diff --git "a/llmeval-env/lib/python3.10/site-packages/transformers/models/longt5/modeling_flax_longt5.py" "b/llmeval-env/lib/python3.10/site-packages/transformers/models/longt5/modeling_flax_longt5.py" new file mode 100644--- /dev/null +++ "b/llmeval-env/lib/python3.10/site-packages/transformers/models/longt5/modeling_flax_longt5.py" @@ -0,0 +1,2447 @@ +# coding=utf-8 +# Copyright 2022 LongT5 Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax LongT5 model.""" + + +import copy +from typing import Any, Callable, List, Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen import partitioning as nn_partitioning +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax.random import PRNGKey + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxSeq2SeqLMOutput, + FlaxSeq2SeqModelOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_longt5 import LongT5Config + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/long-t5-local-base" +_CONFIG_FOR_DOC = "LongT5Config" + +remat = nn_partitioning.remat + + +# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right +def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: + """ + Shift input ids one token to the right. + """ + shifted_input_ids = jnp.zeros_like(input_ids) + shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) + shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) + + shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) + return shifted_input_ids + + +def _pad_to_multiple(x: jnp.ndarray, block_len: int, axis: int, pad_value: int = 0) -> jnp.ndarray: + """Pad an array so that a sequence length will be a multiple of `block_len`""" + pad_len = -x.shape[axis] % block_len + pad = [(0, 0)] * x.ndim + pad[axis] = (0, pad_len) + x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value) + return x + + +def _split_into_blocks(x: jnp.ndarray, block_len: int, axis: int) -> jnp.ndarray: + """Split an input array into blocks of a given `block_len` along the given `axis`. If the dimension length + is not a multiple of `block_len`, it will be padded first with selected `pad_value`. + """ + # pad tensor to multiple of block_len + if x.shape[axis] % block_len != 0: + x = _pad_to_multiple(x, block_len, axis, pad_value=0) + num_blocks = x.shape[axis] // block_len + output_shape = x.shape[:axis] + (num_blocks, block_len) + x.shape[(axis + 1) :] + return x.reshape(output_shape) + + +def _concatenate_3_blocks(x: jnp.ndarray, block_axis: int, sequence_axis: int, pad_value: int = 0) -> jnp.ndarray: + """Concatenate three consecutive blocks for each input block for local attentiont. + For more information, see: https://arxiv.org/pdf/2112.07916.pdf. + """ + num_blocks = x.shape[block_axis] + + pad = [(0, 0)] * x.ndim + pad[block_axis] = (1, 1) + # [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len] + x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value) + + blocks_list: List[np.array] = [] + for i in range(3): + # We use indexing approach here: + # https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs + indices = [slice(0, None)] * x.ndim + indices[block_axis] = slice(i, i + num_blocks) + indices = tuple(indices) + blocks_list.append(x[indices]) + return jnp.concatenate(blocks_list, axis=sequence_axis) # [batch_size, num_blocks, 3 * block_len, ...] + + +def _make_3block_relative_position_ids(block_len: int) -> jnp.ndarray: + """Makes 3-blocked relative position ids for local attention.""" + position_ids = jnp.arange(3 * block_len, dtype=jnp.int32) + center_position_ids = position_ids[block_len:-block_len] + relative_position_ids = position_ids[None, :] - center_position_ids[:, None] # [block_len, 3 * block_len] + return relative_position_ids + + +def _mask_local_attention_mask(local_attention_mask: np.ndarray, block_len: int) -> jnp.ndarray: + """Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius.""" + relative_position_ids = _make_3block_relative_position_ids(block_len) + locality_mask = jnp.abs(relative_position_ids) < block_len + locality_mask = locality_mask[None, None, :, :] + return jnp.logical_and(local_attention_mask, locality_mask) + + +def _get_local_attention_mask(attention_mask: np.ndarray, block_len: int) -> jnp.ndarray: + """Prepare attention mask to be applied for a local attention.""" + # [batch_size, num_blocks, block_len] + _blocked_attention_mask = _split_into_blocks(attention_mask, block_len, axis=1) + # [batch_size, num_block, 3 * block_len] + _3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_axis=1, sequence_axis=2) + + _blocked_attention_mask = _blocked_attention_mask[..., None] + _3blocked_attention_mask = _3blocked_attention_mask[..., None, :] + # [batch_size, num_block, block_len, 3 * block_len] + local_attention_mask = jnp.logical_and(_blocked_attention_mask, _3blocked_attention_mask) + local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len) + # [batch_size, 1, num_block, block_len, 3 * block_len] + return local_attention_mask[:, None, ...] + + +def _make_global_fixed_block_ids(attention_mask: np.ndarray, global_block_size: int) -> Tuple[jnp.ndarray, np.ndarray]: + """Obtain the "fixed block" global id corresponding to each input token. + + This implementation is a simlified version of the original Flaxformr implementation adopted from: + https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py. + + In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for + the whole fixed block, are assigned to the preceding block. + + Padding tokens from the original sequence are represented by -1. + """ + batch_size, seq_len = attention_mask.shape[:2] + + def handle_orphan_tokens(block_ids: np.ndarray) -> jnp.ndarray: + block_ends = (jnp.arange(seq_len) % global_block_size) == global_block_size - 1 + true_block_ends = jnp.logical_and(block_ends, block_ids >= 0) + full_blocks = true_block_ends.sum(-1)[..., None] + block_ids = jnp.minimum(block_ids, full_blocks - 1) + return block_ids + + fixed_block_mask = jnp.ones_like(attention_mask) / global_block_size + fixed_block_mask = jnp.cumsum(fixed_block_mask, axis=1) - fixed_block_mask + mask = jnp.where(attention_mask != 0.0, 1.0, -1000.0) + global_block_ids = jnp.maximum( + jnp.floor(mask + fixed_block_mask - 1.0), jnp.array(-1.0, dtype=attention_mask.dtype) + ) + # set padding tokens to -1 + global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1) + # [batch_size, seq_len] + global_block_ids = handle_orphan_tokens(global_block_ids) + num_globals = seq_len // global_block_size + + # [batch_size, seq_len // global_block_size] + if num_globals > 0: + _sequence_block_ids_max = jnp.repeat(global_block_ids.max(axis=-1)[:, None], repeats=num_globals, axis=1) + else: + _sequence_block_ids_max = jnp.zeros((batch_size, 0), dtype=global_block_ids.dtype) + global_segment_ids = jnp.cumsum(jnp.ones((batch_size, num_globals)), axis=-1) - 1 + global_segment_ids = jnp.where(global_segment_ids <= _sequence_block_ids_max, 1, 0) + return global_block_ids, global_segment_ids + + +def _make_side_relative_position_ids(attention_mask: np.ndarray, global_block_size: int) -> np.ndarray: + """Create the relative position tensor for local -> global attention.""" + block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size) + global_seq_len = global_segment_ids.shape[-1] + global_positions = jnp.arange(global_seq_len) + side_relative_position = global_positions - block_ids[..., None] + return side_relative_position + + +def _create_global_aggregates(hidden_states: np.ndarray, block_ids: np.ndarray, global_seq_len: int) -> np.ndarray: + """Compute individual block aggregates by summing over individual blocks.""" + # (batch..., seq_len, global_seq_len)) + one_hot_block_ids = jax.nn.one_hot(block_ids, global_seq_len) + return jnp.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids) + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerNorm with T5->LongT5 +class FlaxLongT5LayerNorm(nn.Module): + hidden_size: int + dtype: jnp.dtype = jnp.float32 + eps: float = 1e-6 + weight_init: Callable[..., np.ndarray] = jax.nn.initializers.ones + + def setup(self): + self.weight = self.param("weight", self.weight_init, (self.hidden_size,)) + + def __call__(self, hidden_states): + """ + Construct a layernorm module in the LongT5 style; No bias and no subtraction of mean. + """ + # layer norm should always be calculated in float32 + variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True) + hidden_states = hidden_states / jnp.sqrt(variance + self.eps) + + return self.weight * hidden_states + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseActDense with T5->LongT5 +class FlaxLongT5DenseActDense(nn.Module): + config: LongT5Config + dtype: jnp.dtype = jnp.float32 + + def setup(self): + wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) + wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) + + self.wi = nn.Dense( + self.config.d_ff, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wi_init_std), + dtype=self.dtype, + ) + self.wo = nn.Dense( + self.config.d_model, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wo_init_std), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + self.act = ACT2FN[self.config.dense_act_fn] + + def __call__(self, hidden_states, deterministic=True): + hidden_states = self.wi(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.wo(hidden_states) + return hidden_states + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseGatedActDense with T5->LongT5 +class FlaxLongT5DenseGatedActDense(nn.Module): + config: LongT5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) + wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) + + self.wi_0 = nn.Dense( + self.config.d_ff, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wi_init_std), + dtype=self.dtype, + ) + self.wi_1 = nn.Dense( + self.config.d_ff, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wi_init_std), + dtype=self.dtype, + ) + self.wo = nn.Dense( + self.config.d_model, + use_bias=False, + kernel_init=jax.nn.initializers.normal(wo_init_std), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + self.act = ACT2FN[self.config.dense_act_fn] + + def __call__(self, hidden_states, deterministic): + hidden_gelu = self.act(self.wi_0(hidden_states)) + hidden_linear = self.wi_1(hidden_states) + hidden_states = hidden_gelu * hidden_linear + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.wo(hidden_states) + return hidden_states + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerFF with T5->LongT5 +class FlaxLongT5LayerFF(nn.Module): + config: LongT5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + if self.config.is_gated_act: + self.DenseReluDense = FlaxLongT5DenseGatedActDense(self.config, dtype=self.dtype) + else: + self.DenseReluDense = FlaxLongT5DenseActDense(self.config, dtype=self.dtype) + + self.layer_norm = FlaxLongT5LayerNorm( + self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__(self, hidden_states, deterministic=True): + forwarded_states = self.layer_norm(hidden_states) + forwarded_states = self.DenseReluDense(forwarded_states, deterministic=deterministic) + hidden_states = hidden_states + self.dropout(forwarded_states, deterministic=deterministic) + return hidden_states + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention with T5->LongT5 +class FlaxLongT5Attention(nn.Module): + config: LongT5Config + has_relative_attention_bias: bool = False + causal: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.relative_attention_num_buckets = self.config.relative_attention_num_buckets + self.relative_attention_max_distance = self.config.relative_attention_max_distance + self.d_model = self.config.d_model + self.key_value_proj_dim = self.config.d_kv + self.n_heads = self.config.num_heads + self.dropout = self.config.dropout_rate + self.inner_dim = self.n_heads * self.key_value_proj_dim + + q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) + kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) + o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) + + self.q = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(q_init_std), + dtype=self.dtype, + ) + self.k = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + self.v = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + self.o = nn.Dense( + self.d_model, + use_bias=False, + kernel_init=jax.nn.initializers.normal(o_init_std), + dtype=self.dtype, + ) + + if self.has_relative_attention_bias: + self.relative_attention_bias = nn.Embed( + self.relative_attention_num_buckets, + self.n_heads, + embedding_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + + @staticmethod + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0) * num_buckets + relative_position = jnp.abs(relative_position) + else: + relative_position = -jnp.clip(relative_position, a_max=0) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + relative_position_if_large = max_exact + ( + jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) + ) + relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) + + relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) + + return relative_buckets.astype("i4") + + def compute_bias(self, query_length, key_length): + """Compute binned relative position bias""" + context_position = jnp.arange(query_length, dtype="i4")[:, None] + memory_position = jnp.arange(key_length, dtype="i4")[None, :] + + relative_position = memory_position - context_position + relative_position_bucket = self._relative_position_bucket( + relative_position, + bidirectional=(not self.causal), + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + + values = self.relative_attention_bias(relative_position_bucket) + values = values.transpose((2, 0, 1))[None, :, :, :] + return values + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.inner_dim,)) + + @nn.compact + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = jax.lax.dynamic_update_slice(cached_key.value, key, indices) + value = jax.lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions + # that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def _create_position_bias( + self, key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift + ): + cache_is_filled = self.causal and self.has_variable("cache", "cached_key") and (not init_cache) + key_length = key_states.shape[1] + query_length = key_length if cache_is_filled else query_states.shape[1] + + if self.has_relative_attention_bias: + position_bias = self.compute_bias(query_length, key_length) + elif attention_mask is not None: + position_bias = jnp.zeros_like(attention_mask) + else: + position_bias = jnp.zeros((1, self.n_heads, query_length, key_length), dtype=self.dtype) + + # if key and values are already calculated, only the last query position bias should be taken + if cache_is_filled: + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + position_bias = jax.lax.dynamic_slice( + position_bias, + (0, 0, causal_attention_mask_shift, 0), + (1, self.n_heads, seq_length, max_decoder_length), + ) + return position_bias + + def __call__( + self, + hidden_states, + attention_mask=None, + key_value_states=None, + position_bias=None, + use_cache=False, + output_attentions=False, + deterministic=True, + init_cache=False, + ): + """ + Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). + """ + batch_size, seq_length = hidden_states.shape[:2] + + # q, k, v projections + query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) + key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) + value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) + + # reshape to (batch_size, seq_length, n_heads, head_dim) + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # counter-act scaling in dot_product_attention_weights function + query_states *= jnp.sqrt(query_states.shape[-1]) + + # for fast decoding causal attention mask should be shifted + causal_attention_mask_shift = ( + self.variables["cache"]["cache_index"] if (self.has_variable("cache", "cached_key") and self.causal) else 0 + ) + # create causal attention_mask; attention_mask has to be defined when model is causal + if self.causal: + causal_attention_mask = make_causal_mask(attention_mask, dtype="bool") + + # fast decoding for generate requires special attention_mask + if self.has_variable("cache", "cached_key"): + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_attention_mask = jax.lax.dynamic_slice( + causal_attention_mask, + (0, 0, causal_attention_mask_shift, 0), + (1, 1, seq_length, max_decoder_length), + ) + + # broadcast causal attention mask & attention mask to fit for merge + causal_attention_mask = jnp.broadcast_to( + causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:] + ) + attention_mask = jnp.broadcast_to( + jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape + ) + attention_mask = combine_masks(attention_mask, causal_attention_mask) + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # replace masked positions with -10_000 + if attention_mask is not None: + mask_value = jnp.finfo(self.dtype).min + attention_mask = jax.lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, mask_value).astype(self.dtype), + ) + + if position_bias is None: + # compute position bias (only for first layer) + position_bias = self._create_position_bias( + key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift + ) + + if attention_mask is not None: + position_bias = position_bias + attention_mask + + # create dropout rng + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + # Softmax(QK^T) + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=position_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + ) + + # multiply with value states + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + + # bring back to (batch_size, seq_length, d_model) + attn_output = self._merge_heads(attn_output) + + # apply output matrix + attn_output = self.o(attn_output) + + outputs = (attn_output, position_bias) + + if output_attentions: + outputs = outputs + (attn_weights,) + + return outputs + + +class FlaxLongT5LocalAttention(nn.Module): + config: LongT5Config + has_relative_attention_bias: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.relative_attention_num_buckets = self.config.relative_attention_num_buckets + self.relative_attention_max_distance = self.config.relative_attention_max_distance + self.d_model = self.config.d_model + self.key_value_proj_dim = self.config.d_kv + self.n_heads = self.config.num_heads + self.local_radius = self.config.local_radius + self.block_len = self.local_radius + 1 + self.dropout = self.config.dropout_rate + self.inner_dim = self.n_heads * self.key_value_proj_dim + + q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) + kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) + o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) + + self.q = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(q_init_std), + dtype=self.dtype, + ) + self.k = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + self.v = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + self.o = nn.Dense( + self.d_model, + use_bias=False, + kernel_init=jax.nn.initializers.normal(o_init_std), + dtype=self.dtype, + ) + + if self.has_relative_attention_bias: + self.relative_attention_bias = nn.Embed( + self.relative_attention_num_buckets, + self.n_heads, + embedding_init=jax.nn.initializers.normal(kv_init_std), + ) + + @staticmethod + # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0) * num_buckets + relative_position = jnp.abs(relative_position) + else: + relative_position = -jnp.clip(relative_position, a_max=0) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + relative_position_if_large = max_exact + ( + jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) + ) + relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) + + relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) + + return relative_buckets.astype("i4") + + def compute_bias(self, block_length: int): + """Compute binned relative position bias""" + memory_position = jnp.arange(3 * block_length, dtype="i4") + context_position = memory_position[block_length:-block_length] + + relative_position = memory_position[None, :] - context_position[:, None] + relative_position_bucket = self._relative_position_bucket( + relative_position, + bidirectional=True, + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + + values = self.relative_attention_bias(relative_position_bucket) + values = values.transpose((2, 0, 1))[None, None, :, :, :] + return values + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim) + + def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray: + # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) + if self.has_relative_attention_bias: + position_bias = self.compute_bias(block_len) + elif attention_mask is not None: + position_bias = jnp.zeros_like(attention_mask) + else: + position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype) + + return position_bias + + def __call__( + self, + hidden_states, + attention_mask=None, + key_value_states=None, + position_bias=None, + output_attentions=False, + deterministic=True, + ): + """ + Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). + """ + batch_size, seq_length = hidden_states.shape[:2] + + # q, k, v projections + query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) + key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) + value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) + + # reshape to (batch_size, seq_length, n_heads, head_dim) + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim) + query_states = _split_into_blocks(query_states, self.block_len, axis=1) + key_states = _split_into_blocks(key_states, self.block_len, axis=1) + value_states = _split_into_blocks(value_states, self.block_len, axis=1) + + # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) + key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2) + value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2) + + # counter-act scaling in dot_product_attention_weights function + query_states *= jnp.sqrt(query_states.shape[-1]) + + if attention_mask is not None: + attention_mask = _get_local_attention_mask(attention_mask, self.block_len) + + # replace masked positions with -10_000 + attention_mask = jax.lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, -1e10).astype(self.dtype), + ) + + if position_bias is None: + # compute position bias (only for first layer) + position_bias = self._create_position_bias(self.block_len, attention_mask) + + if attention_mask is not None: + position_bias = position_bias + attention_mask.swapaxes(1, 2) + + # create dropout rng + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + # Softmax(QK^T) + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=position_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + ) + + # multiply with value states + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + + # bring back to (batch_size, seq_length, d_model) + attn_output = self._merge_heads(attn_output) + attn_output = attn_output[:, :seq_length, :] + + # apply output matrix + attn_output = self.o(attn_output) + + outputs = (attn_output, position_bias) + + if output_attentions: + outputs = outputs + (attn_weights,) + + return outputs + + +class FlaxLongT5TransientGlobalAttention(nn.Module): + config: LongT5Config + has_relative_attention_bias: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.relative_attention_num_buckets = self.config.relative_attention_num_buckets + self.relative_attention_max_distance = self.config.relative_attention_max_distance + self.d_model = self.config.d_model + self.key_value_proj_dim = self.config.d_kv + self.n_heads = self.config.num_heads + self.local_radius = self.config.local_radius + self.block_len = self.local_radius + 1 + self.global_block_size = self.config.global_block_size + self.dropout = self.config.dropout_rate + self.inner_dim = self.n_heads * self.key_value_proj_dim + + q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) + kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) + o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) + + self.q = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(q_init_std), + dtype=self.dtype, + ) + self.k = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + self.v = nn.Dense( + self.inner_dim, + use_bias=False, + kernel_init=jax.nn.initializers.normal(kv_init_std), + dtype=self.dtype, + ) + self.o = nn.Dense( + self.d_model, + use_bias=False, + kernel_init=jax.nn.initializers.normal(o_init_std), + dtype=self.dtype, + ) + + if self.has_relative_attention_bias: + self.relative_attention_bias = nn.Embed( + self.relative_attention_num_buckets, + self.n_heads, + embedding_init=jax.nn.initializers.normal(kv_init_std), + ) + + # Relativen attention bias & Layer norm for global attention + if self.has_relative_attention_bias: + self.global_relative_attention_bias = nn.Embed( + self.relative_attention_num_buckets, + self.n_heads, + embedding_init=jax.nn.initializers.normal(kv_init_std), + ) + self.global_input_layer_norm = FlaxLongT5LayerNorm( + self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype + ) + + @staticmethod + # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0) * num_buckets + relative_position = jnp.abs(relative_position) + else: + relative_position = -jnp.clip(relative_position, a_max=0) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + relative_position_if_large = max_exact + ( + jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) + ) + relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) + + relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) + + return relative_buckets.astype("i4") + + def compute_bias(self, block_length: int): + """Compute binned relative position bias""" + memory_position = jnp.arange(3 * block_length, dtype="i4") + context_position = memory_position[block_length:-block_length] + + relative_position = memory_position[None, :] - context_position[:, None] + relative_position_bucket = self._relative_position_bucket( + relative_position, + bidirectional=True, + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + + values = self.relative_attention_bias(relative_position_bucket) + values = values.transpose((2, 0, 1))[None, None, :, :, :] + return values + + def compute_side_bias(self, attention_mask: np.ndarray, global_segment_ids: np.ndarray) -> np.ndarray: + # (batch_size, 1, 1, seq_len, global_seq_len) + side_attention_mask = jnp.equal(attention_mask[..., None], global_segment_ids[:, None, :])[:, None, ...] + attention_side_bias = jax.lax.select( + side_attention_mask > 0, + jnp.full(side_attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(side_attention_mask.shape, -1e10).astype(self.dtype), + ) + # (batch_size, seq_len, global_seq_len) + side_relative_position = _make_side_relative_position_ids(attention_mask, self.global_block_size) + side_relative_position_bucket = self._relative_position_bucket( + side_relative_position, + bidirectional=True, + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + # (batch_size, seq_len, global_seq_len, num_heads) + side_bias = self.global_relative_attention_bias(side_relative_position_bucket) + + # (batch_size, 1, num_heads, seq_len, global_seq_len) + side_bias = jnp.transpose(side_bias, (0, 3, 1, 2)) + # (batch_size, num_heads, seq_len, global_seq_len) + attention_side_bias = attention_side_bias + side_bias + return attention_side_bias + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim) + + def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray: + # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) + if self.has_relative_attention_bias: + position_bias = self.compute_bias(block_len) + elif attention_mask is not None: + position_bias = jnp.zeros_like(attention_mask) + else: + position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype) + + return position_bias + + def __call__( + self, + hidden_states, + attention_mask=None, + key_value_states=None, + position_bias=None, + output_attentions=False, + deterministic=True, + ): + """ + Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). + """ + batch_size, seq_length = hidden_states.shape[:2] + + # Prepare components for transient-global attention + # Obtain block_ids and global_segment_ids + # global_seq_len := seq_len // self.global_block_size + # shapes: (batch_size, seq_len) & (batch_size, global_seq_len) + block_ids, global_segment_ids = _make_global_fixed_block_ids( + attention_mask if attention_mask is not None else jnp.ones((batch_size, seq_length)), + self.global_block_size, + ) + # Create global inputs + _global_seq_len = global_segment_ids.shape[-1] + global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len) + global_inputs = self.global_input_layer_norm(global_inputs) + + # q, k, v projections + query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) + key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) + value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) + + # reshape to (batch_size, seq_length, n_heads, head_dim) + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # Get global/side key/value_states + side_key_states = self.k(global_inputs) + side_value_states = self.v(global_inputs) + + # reshape to (batch_size, global_seq_len, n_heads, head_dim) + side_key_states = self._split_heads(side_key_states) + side_value_states = self._split_heads(side_value_states) + + # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim) + query_states = _split_into_blocks(query_states, self.block_len, axis=1) + key_states = _split_into_blocks(key_states, self.block_len, axis=1) + value_states = _split_into_blocks(value_states, self.block_len, axis=1) + + # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) + key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2) + value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2) + + # Tile side inputs across local key/value blocks + # New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head) + reps = [1] * (side_key_states.ndim + 1) + reps[1] = key_states.shape[1] + side_key_states = jnp.tile(side_key_states[:, None, ...], reps) + side_value_states = jnp.tile(side_value_states[:, None, ...], reps) + + # Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones + # New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head) + key_states = jnp.concatenate((key_states, side_key_states), axis=2) + value_states = jnp.concatenate((value_states, side_value_states), axis=2) + + # counter-act scaling in dot_product_attention_weights function + query_states *= jnp.sqrt(query_states.shape[-1]) + + if attention_mask is not None: + local_attention_mask = _get_local_attention_mask(attention_mask, self.block_len) + local_attention_mask = jax.lax.select( + local_attention_mask > 0, + jnp.full(local_attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(local_attention_mask.shape, -1e10).astype(self.dtype), + ) + else: + local_attention_mask = None + + if position_bias is None: + # compute position bias (only for first layer) + position_bias = self._create_position_bias(self.block_len, attention_mask) + if local_attention_mask is not None: + position_bias = position_bias + local_attention_mask.swapaxes(1, 2) + + # Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len) + if attention_mask is None: + attention_mask = jnp.ones((batch_size, seq_length)) + side_position_bias = self.compute_side_bias(attention_mask, global_segment_ids) + side_position_bias = _split_into_blocks(side_position_bias, self.block_len, axis=-2) + side_position_bias = jnp.swapaxes(side_position_bias, 1, 2) + position_bias = jnp.concatenate((position_bias, side_position_bias), axis=-1) + + # create dropout rng + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + # Softmax(QK^T) + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=position_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + ) + + # multiply with value states + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + + # bring back to (batch_size, seq_length, d_model) + attn_output = self._merge_heads(attn_output) + attn_output = attn_output[:, :seq_length, :] + + # apply output matrix + attn_output = self.o(attn_output) + + outputs = (attn_output, position_bias) + + if output_attentions: + outputs = outputs + (attn_weights,) + + return outputs + + +class FlaxLongT5LayerLocalSelfAttention(nn.Module): + """Local self attention used in encoder""" + + config: LongT5Config + has_relative_attention_bias: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.LocalSelfAttention = FlaxLongT5LocalAttention( + self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype + ) + self.layer_norm = FlaxLongT5LayerNorm( + self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__( + self, + hidden_states, + attention_mask=None, + position_bias=None, + output_attentions=False, + deterministic=True, + **kwargs: Any, # to accept init_cache kwargs + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.LocalSelfAttention( + normed_hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + ) + hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +class FlaxLongT5LayerTransientGlobalSelfAttention(nn.Module): + """Transient-Global self attention used in encoder""" + + config: LongT5Config + has_relative_attention_bias: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.TransientGlobalSelfAttention = FlaxLongT5TransientGlobalAttention( + self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype + ) + self.layer_norm = FlaxLongT5LayerNorm( + self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__( + self, + hidden_states, + attention_mask=None, + position_bias=None, + output_attentions=False, + deterministic=True, + **kwargs: Any, # to accept init_cache kwargs + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.TransientGlobalSelfAttention( + normed_hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + ) + hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerSelfAttention with T5->LongT5 +class FlaxLongT5LayerSelfAttention(nn.Module): + config: LongT5Config + has_relative_attention_bias: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.SelfAttention = FlaxLongT5Attention( + self.config, + has_relative_attention_bias=self.has_relative_attention_bias, + causal=self.config.causal, + dtype=self.dtype, + ) + self.layer_norm = FlaxLongT5LayerNorm( + self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__( + self, + hidden_states, + attention_mask=None, + position_bias=None, + output_attentions=False, + deterministic=True, + init_cache=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.SelfAttention( + normed_hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + init_cache=init_cache, + ) + hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCrossAttention with T5->LongT5 +class FlaxLongT5LayerCrossAttention(nn.Module): + config: LongT5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.EncDecAttention = FlaxLongT5Attention( + self.config, has_relative_attention_bias=False, causal=False, dtype=self.dtype + ) + self.layer_norm = FlaxLongT5LayerNorm( + self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__( + self, + hidden_states, + key_value_states, + attention_mask=None, + position_bias=None, + output_attentions=False, + deterministic=True, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.EncDecAttention( + normed_hidden_states, + attention_mask=attention_mask, + key_value_states=key_value_states, + position_bias=position_bias, + output_attentions=output_attentions, + ) + hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +class FlaxLongT5Block(nn.Module): + config: LongT5Config + has_relative_attention_bias: bool = False + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.causal = self.config.causal + if self.causal: + attention_layer = FlaxLongT5LayerSelfAttention + elif self.config.encoder_attention_type == "local": + attention_layer = FlaxLongT5LayerLocalSelfAttention + elif self.config.encoder_attention_type == "transient-global": + attention_layer = FlaxLongT5LayerTransientGlobalSelfAttention + else: + raise ValueError( + "For encoder attention mechanism, either `local` or `transient-global` attention type is expected, " + f"but got {self.config.encoder_attention_type}." + ) + self.layer = ( + attention_layer( + self.config, + has_relative_attention_bias=self.has_relative_attention_bias, + name=str(0), + dtype=self.dtype, + ), + ) + feed_forward_index = 1 + if self.causal: + self.layer += (FlaxLongT5LayerCrossAttention(self.config, name=str(1), dtype=self.dtype),) + feed_forward_index += 1 + + self.layer += (FlaxLongT5LayerFF(self.config, name=str(feed_forward_index), dtype=self.dtype),) + + # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Block.__call__ with T5->LongT5 + def __call__( + self, + hidden_states, + attention_mask=None, + position_bias=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + encoder_decoder_position_bias=None, + output_attentions=False, + return_dict=True, + deterministic=True, + init_cache=False, + ): + self_attention_outputs = self.layer[0]( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + init_cache=init_cache, + ) + hidden_states = self_attention_outputs[0] + attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights + + do_cross_attention = self.causal and encoder_hidden_states is not None + if do_cross_attention: + cross_attention_outputs = self.layer[1]( + hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + position_bias=encoder_decoder_position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + ) + hidden_states = cross_attention_outputs[0] + + # Keep cross-attention outputs and relative position weights + attention_outputs = attention_outputs + cross_attention_outputs[1:] + + # Apply Feed Forward layer + hidden_states = self.layer[-1](hidden_states, deterministic=deterministic) + + outputs = (hidden_states,) + + outputs = outputs + attention_outputs + + # returns hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), + # (cross-attention position bias), (cross-attention weights) + return outputs + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCollection with T5->LongT5 +class FlaxLongT5LayerCollection(nn.Module): + config: LongT5Config + has_relative_attention_bias: bool + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layer = FlaxLongT5Block( + self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype + ) + + def __call__( + self, + hidden_states, + attention_mask=None, + position_bias=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + encoder_decoder_position_bias=None, + output_attentions=False, + deterministic=True, + init_cache=False, + ): + return self.layer( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + encoder_decoder_position_bias=encoder_decoder_position_bias, + output_attentions=output_attentions, + deterministic=deterministic, + init_cache=init_cache, + ) + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5BlockCollection with T5->LongT5 +class FlaxLongT5BlockCollection(nn.Module): + config: LongT5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.causal = self.config.causal + if self.gradient_checkpointing: + FlaxLongT5CheckpointLayer = remat(FlaxLongT5LayerCollection, static_argnums=(6, 7, 8)) + self.blocks = [ + FlaxLongT5CheckpointLayer( + self.config, + has_relative_attention_bias=(i == 0), + dtype=self.dtype, + name=str(i), + ) + for i in range(self.config.num_layers) + ] + else: + self.blocks = [ + FlaxLongT5LayerCollection( + self.config, + has_relative_attention_bias=(i == 0), + dtype=self.dtype, + name=str(i), + ) + for i in range(self.config.num_layers) + ] + + def __call__( + self, + hidden_states=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + output_attentions: bool = False, + output_hidden_states: bool = False, + deterministic: bool = True, + init_cache: bool = False, + ): + # Prepare head mask if needed + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if (output_attentions and self.causal) else None + position_bias = None + encoder_decoder_position_bias = None + + for i, layer_module in enumerate(self.blocks): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states, + attention_mask, + position_bias, + encoder_hidden_states, + encoder_attention_mask, + encoder_decoder_position_bias, + output_attentions, + deterministic, + init_cache, + ) + + hidden_states = layer_outputs[0] + + # We share the position biases between the layers - the first layer store them + # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), + # (cross-attention position bias), (cross-attention weights) + position_bias = layer_outputs[1] + + if self.causal and encoder_hidden_states is not None: + encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[2],) + if self.causal: + all_cross_attentions = all_cross_attentions + (layer_outputs[4],) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Stack with T5->LongT5 +class FlaxLongT5Stack(nn.Module): + config: LongT5Config + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def setup(self): + self.causal = self.config.causal + + self.block = FlaxLongT5BlockCollection( + self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + self.final_layer_norm = FlaxLongT5LayerNorm( + self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype + ) + self.dropout = nn.Dropout(self.config.dropout_rate) + + def __call__( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + init_cache: bool = False, + ): + hidden_states = self.embed_tokens(input_ids) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + + outputs = self.block( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + deterministic=deterministic, + init_cache=init_cache, + ) + + hidden_states = outputs[0] + + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + + # Add last layer + all_hidden_states = None + + if output_hidden_states: + all_hidden_states = outputs.hidden_states + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + if output_hidden_states: + return ( + hidden_states, + all_hidden_states, + ) + outputs[2:] + return (hidden_states,) + outputs[1:] + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +LONGT5_ENCODE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so + you should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 + Training](./longt5#training). + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +LONGT5_DECODE_INPUTS_DOCSTRING = r""" + Args: + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For training, `decoder_input_ids` should be provided. + encoder_outputs (`tuple(tuple(jnp.ndarray)`): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +LONGT5_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so + you should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + [What are input IDs?](../glossary#input-ids) + + To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 + Training](./longt5#training). + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5 + Training](./longt5#training). + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + encoder_outputs (`tuple(tuple(jnp.ndarray)`, *optional*): + Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at + the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(jnp.ndarray))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class FlaxLongT5PreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LongT5Config + base_model_prefix = "transformer" + module_class: nn.Module = None + + def __init__( + self, + config: LongT5Config, + input_shape: Tuple[int] = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def enable_gradient_checkpointing(self): + self._module = self.module_class( + config=self.config, + dtype=self.dtype, + gradient_checkpointing=True, + ) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + + attention_mask = jnp.ones_like(input_ids) + decoder_input_ids = jnp.ones_like(input_ids) + decoder_attention_mask = jnp.ones_like(input_ids) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init( + rngs, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + )["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + @add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING) + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + decoder_input_ids: jnp.ndarray = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if decoder_input_ids is None: + raise ValueError( + "Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed" + " here." + ) + + # prepare encoder inputs + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + # prepare decoder inputs + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + ) + + def init_cache(self, batch_size, max_length, encoder_outputs): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): + `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: + `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) + is a sequence of hidden-states at the output of the last layer of the encoder. Used in the + cross-attention of the decoder. + """ + # init input variables to retrieve cache + decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + **kwargs, + ) + + init_variables = self.module.init( + jax.random.PRNGKey(0), + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + init_cache=True, + method=_decoder_forward, # we only need to call the decoder to init the cache + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings(LONGT5_ENCODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=LongT5Config) + def encode( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") + >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, return_tensors="np") + >>> encoder_outputs = model.encode(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + def _encoder_forward(module, input_ids, attention_mask, **kwargs): + encode_module = module._get_encoder_module() + return encode_module(input_ids, attention_mask, **kwargs) + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + method=_encoder_forward, + ) + + @add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=LongT5Config) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration + >>> import jax.numpy as jnp + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") + >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, return_tensors="np") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> logits = outputs.logits + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxLongT5Attention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + **kwargs, + ) + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past = outputs + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past = outputs + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + +LONGT5_START_DOCSTRING = r""" + The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long + Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo + Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising + generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different + efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`LongT5Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + + +@add_start_docstrings( + "The bare LONGT5 Model transformer outputting raw hidden-stateswithout any specific head on top.", + LONGT5_START_DOCSTRING, +) +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Module with T5->LongT5 +class FlaxLongT5Module(nn.Module): + config: LongT5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def _get_encoder_module(self): + return self.encoder + + def _get_decoder_module(self): + return self.decoder + + def setup(self): + self.shared = nn.Embed( + self.config.vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0), + dtype=self.dtype, + ) + + encoder_config = copy.deepcopy(self.config) + encoder_config.causal = False + self.encoder = FlaxLongT5Stack( + encoder_config, + embed_tokens=self.shared, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + + decoder_config = copy.deepcopy(self.config) + decoder_config.causal = True + decoder_config.num_layers = self.config.num_decoder_layers + self.decoder = FlaxLongT5Stack( + decoder_config, + embed_tokens=self.shared, + dtype=self.dtype, + gradient_checkpointing=self.gradient_checkpointing, + ) + + def __call__( + self, + input_ids=None, + attention_mask=None, + decoder_input_ids=None, + decoder_attention_mask=None, + encoder_outputs=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + deterministic: bool = True, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Encode if needed (training, first prediction pass) + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return FlaxSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Model with T5->LongT5 +class FlaxLongT5Model(FlaxLongT5PreTrainedModel): + module_class = FlaxLongT5Module + + +append_call_sample_docstring(FlaxLongT5Model, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) + +FLAX_LONGT5_MODEL_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxLongT5Model + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") + >>> model = FlaxLongT5Model.from_pretrained("google/long-t5-local-base") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="np" + ... ).input_ids + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids + + >>> # forward pass + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ``` +""" + + +overwrite_call_docstring(FlaxLongT5Model, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_MODEL_DOCSTRING) +append_replace_return_docstrings(FlaxLongT5Model, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + + +@add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING) +# Copied from transformers.models.t5.modeling_flax_t5.FlaxT5ForConditionalGenerationModule with T5->LongT5 +class FlaxLongT5ForConditionalGenerationModule(nn.Module): + config: LongT5Config + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + gradient_checkpointing: bool = False + + def _get_encoder_module(self): + return self.encoder + + def _get_decoder_module(self): + return self.decoder + + def setup(self): + self.model_dim = self.config.d_model + + self.shared = nn.Embed( + self.config.vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.initializer_factor), + dtype=self.dtype, + ) + + encoder_config = copy.deepcopy(self.config) + encoder_config.causal = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = FlaxLongT5Stack( + encoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + + decoder_config = copy.deepcopy(self.config) + decoder_config.causal = True + decoder_config.is_encoder_decoder = False + decoder_config.num_layers = self.config.num_decoder_layers + self.decoder = FlaxLongT5Stack( + decoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing + ) + + self.lm_head = nn.Dense( + self.config.vocab_size, + use_bias=False, + kernel_init=jax.nn.initializers.normal(self.config.initializer_factor), + dtype=self.dtype, + ) + + def __call__( + self, + input_ids=None, + attention_mask=None, + decoder_input_ids=None, + decoder_attention_mask=None, + encoder_outputs=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + deterministic: bool = True, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # Encode + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = encoder_outputs[0] + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + sequence_output = decoder_outputs[0] + + if self.config.tie_word_embeddings: + # Rescale output before projecting on vocab + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 + sequence_output = sequence_output * (self.model_dim**-0.5) + + if self.config.tie_word_embeddings: + shared_embedding = self.shared.variables["params"]["embedding"] + lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) + else: + lm_logits = self.lm_head(sequence_output) + + if not return_dict: + return (lm_logits,) + decoder_outputs[1:] + encoder_outputs + + return FlaxSeq2SeqLMOutput( + logits=lm_logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +class FlaxLongT5ForConditionalGeneration(FlaxLongT5PreTrainedModel): + module_class = FlaxLongT5ForConditionalGenerationModule + + @add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=LongT5Config) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration + >>> import jax.numpy as jnp + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") + >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") + + >>> text = "summarize: My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, return_tensors="np") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> logits = outputs.logits + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxLongT5Attention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): + decoder_module = module._get_decoder_module() + decoder_outputs = decoder_module( + decoder_input_ids, + decoder_attention_mask, + **kwargs, + ) + + sequence_output = decoder_outputs[0] + + if self.config.tie_word_embeddings: + # Rescale output before projecting on vocab + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 + sequence_output = sequence_output * (self.config.d_model**-0.5) + + if self.config.tie_word_embeddings: + shared_embedding = module.shared.variables["params"]["embedding"] + lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) + else: + lm_logits = module.lm_head(sequence_output) + + return lm_logits, decoder_outputs + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + if past_key_values is None: + lm_logits, decoder_outputs = outputs + else: + (lm_logits, decoder_outputs), past = outputs + + if return_dict: + outputs = FlaxCausalLMOutputWithCrossAttentions( + logits=lm_logits, + hidden_states=decoder_outputs.hidden_states, + attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + ) + else: + outputs = (lm_logits,) + decoder_outputs[1:] + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + max_length, + attention_mask: Optional[jax.Array] = None, + decoder_attention_mask: Optional[jax.Array] = None, + encoder_outputs=None, + **kwargs, + ): + # initializing the cache + batch_size, seq_length = decoder_input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if decoder_attention_mask is not None: + extended_attention_mask = jax.lax.dynamic_update_slice( + extended_attention_mask, decoder_attention_mask, (0, 0) + ) + + return { + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "encoder_attention_mask": attention_mask, + "decoder_attention_mask": extended_attention_mask, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + return model_kwargs + + +FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") + >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") + + >>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs." + >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors="np") + + >>> # Generate Summary + >>> summary_ids = model.generate(inputs["input_ids"]).sequences + >>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)) + ``` +""" + + +overwrite_call_docstring( + FlaxLongT5ForConditionalGeneration, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING +) +append_replace_return_docstrings( + FlaxLongT5ForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC +)