """
+ gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
+ 0.3989423 * x * torch.exp(-0.5 * x * x)
+
+ Args:
+ g (`torch.tensor`, *required*):
+ gradient output tensor
+ x (`torch.tensor`, *required*):
+ input tensor
+ """
+ x = x[0] # x is a tuple of 1 element, needs to unpack it first
+ tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
+ # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
+ ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
+ return ff * g
+
+
+class GeLUFunction(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, input: torch.Tensor) -> torch.Tensor:
+ ctx.save_for_backward(input)
+ return bloom_gelu_forward(input)
+
+ @staticmethod
+ def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
+ input = ctx.saved_tensors
+ tmp = bloom_gelu_back(grad_output, input)
+ return tmp
+
+
+class BloomGelu(nn.Module):
+ """
+ BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model
+ torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
+ copied from Megatron-DeepSpeed code and adapted for our needs
+
+ See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
+ """
+
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ if self.training:
+ return GeLUFunction.apply(x)
+ else:
+ return bloom_gelu_forward(x)
+
+
+class BloomAttention(nn.Module):
+ def __init__(self, config: BloomConfig):
+ super().__init__()
+
+ self.pretraining_tp = config.pretraining_tp
+ self.slow_but_exact = config.slow_but_exact
+
+ self.hidden_size = config.hidden_size
+ self.num_heads = config.n_head
+ self.head_dim = self.hidden_size // self.num_heads
+ self.split_size = self.hidden_size
+ self.hidden_dropout = config.hidden_dropout
+
+ if self.head_dim * self.num_heads != self.hidden_size:
+ raise ValueError(
+ f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
+ f" {self.num_heads})."
+ )
+
+ # Layer-wise attention scaling
+ self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
+ self.beta = 1.0
+
+ self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
+ self.dense = nn.Linear(self.hidden_size, self.hidden_size)
+ self.attention_dropout = nn.Dropout(config.attention_dropout)
+
+ def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ """
+ Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
+ storage as `fused_qkv`
+
+ Args:
+ fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
+
+ Returns:
+ query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
+ value: [batch_size, seq_length, num_heads, head_dim]
+ """
+ batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
+ fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
+ return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
+
+ def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
+ """
+ Merge heads together over the last dimension
+
+ Args:
+ x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
+
+ Returns:
+ torch.tensor: [batch_size, seq_length, num_heads * head_dim]
+ """
+ # What we want to achieve is:
+ # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
+ batch_size_and_num_heads, seq_length, _ = x.shape
+ batch_size = batch_size_and_num_heads // self.num_heads
+
+ # First view to decompose the batch size
+ # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
+ x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
+
+ # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
+ x = x.permute(0, 2, 1, 3)
+
+ # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
+ return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ residual: torch.Tensor,
+ alibi: torch.Tensor,
+ attention_mask: torch.Tensor,
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ use_cache: bool = False,
+ output_attentions: bool = False,
+ ):
+ fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
+
+ # 3 x [batch_size, seq_length, num_heads, head_dim]
+ (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
+
+ batch_size, q_length, _, _ = query_layer.shape
+
+ query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
+ key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
+ value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
+ if layer_past is not None:
+ past_key, past_value = layer_past
+ # concatenate along seq_length dimension:
+ # - key: [batch_size * self.num_heads, head_dim, kv_length]
+ # - value: [batch_size * self.num_heads, kv_length, head_dim]
+ key_layer = torch.cat((past_key, key_layer), dim=2)
+ value_layer = torch.cat((past_value, value_layer), dim=1)
+
+ _, _, kv_length = key_layer.shape
+
+ if use_cache is True:
+ present = (key_layer, value_layer)
+ else:
+ present = None
+
+ # [batch_size * num_heads, q_length, kv_length]
+ # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
+ matmul_result = alibi.baddbmm(
+ batch1=query_layer,
+ batch2=key_layer,
+ beta=self.beta,
+ alpha=self.inv_norm_factor,
+ )
+
+ # change view to [batch_size, num_heads, q_length, kv_length]
+ attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
+
+ # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
+ input_dtype = attention_scores.dtype
+ # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
+ if input_dtype == torch.float16:
+ attention_scores = attention_scores.to(torch.float)
+ attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
+ attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
+
+ # [batch_size, num_heads, q_length, kv_length]
+ attention_probs = self.attention_dropout(attention_probs)
+
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ # change view [batch_size x num_heads, q_length, kv_length]
+ attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
+
+ # matmul: [batch_size * num_heads, q_length, head_dim]
+ context_layer = torch.bmm(attention_probs_reshaped, value_layer)
+
+ # change view [batch_size, q_length, num_heads * head_dim]
+ context_layer = self._merge_heads(context_layer)
+
+ # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
+ if self.pretraining_tp > 1 and self.slow_but_exact:
+ slices = self.hidden_size / self.pretraining_tp
+ output_tensor = torch.zeros_like(context_layer)
+ for i in range(self.pretraining_tp):
+ output_tensor = output_tensor + F.linear(
+ context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
+ self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
+ )
+ else:
+ output_tensor = self.dense(context_layer)
+
+ output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
+
+ outputs = (output_tensor, present)
+ if output_attentions:
+ outputs += (attention_probs,)
+
+ return outputs
+
+
+class BloomMLP(nn.Module):
+ def __init__(self, config: BloomConfig):
+ super().__init__()
+ hidden_size = config.hidden_size
+
+ self.pretraining_tp = config.pretraining_tp
+ self.slow_but_exact = config.slow_but_exact
+ self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size)
+ self.gelu_impl = BloomGelu()
+ self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size)
+ self.hidden_dropout = config.hidden_dropout
+
+ def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
+
+ if self.pretraining_tp > 1 and self.slow_but_exact:
+ intermediate_output = torch.zeros_like(residual)
+ slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
+ for i in range(self.pretraining_tp):
+ intermediate_output = intermediate_output + F.linear(
+ hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
+ self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)],
+ )
+ else:
+ intermediate_output = self.dense_4h_to_h(hidden_states)
+
+ output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
+
+ return output
+
+
+class BloomBlock(nn.Module):
+ def __init__(self, config: BloomConfig):
+ super().__init__()
+ hidden_size = config.hidden_size
+
+ self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
+ self.num_heads = config.n_head
+ self.self_attention = BloomAttention(config)
+ self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
+
+ self.mlp = BloomMLP(config)
+
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
+ self.hidden_dropout = config.hidden_dropout
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ alibi: torch.Tensor,
+ attention_mask: torch.Tensor,
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ use_cache: bool = False,
+ output_attentions: bool = False,
+ ):
+ # hidden_states: [batch_size, seq_length, hidden_size]
+
+ # Layer norm at the beginning of the transformer layer.
+ layernorm_output = self.input_layernorm(hidden_states)
+
+ # Layer norm post the self attention.
+ if self.apply_residual_connection_post_layernorm:
+ residual = layernorm_output
+ else:
+ residual = hidden_states
+
+ # Self attention.
+ attn_outputs = self.self_attention(
+ layernorm_output,
+ residual,
+ layer_past=layer_past,
+ attention_mask=attention_mask,
+ alibi=alibi,
+ head_mask=head_mask,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+
+ attention_output = attn_outputs[0]
+
+ outputs = attn_outputs[1:]
+
+ layernorm_output = self.post_attention_layernorm(attention_output)
+
+ # Get residual
+ if self.apply_residual_connection_post_layernorm:
+ residual = layernorm_output
+ else:
+ residual = attention_output
+
+ # MLP.
+ output = self.mlp(layernorm_output, residual)
+
+ if use_cache:
+ outputs = (output,) + outputs
+ else:
+ outputs = (output,) + outputs[1:]
+
+ return outputs # hidden_states, present, attentions
+
+
+class BloomPreTrainedModel(PreTrainedModel):
+ config_class = BloomConfig
+ base_model_prefix = "transformer"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["BloomBlock"]
+ _skip_keys_device_placement = "past_key_values"
+
+ def __init__(self, *inputs, **kwargs):
+ super().__init__(*inputs, **kwargs)
+
+ def _init_weights(self, module: nn.Module):
+ """Initialize the weights."""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+ @staticmethod
+ def _convert_to_standard_cache(
+ past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
+ """
+ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
+ num_heads, ...]))
+ """
+ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
+ num_heads = batch_size_times_num_heads // batch_size
+ # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
+ # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
+ return tuple(
+ (
+ layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
+ layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
+ )
+ for layer_past in past_key_value
+ )
+
+ @staticmethod
+ def _convert_to_bloom_cache(
+ past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
+ """
+ Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...]))
+ """
+ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
+ batch_size_times_num_heads = batch_size * num_heads
+ # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
+ # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
+ return tuple(
+ (
+ layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
+ layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
+ )
+ for layer_past in past_key_value
+ )
+
+
+BLOOM_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BLOOM_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
+ (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
+
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
+ `input_ids`.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
+
+ Each element of `past_key_values` is a tuple (past_key, past_value):
+ - past_key: [batch_size * num_heads, head_dim, kv_length]
+ - past_value: [batch_size * num_heads, kv_length, head_dim]
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
+ `past_key_values`).
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
+ BLOOM_START_DOCSTRING,
+)
+class BloomModel(BloomPreTrainedModel):
+ def __init__(self, config: BloomConfig):
+ super().__init__(config)
+
+ self.embed_dim = config.hidden_size
+ self.num_heads = config.n_head
+
+ # Embedding + LN Embedding
+ self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
+ self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
+
+ # Transformer blocks
+ self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)])
+
+ # Final Layer Norm
+ self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
+
+ self.gradient_checkpointing = False
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
+ return build_alibi_tensor(attention_mask, num_heads, dtype)
+
+ def get_input_embeddings(self):
+ return self.word_embeddings
+
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
+ self.word_embeddings = new_embeddings
+
+ @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **deprecated_arguments,
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
+ if deprecated_arguments.pop("position_ids", False) is not False:
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
+ warnings.warn(
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
+ " passing `position_ids`.",
+ FutureWarning,
+ )
+ if len(deprecated_arguments) > 0:
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ batch_size, seq_length = input_ids.shape
+ elif inputs_embeds is not None:
+ batch_size, seq_length, _ = inputs_embeds.shape
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if past_key_values is None:
+ past_key_values = tuple([None] * len(self.h))
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape batch_size x num_heads x N x N
+ # head_mask has shape n_layer x batch x num_heads x N x N
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ hidden_states = self.word_embeddings_layernorm(inputs_embeds)
+
+ presents = () if use_cache else None
+ all_self_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # Compute alibi tensor: check build_alibi_tensor documentation
+ seq_length_with_past = seq_length
+ past_key_values_length = 0
+ if past_key_values[0] is not None:
+ past_key_values_length = past_key_values[0][0].shape[2]
+ seq_length_with_past = seq_length_with_past + past_key_values_length
+ if attention_mask is None:
+ attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
+ else:
+ attention_mask = attention_mask.to(hidden_states.device)
+
+ alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
+
+ causal_mask = _prepare_4d_causal_attention_mask(
+ attention_mask,
+ input_shape=(batch_size, seq_length),
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+ causal_mask = causal_mask.bool()
+
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ outputs = self._gradient_checkpointing_func(
+ block.__call__,
+ hidden_states,
+ alibi,
+ causal_mask,
+ layer_past,
+ head_mask[i],
+ use_cache,
+ output_attentions,
+ )
+ else:
+ outputs = block(
+ hidden_states,
+ layer_past=layer_past,
+ attention_mask=causal_mask,
+ head_mask=head_mask[i],
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ alibi=alibi,
+ )
+
+ hidden_states = outputs[0]
+ if use_cache is True:
+ presents = presents + (outputs[1],)
+
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
+
+ # Add last hidden state
+ hidden_states = self.ln_f(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
+
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=presents,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
+ embeddings).
+ """,
+ BLOOM_START_DOCSTRING,
+)
+class BloomForCausalLM(BloomPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config: BloomConfig):
+ super().__init__(config)
+ self.transformer = BloomModel(config)
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings: torch.Tensor):
+ self.lm_head = new_embeddings
+
+ def prepare_inputs_for_generation(
+ self,
+ input_ids: torch.LongTensor,
+ past_key_values: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ **kwargs,
+ ) -> dict:
+ # only last tokens for input_ids if past is not None
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ # the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed
+ if past_key_values[0][0].shape[0] == input_ids.shape[0]:
+ past_key_values = self._convert_to_bloom_cache(past_key_values)
+
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
+ if inputs_embeds is not None and past_key_values is None:
+ model_inputs = {"inputs_embeds": inputs_embeds}
+ else:
+ model_inputs = {"input_ids": input_ids}
+
+ model_inputs.update(
+ {
+ "past_key_values": past_key_values,
+ "use_cache": kwargs.get("use_cache"),
+ "attention_mask": attention_mask,
+ }
+ )
+ return model_inputs
+
+ @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=CausalLMOutputWithCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **deprecated_arguments,
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
+ """
+ if deprecated_arguments.pop("position_ids", False) is not False:
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
+ warnings.warn(
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
+ " passing `position_ids`.",
+ FutureWarning,
+ )
+ if len(deprecated_arguments) > 0:
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.transformer(
+ input_ids,
+ past_key_values=past_key_values,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ hidden_states = transformer_outputs[0]
+
+ lm_logits = self.lm_head(hidden_states)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(lm_logits.device)
+ # Shift so that tokens < n predict n
+ shift_logits = lm_logits[..., :-1, :].contiguous()
+ shift_labels = labels[..., 1:].contiguous()
+ batch_size, seq_length, vocab_size = shift_logits.shape
+ # Flatten the tokens
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(
+ shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
+ )
+
+ if not return_dict:
+ output = (lm_logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=loss,
+ logits=lm_logits,
+ past_key_values=transformer_outputs.past_key_values,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+ def _reorder_cache(
+ self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
+ """
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
+ beam_idx at every generation step.
+
+ Output shares the same memory storage as `past`.
+ """
+ standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
+
+ # Get a copy of `beam_idx` on all the devices where we need those indices.
+ device_to_beam_idx = {
+ past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
+ }
+ reordered_past = tuple(
+ (
+ layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
+ layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
+ )
+ for layer_past in standardized_past
+ )
+ return self._convert_to_bloom_cache(reordered_past)
+
+
+@add_start_docstrings(
+ """
+ The Bloom Model transformer with a sequence classification head on top (linear layer).
+
+ [`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models
+ (e.g. GPT-1) do.
+
+ Since it does classification on the last token, it requires to know the position of the last token. If a
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
+ each row of the batch).
+ """,
+ BLOOM_START_DOCSTRING,
+)
+class BloomForSequenceClassification(BloomPreTrainedModel):
+ def __init__(self, config: BloomConfig):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.transformer = BloomModel(config)
+ self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutputWithPast,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **deprecated_arguments,
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ if deprecated_arguments.pop("position_ids", False) is not False:
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
+ warnings.warn(
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
+ " passing `position_ids`.",
+ FutureWarning,
+ )
+ if len(deprecated_arguments) > 0:
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.transformer(
+ input_ids,
+ past_key_values=past_key_values,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = transformer_outputs[0]
+ logits = self.score(hidden_states)
+
+ if input_ids is not None:
+ batch_size = input_ids.shape[0]
+ else:
+ batch_size = inputs_embeds.shape[0]
+
+ if self.config.pad_token_id is None and batch_size != 1:
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
+ if self.config.pad_token_id is None:
+ sequence_lengths = -1
+ else:
+ if input_ids is not None:
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
+ sequence_lengths = sequence_lengths.to(logits.device)
+ else:
+ sequence_lengths = -1
+ logger.warning(
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
+ )
+
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(pooled_logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(pooled_logits, labels)
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(pooled_logits, labels)
+ if not return_dict:
+ output = (pooled_logits,) + transformer_outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutputWithPast(
+ loss=loss,
+ logits=pooled_logits,
+ past_key_values=transformer_outputs.past_key_values,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ BLOOM_START_DOCSTRING,
+)
+class BloomForTokenClassification(BloomPreTrainedModel):
+ def __init__(self, config: BloomConfig):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.transformer = BloomModel(config)
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
+ classifier_dropout = config.classifier_dropout
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
+ classifier_dropout = config.hidden_dropout
+ else:
+ classifier_dropout = 0.1
+ self.dropout = nn.Dropout(classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ **deprecated_arguments,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ if deprecated_arguments.pop("position_ids", False) is not False:
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
+ warnings.warn(
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
+ " passing `position_ids`.",
+ FutureWarning,
+ )
+ if len(deprecated_arguments) > 0:
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ transformer_outputs = self.transformer(
+ input_ids,
+ past_key_values=past_key_values,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = transformer_outputs[0]
+ hidden_states = self.dropout(hidden_states)
+ logits = self.classifier(hidden_states)
+
+ loss = None
+ if labels is not None:
+ # move labels to correct device to enable model parallelism
+ labels = labels.to(logits.device)
+ batch_size, seq_length = labels.shape
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
+ )
+
+ if not return_dict:
+ output = (logits,) + transformer_outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=transformer_outputs.hidden_states,
+ attentions=transformer_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like
+ SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ BLOOM_START_DOCSTRING,
+)
+class BloomForQuestionAnswering(BloomPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.transformer = BloomModel(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_flax_bloom.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_flax_bloom.py
new file mode 100644
index 0000000000000000000000000000000000000000..187230f35ab9e4a5d20c10bc5b9a03a48761d070
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/modeling_flax_bloom.py
@@ -0,0 +1,734 @@
+# coding=utf-8
+# Copyright 2023 HuggingFace Inc. Team and Bigscience Workshop. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Flax BLOOM model."""
+
+import math
+from functools import partial
+from typing import Optional, Tuple
+
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen import combine_masks, dot_product_attention_weights, make_causal_mask
+from flax.linen.activation import tanh
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+
+from ...modeling_flax_outputs import (
+ FlaxBaseModelOutput,
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
+ FlaxCausalLMOutput,
+)
+from ...modeling_flax_utils import FlaxPreTrainedModel, append_call_sample_docstring
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
+from .configuration_bloom import BloomConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "bigscience/bloom"
+_CONFIG_FOR_DOC = "BloomConfig"
+
+
+BLOOM_START_DOCSTRING = r"""
+
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a Flax Linen
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+BLOOM_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
+ `input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
+ Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
+ auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+def build_alibi_tensor(attention_mask: jnp.ndarray, num_heads: int, dtype: Optional[jnp.dtype] = jnp.float32):
+ """
+ Flax implementation of the BLOOM Alibi tensor. BLOOM Alibi tensor is not causal as the original paper mentions, it
+ relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
+ `softmax(l+a) = softmax(l)`. Based on
+ https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
+ Link to paper: https://arxiv.org/abs/2108.12409
+
+ Args:
+ attention_mask (`jnp.ndarray`):
+ Token-wise attention mask, this should be of shape `(batch_size, max_seq_len)`.
+ num_heads (`int`):
+ Number of attention heads.
+ dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
+ The data type (dtype) of the output tensor.
+
+ Returns: Alibi tensor of shape `(batch_size * num_heads, 1, max_seq_len)`.
+ """
+ batch_size, seq_length = attention_mask.shape
+ closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
+ base = jnp.array(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=jnp.float32)
+ powers = jnp.arange(1, 1 + closest_power_of_2, dtype=jnp.float32)
+ slopes = jax.lax.pow(base, powers)
+
+ if closest_power_of_2 != num_heads:
+ extra_base = jnp.array(2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=jnp.float32)
+ num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
+ extra_powers = jnp.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=jnp.float32)
+ slopes = jnp.cat([slopes, jax.lax.pow(extra_base, extra_powers)], axis=0)
+
+ # Note: the Alibi tensor will added to the attention bias that will be applied to the query, key product of attention
+ # therefore, Alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
+ # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
+ # so that the query_length dimension will then be broadcast correctly.
+ # This is more or less identical to T5's relative position bias:
+ # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
+ arange_tensor = ((attention_mask.cumsum(axis=-1) - 1) * attention_mask)[:, None, :]
+ alibi = slopes[..., None] * arange_tensor
+ alibi = jnp.expand_dims(alibi, axis=2)
+ return jnp.asarray(alibi, dtype)
+
+
+class FlaxBloomAttention(nn.Module):
+ config: BloomConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.hidden_size = self.config.hidden_size
+ self.num_heads = self.config.n_head
+ self.head_dim = self.hidden_size // self.num_heads
+ self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
+
+ if self.head_dim * self.num_heads != self.hidden_size:
+ raise ValueError(
+ f"`hidden_size` must be divisible by `num_heads` (got `hidden_size`: {self.hidden_size} and "
+ f"`num_heads`: {self.num_heads})."
+ )
+
+ dense = partial(
+ nn.Dense,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
+ )
+
+ self.query_key_value = dense(self.hidden_size * 3)
+ self.dense = dense(self.hidden_size)
+ self.resid_dropout = nn.Dropout(rate=self.config.hidden_dropout)
+
+ def _split_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:-1] + (self.num_heads, self.head_dim * 3))
+
+ def _merge_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,))
+
+ @nn.compact
+ # Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJAttention._concatenate_to_cache
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
+ """
+ This function takes projected key, value states from a single input token and concatenates the states to cached
+ states from previous steps. This function is slighly adapted from the official Flax repository:
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
+ """
+ # detect if we're initializing by absence of existing cache data.
+ is_initialized = self.has_variable("cache", "cached_key")
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
+
+ if is_initialized:
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
+ # update key, value caches with our new 1d spatial slices
+ cur_index = cache_index.value
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
+ cached_key.value = key
+ cached_value.value = value
+ num_updated_cache_vectors = query.shape[1]
+ cache_index.value = cache_index.value + num_updated_cache_vectors
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key
+ # positions that have already been generated and cached, not the remaining zero elements.
+ pad_mask = jnp.broadcast_to(
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
+ )
+ attention_mask = combine_masks(pad_mask, attention_mask)
+ return key, value, attention_mask
+
+ def __call__(
+ self,
+ hidden_states,
+ residual,
+ alibi,
+ attention_mask=None,
+ deterministic: bool = True,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ ):
+ batch_size, seq_length = hidden_states.shape[:2]
+
+ # proj q, k, v
+ fused_qkv = self.query_key_value(hidden_states)
+ fused_qkv = self._split_heads(fused_qkv)
+ query, key, value = jnp.split(fused_qkv, 3, axis=-1)
+
+ causal_attention_mask = make_causal_mask(attention_mask, dtype="bool")
+
+ # for fast decoding causal attention mask should be shifted
+ causal_attention_mask_shift = (
+ self.variables["cache"]["cache_index"] if self.has_variable("cache", "cached_key") else 0
+ )
+
+ # fast decoding for generate requires special attention_mask
+ if self.has_variable("cache", "cached_key"):
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
+ causal_attention_mask = jax.lax.dynamic_slice(
+ causal_attention_mask,
+ (0, 0, causal_attention_mask_shift, 0),
+ (1, 1, seq_length, max_decoder_length),
+ )
+
+ # broadcast causal attention mask & attention mask to fit for merge
+ causal_attention_mask = jnp.broadcast_to(
+ causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:]
+ )
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape)
+ attention_mask = combine_masks(attention_mask, causal_attention_mask)
+
+ dropout_rng = None
+ if not deterministic and self.config.attention_dropout > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ # During fast autoregressive decoding, we feed one position at a time,
+ # and cache the keys and values step by step.
+ if self.has_variable("cache", "cached_key") or init_cache:
+ key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
+
+ # transform boolean mask into float mask
+ mask_value = jnp.finfo(self.dtype).min
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, mask_value).astype(self.dtype),
+ )
+
+ attention_bias = attention_bias + alibi
+
+ # Cast in fp32 if the original dtype is different from fp32
+ attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
+
+ attn_weights = dot_product_attention_weights(
+ query,
+ key,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.config.attention_dropout,
+ deterministic=deterministic,
+ dtype=attention_dtype,
+ )
+
+ # Cast back in the original dtype if the native dtype is not fp32
+ if self.attention_softmax_in_fp32:
+ attn_weights = attn_weights.astype(self.dtype)
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
+ attn_output = self._merge_heads(attn_output)
+ attn_output = self.dense(attn_output)
+ attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
+
+ attn_output = attn_output + residual
+
+ outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
+ return outputs
+
+
+class BloomGELU(nn.Module):
+ def setup(self):
+ self.dtype = jnp.float32
+
+ def __call__(self, x):
+ return x * 0.5 * (1.0 + tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
+
+
+class FlaxBloomMLP(nn.Module):
+ config: BloomConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ hidden_size = self.config.hidden_size
+
+ kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
+
+ self.dense_h_to_4h = nn.Dense(4 * hidden_size, dtype=self.dtype, kernel_init=kernel_init)
+ self.dense_4h_to_h = nn.Dense(hidden_size, dtype=self.dtype, kernel_init=kernel_init)
+ self.hidden_dropout = nn.Dropout(self.config.hidden_dropout)
+ self.act = BloomGELU()
+
+ def __call__(self, hidden_states, residual, deterministic: bool = True):
+ hidden_states = self.dense_h_to_4h(hidden_states)
+ hidden_states = self.act(hidden_states)
+
+ intermediate_output = self.dense_4h_to_h(hidden_states)
+
+ intermediate_output = intermediate_output + residual
+ hidden_states = self.hidden_dropout(intermediate_output, deterministic=deterministic)
+
+ return hidden_states
+
+
+class FlaxBloomBlock(nn.Module):
+ config: BloomConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.input_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
+
+ self.self_attention = FlaxBloomAttention(self.config, dtype=self.dtype)
+ self.post_attention_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
+
+ self.mlp = FlaxBloomMLP(self.config, dtype=self.dtype)
+
+ self.apply_residual_connection_post_layernorm = self.config.apply_residual_connection_post_layernorm
+ self.hidden_dropout = self.config.hidden_dropout
+
+ def __call__(
+ self,
+ hidden_states,
+ alibi,
+ attention_mask=None,
+ deterministic: bool = True,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ ):
+ layernorm_output = self.input_layernorm(hidden_states)
+
+ # layer norm before saving residual if config calls for it
+ if self.apply_residual_connection_post_layernorm:
+ residual = layernorm_output
+ else:
+ residual = hidden_states
+
+ # self-attention
+ attn_outputs = self.self_attention(
+ layernorm_output,
+ residual=residual,
+ alibi=alibi,
+ attention_mask=attention_mask,
+ deterministic=deterministic,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ )
+
+ attention_output = attn_outputs[0]
+
+ outputs = attn_outputs[1:]
+
+ post_layernorm = self.post_attention_layernorm(attention_output)
+
+ # set residual based on config
+ if self.apply_residual_connection_post_layernorm:
+ residual = post_layernorm
+ else:
+ residual = attention_output
+
+ output = self.mlp(post_layernorm, residual, deterministic=deterministic)
+
+ outputs = (output,) + outputs
+
+ return outputs
+
+
+class FlaxBloomPreTrainedModel(FlaxPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = BloomConfig
+ base_model_prefix = "transformer"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: BloomConfig,
+ input_shape: Tuple = (1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ attention_mask = jnp.ones_like(input_ids)
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ def init_cache(self, batch_size, max_length):
+ r"""
+ Args:
+ batch_size (`int`):
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
+ max_length (`int`):
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
+ cache.
+ """
+ # init input variables to retrieve cache
+ input_ids = jnp.ones((batch_size, max_length), dtype="i4")
+ attention_mask = jnp.ones_like(input_ids)
+
+ init_variables = self.module.init(
+ jax.random.PRNGKey(0), input_ids, attention_mask, return_dict=False, init_cache=True
+ )
+ return unfreeze(init_variables["cache"])
+
+ @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
+ def __call__(
+ self,
+ input_ids,
+ attention_mask=None,
+ past_key_values: dict = None,
+ params: dict = None,
+ dropout_rng: jax.random.PRNGKey = None,
+ train: bool = False,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ batch_size, sequence_length = input_ids.shape
+
+ if attention_mask is None:
+ attention_mask = jnp.ones((batch_size, sequence_length))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ # If past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
+ # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
+ # changed by FlaxBloomAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ outputs = self.module.apply(
+ inputs,
+ jnp.array(input_ids, dtype="i4"),
+ jnp.array(attention_mask, dtype="i4"),
+ not train,
+ False,
+ output_attentions,
+ output_hidden_states,
+ return_dict,
+ rngs=rngs,
+ mutable=mutable,
+ )
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs, past_key_values = outputs
+ outputs["past_key_values"] = unfreeze(past_key_values["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs, past_key_values = outputs
+ outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
+
+ return outputs
+
+
+class FlaxBloomBlockCollection(nn.Module):
+ config: BloomConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.layers = [
+ FlaxBloomBlock(self.config, name=str(layer_number), dtype=self.dtype)
+ for layer_number in range(self.config.num_hidden_layers)
+ ]
+
+ def __call__(
+ self,
+ hidden_states,
+ alibi,
+ attention_mask=None,
+ deterministic: bool = True,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+
+ for layer_number in range(self.config.num_hidden_layers):
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ layer_outputs = self.layers[layer_number](
+ hidden_states,
+ alibi=alibi,
+ attention_mask=attention_mask,
+ deterministic=deterministic,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ )
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions += (layer_outputs[1],)
+
+ # this contains possible `None` values - `FlaxBloomModule` will filter them out
+ outputs = (hidden_states, all_hidden_states, all_attentions)
+
+ return outputs
+
+
+class FlaxBloomModule(nn.Module):
+ config: BloomConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.embed_dim = self.config.hidden_size
+
+ # word embeddings (no positional embedding layer)
+ self.word_embeddings = nn.Embed(
+ self.config.vocab_size,
+ self.embed_dim,
+ embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ dtype=self.dtype,
+ )
+
+ # post-embedding layernorm
+ self.word_embeddings_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
+
+ # transformer layers
+ self.h = FlaxBloomBlockCollection(self.config, dtype=self.dtype)
+
+ # final layernorm
+ self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
+
+ def __call__(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ deterministic=True,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ inputs_embeds = self.word_embeddings(input_ids)
+ # do post-embedding layernorm
+ hidden_states = self.word_embeddings_layernorm(inputs_embeds)
+
+ # build alibi depending on `attention_mask`
+ alibi = build_alibi_tensor(attention_mask, self.config.n_head, dtype=hidden_states.dtype)
+
+ outputs = self.h(
+ hidden_states,
+ alibi=alibi,
+ attention_mask=attention_mask,
+ deterministic=deterministic,
+ init_cache=init_cache,
+ output_hidden_states=output_hidden_states,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = outputs[0]
+ hidden_states = self.ln_f(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states = outputs[1] + (hidden_states,)
+ outputs = (hidden_states, all_hidden_states) + outputs[2:]
+ else:
+ outputs = (hidden_states,) + outputs[1:]
+
+ if not return_dict:
+ return tuple(v for v in [outputs[0], outputs[-1]] if v is not None)
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=outputs[1],
+ attentions=outputs[-1],
+ )
+
+
+@add_start_docstrings(
+ "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
+ BLOOM_START_DOCSTRING,
+)
+# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoModel with GPTNeo->Bloom
+class FlaxBloomModel(FlaxBloomPreTrainedModel):
+ module_class = FlaxBloomModule
+
+
+append_call_sample_docstring(FlaxBloomModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC)
+
+
+class FlaxBloomForCausalLMModule(nn.Module):
+ config: BloomConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self):
+ self.transformer = FlaxBloomModule(self.config, dtype=self.dtype)
+ self.lm_head = nn.Dense(
+ self.config.vocab_size,
+ use_bias=False,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
+ )
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ deterministic: bool = True,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ deterministic=deterministic,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+
+ if self.config.tie_word_embeddings:
+ shared_kernel = self.transformer.variables["params"]["word_embeddings"]["embedding"].T
+ lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
+ else:
+ lm_logits = self.lm_head(hidden_states)
+
+ if not return_dict:
+ return (lm_logits,) + outputs[1:]
+
+ return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
+
+
+@add_start_docstrings(
+ """
+ The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
+ embeddings).
+ """,
+ BLOOM_START_DOCSTRING,
+)
+class FlaxBloomForCausalLM(FlaxBloomPreTrainedModel):
+ module_class = FlaxBloomForCausalLMModule
+
+ def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
+ # initializing the cache
+ batch_size, seq_length = input_ids.shape
+
+ past_key_values = self.init_cache(batch_size, max_length)
+ # Note that usually one would have to put 0's in the attention_mask for
+ # x > input_ids.shape[-1] and x < cache_length. But since Bloom uses a causal mask,
+ # those positions are masked anyway. Thus, we can create a single static attention_mask here,
+ # which is more efficient for compilation
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
+ if attention_mask is not None:
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
+
+ return {
+ "past_key_values": past_key_values,
+ "attention_mask": extended_attention_mask,
+ }
+
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
+ return model_kwargs
+
+
+append_call_sample_docstring(FlaxBloomForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/tokenization_bloom_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/tokenization_bloom_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a0972d87ae349d08de4acf473fefe4db132b05d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/bloom/tokenization_bloom_fast.py
@@ -0,0 +1,164 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for Bloom."""
+
+
+import pickle
+from typing import Optional, Tuple
+
+from ...tokenization_utils_base import BatchEncoding
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
+
+
+class BloomTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" Bloom tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
+ Byte-Pair-Encoding.
+
+ This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
+
+ ```python
+ >>> from transformers import BloomTokenizerFast
+
+ >>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom")
+ >>> tokenizer("Hello world")["input_ids"]
+ [59414, 8876]
+
+ >>> tokenizer(" Hello world")["input_ids"]
+ [86153, 8876]
+ ```
+
+ You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
+ the model was not pretrained this way, it might yield a decrease in performance.
+
+
+
+ When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
+
+
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ unk_token (`str`, *optional*, defaults to `<|endoftext|>`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ bos_token (`str`, *optional*, defaults to `<|endoftext|>`):
+ The beginning of sequence token.
+ eos_token (`str`, *optional*, defaults to `<|endoftext|>`):
+ The end of sequence token.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (Bloom tokenizer detect beginning of words by the preceding space).
+ trim_offsets (`bool`, *optional*, defaults to `True`):
+ Whether or not the post-processing step should trim offsets to avoid including whitespaces.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+ slow_tokenizer_class = None
+ # No `max_model_input_sizes` as BLOOM uses ALiBi positional embeddings
+
+ def __init__(
+ self,
+ vocab_file=None,
+ merges_file=None,
+ tokenizer_file=None,
+ unk_token="",
+ bos_token="",
+ eos_token="",
+ pad_token="",
+ add_prefix_space=False,
+ clean_up_tokenization_spaces=False,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ merges_file,
+ tokenizer_file=tokenizer_file,
+ unk_token=unk_token,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ pad_token=pad_token,
+ add_prefix_space=add_prefix_space,
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
+ **kwargs,
+ )
+ # TODO @ArthurZucker this can only work one way for now, to update later-on. Tests should also properly
+ # check this as they were green before.
+ pre_tok_state = pickle.dumps(self.backend_tokenizer.pre_tokenizer)
+ decoder_state = pickle.dumps(self.backend_tokenizer.decoder)
+
+ if add_prefix_space:
+ pre_tok_state = pre_tok_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
+ decoder_state = decoder_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true')
+ self.backend_tokenizer.pre_tokenizer = pickle.loads(pre_tok_state)
+ self.backend_tokenizer.decoder = pickle.loads(decoder_state)
+
+ self.add_prefix_space = add_prefix_space
+
+ def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
+ is_split_into_words = kwargs.get("is_split_into_words", False)
+ if not (self.add_prefix_space or not is_split_into_words):
+ raise Exception(
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
+ " pretokenized inputs."
+ )
+
+ return super()._batch_encode_plus(*args, **kwargs)
+
+ def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
+ is_split_into_words = kwargs.get("is_split_into_words", False)
+
+ if not (self.add_prefix_space or not is_split_into_words):
+ raise Exception(
+ f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
+ " pretokenized inputs."
+ )
+
+ return super()._encode_plus(*args, **kwargs)
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
+
+ @property
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template
+ def default_chat_template(self):
+ """
+ A simple chat template that ignores role information and just concatenates messages with EOS tokens.
+ """
+ logger.warning_once(
+ "\nNo chat template is defined for this tokenizer - using the default template "
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
+ )
+ return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..1b07db5a5eea64b8e5d37cf2c9c89429586ea8fe
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/__init__.py
@@ -0,0 +1,94 @@
+# Copyright 2022 Facebook and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
+
+
+_import_structure = {
+ "configuration_esm": ["ESM_PRETRAINED_CONFIG_ARCHIVE_MAP", "EsmConfig"],
+ "tokenization_esm": ["EsmTokenizer"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_esm"] = [
+ "ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "EsmForMaskedLM",
+ "EsmForSequenceClassification",
+ "EsmForTokenClassification",
+ "EsmModel",
+ "EsmPreTrainedModel",
+ ]
+ _import_structure["modeling_esmfold"] = ["EsmForProteinFolding", "EsmFoldPreTrainedModel"]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_esm"] = [
+ "TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "TFEsmForMaskedLM",
+ "TFEsmForSequenceClassification",
+ "TFEsmForTokenClassification",
+ "TFEsmModel",
+ "TFEsmPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_esm import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP, EsmConfig
+ from .tokenization_esm import EsmTokenizer
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_esm import (
+ ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
+ EsmForMaskedLM,
+ EsmForSequenceClassification,
+ EsmForTokenClassification,
+ EsmModel,
+ EsmPreTrainedModel,
+ )
+ from .modeling_esmfold import EsmFoldPreTrainedModel, EsmForProteinFolding
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_esm import (
+ TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
+ TFEsmForMaskedLM,
+ TFEsmForSequenceClassification,
+ TFEsmForTokenClassification,
+ TFEsmModel,
+ TFEsmPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/configuration_esm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/configuration_esm.py
new file mode 100644
index 0000000000000000000000000000000000000000..31d309cb04a0175d6865d7f79f5f27241a264960
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/configuration_esm.py
@@ -0,0 +1,361 @@
+# coding=utf-8
+# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" ESM model configuration"""
+
+from dataclasses import asdict, dataclass
+from typing import Optional
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+# TODO Update this
+
+from ..deprecated._archive_maps import ESM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class EsmConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the ESM
+ [facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*):
+ Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`ESMModel`].
+ mask_token_id (`int`, *optional*):
+ The index of the mask token in the vocabulary. This must be included in the config because of the
+ "mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
+ pad_token_id (`int`, *optional*):
+ The index of the padding token in the vocabulary. This must be included in the config because certain parts
+ of the ESM code use this instead of the attention mask.
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 1026):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
+ For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ is_decoder (`bool`, *optional*, defaults to `False`):
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ emb_layer_norm_before (`bool`, *optional*):
+ Whether to apply layer normalization after embeddings but before the main stem of the network.
+ token_dropout (`bool`, defaults to `False`):
+ When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
+
+ Examples:
+
+ ```python
+ >>> from transformers import EsmModel, EsmConfig
+
+ >>> # Initializing a ESM facebook/esm-1b style configuration >>> configuration = EsmConfig()
+
+ >>> # Initializing a model from the configuration >>> model = ESMModel(configuration)
+
+ >>> # Accessing the model configuration >>> configuration = model.config
+ ```"""
+
+ model_type = "esm"
+
+ def __init__(
+ self,
+ vocab_size=None,
+ mask_token_id=None,
+ pad_token_id=None,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=1026,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ position_embedding_type="absolute",
+ use_cache=True,
+ emb_layer_norm_before=None,
+ token_dropout=False,
+ is_folding_model=False,
+ esmfold_config=None,
+ vocab_list=None,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
+ self.emb_layer_norm_before = emb_layer_norm_before
+ self.token_dropout = token_dropout
+ self.is_folding_model = is_folding_model
+ if is_folding_model:
+ if esmfold_config is None:
+ logger.info("No esmfold_config supplied for folding model, using default values.")
+ esmfold_config = EsmFoldConfig()
+ elif isinstance(esmfold_config, dict):
+ esmfold_config = EsmFoldConfig(**esmfold_config)
+ self.esmfold_config = esmfold_config
+ if vocab_list is None:
+ logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!")
+ self.vocab_list = get_default_vocab_list()
+ else:
+ self.vocab_list = vocab_list
+ else:
+ self.esmfold_config = None
+ self.vocab_list = None
+ if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False):
+ raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!")
+
+ def to_dict(self):
+ """
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
+
+ Returns:
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
+ """
+ output = super().to_dict()
+ if isinstance(self.esmfold_config, EsmFoldConfig):
+ output["esmfold_config"] = self.esmfold_config.to_dict()
+ return output
+
+
+@dataclass
+class EsmFoldConfig:
+ esm_type: str = None
+ fp16_esm: bool = True
+ use_esm_attn_map: bool = False
+ esm_ablate_pairwise: bool = False
+ esm_ablate_sequence: bool = False
+ esm_input_dropout: float = 0
+
+ embed_aa: bool = True
+ bypass_lm: bool = False
+
+ lddt_head_hid_dim: int = 128
+ trunk: "TrunkConfig" = None
+
+ def __post_init__(self):
+ if self.trunk is None:
+ self.trunk = TrunkConfig()
+ elif isinstance(self.trunk, dict):
+ self.trunk = TrunkConfig(**self.trunk)
+
+ def to_dict(self):
+ """
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
+
+ Returns:
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
+ """
+ output = asdict(self)
+ output["trunk"] = self.trunk.to_dict()
+ return output
+
+
+@dataclass
+class TrunkConfig:
+ num_blocks: int = 48
+ sequence_state_dim: int = 1024
+ pairwise_state_dim: int = 128
+ sequence_head_width: int = 32
+ pairwise_head_width: int = 32
+ position_bins: int = 32
+ dropout: float = 0
+ layer_drop: float = 0
+ cpu_grad_checkpoint: bool = False
+ max_recycles: int = 4
+ chunk_size: Optional[int] = 128
+ structure_module: "StructureModuleConfig" = None
+
+ def __post_init__(self):
+ if self.structure_module is None:
+ self.structure_module = StructureModuleConfig()
+ elif isinstance(self.structure_module, dict):
+ self.structure_module = StructureModuleConfig(**self.structure_module)
+
+ if self.max_recycles <= 0:
+ raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.")
+ if self.sequence_state_dim % self.sequence_state_dim != 0:
+ raise ValueError(
+ "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
+ f" {self.sequence_state_dim} and {self.sequence_state_dim}."
+ )
+ if self.pairwise_state_dim % self.pairwise_state_dim != 0:
+ raise ValueError(
+ "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
+ f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
+ )
+
+ sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
+ pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width
+
+ if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
+ raise ValueError(
+ "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
+ f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
+ )
+ if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
+ raise ValueError(
+ "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
+ f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
+ )
+ if self.pairwise_state_dim % 2 != 0:
+ raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.")
+
+ if self.dropout >= 0.4:
+ raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.")
+
+ def to_dict(self):
+ """
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
+
+ Returns:
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
+ """
+ output = asdict(self)
+ output["structure_module"] = self.structure_module.to_dict()
+ return output
+
+
+@dataclass
+class StructureModuleConfig:
+ """
+ Args:
+ sequence_dim:
+ Single representation channel dimension
+ pairwise_dim:
+ Pair representation channel dimension
+ ipa_dim:
+ IPA hidden channel dimension
+ resnet_dim:
+ Angle resnet (Alg. 23 lines 11-14) hidden channel dimension
+ num_heads_ipa:
+ Number of IPA heads
+ num_qk_points:
+ Number of query/key points to generate during IPA
+ num_v_points:
+ Number of value points to generate during IPA
+ dropout_rate:
+ Dropout rate used throughout the layer
+ num_blocks:
+ Number of structure module blocks
+ num_transition_layers:
+ Number of layers in the single representation transition (Alg. 23 lines 8-9)
+ num_resnet_blocks:
+ Number of blocks in the angle resnet
+ num_angles:
+ Number of angles to generate in the angle resnet
+ trans_scale_factor:
+ Scale of single representation transition hidden dimension
+ epsilon:
+ Small number used in angle resnet normalization
+ inf:
+ Large number used for attention masking
+ """
+
+ sequence_dim: int = 384
+ pairwise_dim: int = 128
+ ipa_dim: int = 16
+ resnet_dim: int = 128
+ num_heads_ipa: int = 12
+ num_qk_points: int = 4
+ num_v_points: int = 8
+ dropout_rate: float = 0.1
+ num_blocks: int = 8
+ num_transition_layers: int = 1
+ num_resnet_blocks: int = 2
+ num_angles: int = 7
+ trans_scale_factor: int = 10
+ epsilon: float = 1e-8
+ inf: float = 1e5
+
+ def to_dict(self):
+ return asdict(self)
+
+
+def get_default_vocab_list():
+ return (
+ "",
+ "",
+ "",
+ "",
+ "L",
+ "A",
+ "G",
+ "V",
+ "S",
+ "E",
+ "R",
+ "T",
+ "I",
+ "D",
+ "P",
+ "K",
+ "Q",
+ "N",
+ "F",
+ "Y",
+ "M",
+ "H",
+ "W",
+ "C",
+ "X",
+ "B",
+ "U",
+ "Z",
+ "O",
+ ".",
+ "-",
+ "",
+ "",
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/convert_esm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/convert_esm.py
new file mode 100644
index 0000000000000000000000000000000000000000..22ca3f5392c19d6b1c36a69d0738b8528bfaaa9d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/convert_esm.py
@@ -0,0 +1,400 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert ESM checkpoint."""
+
+
+import argparse
+import pathlib
+from pathlib import Path
+from tempfile import TemporaryDirectory
+
+import esm as esm_module
+import torch
+from esm.esmfold.v1.misc import batch_encode_sequences as esmfold_encode_sequences
+from esm.esmfold.v1.pretrained import esmfold_v1
+
+from transformers.models.esm.configuration_esm import EsmConfig, EsmFoldConfig
+from transformers.models.esm.modeling_esm import (
+ EsmForMaskedLM,
+ EsmForSequenceClassification,
+ EsmIntermediate,
+ EsmLayer,
+ EsmOutput,
+ EsmSelfAttention,
+ EsmSelfOutput,
+)
+from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
+from transformers.models.esm.tokenization_esm import EsmTokenizer
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+logger = logging.get_logger(__name__)
+
+SAMPLE_DATA = [
+ (
+ "protein1",
+ "MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA",
+ ),
+ ("protein2", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"),
+ ("protein3", "MKTVRQERLKSIRILERSKEPVSGAQLAEELSSRQVIVQDIAYLRSLGYNVATPRGYVLAGG"),
+ ("protein4", "MKTVRQERLKSIRILERSKEPVSGAQLAEELSSRQVIVQDIAYLRSLGYNVATPRGYVLA"),
+]
+
+MODEL_MAPPING = {
+ "esm1b_t33_650M_UR50S": esm_module.pretrained.esm1b_t33_650M_UR50S,
+ "esm1v_t33_650M_UR90S_1": esm_module.pretrained.esm1v_t33_650M_UR90S_1,
+ "esm1v_t33_650M_UR90S_2": esm_module.pretrained.esm1v_t33_650M_UR90S_2,
+ "esm1v_t33_650M_UR90S_3": esm_module.pretrained.esm1v_t33_650M_UR90S_3,
+ "esm1v_t33_650M_UR90S_4": esm_module.pretrained.esm1v_t33_650M_UR90S_4,
+ "esm1v_t33_650M_UR90S_5": esm_module.pretrained.esm1v_t33_650M_UR90S_5,
+ "esm2_t48_15B_UR50D": esm_module.pretrained.esm2_t48_15B_UR50D,
+ "esm2_t36_3B_UR50D": esm_module.pretrained.esm2_t36_3B_UR50D,
+ "esm2_t33_650M_UR50D": esm_module.pretrained.esm2_t33_650M_UR50D,
+ "esm2_t30_150M_UR50D": esm_module.pretrained.esm2_t30_150M_UR50D,
+ "esm2_t12_35M_UR50D": esm_module.pretrained.esm2_t12_35M_UR50D,
+ "esm2_t6_8M_UR50D": esm_module.pretrained.esm2_t6_8M_UR50D,
+ "esmfold_v1": esmfold_v1,
+}
+
+restypes = list("ARNDCQEGHILKMFPSTWYV")
+
+restypes_with_x = restypes + ["X"]
+restypes_with_extras = restypes_with_x + ["", "", "", "", ""]
+
+
+def get_esmfold_tokenizer():
+ with TemporaryDirectory() as tempdir:
+ vocab = "\n".join(restypes_with_extras)
+ vocab_file = Path(tempdir) / "vocab.txt"
+ vocab_file.write_text(vocab)
+ hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
+ hf_tokenizer.pad_token_id = 0 # Overlaps with 'A' but that seems to be what they want
+ return hf_tokenizer
+
+
+def transfer_and_check_weights(original_module, our_module):
+ status = our_module.load_state_dict(original_module.state_dict())
+ if status.missing_keys:
+ raise ValueError(f"Missing keys: {status.missing_keys}")
+ if status.unexpected_keys:
+ raise ValueError(f"Unexpected keys: {status.unexpected_keys}")
+
+
+def convert_esm_checkpoint_to_pytorch(
+ model: str, pytorch_dump_folder_path: str, classification_head: bool, push_to_repo: str, auth_token: str
+):
+ """
+ Copy/paste/tweak esm's weights to our BERT structure.
+ """
+ if model.startswith("esmfold"):
+ esm = MODEL_MAPPING[model]()
+ else:
+ esm, alphabet = MODEL_MAPPING[model]()
+ esm.eval() # disable dropout
+
+ if model.startswith("esmfold"):
+ embed_dim = esm.esm.embed_dim
+ num_layers = esm.esm.num_layers
+ num_attention_heads = esm.esm.attention_heads
+ intermediate_size = 4 * embed_dim
+ token_dropout = esm.esm.token_dropout
+ emb_layer_norm_before = False # This code path does not exist in ESM-2
+ position_embedding_type = "rotary"
+ is_folding_model = True
+ esmfold_config = EsmFoldConfig()
+ for key, val in esm.cfg.items():
+ if hasattr(esmfold_config, key) and key != "trunk":
+ setattr(esmfold_config, key, val)
+ for key, val in esm.cfg.trunk.items():
+ if hasattr(esmfold_config.trunk, key) and key != "structure_module":
+ setattr(esmfold_config.trunk, key, val)
+ for key, val in esm.cfg.trunk.structure_module.items():
+ if hasattr(esmfold_config.trunk.structure_module, key):
+ setattr(esmfold_config.trunk.structure_module, key, val)
+ elif hasattr(esm, "args"):
+ # Indicates an ESM-1b or ESM-1v model
+ embed_dim = esm.args.embed_dim
+ num_layers = esm.args.layers
+ num_attention_heads = esm.args.attention_heads
+ intermediate_size = esm.args.ffn_embed_dim
+ token_dropout = esm.args.token_dropout
+ emb_layer_norm_before = True if esm.emb_layer_norm_before else False
+ position_embedding_type = "absolute"
+ is_folding_model = False
+ esmfold_config = None
+ else:
+ # Indicates an ESM-2 model
+ embed_dim = esm.embed_dim
+ num_layers = esm.num_layers
+ num_attention_heads = esm.attention_heads
+ intermediate_size = 4 * embed_dim # This is hardcoded in ESM-2
+ token_dropout = esm.token_dropout
+ emb_layer_norm_before = False # This code path does not exist in ESM-2
+ position_embedding_type = "rotary"
+ is_folding_model = False
+ esmfold_config = None
+
+ if is_folding_model:
+ alphabet = esm.esm.alphabet
+ vocab_list = tuple(alphabet.all_toks)
+ mask_token_id = alphabet.mask_idx
+ pad_token_id = alphabet.padding_idx
+
+ if is_folding_model:
+ original_esm_model = esm.esm
+ else:
+ original_esm_model = esm
+
+ config = EsmConfig(
+ vocab_size=original_esm_model.embed_tokens.num_embeddings,
+ mask_token_id=mask_token_id,
+ hidden_size=embed_dim,
+ num_hidden_layers=num_layers,
+ num_attention_heads=num_attention_heads,
+ intermediate_size=intermediate_size,
+ max_position_embeddings=1026,
+ layer_norm_eps=1e-5, # PyTorch default used in fairseq
+ attention_probs_dropout_prob=0.0,
+ hidden_dropout_prob=0.0,
+ pad_token_id=pad_token_id,
+ emb_layer_norm_before=emb_layer_norm_before,
+ token_dropout=token_dropout,
+ position_embedding_type=position_embedding_type,
+ is_folding_model=is_folding_model,
+ esmfold_config=esmfold_config,
+ vocab_list=vocab_list,
+ )
+ if classification_head:
+ config.num_labels = esm.classification_heads["mnli"].out_proj.weight.shape[0]
+ print("Our ESM config:", config)
+
+ if model.startswith("esmfold"):
+ model_class = EsmForProteinFolding
+ elif classification_head:
+ model_class = EsmForSequenceClassification
+ else:
+ model_class = EsmForMaskedLM
+ model = model_class(config)
+ model.eval()
+
+ # Now let's copy all the weights.
+ # Embeddings
+ model.esm.embeddings.word_embeddings.weight = original_esm_model.embed_tokens.weight
+ if position_embedding_type == "absolute":
+ model.esm.embeddings.position_embeddings.weight = original_esm_model.embed_positions.weight
+
+ if config.emb_layer_norm_before:
+ model.esm.embeddings.layer_norm.weight = original_esm_model.emb_layer_norm_before.weight
+ model.esm.embeddings.layer_norm.bias = original_esm_model.emb_layer_norm_before.bias
+
+ model.esm.encoder.emb_layer_norm_after.weight = original_esm_model.emb_layer_norm_after.weight
+ model.esm.encoder.emb_layer_norm_after.bias = original_esm_model.emb_layer_norm_after.bias
+
+ for i in range(config.num_hidden_layers):
+ # Encoder: start of layer
+ layer: EsmLayer = model.esm.encoder.layer[i]
+ # esm_layer: TransformerSentenceEncoderLayer = original_esm_model.layers[i]
+ esm_layer = original_esm_model.layers[i]
+
+ # self attention
+ self_attn: EsmSelfAttention = layer.attention.self
+ assert (
+ esm_layer.self_attn.k_proj.weight.data.shape
+ == esm_layer.self_attn.q_proj.weight.data.shape
+ == esm_layer.self_attn.v_proj.weight.data.shape
+ == torch.Size((config.hidden_size, config.hidden_size))
+ )
+
+ self_attn.query.weight.data = esm_layer.self_attn.q_proj.weight
+ self_attn.query.bias.data = esm_layer.self_attn.q_proj.bias
+ self_attn.key.weight.data = esm_layer.self_attn.k_proj.weight
+ self_attn.key.bias.data = esm_layer.self_attn.k_proj.bias
+ self_attn.value.weight.data = esm_layer.self_attn.v_proj.weight
+ self_attn.value.bias.data = esm_layer.self_attn.v_proj.bias
+
+ if getattr(esm_layer.self_attn, "rot_emb", None) is not None:
+ # Matt: Although inv_freq is not a trainable weight, it is computed at model init and cached.
+ # During the training of ESM-2 the model was converted to float16 precision, which also converts
+ # the inv_freq tensor, and the loss of precision remains even if the model is loaded later as float32.
+ # If we recompute inv_freq without this loss of precision then we will get subtly different rotary
+ # embeddings, which are enough to cause significant discrepancies in model outputs. To avoid this,
+ # we make sure the new model copies the data from the old inv_freq.
+ self_attn.rotary_embeddings.inv_freq.data = esm_layer.self_attn.rot_emb.inv_freq
+
+ # LayerNorm changes for pre-activation
+ layer.attention.LayerNorm.weight = esm_layer.self_attn_layer_norm.weight
+ layer.attention.LayerNorm.bias = esm_layer.self_attn_layer_norm.bias
+ layer.LayerNorm.weight = esm_layer.final_layer_norm.weight
+ layer.LayerNorm.bias = esm_layer.final_layer_norm.bias
+
+ # self-attention output
+ self_output: EsmSelfOutput = layer.attention.output
+ assert self_output.dense.weight.shape == esm_layer.self_attn.out_proj.weight.shape
+ self_output.dense.weight = esm_layer.self_attn.out_proj.weight
+ self_output.dense.bias = esm_layer.self_attn.out_proj.bias
+
+ # intermediate
+ intermediate: EsmIntermediate = layer.intermediate
+ assert intermediate.dense.weight.shape == esm_layer.fc1.weight.shape
+ intermediate.dense.weight = esm_layer.fc1.weight
+ intermediate.dense.bias = esm_layer.fc1.bias
+
+ # output
+ bert_output: EsmOutput = layer.output
+ assert bert_output.dense.weight.shape == esm_layer.fc2.weight.shape
+ bert_output.dense.weight = esm_layer.fc2.weight
+ bert_output.dense.bias = esm_layer.fc2.bias
+ # end of layer
+
+ if is_folding_model:
+ model.esm_s_combine.data = esm.esm_s_combine.data
+ model.af2_to_esm.data = esm.af2_to_esm.data
+ transfer_and_check_weights(esm.embedding, model.embedding)
+ transfer_and_check_weights(esm.esm_s_mlp, model.esm_s_mlp)
+ transfer_and_check_weights(esm.trunk, model.trunk)
+ transfer_and_check_weights(esm.distogram_head, model.distogram_head)
+ transfer_and_check_weights(esm.ptm_head, model.ptm_head)
+ transfer_and_check_weights(esm.lm_head, model.lm_head)
+ transfer_and_check_weights(esm.lddt_head, model.lddt_head)
+
+ elif classification_head:
+ model.classifier.dense.weight = esm.esm.classification_heads["mnli"].dense.weight
+ model.classifier.dense.bias = esm.classification_heads["mnli"].dense.bias
+ model.classifier.out_proj.weight = esm.classification_heads["mnli"].out_proj.weight
+ model.classifier.out_proj.bias = esm.classification_heads["mnli"].out_proj.bias
+ else:
+ # LM Head
+ model.lm_head.dense.weight = esm.lm_head.dense.weight
+ model.lm_head.dense.bias = esm.lm_head.dense.bias
+ model.lm_head.layer_norm.weight = esm.lm_head.layer_norm.weight
+ model.lm_head.layer_norm.bias = esm.lm_head.layer_norm.bias
+ model.lm_head.decoder.weight = esm.lm_head.weight
+ model.lm_head.bias = esm.lm_head.bias
+
+ # Contact prediction head
+ transfer_and_check_weights(esm.contact_head, model.esm.contact_head)
+
+ # Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4)
+ if is_folding_model:
+ # Folding models aren't trained on masked inputs and don't like mask tokens.
+ sample_data = SAMPLE_DATA[:2]
+ else:
+ sample_data = SAMPLE_DATA
+
+ if is_folding_model:
+ hf_tokenizer = get_esmfold_tokenizer()
+ hf_tokens = hf_tokenizer(
+ [row[1] for row in sample_data], return_tensors="pt", padding=True, add_special_tokens=False
+ )
+ esmfold_aas, esmfold_mask, _, _, _ = esmfold_encode_sequences([row[1] for row in sample_data])
+ success = torch.all(hf_tokens["input_ids"] == esmfold_aas) and torch.all(
+ hf_tokens["attention_mask"] == esmfold_mask
+ )
+ else:
+ # Let's check that we get the same results.
+ batch_converter = alphabet.get_batch_converter()
+ batch_labels, batch_strs, batch_tokens = batch_converter(sample_data)
+ # Prepare tokenizer and make sure it matches
+ with TemporaryDirectory() as tempdir:
+ vocab = "\n".join(alphabet.all_toks)
+ vocab_file = Path(tempdir) / "vocab.txt"
+ vocab_file.write_text(vocab)
+ hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
+
+ hf_tokens = hf_tokenizer([row[1] for row in sample_data], return_tensors="pt", padding=True)
+ success = torch.all(hf_tokens["input_ids"] == batch_tokens)
+
+ print("Do both models tokenizers output the same tokens?", "🔥" if success else "💩")
+ if not success:
+ raise Exception("Tokenization does not match!")
+
+ with torch.no_grad():
+ if is_folding_model:
+ # Let's test the model in parts
+ # ESMFold always converts the ESM stem to float16, which requires float16 ops
+ # that don't exist on CPU. Therefore, to test it we need to run it on GPU. However,
+ # ESMFold is what we in the community call a "big boy" and so we desperately avoid putting both the
+ # original and the converted model on the GPU at the same time.
+ their_output = esm.cuda().infer([row[1] for row in sample_data])
+ our_output = model.cuda()(
+ input_ids=hf_tokens["input_ids"].cuda(), attention_mask=hf_tokens["attention_mask"].cuda()
+ )
+ else:
+ our_output = model(**hf_tokens, output_hidden_states=True)
+ our_output = our_output["logits"]
+ if classification_head:
+ their_output = esm.model.classification_heads["mnli"](esm.extract_features(batch_tokens))
+ else:
+ their_output = esm(hf_tokens["input_ids"], repr_layers=list(range(999)))
+ their_output = their_output["logits"]
+
+ if is_folding_model:
+ max_absolute_diff = torch.max(torch.abs(our_output["positions"] - their_output["positions"])).item()
+ success = torch.allclose(our_output["positions"], their_output["positions"], atol=1e-5)
+ else:
+ max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
+ success = torch.allclose(our_output, their_output, atol=1e-5)
+
+ print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
+ print("Do both models output the same tensors?", "🔥" if success else "💩")
+
+ if not success:
+ raise Exception("Something went wRoNg")
+
+ if not is_folding_model:
+ # Let's check contact prediction too
+ our_output = model.predict_contacts(hf_tokens["input_ids"], hf_tokens["attention_mask"])
+ their_output = esm.predict_contacts(hf_tokens["input_ids"])
+ max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
+ success = torch.allclose(our_output, their_output, atol=1e-5)
+
+ print("Contact prediction testing:")
+ print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
+ print("Do both models output the same tensors?", "🔥" if success else "💩")
+
+ if not success:
+ raise Exception("Something went wRoNg")
+
+ pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
+ print(f"Saving model to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+
+ del esm # Free up some memory before continuing
+
+ print(f"Saving tokenizer to {pytorch_dump_folder_path}")
+ hf_tokenizer.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_repo:
+ model.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
+ hf_tokenizer.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model."
+ )
+ parser.add_argument(
+ "--classification_head", action="store_true", help="Whether to convert a final classification head."
+ )
+ parser.add_argument("--model", default=None, type=str, required=True, help="Name of model to convert.")
+ parser.add_argument("--push_to_repo", type=str, help="Repo to upload to (including username!).")
+ parser.add_argument("--auth_token", type=str, help="HuggingFace auth token.")
+ args = parser.parse_args()
+ convert_esm_checkpoint_to_pytorch(
+ args.model, args.pytorch_dump_folder_path, args.classification_head, args.push_to_repo, args.auth_token
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esm.py
new file mode 100644
index 0000000000000000000000000000000000000000..a97ea58d7b81d9969cdac3a6d805b5fe34b9ac3f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esm.py
@@ -0,0 +1,1265 @@
+# coding=utf-8
+# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch ESM model."""
+
+import math
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+ MaskedLMOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import logging
+from .configuration_esm import EsmConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
+_CONFIG_FOR_DOC = "EsmConfig"
+
+
+from ..deprecated._archive_maps import ESM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+def rotate_half(x):
+ x1, x2 = x.chunk(2, dim=-1)
+ return torch.cat((-x2, x1), dim=-1)
+
+
+def apply_rotary_pos_emb(x, cos, sin):
+ cos = cos[:, :, : x.shape[-2], :]
+ sin = sin[:, :, : x.shape[-2], :]
+
+ return (x * cos) + (rotate_half(x) * sin)
+
+
+def gelu(x):
+ """
+ This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results.
+ """
+ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
+
+
+def symmetrize(x):
+ "Make layer symmetric in final two dimensions, used for contact prediction."
+ return x + x.transpose(-1, -2)
+
+
+def average_product_correct(x):
+ "Perform average product correct, used for contact prediction."
+ a1 = x.sum(-1, keepdims=True)
+ a2 = x.sum(-2, keepdims=True)
+ a12 = x.sum((-1, -2), keepdims=True)
+
+ avg = a1 * a2
+ avg.div_(a12) # in-place to reduce memory
+ normalized = x - avg
+ return normalized
+
+
+class RotaryEmbedding(torch.nn.Module):
+ """
+ Rotary position embeddings based on those in
+ [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
+ matrices which depend on their relative positions.
+ """
+
+ def __init__(self, dim: int):
+ super().__init__()
+ # Generate and save the inverse frequency buffer (non trainable)
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
+ inv_freq = inv_freq
+ self.register_buffer("inv_freq", inv_freq)
+
+ self._seq_len_cached = None
+ self._cos_cached = None
+ self._sin_cached = None
+
+ def _update_cos_sin_tables(self, x, seq_dimension=2):
+ seq_len = x.shape[seq_dimension]
+
+ # Reset the tables if the sequence length has changed,
+ # or if we're on a new device (possibly due to tracing for instance)
+ if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
+ self._seq_len_cached = seq_len
+ t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
+ freqs = torch.outer(t, self.inv_freq)
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
+
+ self._cos_cached = emb.cos()[None, None, :, :]
+ self._sin_cached = emb.sin()[None, None, :, :]
+
+ return self._cos_cached, self._sin_cached
+
+ def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
+
+ return (
+ apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
+ apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
+ )
+
+
+class EsmContactPredictionHead(nn.Module):
+ """Performs symmetrization, apc, and computes a logistic regression on the output features"""
+
+ def __init__(
+ self,
+ in_features: int,
+ bias=True,
+ eos_idx: int = 2,
+ ):
+ super().__init__()
+ self.in_features = in_features
+ self.eos_idx = eos_idx
+ self.regression = nn.Linear(in_features, 1, bias)
+ self.activation = nn.Sigmoid()
+
+ def forward(self, tokens, attentions):
+ # remove eos token attentions
+ eos_mask = tokens.ne(self.eos_idx).to(attentions)
+ eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
+ attentions = attentions * eos_mask[:, None, None, :, :]
+ attentions = attentions[..., :-1, :-1]
+ # remove cls token attentions
+ attentions = attentions[..., 1:, 1:]
+ batch_size, layers, heads, seqlen, _ = attentions.size()
+ attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
+
+ # features: batch x channels x tokens x tokens (symmetric)
+ attentions = attentions.to(
+ self.regression.weight.device
+ ) # attentions always float32, may need to convert to float16
+ attentions = average_product_correct(symmetrize(attentions))
+ attentions = attentions.permute(0, 2, 3, 1)
+ return self.activation(self.regression(attentions).squeeze(3))
+
+
+class EsmEmbeddings(nn.Module):
+ """
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+
+ if config.emb_layer_norm_before:
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ else:
+ self.layer_norm = None
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+
+ self.padding_idx = config.pad_token_id
+ self.position_embeddings = nn.Embedding(
+ config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
+ )
+ self.token_dropout = config.token_dropout
+ self.mask_token_id = config.mask_token_id
+
+ def forward(
+ self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
+ ):
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
+ else:
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
+ # embedding_scale factor here.
+ embeddings = inputs_embeds
+
+ # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
+ # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
+ # masked tokens are treated as if they were selected for input dropout and zeroed out.
+ # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
+ # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
+ # This is analogous to the way that dropout layers scale down outputs during evaluation when not
+ # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
+ if self.token_dropout:
+ embeddings = embeddings.masked_fill((input_ids == self.mask_token_id).unsqueeze(-1), 0.0)
+ mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
+ src_lengths = attention_mask.sum(-1)
+ mask_ratio_observed = (input_ids == self.mask_token_id).sum(-1).float() / src_lengths
+ embeddings = (embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]).to(
+ embeddings.dtype
+ )
+
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings = embeddings + position_embeddings
+
+ if self.layer_norm is not None:
+ embeddings = self.layer_norm(embeddings)
+ if attention_mask is not None:
+ embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
+ # Matt: I think this line was copied incorrectly from BERT, disabling it for now.
+ # embeddings = self.dropout(embeddings)
+ return embeddings
+
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
+ """
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
+
+ Args:
+ inputs_embeds: torch.Tensor
+
+ Returns: torch.Tensor
+ """
+ input_shape = inputs_embeds.size()[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = torch.arange(
+ self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
+ )
+ return position_ids.unsqueeze(0).expand(input_shape)
+
+
+class EsmSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ self.rotary_embeddings = None
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+ elif self.position_embedding_type == "rotary":
+ self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
+ # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
+ # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
+ # ESM code and fix rotary embeddings.
+ query_layer = query_layer * self.attention_head_size**-0.5
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ if self.position_embedding_type == "rotary":
+ query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ seq_length = hidden_states.size()[1]
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs.to(value_layer.dtype), value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+class EsmSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states, input_tensor):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = hidden_states + input_tensor
+ return hidden_states
+
+
+class EsmAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = EsmSelfAttention(config)
+ self.output = EsmSelfOutput(config)
+ self.pruned_heads = set()
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ ):
+ hidden_states_ln = self.LayerNorm(hidden_states)
+ self_outputs = self.self(
+ hidden_states_ln,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class EsmIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = gelu(hidden_states)
+ return hidden_states
+
+
+class EsmOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states, input_tensor):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = hidden_states + input_tensor
+ return hidden_states
+
+
+class EsmLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = EsmAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = EsmAttention(config)
+ self.intermediate = EsmIntermediate(config)
+ self.output = EsmOutput(config)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ ):
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise AttributeError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
+ " with cross-attention layers by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = self.feed_forward_chunk(attention_output)
+
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ attention_output_ln = self.LayerNorm(attention_output)
+ intermediate_output = self.intermediate(attention_output_ln)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class EsmEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)])
+ self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ ):
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
+ "`use_cache=False`..."
+ )
+ use_cache = False
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if self.emb_layer_norm_after:
+ hidden_states = self.emb_layer_norm_after(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler
+class EsmPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class EsmPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = EsmConfig
+ base_model_prefix = "esm"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock", "EsmEmbeddings"]
+
+ # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+ESM_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`EsmConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ESM_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
+ ESM_START_DOCSTRING,
+)
+class EsmModel(EsmPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+ """
+
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = EsmEmbeddings(config)
+ self.encoder = EsmEncoder(config)
+
+ self.pooler = EsmPooler(config) if add_pooling_layer else None
+
+ self.contact_head = EsmContactPredictionHead(
+ in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
+ )
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+ def predict_contacts(self, tokens, attention_mask):
+ attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
+ attns = torch.stack(attns, dim=1) # Matches the original model layout
+ # In the original model, attentions for padding tokens are completely zeroed out.
+ # This makes no difference most of the time because the other tokens won't attend to them,
+ # but it does for the contact prediction task, which takes attentions as input,
+ # so we have to mimic that here.
+ attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
+ attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
+ return self.contact_head(tokens, attns)
+
+
+@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
+class EsmForMaskedLM(EsmPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if config.is_decoder:
+ logger.warning(
+ "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
+ "bi-directional self-attention."
+ )
+
+ self.esm = EsmModel(config, add_pooling_layer=False)
+ self.lm_head = EsmLMHead(config)
+
+ self.init_weights()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=MaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ mask="",
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MaskedLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
+ Used to hide legacy arguments that have been deprecated.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.esm(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+
+ labels = labels.to(prediction_scores.device)
+ masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def predict_contacts(self, tokens, attention_mask):
+ return self.esm.predict_contacts(tokens, attention_mask=attention_mask)
+
+
+class EsmLMHead(nn.Module):
+ """ESM Head for masked language modeling."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ def forward(self, features, **kwargs):
+ x = self.dense(features)
+ x = gelu(x)
+ x = self.layer_norm(x)
+
+ # project back to size of vocabulary with bias
+ x = self.decoder(x) + self.bias
+ return x
+
+
+@add_start_docstrings(
+ """
+ ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+ output) e.g. for GLUE tasks.
+ """,
+ ESM_START_DOCSTRING,
+)
+class EsmForSequenceClassification(EsmPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.esm = EsmModel(config, add_pooling_layer=False)
+ self.classifier = EsmClassificationHead(config)
+
+ self.init_weights()
+
+ @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=SequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.esm(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(logits.device)
+
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ESM_START_DOCSTRING,
+)
+class EsmForTokenClassification(EsmPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.esm = EsmModel(config, add_pooling_layer=False)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ self.init_weights()
+
+ @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.esm(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+
+ labels = labels.to(logits.device)
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class EsmClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
+
+ def forward(self, features, **kwargs):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x)
+ x = self.dense(x)
+ x = torch.tanh(x)
+ x = self.dropout(x)
+ x = self.out_proj(x)
+ return x
+
+
+def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ x: torch.Tensor x:
+
+ Returns: torch.Tensor
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = input_ids.ne(padding_idx).int()
+ incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
+ return incremental_indices.long() + padding_idx
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esmfold.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esmfold.py
new file mode 100644
index 0000000000000000000000000000000000000000..3aaf811960721b55d5e10a28a4e3be5aaeed1ec7
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_esmfold.py
@@ -0,0 +1,2322 @@
+# coding=utf-8
+# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import math
+import sys
+from dataclasses import dataclass
+from functools import partial
+from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
+
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.nn import LayerNorm
+
+from ...integrations.deepspeed import is_deepspeed_available
+from ...modeling_outputs import ModelOutput
+from ...utils import (
+ ContextManagers,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_scipy_available,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_esm import EsmConfig
+from .modeling_esm import ESM_START_DOCSTRING, EsmModel, EsmPreTrainedModel
+from .openfold_utils import (
+ OFProtein,
+ Rigid,
+ Rotation,
+ atom14_to_atom37,
+ chunk_layer,
+ compute_predicted_aligned_error,
+ compute_tm,
+ frames_and_literature_positions_to_atom14_pos,
+ make_atom14_masks,
+ residue_constants,
+ to_pdb,
+ torsion_angles_to_frames,
+)
+
+
+logger = logging.get_logger(__name__)
+_CHECKPOINT_FOR_DOC = "facebook/esmfold_v1"
+_CONFIG_FOR_DOC = "EsmConfig"
+
+
+@dataclass
+class EsmForProteinFoldingOutput(ModelOutput):
+ """
+ Output type of [`EsmForProteinFoldingOutput`].
+
+ Args:
+ frames (`torch.FloatTensor`):
+ Output frames.
+ sidechain_frames (`torch.FloatTensor`):
+ Output sidechain frames.
+ unnormalized_angles (`torch.FloatTensor`):
+ Predicted unnormalized backbone and side chain torsion angles.
+ angles (`torch.FloatTensor`):
+ Predicted backbone and side chain torsion angles.
+ positions (`torch.FloatTensor`):
+ Predicted positions of the backbone and side chain atoms.
+ states (`torch.FloatTensor`):
+ Hidden states from the protein folding trunk.
+ s_s (`torch.FloatTensor`):
+ Per-residue embeddings derived by concatenating the hidden states of each layer of the ESM-2 LM stem.
+ s_z (`torch.FloatTensor`):
+ Pairwise residue embeddings.
+ distogram_logits (`torch.FloatTensor`):
+ Input logits to the distogram used to compute residue distances.
+ lm_logits (`torch.FloatTensor`):
+ Logits output by the ESM-2 protein language model stem.
+ aatype (`torch.FloatTensor`):
+ Input amino acids (AlphaFold2 indices).
+ atom14_atom_exists (`torch.FloatTensor`):
+ Whether each atom exists in the atom14 representation.
+ residx_atom14_to_atom37 (`torch.FloatTensor`):
+ Mapping between atoms in the atom14 and atom37 representations.
+ residx_atom37_to_atom14 (`torch.FloatTensor`):
+ Mapping between atoms in the atom37 and atom14 representations.
+ atom37_atom_exists (`torch.FloatTensor`):
+ Whether each atom exists in the atom37 representation.
+ residue_index (`torch.FloatTensor`):
+ The index of each residue in the protein chain. Unless internal padding tokens are used, this will just be
+ a sequence of integers from 0 to `sequence_length`.
+ lddt_head (`torch.FloatTensor`):
+ Raw outputs from the lddt head used to compute plddt.
+ plddt (`torch.FloatTensor`):
+ Per-residue confidence scores. Regions of low confidence may indicate areas where the model's prediction is
+ uncertain, or where the protein structure is disordered.
+ ptm_logits (`torch.FloatTensor`):
+ Raw logits used for computing ptm.
+ ptm (`torch.FloatTensor`):
+ TM-score output representing the model's high-level confidence in the overall structure.
+ aligned_confidence_probs (`torch.FloatTensor`):
+ Per-residue confidence scores for the aligned structure.
+ predicted_aligned_error (`torch.FloatTensor`):
+ Predicted error between the model's prediction and the ground truth.
+ max_predicted_aligned_error (`torch.FloatTensor`):
+ Per-sample maximum predicted error.
+ """
+
+ frames: torch.FloatTensor = None
+ sidechain_frames: torch.FloatTensor = None
+ unnormalized_angles: torch.FloatTensor = None
+ angles: torch.FloatTensor = None
+ positions: torch.FloatTensor = None
+ states: torch.FloatTensor = None
+ s_s: torch.FloatTensor = None
+ s_z: torch.FloatTensor = None
+ distogram_logits: torch.FloatTensor = None
+ lm_logits: torch.FloatTensor = None
+ aatype: torch.FloatTensor = None
+ atom14_atom_exists: torch.FloatTensor = None
+ residx_atom14_to_atom37: torch.FloatTensor = None
+ residx_atom37_to_atom14: torch.FloatTensor = None
+ atom37_atom_exists: torch.FloatTensor = None
+ residue_index: torch.FloatTensor = None
+ lddt_head: torch.FloatTensor = None
+ plddt: torch.FloatTensor = None
+ ptm_logits: torch.FloatTensor = None
+ ptm: torch.FloatTensor = None
+ aligned_confidence_probs: torch.FloatTensor = None
+ predicted_aligned_error: torch.FloatTensor = None
+ max_predicted_aligned_error: torch.FloatTensor = None
+
+
+ESMFOLD_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ masking_pattern (`torch.LongTensor` of shape `({0})`, *optional*):
+ Locations of tokens to mask during training as a form of regularization. Mask values selected in `[0, 1]`.
+ num_recycles (`int`, *optional*, defaults to `None`):
+ Number of times to recycle the input sequence. If `None`, defaults to `config.num_recycles`. "Recycling"
+ consists of passing the output of the folding trunk back in as input to the trunk. During training, the
+ number of recycles should vary with each batch, to ensure that the model learns to output valid predictions
+ after each recycle. During inference, num_recycles should be set to the highest value that the model was
+ trained with for maximum accuracy. Accordingly, when this value is set to `None`, config.max_recycles is
+ used.
+"""
+
+
+def is_fp16_enabled():
+ # Autocast world
+ fp16_enabled = torch.get_autocast_gpu_dtype() == torch.float16
+ fp16_enabled = fp16_enabled and torch.is_autocast_enabled()
+
+ return fp16_enabled
+
+
+def is_deepspeed_initialized():
+ if is_deepspeed_available():
+ return False
+ else:
+ try:
+ import deepspeed
+
+ # This is not available in all DeepSpeed versions.
+ return deepspeed.utils.is_initialized()
+ except Exception:
+ return False
+
+
+def collate_dense_tensors(samples: List[torch.Tensor], pad_v: float = 0) -> torch.Tensor:
+ """
+ Takes a list of tensors with the following dimensions:
+ [(d_11, ..., d_1K),
+ (d_21, ..., d_2K), ..., (d_N1, ..., d_NK)]
+ and stack + pads them into a single tensor of:
+ (N, max_i=1,N { d_i1 }, ..., max_i=1,N {diK})
+ """
+ if len(samples) == 0:
+ return torch.Tensor()
+ if len({x.dim() for x in samples}) != 1:
+ raise RuntimeError(f"Samples has varying dimensions: {[x.dim() for x in samples]}")
+ (device,) = tuple({x.device for x in samples}) # assumes all on same device
+ max_shape = [max(lst) for lst in zip(*[x.shape for x in samples])]
+ result = torch.empty(len(samples), *max_shape, dtype=samples[0].dtype, device=device)
+ result.fill_(pad_v)
+ for i in range(len(samples)):
+ result_i = result[i]
+ t = samples[i]
+ result_i[tuple(slice(0, k) for k in t.shape)] = t
+ return result
+
+
+def flatten_final_dims(t: torch.Tensor, no_dims: int):
+ return t.reshape(t.shape[:-no_dims] + (-1,))
+
+
+def permute_final_dims(tensor: torch.Tensor, inds: List[int]):
+ zero_index = -1 * len(inds)
+ first_inds = list(range(len(tensor.shape[:zero_index])))
+ return tensor.permute(first_inds + [zero_index + i for i in inds])
+
+
+def dict_multimap(fn, dicts):
+ first = dicts[0]
+ new_dict = {}
+ for k, v in first.items():
+ all_v = [d[k] for d in dicts]
+ if isinstance(v, dict):
+ new_dict[k] = dict_multimap(fn, all_v)
+ else:
+ new_dict[k] = fn(all_v)
+
+ return new_dict
+
+
+def trunc_normal_init_(weights, scale=1.0, fan="fan_in"):
+ shape = weights.shape
+ scale = scale / max(1, shape[1])
+
+ if not is_scipy_available():
+ logger.warning(
+ "This init requires scipy, but scipy was not found, default to an approximation that might not be"
+ " equivalent."
+ )
+ std = math.sqrt(scale)
+ torch.nn.init.normal_(weights, std=std).clamp(min=0.0, max=2.0 * std)
+
+ else:
+ from scipy.stats import truncnorm
+
+ std = math.sqrt(scale) / truncnorm.std(a=-2, b=2, loc=0, scale=1)
+ samples = truncnorm.rvs(a=-2, b=2, loc=0, scale=std, size=weights.numel())
+ samples = np.reshape(samples, shape)
+ weights.copy_(torch.tensor(samples, device=weights.device))
+
+
+def ipa_point_weights_init_(weights):
+ with torch.no_grad():
+ softplus_inverse_1 = 0.541324854612918
+ weights.fill_(softplus_inverse_1)
+
+
+class EsmFoldLinear(nn.Linear):
+ """
+ A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear.
+
+ Implements the initializers in 1.11.4, plus some additional ones found in the code.
+ """
+
+ def __init__(
+ self,
+ in_dim: int,
+ out_dim: int,
+ bias: bool = True,
+ init: str = "default",
+ init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None,
+ ):
+ """
+ Args:
+ in_dim:
+ The final dimension of inputs to the layer
+ out_dim:
+ The final dimension of layer outputs
+ bias:
+ Whether to learn an additive bias. True by default
+ init:
+ The initializer to use. Choose from:
+
+ "default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal
+ distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal":
+ Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0
+
+ Overridden by init_fn if the latter is not None.
+ init_fn:
+ A custom initializer taking weight and bias as inputs. Overrides init if not None.
+ """
+ super().__init__(in_dim, out_dim, bias=bias)
+
+ if bias:
+ with torch.no_grad():
+ self.bias.fill_(0)
+ self.init = init
+ self.init_fn = init_fn
+
+ if init not in ["default", "relu", "glorot", "gating", "normal", "final"]:
+ raise ValueError("Invalid init string.")
+
+
+class EsmFoldLayerNorm(nn.Module):
+ def __init__(self, c_in, eps=1e-5):
+ super().__init__()
+
+ self.c_in = (c_in,)
+ self.eps = eps
+
+ self.weight = nn.Parameter(torch.ones(c_in))
+ self.bias = nn.Parameter(torch.zeros(c_in))
+
+ def forward(self, x):
+ d = x.dtype
+ if d is torch.bfloat16 and not is_deepspeed_initialized():
+ with torch.cuda.amp.autocast(enabled=False):
+ out = nn.functional.layer_norm(x, self.c_in, self.weight.to(dtype=d), self.bias.to(dtype=d), self.eps)
+ else:
+ out = nn.functional.layer_norm(x, self.c_in, self.weight, self.bias, self.eps)
+
+ return out
+
+
+@torch.jit.ignore
+def softmax_no_cast(t: torch.Tensor, dim: int = -1) -> torch.Tensor:
+ """
+ Softmax, but without automatic casting to fp32 when the input is of type bfloat16
+ """
+ d = t.dtype
+ if d is torch.bfloat16 and not is_deepspeed_initialized():
+ with torch.cuda.amp.autocast(enabled=False):
+ s = torch.nn.functional.softmax(t, dim=dim)
+ else:
+ s = torch.nn.functional.softmax(t, dim=dim)
+
+ return s
+
+
+class EsmFoldAttention(nn.Module):
+ """
+ Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors.
+ """
+
+ def __init__(
+ self,
+ c_q: int,
+ c_k: int,
+ c_v: int,
+ c_hidden: int,
+ no_heads: int,
+ gating: bool = True,
+ ):
+ """
+ Args:
+ c_q:
+ Input dimension of query data
+ c_k:
+ Input dimension of key data
+ c_v:
+ Input dimension of value data
+ c_hidden:
+ Per-head hidden dimension
+ no_heads:
+ Number of attention heads
+ gating:
+ Whether the output should be gated using query data
+ """
+ super().__init__()
+
+ self.c_q = c_q
+ self.c_k = c_k
+ self.c_v = c_v
+ self.c_hidden = c_hidden
+ self.no_heads = no_heads
+ self.gating = gating
+
+ # DISCREPANCY: c_hidden is not the per-head channel dimension, as
+ # stated in the supplement, but the overall channel dimension.
+
+ self.linear_q = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot")
+ self.linear_k = EsmFoldLinear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot")
+ self.linear_v = EsmFoldLinear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot")
+ self.linear_o = EsmFoldLinear(self.c_hidden * self.no_heads, self.c_q, init="final")
+
+ self.linear_g = None
+ if self.gating:
+ self.linear_g = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, init="gating")
+
+ self.sigmoid = nn.Sigmoid()
+
+ def _prep_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+ # [*, Q/K/V, H * C_hidden]
+ q = self.linear_q(q_x)
+ k = self.linear_k(kv_x)
+ v = self.linear_v(kv_x)
+
+ # [*, Q/K, H, C_hidden]
+ q = q.view(q.shape[:-1] + (self.no_heads, -1))
+ k = k.view(k.shape[:-1] + (self.no_heads, -1))
+ v = v.view(v.shape[:-1] + (self.no_heads, -1))
+
+ # [*, H, Q/K, C_hidden]
+ q = q.transpose(-2, -3)
+ k = k.transpose(-2, -3)
+ v = v.transpose(-2, -3)
+
+ q /= math.sqrt(self.c_hidden)
+
+ return q, k, v
+
+ def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor:
+ if self.linear_g is not None:
+ g = self.sigmoid(self.linear_g(q_x))
+
+ # [*, Q, H, C_hidden]
+ g = g.view(g.shape[:-1] + (self.no_heads, -1))
+ o = o * g
+
+ # [*, Q, H * C_hidden]
+ o = flatten_final_dims(o, 2)
+
+ # [*, Q, C_q]
+ o = self.linear_o(o)
+
+ return o
+
+ def forward(
+ self,
+ q_x: torch.Tensor,
+ kv_x: torch.Tensor,
+ biases: Optional[List[torch.Tensor]] = None,
+ use_memory_efficient_kernel: bool = False,
+ use_lma: bool = False,
+ lma_q_chunk_size: int = 1024,
+ lma_kv_chunk_size: int = 4096,
+ use_flash: bool = False,
+ flash_mask: Optional[torch.Tensor] = None,
+ ) -> torch.Tensor:
+ """
+ Args:
+ q_x:
+ [*, Q, C_q] query data
+ kv_x:
+ [*, K, C_k] key data
+ biases:
+ List of biases that broadcast to [*, H, Q, K]
+ use_memory_efficient_kernel:
+ Whether to use a custom memory-efficient attention kernel. This should be the default choice for most.
+ If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead
+ use_lma:
+ Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a
+ stock PyTorch implementation is used instead
+ lma_q_chunk_size:
+ Query chunk size (for LMA)
+ lma_kv_chunk_size:
+ Key/Value chunk size (for LMA)
+ Returns
+ [*, Q, C_q] attention update
+ """
+ if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None):
+ raise ValueError("If use_lma is specified, lma_q_chunk_size and lma_kv_chunk_size must be provided")
+
+ if use_flash and biases is not None:
+ raise ValueError("use_flash is incompatible with the bias option. For masking, use flash_mask instead")
+
+ attn_options = [use_memory_efficient_kernel, use_lma, use_flash]
+ if sum(attn_options) > 1:
+ raise ValueError("Choose at most one alternative attention algorithm")
+
+ if biases is None:
+ biases = []
+
+ # [*, H, Q/K, C_hidden]
+ query, key, value = self._prep_qkv(q_x, kv_x)
+ key = permute_final_dims(key, (1, 0))
+
+ # [*, H, Q, K]
+ output = torch.matmul(query, key)
+ for b in biases:
+ output += b
+ output = softmax_no_cast(output, -1)
+
+ # [*, H, Q, C_hidden]
+ output = torch.matmul(output, value)
+ output = output.transpose(-2, -3)
+ output = self._wrap_up(output, q_x)
+
+ return output
+
+
+class EsmFoldTriangleAttention(nn.Module):
+ def __init__(self, c_in, c_hidden, no_heads, starting=True, inf=1e9):
+ """
+ Args:
+ c_in:
+ Input channel dimension
+ c_hidden:
+ Overall hidden channel dimension (not per-head)
+ no_heads:
+ Number of attention heads
+ """
+ super().__init__()
+
+ self.c_in = c_in
+ self.c_hidden = c_hidden
+ self.no_heads = no_heads
+ self.starting = starting
+ self.inf = inf
+
+ self.layer_norm = LayerNorm(self.c_in)
+
+ self.linear = EsmFoldLinear(c_in, self.no_heads, bias=False, init="normal")
+
+ self.mha = EsmFoldAttention(self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads)
+
+ @torch.jit.ignore
+ def _chunk(
+ self,
+ x: torch.Tensor,
+ biases: List[torch.Tensor],
+ chunk_size: int,
+ use_memory_efficient_kernel: bool = False,
+ use_lma: bool = False,
+ inplace_safe: bool = False,
+ ) -> torch.Tensor:
+ "triangle! triangle!"
+ mha_inputs = {
+ "q_x": x,
+ "kv_x": x,
+ "biases": biases,
+ }
+
+ return chunk_layer(
+ partial(self.mha, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma),
+ mha_inputs,
+ chunk_size=chunk_size,
+ no_batch_dims=len(x.shape[:-2]),
+ _out=x if inplace_safe else None,
+ )
+
+ def forward(
+ self,
+ x: torch.Tensor,
+ mask: Optional[torch.Tensor] = None,
+ chunk_size: Optional[int] = None,
+ use_memory_efficient_kernel: bool = False,
+ use_lma: bool = False,
+ inplace_safe: bool = False,
+ ) -> torch.Tensor:
+ """
+ Args:
+ x:
+ [*, I, J, C_in] input tensor (e.g. the pair representation)
+ Returns:
+ [*, I, J, C_in] output tensor
+ """
+ if mask is None:
+ # [*, I, J]
+ mask = x.new_ones(
+ x.shape[:-1],
+ )
+
+ if not self.starting:
+ x = x.transpose(-2, -3)
+ mask = mask.transpose(-1, -2)
+
+ # [*, I, J, C_in]
+ x = self.layer_norm(x)
+
+ # [*, I, 1, 1, J]
+ mask_bias = (self.inf * (mask - 1))[..., :, None, None, :]
+
+ # [*, H, I, J]
+ triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1))
+
+ # [*, 1, H, I, J]
+ triangle_bias = triangle_bias.unsqueeze(-4)
+
+ biases = [mask_bias, triangle_bias]
+
+ if chunk_size is not None:
+ x = self._chunk(
+ x,
+ biases,
+ chunk_size,
+ use_memory_efficient_kernel=use_memory_efficient_kernel,
+ use_lma=use_lma,
+ inplace_safe=inplace_safe,
+ )
+ else:
+ x = self.mha(
+ q_x=x, kv_x=x, biases=biases, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma
+ )
+
+ if not self.starting:
+ x = x.transpose(-2, -3)
+
+ return x
+
+
+class EsmFoldTriangleMultiplicativeUpdate(nn.Module):
+ """
+ Implements Algorithms 11 and 12.
+ """
+
+ def __init__(self, config, _outgoing=True):
+ super().__init__()
+ c_hidden = config.pairwise_state_dim
+ self._outgoing = _outgoing
+
+ self.linear_a_p = EsmFoldLinear(c_hidden, c_hidden)
+ self.linear_a_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
+ self.linear_b_p = EsmFoldLinear(c_hidden, c_hidden)
+ self.linear_b_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
+ self.linear_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
+ self.linear_z = EsmFoldLinear(c_hidden, c_hidden, init="final")
+
+ self.layer_norm_in = LayerNorm(c_hidden)
+ self.layer_norm_out = LayerNorm(c_hidden)
+
+ self.sigmoid = nn.Sigmoid()
+
+ def _combine_projections(
+ self, a: torch.Tensor, b: torch.Tensor, _inplace_chunk_size: Optional[int] = None
+ ) -> torch.Tensor:
+ if self._outgoing:
+ a = permute_final_dims(a, (2, 0, 1))
+ b = permute_final_dims(b, (2, 1, 0))
+ else:
+ a = permute_final_dims(a, (2, 1, 0))
+ b = permute_final_dims(b, (2, 0, 1))
+
+ if _inplace_chunk_size is not None:
+ # To be replaced by torch vmap
+ for i in range(0, a.shape[-3], _inplace_chunk_size):
+ a_chunk = a[..., i : i + _inplace_chunk_size, :, :]
+ b_chunk = b[..., i : i + _inplace_chunk_size, :, :]
+ a[..., i : i + _inplace_chunk_size, :, :] = torch.matmul(
+ a_chunk,
+ b_chunk,
+ )
+
+ p = a
+ else:
+ p = torch.matmul(a, b)
+
+ return permute_final_dims(p, (1, 2, 0))
+
+ def _inference_forward(
+ self,
+ z: torch.Tensor,
+ mask: Optional[torch.Tensor] = None,
+ inplace_chunk_size: Optional[int] = None,
+ with_add: bool = True,
+ ):
+ """
+ Args:
+ z:
+ A [*, N, N, C_z] pair representation
+ mask:
+ A [*, N, N] pair mask
+ inplace_chunk_size:
+ Size of chunks used in the main computation. Increase to trade memory for speed.
+ with_add:
+ If True, z is overwritten with (z + update). Otherwise, it is overwritten with (update).
+ Returns:
+ A reference to the overwritten z
+
+ More memory-efficient, inference-only version of the forward function. Uses in-place operations, fusion of the
+ addition that happens after this module in the Evoformer, a smidge of recomputation, and a cache of overwritten
+ values to lower peak memory consumption of this module from 5x the size of the input tensor z to 2.5x its size.
+ Useful for inference on extremely long sequences.
+
+ It works as follows. We will make reference to variables used in the default forward implementation below.
+ Naively, triangle multiplication attention requires the manifestation of 5 tensors the size of z: 1) z, the
+ "square" input tensor, 2) a, the first projection of z, 3) b, the second projection of b, 4) g, a z-sized mask,
+ and 5) a z-sized tensor for intermediate computations. For large N, this is prohibitively expensive; for
+ N=4000, for example, z is more than 8GB alone. To avoid this problem, we compute b, g, and all intermediate
+ tensors in small chunks, noting that the chunks required to compute a chunk of the output depend only on the
+ tensor a and corresponding vertical and horizontal chunks of z. This suggests an algorithm that loops over
+ pairs of chunks of z: hereafter "columns" and "rows" of z, even though each "column" and "row" in fact contains
+ inplace_chunk_size contiguous true columns and rows of z. Writing output chunks to a new tensor would bring
+ total memory consumption down to 3x the size of z. However, more memory can be saved by writing output chunks
+ directly to z in-place. WLOG, we choose to write output chunks vertically, overwriting the ith "column" of z at
+ the end of the ith iteration of the main loop. Despite this overwriting, the ith column is always one column
+ ahead of previously overwritten columns and can be recovered directly from z. After the first iteration,
+ however, the ith row of z is always at least partially overwritten. For this reason, we introduce the z-cache,
+ a tensor one-half the size of z. The z-cache initially contains the left half (2nd and 3rd quadrants) of z. For
+ 0 < i < N/2, the missing left part of the ith row of z is recovered from this cache at the beginning of the ith
+ iteration. Once i exceeds n/2, the cache is "reoriented" to encompass the 3rd and 4th quadrants of z instead.
+ Though the 3rd quadrant of the original z is entirely overwritten at this point, it can be recovered from the
+ z-cache itself. Thereafter, the ith row of z can be recovered in its entirety from the reoriented z-cache.
+ After the final iteration, z has been completely overwritten and contains the triangular multiplicative update.
+ If with_add is True, it instead contains the sum of z and the triangular multiplicative update. In either case,
+ peak memory consumption is just 2.5x the size of z, disregarding memory used for chunks and other small
+ variables.
+ """
+ if mask is None:
+ mask = z.new_ones(z.shape[:-1])
+
+ mask = mask.unsqueeze(-1)
+
+ def compute_projection_helper(pair, mask, a=True):
+ if a:
+ linear_g = self.linear_a_g
+ linear_p = self.linear_a_p
+ else:
+ linear_g = self.linear_b_g
+ linear_p = self.linear_b_p
+
+ pair = self.layer_norm_in(pair)
+ p = linear_g(pair)
+ p.sigmoid_()
+ p *= linear_p(pair)
+ p *= mask
+ p = permute_final_dims(p, (2, 0, 1))
+ return p
+
+ def compute_projection(pair, mask, a=True, chunked=True):
+ need_transpose = self._outgoing ^ a
+ if not chunked:
+ p = compute_projection_helper(pair, mask, a)
+ if need_transpose:
+ p = p.transpose(-1, -2)
+ else:
+ # This computation is chunked so as not to exceed our 2.5x
+ # budget with a large intermediate tensor
+ linear_g = self.linear_a_g if a else self.linear_b_g
+ c = linear_g.bias.shape[-1]
+ out_shape = pair.shape[:-3] + (c,) + pair.shape[-3:-1]
+ p = pair.new_zeros(out_shape)
+ for i in range(0, pair.shape[-3], inplace_chunk_size):
+ pair_chunk = pair[..., i : i + inplace_chunk_size, :, :]
+ pair_chunk = compute_projection_helper(
+ pair[..., i : i + inplace_chunk_size, :, :],
+ mask[..., i : i + inplace_chunk_size, :, :],
+ a,
+ )
+ if need_transpose:
+ pair_chunk = pair_chunk.transpose(-1, -2)
+ p[..., i : i + inplace_chunk_size] = pair_chunk
+ else:
+ p[..., i : i + inplace_chunk_size, :] = pair_chunk
+
+ del pair_chunk
+
+ return p
+
+ # We start by fully manifesting a. In addition to the input, this
+ # brings total memory consumption to 2x z (disregarding size of chunks)
+ # [*, N, N, c]
+ a = compute_projection(z, mask, True, chunked=True)
+
+ if inplace_chunk_size is not None:
+ n = a.shape[-1]
+ half_n = n // 2 + n % 2
+ row_dim = -3
+ col_dim = -2
+ b_chunk_dim = row_dim if self._outgoing else col_dim
+
+ def empty_slicer(t):
+ return [slice(None) for _ in t.shape]
+
+ def slice_tensor(t, start, end, dim):
+ # Slices start:end from the dim dimension of t
+ s = empty_slicer(t)
+ s[dim] = slice(start, end)
+ return t[s]
+
+ def flip_z_cache_(z_cache, z):
+ # "Reorient" the z_cache (see below), filling it with quadrants
+ # 3---recovered from the z_cache---and 4---recovered from z---
+ # of the input tensor z.
+ quadrant_3 = slice_tensor(z_cache, half_n, None, row_dim)
+ z_cache = z_cache.transpose(row_dim, col_dim)
+
+ # If n is odd, we need to shrink the z_cache by one row
+ z_cache = z_cache[..., : (n // 2), :, :]
+
+ # Move the 3rd quadrant of z into the
+ first_half_slicer = empty_slicer(z_cache)
+ first_half_slicer[col_dim] = slice(0, half_n)
+ z_cache[first_half_slicer] = quadrant_3
+
+ # Get the fourth quadrant of z
+ quadrant_4 = slice_tensor(z, half_n, None, row_dim)
+ quadrant_4 = slice_tensor(quadrant_4, half_n, None, col_dim)
+
+ # Insert said quadrant into the rotated z-cache
+ quadrant_3_slicer = empty_slicer(z_cache)
+ quadrant_3_slicer[col_dim] = slice(half_n, None)
+
+ z_cache[quadrant_3_slicer] = quadrant_4
+
+ return z_cache
+
+ # Initialize the z cache to the left half of z.
+ z_cache_shape = list(z.shape)
+ z_cache_shape[col_dim] = half_n
+ z_cache = z.new_zeros(z_cache_shape)
+ z_cache_slicer = empty_slicer(z_cache)
+ z_cache_slicer[col_dim] = slice(0, half_n)
+ z_cache.copy_(z[z_cache_slicer])
+ z_cache_rotated = False
+
+ # We need to reorient the z-cache at the halfway point, and we
+ # don't want a single chunk to straddle that point. We contract one
+ # of the chunks in the middle to address that problem.
+ i_range = list(range(0, half_n, inplace_chunk_size))
+ initial_offsets = [i_2 - i_1 for i_1, i_2 in zip(i_range, i_range[1:] + [half_n])]
+ after_half = list(range(half_n, n, inplace_chunk_size))
+ after_half_offsets = [inplace_chunk_size for _ in after_half]
+ combined_range_with_offsets = zip(i_range + after_half, initial_offsets + after_half_offsets)
+ for i, offset in combined_range_with_offsets:
+ if not z_cache_rotated and i >= half_n:
+ z_cache = flip_z_cache_(z_cache, z)
+ z_cache_rotated = True
+
+ z_chunk_b = slice_tensor(z, i, i + offset, b_chunk_dim)
+ mask_chunk = slice_tensor(mask, i, i + offset, b_chunk_dim)
+
+ z_chunk_b = z_chunk_b.clone()
+ if b_chunk_dim == col_dim:
+ z_chunk_b = slice_tensor(z, i, i + offset, col_dim)
+ else: # b_chunk_dim == row_dim
+ # In this case, the b-dimension (b_chunk_dim) is partially
+ # overwritten at the end of each iteration. We need to
+ # restore the missing component from the z-cache.
+ if not z_cache_rotated:
+ z_chunk_slicer = empty_slicer(z_chunk_b)
+ z_chunk_slicer[col_dim] = slice(0, half_n)
+ z_chunk_b[z_chunk_slicer] = slice_tensor(z_cache, i, i + offset, row_dim)
+ else:
+ z_cache_offset = i - half_n
+ z_chunk_b = slice_tensor(z_cache, z_cache_offset, z_cache_offset + offset, row_dim)
+
+ b_chunk = compute_projection(z_chunk_b, mask_chunk, a=False, chunked=False)
+ del z_chunk_b
+
+ x_chunk = torch.matmul(a, b_chunk)
+ x_chunk = permute_final_dims(x_chunk, (1, 2, 0))
+ x_chunk = self.layer_norm_out(x_chunk)
+ x_chunk = self.linear_z(x_chunk)
+
+ # The g dimension (col_dim) is parallel to and ahead of the
+ # overwrites in z. We can extract the g chunk normally.
+ z_chunk_g = slice_tensor(z, i, i + offset, col_dim)
+ g_chunk = self.linear_g(self.layer_norm_in(z_chunk_g))
+ g_chunk.sigmoid_()
+ del z_chunk_g
+
+ x_chunk *= g_chunk
+
+ # Write the columns into z in-place
+ z_slicer = empty_slicer(z)
+ z_slicer[col_dim] = slice(i, i + offset)
+ if with_add:
+ z[z_slicer] += x_chunk
+ else:
+ z[z_slicer] = x_chunk
+ else:
+ b = compute_projection(z, mask, False, False)
+ x = torch.matmul(a, b)
+ x = self.layer_norm_out(x)
+ x = self.linear_z(x)
+ g = self.linear_g(z)
+ g.sigmoid_()
+ x *= g
+ if with_add:
+ z += x
+ else:
+ z = x
+
+ return z
+
+ def forward(
+ self,
+ z: torch.Tensor,
+ mask: Optional[torch.Tensor] = None,
+ inplace_safe: bool = False,
+ _add_with_inplace: bool = False,
+ _inplace_chunk_size: Optional[int] = 256,
+ ) -> torch.Tensor:
+ """
+ Args:
+ x:
+ [*, N_res, N_res, C_z] input tensor
+ mask:
+ [*, N_res, N_res] input mask
+ Returns:
+ [*, N_res, N_res, C_z] output tensor
+ """
+ if inplace_safe:
+ x = self._inference_forward(
+ z,
+ mask,
+ inplace_chunk_size=_inplace_chunk_size,
+ with_add=_add_with_inplace,
+ )
+ return x
+
+ if mask is None:
+ mask = z.new_ones(z.shape[:-1])
+
+ mask = mask.unsqueeze(-1)
+
+ z = self.layer_norm_in(z)
+ a = mask
+ a = a * self.sigmoid(self.linear_a_g(z))
+ a = a * self.linear_a_p(z)
+ b = mask
+ b = b * self.sigmoid(self.linear_b_g(z))
+ b = b * self.linear_b_p(z)
+
+ if is_fp16_enabled():
+ with torch.cuda.amp.autocast(enabled=False):
+ x = self._combine_projections(a.float(), b.float())
+ else:
+ x = self._combine_projections(a, b)
+
+ del a, b
+ x = self.layer_norm_out(x)
+ x = self.linear_z(x)
+ g = self.sigmoid(self.linear_g(z))
+ x = x * g
+
+ return x
+
+
+class EsmFoldPreTrainedModel(EsmPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ # Subclass `EsMPreTrainedModel` to deal with special init
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, EsmFoldLinear):
+ with torch.no_grad():
+ if module.init_fn is not None:
+ module.init_fn(module.weight, module.bias)
+ elif module.init == "default":
+ trunc_normal_init_(module.weight, scale=1.0)
+ elif module.init == "relu":
+ trunc_normal_init_(module.weight, scale=2.0)
+ elif module.init == "glorot":
+ nn.init.xavier_uniform_(module.weight, gain=1)
+ elif module.init == "gating":
+ module.weight.fill_(0.0)
+ if module.bias:
+ module.bias.fill_(1.0)
+ elif module.init == "normal":
+ torch.nn.init.kaiming_normal_(module.weight, nonlinearity="linear")
+ elif module.init == "final":
+ module.weight.fill_(0.0)
+ elif isinstance(module, EsmFoldInvariantPointAttention):
+ ipa_point_weights_init_(module.head_weights)
+ elif isinstance(module, EsmFoldTriangularSelfAttentionBlock):
+ torch.nn.init.zeros_(module.tri_mul_in.linear_z.weight)
+ torch.nn.init.zeros_(module.tri_mul_in.linear_z.bias)
+ torch.nn.init.zeros_(module.tri_mul_out.linear_z.weight)
+ torch.nn.init.zeros_(module.tri_mul_out.linear_z.bias)
+ torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.weight)
+ torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.bias)
+ torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.weight)
+ torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.bias)
+
+ torch.nn.init.zeros_(module.sequence_to_pair.o_proj.weight)
+ torch.nn.init.zeros_(module.sequence_to_pair.o_proj.bias)
+ torch.nn.init.zeros_(module.pair_to_sequence.linear.weight)
+ torch.nn.init.zeros_(module.seq_attention.o_proj.weight)
+ torch.nn.init.zeros_(module.seq_attention.o_proj.bias)
+ torch.nn.init.zeros_(module.mlp_seq.mlp[-2].weight)
+ torch.nn.init.zeros_(module.mlp_seq.mlp[-2].bias)
+ torch.nn.init.zeros_(module.mlp_pair.mlp[-2].weight)
+ torch.nn.init.zeros_(module.mlp_pair.mlp[-2].bias)
+ else:
+ super()._init_weights(module)
+
+
+class EsmFoldSelfAttention(nn.Module):
+ def __init__(self, embed_dim, num_heads, head_width, gated=False):
+ super().__init__()
+ assert embed_dim == num_heads * head_width
+
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.head_width = head_width
+
+ self.proj = nn.Linear(embed_dim, embed_dim * 3, bias=False)
+ self.o_proj = nn.Linear(embed_dim, embed_dim, bias=True)
+ self.gated = gated
+ if gated:
+ self.g_proj = nn.Linear(embed_dim, embed_dim)
+ torch.nn.init.zeros_(self.g_proj.weight)
+ torch.nn.init.ones_(self.g_proj.bias)
+
+ self.rescale_factor = self.head_width**-0.5
+
+ torch.nn.init.zeros_(self.o_proj.bias)
+
+ def forward(self, x, mask=None, bias=None, indices=None):
+ """
+ Basic self attention with optional mask and external pairwise bias. To handle sequences of different lengths,
+ use mask.
+
+ Inputs:
+ x: batch of input sequneces (.. x L x C) mask: batch of boolean masks where 1=valid, 0=padding position (..
+ x L_k) bias: batch of scalar pairwise attention biases (.. x Lq x Lk x num_heads)
+
+ Outputs:
+ sequence projection (B x L x embed_dim), attention maps (B x L x L x num_heads)
+ """
+
+ t = self.proj(x).view(*x.shape[:2], self.num_heads, -1)
+ t = t.permute(0, 2, 1, 3)
+ q, k, v = t.chunk(3, dim=-1)
+
+ q = self.rescale_factor * q
+ a = torch.einsum("...qc,...kc->...qk", q, k)
+
+ # Add external attention bias.
+ if bias is not None:
+ a = a + bias.permute(0, 3, 1, 2)
+
+ # Do not attend to padding tokens.
+ if mask is not None:
+ mask = mask[:, None, None]
+ a = a.masked_fill(mask == False, -np.inf) # noqa: E712
+
+ a = nn.functional.softmax(a, dim=-1)
+
+ y = torch.einsum("...hqk,...hkc->...qhc", a, v)
+ y = y.reshape(*y.shape[:2], -1)
+
+ if self.gated:
+ y = self.g_proj(x).sigmoid() * y
+ y = self.o_proj(y)
+
+ return y, a.permute(0, 3, 1, 2)
+
+
+class EsmFoldDropout(nn.Module):
+ """
+ Implementation of dropout with the ability to share the dropout mask along a particular dimension.
+ """
+
+ def __init__(self, r: float, batch_dim: Union[int, List[int]]):
+ super().__init__()
+
+ self.r = r
+ if isinstance(batch_dim, int):
+ batch_dim = [batch_dim]
+ self.batch_dim = batch_dim
+ self.dropout = nn.Dropout(self.r)
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ shape = list(x.shape)
+ if self.batch_dim is not None:
+ for bd in self.batch_dim:
+ shape[bd] = 1
+ return x * self.dropout(x.new_ones(shape))
+
+
+class EsmFoldSequenceToPair(nn.Module):
+ def __init__(self, sequence_state_dim, inner_dim, pairwise_state_dim):
+ super().__init__()
+
+ self.layernorm = nn.LayerNorm(sequence_state_dim)
+ self.proj = nn.Linear(sequence_state_dim, inner_dim * 2, bias=True)
+ self.o_proj = nn.Linear(2 * inner_dim, pairwise_state_dim, bias=True)
+
+ torch.nn.init.zeros_(self.proj.bias)
+ torch.nn.init.zeros_(self.o_proj.bias)
+
+ def forward(self, sequence_state):
+ """
+ Inputs:
+ sequence_state: B x L x sequence_state_dim
+
+ Output:
+ pairwise_state: B x L x L x pairwise_state_dim
+
+ Intermediate state:
+ B x L x L x 2*inner_dim
+ """
+
+ assert len(sequence_state.shape) == 3
+
+ s = self.layernorm(sequence_state)
+ s = self.proj(s)
+ q, k = s.chunk(2, dim=-1)
+
+ prod = q[:, None, :, :] * k[:, :, None, :]
+ diff = q[:, None, :, :] - k[:, :, None, :]
+
+ x = torch.cat([prod, diff], dim=-1)
+ x = self.o_proj(x)
+
+ return x
+
+
+class EsmFoldPairToSequence(nn.Module):
+ def __init__(self, pairwise_state_dim, num_heads):
+ super().__init__()
+
+ self.layernorm = nn.LayerNorm(pairwise_state_dim)
+ self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False)
+
+ def forward(self, pairwise_state):
+ """
+ Inputs:
+ pairwise_state: B x L x L x pairwise_state_dim
+
+ Output:
+ pairwise_bias: B x L x L x num_heads
+ """
+ assert len(pairwise_state.shape) == 4
+ z = self.layernorm(pairwise_state)
+ pairwise_bias = self.linear(z)
+ return pairwise_bias
+
+
+class EsmFoldResidueMLP(nn.Module):
+ def __init__(self, embed_dim, inner_dim, dropout=0):
+ super().__init__()
+
+ self.mlp = nn.Sequential(
+ nn.LayerNorm(embed_dim),
+ nn.Linear(embed_dim, inner_dim),
+ nn.ReLU(),
+ nn.Linear(inner_dim, embed_dim),
+ nn.Dropout(dropout),
+ )
+
+ def forward(self, x):
+ return x + self.mlp(x)
+
+
+class EsmFoldTriangularSelfAttentionBlock(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ sequence_state_dim = config.sequence_state_dim
+ pairwise_state_dim = config.pairwise_state_dim
+ sequence_num_heads = sequence_state_dim // config.sequence_head_width
+ pairwise_num_heads = pairwise_state_dim // config.pairwise_head_width
+
+ self.layernorm_1 = nn.LayerNorm(sequence_state_dim)
+
+ self.sequence_to_pair = EsmFoldSequenceToPair(sequence_state_dim, pairwise_state_dim // 2, pairwise_state_dim)
+ self.pair_to_sequence = EsmFoldPairToSequence(pairwise_state_dim, sequence_num_heads)
+
+ self.seq_attention = EsmFoldSelfAttention(
+ sequence_state_dim, sequence_num_heads, config.sequence_head_width, gated=True
+ )
+ self.tri_mul_out = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=True)
+ self.tri_mul_in = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=False)
+
+ self.tri_att_start = EsmFoldTriangleAttention(
+ pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=True
+ )
+ self.tri_att_end = EsmFoldTriangleAttention(
+ pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=False
+ )
+
+ self.mlp_seq = EsmFoldResidueMLP(sequence_state_dim, 4 * sequence_state_dim, dropout=config.dropout)
+ self.mlp_pair = EsmFoldResidueMLP(pairwise_state_dim, 4 * pairwise_state_dim, dropout=config.dropout)
+
+ self.drop = nn.Dropout(config.dropout)
+ self.row_drop = EsmFoldDropout(config.dropout * 2, 2)
+ self.col_drop = EsmFoldDropout(config.dropout * 2, 1)
+
+ def forward(self, sequence_state, pairwise_state, mask=None, chunk_size=None, **__kwargs):
+ """
+ Inputs:
+ sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim mask: B x L boolean
+ tensor of valid positions
+
+ Output:
+ sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim
+ """
+ if len(sequence_state.shape) != 3:
+ raise ValueError(f"`sequence_state` should be a 3d-tensor, got {len(sequence_state.shape)} dims.")
+ if len(pairwise_state.shape) != 4:
+ raise ValueError(f"`pairwise_state` should be a 4d-tensor, got {len(pairwise_state.shape)} dims.")
+ if mask is not None and len(mask.shape) != 2:
+ raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.")
+
+ batch_dim, seq_dim, sequence_state_dim = sequence_state.shape
+ pairwise_state_dim = pairwise_state.shape[3]
+
+ if sequence_state_dim != self.config.sequence_state_dim:
+ raise ValueError(
+ "`sequence_state` last dimension should be equal to `self.sequence_state_dim`. Got "
+ f"{sequence_state_dim} != {self.config.sequence_state_dim}."
+ )
+ if pairwise_state_dim != self.config.pairwise_state_dim:
+ raise ValueError(
+ "`pairwise_state` last dimension should be equal to `self.pairwise_state_dim`. Got "
+ f"{pairwise_state_dim} != {self.config.pairwise_state_dim}."
+ )
+ if batch_dim != pairwise_state.shape[0]:
+ raise ValueError(
+ f"`sequence_state` and `pairwise_state` have inconsistent batch size: {batch_dim} != "
+ f"{pairwise_state.shape[0]}."
+ )
+ if seq_dim != pairwise_state.shape[1] or seq_dim != pairwise_state.shape[2]:
+ raise ValueError(
+ f"`sequence_state` and `pairwise_state` have inconsistent sequence length: {seq_dim} != "
+ f"{pairwise_state.shape[1]} or {pairwise_state.shape[2]}."
+ )
+
+ # Update sequence state
+ bias = self.pair_to_sequence(pairwise_state)
+
+ # Self attention with bias + mlp.
+ y = self.layernorm_1(sequence_state)
+ y, _ = self.seq_attention(y, mask=mask, bias=bias)
+ sequence_state = sequence_state + self.drop(y)
+ sequence_state = self.mlp_seq(sequence_state)
+
+ # Update pairwise state
+ pairwise_state = pairwise_state + self.sequence_to_pair(sequence_state)
+
+ # Axial attention with triangular bias.
+ tri_mask = mask.unsqueeze(2) * mask.unsqueeze(1) if mask is not None else None
+ pairwise_state = pairwise_state + self.row_drop(self.tri_mul_out(pairwise_state, mask=tri_mask))
+ pairwise_state = pairwise_state + self.col_drop(self.tri_mul_in(pairwise_state, mask=tri_mask))
+ pairwise_state = pairwise_state + self.row_drop(
+ self.tri_att_start(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
+ )
+ pairwise_state = pairwise_state + self.col_drop(
+ self.tri_att_end(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
+ )
+
+ # MLP over pairs.
+ pairwise_state = self.mlp_pair(pairwise_state)
+
+ return sequence_state, pairwise_state
+
+
+class EsmCategoricalMixture:
+ def __init__(self, param, bins=50, start=0, end=1):
+ # All tensors are of shape ..., bins.
+ self.logits = param
+ bins = torch.linspace(start, end, bins + 1, device=self.logits.device, dtype=self.logits.dtype)
+ self.v_bins = (bins[:-1] + bins[1:]) / 2
+
+ def log_prob(self, true):
+ # Shapes are:
+ # self.probs: ... x bins
+ # true : ...
+ true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1)
+ nll = self.logits.log_softmax(-1)
+ return torch.take_along_dim(nll, true_index.unsqueeze(-1), dim=-1).squeeze(-1)
+
+ def mean(self):
+ return (self.logits.softmax(-1) @ self.v_bins.unsqueeze(1)).squeeze(-1)
+
+
+def categorical_lddt(logits, bins=50):
+ # Logits are ..., 37, bins.
+ return EsmCategoricalMixture(logits, bins=bins).mean()
+
+
+def get_axial_mask(mask):
+ """
+ Helper to convert B x L mask of valid positions to axial mask used in row column attentions.
+
+ Input:
+ mask: B x L tensor of booleans
+
+ Output:
+ mask: B x L x L tensor of booleans
+ """
+
+ if mask is None:
+ return None
+
+ if len(mask.shape) != 2:
+ raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.")
+ batch_dim, seq_dim = mask.shape
+ m = mask.unsqueeze(1).expand(batch_dim, seq_dim, seq_dim)
+ m = m.reshape(batch_dim * seq_dim, seq_dim)
+ return m
+
+
+class EsmFoldRelativePosition(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.bins = config.position_bins
+
+ # Note an additional offset is used so that the 0th position
+ # is reserved for masked pairs.
+ self.embedding = torch.nn.Embedding(2 * self.bins + 2, config.pairwise_state_dim)
+
+ def forward(self, residue_index, mask=None):
+ """
+ Input:
+ residue_index: B x L tensor of indices (dytpe=torch.long) mask: B x L tensor of booleans
+
+ Output:
+ pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings
+ """
+ if residue_index.dtype != torch.long:
+ raise ValueError(f"`residue_index` has dtype {residue_index.dtype}, it should be `torch.long`.")
+ if mask is not None and residue_index.shape != mask.shape:
+ raise ValueError(
+ f"`residue_index` and `mask` have inconsistent shapes: {residue_index.shape} != {mask.shape}."
+ )
+
+ diff = residue_index[:, None, :] - residue_index[:, :, None]
+ diff = diff.clamp(-self.bins, self.bins)
+ diff = diff + self.bins + 1 # Add 1 to adjust for padding index.
+
+ if mask is not None:
+ mask = mask[:, None, :] * mask[:, :, None]
+ diff[mask == False] = 0 # noqa: E712
+
+ output = self.embedding(diff)
+ return output
+
+
+class EsmFoldAngleResnetBlock(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ self.linear_1 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="relu")
+ self.linear_2 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="final")
+
+ self.relu = nn.ReLU()
+
+ def forward(self, a: torch.Tensor) -> torch.Tensor:
+ s_initial = a
+
+ a = self.relu(a)
+ a = self.linear_1(a)
+ a = self.relu(a)
+ a = self.linear_2(a)
+
+ return a + s_initial
+
+
+class EsmFoldAngleResnet(nn.Module):
+ """
+ Implements Algorithm 20, lines 11-14
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ self.linear_in = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
+ self.linear_initial = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
+
+ self.layers = nn.ModuleList()
+ for _ in range(config.num_resnet_blocks):
+ layer = EsmFoldAngleResnetBlock(config)
+ self.layers.append(layer)
+
+ self.linear_out = EsmFoldLinear(config.resnet_dim, config.num_angles * 2)
+
+ self.relu = nn.ReLU()
+
+ def forward(self, s: torch.Tensor, s_initial: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ """
+ Args:
+ s:
+ [*, C_hidden] single embedding
+ s_initial:
+ [*, C_hidden] single embedding as of the start of the StructureModule
+ Returns:
+ [*, no_angles, 2] predicted angles
+ """
+ # NOTE: The ReLU's applied to the inputs are absent from the supplement
+ # pseudocode but present in the source. For maximal compatibility with
+ # the pretrained weights, I'm going with the source.
+
+ # [*, C_hidden]
+ s_initial = self.relu(s_initial)
+ s_initial = self.linear_initial(s_initial)
+ s = self.relu(s)
+ s = self.linear_in(s)
+ s = s + s_initial
+
+ for l in self.layers:
+ s = l(s)
+
+ s = self.relu(s)
+
+ # [*, no_angles * 2]
+ s = self.linear_out(s)
+
+ # [*, no_angles, 2]
+ s = s.view(s.shape[:-1] + (-1, 2))
+
+ unnormalized_s = s
+ norm_denom = torch.sqrt(
+ torch.clamp(
+ torch.sum(s**2, dim=-1, keepdim=True),
+ min=self.config.epsilon,
+ )
+ )
+ s = s / norm_denom
+
+ return unnormalized_s, s
+
+
+class EsmFoldInvariantPointAttention(nn.Module):
+ """
+ Implements Algorithm 22.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ c_s = config.sequence_dim
+ c_z = config.pairwise_dim
+ self.hidden_dim = config.ipa_dim
+ self.num_heads = config.num_heads_ipa
+ self.num_qk_points = config.num_qk_points
+ self.num_v_points = config.num_v_points
+
+ # These linear layers differ from their specifications in the
+ # supplement. There, they lack bias and use Glorot initialization.
+ # Here as in the official source, they have bias and use the default
+ # Lecun initialization.
+ hc = config.ipa_dim * config.num_heads_ipa
+ self.linear_q = EsmFoldLinear(c_s, hc)
+ self.linear_kv = EsmFoldLinear(c_s, 2 * hc)
+
+ hpq = config.num_heads_ipa * config.num_qk_points * 3
+ self.linear_q_points = EsmFoldLinear(c_s, hpq)
+
+ hpkv = config.num_heads_ipa * (config.num_qk_points + config.num_v_points) * 3
+ self.linear_kv_points = EsmFoldLinear(c_s, hpkv)
+
+ self.linear_b = EsmFoldLinear(c_z, config.num_heads_ipa)
+
+ self.head_weights = nn.Parameter(torch.zeros((config.num_heads_ipa)))
+
+ concat_out_dim = config.num_heads_ipa * (c_z + config.ipa_dim + config.num_v_points * 4)
+ self.linear_out = EsmFoldLinear(concat_out_dim, c_s, init="final")
+
+ self.softmax = nn.Softmax(dim=-1)
+ self.softplus = nn.Softplus()
+
+ def forward(
+ self,
+ s: torch.Tensor,
+ z: Optional[torch.Tensor],
+ r: Rigid,
+ mask: torch.Tensor,
+ _offload_inference: bool = False,
+ _z_reference_list: Optional[Sequence[torch.Tensor]] = None,
+ ) -> torch.Tensor:
+ """
+ Args:
+ s:
+ [*, N_res, C_s] single representation
+ z:
+ [*, N_res, N_res, C_z] pair representation
+ r:
+ [*, N_res] transformation object
+ mask:
+ [*, N_res] mask
+ Returns:
+ [*, N_res, C_s] single representation update
+ """
+ z = [z]
+
+ #######################################
+ # Generate scalar and point activations
+ #######################################
+ # [*, N_res, H * C_hidden]
+ q = self.linear_q(s)
+ kv = self.linear_kv(s)
+
+ # [*, N_res, H, C_hidden]
+ q = q.view(q.shape[:-1] + (self.num_heads, -1))
+
+ # [*, N_res, H, 2 * C_hidden]
+ kv = kv.view(kv.shape[:-1] + (self.num_heads, -1))
+
+ # [*, N_res, H, C_hidden]
+ k, v = torch.split(kv, self.hidden_dim, dim=-1)
+
+ # [*, N_res, H * P_q * 3]
+ q_pts = self.linear_q_points(s)
+
+ # This is kind of clunky, but it's how the original does it
+ # [*, N_res, H * P_q, 3]
+ q_pts = torch.split(q_pts, q_pts.shape[-1] // 3, dim=-1)
+ q_pts = torch.stack(q_pts, dim=-1)
+ q_pts = r[..., None].apply(q_pts)
+
+ # [*, N_res, H, P_q, 3]
+ q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3))
+
+ # [*, N_res, H * (P_q + P_v) * 3]
+ kv_pts = self.linear_kv_points(s)
+
+ # [*, N_res, H * (P_q + P_v), 3]
+ kv_pts = torch.split(kv_pts, kv_pts.shape[-1] // 3, dim=-1)
+ kv_pts = torch.stack(kv_pts, dim=-1)
+ kv_pts = r[..., None].apply(kv_pts)
+
+ # [*, N_res, H, (P_q + P_v), 3]
+ kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3))
+
+ # [*, N_res, H, P_q/P_v, 3]
+ k_pts, v_pts = torch.split(kv_pts, [self.num_qk_points, self.num_v_points], dim=-2)
+
+ ##########################
+ # Compute attention scores
+ ##########################
+ # [*, N_res, N_res, H]
+ b = self.linear_b(z[0])
+
+ if _offload_inference:
+ assert sys.getrefcount(z[0]) == 2
+ z[0] = z[0].cpu()
+
+ # [*, H, N_res, N_res]
+ if is_fp16_enabled():
+ with torch.cuda.amp.autocast(enabled=False):
+ a = torch.matmul(
+ permute_final_dims(q.float(), (1, 0, 2)), # [*, H, N_res, C_hidden]
+ permute_final_dims(k.float(), (1, 2, 0)), # [*, H, C_hidden, N_res]
+ )
+ else:
+ a = torch.matmul(
+ permute_final_dims(q, (1, 0, 2)), # [*, H, N_res, C_hidden]
+ permute_final_dims(k, (1, 2, 0)), # [*, H, C_hidden, N_res]
+ )
+
+ a *= math.sqrt(1.0 / (3 * self.hidden_dim))
+ a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1))
+
+ # [*, N_res, N_res, H, P_q, 3]
+ pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5)
+ pt_att = pt_att**2
+
+ # [*, N_res, N_res, H, P_q]
+ pt_att = sum(torch.unbind(pt_att, dim=-1))
+ head_weights = self.softplus(self.head_weights).view(*((1,) * len(pt_att.shape[:-2]) + (-1, 1)))
+ head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2)))
+ pt_att = pt_att * head_weights
+
+ # [*, N_res, N_res, H]
+ pt_att = torch.sum(pt_att, dim=-1) * (-0.5)
+ # [*, N_res, N_res]
+ square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2)
+ square_mask = self.config.inf * (square_mask - 1)
+
+ # [*, H, N_res, N_res]
+ pt_att = permute_final_dims(pt_att, (2, 0, 1))
+
+ a = a + pt_att
+ a = a + square_mask.unsqueeze(-3)
+ a = self.softmax(a)
+
+ ################
+ # Compute output
+ ################
+ # [*, N_res, H, C_hidden]
+ o = torch.matmul(a, v.transpose(-2, -3).to(dtype=a.dtype)).transpose(-2, -3)
+
+ # [*, N_res, H * C_hidden]
+ o = flatten_final_dims(o, 2)
+
+ # [*, H, 3, N_res, P_v]
+ o_pt = torch.sum(
+ (a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :]),
+ dim=-2,
+ )
+
+ # [*, N_res, H, P_v, 3]
+ o_pt = permute_final_dims(o_pt, (2, 0, 3, 1))
+ o_pt = r[..., None, None].invert_apply(o_pt)
+
+ # [*, N_res, H * P_v]
+ o_pt_norm = flatten_final_dims(torch.sqrt(torch.sum(o_pt**2, dim=-1) + self.config.epsilon), 2)
+
+ # [*, N_res, H * P_v, 3]
+ o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3)
+
+ if _offload_inference:
+ z[0] = z[0].to(o_pt.device)
+
+ # [*, N_res, H, C_z]
+ o_pair = torch.matmul(a.transpose(-2, -3), z[0].to(dtype=a.dtype))
+
+ # [*, N_res, H * C_z]
+ o_pair = flatten_final_dims(o_pair, 2)
+
+ # [*, N_res, C_s]
+ s = self.linear_out(
+ torch.cat((o, *torch.unbind(o_pt, dim=-1), o_pt_norm, o_pair), dim=-1).to(dtype=z[0].dtype)
+ )
+
+ return s
+
+
+class EsmFoldBackboneUpdate(nn.Module):
+ """
+ Implements part of Algorithm 23.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ self.linear = EsmFoldLinear(config.sequence_dim, 6, init="final")
+
+ def forward(self, s: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
+ """
+ Args:
+ [*, N_res, C_s] single representation
+ Returns:
+ [*, N_res, 6] update vector
+ """
+ # [*, 6]
+ update = self.linear(s)
+
+ return update
+
+
+class EsmFoldStructureModuleTransitionLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+
+ self.linear_1 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
+ self.linear_2 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
+ self.linear_3 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="final")
+
+ self.relu = nn.ReLU()
+
+ def forward(self, s):
+ s_initial = s
+ s = self.linear_1(s)
+ s = self.relu(s)
+ s = self.linear_2(s)
+ s = self.relu(s)
+ s = self.linear_3(s)
+
+ s = s + s_initial
+
+ return s
+
+
+class EsmFoldStructureModuleTransition(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ self.layers = nn.ModuleList()
+ for _ in range(config.num_transition_layers):
+ l = EsmFoldStructureModuleTransitionLayer(config)
+ self.layers.append(l)
+
+ self.dropout = nn.Dropout(config.dropout_rate)
+ self.layer_norm = LayerNorm(config.sequence_dim)
+
+ def forward(self, s):
+ for l in self.layers:
+ s = l(s)
+
+ s = self.dropout(s)
+ s = self.layer_norm(s)
+
+ return s
+
+
+class EsmFoldStructureModule(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ # Buffers to be lazily initialized later
+ # self.default_frames
+ # self.group_idx
+ # self.atom_mask
+ # self.lit_positions
+
+ self.layer_norm_s = LayerNorm(config.sequence_dim)
+ self.layer_norm_z = LayerNorm(config.pairwise_dim)
+
+ self.linear_in = EsmFoldLinear(config.sequence_dim, config.sequence_dim)
+
+ self.ipa = EsmFoldInvariantPointAttention(config)
+
+ self.ipa_dropout = nn.Dropout(config.dropout_rate)
+ self.layer_norm_ipa = LayerNorm(config.sequence_dim)
+
+ self.transition = EsmFoldStructureModuleTransition(config)
+ self.bb_update = EsmFoldBackboneUpdate(config)
+ self.angle_resnet = EsmFoldAngleResnet(config)
+
+ def forward(
+ self,
+ evoformer_output_dict,
+ aatype,
+ mask=None,
+ _offload_inference=False,
+ ):
+ """
+ Args:
+ evoformer_output_dict:
+ Dictionary containing:
+ "single":
+ [*, N_res, C_s] single representation
+ "pair":
+ [*, N_res, N_res, C_z] pair representation
+ aatype:
+ [*, N_res] amino acid indices
+ mask:
+ Optional [*, N_res] sequence mask
+ Returns:
+ A dictionary of outputs
+ """
+ s = evoformer_output_dict["single"]
+
+ if mask is None:
+ # [*, N]
+ mask = s.new_ones(s.shape[:-1])
+
+ # [*, N, C_s]
+ s = self.layer_norm_s(s)
+
+ # [*, N, N, C_z]
+ z = self.layer_norm_z(evoformer_output_dict["pair"])
+
+ z_reference_list = None
+ if _offload_inference:
+ assert sys.getrefcount(evoformer_output_dict["pair"]) == 2
+ evoformer_output_dict["pair"] = evoformer_output_dict["pair"].cpu()
+ z_reference_list = [z]
+ z = None
+
+ # [*, N, C_s]
+ s_initial = s
+ s = self.linear_in(s)
+
+ # [*, N]
+ rigids = Rigid.identity(
+ s.shape[:-1],
+ s.dtype,
+ s.device,
+ self.training,
+ fmt="quat",
+ )
+ outputs = []
+ for i in range(self.config.num_blocks):
+ # [*, N, C_s]
+ s = s + self.ipa(
+ s,
+ z,
+ rigids,
+ mask,
+ _offload_inference=_offload_inference,
+ _z_reference_list=z_reference_list,
+ )
+ s = self.ipa_dropout(s)
+ s = self.layer_norm_ipa(s)
+ s = self.transition(s)
+
+ # [*, N]
+ rigids = rigids.compose_q_update_vec(self.bb_update(s))
+
+ # To hew as closely as possible to AlphaFold, we convert our
+ # quaternion-based transformations to rotation-matrix ones
+ # here
+ backb_to_global = Rigid(
+ Rotation(rot_mats=rigids.get_rots().get_rot_mats(), quats=None),
+ rigids.get_trans(),
+ )
+
+ backb_to_global = backb_to_global.scale_translation(self.config.trans_scale_factor)
+
+ # [*, N, 7, 2]
+ unnormalized_angles, angles = self.angle_resnet(s, s_initial)
+
+ all_frames_to_global = self.torsion_angles_to_frames(backb_to_global, angles, aatype)
+
+ pred_xyz = self.frames_and_literature_positions_to_atom14_pos(all_frames_to_global, aatype)
+
+ scaled_rigids = rigids.scale_translation(self.config.trans_scale_factor)
+
+ preds = {
+ "frames": scaled_rigids.to_tensor_7(),
+ "sidechain_frames": all_frames_to_global.to_tensor_4x4(),
+ "unnormalized_angles": unnormalized_angles,
+ "angles": angles,
+ "positions": pred_xyz,
+ "states": s,
+ }
+
+ outputs.append(preds)
+
+ rigids = rigids.stop_rot_gradient()
+
+ del z, z_reference_list
+
+ if _offload_inference:
+ evoformer_output_dict["pair"] = evoformer_output_dict["pair"].to(s.device)
+
+ outputs = dict_multimap(torch.stack, outputs)
+ outputs["single"] = s
+
+ return outputs
+
+ def _init_residue_constants(self, float_dtype, device):
+ if not hasattr(self, "default_frames"):
+ self.register_buffer(
+ "default_frames",
+ torch.tensor(
+ residue_constants.restype_rigid_group_default_frame,
+ dtype=float_dtype,
+ device=device,
+ requires_grad=False,
+ ),
+ persistent=False,
+ )
+ if not hasattr(self, "group_idx"):
+ self.register_buffer(
+ "group_idx",
+ torch.tensor(
+ residue_constants.restype_atom14_to_rigid_group,
+ device=device,
+ requires_grad=False,
+ ),
+ persistent=False,
+ )
+ if not hasattr(self, "atom_mask"):
+ self.register_buffer(
+ "atom_mask",
+ torch.tensor(
+ residue_constants.restype_atom14_mask,
+ dtype=float_dtype,
+ device=device,
+ requires_grad=False,
+ ),
+ persistent=False,
+ )
+ if not hasattr(self, "lit_positions"):
+ self.register_buffer(
+ "lit_positions",
+ torch.tensor(
+ residue_constants.restype_atom14_rigid_group_positions,
+ dtype=float_dtype,
+ device=device,
+ requires_grad=False,
+ ),
+ persistent=False,
+ )
+
+ def torsion_angles_to_frames(self, r, alpha, f):
+ # Lazily initialize the residue constants on the correct device
+ self._init_residue_constants(alpha.dtype, alpha.device)
+ # Separated purely to make testing less annoying
+ return torsion_angles_to_frames(r, alpha, f, self.default_frames)
+
+ def frames_and_literature_positions_to_atom14_pos(self, r, f): # [*, N, 8] # [*, N]
+ # Lazily initialize the residue constants on the correct device
+ self._init_residue_constants(r.get_rots().dtype, r.get_rots().device)
+ return frames_and_literature_positions_to_atom14_pos(
+ r,
+ f,
+ self.default_frames,
+ self.group_idx,
+ self.atom_mask,
+ self.lit_positions,
+ )
+
+
+class EsmFoldingTrunk(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+
+ c_s = config.sequence_state_dim
+ c_z = config.pairwise_state_dim
+
+ self.pairwise_positional_embedding = EsmFoldRelativePosition(config)
+
+ self.blocks = nn.ModuleList([EsmFoldTriangularSelfAttentionBlock(config) for _ in range(config.num_blocks)])
+
+ self.recycle_bins = 15
+ self.recycle_s_norm = nn.LayerNorm(c_s)
+ self.recycle_z_norm = nn.LayerNorm(c_z)
+ self.recycle_disto = nn.Embedding(self.recycle_bins, c_z)
+ self.recycle_disto.weight[0].detach().zero_()
+
+ self.structure_module = EsmFoldStructureModule(config.structure_module)
+ self.trunk2sm_s = nn.Linear(c_s, config.structure_module.sequence_dim)
+ self.trunk2sm_z = nn.Linear(c_z, config.structure_module.pairwise_dim)
+
+ self.chunk_size = config.chunk_size
+
+ def set_chunk_size(self, chunk_size):
+ # This parameter means the axial attention will be computed
+ # in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2).
+ # It's equivalent to running a for loop over chunks of the dimension we're iterative over,
+ # where the chunk_size is the size of the chunks, so 128 would mean to parse 128-length chunks.
+ self.chunk_size = chunk_size
+
+ def forward(self, seq_feats, pair_feats, true_aa, residx, mask, no_recycles):
+ """
+ Inputs:
+ seq_feats: B x L x C tensor of sequence features pair_feats: B x L x L x C tensor of pair features residx: B
+ x L long tensor giving the position in the sequence mask: B x L boolean tensor indicating valid residues
+
+ Output:
+ predicted_structure: B x L x (num_atoms_per_residue * 3) tensor wrapped in a Coordinates object
+ """
+
+ device = seq_feats.device
+ s_s_0 = seq_feats
+ s_z_0 = pair_feats
+
+ if no_recycles is None:
+ no_recycles = self.config.max_recycles
+ else:
+ if no_recycles < 0:
+ raise ValueError("Number of recycles must not be negative.")
+ no_recycles += 1 # First 'recycle' is just the standard forward pass through the model.
+
+ def trunk_iter(s, z, residx, mask):
+ z = z + self.pairwise_positional_embedding(residx, mask=mask)
+
+ for block in self.blocks:
+ s, z = block(s, z, mask=mask, residue_index=residx, chunk_size=self.chunk_size)
+ return s, z
+
+ s_s = s_s_0
+ s_z = s_z_0
+ recycle_s = torch.zeros_like(s_s)
+ recycle_z = torch.zeros_like(s_z)
+ recycle_bins = torch.zeros(*s_z.shape[:-1], device=device, dtype=torch.int64)
+
+ for recycle_idx in range(no_recycles):
+ with ContextManagers([] if recycle_idx == no_recycles - 1 else [torch.no_grad()]):
+ # === Recycling ===
+ recycle_s = self.recycle_s_norm(recycle_s.detach()).to(device)
+ recycle_z = self.recycle_z_norm(recycle_z.detach()).to(device)
+ recycle_z += self.recycle_disto(recycle_bins.detach()).to(device)
+
+ s_s, s_z = trunk_iter(s_s_0 + recycle_s, s_z_0 + recycle_z, residx, mask)
+
+ # === Structure module ===
+ structure = self.structure_module(
+ {"single": self.trunk2sm_s(s_s), "pair": self.trunk2sm_z(s_z)},
+ true_aa,
+ mask.float(),
+ )
+
+ recycle_s = s_s
+ recycle_z = s_z
+ # Distogram needs the N, CA, C coordinates, and bin constants same as alphafold.
+ recycle_bins = EsmFoldingTrunk.distogram(
+ structure["positions"][-1][:, :, :3],
+ 3.375,
+ 21.375,
+ self.recycle_bins,
+ )
+
+ structure["s_s"] = s_s
+ structure["s_z"] = s_z
+
+ return structure
+
+ @staticmethod
+ def distogram(coords, min_bin, max_bin, num_bins):
+ # Coords are [... L x 3 x 3], where it's [N, CA, C] x 3 coordinates.
+ boundaries = torch.linspace(
+ min_bin,
+ max_bin,
+ num_bins - 1,
+ device=coords.device,
+ )
+ boundaries = boundaries**2
+ N, CA, C = [x.squeeze(-2) for x in coords.chunk(3, dim=-2)]
+ # Infer CB coordinates.
+ b = CA - N
+ c = C - CA
+ a = b.cross(c, dim=-1)
+ CB = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + CA
+ dists = (CB[..., None, :, :] - CB[..., :, None, :]).pow(2).sum(dim=-1, keepdims=True)
+ bins = torch.sum(dists > boundaries, dim=-1) # [..., L, L]
+ return bins
+
+
+# TODO Add information to the docstring about any methods that convert to PDB format, or otherwise prepare
+# the outputs for downstream use.
+
+
+@add_start_docstrings(
+ """
+ ESMForProteinFolding is the HuggingFace port of the original ESMFold model. It consists of an ESM-2 "stem" followed
+ by a protein folding "head", although unlike most other output heads, this "head" is similar in size and runtime to
+ the rest of the model combined! It outputs a dictionary containing predicted structural information about the input
+ protein(s).
+ """,
+ ESM_START_DOCSTRING,
+)
+class EsmForProteinFolding(EsmPreTrainedModel):
+ _no_split_modules = ["EsmFoldStructureModule", "EsmFoldTriangularSelfAttentionBlock"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.config = config
+
+ self.distogram_bins = 64
+
+ self.esm = EsmModel(config, add_pooling_layer=False)
+
+ self.esm.requires_grad_(False)
+ if self.config.esmfold_config.fp16_esm:
+ self.esm.half()
+
+ self.esm_feats = self.config.hidden_size
+ self.esm_attns = self.config.num_hidden_layers * self.config.num_attention_heads
+ self.esm_layers = self.config.num_hidden_layers
+ self.register_buffer("af2_to_esm", self._af2_to_esm_from_vocab_list(config.vocab_list))
+ self.esm_s_combine = nn.Parameter(torch.zeros(self.esm_layers + 1))
+
+ trunk_config = self.config.esmfold_config.trunk
+ c_s = trunk_config.sequence_state_dim
+ c_z = trunk_config.pairwise_state_dim
+ self.esm_s_mlp = nn.Sequential(
+ LayerNorm(self.esm_feats),
+ nn.Linear(self.esm_feats, c_s),
+ nn.ReLU(),
+ nn.Linear(c_s, c_s),
+ )
+
+ # 0 is padding, N is unknown residues, N + 1 is mask.
+ self.n_tokens_embed = residue_constants.restype_num + 3
+ self.pad_idx = 0
+ self.unk_idx = self.n_tokens_embed - 2
+ self.mask_idx = self.n_tokens_embed - 1
+ self.esm_dict_cls_idx = self.config.vocab_list.index("")
+ self.esm_dict_mask_idx = self.config.vocab_list.index("")
+ self.esm_dict_eos_idx = self.config.vocab_list.index("")
+ self.esm_dict_padding_idx = self.config.vocab_list.index("")
+ if self.config.esmfold_config.embed_aa:
+ self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0)
+
+ self.trunk = EsmFoldingTrunk(trunk_config)
+
+ self.distogram_head = nn.Linear(c_z, self.distogram_bins)
+ self.ptm_head = nn.Linear(c_z, self.distogram_bins)
+ self.lm_head = nn.Linear(c_s, self.n_tokens_embed)
+ self.lddt_bins = 50
+ structure_module_config = trunk_config.structure_module
+ self.lddt_head = nn.Sequential(
+ nn.LayerNorm(structure_module_config.sequence_dim),
+ nn.Linear(structure_module_config.sequence_dim, self.config.esmfold_config.lddt_head_hid_dim),
+ nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, self.config.esmfold_config.lddt_head_hid_dim),
+ nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, 37 * self.lddt_bins),
+ )
+
+ @staticmethod
+ def _af2_to_esm_from_vocab_list(vocab_list: List[str]) -> torch.Tensor:
+ # Remember that t is shifted from residue_constants by 1 (0 is padding).
+ esm_reorder = [vocab_list.index("")] + [vocab_list.index(v) for v in residue_constants.restypes_with_x]
+ return torch.tensor(esm_reorder)
+
+ @add_start_docstrings_to_model_forward(ESMFOLD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=EsmForProteinFoldingOutput, config_class=EsmConfig)
+ def forward(
+ self,
+ input_ids: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ masking_pattern: Optional[torch.Tensor] = None,
+ num_recycles: Optional[int] = None,
+ ) -> EsmForProteinFoldingOutput:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, EsmForProteinFolding
+
+ >>> model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
+ >>> inputs = tokenizer(["MLKNVQVQLV"], return_tensors="pt", add_special_tokens=False) # A tiny random peptide
+ >>> outputs = model(**inputs)
+ >>> folded_positions = outputs.positions
+ ```
+
+ """
+ cfg = self.config.esmfold_config
+
+ aa = input_ids # B x L
+ B = aa.shape[0]
+ L = aa.shape[1]
+ device = input_ids.device
+ if attention_mask is None:
+ attention_mask = torch.ones_like(aa, device=device)
+ if position_ids is None:
+ position_ids = torch.arange(L, device=device).expand_as(input_ids)
+
+ # === ESM ===
+ esmaa = self.af2_idx_to_esm_idx(aa, attention_mask)
+
+ if masking_pattern is not None:
+ masked_aa, esmaa, mlm_targets = self.bert_mask(aa, esmaa, attention_mask, masking_pattern)
+ else:
+ masked_aa = aa
+ mlm_targets = None
+
+ # We get sequence and pair representations from whatever version of ESM /
+ # configuration we are using. The sequence representation esm_s is always
+ # present. The pair embedding esm_z may be present depending on the
+ # configuration of the model. If esm_z is not used by the model then it
+ # is returned as None here.
+ esm_s = self.compute_language_model_representations(esmaa)
+
+ # Convert esm_s and esm_z, if present, to the precision used by the trunk and
+ # the structure module. These tensors may be a lower precision if, for example,
+ # we're running the language model in fp16 precision.
+ esm_s = esm_s.to(self.esm_s_combine.dtype)
+
+ if cfg.esm_ablate_sequence:
+ esm_s = esm_s * 0
+
+ esm_s = esm_s.detach()
+
+ # === preprocessing ===
+ esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2)
+ s_s_0 = self.esm_s_mlp(esm_s)
+
+ s_z_0 = s_s_0.new_zeros(B, L, L, cfg.trunk.pairwise_state_dim)
+
+ if self.config.esmfold_config.embed_aa:
+ s_s_0 += self.embedding(masked_aa)
+
+ structure: dict = self.trunk(s_s_0, s_z_0, aa, position_ids, attention_mask, no_recycles=num_recycles)
+ # Documenting what we expect:
+ structure = {
+ k: v
+ for k, v in structure.items()
+ if k
+ in [
+ "s_z",
+ "s_s",
+ "frames",
+ "sidechain_frames",
+ "unnormalized_angles",
+ "angles",
+ "positions",
+ "states",
+ ]
+ }
+
+ # Add BERT mask for the loss to use, if available.
+ if mlm_targets:
+ structure["mlm_targets"] = mlm_targets
+
+ disto_logits = self.distogram_head(structure["s_z"])
+ disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2
+ structure["distogram_logits"] = disto_logits
+
+ lm_logits = self.lm_head(structure["s_s"])
+ structure["lm_logits"] = lm_logits
+
+ structure["aatype"] = aa
+ make_atom14_masks(structure)
+ # Of course, this doesn't respect the true mask because it doesn't know about it...
+ # We're not going to properly mask change of index tensors:
+ # "residx_atom14_to_atom37",
+ # "residx_atom37_to_atom14",
+ for k in [
+ "atom14_atom_exists",
+ "atom37_atom_exists",
+ ]:
+ structure[k] *= attention_mask.unsqueeze(-1)
+ structure["residue_index"] = position_ids
+
+ lddt_head = self.lddt_head(structure["states"]).reshape(structure["states"].shape[0], B, L, -1, self.lddt_bins)
+ structure["lddt_head"] = lddt_head
+ plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins)
+ structure["plddt"] = plddt
+
+ ptm_logits = self.ptm_head(structure["s_z"])
+ structure["ptm_logits"] = ptm_logits
+ structure["ptm"] = compute_tm(ptm_logits, max_bin=31, no_bins=self.distogram_bins)
+ structure.update(compute_predicted_aligned_error(ptm_logits, max_bin=31, no_bins=self.distogram_bins))
+
+ return EsmForProteinFoldingOutput(**structure)
+
+ def af2_idx_to_esm_idx(self, aa, mask):
+ # avoid indexing on different devices
+ if self.af2_to_esm.device != aa.device:
+ self.af2_to_esm = self.af2_to_esm.to(aa.device)
+ aa = (aa + 1).masked_fill(mask != 1, 0)
+ return self.af2_to_esm[aa]
+
+ def compute_language_model_representations(self, esmaa: torch.Tensor) -> torch.Tensor:
+ device = next(self.parameters()).device
+ B, L = esmaa.shape # B = batch size, L = sequence length.
+
+ if self.config.esmfold_config.bypass_lm:
+ esm_s = torch.zeros(B, L, self.esm_s_combine.size[0], -1, self.esm_feats, device=device)
+ return esm_s
+
+ bosi, eosi = self.esm_dict_cls_idx, self.esm_dict_eos_idx
+ bos = esmaa.new_full((B, 1), bosi)
+ eos = esmaa.new_full((B, 1), self.esm_dict_padding_idx)
+ esmaa = torch.cat([bos, esmaa, eos], dim=1)
+ # Use the first padding index as eos during inference.
+ esmaa[range(B), (esmaa != 1).sum(1)] = eosi
+
+ # _, esm_z, esm_s = self.esm(esmaa, return_pairs=self.config.esmfold_config.use_esm_attn_map)
+ # Because we do not support use_esm_attn_map in the HF port as it is not used in any public models,
+ # esm_z is always None
+ esm_hidden_states = self.esm(esmaa, attention_mask=esmaa != 1, output_hidden_states=True)["hidden_states"]
+ esm_s = torch.stack(esm_hidden_states, dim=2)
+
+ esm_s = esm_s[:, 1:-1] # B, L, nLayers, C
+
+ return esm_s
+
+ def bert_mask(self, aa, esmaa, mask, pattern):
+ new_aa = aa.clone()
+ target = aa.clone()
+ new_esmaa = esmaa.clone()
+ new_aa[pattern == 1] = self.mask_idx
+ target[pattern != 1] = 0
+ new_esmaa[pattern == 1] = self.esm_dict_mask_idx
+ return new_aa, new_esmaa, target
+
+ @torch.no_grad()
+ def infer(
+ self,
+ seqs: Union[str, List[str]],
+ position_ids=None,
+ ):
+ if isinstance(seqs, str):
+ lst = [seqs]
+ else:
+ lst = seqs
+ # Returns the raw outputs of the model given an input sequence.
+ device = next(self.parameters()).device
+ aatype = collate_dense_tensors(
+ [
+ torch.from_numpy(
+ residue_constants.sequence_to_onehot(
+ sequence=seq,
+ mapping=residue_constants.restype_order_with_x,
+ map_unknown_to_x=True,
+ )
+ )
+ .to(device)
+ .argmax(dim=1)
+ for seq in lst
+ ]
+ ) # B=1 x L
+ mask = collate_dense_tensors([aatype.new_ones(len(seq)) for seq in lst])
+ position_ids = (
+ torch.arange(aatype.shape[1], device=device).expand(len(lst), -1)
+ if position_ids is None
+ else position_ids.to(device)
+ )
+ if position_ids.ndim == 1:
+ position_ids = position_ids.unsqueeze(0)
+ return self.forward(
+ aatype,
+ mask,
+ position_ids=position_ids,
+ )
+
+ @staticmethod
+ def output_to_pdb(output: Dict) -> List[str]:
+ """Returns the pbd (file) string from the model given the model output."""
+ output = {k: v.to("cpu").numpy() for k, v in output.items()}
+ pdbs = []
+ final_atom_positions = atom14_to_atom37(output["positions"][-1], output)
+ final_atom_mask = output["atom37_atom_exists"]
+ for i in range(output["aatype"].shape[0]):
+ aa = output["aatype"][i]
+ pred_pos = final_atom_positions[i]
+ mask = final_atom_mask[i]
+ resid = output["residue_index"][i] + 1
+ pred = OFProtein(
+ aatype=aa,
+ atom_positions=pred_pos,
+ atom_mask=mask,
+ residue_index=resid,
+ b_factors=output["plddt"][i],
+ )
+ pdbs.append(to_pdb(pred))
+ return pdbs
+
+ def infer_pdb(self, seqs, *args, **kwargs) -> str:
+ """Returns the pdb (file) string from the model given an input sequence."""
+ assert isinstance(seqs, str)
+ output = self.infer(seqs, *args, **kwargs)
+ return self.output_to_pdb(output)[0]
+
+ def infer_pdbs(self, seqs: List[str], *args, **kwargs) -> List[str]:
+ """Returns the pdb (file) string from the model given an input sequence."""
+ output = self.infer(seqs, *args, **kwargs)
+ return self.output_to_pdb(output)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_tf_esm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_tf_esm.py
new file mode 100644
index 0000000000000000000000000000000000000000..2688c207b0adaca4ee79c37c8529694f608490b6
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/modeling_tf_esm.py
@@ -0,0 +1,1567 @@
+# coding=utf-8
+# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch ESM model."""
+
+
+from __future__ import annotations
+
+import os
+from typing import Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
+from ...modeling_tf_outputs import (
+ TFBaseModelOutputWithPastAndCrossAttentions,
+ TFBaseModelOutputWithPoolingAndCrossAttentions,
+ TFMaskedLMOutput,
+ TFSequenceClassifierOutput,
+ TFTokenClassifierOutput,
+)
+from ...modeling_tf_utils import (
+ TFMaskedLanguageModelingLoss,
+ TFModelInputType,
+ TFPreTrainedModel,
+ TFSequenceClassificationLoss,
+ TFTokenClassificationLoss,
+ get_initializer,
+ keras,
+ shape_list,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, stable_softmax
+from ...utils import logging
+from .configuration_esm import EsmConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
+_CONFIG_FOR_DOC = "EsmConfig"
+
+
+def rotate_half(x):
+ x1, x2 = tf.split(x, 2, axis=-1)
+ return tf.concat((-x2, x1), axis=-1)
+
+
+def apply_rotary_pos_emb(x, cos, sin):
+ cos = cos[:, :, : tf.shape(x)[-2], :]
+ sin = sin[:, :, : tf.shape(x)[-2], :]
+
+ return (x * cos) + (rotate_half(x) * sin)
+
+
+def symmetrize(x):
+ "Make layer symmetric in final two dimensions, used for contact prediction."
+ return x + tf.linalg.matrix_transpose(x) # Transposes last two dimensions only
+
+
+def average_product_correct(x):
+ "Perform average product correct, used for contact prediction."
+ a1 = tf.reduce_sum(x, -1, keepdims=True)
+ a2 = tf.reduce_sum(x, -2, keepdims=True)
+ a12 = tf.reduce_sum(x, (-1, -2), keepdims=True)
+
+ avg = a1 * a2
+ avg = avg / a12
+ normalized = x - avg
+ return normalized
+
+
+class TFRotaryEmbedding(keras.layers.Layer):
+ """
+ Rotary position embeddings based on those in
+ [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
+ matrices which depend on their relative positions.
+ """
+
+ def __init__(self, dim: int, name=None):
+ super().__init__(name=name)
+ # Matt: The PyTorch version of this layer does a lot of work to cache values, but we just rely on TF compilation
+ # and/or XLA to sort out constants like that. It actually may not seem like this layer needs to be stateful at
+ # all when we benefit from TF compilation, but it does. The reason is that self.inv_freq is a buffer in the
+ # original implementation, but all the shared ESM checkpoints were trained with fp16 params. This means that
+ # the inv_freq tensor was stored as a float16, and we need to replicate those lower-precision values or our
+ # models give different outputs from the original.
+ self.dim = dim
+
+ def build(self, input_shape):
+ super().build(input_shape)
+ self.inv_freq = self.add_weight(
+ "inv_freq", shape=(self.dim // 2,), dtype=tf.float32, initializer=get_initializer(1.0), trainable=False
+ )
+ self.inv_freq.assign(
+ 1.0 / (10000 ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim))
+ )
+
+ def _compute_cos_sin(self, x, seq_dimension=2):
+ seq_len = tf.shape(x)[seq_dimension]
+
+ t = tf.range(seq_len, dtype=self.inv_freq.dtype)
+ freqs = tf.einsum("i, j -> ij", t, self.inv_freq) # Outer multiplication
+ emb = tf.concat((freqs, freqs), axis=-1)[None, None, :, :]
+
+ return tf.cos(emb), tf.sin(emb)
+
+ def call(self, q: tf.Tensor, k: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
+ cos_emb, sin_emb = self._compute_cos_sin(k, seq_dimension=-2)
+
+ return (
+ apply_rotary_pos_emb(q, cos_emb, sin_emb),
+ apply_rotary_pos_emb(k, cos_emb, sin_emb),
+ )
+
+
+class TFEsmContactPredictionHead(keras.layers.Layer):
+ """Performs symmetrization, apc, and computes a logistic regression on the output features"""
+
+ def __init__(
+ self,
+ in_features: int,
+ bias=True,
+ eos_idx: int = 2,
+ name=None,
+ ):
+ super().__init__(name=name)
+ self.eos_idx = eos_idx
+ self.in_features = in_features
+ self.regression = keras.layers.Dense(1, use_bias=bias, activation="sigmoid", name="regression")
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "regression", None) is not None:
+ with tf.name_scope(self.regression.name):
+ self.regression.build((None, self.in_features))
+
+ def call(self, tokens, attentions):
+ # remove eos token attentions
+ eos_mask = tf.cast(tokens != self.eos_idx, attentions.dtype)
+ eos_mask = tf.expand_dims(eos_mask, 1) * tf.expand_dims(eos_mask, 2)
+ attentions = attentions * eos_mask[:, None, None, :, :]
+ attentions = attentions[..., :-1, :-1]
+ # remove cls token attentions
+ attentions = attentions[..., 1:, 1:]
+ batch_size, layers, heads, seqlen, _ = shape_list(attentions)
+ attentions = tf.reshape(attentions, (batch_size, layers * heads, seqlen, seqlen))
+
+ # features: batch x channels x tokens x tokens (symmetric)
+ attentions = average_product_correct(symmetrize(attentions))
+ attentions = tf.transpose(attentions, perm=(0, 2, 3, 1))
+ return tf.squeeze(self.regression(attentions), 3)
+
+
+class TFEsmEmbeddings(keras.layers.Layer):
+ """
+ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
+ """
+
+ def __init__(self, config, name=None):
+ super().__init__(name=name)
+ self.word_embeddings = keras.layers.Embedding(
+ config.vocab_size,
+ config.hidden_size,
+ embeddings_initializer=get_initializer(config.initializer_range),
+ name="word_embeddings",
+ )
+ self.position_embeddings = keras.layers.Embedding(
+ config.max_position_embeddings,
+ config.hidden_size,
+ embeddings_initializer=get_initializer(config.initializer_range),
+ name="position_embeddings",
+ )
+
+ if config.emb_layer_norm_before:
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
+ else:
+ self.layer_norm = None
+ # Matt: I think this line was copied incorrectly from BERT, disabling for now
+ # self.dropout = Dropout(config.hidden_dropout_prob)
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+
+ self.position_ids = tf.range(config.max_position_embeddings)[None, :]
+
+ self.padding_idx = config.pad_token_id
+ self.token_dropout = config.token_dropout
+ self.mask_token_id = config.mask_token_id
+ self.config = config
+
+ def call(
+ self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
+ ):
+ if position_ids is None:
+ if input_ids is not None:
+ # Create the position ids from the input token ids. Any padded tokens remain padded.
+ position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
+ else:
+ position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
+
+ if inputs_embeds is None:
+ check_embeddings_within_bounds(input_ids, self.config.vocab_size)
+ inputs_embeds = self.word_embeddings(input_ids)
+
+ # Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
+ # embedding_scale factor here.
+ embeddings = inputs_embeds
+
+ # Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
+ # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
+ # masked tokens are treated as if they were selected for input dropout and zeroed out.
+ # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
+ # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
+ # This is analogous to the way that dropout layers scale down outputs during evaluation when not
+ # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
+ if self.token_dropout:
+ embeddings = tf.where((input_ids == self.mask_token_id)[:, :, None], 0.0, embeddings)
+ mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
+ src_lengths = tf.cast(tf.reduce_sum(attention_mask, axis=-1), tf.float32)
+ masked_tokens = input_ids == self.mask_token_id
+ mask_ratio_observed = tf.math.count_nonzero(masked_tokens, dtype=tf.float32, axis=-1) / src_lengths
+ embeddings = embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
+
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+
+ if self.layer_norm is not None:
+ embeddings = self.layer_norm(embeddings)
+ if attention_mask is not None:
+ embeddings = embeddings * tf.cast(tf.expand_dims(attention_mask, -1), embeddings.dtype)
+ # Matt: I think this line was copied incorrectly from BERT, disabling it for now.
+ # embeddings = self.dropout(embeddings)
+ return embeddings
+
+ def create_position_ids_from_inputs_embeds(self, inputs_embeds):
+ """
+ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
+
+ Args:
+ inputs_embeds: tf.Tensor
+
+ Returns: tf.Tensor
+ """
+ input_shape = shape_list(inputs_embeds)[:-1]
+ sequence_length = input_shape[1]
+
+ position_ids = tf.range(
+ start=self.padding_idx + 1, limit=sequence_length + self.padding_idx + 1, dtype=tf.int64
+ )
+ return tf.broadcast_to(tf.expand_dims(position_ids, 0), input_shape)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "word_embeddings", None) is not None:
+ with tf.name_scope(self.word_embeddings.name):
+ self.word_embeddings.build(None)
+ if getattr(self, "position_embeddings", None) is not None:
+ with tf.name_scope(self.position_embeddings.name):
+ self.position_embeddings.build(None)
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.hidden_size])
+
+
+class TFEsmSelfAttention(keras.layers.Layer):
+ def __init__(self, config, position_embedding_type=None, name=None):
+ super().__init__(name=name)
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = keras.layers.Dense(
+ self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
+ )
+ self.key = keras.layers.Dense(
+ self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
+ )
+ self.value = keras.layers.Dense(
+ self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
+ )
+
+ self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ self.rotary_embeddings = None
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = keras.layers.Embedding(
+ 2 * config.max_position_embeddings - 1,
+ self.attention_head_size,
+ embeddings_initializer=get_initializer(config.initializer_range),
+ )
+ elif self.position_embedding_type == "rotary":
+ self.rotary_embeddings = TFRotaryEmbedding(dim=self.attention_head_size, name="rotary_embeddings")
+
+ self.is_decoder = config.is_decoder
+ self.config = config
+
+ def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor:
+ new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size]
+ x = tf.reshape(x, new_x_shape)
+ return tf.transpose(x, perm=(0, 2, 1, 3))
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: tf.Tensor | None = None,
+ head_mask: tf.Tensor | None = None,
+ encoder_hidden_states: tf.Tensor | None = None,
+ encoder_attention_mask: tf.Tensor | None = None,
+ past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
+ output_attentions: Optional[bool] = False,
+ training: bool = False,
+ ) -> Tuple[tf.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
+ value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
+ # ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
+ # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
+ # ESM code and fix rotary embeddings.
+ query_layer = query_layer * self.attention_head_size**-0.5
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ if self.position_embedding_type == "rotary":
+ query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ seq_length = shape_list(hidden_states)[1]
+ position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), -1)
+ position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), 0)
+ distance = position_ids_l - position_ids_r
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = stable_softmax(attention_scores, axis=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs, training=training)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = attention_probs @ value_layer
+
+ context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3))
+ new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size]
+ context_layer = tf.reshape(context_layer, new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "query", None) is not None:
+ with tf.name_scope(self.query.name):
+ self.query.build([None, None, self.config.hidden_size])
+ if getattr(self, "key", None) is not None:
+ with tf.name_scope(self.key.name):
+ self.key.build([None, None, self.config.hidden_size])
+ if getattr(self, "value", None) is not None:
+ with tf.name_scope(self.value.name):
+ self.value.build([None, None, self.config.hidden_size])
+ if getattr(self, "rotary_embeddings", None) is not None:
+ with tf.name_scope(self.rotary_embeddings.name):
+ self.rotary_embeddings.build(None)
+
+
+class TFEsmSelfOutput(keras.layers.Layer):
+ def __init__(self, config, name=None):
+ super().__init__(name=name)
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states, input_tensor, training=False):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states += input_tensor
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFEsmAttention(keras.layers.Layer):
+ def __init__(self, config, name=None):
+ super().__init__(name=name)
+ self.self = TFEsmSelfAttention(config, name="self")
+ self.output_layer = TFEsmSelfOutput(config, name="output")
+ self.pruned_heads = set()
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.config = config
+
+ def prune_heads(self, heads):
+ raise NotImplementedError
+
+ def call(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ training=False,
+ ):
+ hidden_states_ln = self.LayerNorm(hidden_states)
+ self_outputs = self.self(
+ hidden_states_ln,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ training,
+ )
+ attention_output = self.output_layer(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self", None) is not None:
+ with tf.name_scope(self.self.name):
+ self.self.build(None)
+ if getattr(self, "output_layer", None) is not None:
+ with tf.name_scope(self.output_layer.name):
+ self.output_layer.build(None)
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFEsmIntermediate(keras.layers.Layer):
+ def __init__(self, config: EsmConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.intermediate_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="dense",
+ )
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ hidden_states = self.dense(inputs=hidden_states)
+ hidden_states = tf.nn.gelu(hidden_states)
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFEsmOutput(keras.layers.Layer):
+ def __init__(self, config, name=None):
+ super().__init__(name=name)
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.config = config
+
+ def call(self, hidden_states, input_tensor, training=False):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states += input_tensor
+ return hidden_states
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.intermediate_size])
+
+
+class TFEsmLayer(keras.layers.Layer):
+ def __init__(self, config, name=None):
+ super().__init__(name=name)
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = TFEsmAttention(config, name="attention")
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = TFEsmAttention(config)
+ self.intermediate = TFEsmIntermediate(config, name="intermediate")
+ self.output_layer = TFEsmOutput(config, name="output")
+ self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
+ self.config = config
+
+ def call(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_value=None,
+ output_attentions=False,
+ training=False,
+ ):
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ training=training,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise AttributeError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
+ " with cross-attention layers by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ training=training,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layernorm_output = self.LayerNorm(attention_output)
+ intermediate_output = self.intermediate(hidden_states=layernorm_output)
+ layer_output = self.output_layer(
+ hidden_states=intermediate_output, input_tensor=attention_output, training=training
+ )
+ outputs = (layer_output,) + outputs # add attentions if we output them
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "attention", None) is not None:
+ with tf.name_scope(self.attention.name):
+ self.attention.build(None)
+ if getattr(self, "intermediate", None) is not None:
+ with tf.name_scope(self.intermediate.name):
+ self.intermediate.build(None)
+ if getattr(self, "output_layer", None) is not None:
+ with tf.name_scope(self.output_layer.name):
+ self.output_layer.build(None)
+ if getattr(self, "LayerNorm", None) is not None:
+ with tf.name_scope(self.LayerNorm.name):
+ self.LayerNorm.build([None, None, self.config.hidden_size])
+
+
+class TFEsmEncoder(keras.layers.Layer):
+ def __init__(self, config, name=None):
+ super().__init__(name=name)
+ self.config = config
+ self.layer = [TFEsmLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
+ self.emb_layer_norm_after = keras.layers.LayerNormalization(
+ epsilon=config.layer_norm_eps, name="emb_layer_norm_after"
+ )
+
+ def call(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ training=False,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ training,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if self.emb_layer_norm_after:
+ hidden_states = self.emb_layer_norm_after(hidden_states)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return TFBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "emb_layer_norm_after", None) is not None:
+ with tf.name_scope(self.emb_layer_norm_after.name):
+ self.emb_layer_norm_after.build([None, None, self.config.hidden_size])
+ if getattr(self, "layer", None) is not None:
+ for layer in self.layer:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Esm
+class TFEsmPooler(keras.layers.Layer):
+ def __init__(self, config: EsmConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.dense = keras.layers.Dense(
+ units=config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.config = config
+
+ def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(inputs=first_token_tensor)
+
+ return pooled_output
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+
+
+class TFEsmPreTrainedModel(TFPreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = EsmConfig
+ base_model_prefix = "esm"
+
+
+ESM_START_DOCSTRING = r"""
+
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a Keras [Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a
+ regular Keras model and refer to the TF/Keras documentation for all matters related to general usage and behavior.
+
+ Parameters:
+ config ([`EsmConfig`]): Model configuration class with all the parameters of the
+ model. Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+ESM_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`tf.Tensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
+ ESM_START_DOCSTRING,
+)
+class TFEsmMainLayer(keras.layers.Layer):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+ """
+
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
+
+ def __init__(self, config, add_pooling_layer=True, name=None, **kwargs):
+ super().__init__(name=name, **kwargs)
+
+ self.config = config
+ self.is_decoder = config.is_decoder
+
+ self.embeddings = TFEsmEmbeddings(config, name="embeddings")
+ self.encoder = TFEsmEncoder(config, name="encoder")
+ self.pooler = TFEsmPooler(config, name="pooler") if add_pooling_layer else None
+
+ self.contact_head = TFEsmContactPredictionHead(
+ in_features=self.config.num_hidden_layers * self.config.num_attention_heads, bias=True, name="contact_head"
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embeddings", None) is not None:
+ with tf.name_scope(self.embeddings.name):
+ self.embeddings.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "pooler", None) is not None:
+ with tf.name_scope(self.pooler.name):
+ self.pooler.build(None)
+ if getattr(self, "contact_head", None) is not None:
+ with tf.name_scope(self.contact_head.name):
+ self.contact_head.build(None)
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value: tf.Variable):
+ self.embeddings.word_embeddings.weight = value
+ self.embeddings.vocab_size = shape_list(value)[0]
+
+ def _prune_heads(self, heads_to_prune):
+ raise NotImplementedError
+
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
+ if not self.config.is_decoder:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+
+ if past_key_values is None:
+ past_key_values_length = 0
+ past_key_values = [None] * len(self.encoder.layer)
+ else:
+ past_key_values_length = shape_list(past_key_values[0][0])[-2]
+
+ if attention_mask is None:
+ attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ training=training,
+ )
+
+ # We create a 3D attention mask from a 2D tensor mask.
+ # Sizes are [batch_size, 1, 1, to_seq_length]
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
+ # this attention mask is more simple than the triangular masking of causal attention
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
+ attention_mask_shape = shape_list(attention_mask)
+
+ mask_seq_length = seq_length + past_key_values_length
+ # Copied from `modeling_tf_t5.py`
+ # Provided a padding mask of dimensions [batch_size, mask_seq_length]
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
+ if self.is_decoder:
+ seq_ids = tf.range(mask_seq_length)
+ causal_mask = tf.less_equal(
+ tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
+ seq_ids[None, :, None],
+ )
+ causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
+ extended_attention_mask = causal_mask * attention_mask[:, None, :]
+ attention_mask_shape = shape_list(extended_attention_mask)
+ extended_attention_mask = tf.reshape(
+ extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
+ )
+ if past_key_values[0] is not None:
+ # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
+ extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
+ else:
+ extended_attention_mask = tf.reshape(
+ attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
+ )
+
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
+ # masked positions, this operation will create a tensor which is 0.0 for
+ # positions we want to attend and -10000.0 for masked positions.
+ # Since we are adding it to the raw scores before the softmax, this is
+ # effectively the same as removing these entirely.
+ extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
+ one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
+ ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
+ extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
+
+ # Copied from `modeling_tf_t5.py` with -1e9 -> -10000
+ if self.is_decoder and encoder_attention_mask is not None:
+ # If a 2D ou 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
+ num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
+ if num_dims_encoder_attention_mask == 3:
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
+ if num_dims_encoder_attention_mask == 2:
+ encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
+
+ # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
+ # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
+ # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
+ # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
+
+ encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ if head_mask is not None:
+ raise NotImplementedError
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ encoder_outputs = self.encoder(
+ hidden_states=embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (
+ sequence_output,
+ pooled_output,
+ ) + encoder_outputs[1:]
+
+ return TFBaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+ def predict_contacts(self, tokens, attention_mask):
+ attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
+ attns = tf.stack(attns, axis=1) # Matches the original model layout
+ # In the original model, attentions for padding tokens are completely zeroed out.
+ # This makes no difference most of the time because the other tokens won't attend to them,
+ # but it does for the contact prediction task, which takes attentions as input,
+ # so we have to mimic that here.
+ attention_mask = tf.cast(attention_mask, attns.dtype)
+ attns *= attention_mask[:, None, None, None]
+ attns *= attention_mask[:, None, None, :, None]
+ return self.contact_head(tokens, attns)
+
+
+@add_start_docstrings(
+ "The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
+ ESM_START_DOCSTRING,
+)
+class TFEsmModel(TFEsmPreTrainedModel):
+ def __init__(self, config: EsmConfig, add_pooling_layer=True, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.esm = TFEsmMainLayer(config, add_pooling_layer=add_pooling_layer, name="esm")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
+ r"""
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation
+ """
+ outputs = self.esm(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ return outputs
+
+ def predict_contacts(self, tokens, attention_mask):
+ return self.esm.predict_contacts(tokens, attention_mask)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "esm", None) is not None:
+ with tf.name_scope(self.esm.name):
+ self.esm.build(None)
+
+
+@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
+class TFEsmForMaskedLM(TFEsmPreTrainedModel, TFMaskedLanguageModelingLoss):
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if config.is_decoder:
+ logger.warning(
+ "If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
+ "bi-directional self-attention."
+ )
+
+ self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
+ self.lm_head = TFEsmLMHead(config, name="lm_head")
+ if config.tie_word_embeddings:
+ # Ensure word embeddings are built so that we actually have something to tie
+ with tf.name_scope(os.path.join(self._name_scope(), "esm", "embeddings", "word_embeddings")):
+ self.esm.embeddings.word_embeddings.build((None, None))
+ self.lm_head.decoder = self.esm.embeddings.word_embeddings.weights[0]
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ def get_lm_head(self):
+ return self.lm_head
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFMaskedLMOutput,
+ config_class=_CONFIG_FOR_DOC,
+ mask="",
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ kwargs (`Dict[str, any]`, optional, defaults to *{}*):
+ Used to hide legacy arguments that have been deprecated.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.esm(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ masked_lm_loss = None
+ if labels is not None:
+ masked_lm_loss = self.hf_compute_loss(labels=labels, logits=prediction_scores)
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[2:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return TFMaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def predict_contacts(self, tokens, attention_mask):
+ return self.esm.predict_contacts(tokens, attention_mask)
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "esm", None) is not None:
+ with tf.name_scope(self.esm.name):
+ self.esm.build(None)
+ if getattr(self, "lm_head", None) is not None:
+ with tf.name_scope(self.lm_head.name):
+ self.lm_head.build(None)
+
+
+class TFEsmLMHead(keras.layers.Layer):
+ """ESM Head for masked language modeling."""
+
+ def __init__(self, config, name=None):
+ super().__init__(name=name)
+ self.dense = keras.layers.Dense(
+ config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
+ )
+
+ self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
+ if config.tie_word_embeddings:
+ self.decoder = None
+ else:
+ self.decoder = keras.layers.Dense(
+ config.vocab_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ name="decoder",
+ use_bias=False,
+ )
+ self.config = config
+
+ def build(self, input_shape=None):
+ # Separate bias to match the PT model and allow weight cross-loading to work
+ # Put it in the build so it gets the right name when adding it as a weight
+ if self.built:
+ return
+ self.built = True
+ self.bias = self.add_weight("bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True)
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "layer_norm", None) is not None:
+ with tf.name_scope(self.layer_norm.name):
+ self.layer_norm.build([None, None, self.config.hidden_size])
+ if getattr(self, "decoder", None) is not None and not self.config.tie_word_embeddings:
+ with tf.name_scope(self.decoder.name):
+ self.decoder.build([None, None, self.config.hidden_size])
+
+ def get_bias(self):
+ return {"bias": self.bias}
+
+ def call(self, features):
+ x = self.dense(features)
+ x = tf.nn.gelu(x)
+ x = self.layer_norm(x)
+
+ # project back to size of vocabulary with bias
+ if self.config.tie_word_embeddings:
+ x = tf.matmul(x, self.decoder, transpose_b=True) + self.bias
+ else:
+ x = self.decoder(x) + self.bias
+ return x
+
+
+@add_start_docstrings(
+ """
+ ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
+ output) e.g. for GLUE tasks.
+ """,
+ ESM_START_DOCSTRING,
+)
+class TFEsmForSequenceClassification(TFEsmPreTrainedModel, TFSequenceClassificationLoss):
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.config = config
+
+ self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
+ self.classifier = TFEsmClassificationHead(config, name="classifier")
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFSequenceClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.esm(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ sequence_output = outputs[0]
+ logits = self.classifier(sequence_output)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "esm", None) is not None:
+ with tf.name_scope(self.esm.name):
+ self.esm.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build(None)
+
+
+@add_start_docstrings(
+ """
+ ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
+ Named-Entity-Recognition (NER) tasks.
+ """,
+ ESM_START_DOCSTRING,
+)
+class TFEsmForTokenClassification(TFEsmPreTrainedModel, TFTokenClassificationLoss):
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.classifier = keras.layers.Dense(config.num_labels, name="classifier")
+ self.config = config
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFTokenClassifierOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: TFModelInputType | None = None,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ position_ids: np.ndarray | tf.Tensor | None = None,
+ head_mask: np.ndarray | tf.Tensor | None = None,
+ inputs_embeds: np.ndarray | tf.Tensor | None = None,
+ labels: np.ndarray | tf.Tensor | None = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: bool = False,
+ ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
+ r"""
+ labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.esm(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ sequence_output = outputs[0]
+
+ sequence_output = self.dropout(sequence_output, training=training)
+ logits = self.classifier(sequence_output)
+
+ loss = None if labels is None else self.hf_compute_loss(labels, logits)
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TFTokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "esm", None) is not None:
+ with tf.name_scope(self.esm.name):
+ self.esm.build(None)
+ if getattr(self, "classifier", None) is not None:
+ with tf.name_scope(self.classifier.name):
+ self.classifier.build([None, None, self.config.hidden_size])
+
+
+class TFEsmClassificationHead(keras.layers.Layer):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config, name=None):
+ super().__init__(name=name)
+ self.dense = keras.layers.Dense(
+ config.hidden_size,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="tanh",
+ name="dense",
+ )
+ self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
+ self.out_proj = keras.layers.Dense(
+ config.num_labels,
+ kernel_initializer=get_initializer(config.initializer_range),
+ activation="linear",
+ name="out_proj",
+ )
+ self.config = config
+
+ def call(self, features, training=False):
+ x = features[:, 0, :] # take token (equiv. to [CLS])
+ x = self.dropout(x, training=training)
+ x = self.dense(x)
+ x = self.dropout(x, training=training)
+ x = self.out_proj(x)
+ return x
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "dense", None) is not None:
+ with tf.name_scope(self.dense.name):
+ self.dense.build([None, None, self.config.hidden_size])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.config.hidden_size])
+
+
+def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
+ """
+ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
+ are ignored. This is modified from fairseq's `utils.make_positions`.
+
+ Args:
+ x: tf.Tensor x:
+
+ Returns: tf.Tensor
+ """
+ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
+ mask = tf.cast(input_ids != padding_idx, tf.int64)
+ incremental_indices = (tf.cumsum(mask, axis=1) + past_key_values_length) * mask
+ return incremental_indices + padding_idx
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/feats.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/feats.py
new file mode 100644
index 0000000000000000000000000000000000000000..18b01a1fecaccfaafd93f8a269eff6ede752ccb1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/openfold_utils/feats.py
@@ -0,0 +1,255 @@
+# Copyright 2021 AlQuraishi Laboratory
+# Copyright 2021 DeepMind Technologies Limited
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import Dict, Tuple, overload
+
+import torch
+import torch.types
+from torch import nn
+
+from . import residue_constants as rc
+from .rigid_utils import Rigid, Rotation
+from .tensor_utils import batched_gather
+
+
+@overload
+def pseudo_beta_fn(aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: None) -> torch.Tensor:
+ ...
+
+
+@overload
+def pseudo_beta_fn(
+ aatype: torch.Tensor, all_atom_positions: torch.Tensor, all_atom_masks: torch.Tensor
+) -> Tuple[torch.Tensor, torch.Tensor]:
+ ...
+
+
+def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
+ is_gly = aatype == rc.restype_order["G"]
+ ca_idx = rc.atom_order["CA"]
+ cb_idx = rc.atom_order["CB"]
+ pseudo_beta = torch.where(
+ is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3),
+ all_atom_positions[..., ca_idx, :],
+ all_atom_positions[..., cb_idx, :],
+ )
+
+ if all_atom_masks is not None:
+ pseudo_beta_mask = torch.where(
+ is_gly,
+ all_atom_masks[..., ca_idx],
+ all_atom_masks[..., cb_idx],
+ )
+ return pseudo_beta, pseudo_beta_mask
+ else:
+ return pseudo_beta
+
+
+def atom14_to_atom37(atom14: torch.Tensor, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
+ atom37_data = batched_gather(
+ atom14,
+ batch["residx_atom37_to_atom14"],
+ dim=-2,
+ no_batch_dims=len(atom14.shape[:-2]),
+ )
+
+ atom37_data = atom37_data * batch["atom37_atom_exists"][..., None]
+
+ return atom37_data
+
+
+def build_template_angle_feat(template_feats: Dict[str, torch.Tensor]) -> torch.Tensor:
+ template_aatype = template_feats["template_aatype"]
+ torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"]
+ alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"]
+ torsion_angles_mask = template_feats["template_torsion_angles_mask"]
+ template_angle_feat = torch.cat(
+ [
+ nn.functional.one_hot(template_aatype, 22),
+ torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14),
+ alt_torsion_angles_sin_cos.reshape(*alt_torsion_angles_sin_cos.shape[:-2], 14),
+ torsion_angles_mask,
+ ],
+ dim=-1,
+ )
+
+ return template_angle_feat
+
+
+def build_template_pair_feat(
+ batch: Dict[str, torch.Tensor],
+ min_bin: torch.types.Number,
+ max_bin: torch.types.Number,
+ no_bins: int,
+ use_unit_vector: bool = False,
+ eps: float = 1e-20,
+ inf: float = 1e8,
+) -> torch.Tensor:
+ template_mask = batch["template_pseudo_beta_mask"]
+ template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
+
+ # Compute distogram (this seems to differ slightly from Alg. 5)
+ tpb = batch["template_pseudo_beta"]
+ dgram = torch.sum((tpb[..., None, :] - tpb[..., None, :, :]) ** 2, dim=-1, keepdim=True)
+ lower = torch.linspace(min_bin, max_bin, no_bins, device=tpb.device) ** 2
+ upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)
+ dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)
+
+ to_concat = [dgram, template_mask_2d[..., None]]
+
+ aatype_one_hot: torch.LongTensor = nn.functional.one_hot(
+ batch["template_aatype"],
+ rc.restype_num + 2,
+ )
+
+ n_res = batch["template_aatype"].shape[-1]
+ to_concat.append(aatype_one_hot[..., None, :, :].expand(*aatype_one_hot.shape[:-2], n_res, -1, -1))
+ to_concat.append(aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1))
+
+ n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]]
+ rigids = Rigid.make_transform_from_reference(
+ n_xyz=batch["template_all_atom_positions"][..., n, :],
+ ca_xyz=batch["template_all_atom_positions"][..., ca, :],
+ c_xyz=batch["template_all_atom_positions"][..., c, :],
+ eps=eps,
+ )
+ points = rigids.get_trans()[..., None, :, :]
+ rigid_vec = rigids[..., None].invert_apply(points)
+
+ inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1))
+
+ t_aa_masks = batch["template_all_atom_mask"]
+ template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c]
+ template_mask_2d = template_mask[..., None] * template_mask[..., None, :]
+
+ inv_distance_scalar = inv_distance_scalar * template_mask_2d
+ unit_vector = rigid_vec * inv_distance_scalar[..., None]
+
+ if not use_unit_vector:
+ unit_vector = unit_vector * 0.0
+
+ to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1))
+ to_concat.append(template_mask_2d[..., None])
+
+ act = torch.cat(to_concat, dim=-1)
+ act = act * template_mask_2d[..., None]
+
+ return act
+
+
+def build_extra_msa_feat(batch: Dict[str, torch.Tensor]) -> torch.Tensor:
+ msa_1hot: torch.LongTensor = nn.functional.one_hot(batch["extra_msa"], 23)
+ msa_feat = [
+ msa_1hot,
+ batch["extra_has_deletion"].unsqueeze(-1),
+ batch["extra_deletion_value"].unsqueeze(-1),
+ ]
+ return torch.cat(msa_feat, dim=-1)
+
+
+def torsion_angles_to_frames(
+ r: Rigid,
+ alpha: torch.Tensor,
+ aatype: torch.Tensor,
+ rrgdf: torch.Tensor,
+) -> Rigid:
+ # [*, N, 8, 4, 4]
+ default_4x4 = rrgdf[aatype, ...]
+
+ # [*, N, 8] transformations, i.e.
+ # One [*, N, 8, 3, 3] rotation matrix and
+ # One [*, N, 8, 3] translation matrix
+ default_r = r.from_tensor_4x4(default_4x4)
+
+ bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2))
+ bb_rot[..., 1] = 1
+
+ # [*, N, 8, 2]
+ alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2)
+
+ # [*, N, 8, 3, 3]
+ # Produces rotation matrices of the form:
+ # [
+ # [1, 0 , 0 ],
+ # [0, a_2,-a_1],
+ # [0, a_1, a_2]
+ # ]
+ # This follows the original code rather than the supplement, which uses
+ # different indices.
+
+ all_rots = alpha.new_zeros(default_r.get_rots().get_rot_mats().shape)
+ all_rots[..., 0, 0] = 1
+ all_rots[..., 1, 1] = alpha[..., 1]
+ all_rots[..., 1, 2] = -alpha[..., 0]
+ all_rots[..., 2, 1:] = alpha
+
+ all_frames = default_r.compose(Rigid(Rotation(rot_mats=all_rots), None))
+
+ chi2_frame_to_frame = all_frames[..., 5]
+ chi3_frame_to_frame = all_frames[..., 6]
+ chi4_frame_to_frame = all_frames[..., 7]
+
+ chi1_frame_to_bb = all_frames[..., 4]
+ chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame)
+ chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame)
+ chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame)
+
+ all_frames_to_bb = Rigid.cat(
+ [
+ all_frames[..., :5],
+ chi2_frame_to_bb.unsqueeze(-1),
+ chi3_frame_to_bb.unsqueeze(-1),
+ chi4_frame_to_bb.unsqueeze(-1),
+ ],
+ dim=-1,
+ )
+
+ all_frames_to_global = r[..., None].compose(all_frames_to_bb)
+
+ return all_frames_to_global
+
+
+def frames_and_literature_positions_to_atom14_pos(
+ r: Rigid,
+ aatype: torch.Tensor,
+ default_frames: torch.Tensor,
+ group_idx: torch.Tensor,
+ atom_mask: torch.Tensor,
+ lit_positions: torch.Tensor,
+) -> torch.Tensor:
+ # [*, N, 14]
+ group_mask = group_idx[aatype, ...]
+
+ # [*, N, 14, 8]
+ group_mask_one_hot: torch.LongTensor = nn.functional.one_hot(
+ group_mask,
+ num_classes=default_frames.shape[-3],
+ )
+
+ # [*, N, 14, 8]
+ t_atoms_to_global = r[..., None, :] * group_mask_one_hot
+
+ # [*, N, 14]
+ t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1))
+
+ # [*, N, 14, 1]
+ atom_mask = atom_mask[aatype, ...].unsqueeze(-1)
+
+ # [*, N, 14, 3]
+ lit_positions = lit_positions[aatype, ...]
+ pred_positions = t_atoms_to_global.apply(lit_positions)
+ pred_positions = pred_positions * atom_mask
+
+ return pred_positions
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/tokenization_esm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/tokenization_esm.py
new file mode 100644
index 0000000000000000000000000000000000000000..27a889c87ea0b42397ed1553608aa2e5db2f85bc
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/esm/tokenization_esm.py
@@ -0,0 +1,143 @@
+# coding=utf-8
+# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for ESM."""
+import os
+from typing import List, Optional
+
+from ...tokenization_utils import PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+
+def load_vocab_file(vocab_file):
+ with open(vocab_file, "r") as f:
+ lines = f.read().splitlines()
+ return [l.strip() for l in lines]
+
+
+class EsmTokenizer(PreTrainedTokenizer):
+ """
+ Constructs an ESM tokenizer.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ unk_token="",
+ cls_token="",
+ pad_token="",
+ mask_token="",
+ eos_token="",
+ **kwargs,
+ ):
+ self.all_tokens = load_vocab_file(vocab_file)
+ self._id_to_token = dict(enumerate(self.all_tokens))
+ self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
+ super().__init__(
+ unk_token=unk_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ eos_token=eos_token,
+ **kwargs,
+ )
+
+ # TODO, all the tokens are added? But they are also part of the vocab... bit strange.
+ # none of them are special, but they all need special splitting.
+
+ self.unique_no_split_tokens = self.all_tokens
+ self._update_trie(self.unique_no_split_tokens)
+
+ def _convert_id_to_token(self, index: int) -> str:
+ return self._id_to_token.get(index, self.unk_token)
+
+ def _convert_token_to_id(self, token: str) -> int:
+ return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
+
+ def _tokenize(self, text, **kwargs):
+ return text.split()
+
+ def get_vocab(self):
+ base_vocab = self._token_to_id.copy()
+ base_vocab.update(self.added_tokens_encoder)
+ return base_vocab
+
+ def token_to_id(self, token: str) -> int:
+ return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
+
+ def id_to_token(self, index: int) -> str:
+ return self._id_to_token.get(index, self.unk_token)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ cls = [self.cls_token_id]
+ sep = [self.eos_token_id] # No sep token in ESM vocabulary
+ if token_ids_1 is None:
+ if self.eos_token_id is None:
+ return cls + token_ids_0
+ else:
+ return cls + token_ids_0 + sep
+ elif self.eos_token_id is None:
+ raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!")
+ return cls + token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of ids of the first sequence.
+ token_ids_1 (`List[int]`, *optional*):
+ List of ids of the second sequence.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+ if already_has_special_tokens:
+ if token_ids_1 is not None:
+ raise ValueError(
+ "You should not supply a second sequence if the provided sequence of "
+ "ids is already formatted with special tokens for the model."
+ )
+
+ return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
+ mask = [1] + ([0] * len(token_ids_0)) + [1]
+ if token_ids_1 is not None:
+ mask += [0] * len(token_ids_1) + [1]
+ return mask
+
+ def save_vocabulary(self, save_directory, filename_prefix):
+ vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
+ with open(vocab_file, "w") as f:
+ f.write("\n".join(self.all_tokens))
+ return (vocab_file,)
+
+ @property
+ def vocab_size(self) -> int:
+ return len(self.all_tokens)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9eccb238780f7e3615dc155d4cc3cdcc763b903b
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__init__.py
@@ -0,0 +1,104 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_tokenizers_available,
+ is_torch_available,
+ is_vision_available,
+)
+
+
+_import_structure = {
+ "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"],
+ "processing_layoutlmv2": ["LayoutLMv2Processor"],
+ "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_layoutlmv2_fast"] = ["LayoutLMv2TokenizerFast"]
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["feature_extraction_layoutlmv2"] = ["LayoutLMv2FeatureExtractor"]
+ _import_structure["image_processing_layoutlmv2"] = ["LayoutLMv2ImageProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_layoutlmv2"] = [
+ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "LayoutLMv2ForQuestionAnswering",
+ "LayoutLMv2ForSequenceClassification",
+ "LayoutLMv2ForTokenClassification",
+ "LayoutLMv2Layer",
+ "LayoutLMv2Model",
+ "LayoutLMv2PreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_layoutlmv2 import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMv2Config
+ from .processing_layoutlmv2 import LayoutLMv2Processor
+ from .tokenization_layoutlmv2 import LayoutLMv2Tokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_layoutlmv2_fast import LayoutLMv2TokenizerFast
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .feature_extraction_layoutlmv2 import LayoutLMv2FeatureExtractor, LayoutLMv2ImageProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_layoutlmv2 import (
+ LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
+ LayoutLMv2ForQuestionAnswering,
+ LayoutLMv2ForSequenceClassification,
+ LayoutLMv2ForTokenClassification,
+ LayoutLMv2Layer,
+ LayoutLMv2Model,
+ LayoutLMv2PreTrainedModel,
+ )
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1ef7bed1f97f74231d2b172707438698b3f72b00
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/configuration_layoutlmv2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/configuration_layoutlmv2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..eb36eccfec674c40ea7b1ca19a33405920db9863
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/configuration_layoutlmv2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/feature_extraction_layoutlmv2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/feature_extraction_layoutlmv2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ae1dd061af6f366f7de6f74ee007584ac5e03133
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/feature_extraction_layoutlmv2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/image_processing_layoutlmv2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/image_processing_layoutlmv2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7b44f4408bd7fad7e66d19265193f3d627e3cc42
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/image_processing_layoutlmv2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/modeling_layoutlmv2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/modeling_layoutlmv2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3b0e2d8e7cfadd368378ccc6b63b811668ecb904
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/modeling_layoutlmv2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/processing_layoutlmv2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/processing_layoutlmv2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..93e57909122ac7be6baece9fbba7851d6a4c2019
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/processing_layoutlmv2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f3961d18f3f16786d36c82d57e9ad26c80c81ee5
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..cad14f80005b5f79ffa10f4c94978c06db6c5c17
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/__pycache__/tokenization_layoutlmv2_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/configuration_layoutlmv2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/configuration_layoutlmv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..4528923a5d75987695dfe4157e4a6407fcdd68e1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/configuration_layoutlmv2.py
@@ -0,0 +1,222 @@
+# coding=utf-8
+# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" LayoutLMv2 model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import is_detectron2_available, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+# soft dependency
+if is_detectron2_available():
+ import detectron2
+
+
+class LayoutLMv2Config(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`LayoutLMv2Model`]. It is used to instantiate an
+ LayoutLMv2 model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the LayoutLMv2
+ [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the LayoutLMv2 model. Defines the number of different tokens that can be represented by
+ the `inputs_ids` passed when calling [`LayoutLMv2Model`] or [`TFLayoutLMv2Model`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimension of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv2Model`] or
+ [`TFLayoutLMv2Model`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
+ The maximum value that the 2D position embedding might ever be used with. Typically set this to something
+ large just in case (e.g., 1024).
+ max_rel_pos (`int`, *optional*, defaults to 128):
+ The maximum number of relative positions to be used in the self-attention mechanism.
+ rel_pos_bins (`int`, *optional*, defaults to 32):
+ The number of relative position bins to be used in the self-attention mechanism.
+ fast_qkv (`bool`, *optional*, defaults to `True`):
+ Whether or not to use a single matrix for the queries, keys, values in the self-attention layers.
+ max_rel_2d_pos (`int`, *optional*, defaults to 256):
+ The maximum number of relative 2D positions in the self-attention mechanism.
+ rel_2d_pos_bins (`int`, *optional*, defaults to 64):
+ The number of 2D relative position bins in the self-attention mechanism.
+ image_feature_pool_shape (`List[int]`, *optional*, defaults to [7, 7, 256]):
+ The shape of the average-pooled feature map.
+ coordinate_size (`int`, *optional*, defaults to 128):
+ Dimension of the coordinate embeddings.
+ shape_size (`int`, *optional*, defaults to 128):
+ Dimension of the width and height embeddings.
+ has_relative_attention_bias (`bool`, *optional*, defaults to `True`):
+ Whether or not to use a relative attention bias in the self-attention mechanism.
+ has_spatial_attention_bias (`bool`, *optional*, defaults to `True`):
+ Whether or not to use a spatial attention bias in the self-attention mechanism.
+ has_visual_segment_embedding (`bool`, *optional*, defaults to `False`):
+ Whether or not to add visual segment embeddings.
+ detectron2_config_args (`dict`, *optional*):
+ Dictionary containing the configuration arguments of the Detectron2 visual backbone. Refer to [this
+ file](https://github.com/microsoft/unilm/blob/master/layoutlmft/layoutlmft/models/layoutlmv2/detectron2_config.py)
+ for details regarding default values.
+
+ Example:
+
+ ```python
+ >>> from transformers import LayoutLMv2Config, LayoutLMv2Model
+
+ >>> # Initializing a LayoutLMv2 microsoft/layoutlmv2-base-uncased style configuration
+ >>> configuration = LayoutLMv2Config()
+
+ >>> # Initializing a model (with random weights) from the microsoft/layoutlmv2-base-uncased style configuration
+ >>> model = LayoutLMv2Model(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "layoutlmv2"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ max_2d_position_embeddings=1024,
+ max_rel_pos=128,
+ rel_pos_bins=32,
+ fast_qkv=True,
+ max_rel_2d_pos=256,
+ rel_2d_pos_bins=64,
+ convert_sync_batchnorm=True,
+ image_feature_pool_shape=[7, 7, 256],
+ coordinate_size=128,
+ shape_size=128,
+ has_relative_attention_bias=True,
+ has_spatial_attention_bias=True,
+ has_visual_segment_embedding=False,
+ detectron2_config_args=None,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_size=vocab_size,
+ hidden_size=hidden_size,
+ num_hidden_layers=num_hidden_layers,
+ num_attention_heads=num_attention_heads,
+ intermediate_size=intermediate_size,
+ hidden_act=hidden_act,
+ hidden_dropout_prob=hidden_dropout_prob,
+ attention_probs_dropout_prob=attention_probs_dropout_prob,
+ max_position_embeddings=max_position_embeddings,
+ type_vocab_size=type_vocab_size,
+ initializer_range=initializer_range,
+ layer_norm_eps=layer_norm_eps,
+ pad_token_id=pad_token_id,
+ **kwargs,
+ )
+ self.max_2d_position_embeddings = max_2d_position_embeddings
+ self.max_rel_pos = max_rel_pos
+ self.rel_pos_bins = rel_pos_bins
+ self.fast_qkv = fast_qkv
+ self.max_rel_2d_pos = max_rel_2d_pos
+ self.rel_2d_pos_bins = rel_2d_pos_bins
+ self.convert_sync_batchnorm = convert_sync_batchnorm
+ self.image_feature_pool_shape = image_feature_pool_shape
+ self.coordinate_size = coordinate_size
+ self.shape_size = shape_size
+ self.has_relative_attention_bias = has_relative_attention_bias
+ self.has_spatial_attention_bias = has_spatial_attention_bias
+ self.has_visual_segment_embedding = has_visual_segment_embedding
+ self.detectron2_config_args = (
+ detectron2_config_args if detectron2_config_args is not None else self.get_default_detectron2_config()
+ )
+
+ @classmethod
+ def get_default_detectron2_config(self):
+ return {
+ "MODEL.MASK_ON": True,
+ "MODEL.PIXEL_STD": [57.375, 57.120, 58.395],
+ "MODEL.BACKBONE.NAME": "build_resnet_fpn_backbone",
+ "MODEL.FPN.IN_FEATURES": ["res2", "res3", "res4", "res5"],
+ "MODEL.ANCHOR_GENERATOR.SIZES": [[32], [64], [128], [256], [512]],
+ "MODEL.RPN.IN_FEATURES": ["p2", "p3", "p4", "p5", "p6"],
+ "MODEL.RPN.PRE_NMS_TOPK_TRAIN": 2000,
+ "MODEL.RPN.PRE_NMS_TOPK_TEST": 1000,
+ "MODEL.RPN.POST_NMS_TOPK_TRAIN": 1000,
+ "MODEL.POST_NMS_TOPK_TEST": 1000,
+ "MODEL.ROI_HEADS.NAME": "StandardROIHeads",
+ "MODEL.ROI_HEADS.NUM_CLASSES": 5,
+ "MODEL.ROI_HEADS.IN_FEATURES": ["p2", "p3", "p4", "p5"],
+ "MODEL.ROI_BOX_HEAD.NAME": "FastRCNNConvFCHead",
+ "MODEL.ROI_BOX_HEAD.NUM_FC": 2,
+ "MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION": 14,
+ "MODEL.ROI_MASK_HEAD.NAME": "MaskRCNNConvUpsampleHead",
+ "MODEL.ROI_MASK_HEAD.NUM_CONV": 4,
+ "MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION": 7,
+ "MODEL.RESNETS.DEPTH": 101,
+ "MODEL.RESNETS.SIZES": [[32], [64], [128], [256], [512]],
+ "MODEL.RESNETS.ASPECT_RATIOS": [[0.5, 1.0, 2.0]],
+ "MODEL.RESNETS.OUT_FEATURES": ["res2", "res3", "res4", "res5"],
+ "MODEL.RESNETS.NUM_GROUPS": 32,
+ "MODEL.RESNETS.WIDTH_PER_GROUP": 8,
+ "MODEL.RESNETS.STRIDE_IN_1X1": False,
+ }
+
+ def get_detectron2_config(self):
+ detectron2_config = detectron2.config.get_cfg()
+ for k, v in self.detectron2_config_args.items():
+ attributes = k.split(".")
+ to_set = detectron2_config
+ for attribute in attributes[:-1]:
+ to_set = getattr(to_set, attribute)
+ setattr(to_set, attributes[-1], v)
+
+ return detectron2_config
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..eb1042b7c2849d205051e9a44cdae992a57e2302
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
@@ -0,0 +1,35 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Feature extractor class for LayoutLMv2.
+"""
+
+import warnings
+
+from ...utils import logging
+from .image_processing_layoutlmv2 import LayoutLMv2ImageProcessor
+
+
+logger = logging.get_logger(__name__)
+
+
+class LayoutLMv2FeatureExtractor(LayoutLMv2ImageProcessor):
+ def __init__(self, *args, **kwargs) -> None:
+ warnings.warn(
+ "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
+ " Please use LayoutLMv2ImageProcessor instead.",
+ FutureWarning,
+ )
+ super().__init__(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/modeling_layoutlmv2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/modeling_layoutlmv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..41939b044a84388cdb12effe129203a7a3a848b2
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/modeling_layoutlmv2.py
@@ -0,0 +1,1407 @@
+# coding=utf-8
+# Copyright 2021 Microsoft Research The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch LayoutLMv2 model."""
+
+import math
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPooling,
+ QuestionAnsweringModelOutput,
+ SequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward
+from ...utils import (
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_detectron2_available,
+ logging,
+ replace_return_docstrings,
+ requires_backends,
+)
+from .configuration_layoutlmv2 import LayoutLMv2Config
+
+
+# soft dependency
+if is_detectron2_available():
+ import detectron2
+ from detectron2.modeling import META_ARCH_REGISTRY
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "microsoft/layoutlmv2-base-uncased"
+_CONFIG_FOR_DOC = "LayoutLMv2Config"
+
+
+from ..deprecated._archive_maps import LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+class LayoutLMv2Embeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super(LayoutLMv2Embeddings, self).__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+
+ self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
+ self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
+ self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
+ self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+
+ def _calc_spatial_position_embeddings(self, bbox):
+ try:
+ left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
+ upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
+ right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
+ lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
+ except IndexError as e:
+ raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e
+
+ h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
+ w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
+
+ spatial_position_embeddings = torch.cat(
+ [
+ left_position_embeddings,
+ upper_position_embeddings,
+ right_position_embeddings,
+ lower_position_embeddings,
+ h_position_embeddings,
+ w_position_embeddings,
+ ],
+ dim=-1,
+ )
+ return spatial_position_embeddings
+
+
+class LayoutLMv2SelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+ self.fast_qkv = config.fast_qkv
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.has_relative_attention_bias = config.has_relative_attention_bias
+ self.has_spatial_attention_bias = config.has_spatial_attention_bias
+
+ if config.fast_qkv:
+ self.qkv_linear = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=False)
+ self.q_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
+ self.v_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
+ else:
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+
+ def transpose_for_scores(self, x):
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(*new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def compute_qkv(self, hidden_states):
+ if self.fast_qkv:
+ qkv = self.qkv_linear(hidden_states)
+ q, k, v = torch.chunk(qkv, 3, dim=-1)
+ if q.ndimension() == self.q_bias.ndimension():
+ q = q + self.q_bias
+ v = v + self.v_bias
+ else:
+ _sz = (1,) * (q.ndimension() - 1) + (-1,)
+ q = q + self.q_bias.view(*_sz)
+ v = v + self.v_bias.view(*_sz)
+ else:
+ q = self.query(hidden_states)
+ k = self.key(hidden_states)
+ v = self.value(hidden_states)
+ return q, k, v
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ rel_pos=None,
+ rel_2d_pos=None,
+ ):
+ q, k, v = self.compute_qkv(hidden_states)
+
+ # (B, L, H*D) -> (B, H, L, D)
+ query_layer = self.transpose_for_scores(q)
+ key_layer = self.transpose_for_scores(k)
+ value_layer = self.transpose_for_scores(v)
+
+ query_layer = query_layer / math.sqrt(self.attention_head_size)
+ # [BSZ, NAT, L, L]
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+ if self.has_relative_attention_bias:
+ attention_scores += rel_pos
+ if self.has_spatial_attention_bias:
+ attention_scores += rel_2d_pos
+ attention_scores = attention_scores.float().masked_fill_(
+ attention_mask.to(torch.bool), torch.finfo(attention_scores.dtype).min
+ )
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).type_as(value_layer)
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(*new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+ return outputs
+
+
+class LayoutLMv2Attention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.self = LayoutLMv2SelfAttention(config)
+ self.output = LayoutLMv2SelfOutput(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ rel_pos=None,
+ rel_2d_pos=None,
+ ):
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions,
+ rel_pos=rel_pos,
+ rel_2d_pos=rel_2d_pos,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class LayoutLMv2SelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states, input_tensor):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->LayoutLMv2
+class LayoutLMv2Intermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->LayoutLM
+class LayoutLMv2Output(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+class LayoutLMv2Layer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = LayoutLMv2Attention(config)
+ self.intermediate = LayoutLMv2Intermediate(config)
+ self.output = LayoutLMv2Output(config)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ rel_pos=None,
+ rel_2d_pos=None,
+ ):
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ rel_pos=rel_pos,
+ rel_2d_pos=rel_2d_pos,
+ )
+ attention_output = self_attention_outputs[0]
+
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+def relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
+ """
+ Adapted from Mesh Tensorflow:
+ https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
+ Translate relative position to a bucket number for relative attention. The relative position is defined as
+ memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
+ position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small
+ absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions
+ >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should
+ allow for more graceful generalization to longer sequences than the model has been trained on.
+
+ Args:
+ relative_position: an int32 Tensor
+ bidirectional: a boolean - whether the attention is bidirectional
+ num_buckets: an integer
+ max_distance: an integer
+
+ Returns:
+ a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
+ """
+
+ ret = 0
+ if bidirectional:
+ num_buckets //= 2
+ ret += (relative_position > 0).long() * num_buckets
+ n = torch.abs(relative_position)
+ else:
+ n = torch.max(-relative_position, torch.zeros_like(relative_position))
+ # now n is in the range [0, inf)
+
+ # half of the buckets are for exact increments in positions
+ max_exact = num_buckets // 2
+ is_small = n < max_exact
+
+ # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
+ val_if_large = max_exact + (
+ torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
+ ).to(torch.long)
+ val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
+
+ ret += torch.where(is_small, n, val_if_large)
+ return ret
+
+
+class LayoutLMv2Encoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([LayoutLMv2Layer(config) for _ in range(config.num_hidden_layers)])
+
+ self.has_relative_attention_bias = config.has_relative_attention_bias
+ self.has_spatial_attention_bias = config.has_spatial_attention_bias
+
+ if self.has_relative_attention_bias:
+ self.rel_pos_bins = config.rel_pos_bins
+ self.max_rel_pos = config.max_rel_pos
+ self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False)
+
+ if self.has_spatial_attention_bias:
+ self.max_rel_2d_pos = config.max_rel_2d_pos
+ self.rel_2d_pos_bins = config.rel_2d_pos_bins
+ self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
+ self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
+
+ self.gradient_checkpointing = False
+
+ def _calculate_1d_position_embeddings(self, position_ids):
+ rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1)
+ rel_pos = relative_position_bucket(
+ rel_pos_mat,
+ num_buckets=self.rel_pos_bins,
+ max_distance=self.max_rel_pos,
+ )
+ rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2)
+ rel_pos = rel_pos.contiguous()
+ return rel_pos
+
+ def _calculate_2d_position_embeddings(self, bbox):
+ position_coord_x = bbox[:, :, 0]
+ position_coord_y = bbox[:, :, 3]
+ rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1)
+ rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1)
+ rel_pos_x = relative_position_bucket(
+ rel_pos_x_2d_mat,
+ num_buckets=self.rel_2d_pos_bins,
+ max_distance=self.max_rel_2d_pos,
+ )
+ rel_pos_y = relative_position_bucket(
+ rel_pos_y_2d_mat,
+ num_buckets=self.rel_2d_pos_bins,
+ max_distance=self.max_rel_2d_pos,
+ )
+ rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2)
+ rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2)
+ rel_pos_x = rel_pos_x.contiguous()
+ rel_pos_y = rel_pos_y.contiguous()
+ rel_2d_pos = rel_pos_x + rel_pos_y
+ return rel_2d_pos
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=False,
+ output_hidden_states=False,
+ return_dict=True,
+ bbox=None,
+ position_ids=None,
+ ):
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+
+ rel_pos = self._calculate_1d_position_embeddings(position_ids) if self.has_relative_attention_bias else None
+ rel_2d_pos = self._calculate_2d_position_embeddings(bbox) if self.has_spatial_attention_bias else None
+
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ rel_pos=rel_pos,
+ rel_2d_pos=rel_2d_pos,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ output_attentions,
+ rel_pos=rel_pos,
+ rel_2d_pos=rel_2d_pos,
+ )
+
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ all_hidden_states,
+ all_self_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutput(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ )
+
+
+class LayoutLMv2PreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = LayoutLMv2Config
+ base_model_prefix = "layoutlmv2"
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+def my_convert_sync_batchnorm(module, process_group=None):
+ # same as `nn.modules.SyncBatchNorm.convert_sync_batchnorm` but allowing converting from `detectron2.layers.FrozenBatchNorm2d`
+ if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
+ return nn.modules.SyncBatchNorm.convert_sync_batchnorm(module, process_group)
+ module_output = module
+ if isinstance(module, detectron2.layers.FrozenBatchNorm2d):
+ module_output = torch.nn.SyncBatchNorm(
+ num_features=module.num_features,
+ eps=module.eps,
+ affine=True,
+ track_running_stats=True,
+ process_group=process_group,
+ )
+ module_output.weight = torch.nn.Parameter(module.weight)
+ module_output.bias = torch.nn.Parameter(module.bias)
+ module_output.running_mean = module.running_mean
+ module_output.running_var = module.running_var
+ module_output.num_batches_tracked = torch.tensor(0, dtype=torch.long, device=module.running_mean.device)
+ for name, child in module.named_children():
+ module_output.add_module(name, my_convert_sync_batchnorm(child, process_group))
+ del module
+ return module_output
+
+
+class LayoutLMv2VisualBackbone(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.cfg = config.get_detectron2_config()
+ meta_arch = self.cfg.MODEL.META_ARCHITECTURE
+ model = META_ARCH_REGISTRY.get(meta_arch)(self.cfg)
+ assert isinstance(model.backbone, detectron2.modeling.backbone.FPN)
+ self.backbone = model.backbone
+
+ assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD)
+ num_channels = len(self.cfg.MODEL.PIXEL_MEAN)
+ self.register_buffer(
+ "pixel_mean",
+ torch.Tensor(self.cfg.MODEL.PIXEL_MEAN).view(num_channels, 1, 1),
+ persistent=False,
+ )
+ self.register_buffer(
+ "pixel_std", torch.Tensor(self.cfg.MODEL.PIXEL_STD).view(num_channels, 1, 1), persistent=False
+ )
+ self.out_feature_key = "p2"
+ if torch.are_deterministic_algorithms_enabled():
+ logger.warning("using `AvgPool2d` instead of `AdaptiveAvgPool2d`")
+ input_shape = (224, 224)
+ backbone_stride = self.backbone.output_shape()[self.out_feature_key].stride
+ self.pool = nn.AvgPool2d(
+ (
+ math.ceil(math.ceil(input_shape[0] / backbone_stride) / config.image_feature_pool_shape[0]),
+ math.ceil(math.ceil(input_shape[1] / backbone_stride) / config.image_feature_pool_shape[1]),
+ )
+ )
+ else:
+ self.pool = nn.AdaptiveAvgPool2d(config.image_feature_pool_shape[:2])
+ if len(config.image_feature_pool_shape) == 2:
+ config.image_feature_pool_shape.append(self.backbone.output_shape()[self.out_feature_key].channels)
+ assert self.backbone.output_shape()[self.out_feature_key].channels == config.image_feature_pool_shape[2]
+
+ def forward(self, images):
+ images_input = ((images if torch.is_tensor(images) else images.tensor) - self.pixel_mean) / self.pixel_std
+ features = self.backbone(images_input)
+ features = features[self.out_feature_key]
+ features = self.pool(features).flatten(start_dim=2).transpose(1, 2).contiguous()
+ return features
+
+ def synchronize_batch_norm(self):
+ if not (
+ torch.distributed.is_available()
+ and torch.distributed.is_initialized()
+ and torch.distributed.get_rank() > -1
+ ):
+ raise RuntimeError("Make sure torch.distributed is set up properly.")
+
+ self_rank = torch.distributed.get_rank()
+ node_size = torch.cuda.device_count()
+ world_size = torch.distributed.get_world_size()
+ if not (world_size % node_size == 0):
+ raise RuntimeError("Make sure the number of processes can be divided by the number of nodes")
+
+ node_global_ranks = [list(range(i * node_size, (i + 1) * node_size)) for i in range(world_size // node_size)]
+ sync_bn_groups = [
+ torch.distributed.new_group(ranks=node_global_ranks[i]) for i in range(world_size // node_size)
+ ]
+ node_rank = self_rank // node_size
+
+ self.backbone = my_convert_sync_batchnorm(self.backbone, process_group=sync_bn_groups[node_rank])
+
+
+LAYOUTLMV2_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`LayoutLMv2Config`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+LAYOUTLMV2_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `{0}`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*):
+ Bounding boxes of each input sequence tokens. Selected in the range `[0,
+ config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1)
+ format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1,
+ y1) represents the position of the lower right corner.
+
+ image (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `detectron.structures.ImageList` whose `tensors` is of shape `(batch_size, num_channels, height, width)`):
+ Batch of document images.
+
+ attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `{0}`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `{0}`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class LayoutLMv2Pooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states):
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+@add_start_docstrings(
+ "The bare LayoutLMv2 Model transformer outputting raw hidden-states without any specific head on top.",
+ LAYOUTLMV2_START_DOCSTRING,
+)
+class LayoutLMv2Model(LayoutLMv2PreTrainedModel):
+ def __init__(self, config):
+ requires_backends(self, "detectron2")
+ super().__init__(config)
+ self.config = config
+ self.has_visual_segment_embedding = config.has_visual_segment_embedding
+ self.embeddings = LayoutLMv2Embeddings(config)
+
+ self.visual = LayoutLMv2VisualBackbone(config)
+ self.visual_proj = nn.Linear(config.image_feature_pool_shape[-1], config.hidden_size)
+ if self.has_visual_segment_embedding:
+ self.visual_segment_embedding = nn.Parameter(nn.Embedding(1, config.hidden_size).weight[0])
+ self.visual_LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.visual_dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ self.encoder = LayoutLMv2Encoder(config)
+ self.pooler = LayoutLMv2Pooler(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _calc_text_embeddings(self, input_ids, bbox, position_ids, token_type_ids, inputs_embeds=None):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
+ position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
+ if token_type_ids is None:
+ token_type_ids = torch.zeros_like(input_ids)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embeddings.word_embeddings(input_ids)
+ position_embeddings = self.embeddings.position_embeddings(position_ids)
+ spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
+ token_type_embeddings = self.embeddings.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + position_embeddings + spatial_position_embeddings + token_type_embeddings
+ embeddings = self.embeddings.LayerNorm(embeddings)
+ embeddings = self.embeddings.dropout(embeddings)
+ return embeddings
+
+ def _calc_img_embeddings(self, image, bbox, position_ids):
+ visual_embeddings = self.visual_proj(self.visual(image))
+ position_embeddings = self.embeddings.position_embeddings(position_ids)
+ spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
+ embeddings = visual_embeddings + position_embeddings + spatial_position_embeddings
+ if self.has_visual_segment_embedding:
+ embeddings += self.visual_segment_embedding
+ embeddings = self.visual_LayerNorm(embeddings)
+ embeddings = self.visual_dropout(embeddings)
+ return embeddings
+
+ def _calc_visual_bbox(self, image_feature_pool_shape, bbox, device, final_shape):
+ visual_bbox_x = torch.div(
+ torch.arange(
+ 0,
+ 1000 * (image_feature_pool_shape[1] + 1),
+ 1000,
+ device=device,
+ dtype=bbox.dtype,
+ ),
+ self.config.image_feature_pool_shape[1],
+ rounding_mode="floor",
+ )
+ visual_bbox_y = torch.div(
+ torch.arange(
+ 0,
+ 1000 * (self.config.image_feature_pool_shape[0] + 1),
+ 1000,
+ device=device,
+ dtype=bbox.dtype,
+ ),
+ self.config.image_feature_pool_shape[0],
+ rounding_mode="floor",
+ )
+ visual_bbox = torch.stack(
+ [
+ visual_bbox_x[:-1].repeat(image_feature_pool_shape[0], 1),
+ visual_bbox_y[:-1].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
+ visual_bbox_x[1:].repeat(image_feature_pool_shape[0], 1),
+ visual_bbox_y[1:].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
+ ],
+ dim=-1,
+ ).view(-1, bbox.size(-1))
+
+ visual_bbox = visual_bbox.repeat(final_shape[0], 1, 1)
+
+ return visual_bbox
+
+ def _get_input_shape(self, input_ids=None, inputs_embeds=None):
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ return input_ids.size()
+ elif inputs_embeds is not None:
+ return inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
+ @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ bbox: Optional[torch.LongTensor] = None,
+ image: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Return:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoProcessor, LayoutLMv2Model, set_seed
+ >>> from PIL import Image
+ >>> import torch
+ >>> from datasets import load_dataset
+
+ >>> set_seed(88)
+
+ >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
+ >>> model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased")
+
+
+ >>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa")
+ >>> image_path = dataset["test"][0]["file"]
+ >>> image = Image.open(image_path).convert("RGB")
+
+ >>> encoding = processor(image, return_tensors="pt")
+
+ >>> outputs = model(**encoding)
+ >>> last_hidden_states = outputs.last_hidden_state
+
+ >>> last_hidden_states.shape
+ torch.Size([1, 342, 768])
+ ```
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ input_shape = self._get_input_shape(input_ids, inputs_embeds)
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ visual_shape = list(input_shape)
+ visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
+ visual_shape = torch.Size(visual_shape)
+ # needs a new copy of input_shape for tracing. Otherwise wrong dimensions will occur
+ final_shape = list(self._get_input_shape(input_ids, inputs_embeds))
+ final_shape[1] += visual_shape[1]
+ final_shape = torch.Size(final_shape)
+
+ visual_bbox = self._calc_visual_bbox(self.config.image_feature_pool_shape, bbox, device, final_shape)
+ final_bbox = torch.cat([bbox, visual_bbox], dim=1)
+
+ if attention_mask is None:
+ attention_mask = torch.ones(input_shape, device=device)
+
+ visual_attention_mask = torch.ones(visual_shape, device=device)
+ final_attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1)
+
+ if token_type_ids is None:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ if position_ids is None:
+ seq_length = input_shape[1]
+ position_ids = self.embeddings.position_ids[:, :seq_length]
+ position_ids = position_ids.expand(input_shape)
+
+ visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
+ input_shape[0], 1
+ )
+ final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1)
+
+ if bbox is None:
+ bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device)
+
+ text_layout_emb = self._calc_text_embeddings(
+ input_ids=input_ids,
+ bbox=bbox,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ )
+
+ visual_emb = self._calc_img_embeddings(
+ image=image,
+ bbox=visual_bbox,
+ position_ids=visual_position_ids,
+ )
+ final_emb = torch.cat([text_layout_emb, visual_emb], dim=1)
+
+ extended_attention_mask = final_attention_mask.unsqueeze(1).unsqueeze(2)
+
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
+ extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
+
+ if head_mask is not None:
+ if head_mask.dim() == 1:
+ head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
+ head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
+ elif head_mask.dim() == 2:
+ head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
+ head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
+ else:
+ head_mask = [None] * self.config.num_hidden_layers
+
+ encoder_outputs = self.encoder(
+ final_emb,
+ extended_attention_mask,
+ bbox=final_bbox,
+ position_ids=final_position_ids,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output)
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ LayoutLMv2 Model with a sequence classification head on top (a linear layer on top of the concatenation of the
+ final hidden state of the [CLS] token, average-pooled initial visual embeddings and average-pooled final visual
+ embeddings, e.g. for document image classification tasks such as the
+ [RVL-CDIP](https://www.cs.cmu.edu/~aharley/rvl-cdip/) dataset.
+ """,
+ LAYOUTLMV2_START_DOCSTRING,
+)
+class LayoutLMv2ForSequenceClassification(LayoutLMv2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.layoutlmv2 = LayoutLMv2Model(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.layoutlmv2.embeddings.word_embeddings
+
+ @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ bbox: Optional[torch.LongTensor] = None,
+ image: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, SequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoProcessor, LayoutLMv2ForSequenceClassification, set_seed
+ >>> from PIL import Image
+ >>> import torch
+ >>> from datasets import load_dataset
+
+ >>> set_seed(88)
+
+ >>> dataset = load_dataset("rvl_cdip", split="train", streaming=True)
+ >>> data = next(iter(dataset))
+ >>> image = data["image"].convert("RGB")
+
+ >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
+ >>> model = LayoutLMv2ForSequenceClassification.from_pretrained(
+ ... "microsoft/layoutlmv2-base-uncased", num_labels=dataset.info.features["label"].num_classes
+ ... )
+
+ >>> encoding = processor(image, return_tensors="pt")
+ >>> sequence_label = torch.tensor([data["label"]])
+
+ >>> outputs = model(**encoding, labels=sequence_label)
+
+ >>> loss, logits = outputs.loss, outputs.logits
+ >>> predicted_idx = logits.argmax(dim=-1).item()
+ >>> predicted_answer = dataset.info.features["label"].names[4]
+ >>> predicted_idx, predicted_answer
+ (4, 'advertisement')
+ ```
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ visual_shape = list(input_shape)
+ visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
+ visual_shape = torch.Size(visual_shape)
+ final_shape = list(input_shape)
+ final_shape[1] += visual_shape[1]
+ final_shape = torch.Size(final_shape)
+
+ visual_bbox = self.layoutlmv2._calc_visual_bbox(
+ self.config.image_feature_pool_shape, bbox, device, final_shape
+ )
+
+ visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
+ input_shape[0], 1
+ )
+
+ initial_image_embeddings = self.layoutlmv2._calc_img_embeddings(
+ image=image,
+ bbox=visual_bbox,
+ position_ids=visual_position_ids,
+ )
+
+ outputs = self.layoutlmv2(
+ input_ids=input_ids,
+ bbox=bbox,
+ image=image,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+ sequence_output, final_image_embeddings = outputs[0][:, :seq_length], outputs[0][:, seq_length:]
+
+ cls_final_output = sequence_output[:, 0, :]
+
+ # average-pool the visual embeddings
+ pooled_initial_image_embeddings = initial_image_embeddings.mean(dim=1)
+ pooled_final_image_embeddings = final_image_embeddings.mean(dim=1)
+ # concatenate with cls_final_output
+ sequence_output = torch.cat(
+ [cls_final_output, pooled_initial_image_embeddings, pooled_final_image_embeddings], dim=1
+ )
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ if self.config.problem_type is None:
+ if self.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return SequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ LayoutLMv2 Model with a token classification head on top (a linear layer on top of the text part of the hidden
+ states) e.g. for sequence labeling (information extraction) tasks such as
+ [FUNSD](https://guillaumejaume.github.io/FUNSD/), [SROIE](https://rrc.cvc.uab.es/?ch=13),
+ [CORD](https://github.com/clovaai/cord) and [Kleister-NDA](https://github.com/applicaai/kleister-nda).
+ """,
+ LAYOUTLMV2_START_DOCSTRING,
+)
+class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ self.layoutlmv2 = LayoutLMv2Model(config)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.layoutlmv2.embeddings.word_embeddings
+
+ @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ bbox: Optional[torch.LongTensor] = None,
+ image: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoProcessor, LayoutLMv2ForTokenClassification, set_seed
+ >>> from PIL import Image
+ >>> from datasets import load_dataset
+
+ >>> set_seed(88)
+
+ >>> datasets = load_dataset("nielsr/funsd", split="test")
+ >>> labels = datasets.features["ner_tags"].feature.names
+ >>> id2label = {v: k for v, k in enumerate(labels)}
+
+ >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
+ >>> model = LayoutLMv2ForTokenClassification.from_pretrained(
+ ... "microsoft/layoutlmv2-base-uncased", num_labels=len(labels)
+ ... )
+
+ >>> data = datasets[0]
+ >>> image = Image.open(data["image_path"]).convert("RGB")
+ >>> words = data["words"]
+ >>> boxes = data["bboxes"] # make sure to normalize your bounding boxes
+ >>> word_labels = data["ner_tags"]
+ >>> encoding = processor(
+ ... image,
+ ... words,
+ ... boxes=boxes,
+ ... word_labels=word_labels,
+ ... padding="max_length",
+ ... truncation=True,
+ ... return_tensors="pt",
+ ... )
+
+ >>> outputs = model(**encoding)
+ >>> logits, loss = outputs.logits, outputs.loss
+
+ >>> predicted_token_class_ids = logits.argmax(-1)
+ >>> predicted_tokens_classes = [id2label[t.item()] for t in predicted_token_class_ids[0]]
+ >>> predicted_tokens_classes[:5]
+ ['B-ANSWER', 'B-HEADER', 'B-HEADER', 'B-HEADER', 'B-HEADER']
+ ```
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.layoutlmv2(
+ input_ids=input_ids,
+ bbox=bbox,
+ image=image,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+ # only take the text part of the output representations
+ sequence_output = outputs[0][:, :seq_length]
+ sequence_output = self.dropout(sequence_output)
+ logits = self.classifier(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[2:]
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ LayoutLMv2 Model with a span classification head on top for extractive question-answering tasks such as
+ [DocVQA](https://rrc.cvc.uab.es/?ch=17) (a linear layer on top of the text part of the hidden-states output to
+ compute `span start logits` and `span end logits`).
+ """,
+ LAYOUTLMV2_START_DOCSTRING,
+)
+class LayoutLMv2ForQuestionAnswering(LayoutLMv2PreTrainedModel):
+ def __init__(self, config, has_visual_segment_embedding=True):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+ config.has_visual_segment_embedding = has_visual_segment_embedding
+ self.layoutlmv2 = LayoutLMv2Model(config)
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.layoutlmv2.embeddings.word_embeddings
+
+ @add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ bbox: Optional[torch.LongTensor] = None,
+ image: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+
+ Returns:
+
+ Example:
+
+ In this example below, we give the LayoutLMv2 model an image (of texts) and ask it a question. It will give us
+ a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image).
+
+ ```python
+ >>> from transformers import AutoProcessor, LayoutLMv2ForQuestionAnswering, set_seed
+ >>> import torch
+ >>> from PIL import Image
+ >>> from datasets import load_dataset
+
+ >>> set_seed(88)
+ >>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
+ >>> model = LayoutLMv2ForQuestionAnswering.from_pretrained("microsoft/layoutlmv2-base-uncased")
+
+ >>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa")
+ >>> image_path = dataset["test"][0]["file"]
+ >>> image = Image.open(image_path).convert("RGB")
+ >>> question = "When is coffee break?"
+ >>> encoding = processor(image, question, return_tensors="pt")
+
+ >>> outputs = model(**encoding)
+ >>> predicted_start_idx = outputs.start_logits.argmax(-1).item()
+ >>> predicted_end_idx = outputs.end_logits.argmax(-1).item()
+ >>> predicted_start_idx, predicted_end_idx
+ (154, 287)
+
+ >>> predicted_answer_tokens = encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1]
+ >>> predicted_answer = processor.tokenizer.decode(predicted_answer_tokens)
+ >>> predicted_answer # results are not very good without further fine-tuning
+ 'council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public ...
+ ```
+
+ ```python
+ >>> target_start_index = torch.tensor([7])
+ >>> target_end_index = torch.tensor([14])
+ >>> outputs = model(**encoding, start_positions=target_start_index, end_positions=target_end_index)
+ >>> predicted_answer_span_start = outputs.start_logits.argmax(-1).item()
+ >>> predicted_answer_span_end = outputs.end_logits.argmax(-1).item()
+ >>> predicted_answer_span_start, predicted_answer_span_end
+ (154, 287)
+ ```
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.layoutlmv2(
+ input_ids=input_ids,
+ bbox=bbox,
+ image=image,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+ # only take the text part of the output representations
+ sequence_output = outputs[0][:, :seq_length]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + outputs[2:]
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return QuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/processing_layoutlmv2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/processing_layoutlmv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..1edf87465bbf0ba8deb5502ef0e9b9000f80cf30
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/processing_layoutlmv2.py
@@ -0,0 +1,201 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Processor class for LayoutLMv2.
+"""
+
+import warnings
+from typing import List, Optional, Union
+
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
+from ...utils import TensorType
+
+
+class LayoutLMv2Processor(ProcessorMixin):
+ r"""
+ Constructs a LayoutLMv2 processor which combines a LayoutLMv2 image processor and a LayoutLMv2 tokenizer into a
+ single processor.
+
+ [`LayoutLMv2Processor`] offers all the functionalities you need to prepare data for the model.
+
+ It first uses [`LayoutLMv2ImageProcessor`] to resize document images to a fixed size, and optionally applies OCR to
+ get words and normalized bounding boxes. These are then provided to [`LayoutLMv2Tokenizer`] or
+ [`LayoutLMv2TokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`,
+ `attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned
+ into token-level `labels` for token classification tasks (such as FUNSD, CORD).
+
+ Args:
+ image_processor (`LayoutLMv2ImageProcessor`, *optional*):
+ An instance of [`LayoutLMv2ImageProcessor`]. The image processor is a required input.
+ tokenizer (`LayoutLMv2Tokenizer` or `LayoutLMv2TokenizerFast`, *optional*):
+ An instance of [`LayoutLMv2Tokenizer`] or [`LayoutLMv2TokenizerFast`]. The tokenizer is a required input.
+ """
+
+ attributes = ["image_processor", "tokenizer"]
+ image_processor_class = "LayoutLMv2ImageProcessor"
+ tokenizer_class = ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast")
+
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
+ feature_extractor = None
+ if "feature_extractor" in kwargs:
+ warnings.warn(
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
+ " instead.",
+ FutureWarning,
+ )
+ feature_extractor = kwargs.pop("feature_extractor")
+
+ image_processor = image_processor if image_processor is not None else feature_extractor
+ if image_processor is None:
+ raise ValueError("You need to specify an `image_processor`.")
+ if tokenizer is None:
+ raise ValueError("You need to specify a `tokenizer`.")
+
+ super().__init__(image_processor, tokenizer)
+
+ def __call__(
+ self,
+ images,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
+ text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
+ boxes: Union[List[List[int]], List[List[List[int]]]] = None,
+ word_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = False,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ This method first forwards the `images` argument to [`~LayoutLMv2ImageProcessor.__call__`]. In case
+ [`LayoutLMv2ImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and
+ bounding boxes along with the additional arguments to [`~LayoutLMv2Tokenizer.__call__`] and returns the output,
+ together with resized `images`. In case [`LayoutLMv2ImageProcessor`] was initialized with `apply_ocr` set to
+ `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional
+ arguments to [`~LayoutLMv2Tokenizer.__call__`] and returns the output, together with resized `images``.
+
+ Please refer to the docstring of the above two methods for more information.
+ """
+ # verify input
+ if self.image_processor.apply_ocr and (boxes is not None):
+ raise ValueError(
+ "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True."
+ )
+
+ if self.image_processor.apply_ocr and (word_labels is not None):
+ raise ValueError(
+ "You cannot provide word labels if you initialized the image processor with apply_ocr set to True."
+ )
+
+ if return_overflowing_tokens is True and return_offsets_mapping is False:
+ raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.")
+
+ # first, apply the image processor
+ features = self.image_processor(images=images, return_tensors=return_tensors)
+
+ # second, apply the tokenizer
+ if text is not None and self.image_processor.apply_ocr and text_pair is None:
+ if isinstance(text, str):
+ text = [text] # add batch dimension (as the image processor always adds a batch dimension)
+ text_pair = features["words"]
+
+ encoded_inputs = self.tokenizer(
+ text=text if text is not None else features["words"],
+ text_pair=text_pair if text_pair is not None else None,
+ boxes=boxes if boxes is not None else features["boxes"],
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ return_tensors=return_tensors,
+ **kwargs,
+ )
+
+ # add pixel values
+ images = features.pop("pixel_values")
+ if return_overflowing_tokens is True:
+ images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"])
+ encoded_inputs["image"] = images
+
+ return encoded_inputs
+
+ def get_overflowing_images(self, images, overflow_to_sample_mapping):
+ # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
+ images_with_overflow = []
+ for sample_idx in overflow_to_sample_mapping:
+ images_with_overflow.append(images[sample_idx])
+
+ if len(images_with_overflow) != len(overflow_to_sample_mapping):
+ raise ValueError(
+ "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
+ f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}"
+ )
+
+ return images_with_overflow
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
+ to the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ return ["input_ids", "bbox", "token_type_ids", "attention_mask", "image"]
+
+ @property
+ def feature_extractor_class(self):
+ warnings.warn(
+ "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
+ FutureWarning,
+ )
+ return self.image_processor_class
+
+ @property
+ def feature_extractor(self):
+ warnings.warn(
+ "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
+ FutureWarning,
+ )
+ return self.image_processor
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..c9a138391e0f25d84526b16fb7ee8ef783e39b2e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2.py
@@ -0,0 +1,1542 @@
+# coding=utf-8
+# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization class for LayoutLMv2."""
+
+import collections
+import os
+import sys
+import unicodedata
+from typing import Dict, List, Optional, Tuple, Union
+
+from ...tokenization_utils import AddedToken, PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...tokenization_utils_base import (
+ BatchEncoding,
+ EncodedInput,
+ PreTokenizedInput,
+ TextInput,
+ TextInputPair,
+ TruncationStrategy,
+)
+from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+
+LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING = r"""
+ add_special_tokens (`bool`, *optional*, defaults to `True`):
+ Whether or not to encode the sequences with the special tokens relative to their model.
+ padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`):
+ Activates and controls padding. Accepts the following values:
+
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
+ sequence if provided).
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
+ acceptable input length for the model if that argument is not provided.
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
+ lengths).
+ truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
+ Activates and controls truncation. Accepts the following values:
+
+ - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
+ to the maximum acceptable input length for the model if that argument is not provided. This will
+ truncate token by token, removing a token from the longest sequence in the pair if a pair of
+ sequences (or a batch of pairs) is provided.
+ - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
+ greater than the model maximum admissible input size).
+ max_length (`int`, *optional*):
+ Controls the maximum length to use by one of the truncation/padding parameters.
+
+ If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
+ is required by one of the truncation/padding parameters. If the model has no specific maximum input
+ length (like XLNet) truncation/padding to a maximum length will be deactivated.
+ stride (`int`, *optional*, defaults to 0):
+ If set to a number along with `max_length`, the overflowing tokens returned when
+ `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
+ returned to provide some overlap between truncated and overflowing sequences. The value of this
+ argument defines the number of overlapping tokens.
+ pad_to_multiple_of (`int`, *optional*):
+ If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
+ the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
+ return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
+ If set, will return tensors instead of list of python integers. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return Numpy `np.ndarray` objects.
+"""
+
+LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
+ return_token_type_ids (`bool`, *optional*):
+ Whether to return token type IDs. If left to the default, will return the token type IDs according to
+ the specific tokenizer's default, defined by the `return_outputs` attribute.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ return_attention_mask (`bool`, *optional*):
+ Whether to return the attention mask. If left to the default, will return the attention mask according
+ to the specific tokenizer's default, defined by the `return_outputs` attribute.
+
+ [What are attention masks?](../glossary#attention-mask)
+ return_overflowing_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch
+ of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead
+ of returning overflowing tokens.
+ return_special_tokens_mask (`bool`, *optional*, defaults to `False`):
+ Whether or not to return special tokens mask information.
+ return_offsets_mapping (`bool`, *optional*, defaults to `False`):
+ Whether or not to return `(char_start, char_end)` for each token.
+
+ This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using
+ Python's tokenizer, this method will raise `NotImplementedError`.
+ return_length (`bool`, *optional*, defaults to `False`):
+ Whether or not to return the lengths of the encoded inputs.
+ verbose (`bool`, *optional*, defaults to `True`):
+ Whether or not to print more information and warnings.
+ **kwargs: passed to the `self.tokenize()` method
+
+ Return:
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
+
+ - **input_ids** -- List of token ids to be fed to a model.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ - **bbox** -- List of bounding boxes to be fed to a model.
+
+ - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or
+ if *"token_type_ids"* is in `self.model_input_names`).
+
+ [What are token type IDs?](../glossary#token-type-ids)
+
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
+
+ [What are attention masks?](../glossary#attention-mask)
+
+ - **labels** -- List of labels to be fed to a model. (when `word_labels` is specified).
+ - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and
+ `return_overflowing_tokens=True`).
+ - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and
+ `return_overflowing_tokens=True`).
+ - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying
+ regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`).
+ - **length** -- The length of the inputs (when `return_length=True`).
+"""
+
+
+def load_vocab(vocab_file):
+ """Loads a vocabulary file into a dictionary."""
+ vocab = collections.OrderedDict()
+ with open(vocab_file, "r", encoding="utf-8") as reader:
+ tokens = reader.readlines()
+ for index, token in enumerate(tokens):
+ token = token.rstrip("\n")
+ vocab[token] = index
+ return vocab
+
+
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+table = dict.fromkeys(i for i in range(sys.maxunicode) if unicodedata.category(chr(i)).startswith("P"))
+
+
+def subfinder(mylist, pattern):
+ matches = []
+ indices = []
+ for idx, i in enumerate(range(len(mylist))):
+ if mylist[i] == pattern[0] and mylist[i : i + len(pattern)] == pattern:
+ matches.append(pattern)
+ indices.append(idx)
+ if matches:
+ return matches[0], indices[0]
+ else:
+ return None, 0
+
+
+class LayoutLMv2Tokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a LayoutLMv2 tokenizer. Based on WordPiece. [`LayoutLMv2Tokenizer`] can be used to turn words, word-level
+ bounding boxes and optional word labels to token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`, and
+ optional `labels` (for token classification).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ [`LayoutLMv2Tokenizer`] runs end-to-end tokenization: punctuation splitting and wordpiece. It also turns the
+ word-level bounding boxes into token-level bounding boxes.
+
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ do_basic_tokenize=True,
+ never_split=None,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ cls_token_box=[0, 0, 0, 0],
+ sep_token_box=[1000, 1000, 1000, 1000],
+ pad_token_box=[0, 0, 0, 0],
+ pad_token_label=-100,
+ only_label_first_subword=True,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ model_max_length: int = 512,
+ additional_special_tokens: Optional[List[str]] = None,
+ **kwargs,
+ ):
+ sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
+ unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
+ pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
+ cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
+ mask_token = AddedToken(mask_token, special=True) if isinstance(mask_token, str) else mask_token
+
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.vocab = load_vocab(vocab_file)
+ self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
+ self.do_basic_tokenize = do_basic_tokenize
+ if do_basic_tokenize:
+ self.basic_tokenizer = BasicTokenizer(
+ do_lower_case=do_lower_case,
+ never_split=never_split,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ )
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
+
+ # additional properties
+ self.cls_token_box = cls_token_box
+ self.sep_token_box = sep_token_box
+ self.pad_token_box = pad_token_box
+ self.pad_token_label = pad_token_label
+ self.only_label_first_subword = only_label_first_subword
+ super().__init__(
+ do_lower_case=do_lower_case,
+ do_basic_tokenize=do_basic_tokenize,
+ never_split=never_split,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ cls_token_box=cls_token_box,
+ sep_token_box=sep_token_box,
+ pad_token_box=pad_token_box,
+ pad_token_label=pad_token_label,
+ only_label_first_subword=only_label_first_subword,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ model_max_length=model_max_length,
+ additional_special_tokens=additional_special_tokens,
+ **kwargs,
+ )
+
+ @property
+ def do_lower_case(self):
+ return self.basic_tokenizer.do_lower_case
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ def get_vocab(self):
+ return dict(self.vocab, **self.added_tokens_encoder)
+
+ def _tokenize(self, text):
+ split_tokens = []
+ if self.do_basic_tokenize:
+ for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
+ # If the token is part of the never_split set
+ if token in self.basic_tokenizer.never_split:
+ split_tokens.append(token)
+ else:
+ split_tokens += self.wordpiece_tokenizer.tokenize(token)
+ else:
+ split_tokens = self.wordpiece_tokenizer.tokenize(text)
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.ids_to_tokens.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace(" ##", "").strip()
+ return out_string
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A BERT sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
+ pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
+ sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ index = 0
+ if os.path.isdir(save_directory):
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ else:
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
+ with open(vocab_file, "w", encoding="utf-8") as writer:
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
+ " Please check that the vocabulary is not corrupted!"
+ )
+ index = token_index
+ writer.write(token + "\n")
+ index += 1
+ return (vocab_file,)
+
+ @add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def __call__(
+ self,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
+ text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
+ boxes: Union[List[List[int]], List[List[List[int]]]] = None,
+ word_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
+ sequences with word-level normalized bounding boxes and optional labels.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
+ (words of a single example or questions of a batch of examples) or a list of list of strings (batch of
+ words).
+ text_pair (`List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
+ (pretokenized string).
+ boxes (`List[List[int]]`, `List[List[List[int]]]`):
+ Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
+ word_labels (`List[int]`, `List[List[int]]`, *optional*):
+ Word-level integer labels (for token classification tasks such as FUNSD, CORD).
+ """
+
+ # Input type checking for clearer error
+ def _is_valid_text_input(t):
+ if isinstance(t, str):
+ # Strings are fine
+ return True
+ elif isinstance(t, (list, tuple)):
+ # List are fine as long as they are...
+ if len(t) == 0:
+ # ... empty
+ return True
+ elif isinstance(t[0], str):
+ # ... list of strings
+ return True
+ elif isinstance(t[0], (list, tuple)):
+ # ... list with an empty list or with a list of strings
+ return len(t[0]) == 0 or isinstance(t[0][0], str)
+ else:
+ return False
+ else:
+ return False
+
+ if text_pair is not None:
+ # in case text + text_pair are provided, text = questions, text_pair = words
+ if not _is_valid_text_input(text):
+ raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
+ if not isinstance(text_pair, (list, tuple)):
+ raise ValueError(
+ "Words must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+ else:
+ # in case only text is provided => must be words
+ if not isinstance(text, (list, tuple)):
+ raise ValueError(
+ "Words must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+
+ if text_pair is not None:
+ is_batched = isinstance(text, (list, tuple))
+ else:
+ is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
+
+ words = text if text_pair is None else text_pair
+ if boxes is None:
+ raise ValueError("You must provide corresponding bounding boxes")
+ if is_batched:
+ if len(words) != len(boxes):
+ raise ValueError("You must provide words and boxes for an equal amount of examples")
+ for words_example, boxes_example in zip(words, boxes):
+ if len(words_example) != len(boxes_example):
+ raise ValueError("You must provide as many words as there are bounding boxes")
+ else:
+ if len(words) != len(boxes):
+ raise ValueError("You must provide as many words as there are bounding boxes")
+
+ if is_batched:
+ if text_pair is not None and len(text) != len(text_pair):
+ raise ValueError(
+ f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
+ f" {len(text_pair)}."
+ )
+ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
+ is_pair = bool(text_pair is not None)
+ return self.batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+ else:
+ return self.encode_plus(
+ text=text,
+ text_pair=text_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ @add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ boxes: Optional[List[List[List[int]]]] = None,
+ word_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ def _batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ boxes: Optional[List[List[List[int]]]] = None,
+ word_labels: Optional[List[List[int]]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ if return_offsets_mapping:
+ raise NotImplementedError(
+ "return_offset_mapping is not available when using Python tokenizers. "
+ "To use this feature, change your tokenizer to one deriving from "
+ "transformers.PreTrainedTokenizerFast."
+ )
+
+ batch_outputs = self._batch_prepare_for_model(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ return_tensors=return_tensors,
+ verbose=verbose,
+ )
+
+ return BatchEncoding(batch_outputs)
+
+ @add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def _batch_prepare_for_model(
+ self,
+ batch_text_or_text_pairs,
+ is_pair: bool = None,
+ boxes: Optional[List[List[int]]] = None,
+ word_labels: Optional[List[List[int]]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[str] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ ) -> BatchEncoding:
+ """
+ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
+ adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
+ manages a moving window (with user defined stride) for overflowing tokens.
+
+ Args:
+ batch_ids_pairs: list of tokenized input ids or input ids pairs
+ """
+
+ batch_outputs = {}
+ for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)):
+ batch_text_or_text_pair, boxes_example = example
+ outputs = self.prepare_for_model(
+ batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
+ batch_text_or_text_pair[1] if is_pair else None,
+ boxes_example,
+ word_labels=word_labels[idx] if word_labels is not None else None,
+ add_special_tokens=add_special_tokens,
+ padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
+ truncation=truncation_strategy.value,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=None, # we pad in batch afterward
+ return_attention_mask=False, # we pad in batch afterward
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ return_tensors=None, # We convert the whole batch to tensors at the end
+ prepend_batch_axis=False,
+ verbose=verbose,
+ )
+
+ for key, value in outputs.items():
+ if key not in batch_outputs:
+ batch_outputs[key] = []
+ batch_outputs[key].append(value)
+
+ batch_outputs = self.pad(
+ batch_outputs,
+ padding=padding_strategy.value,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
+
+ return batch_outputs
+
+ @add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING)
+ def encode(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ boxes: Optional[List[List[int]]] = None,
+ word_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> List[int]:
+ encoded_inputs = self.encode_plus(
+ text=text,
+ text_pair=text_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return encoded_inputs["input_ids"]
+
+ @add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ boxes: Optional[List[List[int]]] = None,
+ word_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
+ `__call__` should be used instead.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
+ text_pair (`List[str]` or `List[int]`, *optional*):
+ Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
+ list of list of strings (words of a batch of examples).
+ """
+
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._encode_plus(
+ text=text,
+ boxes=boxes,
+ text_pair=text_pair,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ def _encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ boxes: Optional[List[List[int]]] = None,
+ word_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ if return_offsets_mapping:
+ raise NotImplementedError(
+ "return_offset_mapping is not available when using Python tokenizers. "
+ "To use this feature, change your tokenizer to one deriving from "
+ "transformers.PreTrainedTokenizerFast. "
+ "More information on available tokenizers at "
+ "https://github.com/huggingface/transformers/pull/2674"
+ )
+
+ return self.prepare_for_model(
+ text=text,
+ text_pair=text_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding_strategy.value,
+ truncation=truncation_strategy.value,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ prepend_batch_axis=True,
+ return_attention_mask=return_attention_mask,
+ return_token_type_ids=return_token_type_ids,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_length=return_length,
+ verbose=verbose,
+ )
+
+ @add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def prepare_for_model(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ boxes: Optional[List[List[int]]] = None,
+ word_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ prepend_batch_axis: bool = False,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
+ truncates sequences if overflowing while taking into account the special tokens and manages a moving window
+ (with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and
+ *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a
+ combination of arguments will raise an error.
+
+ Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into
+ token-level `labels`. The word label is used for the first token of the word, while remaining tokens are
+ labeled with -100, such that they will be ignored by the loss function.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
+ text_pair (`List[str]` or `List[int]`, *optional*):
+ Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
+ list of list of strings (words of a batch of examples).
+ """
+
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ tokens = []
+ pair_tokens = []
+ token_boxes = []
+ pair_token_boxes = []
+ labels = []
+
+ if text_pair is None:
+ if word_labels is None:
+ # CASE 1: document image classification (training + inference) + CASE 2: token classification (inference)
+ for word, box in zip(text, boxes):
+ if len(word) < 1: # skip empty words
+ continue
+ word_tokens = self.tokenize(word)
+ tokens.extend(word_tokens)
+ token_boxes.extend([box] * len(word_tokens))
+ else:
+ # CASE 2: token classification (training)
+ for word, box, label in zip(text, boxes, word_labels):
+ if len(word) < 1: # skip empty words
+ continue
+ word_tokens = self.tokenize(word)
+ tokens.extend(word_tokens)
+ token_boxes.extend([box] * len(word_tokens))
+ if self.only_label_first_subword:
+ # Use the real label id for the first token of the word, and padding ids for the remaining tokens
+ labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
+ else:
+ labels.extend([label] * len(word_tokens))
+ else:
+ # CASE 3: document visual question answering (inference)
+ # text = question
+ # text_pair = words
+ tokens = self.tokenize(text)
+ token_boxes = [self.pad_token_box for _ in range(len(tokens))]
+
+ for word, box in zip(text_pair, boxes):
+ if len(word) < 1: # skip empty words
+ continue
+ word_tokens = self.tokenize(word)
+ pair_tokens.extend(word_tokens)
+ pair_token_boxes.extend([box] * len(word_tokens))
+
+ # Create ids + pair_ids
+ ids = self.convert_tokens_to_ids(tokens)
+ pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
+
+ if (
+ return_overflowing_tokens
+ and truncation_strategy == TruncationStrategy.LONGEST_FIRST
+ and pair_ids is not None
+ ):
+ raise ValueError(
+ "Not possible to return overflowing tokens for pair of sequences with the "
+ "`longest_first`. Please select another truncation strategy than `longest_first`, "
+ "for instance `only_second` or `only_first`."
+ )
+
+ # Compute the total size of the returned encodings
+ pair = bool(pair_ids is not None)
+ len_ids = len(ids)
+ len_pair_ids = len(pair_ids) if pair else 0
+ total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
+
+ # Truncation: Handle max sequence length
+ overflowing_tokens = []
+ overflowing_token_boxes = []
+ overflowing_labels = []
+ if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
+ (
+ ids,
+ token_boxes,
+ pair_ids,
+ pair_token_boxes,
+ labels,
+ overflowing_tokens,
+ overflowing_token_boxes,
+ overflowing_labels,
+ ) = self.truncate_sequences(
+ ids,
+ token_boxes,
+ pair_ids=pair_ids,
+ pair_token_boxes=pair_token_boxes,
+ labels=labels,
+ num_tokens_to_remove=total_len - max_length,
+ truncation_strategy=truncation_strategy,
+ stride=stride,
+ )
+
+ if return_token_type_ids and not add_special_tokens:
+ raise ValueError(
+ "Asking to return token_type_ids while setting add_special_tokens to False "
+ "results in an undefined behavior. Please set add_special_tokens to True or "
+ "set return_token_type_ids to None."
+ )
+
+ # Load from model defaults
+ if return_token_type_ids is None:
+ return_token_type_ids = "token_type_ids" in self.model_input_names
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ encoded_inputs = {}
+
+ if return_overflowing_tokens:
+ encoded_inputs["overflowing_tokens"] = overflowing_tokens
+ encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes
+ encoded_inputs["overflowing_labels"] = overflowing_labels
+ encoded_inputs["num_truncated_tokens"] = total_len - max_length
+
+ # Add special tokens
+ if add_special_tokens:
+ sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
+ token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
+ token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box]
+ if pair_token_boxes:
+ pair_token_boxes = pair_token_boxes + [self.sep_token_box]
+ if labels:
+ labels = [self.pad_token_label] + labels + [self.pad_token_label]
+ else:
+ sequence = ids + pair_ids if pair else ids
+ token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
+
+ # Build output dictionary
+ encoded_inputs["input_ids"] = sequence
+ encoded_inputs["bbox"] = token_boxes + pair_token_boxes
+ if return_token_type_ids:
+ encoded_inputs["token_type_ids"] = token_type_ids
+ if return_special_tokens_mask:
+ if add_special_tokens:
+ encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
+ else:
+ encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
+
+ if labels:
+ encoded_inputs["labels"] = labels
+
+ # Check lengths
+ self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
+
+ # Padding
+ if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
+ encoded_inputs = self.pad(
+ encoded_inputs,
+ max_length=max_length,
+ padding=padding_strategy.value,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_attention_mask=return_attention_mask,
+ )
+
+ if return_length:
+ encoded_inputs["length"] = len(encoded_inputs["input_ids"])
+
+ batch_outputs = BatchEncoding(
+ encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
+ )
+
+ return batch_outputs
+
+ def truncate_sequences(
+ self,
+ ids: List[int],
+ token_boxes: List[List[int]],
+ pair_ids: Optional[List[int]] = None,
+ pair_token_boxes: Optional[List[List[int]]] = None,
+ labels: Optional[List[int]] = None,
+ num_tokens_to_remove: int = 0,
+ truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
+ stride: int = 0,
+ ) -> Tuple[List[int], List[int], List[int]]:
+ """
+ Truncates a sequence pair in-place following the strategy.
+
+ Args:
+ ids (`List[int]`):
+ Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
+ `convert_tokens_to_ids` methods.
+ token_boxes (`List[List[int]]`):
+ Bounding boxes of the first sequence.
+ pair_ids (`List[int]`, *optional*):
+ Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
+ and `convert_tokens_to_ids` methods.
+ pair_token_boxes (`List[List[int]]`, *optional*):
+ Bounding boxes of the second sequence.
+ labels (`List[int]`, *optional*):
+ Labels of the first sequence (for token classification tasks).
+ num_tokens_to_remove (`int`, *optional*, defaults to 0):
+ Number of tokens to remove using the truncation strategy.
+ truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
+ The strategy to follow for truncation. Can be:
+
+ - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will truncate
+ token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
+ batch of pairs) is provided.
+ - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
+ maximum acceptable input length for the model if that argument is not provided. This will only
+ truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
+ - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
+ than the model maximum admissible input size).
+ stride (`int`, *optional*, defaults to 0):
+ If set to a positive number, the overflowing tokens returned will contain some tokens from the main
+ sequence returned. The value of this argument defines the number of additional tokens.
+
+ Returns:
+ `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
+ overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
+ of sequences (or a batch of pairs) is provided.
+ """
+ if num_tokens_to_remove <= 0:
+ return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], []
+
+ if not isinstance(truncation_strategy, TruncationStrategy):
+ truncation_strategy = TruncationStrategy(truncation_strategy)
+
+ overflowing_tokens = []
+ overflowing_token_boxes = []
+ overflowing_labels = []
+ if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
+ truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
+ ):
+ if len(ids) > num_tokens_to_remove:
+ window_len = min(len(ids), stride + num_tokens_to_remove)
+ overflowing_tokens = ids[-window_len:]
+ overflowing_token_boxes = token_boxes[-window_len:]
+ overflowing_labels = labels[-window_len:]
+ ids = ids[:-num_tokens_to_remove]
+ token_boxes = token_boxes[:-num_tokens_to_remove]
+ labels = labels[:-num_tokens_to_remove]
+ else:
+ error_msg = (
+ f"We need to remove {num_tokens_to_remove} to truncate the input "
+ f"but the first sequence has a length {len(ids)}. "
+ )
+ if truncation_strategy == TruncationStrategy.ONLY_FIRST:
+ error_msg = (
+ error_msg + "Please select another truncation strategy than "
+ f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
+ )
+ logger.error(error_msg)
+ elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
+ logger.warning(
+ "Be aware, overflowing tokens are not returned for the setting you have chosen,"
+ f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
+ "truncation strategy. So the returned list will always be empty even if some "
+ "tokens have been removed."
+ )
+ for _ in range(num_tokens_to_remove):
+ if pair_ids is None or len(ids) > len(pair_ids):
+ ids = ids[:-1]
+ token_boxes = token_boxes[:-1]
+ labels = labels[:-1]
+ else:
+ pair_ids = pair_ids[:-1]
+ pair_token_boxes = pair_token_boxes[:-1]
+ elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
+ if len(pair_ids) > num_tokens_to_remove:
+ window_len = min(len(pair_ids), stride + num_tokens_to_remove)
+ overflowing_tokens = pair_ids[-window_len:]
+ overflowing_token_boxes = pair_token_boxes[-window_len:]
+ pair_ids = pair_ids[:-num_tokens_to_remove]
+ pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove]
+ else:
+ logger.error(
+ f"We need to remove {num_tokens_to_remove} to truncate the input "
+ f"but the second sequence has a length {len(pair_ids)}. "
+ f"Please select another truncation strategy than {truncation_strategy}, "
+ "for instance 'longest_first' or 'only_first'."
+ )
+
+ return (
+ ids,
+ token_boxes,
+ pair_ids,
+ pair_token_boxes,
+ labels,
+ overflowing_tokens,
+ overflowing_token_boxes,
+ overflowing_labels,
+ )
+
+ def _pad(
+ self,
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
+ max_length: Optional[int] = None,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ ) -> dict:
+ """
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
+
+ Args:
+ encoded_inputs:
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
+ max_length: maximum length of the returned list and optionally padding length (see below).
+ Will truncate by taking into account the special tokens.
+ padding_strategy: PaddingStrategy to use for padding.
+
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
+ The tokenizer padding sides are defined in self.padding_side:
+
+ - 'left': pads on the left of the sequences
+ - 'right': pads on the right of the sequences
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta).
+ return_attention_mask:
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
+ """
+ # Load from model defaults
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ required_input = encoded_inputs[self.model_input_names[0]]
+
+ if padding_strategy == PaddingStrategy.LONGEST:
+ max_length = len(required_input)
+
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
+
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
+
+ # Initialize attention mask if not present.
+ if return_attention_mask and "attention_mask" not in encoded_inputs:
+ encoded_inputs["attention_mask"] = [1] * len(required_input)
+
+ if needs_to_be_padded:
+ difference = max_length - len(required_input)
+ if self.padding_side == "right":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = (
+ encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
+ )
+ if "bbox" in encoded_inputs:
+ encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
+ encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
+ elif self.padding_side == "left":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
+ "token_type_ids"
+ ]
+ if "bbox" in encoded_inputs:
+ encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
+ else:
+ raise ValueError("Invalid padding strategy:" + str(self.padding_side))
+
+ return encoded_inputs
+
+
+# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
+class BasicTokenizer(object):
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ do_split_on_punc (`bool`, *optional*, defaults to `True`):
+ In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
+ the full context of the words, such as contractions.
+ """
+
+ def __init__(
+ self,
+ do_lower_case=True,
+ never_split=None,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ do_split_on_punc=True,
+ ):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+ self.do_split_on_punc = do_split_on_punc
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
+
+ Args:
+ never_split (`List[str]`, *optional*)
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ # prevents treating the same character with different unicode codepoints as different characters
+ unicode_normalized_text = unicodedata.normalize("NFC", text)
+ orig_tokens = whitespace_tokenize(unicode_normalized_text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if not self.do_split_on_punc or (never_split is not None and text in never_split):
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
+class WordpieceTokenizer(object):
+ """Runs WordPiece tokenization."""
+
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
+ self.vocab = vocab
+ self.unk_token = unk_token
+ self.max_input_chars_per_word = max_input_chars_per_word
+
+ def tokenize(self, text):
+ """
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
+ tokenization using the given vocabulary.
+
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
+
+ Args:
+ text: A single token or whitespace separated tokens. This should have
+ already been passed through *BasicTokenizer*.
+
+ Returns:
+ A list of wordpiece tokens.
+ """
+
+ output_tokens = []
+ for token in whitespace_tokenize(text):
+ chars = list(token)
+ if len(chars) > self.max_input_chars_per_word:
+ output_tokens.append(self.unk_token)
+ continue
+
+ is_bad = False
+ start = 0
+ sub_tokens = []
+ while start < len(chars):
+ end = len(chars)
+ cur_substr = None
+ while start < end:
+ substr = "".join(chars[start:end])
+ if start > 0:
+ substr = "##" + substr
+ if substr in self.vocab:
+ cur_substr = substr
+ break
+ end -= 1
+ if cur_substr is None:
+ is_bad = True
+ break
+ sub_tokens.append(cur_substr)
+ start = end
+
+ if is_bad:
+ output_tokens.append(self.unk_token)
+ else:
+ output_tokens.extend(sub_tokens)
+ return output_tokens
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa2bf6b3226b181bc8f199c1f21c2e3b7f9af2ac
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py
@@ -0,0 +1,793 @@
+# coding=utf-8
+# Copyright 2021 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Fast tokenization class for LayoutLMv2. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus
+and _encode_plus, in which the Rust tokenizer is used.
+"""
+
+import json
+from typing import Dict, List, Optional, Tuple, Union
+
+from tokenizers import normalizers
+
+from ...tokenization_utils_base import (
+ BatchEncoding,
+ EncodedInput,
+ PaddingStrategy,
+ PreTokenizedInput,
+ TensorType,
+ TextInput,
+ TextInputPair,
+ TruncationStrategy,
+)
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import add_end_docstrings, logging
+from .tokenization_layoutlmv2 import (
+ LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING,
+ LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
+ LayoutLMv2Tokenizer,
+)
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
+
+
+class LayoutLMv2TokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" LayoutLMv2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
+ The bounding box to use for the special [CLS] token.
+ sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
+ The bounding box to use for the special [SEP] token.
+ pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
+ The bounding box to use for the special [PAD] token.
+ pad_token_label (`int`, *optional*, defaults to -100):
+ The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
+ CrossEntropyLoss.
+ only_label_first_subword (`bool`, *optional*, defaults to `True`):
+ Whether or not to only label the first subword, in case word labels are provided.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
+ issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original LayoutLMv2).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = LayoutLMv2Tokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=True,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ cls_token_box=[0, 0, 0, 0],
+ sep_token_box=[1000, 1000, 1000, 1000],
+ pad_token_box=[0, 0, 0, 0],
+ pad_token_label=-100,
+ only_label_first_subword=True,
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ cls_token_box=cls_token_box,
+ sep_token_box=sep_token_box,
+ pad_token_box=pad_token_box,
+ pad_token_label=pad_token_label,
+ only_label_first_subword=only_label_first_subword,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
+ if (
+ pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
+ or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
+ ):
+ pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
+ pre_tok_state["lowercase"] = do_lower_case
+ pre_tok_state["strip_accents"] = strip_accents
+ self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
+
+ self.do_lower_case = do_lower_case
+
+ # additional properties
+ self.cls_token_box = cls_token_box
+ self.sep_token_box = sep_token_box
+ self.pad_token_box = pad_token_box
+ self.pad_token_label = pad_token_label
+ self.only_label_first_subword = only_label_first_subword
+
+ @add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def __call__(
+ self,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
+ text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
+ boxes: Union[List[List[int]], List[List[List[int]]]] = None,
+ word_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
+ sequences with word-level normalized bounding boxes and optional labels.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
+ (words of a single example or questions of a batch of examples) or a list of list of strings (batch of
+ words).
+ text_pair (`List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
+ (pretokenized string).
+ boxes (`List[List[int]]`, `List[List[List[int]]]`):
+ Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
+ word_labels (`List[int]`, `List[List[int]]`, *optional*):
+ Word-level integer labels (for token classification tasks such as FUNSD, CORD).
+ """
+
+ # Input type checking for clearer error
+ def _is_valid_text_input(t):
+ if isinstance(t, str):
+ # Strings are fine
+ return True
+ elif isinstance(t, (list, tuple)):
+ # List are fine as long as they are...
+ if len(t) == 0:
+ # ... empty
+ return True
+ elif isinstance(t[0], str):
+ # ... list of strings
+ return True
+ elif isinstance(t[0], (list, tuple)):
+ # ... list with an empty list or with a list of strings
+ return len(t[0]) == 0 or isinstance(t[0][0], str)
+ else:
+ return False
+ else:
+ return False
+
+ if text_pair is not None:
+ # in case text + text_pair are provided, text = questions, text_pair = words
+ if not _is_valid_text_input(text):
+ raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
+ if not isinstance(text_pair, (list, tuple)):
+ raise ValueError(
+ "Words must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+ else:
+ # in case only text is provided => must be words
+ if not isinstance(text, (list, tuple)):
+ raise ValueError(
+ "Words must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+
+ if text_pair is not None:
+ is_batched = isinstance(text, (list, tuple))
+ else:
+ is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
+
+ words = text if text_pair is None else text_pair
+ if boxes is None:
+ raise ValueError("You must provide corresponding bounding boxes")
+ if is_batched:
+ if len(words) != len(boxes):
+ raise ValueError("You must provide words and boxes for an equal amount of examples")
+ for words_example, boxes_example in zip(words, boxes):
+ if len(words_example) != len(boxes_example):
+ raise ValueError("You must provide as many words as there are bounding boxes")
+ else:
+ if len(words) != len(boxes):
+ raise ValueError("You must provide as many words as there are bounding boxes")
+
+ if is_batched:
+ if text_pair is not None and len(text) != len(text_pair):
+ raise ValueError(
+ f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
+ f" {len(text_pair)}."
+ )
+ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
+ is_pair = bool(text_pair is not None)
+ return self.batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+ else:
+ return self.encode_plus(
+ text=text,
+ text_pair=text_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ @add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ boxes: Optional[List[List[List[int]]]] = None,
+ word_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
+ batched_input = [(text, pair)] if pair else [text]
+ encodings = self._tokenizer.encode_batch(
+ batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
+ )
+
+ return encodings[0].tokens
+
+ @add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ def encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ boxes: Optional[List[List[int]]] = None,
+ word_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
+ `__call__` should be used instead.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
+ text_pair (`List[str]` or `List[int]`, *optional*):
+ Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
+ list of list of strings (words of a batch of examples).
+ """
+
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._encode_plus(
+ text=text,
+ boxes=boxes,
+ text_pair=text_pair,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ def _batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ boxes: Optional[List[List[List[int]]]] = None,
+ word_labels: Optional[List[List[int]]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[str] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ ) -> BatchEncoding:
+ if not isinstance(batch_text_or_text_pairs, list):
+ raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
+
+ # Set the truncation and padding strategy and restore the initial configuration
+ self.set_truncation_and_padding(
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ )
+
+ if is_pair:
+ batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
+
+ encodings = self._tokenizer.encode_batch(
+ batch_text_or_text_pairs,
+ add_special_tokens=add_special_tokens,
+ is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs
+ )
+
+ # Convert encoding to dict
+ # `Tokens` has type: Tuple[
+ # List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
+ # List[EncodingFast]
+ # ]
+ # with nested dimensions corresponding to batch, overflows, sequence length
+ tokens_and_encodings = [
+ self._convert_encoding(
+ encoding=encoding,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=True
+ if word_labels is not None
+ else return_offsets_mapping, # we use offsets to create the labels
+ return_length=return_length,
+ verbose=verbose,
+ )
+ for encoding in encodings
+ ]
+
+ # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
+ # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
+ # (we say ~ because the number of overflow varies with the example in the batch)
+ #
+ # To match each overflowing sample with the original sample in the batch
+ # we add an overflow_to_sample_mapping array (see below)
+ sanitized_tokens = {}
+ for key in tokens_and_encodings[0][0].keys():
+ stack = [e for item, _ in tokens_and_encodings for e in item[key]]
+ sanitized_tokens[key] = stack
+ sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
+
+ # If returning overflowing tokens, we need to return a mapping
+ # from the batch idx to the original sample
+ if return_overflowing_tokens:
+ overflow_to_sample_mapping = []
+ for i, (toks, _) in enumerate(tokens_and_encodings):
+ overflow_to_sample_mapping += [i] * len(toks["input_ids"])
+ sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
+
+ for input_ids in sanitized_tokens["input_ids"]:
+ self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
+
+ # create the token boxes
+ token_boxes = []
+ for batch_index in range(len(sanitized_tokens["input_ids"])):
+ if return_overflowing_tokens:
+ original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
+ else:
+ original_index = batch_index
+ token_boxes_example = []
+ for id, sequence_id, word_id in zip(
+ sanitized_tokens["input_ids"][batch_index],
+ sanitized_encodings[batch_index].sequence_ids,
+ sanitized_encodings[batch_index].word_ids,
+ ):
+ if word_id is not None:
+ if is_pair and sequence_id == 0:
+ token_boxes_example.append(self.pad_token_box)
+ else:
+ token_boxes_example.append(boxes[original_index][word_id])
+ else:
+ if id == self.cls_token_id:
+ token_boxes_example.append(self.cls_token_box)
+ elif id == self.sep_token_id:
+ token_boxes_example.append(self.sep_token_box)
+ elif id == self.pad_token_id:
+ token_boxes_example.append(self.pad_token_box)
+ else:
+ raise ValueError("Id not recognized")
+ token_boxes.append(token_boxes_example)
+
+ sanitized_tokens["bbox"] = token_boxes
+
+ # optionally, create the labels
+ if word_labels is not None:
+ labels = []
+ for batch_index in range(len(sanitized_tokens["input_ids"])):
+ if return_overflowing_tokens:
+ original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
+ else:
+ original_index = batch_index
+ labels_example = []
+ for id, offset, word_id in zip(
+ sanitized_tokens["input_ids"][batch_index],
+ sanitized_tokens["offset_mapping"][batch_index],
+ sanitized_encodings[batch_index].word_ids,
+ ):
+ if word_id is not None:
+ if self.only_label_first_subword:
+ if offset[0] == 0:
+ # Use the real label id for the first token of the word, and padding ids for the remaining tokens
+ labels_example.append(word_labels[original_index][word_id])
+ else:
+ labels_example.append(self.pad_token_label)
+ else:
+ labels_example.append(word_labels[original_index][word_id])
+ else:
+ labels_example.append(self.pad_token_label)
+ labels.append(labels_example)
+
+ sanitized_tokens["labels"] = labels
+ # finally, remove offsets if the user didn't want them
+ if not return_offsets_mapping:
+ del sanitized_tokens["offset_mapping"]
+
+ return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
+
+ def _encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ boxes: Optional[List[List[int]]] = None,
+ word_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[bool] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ # make it a batched input
+ # 2 options:
+ # 1) only text, in case text must be a list of str
+ # 2) text + text_pair, in which case text = str and text_pair a list of str
+ batched_input = [(text, text_pair)] if text_pair else [text]
+ batched_boxes = [boxes]
+ batched_word_labels = [word_labels] if word_labels is not None else None
+ batched_output = self._batch_encode_plus(
+ batched_input,
+ is_pair=bool(text_pair is not None),
+ boxes=batched_boxes,
+ word_labels=batched_word_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ # Return tensor is None, then we can remove the leading batch axis
+ # Overflowing tokens are returned as a batch of output so we keep them in this case
+ if return_tensors is None and not return_overflowing_tokens:
+ batched_output = BatchEncoding(
+ {
+ key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
+ for key, value in batched_output.items()
+ },
+ batched_output.encodings,
+ )
+
+ self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
+
+ return batched_output
+
+ def _pad(
+ self,
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
+ max_length: Optional[int] = None,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ ) -> dict:
+ """
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
+
+ Args:
+ encoded_inputs:
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
+ max_length: maximum length of the returned list and optionally padding length (see below).
+ Will truncate by taking into account the special tokens.
+ padding_strategy: PaddingStrategy to use for padding.
+
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
+ The tokenizer padding sides are defined in self.padding_side:
+
+ - 'left': pads on the left of the sequences
+ - 'right': pads on the right of the sequences
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta).
+ return_attention_mask:
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
+ """
+ # Load from model defaults
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ required_input = encoded_inputs[self.model_input_names[0]]
+
+ if padding_strategy == PaddingStrategy.LONGEST:
+ max_length = len(required_input)
+
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
+
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
+
+ # Initialize attention mask if not present.
+ if return_attention_mask and "attention_mask" not in encoded_inputs:
+ encoded_inputs["attention_mask"] = [1] * len(required_input)
+
+ if needs_to_be_padded:
+ difference = max_length - len(required_input)
+ if self.padding_side == "right":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = (
+ encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
+ )
+ if "bbox" in encoded_inputs:
+ encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
+ encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
+ elif self.padding_side == "left":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
+ "token_type_ids"
+ ]
+ if "bbox" in encoded_inputs:
+ encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
+ else:
+ raise ValueError("Invalid padding strategy:" + str(self.padding_side))
+
+ return encoded_inputs
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A BERT sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+
+ if token_ids_1:
+ output += token_ids_1 + [self.sep_token_id]
+
+ return output
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
+ pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
+ sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2ad40e3bcc3c7a138c9e853fa2c6b3a67c019d4d
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/configuration_layoutlmv3.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/configuration_layoutlmv3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fe9be4b3968eca27ab94713fa7065c61d1caf4d4
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/configuration_layoutlmv3.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/feature_extraction_layoutlmv3.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/feature_extraction_layoutlmv3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6025ddc339c9f9a3b3cc89983eeb52175fbb8cc0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/feature_extraction_layoutlmv3.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/image_processing_layoutlmv3.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/image_processing_layoutlmv3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..da8858fd3cb2b49eb75be2f7a62d4f75a9b9e92a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/image_processing_layoutlmv3.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_layoutlmv3.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_layoutlmv3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d3f9c8fb48a03f7234ed77d9b23047f8b9019a50
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_layoutlmv3.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_tf_layoutlmv3.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_tf_layoutlmv3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e2a14e1e3dac3e65ca0dc8784a408de28ed9e59f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/modeling_tf_layoutlmv3.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/processing_layoutlmv3.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/processing_layoutlmv3.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..916c4b0c5af08f9f8cda4ac0a876633d02b3098d
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/processing_layoutlmv3.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/tokenization_layoutlmv3_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/tokenization_layoutlmv3_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..34162d427770aac10d2821440354b55c76902c0f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/__pycache__/tokenization_layoutlmv3_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..07bedf36133ad8b796519ec8c9b6ff3598445006
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/layoutlmv3/tokenization_layoutlmv3_fast.py
@@ -0,0 +1,837 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Fast tokenization class for LayoutLMv3. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus
+and _encode_plus, in which the Rust tokenizer is used.
+"""
+
+import json
+from typing import Dict, List, Optional, Tuple, Union
+
+from tokenizers import pre_tokenizers, processors
+
+from ...tokenization_utils_base import (
+ BatchEncoding,
+ EncodedInput,
+ PaddingStrategy,
+ PreTokenizedInput,
+ TensorType,
+ TextInput,
+ TextInputPair,
+ TruncationStrategy,
+)
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import add_end_docstrings, logging
+from .tokenization_layoutlmv3 import (
+ LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING,
+ LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
+ LayoutLMv3Tokenizer,
+)
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
+
+
+class LayoutLMv3TokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" LayoutLMv3 tokenizer (backed by HuggingFace's *tokenizers* library). Based on BPE.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ merges_file (`str`):
+ Path to the merges file.
+ errors (`str`, *optional*, defaults to `"replace"`):
+ Paradigm to follow when decoding bytes to UTF-8. See
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the beginning of
+ sequence. The token used is the `cls_token`.
+
+
+
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+
+
+
+ When building a sequence using special tokens, this is not the token that is used for the end of sequence.
+ The token used is the `sep_token`.
+
+
+
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ add_prefix_space (`bool`, *optional*, defaults to `False`):
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
+ other word. (RoBERTa tokenizer detect beginning of words by the preceding space).
+ trim_offsets (`bool`, *optional*, defaults to `True`):
+ Whether the post processing step should trim offsets to avoid including whitespaces.
+ cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
+ The bounding box to use for the special [CLS] token.
+ sep_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
+ The bounding box to use for the special [SEP] token.
+ pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
+ The bounding box to use for the special [PAD] token.
+ pad_token_label (`int`, *optional*, defaults to -100):
+ The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
+ CrossEntropyLoss.
+ only_label_first_subword (`bool`, *optional*, defaults to `True`):
+ Whether or not to only label the first subword, in case word labels are provided.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+ slow_tokenizer_class = LayoutLMv3Tokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ merges_file=None,
+ tokenizer_file=None,
+ errors="replace",
+ bos_token="",
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ add_prefix_space=True,
+ trim_offsets=True,
+ cls_token_box=[0, 0, 0, 0],
+ sep_token_box=[0, 0, 0, 0],
+ pad_token_box=[0, 0, 0, 0],
+ pad_token_label=-100,
+ only_label_first_subword=True,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ merges_file,
+ tokenizer_file=tokenizer_file,
+ errors=errors,
+ bos_token=bos_token,
+ eos_token=eos_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ add_prefix_space=add_prefix_space,
+ trim_offsets=trim_offsets,
+ cls_token_box=cls_token_box,
+ sep_token_box=sep_token_box,
+ pad_token_box=pad_token_box,
+ pad_token_label=pad_token_label,
+ only_label_first_subword=only_label_first_subword,
+ **kwargs,
+ )
+
+ pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
+ if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
+ pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
+ pre_tok_state["add_prefix_space"] = add_prefix_space
+ self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
+
+ self.add_prefix_space = add_prefix_space
+
+ tokenizer_component = "post_processor"
+ tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
+ if tokenizer_component_instance:
+ state = json.loads(tokenizer_component_instance.__getstate__())
+
+ # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
+ if "sep" in state:
+ state["sep"] = tuple(state["sep"])
+ if "cls" in state:
+ state["cls"] = tuple(state["cls"])
+
+ changes_to_apply = False
+
+ if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
+ state["add_prefix_space"] = add_prefix_space
+ changes_to_apply = True
+
+ if state.get("trim_offsets", trim_offsets) != trim_offsets:
+ state["trim_offsets"] = trim_offsets
+ changes_to_apply = True
+
+ if changes_to_apply:
+ component_class = getattr(processors, state.pop("type"))
+ new_value = component_class(**state)
+ setattr(self.backend_tokenizer, tokenizer_component, new_value)
+
+ # additional properties
+ self.cls_token_box = cls_token_box
+ self.sep_token_box = sep_token_box
+ self.pad_token_box = pad_token_box
+ self.pad_token_label = pad_token_label
+ self.only_label_first_subword = only_label_first_subword
+
+ @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.__call__
+ def __call__(
+ self,
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
+ text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
+ boxes: Union[List[List[int]], List[List[List[int]]]] = None,
+ word_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
+ sequences with word-level normalized bounding boxes and optional labels.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
+ (words of a single example or questions of a batch of examples) or a list of list of strings (batch of
+ words).
+ text_pair (`List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
+ (pretokenized string).
+ boxes (`List[List[int]]`, `List[List[List[int]]]`):
+ Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
+ word_labels (`List[int]`, `List[List[int]]`, *optional*):
+ Word-level integer labels (for token classification tasks such as FUNSD, CORD).
+ """
+
+ # Input type checking for clearer error
+ def _is_valid_text_input(t):
+ if isinstance(t, str):
+ # Strings are fine
+ return True
+ elif isinstance(t, (list, tuple)):
+ # List are fine as long as they are...
+ if len(t) == 0:
+ # ... empty
+ return True
+ elif isinstance(t[0], str):
+ # ... list of strings
+ return True
+ elif isinstance(t[0], (list, tuple)):
+ # ... list with an empty list or with a list of strings
+ return len(t[0]) == 0 or isinstance(t[0][0], str)
+ else:
+ return False
+ else:
+ return False
+
+ if text_pair is not None:
+ # in case text + text_pair are provided, text = questions, text_pair = words
+ if not _is_valid_text_input(text):
+ raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
+ if not isinstance(text_pair, (list, tuple)):
+ raise ValueError(
+ "Words must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+ else:
+ # in case only text is provided => must be words
+ if not isinstance(text, (list, tuple)):
+ raise ValueError(
+ "Words must be of type `List[str]` (single pretokenized example), "
+ "or `List[List[str]]` (batch of pretokenized examples)."
+ )
+
+ if text_pair is not None:
+ is_batched = isinstance(text, (list, tuple))
+ else:
+ is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
+
+ words = text if text_pair is None else text_pair
+ if boxes is None:
+ raise ValueError("You must provide corresponding bounding boxes")
+ if is_batched:
+ if len(words) != len(boxes):
+ raise ValueError("You must provide words and boxes for an equal amount of examples")
+ for words_example, boxes_example in zip(words, boxes):
+ if len(words_example) != len(boxes_example):
+ raise ValueError("You must provide as many words as there are bounding boxes")
+ else:
+ if len(words) != len(boxes):
+ raise ValueError("You must provide as many words as there are bounding boxes")
+
+ if is_batched:
+ if text_pair is not None and len(text) != len(text_pair):
+ raise ValueError(
+ f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
+ f" {len(text_pair)}."
+ )
+ batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
+ is_pair = bool(text_pair is not None)
+ return self.batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+ else:
+ return self.encode_plus(
+ text=text,
+ text_pair=text_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.batch_encode_plus
+ def batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ boxes: Optional[List[List[List[int]]]] = None,
+ word_labels: Optional[Union[List[int], List[List[int]]]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._batch_encode_plus(
+ batch_text_or_text_pairs=batch_text_or_text_pairs,
+ is_pair=is_pair,
+ boxes=boxes,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.tokenize
+ def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
+ batched_input = [(text, pair)] if pair else [text]
+ encodings = self._tokenizer.encode_batch(
+ batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
+ )
+
+ return encodings[0].tokens
+
+ @add_end_docstrings(LAYOUTLMV3_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV3_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
+ # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.encode_plus
+ def encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ boxes: Optional[List[List[int]]] = None,
+ word_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding: Union[bool, str, PaddingStrategy] = False,
+ truncation: Union[bool, str, TruncationStrategy] = None,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ """
+ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
+ `__call__` should be used instead.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
+ text_pair (`List[str]` or `List[int]`, *optional*):
+ Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
+ list of list of strings (words of a batch of examples).
+ """
+
+ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
+ padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
+ padding=padding,
+ truncation=truncation,
+ max_length=max_length,
+ pad_to_multiple_of=pad_to_multiple_of,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ return self._encode_plus(
+ text=text,
+ boxes=boxes,
+ text_pair=text_pair,
+ word_labels=word_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ def _batch_encode_plus(
+ self,
+ batch_text_or_text_pairs: Union[
+ List[TextInput],
+ List[TextInputPair],
+ List[PreTokenizedInput],
+ ],
+ is_pair: bool = None,
+ boxes: Optional[List[List[List[int]]]] = None,
+ word_labels: Optional[List[List[int]]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[str] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ ) -> BatchEncoding:
+ if not isinstance(batch_text_or_text_pairs, list):
+ raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
+
+ # Set the truncation and padding strategy and restore the initial configuration
+ self.set_truncation_and_padding(
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ )
+
+ if is_pair:
+ batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
+
+ encodings = self._tokenizer.encode_batch(
+ batch_text_or_text_pairs,
+ add_special_tokens=add_special_tokens,
+ is_pretokenized=True, # we set this to True as LayoutLMv3 always expects pretokenized inputs
+ )
+
+ # Convert encoding to dict
+ # `Tokens` has type: Tuple[
+ # List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
+ # List[EncodingFast]
+ # ]
+ # with nested dimensions corresponding to batch, overflows, sequence length
+ tokens_and_encodings = [
+ self._convert_encoding(
+ encoding=encoding,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=True
+ if word_labels is not None
+ else return_offsets_mapping, # we use offsets to create the labels
+ return_length=return_length,
+ verbose=verbose,
+ )
+ for encoding in encodings
+ ]
+
+ # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
+ # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
+ # (we say ~ because the number of overflow varies with the example in the batch)
+ #
+ # To match each overflowing sample with the original sample in the batch
+ # we add an overflow_to_sample_mapping array (see below)
+ sanitized_tokens = {}
+ for key in tokens_and_encodings[0][0].keys():
+ stack = [e for item, _ in tokens_and_encodings for e in item[key]]
+ sanitized_tokens[key] = stack
+ sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
+
+ # If returning overflowing tokens, we need to return a mapping
+ # from the batch idx to the original sample
+ if return_overflowing_tokens:
+ overflow_to_sample_mapping = []
+ for i, (toks, _) in enumerate(tokens_and_encodings):
+ overflow_to_sample_mapping += [i] * len(toks["input_ids"])
+ sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
+
+ for input_ids in sanitized_tokens["input_ids"]:
+ self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
+
+ # create the token boxes
+ token_boxes = []
+ for batch_index in range(len(sanitized_tokens["input_ids"])):
+ if return_overflowing_tokens:
+ original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
+ else:
+ original_index = batch_index
+ token_boxes_example = []
+ for id, sequence_id, word_id in zip(
+ sanitized_tokens["input_ids"][batch_index],
+ sanitized_encodings[batch_index].sequence_ids,
+ sanitized_encodings[batch_index].word_ids,
+ ):
+ if word_id is not None:
+ if is_pair and sequence_id == 0:
+ token_boxes_example.append(self.pad_token_box)
+ else:
+ token_boxes_example.append(boxes[original_index][word_id])
+ else:
+ if id == self.cls_token_id:
+ token_boxes_example.append(self.cls_token_box)
+ elif id == self.sep_token_id:
+ token_boxes_example.append(self.sep_token_box)
+ elif id == self.pad_token_id:
+ token_boxes_example.append(self.pad_token_box)
+ else:
+ raise ValueError("Id not recognized")
+ token_boxes.append(token_boxes_example)
+
+ sanitized_tokens["bbox"] = token_boxes
+
+ # optionally, create the labels
+ if word_labels is not None:
+ labels = []
+ for batch_index in range(len(sanitized_tokens["input_ids"])):
+ if return_overflowing_tokens:
+ original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
+ else:
+ original_index = batch_index
+ labels_example = []
+ previous_token_empty = False
+ for id, offset, word_id in zip(
+ sanitized_tokens["input_ids"][batch_index],
+ sanitized_tokens["offset_mapping"][batch_index],
+ sanitized_encodings[batch_index].word_ids,
+ ):
+ if word_id is not None:
+ if self.only_label_first_subword:
+ if offset[0] == 0 and not previous_token_empty:
+ # Use the real label id for the first token of the word, and padding ids for the remaining tokens
+ labels_example.append(word_labels[original_index][word_id])
+ else:
+ labels_example.append(self.pad_token_label)
+ if offset == (0, 0):
+ previous_token_empty = True
+ else:
+ previous_token_empty = False
+ else:
+ labels_example.append(word_labels[original_index][word_id])
+ else:
+ labels_example.append(self.pad_token_label)
+ labels.append(labels_example)
+
+ sanitized_tokens["labels"] = labels
+ # finally, remove offsets if the user didn't want them
+ if not return_offsets_mapping:
+ del sanitized_tokens["offset_mapping"]
+
+ return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
+
+ # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._encode_plus
+ def _encode_plus(
+ self,
+ text: Union[TextInput, PreTokenizedInput],
+ text_pair: Optional[PreTokenizedInput] = None,
+ boxes: Optional[List[List[int]]] = None,
+ word_labels: Optional[List[int]] = None,
+ add_special_tokens: bool = True,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
+ max_length: Optional[int] = None,
+ stride: int = 0,
+ pad_to_multiple_of: Optional[int] = None,
+ return_tensors: Optional[bool] = None,
+ return_token_type_ids: Optional[bool] = None,
+ return_attention_mask: Optional[bool] = None,
+ return_overflowing_tokens: bool = False,
+ return_special_tokens_mask: bool = False,
+ return_offsets_mapping: bool = False,
+ return_length: bool = False,
+ verbose: bool = True,
+ **kwargs,
+ ) -> BatchEncoding:
+ # make it a batched input
+ # 2 options:
+ # 1) only text, in case text must be a list of str
+ # 2) text + text_pair, in which case text = str and text_pair a list of str
+ batched_input = [(text, text_pair)] if text_pair else [text]
+ batched_boxes = [boxes]
+ batched_word_labels = [word_labels] if word_labels is not None else None
+ batched_output = self._batch_encode_plus(
+ batched_input,
+ is_pair=bool(text_pair is not None),
+ boxes=batched_boxes,
+ word_labels=batched_word_labels,
+ add_special_tokens=add_special_tokens,
+ padding_strategy=padding_strategy,
+ truncation_strategy=truncation_strategy,
+ max_length=max_length,
+ stride=stride,
+ pad_to_multiple_of=pad_to_multiple_of,
+ return_tensors=return_tensors,
+ return_token_type_ids=return_token_type_ids,
+ return_attention_mask=return_attention_mask,
+ return_overflowing_tokens=return_overflowing_tokens,
+ return_special_tokens_mask=return_special_tokens_mask,
+ return_offsets_mapping=return_offsets_mapping,
+ return_length=return_length,
+ verbose=verbose,
+ **kwargs,
+ )
+
+ # Return tensor is None, then we can remove the leading batch axis
+ # Overflowing tokens are returned as a batch of output so we keep them in this case
+ if return_tensors is None and not return_overflowing_tokens:
+ batched_output = BatchEncoding(
+ {
+ key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
+ for key, value in batched_output.items()
+ },
+ batched_output.encodings,
+ )
+
+ self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
+
+ return batched_output
+
+ # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast._pad
+ def _pad(
+ self,
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
+ max_length: Optional[int] = None,
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
+ pad_to_multiple_of: Optional[int] = None,
+ return_attention_mask: Optional[bool] = None,
+ ) -> dict:
+ """
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
+
+ Args:
+ encoded_inputs:
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
+ max_length: maximum length of the returned list and optionally padding length (see below).
+ Will truncate by taking into account the special tokens.
+ padding_strategy: PaddingStrategy to use for padding.
+
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
+ The tokenizer padding sides are defined in self.padding_side:
+
+ - 'left': pads on the left of the sequences
+ - 'right': pads on the right of the sequences
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
+ `>= 7.5` (Volta).
+ return_attention_mask:
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
+ """
+ # Load from model defaults
+ if return_attention_mask is None:
+ return_attention_mask = "attention_mask" in self.model_input_names
+
+ required_input = encoded_inputs[self.model_input_names[0]]
+
+ if padding_strategy == PaddingStrategy.LONGEST:
+ max_length = len(required_input)
+
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
+
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
+
+ # Initialize attention mask if not present.
+ if return_attention_mask and "attention_mask" not in encoded_inputs:
+ encoded_inputs["attention_mask"] = [1] * len(required_input)
+
+ if needs_to_be_padded:
+ difference = max_length - len(required_input)
+ if self.padding_side == "right":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = (
+ encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
+ )
+ if "bbox" in encoded_inputs:
+ encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
+ encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
+ elif self.padding_side == "left":
+ if return_attention_mask:
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
+ if "token_type_ids" in encoded_inputs:
+ encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
+ "token_type_ids"
+ ]
+ if "bbox" in encoded_inputs:
+ encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
+ if "labels" in encoded_inputs:
+ encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
+ if "special_tokens_mask" in encoded_inputs:
+ encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
+ else:
+ raise ValueError("Invalid padding strategy:" + str(self.padding_side))
+
+ return encoded_inputs
+
+ # Copied from transformers.models.layoutlmv2.tokenization_layoutlmv2_fast.LayoutLMv2TokenizerFast.save_vocabulary
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
+ if token_ids_1 is None:
+ return output
+
+ return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Args:
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not:
+ make use of token type ids, therefore a list of zeros is returned.
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b889e374bb6d1e3afbf0b5f40cd34cbdc2ed468a
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__init__.py
@@ -0,0 +1,58 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available
+
+
+_import_structure = {}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_mbart50"] = ["MBart50Tokenizer"]
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_mbart50_fast"] = ["MBart50TokenizerFast"]
+
+
+if TYPE_CHECKING:
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_mbart50 import MBart50Tokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_mbart50_fast import MBart50TokenizerFast
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..21262cec50c617099af123f73d269848ea9197f0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/tokenization_mbart50.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/tokenization_mbart50.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..251b8f33a6068da78e5c2720c09cc666b3458786
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/__pycache__/tokenization_mbart50.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50.py
new file mode 100644
index 0000000000000000000000000000000000000000..7acc6ecbf36bbdbcc80a3f769e1c6e07f2ffd8f1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50.py
@@ -0,0 +1,354 @@
+# coding=utf-8
+# Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+SPIECE_UNDERLINE = "▁"
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
+
+
+FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip
+
+
+class MBart50Tokenizer(PreTrainedTokenizer):
+ """
+ Construct a MBart50 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ src_lang (`str`, *optional*):
+ A string representing the source language.
+ tgt_lang (`str`, *optional*):
+ A string representing the target language.
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+
+ Examples:
+
+ ```python
+ >>> from transformers import MBart50Tokenizer
+
+ >>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
+ >>> src_text = " UN Chief Says There Is No Military Solution in Syria"
+ >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
+ >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
+ >>> # model(**model_inputs) should work
+ ```"""
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ prefix_tokens: List[int] = []
+ suffix_tokens: List[int] = []
+
+ def __init__(
+ self,
+ vocab_file,
+ src_lang=None,
+ tgt_lang=None,
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or []
+ kwargs["additional_special_tokens"] += [
+ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
+ ]
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(str(vocab_file))
+ self.vocab_file = vocab_file
+
+ # Original fairseq vocab and spm vocab must be "aligned":
+ # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
+ # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
+ # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-'
+ # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
+
+ # Mimic fairseq token-to-id alignment for the first 4 token
+ self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3}
+
+ # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
+ self.fairseq_offset = 1
+
+ self.sp_model_size = len(self.sp_model)
+ self.lang_code_to_id = {
+ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES)
+ }
+ self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()}
+ self.fairseq_tokens_to_ids[""] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
+
+ self.fairseq_tokens_to_ids.update(self.lang_code_to_id)
+ self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
+
+ super().__init__(
+ src_lang=src_lang,
+ tgt_lang=tgt_lang,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ self._src_lang = src_lang if src_lang is not None else "en_XX"
+ self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
+ self.tgt_lang = tgt_lang
+ self.set_src_lang_special_tokens(self._src_lang)
+
+ @property
+ def vocab_size(self) -> int:
+ return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token
+
+ @property
+ def src_lang(self) -> str:
+ return self._src_lang
+
+ @src_lang.setter
+ def src_lang(self, new_src_lang: str) -> None:
+ self._src_lang = new_src_lang
+ self.set_src_lang_special_tokens(self._src_lang)
+
+ def __getstate__(self) -> Dict:
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d: Dict) -> None:
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def get_vocab(self) -> Dict:
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def _tokenize(self, text: str) -> List[str]:
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token: str) -> int:
+ """Converts a token (str) in an id using the vocab."""
+ if token in self.fairseq_tokens_to_ids:
+ return self.fairseq_tokens_to_ids[token]
+ spm_id = self.sp_model.PieceToId(token)
+
+ # Need to return unknown token if the SP model returned 0
+ return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
+
+ def _convert_id_to_token(self, index: int) -> str:
+ """Converts an index (integer) in a token (str) using the vocab."""
+ if index in self.fairseq_ids_to_tokens:
+ return self.fairseq_ids_to_tokens[index]
+ return self.sp_model.IdToPiece(index - self.fairseq_offset)
+
+ # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ prev_is_special = False
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ if not prev_is_special:
+ out_string += " "
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ prev_is_special = True
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ prev_is_special = False
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string.strip()
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ prefix_ones = [1] * len(self.prefix_tokens)
+ suffix_ones = [1] * len(self.suffix_tokens)
+ if token_ids_1 is None:
+ return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
+ return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. An MBART-50 sequence has the following format, where `X` represents the sequence:
+
+ - `input_ids` (for encoder) `[src_lang_code] X [eos]`
+ - `labels`: (for decoder) `[tgt_lang_code] X [eos]`
+
+ BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
+ separator.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return self.prefix_tokens + token_ids_0 + self.suffix_tokens
+ # We don't expect to process pairs, but leave the pair logic for API consistency
+ return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
+
+ def _build_translation_inputs(
+ self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
+ ):
+ """Used by translation pipeline, to prepare inputs for the generate function"""
+ if src_lang is None or tgt_lang is None:
+ raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
+ self.src_lang = src_lang
+ inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
+ tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
+ inputs["forced_bos_token_id"] = tgt_lang_id
+ return inputs
+
+ def prepare_seq2seq_batch(
+ self,
+ src_texts: List[str],
+ src_lang: str = "en_XX",
+ tgt_texts: Optional[List[str]] = None,
+ tgt_lang: str = "ro_RO",
+ **kwargs,
+ ) -> BatchEncoding:
+ self.src_lang = src_lang
+ self.tgt_lang = tgt_lang
+ return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
+
+ def _switch_to_input_mode(self):
+ return self.set_src_lang_special_tokens(self.src_lang)
+
+ def _switch_to_target_mode(self):
+ return self.set_tgt_lang_special_tokens(self.tgt_lang)
+
+ def set_src_lang_special_tokens(self, src_lang: str) -> None:
+ """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos]."""
+ self.cur_lang_code_id = self.lang_code_to_id[src_lang]
+ self.prefix_tokens = [self.cur_lang_code_id]
+ self.suffix_tokens = [self.eos_token_id]
+
+ def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
+ """Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos]."""
+ self.cur_lang_code_id = self.lang_code_to_id[tgt_lang]
+ self.prefix_tokens = [self.cur_lang_code_id]
+ self.suffix_tokens = [self.eos_token_id]
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc4678f5f53ccedba6173eaafa7e2e92d099a830
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/mbart50/tokenization_mbart50_fast.py
@@ -0,0 +1,259 @@
+# coding=utf-8
+# Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+from shutil import copyfile
+from typing import List, Optional, Tuple
+
+from tokenizers import processors
+
+from ...tokenization_utils import AddedToken, BatchEncoding
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import is_sentencepiece_available, logging
+
+
+if is_sentencepiece_available():
+ from .tokenization_mbart50 import MBart50Tokenizer
+else:
+ MBart50Tokenizer = None
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
+
+
+FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip
+
+
+class MBart50TokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" MBART tokenizer for mBART-50 (backed by HuggingFace's *tokenizers* library). Based on
+ [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ src_lang (`str`, *optional*):
+ A string representing the source language.
+ tgt_lang (`str`, *optional*):
+ A string representing the target language.
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+ sep_token (`str`, *optional*, defaults to `""`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ cls_token (`str`, *optional*, defaults to `""`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ mask_token (`str`, *optional*, defaults to `""`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+
+ Examples:
+
+ ```python
+ >>> from transformers import MBart50TokenizerFast
+
+ >>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
+ >>> src_text = " UN Chief Says There Is No Military Solution in Syria"
+ >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
+ >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
+ >>> # model(**model_inputs) should work
+ ```"""
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ model_input_names = ["input_ids", "attention_mask"]
+ slow_tokenizer_class = MBart50Tokenizer
+
+ prefix_tokens: List[int] = []
+ suffix_tokens: List[int] = []
+
+ def __init__(
+ self,
+ vocab_file=None,
+ src_lang=None,
+ tgt_lang=None,
+ tokenizer_file=None,
+ eos_token="",
+ sep_token="",
+ cls_token="",
+ unk_token="",
+ pad_token="",
+ mask_token="",
+ **kwargs,
+ ):
+ # Mask token behave like a normal word, i.e. include the space before it
+ mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
+
+ kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or []
+ kwargs["additional_special_tokens"] += [
+ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
+ ]
+
+ super().__init__(
+ vocab_file,
+ src_lang=src_lang,
+ tgt_lang=tgt_lang,
+ tokenizer_file=tokenizer_file,
+ eos_token=eos_token,
+ sep_token=sep_token,
+ cls_token=cls_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ mask_token=mask_token,
+ **kwargs,
+ )
+
+ self.vocab_file = vocab_file
+
+ self.lang_code_to_id = {
+ lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES
+ }
+
+ self._src_lang = src_lang if src_lang is not None else "en_XX"
+ self.tgt_lang = tgt_lang
+ self.cur_lang_code_id = self.lang_code_to_id[self._src_lang]
+ self.set_src_lang_special_tokens(self._src_lang)
+
+ @property
+ def can_save_slow_tokenizer(self) -> bool:
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
+
+ @property
+ def src_lang(self) -> str:
+ return self._src_lang
+
+ @src_lang.setter
+ def src_lang(self, new_src_lang: str) -> None:
+ self._src_lang = new_src_lang
+ self.set_src_lang_special_tokens(self._src_lang)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. The special tokens depend on calling set_lang.
+
+ An MBART-50 sequence has the following format, where `X` represents the sequence:
+
+ - `input_ids` (for encoder) `[src_lang_code] X [eos]`
+ - `labels`: (for decoder) `[tgt_lang_code] X [eos]`
+
+ BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
+ separator.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return self.prefix_tokens + token_ids_0 + self.suffix_tokens
+ # We don't expect to process pairs, but leave the pair logic for API consistency
+ return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
+
+ def prepare_seq2seq_batch(
+ self,
+ src_texts: List[str],
+ src_lang: str = "en_XX",
+ tgt_texts: Optional[List[str]] = None,
+ tgt_lang: str = "ro_RO",
+ **kwargs,
+ ) -> BatchEncoding:
+ self.src_lang = src_lang
+ self.tgt_lang = tgt_lang
+ return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
+
+ def _switch_to_input_mode(self):
+ return self.set_src_lang_special_tokens(self.src_lang)
+
+ def _switch_to_target_mode(self):
+ return self.set_tgt_lang_special_tokens(self.tgt_lang)
+
+ def set_src_lang_special_tokens(self, src_lang: str) -> None:
+ """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos]."""
+ self.cur_lang_code_id = self.convert_tokens_to_ids(src_lang)
+ self.prefix_tokens = [self.cur_lang_code_id]
+ self.suffix_tokens = [self.eos_token_id]
+
+ prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
+ suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
+
+ self._tokenizer.post_processor = processors.TemplateProcessing(
+ single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
+ pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
+ special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
+ )
+
+ def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
+ """Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos]."""
+ self.cur_lang_code_id = self.convert_tokens_to_ids(tgt_lang)
+ self.prefix_tokens = [self.cur_lang_code_id]
+ self.suffix_tokens = [self.eos_token_id]
+
+ prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
+ suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
+
+ self._tokenizer.post_processor = processors.TemplateProcessing(
+ single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
+ pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
+ special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
+ )
+
+ def _build_translation_inputs(
+ self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
+ ):
+ """Used by translation pipeline, to prepare inputs for the generate function"""
+ if src_lang is None or tgt_lang is None:
+ raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
+ self.src_lang = src_lang
+ inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
+ tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
+ inputs["forced_bos_token_id"] = tgt_lang_id
+ return inputs
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not self.can_save_slow_tokenizer:
+ raise ValueError(
+ "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
+ "tokenizer."
+ )
+
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+
+ return (out_vocab_file,)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3ba95721615f3ea74d231927eac60cbbef3b6a4d
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/configuration_poolformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/configuration_poolformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8bfc54a9e0fad981ad766ed56cc0b725893d6ffd
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/configuration_poolformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/convert_poolformer_original_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/convert_poolformer_original_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e4b44279fd519cacbd1330992b001644cb354b6c
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/convert_poolformer_original_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/feature_extraction_poolformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/feature_extraction_poolformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7816a7cf8198c2b7296b2bdf0b9ffcd1b33eaac2
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/feature_extraction_poolformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/image_processing_poolformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/image_processing_poolformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e32bd707230643854e90634a5d74fe7704bfa033
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/image_processing_poolformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/modeling_poolformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/modeling_poolformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e40b995b580c999348b68cf6a81f8f8cd8c556bd
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/poolformer/__pycache__/modeling_poolformer.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..594ce0c35e382f82b0ba3222644cf37ef01880e1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__init__.py
@@ -0,0 +1,85 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
+
+
+_import_structure = {
+ "configuration_realm": ["REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RealmConfig"],
+ "tokenization_realm": ["RealmTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_realm_fast"] = ["RealmTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_realm"] = [
+ "REALM_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "RealmEmbedder",
+ "RealmForOpenQA",
+ "RealmKnowledgeAugEncoder",
+ "RealmPreTrainedModel",
+ "RealmReader",
+ "RealmScorer",
+ "load_tf_weights_in_realm",
+ ]
+ _import_structure["retrieval_realm"] = ["RealmRetriever"]
+
+
+if TYPE_CHECKING:
+ from .configuration_realm import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, RealmConfig
+ from .tokenization_realm import RealmTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_realm import RealmTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_realm import (
+ REALM_PRETRAINED_MODEL_ARCHIVE_LIST,
+ RealmEmbedder,
+ RealmForOpenQA,
+ RealmKnowledgeAugEncoder,
+ RealmPreTrainedModel,
+ RealmReader,
+ RealmScorer,
+ load_tf_weights_in_realm,
+ )
+ from .retrieval_realm import RealmRetriever
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fd76724ac645ef74e259df1c1666e23ba1ebe453
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/configuration_realm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/configuration_realm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..575a3a1b7cef7cf5675b050863b091a3ebee1d2d
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/configuration_realm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/modeling_realm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/modeling_realm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dc944c9a8708887a018565283004efffdff123bc
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/modeling_realm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/retrieval_realm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/retrieval_realm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c6d4ca993a9fe406f8d71e0234c54b8d0f8b4c86
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/retrieval_realm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/tokenization_realm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/tokenization_realm.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8ac43dc53a7efc2e2a193e60a5416cea788e2ea3
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/tokenization_realm.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/tokenization_realm_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/tokenization_realm_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f754f2ccf47fe8b7e6009082d24dee558d914078
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/__pycache__/tokenization_realm_fast.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/configuration_realm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/configuration_realm.py
new file mode 100644
index 0000000000000000000000000000000000000000..3725c37922a6ad9757096ad61c73d1edfabb1070
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/configuration_realm.py
@@ -0,0 +1,169 @@
+# coding=utf-8
+# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" REALM model configuration."""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+from ..deprecated._archive_maps import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
+
+
+class RealmConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of
+
+ 1. [`RealmEmbedder`]
+ 2. [`RealmScorer`]
+ 3. [`RealmKnowledgeAugEncoder`]
+ 4. [`RealmRetriever`]
+ 5. [`RealmReader`]
+ 6. [`RealmForOpenQA`]
+
+ It is used to instantiate an REALM model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM
+ [google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or
+ [`RealmReader`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimension of the encoder layers and the pooler layer.
+ retriever_proj_size (`int`, *optional*, defaults to 128):
+ Dimension of the retriever(embedder) projection.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_candidates (`int`, *optional*, defaults to 8):
+ Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`],
+ [`RealmKnowledgeAugEncoder`], or [`RealmReader`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ span_hidden_size (`int`, *optional*, defaults to 256):
+ Dimension of the reader's spans.
+ max_span_width (`int`, *optional*, defaults to 10):
+ Max span width of the reader.
+ reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3):
+ The epsilon used by the reader's layer normalization layers.
+ reader_beam_size (`int`, *optional*, defaults to 5):
+ Beam size of the reader.
+ reader_seq_len (`int`, *optional*, defaults to 288+32):
+ Maximum sequence length of the reader.
+ num_block_records (`int`, *optional*, defaults to 13353718):
+ Number of block records.
+ searcher_beam_size (`int`, *optional*, defaults to 5000):
+ Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as
+ *reader_beam_size*.
+
+ Example:
+
+ ```python
+ >>> from transformers import RealmConfig, RealmEmbedder
+
+ >>> # Initializing a REALM realm-cc-news-pretrained-* style configuration
+ >>> configuration = RealmConfig()
+
+ >>> # Initializing a model (with random weights) from the google/realm-cc-news-pretrained-embedder style configuration
+ >>> model = RealmEmbedder(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "realm"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ retriever_proj_size=128,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ num_candidates=8,
+ intermediate_size=3072,
+ hidden_act="gelu_new",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ span_hidden_size=256,
+ max_span_width=10,
+ reader_layer_norm_eps=1e-3,
+ reader_beam_size=5,
+ reader_seq_len=320, # 288 + 32
+ num_block_records=13353718,
+ searcher_beam_size=5000,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ # Common config
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.hidden_size = hidden_size
+ self.retriever_proj_size = retriever_proj_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.num_candidates = num_candidates
+ self.intermediate_size = intermediate_size
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.initializer_range = initializer_range
+ self.type_vocab_size = type_vocab_size
+ self.layer_norm_eps = layer_norm_eps
+
+ # Reader config
+ self.span_hidden_size = span_hidden_size
+ self.max_span_width = max_span_width
+ self.reader_layer_norm_eps = reader_layer_norm_eps
+ self.reader_beam_size = reader_beam_size
+ self.reader_seq_len = reader_seq_len
+
+ # Retrieval config
+ self.num_block_records = num_block_records
+ self.searcher_beam_size = searcher_beam_size
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/modeling_realm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/modeling_realm.py
new file mode 100644
index 0000000000000000000000000000000000000000..86f28942893399d66b34e59b291fc32c34796282
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/modeling_realm.py
@@ -0,0 +1,1853 @@
+# coding=utf-8
+# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch REALM model."""
+
+import math
+import os
+from dataclasses import dataclass
+from typing import Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+ MaskedLMOutput,
+ ModelOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
+from .configuration_realm import RealmConfig
+
+
+logger = logging.get_logger(__name__)
+_EMBEDDER_CHECKPOINT_FOR_DOC = "google/realm-cc-news-pretrained-embedder"
+_ENCODER_CHECKPOINT_FOR_DOC = "google/realm-cc-news-pretrained-encoder"
+_SCORER_CHECKPOINT_FOR_DOC = "google/realm-cc-news-pretrained-scorer"
+_CONFIG_FOR_DOC = "RealmConfig"
+
+
+from ..deprecated._archive_maps import REALM_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
+
+
+def load_tf_weights_in_realm(model, config, tf_checkpoint_path):
+ """Load tf checkpoints in a pytorch model."""
+ try:
+ import re
+
+ import numpy as np
+ import tensorflow as tf
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_path = os.path.abspath(tf_checkpoint_path)
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
+ # Load weights from TF model
+ init_vars = tf.train.list_variables(tf_path)
+ names = []
+ arrays = []
+
+ for name, shape in init_vars:
+ logger.info(f"Loading TF weight {name} with shape {shape}")
+ array = tf.train.load_variable(tf_path, name)
+ names.append(name)
+ arrays.append(array)
+
+ for name, array in zip(names, arrays):
+ if isinstance(model, RealmReader) and "reader" not in name:
+ logger.info(f"Skipping {name} as it is not {model.__class__.__name__}'s parameter")
+ continue
+
+ # For pretrained openqa reader
+ if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmForOpenQA):
+ name = name.replace("bert/", "reader/realm/")
+ name = name.replace("cls/", "reader/cls/")
+
+ # For pretrained encoder
+ if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmKnowledgeAugEncoder):
+ name = name.replace("bert/", "realm/")
+
+ # For finetuned reader
+ if name.startswith("reader"):
+ reader_prefix = "" if isinstance(model, RealmReader) else "reader/"
+ name = name.replace("reader/module/bert/", f"{reader_prefix}realm/")
+ name = name.replace("reader/module/cls/", f"{reader_prefix}cls/")
+ name = name.replace("reader/dense/", f"{reader_prefix}qa_outputs/dense_intermediate/")
+ name = name.replace("reader/dense_1/", f"{reader_prefix}qa_outputs/dense_output/")
+ name = name.replace("reader/layer_normalization", f"{reader_prefix}qa_outputs/layer_normalization")
+
+ # For embedder and scorer
+ if name.startswith("module/module/module/"): # finetuned
+ embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/"
+ name = name.replace("module/module/module/module/bert/", f"{embedder_prefix}realm/")
+ name = name.replace("module/module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/")
+ name = name.replace("module/module/module/dense/", f"{embedder_prefix}cls/dense/")
+ name = name.replace("module/module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/")
+ name = name.replace("module/module/module/bert/", f"{embedder_prefix}realm/")
+ name = name.replace("module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/")
+ elif name.startswith("module/module/"): # pretrained
+ embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/"
+ name = name.replace("module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/")
+ name = name.replace("module/module/dense/", f"{embedder_prefix}cls/dense/")
+
+ name = name.split("/")
+ # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
+ # which are not required for using pretrained model
+ if any(
+ n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
+ for n in name
+ ):
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ pointer = model
+ for m_name in name:
+ if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
+ scope_names = re.split(r"_(\d+)", m_name)
+ else:
+ scope_names = [m_name]
+ if scope_names[0] == "kernel" or scope_names[0] == "gamma":
+ pointer = getattr(pointer, "weight")
+ elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
+ pointer = getattr(pointer, "bias")
+ else:
+ try:
+ pointer = getattr(pointer, scope_names[0])
+ except AttributeError:
+ logger.info(f"Skipping {'/'.join(name)}")
+ continue
+ if len(scope_names) >= 2:
+ num = int(scope_names[1])
+ pointer = pointer[num]
+ if m_name[-11:] == "_embeddings":
+ pointer = getattr(pointer, "weight")
+ elif m_name == "kernel":
+ array = np.transpose(array)
+ try:
+ assert (
+ pointer.shape == array.shape
+ ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
+ except AssertionError as e:
+ e.args += (pointer.shape, array.shape)
+ raise
+ logger.info(f"Initialize PyTorch weight {name}")
+ pointer.data = torch.from_numpy(array)
+ return model
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->Realm
+class RealmEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ past_key_values_length: int = 0,
+ ) -> torch.Tensor:
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Realm
+class RealmSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in RealmModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Realm
+class RealmSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Realm
+class RealmAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = RealmSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = RealmSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Realm
+class RealmIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Realm
+class RealmOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Realm
+class RealmLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = RealmAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = RealmAttention(config, position_embedding_type="absolute")
+ self.intermediate = RealmIntermediate(config)
+ self.output = RealmOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Realm
+class RealmEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([RealmLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Realm
+class RealmPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+@dataclass
+class RealmEmbedderOutput(ModelOutput):
+ """
+ Outputs of [`RealmEmbedder`] models.
+
+ Args:
+ projected_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`):
+
+ Projected score.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ projected_score: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class RealmScorerOutput(ModelOutput):
+ """
+ Outputs of [`RealmScorer`] models.
+
+ Args:
+ relevance_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates)`):
+ The relevance score of document candidates (before softmax).
+ query_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`):
+ Query score derived from the query embedder.
+ candidate_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates, config.retriever_proj_size)`):
+ Candidate score derived from the embedder.
+ """
+
+ relevance_score: torch.FloatTensor = None
+ query_score: torch.FloatTensor = None
+ candidate_score: torch.FloatTensor = None
+
+
+@dataclass
+class RealmReaderOutput(ModelOutput):
+ """
+ Outputs of [`RealmReader`] models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided):
+ Total loss.
+ retriever_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided):
+ Retriever loss.
+ reader_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided):
+ Reader loss.
+ retriever_correct (`torch.BoolTensor` of shape `(config.searcher_beam_size,)`, *optional*):
+ Whether or not an evidence block contains answer.
+ reader_correct (`torch.BoolTensor` of shape `(config.reader_beam_size, num_candidates)`, *optional*):
+ Whether or not a span candidate contains answer.
+ block_idx (`torch.LongTensor` of shape `()`):
+ The index of the retrieved evidence block in which the predicted answer is most likely.
+ candidate (`torch.LongTensor` of shape `()`):
+ The index of the retrieved span candidates in which the predicted answer is most likely.
+ start_pos (`torch.IntTensor` of shape `()`):
+ Predicted answer starting position in *RealmReader*'s inputs.
+ end_pos (`torch.IntTensor` of shape `()`):
+ Predicted answer ending position in *RealmReader*'s inputs.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
+ shape `(batch_size, sequence_length, hidden_size)`.
+
+ Hidden-states of the model at the output of each layer plus the initial embedding outputs.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: torch.FloatTensor = None
+ retriever_loss: torch.FloatTensor = None
+ reader_loss: torch.FloatTensor = None
+ retriever_correct: torch.BoolTensor = None
+ reader_correct: torch.BoolTensor = None
+ block_idx: torch.LongTensor = None
+ candidate: torch.LongTensor = None
+ start_pos: torch.int32 = None
+ end_pos: torch.int32 = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+@dataclass
+class RealmForOpenQAOutput(ModelOutput):
+ """
+
+ Outputs of [`RealmForOpenQA`] models.
+
+ Args:
+ reader_output (`dict`):
+ Reader output.
+ predicted_answer_ids (`torch.LongTensor` of shape `(answer_sequence_length)`):
+ Predicted answer ids.
+ """
+
+ reader_output: dict = None
+ predicted_answer_ids: torch.LongTensor = None
+
+
+class RealmPredictionHeadTransform(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ if isinstance(config.hidden_act, str):
+ self.transform_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.transform_act_fn = config.hidden_act
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.transform_act_fn(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class RealmLMPredictionHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.transform = RealmPredictionHeadTransform(config)
+
+ # The output weights are the same as the input embeddings, but there is
+ # an output-only bias for each token.
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ hidden_states = self.transform(hidden_states)
+ hidden_states = self.decoder(hidden_states)
+ return hidden_states
+
+
+class RealmOnlyMLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = RealmLMPredictionHead(config)
+
+ def forward(self, sequence_output):
+ prediction_scores = self.predictions(sequence_output)
+ return prediction_scores
+
+
+class RealmScorerProjection(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.predictions = RealmLMPredictionHead(config)
+ self.dense = nn.Linear(config.hidden_size, config.retriever_proj_size)
+ self.LayerNorm = nn.LayerNorm(config.retriever_proj_size, eps=config.layer_norm_eps)
+
+ def forward(self, hidden_states):
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states)
+ return hidden_states
+
+
+class RealmReaderProjection(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.dense_intermediate = nn.Linear(config.hidden_size, config.span_hidden_size * 2)
+ self.dense_output = nn.Linear(config.span_hidden_size, 1)
+ self.layer_normalization = nn.LayerNorm(config.span_hidden_size, eps=config.reader_layer_norm_eps)
+ self.relu = nn.ReLU()
+
+ def forward(self, hidden_states, block_mask):
+ def span_candidates(masks):
+ """
+ Generate span candidates.
+
+ Args:
+ masks: [num_retrievals, max_sequence_len]
+
+ Returns:
+ starts: [num_spans] ends: [num_spans] span_masks: [num_retrievals, num_spans]
+ whether spans locate in evidence block.
+ """
+ _, max_sequence_len = masks.shape
+
+ def _spans_given_width(width):
+ current_starts = torch.arange(max_sequence_len - width + 1, device=masks.device)
+ current_ends = torch.arange(width - 1, max_sequence_len, device=masks.device)
+ return current_starts, current_ends
+
+ starts, ends = zip(*(_spans_given_width(w + 1) for w in range(self.config.max_span_width)))
+
+ # [num_spans]
+ starts = torch.cat(starts, 0)
+ ends = torch.cat(ends, 0)
+
+ # [num_retrievals, num_spans]
+ start_masks = torch.index_select(masks, dim=-1, index=starts)
+ end_masks = torch.index_select(masks, dim=-1, index=ends)
+ span_masks = start_masks * end_masks
+
+ return starts, ends, span_masks
+
+ def mask_to_score(mask, dtype=torch.float32):
+ return (1.0 - mask.type(dtype)) * torch.finfo(dtype).min
+
+ # [reader_beam_size, max_sequence_len, span_hidden_size * 2]
+ hidden_states = self.dense_intermediate(hidden_states)
+ # [reader_beam_size, max_sequence_len, span_hidden_size]
+ start_projection, end_projection = hidden_states.chunk(2, dim=-1)
+
+ candidate_starts, candidate_ends, candidate_mask = span_candidates(block_mask)
+
+ candidate_start_projections = torch.index_select(start_projection, dim=1, index=candidate_starts)
+ candidate_end_projections = torch.index_select(end_projection, dim=1, index=candidate_ends)
+ candidate_hidden = candidate_start_projections + candidate_end_projections
+
+ # [reader_beam_size, num_candidates, span_hidden_size]
+ candidate_hidden = self.relu(candidate_hidden)
+ # [reader_beam_size, num_candidates, span_hidden_size]
+ candidate_hidden = self.layer_normalization(candidate_hidden)
+ # [reader_beam_size, num_candidates]
+ reader_logits = self.dense_output(candidate_hidden).squeeze(-1)
+ # [reader_beam_size, num_candidates]
+ reader_logits += mask_to_score(candidate_mask, dtype=reader_logits.dtype)
+
+ return reader_logits, candidate_starts, candidate_ends
+
+
+REALM_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`RealmConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+REALM_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class RealmPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = RealmConfig
+ load_tf_weights = load_tf_weights_in_realm
+ base_model_prefix = "realm"
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+ def _flatten_inputs(self, *inputs):
+ """Flatten inputs' shape to (-1, input_shape[-1])"""
+ flattened_inputs = []
+ for tensor in inputs:
+ if tensor is None:
+ flattened_inputs.append(None)
+ else:
+ input_shape = tensor.shape
+ if len(input_shape) > 2:
+ tensor = tensor.view((-1, input_shape[-1]))
+ flattened_inputs.append(tensor)
+ return flattened_inputs
+
+
+class RealmBertModel(RealmPreTrainedModel):
+ """
+ Same as the original BertModel but remove docstrings.
+ """
+
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = RealmEmbeddings(config)
+ self.encoder = RealmEncoder(config)
+
+ self.pooler = RealmPooler(config) if add_pooling_layer else None
+
+ # Weights initialization is mostly managed by other Realm models,
+ # but we also have them initialized here to keep a consistency.
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ token_type_ids=None,
+ position_ids=None,
+ head_mask=None,
+ inputs_embeds=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The embedder of REALM outputting projected score that will be used to calculate relevance score.",
+ REALM_START_DOCSTRING,
+)
+class RealmEmbedder(RealmPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ self.realm = RealmBertModel(self.config)
+ self.cls = RealmScorerProjection(self.config)
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.realm.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.realm.embeddings.word_embeddings = value
+
+ @add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=RealmEmbedderOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, RealmEmbedderOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, RealmEmbedder
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-embedder")
+ >>> model = RealmEmbedder.from_pretrained("google/realm-cc-news-pretrained-embedder")
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> projected_score = outputs.projected_score
+ ```
+ """
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ realm_outputs = self.realm(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ # [batch_size, hidden_size]
+ pooler_output = realm_outputs[1]
+ # [batch_size, retriever_proj_size]
+ projected_score = self.cls(pooler_output)
+
+ if not return_dict:
+ return (projected_score,) + realm_outputs[2:4]
+ else:
+ return RealmEmbedderOutput(
+ projected_score=projected_score,
+ hidden_states=realm_outputs.hidden_states,
+ attentions=realm_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The scorer of REALM outputting relevance scores representing the score of document candidates (before softmax).",
+ REALM_START_DOCSTRING,
+)
+class RealmScorer(RealmPreTrainedModel):
+ r"""
+ Args:
+ query_embedder ([`RealmEmbedder`]):
+ Embedder for input sequences. If not specified, it will use the same embedder as candidate sequences.
+ """
+
+ def __init__(self, config, query_embedder=None):
+ super().__init__(config)
+
+ self.embedder = RealmEmbedder(self.config)
+
+ self.query_embedder = query_embedder if query_embedder is not None else self.embedder
+
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=RealmScorerOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ candidate_input_ids: Optional[torch.LongTensor] = None,
+ candidate_attention_mask: Optional[torch.FloatTensor] = None,
+ candidate_token_type_ids: Optional[torch.LongTensor] = None,
+ candidate_inputs_embeds: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, RealmScorerOutput]:
+ r"""
+ candidate_input_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`):
+ Indices of candidate input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ candidate_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ candidate_token_type_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ candidate_inputs_embeds (`torch.FloatTensor` of shape `(batch_size * num_candidates, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `candidate_input_ids` you can choose to directly pass an embedded
+ representation. This is useful if you want more control over how to convert *candidate_input_ids* indices
+ into associated vectors than the model's internal embedding lookup matrix.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, RealmScorer
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-scorer")
+ >>> model = RealmScorer.from_pretrained("google/realm-cc-news-pretrained-scorer", num_candidates=2)
+
+ >>> # batch_size = 2, num_candidates = 2
+ >>> input_texts = ["How are you?", "What is the item in the picture?"]
+ >>> candidates_texts = [["Hello world!", "Nice to meet you!"], ["A cute cat.", "An adorable dog."]]
+
+ >>> inputs = tokenizer(input_texts, return_tensors="pt")
+ >>> candidates_inputs = tokenizer.batch_encode_candidates(candidates_texts, max_length=10, return_tensors="pt")
+
+ >>> outputs = model(
+ ... **inputs,
+ ... candidate_input_ids=candidates_inputs.input_ids,
+ ... candidate_attention_mask=candidates_inputs.attention_mask,
+ ... candidate_token_type_ids=candidates_inputs.token_type_ids,
+ ... )
+ >>> relevance_score = outputs.relevance_score
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is None and inputs_embeds is None:
+ raise ValueError("You have to specify either input_ids or input_embeds.")
+
+ if candidate_input_ids is None and candidate_inputs_embeds is None:
+ raise ValueError("You have to specify either candidate_input_ids or candidate_inputs_embeds.")
+
+ query_outputs = self.query_embedder(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ # [batch_size * num_candidates, candidate_seq_len]
+ (flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs(
+ candidate_input_ids, candidate_attention_mask, candidate_token_type_ids
+ )
+
+ candidate_outputs = self.embedder(
+ flattened_input_ids,
+ attention_mask=flattened_attention_mask,
+ token_type_ids=flattened_token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=candidate_inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ # [batch_size, retriever_proj_size]
+ query_score = query_outputs[0]
+ # [batch_size * num_candidates, retriever_proj_size]
+ candidate_score = candidate_outputs[0]
+ # [batch_size, num_candidates, retriever_proj_size]
+ candidate_score = candidate_score.view(-1, self.config.num_candidates, self.config.retriever_proj_size)
+ # [batch_size, num_candidates]
+ relevance_score = torch.einsum("bd,bnd->bn", query_score, candidate_score)
+
+ if not return_dict:
+ return relevance_score, query_score, candidate_score
+
+ return RealmScorerOutput(
+ relevance_score=relevance_score, query_score=query_score, candidate_score=candidate_score
+ )
+
+
+@add_start_docstrings(
+ "The knowledge-augmented encoder of REALM outputting masked language model logits and marginal log-likelihood"
+ " loss.",
+ REALM_START_DOCSTRING,
+)
+class RealmKnowledgeAugEncoder(RealmPreTrainedModel):
+ _tied_weights_keys = ["cls.predictions.decoder"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.realm = RealmBertModel(self.config)
+ self.cls = RealmOnlyMLMHead(self.config)
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.realm.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.realm.embeddings.word_embeddings = value
+
+ def get_output_embeddings(self):
+ return self.cls.predictions.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.cls.predictions.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(
+ REALM_INPUTS_DOCSTRING.format("batch_size, num_candidates, sequence_length")
+ )
+ @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ relevance_score: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ mlm_mask: Optional[torch.LongTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, MaskedLMOutput]:
+ r"""
+ relevance_score (`torch.FloatTensor` of shape `(batch_size, num_candidates)`, *optional*):
+ Relevance score derived from RealmScorer, must be specified if you want to compute the masked language
+ modeling loss.
+
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+
+ mlm_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid calculating joint loss on certain positions. If not specified, the loss will not be masked.
+ Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import AutoTokenizer, RealmKnowledgeAugEncoder
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-cc-news-pretrained-encoder")
+ >>> model = RealmKnowledgeAugEncoder.from_pretrained(
+ ... "google/realm-cc-news-pretrained-encoder", num_candidates=2
+ ... )
+
+ >>> # batch_size = 2, num_candidates = 2
+ >>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
+
+ >>> inputs = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt")
+ >>> outputs = model(**inputs)
+ >>> logits = outputs.logits
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ (flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs(
+ input_ids, attention_mask, token_type_ids
+ )
+
+ joint_outputs = self.realm(
+ flattened_input_ids,
+ attention_mask=flattened_attention_mask,
+ token_type_ids=flattened_token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ # [batch_size * num_candidates, joint_seq_len, hidden_size]
+ joint_output = joint_outputs[0]
+ # [batch_size * num_candidates, joint_seq_len, vocab_size]
+ prediction_scores = self.cls(joint_output)
+ # [batch_size, num_candidates]
+ candidate_score = relevance_score
+
+ masked_lm_loss = None
+ if labels is not None:
+ if candidate_score is None:
+ raise ValueError(
+ "You have to specify `relevance_score` when `labels` is specified in order to compute loss."
+ )
+
+ batch_size, seq_length = labels.size()
+
+ if mlm_mask is None:
+ mlm_mask = torch.ones_like(labels, dtype=torch.float32)
+ else:
+ mlm_mask = mlm_mask.type(torch.float32)
+
+ # Compute marginal log-likelihood
+ loss_fct = CrossEntropyLoss(reduction="none") # -100 index = padding token
+
+ # [batch_size * num_candidates * joint_seq_len, vocab_size]
+ mlm_logits = prediction_scores.view(-1, self.config.vocab_size)
+ # [batch_size * num_candidates * joint_seq_len]
+ mlm_targets = labels.tile(1, self.config.num_candidates).view(-1)
+ # [batch_size, num_candidates, joint_seq_len]
+ masked_lm_log_prob = -loss_fct(mlm_logits, mlm_targets).view(
+ batch_size, self.config.num_candidates, seq_length
+ )
+ # [batch_size, num_candidates, 1]
+ candidate_log_prob = candidate_score.log_softmax(-1).unsqueeze(-1)
+ # [batch_size, num_candidates, joint_seq_len]
+ joint_gold_log_prob = candidate_log_prob + masked_lm_log_prob
+ # [batch_size, joint_seq_len]
+ marginal_gold_log_probs = joint_gold_log_prob.logsumexp(1)
+ # []
+ masked_lm_loss = -torch.nansum(torch.sum(marginal_gold_log_probs * mlm_mask) / torch.sum(mlm_mask))
+
+ if not return_dict:
+ output = (prediction_scores,) + joint_outputs[2:4]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return MaskedLMOutput(
+ loss=masked_lm_loss,
+ logits=prediction_scores,
+ hidden_states=joint_outputs.hidden_states,
+ attentions=joint_outputs.attentions,
+ )
+
+
+@add_start_docstrings("The reader of REALM.", REALM_START_DOCSTRING)
+class RealmReader(RealmPreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.realm = RealmBertModel(config)
+ self.cls = RealmOnlyMLMHead(config)
+ self.qa_outputs = RealmReaderProjection(config)
+
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("reader_beam_size, sequence_length"))
+ @replace_return_docstrings(output_type=RealmReaderOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ relevance_score: Optional[torch.FloatTensor] = None,
+ block_mask: Optional[torch.BoolTensor] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ has_answers: Optional[torch.BoolTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, RealmReaderOutput]:
+ r"""
+ relevance_score (`torch.FloatTensor` of shape `(searcher_beam_size,)`, *optional*):
+ Relevance score, which must be specified if you want to compute the logits and marginal log loss.
+ block_mask (`torch.BoolTensor` of shape `(searcher_beam_size, sequence_length)`, *optional*):
+ The mask of the evidence block, which must be specified if you want to compute the logits and marginal log
+ loss.
+ start_positions (`torch.LongTensor` of shape `(searcher_beam_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(searcher_beam_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
+ are not taken into account for computing the loss.
+ has_answers (`torch.BoolTensor` of shape `(searcher_beam_size,)`, *optional*):
+ Whether or not the evidence block has answer(s).
+
+ Returns:
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if relevance_score is None:
+ raise ValueError("You have to specify `relevance_score` to calculate logits and loss.")
+ if block_mask is None:
+ raise ValueError("You have to specify `block_mask` to separate question block and evidence block.")
+ if token_type_ids.size(1) < self.config.max_span_width:
+ raise ValueError("The input sequence length must be greater than or equal to config.max_span_width.")
+ outputs = self.realm(
+ input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ # [reader_beam_size, joint_seq_len, hidden_size]
+ sequence_output = outputs[0]
+
+ # [reader_beam_size, num_candidates], [num_candidates], [num_candidates]
+ reader_logits, candidate_starts, candidate_ends = self.qa_outputs(
+ sequence_output, block_mask[0 : self.config.reader_beam_size]
+ )
+ # [searcher_beam_size, 1]
+ retriever_logits = torch.unsqueeze(relevance_score[0 : self.config.reader_beam_size], -1)
+ # [reader_beam_size, num_candidates]
+ reader_logits += retriever_logits
+ # []
+ predicted_block_index = torch.argmax(torch.max(reader_logits, dim=1).values)
+ # []
+ predicted_candidate = torch.argmax(torch.max(reader_logits, dim=0).values)
+ # [1]
+ predicted_start = torch.index_select(candidate_starts, dim=0, index=predicted_candidate)
+ # [1]
+ predicted_end = torch.index_select(candidate_ends, dim=0, index=predicted_candidate)
+
+ total_loss = None
+ retriever_loss = None
+ reader_loss = None
+ retriever_correct = None
+ reader_correct = None
+ if start_positions is not None and end_positions is not None and has_answers is not None:
+
+ def compute_correct_candidates(candidate_starts, candidate_ends, gold_starts, gold_ends):
+ """Compute correct span."""
+ # [reader_beam_size, num_answers, num_candidates]
+ is_gold_start = torch.eq(
+ torch.unsqueeze(torch.unsqueeze(candidate_starts, 0), 0), torch.unsqueeze(gold_starts, -1)
+ )
+ is_gold_end = torch.eq(
+ torch.unsqueeze(torch.unsqueeze(candidate_ends, 0), 0), torch.unsqueeze(gold_ends, -1)
+ )
+
+ # [reader_beam_size, num_candidates]
+ return torch.any(torch.logical_and(is_gold_start, is_gold_end), 1)
+
+ def marginal_log_loss(logits, is_correct):
+ """Loss based on the negative marginal log-likelihood."""
+
+ def mask_to_score(mask, dtype=torch.float32):
+ return (1.0 - mask.type(dtype)) * torch.finfo(dtype).min
+
+ # []
+ log_numerator = torch.logsumexp(logits + mask_to_score(is_correct, dtype=logits.dtype), dim=-1)
+ log_denominator = torch.logsumexp(logits, dim=-1)
+ return log_denominator - log_numerator
+
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ # `-1` is reserved for no answer.
+ ignored_index = sequence_output.size(1)
+ start_positions = start_positions.clamp(-1, ignored_index)
+ end_positions = end_positions.clamp(-1, ignored_index)
+
+ retriever_correct = has_answers
+ any_retriever_correct = torch.any(retriever_correct)
+
+ reader_correct = compute_correct_candidates(
+ candidate_starts=candidate_starts,
+ candidate_ends=candidate_ends,
+ gold_starts=start_positions[0 : self.config.reader_beam_size],
+ gold_ends=end_positions[0 : self.config.reader_beam_size],
+ )
+ any_reader_correct = torch.any(reader_correct)
+
+ retriever_loss = marginal_log_loss(relevance_score, retriever_correct)
+ reader_loss = marginal_log_loss(reader_logits.view(-1), reader_correct.view(-1))
+ retriever_loss *= any_retriever_correct.type(torch.float32)
+ reader_loss *= any_reader_correct.type(torch.float32)
+
+ total_loss = (retriever_loss + reader_loss).mean()
+
+ if not return_dict:
+ output = (predicted_block_index, predicted_candidate, predicted_start, predicted_end) + outputs[2:]
+ return (
+ ((total_loss, retriever_loss, reader_loss, retriever_correct, reader_correct) + output)
+ if total_loss is not None
+ else output
+ )
+
+ return RealmReaderOutput(
+ loss=total_loss,
+ retriever_loss=retriever_loss,
+ reader_loss=reader_loss,
+ retriever_correct=retriever_correct,
+ reader_correct=reader_correct,
+ block_idx=predicted_block_index,
+ candidate=predicted_candidate,
+ start_pos=predicted_start,
+ end_pos=predicted_end,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+REALM_FOR_OPEN_QA_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token (should not be used in this model by design).
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ answer_ids (`list` of shape `(num_answers, answer_length)`, *optional*):
+ Answer ids for computing the marginal log-likelihood loss. Indices should be in `[-1, 0, ...,
+ config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-1` are ignored (masked), the
+ loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "`RealmForOpenQA` for end-to-end open domain question answering.",
+ REALM_START_DOCSTRING,
+)
+class RealmForOpenQA(RealmPreTrainedModel):
+ def __init__(self, config, retriever=None):
+ super().__init__(config)
+ self.embedder = RealmEmbedder(config)
+ self.reader = RealmReader(config)
+ self.register_buffer(
+ "block_emb",
+ torch.zeros(()).new_empty(
+ size=(config.num_block_records, config.retriever_proj_size),
+ dtype=torch.float32,
+ device=torch.device("cpu"),
+ ),
+ )
+ self.retriever = retriever
+
+ self.post_init()
+
+ @property
+ def searcher_beam_size(self):
+ if self.training:
+ return self.config.searcher_beam_size
+ return self.config.reader_beam_size
+
+ def block_embedding_to(self, device):
+ """Send `self.block_emb` to a specific device.
+
+ Args:
+ device (`str` or `torch.device`):
+ The device to which `self.block_emb` will be sent.
+ """
+
+ self.block_emb = self.block_emb.to(device)
+
+ @add_start_docstrings_to_model_forward(REALM_FOR_OPEN_QA_DOCSTRING.format("1, sequence_length"))
+ @replace_return_docstrings(output_type=RealmForOpenQAOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor],
+ attention_mask: Optional[torch.FloatTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ answer_ids: Optional[torch.LongTensor] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, RealmForOpenQAOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import torch
+ >>> from transformers import RealmForOpenQA, RealmRetriever, AutoTokenizer
+
+ >>> retriever = RealmRetriever.from_pretrained("google/realm-orqa-nq-openqa")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/realm-orqa-nq-openqa")
+ >>> model = RealmForOpenQA.from_pretrained("google/realm-orqa-nq-openqa", retriever=retriever)
+
+ >>> question = "Who is the pioneer in modern computer science?"
+ >>> question_ids = tokenizer([question], return_tensors="pt")
+ >>> answer_ids = tokenizer(
+ ... ["alan mathison turing"],
+ ... add_special_tokens=False,
+ ... return_token_type_ids=False,
+ ... return_attention_mask=False,
+ ... ).input_ids
+
+ >>> reader_output, predicted_answer_ids = model(**question_ids, answer_ids=answer_ids, return_dict=False)
+ >>> predicted_answer = tokenizer.decode(predicted_answer_ids)
+ >>> loss = reader_output.loss
+ ```"""
+
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and input_ids.shape[0] != 1:
+ raise ValueError("The batch_size of the inputs must be 1.")
+
+ question_outputs = self.embedder(
+ input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, return_dict=True
+ )
+ # [1, projection_size]
+ question_projection = question_outputs[0]
+
+ # CPU computation starts.
+ # [1, block_emb_size]
+ batch_scores = torch.einsum("BD,QD->QB", self.block_emb, question_projection.to(self.block_emb.device))
+ # [1, searcher_beam_size]
+ _, retrieved_block_ids = torch.topk(batch_scores, k=self.searcher_beam_size, dim=-1)
+ # [searcher_beam_size]
+ retrieved_block_ids = retrieved_block_ids.squeeze()
+ # [searcher_beam_size, projection_size]
+ retrieved_block_emb = torch.index_select(self.block_emb, dim=0, index=retrieved_block_ids)
+ # CPU computation ends.
+
+ # Retrieve possible answers
+ has_answers, start_pos, end_pos, concat_inputs = self.retriever(
+ retrieved_block_ids.cpu(), input_ids, answer_ids, max_length=self.config.reader_seq_len
+ )
+
+ concat_inputs = concat_inputs.to(self.reader.device)
+ block_mask = concat_inputs.special_tokens_mask.type(torch.bool).to(device=self.reader.device)
+ block_mask.logical_not_().logical_and_(concat_inputs.token_type_ids.type(torch.bool))
+
+ if has_answers is not None:
+ has_answers = torch.tensor(has_answers, dtype=torch.bool, device=self.reader.device)
+ start_pos = torch.tensor(start_pos, dtype=torch.long, device=self.reader.device)
+ end_pos = torch.tensor(end_pos, dtype=torch.long, device=self.reader.device)
+
+ # [searcher_beam_size]
+ retrieved_logits = torch.einsum(
+ "D,BD->B", question_projection.squeeze(), retrieved_block_emb.to(self.reader.device)
+ )
+
+ reader_output = self.reader(
+ input_ids=concat_inputs.input_ids[0 : self.config.reader_beam_size],
+ attention_mask=concat_inputs.attention_mask[0 : self.config.reader_beam_size],
+ token_type_ids=concat_inputs.token_type_ids[0 : self.config.reader_beam_size],
+ relevance_score=retrieved_logits,
+ block_mask=block_mask,
+ has_answers=has_answers,
+ start_positions=start_pos,
+ end_positions=end_pos,
+ return_dict=True,
+ )
+
+ predicted_block = concat_inputs.input_ids[reader_output.block_idx]
+ predicted_answer_ids = predicted_block[reader_output.start_pos : reader_output.end_pos + 1]
+
+ if not return_dict:
+ return reader_output, predicted_answer_ids
+
+ return RealmForOpenQAOutput(
+ reader_output=reader_output,
+ predicted_answer_ids=predicted_answer_ids,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/retrieval_realm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/retrieval_realm.py
new file mode 100644
index 0000000000000000000000000000000000000000..c84e7af08f5601f9e837e8431b4b83937ff8a726
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/retrieval_realm.py
@@ -0,0 +1,164 @@
+# coding=utf-8
+# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""REALM Retriever model implementation."""
+
+import os
+from typing import Optional, Union
+
+import numpy as np
+from huggingface_hub import hf_hub_download
+
+from ... import AutoTokenizer
+from ...utils import logging
+
+
+_REALM_BLOCK_RECORDS_FILENAME = "block_records.npy"
+
+
+logger = logging.get_logger(__name__)
+
+
+def convert_tfrecord_to_np(block_records_path: str, num_block_records: int) -> np.ndarray:
+ import tensorflow.compat.v1 as tf
+
+ blocks_dataset = tf.data.TFRecordDataset(block_records_path, buffer_size=512 * 1024 * 1024)
+ blocks_dataset = blocks_dataset.batch(num_block_records, drop_remainder=True)
+ np_record = next(blocks_dataset.take(1).as_numpy_iterator())
+
+ return np_record
+
+
+class ScaNNSearcher:
+ """Note that ScaNNSearcher cannot currently be used within the model. In future versions, it might however be included."""
+
+ def __init__(
+ self,
+ db,
+ num_neighbors,
+ dimensions_per_block=2,
+ num_leaves=1000,
+ num_leaves_to_search=100,
+ training_sample_size=100000,
+ ):
+ """Build scann searcher."""
+
+ from scann.scann_ops.py.scann_ops_pybind import builder as Builder
+
+ builder = Builder(db=db, num_neighbors=num_neighbors, distance_measure="dot_product")
+ builder = builder.tree(
+ num_leaves=num_leaves, num_leaves_to_search=num_leaves_to_search, training_sample_size=training_sample_size
+ )
+ builder = builder.score_ah(dimensions_per_block=dimensions_per_block)
+
+ self.searcher = builder.build()
+
+ def search_batched(self, question_projection):
+ retrieved_block_ids, _ = self.searcher.search_batched(question_projection.detach().cpu())
+ return retrieved_block_ids.astype("int64")
+
+
+class RealmRetriever:
+ """The retriever of REALM outputting the retrieved evidence block and whether the block has answers as well as answer
+ positions."
+
+ Parameters:
+ block_records (`np.ndarray`):
+ A numpy array which cantains evidence texts.
+ tokenizer ([`RealmTokenizer`]):
+ The tokenizer to encode retrieved texts.
+ """
+
+ def __init__(self, block_records, tokenizer):
+ super().__init__()
+ self.block_records = block_records
+ self.tokenizer = tokenizer
+
+ def __call__(self, retrieved_block_ids, question_input_ids, answer_ids, max_length=None, return_tensors="pt"):
+ retrieved_blocks = np.take(self.block_records, indices=retrieved_block_ids, axis=0)
+
+ question = self.tokenizer.decode(question_input_ids[0], skip_special_tokens=True)
+
+ text = []
+ text_pair = []
+ for retrieved_block in retrieved_blocks:
+ text.append(question)
+ text_pair.append(retrieved_block.decode())
+
+ concat_inputs = self.tokenizer(
+ text, text_pair, padding=True, truncation=True, return_special_tokens_mask=True, max_length=max_length
+ )
+ concat_inputs_tensors = concat_inputs.convert_to_tensors(return_tensors)
+
+ if answer_ids is not None:
+ return self.block_has_answer(concat_inputs, answer_ids) + (concat_inputs_tensors,)
+ else:
+ return (None, None, None, concat_inputs_tensors)
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *init_inputs, **kwargs):
+ if os.path.isdir(pretrained_model_name_or_path):
+ block_records_path = os.path.join(pretrained_model_name_or_path, _REALM_BLOCK_RECORDS_FILENAME)
+ else:
+ block_records_path = hf_hub_download(
+ repo_id=pretrained_model_name_or_path, filename=_REALM_BLOCK_RECORDS_FILENAME, **kwargs
+ )
+ block_records = np.load(block_records_path, allow_pickle=True)
+
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
+
+ return cls(block_records, tokenizer)
+
+ def save_pretrained(self, save_directory):
+ # save block records
+ np.save(os.path.join(save_directory, _REALM_BLOCK_RECORDS_FILENAME), self.block_records)
+ # save tokenizer
+ self.tokenizer.save_pretrained(save_directory)
+
+ def block_has_answer(self, concat_inputs, answer_ids):
+ """check if retrieved_blocks has answers."""
+ has_answers = []
+ start_pos = []
+ end_pos = []
+ max_answers = 0
+
+ for input_id in concat_inputs.input_ids:
+ input_id_list = input_id.tolist()
+ # Check answers between two [SEP] tokens
+ first_sep_idx = input_id_list.index(self.tokenizer.sep_token_id)
+ second_sep_idx = first_sep_idx + 1 + input_id_list[first_sep_idx + 1 :].index(self.tokenizer.sep_token_id)
+
+ start_pos.append([])
+ end_pos.append([])
+ for answer in answer_ids:
+ for idx in range(first_sep_idx + 1, second_sep_idx):
+ if answer[0] == input_id_list[idx]:
+ if input_id_list[idx : idx + len(answer)] == answer:
+ start_pos[-1].append(idx)
+ end_pos[-1].append(idx + len(answer) - 1)
+
+ if len(start_pos[-1]) == 0:
+ has_answers.append(False)
+ else:
+ has_answers.append(True)
+ if len(start_pos[-1]) > max_answers:
+ max_answers = len(start_pos[-1])
+
+ # Pad -1 to max_answers
+ for start_pos_, end_pos_ in zip(start_pos, end_pos):
+ if len(start_pos_) < max_answers:
+ padded = [-1] * (max_answers - len(start_pos_))
+ start_pos_ += padded
+ end_pos_ += padded
+ return has_answers, start_pos, end_pos
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/tokenization_realm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/tokenization_realm.py
new file mode 100644
index 0000000000000000000000000000000000000000..c4ff7e38a3e55212e45c549b80183ceaa464064c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/tokenization_realm.py
@@ -0,0 +1,560 @@
+# coding=utf-8
+# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization classes for REALM."""
+
+import collections
+import os
+import unicodedata
+from typing import List, Optional, Tuple
+
+from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
+from ...tokenization_utils_base import BatchEncoding
+from ...utils import PaddingStrategy, logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
+
+
+def load_vocab(vocab_file):
+ """Loads a vocabulary file into a dictionary."""
+ vocab = collections.OrderedDict()
+ with open(vocab_file, "r", encoding="utf-8") as reader:
+ tokens = reader.readlines()
+ for index, token in enumerate(tokens):
+ token = token.rstrip("\n")
+ vocab[token] = index
+ return vocab
+
+
+def whitespace_tokenize(text):
+ """Runs basic whitespace cleaning and splitting on a piece of text."""
+ text = text.strip()
+ if not text:
+ return []
+ tokens = text.split()
+ return tokens
+
+
+class RealmTokenizer(PreTrainedTokenizer):
+ r"""
+ Construct a REALM tokenizer.
+
+ [`RealmTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and
+ wordpiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ do_basic_tokenize (`bool`, *optional*, defaults to `True`):
+ Whether or not to do basic tokenization before WordPiece.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+
+ def __init__(
+ self,
+ vocab_file,
+ do_lower_case=True,
+ do_basic_tokenize=True,
+ never_split=None,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ if not os.path.isfile(vocab_file):
+ raise ValueError(
+ f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
+ " model use `tokenizer = RealmTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
+ )
+ self.vocab = load_vocab(vocab_file)
+ self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
+ self.do_basic_tokenize = do_basic_tokenize
+ if do_basic_tokenize:
+ self.basic_tokenizer = BasicTokenizer(
+ do_lower_case=do_lower_case,
+ never_split=never_split,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ )
+ self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
+ super().__init__(
+ do_lower_case=do_lower_case,
+ do_basic_tokenize=do_basic_tokenize,
+ never_split=never_split,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ @property
+ def do_lower_case(self):
+ return self.basic_tokenizer.do_lower_case
+
+ @property
+ def vocab_size(self):
+ return len(self.vocab)
+
+ def get_vocab(self):
+ return dict(self.vocab, **self.added_tokens_encoder)
+
+ def _tokenize(self, text):
+ split_tokens = []
+ if self.do_basic_tokenize:
+ for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
+ # If the token is part of the never_split set
+ if token in self.basic_tokenizer.never_split:
+ split_tokens.append(token)
+ else:
+ split_tokens += self.wordpiece_tokenizer.tokenize(token)
+ else:
+ split_tokens = self.wordpiece_tokenizer.tokenize(text)
+ return split_tokens
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.ids_to_tokens.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ out_string = " ".join(tokens).replace(" ##", "").strip()
+ return out_string
+
+ def batch_encode_candidates(self, text, **kwargs):
+ r"""
+ Encode a batch of text or text pair. This method is similar to regular __call__ method but has the following
+ differences:
+
+ 1. Handle additional num_candidate axis. (batch_size, num_candidates, text)
+ 2. Always pad the sequences to *max_length*.
+ 3. Must specify *max_length* in order to stack packs of candidates into a batch.
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ text (`List[List[str]]`):
+ The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
+ num_candidates, text).
+ text_pair (`List[List[str]]`, *optional*):
+ The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
+ num_candidates, text).
+ **kwargs:
+ Keyword arguments of the __call__ method.
+
+ Returns:
+ [`BatchEncoding`]: Encoded text or text pair.
+
+ Example:
+
+ ```python
+ >>> from transformers import RealmTokenizer
+
+ >>> # batch_size = 2, num_candidates = 2
+ >>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
+
+ >>> tokenizer = RealmTokenizer.from_pretrained("google/realm-cc-news-pretrained-encoder")
+ >>> tokenized_text = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt")
+ ```"""
+
+ # Always using a fixed sequence length to encode in order to stack candidates into a batch.
+ kwargs["padding"] = PaddingStrategy.MAX_LENGTH
+
+ batch_text = text
+ batch_text_pair = kwargs.pop("text_pair", None)
+ return_tensors = kwargs.pop("return_tensors", None)
+
+ output_data = {
+ "input_ids": [],
+ "attention_mask": [],
+ "token_type_ids": [],
+ }
+
+ for idx, candidate_text in enumerate(batch_text):
+ if batch_text_pair is not None:
+ candidate_text_pair = batch_text_pair[idx]
+ else:
+ candidate_text_pair = None
+
+ encoded_candidates = super().__call__(candidate_text, candidate_text_pair, return_tensors=None, **kwargs)
+
+ encoded_input_ids = encoded_candidates.get("input_ids")
+ encoded_attention_mask = encoded_candidates.get("attention_mask")
+ encoded_token_type_ids = encoded_candidates.get("token_type_ids")
+
+ if encoded_input_ids is not None:
+ output_data["input_ids"].append(encoded_input_ids)
+ if encoded_attention_mask is not None:
+ output_data["attention_mask"].append(encoded_attention_mask)
+ if encoded_token_type_ids is not None:
+ output_data["token_type_ids"].append(encoded_token_type_ids)
+
+ output_data = {key: item for key, item in output_data.items() if len(item) != 0}
+
+ return BatchEncoding(output_data, tensor_type=return_tensors)
+
+ def build_inputs_with_special_tokens(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A REALM sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ if token_ids_1 is None:
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+ cls = [self.cls_token_id]
+ sep = [self.sep_token_id]
+ return cls + token_ids_0 + sep + token_ids_1 + sep
+
+ def get_special_tokens_mask(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
+ ) -> List[int]:
+ """
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
+ special tokens using the tokenizer `prepare_for_model` method.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
+ Whether or not the token list is already formatted with special tokens for the model.
+
+ Returns:
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
+ """
+
+ if already_has_special_tokens:
+ return super().get_special_tokens_mask(
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
+ )
+
+ if token_ids_1 is not None:
+ return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
+ return [1] + ([0] * len(token_ids_0)) + [1]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A REALM sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ index = 0
+ if os.path.isdir(save_directory):
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ else:
+ vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
+ with open(vocab_file, "w", encoding="utf-8") as writer:
+ for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
+ " Please check that the vocabulary is not corrupted!"
+ )
+ index = token_index
+ writer.write(token + "\n")
+ index += 1
+ return (vocab_file,)
+
+
+class BasicTokenizer(object):
+ """
+ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
+
+ Args:
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ never_split (`Iterable`, *optional*):
+ Collection of tokens which will never be split during tokenization. Only has an effect when
+ `do_basic_tokenize=True`
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters.
+
+ This should likely be deactivated for Japanese (see this
+ [issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ """
+
+ def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
+ if never_split is None:
+ never_split = []
+ self.do_lower_case = do_lower_case
+ self.never_split = set(never_split)
+ self.tokenize_chinese_chars = tokenize_chinese_chars
+ self.strip_accents = strip_accents
+
+ def tokenize(self, text, never_split=None):
+ """
+ Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
+ WordPieceTokenizer.
+
+ Args:
+ never_split (`List[str]`, *optional*)
+ Kept for backward compatibility purposes. Now implemented directly at the base class level (see
+ [`PreTrainedTokenizer.tokenize`]) List of token not to split.
+ """
+ # union() returns a new set by concatenating the two sets.
+ never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
+ text = self._clean_text(text)
+
+ # This was added on November 1st, 2018 for the multilingual and Chinese
+ # models. This is also applied to the English models now, but it doesn't
+ # matter since the English models were not trained on any Chinese data
+ # and generally don't have any Chinese data in them (there are Chinese
+ # characters in the vocabulary because Wikipedia does have some Chinese
+ # words in the English Wikipedia.).
+ if self.tokenize_chinese_chars:
+ text = self._tokenize_chinese_chars(text)
+ orig_tokens = whitespace_tokenize(text)
+ split_tokens = []
+ for token in orig_tokens:
+ if token not in never_split:
+ if self.do_lower_case:
+ token = token.lower()
+ if self.strip_accents is not False:
+ token = self._run_strip_accents(token)
+ elif self.strip_accents:
+ token = self._run_strip_accents(token)
+ split_tokens.extend(self._run_split_on_punc(token, never_split))
+
+ output_tokens = whitespace_tokenize(" ".join(split_tokens))
+ return output_tokens
+
+ def _run_strip_accents(self, text):
+ """Strips accents from a piece of text."""
+ text = unicodedata.normalize("NFD", text)
+ output = []
+ for char in text:
+ cat = unicodedata.category(char)
+ if cat == "Mn":
+ continue
+ output.append(char)
+ return "".join(output)
+
+ def _run_split_on_punc(self, text, never_split=None):
+ """Splits punctuation on a piece of text."""
+ if never_split is not None and text in never_split:
+ return [text]
+ chars = list(text)
+ i = 0
+ start_new_word = True
+ output = []
+ while i < len(chars):
+ char = chars[i]
+ if _is_punctuation(char):
+ output.append([char])
+ start_new_word = True
+ else:
+ if start_new_word:
+ output.append([])
+ start_new_word = False
+ output[-1].append(char)
+ i += 1
+
+ return ["".join(x) for x in output]
+
+ def _tokenize_chinese_chars(self, text):
+ """Adds whitespace around any CJK character."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if self._is_chinese_char(cp):
+ output.append(" ")
+ output.append(char)
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+ def _is_chinese_char(self, cp):
+ """Checks whether CP is the codepoint of a CJK character."""
+ # This defines a "chinese character" as anything in the CJK Unicode block:
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
+ #
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
+ # despite its name. The modern Korean Hangul alphabet is a different block,
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
+ # space-separated words, so they are not treated specially and handled
+ # like the all of the other languages.
+ if (
+ (cp >= 0x4E00 and cp <= 0x9FFF)
+ or (cp >= 0x3400 and cp <= 0x4DBF) #
+ or (cp >= 0x20000 and cp <= 0x2A6DF) #
+ or (cp >= 0x2A700 and cp <= 0x2B73F) #
+ or (cp >= 0x2B740 and cp <= 0x2B81F) #
+ or (cp >= 0x2B820 and cp <= 0x2CEAF) #
+ or (cp >= 0xF900 and cp <= 0xFAFF)
+ or (cp >= 0x2F800 and cp <= 0x2FA1F) #
+ ): #
+ return True
+
+ return False
+
+ def _clean_text(self, text):
+ """Performs invalid character removal and whitespace cleanup on text."""
+ output = []
+ for char in text:
+ cp = ord(char)
+ if cp == 0 or cp == 0xFFFD or _is_control(char):
+ continue
+ if _is_whitespace(char):
+ output.append(" ")
+ else:
+ output.append(char)
+ return "".join(output)
+
+
+class WordpieceTokenizer(object):
+ """Runs WordPiece tokenization."""
+
+ def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
+ self.vocab = vocab
+ self.unk_token = unk_token
+ self.max_input_chars_per_word = max_input_chars_per_word
+
+ def tokenize(self, text):
+ """
+ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
+ tokenization using the given vocabulary.
+
+ For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
+
+ Args:
+ text: A single token or whitespace separated tokens. This should have
+ already been passed through *BasicTokenizer*.
+
+ Returns:
+ A list of wordpiece tokens.
+ """
+
+ output_tokens = []
+ for token in whitespace_tokenize(text):
+ chars = list(token)
+ if len(chars) > self.max_input_chars_per_word:
+ output_tokens.append(self.unk_token)
+ continue
+
+ is_bad = False
+ start = 0
+ sub_tokens = []
+ while start < len(chars):
+ end = len(chars)
+ cur_substr = None
+ while start < end:
+ substr = "".join(chars[start:end])
+ if start > 0:
+ substr = "##" + substr
+ if substr in self.vocab:
+ cur_substr = substr
+ break
+ end -= 1
+ if cur_substr is None:
+ is_bad = True
+ break
+ sub_tokens.append(cur_substr)
+ start = end
+
+ if is_bad:
+ output_tokens.append(self.unk_token)
+ else:
+ output_tokens.extend(sub_tokens)
+ return output_tokens
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/tokenization_realm_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/tokenization_realm_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..7315bf1c250182bbbffd4eb5a8b66f732c71d685
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/realm/tokenization_realm_fast.py
@@ -0,0 +1,249 @@
+# coding=utf-8
+# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Fast Tokenization classes for REALM."""
+
+import json
+from typing import List, Optional, Tuple
+
+from tokenizers import normalizers
+
+from ...tokenization_utils_base import BatchEncoding
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import PaddingStrategy, logging
+from .tokenization_realm import RealmTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
+
+
+class RealmTokenizerFast(PreTrainedTokenizerFast):
+ r"""
+ Construct a "fast" REALM tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
+
+ [`RealmTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation
+ splitting and wordpiece.
+
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
+ refer to this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ do_lower_case (`bool`, *optional*, defaults to `True`):
+ Whether or not to lowercase the input when tokenizing.
+ unk_token (`str`, *optional*, defaults to `"[UNK]"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ sep_token (`str`, *optional*, defaults to `"[SEP]"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ pad_token (`str`, *optional*, defaults to `"[PAD]"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ cls_token (`str`, *optional*, defaults to `"[CLS]"`):
+ The classifier token which is used when doing sequence classification (classification of the whole sequence
+ instead of per-token classification). It is the first token of the sequence when built with special tokens.
+ mask_token (`str`, *optional*, defaults to `"[MASK]"`):
+ The token used for masking values. This is the token used when training this model with masked language
+ modeling. This is the token which the model will try to predict.
+ clean_text (`bool`, *optional*, defaults to `True`):
+ Whether or not to clean the text before tokenization by removing any control characters and replacing all
+ whitespaces by the classic one.
+ tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
+ Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
+ issue](https://github.com/huggingface/transformers/issues/328)).
+ strip_accents (`bool`, *optional*):
+ Whether or not to strip all accents. If this option is not specified, then it will be determined by the
+ value for `lowercase` (as in the original BERT).
+ wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
+ The prefix for subwords.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ slow_tokenizer_class = RealmTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ tokenizer_file=None,
+ do_lower_case=True,
+ unk_token="[UNK]",
+ sep_token="[SEP]",
+ pad_token="[PAD]",
+ cls_token="[CLS]",
+ mask_token="[MASK]",
+ tokenize_chinese_chars=True,
+ strip_accents=None,
+ **kwargs,
+ ):
+ super().__init__(
+ vocab_file,
+ tokenizer_file=tokenizer_file,
+ do_lower_case=do_lower_case,
+ unk_token=unk_token,
+ sep_token=sep_token,
+ pad_token=pad_token,
+ cls_token=cls_token,
+ mask_token=mask_token,
+ tokenize_chinese_chars=tokenize_chinese_chars,
+ strip_accents=strip_accents,
+ **kwargs,
+ )
+
+ normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
+ if (
+ normalizer_state.get("lowercase", do_lower_case) != do_lower_case
+ or normalizer_state.get("strip_accents", strip_accents) != strip_accents
+ or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
+ ):
+ normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
+ normalizer_state["lowercase"] = do_lower_case
+ normalizer_state["strip_accents"] = strip_accents
+ normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
+ self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
+
+ self.do_lower_case = do_lower_case
+
+ def batch_encode_candidates(self, text, **kwargs):
+ r"""
+ Encode a batch of text or text pair. This method is similar to regular __call__ method but has the following
+ differences:
+
+ 1. Handle additional num_candidate axis. (batch_size, num_candidates, text)
+ 2. Always pad the sequences to *max_length*.
+ 3. Must specify *max_length* in order to stack packs of candidates into a batch.
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ text (`List[List[str]]`):
+ The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
+ num_candidates, text).
+ text_pair (`List[List[str]]`, *optional*):
+ The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
+ num_candidates, text).
+ **kwargs:
+ Keyword arguments of the __call__ method.
+
+ Returns:
+ [`BatchEncoding`]: Encoded text or text pair.
+
+ Example:
+
+ ```python
+ >>> from transformers import RealmTokenizerFast
+
+ >>> # batch_size = 2, num_candidates = 2
+ >>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
+
+ >>> tokenizer = RealmTokenizerFast.from_pretrained("google/realm-cc-news-pretrained-encoder")
+ >>> tokenized_text = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt")
+ ```"""
+
+ # Always using a fixed sequence length to encode in order to stack candidates into a batch.
+ kwargs["padding"] = PaddingStrategy.MAX_LENGTH
+
+ batch_text = text
+ batch_text_pair = kwargs.pop("text_pair", None)
+ return_tensors = kwargs.pop("return_tensors", None)
+
+ output_data = {
+ "input_ids": [],
+ "attention_mask": [],
+ "token_type_ids": [],
+ }
+
+ for idx, candidate_text in enumerate(batch_text):
+ if batch_text_pair is not None:
+ candidate_text_pair = batch_text_pair[idx]
+ else:
+ candidate_text_pair = None
+
+ encoded_candidates = super().__call__(candidate_text, candidate_text_pair, return_tensors=None, **kwargs)
+
+ encoded_input_ids = encoded_candidates.get("input_ids")
+ encoded_attention_mask = encoded_candidates.get("attention_mask")
+ encoded_token_type_ids = encoded_candidates.get("token_type_ids")
+
+ if encoded_input_ids is not None:
+ output_data["input_ids"].append(encoded_input_ids)
+ if encoded_attention_mask is not None:
+ output_data["attention_mask"].append(encoded_attention_mask)
+ if encoded_token_type_ids is not None:
+ output_data["token_type_ids"].append(encoded_token_type_ids)
+
+ output_data = {key: item for key, item in output_data.items() if len(item) != 0}
+
+ return BatchEncoding(output_data, tensor_type=return_tensors)
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ """
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
+ adding special tokens. A REALM sequence has the following format:
+
+ - single sequence: `[CLS] X [SEP]`
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs to which the special tokens will be added.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
+ """
+ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
+
+ if token_ids_1 is not None:
+ output += token_ids_1 + [self.sep_token_id]
+
+ return output
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A REALM sequence
+ pair mask has the following format:
+
+ ```
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
+ | first sequence | second sequence |
+ ```
+
+ If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
+ return tuple(files)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e68ae4cb3737cf7fce75b980e4fc19e6ba93361d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__init__.py
@@ -0,0 +1,60 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
+
+
+_import_structure = {"configuration_umt5": ["UMT5Config", "UMT5OnnxConfig"]}
+
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_umt5"] = [
+ "UMT5EncoderModel",
+ "UMT5ForConditionalGeneration",
+ "UMT5ForQuestionAnswering",
+ "UMT5ForSequenceClassification",
+ "UMT5ForTokenClassification",
+ "UMT5Model",
+ "UMT5PreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_umt5 import UMT5Config, UMT5OnnxConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_umt5 import (
+ UMT5EncoderModel,
+ UMT5ForConditionalGeneration,
+ UMT5ForQuestionAnswering,
+ UMT5ForSequenceClassification,
+ UMT5ForTokenClassification,
+ UMT5Model,
+ UMT5PreTrainedModel,
+ )
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0ce24c1b1fd95583ed8dae48ba837e5a43b01db5
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/configuration_umt5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/configuration_umt5.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..dfd7781b2375ced5f8069b2cf82dd551fd304882
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/configuration_umt5.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/convert_umt5_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/convert_umt5_checkpoint_to_pytorch.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f6e54fccc29679f3d34d8857ccd3a64d6b339874
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/convert_umt5_checkpoint_to_pytorch.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/modeling_umt5.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/modeling_umt5.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..48c9c2f3a3d516123b7087a6ce1f61a95c1b8d74
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/__pycache__/modeling_umt5.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/configuration_umt5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/configuration_umt5.py
new file mode 100644
index 0000000000000000000000000000000000000000..9365717c282ae620e23363a12bfe7ee847d0efd8
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/configuration_umt5.py
@@ -0,0 +1,172 @@
+# coding=utf-8
+# Copyright 2023, The T5 Authors and HuggingFace Inc.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" UMT5 model configuration"""
+from typing import Mapping
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxSeq2SeqConfigWithPast
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class UMT5Config(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`UMT5Model`]. It is used to instantiate a UMT5
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
+ defaults will yield a similar configuration to that of the UMT5
+ [google/umt5-small](https://huggingface.co/google/umt5-small) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Arguments:
+ vocab_size (`int`, *optional*, defaults to 250112):
+ Vocabulary size of the UMT5 model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`UMT5Model`] or [`TFUMT5Model`].
+ d_model (`int`, *optional*, defaults to 512):
+ Size of the encoder layers and the pooler layer.
+ d_kv (`int`, *optional*, defaults to 64):
+ Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
+ num_heads`.
+ d_ff (`int`, *optional*, defaults to 1024):
+ Size of the intermediate feed forward layer in each `UMT5Block`.
+ num_layers (`int`, *optional*, defaults to 8):
+ Number of hidden layers in the Transformer encoder.
+ num_decoder_layers (`int`, *optional*):
+ Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
+ num_heads (`int`, *optional*, defaults to 6):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ relative_attention_num_buckets (`int`, *optional*, defaults to 32):
+ The number of buckets to use for each attention layer.
+ relative_attention_max_distance (`int`, *optional*, defaults to 128):
+ The maximum distance of the longer sequences for the bucket separation.
+ dropout_rate (`float`, *optional*, defaults to 0.1):
+ The ratio for all dropout layers.
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for classifier.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
+ The epsilon used by the layer normalization layers.
+ initializer_factor (`float`, *optional*, defaults to 1):
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
+ testing).
+ feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
+ Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ """
+
+ model_type = "umt5"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
+
+ def __init__(
+ self,
+ vocab_size=250112,
+ d_model=512,
+ d_kv=64,
+ d_ff=1024,
+ num_layers=8,
+ num_decoder_layers=None,
+ num_heads=6,
+ relative_attention_num_buckets=32,
+ relative_attention_max_distance=128,
+ dropout_rate=0.1,
+ layer_norm_epsilon=1e-6,
+ initializer_factor=1.0,
+ feed_forward_proj="gated-gelu",
+ is_encoder_decoder=True,
+ use_cache=True,
+ tokenizer_class="T5Tokenizer",
+ tie_word_embeddings=True,
+ pad_token_id=0,
+ eos_token_id=1,
+ decoder_start_token_id=0,
+ classifier_dropout=0.0,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.d_model = d_model
+ self.d_kv = d_kv
+ self.d_ff = d_ff
+ self.num_layers = num_layers
+ self.num_decoder_layers = (
+ num_decoder_layers if num_decoder_layers is not None else self.num_layers
+ ) # default = symmetry
+ self.num_heads = num_heads
+ self.relative_attention_num_buckets = relative_attention_num_buckets
+ self.relative_attention_max_distance = relative_attention_max_distance
+ self.dropout_rate = dropout_rate
+ self.classifier_dropout = classifier_dropout
+ self.layer_norm_epsilon = layer_norm_epsilon
+ self.initializer_factor = initializer_factor
+ self.feed_forward_proj = feed_forward_proj
+ self.use_cache = use_cache
+
+ act_info = self.feed_forward_proj.split("-")
+ self.dense_act_fn = act_info[-1]
+ self.is_gated_act = act_info[0] == "gated"
+
+ if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
+ raise ValueError(
+ f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. "
+ "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
+ "'gated-gelu' or 'relu'"
+ )
+
+ if feed_forward_proj == "gated-gelu":
+ self.dense_act_fn = "gelu_new"
+
+ super().__init__(
+ is_encoder_decoder=is_encoder_decoder,
+ tokenizer_class=tokenizer_class,
+ tie_word_embeddings=tie_word_embeddings,
+ pad_token_id=pad_token_id,
+ eos_token_id=eos_token_id,
+ decoder_start_token_id=decoder_start_token_id,
+ **kwargs,
+ )
+
+
+class UMT5OnnxConfig(OnnxSeq2SeqConfigWithPast):
+ @property
+ # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ common_inputs = {
+ "input_ids": {0: "batch", 1: "encoder_sequence"},
+ "attention_mask": {0: "batch", 1: "encoder_sequence"},
+ }
+ if self.use_past:
+ common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
+ common_inputs["decoder_input_ids"] = {0: "batch"}
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
+ else:
+ common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
+
+ if self.use_past:
+ self.fill_with_past_key_values_(common_inputs, direction="inputs")
+
+ return common_inputs
+
+ @property
+ # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
+ def default_onnx_opset(self) -> int:
+ return 13
+
+ @property
+ def atol_for_validation(self) -> float:
+ return 5e-4
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/convert_umt5_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/convert_umt5_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..eeb5b3eb400ea6e64b83cd7fcabbc97eb7d0445d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/convert_umt5_checkpoint_to_pytorch.py
@@ -0,0 +1,274 @@
+# coding=utf-8
+# Copyright 2023 Google LLC and HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Convert T5X checkpoint to PyTorch
+
+Steps:
+- Install gsutil according to https://cloud.google.com/storage/docs/gsutil_install
+- Get a T5X checkpoint at https://github.com/google-research/t5x/blob/main/docs/models.md#t5-11-checkpoints Example:
+ `gsutil -m cp -r gs://t5-data/pretrained_models/t5x/t5_1_1_small $HOME/`
+- Create or download a corresponding config for the downloaded model. E.g. for T5 v1.1 small, you can use
+ https://huggingface.co/google/t5-v1_1-small/blob/main/config.json
+- Convert:
+ ```
+ python3 convert_t5x_checkpoint_to_pytorch.py --t5x_checkpoint_path=$HOME/t5_1_1_small --config_file=config.json\
+ --pytorch_dump_path=$HOME/t5_1_1_small_pt
+ ```
+"""
+
+import argparse
+import collections
+
+import numpy as np
+import torch
+from flax import traverse_util
+from t5x import checkpoints
+
+from transformers import MT5Config, UMT5EncoderModel, UMT5ForConditionalGeneration
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+
+
+def t5x_relpos_bias_lookup(params, i, prefix):
+ """Returns the Relative Position Bias parameters of a layer. Does not transpose."""
+ return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :]
+
+
+def t5x_attention_lookup(params, i, prefix, layer_name="attention"):
+ """Returns the KOQV parameters of (self-)attention. Does not transpose."""
+ k_tmp = k_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :])
+ k = k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2])
+ o_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :])
+ o = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2])
+ q_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :])
+ q = q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2])
+ v_tmp = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :])
+ v = v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2])
+ return k, o, q, v
+
+
+def t5x_mlp_lookup(params, i, prefix, split_mlp_wi=False):
+ """Returns the MLP parameters of a layer. Does not transpose."""
+ if split_mlp_wi:
+ wi_0 = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :]
+ wi_1 = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :]
+ wi = (wi_0, wi_1)
+ else:
+ wi = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :]
+
+ wo = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :]
+ return wi, wo
+
+
+def t5x_layer_norm_lookup(params, i, prefix, layer_name):
+ """Returns the layer norm param of a layer."""
+ return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i]
+
+
+def convert_t5x_to_pytorch(
+ variables: dict, *, num_layers: int, is_encoder_only: bool, scalable_attention: bool = False
+):
+ """Converts the parameters from T5X-Flax to Transformers-PyTorch."""
+ old = traverse_util.flatten_dict(variables["target"])
+ old = {"/".join(k): v for k, v in old.items()}
+
+ # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
+ split_mlp_wi = "encoder/encoder/mlp/wi_0/kernel" in old
+ print("Split MLP:", split_mlp_wi)
+
+ new = collections.OrderedDict()
+
+ # Shared embeddings.
+ new["shared.weight"] = old["token_embedder/embedding"]
+
+ # Encoder.
+ for i in range(num_layers):
+ # Block i, layer 0 (Self Attention).
+ layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_attention_layer_norm")
+ k, o, q, v = t5x_attention_lookup(old, i, "encoder", "attention")
+ new[f"encoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm
+ new[f"encoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T
+ new[f"encoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T
+ new[f"encoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T
+ new[f"encoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T
+
+ # Block i, layer 1 (MLP).
+ layer_norm = t5x_layer_norm_lookup(old, i, "encoder", "pre_mlp_layer_norm")
+ wi, wo = t5x_mlp_lookup(old, i, "encoder", split_mlp_wi)
+ new[f"encoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm
+ if split_mlp_wi:
+ new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_0.weight"] = wi[0].T
+ new[f"encoder.block.{i}.layer.1.DenseReluDense.wi_1.weight"] = wi[1].T
+ else:
+ new[f"encoder.block.{i}.layer.1.DenseReluDense.wi.weight"] = wi.T
+ new[f"encoder.block.{i}.layer.1.DenseReluDense.wo.weight"] = wo.T
+ if scalable_attention:
+ # convert the rel_embedding of each layer
+ new[f"encoder.block.{i}.layer.0.SelfAttention.relative_attention_bias.weight"] = t5x_relpos_bias_lookup(
+ old, i, "encoder"
+ ).T
+
+ new["encoder.final_layer_norm.weight"] = old["encoder/encoder_norm/scale"]
+
+ if not scalable_attention:
+ new["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = t5x_relpos_bias_lookup(
+ old, 0, "encoder"
+ ).T
+ new["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"] = t5x_relpos_bias_lookup(
+ old, 0, "decoder"
+ ).T
+
+ if not is_encoder_only:
+ # Decoder.
+ for i in range(num_layers):
+ # Block i, layer 0 (Self Attention).
+ layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_self_attention_layer_norm")
+ k, o, q, v = t5x_attention_lookup(old, i, "decoder", "self_attention")
+ new[f"decoder.block.{i}.layer.0.layer_norm.weight"] = layer_norm
+ new[f"decoder.block.{i}.layer.0.SelfAttention.k.weight"] = k.T
+ new[f"decoder.block.{i}.layer.0.SelfAttention.o.weight"] = o.T
+ new[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"] = q.T
+ new[f"decoder.block.{i}.layer.0.SelfAttention.v.weight"] = v.T
+
+ # Block i, layer 1 (Cross Attention).
+ layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_cross_attention_layer_norm")
+ k, o, q, v = t5x_attention_lookup(old, i, "decoder", "encoder_decoder_attention")
+ new[f"decoder.block.{i}.layer.1.layer_norm.weight"] = layer_norm
+ new[f"decoder.block.{i}.layer.1.EncDecAttention.k.weight"] = k.T
+ new[f"decoder.block.{i}.layer.1.EncDecAttention.o.weight"] = o.T
+ new[f"decoder.block.{i}.layer.1.EncDecAttention.q.weight"] = q.T
+ new[f"decoder.block.{i}.layer.1.EncDecAttention.v.weight"] = v.T
+
+ # Block i, layer 2 (MLP).
+ layer_norm = t5x_layer_norm_lookup(old, i, "decoder", "pre_mlp_layer_norm")
+ wi, wo = t5x_mlp_lookup(old, i, "decoder", split_mlp_wi)
+ new[f"decoder.block.{i}.layer.2.layer_norm.weight"] = layer_norm
+ if split_mlp_wi:
+ new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_0.weight"] = wi[0].T
+ new[f"decoder.block.{i}.layer.2.DenseReluDense.wi_1.weight"] = wi[1].T
+ else:
+ new[f"encoder.block.{i}.layer.2.DenseReluDense.wi.weight"] = wi.T
+ new[f"decoder.block.{i}.layer.2.DenseReluDense.wo.weight"] = wo.T
+
+ if scalable_attention:
+ # convert the rel_embedding of each layer
+ new[
+ f"decoder.block.{i}.layer.0.SelfAttention.relative_attention_bias.weight"
+ ] = t5x_relpos_bias_lookup(old, i, "decoder").T
+
+ new["decoder.final_layer_norm.weight"] = old["decoder/decoder_norm/scale"]
+
+ # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
+ if "decoder/logits_dense/kernel" in old:
+ new["lm_head.weight"] = old["decoder/logits_dense/kernel"].T
+
+ return new
+
+
+def make_state_dict(converted_params, is_encoder_only: bool):
+ """Prepares a state dict for the PyTorch model."""
+ # Make a state dict with torch tensors.
+ state_dict = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()])
+
+ # Add what is missing.
+ if "encoder.embed_tokens.weight" not in state_dict:
+ state_dict["encoder.embed_tokens.weight"] = state_dict["shared.weight"]
+
+ if not is_encoder_only:
+ if "decoder.embed_tokens.weight" not in state_dict:
+ state_dict["decoder.embed_tokens.weight"] = state_dict["shared.weight"]
+
+ if "lm_head.weight" not in state_dict: # For old 1.0 models.
+ print("Using shared word embeddings as lm_head.")
+ state_dict["lm_head.weight"] = state_dict["shared.weight"]
+
+ return state_dict
+
+
+def load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only, scalable_attention):
+ """Replaces the params in model witht the T5X converted params."""
+ variables = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
+ converted = convert_t5x_to_pytorch(
+ variables, num_layers=config.num_layers, is_encoder_only=is_encoder_only, scalable_attention=scalable_attention
+ )
+ state_dict = make_state_dict(converted, is_encoder_only)
+ model.load_state_dict(state_dict, strict=True)
+
+
+def convert_t5x_checkpoint_to_pytorch(
+ t5x_checkpoint_path,
+ config_file,
+ pytorch_dump_path,
+ is_encoder_only: bool = False,
+ scalable_attention: bool = False,
+):
+ """Loads the config and model, converts the T5X checkpoint, and saves a PyTorch checkpoint."""
+ # Initialise PyTorch model
+ config = MT5Config.from_json_file(config_file)
+ print(f"Building PyTorch model from configuration: {config}")
+ # Non-v1.1 checkpoints could also use T5Model, but this works for all.
+ # The v1.0 checkpoints will simply have an LM head that is the word embeddings.
+ if is_encoder_only:
+ model = UMT5EncoderModel(config)
+ else:
+ model = UMT5ForConditionalGeneration(config)
+
+ # Load weights from tf checkpoint
+ load_t5x_weights_in_t5(model, config, t5x_checkpoint_path, is_encoder_only, scalable_attention)
+
+ # Save pytorch-model
+ print(f"Save PyTorch model to {pytorch_dump_path}")
+ model.save_pretrained(pytorch_dump_path)
+
+ # Verify that we can load the checkpoint.
+ model.from_pretrained(pytorch_dump_path)
+ print("Done")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.")
+ # Required parameters
+ parser.add_argument(
+ "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint."
+ )
+ parser.add_argument(
+ "--config_file",
+ default=None,
+ type=str,
+ required=True,
+ help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ parser.add_argument(
+ "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False
+ )
+ parser.add_argument(
+ "--scalable_attention",
+ action="store_true",
+ help="Whether the model uses scaled attention (umt5 model)",
+ default=False,
+ )
+ args = parser.parse_args()
+ convert_t5x_checkpoint_to_pytorch(
+ args.t5x_checkpoint_path,
+ args.config_file,
+ args.pytorch_dump_path,
+ args.is_encoder_only,
+ args.scalable_attention,
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/modeling_umt5.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/modeling_umt5.py
new file mode 100644
index 0000000000000000000000000000000000000000..1bf8469f77e66de71b2484805fdcd77f2e2338fb
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/umt5/modeling_umt5.py
@@ -0,0 +1,1857 @@
+# coding=utf-8
+# Copyright 2023 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch UMT5 model."""
+
+import copy
+import math
+from typing import List, Optional, Tuple, Union
+
+import torch
+from torch import nn
+from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ Seq2SeqLMOutput,
+ Seq2SeqModelOutput,
+ Seq2SeqQuestionAnsweringModelOutput,
+ Seq2SeqSequenceClassifierOutput,
+ TokenClassifierOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ DUMMY_INPUTS,
+ DUMMY_MASK,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ is_torch_fx_proxy,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_umt5 import UMT5Config
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "UMT5Config"
+_CHECKPOINT_FOR_DOC = "google/umt5-small"
+
+
+# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->UMT5
+class UMT5LayerNorm(nn.Module):
+ def __init__(self, hidden_size, eps=1e-6):
+ """
+ Construct a layernorm module in the UMT5 style. No bias and no subtraction of mean.
+ """
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(hidden_size))
+ self.variance_epsilon = eps
+
+ def forward(self, hidden_states):
+ # UMT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
+ # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
+ # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
+ # half-precision inputs is done in fp32
+
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
+
+ # convert into half-precision if necessary
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
+ hidden_states = hidden_states.to(self.weight.dtype)
+
+ return self.weight * hidden_states
+
+
+# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->UMT5
+class UMT5DenseActDense(nn.Module):
+ def __init__(self, config: UMT5Config):
+ super().__init__()
+ self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
+ self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
+ self.dropout = nn.Dropout(config.dropout_rate)
+ self.act = ACT2FN[config.dense_act_fn]
+
+ def forward(self, hidden_states):
+ hidden_states = self.wi(hidden_states)
+ hidden_states = self.act(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ if (
+ isinstance(self.wo.weight, torch.Tensor)
+ and hidden_states.dtype != self.wo.weight.dtype
+ and self.wo.weight.dtype != torch.int8
+ ):
+ hidden_states = hidden_states.to(self.wo.weight.dtype)
+ hidden_states = self.wo(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->UMT5
+class UMT5DenseGatedActDense(nn.Module):
+ def __init__(self, config: UMT5Config):
+ super().__init__()
+ self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
+ self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
+ self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
+ self.dropout = nn.Dropout(config.dropout_rate)
+ self.act = ACT2FN[config.dense_act_fn]
+
+ def forward(self, hidden_states):
+ hidden_gelu = self.act(self.wi_0(hidden_states))
+ hidden_linear = self.wi_1(hidden_states)
+ hidden_states = hidden_gelu * hidden_linear
+ hidden_states = self.dropout(hidden_states)
+
+ # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
+ # See https://github.com/huggingface/transformers/issues/20287
+ # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
+ if (
+ isinstance(self.wo.weight, torch.Tensor)
+ and hidden_states.dtype != self.wo.weight.dtype
+ and self.wo.weight.dtype != torch.int8
+ ):
+ hidden_states = hidden_states.to(self.wo.weight.dtype)
+
+ hidden_states = self.wo(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->UMT5
+class UMT5LayerFF(nn.Module):
+ def __init__(self, config: UMT5Config):
+ super().__init__()
+ if config.is_gated_act:
+ self.DenseReluDense = UMT5DenseGatedActDense(config)
+ else:
+ self.DenseReluDense = UMT5DenseActDense(config)
+
+ self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ def forward(self, hidden_states):
+ forwarded_states = self.layer_norm(hidden_states)
+ forwarded_states = self.DenseReluDense(forwarded_states)
+ hidden_states = hidden_states + self.dropout(forwarded_states)
+ return hidden_states
+
+
+class UMT5Attention(nn.Module):
+ """
+ T5's attention using relative_attention_bias.
+ """
+
+ def __init__(self, config, has_relative_attention_bias=False):
+ super().__init__()
+ self.is_decoder = config.is_decoder
+ self.has_relative_attention_bias = has_relative_attention_bias
+ self.relative_attention_num_buckets = config.relative_attention_num_buckets
+ self.relative_attention_max_distance = config.relative_attention_max_distance
+ self.d_model = config.d_model
+ self.key_value_proj_dim = config.d_kv
+ self.n_heads = config.num_heads
+ self.dropout = config.dropout_rate
+ self.inner_dim = self.n_heads * self.key_value_proj_dim
+
+ # Mesh TensorFlow initialization to avoid scaling before softmax
+ self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
+ self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
+ self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
+ self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
+
+ if self.has_relative_attention_bias:
+ self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
+ self.pruned_heads = set()
+
+ def _shape(self, projection: torch.Tensor) -> torch.Tensor:
+ new_projection_shape = projection.size()[:-1] + (self.n_heads, self.key_value_proj_dim)
+ # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
+ new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
+ return new_projection
+
+ def _relative_position_bucket(self, relative_position):
+ """
+ Adapted from Mesh Tensorflow:
+ https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
+
+ Translate relative position to a bucket number for relative attention. The relative position is defined as
+ memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
+ position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
+ small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
+ positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
+ This should allow for more graceful generalization to longer sequences than the model has been trained on
+
+ Args:
+ relative_position: an int32 Tensor
+ bidirectional: a boolean - whether the attention is bidirectional
+ num_buckets: an integer
+ max_distance: an integer
+
+ Returns:
+ a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
+ """
+ relative_buckets = 0
+ num_buckets = self.relative_attention_num_buckets
+ max_distance = self.relative_attention_max_distance
+ if not self.is_decoder:
+ num_buckets //= 2
+ relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
+ relative_position = torch.abs(relative_position)
+ else:
+ relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
+ # now relative_position is in the range [0, inf)
+
+ # half of the buckets are for exact increments in positions
+ max_exact = num_buckets // 2
+ is_small = relative_position < max_exact
+
+ # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
+ log_ratio = torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact)
+ log_ratio = log_ratio * (num_buckets - max_exact)
+ relative_position_if_large = max_exact + log_ratio.to(torch.long)
+ relative_position_if_large = torch.min(
+ relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
+ )
+
+ relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
+ return relative_buckets
+
+ def compute_bias(self, query_length, key_length, device=None):
+ """Compute binned relative position bias"""
+ if device is None:
+ device = self.relative_attention_bias.weight.device
+ context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
+ memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
+ relative_position = memory_position - context_position # shape (query_length, key_length)
+ relative_position_bucket = self._relative_position_bucket(relative_position)
+ values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
+ values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
+ return values
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ ):
+ is_cross_attention = encoder_hidden_states is not None
+ batch_size, seq_length = hidden_states.shape[:2]
+
+ # use encoder_hidden_states if cross attention
+ current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
+ # checking that the `sequence_length` of the `past_key_value` is the same as the he provided
+ # `encoder_hidden_states` to support prefix tuning
+ if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]:
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ else:
+ key_states = self._shape(self.k(current_states))
+ value_states = self._shape(self.v(current_states))
+ if past_key_value is not None and not is_cross_attention:
+ # reuse k, v, self_attention
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+
+ query_states = self._shape(self.q(hidden_states))
+ attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
+
+ # compute positional bias
+ if self.has_relative_attention_bias:
+ query_length = seq_length
+ if past_key_value is not None:
+ query_length += past_key_value[0].shape[2]
+ position_bias = self.compute_bias(query_length, key_states.size(2), device=attention_scores.device)
+ else:
+ position_bias = torch.zeros(
+ (1, self.n_heads, seq_length, key_states.size(2)),
+ device=attention_scores.device,
+ dtype=attention_scores.dtype,
+ requires_grad=self.training,
+ )
+ if past_key_value is not None:
+ position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
+ if attention_mask is not None:
+ position_bias = position_bias + attention_mask # (batch_size, n_heads, seq_length, key_length)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ attention_scores += position_bias
+ # (batch_size, n_heads, seq_length, key_length)
+ attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores)
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ # Mask heads if we want to
+ if layer_head_mask is not None:
+ attn_weights = attn_weights * layer_head_mask
+
+ # attn_output = torch.bmm(attn_probs, value_states) ?
+ context_states = torch.matmul(attn_weights, value_states)
+ # attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ?
+ context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
+ attn_output = self.o(context_states)
+ return attn_output, attn_weights, past_key_value
+
+
+class UMT5LayerSelfAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.SelfAttention = UMT5Attention(config, has_relative_attention_bias=True)
+ self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ layer_head_mask=None,
+ past_key_value=None,
+ ):
+ normed_hidden_states = self.layer_norm(hidden_states)
+ attention_output = self.SelfAttention(
+ normed_hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ past_key_value=past_key_value,
+ )
+ hidden_states = hidden_states + self.dropout(attention_output[0])
+ outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
+ return outputs
+
+
+class UMT5LayerCrossAttention(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.EncDecAttention = UMT5Attention(config, has_relative_attention_bias=False)
+ self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ def forward(
+ self,
+ hidden_states,
+ encoder_hidden_states=None,
+ attention_mask=None,
+ layer_head_mask=None,
+ past_key_value=None,
+ ):
+ normed_hidden_states = self.layer_norm(hidden_states)
+ attention_output = self.EncDecAttention(
+ normed_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ past_key_value=past_key_value,
+ )
+ layer_output = hidden_states + self.dropout(attention_output[0])
+ outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
+ return outputs
+
+
+class UMT5Block(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.is_decoder = config.is_decoder
+ self.layer = nn.ModuleList()
+ self.layer.append(UMT5LayerSelfAttention(config))
+ if self.is_decoder:
+ self.layer.append(UMT5LayerCrossAttention(config))
+
+ self.layer.append(UMT5LayerFF(config))
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ layer_head_mask=None,
+ cross_attn_layer_head_mask=None,
+ past_key_value=None,
+ use_cache=False,
+ output_attentions=False,
+ ):
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+
+ hidden_states, self_attn_weights, present_key_value = self.layer[0](
+ hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ past_key_value=self_attn_past_key_value,
+ )
+
+ # clamp inf values to enable fp16 training
+ if hidden_states.dtype == torch.float16:
+ max_dtype = torch.finfo(hidden_states.dtype).max
+ clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ do_cross_attention = self.is_decoder and encoder_hidden_states is not None
+ if do_cross_attention:
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.layer[1](
+ hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ )
+ # clamp inf values to enable fp16 training
+ if hidden_states.dtype == torch.float16:
+ max_dtype = torch.finfo(hidden_states.dtype).max
+ clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ present_key_value += cross_attn_present_key_value
+
+ # Apply Feed Forward layer
+ hidden_states = self.layer[-1](hidden_states)
+
+ # clamp inf values to enable fp16 training
+ if hidden_states.dtype == torch.float16:
+ max_dtype = torch.finfo(hidden_states.dtype).max
+ clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (
+ hidden_states,
+ present_key_value,
+ )
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ return outputs
+
+
+# Copied from transformers.models.t5.modeling_t5.T5ClassificationHead with T5->UMT5
+class UMT5ClassificationHead(nn.Module):
+ """Head for sentence-level classification tasks."""
+
+ def __init__(self, config: UMT5Config):
+ super().__init__()
+ self.dense = nn.Linear(config.d_model, config.d_model)
+ self.dropout = nn.Dropout(p=config.classifier_dropout)
+ self.out_proj = nn.Linear(config.d_model, config.num_labels)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.dense(hidden_states)
+ hidden_states = torch.tanh(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.out_proj(hidden_states)
+ return hidden_states
+
+
+class UMT5PreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = UMT5Config
+ base_model_prefix = "transformer"
+ supports_gradient_checkpointing = True
+ _no_split_modules = ["UMT5Block"]
+ _keep_in_fp32_modules = ["wo"]
+
+ @property
+ def dummy_inputs(self):
+ input_ids = torch.tensor(DUMMY_INPUTS)
+ input_mask = torch.tensor(DUMMY_MASK)
+ dummy_inputs = {
+ "decoder_input_ids": input_ids,
+ "input_ids": input_ids,
+ "decoder_attention_mask": input_mask,
+ }
+ return dummy_inputs
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ factor = self.config.initializer_factor # Used for testing weights initialization
+ if isinstance(module, UMT5LayerNorm):
+ module.weight.data.fill_(factor * 1.0)
+ elif isinstance(
+ module,
+ (
+ UMT5Model,
+ UMT5ForConditionalGeneration,
+ UMT5EncoderModel,
+ UMT5ForQuestionAnswering,
+ ),
+ ):
+ # Mesh TensorFlow embeddings initialization
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
+ module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
+ if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
+ module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
+ if hasattr(module, "qa_outputs"):
+ module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
+ module.qa_outputs.bias.data.zero_()
+ elif isinstance(module, UMT5ForTokenClassification):
+ if hasattr(module, "classifier"):
+ module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0)
+ module.classifier.bias.data.zero_()
+ elif isinstance(module, UMT5ClassificationHead):
+ module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
+ if hasattr(module.dense, "bias") and module.dense.bias is not None:
+ module.dense.bias.data.zero_()
+ module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
+ if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
+ module.out_proj.bias.data.zero_()
+ elif isinstance(module, UMT5DenseActDense):
+ # Mesh TensorFlow FF initialization
+ # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
+ # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
+ module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
+ if hasattr(module.wi, "bias") and module.wi.bias is not None:
+ module.wi.bias.data.zero_()
+ module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
+ if hasattr(module.wo, "bias") and module.wo.bias is not None:
+ module.wo.bias.data.zero_()
+ elif isinstance(module, UMT5DenseGatedActDense):
+ module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
+ if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
+ module.wi_0.bias.data.zero_()
+ module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
+ if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
+ module.wi_1.bias.data.zero_()
+ module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
+ if hasattr(module.wo, "bias") and module.wo.bias is not None:
+ module.wo.bias.data.zero_()
+ elif isinstance(module, UMT5Attention):
+ # Mesh TensorFlow attention initialization to avoid scaling before softmax
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
+ d_model = self.config.d_model
+ key_value_proj_dim = self.config.d_kv
+ n_heads = self.config.num_heads
+ module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
+ module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
+ module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
+ module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
+ if module.has_relative_attention_bias:
+ module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
+
+ def _shift_right(self, input_ids):
+ decoder_start_token_id = self.config.decoder_start_token_id
+ pad_token_id = self.config.pad_token_id
+
+ if decoder_start_token_id is None:
+ raise ValueError(
+ "self.model.config.decoder_start_token_id has to be defined. In UMT5 it is usually set to the pad_token_id. "
+ "See UMT5 docs for more information."
+ )
+
+ # shift inputs to the right
+ if is_torch_fx_proxy(input_ids):
+ # Item assignment is not supported natively for proxies.
+ shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
+ shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
+ else:
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+ shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
+ shifted_input_ids[..., 0] = decoder_start_token_id
+
+ if pad_token_id is None:
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
+
+ return shifted_input_ids
+
+
+class UMT5Stack(UMT5PreTrainedModel):
+ def __init__(self, config, embed_tokens=None):
+ super().__init__(config)
+ self.embed_tokens = embed_tokens
+ self.is_decoder = config.is_decoder
+ self.block = nn.ModuleList([UMT5Block(config) for i in range(config.num_layers)])
+ self.final_layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
+ self.dropout = nn.Dropout(config.dropout_rate)
+
+ # Initialize weights and apply final processing
+ self.gradient_checkpointing = False
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, new_embeddings):
+ self.embed_tokens = new_embeddings
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ inputs_embeds=None,
+ head_mask=None,
+ cross_attn_head_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is not None and inputs_embeds is not None:
+ err_msg_prefix = "decoder_" if self.is_decoder else ""
+ raise ValueError(
+ f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
+ )
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ err_msg_prefix = "decoder_" if self.is_decoder else ""
+ raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
+
+ if inputs_embeds is None:
+ if self.embed_tokens is None:
+ raise ValueError("You have to initialize the model with valid token embeddings")
+ inputs_embeds = self.embed_tokens(input_ids)
+
+ batch_size, seq_length = input_shape
+
+ # required mask seq length can be calculated via length of past
+ mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
+
+ if use_cache is True:
+ if not self.is_decoder:
+ raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
+
+ if attention_mask is None:
+ attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
+ if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
+ encoder_seq_length = encoder_hidden_states.shape[1]
+ encoder_attention_mask = torch.ones(
+ batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
+ )
+
+ # initialize past_key_values with `None` if past does not exist
+ if past_key_values is None:
+ past_key_values = [None] * len(self.block)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # Prepare head mask if needed
+ head_mask = self.get_head_mask(head_mask, self.config.num_layers)
+ cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
+ present_key_value_states = () if use_cache else None
+ all_hidden_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.is_decoder else None
+
+ hidden_states = self.dropout(inputs_embeds)
+
+ for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
+ layer_head_mask = head_mask[i]
+ cross_attn_layer_head_mask = cross_attn_head_mask[i]
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.forward,
+ hidden_states,
+ extended_attention_mask,
+ encoder_hidden_states,
+ encoder_extended_attention_mask,
+ layer_head_mask,
+ cross_attn_layer_head_mask,
+ None, # past_key_value is always None with gradient checkpointing
+ use_cache,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask=extended_attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ layer_head_mask=layer_head_mask,
+ cross_attn_layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=past_key_value,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ present_key_value_states += (layer_outputs[1],)
+
+ if output_attentions:
+ all_attentions += (layer_outputs[2],)
+ if self.is_decoder:
+ all_cross_attentions += (layer_outputs[3],)
+
+ hidden_states = self.final_layer_norm(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+
+ # Add last layer
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ present_key_value_states,
+ all_hidden_states,
+ all_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=present_key_value_states,
+ hidden_states=all_hidden_states,
+ attentions=all_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+UMT5_START_DOCSTRING = r"""
+
+ The UMT5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
+ Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
+ Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
+ text-to-text denoising generative setting.
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`UMT5Config`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+UMT5_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
+ you should be able to pad the inputs on both the right and the left.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for detail.
+
+ [What are input IDs?](../glossary#input-ids)
+
+ To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ UMT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
+ is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
+
+ To know more on how to prepare `decoder_input_ids` for pretraining take a look at [UMT5
+ Training](./umt5#training).
+ decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
+ `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
+ the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
+ input (see `past_key_values`). This is useful if you want more control over how to convert
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
+
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
+ of `inputs_embeds`.
+
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+UMT5_ENCODER_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
+ you should be able to pad the inputs on both the right and the left.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for detail.
+
+ To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare UMT5 Model transformer outputting raw hidden-states without any specific head on top.",
+ UMT5_START_DOCSTRING,
+)
+class UMT5Model(UMT5PreTrainedModel):
+ r"""
+ Examples:
+
+ ```python
+ >>> from transformers import UMT5Model, AutoTokenizer
+
+ >>> model = UMT5Model.from_pretrained("google/umt5-small")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
+ >>> noisy_text = "UN Offizier sagt, dass weiter werden muss in Syrien."
+ >>> label = " verhandelt"
+ >>> inputs = tokenizer(inputs, return_tensors="pt")
+ >>> labels = tokenizer(label=label, return_tensors="pt")
+
+ >>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
+ >>> hidden_states = outputs.last_hidden_state
+ ```"""
+
+ model_type = "umt5"
+ config_class = UMT5Config
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.shared = nn.Embedding(config.vocab_size, config.d_model)
+
+ encoder_config = copy.deepcopy(config)
+ encoder_config.is_decoder = False
+ encoder_config.use_cache = False
+ encoder_config.is_encoder_decoder = False
+ self.encoder = UMT5Stack(encoder_config, self.shared)
+
+ decoder_config = copy.deepcopy(config)
+ decoder_config.is_decoder = True
+ decoder_config.is_encoder_decoder = False
+ decoder_config.num_layers = config.num_decoder_layers
+ self.decoder = UMT5Stack(decoder_config, self.shared)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings
+ def get_input_embeddings(self):
+ return self.shared
+
+ # Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings
+ def set_input_embeddings(self, new_embeddings):
+ self.shared = new_embeddings
+ self.encoder.set_input_embeddings(new_embeddings)
+ self.decoder.set_input_embeddings(new_embeddings)
+
+ # Copied from transformers.models.t5.modeling_t5.T5Model._tie_weights
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
+
+ # Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder
+ def get_encoder(self):
+ return self.encoder
+
+ # Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder
+ def get_decoder(self):
+ return self.decoder
+
+ # Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ decoder_head_mask: Optional[torch.FloatTensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ decoder_inputs_embeds: Optional[torch.Tensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, UMT5Model
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
+ >>> model = UMT5Model.from_pretrained("google/umt5-small")
+
+ >>> input_ids = tokenizer(
+ ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
+ ... ).input_ids # Batch size 1
+ >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
+
+ >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for UMT5Model.
+ >>> # This is not needed for torch's UMT5ForConditionalGeneration as it does this internally using labels arg.
+ >>> decoder_input_ids = model._shift_right(decoder_input_ids)
+
+ >>> # forward pass
+ >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
+ >>> last_hidden_states = outputs.last_hidden_state
+ ```"""
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # Encode if needed (training, first prediction pass)
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ hidden_states = encoder_outputs[0]
+
+ # Decode
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ inputs_embeds=decoder_inputs_embeds,
+ past_key_values=past_key_values,
+ encoder_hidden_states=hidden_states,
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return Seq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings("""UMT5 Model with a `language modeling` head on top.""", UMT5_START_DOCSTRING)
+class UMT5ForConditionalGeneration(UMT5PreTrainedModel):
+ r"""
+ Examples:
+
+ ```python
+ >>> from transformers import UMT5ForConditionalGeneration, AutoTokenizer
+
+ >>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
+ >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
+ >>> summary = "Weiter Verhandlung in Syrien."
+ >>> inputs = tokenizer(article, text_target=summary, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+ >>> loss = outputs.loss
+ ```"""
+
+ model_type = "umt5"
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model_dim = config.d_model
+
+ self.shared = nn.Embedding(config.vocab_size, config.d_model)
+
+ encoder_config = copy.deepcopy(config)
+ encoder_config.is_decoder = False
+ encoder_config.use_cache = False
+ encoder_config.is_encoder_decoder = False
+ self.encoder = UMT5Stack(encoder_config, self.shared)
+
+ decoder_config = copy.deepcopy(config)
+ decoder_config.is_decoder = True
+ decoder_config.is_encoder_decoder = False
+ decoder_config.num_layers = config.num_decoder_layers
+ self.decoder = UMT5Stack(decoder_config, self.shared)
+
+ self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_input_embeddings
+ def get_input_embeddings(self):
+ return self.shared
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_input_embeddings
+ def set_input_embeddings(self, new_embeddings):
+ self.shared = new_embeddings
+ self.encoder.set_input_embeddings(new_embeddings)
+ self.decoder.set_input_embeddings(new_embeddings)
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration._tie_weights
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_output_embeddings
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_output_embeddings
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_encoder
+ def get_encoder(self):
+ return self.encoder
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_decoder
+ def get_decoder(self):
+ return self.decoder
+
+ @add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ decoder_head_mask: Optional[torch.FloatTensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
+ config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
+ labels in `[0, ..., config.vocab_size]`
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, UMT5ForConditionalGeneration
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
+ >>> model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small")
+
+ >>> # training
+ >>> input_ids = tokenizer("The walks in park", return_tensors="pt").input_ids
+ >>> labels = tokenizer(" cute dog the ", return_tensors="pt").input_ids
+ >>> outputs = model(input_ids=input_ids, labels=labels)
+ >>> loss = outputs.loss
+ >>> logits = outputs.logits
+
+ >>> # inference
+ >>> input_ids = tokenizer("Studies have shown that good for you", return_tensors="pt").input_ids
+ >>> outputs = model.generate(input_ids)
+ >>> tokenizer.decode(outputs[0], skip_special_tokens=True)
+ ```"""
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # Encode if needed (training, first prediction pass)
+ if encoder_outputs is None:
+ # Convert encoder inputs in embeddings if needed
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ hidden_states = encoder_outputs[0]
+
+ if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
+ # get decoder inputs from shifting lm labels to the right
+ decoder_input_ids = self._shift_right(labels)
+
+ # Decode
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ inputs_embeds=decoder_inputs_embeds,
+ past_key_values=past_key_values,
+ encoder_hidden_states=hidden_states,
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = decoder_outputs[0]
+
+ if self.config.tie_word_embeddings:
+ # Rescale output before projecting on vocab
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
+ sequence_output = sequence_output * (self.model_dim**-0.5)
+
+ lm_logits = self.lm_head(sequence_output)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
+ # move labels to correct device to enable PP
+ labels = labels.to(lm_logits.device)
+ loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
+
+ if not return_dict:
+ output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
+ return ((loss,) + output) if loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=loss,
+ logits=lm_logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(
+ self,
+ input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ decoder_attention_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {
+ "decoder_input_ids": input_ids,
+ "past_key_values": past_key_values,
+ "encoder_outputs": encoder_outputs,
+ "attention_mask": attention_mask,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "decoder_attention_mask": decoder_attention_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache,
+ }
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_decoder_input_ids_from_labels
+ def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
+ return self._shift_right(labels)
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
+
+
+@add_start_docstrings(
+ "The bare UMT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
+ UMT5_START_DOCSTRING,
+)
+class UMT5EncoderModel(UMT5PreTrainedModel):
+ r"""
+ Examples:
+
+ ```python
+ >>> from transformers import UMT5EncoderModel, AutoTokenizer
+
+ >>> model = UMT5EncoderModel.from_pretrained("google/umt5-small")
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
+ >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
+ >>> input_ids = tokenizer(article, return_tensors="pt").input_ids
+ >>> outputs = model(input_ids)
+ >>> hidden_state = outputs.last_hidden_state
+ ```"""
+
+ model_type = "umt5"
+ # config_class = UMT5Config
+ _tied_weights_keys = ["encoder.embed_tokens.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.shared = nn.Embedding(config.vocab_size, config.d_model)
+
+ encoder_config = copy.deepcopy(config)
+ encoder_config.use_cache = False
+ encoder_config.is_encoder_decoder = False
+ self.encoder = UMT5Stack(encoder_config, self.shared)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_input_embeddings
+ def get_input_embeddings(self):
+ return self.shared
+
+ # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.set_input_embeddings
+ def set_input_embeddings(self, new_embeddings):
+ self.shared = new_embeddings
+ self.encoder.set_input_embeddings(new_embeddings)
+
+ # Copied from transformers.models.t5.modeling_t5.T5EncoderModel._tie_weights
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
+
+ # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_encoder
+ def get_encoder(self):
+ return self.encoder
+
+ # Copied from transformers.models.t5.modeling_t5.T5EncoderModel._prune_heads
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(UMT5_ENCODER_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
+ # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.forward with T5->UMT5, google-t5/t5-small->google/umt5-small
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, UMT5EncoderModel
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
+ >>> model = UMT5EncoderModel.from_pretrained("google/umt5-small")
+ >>> input_ids = tokenizer(
+ ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
+ ... ).input_ids # Batch size 1
+ >>> outputs = model(input_ids=input_ids)
+ >>> last_hidden_states = outputs.last_hidden_state
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ return encoder_outputs
+
+
+@add_start_docstrings(
+ """
+ UMT5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
+ tasks.
+ """,
+ UMT5_START_DOCSTRING,
+)
+class UMT5ForSequenceClassification(UMT5PreTrainedModel):
+ _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForSequenceClassification.__init__ with T5->UMT5
+ def __init__(self, config: UMT5Config):
+ super().__init__(config)
+ self.transformer = UMT5Model(config)
+ self.classification_head = UMT5ClassificationHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ self.model_parallel = False
+
+ @add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
+ config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
+ Returns:
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ if labels is not None:
+ use_cache = False
+
+ if input_ids is None and inputs_embeds is not None:
+ raise NotImplementedError(
+ f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
+ )
+
+ # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
+ # decoder_input_ids from input_ids if no decoder_input_ids are provided
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ if input_ids is None:
+ raise ValueError(
+ "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
+ "passed, `input_ids` cannot be `None`. Please pass either "
+ "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
+ )
+ decoder_input_ids = self._shift_right(input_ids)
+
+ outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ encoder_outputs=encoder_outputs,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = outputs[0]
+
+ eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
+
+ if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
+ raise ValueError("All examples must have the same number of tokens.")
+ batch_size, _, hidden_size = sequence_output.shape
+ sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
+ logits = self.classification_head(sentence_representation)
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(logits.device)
+ if self.config.problem_type is None:
+ if self.config.num_labels == 1:
+ self.config.problem_type = "regression"
+ elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
+ self.config.problem_type = "single_label_classification"
+ else:
+ self.config.problem_type = "multi_label_classification"
+
+ if self.config.problem_type == "regression":
+ loss_fct = MSELoss()
+ if self.config.num_labels == 1:
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
+ else:
+ loss = loss_fct(logits, labels)
+ elif self.config.problem_type == "single_label_classification":
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
+ elif self.config.problem_type == "multi_label_classification":
+ loss_fct = BCEWithLogitsLoss()
+ loss = loss_fct(logits, labels)
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return Seq2SeqSequenceClassifierOutput(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ UMT5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output)
+ e.g. for Named-Entity-Recognition (NER) tasks.
+ """,
+ UMT5_START_DOCSTRING,
+)
+class UMT5ForTokenClassification(UMT5PreTrainedModel):
+ _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
+ _tied_weights_keys = ["transformer.encoder.embed_tokens.weight"]
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.__init__ with T5->UMT5
+ def __init__(self, config: UMT5Config):
+ super().__init__(config)
+ self.num_labels = config.num_labels
+
+ self.transformer = UMT5EncoderModel(config)
+ self.dropout = nn.Dropout(config.classifier_dropout)
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
+ # Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.forward with T5->UMT5
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
+ Returns:
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ outputs = self.transformer(
+ input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ hidden_states = outputs[0]
+ hidden_states = self.dropout(hidden_states)
+ logits = self.classifier(hidden_states)
+
+ loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
+
+ if not return_dict:
+ output = (logits, outputs[2:-1])
+ return ((loss,) + output) if loss is not None else output
+
+ return TokenClassifierOutput(
+ loss=loss,
+ logits=logits,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ """
+ UMT5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers
+ on top of the hidden-states output to compute `span start logits` and `span end logits`).
+ """,
+ UMT5_START_DOCSTRING,
+)
+class UMT5ForQuestionAnswering(UMT5PreTrainedModel):
+ _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.model_dim = config.d_model
+
+ self.shared = nn.Embedding(config.vocab_size, config.d_model)
+
+ encoder_config = copy.deepcopy(config)
+ encoder_config.is_decoder = False
+ encoder_config.use_cache = False
+ encoder_config.is_encoder_decoder = False
+ self.encoder = UMT5Stack(encoder_config, self.shared)
+
+ decoder_config = copy.deepcopy(config)
+ decoder_config.is_decoder = True
+ decoder_config.is_encoder_decoder = False
+ decoder_config.num_layers = config.num_decoder_layers
+ self.decoder = UMT5Stack(decoder_config, self.shared)
+
+ self.num_labels = config.num_labels
+ self.qa_outputs = nn.Linear(config.d_model, config.num_labels)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_input_embeddings
+ def get_input_embeddings(self):
+ return self.shared
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.set_input_embeddings
+ def set_input_embeddings(self, new_embeddings):
+ self.shared = new_embeddings
+ self.encoder.set_input_embeddings(new_embeddings)
+ self.decoder.set_input_embeddings(new_embeddings)
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering._tie_weights
+ def _tie_weights(self):
+ if self.config.tie_word_embeddings:
+ self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
+ self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_encoder
+ def get_encoder(self):
+ return self.encoder
+
+ # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_decoder
+ def get_decoder(self):
+ return self.decoder
+
+ @add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.BoolTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ decoder_head_mask: Optional[torch.FloatTensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
+ start_positions: Optional[torch.LongTensor] = None,
+ end_positions: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]:
+ r"""
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
+ are not taken into account for computing the loss.
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
+ Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
+ are not taken into account for computing the loss.
+ Returns:
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ if start_positions is not None and end_positions is not None:
+ use_cache = False
+
+ # Copied from models.bart.modeling_bart.BartModel.forward
+ # different to other models, T5 automatically creates decoder_input_ids from
+ # input_ids if no decoder_input_ids are provided
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ if input_ids is None:
+ raise ValueError(
+ "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
+ "passed, `input_ids` cannot be `None`. Please pass either "
+ "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
+ )
+ decoder_input_ids = self._shift_right(input_ids)
+
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # Encode if needed (training, first prediction pass)
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ inputs_embeds=inputs_embeds,
+ head_mask=head_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ hidden_states = encoder_outputs[0]
+
+ # Decode
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ inputs_embeds=decoder_inputs_embeds,
+ past_key_values=None,
+ encoder_hidden_states=hidden_states,
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = decoder_outputs[0]
+
+ logits = self.qa_outputs(sequence_output)
+ start_logits, end_logits = logits.split(1, dim=-1)
+ start_logits = start_logits.squeeze(-1).contiguous()
+ end_logits = end_logits.squeeze(-1).contiguous()
+
+ total_loss = None
+ if start_positions is not None and end_positions is not None:
+ # If we are on multi-GPU, split add a dimension
+ if len(start_positions.size()) > 1:
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
+ if len(end_positions.size()) > 1:
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
+ ignored_index = start_logits.size(1)
+ start_positions = start_positions.clamp(0, ignored_index)
+ end_positions = end_positions.clamp(0, ignored_index)
+
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
+ start_loss = loss_fct(start_logits, start_positions)
+ end_loss = loss_fct(end_logits, end_positions)
+ total_loss = (start_loss + end_loss) / 2
+
+ if not return_dict:
+ output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
+ return ((total_loss,) + output) if total_loss is not None else output
+
+ return Seq2SeqQuestionAnsweringModelOutput(
+ loss=total_loss,
+ start_logits=start_logits,
+ end_logits=end_logits,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )