applied-ai-018 commited on
Commit
a789b82
·
verified ·
1 Parent(s): 21ca2e7

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/scipy/io/_fast_matrix_market/__init__.py +594 -0
  2. env-llmeval/lib/python3.10/site-packages/scipy/io/_fast_matrix_market/__pycache__/__init__.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__init__.py +63 -0
  4. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/__init__.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_byteordercodes.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_mio.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_mio4.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_mio5.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_mio5_params.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_miobase.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/byteordercodes.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio4.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio5.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio5_params.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio5_utils.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio_utils.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/miobase.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/streams.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_byteordercodes.py +75 -0
  21. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio.py +359 -0
  22. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio4.py +624 -0
  23. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio5.py +892 -0
  24. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio5_params.py +281 -0
  25. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio5_utils.cpython-310-x86_64-linux-gnu.so +0 -0
  26. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio_utils.cpython-310-x86_64-linux-gnu.so +0 -0
  27. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_miobase.py +429 -0
  28. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_streams.cpython-310-x86_64-linux-gnu.so +0 -0
  29. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio.py +20 -0
  30. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio4.py +24 -0
  31. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio5.py +28 -0
  32. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio5_utils.py +19 -0
  33. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio_utils.py +17 -0
  34. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/miobase.py +22 -0
  35. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/__init__.py +0 -0
  36. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/bad_miuint32.mat +0 -0
  37. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/big_endian.mat +0 -0
  38. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/corrupted_zlib_data.mat +0 -0
  39. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/logical_sparse.mat +0 -0
  40. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/miuint32_for_miint32.mat +0 -0
  41. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/miutf8_array_name.mat +0 -0
  42. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat +0 -0
  43. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/parabola.mat +0 -0
  44. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/some_functions.mat +0 -0
  45. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat +0 -0
  46. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/test_skip_variable.mat +0 -0
  47. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat +0 -0
  48. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat +0 -0
  49. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat +0 -0
  50. env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat +0 -0
env-llmeval/lib/python3.10/site-packages/scipy/io/_fast_matrix_market/__init__.py ADDED
@@ -0,0 +1,594 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (C) 2022-2023 Adam Lugowski. All rights reserved.
2
+ # Use of this source code is governed by the BSD 2-clause license found in
3
+ # the LICENSE.txt file.
4
+ # SPDX-License-Identifier: BSD-2-Clause
5
+ """
6
+ Matrix Market I/O with a C++ backend.
7
+ See http://math.nist.gov/MatrixMarket/formats.html
8
+ for information about the Matrix Market format.
9
+
10
+ .. versionadded:: 1.12.0
11
+ """
12
+ import io
13
+ import os
14
+
15
+ import numpy as np
16
+ import scipy.sparse
17
+ from scipy.io import _mmio
18
+
19
+ __all__ = ['mminfo', 'mmread', 'mmwrite']
20
+
21
+ PARALLELISM = 0
22
+ """
23
+ Number of threads that `mmread()` and `mmwrite()` use.
24
+ 0 means number of CPUs in the system.
25
+ Use `threadpoolctl` to set this value.
26
+ """
27
+
28
+ ALWAYS_FIND_SYMMETRY = False
29
+ """
30
+ Whether mmwrite() with symmetry='AUTO' will always search for symmetry
31
+ inside the matrix. This is scipy.io._mmio.mmwrite()'s default behavior,
32
+ but has a significant performance cost on large matrices.
33
+ """
34
+
35
+ _field_to_dtype = {
36
+ "integer": "int64",
37
+ "unsigned-integer": "uint64",
38
+ "real": "float64",
39
+ "complex": "complex",
40
+ "pattern": "float64",
41
+ }
42
+
43
+
44
+ def _fmm_version():
45
+ from . import _fmm_core
46
+ return _fmm_core.__version__
47
+
48
+
49
+ # Register with threadpoolctl, if available
50
+ try:
51
+ import threadpoolctl
52
+
53
+ class _FMMThreadPoolCtlController(threadpoolctl.LibController):
54
+ user_api = "scipy"
55
+ internal_api = "scipy_mmio"
56
+
57
+ filename_prefixes = ("_fmm_core",)
58
+
59
+ def get_num_threads(self):
60
+ global PARALLELISM
61
+ return PARALLELISM
62
+
63
+ def set_num_threads(self, num_threads):
64
+ global PARALLELISM
65
+ PARALLELISM = num_threads
66
+
67
+ def get_version(self):
68
+ return _fmm_version
69
+
70
+ def set_additional_attributes(self):
71
+ pass
72
+
73
+ threadpoolctl.register(_FMMThreadPoolCtlController)
74
+ except (ImportError, AttributeError):
75
+ # threadpoolctl not installed or version too old
76
+ pass
77
+
78
+
79
+ class _TextToBytesWrapper(io.BufferedReader):
80
+ """
81
+ Convert a TextIOBase string stream to a byte stream.
82
+ """
83
+
84
+ def __init__(self, text_io_buffer, encoding=None, errors=None, **kwargs):
85
+ super().__init__(text_io_buffer, **kwargs)
86
+ self.encoding = encoding or text_io_buffer.encoding or 'utf-8'
87
+ self.errors = errors or text_io_buffer.errors or 'strict'
88
+
89
+ def __del__(self):
90
+ # do not close the wrapped stream
91
+ self.detach()
92
+
93
+ def _encoding_call(self, method_name, *args, **kwargs):
94
+ raw_method = getattr(self.raw, method_name)
95
+ val = raw_method(*args, **kwargs)
96
+ return val.encode(self.encoding, errors=self.errors)
97
+
98
+ def read(self, size=-1):
99
+ return self._encoding_call('read', size)
100
+
101
+ def read1(self, size=-1):
102
+ return self._encoding_call('read1', size)
103
+
104
+ def peek(self, size=-1):
105
+ return self._encoding_call('peek', size)
106
+
107
+ def seek(self, offset, whence=0):
108
+ # Random seeks are not allowed because of non-trivial conversion
109
+ # between byte and character offsets,
110
+ # with the possibility of a byte offset landing within a character.
111
+ if offset == 0 and whence == 0 or \
112
+ offset == 0 and whence == 2:
113
+ # seek to start or end is ok
114
+ super().seek(offset, whence)
115
+ else:
116
+ # Drop any other seek
117
+ # In this application this may happen when pystreambuf seeks during sync(),
118
+ # which can happen when closing a partially-read stream.
119
+ # Ex. when mminfo() only reads the header then exits.
120
+ pass
121
+
122
+
123
+ def _read_body_array(cursor):
124
+ """
125
+ Read MatrixMarket array body
126
+ """
127
+ from . import _fmm_core
128
+
129
+ vals = np.zeros(cursor.header.shape, dtype=_field_to_dtype.get(cursor.header.field))
130
+ _fmm_core.read_body_array(cursor, vals)
131
+ return vals
132
+
133
+
134
+ def _read_body_coo(cursor, generalize_symmetry=True):
135
+ """
136
+ Read MatrixMarket coordinate body
137
+ """
138
+ from . import _fmm_core
139
+
140
+ index_dtype = "int32"
141
+ if cursor.header.nrows >= 2**31 or cursor.header.ncols >= 2**31:
142
+ # Dimensions are too large to fit in int32
143
+ index_dtype = "int64"
144
+
145
+ i = np.zeros(cursor.header.nnz, dtype=index_dtype)
146
+ j = np.zeros(cursor.header.nnz, dtype=index_dtype)
147
+ data = np.zeros(cursor.header.nnz, dtype=_field_to_dtype.get(cursor.header.field))
148
+
149
+ _fmm_core.read_body_coo(cursor, i, j, data)
150
+
151
+ if generalize_symmetry and cursor.header.symmetry != "general":
152
+ off_diagonal_mask = (i != j)
153
+ off_diagonal_rows = i[off_diagonal_mask]
154
+ off_diagonal_cols = j[off_diagonal_mask]
155
+ off_diagonal_data = data[off_diagonal_mask]
156
+
157
+ if cursor.header.symmetry == "skew-symmetric":
158
+ off_diagonal_data *= -1
159
+ elif cursor.header.symmetry == "hermitian":
160
+ off_diagonal_data = off_diagonal_data.conjugate()
161
+
162
+ i = np.concatenate((i, off_diagonal_cols))
163
+ j = np.concatenate((j, off_diagonal_rows))
164
+ data = np.concatenate((data, off_diagonal_data))
165
+
166
+ return (data, (i, j)), cursor.header.shape
167
+
168
+
169
+ def _get_read_cursor(source, parallelism=None):
170
+ """
171
+ Open file for reading.
172
+ """
173
+ from . import _fmm_core
174
+
175
+ ret_stream_to_close = None
176
+ if parallelism is None:
177
+ parallelism = PARALLELISM
178
+
179
+ try:
180
+ source = os.fspath(source)
181
+ # It's a file path
182
+ is_path = True
183
+ except TypeError:
184
+ is_path = False
185
+
186
+ if is_path:
187
+ path = str(source)
188
+ if path.endswith('.gz'):
189
+ import gzip
190
+ source = gzip.GzipFile(path, 'r')
191
+ ret_stream_to_close = source
192
+ elif path.endswith('.bz2'):
193
+ import bz2
194
+ source = bz2.BZ2File(path, 'rb')
195
+ ret_stream_to_close = source
196
+ else:
197
+ return _fmm_core.open_read_file(path, parallelism), ret_stream_to_close
198
+
199
+ # Stream object.
200
+ if hasattr(source, "read"):
201
+ if isinstance(source, io.TextIOBase):
202
+ source = _TextToBytesWrapper(source)
203
+ return _fmm_core.open_read_stream(source, parallelism), ret_stream_to_close
204
+ else:
205
+ raise TypeError("Unknown source type")
206
+
207
+
208
+ def _get_write_cursor(target, h=None, comment=None, parallelism=None,
209
+ symmetry="general", precision=None):
210
+ """
211
+ Open file for writing.
212
+ """
213
+ from . import _fmm_core
214
+
215
+ if parallelism is None:
216
+ parallelism = PARALLELISM
217
+ if comment is None:
218
+ comment = ''
219
+ if symmetry is None:
220
+ symmetry = "general"
221
+ if precision is None:
222
+ precision = -1
223
+
224
+ if not h:
225
+ h = _fmm_core.header(comment=comment, symmetry=symmetry)
226
+
227
+ try:
228
+ target = os.fspath(target)
229
+ # It's a file path
230
+ return _fmm_core.open_write_file(str(target), h, parallelism, precision)
231
+ except TypeError:
232
+ pass
233
+
234
+ if hasattr(target, "write"):
235
+ # Stream object.
236
+ if isinstance(target, io.TextIOBase):
237
+ raise TypeError("target stream must be open in binary mode.")
238
+ return _fmm_core.open_write_stream(target, h, parallelism, precision)
239
+ else:
240
+ raise TypeError("Unknown source object")
241
+
242
+
243
+ def _apply_field(data, field, no_pattern=False):
244
+ """
245
+ Ensure that ``data.dtype`` is compatible with the specified MatrixMarket field type.
246
+
247
+ Parameters
248
+ ----------
249
+ data : ndarray
250
+ Input array.
251
+
252
+ field : str
253
+ Matrix Market field, such as 'real', 'complex', 'integer', 'pattern'.
254
+
255
+ no_pattern : bool, optional
256
+ Whether an empty array may be returned for a 'pattern' field.
257
+
258
+ Returns
259
+ -------
260
+ data : ndarray
261
+ Input data if no conversion necessary, or a converted version
262
+ """
263
+
264
+ if field is None:
265
+ return data
266
+ if field == "pattern":
267
+ if no_pattern:
268
+ return data
269
+ else:
270
+ return np.zeros(0)
271
+
272
+ dtype = _field_to_dtype.get(field, None)
273
+ if dtype is None:
274
+ raise ValueError("Invalid field.")
275
+
276
+ return np.asarray(data, dtype=dtype)
277
+
278
+
279
+ def _validate_symmetry(symmetry):
280
+ """
281
+ Check that the symmetry parameter is one that MatrixMarket allows..
282
+ """
283
+ if symmetry is None:
284
+ return "general"
285
+
286
+ symmetry = str(symmetry).lower()
287
+ symmetries = ["general", "symmetric", "skew-symmetric", "hermitian"]
288
+ if symmetry not in symmetries:
289
+ raise ValueError("Invalid symmetry. Must be one of: " + ", ".join(symmetries))
290
+
291
+ return symmetry
292
+
293
+
294
+ def mmread(source):
295
+ """
296
+ Reads the contents of a Matrix Market file-like 'source' into a matrix.
297
+
298
+ Parameters
299
+ ----------
300
+ source : str or file-like
301
+ Matrix Market filename (extensions .mtx, .mtz.gz)
302
+ or open file-like object.
303
+
304
+ Returns
305
+ -------
306
+ a : ndarray or coo_matrix
307
+ Dense or sparse matrix depending on the matrix format in the
308
+ Matrix Market file.
309
+
310
+ Notes
311
+ -----
312
+ .. versionchanged:: 1.12.0
313
+ C++ implementation.
314
+
315
+ Examples
316
+ --------
317
+ >>> from io import StringIO
318
+ >>> from scipy.io import mmread
319
+
320
+ >>> text = '''%%MatrixMarket matrix coordinate real general
321
+ ... 5 5 7
322
+ ... 2 3 1.0
323
+ ... 3 4 2.0
324
+ ... 3 5 3.0
325
+ ... 4 1 4.0
326
+ ... 4 2 5.0
327
+ ... 4 3 6.0
328
+ ... 4 4 7.0
329
+ ... '''
330
+
331
+ ``mmread(source)`` returns the data as sparse matrix in COO format.
332
+
333
+ >>> m = mmread(StringIO(text))
334
+ >>> m
335
+ <5x5 sparse matrix of type '<class 'numpy.float64'>'
336
+ with 7 stored elements in COOrdinate format>
337
+ >>> m.A
338
+ array([[0., 0., 0., 0., 0.],
339
+ [0., 0., 1., 0., 0.],
340
+ [0., 0., 0., 2., 3.],
341
+ [4., 5., 6., 7., 0.],
342
+ [0., 0., 0., 0., 0.]])
343
+
344
+ This method is threaded.
345
+ The default number of threads is equal to the number of CPUs in the system.
346
+ Use `threadpoolctl <https://github.com/joblib/threadpoolctl>`_ to override:
347
+
348
+ >>> import threadpoolctl
349
+ >>>
350
+ >>> with threadpoolctl.threadpool_limits(limits=2):
351
+ ... m = mmread(StringIO(text))
352
+
353
+ """
354
+ cursor, stream_to_close = _get_read_cursor(source)
355
+
356
+ if cursor.header.format == "array":
357
+ mat = _read_body_array(cursor)
358
+ if stream_to_close:
359
+ stream_to_close.close()
360
+ return mat
361
+ else:
362
+ from scipy.sparse import coo_matrix
363
+ triplet, shape = _read_body_coo(cursor, generalize_symmetry=True)
364
+ if stream_to_close:
365
+ stream_to_close.close()
366
+ return coo_matrix(triplet, shape=shape)
367
+
368
+
369
+ def mmwrite(target, a, comment=None, field=None, precision=None, symmetry="AUTO"):
370
+ r"""
371
+ Writes the sparse or dense array `a` to Matrix Market file-like `target`.
372
+
373
+ Parameters
374
+ ----------
375
+ target : str or file-like
376
+ Matrix Market filename (extension .mtx) or open file-like object.
377
+ a : array like
378
+ Sparse or dense 2-D array.
379
+ comment : str, optional
380
+ Comments to be prepended to the Matrix Market file.
381
+ field : None or str, optional
382
+ Either 'real', 'complex', 'pattern', or 'integer'.
383
+ precision : None or int, optional
384
+ Number of digits to display for real or complex values.
385
+ symmetry : None or str, optional
386
+ Either 'AUTO', 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
387
+ If symmetry is None the symmetry type of 'a' is determined by its
388
+ values. If symmetry is 'AUTO' the symmetry type of 'a' is either
389
+ determined or set to 'general', at mmwrite's discretion.
390
+
391
+ Returns
392
+ -------
393
+ None
394
+
395
+ Notes
396
+ -----
397
+ .. versionchanged:: 1.12.0
398
+ C++ implementation.
399
+
400
+ Examples
401
+ --------
402
+ >>> from io import BytesIO
403
+ >>> import numpy as np
404
+ >>> from scipy.sparse import coo_matrix
405
+ >>> from scipy.io import mmwrite
406
+
407
+ Write a small NumPy array to a matrix market file. The file will be
408
+ written in the ``'array'`` format.
409
+
410
+ >>> a = np.array([[1.0, 0, 0, 0], [0, 2.5, 0, 6.25]])
411
+ >>> target = BytesIO()
412
+ >>> mmwrite(target, a)
413
+ >>> print(target.getvalue().decode('latin1'))
414
+ %%MatrixMarket matrix array real general
415
+ %
416
+ 2 4
417
+ 1
418
+ 0
419
+ 0
420
+ 2.5
421
+ 0
422
+ 0
423
+ 0
424
+ 6.25
425
+
426
+ Add a comment to the output file, and set the precision to 3.
427
+
428
+ >>> target = BytesIO()
429
+ >>> mmwrite(target, a, comment='\n Some test data.\n', precision=3)
430
+ >>> print(target.getvalue().decode('latin1'))
431
+ %%MatrixMarket matrix array real general
432
+ %
433
+ % Some test data.
434
+ %
435
+ 2 4
436
+ 1.00e+00
437
+ 0.00e+00
438
+ 0.00e+00
439
+ 2.50e+00
440
+ 0.00e+00
441
+ 0.00e+00
442
+ 0.00e+00
443
+ 6.25e+00
444
+
445
+ Convert to a sparse matrix before calling ``mmwrite``. This will
446
+ result in the output format being ``'coordinate'`` rather than
447
+ ``'array'``.
448
+
449
+ >>> target = BytesIO()
450
+ >>> mmwrite(target, coo_matrix(a), precision=3)
451
+ >>> print(target.getvalue().decode('latin1'))
452
+ %%MatrixMarket matrix coordinate real general
453
+ %
454
+ 2 4 3
455
+ 1 1 1.00e+00
456
+ 2 2 2.50e+00
457
+ 2 4 6.25e+00
458
+
459
+ Write a complex Hermitian array to a matrix market file. Note that
460
+ only six values are actually written to the file; the other values
461
+ are implied by the symmetry.
462
+
463
+ >>> z = np.array([[3, 1+2j, 4-3j], [1-2j, 1, -5j], [4+3j, 5j, 2.5]])
464
+ >>> z
465
+ array([[ 3. +0.j, 1. +2.j, 4. -3.j],
466
+ [ 1. -2.j, 1. +0.j, -0. -5.j],
467
+ [ 4. +3.j, 0. +5.j, 2.5+0.j]])
468
+
469
+ >>> target = BytesIO()
470
+ >>> mmwrite(target, z, precision=2)
471
+ >>> print(target.getvalue().decode('latin1'))
472
+ %%MatrixMarket matrix array complex hermitian
473
+ %
474
+ 3 3
475
+ 3.0e+00 0.0e+00
476
+ 1.0e+00 -2.0e+00
477
+ 4.0e+00 3.0e+00
478
+ 1.0e+00 0.0e+00
479
+ 0.0e+00 5.0e+00
480
+ 2.5e+00 0.0e+00
481
+
482
+ This method is threaded.
483
+ The default number of threads is equal to the number of CPUs in the system.
484
+ Use `threadpoolctl <https://github.com/joblib/threadpoolctl>`_ to override:
485
+
486
+ >>> import threadpoolctl
487
+ >>>
488
+ >>> target = BytesIO()
489
+ >>> with threadpoolctl.threadpool_limits(limits=2):
490
+ ... mmwrite(target, a)
491
+
492
+ """
493
+ from . import _fmm_core
494
+
495
+ if isinstance(a, list) or isinstance(a, tuple) or hasattr(a, "__array__"):
496
+ a = np.asarray(a)
497
+
498
+ if symmetry == "AUTO":
499
+ if ALWAYS_FIND_SYMMETRY or (hasattr(a, "shape") and max(a.shape) < 100):
500
+ symmetry = None
501
+ else:
502
+ symmetry = "general"
503
+
504
+ if symmetry is None:
505
+ symmetry = _mmio.MMFile()._get_symmetry(a)
506
+
507
+ symmetry = _validate_symmetry(symmetry)
508
+ cursor = _get_write_cursor(target, comment=comment,
509
+ precision=precision, symmetry=symmetry)
510
+
511
+ if isinstance(a, np.ndarray):
512
+ # Write dense numpy arrays
513
+ a = _apply_field(a, field, no_pattern=True)
514
+ _fmm_core.write_body_array(cursor, a)
515
+
516
+ elif scipy.sparse.issparse(a):
517
+ # Write sparse scipy matrices
518
+ a = a.tocoo()
519
+
520
+ if symmetry is not None and symmetry != "general":
521
+ # A symmetric matrix only specifies the elements below the diagonal.
522
+ # Ensure that the matrix satisfies this requirement.
523
+ from scipy.sparse import coo_array
524
+ lower_triangle_mask = a.row >= a.col
525
+ a = coo_array((a.data[lower_triangle_mask],
526
+ (a.row[lower_triangle_mask],
527
+ a.col[lower_triangle_mask])), shape=a.shape)
528
+
529
+ data = _apply_field(a.data, field)
530
+ _fmm_core.write_body_coo(cursor, a.shape, a.row, a.col, data)
531
+
532
+ else:
533
+ raise ValueError("unknown matrix type: %s" % type(a))
534
+
535
+
536
+ def mminfo(source):
537
+ """
538
+ Return size and storage parameters from Matrix Market file-like 'source'.
539
+
540
+ Parameters
541
+ ----------
542
+ source : str or file-like
543
+ Matrix Market filename (extension .mtx) or open file-like object
544
+
545
+ Returns
546
+ -------
547
+ rows : int
548
+ Number of matrix rows.
549
+ cols : int
550
+ Number of matrix columns.
551
+ entries : int
552
+ Number of non-zero entries of a sparse matrix
553
+ or rows*cols for a dense matrix.
554
+ format : str
555
+ Either 'coordinate' or 'array'.
556
+ field : str
557
+ Either 'real', 'complex', 'pattern', or 'integer'.
558
+ symmetry : str
559
+ Either 'general', 'symmetric', 'skew-symmetric', or 'hermitian'.
560
+
561
+ Notes
562
+ -----
563
+ .. versionchanged:: 1.12.0
564
+ C++ implementation.
565
+
566
+ Examples
567
+ --------
568
+ >>> from io import StringIO
569
+ >>> from scipy.io import mminfo
570
+
571
+ >>> text = '''%%MatrixMarket matrix coordinate real general
572
+ ... 5 5 7
573
+ ... 2 3 1.0
574
+ ... 3 4 2.0
575
+ ... 3 5 3.0
576
+ ... 4 1 4.0
577
+ ... 4 2 5.0
578
+ ... 4 3 6.0
579
+ ... 4 4 7.0
580
+ ... '''
581
+
582
+
583
+ ``mminfo(source)`` returns the number of rows, number of columns,
584
+ format, field type and symmetry attribute of the source file.
585
+
586
+ >>> mminfo(StringIO(text))
587
+ (5, 5, 7, 'coordinate', 'real', 'general')
588
+ """
589
+ cursor, stream_to_close = _get_read_cursor(source, 1)
590
+ h = cursor.header
591
+ cursor.close()
592
+ if stream_to_close:
593
+ stream_to_close.close()
594
+ return h.nrows, h.ncols, h.nnz, h.format, h.field, h.symmetry
env-llmeval/lib/python3.10/site-packages/scipy/io/_fast_matrix_market/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (14.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__init__.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ MATLAB® file utilities (:mod:`scipy.io.matlab`)
3
+ ===============================================
4
+
5
+ .. currentmodule:: scipy.io.matlab
6
+
7
+ This submodule is meant to provide lower-level file utilities related to reading
8
+ and writing MATLAB files.
9
+
10
+ .. autosummary::
11
+ :toctree: generated/
12
+
13
+ matfile_version - Get the MATLAB file version
14
+ MatReadError - Exception indicating a read issue
15
+ MatReadWarning - Warning class for read issues
16
+ MatWriteError - Exception indicating a write issue
17
+ mat_struct - Class used when ``struct_as_record=False``
18
+
19
+ .. autosummary::
20
+ :toctree: generated/
21
+ :template: autosummary/ndarray_subclass.rst
22
+ :nosignatures:
23
+
24
+ MatlabObject - Class for a MATLAB object
25
+ MatlabOpaque - Class for a MATLAB opaque matrix
26
+ MatlabFunction - Class for a MATLAB function object
27
+
28
+ The following utilities that live in the :mod:`scipy.io`
29
+ namespace also exist in this namespace:
30
+
31
+ .. autosummary::
32
+ :toctree: generated/
33
+
34
+ loadmat - Read a MATLAB style mat file (version 4 through 7.1)
35
+ savemat - Write a MATLAB style mat file (version 4 through 7.1)
36
+ whosmat - List contents of a MATLAB style mat file (version 4 through 7.1)
37
+
38
+ Notes
39
+ -----
40
+ MATLAB(R) is a registered trademark of The MathWorks, Inc., 3 Apple Hill
41
+ Drive, Natick, MA 01760-2098, USA.
42
+
43
+ """
44
+ # Matlab file read and write utilities
45
+ from ._mio import loadmat, savemat, whosmat
46
+ from ._mio5 import MatlabFunction
47
+ from ._mio5_params import MatlabObject, MatlabOpaque, mat_struct
48
+ from ._miobase import (matfile_version, MatReadError, MatReadWarning,
49
+ MatWriteError)
50
+
51
+ # Deprecated namespaces, to be removed in v2.0.0
52
+ from .import (mio, mio5, mio5_params, mio4, byteordercodes,
53
+ miobase, mio_utils, streams, mio5_utils)
54
+
55
+ __all__ = [
56
+ 'loadmat', 'savemat', 'whosmat', 'MatlabObject',
57
+ 'matfile_version', 'MatReadError', 'MatReadWarning',
58
+ 'MatWriteError', 'mat_struct', 'MatlabOpaque', 'MatlabFunction'
59
+ ]
60
+
61
+ from scipy._lib._testutils import PytestTester
62
+ test = PytestTester(__name__)
63
+ del PytestTester
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.16 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_byteordercodes.cpython-310.pyc ADDED
Binary file (1.97 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_mio.cpython-310.pyc ADDED
Binary file (12.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_mio4.cpython-310.pyc ADDED
Binary file (18.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_mio5.cpython-310.pyc ADDED
Binary file (25.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_mio5_params.cpython-310.pyc ADDED
Binary file (5.91 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/_miobase.cpython-310.pyc ADDED
Binary file (11.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/byteordercodes.cpython-310.pyc ADDED
Binary file (681 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio.cpython-310.pyc ADDED
Binary file (724 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio4.cpython-310.pyc ADDED
Binary file (976 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio5.cpython-310.pyc ADDED
Binary file (1.17 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio5_params.cpython-310.pyc ADDED
Binary file (1.24 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio5_utils.cpython-310.pyc ADDED
Binary file (720 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/mio_utils.cpython-310.pyc ADDED
Binary file (637 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/miobase.cpython-310.pyc ADDED
Binary file (796 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/__pycache__/streams.cpython-310.pyc ADDED
Binary file (655 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_byteordercodes.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ''' Byteorder utilities for system - numpy byteorder encoding
2
+
3
+ Converts a variety of string codes for little endian, big endian,
4
+ native byte order and swapped byte order to explicit NumPy endian
5
+ codes - one of '<' (little endian) or '>' (big endian)
6
+
7
+ '''
8
+ import sys
9
+
10
+ __all__ = [
11
+ 'aliases', 'native_code', 'swapped_code',
12
+ 'sys_is_le', 'to_numpy_code'
13
+ ]
14
+
15
+ sys_is_le = sys.byteorder == 'little'
16
+ native_code = sys_is_le and '<' or '>'
17
+ swapped_code = sys_is_le and '>' or '<'
18
+
19
+ aliases = {'little': ('little', '<', 'l', 'le'),
20
+ 'big': ('big', '>', 'b', 'be'),
21
+ 'native': ('native', '='),
22
+ 'swapped': ('swapped', 'S')}
23
+
24
+
25
+ def to_numpy_code(code):
26
+ """
27
+ Convert various order codings to NumPy format.
28
+
29
+ Parameters
30
+ ----------
31
+ code : str
32
+ The code to convert. It is converted to lower case before parsing.
33
+ Legal values are:
34
+ 'little', 'big', 'l', 'b', 'le', 'be', '<', '>', 'native', '=',
35
+ 'swapped', 's'.
36
+
37
+ Returns
38
+ -------
39
+ out_code : {'<', '>'}
40
+ Here '<' is the numpy dtype code for little endian,
41
+ and '>' is the code for big endian.
42
+
43
+ Examples
44
+ --------
45
+ >>> import sys
46
+ >>> from scipy.io.matlab._byteordercodes import to_numpy_code
47
+ >>> sys_is_le = (sys.byteorder == 'little')
48
+ >>> sys_is_le
49
+ True
50
+ >>> to_numpy_code('big')
51
+ '>'
52
+ >>> to_numpy_code('little')
53
+ '<'
54
+ >>> nc = to_numpy_code('native')
55
+ >>> nc == '<' if sys_is_le else nc == '>'
56
+ True
57
+ >>> sc = to_numpy_code('swapped')
58
+ >>> sc == '>' if sys_is_le else sc == '<'
59
+ True
60
+
61
+ """
62
+ code = code.lower()
63
+ if code is None:
64
+ return native_code
65
+ if code in aliases['little']:
66
+ return '<'
67
+ elif code in aliases['big']:
68
+ return '>'
69
+ elif code in aliases['native']:
70
+ return native_code
71
+ elif code in aliases['swapped']:
72
+ return swapped_code
73
+ else:
74
+ raise ValueError(
75
+ 'We cannot handle byte order %s' % code)
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Module for reading and writing matlab (TM) .mat files
3
+ """
4
+ # Authors: Travis Oliphant, Matthew Brett
5
+
6
+ from contextlib import contextmanager
7
+
8
+ from ._miobase import _get_matfile_version, docfiller
9
+ from ._mio4 import MatFile4Reader, MatFile4Writer
10
+ from ._mio5 import MatFile5Reader, MatFile5Writer
11
+
12
+ __all__ = ['mat_reader_factory', 'loadmat', 'savemat', 'whosmat']
13
+
14
+
15
+ @contextmanager
16
+ def _open_file_context(file_like, appendmat, mode='rb'):
17
+ f, opened = _open_file(file_like, appendmat, mode)
18
+ try:
19
+ yield f
20
+ finally:
21
+ if opened:
22
+ f.close()
23
+
24
+
25
+ def _open_file(file_like, appendmat, mode='rb'):
26
+ """
27
+ Open `file_like` and return as file-like object. First, check if object is
28
+ already file-like; if so, return it as-is. Otherwise, try to pass it
29
+ to open(). If that fails, and `file_like` is a string, and `appendmat` is true,
30
+ append '.mat' and try again.
31
+ """
32
+ reqs = {'read'} if set(mode) & set('r+') else set()
33
+ if set(mode) & set('wax+'):
34
+ reqs.add('write')
35
+ if reqs.issubset(dir(file_like)):
36
+ return file_like, False
37
+
38
+ try:
39
+ return open(file_like, mode), True
40
+ except OSError as e:
41
+ # Probably "not found"
42
+ if isinstance(file_like, str):
43
+ if appendmat and not file_like.endswith('.mat'):
44
+ file_like += '.mat'
45
+ return open(file_like, mode), True
46
+ else:
47
+ raise OSError(
48
+ 'Reader needs file name or open file-like object'
49
+ ) from e
50
+
51
+
52
+ @docfiller
53
+ def mat_reader_factory(file_name, appendmat=True, **kwargs):
54
+ """
55
+ Create reader for matlab .mat format files.
56
+
57
+ Parameters
58
+ ----------
59
+ %(file_arg)s
60
+ %(append_arg)s
61
+ %(load_args)s
62
+ %(struct_arg)s
63
+
64
+ Returns
65
+ -------
66
+ matreader : MatFileReader object
67
+ Initialized instance of MatFileReader class matching the mat file
68
+ type detected in `filename`.
69
+ file_opened : bool
70
+ Whether the file was opened by this routine.
71
+
72
+ """
73
+ byte_stream, file_opened = _open_file(file_name, appendmat)
74
+ mjv, mnv = _get_matfile_version(byte_stream)
75
+ if mjv == 0:
76
+ return MatFile4Reader(byte_stream, **kwargs), file_opened
77
+ elif mjv == 1:
78
+ return MatFile5Reader(byte_stream, **kwargs), file_opened
79
+ elif mjv == 2:
80
+ raise NotImplementedError('Please use HDF reader for matlab v7.3 '
81
+ 'files, e.g. h5py')
82
+ else:
83
+ raise TypeError('Did not recognize version %s' % mjv)
84
+
85
+
86
+ @docfiller
87
+ def loadmat(file_name, mdict=None, appendmat=True, **kwargs):
88
+ """
89
+ Load MATLAB file.
90
+
91
+ Parameters
92
+ ----------
93
+ file_name : str
94
+ Name of the mat file (do not need .mat extension if
95
+ appendmat==True). Can also pass open file-like object.
96
+ mdict : dict, optional
97
+ Dictionary in which to insert matfile variables.
98
+ appendmat : bool, optional
99
+ True to append the .mat extension to the end of the given
100
+ filename, if not already present. Default is True.
101
+ byte_order : str or None, optional
102
+ None by default, implying byte order guessed from mat
103
+ file. Otherwise can be one of ('native', '=', 'little', '<',
104
+ 'BIG', '>').
105
+ mat_dtype : bool, optional
106
+ If True, return arrays in same dtype as would be loaded into
107
+ MATLAB (instead of the dtype with which they are saved).
108
+ squeeze_me : bool, optional
109
+ Whether to squeeze unit matrix dimensions or not.
110
+ chars_as_strings : bool, optional
111
+ Whether to convert char arrays to string arrays.
112
+ matlab_compatible : bool, optional
113
+ Returns matrices as would be loaded by MATLAB (implies
114
+ squeeze_me=False, chars_as_strings=False, mat_dtype=True,
115
+ struct_as_record=True).
116
+ struct_as_record : bool, optional
117
+ Whether to load MATLAB structs as NumPy record arrays, or as
118
+ old-style NumPy arrays with dtype=object. Setting this flag to
119
+ False replicates the behavior of scipy version 0.7.x (returning
120
+ NumPy object arrays). The default setting is True, because it
121
+ allows easier round-trip load and save of MATLAB files.
122
+ verify_compressed_data_integrity : bool, optional
123
+ Whether the length of compressed sequences in the MATLAB file
124
+ should be checked, to ensure that they are not longer than we expect.
125
+ It is advisable to enable this (the default) because overlong
126
+ compressed sequences in MATLAB files generally indicate that the
127
+ files have experienced some sort of corruption.
128
+ variable_names : None or sequence
129
+ If None (the default) - read all variables in file. Otherwise,
130
+ `variable_names` should be a sequence of strings, giving names of the
131
+ MATLAB variables to read from the file. The reader will skip any
132
+ variable with a name not in this sequence, possibly saving some read
133
+ processing.
134
+ simplify_cells : False, optional
135
+ If True, return a simplified dict structure (which is useful if the mat
136
+ file contains cell arrays). Note that this only affects the structure
137
+ of the result and not its contents (which is identical for both output
138
+ structures). If True, this automatically sets `struct_as_record` to
139
+ False and `squeeze_me` to True, which is required to simplify cells.
140
+
141
+ Returns
142
+ -------
143
+ mat_dict : dict
144
+ dictionary with variable names as keys, and loaded matrices as
145
+ values.
146
+
147
+ Notes
148
+ -----
149
+ v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.
150
+
151
+ You will need an HDF5 Python library to read MATLAB 7.3 format mat
152
+ files. Because SciPy does not supply one, we do not implement the
153
+ HDF5 / 7.3 interface here.
154
+
155
+ Examples
156
+ --------
157
+ >>> from os.path import dirname, join as pjoin
158
+ >>> import scipy.io as sio
159
+
160
+ Get the filename for an example .mat file from the tests/data directory.
161
+
162
+ >>> data_dir = pjoin(dirname(sio.__file__), 'matlab', 'tests', 'data')
163
+ >>> mat_fname = pjoin(data_dir, 'testdouble_7.4_GLNX86.mat')
164
+
165
+ Load the .mat file contents.
166
+
167
+ >>> mat_contents = sio.loadmat(mat_fname)
168
+
169
+ The result is a dictionary, one key/value pair for each variable:
170
+
171
+ >>> sorted(mat_contents.keys())
172
+ ['__globals__', '__header__', '__version__', 'testdouble']
173
+ >>> mat_contents['testdouble']
174
+ array([[0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
175
+ 3.92699082, 4.71238898, 5.49778714, 6.28318531]])
176
+
177
+ By default SciPy reads MATLAB structs as structured NumPy arrays where the
178
+ dtype fields are of type `object` and the names correspond to the MATLAB
179
+ struct field names. This can be disabled by setting the optional argument
180
+ `struct_as_record=False`.
181
+
182
+ Get the filename for an example .mat file that contains a MATLAB struct
183
+ called `teststruct` and load the contents.
184
+
185
+ >>> matstruct_fname = pjoin(data_dir, 'teststruct_7.4_GLNX86.mat')
186
+ >>> matstruct_contents = sio.loadmat(matstruct_fname)
187
+ >>> teststruct = matstruct_contents['teststruct']
188
+ >>> teststruct.dtype
189
+ dtype([('stringfield', 'O'), ('doublefield', 'O'), ('complexfield', 'O')])
190
+
191
+ The size of the structured array is the size of the MATLAB struct, not the
192
+ number of elements in any particular field. The shape defaults to 2-D
193
+ unless the optional argument `squeeze_me=True`, in which case all length 1
194
+ dimensions are removed.
195
+
196
+ >>> teststruct.size
197
+ 1
198
+ >>> teststruct.shape
199
+ (1, 1)
200
+
201
+ Get the 'stringfield' of the first element in the MATLAB struct.
202
+
203
+ >>> teststruct[0, 0]['stringfield']
204
+ array(['Rats live on no evil star.'],
205
+ dtype='<U26')
206
+
207
+ Get the first element of the 'doublefield'.
208
+
209
+ >>> teststruct['doublefield'][0, 0]
210
+ array([[ 1.41421356, 2.71828183, 3.14159265]])
211
+
212
+ Load the MATLAB struct, squeezing out length 1 dimensions, and get the item
213
+ from the 'complexfield'.
214
+
215
+ >>> matstruct_squeezed = sio.loadmat(matstruct_fname, squeeze_me=True)
216
+ >>> matstruct_squeezed['teststruct'].shape
217
+ ()
218
+ >>> matstruct_squeezed['teststruct']['complexfield'].shape
219
+ ()
220
+ >>> matstruct_squeezed['teststruct']['complexfield'].item()
221
+ array([ 1.41421356+1.41421356j, 2.71828183+2.71828183j,
222
+ 3.14159265+3.14159265j])
223
+ """
224
+ variable_names = kwargs.pop('variable_names', None)
225
+ with _open_file_context(file_name, appendmat) as f:
226
+ MR, _ = mat_reader_factory(f, **kwargs)
227
+ matfile_dict = MR.get_variables(variable_names)
228
+
229
+ if mdict is not None:
230
+ mdict.update(matfile_dict)
231
+ else:
232
+ mdict = matfile_dict
233
+
234
+ return mdict
235
+
236
+
237
+ @docfiller
238
+ def savemat(file_name, mdict,
239
+ appendmat=True,
240
+ format='5',
241
+ long_field_names=False,
242
+ do_compression=False,
243
+ oned_as='row'):
244
+ """
245
+ Save a dictionary of names and arrays into a MATLAB-style .mat file.
246
+
247
+ This saves the array objects in the given dictionary to a MATLAB-
248
+ style .mat file.
249
+
250
+ Parameters
251
+ ----------
252
+ file_name : str or file-like object
253
+ Name of the .mat file (.mat extension not needed if ``appendmat ==
254
+ True``).
255
+ Can also pass open file_like object.
256
+ mdict : dict
257
+ Dictionary from which to save matfile variables.
258
+ appendmat : bool, optional
259
+ True (the default) to append the .mat extension to the end of the
260
+ given filename, if not already present.
261
+ format : {'5', '4'}, string, optional
262
+ '5' (the default) for MATLAB 5 and up (to 7.2),
263
+ '4' for MATLAB 4 .mat files.
264
+ long_field_names : bool, optional
265
+ False (the default) - maximum field name length in a structure is
266
+ 31 characters which is the documented maximum length.
267
+ True - maximum field name length in a structure is 63 characters
268
+ which works for MATLAB 7.6+.
269
+ do_compression : bool, optional
270
+ Whether or not to compress matrices on write. Default is False.
271
+ oned_as : {'row', 'column'}, optional
272
+ If 'column', write 1-D NumPy arrays as column vectors.
273
+ If 'row', write 1-D NumPy arrays as row vectors.
274
+
275
+ Examples
276
+ --------
277
+ >>> from scipy.io import savemat
278
+ >>> import numpy as np
279
+ >>> a = np.arange(20)
280
+ >>> mdic = {"a": a, "label": "experiment"}
281
+ >>> mdic
282
+ {'a': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
283
+ 17, 18, 19]),
284
+ 'label': 'experiment'}
285
+ >>> savemat("matlab_matrix.mat", mdic)
286
+ """
287
+ with _open_file_context(file_name, appendmat, 'wb') as file_stream:
288
+ if format == '4':
289
+ if long_field_names:
290
+ message = "Long field names are not available for version 4 files"
291
+ raise ValueError(message)
292
+ MW = MatFile4Writer(file_stream, oned_as)
293
+ elif format == '5':
294
+ MW = MatFile5Writer(file_stream,
295
+ do_compression=do_compression,
296
+ unicode_strings=True,
297
+ long_field_names=long_field_names,
298
+ oned_as=oned_as)
299
+ else:
300
+ raise ValueError("Format should be '4' or '5'")
301
+ MW.put_variables(mdict)
302
+
303
+
304
+ @docfiller
305
+ def whosmat(file_name, appendmat=True, **kwargs):
306
+ """
307
+ List variables inside a MATLAB file.
308
+
309
+ Parameters
310
+ ----------
311
+ %(file_arg)s
312
+ %(append_arg)s
313
+ %(load_args)s
314
+ %(struct_arg)s
315
+
316
+ Returns
317
+ -------
318
+ variables : list of tuples
319
+ A list of tuples, where each tuple holds the matrix name (a string),
320
+ its shape (tuple of ints), and its data class (a string).
321
+ Possible data classes are: int8, uint8, int16, uint16, int32, uint32,
322
+ int64, uint64, single, double, cell, struct, object, char, sparse,
323
+ function, opaque, logical, unknown.
324
+
325
+ Notes
326
+ -----
327
+ v4 (Level 1.0), v6 and v7 to 7.2 matfiles are supported.
328
+
329
+ You will need an HDF5 python library to read matlab 7.3 format mat
330
+ files (e.g. h5py). Because SciPy does not supply one, we do not implement the
331
+ HDF5 / 7.3 interface here.
332
+
333
+ .. versionadded:: 0.12.0
334
+
335
+ Examples
336
+ --------
337
+ >>> from io import BytesIO
338
+ >>> import numpy as np
339
+ >>> from scipy.io import savemat, whosmat
340
+
341
+ Create some arrays, and use `savemat` to write them to a ``BytesIO``
342
+ instance.
343
+
344
+ >>> a = np.array([[10, 20, 30], [11, 21, 31]], dtype=np.int32)
345
+ >>> b = np.geomspace(1, 10, 5)
346
+ >>> f = BytesIO()
347
+ >>> savemat(f, {'a': a, 'b': b})
348
+
349
+ Use `whosmat` to inspect ``f``. Each tuple in the output list gives
350
+ the name, shape and data type of the array in ``f``.
351
+
352
+ >>> whosmat(f)
353
+ [('a', (2, 3), 'int32'), ('b', (1, 5), 'double')]
354
+
355
+ """
356
+ with _open_file_context(file_name, appendmat) as f:
357
+ ML, file_opened = mat_reader_factory(f, **kwargs)
358
+ variables = ML.list_variables()
359
+ return variables
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio4.py ADDED
@@ -0,0 +1,624 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ''' Classes for read / write of matlab (TM) 4 files
2
+ '''
3
+ import sys
4
+ import warnings
5
+
6
+ import numpy as np
7
+
8
+ import scipy.sparse
9
+
10
+ from ._miobase import (MatFileReader, docfiller, matdims, read_dtype,
11
+ convert_dtypes, arr_to_chars, arr_dtype_number)
12
+
13
+ from ._mio_utils import squeeze_element, chars_to_strings
14
+ from functools import reduce
15
+
16
+
17
+ __all__ = [
18
+ 'MatFile4Reader', 'MatFile4Writer', 'SYS_LITTLE_ENDIAN',
19
+ 'VarHeader4', 'VarReader4', 'VarWriter4', 'arr_to_2d', 'mclass_info',
20
+ 'mdtypes_template', 'miDOUBLE', 'miINT16', 'miINT32', 'miSINGLE',
21
+ 'miUINT16', 'miUINT8', 'mxCHAR_CLASS', 'mxFULL_CLASS', 'mxSPARSE_CLASS',
22
+ 'np_to_mtypes', 'order_codes'
23
+ ]
24
+
25
+
26
+ SYS_LITTLE_ENDIAN = sys.byteorder == 'little'
27
+
28
+ miDOUBLE = 0
29
+ miSINGLE = 1
30
+ miINT32 = 2
31
+ miINT16 = 3
32
+ miUINT16 = 4
33
+ miUINT8 = 5
34
+
35
+ mdtypes_template = {
36
+ miDOUBLE: 'f8',
37
+ miSINGLE: 'f4',
38
+ miINT32: 'i4',
39
+ miINT16: 'i2',
40
+ miUINT16: 'u2',
41
+ miUINT8: 'u1',
42
+ 'header': [('mopt', 'i4'),
43
+ ('mrows', 'i4'),
44
+ ('ncols', 'i4'),
45
+ ('imagf', 'i4'),
46
+ ('namlen', 'i4')],
47
+ 'U1': 'U1',
48
+ }
49
+
50
+ np_to_mtypes = {
51
+ 'f8': miDOUBLE,
52
+ 'c32': miDOUBLE,
53
+ 'c24': miDOUBLE,
54
+ 'c16': miDOUBLE,
55
+ 'f4': miSINGLE,
56
+ 'c8': miSINGLE,
57
+ 'i4': miINT32,
58
+ 'i2': miINT16,
59
+ 'u2': miUINT16,
60
+ 'u1': miUINT8,
61
+ 'S1': miUINT8,
62
+ }
63
+
64
+ # matrix classes
65
+ mxFULL_CLASS = 0
66
+ mxCHAR_CLASS = 1
67
+ mxSPARSE_CLASS = 2
68
+
69
+ order_codes = {
70
+ 0: '<',
71
+ 1: '>',
72
+ 2: 'VAX D-float', # !
73
+ 3: 'VAX G-float',
74
+ 4: 'Cray', # !!
75
+ }
76
+
77
+ mclass_info = {
78
+ mxFULL_CLASS: 'double',
79
+ mxCHAR_CLASS: 'char',
80
+ mxSPARSE_CLASS: 'sparse',
81
+ }
82
+
83
+
84
+ class VarHeader4:
85
+ # Mat4 variables never logical or global
86
+ is_logical = False
87
+ is_global = False
88
+
89
+ def __init__(self,
90
+ name,
91
+ dtype,
92
+ mclass,
93
+ dims,
94
+ is_complex):
95
+ self.name = name
96
+ self.dtype = dtype
97
+ self.mclass = mclass
98
+ self.dims = dims
99
+ self.is_complex = is_complex
100
+
101
+
102
+ class VarReader4:
103
+ ''' Class to read matlab 4 variables '''
104
+
105
+ def __init__(self, file_reader):
106
+ self.file_reader = file_reader
107
+ self.mat_stream = file_reader.mat_stream
108
+ self.dtypes = file_reader.dtypes
109
+ self.chars_as_strings = file_reader.chars_as_strings
110
+ self.squeeze_me = file_reader.squeeze_me
111
+
112
+ def read_header(self):
113
+ ''' Read and return header for variable '''
114
+ data = read_dtype(self.mat_stream, self.dtypes['header'])
115
+ name = self.mat_stream.read(int(data['namlen'])).strip(b'\x00')
116
+ if data['mopt'] < 0 or data['mopt'] > 5000:
117
+ raise ValueError('Mat 4 mopt wrong format, byteswapping problem?')
118
+ M, rest = divmod(data['mopt'], 1000) # order code
119
+ if M not in (0, 1):
120
+ warnings.warn("We do not support byte ordering '%s'; returned "
121
+ "data may be corrupt" % order_codes[M],
122
+ UserWarning, stacklevel=3)
123
+ O, rest = divmod(rest, 100) # unused, should be 0
124
+ if O != 0:
125
+ raise ValueError('O in MOPT integer should be 0, wrong format?')
126
+ P, rest = divmod(rest, 10) # data type code e.g miDOUBLE (see above)
127
+ T = rest # matrix type code e.g., mxFULL_CLASS (see above)
128
+ dims = (data['mrows'], data['ncols'])
129
+ is_complex = data['imagf'] == 1
130
+ dtype = self.dtypes[P]
131
+ return VarHeader4(
132
+ name,
133
+ dtype,
134
+ T,
135
+ dims,
136
+ is_complex)
137
+
138
+ def array_from_header(self, hdr, process=True):
139
+ mclass = hdr.mclass
140
+ if mclass == mxFULL_CLASS:
141
+ arr = self.read_full_array(hdr)
142
+ elif mclass == mxCHAR_CLASS:
143
+ arr = self.read_char_array(hdr)
144
+ if process and self.chars_as_strings:
145
+ arr = chars_to_strings(arr)
146
+ elif mclass == mxSPARSE_CLASS:
147
+ # no current processing (below) makes sense for sparse
148
+ return self.read_sparse_array(hdr)
149
+ else:
150
+ raise TypeError('No reader for class code %s' % mclass)
151
+ if process and self.squeeze_me:
152
+ return squeeze_element(arr)
153
+ return arr
154
+
155
+ def read_sub_array(self, hdr, copy=True):
156
+ ''' Mat4 read using header `hdr` dtype and dims
157
+
158
+ Parameters
159
+ ----------
160
+ hdr : object
161
+ object with attributes ``dtype``, ``dims``. dtype is assumed to be
162
+ the correct endianness
163
+ copy : bool, optional
164
+ copies array before return if True (default True)
165
+ (buffer is usually read only)
166
+
167
+ Returns
168
+ -------
169
+ arr : ndarray
170
+ of dtype given by `hdr` ``dtype`` and shape given by `hdr` ``dims``
171
+ '''
172
+ dt = hdr.dtype
173
+ dims = hdr.dims
174
+ num_bytes = dt.itemsize
175
+ for d in dims:
176
+ num_bytes *= d
177
+ buffer = self.mat_stream.read(int(num_bytes))
178
+ if len(buffer) != num_bytes:
179
+ raise ValueError("Not enough bytes to read matrix '%s'; is this "
180
+ "a badly-formed file? Consider listing matrices "
181
+ "with `whosmat` and loading named matrices with "
182
+ "`variable_names` kwarg to `loadmat`" % hdr.name)
183
+ arr = np.ndarray(shape=dims,
184
+ dtype=dt,
185
+ buffer=buffer,
186
+ order='F')
187
+ if copy:
188
+ arr = arr.copy()
189
+ return arr
190
+
191
+ def read_full_array(self, hdr):
192
+ ''' Full (rather than sparse) matrix getter
193
+
194
+ Read matrix (array) can be real or complex
195
+
196
+ Parameters
197
+ ----------
198
+ hdr : ``VarHeader4`` instance
199
+
200
+ Returns
201
+ -------
202
+ arr : ndarray
203
+ complex array if ``hdr.is_complex`` is True, otherwise a real
204
+ numeric array
205
+ '''
206
+ if hdr.is_complex:
207
+ # avoid array copy to save memory
208
+ res = self.read_sub_array(hdr, copy=False)
209
+ res_j = self.read_sub_array(hdr, copy=False)
210
+ return res + (res_j * 1j)
211
+ return self.read_sub_array(hdr)
212
+
213
+ def read_char_array(self, hdr):
214
+ ''' latin-1 text matrix (char matrix) reader
215
+
216
+ Parameters
217
+ ----------
218
+ hdr : ``VarHeader4`` instance
219
+
220
+ Returns
221
+ -------
222
+ arr : ndarray
223
+ with dtype 'U1', shape given by `hdr` ``dims``
224
+ '''
225
+ arr = self.read_sub_array(hdr).astype(np.uint8)
226
+ S = arr.tobytes().decode('latin-1')
227
+ return np.ndarray(shape=hdr.dims,
228
+ dtype=np.dtype('U1'),
229
+ buffer=np.array(S)).copy()
230
+
231
+ def read_sparse_array(self, hdr):
232
+ ''' Read and return sparse matrix type
233
+
234
+ Parameters
235
+ ----------
236
+ hdr : ``VarHeader4`` instance
237
+
238
+ Returns
239
+ -------
240
+ arr : ``scipy.sparse.coo_matrix``
241
+ with dtype ``float`` and shape read from the sparse matrix data
242
+
243
+ Notes
244
+ -----
245
+ MATLAB 4 real sparse arrays are saved in a N+1 by 3 array format, where
246
+ N is the number of non-zero values. Column 1 values [0:N] are the
247
+ (1-based) row indices of the each non-zero value, column 2 [0:N] are the
248
+ column indices, column 3 [0:N] are the (real) values. The last values
249
+ [-1,0:2] of the rows, column indices are shape[0] and shape[1]
250
+ respectively of the output matrix. The last value for the values column
251
+ is a padding 0. mrows and ncols values from the header give the shape of
252
+ the stored matrix, here [N+1, 3]. Complex data are saved as a 4 column
253
+ matrix, where the fourth column contains the imaginary component; the
254
+ last value is again 0. Complex sparse data do *not* have the header
255
+ ``imagf`` field set to True; the fact that the data are complex is only
256
+ detectable because there are 4 storage columns.
257
+ '''
258
+ res = self.read_sub_array(hdr)
259
+ tmp = res[:-1,:]
260
+ # All numbers are float64 in Matlab, but SciPy sparse expects int shape
261
+ dims = (int(res[-1,0]), int(res[-1,1]))
262
+ I = np.ascontiguousarray(tmp[:,0],dtype='intc') # fixes byte order also
263
+ J = np.ascontiguousarray(tmp[:,1],dtype='intc')
264
+ I -= 1 # for 1-based indexing
265
+ J -= 1
266
+ if res.shape[1] == 3:
267
+ V = np.ascontiguousarray(tmp[:,2],dtype='float')
268
+ else:
269
+ V = np.ascontiguousarray(tmp[:,2],dtype='complex')
270
+ V.imag = tmp[:,3]
271
+ return scipy.sparse.coo_matrix((V,(I,J)), dims)
272
+
273
+ def shape_from_header(self, hdr):
274
+ '''Read the shape of the array described by the header.
275
+ The file position after this call is unspecified.
276
+ '''
277
+ mclass = hdr.mclass
278
+ if mclass == mxFULL_CLASS:
279
+ shape = tuple(map(int, hdr.dims))
280
+ elif mclass == mxCHAR_CLASS:
281
+ shape = tuple(map(int, hdr.dims))
282
+ if self.chars_as_strings:
283
+ shape = shape[:-1]
284
+ elif mclass == mxSPARSE_CLASS:
285
+ dt = hdr.dtype
286
+ dims = hdr.dims
287
+
288
+ if not (len(dims) == 2 and dims[0] >= 1 and dims[1] >= 1):
289
+ return ()
290
+
291
+ # Read only the row and column counts
292
+ self.mat_stream.seek(dt.itemsize * (dims[0] - 1), 1)
293
+ rows = np.ndarray(shape=(), dtype=dt,
294
+ buffer=self.mat_stream.read(dt.itemsize))
295
+ self.mat_stream.seek(dt.itemsize * (dims[0] - 1), 1)
296
+ cols = np.ndarray(shape=(), dtype=dt,
297
+ buffer=self.mat_stream.read(dt.itemsize))
298
+
299
+ shape = (int(rows), int(cols))
300
+ else:
301
+ raise TypeError('No reader for class code %s' % mclass)
302
+
303
+ if self.squeeze_me:
304
+ shape = tuple([x for x in shape if x != 1])
305
+ return shape
306
+
307
+
308
+ class MatFile4Reader(MatFileReader):
309
+ ''' Reader for Mat4 files '''
310
+ @docfiller
311
+ def __init__(self, mat_stream, *args, **kwargs):
312
+ ''' Initialize matlab 4 file reader
313
+
314
+ %(matstream_arg)s
315
+ %(load_args)s
316
+ '''
317
+ super().__init__(mat_stream, *args, **kwargs)
318
+ self._matrix_reader = None
319
+
320
+ def guess_byte_order(self):
321
+ self.mat_stream.seek(0)
322
+ mopt = read_dtype(self.mat_stream, np.dtype('i4'))
323
+ self.mat_stream.seek(0)
324
+ if mopt == 0:
325
+ return '<'
326
+ if mopt < 0 or mopt > 5000:
327
+ # Number must have been byteswapped
328
+ return SYS_LITTLE_ENDIAN and '>' or '<'
329
+ # Not byteswapped
330
+ return SYS_LITTLE_ENDIAN and '<' or '>'
331
+
332
+ def initialize_read(self):
333
+ ''' Run when beginning read of variables
334
+
335
+ Sets up readers from parameters in `self`
336
+ '''
337
+ self.dtypes = convert_dtypes(mdtypes_template, self.byte_order)
338
+ self._matrix_reader = VarReader4(self)
339
+
340
+ def read_var_header(self):
341
+ ''' Read and return header, next position
342
+
343
+ Parameters
344
+ ----------
345
+ None
346
+
347
+ Returns
348
+ -------
349
+ header : object
350
+ object that can be passed to self.read_var_array, and that
351
+ has attributes ``name`` and ``is_global``
352
+ next_position : int
353
+ position in stream of next variable
354
+ '''
355
+ hdr = self._matrix_reader.read_header()
356
+ n = reduce(lambda x, y: x*y, hdr.dims, 1) # fast product
357
+ remaining_bytes = hdr.dtype.itemsize * n
358
+ if hdr.is_complex and not hdr.mclass == mxSPARSE_CLASS:
359
+ remaining_bytes *= 2
360
+ next_position = self.mat_stream.tell() + remaining_bytes
361
+ return hdr, next_position
362
+
363
+ def read_var_array(self, header, process=True):
364
+ ''' Read array, given `header`
365
+
366
+ Parameters
367
+ ----------
368
+ header : header object
369
+ object with fields defining variable header
370
+ process : {True, False}, optional
371
+ If True, apply recursive post-processing during loading of array.
372
+
373
+ Returns
374
+ -------
375
+ arr : array
376
+ array with post-processing applied or not according to
377
+ `process`.
378
+ '''
379
+ return self._matrix_reader.array_from_header(header, process)
380
+
381
+ def get_variables(self, variable_names=None):
382
+ ''' get variables from stream as dictionary
383
+
384
+ Parameters
385
+ ----------
386
+ variable_names : None or str or sequence of str, optional
387
+ variable name, or sequence of variable names to get from Mat file /
388
+ file stream. If None, then get all variables in file.
389
+ '''
390
+ if isinstance(variable_names, str):
391
+ variable_names = [variable_names]
392
+ elif variable_names is not None:
393
+ variable_names = list(variable_names)
394
+ self.mat_stream.seek(0)
395
+ # set up variable reader
396
+ self.initialize_read()
397
+ mdict = {}
398
+ while not self.end_of_stream():
399
+ hdr, next_position = self.read_var_header()
400
+ name = 'None' if hdr.name is None else hdr.name.decode('latin1')
401
+ if variable_names is not None and name not in variable_names:
402
+ self.mat_stream.seek(next_position)
403
+ continue
404
+ mdict[name] = self.read_var_array(hdr)
405
+ self.mat_stream.seek(next_position)
406
+ if variable_names is not None:
407
+ variable_names.remove(name)
408
+ if len(variable_names) == 0:
409
+ break
410
+ return mdict
411
+
412
+ def list_variables(self):
413
+ ''' list variables from stream '''
414
+ self.mat_stream.seek(0)
415
+ # set up variable reader
416
+ self.initialize_read()
417
+ vars = []
418
+ while not self.end_of_stream():
419
+ hdr, next_position = self.read_var_header()
420
+ name = 'None' if hdr.name is None else hdr.name.decode('latin1')
421
+ shape = self._matrix_reader.shape_from_header(hdr)
422
+ info = mclass_info.get(hdr.mclass, 'unknown')
423
+ vars.append((name, shape, info))
424
+
425
+ self.mat_stream.seek(next_position)
426
+ return vars
427
+
428
+
429
+ def arr_to_2d(arr, oned_as='row'):
430
+ ''' Make ``arr`` exactly two dimensional
431
+
432
+ If `arr` has more than 2 dimensions, raise a ValueError
433
+
434
+ Parameters
435
+ ----------
436
+ arr : array
437
+ oned_as : {'row', 'column'}, optional
438
+ Whether to reshape 1-D vectors as row vectors or column vectors.
439
+ See documentation for ``matdims`` for more detail
440
+
441
+ Returns
442
+ -------
443
+ arr2d : array
444
+ 2-D version of the array
445
+ '''
446
+ dims = matdims(arr, oned_as)
447
+ if len(dims) > 2:
448
+ raise ValueError('Matlab 4 files cannot save arrays with more than '
449
+ '2 dimensions')
450
+ return arr.reshape(dims)
451
+
452
+
453
+ class VarWriter4:
454
+ def __init__(self, file_writer):
455
+ self.file_stream = file_writer.file_stream
456
+ self.oned_as = file_writer.oned_as
457
+
458
+ def write_bytes(self, arr):
459
+ self.file_stream.write(arr.tobytes(order='F'))
460
+
461
+ def write_string(self, s):
462
+ self.file_stream.write(s)
463
+
464
+ def write_header(self, name, shape, P=miDOUBLE, T=mxFULL_CLASS, imagf=0):
465
+ ''' Write header for given data options
466
+
467
+ Parameters
468
+ ----------
469
+ name : str
470
+ name of variable
471
+ shape : sequence
472
+ Shape of array as it will be read in matlab
473
+ P : int, optional
474
+ code for mat4 data type, one of ``miDOUBLE, miSINGLE, miINT32,
475
+ miINT16, miUINT16, miUINT8``
476
+ T : int, optional
477
+ code for mat4 matrix class, one of ``mxFULL_CLASS, mxCHAR_CLASS,
478
+ mxSPARSE_CLASS``
479
+ imagf : int, optional
480
+ flag indicating complex
481
+ '''
482
+ header = np.empty((), mdtypes_template['header'])
483
+ M = not SYS_LITTLE_ENDIAN
484
+ O = 0
485
+ header['mopt'] = (M * 1000 +
486
+ O * 100 +
487
+ P * 10 +
488
+ T)
489
+ header['mrows'] = shape[0]
490
+ header['ncols'] = shape[1]
491
+ header['imagf'] = imagf
492
+ header['namlen'] = len(name) + 1
493
+ self.write_bytes(header)
494
+ data = name + '\0'
495
+ self.write_string(data.encode('latin1'))
496
+
497
+ def write(self, arr, name):
498
+ ''' Write matrix `arr`, with name `name`
499
+
500
+ Parameters
501
+ ----------
502
+ arr : array_like
503
+ array to write
504
+ name : str
505
+ name in matlab workspace
506
+ '''
507
+ # we need to catch sparse first, because np.asarray returns an
508
+ # an object array for scipy.sparse
509
+ if scipy.sparse.issparse(arr):
510
+ self.write_sparse(arr, name)
511
+ return
512
+ arr = np.asarray(arr)
513
+ dt = arr.dtype
514
+ if not dt.isnative:
515
+ arr = arr.astype(dt.newbyteorder('='))
516
+ dtt = dt.type
517
+ if dtt is np.object_:
518
+ raise TypeError('Cannot save object arrays in Mat4')
519
+ elif dtt is np.void:
520
+ raise TypeError('Cannot save void type arrays')
521
+ elif dtt in (np.str_, np.bytes_):
522
+ self.write_char(arr, name)
523
+ return
524
+ self.write_numeric(arr, name)
525
+
526
+ def write_numeric(self, arr, name):
527
+ arr = arr_to_2d(arr, self.oned_as)
528
+ imagf = arr.dtype.kind == 'c'
529
+ try:
530
+ P = np_to_mtypes[arr.dtype.str[1:]]
531
+ except KeyError:
532
+ if imagf:
533
+ arr = arr.astype('c128')
534
+ else:
535
+ arr = arr.astype('f8')
536
+ P = miDOUBLE
537
+ self.write_header(name,
538
+ arr.shape,
539
+ P=P,
540
+ T=mxFULL_CLASS,
541
+ imagf=imagf)
542
+ if imagf:
543
+ self.write_bytes(arr.real)
544
+ self.write_bytes(arr.imag)
545
+ else:
546
+ self.write_bytes(arr)
547
+
548
+ def write_char(self, arr, name):
549
+ if arr.dtype.type == np.str_ and arr.dtype.itemsize != np.dtype('U1').itemsize:
550
+ arr = arr_to_chars(arr)
551
+ arr = arr_to_2d(arr, self.oned_as)
552
+ dims = arr.shape
553
+ self.write_header(
554
+ name,
555
+ dims,
556
+ P=miUINT8,
557
+ T=mxCHAR_CLASS)
558
+ if arr.dtype.kind == 'U':
559
+ # Recode unicode to latin1
560
+ n_chars = np.prod(dims)
561
+ st_arr = np.ndarray(shape=(),
562
+ dtype=arr_dtype_number(arr, n_chars),
563
+ buffer=arr)
564
+ st = st_arr.item().encode('latin-1')
565
+ arr = np.ndarray(shape=dims, dtype='S1', buffer=st)
566
+ self.write_bytes(arr)
567
+
568
+ def write_sparse(self, arr, name):
569
+ ''' Sparse matrices are 2-D
570
+
571
+ See docstring for VarReader4.read_sparse_array
572
+ '''
573
+ A = arr.tocoo() # convert to sparse COO format (ijv)
574
+ imagf = A.dtype.kind == 'c'
575
+ ijv = np.zeros((A.nnz + 1, 3+imagf), dtype='f8')
576
+ ijv[:-1,0] = A.row
577
+ ijv[:-1,1] = A.col
578
+ ijv[:-1,0:2] += 1 # 1 based indexing
579
+ if imagf:
580
+ ijv[:-1,2] = A.data.real
581
+ ijv[:-1,3] = A.data.imag
582
+ else:
583
+ ijv[:-1,2] = A.data
584
+ ijv[-1,0:2] = A.shape
585
+ self.write_header(
586
+ name,
587
+ ijv.shape,
588
+ P=miDOUBLE,
589
+ T=mxSPARSE_CLASS)
590
+ self.write_bytes(ijv)
591
+
592
+
593
+ class MatFile4Writer:
594
+ ''' Class for writing matlab 4 format files '''
595
+ def __init__(self, file_stream, oned_as=None):
596
+ self.file_stream = file_stream
597
+ if oned_as is None:
598
+ oned_as = 'row'
599
+ self.oned_as = oned_as
600
+ self._matrix_writer = None
601
+
602
+ def put_variables(self, mdict, write_header=None):
603
+ ''' Write variables in `mdict` to stream
604
+
605
+ Parameters
606
+ ----------
607
+ mdict : mapping
608
+ mapping with method ``items`` return name, contents pairs
609
+ where ``name`` which will appeak in the matlab workspace in
610
+ file load, and ``contents`` is something writeable to a
611
+ matlab file, such as a NumPy array.
612
+ write_header : {None, True, False}
613
+ If True, then write the matlab file header before writing the
614
+ variables. If None (the default) then write the file header
615
+ if we are at position 0 in the stream. By setting False
616
+ here, and setting the stream position to the end of the file,
617
+ you can append variables to a matlab file
618
+ '''
619
+ # there is no header for a matlab 4 mat file, so we ignore the
620
+ # ``write_header`` input argument. It's there for compatibility
621
+ # with the matlab 5 version of this method
622
+ self._matrix_writer = VarWriter4(self)
623
+ for name, var in mdict.items():
624
+ self._matrix_writer.write(var, name)
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio5.py ADDED
@@ -0,0 +1,892 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ''' Classes for read / write of matlab (TM) 5 files
2
+
3
+ The matfile specification last found here:
4
+
5
+ https://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf
6
+
7
+ (as of December 5 2008)
8
+
9
+ =================================
10
+ Note on functions and mat files
11
+ =================================
12
+
13
+ The document above does not give any hints as to the storage of matlab
14
+ function handles, or anonymous function handles. I had, therefore, to
15
+ guess the format of matlab arrays of ``mxFUNCTION_CLASS`` and
16
+ ``mxOPAQUE_CLASS`` by looking at example mat files.
17
+
18
+ ``mxFUNCTION_CLASS`` stores all types of matlab functions. It seems to
19
+ contain a struct matrix with a set pattern of fields. For anonymous
20
+ functions, a sub-fields of one of these fields seems to contain the
21
+ well-named ``mxOPAQUE_CLASS``. This seems to contain:
22
+
23
+ * array flags as for any matlab matrix
24
+ * 3 int8 strings
25
+ * a matrix
26
+
27
+ It seems that whenever the mat file contains a ``mxOPAQUE_CLASS``
28
+ instance, there is also an un-named matrix (name == '') at the end of
29
+ the mat file. I'll call this the ``__function_workspace__`` matrix.
30
+
31
+ When I saved two anonymous functions in a mat file, or appended another
32
+ anonymous function to the mat file, there was still only one
33
+ ``__function_workspace__`` un-named matrix at the end, but larger than
34
+ that for a mat file with a single anonymous function, suggesting that
35
+ the workspaces for the two functions had been merged.
36
+
37
+ The ``__function_workspace__`` matrix appears to be of double class
38
+ (``mxCLASS_DOUBLE``), but stored as uint8, the memory for which is in
39
+ the format of a mini .mat file, without the first 124 bytes of the file
40
+ header (the description and the subsystem_offset), but with the version
41
+ U2 bytes, and the S2 endian test bytes. There follow 4 zero bytes,
42
+ presumably for 8 byte padding, and then a series of ``miMATRIX``
43
+ entries, as in a standard mat file. The ``miMATRIX`` entries appear to
44
+ be series of un-named (name == '') matrices, and may also contain arrays
45
+ of this same mini-mat format.
46
+
47
+ I guess that:
48
+
49
+ * saving an anonymous function back to a mat file will need the
50
+ associated ``__function_workspace__`` matrix saved as well for the
51
+ anonymous function to work correctly.
52
+ * appending to a mat file that has a ``__function_workspace__`` would
53
+ involve first pulling off this workspace, appending, checking whether
54
+ there were any more anonymous functions appended, and then somehow
55
+ merging the relevant workspaces, and saving at the end of the mat
56
+ file.
57
+
58
+ The mat files I was playing with are in ``tests/data``:
59
+
60
+ * sqr.mat
61
+ * parabola.mat
62
+ * some_functions.mat
63
+
64
+ See ``tests/test_mio.py:test_mio_funcs.py`` for the debugging
65
+ script I was working with.
66
+
67
+ Small fragments of current code adapted from matfile.py by Heiko
68
+ Henkelmann; parts of the code for simplify_cells=True adapted from
69
+ http://blog.nephics.com/2019/08/28/better-loadmat-for-scipy/.
70
+ '''
71
+
72
+ import os
73
+ import time
74
+ import sys
75
+ import zlib
76
+
77
+ from io import BytesIO
78
+
79
+ import warnings
80
+
81
+ import numpy as np
82
+
83
+ import scipy.sparse
84
+
85
+ from ._byteordercodes import native_code, swapped_code
86
+
87
+ from ._miobase import (MatFileReader, docfiller, matdims, read_dtype,
88
+ arr_to_chars, arr_dtype_number, MatWriteError,
89
+ MatReadError, MatReadWarning)
90
+
91
+ # Reader object for matlab 5 format variables
92
+ from ._mio5_utils import VarReader5
93
+
94
+ # Constants and helper objects
95
+ from ._mio5_params import (MatlabObject, MatlabFunction, MDTYPES, NP_TO_MTYPES,
96
+ NP_TO_MXTYPES, miCOMPRESSED, miMATRIX, miINT8,
97
+ miUTF8, miUINT32, mxCELL_CLASS, mxSTRUCT_CLASS,
98
+ mxOBJECT_CLASS, mxCHAR_CLASS, mxSPARSE_CLASS,
99
+ mxDOUBLE_CLASS, mclass_info, mat_struct)
100
+
101
+ from ._streams import ZlibInputStream
102
+
103
+
104
+ def _has_struct(elem):
105
+ """Determine if elem is an array and if first array item is a struct."""
106
+ return (isinstance(elem, np.ndarray) and (elem.size > 0) and (elem.ndim > 0) and
107
+ isinstance(elem[0], mat_struct))
108
+
109
+
110
+ def _inspect_cell_array(ndarray):
111
+ """Construct lists from cell arrays (loaded as numpy ndarrays), recursing
112
+ into items if they contain mat_struct objects."""
113
+ elem_list = []
114
+ for sub_elem in ndarray:
115
+ if isinstance(sub_elem, mat_struct):
116
+ elem_list.append(_matstruct_to_dict(sub_elem))
117
+ elif _has_struct(sub_elem):
118
+ elem_list.append(_inspect_cell_array(sub_elem))
119
+ else:
120
+ elem_list.append(sub_elem)
121
+ return elem_list
122
+
123
+
124
+ def _matstruct_to_dict(matobj):
125
+ """Construct nested dicts from mat_struct objects."""
126
+ d = {}
127
+ for f in matobj._fieldnames:
128
+ elem = matobj.__dict__[f]
129
+ if isinstance(elem, mat_struct):
130
+ d[f] = _matstruct_to_dict(elem)
131
+ elif _has_struct(elem):
132
+ d[f] = _inspect_cell_array(elem)
133
+ else:
134
+ d[f] = elem
135
+ return d
136
+
137
+
138
+ def _simplify_cells(d):
139
+ """Convert mat objects in dict to nested dicts."""
140
+ for key in d:
141
+ if isinstance(d[key], mat_struct):
142
+ d[key] = _matstruct_to_dict(d[key])
143
+ elif _has_struct(d[key]):
144
+ d[key] = _inspect_cell_array(d[key])
145
+ return d
146
+
147
+
148
+ class MatFile5Reader(MatFileReader):
149
+ ''' Reader for Mat 5 mat files
150
+ Adds the following attribute to base class
151
+
152
+ uint16_codec - char codec to use for uint16 char arrays
153
+ (defaults to system default codec)
154
+
155
+ Uses variable reader that has the following standard interface (see
156
+ abstract class in ``miobase``::
157
+
158
+ __init__(self, file_reader)
159
+ read_header(self)
160
+ array_from_header(self)
161
+
162
+ and added interface::
163
+
164
+ set_stream(self, stream)
165
+ read_full_tag(self)
166
+
167
+ '''
168
+ @docfiller
169
+ def __init__(self,
170
+ mat_stream,
171
+ byte_order=None,
172
+ mat_dtype=False,
173
+ squeeze_me=False,
174
+ chars_as_strings=True,
175
+ matlab_compatible=False,
176
+ struct_as_record=True,
177
+ verify_compressed_data_integrity=True,
178
+ uint16_codec=None,
179
+ simplify_cells=False):
180
+ '''Initializer for matlab 5 file format reader
181
+
182
+ %(matstream_arg)s
183
+ %(load_args)s
184
+ %(struct_arg)s
185
+ uint16_codec : {None, string}
186
+ Set codec to use for uint16 char arrays (e.g., 'utf-8').
187
+ Use system default codec if None
188
+ '''
189
+ super().__init__(
190
+ mat_stream,
191
+ byte_order,
192
+ mat_dtype,
193
+ squeeze_me,
194
+ chars_as_strings,
195
+ matlab_compatible,
196
+ struct_as_record,
197
+ verify_compressed_data_integrity,
198
+ simplify_cells)
199
+ # Set uint16 codec
200
+ if not uint16_codec:
201
+ uint16_codec = sys.getdefaultencoding()
202
+ self.uint16_codec = uint16_codec
203
+ # placeholders for readers - see initialize_read method
204
+ self._file_reader = None
205
+ self._matrix_reader = None
206
+
207
+ def guess_byte_order(self):
208
+ ''' Guess byte order.
209
+ Sets stream pointer to 0'''
210
+ self.mat_stream.seek(126)
211
+ mi = self.mat_stream.read(2)
212
+ self.mat_stream.seek(0)
213
+ return mi == b'IM' and '<' or '>'
214
+
215
+ def read_file_header(self):
216
+ ''' Read in mat 5 file header '''
217
+ hdict = {}
218
+ hdr_dtype = MDTYPES[self.byte_order]['dtypes']['file_header']
219
+ hdr = read_dtype(self.mat_stream, hdr_dtype)
220
+ hdict['__header__'] = hdr['description'].item().strip(b' \t\n\000')
221
+ v_major = hdr['version'] >> 8
222
+ v_minor = hdr['version'] & 0xFF
223
+ hdict['__version__'] = '%d.%d' % (v_major, v_minor)
224
+ return hdict
225
+
226
+ def initialize_read(self):
227
+ ''' Run when beginning read of variables
228
+
229
+ Sets up readers from parameters in `self`
230
+ '''
231
+ # reader for top level stream. We need this extra top-level
232
+ # reader because we use the matrix_reader object to contain
233
+ # compressed matrices (so they have their own stream)
234
+ self._file_reader = VarReader5(self)
235
+ # reader for matrix streams
236
+ self._matrix_reader = VarReader5(self)
237
+
238
+ def read_var_header(self):
239
+ ''' Read header, return header, next position
240
+
241
+ Header has to define at least .name and .is_global
242
+
243
+ Parameters
244
+ ----------
245
+ None
246
+
247
+ Returns
248
+ -------
249
+ header : object
250
+ object that can be passed to self.read_var_array, and that
251
+ has attributes .name and .is_global
252
+ next_position : int
253
+ position in stream of next variable
254
+ '''
255
+ mdtype, byte_count = self._file_reader.read_full_tag()
256
+ if not byte_count > 0:
257
+ raise ValueError("Did not read any bytes")
258
+ next_pos = self.mat_stream.tell() + byte_count
259
+ if mdtype == miCOMPRESSED:
260
+ # Make new stream from compressed data
261
+ stream = ZlibInputStream(self.mat_stream, byte_count)
262
+ self._matrix_reader.set_stream(stream)
263
+ check_stream_limit = self.verify_compressed_data_integrity
264
+ mdtype, byte_count = self._matrix_reader.read_full_tag()
265
+ else:
266
+ check_stream_limit = False
267
+ self._matrix_reader.set_stream(self.mat_stream)
268
+ if not mdtype == miMATRIX:
269
+ raise TypeError('Expecting miMATRIX type here, got %d' % mdtype)
270
+ header = self._matrix_reader.read_header(check_stream_limit)
271
+ return header, next_pos
272
+
273
+ def read_var_array(self, header, process=True):
274
+ ''' Read array, given `header`
275
+
276
+ Parameters
277
+ ----------
278
+ header : header object
279
+ object with fields defining variable header
280
+ process : {True, False} bool, optional
281
+ If True, apply recursive post-processing during loading of
282
+ array.
283
+
284
+ Returns
285
+ -------
286
+ arr : array
287
+ array with post-processing applied or not according to
288
+ `process`.
289
+ '''
290
+ return self._matrix_reader.array_from_header(header, process)
291
+
292
+ def get_variables(self, variable_names=None):
293
+ ''' get variables from stream as dictionary
294
+
295
+ variable_names - optional list of variable names to get
296
+
297
+ If variable_names is None, then get all variables in file
298
+ '''
299
+ if isinstance(variable_names, str):
300
+ variable_names = [variable_names]
301
+ elif variable_names is not None:
302
+ variable_names = list(variable_names)
303
+
304
+ self.mat_stream.seek(0)
305
+ # Here we pass all the parameters in self to the reading objects
306
+ self.initialize_read()
307
+ mdict = self.read_file_header()
308
+ mdict['__globals__'] = []
309
+ while not self.end_of_stream():
310
+ hdr, next_position = self.read_var_header()
311
+ name = 'None' if hdr.name is None else hdr.name.decode('latin1')
312
+ if name in mdict:
313
+ warnings.warn('Duplicate variable name "%s" in stream'
314
+ ' - replacing previous with new\n'
315
+ 'Consider mio5.varmats_from_mat to split '
316
+ 'file into single variable files' % name,
317
+ MatReadWarning, stacklevel=2)
318
+ if name == '':
319
+ # can only be a matlab 7 function workspace
320
+ name = '__function_workspace__'
321
+ # We want to keep this raw because mat_dtype processing
322
+ # will break the format (uint8 as mxDOUBLE_CLASS)
323
+ process = False
324
+ else:
325
+ process = True
326
+ if variable_names is not None and name not in variable_names:
327
+ self.mat_stream.seek(next_position)
328
+ continue
329
+ try:
330
+ res = self.read_var_array(hdr, process)
331
+ except MatReadError as err:
332
+ warnings.warn(
333
+ f'Unreadable variable "{name}", because "{err}"',
334
+ Warning, stacklevel=2)
335
+ res = "Read error: %s" % err
336
+ self.mat_stream.seek(next_position)
337
+ mdict[name] = res
338
+ if hdr.is_global:
339
+ mdict['__globals__'].append(name)
340
+ if variable_names is not None:
341
+ variable_names.remove(name)
342
+ if len(variable_names) == 0:
343
+ break
344
+ if self.simplify_cells:
345
+ return _simplify_cells(mdict)
346
+ else:
347
+ return mdict
348
+
349
+ def list_variables(self):
350
+ ''' list variables from stream '''
351
+ self.mat_stream.seek(0)
352
+ # Here we pass all the parameters in self to the reading objects
353
+ self.initialize_read()
354
+ self.read_file_header()
355
+ vars = []
356
+ while not self.end_of_stream():
357
+ hdr, next_position = self.read_var_header()
358
+ name = 'None' if hdr.name is None else hdr.name.decode('latin1')
359
+ if name == '':
360
+ # can only be a matlab 7 function workspace
361
+ name = '__function_workspace__'
362
+
363
+ shape = self._matrix_reader.shape_from_header(hdr)
364
+ if hdr.is_logical:
365
+ info = 'logical'
366
+ else:
367
+ info = mclass_info.get(hdr.mclass, 'unknown')
368
+ vars.append((name, shape, info))
369
+
370
+ self.mat_stream.seek(next_position)
371
+ return vars
372
+
373
+
374
+ def varmats_from_mat(file_obj):
375
+ """ Pull variables out of mat 5 file as a sequence of mat file objects
376
+
377
+ This can be useful with a difficult mat file, containing unreadable
378
+ variables. This routine pulls the variables out in raw form and puts them,
379
+ unread, back into a file stream for saving or reading. Another use is the
380
+ pathological case where there is more than one variable of the same name in
381
+ the file; this routine returns the duplicates, whereas the standard reader
382
+ will overwrite duplicates in the returned dictionary.
383
+
384
+ The file pointer in `file_obj` will be undefined. File pointers for the
385
+ returned file-like objects are set at 0.
386
+
387
+ Parameters
388
+ ----------
389
+ file_obj : file-like
390
+ file object containing mat file
391
+
392
+ Returns
393
+ -------
394
+ named_mats : list
395
+ list contains tuples of (name, BytesIO) where BytesIO is a file-like
396
+ object containing mat file contents as for a single variable. The
397
+ BytesIO contains a string with the original header and a single var. If
398
+ ``var_file_obj`` is an individual BytesIO instance, then save as a mat
399
+ file with something like ``open('test.mat',
400
+ 'wb').write(var_file_obj.read())``
401
+
402
+ Examples
403
+ --------
404
+ >>> import scipy.io
405
+ >>> import numpy as np
406
+ >>> from io import BytesIO
407
+ >>> from scipy.io.matlab._mio5 import varmats_from_mat
408
+ >>> mat_fileobj = BytesIO()
409
+ >>> scipy.io.savemat(mat_fileobj, {'b': np.arange(10), 'a': 'a string'})
410
+ >>> varmats = varmats_from_mat(mat_fileobj)
411
+ >>> sorted([name for name, str_obj in varmats])
412
+ ['a', 'b']
413
+ """
414
+ rdr = MatFile5Reader(file_obj)
415
+ file_obj.seek(0)
416
+ # Raw read of top-level file header
417
+ hdr_len = MDTYPES[native_code]['dtypes']['file_header'].itemsize
418
+ raw_hdr = file_obj.read(hdr_len)
419
+ # Initialize variable reading
420
+ file_obj.seek(0)
421
+ rdr.initialize_read()
422
+ rdr.read_file_header()
423
+ next_position = file_obj.tell()
424
+ named_mats = []
425
+ while not rdr.end_of_stream():
426
+ start_position = next_position
427
+ hdr, next_position = rdr.read_var_header()
428
+ name = 'None' if hdr.name is None else hdr.name.decode('latin1')
429
+ # Read raw variable string
430
+ file_obj.seek(start_position)
431
+ byte_count = next_position - start_position
432
+ var_str = file_obj.read(byte_count)
433
+ # write to stringio object
434
+ out_obj = BytesIO()
435
+ out_obj.write(raw_hdr)
436
+ out_obj.write(var_str)
437
+ out_obj.seek(0)
438
+ named_mats.append((name, out_obj))
439
+ return named_mats
440
+
441
+
442
+ class EmptyStructMarker:
443
+ """ Class to indicate presence of empty matlab struct on output """
444
+
445
+
446
+ def to_writeable(source):
447
+ ''' Convert input object ``source`` to something we can write
448
+
449
+ Parameters
450
+ ----------
451
+ source : object
452
+
453
+ Returns
454
+ -------
455
+ arr : None or ndarray or EmptyStructMarker
456
+ If `source` cannot be converted to something we can write to a matfile,
457
+ return None. If `source` is equivalent to an empty dictionary, return
458
+ ``EmptyStructMarker``. Otherwise return `source` converted to an
459
+ ndarray with contents for writing to matfile.
460
+ '''
461
+ if isinstance(source, np.ndarray):
462
+ return source
463
+ if source is None:
464
+ return None
465
+ if hasattr(source, "__array__"):
466
+ return np.asarray(source)
467
+ # Objects that implement mappings
468
+ is_mapping = (hasattr(source, 'keys') and hasattr(source, 'values') and
469
+ hasattr(source, 'items'))
470
+ # Objects that don't implement mappings, but do have dicts
471
+ if isinstance(source, np.generic):
472
+ # NumPy scalars are never mappings (PyPy issue workaround)
473
+ pass
474
+ elif not is_mapping and hasattr(source, '__dict__'):
475
+ source = {key: value for key, value in source.__dict__.items()
476
+ if not key.startswith('_')}
477
+ is_mapping = True
478
+ if is_mapping:
479
+ dtype = []
480
+ values = []
481
+ for field, value in source.items():
482
+ if (isinstance(field, str) and
483
+ field[0] not in '_0123456789'):
484
+ dtype.append((str(field), object))
485
+ values.append(value)
486
+ if dtype:
487
+ return np.array([tuple(values)], dtype)
488
+ else:
489
+ return EmptyStructMarker
490
+ # Next try and convert to an array
491
+ try:
492
+ narr = np.asanyarray(source)
493
+ except ValueError:
494
+ narr = np.asanyarray(source, dtype=object)
495
+ if narr.dtype.type in (object, np.object_) and \
496
+ narr.shape == () and narr == source:
497
+ # No interesting conversion possible
498
+ return None
499
+ return narr
500
+
501
+
502
+ # Native byte ordered dtypes for convenience for writers
503
+ NDT_FILE_HDR = MDTYPES[native_code]['dtypes']['file_header']
504
+ NDT_TAG_FULL = MDTYPES[native_code]['dtypes']['tag_full']
505
+ NDT_TAG_SMALL = MDTYPES[native_code]['dtypes']['tag_smalldata']
506
+ NDT_ARRAY_FLAGS = MDTYPES[native_code]['dtypes']['array_flags']
507
+
508
+
509
+ class VarWriter5:
510
+ ''' Generic matlab matrix writing class '''
511
+ mat_tag = np.zeros((), NDT_TAG_FULL)
512
+ mat_tag['mdtype'] = miMATRIX
513
+
514
+ def __init__(self, file_writer):
515
+ self.file_stream = file_writer.file_stream
516
+ self.unicode_strings = file_writer.unicode_strings
517
+ self.long_field_names = file_writer.long_field_names
518
+ self.oned_as = file_writer.oned_as
519
+ # These are used for top level writes, and unset after
520
+ self._var_name = None
521
+ self._var_is_global = False
522
+
523
+ def write_bytes(self, arr):
524
+ self.file_stream.write(arr.tobytes(order='F'))
525
+
526
+ def write_string(self, s):
527
+ self.file_stream.write(s)
528
+
529
+ def write_element(self, arr, mdtype=None):
530
+ ''' write tag and data '''
531
+ if mdtype is None:
532
+ mdtype = NP_TO_MTYPES[arr.dtype.str[1:]]
533
+ # Array needs to be in native byte order
534
+ if arr.dtype.byteorder == swapped_code:
535
+ arr = arr.byteswap().view(arr.dtype.newbyteorder())
536
+ byte_count = arr.size*arr.itemsize
537
+ if byte_count <= 4:
538
+ self.write_smalldata_element(arr, mdtype, byte_count)
539
+ else:
540
+ self.write_regular_element(arr, mdtype, byte_count)
541
+
542
+ def write_smalldata_element(self, arr, mdtype, byte_count):
543
+ # write tag with embedded data
544
+ tag = np.zeros((), NDT_TAG_SMALL)
545
+ tag['byte_count_mdtype'] = (byte_count << 16) + mdtype
546
+ # if arr.tobytes is < 4, the element will be zero-padded as needed.
547
+ tag['data'] = arr.tobytes(order='F')
548
+ self.write_bytes(tag)
549
+
550
+ def write_regular_element(self, arr, mdtype, byte_count):
551
+ # write tag, data
552
+ tag = np.zeros((), NDT_TAG_FULL)
553
+ tag['mdtype'] = mdtype
554
+ tag['byte_count'] = byte_count
555
+ self.write_bytes(tag)
556
+ self.write_bytes(arr)
557
+ # pad to next 64-bit boundary
558
+ bc_mod_8 = byte_count % 8
559
+ if bc_mod_8:
560
+ self.file_stream.write(b'\x00' * (8-bc_mod_8))
561
+
562
+ def write_header(self,
563
+ shape,
564
+ mclass,
565
+ is_complex=False,
566
+ is_logical=False,
567
+ nzmax=0):
568
+ ''' Write header for given data options
569
+ shape : sequence
570
+ array shape
571
+ mclass - mat5 matrix class
572
+ is_complex - True if matrix is complex
573
+ is_logical - True if matrix is logical
574
+ nzmax - max non zero elements for sparse arrays
575
+
576
+ We get the name and the global flag from the object, and reset
577
+ them to defaults after we've used them
578
+ '''
579
+ # get name and is_global from one-shot object store
580
+ name = self._var_name
581
+ is_global = self._var_is_global
582
+ # initialize the top-level matrix tag, store position
583
+ self._mat_tag_pos = self.file_stream.tell()
584
+ self.write_bytes(self.mat_tag)
585
+ # write array flags (complex, global, logical, class, nzmax)
586
+ af = np.zeros((), NDT_ARRAY_FLAGS)
587
+ af['data_type'] = miUINT32
588
+ af['byte_count'] = 8
589
+ flags = is_complex << 3 | is_global << 2 | is_logical << 1
590
+ af['flags_class'] = mclass | flags << 8
591
+ af['nzmax'] = nzmax
592
+ self.write_bytes(af)
593
+ # shape
594
+ self.write_element(np.array(shape, dtype='i4'))
595
+ # write name
596
+ name = np.asarray(name)
597
+ if name == '': # empty string zero-terminated
598
+ self.write_smalldata_element(name, miINT8, 0)
599
+ else:
600
+ self.write_element(name, miINT8)
601
+ # reset the one-shot store to defaults
602
+ self._var_name = ''
603
+ self._var_is_global = False
604
+
605
+ def update_matrix_tag(self, start_pos):
606
+ curr_pos = self.file_stream.tell()
607
+ self.file_stream.seek(start_pos)
608
+ byte_count = curr_pos - start_pos - 8
609
+ if byte_count >= 2**32:
610
+ raise MatWriteError("Matrix too large to save with Matlab "
611
+ "5 format")
612
+ self.mat_tag['byte_count'] = byte_count
613
+ self.write_bytes(self.mat_tag)
614
+ self.file_stream.seek(curr_pos)
615
+
616
+ def write_top(self, arr, name, is_global):
617
+ """ Write variable at top level of mat file
618
+
619
+ Parameters
620
+ ----------
621
+ arr : array_like
622
+ array-like object to create writer for
623
+ name : str, optional
624
+ name as it will appear in matlab workspace
625
+ default is empty string
626
+ is_global : {False, True}, optional
627
+ whether variable will be global on load into matlab
628
+ """
629
+ # these are set before the top-level header write, and unset at
630
+ # the end of the same write, because they do not apply for lower levels
631
+ self._var_is_global = is_global
632
+ self._var_name = name
633
+ # write the header and data
634
+ self.write(arr)
635
+
636
+ def write(self, arr):
637
+ ''' Write `arr` to stream at top and sub levels
638
+
639
+ Parameters
640
+ ----------
641
+ arr : array_like
642
+ array-like object to create writer for
643
+ '''
644
+ # store position, so we can update the matrix tag
645
+ mat_tag_pos = self.file_stream.tell()
646
+ # First check if these are sparse
647
+ if scipy.sparse.issparse(arr):
648
+ self.write_sparse(arr)
649
+ self.update_matrix_tag(mat_tag_pos)
650
+ return
651
+ # Try to convert things that aren't arrays
652
+ narr = to_writeable(arr)
653
+ if narr is None:
654
+ raise TypeError(f'Could not convert {arr} (type {type(arr)}) to array')
655
+ if isinstance(narr, MatlabObject):
656
+ self.write_object(narr)
657
+ elif isinstance(narr, MatlabFunction):
658
+ raise MatWriteError('Cannot write matlab functions')
659
+ elif narr is EmptyStructMarker: # empty struct array
660
+ self.write_empty_struct()
661
+ elif narr.dtype.fields: # struct array
662
+ self.write_struct(narr)
663
+ elif narr.dtype.hasobject: # cell array
664
+ self.write_cells(narr)
665
+ elif narr.dtype.kind in ('U', 'S'):
666
+ if self.unicode_strings:
667
+ codec = 'UTF8'
668
+ else:
669
+ codec = 'ascii'
670
+ self.write_char(narr, codec)
671
+ else:
672
+ self.write_numeric(narr)
673
+ self.update_matrix_tag(mat_tag_pos)
674
+
675
+ def write_numeric(self, arr):
676
+ imagf = arr.dtype.kind == 'c'
677
+ logif = arr.dtype.kind == 'b'
678
+ try:
679
+ mclass = NP_TO_MXTYPES[arr.dtype.str[1:]]
680
+ except KeyError:
681
+ # No matching matlab type, probably complex256 / float128 / float96
682
+ # Cast data to complex128 / float64.
683
+ if imagf:
684
+ arr = arr.astype('c128')
685
+ elif logif:
686
+ arr = arr.astype('i1') # Should only contain 0/1
687
+ else:
688
+ arr = arr.astype('f8')
689
+ mclass = mxDOUBLE_CLASS
690
+ self.write_header(matdims(arr, self.oned_as),
691
+ mclass,
692
+ is_complex=imagf,
693
+ is_logical=logif)
694
+ if imagf:
695
+ self.write_element(arr.real)
696
+ self.write_element(arr.imag)
697
+ else:
698
+ self.write_element(arr)
699
+
700
+ def write_char(self, arr, codec='ascii'):
701
+ ''' Write string array `arr` with given `codec`
702
+ '''
703
+ if arr.size == 0 or np.all(arr == ''):
704
+ # This an empty string array or a string array containing
705
+ # only empty strings. Matlab cannot distinguish between a
706
+ # string array that is empty, and a string array containing
707
+ # only empty strings, because it stores strings as arrays of
708
+ # char. There is no way of having an array of char that is
709
+ # not empty, but contains an empty string. We have to
710
+ # special-case the array-with-empty-strings because even
711
+ # empty strings have zero padding, which would otherwise
712
+ # appear in matlab as a string with a space.
713
+ shape = (0,) * np.max([arr.ndim, 2])
714
+ self.write_header(shape, mxCHAR_CLASS)
715
+ self.write_smalldata_element(arr, miUTF8, 0)
716
+ return
717
+ # non-empty string.
718
+ #
719
+ # Convert to char array
720
+ arr = arr_to_chars(arr)
721
+ # We have to write the shape directly, because we are going
722
+ # recode the characters, and the resulting stream of chars
723
+ # may have a different length
724
+ shape = arr.shape
725
+ self.write_header(shape, mxCHAR_CLASS)
726
+ if arr.dtype.kind == 'U' and arr.size:
727
+ # Make one long string from all the characters. We need to
728
+ # transpose here, because we're flattening the array, before
729
+ # we write the bytes. The bytes have to be written in
730
+ # Fortran order.
731
+ n_chars = np.prod(shape)
732
+ st_arr = np.ndarray(shape=(),
733
+ dtype=arr_dtype_number(arr, n_chars),
734
+ buffer=arr.T.copy()) # Fortran order
735
+ # Recode with codec to give byte string
736
+ st = st_arr.item().encode(codec)
737
+ # Reconstruct as 1-D byte array
738
+ arr = np.ndarray(shape=(len(st),),
739
+ dtype='S1',
740
+ buffer=st)
741
+ self.write_element(arr, mdtype=miUTF8)
742
+
743
+ def write_sparse(self, arr):
744
+ ''' Sparse matrices are 2D
745
+ '''
746
+ A = arr.tocsc() # convert to sparse CSC format
747
+ A.sort_indices() # MATLAB expects sorted row indices
748
+ is_complex = (A.dtype.kind == 'c')
749
+ is_logical = (A.dtype.kind == 'b')
750
+ nz = A.nnz
751
+ self.write_header(matdims(arr, self.oned_as),
752
+ mxSPARSE_CLASS,
753
+ is_complex=is_complex,
754
+ is_logical=is_logical,
755
+ # matlab won't load file with 0 nzmax
756
+ nzmax=1 if nz == 0 else nz)
757
+ self.write_element(A.indices.astype('i4'))
758
+ self.write_element(A.indptr.astype('i4'))
759
+ self.write_element(A.data.real)
760
+ if is_complex:
761
+ self.write_element(A.data.imag)
762
+
763
+ def write_cells(self, arr):
764
+ self.write_header(matdims(arr, self.oned_as),
765
+ mxCELL_CLASS)
766
+ # loop over data, column major
767
+ A = np.atleast_2d(arr).flatten('F')
768
+ for el in A:
769
+ self.write(el)
770
+
771
+ def write_empty_struct(self):
772
+ self.write_header((1, 1), mxSTRUCT_CLASS)
773
+ # max field name length set to 1 in an example matlab struct
774
+ self.write_element(np.array(1, dtype=np.int32))
775
+ # Field names element is empty
776
+ self.write_element(np.array([], dtype=np.int8))
777
+
778
+ def write_struct(self, arr):
779
+ self.write_header(matdims(arr, self.oned_as),
780
+ mxSTRUCT_CLASS)
781
+ self._write_items(arr)
782
+
783
+ def _write_items(self, arr):
784
+ # write fieldnames
785
+ fieldnames = [f[0] for f in arr.dtype.descr]
786
+ length = max([len(fieldname) for fieldname in fieldnames])+1
787
+ max_length = (self.long_field_names and 64) or 32
788
+ if length > max_length:
789
+ raise ValueError("Field names are restricted to %d characters" %
790
+ (max_length-1))
791
+ self.write_element(np.array([length], dtype='i4'))
792
+ self.write_element(
793
+ np.array(fieldnames, dtype='S%d' % (length)),
794
+ mdtype=miINT8)
795
+ A = np.atleast_2d(arr).flatten('F')
796
+ for el in A:
797
+ for f in fieldnames:
798
+ self.write(el[f])
799
+
800
+ def write_object(self, arr):
801
+ '''Same as writing structs, except different mx class, and extra
802
+ classname element after header
803
+ '''
804
+ self.write_header(matdims(arr, self.oned_as),
805
+ mxOBJECT_CLASS)
806
+ self.write_element(np.array(arr.classname, dtype='S'),
807
+ mdtype=miINT8)
808
+ self._write_items(arr)
809
+
810
+
811
+ class MatFile5Writer:
812
+ ''' Class for writing mat5 files '''
813
+
814
+ @docfiller
815
+ def __init__(self, file_stream,
816
+ do_compression=False,
817
+ unicode_strings=False,
818
+ global_vars=None,
819
+ long_field_names=False,
820
+ oned_as='row'):
821
+ ''' Initialize writer for matlab 5 format files
822
+
823
+ Parameters
824
+ ----------
825
+ %(do_compression)s
826
+ %(unicode_strings)s
827
+ global_vars : None or sequence of strings, optional
828
+ Names of variables to be marked as global for matlab
829
+ %(long_fields)s
830
+ %(oned_as)s
831
+ '''
832
+ self.file_stream = file_stream
833
+ self.do_compression = do_compression
834
+ self.unicode_strings = unicode_strings
835
+ if global_vars:
836
+ self.global_vars = global_vars
837
+ else:
838
+ self.global_vars = []
839
+ self.long_field_names = long_field_names
840
+ self.oned_as = oned_as
841
+ self._matrix_writer = None
842
+
843
+ def write_file_header(self):
844
+ # write header
845
+ hdr = np.zeros((), NDT_FILE_HDR)
846
+ hdr['description'] = (f'MATLAB 5.0 MAT-file Platform: {os.name}, '
847
+ f'Created on: {time.asctime()}')
848
+ hdr['version'] = 0x0100
849
+ hdr['endian_test'] = np.ndarray(shape=(),
850
+ dtype='S2',
851
+ buffer=np.uint16(0x4d49))
852
+ self.file_stream.write(hdr.tobytes())
853
+
854
+ def put_variables(self, mdict, write_header=None):
855
+ ''' Write variables in `mdict` to stream
856
+
857
+ Parameters
858
+ ----------
859
+ mdict : mapping
860
+ mapping with method ``items`` returns name, contents pairs where
861
+ ``name`` which will appear in the matlab workspace in file load, and
862
+ ``contents`` is something writeable to a matlab file, such as a NumPy
863
+ array.
864
+ write_header : {None, True, False}, optional
865
+ If True, then write the matlab file header before writing the
866
+ variables. If None (the default) then write the file header
867
+ if we are at position 0 in the stream. By setting False
868
+ here, and setting the stream position to the end of the file,
869
+ you can append variables to a matlab file
870
+ '''
871
+ # write header if requested, or None and start of file
872
+ if write_header is None:
873
+ write_header = self.file_stream.tell() == 0
874
+ if write_header:
875
+ self.write_file_header()
876
+ self._matrix_writer = VarWriter5(self)
877
+ for name, var in mdict.items():
878
+ if name[0] == '_':
879
+ continue
880
+ is_global = name in self.global_vars
881
+ if self.do_compression:
882
+ stream = BytesIO()
883
+ self._matrix_writer.file_stream = stream
884
+ self._matrix_writer.write_top(var, name.encode('latin1'), is_global)
885
+ out_str = zlib.compress(stream.getvalue())
886
+ tag = np.empty((), NDT_TAG_FULL)
887
+ tag['mdtype'] = miCOMPRESSED
888
+ tag['byte_count'] = len(out_str)
889
+ self.file_stream.write(tag.tobytes())
890
+ self.file_stream.write(out_str)
891
+ else: # not compressing
892
+ self._matrix_writer.write_top(var, name.encode('latin1'), is_global)
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio5_params.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ''' Constants and classes for matlab 5 read and write
2
+
3
+ See also mio5_utils.pyx where these same constants arise as c enums.
4
+
5
+ If you make changes in this file, don't forget to change mio5_utils.pyx
6
+ '''
7
+ import numpy as np
8
+
9
+ from ._miobase import convert_dtypes
10
+
11
+
12
+ __all__ = [
13
+ 'MDTYPES', 'MatlabFunction', 'MatlabObject', 'MatlabOpaque',
14
+ 'NP_TO_MTYPES', 'NP_TO_MXTYPES', 'OPAQUE_DTYPE', 'codecs_template',
15
+ 'mat_struct', 'mclass_dtypes_template', 'mclass_info', 'mdtypes_template',
16
+ 'miCOMPRESSED', 'miDOUBLE', 'miINT16', 'miINT32', 'miINT64', 'miINT8',
17
+ 'miMATRIX', 'miSINGLE', 'miUINT16', 'miUINT32', 'miUINT64', 'miUINT8',
18
+ 'miUTF16', 'miUTF32', 'miUTF8', 'mxCELL_CLASS', 'mxCHAR_CLASS',
19
+ 'mxDOUBLE_CLASS', 'mxFUNCTION_CLASS', 'mxINT16_CLASS', 'mxINT32_CLASS',
20
+ 'mxINT64_CLASS', 'mxINT8_CLASS', 'mxOBJECT_CLASS',
21
+ 'mxOBJECT_CLASS_FROM_MATRIX_H', 'mxOPAQUE_CLASS', 'mxSINGLE_CLASS',
22
+ 'mxSPARSE_CLASS', 'mxSTRUCT_CLASS', 'mxUINT16_CLASS', 'mxUINT32_CLASS',
23
+ 'mxUINT64_CLASS', 'mxUINT8_CLASS'
24
+ ]
25
+ miINT8 = 1
26
+ miUINT8 = 2
27
+ miINT16 = 3
28
+ miUINT16 = 4
29
+ miINT32 = 5
30
+ miUINT32 = 6
31
+ miSINGLE = 7
32
+ miDOUBLE = 9
33
+ miINT64 = 12
34
+ miUINT64 = 13
35
+ miMATRIX = 14
36
+ miCOMPRESSED = 15
37
+ miUTF8 = 16
38
+ miUTF16 = 17
39
+ miUTF32 = 18
40
+
41
+ mxCELL_CLASS = 1
42
+ mxSTRUCT_CLASS = 2
43
+ # The March 2008 edition of "Matlab 7 MAT-File Format" says that
44
+ # mxOBJECT_CLASS = 3, whereas matrix.h says that mxLOGICAL = 3.
45
+ # Matlab 2008a appears to save logicals as type 9, so we assume that
46
+ # the document is correct. See type 18, below.
47
+ mxOBJECT_CLASS = 3
48
+ mxCHAR_CLASS = 4
49
+ mxSPARSE_CLASS = 5
50
+ mxDOUBLE_CLASS = 6
51
+ mxSINGLE_CLASS = 7
52
+ mxINT8_CLASS = 8
53
+ mxUINT8_CLASS = 9
54
+ mxINT16_CLASS = 10
55
+ mxUINT16_CLASS = 11
56
+ mxINT32_CLASS = 12
57
+ mxUINT32_CLASS = 13
58
+ # The following are not in the March 2008 edition of "Matlab 7
59
+ # MAT-File Format," but were guessed from matrix.h.
60
+ mxINT64_CLASS = 14
61
+ mxUINT64_CLASS = 15
62
+ mxFUNCTION_CLASS = 16
63
+ # Not doing anything with these at the moment.
64
+ mxOPAQUE_CLASS = 17 # This appears to be a function workspace
65
+ # Thread 'saving/loading symbol table of annymous functions',
66
+ # octave-maintainers, April-May 2007
67
+ # https://lists.gnu.org/archive/html/octave-maintainers/2007-04/msg00031.html
68
+ # https://lists.gnu.org/archive/html/octave-maintainers/2007-05/msg00032.html
69
+ # (Was/Deprecated: https://www-old.cae.wisc.edu/pipermail/octave-maintainers/2007-May/002824.html)
70
+ mxOBJECT_CLASS_FROM_MATRIX_H = 18
71
+
72
+ mdtypes_template = {
73
+ miINT8: 'i1',
74
+ miUINT8: 'u1',
75
+ miINT16: 'i2',
76
+ miUINT16: 'u2',
77
+ miINT32: 'i4',
78
+ miUINT32: 'u4',
79
+ miSINGLE: 'f4',
80
+ miDOUBLE: 'f8',
81
+ miINT64: 'i8',
82
+ miUINT64: 'u8',
83
+ miUTF8: 'u1',
84
+ miUTF16: 'u2',
85
+ miUTF32: 'u4',
86
+ 'file_header': [('description', 'S116'),
87
+ ('subsystem_offset', 'i8'),
88
+ ('version', 'u2'),
89
+ ('endian_test', 'S2')],
90
+ 'tag_full': [('mdtype', 'u4'), ('byte_count', 'u4')],
91
+ 'tag_smalldata':[('byte_count_mdtype', 'u4'), ('data', 'S4')],
92
+ 'array_flags': [('data_type', 'u4'),
93
+ ('byte_count', 'u4'),
94
+ ('flags_class','u4'),
95
+ ('nzmax', 'u4')],
96
+ 'U1': 'U1',
97
+ }
98
+
99
+ mclass_dtypes_template = {
100
+ mxINT8_CLASS: 'i1',
101
+ mxUINT8_CLASS: 'u1',
102
+ mxINT16_CLASS: 'i2',
103
+ mxUINT16_CLASS: 'u2',
104
+ mxINT32_CLASS: 'i4',
105
+ mxUINT32_CLASS: 'u4',
106
+ mxINT64_CLASS: 'i8',
107
+ mxUINT64_CLASS: 'u8',
108
+ mxSINGLE_CLASS: 'f4',
109
+ mxDOUBLE_CLASS: 'f8',
110
+ }
111
+
112
+ mclass_info = {
113
+ mxINT8_CLASS: 'int8',
114
+ mxUINT8_CLASS: 'uint8',
115
+ mxINT16_CLASS: 'int16',
116
+ mxUINT16_CLASS: 'uint16',
117
+ mxINT32_CLASS: 'int32',
118
+ mxUINT32_CLASS: 'uint32',
119
+ mxINT64_CLASS: 'int64',
120
+ mxUINT64_CLASS: 'uint64',
121
+ mxSINGLE_CLASS: 'single',
122
+ mxDOUBLE_CLASS: 'double',
123
+ mxCELL_CLASS: 'cell',
124
+ mxSTRUCT_CLASS: 'struct',
125
+ mxOBJECT_CLASS: 'object',
126
+ mxCHAR_CLASS: 'char',
127
+ mxSPARSE_CLASS: 'sparse',
128
+ mxFUNCTION_CLASS: 'function',
129
+ mxOPAQUE_CLASS: 'opaque',
130
+ }
131
+
132
+ NP_TO_MTYPES = {
133
+ 'f8': miDOUBLE,
134
+ 'c32': miDOUBLE,
135
+ 'c24': miDOUBLE,
136
+ 'c16': miDOUBLE,
137
+ 'f4': miSINGLE,
138
+ 'c8': miSINGLE,
139
+ 'i8': miINT64,
140
+ 'i4': miINT32,
141
+ 'i2': miINT16,
142
+ 'i1': miINT8,
143
+ 'u8': miUINT64,
144
+ 'u4': miUINT32,
145
+ 'u2': miUINT16,
146
+ 'u1': miUINT8,
147
+ 'S1': miUINT8,
148
+ 'U1': miUTF16,
149
+ 'b1': miUINT8, # not standard but seems MATLAB uses this (gh-4022)
150
+ }
151
+
152
+
153
+ NP_TO_MXTYPES = {
154
+ 'f8': mxDOUBLE_CLASS,
155
+ 'c32': mxDOUBLE_CLASS,
156
+ 'c24': mxDOUBLE_CLASS,
157
+ 'c16': mxDOUBLE_CLASS,
158
+ 'f4': mxSINGLE_CLASS,
159
+ 'c8': mxSINGLE_CLASS,
160
+ 'i8': mxINT64_CLASS,
161
+ 'i4': mxINT32_CLASS,
162
+ 'i2': mxINT16_CLASS,
163
+ 'i1': mxINT8_CLASS,
164
+ 'u8': mxUINT64_CLASS,
165
+ 'u4': mxUINT32_CLASS,
166
+ 'u2': mxUINT16_CLASS,
167
+ 'u1': mxUINT8_CLASS,
168
+ 'S1': mxUINT8_CLASS,
169
+ 'b1': mxUINT8_CLASS, # not standard but seems MATLAB uses this
170
+ }
171
+
172
+ ''' Before release v7.1 (release 14) matlab (TM) used the system
173
+ default character encoding scheme padded out to 16-bits. Release 14
174
+ and later use Unicode. When saving character data, R14 checks if it
175
+ can be encoded in 7-bit ascii, and saves in that format if so.'''
176
+
177
+ codecs_template = {
178
+ miUTF8: {'codec': 'utf_8', 'width': 1},
179
+ miUTF16: {'codec': 'utf_16', 'width': 2},
180
+ miUTF32: {'codec': 'utf_32','width': 4},
181
+ }
182
+
183
+
184
+ def _convert_codecs(template, byte_order):
185
+ ''' Convert codec template mapping to byte order
186
+
187
+ Set codecs not on this system to None
188
+
189
+ Parameters
190
+ ----------
191
+ template : mapping
192
+ key, value are respectively codec name, and root name for codec
193
+ (without byte order suffix)
194
+ byte_order : {'<', '>'}
195
+ code for little or big endian
196
+
197
+ Returns
198
+ -------
199
+ codecs : dict
200
+ key, value are name, codec (as in .encode(codec))
201
+ '''
202
+ codecs = {}
203
+ postfix = byte_order == '<' and '_le' or '_be'
204
+ for k, v in template.items():
205
+ codec = v['codec']
206
+ try:
207
+ " ".encode(codec)
208
+ except LookupError:
209
+ codecs[k] = None
210
+ continue
211
+ if v['width'] > 1:
212
+ codec += postfix
213
+ codecs[k] = codec
214
+ return codecs.copy()
215
+
216
+
217
+ MDTYPES = {}
218
+ for _bytecode in '<>':
219
+ _def = {'dtypes': convert_dtypes(mdtypes_template, _bytecode),
220
+ 'classes': convert_dtypes(mclass_dtypes_template, _bytecode),
221
+ 'codecs': _convert_codecs(codecs_template, _bytecode)}
222
+ MDTYPES[_bytecode] = _def
223
+
224
+
225
+ class mat_struct:
226
+ """Placeholder for holding read data from structs.
227
+
228
+ We use instances of this class when the user passes False as a value to the
229
+ ``struct_as_record`` parameter of the :func:`scipy.io.loadmat` function.
230
+ """
231
+ pass
232
+
233
+
234
+ class MatlabObject(np.ndarray):
235
+ """Subclass of ndarray to signal this is a matlab object.
236
+
237
+ This is a simple subclass of :class:`numpy.ndarray` meant to be used
238
+ by :func:`scipy.io.loadmat` and should not be instantiated directly.
239
+ """
240
+
241
+ def __new__(cls, input_array, classname=None):
242
+ # Input array is an already formed ndarray instance
243
+ # We first cast to be our class type
244
+ obj = np.asarray(input_array).view(cls)
245
+ # add the new attribute to the created instance
246
+ obj.classname = classname
247
+ # Finally, we must return the newly created object:
248
+ return obj
249
+
250
+ def __array_finalize__(self,obj):
251
+ # reset the attribute from passed original object
252
+ self.classname = getattr(obj, 'classname', None)
253
+ # We do not need to return anything
254
+
255
+
256
+ class MatlabFunction(np.ndarray):
257
+ """Subclass for a MATLAB function.
258
+
259
+ This is a simple subclass of :class:`numpy.ndarray` meant to be used
260
+ by :func:`scipy.io.loadmat` and should not be directly instantiated.
261
+ """
262
+
263
+ def __new__(cls, input_array):
264
+ obj = np.asarray(input_array).view(cls)
265
+ return obj
266
+
267
+
268
+ class MatlabOpaque(np.ndarray):
269
+ """Subclass for a MATLAB opaque matrix.
270
+
271
+ This is a simple subclass of :class:`numpy.ndarray` meant to be used
272
+ by :func:`scipy.io.loadmat` and should not be directly instantiated.
273
+ """
274
+
275
+ def __new__(cls, input_array):
276
+ obj = np.asarray(input_array).view(cls)
277
+ return obj
278
+
279
+
280
+ OPAQUE_DTYPE = np.dtype(
281
+ [('s0', 'O'), ('s1', 'O'), ('s2', 'O'), ('arr', 'O')])
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio5_utils.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (265 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_mio_utils.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (73.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_miobase.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Authors: Travis Oliphant, Matthew Brett
2
+
3
+ """
4
+ Base classes for MATLAB file stream reading.
5
+
6
+ MATLAB is a registered trademark of the Mathworks inc.
7
+ """
8
+
9
+ import numpy as np
10
+ from scipy._lib import doccer
11
+
12
+ from . import _byteordercodes as boc
13
+
14
+ __all__ = [
15
+ 'MatFileReader', 'MatReadError', 'MatReadWarning',
16
+ 'MatVarReader', 'MatWriteError', 'arr_dtype_number',
17
+ 'arr_to_chars', 'convert_dtypes', 'doc_dict',
18
+ 'docfiller', 'get_matfile_version',
19
+ 'matdims', 'read_dtype'
20
+ ]
21
+
22
+ class MatReadError(Exception):
23
+ """Exception indicating a read issue."""
24
+
25
+
26
+ class MatWriteError(Exception):
27
+ """Exception indicating a write issue."""
28
+
29
+
30
+ class MatReadWarning(UserWarning):
31
+ """Warning class for read issues."""
32
+
33
+
34
+ doc_dict = \
35
+ {'file_arg':
36
+ '''file_name : str
37
+ Name of the mat file (do not need .mat extension if
38
+ appendmat==True) Can also pass open file-like object.''',
39
+ 'append_arg':
40
+ '''appendmat : bool, optional
41
+ True to append the .mat extension to the end of the given
42
+ filename, if not already present. Default is True.''',
43
+ 'load_args':
44
+ '''byte_order : str or None, optional
45
+ None by default, implying byte order guessed from mat
46
+ file. Otherwise can be one of ('native', '=', 'little', '<',
47
+ 'BIG', '>').
48
+ mat_dtype : bool, optional
49
+ If True, return arrays in same dtype as would be loaded into
50
+ MATLAB (instead of the dtype with which they are saved).
51
+ squeeze_me : bool, optional
52
+ Whether to squeeze unit matrix dimensions or not.
53
+ chars_as_strings : bool, optional
54
+ Whether to convert char arrays to string arrays.
55
+ matlab_compatible : bool, optional
56
+ Returns matrices as would be loaded by MATLAB (implies
57
+ squeeze_me=False, chars_as_strings=False, mat_dtype=True,
58
+ struct_as_record=True).''',
59
+ 'struct_arg':
60
+ '''struct_as_record : bool, optional
61
+ Whether to load MATLAB structs as NumPy record arrays, or as
62
+ old-style NumPy arrays with dtype=object. Setting this flag to
63
+ False replicates the behavior of SciPy version 0.7.x (returning
64
+ numpy object arrays). The default setting is True, because it
65
+ allows easier round-trip load and save of MATLAB files.''',
66
+ 'matstream_arg':
67
+ '''mat_stream : file-like
68
+ Object with file API, open for reading.''',
69
+ 'long_fields':
70
+ '''long_field_names : bool, optional
71
+ * False - maximum field name length in a structure is 31 characters
72
+ which is the documented maximum length. This is the default.
73
+ * True - maximum field name length in a structure is 63 characters
74
+ which works for MATLAB 7.6''',
75
+ 'do_compression':
76
+ '''do_compression : bool, optional
77
+ Whether to compress matrices on write. Default is False.''',
78
+ 'oned_as':
79
+ '''oned_as : {'row', 'column'}, optional
80
+ If 'column', write 1-D NumPy arrays as column vectors.
81
+ If 'row', write 1D NumPy arrays as row vectors.''',
82
+ 'unicode_strings':
83
+ '''unicode_strings : bool, optional
84
+ If True, write strings as Unicode, else MATLAB usual encoding.'''}
85
+
86
+ docfiller = doccer.filldoc(doc_dict)
87
+
88
+ '''
89
+
90
+ Note on architecture
91
+ ======================
92
+
93
+ There are three sets of parameters relevant for reading files. The
94
+ first are *file read parameters* - containing options that are common
95
+ for reading the whole file, and therefore every variable within that
96
+ file. At the moment these are:
97
+
98
+ * mat_stream
99
+ * dtypes (derived from byte code)
100
+ * byte_order
101
+ * chars_as_strings
102
+ * squeeze_me
103
+ * struct_as_record (MATLAB 5 files)
104
+ * class_dtypes (derived from order code, MATLAB 5 files)
105
+ * codecs (MATLAB 5 files)
106
+ * uint16_codec (MATLAB 5 files)
107
+
108
+ Another set of parameters are those that apply only to the current
109
+ variable being read - the *header*:
110
+
111
+ * header related variables (different for v4 and v5 mat files)
112
+ * is_complex
113
+ * mclass
114
+ * var_stream
115
+
116
+ With the header, we need ``next_position`` to tell us where the next
117
+ variable in the stream is.
118
+
119
+ Then, for each element in a matrix, there can be *element read
120
+ parameters*. An element is, for example, one element in a MATLAB cell
121
+ array. At the moment, these are:
122
+
123
+ * mat_dtype
124
+
125
+ The file-reading object contains the *file read parameters*. The
126
+ *header* is passed around as a data object, or may be read and discarded
127
+ in a single function. The *element read parameters* - the mat_dtype in
128
+ this instance, is passed into a general post-processing function - see
129
+ ``mio_utils`` for details.
130
+ '''
131
+
132
+
133
+ def convert_dtypes(dtype_template, order_code):
134
+ ''' Convert dtypes in mapping to given order
135
+
136
+ Parameters
137
+ ----------
138
+ dtype_template : mapping
139
+ mapping with values returning numpy dtype from ``np.dtype(val)``
140
+ order_code : str
141
+ an order code suitable for using in ``dtype.newbyteorder()``
142
+
143
+ Returns
144
+ -------
145
+ dtypes : mapping
146
+ mapping where values have been replaced by
147
+ ``np.dtype(val).newbyteorder(order_code)``
148
+
149
+ '''
150
+ dtypes = dtype_template.copy()
151
+ for k in dtypes:
152
+ dtypes[k] = np.dtype(dtypes[k]).newbyteorder(order_code)
153
+ return dtypes
154
+
155
+
156
+ def read_dtype(mat_stream, a_dtype):
157
+ """
158
+ Generic get of byte stream data of known type
159
+
160
+ Parameters
161
+ ----------
162
+ mat_stream : file_like object
163
+ MATLAB (tm) mat file stream
164
+ a_dtype : dtype
165
+ dtype of array to read. `a_dtype` is assumed to be correct
166
+ endianness.
167
+
168
+ Returns
169
+ -------
170
+ arr : ndarray
171
+ Array of dtype `a_dtype` read from stream.
172
+
173
+ """
174
+ num_bytes = a_dtype.itemsize
175
+ arr = np.ndarray(shape=(),
176
+ dtype=a_dtype,
177
+ buffer=mat_stream.read(num_bytes),
178
+ order='F')
179
+ return arr
180
+
181
+
182
+ def matfile_version(file_name, *, appendmat=True):
183
+ """
184
+ Return major, minor tuple depending on apparent mat file type
185
+
186
+ Where:
187
+
188
+ #. 0,x -> version 4 format mat files
189
+ #. 1,x -> version 5 format mat files
190
+ #. 2,x -> version 7.3 format mat files (HDF format)
191
+
192
+ Parameters
193
+ ----------
194
+ file_name : str
195
+ Name of the mat file (do not need .mat extension if
196
+ appendmat==True). Can also pass open file-like object.
197
+ appendmat : bool, optional
198
+ True to append the .mat extension to the end of the given
199
+ filename, if not already present. Default is True.
200
+
201
+ Returns
202
+ -------
203
+ major_version : {0, 1, 2}
204
+ major MATLAB File format version
205
+ minor_version : int
206
+ minor MATLAB file format version
207
+
208
+ Raises
209
+ ------
210
+ MatReadError
211
+ If the file is empty.
212
+ ValueError
213
+ The matfile version is unknown.
214
+
215
+ Notes
216
+ -----
217
+ Has the side effect of setting the file read pointer to 0
218
+ """
219
+ from ._mio import _open_file_context
220
+ with _open_file_context(file_name, appendmat=appendmat) as fileobj:
221
+ return _get_matfile_version(fileobj)
222
+
223
+
224
+ get_matfile_version = matfile_version
225
+
226
+
227
+ def _get_matfile_version(fileobj):
228
+ # Mat4 files have a zero somewhere in first 4 bytes
229
+ fileobj.seek(0)
230
+ mopt_bytes = fileobj.read(4)
231
+ if len(mopt_bytes) == 0:
232
+ raise MatReadError("Mat file appears to be empty")
233
+ mopt_ints = np.ndarray(shape=(4,), dtype=np.uint8, buffer=mopt_bytes)
234
+ if 0 in mopt_ints:
235
+ fileobj.seek(0)
236
+ return (0,0)
237
+ # For 5 format or 7.3 format we need to read an integer in the
238
+ # header. Bytes 124 through 128 contain a version integer and an
239
+ # endian test string
240
+ fileobj.seek(124)
241
+ tst_str = fileobj.read(4)
242
+ fileobj.seek(0)
243
+ maj_ind = int(tst_str[2] == b'I'[0])
244
+ maj_val = int(tst_str[maj_ind])
245
+ min_val = int(tst_str[1 - maj_ind])
246
+ ret = (maj_val, min_val)
247
+ if maj_val in (1, 2):
248
+ return ret
249
+ raise ValueError('Unknown mat file type, version {}, {}'.format(*ret))
250
+
251
+
252
+ def matdims(arr, oned_as='column'):
253
+ """
254
+ Determine equivalent MATLAB dimensions for given array
255
+
256
+ Parameters
257
+ ----------
258
+ arr : ndarray
259
+ Input array
260
+ oned_as : {'column', 'row'}, optional
261
+ Whether 1-D arrays are returned as MATLAB row or column matrices.
262
+ Default is 'column'.
263
+
264
+ Returns
265
+ -------
266
+ dims : tuple
267
+ Shape tuple, in the form MATLAB expects it.
268
+
269
+ Notes
270
+ -----
271
+ We had to decide what shape a 1 dimensional array would be by
272
+ default. ``np.atleast_2d`` thinks it is a row vector. The
273
+ default for a vector in MATLAB (e.g., ``>> 1:12``) is a row vector.
274
+
275
+ Versions of scipy up to and including 0.11 resulted (accidentally)
276
+ in 1-D arrays being read as column vectors. For the moment, we
277
+ maintain the same tradition here.
278
+
279
+ Examples
280
+ --------
281
+ >>> import numpy as np
282
+ >>> from scipy.io.matlab._miobase import matdims
283
+ >>> matdims(np.array(1)) # NumPy scalar
284
+ (1, 1)
285
+ >>> matdims(np.array([1])) # 1-D array, 1 element
286
+ (1, 1)
287
+ >>> matdims(np.array([1,2])) # 1-D array, 2 elements
288
+ (2, 1)
289
+ >>> matdims(np.array([[2],[3]])) # 2-D array, column vector
290
+ (2, 1)
291
+ >>> matdims(np.array([[2,3]])) # 2-D array, row vector
292
+ (1, 2)
293
+ >>> matdims(np.array([[[2,3]]])) # 3-D array, rowish vector
294
+ (1, 1, 2)
295
+ >>> matdims(np.array([])) # empty 1-D array
296
+ (0, 0)
297
+ >>> matdims(np.array([[]])) # empty 2-D array
298
+ (0, 0)
299
+ >>> matdims(np.array([[[]]])) # empty 3-D array
300
+ (0, 0, 0)
301
+
302
+ Optional argument flips 1-D shape behavior.
303
+
304
+ >>> matdims(np.array([1,2]), 'row') # 1-D array, 2 elements
305
+ (1, 2)
306
+
307
+ The argument has to make sense though
308
+
309
+ >>> matdims(np.array([1,2]), 'bizarre')
310
+ Traceback (most recent call last):
311
+ ...
312
+ ValueError: 1-D option "bizarre" is strange
313
+
314
+ """
315
+ shape = arr.shape
316
+ if shape == (): # scalar
317
+ return (1, 1)
318
+ if len(shape) == 1: # 1D
319
+ if shape[0] == 0:
320
+ return (0, 0)
321
+ elif oned_as == 'column':
322
+ return shape + (1,)
323
+ elif oned_as == 'row':
324
+ return (1,) + shape
325
+ else:
326
+ raise ValueError('1-D option "%s" is strange'
327
+ % oned_as)
328
+ return shape
329
+
330
+
331
+ class MatVarReader:
332
+ ''' Abstract class defining required interface for var readers'''
333
+ def __init__(self, file_reader):
334
+ pass
335
+
336
+ def read_header(self):
337
+ ''' Returns header '''
338
+ pass
339
+
340
+ def array_from_header(self, header):
341
+ ''' Reads array given header '''
342
+ pass
343
+
344
+
345
+ class MatFileReader:
346
+ """ Base object for reading mat files
347
+
348
+ To make this class functional, you will need to override the
349
+ following methods:
350
+
351
+ matrix_getter_factory - gives object to fetch next matrix from stream
352
+ guess_byte_order - guesses file byte order from file
353
+ """
354
+
355
+ @docfiller
356
+ def __init__(self, mat_stream,
357
+ byte_order=None,
358
+ mat_dtype=False,
359
+ squeeze_me=False,
360
+ chars_as_strings=True,
361
+ matlab_compatible=False,
362
+ struct_as_record=True,
363
+ verify_compressed_data_integrity=True,
364
+ simplify_cells=False):
365
+ '''
366
+ Initializer for mat file reader
367
+
368
+ mat_stream : file-like
369
+ object with file API, open for reading
370
+ %(load_args)s
371
+ '''
372
+ # Initialize stream
373
+ self.mat_stream = mat_stream
374
+ self.dtypes = {}
375
+ if not byte_order:
376
+ byte_order = self.guess_byte_order()
377
+ else:
378
+ byte_order = boc.to_numpy_code(byte_order)
379
+ self.byte_order = byte_order
380
+ self.struct_as_record = struct_as_record
381
+ if matlab_compatible:
382
+ self.set_matlab_compatible()
383
+ else:
384
+ self.squeeze_me = squeeze_me
385
+ self.chars_as_strings = chars_as_strings
386
+ self.mat_dtype = mat_dtype
387
+ self.verify_compressed_data_integrity = verify_compressed_data_integrity
388
+ self.simplify_cells = simplify_cells
389
+ if simplify_cells:
390
+ self.squeeze_me = True
391
+ self.struct_as_record = False
392
+
393
+ def set_matlab_compatible(self):
394
+ ''' Sets options to return arrays as MATLAB loads them '''
395
+ self.mat_dtype = True
396
+ self.squeeze_me = False
397
+ self.chars_as_strings = False
398
+
399
+ def guess_byte_order(self):
400
+ ''' As we do not know what file type we have, assume native '''
401
+ return boc.native_code
402
+
403
+ def end_of_stream(self):
404
+ b = self.mat_stream.read(1)
405
+ curpos = self.mat_stream.tell()
406
+ self.mat_stream.seek(curpos-1)
407
+ return len(b) == 0
408
+
409
+
410
+ def arr_dtype_number(arr, num):
411
+ ''' Return dtype for given number of items per element'''
412
+ return np.dtype(arr.dtype.str[:2] + str(num))
413
+
414
+
415
+ def arr_to_chars(arr):
416
+ ''' Convert string array to char array '''
417
+ dims = list(arr.shape)
418
+ if not dims:
419
+ dims = [1]
420
+ dims.append(int(arr.dtype.str[2:]))
421
+ arr = np.ndarray(shape=dims,
422
+ dtype=arr_dtype_number(arr, 1),
423
+ buffer=arr)
424
+ empties = [arr == np.array('', dtype=arr.dtype)]
425
+ if not np.any(empties):
426
+ return arr
427
+ arr = arr.copy()
428
+ arr[tuple(empties)] = ' '
429
+ return arr
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/_streams.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (147 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.io.matlab` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'mat_reader_factory', 'loadmat', 'savemat', 'whosmat',
9
+ 'contextmanager', 'docfiller',
10
+ 'MatFile4Reader', 'MatFile4Writer', 'MatFile5Reader', 'MatFile5Writer'
11
+ ]
12
+
13
+ def __dir__():
14
+ return __all__
15
+
16
+
17
+ def __getattr__(name):
18
+ return _sub_module_deprecation(sub_package="io.matlab", module="mio",
19
+ private_modules=["_mio"], all=__all__,
20
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio4.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.io.matlab` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'MatFile4Reader', 'MatFile4Writer', 'SYS_LITTLE_ENDIAN',
9
+ 'VarHeader4', 'VarReader4', 'VarWriter4', 'arr_to_2d', 'mclass_info',
10
+ 'mdtypes_template', 'miDOUBLE', 'miINT16', 'miINT32', 'miSINGLE',
11
+ 'miUINT16', 'miUINT8', 'mxCHAR_CLASS', 'mxFULL_CLASS', 'mxSPARSE_CLASS',
12
+ 'np_to_mtypes', 'order_codes', 'MatFileReader', 'docfiller',
13
+ 'matdims', 'read_dtype', 'convert_dtypes', 'arr_to_chars',
14
+ 'arr_dtype_number', 'squeeze_element', 'chars_to_strings'
15
+ ]
16
+
17
+ def __dir__():
18
+ return __all__
19
+
20
+
21
+ def __getattr__(name):
22
+ return _sub_module_deprecation(sub_package="io.matlab", module="mio4",
23
+ private_modules=["_mio4"], all=__all__,
24
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio5.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.io.matlab` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'mclass_info', 'mxCHAR_CLASS', 'mxSPARSE_CLASS',
9
+ 'BytesIO', 'native_code',
10
+ 'swapped_code', 'MatFileReader', 'docfiller', 'matdims',
11
+ 'read_dtype', 'arr_to_chars', 'arr_dtype_number', 'MatWriteError',
12
+ 'MatReadError', 'MatReadWarning', 'VarReader5', 'MatlabObject',
13
+ 'MatlabFunction', 'MDTYPES', 'NP_TO_MTYPES', 'NP_TO_MXTYPES',
14
+ 'miCOMPRESSED', 'miMATRIX', 'miINT8', 'miUTF8', 'miUINT32',
15
+ 'mxCELL_CLASS', 'mxSTRUCT_CLASS', 'mxOBJECT_CLASS', 'mxDOUBLE_CLASS',
16
+ 'mat_struct', 'ZlibInputStream', 'MatFile5Reader', 'varmats_from_mat',
17
+ 'EmptyStructMarker', 'to_writeable', 'NDT_FILE_HDR', 'NDT_TAG_FULL',
18
+ 'NDT_TAG_SMALL', 'NDT_ARRAY_FLAGS', 'VarWriter5', 'MatFile5Writer'
19
+ ]
20
+
21
+ def __dir__():
22
+ return __all__
23
+
24
+
25
+ def __getattr__(name):
26
+ return _sub_module_deprecation(sub_package="io.matlab", module="mio5",
27
+ private_modules=["_mio5"], all=__all__,
28
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio5_utils.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.io.matlab` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'VarHeader5', 'VarReader5', 'byteswap_u4', 'chars_to_strings',
9
+ 'csc_matrix', 'mio5p', 'pycopy', 'swapped_code', 'squeeze_element'
10
+ ]
11
+
12
+ def __dir__():
13
+ return __all__
14
+
15
+
16
+ def __getattr__(name):
17
+ return _sub_module_deprecation(sub_package="io.matlab", module="mio5_utils",
18
+ private_modules=["_mio5_utils"], all=__all__,
19
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/mio_utils.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.io.matlab` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = ['squeeze_element', 'chars_to_strings'] # noqa: F822
8
+
9
+
10
+ def __dir__():
11
+ return __all__
12
+
13
+
14
+ def __getattr__(name):
15
+ return _sub_module_deprecation(sub_package="io.matlab", module="mio_utils",
16
+ private_modules=["_mio_utils"], all=__all__,
17
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/miobase.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is not meant for public use and will be removed in SciPy v2.0.0.
2
+ # Use the `scipy.io.matlab` namespace for importing the functions
3
+ # included below.
4
+
5
+ from scipy._lib.deprecation import _sub_module_deprecation
6
+
7
+ __all__ = [ # noqa: F822
8
+ 'MatFileReader', 'MatReadError', 'MatReadWarning',
9
+ 'MatVarReader', 'MatWriteError', 'arr_dtype_number',
10
+ 'arr_to_chars', 'convert_dtypes', 'doc_dict',
11
+ 'docfiller', 'get_matfile_version',
12
+ 'matdims', 'read_dtype', 'doccer', 'boc'
13
+ ]
14
+
15
+ def __dir__():
16
+ return __all__
17
+
18
+
19
+ def __getattr__(name):
20
+ return _sub_module_deprecation(sub_package="io.matlab", module="miobase",
21
+ private_modules=["_miobase"], all=__all__,
22
+ attribute=name)
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/bad_miuint32.mat ADDED
Binary file (272 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/big_endian.mat ADDED
Binary file (273 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/corrupted_zlib_data.mat ADDED
Binary file (3.45 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/logical_sparse.mat ADDED
Binary file (208 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/miuint32_for_miint32.mat ADDED
Binary file (272 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/miutf8_array_name.mat ADDED
Binary file (208 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/nasty_duplicate_fieldnames.mat ADDED
Binary file (8.17 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/parabola.mat ADDED
Binary file (729 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/some_functions.mat ADDED
Binary file (1.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/test3dmatrix_7.4_GLNX86.mat ADDED
Binary file (213 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/test_skip_variable.mat ADDED
Binary file (20.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/testcell_6.1_SOL2.mat ADDED
Binary file (536 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/testcellnest_6.1_SOL2.mat ADDED
Binary file (568 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/testcellnest_6.5.1_GLNX86.mat ADDED
Binary file (568 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/scipy/io/matlab/tests/data/testcellnest_7.1_GLNX86.mat ADDED
Binary file (228 Bytes). View file