Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_arpack.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_array_api.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_available_if.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_bunch.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_encode.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_estimator_html_repr.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_joblib.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_mask.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_metadata_requests.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_mocking.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_param_validation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_plotting.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_pprint.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_response.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_set_output.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_show_versions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_tags.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_testing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/class_weight.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/deprecation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/discovery.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/estimator_checks.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/extmath.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/fixes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/graph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/metadata_routing.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/metaestimators.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/multiclass.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/optimize.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/parallel.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/random.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/sparsefuncs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/stats.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/validation.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_cython_blas.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_encode.py +367 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_estimator_html_repr.py +496 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_fast_dict.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_isfinite.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_joblib.py +38 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_mocking.py +400 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_pprint.py +463 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_random.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_response.py +298 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_show_versions.py +112 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_testing.py +1169 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/_weight_vector.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/deprecation.py +116 -0
- env-llmeval/lib/python3.10/site-packages/sklearn/utils/discovery.py +265 -0
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (34.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_arpack.cpython-310.pyc
ADDED
Binary file (1.34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_array_api.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_available_if.cpython-310.pyc
ADDED
Binary file (3.17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_bunch.cpython-310.pyc
ADDED
Binary file (2.17 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_encode.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_estimator_html_repr.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_joblib.cpython-310.pyc
ADDED
Binary file (666 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_mask.cpython-310.pyc
ADDED
Binary file (1.66 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_metadata_requests.cpython-310.pyc
ADDED
Binary file (47.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_mocking.cpython-310.pyc
ADDED
Binary file (13.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_param_validation.cpython-310.pyc
ADDED
Binary file (28.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_plotting.cpython-310.pyc
ADDED
Binary file (3.49 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_pprint.cpython-310.pyc
ADDED
Binary file (11.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_response.cpython-310.pyc
ADDED
Binary file (10 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_set_output.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_show_versions.cpython-310.pyc
ADDED
Binary file (2.39 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_tags.cpython-310.pyc
ADDED
Binary file (2.01 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/_testing.cpython-310.pyc
ADDED
Binary file (33.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/class_weight.cpython-310.pyc
ADDED
Binary file (6.23 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/deprecation.cpython-310.pyc
ADDED
Binary file (3.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/discovery.cpython-310.pyc
ADDED
Binary file (7.99 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/estimator_checks.cpython-310.pyc
ADDED
Binary file (104 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/extmath.cpython-310.pyc
ADDED
Binary file (37.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/fixes.cpython-310.pyc
ADDED
Binary file (9.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/graph.cpython-310.pyc
ADDED
Binary file (4.86 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/metadata_routing.cpython-310.pyc
ADDED
Binary file (821 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/metaestimators.cpython-310.pyc
ADDED
Binary file (5.12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/multiclass.cpython-310.pyc
ADDED
Binary file (14.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/optimize.cpython-310.pyc
ADDED
Binary file (6.48 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/parallel.cpython-310.pyc
ADDED
Binary file (4.47 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/random.cpython-310.pyc
ADDED
Binary file (2.68 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/sparsefuncs.cpython-310.pyc
ADDED
Binary file (21.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/stats.cpython-310.pyc
ADDED
Binary file (2.13 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/__pycache__/validation.cpython-310.pyc
ADDED
Binary file (68.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_cython_blas.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (528 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_encode.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import Counter
|
2 |
+
from contextlib import suppress
|
3 |
+
from typing import NamedTuple
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from . import is_scalar_nan
|
8 |
+
|
9 |
+
|
10 |
+
def _unique(values, *, return_inverse=False, return_counts=False):
|
11 |
+
"""Helper function to find unique values with support for python objects.
|
12 |
+
|
13 |
+
Uses pure python method for object dtype, and numpy method for
|
14 |
+
all other dtypes.
|
15 |
+
|
16 |
+
Parameters
|
17 |
+
----------
|
18 |
+
values : ndarray
|
19 |
+
Values to check for unknowns.
|
20 |
+
|
21 |
+
return_inverse : bool, default=False
|
22 |
+
If True, also return the indices of the unique values.
|
23 |
+
|
24 |
+
return_counts : bool, default=False
|
25 |
+
If True, also return the number of times each unique item appears in
|
26 |
+
values.
|
27 |
+
|
28 |
+
Returns
|
29 |
+
-------
|
30 |
+
unique : ndarray
|
31 |
+
The sorted unique values.
|
32 |
+
|
33 |
+
unique_inverse : ndarray
|
34 |
+
The indices to reconstruct the original array from the unique array.
|
35 |
+
Only provided if `return_inverse` is True.
|
36 |
+
|
37 |
+
unique_counts : ndarray
|
38 |
+
The number of times each of the unique values comes up in the original
|
39 |
+
array. Only provided if `return_counts` is True.
|
40 |
+
"""
|
41 |
+
if values.dtype == object:
|
42 |
+
return _unique_python(
|
43 |
+
values, return_inverse=return_inverse, return_counts=return_counts
|
44 |
+
)
|
45 |
+
# numerical
|
46 |
+
return _unique_np(
|
47 |
+
values, return_inverse=return_inverse, return_counts=return_counts
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
def _unique_np(values, return_inverse=False, return_counts=False):
|
52 |
+
"""Helper function to find unique values for numpy arrays that correctly
|
53 |
+
accounts for nans. See `_unique` documentation for details."""
|
54 |
+
uniques = np.unique(
|
55 |
+
values, return_inverse=return_inverse, return_counts=return_counts
|
56 |
+
)
|
57 |
+
|
58 |
+
inverse, counts = None, None
|
59 |
+
|
60 |
+
if return_counts:
|
61 |
+
*uniques, counts = uniques
|
62 |
+
|
63 |
+
if return_inverse:
|
64 |
+
*uniques, inverse = uniques
|
65 |
+
|
66 |
+
if return_counts or return_inverse:
|
67 |
+
uniques = uniques[0]
|
68 |
+
|
69 |
+
# np.unique will have duplicate missing values at the end of `uniques`
|
70 |
+
# here we clip the nans and remove it from uniques
|
71 |
+
if uniques.size and is_scalar_nan(uniques[-1]):
|
72 |
+
nan_idx = np.searchsorted(uniques, np.nan)
|
73 |
+
uniques = uniques[: nan_idx + 1]
|
74 |
+
if return_inverse:
|
75 |
+
inverse[inverse > nan_idx] = nan_idx
|
76 |
+
|
77 |
+
if return_counts:
|
78 |
+
counts[nan_idx] = np.sum(counts[nan_idx:])
|
79 |
+
counts = counts[: nan_idx + 1]
|
80 |
+
|
81 |
+
ret = (uniques,)
|
82 |
+
|
83 |
+
if return_inverse:
|
84 |
+
ret += (inverse,)
|
85 |
+
|
86 |
+
if return_counts:
|
87 |
+
ret += (counts,)
|
88 |
+
|
89 |
+
return ret[0] if len(ret) == 1 else ret
|
90 |
+
|
91 |
+
|
92 |
+
class MissingValues(NamedTuple):
|
93 |
+
"""Data class for missing data information"""
|
94 |
+
|
95 |
+
nan: bool
|
96 |
+
none: bool
|
97 |
+
|
98 |
+
def to_list(self):
|
99 |
+
"""Convert tuple to a list where None is always first."""
|
100 |
+
output = []
|
101 |
+
if self.none:
|
102 |
+
output.append(None)
|
103 |
+
if self.nan:
|
104 |
+
output.append(np.nan)
|
105 |
+
return output
|
106 |
+
|
107 |
+
|
108 |
+
def _extract_missing(values):
|
109 |
+
"""Extract missing values from `values`.
|
110 |
+
|
111 |
+
Parameters
|
112 |
+
----------
|
113 |
+
values: set
|
114 |
+
Set of values to extract missing from.
|
115 |
+
|
116 |
+
Returns
|
117 |
+
-------
|
118 |
+
output: set
|
119 |
+
Set with missing values extracted.
|
120 |
+
|
121 |
+
missing_values: MissingValues
|
122 |
+
Object with missing value information.
|
123 |
+
"""
|
124 |
+
missing_values_set = {
|
125 |
+
value for value in values if value is None or is_scalar_nan(value)
|
126 |
+
}
|
127 |
+
|
128 |
+
if not missing_values_set:
|
129 |
+
return values, MissingValues(nan=False, none=False)
|
130 |
+
|
131 |
+
if None in missing_values_set:
|
132 |
+
if len(missing_values_set) == 1:
|
133 |
+
output_missing_values = MissingValues(nan=False, none=True)
|
134 |
+
else:
|
135 |
+
# If there is more than one missing value, then it has to be
|
136 |
+
# float('nan') or np.nan
|
137 |
+
output_missing_values = MissingValues(nan=True, none=True)
|
138 |
+
else:
|
139 |
+
output_missing_values = MissingValues(nan=True, none=False)
|
140 |
+
|
141 |
+
# create set without the missing values
|
142 |
+
output = values - missing_values_set
|
143 |
+
return output, output_missing_values
|
144 |
+
|
145 |
+
|
146 |
+
class _nandict(dict):
|
147 |
+
"""Dictionary with support for nans."""
|
148 |
+
|
149 |
+
def __init__(self, mapping):
|
150 |
+
super().__init__(mapping)
|
151 |
+
for key, value in mapping.items():
|
152 |
+
if is_scalar_nan(key):
|
153 |
+
self.nan_value = value
|
154 |
+
break
|
155 |
+
|
156 |
+
def __missing__(self, key):
|
157 |
+
if hasattr(self, "nan_value") and is_scalar_nan(key):
|
158 |
+
return self.nan_value
|
159 |
+
raise KeyError(key)
|
160 |
+
|
161 |
+
|
162 |
+
def _map_to_integer(values, uniques):
|
163 |
+
"""Map values based on its position in uniques."""
|
164 |
+
table = _nandict({val: i for i, val in enumerate(uniques)})
|
165 |
+
return np.array([table[v] for v in values])
|
166 |
+
|
167 |
+
|
168 |
+
def _unique_python(values, *, return_inverse, return_counts):
|
169 |
+
# Only used in `_uniques`, see docstring there for details
|
170 |
+
try:
|
171 |
+
uniques_set = set(values)
|
172 |
+
uniques_set, missing_values = _extract_missing(uniques_set)
|
173 |
+
|
174 |
+
uniques = sorted(uniques_set)
|
175 |
+
uniques.extend(missing_values.to_list())
|
176 |
+
uniques = np.array(uniques, dtype=values.dtype)
|
177 |
+
except TypeError:
|
178 |
+
types = sorted(t.__qualname__ for t in set(type(v) for v in values))
|
179 |
+
raise TypeError(
|
180 |
+
"Encoders require their input argument must be uniformly "
|
181 |
+
f"strings or numbers. Got {types}"
|
182 |
+
)
|
183 |
+
ret = (uniques,)
|
184 |
+
|
185 |
+
if return_inverse:
|
186 |
+
ret += (_map_to_integer(values, uniques),)
|
187 |
+
|
188 |
+
if return_counts:
|
189 |
+
ret += (_get_counts(values, uniques),)
|
190 |
+
|
191 |
+
return ret[0] if len(ret) == 1 else ret
|
192 |
+
|
193 |
+
|
194 |
+
def _encode(values, *, uniques, check_unknown=True):
|
195 |
+
"""Helper function to encode values into [0, n_uniques - 1].
|
196 |
+
|
197 |
+
Uses pure python method for object dtype, and numpy method for
|
198 |
+
all other dtypes.
|
199 |
+
The numpy method has the limitation that the `uniques` need to
|
200 |
+
be sorted. Importantly, this is not checked but assumed to already be
|
201 |
+
the case. The calling method needs to ensure this for all non-object
|
202 |
+
values.
|
203 |
+
|
204 |
+
Parameters
|
205 |
+
----------
|
206 |
+
values : ndarray
|
207 |
+
Values to encode.
|
208 |
+
uniques : ndarray
|
209 |
+
The unique values in `values`. If the dtype is not object, then
|
210 |
+
`uniques` needs to be sorted.
|
211 |
+
check_unknown : bool, default=True
|
212 |
+
If True, check for values in `values` that are not in `unique`
|
213 |
+
and raise an error. This is ignored for object dtype, and treated as
|
214 |
+
True in this case. This parameter is useful for
|
215 |
+
_BaseEncoder._transform() to avoid calling _check_unknown()
|
216 |
+
twice.
|
217 |
+
|
218 |
+
Returns
|
219 |
+
-------
|
220 |
+
encoded : ndarray
|
221 |
+
Encoded values
|
222 |
+
"""
|
223 |
+
if values.dtype.kind in "OUS":
|
224 |
+
try:
|
225 |
+
return _map_to_integer(values, uniques)
|
226 |
+
except KeyError as e:
|
227 |
+
raise ValueError(f"y contains previously unseen labels: {str(e)}")
|
228 |
+
else:
|
229 |
+
if check_unknown:
|
230 |
+
diff = _check_unknown(values, uniques)
|
231 |
+
if diff:
|
232 |
+
raise ValueError(f"y contains previously unseen labels: {str(diff)}")
|
233 |
+
return np.searchsorted(uniques, values)
|
234 |
+
|
235 |
+
|
236 |
+
def _check_unknown(values, known_values, return_mask=False):
|
237 |
+
"""
|
238 |
+
Helper function to check for unknowns in values to be encoded.
|
239 |
+
|
240 |
+
Uses pure python method for object dtype, and numpy method for
|
241 |
+
all other dtypes.
|
242 |
+
|
243 |
+
Parameters
|
244 |
+
----------
|
245 |
+
values : array
|
246 |
+
Values to check for unknowns.
|
247 |
+
known_values : array
|
248 |
+
Known values. Must be unique.
|
249 |
+
return_mask : bool, default=False
|
250 |
+
If True, return a mask of the same shape as `values` indicating
|
251 |
+
the valid values.
|
252 |
+
|
253 |
+
Returns
|
254 |
+
-------
|
255 |
+
diff : list
|
256 |
+
The unique values present in `values` and not in `know_values`.
|
257 |
+
valid_mask : boolean array
|
258 |
+
Additionally returned if ``return_mask=True``.
|
259 |
+
|
260 |
+
"""
|
261 |
+
valid_mask = None
|
262 |
+
|
263 |
+
if values.dtype.kind in "OUS":
|
264 |
+
values_set = set(values)
|
265 |
+
values_set, missing_in_values = _extract_missing(values_set)
|
266 |
+
|
267 |
+
uniques_set = set(known_values)
|
268 |
+
uniques_set, missing_in_uniques = _extract_missing(uniques_set)
|
269 |
+
diff = values_set - uniques_set
|
270 |
+
|
271 |
+
nan_in_diff = missing_in_values.nan and not missing_in_uniques.nan
|
272 |
+
none_in_diff = missing_in_values.none and not missing_in_uniques.none
|
273 |
+
|
274 |
+
def is_valid(value):
|
275 |
+
return (
|
276 |
+
value in uniques_set
|
277 |
+
or missing_in_uniques.none
|
278 |
+
and value is None
|
279 |
+
or missing_in_uniques.nan
|
280 |
+
and is_scalar_nan(value)
|
281 |
+
)
|
282 |
+
|
283 |
+
if return_mask:
|
284 |
+
if diff or nan_in_diff or none_in_diff:
|
285 |
+
valid_mask = np.array([is_valid(value) for value in values])
|
286 |
+
else:
|
287 |
+
valid_mask = np.ones(len(values), dtype=bool)
|
288 |
+
|
289 |
+
diff = list(diff)
|
290 |
+
if none_in_diff:
|
291 |
+
diff.append(None)
|
292 |
+
if nan_in_diff:
|
293 |
+
diff.append(np.nan)
|
294 |
+
else:
|
295 |
+
unique_values = np.unique(values)
|
296 |
+
diff = np.setdiff1d(unique_values, known_values, assume_unique=True)
|
297 |
+
if return_mask:
|
298 |
+
if diff.size:
|
299 |
+
valid_mask = np.isin(values, known_values)
|
300 |
+
else:
|
301 |
+
valid_mask = np.ones(len(values), dtype=bool)
|
302 |
+
|
303 |
+
# check for nans in the known_values
|
304 |
+
if np.isnan(known_values).any():
|
305 |
+
diff_is_nan = np.isnan(diff)
|
306 |
+
if diff_is_nan.any():
|
307 |
+
# removes nan from valid_mask
|
308 |
+
if diff.size and return_mask:
|
309 |
+
is_nan = np.isnan(values)
|
310 |
+
valid_mask[is_nan] = 1
|
311 |
+
|
312 |
+
# remove nan from diff
|
313 |
+
diff = diff[~diff_is_nan]
|
314 |
+
diff = list(diff)
|
315 |
+
|
316 |
+
if return_mask:
|
317 |
+
return diff, valid_mask
|
318 |
+
return diff
|
319 |
+
|
320 |
+
|
321 |
+
class _NaNCounter(Counter):
|
322 |
+
"""Counter with support for nan values."""
|
323 |
+
|
324 |
+
def __init__(self, items):
|
325 |
+
super().__init__(self._generate_items(items))
|
326 |
+
|
327 |
+
def _generate_items(self, items):
|
328 |
+
"""Generate items without nans. Stores the nan counts separately."""
|
329 |
+
for item in items:
|
330 |
+
if not is_scalar_nan(item):
|
331 |
+
yield item
|
332 |
+
continue
|
333 |
+
if not hasattr(self, "nan_count"):
|
334 |
+
self.nan_count = 0
|
335 |
+
self.nan_count += 1
|
336 |
+
|
337 |
+
def __missing__(self, key):
|
338 |
+
if hasattr(self, "nan_count") and is_scalar_nan(key):
|
339 |
+
return self.nan_count
|
340 |
+
raise KeyError(key)
|
341 |
+
|
342 |
+
|
343 |
+
def _get_counts(values, uniques):
|
344 |
+
"""Get the count of each of the `uniques` in `values`.
|
345 |
+
|
346 |
+
The counts will use the order passed in by `uniques`. For non-object dtypes,
|
347 |
+
`uniques` is assumed to be sorted and `np.nan` is at the end.
|
348 |
+
"""
|
349 |
+
if values.dtype.kind in "OU":
|
350 |
+
counter = _NaNCounter(values)
|
351 |
+
output = np.zeros(len(uniques), dtype=np.int64)
|
352 |
+
for i, item in enumerate(uniques):
|
353 |
+
with suppress(KeyError):
|
354 |
+
output[i] = counter[item]
|
355 |
+
return output
|
356 |
+
|
357 |
+
unique_values, counts = _unique_np(values, return_counts=True)
|
358 |
+
|
359 |
+
# Recorder unique_values based on input: `uniques`
|
360 |
+
uniques_in_values = np.isin(uniques, unique_values, assume_unique=True)
|
361 |
+
if np.isnan(unique_values[-1]) and np.isnan(uniques[-1]):
|
362 |
+
uniques_in_values[-1] = True
|
363 |
+
|
364 |
+
unique_valid_indices = np.searchsorted(unique_values, uniques[uniques_in_values])
|
365 |
+
output = np.zeros_like(uniques, dtype=np.int64)
|
366 |
+
output[uniques_in_values] = counts[unique_valid_indices]
|
367 |
+
return output
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_estimator_html_repr.py
ADDED
@@ -0,0 +1,496 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import html
|
2 |
+
import itertools
|
3 |
+
from contextlib import closing
|
4 |
+
from inspect import isclass
|
5 |
+
from io import StringIO
|
6 |
+
from pathlib import Path
|
7 |
+
from string import Template
|
8 |
+
|
9 |
+
from .. import __version__, config_context
|
10 |
+
from .fixes import parse_version
|
11 |
+
|
12 |
+
|
13 |
+
class _IDCounter:
|
14 |
+
"""Generate sequential ids with a prefix."""
|
15 |
+
|
16 |
+
def __init__(self, prefix):
|
17 |
+
self.prefix = prefix
|
18 |
+
self.count = 0
|
19 |
+
|
20 |
+
def get_id(self):
|
21 |
+
self.count += 1
|
22 |
+
return f"{self.prefix}-{self.count}"
|
23 |
+
|
24 |
+
|
25 |
+
def _get_css_style():
|
26 |
+
return Path(__file__).with_suffix(".css").read_text(encoding="utf-8")
|
27 |
+
|
28 |
+
|
29 |
+
_CONTAINER_ID_COUNTER = _IDCounter("sk-container-id")
|
30 |
+
_ESTIMATOR_ID_COUNTER = _IDCounter("sk-estimator-id")
|
31 |
+
_CSS_STYLE = _get_css_style()
|
32 |
+
|
33 |
+
|
34 |
+
class _VisualBlock:
|
35 |
+
"""HTML Representation of Estimator
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
----------
|
39 |
+
kind : {'serial', 'parallel', 'single'}
|
40 |
+
kind of HTML block
|
41 |
+
|
42 |
+
estimators : list of estimators or `_VisualBlock`s or a single estimator
|
43 |
+
If kind != 'single', then `estimators` is a list of
|
44 |
+
estimators.
|
45 |
+
If kind == 'single', then `estimators` is a single estimator.
|
46 |
+
|
47 |
+
names : list of str, default=None
|
48 |
+
If kind != 'single', then `names` corresponds to estimators.
|
49 |
+
If kind == 'single', then `names` is a single string corresponding to
|
50 |
+
the single estimator.
|
51 |
+
|
52 |
+
name_details : list of str, str, or None, default=None
|
53 |
+
If kind != 'single', then `name_details` corresponds to `names`.
|
54 |
+
If kind == 'single', then `name_details` is a single string
|
55 |
+
corresponding to the single estimator.
|
56 |
+
|
57 |
+
dash_wrapped : bool, default=True
|
58 |
+
If true, wrapped HTML element will be wrapped with a dashed border.
|
59 |
+
Only active when kind != 'single'.
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self, kind, estimators, *, names=None, name_details=None, dash_wrapped=True
|
64 |
+
):
|
65 |
+
self.kind = kind
|
66 |
+
self.estimators = estimators
|
67 |
+
self.dash_wrapped = dash_wrapped
|
68 |
+
|
69 |
+
if self.kind in ("parallel", "serial"):
|
70 |
+
if names is None:
|
71 |
+
names = (None,) * len(estimators)
|
72 |
+
if name_details is None:
|
73 |
+
name_details = (None,) * len(estimators)
|
74 |
+
|
75 |
+
self.names = names
|
76 |
+
self.name_details = name_details
|
77 |
+
|
78 |
+
def _sk_visual_block_(self):
|
79 |
+
return self
|
80 |
+
|
81 |
+
|
82 |
+
def _write_label_html(
|
83 |
+
out,
|
84 |
+
name,
|
85 |
+
name_details,
|
86 |
+
outer_class="sk-label-container",
|
87 |
+
inner_class="sk-label",
|
88 |
+
checked=False,
|
89 |
+
doc_link="",
|
90 |
+
is_fitted_css_class="",
|
91 |
+
is_fitted_icon="",
|
92 |
+
):
|
93 |
+
"""Write labeled html with or without a dropdown with named details.
|
94 |
+
|
95 |
+
Parameters
|
96 |
+
----------
|
97 |
+
out : file-like object
|
98 |
+
The file to write the HTML representation to.
|
99 |
+
name : str
|
100 |
+
The label for the estimator. It corresponds either to the estimator class name
|
101 |
+
for a simple estimator or in the case of a `Pipeline` and `ColumnTransformer`,
|
102 |
+
it corresponds to the name of the step.
|
103 |
+
name_details : str
|
104 |
+
The details to show as content in the dropdown part of the toggleable label. It
|
105 |
+
can contain information such as non-default parameters or column information for
|
106 |
+
`ColumnTransformer`.
|
107 |
+
outer_class : {"sk-label-container", "sk-item"}, default="sk-label-container"
|
108 |
+
The CSS class for the outer container.
|
109 |
+
inner_class : {"sk-label", "sk-estimator"}, default="sk-label"
|
110 |
+
The CSS class for the inner container.
|
111 |
+
checked : bool, default=False
|
112 |
+
Whether the dropdown is folded or not. With a single estimator, we intend to
|
113 |
+
unfold the content.
|
114 |
+
doc_link : str, default=""
|
115 |
+
The link to the documentation for the estimator. If an empty string, no link is
|
116 |
+
added to the diagram. This can be generated for an estimator if it uses the
|
117 |
+
`_HTMLDocumentationLinkMixin`.
|
118 |
+
is_fitted_css_class : {"", "fitted"}
|
119 |
+
The CSS class to indicate whether or not the estimator is fitted. The
|
120 |
+
empty string means that the estimator is not fitted and "fitted" means that the
|
121 |
+
estimator is fitted.
|
122 |
+
is_fitted_icon : str, default=""
|
123 |
+
The HTML representation to show the fitted information in the diagram. An empty
|
124 |
+
string means that no information is shown.
|
125 |
+
"""
|
126 |
+
# we need to add some padding to the left of the label to be sure it is centered
|
127 |
+
padding_label = " " if is_fitted_icon else "" # add padding for the "i" char
|
128 |
+
|
129 |
+
out.write(
|
130 |
+
f'<div class="{outer_class}"><div'
|
131 |
+
f' class="{inner_class} {is_fitted_css_class} sk-toggleable">'
|
132 |
+
)
|
133 |
+
name = html.escape(name)
|
134 |
+
|
135 |
+
if name_details is not None:
|
136 |
+
name_details = html.escape(str(name_details))
|
137 |
+
label_class = (
|
138 |
+
f"sk-toggleable__label {is_fitted_css_class} sk-toggleable__label-arrow"
|
139 |
+
)
|
140 |
+
|
141 |
+
checked_str = "checked" if checked else ""
|
142 |
+
est_id = _ESTIMATOR_ID_COUNTER.get_id()
|
143 |
+
|
144 |
+
if doc_link:
|
145 |
+
doc_label = "<span>Online documentation</span>"
|
146 |
+
if name is not None:
|
147 |
+
doc_label = f"<span>Documentation for {name}</span>"
|
148 |
+
doc_link = (
|
149 |
+
f'<a class="sk-estimator-doc-link {is_fitted_css_class}"'
|
150 |
+
f' rel="noreferrer" target="_blank" href="{doc_link}">?{doc_label}</a>'
|
151 |
+
)
|
152 |
+
padding_label += " " # add additional padding for the "?" char
|
153 |
+
|
154 |
+
fmt_str = (
|
155 |
+
'<input class="sk-toggleable__control sk-hidden--visually"'
|
156 |
+
f' id="{est_id}" '
|
157 |
+
f'type="checkbox" {checked_str}><label for="{est_id}" '
|
158 |
+
f'class="{label_class} {is_fitted_css_class}">{padding_label}{name}'
|
159 |
+
f"{doc_link}{is_fitted_icon}</label><div "
|
160 |
+
f'class="sk-toggleable__content {is_fitted_css_class}">'
|
161 |
+
f"<pre>{name_details}</pre></div> "
|
162 |
+
)
|
163 |
+
out.write(fmt_str)
|
164 |
+
else:
|
165 |
+
out.write(f"<label>{name}</label>")
|
166 |
+
out.write("</div></div>") # outer_class inner_class
|
167 |
+
|
168 |
+
|
169 |
+
def _get_visual_block(estimator):
|
170 |
+
"""Generate information about how to display an estimator."""
|
171 |
+
if hasattr(estimator, "_sk_visual_block_"):
|
172 |
+
try:
|
173 |
+
return estimator._sk_visual_block_()
|
174 |
+
except Exception:
|
175 |
+
return _VisualBlock(
|
176 |
+
"single",
|
177 |
+
estimator,
|
178 |
+
names=estimator.__class__.__name__,
|
179 |
+
name_details=str(estimator),
|
180 |
+
)
|
181 |
+
|
182 |
+
if isinstance(estimator, str):
|
183 |
+
return _VisualBlock(
|
184 |
+
"single", estimator, names=estimator, name_details=estimator
|
185 |
+
)
|
186 |
+
elif estimator is None:
|
187 |
+
return _VisualBlock("single", estimator, names="None", name_details="None")
|
188 |
+
|
189 |
+
# check if estimator looks like a meta estimator (wraps estimators)
|
190 |
+
if hasattr(estimator, "get_params") and not isclass(estimator):
|
191 |
+
estimators = [
|
192 |
+
(key, est)
|
193 |
+
for key, est in estimator.get_params(deep=False).items()
|
194 |
+
if hasattr(est, "get_params") and hasattr(est, "fit") and not isclass(est)
|
195 |
+
]
|
196 |
+
if estimators:
|
197 |
+
return _VisualBlock(
|
198 |
+
"parallel",
|
199 |
+
[est for _, est in estimators],
|
200 |
+
names=[f"{key}: {est.__class__.__name__}" for key, est in estimators],
|
201 |
+
name_details=[str(est) for _, est in estimators],
|
202 |
+
)
|
203 |
+
|
204 |
+
return _VisualBlock(
|
205 |
+
"single",
|
206 |
+
estimator,
|
207 |
+
names=estimator.__class__.__name__,
|
208 |
+
name_details=str(estimator),
|
209 |
+
)
|
210 |
+
|
211 |
+
|
212 |
+
def _write_estimator_html(
|
213 |
+
out,
|
214 |
+
estimator,
|
215 |
+
estimator_label,
|
216 |
+
estimator_label_details,
|
217 |
+
is_fitted_css_class,
|
218 |
+
is_fitted_icon="",
|
219 |
+
first_call=False,
|
220 |
+
):
|
221 |
+
"""Write estimator to html in serial, parallel, or by itself (single).
|
222 |
+
|
223 |
+
For multiple estimators, this function is called recursively.
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
----------
|
227 |
+
out : file-like object
|
228 |
+
The file to write the HTML representation to.
|
229 |
+
estimator : estimator object
|
230 |
+
The estimator to visualize.
|
231 |
+
estimator_label : str
|
232 |
+
The label for the estimator. It corresponds either to the estimator class name
|
233 |
+
for simple estimator or in the case of `Pipeline` and `ColumnTransformer`, it
|
234 |
+
corresponds to the name of the step.
|
235 |
+
estimator_label_details : str
|
236 |
+
The details to show as content in the dropdown part of the toggleable label.
|
237 |
+
It can contain information as non-default parameters or column information for
|
238 |
+
`ColumnTransformer`.
|
239 |
+
is_fitted_css_class : {"", "fitted"}
|
240 |
+
The CSS class to indicate whether or not the estimator is fitted or not. The
|
241 |
+
empty string means that the estimator is not fitted and "fitted" means that the
|
242 |
+
estimator is fitted.
|
243 |
+
is_fitted_icon : str, default=""
|
244 |
+
The HTML representation to show the fitted information in the diagram. An empty
|
245 |
+
string means that no information is shown. If the estimator to be shown is not
|
246 |
+
the first estimator (i.e. `first_call=False`), `is_fitted_icon` is always an
|
247 |
+
empty string.
|
248 |
+
first_call : bool, default=False
|
249 |
+
Whether this is the first time this function is called.
|
250 |
+
"""
|
251 |
+
if first_call:
|
252 |
+
est_block = _get_visual_block(estimator)
|
253 |
+
else:
|
254 |
+
is_fitted_icon = ""
|
255 |
+
with config_context(print_changed_only=True):
|
256 |
+
est_block = _get_visual_block(estimator)
|
257 |
+
# `estimator` can also be an instance of `_VisualBlock`
|
258 |
+
if hasattr(estimator, "_get_doc_link"):
|
259 |
+
doc_link = estimator._get_doc_link()
|
260 |
+
else:
|
261 |
+
doc_link = ""
|
262 |
+
if est_block.kind in ("serial", "parallel"):
|
263 |
+
dashed_wrapped = first_call or est_block.dash_wrapped
|
264 |
+
dash_cls = " sk-dashed-wrapped" if dashed_wrapped else ""
|
265 |
+
out.write(f'<div class="sk-item{dash_cls}">')
|
266 |
+
|
267 |
+
if estimator_label:
|
268 |
+
_write_label_html(
|
269 |
+
out,
|
270 |
+
estimator_label,
|
271 |
+
estimator_label_details,
|
272 |
+
doc_link=doc_link,
|
273 |
+
is_fitted_css_class=is_fitted_css_class,
|
274 |
+
is_fitted_icon=is_fitted_icon,
|
275 |
+
)
|
276 |
+
|
277 |
+
kind = est_block.kind
|
278 |
+
out.write(f'<div class="sk-{kind}">')
|
279 |
+
est_infos = zip(est_block.estimators, est_block.names, est_block.name_details)
|
280 |
+
|
281 |
+
for est, name, name_details in est_infos:
|
282 |
+
if kind == "serial":
|
283 |
+
_write_estimator_html(
|
284 |
+
out,
|
285 |
+
est,
|
286 |
+
name,
|
287 |
+
name_details,
|
288 |
+
is_fitted_css_class=is_fitted_css_class,
|
289 |
+
)
|
290 |
+
else: # parallel
|
291 |
+
out.write('<div class="sk-parallel-item">')
|
292 |
+
# wrap element in a serial visualblock
|
293 |
+
serial_block = _VisualBlock("serial", [est], dash_wrapped=False)
|
294 |
+
_write_estimator_html(
|
295 |
+
out,
|
296 |
+
serial_block,
|
297 |
+
name,
|
298 |
+
name_details,
|
299 |
+
is_fitted_css_class=is_fitted_css_class,
|
300 |
+
)
|
301 |
+
out.write("</div>") # sk-parallel-item
|
302 |
+
|
303 |
+
out.write("</div></div>")
|
304 |
+
elif est_block.kind == "single":
|
305 |
+
_write_label_html(
|
306 |
+
out,
|
307 |
+
est_block.names,
|
308 |
+
est_block.name_details,
|
309 |
+
outer_class="sk-item",
|
310 |
+
inner_class="sk-estimator",
|
311 |
+
checked=first_call,
|
312 |
+
doc_link=doc_link,
|
313 |
+
is_fitted_css_class=is_fitted_css_class,
|
314 |
+
is_fitted_icon=is_fitted_icon,
|
315 |
+
)
|
316 |
+
|
317 |
+
|
318 |
+
def estimator_html_repr(estimator):
|
319 |
+
"""Build a HTML representation of an estimator.
|
320 |
+
|
321 |
+
Read more in the :ref:`User Guide <visualizing_composite_estimators>`.
|
322 |
+
|
323 |
+
Parameters
|
324 |
+
----------
|
325 |
+
estimator : estimator object
|
326 |
+
The estimator to visualize.
|
327 |
+
|
328 |
+
Returns
|
329 |
+
-------
|
330 |
+
html: str
|
331 |
+
HTML representation of estimator.
|
332 |
+
|
333 |
+
Examples
|
334 |
+
--------
|
335 |
+
>>> from sklearn.utils._estimator_html_repr import estimator_html_repr
|
336 |
+
>>> from sklearn.linear_model import LogisticRegression
|
337 |
+
>>> estimator_html_repr(LogisticRegression())
|
338 |
+
'<style>...</div>'
|
339 |
+
"""
|
340 |
+
from sklearn.exceptions import NotFittedError
|
341 |
+
from sklearn.utils.validation import check_is_fitted
|
342 |
+
|
343 |
+
if not hasattr(estimator, "fit"):
|
344 |
+
status_label = "<span>Not fitted</span>"
|
345 |
+
is_fitted_css_class = ""
|
346 |
+
else:
|
347 |
+
try:
|
348 |
+
check_is_fitted(estimator)
|
349 |
+
status_label = "<span>Fitted</span>"
|
350 |
+
is_fitted_css_class = "fitted"
|
351 |
+
except NotFittedError:
|
352 |
+
status_label = "<span>Not fitted</span>"
|
353 |
+
is_fitted_css_class = ""
|
354 |
+
|
355 |
+
is_fitted_icon = (
|
356 |
+
f'<span class="sk-estimator-doc-link {is_fitted_css_class}">'
|
357 |
+
f"i{status_label}</span>"
|
358 |
+
)
|
359 |
+
with closing(StringIO()) as out:
|
360 |
+
container_id = _CONTAINER_ID_COUNTER.get_id()
|
361 |
+
style_template = Template(_CSS_STYLE)
|
362 |
+
style_with_id = style_template.substitute(id=container_id)
|
363 |
+
estimator_str = str(estimator)
|
364 |
+
|
365 |
+
# The fallback message is shown by default and loading the CSS sets
|
366 |
+
# div.sk-text-repr-fallback to display: none to hide the fallback message.
|
367 |
+
#
|
368 |
+
# If the notebook is trusted, the CSS is loaded which hides the fallback
|
369 |
+
# message. If the notebook is not trusted, then the CSS is not loaded and the
|
370 |
+
# fallback message is shown by default.
|
371 |
+
#
|
372 |
+
# The reverse logic applies to HTML repr div.sk-container.
|
373 |
+
# div.sk-container is hidden by default and the loading the CSS displays it.
|
374 |
+
fallback_msg = (
|
375 |
+
"In a Jupyter environment, please rerun this cell to show the HTML"
|
376 |
+
" representation or trust the notebook. <br />On GitHub, the"
|
377 |
+
" HTML representation is unable to render, please try loading this page"
|
378 |
+
" with nbviewer.org."
|
379 |
+
)
|
380 |
+
html_template = (
|
381 |
+
f"<style>{style_with_id}</style>"
|
382 |
+
f'<div id="{container_id}" class="sk-top-container">'
|
383 |
+
'<div class="sk-text-repr-fallback">'
|
384 |
+
f"<pre>{html.escape(estimator_str)}</pre><b>{fallback_msg}</b>"
|
385 |
+
"</div>"
|
386 |
+
'<div class="sk-container" hidden>'
|
387 |
+
)
|
388 |
+
|
389 |
+
out.write(html_template)
|
390 |
+
|
391 |
+
_write_estimator_html(
|
392 |
+
out,
|
393 |
+
estimator,
|
394 |
+
estimator.__class__.__name__,
|
395 |
+
estimator_str,
|
396 |
+
first_call=True,
|
397 |
+
is_fitted_css_class=is_fitted_css_class,
|
398 |
+
is_fitted_icon=is_fitted_icon,
|
399 |
+
)
|
400 |
+
out.write("</div></div>")
|
401 |
+
|
402 |
+
html_output = out.getvalue()
|
403 |
+
return html_output
|
404 |
+
|
405 |
+
|
406 |
+
class _HTMLDocumentationLinkMixin:
|
407 |
+
"""Mixin class allowing to generate a link to the API documentation.
|
408 |
+
|
409 |
+
This mixin relies on three attributes:
|
410 |
+
- `_doc_link_module`: it corresponds to the root module (e.g. `sklearn`). Using this
|
411 |
+
mixin, the default value is `sklearn`.
|
412 |
+
- `_doc_link_template`: it corresponds to the template used to generate the
|
413 |
+
link to the API documentation. Using this mixin, the default value is
|
414 |
+
`"https://scikit-learn.org/{version_url}/modules/generated/
|
415 |
+
{estimator_module}.{estimator_name}.html"`.
|
416 |
+
- `_doc_link_url_param_generator`: it corresponds to a function that generates the
|
417 |
+
parameters to be used in the template when the estimator module and name are not
|
418 |
+
sufficient.
|
419 |
+
|
420 |
+
The method :meth:`_get_doc_link` generates the link to the API documentation for a
|
421 |
+
given estimator.
|
422 |
+
|
423 |
+
This useful provides all the necessary states for
|
424 |
+
:func:`sklearn.utils.estimator_html_repr` to generate a link to the API
|
425 |
+
documentation for the estimator HTML diagram.
|
426 |
+
|
427 |
+
Examples
|
428 |
+
--------
|
429 |
+
If the default values for `_doc_link_module`, `_doc_link_template` are not suitable,
|
430 |
+
then you can override them:
|
431 |
+
>>> from sklearn.base import BaseEstimator
|
432 |
+
>>> estimator = BaseEstimator()
|
433 |
+
>>> estimator._doc_link_template = "https://website.com/{single_param}.html"
|
434 |
+
>>> def url_param_generator(estimator):
|
435 |
+
... return {"single_param": estimator.__class__.__name__}
|
436 |
+
>>> estimator._doc_link_url_param_generator = url_param_generator
|
437 |
+
>>> estimator._get_doc_link()
|
438 |
+
'https://website.com/BaseEstimator.html'
|
439 |
+
"""
|
440 |
+
|
441 |
+
_doc_link_module = "sklearn"
|
442 |
+
_doc_link_url_param_generator = None
|
443 |
+
|
444 |
+
@property
|
445 |
+
def _doc_link_template(self):
|
446 |
+
sklearn_version = parse_version(__version__)
|
447 |
+
if sklearn_version.dev is None:
|
448 |
+
version_url = f"{sklearn_version.major}.{sklearn_version.minor}"
|
449 |
+
else:
|
450 |
+
version_url = "dev"
|
451 |
+
return getattr(
|
452 |
+
self,
|
453 |
+
"__doc_link_template",
|
454 |
+
(
|
455 |
+
f"https://scikit-learn.org/{version_url}/modules/generated/"
|
456 |
+
"{estimator_module}.{estimator_name}.html"
|
457 |
+
),
|
458 |
+
)
|
459 |
+
|
460 |
+
@_doc_link_template.setter
|
461 |
+
def _doc_link_template(self, value):
|
462 |
+
setattr(self, "__doc_link_template", value)
|
463 |
+
|
464 |
+
def _get_doc_link(self):
|
465 |
+
"""Generates a link to the API documentation for a given estimator.
|
466 |
+
|
467 |
+
This method generates the link to the estimator's documentation page
|
468 |
+
by using the template defined by the attribute `_doc_link_template`.
|
469 |
+
|
470 |
+
Returns
|
471 |
+
-------
|
472 |
+
url : str
|
473 |
+
The URL to the API documentation for this estimator. If the estimator does
|
474 |
+
not belong to module `_doc_link_module`, the empty string (i.e. `""`) is
|
475 |
+
returned.
|
476 |
+
"""
|
477 |
+
if self.__class__.__module__.split(".")[0] != self._doc_link_module:
|
478 |
+
return ""
|
479 |
+
|
480 |
+
if self._doc_link_url_param_generator is None:
|
481 |
+
estimator_name = self.__class__.__name__
|
482 |
+
# Construct the estimator's module name, up to the first private submodule.
|
483 |
+
# This works because in scikit-learn all public estimators are exposed at
|
484 |
+
# that level, even if they actually live in a private sub-module.
|
485 |
+
estimator_module = ".".join(
|
486 |
+
itertools.takewhile(
|
487 |
+
lambda part: not part.startswith("_"),
|
488 |
+
self.__class__.__module__.split("."),
|
489 |
+
)
|
490 |
+
)
|
491 |
+
return self._doc_link_template.format(
|
492 |
+
estimator_module=estimator_module, estimator_name=estimator_name
|
493 |
+
)
|
494 |
+
return self._doc_link_template.format(
|
495 |
+
**self._doc_link_url_param_generator(self)
|
496 |
+
)
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_fast_dict.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (288 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_isfinite.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (287 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_joblib.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings as _warnings
|
2 |
+
|
3 |
+
with _warnings.catch_warnings():
|
4 |
+
_warnings.simplefilter("ignore")
|
5 |
+
# joblib imports may raise DeprecationWarning on certain Python
|
6 |
+
# versions
|
7 |
+
import joblib
|
8 |
+
from joblib import (
|
9 |
+
Memory,
|
10 |
+
Parallel,
|
11 |
+
__version__,
|
12 |
+
cpu_count,
|
13 |
+
delayed,
|
14 |
+
dump,
|
15 |
+
effective_n_jobs,
|
16 |
+
hash,
|
17 |
+
load,
|
18 |
+
logger,
|
19 |
+
parallel_backend,
|
20 |
+
register_parallel_backend,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
__all__ = [
|
25 |
+
"parallel_backend",
|
26 |
+
"register_parallel_backend",
|
27 |
+
"cpu_count",
|
28 |
+
"Parallel",
|
29 |
+
"Memory",
|
30 |
+
"delayed",
|
31 |
+
"effective_n_jobs",
|
32 |
+
"hash",
|
33 |
+
"logger",
|
34 |
+
"dump",
|
35 |
+
"load",
|
36 |
+
"joblib",
|
37 |
+
"__version__",
|
38 |
+
]
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_mocking.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from ..base import BaseEstimator, ClassifierMixin
|
4 |
+
from ..utils._metadata_requests import RequestMethod
|
5 |
+
from .metaestimators import available_if
|
6 |
+
from .validation import _check_sample_weight, _num_samples, check_array, check_is_fitted
|
7 |
+
|
8 |
+
|
9 |
+
class ArraySlicingWrapper:
|
10 |
+
"""
|
11 |
+
Parameters
|
12 |
+
----------
|
13 |
+
array
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, array):
|
17 |
+
self.array = array
|
18 |
+
|
19 |
+
def __getitem__(self, aslice):
|
20 |
+
return MockDataFrame(self.array[aslice])
|
21 |
+
|
22 |
+
|
23 |
+
class MockDataFrame:
|
24 |
+
"""
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
array
|
28 |
+
"""
|
29 |
+
|
30 |
+
# have shape and length but don't support indexing.
|
31 |
+
|
32 |
+
def __init__(self, array):
|
33 |
+
self.array = array
|
34 |
+
self.values = array
|
35 |
+
self.shape = array.shape
|
36 |
+
self.ndim = array.ndim
|
37 |
+
# ugly hack to make iloc work.
|
38 |
+
self.iloc = ArraySlicingWrapper(array)
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return len(self.array)
|
42 |
+
|
43 |
+
def __array__(self, dtype=None):
|
44 |
+
# Pandas data frames also are array-like: we want to make sure that
|
45 |
+
# input validation in cross-validation does not try to call that
|
46 |
+
# method.
|
47 |
+
return self.array
|
48 |
+
|
49 |
+
def __eq__(self, other):
|
50 |
+
return MockDataFrame(self.array == other.array)
|
51 |
+
|
52 |
+
def __ne__(self, other):
|
53 |
+
return not self == other
|
54 |
+
|
55 |
+
def take(self, indices, axis=0):
|
56 |
+
return MockDataFrame(self.array.take(indices, axis=axis))
|
57 |
+
|
58 |
+
|
59 |
+
class CheckingClassifier(ClassifierMixin, BaseEstimator):
|
60 |
+
"""Dummy classifier to test pipelining and meta-estimators.
|
61 |
+
|
62 |
+
Checks some property of `X` and `y`in fit / predict.
|
63 |
+
This allows testing whether pipelines / cross-validation or metaestimators
|
64 |
+
changed the input.
|
65 |
+
|
66 |
+
Can also be used to check if `fit_params` are passed correctly, and
|
67 |
+
to force a certain score to be returned.
|
68 |
+
|
69 |
+
Parameters
|
70 |
+
----------
|
71 |
+
check_y, check_X : callable, default=None
|
72 |
+
The callable used to validate `X` and `y`. These callable should return
|
73 |
+
a bool where `False` will trigger an `AssertionError`. If `None`, the
|
74 |
+
data is not validated. Default is `None`.
|
75 |
+
|
76 |
+
check_y_params, check_X_params : dict, default=None
|
77 |
+
The optional parameters to pass to `check_X` and `check_y`. If `None`,
|
78 |
+
then no parameters are passed in.
|
79 |
+
|
80 |
+
methods_to_check : "all" or list of str, default="all"
|
81 |
+
The methods in which the checks should be applied. By default,
|
82 |
+
all checks will be done on all methods (`fit`, `predict`,
|
83 |
+
`predict_proba`, `decision_function` and `score`).
|
84 |
+
|
85 |
+
foo_param : int, default=0
|
86 |
+
A `foo` param. When `foo > 1`, the output of :meth:`score` will be 1
|
87 |
+
otherwise it is 0.
|
88 |
+
|
89 |
+
expected_sample_weight : bool, default=False
|
90 |
+
Whether to check if a valid `sample_weight` was passed to `fit`.
|
91 |
+
|
92 |
+
expected_fit_params : list of str, default=None
|
93 |
+
A list of the expected parameters given when calling `fit`.
|
94 |
+
|
95 |
+
Attributes
|
96 |
+
----------
|
97 |
+
classes_ : int
|
98 |
+
The classes seen during `fit`.
|
99 |
+
|
100 |
+
n_features_in_ : int
|
101 |
+
The number of features seen during `fit`.
|
102 |
+
|
103 |
+
Examples
|
104 |
+
--------
|
105 |
+
>>> from sklearn.utils._mocking import CheckingClassifier
|
106 |
+
|
107 |
+
This helper allow to assert to specificities regarding `X` or `y`. In this
|
108 |
+
case we expect `check_X` or `check_y` to return a boolean.
|
109 |
+
|
110 |
+
>>> from sklearn.datasets import load_iris
|
111 |
+
>>> X, y = load_iris(return_X_y=True)
|
112 |
+
>>> clf = CheckingClassifier(check_X=lambda x: x.shape == (150, 4))
|
113 |
+
>>> clf.fit(X, y)
|
114 |
+
CheckingClassifier(...)
|
115 |
+
|
116 |
+
We can also provide a check which might raise an error. In this case, we
|
117 |
+
expect `check_X` to return `X` and `check_y` to return `y`.
|
118 |
+
|
119 |
+
>>> from sklearn.utils import check_array
|
120 |
+
>>> clf = CheckingClassifier(check_X=check_array)
|
121 |
+
>>> clf.fit(X, y)
|
122 |
+
CheckingClassifier(...)
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
*,
|
128 |
+
check_y=None,
|
129 |
+
check_y_params=None,
|
130 |
+
check_X=None,
|
131 |
+
check_X_params=None,
|
132 |
+
methods_to_check="all",
|
133 |
+
foo_param=0,
|
134 |
+
expected_sample_weight=None,
|
135 |
+
expected_fit_params=None,
|
136 |
+
):
|
137 |
+
self.check_y = check_y
|
138 |
+
self.check_y_params = check_y_params
|
139 |
+
self.check_X = check_X
|
140 |
+
self.check_X_params = check_X_params
|
141 |
+
self.methods_to_check = methods_to_check
|
142 |
+
self.foo_param = foo_param
|
143 |
+
self.expected_sample_weight = expected_sample_weight
|
144 |
+
self.expected_fit_params = expected_fit_params
|
145 |
+
|
146 |
+
def _check_X_y(self, X, y=None, should_be_fitted=True):
|
147 |
+
"""Validate X and y and make extra check.
|
148 |
+
|
149 |
+
Parameters
|
150 |
+
----------
|
151 |
+
X : array-like of shape (n_samples, n_features)
|
152 |
+
The data set.
|
153 |
+
`X` is checked only if `check_X` is not `None` (default is None).
|
154 |
+
y : array-like of shape (n_samples), default=None
|
155 |
+
The corresponding target, by default `None`.
|
156 |
+
`y` is checked only if `check_y` is not `None` (default is None).
|
157 |
+
should_be_fitted : bool, default=True
|
158 |
+
Whether or not the classifier should be already fitted.
|
159 |
+
By default True.
|
160 |
+
|
161 |
+
Returns
|
162 |
+
-------
|
163 |
+
X, y
|
164 |
+
"""
|
165 |
+
if should_be_fitted:
|
166 |
+
check_is_fitted(self)
|
167 |
+
if self.check_X is not None:
|
168 |
+
params = {} if self.check_X_params is None else self.check_X_params
|
169 |
+
checked_X = self.check_X(X, **params)
|
170 |
+
if isinstance(checked_X, (bool, np.bool_)):
|
171 |
+
assert checked_X
|
172 |
+
else:
|
173 |
+
X = checked_X
|
174 |
+
if y is not None and self.check_y is not None:
|
175 |
+
params = {} if self.check_y_params is None else self.check_y_params
|
176 |
+
checked_y = self.check_y(y, **params)
|
177 |
+
if isinstance(checked_y, (bool, np.bool_)):
|
178 |
+
assert checked_y
|
179 |
+
else:
|
180 |
+
y = checked_y
|
181 |
+
return X, y
|
182 |
+
|
183 |
+
def fit(self, X, y, sample_weight=None, **fit_params):
|
184 |
+
"""Fit classifier.
|
185 |
+
|
186 |
+
Parameters
|
187 |
+
----------
|
188 |
+
X : array-like of shape (n_samples, n_features)
|
189 |
+
Training vector, where `n_samples` is the number of samples and
|
190 |
+
`n_features` is the number of features.
|
191 |
+
|
192 |
+
y : array-like of shape (n_samples, n_outputs) or (n_samples,), \
|
193 |
+
default=None
|
194 |
+
Target relative to X for classification or regression;
|
195 |
+
None for unsupervised learning.
|
196 |
+
|
197 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
198 |
+
Sample weights. If None, then samples are equally weighted.
|
199 |
+
|
200 |
+
**fit_params : dict of string -> object
|
201 |
+
Parameters passed to the ``fit`` method of the estimator
|
202 |
+
|
203 |
+
Returns
|
204 |
+
-------
|
205 |
+
self
|
206 |
+
"""
|
207 |
+
assert _num_samples(X) == _num_samples(y)
|
208 |
+
if self.methods_to_check == "all" or "fit" in self.methods_to_check:
|
209 |
+
X, y = self._check_X_y(X, y, should_be_fitted=False)
|
210 |
+
self.n_features_in_ = np.shape(X)[1]
|
211 |
+
self.classes_ = np.unique(check_array(y, ensure_2d=False, allow_nd=True))
|
212 |
+
if self.expected_fit_params:
|
213 |
+
missing = set(self.expected_fit_params) - set(fit_params)
|
214 |
+
if missing:
|
215 |
+
raise AssertionError(
|
216 |
+
f"Expected fit parameter(s) {list(missing)} not seen."
|
217 |
+
)
|
218 |
+
for key, value in fit_params.items():
|
219 |
+
if _num_samples(value) != _num_samples(X):
|
220 |
+
raise AssertionError(
|
221 |
+
f"Fit parameter {key} has length {_num_samples(value)}"
|
222 |
+
f"; expected {_num_samples(X)}."
|
223 |
+
)
|
224 |
+
if self.expected_sample_weight:
|
225 |
+
if sample_weight is None:
|
226 |
+
raise AssertionError("Expected sample_weight to be passed")
|
227 |
+
_check_sample_weight(sample_weight, X)
|
228 |
+
|
229 |
+
return self
|
230 |
+
|
231 |
+
def predict(self, X):
|
232 |
+
"""Predict the first class seen in `classes_`.
|
233 |
+
|
234 |
+
Parameters
|
235 |
+
----------
|
236 |
+
X : array-like of shape (n_samples, n_features)
|
237 |
+
The input data.
|
238 |
+
|
239 |
+
Returns
|
240 |
+
-------
|
241 |
+
preds : ndarray of shape (n_samples,)
|
242 |
+
Predictions of the first class seens in `classes_`.
|
243 |
+
"""
|
244 |
+
if self.methods_to_check == "all" or "predict" in self.methods_to_check:
|
245 |
+
X, y = self._check_X_y(X)
|
246 |
+
return self.classes_[np.zeros(_num_samples(X), dtype=int)]
|
247 |
+
|
248 |
+
def predict_proba(self, X):
|
249 |
+
"""Predict probabilities for each class.
|
250 |
+
|
251 |
+
Here, the dummy classifier will provide a probability of 1 for the
|
252 |
+
first class of `classes_` and 0 otherwise.
|
253 |
+
|
254 |
+
Parameters
|
255 |
+
----------
|
256 |
+
X : array-like of shape (n_samples, n_features)
|
257 |
+
The input data.
|
258 |
+
|
259 |
+
Returns
|
260 |
+
-------
|
261 |
+
proba : ndarray of shape (n_samples, n_classes)
|
262 |
+
The probabilities for each sample and class.
|
263 |
+
"""
|
264 |
+
if self.methods_to_check == "all" or "predict_proba" in self.methods_to_check:
|
265 |
+
X, y = self._check_X_y(X)
|
266 |
+
proba = np.zeros((_num_samples(X), len(self.classes_)))
|
267 |
+
proba[:, 0] = 1
|
268 |
+
return proba
|
269 |
+
|
270 |
+
def decision_function(self, X):
|
271 |
+
"""Confidence score.
|
272 |
+
|
273 |
+
Parameters
|
274 |
+
----------
|
275 |
+
X : array-like of shape (n_samples, n_features)
|
276 |
+
The input data.
|
277 |
+
|
278 |
+
Returns
|
279 |
+
-------
|
280 |
+
decision : ndarray of shape (n_samples,) if n_classes == 2\
|
281 |
+
else (n_samples, n_classes)
|
282 |
+
Confidence score.
|
283 |
+
"""
|
284 |
+
if (
|
285 |
+
self.methods_to_check == "all"
|
286 |
+
or "decision_function" in self.methods_to_check
|
287 |
+
):
|
288 |
+
X, y = self._check_X_y(X)
|
289 |
+
if len(self.classes_) == 2:
|
290 |
+
# for binary classifier, the confidence score is related to
|
291 |
+
# classes_[1] and therefore should be null.
|
292 |
+
return np.zeros(_num_samples(X))
|
293 |
+
else:
|
294 |
+
decision = np.zeros((_num_samples(X), len(self.classes_)))
|
295 |
+
decision[:, 0] = 1
|
296 |
+
return decision
|
297 |
+
|
298 |
+
def score(self, X=None, Y=None):
|
299 |
+
"""Fake score.
|
300 |
+
|
301 |
+
Parameters
|
302 |
+
----------
|
303 |
+
X : array-like of shape (n_samples, n_features)
|
304 |
+
Input data, where `n_samples` is the number of samples and
|
305 |
+
`n_features` is the number of features.
|
306 |
+
|
307 |
+
Y : array-like of shape (n_samples, n_output) or (n_samples,)
|
308 |
+
Target relative to X for classification or regression;
|
309 |
+
None for unsupervised learning.
|
310 |
+
|
311 |
+
Returns
|
312 |
+
-------
|
313 |
+
score : float
|
314 |
+
Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>
|
315 |
+
score=1` otherwise `score=0`).
|
316 |
+
"""
|
317 |
+
if self.methods_to_check == "all" or "score" in self.methods_to_check:
|
318 |
+
self._check_X_y(X, Y)
|
319 |
+
if self.foo_param > 1:
|
320 |
+
score = 1.0
|
321 |
+
else:
|
322 |
+
score = 0.0
|
323 |
+
return score
|
324 |
+
|
325 |
+
def _more_tags(self):
|
326 |
+
return {"_skip_test": True, "X_types": ["1dlabel"]}
|
327 |
+
|
328 |
+
|
329 |
+
# Deactivate key validation for CheckingClassifier because we want to be able to
|
330 |
+
# call fit with arbitrary fit_params and record them. Without this change, we
|
331 |
+
# would get an error because those arbitrary params are not expected.
|
332 |
+
CheckingClassifier.set_fit_request = RequestMethod( # type: ignore
|
333 |
+
name="fit", keys=[], validate_keys=False
|
334 |
+
)
|
335 |
+
|
336 |
+
|
337 |
+
class NoSampleWeightWrapper(BaseEstimator):
|
338 |
+
"""Wrap estimator which will not expose `sample_weight`.
|
339 |
+
|
340 |
+
Parameters
|
341 |
+
----------
|
342 |
+
est : estimator, default=None
|
343 |
+
The estimator to wrap.
|
344 |
+
"""
|
345 |
+
|
346 |
+
def __init__(self, est=None):
|
347 |
+
self.est = est
|
348 |
+
|
349 |
+
def fit(self, X, y):
|
350 |
+
return self.est.fit(X, y)
|
351 |
+
|
352 |
+
def predict(self, X):
|
353 |
+
return self.est.predict(X)
|
354 |
+
|
355 |
+
def predict_proba(self, X):
|
356 |
+
return self.est.predict_proba(X)
|
357 |
+
|
358 |
+
def _more_tags(self):
|
359 |
+
return {"_skip_test": True}
|
360 |
+
|
361 |
+
|
362 |
+
def _check_response(method):
|
363 |
+
def check(self):
|
364 |
+
return self.response_methods is not None and method in self.response_methods
|
365 |
+
|
366 |
+
return check
|
367 |
+
|
368 |
+
|
369 |
+
class _MockEstimatorOnOffPrediction(BaseEstimator):
|
370 |
+
"""Estimator for which we can turn on/off the prediction methods.
|
371 |
+
|
372 |
+
Parameters
|
373 |
+
----------
|
374 |
+
response_methods: list of \
|
375 |
+
{"predict", "predict_proba", "decision_function"}, default=None
|
376 |
+
List containing the response implemented by the estimator. When, the
|
377 |
+
response is in the list, it will return the name of the response method
|
378 |
+
when called. Otherwise, an `AttributeError` is raised. It allows to
|
379 |
+
use `getattr` as any conventional estimator. By default, no response
|
380 |
+
methods are mocked.
|
381 |
+
"""
|
382 |
+
|
383 |
+
def __init__(self, response_methods=None):
|
384 |
+
self.response_methods = response_methods
|
385 |
+
|
386 |
+
def fit(self, X, y):
|
387 |
+
self.classes_ = np.unique(y)
|
388 |
+
return self
|
389 |
+
|
390 |
+
@available_if(_check_response("predict"))
|
391 |
+
def predict(self, X):
|
392 |
+
return "predict"
|
393 |
+
|
394 |
+
@available_if(_check_response("predict_proba"))
|
395 |
+
def predict_proba(self, X):
|
396 |
+
return "predict_proba"
|
397 |
+
|
398 |
+
@available_if(_check_response("decision_function"))
|
399 |
+
def decision_function(self, X):
|
400 |
+
return "decision_function"
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_pprint.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This module contains the _EstimatorPrettyPrinter class used in
|
2 |
+
BaseEstimator.__repr__ for pretty-printing estimators"""
|
3 |
+
|
4 |
+
# Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
|
5 |
+
# 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Python Software Foundation;
|
6 |
+
# All Rights Reserved
|
7 |
+
|
8 |
+
# Authors: Fred L. Drake, Jr. <[email protected]> (built-in CPython pprint module)
|
9 |
+
# Nicolas Hug (scikit-learn specific changes)
|
10 |
+
|
11 |
+
# License: PSF License version 2 (see below)
|
12 |
+
|
13 |
+
# PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
|
14 |
+
# --------------------------------------------
|
15 |
+
|
16 |
+
# 1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),
|
17 |
+
# and the Individual or Organization ("Licensee") accessing and otherwise
|
18 |
+
# using this software ("Python") in source or binary form and its associated
|
19 |
+
# documentation.
|
20 |
+
|
21 |
+
# 2. Subject to the terms and conditions of this License Agreement, PSF hereby
|
22 |
+
# grants Licensee a nonexclusive, royalty-free, world-wide license to
|
23 |
+
# reproduce, analyze, test, perform and/or display publicly, prepare
|
24 |
+
# derivative works, distribute, and otherwise use Python alone or in any
|
25 |
+
# derivative version, provided, however, that PSF's License Agreement and
|
26 |
+
# PSF's notice of copyright, i.e., "Copyright (c) 2001, 2002, 2003, 2004,
|
27 |
+
# 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016,
|
28 |
+
# 2017, 2018 Python Software Foundation; All Rights Reserved" are retained in
|
29 |
+
# Python alone or in any derivative version prepared by Licensee.
|
30 |
+
|
31 |
+
# 3. In the event Licensee prepares a derivative work that is based on or
|
32 |
+
# incorporates Python or any part thereof, and wants to make the derivative
|
33 |
+
# work available to others as provided herein, then Licensee hereby agrees to
|
34 |
+
# include in any such work a brief summary of the changes made to Python.
|
35 |
+
|
36 |
+
# 4. PSF is making Python available to Licensee on an "AS IS" basis. PSF MAKES
|
37 |
+
# NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT
|
38 |
+
# NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF
|
39 |
+
# MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
|
40 |
+
# PYTHON WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.
|
41 |
+
|
42 |
+
# 5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON FOR ANY
|
43 |
+
# INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
|
44 |
+
# MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY DERIVATIVE
|
45 |
+
# THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
|
46 |
+
|
47 |
+
# 6. This License Agreement will automatically terminate upon a material
|
48 |
+
# breach of its terms and conditions.
|
49 |
+
|
50 |
+
# 7. Nothing in this License Agreement shall be deemed to create any
|
51 |
+
# relationship of agency, partnership, or joint venture between PSF and
|
52 |
+
# Licensee. This License Agreement does not grant permission to use PSF
|
53 |
+
# trademarks or trade name in a trademark sense to endorse or promote products
|
54 |
+
# or services of Licensee, or any third party.
|
55 |
+
|
56 |
+
# 8. By copying, installing or otherwise using Python, Licensee agrees to be
|
57 |
+
# bound by the terms and conditions of this License Agreement.
|
58 |
+
|
59 |
+
|
60 |
+
# Brief summary of changes to original code:
|
61 |
+
# - "compact" parameter is supported for dicts, not just lists or tuples
|
62 |
+
# - estimators have a custom handler, they're not just treated as objects
|
63 |
+
# - long sequences (lists, tuples, dict items) with more than N elements are
|
64 |
+
# shortened using ellipsis (', ...') at the end.
|
65 |
+
|
66 |
+
import inspect
|
67 |
+
import pprint
|
68 |
+
from collections import OrderedDict
|
69 |
+
|
70 |
+
from .._config import get_config
|
71 |
+
from ..base import BaseEstimator
|
72 |
+
from . import is_scalar_nan
|
73 |
+
|
74 |
+
|
75 |
+
class KeyValTuple(tuple):
|
76 |
+
"""Dummy class for correctly rendering key-value tuples from dicts."""
|
77 |
+
|
78 |
+
def __repr__(self):
|
79 |
+
# needed for _dispatch[tuple.__repr__] not to be overridden
|
80 |
+
return super().__repr__()
|
81 |
+
|
82 |
+
|
83 |
+
class KeyValTupleParam(KeyValTuple):
|
84 |
+
"""Dummy class for correctly rendering key-value tuples from parameters."""
|
85 |
+
|
86 |
+
pass
|
87 |
+
|
88 |
+
|
89 |
+
def _changed_params(estimator):
|
90 |
+
"""Return dict (param_name: value) of parameters that were given to
|
91 |
+
estimator with non-default values."""
|
92 |
+
|
93 |
+
params = estimator.get_params(deep=False)
|
94 |
+
init_func = getattr(estimator.__init__, "deprecated_original", estimator.__init__)
|
95 |
+
init_params = inspect.signature(init_func).parameters
|
96 |
+
init_params = {name: param.default for name, param in init_params.items()}
|
97 |
+
|
98 |
+
def has_changed(k, v):
|
99 |
+
if k not in init_params: # happens if k is part of a **kwargs
|
100 |
+
return True
|
101 |
+
if init_params[k] == inspect._empty: # k has no default value
|
102 |
+
return True
|
103 |
+
# try to avoid calling repr on nested estimators
|
104 |
+
if isinstance(v, BaseEstimator) and v.__class__ != init_params[k].__class__:
|
105 |
+
return True
|
106 |
+
# Use repr as a last resort. It may be expensive.
|
107 |
+
if repr(v) != repr(init_params[k]) and not (
|
108 |
+
is_scalar_nan(init_params[k]) and is_scalar_nan(v)
|
109 |
+
):
|
110 |
+
return True
|
111 |
+
return False
|
112 |
+
|
113 |
+
return {k: v for k, v in params.items() if has_changed(k, v)}
|
114 |
+
|
115 |
+
|
116 |
+
class _EstimatorPrettyPrinter(pprint.PrettyPrinter):
|
117 |
+
"""Pretty Printer class for estimator objects.
|
118 |
+
|
119 |
+
This extends the pprint.PrettyPrinter class, because:
|
120 |
+
- we need estimators to be printed with their parameters, e.g.
|
121 |
+
Estimator(param1=value1, ...) which is not supported by default.
|
122 |
+
- the 'compact' parameter of PrettyPrinter is ignored for dicts, which
|
123 |
+
may lead to very long representations that we want to avoid.
|
124 |
+
|
125 |
+
Quick overview of pprint.PrettyPrinter (see also
|
126 |
+
https://stackoverflow.com/questions/49565047/pprint-with-hex-numbers):
|
127 |
+
|
128 |
+
- the entry point is the _format() method which calls format() (overridden
|
129 |
+
here)
|
130 |
+
- format() directly calls _safe_repr() for a first try at rendering the
|
131 |
+
object
|
132 |
+
- _safe_repr formats the whole object recursively, only calling itself,
|
133 |
+
not caring about line length or anything
|
134 |
+
- back to _format(), if the output string is too long, _format() then calls
|
135 |
+
the appropriate _pprint_TYPE() method (e.g. _pprint_list()) depending on
|
136 |
+
the type of the object. This where the line length and the compact
|
137 |
+
parameters are taken into account.
|
138 |
+
- those _pprint_TYPE() methods will internally use the format() method for
|
139 |
+
rendering the nested objects of an object (e.g. the elements of a list)
|
140 |
+
|
141 |
+
In the end, everything has to be implemented twice: in _safe_repr and in
|
142 |
+
the custom _pprint_TYPE methods. Unfortunately PrettyPrinter is really not
|
143 |
+
straightforward to extend (especially when we want a compact output), so
|
144 |
+
the code is a bit convoluted.
|
145 |
+
|
146 |
+
This class overrides:
|
147 |
+
- format() to support the changed_only parameter
|
148 |
+
- _safe_repr to support printing of estimators (for when they fit on a
|
149 |
+
single line)
|
150 |
+
- _format_dict_items so that dict are correctly 'compacted'
|
151 |
+
- _format_items so that ellipsis is used on long lists and tuples
|
152 |
+
|
153 |
+
When estimators cannot be printed on a single line, the builtin _format()
|
154 |
+
will call _pprint_estimator() because it was registered to do so (see
|
155 |
+
_dispatch[BaseEstimator.__repr__] = _pprint_estimator).
|
156 |
+
|
157 |
+
both _format_dict_items() and _pprint_estimator() use the
|
158 |
+
_format_params_or_dict_items() method that will format parameters and
|
159 |
+
key-value pairs respecting the compact parameter. This method needs another
|
160 |
+
subroutine _pprint_key_val_tuple() used when a parameter or a key-value
|
161 |
+
pair is too long to fit on a single line. This subroutine is called in
|
162 |
+
_format() and is registered as well in the _dispatch dict (just like
|
163 |
+
_pprint_estimator). We had to create the two classes KeyValTuple and
|
164 |
+
KeyValTupleParam for this.
|
165 |
+
"""
|
166 |
+
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
indent=1,
|
170 |
+
width=80,
|
171 |
+
depth=None,
|
172 |
+
stream=None,
|
173 |
+
*,
|
174 |
+
compact=False,
|
175 |
+
indent_at_name=True,
|
176 |
+
n_max_elements_to_show=None,
|
177 |
+
):
|
178 |
+
super().__init__(indent, width, depth, stream, compact=compact)
|
179 |
+
self._indent_at_name = indent_at_name
|
180 |
+
if self._indent_at_name:
|
181 |
+
self._indent_per_level = 1 # ignore indent param
|
182 |
+
self._changed_only = get_config()["print_changed_only"]
|
183 |
+
# Max number of elements in a list, dict, tuple until we start using
|
184 |
+
# ellipsis. This also affects the number of arguments of an estimators
|
185 |
+
# (they are treated as dicts)
|
186 |
+
self.n_max_elements_to_show = n_max_elements_to_show
|
187 |
+
|
188 |
+
def format(self, object, context, maxlevels, level):
|
189 |
+
return _safe_repr(
|
190 |
+
object, context, maxlevels, level, changed_only=self._changed_only
|
191 |
+
)
|
192 |
+
|
193 |
+
def _pprint_estimator(self, object, stream, indent, allowance, context, level):
|
194 |
+
stream.write(object.__class__.__name__ + "(")
|
195 |
+
if self._indent_at_name:
|
196 |
+
indent += len(object.__class__.__name__)
|
197 |
+
|
198 |
+
if self._changed_only:
|
199 |
+
params = _changed_params(object)
|
200 |
+
else:
|
201 |
+
params = object.get_params(deep=False)
|
202 |
+
|
203 |
+
params = OrderedDict((name, val) for (name, val) in sorted(params.items()))
|
204 |
+
|
205 |
+
self._format_params(
|
206 |
+
params.items(), stream, indent, allowance + 1, context, level
|
207 |
+
)
|
208 |
+
stream.write(")")
|
209 |
+
|
210 |
+
def _format_dict_items(self, items, stream, indent, allowance, context, level):
|
211 |
+
return self._format_params_or_dict_items(
|
212 |
+
items, stream, indent, allowance, context, level, is_dict=True
|
213 |
+
)
|
214 |
+
|
215 |
+
def _format_params(self, items, stream, indent, allowance, context, level):
|
216 |
+
return self._format_params_or_dict_items(
|
217 |
+
items, stream, indent, allowance, context, level, is_dict=False
|
218 |
+
)
|
219 |
+
|
220 |
+
def _format_params_or_dict_items(
|
221 |
+
self, object, stream, indent, allowance, context, level, is_dict
|
222 |
+
):
|
223 |
+
"""Format dict items or parameters respecting the compact=True
|
224 |
+
parameter. For some reason, the builtin rendering of dict items doesn't
|
225 |
+
respect compact=True and will use one line per key-value if all cannot
|
226 |
+
fit in a single line.
|
227 |
+
Dict items will be rendered as <'key': value> while params will be
|
228 |
+
rendered as <key=value>. The implementation is mostly copy/pasting from
|
229 |
+
the builtin _format_items().
|
230 |
+
This also adds ellipsis if the number of items is greater than
|
231 |
+
self.n_max_elements_to_show.
|
232 |
+
"""
|
233 |
+
write = stream.write
|
234 |
+
indent += self._indent_per_level
|
235 |
+
delimnl = ",\n" + " " * indent
|
236 |
+
delim = ""
|
237 |
+
width = max_width = self._width - indent + 1
|
238 |
+
it = iter(object)
|
239 |
+
try:
|
240 |
+
next_ent = next(it)
|
241 |
+
except StopIteration:
|
242 |
+
return
|
243 |
+
last = False
|
244 |
+
n_items = 0
|
245 |
+
while not last:
|
246 |
+
if n_items == self.n_max_elements_to_show:
|
247 |
+
write(", ...")
|
248 |
+
break
|
249 |
+
n_items += 1
|
250 |
+
ent = next_ent
|
251 |
+
try:
|
252 |
+
next_ent = next(it)
|
253 |
+
except StopIteration:
|
254 |
+
last = True
|
255 |
+
max_width -= allowance
|
256 |
+
width -= allowance
|
257 |
+
if self._compact:
|
258 |
+
k, v = ent
|
259 |
+
krepr = self._repr(k, context, level)
|
260 |
+
vrepr = self._repr(v, context, level)
|
261 |
+
if not is_dict:
|
262 |
+
krepr = krepr.strip("'")
|
263 |
+
middle = ": " if is_dict else "="
|
264 |
+
rep = krepr + middle + vrepr
|
265 |
+
w = len(rep) + 2
|
266 |
+
if width < w:
|
267 |
+
width = max_width
|
268 |
+
if delim:
|
269 |
+
delim = delimnl
|
270 |
+
if width >= w:
|
271 |
+
width -= w
|
272 |
+
write(delim)
|
273 |
+
delim = ", "
|
274 |
+
write(rep)
|
275 |
+
continue
|
276 |
+
write(delim)
|
277 |
+
delim = delimnl
|
278 |
+
class_ = KeyValTuple if is_dict else KeyValTupleParam
|
279 |
+
self._format(
|
280 |
+
class_(ent), stream, indent, allowance if last else 1, context, level
|
281 |
+
)
|
282 |
+
|
283 |
+
def _format_items(self, items, stream, indent, allowance, context, level):
|
284 |
+
"""Format the items of an iterable (list, tuple...). Same as the
|
285 |
+
built-in _format_items, with support for ellipsis if the number of
|
286 |
+
elements is greater than self.n_max_elements_to_show.
|
287 |
+
"""
|
288 |
+
write = stream.write
|
289 |
+
indent += self._indent_per_level
|
290 |
+
if self._indent_per_level > 1:
|
291 |
+
write((self._indent_per_level - 1) * " ")
|
292 |
+
delimnl = ",\n" + " " * indent
|
293 |
+
delim = ""
|
294 |
+
width = max_width = self._width - indent + 1
|
295 |
+
it = iter(items)
|
296 |
+
try:
|
297 |
+
next_ent = next(it)
|
298 |
+
except StopIteration:
|
299 |
+
return
|
300 |
+
last = False
|
301 |
+
n_items = 0
|
302 |
+
while not last:
|
303 |
+
if n_items == self.n_max_elements_to_show:
|
304 |
+
write(", ...")
|
305 |
+
break
|
306 |
+
n_items += 1
|
307 |
+
ent = next_ent
|
308 |
+
try:
|
309 |
+
next_ent = next(it)
|
310 |
+
except StopIteration:
|
311 |
+
last = True
|
312 |
+
max_width -= allowance
|
313 |
+
width -= allowance
|
314 |
+
if self._compact:
|
315 |
+
rep = self._repr(ent, context, level)
|
316 |
+
w = len(rep) + 2
|
317 |
+
if width < w:
|
318 |
+
width = max_width
|
319 |
+
if delim:
|
320 |
+
delim = delimnl
|
321 |
+
if width >= w:
|
322 |
+
width -= w
|
323 |
+
write(delim)
|
324 |
+
delim = ", "
|
325 |
+
write(rep)
|
326 |
+
continue
|
327 |
+
write(delim)
|
328 |
+
delim = delimnl
|
329 |
+
self._format(ent, stream, indent, allowance if last else 1, context, level)
|
330 |
+
|
331 |
+
def _pprint_key_val_tuple(self, object, stream, indent, allowance, context, level):
|
332 |
+
"""Pretty printing for key-value tuples from dict or parameters."""
|
333 |
+
k, v = object
|
334 |
+
rep = self._repr(k, context, level)
|
335 |
+
if isinstance(object, KeyValTupleParam):
|
336 |
+
rep = rep.strip("'")
|
337 |
+
middle = "="
|
338 |
+
else:
|
339 |
+
middle = ": "
|
340 |
+
stream.write(rep)
|
341 |
+
stream.write(middle)
|
342 |
+
self._format(
|
343 |
+
v, stream, indent + len(rep) + len(middle), allowance, context, level
|
344 |
+
)
|
345 |
+
|
346 |
+
# Note: need to copy _dispatch to prevent instances of the builtin
|
347 |
+
# PrettyPrinter class to call methods of _EstimatorPrettyPrinter (see issue
|
348 |
+
# 12906)
|
349 |
+
# mypy error: "Type[PrettyPrinter]" has no attribute "_dispatch"
|
350 |
+
_dispatch = pprint.PrettyPrinter._dispatch.copy() # type: ignore
|
351 |
+
_dispatch[BaseEstimator.__repr__] = _pprint_estimator
|
352 |
+
_dispatch[KeyValTuple.__repr__] = _pprint_key_val_tuple
|
353 |
+
|
354 |
+
|
355 |
+
def _safe_repr(object, context, maxlevels, level, changed_only=False):
|
356 |
+
"""Same as the builtin _safe_repr, with added support for Estimator
|
357 |
+
objects."""
|
358 |
+
typ = type(object)
|
359 |
+
|
360 |
+
if typ in pprint._builtin_scalars:
|
361 |
+
return repr(object), True, False
|
362 |
+
|
363 |
+
r = getattr(typ, "__repr__", None)
|
364 |
+
if issubclass(typ, dict) and r is dict.__repr__:
|
365 |
+
if not object:
|
366 |
+
return "{}", True, False
|
367 |
+
objid = id(object)
|
368 |
+
if maxlevels and level >= maxlevels:
|
369 |
+
return "{...}", False, objid in context
|
370 |
+
if objid in context:
|
371 |
+
return pprint._recursion(object), False, True
|
372 |
+
context[objid] = 1
|
373 |
+
readable = True
|
374 |
+
recursive = False
|
375 |
+
components = []
|
376 |
+
append = components.append
|
377 |
+
level += 1
|
378 |
+
saferepr = _safe_repr
|
379 |
+
items = sorted(object.items(), key=pprint._safe_tuple)
|
380 |
+
for k, v in items:
|
381 |
+
krepr, kreadable, krecur = saferepr(
|
382 |
+
k, context, maxlevels, level, changed_only=changed_only
|
383 |
+
)
|
384 |
+
vrepr, vreadable, vrecur = saferepr(
|
385 |
+
v, context, maxlevels, level, changed_only=changed_only
|
386 |
+
)
|
387 |
+
append("%s: %s" % (krepr, vrepr))
|
388 |
+
readable = readable and kreadable and vreadable
|
389 |
+
if krecur or vrecur:
|
390 |
+
recursive = True
|
391 |
+
del context[objid]
|
392 |
+
return "{%s}" % ", ".join(components), readable, recursive
|
393 |
+
|
394 |
+
if (issubclass(typ, list) and r is list.__repr__) or (
|
395 |
+
issubclass(typ, tuple) and r is tuple.__repr__
|
396 |
+
):
|
397 |
+
if issubclass(typ, list):
|
398 |
+
if not object:
|
399 |
+
return "[]", True, False
|
400 |
+
format = "[%s]"
|
401 |
+
elif len(object) == 1:
|
402 |
+
format = "(%s,)"
|
403 |
+
else:
|
404 |
+
if not object:
|
405 |
+
return "()", True, False
|
406 |
+
format = "(%s)"
|
407 |
+
objid = id(object)
|
408 |
+
if maxlevels and level >= maxlevels:
|
409 |
+
return format % "...", False, objid in context
|
410 |
+
if objid in context:
|
411 |
+
return pprint._recursion(object), False, True
|
412 |
+
context[objid] = 1
|
413 |
+
readable = True
|
414 |
+
recursive = False
|
415 |
+
components = []
|
416 |
+
append = components.append
|
417 |
+
level += 1
|
418 |
+
for o in object:
|
419 |
+
orepr, oreadable, orecur = _safe_repr(
|
420 |
+
o, context, maxlevels, level, changed_only=changed_only
|
421 |
+
)
|
422 |
+
append(orepr)
|
423 |
+
if not oreadable:
|
424 |
+
readable = False
|
425 |
+
if orecur:
|
426 |
+
recursive = True
|
427 |
+
del context[objid]
|
428 |
+
return format % ", ".join(components), readable, recursive
|
429 |
+
|
430 |
+
if issubclass(typ, BaseEstimator):
|
431 |
+
objid = id(object)
|
432 |
+
if maxlevels and level >= maxlevels:
|
433 |
+
return "{...}", False, objid in context
|
434 |
+
if objid in context:
|
435 |
+
return pprint._recursion(object), False, True
|
436 |
+
context[objid] = 1
|
437 |
+
readable = True
|
438 |
+
recursive = False
|
439 |
+
if changed_only:
|
440 |
+
params = _changed_params(object)
|
441 |
+
else:
|
442 |
+
params = object.get_params(deep=False)
|
443 |
+
components = []
|
444 |
+
append = components.append
|
445 |
+
level += 1
|
446 |
+
saferepr = _safe_repr
|
447 |
+
items = sorted(params.items(), key=pprint._safe_tuple)
|
448 |
+
for k, v in items:
|
449 |
+
krepr, kreadable, krecur = saferepr(
|
450 |
+
k, context, maxlevels, level, changed_only=changed_only
|
451 |
+
)
|
452 |
+
vrepr, vreadable, vrecur = saferepr(
|
453 |
+
v, context, maxlevels, level, changed_only=changed_only
|
454 |
+
)
|
455 |
+
append("%s=%s" % (krepr.strip("'"), vrepr))
|
456 |
+
readable = readable and kreadable and vreadable
|
457 |
+
if krecur or vrecur:
|
458 |
+
recursive = True
|
459 |
+
del context[objid]
|
460 |
+
return ("%s(%s)" % (typ.__name__, ", ".join(components)), readable, recursive)
|
461 |
+
|
462 |
+
rep = repr(object)
|
463 |
+
return rep, (rep and not rep.startswith("<")), False
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_random.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (356 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_response.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utilities to get the response values of a classifier or a regressor.
|
2 |
+
|
3 |
+
It allows to make uniform checks and validation.
|
4 |
+
"""
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from ..base import is_classifier
|
8 |
+
from .multiclass import type_of_target
|
9 |
+
from .validation import _check_response_method, check_is_fitted
|
10 |
+
|
11 |
+
|
12 |
+
def _process_predict_proba(*, y_pred, target_type, classes, pos_label):
|
13 |
+
"""Get the response values when the response method is `predict_proba`.
|
14 |
+
|
15 |
+
This function process the `y_pred` array in the binary and multi-label cases.
|
16 |
+
In the binary case, it selects the column corresponding to the positive
|
17 |
+
class. In the multi-label case, it stacks the predictions if they are not
|
18 |
+
in the "compressed" format `(n_samples, n_outputs)`.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
----------
|
22 |
+
y_pred : ndarray
|
23 |
+
Output of `estimator.predict_proba`. The shape depends on the target type:
|
24 |
+
|
25 |
+
- for binary classification, it is a 2d array of shape `(n_samples, 2)`;
|
26 |
+
- for multiclass classification, it is a 2d array of shape
|
27 |
+
`(n_samples, n_classes)`;
|
28 |
+
- for multilabel classification, it is either a list of 2d arrays of shape
|
29 |
+
`(n_samples, 2)` (e.g. `RandomForestClassifier` or `KNeighborsClassifier`) or
|
30 |
+
an array of shape `(n_samples, n_outputs)` (e.g. `MLPClassifier` or
|
31 |
+
`RidgeClassifier`).
|
32 |
+
|
33 |
+
target_type : {"binary", "multiclass", "multilabel-indicator"}
|
34 |
+
Type of the target.
|
35 |
+
|
36 |
+
classes : ndarray of shape (n_classes,) or list of such arrays
|
37 |
+
Class labels as reported by `estimator.classes_`.
|
38 |
+
|
39 |
+
pos_label : int, float, bool or str
|
40 |
+
Only used with binary and multiclass targets.
|
41 |
+
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
|
45 |
+
(n_samples, n_output)
|
46 |
+
Compressed predictions format as requested by the metrics.
|
47 |
+
"""
|
48 |
+
if target_type == "binary" and y_pred.shape[1] < 2:
|
49 |
+
# We don't handle classifiers trained on a single class.
|
50 |
+
raise ValueError(
|
51 |
+
f"Got predict_proba of shape {y_pred.shape}, but need "
|
52 |
+
"classifier with two classes."
|
53 |
+
)
|
54 |
+
|
55 |
+
if target_type == "binary":
|
56 |
+
col_idx = np.flatnonzero(classes == pos_label)[0]
|
57 |
+
return y_pred[:, col_idx]
|
58 |
+
elif target_type == "multilabel-indicator":
|
59 |
+
# Use a compress format of shape `(n_samples, n_output)`.
|
60 |
+
# Only `MLPClassifier` and `RidgeClassifier` return an array of shape
|
61 |
+
# `(n_samples, n_outputs)`.
|
62 |
+
if isinstance(y_pred, list):
|
63 |
+
# list of arrays of shape `(n_samples, 2)`
|
64 |
+
return np.vstack([p[:, -1] for p in y_pred]).T
|
65 |
+
else:
|
66 |
+
# array of shape `(n_samples, n_outputs)`
|
67 |
+
return y_pred
|
68 |
+
|
69 |
+
return y_pred
|
70 |
+
|
71 |
+
|
72 |
+
def _process_decision_function(*, y_pred, target_type, classes, pos_label):
|
73 |
+
"""Get the response values when the response method is `decision_function`.
|
74 |
+
|
75 |
+
This function process the `y_pred` array in the binary and multi-label cases.
|
76 |
+
In the binary case, it inverts the sign of the score if the positive label
|
77 |
+
is not `classes[1]`. In the multi-label case, it stacks the predictions if
|
78 |
+
they are not in the "compressed" format `(n_samples, n_outputs)`.
|
79 |
+
|
80 |
+
Parameters
|
81 |
+
----------
|
82 |
+
y_pred : ndarray
|
83 |
+
Output of `estimator.predict_proba`. The shape depends on the target type:
|
84 |
+
|
85 |
+
- for binary classification, it is a 1d array of shape `(n_samples,)` where the
|
86 |
+
sign is assuming that `classes[1]` is the positive class;
|
87 |
+
- for multiclass classification, it is a 2d array of shape
|
88 |
+
`(n_samples, n_classes)`;
|
89 |
+
- for multilabel classification, it is a 2d array of shape `(n_samples,
|
90 |
+
n_outputs)`.
|
91 |
+
|
92 |
+
target_type : {"binary", "multiclass", "multilabel-indicator"}
|
93 |
+
Type of the target.
|
94 |
+
|
95 |
+
classes : ndarray of shape (n_classes,) or list of such arrays
|
96 |
+
Class labels as reported by `estimator.classes_`.
|
97 |
+
|
98 |
+
pos_label : int, float, bool or str
|
99 |
+
Only used with binary and multiclass targets.
|
100 |
+
|
101 |
+
Returns
|
102 |
+
-------
|
103 |
+
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
|
104 |
+
(n_samples, n_output)
|
105 |
+
Compressed predictions format as requested by the metrics.
|
106 |
+
"""
|
107 |
+
if target_type == "binary" and pos_label == classes[0]:
|
108 |
+
return -1 * y_pred
|
109 |
+
return y_pred
|
110 |
+
|
111 |
+
|
112 |
+
def _get_response_values(
|
113 |
+
estimator,
|
114 |
+
X,
|
115 |
+
response_method,
|
116 |
+
pos_label=None,
|
117 |
+
return_response_method_used=False,
|
118 |
+
):
|
119 |
+
"""Compute the response values of a classifier, an outlier detector, or a regressor.
|
120 |
+
|
121 |
+
The response values are predictions such that it follows the following shape:
|
122 |
+
|
123 |
+
- for binary classification, it is a 1d array of shape `(n_samples,)`;
|
124 |
+
- for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`;
|
125 |
+
- for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`;
|
126 |
+
- for outlier detection, it is a 1d array of shape `(n_samples,)`;
|
127 |
+
- for regression, it is a 1d array of shape `(n_samples,)`.
|
128 |
+
|
129 |
+
If `estimator` is a binary classifier, also return the label for the
|
130 |
+
effective positive class.
|
131 |
+
|
132 |
+
This utility is used primarily in the displays and the scikit-learn scorers.
|
133 |
+
|
134 |
+
.. versionadded:: 1.3
|
135 |
+
|
136 |
+
Parameters
|
137 |
+
----------
|
138 |
+
estimator : estimator instance
|
139 |
+
Fitted classifier, outlier detector, or regressor or a
|
140 |
+
fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a
|
141 |
+
classifier, an outlier detector, or a regressor.
|
142 |
+
|
143 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
144 |
+
Input values.
|
145 |
+
|
146 |
+
response_method : {"predict_proba", "predict_log_proba", "decision_function", \
|
147 |
+
"predict"} or list of such str
|
148 |
+
Specifies the response method to use get prediction from an estimator
|
149 |
+
(i.e. :term:`predict_proba`, :term:`predict_log_proba`,
|
150 |
+
:term:`decision_function` or :term:`predict`). Possible choices are:
|
151 |
+
|
152 |
+
- if `str`, it corresponds to the name to the method to return;
|
153 |
+
- if a list of `str`, it provides the method names in order of
|
154 |
+
preference. The method returned corresponds to the first method in
|
155 |
+
the list and which is implemented by `estimator`.
|
156 |
+
|
157 |
+
pos_label : int, float, bool or str, default=None
|
158 |
+
The class considered as the positive class when computing
|
159 |
+
the metrics. If `None` and target is 'binary', `estimators.classes_[1]` is
|
160 |
+
considered as the positive class.
|
161 |
+
|
162 |
+
return_response_method_used : bool, default=False
|
163 |
+
Whether to return the response method used to compute the response
|
164 |
+
values.
|
165 |
+
|
166 |
+
.. versionadded:: 1.4
|
167 |
+
|
168 |
+
Returns
|
169 |
+
-------
|
170 |
+
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
|
171 |
+
(n_samples, n_outputs)
|
172 |
+
Target scores calculated from the provided `response_method`
|
173 |
+
and `pos_label`.
|
174 |
+
|
175 |
+
pos_label : int, float, bool, str or None
|
176 |
+
The class considered as the positive class when computing
|
177 |
+
the metrics. Returns `None` if `estimator` is a regressor or an outlier
|
178 |
+
detector.
|
179 |
+
|
180 |
+
response_method_used : str
|
181 |
+
The response method used to compute the response values. Only returned
|
182 |
+
if `return_response_method_used` is `True`.
|
183 |
+
|
184 |
+
.. versionadded:: 1.4
|
185 |
+
|
186 |
+
Raises
|
187 |
+
------
|
188 |
+
ValueError
|
189 |
+
If `pos_label` is not a valid label.
|
190 |
+
If the shape of `y_pred` is not consistent for binary classifier.
|
191 |
+
If the response method can be applied to a classifier only and
|
192 |
+
`estimator` is a regressor.
|
193 |
+
"""
|
194 |
+
from sklearn.base import is_classifier, is_outlier_detector # noqa
|
195 |
+
|
196 |
+
if is_classifier(estimator):
|
197 |
+
prediction_method = _check_response_method(estimator, response_method)
|
198 |
+
classes = estimator.classes_
|
199 |
+
target_type = type_of_target(classes)
|
200 |
+
|
201 |
+
if target_type in ("binary", "multiclass"):
|
202 |
+
if pos_label is not None and pos_label not in classes.tolist():
|
203 |
+
raise ValueError(
|
204 |
+
f"pos_label={pos_label} is not a valid label: It should be "
|
205 |
+
f"one of {classes}"
|
206 |
+
)
|
207 |
+
elif pos_label is None and target_type == "binary":
|
208 |
+
pos_label = classes[-1]
|
209 |
+
|
210 |
+
y_pred = prediction_method(X)
|
211 |
+
|
212 |
+
if prediction_method.__name__ in ("predict_proba", "predict_log_proba"):
|
213 |
+
y_pred = _process_predict_proba(
|
214 |
+
y_pred=y_pred,
|
215 |
+
target_type=target_type,
|
216 |
+
classes=classes,
|
217 |
+
pos_label=pos_label,
|
218 |
+
)
|
219 |
+
elif prediction_method.__name__ == "decision_function":
|
220 |
+
y_pred = _process_decision_function(
|
221 |
+
y_pred=y_pred,
|
222 |
+
target_type=target_type,
|
223 |
+
classes=classes,
|
224 |
+
pos_label=pos_label,
|
225 |
+
)
|
226 |
+
elif is_outlier_detector(estimator):
|
227 |
+
prediction_method = _check_response_method(estimator, response_method)
|
228 |
+
y_pred, pos_label = prediction_method(X), None
|
229 |
+
else: # estimator is a regressor
|
230 |
+
if response_method != "predict":
|
231 |
+
raise ValueError(
|
232 |
+
f"{estimator.__class__.__name__} should either be a classifier to be "
|
233 |
+
f"used with response_method={response_method} or the response_method "
|
234 |
+
"should be 'predict'. Got a regressor with response_method="
|
235 |
+
f"{response_method} instead."
|
236 |
+
)
|
237 |
+
prediction_method = estimator.predict
|
238 |
+
y_pred, pos_label = prediction_method(X), None
|
239 |
+
|
240 |
+
if return_response_method_used:
|
241 |
+
return y_pred, pos_label, prediction_method.__name__
|
242 |
+
return y_pred, pos_label
|
243 |
+
|
244 |
+
|
245 |
+
def _get_response_values_binary(estimator, X, response_method, pos_label=None):
|
246 |
+
"""Compute the response values of a binary classifier.
|
247 |
+
|
248 |
+
Parameters
|
249 |
+
----------
|
250 |
+
estimator : estimator instance
|
251 |
+
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
|
252 |
+
in which the last estimator is a binary classifier.
|
253 |
+
|
254 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
255 |
+
Input values.
|
256 |
+
|
257 |
+
response_method : {'auto', 'predict_proba', 'decision_function'}
|
258 |
+
Specifies whether to use :term:`predict_proba` or
|
259 |
+
:term:`decision_function` as the target response. If set to 'auto',
|
260 |
+
:term:`predict_proba` is tried first and if it does not exist
|
261 |
+
:term:`decision_function` is tried next.
|
262 |
+
|
263 |
+
pos_label : int, float, bool or str, default=None
|
264 |
+
The class considered as the positive class when computing
|
265 |
+
the metrics. By default, `estimators.classes_[1]` is
|
266 |
+
considered as the positive class.
|
267 |
+
|
268 |
+
Returns
|
269 |
+
-------
|
270 |
+
y_pred : ndarray of shape (n_samples,)
|
271 |
+
Target scores calculated from the provided response_method
|
272 |
+
and pos_label.
|
273 |
+
|
274 |
+
pos_label : int, float, bool or str
|
275 |
+
The class considered as the positive class when computing
|
276 |
+
the metrics.
|
277 |
+
"""
|
278 |
+
classification_error = "Expected 'estimator' to be a binary classifier."
|
279 |
+
|
280 |
+
check_is_fitted(estimator)
|
281 |
+
if not is_classifier(estimator):
|
282 |
+
raise ValueError(
|
283 |
+
classification_error + f" Got {estimator.__class__.__name__} instead."
|
284 |
+
)
|
285 |
+
elif len(estimator.classes_) != 2:
|
286 |
+
raise ValueError(
|
287 |
+
classification_error + f" Got {len(estimator.classes_)} classes instead."
|
288 |
+
)
|
289 |
+
|
290 |
+
if response_method == "auto":
|
291 |
+
response_method = ["predict_proba", "decision_function"]
|
292 |
+
|
293 |
+
return _get_response_values(
|
294 |
+
estimator,
|
295 |
+
X,
|
296 |
+
response_method,
|
297 |
+
pos_label=pos_label,
|
298 |
+
)
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_show_versions.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utility methods to print system info for debugging
|
3 |
+
|
4 |
+
adapted from :func:`pandas.show_versions`
|
5 |
+
"""
|
6 |
+
# License: BSD 3 clause
|
7 |
+
|
8 |
+
import platform
|
9 |
+
import sys
|
10 |
+
|
11 |
+
from .. import __version__
|
12 |
+
from ..utils.fixes import threadpool_info
|
13 |
+
from ._openmp_helpers import _openmp_parallelism_enabled
|
14 |
+
|
15 |
+
|
16 |
+
def _get_sys_info():
|
17 |
+
"""System information
|
18 |
+
|
19 |
+
Returns
|
20 |
+
-------
|
21 |
+
sys_info : dict
|
22 |
+
system and Python version information
|
23 |
+
|
24 |
+
"""
|
25 |
+
python = sys.version.replace("\n", " ")
|
26 |
+
|
27 |
+
blob = [
|
28 |
+
("python", python),
|
29 |
+
("executable", sys.executable),
|
30 |
+
("machine", platform.platform()),
|
31 |
+
]
|
32 |
+
|
33 |
+
return dict(blob)
|
34 |
+
|
35 |
+
|
36 |
+
def _get_deps_info():
|
37 |
+
"""Overview of the installed version of main dependencies
|
38 |
+
|
39 |
+
This function does not import the modules to collect the version numbers
|
40 |
+
but instead relies on standard Python package metadata.
|
41 |
+
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
deps_info: dict
|
45 |
+
version information on relevant Python libraries
|
46 |
+
|
47 |
+
"""
|
48 |
+
deps = [
|
49 |
+
"pip",
|
50 |
+
"setuptools",
|
51 |
+
"numpy",
|
52 |
+
"scipy",
|
53 |
+
"Cython",
|
54 |
+
"pandas",
|
55 |
+
"matplotlib",
|
56 |
+
"joblib",
|
57 |
+
"threadpoolctl",
|
58 |
+
]
|
59 |
+
|
60 |
+
deps_info = {
|
61 |
+
"sklearn": __version__,
|
62 |
+
}
|
63 |
+
|
64 |
+
from importlib.metadata import PackageNotFoundError, version
|
65 |
+
|
66 |
+
for modname in deps:
|
67 |
+
try:
|
68 |
+
deps_info[modname] = version(modname)
|
69 |
+
except PackageNotFoundError:
|
70 |
+
deps_info[modname] = None
|
71 |
+
return deps_info
|
72 |
+
|
73 |
+
|
74 |
+
def show_versions():
|
75 |
+
"""Print useful debugging information"
|
76 |
+
|
77 |
+
.. versionadded:: 0.20
|
78 |
+
|
79 |
+
Examples
|
80 |
+
--------
|
81 |
+
>>> from sklearn import show_versions
|
82 |
+
>>> show_versions() # doctest: +SKIP
|
83 |
+
"""
|
84 |
+
|
85 |
+
sys_info = _get_sys_info()
|
86 |
+
deps_info = _get_deps_info()
|
87 |
+
|
88 |
+
print("\nSystem:")
|
89 |
+
for k, stat in sys_info.items():
|
90 |
+
print("{k:>10}: {stat}".format(k=k, stat=stat))
|
91 |
+
|
92 |
+
print("\nPython dependencies:")
|
93 |
+
for k, stat in deps_info.items():
|
94 |
+
print("{k:>13}: {stat}".format(k=k, stat=stat))
|
95 |
+
|
96 |
+
print(
|
97 |
+
"\n{k}: {stat}".format(
|
98 |
+
k="Built with OpenMP", stat=_openmp_parallelism_enabled()
|
99 |
+
)
|
100 |
+
)
|
101 |
+
|
102 |
+
# show threadpoolctl results
|
103 |
+
threadpool_results = threadpool_info()
|
104 |
+
if threadpool_results:
|
105 |
+
print()
|
106 |
+
print("threadpoolctl info:")
|
107 |
+
|
108 |
+
for i, result in enumerate(threadpool_results):
|
109 |
+
for key, val in result.items():
|
110 |
+
print(f"{key:>15}: {val}")
|
111 |
+
if i != len(threadpool_results) - 1:
|
112 |
+
print()
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_testing.py
ADDED
@@ -0,0 +1,1169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Testing utilities."""
|
2 |
+
|
3 |
+
# Copyright (c) 2011, 2012
|
4 |
+
# Authors: Pietro Berkes,
|
5 |
+
# Andreas Muller
|
6 |
+
# Mathieu Blondel
|
7 |
+
# Olivier Grisel
|
8 |
+
# Arnaud Joly
|
9 |
+
# Denis Engemann
|
10 |
+
# Giorgio Patrini
|
11 |
+
# Thierry Guillemot
|
12 |
+
# License: BSD 3 clause
|
13 |
+
import atexit
|
14 |
+
import contextlib
|
15 |
+
import functools
|
16 |
+
import importlib
|
17 |
+
import inspect
|
18 |
+
import os
|
19 |
+
import os.path as op
|
20 |
+
import re
|
21 |
+
import shutil
|
22 |
+
import sys
|
23 |
+
import tempfile
|
24 |
+
import unittest
|
25 |
+
import warnings
|
26 |
+
from collections.abc import Iterable
|
27 |
+
from dataclasses import dataclass
|
28 |
+
from functools import wraps
|
29 |
+
from inspect import signature
|
30 |
+
from subprocess import STDOUT, CalledProcessError, TimeoutExpired, check_output
|
31 |
+
from unittest import TestCase
|
32 |
+
|
33 |
+
import joblib
|
34 |
+
import numpy as np
|
35 |
+
import scipy as sp
|
36 |
+
from numpy.testing import assert_allclose as np_assert_allclose
|
37 |
+
from numpy.testing import (
|
38 |
+
assert_almost_equal,
|
39 |
+
assert_approx_equal,
|
40 |
+
assert_array_almost_equal,
|
41 |
+
assert_array_equal,
|
42 |
+
assert_array_less,
|
43 |
+
assert_no_warnings,
|
44 |
+
)
|
45 |
+
|
46 |
+
import sklearn
|
47 |
+
from sklearn.utils import (
|
48 |
+
_IS_32BIT,
|
49 |
+
IS_PYPY,
|
50 |
+
_in_unstable_openblas_configuration,
|
51 |
+
)
|
52 |
+
from sklearn.utils._array_api import _check_array_api_dispatch
|
53 |
+
from sklearn.utils.fixes import VisibleDeprecationWarning, parse_version, sp_version
|
54 |
+
from sklearn.utils.multiclass import check_classification_targets
|
55 |
+
from sklearn.utils.validation import (
|
56 |
+
check_array,
|
57 |
+
check_is_fitted,
|
58 |
+
check_X_y,
|
59 |
+
)
|
60 |
+
|
61 |
+
__all__ = [
|
62 |
+
"assert_raises",
|
63 |
+
"assert_raises_regexp",
|
64 |
+
"assert_array_equal",
|
65 |
+
"assert_almost_equal",
|
66 |
+
"assert_array_almost_equal",
|
67 |
+
"assert_array_less",
|
68 |
+
"assert_approx_equal",
|
69 |
+
"assert_allclose",
|
70 |
+
"assert_run_python_script_without_output",
|
71 |
+
"assert_no_warnings",
|
72 |
+
"SkipTest",
|
73 |
+
]
|
74 |
+
|
75 |
+
_dummy = TestCase("__init__")
|
76 |
+
assert_raises = _dummy.assertRaises
|
77 |
+
SkipTest = unittest.case.SkipTest
|
78 |
+
assert_dict_equal = _dummy.assertDictEqual
|
79 |
+
|
80 |
+
assert_raises_regex = _dummy.assertRaisesRegex
|
81 |
+
# assert_raises_regexp is deprecated in Python 3.4 in favor of
|
82 |
+
# assert_raises_regex but lets keep the backward compat in scikit-learn with
|
83 |
+
# the old name for now
|
84 |
+
assert_raises_regexp = assert_raises_regex
|
85 |
+
|
86 |
+
|
87 |
+
def ignore_warnings(obj=None, category=Warning):
|
88 |
+
"""Context manager and decorator to ignore warnings.
|
89 |
+
|
90 |
+
Note: Using this (in both variants) will clear all warnings
|
91 |
+
from all python modules loaded. In case you need to test
|
92 |
+
cross-module-warning-logging, this is not your tool of choice.
|
93 |
+
|
94 |
+
Parameters
|
95 |
+
----------
|
96 |
+
obj : callable, default=None
|
97 |
+
callable where you want to ignore the warnings.
|
98 |
+
category : warning class, default=Warning
|
99 |
+
The category to filter. If Warning, all categories will be muted.
|
100 |
+
|
101 |
+
Examples
|
102 |
+
--------
|
103 |
+
>>> import warnings
|
104 |
+
>>> from sklearn.utils._testing import ignore_warnings
|
105 |
+
>>> with ignore_warnings():
|
106 |
+
... warnings.warn('buhuhuhu')
|
107 |
+
|
108 |
+
>>> def nasty_warn():
|
109 |
+
... warnings.warn('buhuhuhu')
|
110 |
+
... print(42)
|
111 |
+
|
112 |
+
>>> ignore_warnings(nasty_warn)()
|
113 |
+
42
|
114 |
+
"""
|
115 |
+
if isinstance(obj, type) and issubclass(obj, Warning):
|
116 |
+
# Avoid common pitfall of passing category as the first positional
|
117 |
+
# argument which result in the test not being run
|
118 |
+
warning_name = obj.__name__
|
119 |
+
raise ValueError(
|
120 |
+
"'obj' should be a callable where you want to ignore warnings. "
|
121 |
+
"You passed a warning class instead: 'obj={warning_name}'. "
|
122 |
+
"If you want to pass a warning class to ignore_warnings, "
|
123 |
+
"you should use 'category={warning_name}'".format(warning_name=warning_name)
|
124 |
+
)
|
125 |
+
elif callable(obj):
|
126 |
+
return _IgnoreWarnings(category=category)(obj)
|
127 |
+
else:
|
128 |
+
return _IgnoreWarnings(category=category)
|
129 |
+
|
130 |
+
|
131 |
+
class _IgnoreWarnings:
|
132 |
+
"""Improved and simplified Python warnings context manager and decorator.
|
133 |
+
|
134 |
+
This class allows the user to ignore the warnings raised by a function.
|
135 |
+
Copied from Python 2.7.5 and modified as required.
|
136 |
+
|
137 |
+
Parameters
|
138 |
+
----------
|
139 |
+
category : tuple of warning class, default=Warning
|
140 |
+
The category to filter. By default, all the categories will be muted.
|
141 |
+
|
142 |
+
"""
|
143 |
+
|
144 |
+
def __init__(self, category):
|
145 |
+
self._record = True
|
146 |
+
self._module = sys.modules["warnings"]
|
147 |
+
self._entered = False
|
148 |
+
self.log = []
|
149 |
+
self.category = category
|
150 |
+
|
151 |
+
def __call__(self, fn):
|
152 |
+
"""Decorator to catch and hide warnings without visual nesting."""
|
153 |
+
|
154 |
+
@wraps(fn)
|
155 |
+
def wrapper(*args, **kwargs):
|
156 |
+
with warnings.catch_warnings():
|
157 |
+
warnings.simplefilter("ignore", self.category)
|
158 |
+
return fn(*args, **kwargs)
|
159 |
+
|
160 |
+
return wrapper
|
161 |
+
|
162 |
+
def __repr__(self):
|
163 |
+
args = []
|
164 |
+
if self._record:
|
165 |
+
args.append("record=True")
|
166 |
+
if self._module is not sys.modules["warnings"]:
|
167 |
+
args.append("module=%r" % self._module)
|
168 |
+
name = type(self).__name__
|
169 |
+
return "%s(%s)" % (name, ", ".join(args))
|
170 |
+
|
171 |
+
def __enter__(self):
|
172 |
+
if self._entered:
|
173 |
+
raise RuntimeError("Cannot enter %r twice" % self)
|
174 |
+
self._entered = True
|
175 |
+
self._filters = self._module.filters
|
176 |
+
self._module.filters = self._filters[:]
|
177 |
+
self._showwarning = self._module.showwarning
|
178 |
+
warnings.simplefilter("ignore", self.category)
|
179 |
+
|
180 |
+
def __exit__(self, *exc_info):
|
181 |
+
if not self._entered:
|
182 |
+
raise RuntimeError("Cannot exit %r without entering first" % self)
|
183 |
+
self._module.filters = self._filters
|
184 |
+
self._module.showwarning = self._showwarning
|
185 |
+
self.log[:] = []
|
186 |
+
|
187 |
+
|
188 |
+
def assert_raise_message(exceptions, message, function, *args, **kwargs):
|
189 |
+
"""Helper function to test the message raised in an exception.
|
190 |
+
|
191 |
+
Given an exception, a callable to raise the exception, and
|
192 |
+
a message string, tests that the correct exception is raised and
|
193 |
+
that the message is a substring of the error thrown. Used to test
|
194 |
+
that the specific message thrown during an exception is correct.
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
exceptions : exception or tuple of exception
|
199 |
+
An Exception object.
|
200 |
+
|
201 |
+
message : str
|
202 |
+
The error message or a substring of the error message.
|
203 |
+
|
204 |
+
function : callable
|
205 |
+
Callable object to raise error.
|
206 |
+
|
207 |
+
*args : the positional arguments to `function`.
|
208 |
+
|
209 |
+
**kwargs : the keyword arguments to `function`.
|
210 |
+
"""
|
211 |
+
try:
|
212 |
+
function(*args, **kwargs)
|
213 |
+
except exceptions as e:
|
214 |
+
error_message = str(e)
|
215 |
+
if message not in error_message:
|
216 |
+
raise AssertionError(
|
217 |
+
"Error message does not include the expected"
|
218 |
+
" string: %r. Observed error message: %r" % (message, error_message)
|
219 |
+
)
|
220 |
+
else:
|
221 |
+
# concatenate exception names
|
222 |
+
if isinstance(exceptions, tuple):
|
223 |
+
names = " or ".join(e.__name__ for e in exceptions)
|
224 |
+
else:
|
225 |
+
names = exceptions.__name__
|
226 |
+
|
227 |
+
raise AssertionError("%s not raised by %s" % (names, function.__name__))
|
228 |
+
|
229 |
+
|
230 |
+
def assert_allclose(
|
231 |
+
actual, desired, rtol=None, atol=0.0, equal_nan=True, err_msg="", verbose=True
|
232 |
+
):
|
233 |
+
"""dtype-aware variant of numpy.testing.assert_allclose
|
234 |
+
|
235 |
+
This variant introspects the least precise floating point dtype
|
236 |
+
in the input argument and automatically sets the relative tolerance
|
237 |
+
parameter to 1e-4 float32 and use 1e-7 otherwise (typically float64
|
238 |
+
in scikit-learn).
|
239 |
+
|
240 |
+
`atol` is always left to 0. by default. It should be adjusted manually
|
241 |
+
to an assertion-specific value in case there are null values expected
|
242 |
+
in `desired`.
|
243 |
+
|
244 |
+
The aggregate tolerance is `atol + rtol * abs(desired)`.
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
actual : array_like
|
249 |
+
Array obtained.
|
250 |
+
desired : array_like
|
251 |
+
Array desired.
|
252 |
+
rtol : float, optional, default=None
|
253 |
+
Relative tolerance.
|
254 |
+
If None, it is set based on the provided arrays' dtypes.
|
255 |
+
atol : float, optional, default=0.
|
256 |
+
Absolute tolerance.
|
257 |
+
equal_nan : bool, optional, default=True
|
258 |
+
If True, NaNs will compare equal.
|
259 |
+
err_msg : str, optional, default=''
|
260 |
+
The error message to be printed in case of failure.
|
261 |
+
verbose : bool, optional, default=True
|
262 |
+
If True, the conflicting values are appended to the error message.
|
263 |
+
|
264 |
+
Raises
|
265 |
+
------
|
266 |
+
AssertionError
|
267 |
+
If actual and desired are not equal up to specified precision.
|
268 |
+
|
269 |
+
See Also
|
270 |
+
--------
|
271 |
+
numpy.testing.assert_allclose
|
272 |
+
|
273 |
+
Examples
|
274 |
+
--------
|
275 |
+
>>> import numpy as np
|
276 |
+
>>> from sklearn.utils._testing import assert_allclose
|
277 |
+
>>> x = [1e-5, 1e-3, 1e-1]
|
278 |
+
>>> y = np.arccos(np.cos(x))
|
279 |
+
>>> assert_allclose(x, y, rtol=1e-5, atol=0)
|
280 |
+
>>> a = np.full(shape=10, fill_value=1e-5, dtype=np.float32)
|
281 |
+
>>> assert_allclose(a, 1e-5)
|
282 |
+
"""
|
283 |
+
dtypes = []
|
284 |
+
|
285 |
+
actual, desired = np.asanyarray(actual), np.asanyarray(desired)
|
286 |
+
dtypes = [actual.dtype, desired.dtype]
|
287 |
+
|
288 |
+
if rtol is None:
|
289 |
+
rtols = [1e-4 if dtype == np.float32 else 1e-7 for dtype in dtypes]
|
290 |
+
rtol = max(rtols)
|
291 |
+
|
292 |
+
np_assert_allclose(
|
293 |
+
actual,
|
294 |
+
desired,
|
295 |
+
rtol=rtol,
|
296 |
+
atol=atol,
|
297 |
+
equal_nan=equal_nan,
|
298 |
+
err_msg=err_msg,
|
299 |
+
verbose=verbose,
|
300 |
+
)
|
301 |
+
|
302 |
+
|
303 |
+
def assert_allclose_dense_sparse(x, y, rtol=1e-07, atol=1e-9, err_msg=""):
|
304 |
+
"""Assert allclose for sparse and dense data.
|
305 |
+
|
306 |
+
Both x and y need to be either sparse or dense, they
|
307 |
+
can't be mixed.
|
308 |
+
|
309 |
+
Parameters
|
310 |
+
----------
|
311 |
+
x : {array-like, sparse matrix}
|
312 |
+
First array to compare.
|
313 |
+
|
314 |
+
y : {array-like, sparse matrix}
|
315 |
+
Second array to compare.
|
316 |
+
|
317 |
+
rtol : float, default=1e-07
|
318 |
+
relative tolerance; see numpy.allclose.
|
319 |
+
|
320 |
+
atol : float, default=1e-9
|
321 |
+
absolute tolerance; see numpy.allclose. Note that the default here is
|
322 |
+
more tolerant than the default for numpy.testing.assert_allclose, where
|
323 |
+
atol=0.
|
324 |
+
|
325 |
+
err_msg : str, default=''
|
326 |
+
Error message to raise.
|
327 |
+
"""
|
328 |
+
if sp.sparse.issparse(x) and sp.sparse.issparse(y):
|
329 |
+
x = x.tocsr()
|
330 |
+
y = y.tocsr()
|
331 |
+
x.sum_duplicates()
|
332 |
+
y.sum_duplicates()
|
333 |
+
assert_array_equal(x.indices, y.indices, err_msg=err_msg)
|
334 |
+
assert_array_equal(x.indptr, y.indptr, err_msg=err_msg)
|
335 |
+
assert_allclose(x.data, y.data, rtol=rtol, atol=atol, err_msg=err_msg)
|
336 |
+
elif not sp.sparse.issparse(x) and not sp.sparse.issparse(y):
|
337 |
+
# both dense
|
338 |
+
assert_allclose(x, y, rtol=rtol, atol=atol, err_msg=err_msg)
|
339 |
+
else:
|
340 |
+
raise ValueError(
|
341 |
+
"Can only compare two sparse matrices, not a sparse matrix and an array."
|
342 |
+
)
|
343 |
+
|
344 |
+
|
345 |
+
def set_random_state(estimator, random_state=0):
|
346 |
+
"""Set random state of an estimator if it has the `random_state` param.
|
347 |
+
|
348 |
+
Parameters
|
349 |
+
----------
|
350 |
+
estimator : object
|
351 |
+
The estimator.
|
352 |
+
random_state : int, RandomState instance or None, default=0
|
353 |
+
Pseudo random number generator state.
|
354 |
+
Pass an int for reproducible results across multiple function calls.
|
355 |
+
See :term:`Glossary <random_state>`.
|
356 |
+
"""
|
357 |
+
if "random_state" in estimator.get_params():
|
358 |
+
estimator.set_params(random_state=random_state)
|
359 |
+
|
360 |
+
|
361 |
+
try:
|
362 |
+
_check_array_api_dispatch(True)
|
363 |
+
ARRAY_API_COMPAT_FUNCTIONAL = True
|
364 |
+
except ImportError:
|
365 |
+
ARRAY_API_COMPAT_FUNCTIONAL = False
|
366 |
+
|
367 |
+
try:
|
368 |
+
import pytest
|
369 |
+
|
370 |
+
skip_if_32bit = pytest.mark.skipif(_IS_32BIT, reason="skipped on 32bit platforms")
|
371 |
+
fails_if_pypy = pytest.mark.xfail(IS_PYPY, reason="not compatible with PyPy")
|
372 |
+
fails_if_unstable_openblas = pytest.mark.xfail(
|
373 |
+
_in_unstable_openblas_configuration(),
|
374 |
+
reason="OpenBLAS is unstable for this configuration",
|
375 |
+
)
|
376 |
+
skip_if_no_parallel = pytest.mark.skipif(
|
377 |
+
not joblib.parallel.mp, reason="joblib is in serial mode"
|
378 |
+
)
|
379 |
+
skip_if_array_api_compat_not_configured = pytest.mark.skipif(
|
380 |
+
not ARRAY_API_COMPAT_FUNCTIONAL,
|
381 |
+
reason="requires array_api_compat installed and a new enough version of NumPy",
|
382 |
+
)
|
383 |
+
|
384 |
+
# Decorator for tests involving both BLAS calls and multiprocessing.
|
385 |
+
#
|
386 |
+
# Under POSIX (e.g. Linux or OSX), using multiprocessing in conjunction
|
387 |
+
# with some implementation of BLAS (or other libraries that manage an
|
388 |
+
# internal posix thread pool) can cause a crash or a freeze of the Python
|
389 |
+
# process.
|
390 |
+
#
|
391 |
+
# In practice all known packaged distributions (from Linux distros or
|
392 |
+
# Anaconda) of BLAS under Linux seems to be safe. So we this problem seems
|
393 |
+
# to only impact OSX users.
|
394 |
+
#
|
395 |
+
# This wrapper makes it possible to skip tests that can possibly cause
|
396 |
+
# this crash under OS X with.
|
397 |
+
#
|
398 |
+
# Under Python 3.4+ it is possible to use the `forkserver` start method
|
399 |
+
# for multiprocessing to avoid this issue. However it can cause pickling
|
400 |
+
# errors on interactively defined functions. It therefore not enabled by
|
401 |
+
# default.
|
402 |
+
|
403 |
+
if_safe_multiprocessing_with_blas = pytest.mark.skipif(
|
404 |
+
sys.platform == "darwin", reason="Possible multi-process bug with some BLAS"
|
405 |
+
)
|
406 |
+
except ImportError:
|
407 |
+
pass
|
408 |
+
|
409 |
+
|
410 |
+
def check_skip_network():
|
411 |
+
if int(os.environ.get("SKLEARN_SKIP_NETWORK_TESTS", 0)):
|
412 |
+
raise SkipTest("Text tutorial requires large dataset download")
|
413 |
+
|
414 |
+
|
415 |
+
def _delete_folder(folder_path, warn=False):
|
416 |
+
"""Utility function to cleanup a temporary folder if still existing.
|
417 |
+
|
418 |
+
Copy from joblib.pool (for independence).
|
419 |
+
"""
|
420 |
+
try:
|
421 |
+
if os.path.exists(folder_path):
|
422 |
+
# This can fail under windows,
|
423 |
+
# but will succeed when called by atexit
|
424 |
+
shutil.rmtree(folder_path)
|
425 |
+
except OSError:
|
426 |
+
if warn:
|
427 |
+
warnings.warn("Could not delete temporary folder %s" % folder_path)
|
428 |
+
|
429 |
+
|
430 |
+
class TempMemmap:
|
431 |
+
"""
|
432 |
+
Parameters
|
433 |
+
----------
|
434 |
+
data
|
435 |
+
mmap_mode : str, default='r'
|
436 |
+
"""
|
437 |
+
|
438 |
+
def __init__(self, data, mmap_mode="r"):
|
439 |
+
self.mmap_mode = mmap_mode
|
440 |
+
self.data = data
|
441 |
+
|
442 |
+
def __enter__(self):
|
443 |
+
data_read_only, self.temp_folder = create_memmap_backed_data(
|
444 |
+
self.data, mmap_mode=self.mmap_mode, return_folder=True
|
445 |
+
)
|
446 |
+
return data_read_only
|
447 |
+
|
448 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
449 |
+
_delete_folder(self.temp_folder)
|
450 |
+
|
451 |
+
|
452 |
+
def create_memmap_backed_data(data, mmap_mode="r", return_folder=False):
|
453 |
+
"""
|
454 |
+
Parameters
|
455 |
+
----------
|
456 |
+
data
|
457 |
+
mmap_mode : str, default='r'
|
458 |
+
return_folder : bool, default=False
|
459 |
+
"""
|
460 |
+
temp_folder = tempfile.mkdtemp(prefix="sklearn_testing_")
|
461 |
+
atexit.register(functools.partial(_delete_folder, temp_folder, warn=True))
|
462 |
+
filename = op.join(temp_folder, "data.pkl")
|
463 |
+
joblib.dump(data, filename)
|
464 |
+
memmap_backed_data = joblib.load(filename, mmap_mode=mmap_mode)
|
465 |
+
result = (
|
466 |
+
memmap_backed_data if not return_folder else (memmap_backed_data, temp_folder)
|
467 |
+
)
|
468 |
+
return result
|
469 |
+
|
470 |
+
|
471 |
+
# Utils to test docstrings
|
472 |
+
|
473 |
+
|
474 |
+
def _get_args(function, varargs=False):
|
475 |
+
"""Helper to get function arguments."""
|
476 |
+
|
477 |
+
try:
|
478 |
+
params = signature(function).parameters
|
479 |
+
except ValueError:
|
480 |
+
# Error on builtin C function
|
481 |
+
return []
|
482 |
+
args = [
|
483 |
+
key
|
484 |
+
for key, param in params.items()
|
485 |
+
if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)
|
486 |
+
]
|
487 |
+
if varargs:
|
488 |
+
varargs = [
|
489 |
+
param.name
|
490 |
+
for param in params.values()
|
491 |
+
if param.kind == param.VAR_POSITIONAL
|
492 |
+
]
|
493 |
+
if len(varargs) == 0:
|
494 |
+
varargs = None
|
495 |
+
return args, varargs
|
496 |
+
else:
|
497 |
+
return args
|
498 |
+
|
499 |
+
|
500 |
+
def _get_func_name(func):
|
501 |
+
"""Get function full name.
|
502 |
+
|
503 |
+
Parameters
|
504 |
+
----------
|
505 |
+
func : callable
|
506 |
+
The function object.
|
507 |
+
|
508 |
+
Returns
|
509 |
+
-------
|
510 |
+
name : str
|
511 |
+
The function name.
|
512 |
+
"""
|
513 |
+
parts = []
|
514 |
+
module = inspect.getmodule(func)
|
515 |
+
if module:
|
516 |
+
parts.append(module.__name__)
|
517 |
+
|
518 |
+
qualname = func.__qualname__
|
519 |
+
if qualname != func.__name__:
|
520 |
+
parts.append(qualname[: qualname.find(".")])
|
521 |
+
|
522 |
+
parts.append(func.__name__)
|
523 |
+
return ".".join(parts)
|
524 |
+
|
525 |
+
|
526 |
+
def check_docstring_parameters(func, doc=None, ignore=None):
|
527 |
+
"""Helper to check docstring.
|
528 |
+
|
529 |
+
Parameters
|
530 |
+
----------
|
531 |
+
func : callable
|
532 |
+
The function object to test.
|
533 |
+
doc : str, default=None
|
534 |
+
Docstring if it is passed manually to the test.
|
535 |
+
ignore : list, default=None
|
536 |
+
Parameters to ignore.
|
537 |
+
|
538 |
+
Returns
|
539 |
+
-------
|
540 |
+
incorrect : list
|
541 |
+
A list of string describing the incorrect results.
|
542 |
+
"""
|
543 |
+
from numpydoc import docscrape
|
544 |
+
|
545 |
+
incorrect = []
|
546 |
+
ignore = [] if ignore is None else ignore
|
547 |
+
|
548 |
+
func_name = _get_func_name(func)
|
549 |
+
if not func_name.startswith("sklearn.") or func_name.startswith(
|
550 |
+
"sklearn.externals"
|
551 |
+
):
|
552 |
+
return incorrect
|
553 |
+
# Don't check docstring for property-functions
|
554 |
+
if inspect.isdatadescriptor(func):
|
555 |
+
return incorrect
|
556 |
+
# Don't check docstring for setup / teardown pytest functions
|
557 |
+
if func_name.split(".")[-1] in ("setup_module", "teardown_module"):
|
558 |
+
return incorrect
|
559 |
+
# Dont check estimator_checks module
|
560 |
+
if func_name.split(".")[2] == "estimator_checks":
|
561 |
+
return incorrect
|
562 |
+
# Get the arguments from the function signature
|
563 |
+
param_signature = list(filter(lambda x: x not in ignore, _get_args(func)))
|
564 |
+
# drop self
|
565 |
+
if len(param_signature) > 0 and param_signature[0] == "self":
|
566 |
+
param_signature.remove("self")
|
567 |
+
|
568 |
+
# Analyze function's docstring
|
569 |
+
if doc is None:
|
570 |
+
records = []
|
571 |
+
with warnings.catch_warnings(record=True):
|
572 |
+
warnings.simplefilter("error", UserWarning)
|
573 |
+
try:
|
574 |
+
doc = docscrape.FunctionDoc(func)
|
575 |
+
except UserWarning as exp:
|
576 |
+
if "potentially wrong underline length" in str(exp):
|
577 |
+
# Catch warning raised as of numpydoc 1.2 when
|
578 |
+
# the underline length for a section of a docstring
|
579 |
+
# is not consistent.
|
580 |
+
message = str(exp).split("\n")[:3]
|
581 |
+
incorrect += [f"In function: {func_name}"] + message
|
582 |
+
return incorrect
|
583 |
+
records.append(str(exp))
|
584 |
+
except Exception as exp:
|
585 |
+
incorrect += [func_name + " parsing error: " + str(exp)]
|
586 |
+
return incorrect
|
587 |
+
if len(records):
|
588 |
+
raise RuntimeError("Error for %s:\n%s" % (func_name, records[0]))
|
589 |
+
|
590 |
+
param_docs = []
|
591 |
+
for name, type_definition, param_doc in doc["Parameters"]:
|
592 |
+
# Type hints are empty only if parameter name ended with :
|
593 |
+
if not type_definition.strip():
|
594 |
+
if ":" in name and name[: name.index(":")][-1:].strip():
|
595 |
+
incorrect += [
|
596 |
+
func_name
|
597 |
+
+ " There was no space between the param name and colon (%r)" % name
|
598 |
+
]
|
599 |
+
elif name.rstrip().endswith(":"):
|
600 |
+
incorrect += [
|
601 |
+
func_name
|
602 |
+
+ " Parameter %r has an empty type spec. Remove the colon"
|
603 |
+
% (name.lstrip())
|
604 |
+
]
|
605 |
+
|
606 |
+
# Create a list of parameters to compare with the parameters gotten
|
607 |
+
# from the func signature
|
608 |
+
if "*" not in name:
|
609 |
+
param_docs.append(name.split(":")[0].strip("` "))
|
610 |
+
|
611 |
+
# If one of the docstring's parameters had an error then return that
|
612 |
+
# incorrect message
|
613 |
+
if len(incorrect) > 0:
|
614 |
+
return incorrect
|
615 |
+
|
616 |
+
# Remove the parameters that should be ignored from list
|
617 |
+
param_docs = list(filter(lambda x: x not in ignore, param_docs))
|
618 |
+
|
619 |
+
# The following is derived from pytest, Copyright (c) 2004-2017 Holger
|
620 |
+
# Krekel and others, Licensed under MIT License. See
|
621 |
+
# https://github.com/pytest-dev/pytest
|
622 |
+
|
623 |
+
message = []
|
624 |
+
for i in range(min(len(param_docs), len(param_signature))):
|
625 |
+
if param_signature[i] != param_docs[i]:
|
626 |
+
message += [
|
627 |
+
"There's a parameter name mismatch in function"
|
628 |
+
" docstring w.r.t. function signature, at index %s"
|
629 |
+
" diff: %r != %r" % (i, param_signature[i], param_docs[i])
|
630 |
+
]
|
631 |
+
break
|
632 |
+
if len(param_signature) > len(param_docs):
|
633 |
+
message += [
|
634 |
+
"Parameters in function docstring have less items w.r.t."
|
635 |
+
" function signature, first missing item: %s"
|
636 |
+
% param_signature[len(param_docs)]
|
637 |
+
]
|
638 |
+
|
639 |
+
elif len(param_signature) < len(param_docs):
|
640 |
+
message += [
|
641 |
+
"Parameters in function docstring have more items w.r.t."
|
642 |
+
" function signature, first extra item: %s"
|
643 |
+
% param_docs[len(param_signature)]
|
644 |
+
]
|
645 |
+
|
646 |
+
# If there wasn't any difference in the parameters themselves between
|
647 |
+
# docstring and signature including having the same length then return
|
648 |
+
# empty list
|
649 |
+
if len(message) == 0:
|
650 |
+
return []
|
651 |
+
|
652 |
+
import difflib
|
653 |
+
import pprint
|
654 |
+
|
655 |
+
param_docs_formatted = pprint.pformat(param_docs).splitlines()
|
656 |
+
param_signature_formatted = pprint.pformat(param_signature).splitlines()
|
657 |
+
|
658 |
+
message += ["Full diff:"]
|
659 |
+
|
660 |
+
message.extend(
|
661 |
+
line.strip()
|
662 |
+
for line in difflib.ndiff(param_signature_formatted, param_docs_formatted)
|
663 |
+
)
|
664 |
+
|
665 |
+
incorrect.extend(message)
|
666 |
+
|
667 |
+
# Prepend function name
|
668 |
+
incorrect = ["In function: " + func_name] + incorrect
|
669 |
+
|
670 |
+
return incorrect
|
671 |
+
|
672 |
+
|
673 |
+
def assert_run_python_script_without_output(source_code, pattern=".+", timeout=60):
|
674 |
+
"""Utility to check assertions in an independent Python subprocess.
|
675 |
+
|
676 |
+
The script provided in the source code should return 0 and the stdtout +
|
677 |
+
stderr should not match the pattern `pattern`.
|
678 |
+
|
679 |
+
This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle
|
680 |
+
|
681 |
+
Parameters
|
682 |
+
----------
|
683 |
+
source_code : str
|
684 |
+
The Python source code to execute.
|
685 |
+
pattern : str
|
686 |
+
Pattern that the stdout + stderr should not match. By default, unless
|
687 |
+
stdout + stderr are both empty, an error will be raised.
|
688 |
+
timeout : int, default=60
|
689 |
+
Time in seconds before timeout.
|
690 |
+
"""
|
691 |
+
fd, source_file = tempfile.mkstemp(suffix="_src_test_sklearn.py")
|
692 |
+
os.close(fd)
|
693 |
+
try:
|
694 |
+
with open(source_file, "wb") as f:
|
695 |
+
f.write(source_code.encode("utf-8"))
|
696 |
+
cmd = [sys.executable, source_file]
|
697 |
+
cwd = op.normpath(op.join(op.dirname(sklearn.__file__), ".."))
|
698 |
+
env = os.environ.copy()
|
699 |
+
try:
|
700 |
+
env["PYTHONPATH"] = os.pathsep.join([cwd, env["PYTHONPATH"]])
|
701 |
+
except KeyError:
|
702 |
+
env["PYTHONPATH"] = cwd
|
703 |
+
kwargs = {"cwd": cwd, "stderr": STDOUT, "env": env}
|
704 |
+
# If coverage is running, pass the config file to the subprocess
|
705 |
+
coverage_rc = os.environ.get("COVERAGE_PROCESS_START")
|
706 |
+
if coverage_rc:
|
707 |
+
kwargs["env"]["COVERAGE_PROCESS_START"] = coverage_rc
|
708 |
+
|
709 |
+
kwargs["timeout"] = timeout
|
710 |
+
try:
|
711 |
+
try:
|
712 |
+
out = check_output(cmd, **kwargs)
|
713 |
+
except CalledProcessError as e:
|
714 |
+
raise RuntimeError(
|
715 |
+
"script errored with output:\n%s" % e.output.decode("utf-8")
|
716 |
+
)
|
717 |
+
|
718 |
+
out = out.decode("utf-8")
|
719 |
+
if re.search(pattern, out):
|
720 |
+
if pattern == ".+":
|
721 |
+
expectation = "Expected no output"
|
722 |
+
else:
|
723 |
+
expectation = f"The output was not supposed to match {pattern!r}"
|
724 |
+
|
725 |
+
message = f"{expectation}, got the following output instead: {out!r}"
|
726 |
+
raise AssertionError(message)
|
727 |
+
except TimeoutExpired as e:
|
728 |
+
raise RuntimeError(
|
729 |
+
"script timeout, output so far:\n%s" % e.output.decode("utf-8")
|
730 |
+
)
|
731 |
+
finally:
|
732 |
+
os.unlink(source_file)
|
733 |
+
|
734 |
+
|
735 |
+
def _convert_container(
|
736 |
+
container,
|
737 |
+
constructor_name,
|
738 |
+
columns_name=None,
|
739 |
+
dtype=None,
|
740 |
+
minversion=None,
|
741 |
+
categorical_feature_names=None,
|
742 |
+
):
|
743 |
+
"""Convert a given container to a specific array-like with a dtype.
|
744 |
+
|
745 |
+
Parameters
|
746 |
+
----------
|
747 |
+
container : array-like
|
748 |
+
The container to convert.
|
749 |
+
constructor_name : {"list", "tuple", "array", "sparse", "dataframe", \
|
750 |
+
"series", "index", "slice", "sparse_csr", "sparse_csc"}
|
751 |
+
The type of the returned container.
|
752 |
+
columns_name : index or array-like, default=None
|
753 |
+
For pandas container supporting `columns_names`, it will affect
|
754 |
+
specific names.
|
755 |
+
dtype : dtype, default=None
|
756 |
+
Force the dtype of the container. Does not apply to `"slice"`
|
757 |
+
container.
|
758 |
+
minversion : str, default=None
|
759 |
+
Minimum version for package to install.
|
760 |
+
categorical_feature_names : list of str, default=None
|
761 |
+
List of column names to cast to categorical dtype.
|
762 |
+
|
763 |
+
Returns
|
764 |
+
-------
|
765 |
+
converted_container
|
766 |
+
"""
|
767 |
+
if constructor_name == "list":
|
768 |
+
if dtype is None:
|
769 |
+
return list(container)
|
770 |
+
else:
|
771 |
+
return np.asarray(container, dtype=dtype).tolist()
|
772 |
+
elif constructor_name == "tuple":
|
773 |
+
if dtype is None:
|
774 |
+
return tuple(container)
|
775 |
+
else:
|
776 |
+
return tuple(np.asarray(container, dtype=dtype).tolist())
|
777 |
+
elif constructor_name == "array":
|
778 |
+
return np.asarray(container, dtype=dtype)
|
779 |
+
elif constructor_name in ("pandas", "dataframe"):
|
780 |
+
pd = pytest.importorskip("pandas", minversion=minversion)
|
781 |
+
result = pd.DataFrame(container, columns=columns_name, dtype=dtype, copy=False)
|
782 |
+
if categorical_feature_names is not None:
|
783 |
+
for col_name in categorical_feature_names:
|
784 |
+
result[col_name] = result[col_name].astype("category")
|
785 |
+
return result
|
786 |
+
elif constructor_name == "pyarrow":
|
787 |
+
pa = pytest.importorskip("pyarrow", minversion=minversion)
|
788 |
+
array = np.asarray(container)
|
789 |
+
if columns_name is None:
|
790 |
+
columns_name = [f"col{i}" for i in range(array.shape[1])]
|
791 |
+
data = {name: array[:, i] for i, name in enumerate(columns_name)}
|
792 |
+
result = pa.Table.from_pydict(data)
|
793 |
+
if categorical_feature_names is not None:
|
794 |
+
for col_idx, col_name in enumerate(result.column_names):
|
795 |
+
if col_name in categorical_feature_names:
|
796 |
+
result = result.set_column(
|
797 |
+
col_idx, col_name, result.column(col_name).dictionary_encode()
|
798 |
+
)
|
799 |
+
return result
|
800 |
+
elif constructor_name == "polars":
|
801 |
+
pl = pytest.importorskip("polars", minversion=minversion)
|
802 |
+
result = pl.DataFrame(container, schema=columns_name, orient="row")
|
803 |
+
if categorical_feature_names is not None:
|
804 |
+
for col_name in categorical_feature_names:
|
805 |
+
result = result.with_columns(pl.col(col_name).cast(pl.Categorical))
|
806 |
+
return result
|
807 |
+
elif constructor_name == "series":
|
808 |
+
pd = pytest.importorskip("pandas", minversion=minversion)
|
809 |
+
return pd.Series(container, dtype=dtype)
|
810 |
+
elif constructor_name == "index":
|
811 |
+
pd = pytest.importorskip("pandas", minversion=minversion)
|
812 |
+
return pd.Index(container, dtype=dtype)
|
813 |
+
elif constructor_name == "slice":
|
814 |
+
return slice(container[0], container[1])
|
815 |
+
elif "sparse" in constructor_name:
|
816 |
+
if not sp.sparse.issparse(container):
|
817 |
+
# For scipy >= 1.13, sparse array constructed from 1d array may be
|
818 |
+
# 1d or raise an exception. To avoid this, we make sure that the
|
819 |
+
# input container is 2d. For more details, see
|
820 |
+
# https://github.com/scipy/scipy/pull/18530#issuecomment-1878005149
|
821 |
+
container = np.atleast_2d(container)
|
822 |
+
|
823 |
+
if "array" in constructor_name and sp_version < parse_version("1.8"):
|
824 |
+
raise ValueError(
|
825 |
+
f"{constructor_name} is only available with scipy>=1.8.0, got "
|
826 |
+
f"{sp_version}"
|
827 |
+
)
|
828 |
+
if constructor_name in ("sparse", "sparse_csr"):
|
829 |
+
# sparse and sparse_csr are equivalent for legacy reasons
|
830 |
+
return sp.sparse.csr_matrix(container, dtype=dtype)
|
831 |
+
elif constructor_name == "sparse_csr_array":
|
832 |
+
return sp.sparse.csr_array(container, dtype=dtype)
|
833 |
+
elif constructor_name == "sparse_csc":
|
834 |
+
return sp.sparse.csc_matrix(container, dtype=dtype)
|
835 |
+
elif constructor_name == "sparse_csc_array":
|
836 |
+
return sp.sparse.csc_array(container, dtype=dtype)
|
837 |
+
|
838 |
+
|
839 |
+
def raises(expected_exc_type, match=None, may_pass=False, err_msg=None):
|
840 |
+
"""Context manager to ensure exceptions are raised within a code block.
|
841 |
+
|
842 |
+
This is similar to and inspired from pytest.raises, but supports a few
|
843 |
+
other cases.
|
844 |
+
|
845 |
+
This is only intended to be used in estimator_checks.py where we don't
|
846 |
+
want to use pytest. In the rest of the code base, just use pytest.raises
|
847 |
+
instead.
|
848 |
+
|
849 |
+
Parameters
|
850 |
+
----------
|
851 |
+
excepted_exc_type : Exception or list of Exception
|
852 |
+
The exception that should be raised by the block. If a list, the block
|
853 |
+
should raise one of the exceptions.
|
854 |
+
match : str or list of str, default=None
|
855 |
+
A regex that the exception message should match. If a list, one of
|
856 |
+
the entries must match. If None, match isn't enforced.
|
857 |
+
may_pass : bool, default=False
|
858 |
+
If True, the block is allowed to not raise an exception. Useful in
|
859 |
+
cases where some estimators may support a feature but others must
|
860 |
+
fail with an appropriate error message. By default, the context
|
861 |
+
manager will raise an exception if the block does not raise an
|
862 |
+
exception.
|
863 |
+
err_msg : str, default=None
|
864 |
+
If the context manager fails (e.g. the block fails to raise the
|
865 |
+
proper exception, or fails to match), then an AssertionError is
|
866 |
+
raised with this message. By default, an AssertionError is raised
|
867 |
+
with a default error message (depends on the kind of failure). Use
|
868 |
+
this to indicate how users should fix their estimators to pass the
|
869 |
+
checks.
|
870 |
+
|
871 |
+
Attributes
|
872 |
+
----------
|
873 |
+
raised_and_matched : bool
|
874 |
+
True if an exception was raised and a match was found, False otherwise.
|
875 |
+
"""
|
876 |
+
return _Raises(expected_exc_type, match, may_pass, err_msg)
|
877 |
+
|
878 |
+
|
879 |
+
class _Raises(contextlib.AbstractContextManager):
|
880 |
+
# see raises() for parameters
|
881 |
+
def __init__(self, expected_exc_type, match, may_pass, err_msg):
|
882 |
+
self.expected_exc_types = (
|
883 |
+
expected_exc_type
|
884 |
+
if isinstance(expected_exc_type, Iterable)
|
885 |
+
else [expected_exc_type]
|
886 |
+
)
|
887 |
+
self.matches = [match] if isinstance(match, str) else match
|
888 |
+
self.may_pass = may_pass
|
889 |
+
self.err_msg = err_msg
|
890 |
+
self.raised_and_matched = False
|
891 |
+
|
892 |
+
def __exit__(self, exc_type, exc_value, _):
|
893 |
+
# see
|
894 |
+
# https://docs.python.org/2.5/whatsnew/pep-343.html#SECTION000910000000000000000
|
895 |
+
|
896 |
+
if exc_type is None: # No exception was raised in the block
|
897 |
+
if self.may_pass:
|
898 |
+
return True # CM is happy
|
899 |
+
else:
|
900 |
+
err_msg = self.err_msg or f"Did not raise: {self.expected_exc_types}"
|
901 |
+
raise AssertionError(err_msg)
|
902 |
+
|
903 |
+
if not any(
|
904 |
+
issubclass(exc_type, expected_type)
|
905 |
+
for expected_type in self.expected_exc_types
|
906 |
+
):
|
907 |
+
if self.err_msg is not None:
|
908 |
+
raise AssertionError(self.err_msg) from exc_value
|
909 |
+
else:
|
910 |
+
return False # will re-raise the original exception
|
911 |
+
|
912 |
+
if self.matches is not None:
|
913 |
+
err_msg = self.err_msg or (
|
914 |
+
"The error message should contain one of the following "
|
915 |
+
"patterns:\n{}\nGot {}".format("\n".join(self.matches), str(exc_value))
|
916 |
+
)
|
917 |
+
if not any(re.search(match, str(exc_value)) for match in self.matches):
|
918 |
+
raise AssertionError(err_msg) from exc_value
|
919 |
+
self.raised_and_matched = True
|
920 |
+
|
921 |
+
return True
|
922 |
+
|
923 |
+
|
924 |
+
class MinimalClassifier:
|
925 |
+
"""Minimal classifier implementation with inheriting from BaseEstimator.
|
926 |
+
|
927 |
+
This estimator should be tested with:
|
928 |
+
|
929 |
+
* `check_estimator` in `test_estimator_checks.py`;
|
930 |
+
* within a `Pipeline` in `test_pipeline.py`;
|
931 |
+
* within a `SearchCV` in `test_search.py`.
|
932 |
+
"""
|
933 |
+
|
934 |
+
_estimator_type = "classifier"
|
935 |
+
|
936 |
+
def __init__(self, param=None):
|
937 |
+
self.param = param
|
938 |
+
|
939 |
+
def get_params(self, deep=True):
|
940 |
+
return {"param": self.param}
|
941 |
+
|
942 |
+
def set_params(self, **params):
|
943 |
+
for key, value in params.items():
|
944 |
+
setattr(self, key, value)
|
945 |
+
return self
|
946 |
+
|
947 |
+
def fit(self, X, y):
|
948 |
+
X, y = check_X_y(X, y)
|
949 |
+
check_classification_targets(y)
|
950 |
+
self.classes_, counts = np.unique(y, return_counts=True)
|
951 |
+
self._most_frequent_class_idx = counts.argmax()
|
952 |
+
return self
|
953 |
+
|
954 |
+
def predict_proba(self, X):
|
955 |
+
check_is_fitted(self)
|
956 |
+
X = check_array(X)
|
957 |
+
proba_shape = (X.shape[0], self.classes_.size)
|
958 |
+
y_proba = np.zeros(shape=proba_shape, dtype=np.float64)
|
959 |
+
y_proba[:, self._most_frequent_class_idx] = 1.0
|
960 |
+
return y_proba
|
961 |
+
|
962 |
+
def predict(self, X):
|
963 |
+
y_proba = self.predict_proba(X)
|
964 |
+
y_pred = y_proba.argmax(axis=1)
|
965 |
+
return self.classes_[y_pred]
|
966 |
+
|
967 |
+
def score(self, X, y):
|
968 |
+
from sklearn.metrics import accuracy_score
|
969 |
+
|
970 |
+
return accuracy_score(y, self.predict(X))
|
971 |
+
|
972 |
+
|
973 |
+
class MinimalRegressor:
|
974 |
+
"""Minimal regressor implementation with inheriting from BaseEstimator.
|
975 |
+
|
976 |
+
This estimator should be tested with:
|
977 |
+
|
978 |
+
* `check_estimator` in `test_estimator_checks.py`;
|
979 |
+
* within a `Pipeline` in `test_pipeline.py`;
|
980 |
+
* within a `SearchCV` in `test_search.py`.
|
981 |
+
"""
|
982 |
+
|
983 |
+
_estimator_type = "regressor"
|
984 |
+
|
985 |
+
def __init__(self, param=None):
|
986 |
+
self.param = param
|
987 |
+
|
988 |
+
def get_params(self, deep=True):
|
989 |
+
return {"param": self.param}
|
990 |
+
|
991 |
+
def set_params(self, **params):
|
992 |
+
for key, value in params.items():
|
993 |
+
setattr(self, key, value)
|
994 |
+
return self
|
995 |
+
|
996 |
+
def fit(self, X, y):
|
997 |
+
X, y = check_X_y(X, y)
|
998 |
+
self.is_fitted_ = True
|
999 |
+
self._mean = np.mean(y)
|
1000 |
+
return self
|
1001 |
+
|
1002 |
+
def predict(self, X):
|
1003 |
+
check_is_fitted(self)
|
1004 |
+
X = check_array(X)
|
1005 |
+
return np.ones(shape=(X.shape[0],)) * self._mean
|
1006 |
+
|
1007 |
+
def score(self, X, y):
|
1008 |
+
from sklearn.metrics import r2_score
|
1009 |
+
|
1010 |
+
return r2_score(y, self.predict(X))
|
1011 |
+
|
1012 |
+
|
1013 |
+
class MinimalTransformer:
|
1014 |
+
"""Minimal transformer implementation with inheriting from
|
1015 |
+
BaseEstimator.
|
1016 |
+
|
1017 |
+
This estimator should be tested with:
|
1018 |
+
|
1019 |
+
* `check_estimator` in `test_estimator_checks.py`;
|
1020 |
+
* within a `Pipeline` in `test_pipeline.py`;
|
1021 |
+
* within a `SearchCV` in `test_search.py`.
|
1022 |
+
"""
|
1023 |
+
|
1024 |
+
def __init__(self, param=None):
|
1025 |
+
self.param = param
|
1026 |
+
|
1027 |
+
def get_params(self, deep=True):
|
1028 |
+
return {"param": self.param}
|
1029 |
+
|
1030 |
+
def set_params(self, **params):
|
1031 |
+
for key, value in params.items():
|
1032 |
+
setattr(self, key, value)
|
1033 |
+
return self
|
1034 |
+
|
1035 |
+
def fit(self, X, y=None):
|
1036 |
+
check_array(X)
|
1037 |
+
self.is_fitted_ = True
|
1038 |
+
return self
|
1039 |
+
|
1040 |
+
def transform(self, X, y=None):
|
1041 |
+
check_is_fitted(self)
|
1042 |
+
X = check_array(X)
|
1043 |
+
return X
|
1044 |
+
|
1045 |
+
def fit_transform(self, X, y=None):
|
1046 |
+
return self.fit(X, y).transform(X, y)
|
1047 |
+
|
1048 |
+
|
1049 |
+
def _array_api_for_tests(array_namespace, device):
|
1050 |
+
try:
|
1051 |
+
if array_namespace == "numpy.array_api":
|
1052 |
+
# FIXME: once it is not experimental anymore
|
1053 |
+
with ignore_warnings(category=UserWarning):
|
1054 |
+
# UserWarning: numpy.array_api submodule is still experimental.
|
1055 |
+
array_mod = importlib.import_module(array_namespace)
|
1056 |
+
else:
|
1057 |
+
array_mod = importlib.import_module(array_namespace)
|
1058 |
+
except ModuleNotFoundError:
|
1059 |
+
raise SkipTest(
|
1060 |
+
f"{array_namespace} is not installed: not checking array_api input"
|
1061 |
+
)
|
1062 |
+
try:
|
1063 |
+
import array_api_compat # noqa
|
1064 |
+
except ImportError:
|
1065 |
+
raise SkipTest(
|
1066 |
+
"array_api_compat is not installed: not checking array_api input"
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
# First create an array using the chosen array module and then get the
|
1070 |
+
# corresponding (compatibility wrapped) array namespace based on it.
|
1071 |
+
# This is because `cupy` is not the same as the compatibility wrapped
|
1072 |
+
# namespace of a CuPy array.
|
1073 |
+
xp = array_api_compat.get_namespace(array_mod.asarray(1))
|
1074 |
+
if (
|
1075 |
+
array_namespace == "torch"
|
1076 |
+
and device == "cuda"
|
1077 |
+
and not xp.backends.cuda.is_built()
|
1078 |
+
):
|
1079 |
+
raise SkipTest("PyTorch test requires cuda, which is not available")
|
1080 |
+
elif array_namespace == "torch" and device == "mps":
|
1081 |
+
if os.getenv("PYTORCH_ENABLE_MPS_FALLBACK") != "1":
|
1082 |
+
# For now we need PYTORCH_ENABLE_MPS_FALLBACK=1 for all estimators to work
|
1083 |
+
# when using the MPS device.
|
1084 |
+
raise SkipTest(
|
1085 |
+
"Skipping MPS device test because PYTORCH_ENABLE_MPS_FALLBACK is not "
|
1086 |
+
"set."
|
1087 |
+
)
|
1088 |
+
if not xp.backends.mps.is_built():
|
1089 |
+
raise SkipTest(
|
1090 |
+
"MPS is not available because the current PyTorch install was not "
|
1091 |
+
"built with MPS enabled."
|
1092 |
+
)
|
1093 |
+
elif array_namespace in {"cupy", "cupy.array_api"}: # pragma: nocover
|
1094 |
+
import cupy
|
1095 |
+
|
1096 |
+
if cupy.cuda.runtime.getDeviceCount() == 0:
|
1097 |
+
raise SkipTest("CuPy test requires cuda, which is not available")
|
1098 |
+
return xp
|
1099 |
+
|
1100 |
+
|
1101 |
+
def _get_warnings_filters_info_list():
|
1102 |
+
@dataclass
|
1103 |
+
class WarningInfo:
|
1104 |
+
action: "warnings._ActionKind"
|
1105 |
+
message: str = ""
|
1106 |
+
category: type[Warning] = Warning
|
1107 |
+
|
1108 |
+
def to_filterwarning_str(self):
|
1109 |
+
if self.category.__module__ == "builtins":
|
1110 |
+
category = self.category.__name__
|
1111 |
+
else:
|
1112 |
+
category = f"{self.category.__module__}.{self.category.__name__}"
|
1113 |
+
|
1114 |
+
return f"{self.action}:{self.message}:{category}"
|
1115 |
+
|
1116 |
+
return [
|
1117 |
+
WarningInfo("error", category=DeprecationWarning),
|
1118 |
+
WarningInfo("error", category=FutureWarning),
|
1119 |
+
WarningInfo("error", category=VisibleDeprecationWarning),
|
1120 |
+
# TODO: remove when pyamg > 5.0.1
|
1121 |
+
# Avoid a deprecation warning due pkg_resources usage in pyamg.
|
1122 |
+
WarningInfo(
|
1123 |
+
"ignore",
|
1124 |
+
message="pkg_resources is deprecated as an API",
|
1125 |
+
category=DeprecationWarning,
|
1126 |
+
),
|
1127 |
+
WarningInfo(
|
1128 |
+
"ignore",
|
1129 |
+
message="Deprecated call to `pkg_resources",
|
1130 |
+
category=DeprecationWarning,
|
1131 |
+
),
|
1132 |
+
# pytest-cov issue https://github.com/pytest-dev/pytest-cov/issues/557 not
|
1133 |
+
# fixed although it has been closed. https://github.com/pytest-dev/pytest-cov/pull/623
|
1134 |
+
# would probably fix it.
|
1135 |
+
WarningInfo(
|
1136 |
+
"ignore",
|
1137 |
+
message=(
|
1138 |
+
"The --rsyncdir command line argument and rsyncdirs config variable are"
|
1139 |
+
" deprecated"
|
1140 |
+
),
|
1141 |
+
category=DeprecationWarning,
|
1142 |
+
),
|
1143 |
+
# XXX: Easiest way to ignore pandas Pyarrow DeprecationWarning in the
|
1144 |
+
# short-term. See https://github.com/pandas-dev/pandas/issues/54466 for
|
1145 |
+
# more details.
|
1146 |
+
WarningInfo(
|
1147 |
+
"ignore",
|
1148 |
+
message=r"\s*Pyarrow will become a required dependency",
|
1149 |
+
category=DeprecationWarning,
|
1150 |
+
),
|
1151 |
+
]
|
1152 |
+
|
1153 |
+
|
1154 |
+
def get_pytest_filterwarning_lines():
|
1155 |
+
warning_filters_info_list = _get_warnings_filters_info_list()
|
1156 |
+
return [
|
1157 |
+
warning_info.to_filterwarning_str()
|
1158 |
+
for warning_info in warning_filters_info_list
|
1159 |
+
]
|
1160 |
+
|
1161 |
+
|
1162 |
+
def turn_warnings_into_errors():
|
1163 |
+
warnings_filters_info_list = _get_warnings_filters_info_list()
|
1164 |
+
for warning_info in warnings_filters_info_list:
|
1165 |
+
warnings.filterwarnings(
|
1166 |
+
warning_info.action,
|
1167 |
+
message=warning_info.message,
|
1168 |
+
category=warning_info.category,
|
1169 |
+
)
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/_weight_vector.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (208 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/deprecation.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
__all__ = ["deprecated"]
|
5 |
+
|
6 |
+
|
7 |
+
class deprecated:
|
8 |
+
"""Decorator to mark a function or class as deprecated.
|
9 |
+
|
10 |
+
Issue a warning when the function is called/the class is instantiated and
|
11 |
+
adds a warning to the docstring.
|
12 |
+
|
13 |
+
The optional extra argument will be appended to the deprecation message
|
14 |
+
and the docstring. Note: to use this with the default value for extra, put
|
15 |
+
in an empty of parentheses:
|
16 |
+
|
17 |
+
Examples
|
18 |
+
--------
|
19 |
+
>>> from sklearn.utils import deprecated
|
20 |
+
>>> deprecated()
|
21 |
+
<sklearn.utils.deprecation.deprecated object at ...>
|
22 |
+
>>> @deprecated()
|
23 |
+
... def some_function(): pass
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
extra : str, default=''
|
28 |
+
To be added to the deprecation messages.
|
29 |
+
"""
|
30 |
+
|
31 |
+
# Adapted from https://wiki.python.org/moin/PythonDecoratorLibrary,
|
32 |
+
# but with many changes.
|
33 |
+
|
34 |
+
def __init__(self, extra=""):
|
35 |
+
self.extra = extra
|
36 |
+
|
37 |
+
def __call__(self, obj):
|
38 |
+
"""Call method
|
39 |
+
|
40 |
+
Parameters
|
41 |
+
----------
|
42 |
+
obj : object
|
43 |
+
"""
|
44 |
+
if isinstance(obj, type):
|
45 |
+
return self._decorate_class(obj)
|
46 |
+
elif isinstance(obj, property):
|
47 |
+
# Note that this is only triggered properly if the `property`
|
48 |
+
# decorator comes before the `deprecated` decorator, like so:
|
49 |
+
#
|
50 |
+
# @deprecated(msg)
|
51 |
+
# @property
|
52 |
+
# def deprecated_attribute_(self):
|
53 |
+
# ...
|
54 |
+
return self._decorate_property(obj)
|
55 |
+
else:
|
56 |
+
return self._decorate_fun(obj)
|
57 |
+
|
58 |
+
def _decorate_class(self, cls):
|
59 |
+
msg = "Class %s is deprecated" % cls.__name__
|
60 |
+
if self.extra:
|
61 |
+
msg += "; %s" % self.extra
|
62 |
+
|
63 |
+
new = cls.__new__
|
64 |
+
|
65 |
+
def wrapped(cls, *args, **kwargs):
|
66 |
+
warnings.warn(msg, category=FutureWarning)
|
67 |
+
if new is object.__new__:
|
68 |
+
return object.__new__(cls)
|
69 |
+
return new(cls, *args, **kwargs)
|
70 |
+
|
71 |
+
cls.__new__ = wrapped
|
72 |
+
|
73 |
+
wrapped.__name__ = "__new__"
|
74 |
+
wrapped.deprecated_original = new
|
75 |
+
|
76 |
+
return cls
|
77 |
+
|
78 |
+
def _decorate_fun(self, fun):
|
79 |
+
"""Decorate function fun"""
|
80 |
+
|
81 |
+
msg = "Function %s is deprecated" % fun.__name__
|
82 |
+
if self.extra:
|
83 |
+
msg += "; %s" % self.extra
|
84 |
+
|
85 |
+
@functools.wraps(fun)
|
86 |
+
def wrapped(*args, **kwargs):
|
87 |
+
warnings.warn(msg, category=FutureWarning)
|
88 |
+
return fun(*args, **kwargs)
|
89 |
+
|
90 |
+
# Add a reference to the wrapped function so that we can introspect
|
91 |
+
# on function arguments in Python 2 (already works in Python 3)
|
92 |
+
wrapped.__wrapped__ = fun
|
93 |
+
|
94 |
+
return wrapped
|
95 |
+
|
96 |
+
def _decorate_property(self, prop):
|
97 |
+
msg = self.extra
|
98 |
+
|
99 |
+
@property
|
100 |
+
@functools.wraps(prop)
|
101 |
+
def wrapped(*args, **kwargs):
|
102 |
+
warnings.warn(msg, category=FutureWarning)
|
103 |
+
return prop.fget(*args, **kwargs)
|
104 |
+
|
105 |
+
return wrapped
|
106 |
+
|
107 |
+
|
108 |
+
def _is_deprecated(func):
|
109 |
+
"""Helper to check if func is wrapped by our deprecated decorator"""
|
110 |
+
closures = getattr(func, "__closure__", [])
|
111 |
+
if closures is None:
|
112 |
+
closures = []
|
113 |
+
is_deprecated = "deprecated" in "".join(
|
114 |
+
[c.cell_contents for c in closures if isinstance(c.cell_contents, str)]
|
115 |
+
)
|
116 |
+
return is_deprecated
|
env-llmeval/lib/python3.10/site-packages/sklearn/utils/discovery.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.utils.discovery` module includes utilities to discover
|
3 |
+
objects (i.e. estimators, displays, functions) from the `sklearn` package.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import inspect
|
7 |
+
import pkgutil
|
8 |
+
from importlib import import_module
|
9 |
+
from operator import itemgetter
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
_MODULE_TO_IGNORE = {
|
13 |
+
"tests",
|
14 |
+
"externals",
|
15 |
+
"setup",
|
16 |
+
"conftest",
|
17 |
+
"experimental",
|
18 |
+
"estimator_checks",
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def all_estimators(type_filter=None):
|
23 |
+
"""Get a list of all estimators from `sklearn`.
|
24 |
+
|
25 |
+
This function crawls the module and gets all classes that inherit
|
26 |
+
from BaseEstimator. Classes that are defined in test-modules are not
|
27 |
+
included.
|
28 |
+
|
29 |
+
Parameters
|
30 |
+
----------
|
31 |
+
type_filter : {"classifier", "regressor", "cluster", "transformer"} \
|
32 |
+
or list of such str, default=None
|
33 |
+
Which kind of estimators should be returned. If None, no filter is
|
34 |
+
applied and all estimators are returned. Possible values are
|
35 |
+
'classifier', 'regressor', 'cluster' and 'transformer' to get
|
36 |
+
estimators only of these specific types, or a list of these to
|
37 |
+
get the estimators that fit at least one of the types.
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
estimators : list of tuples
|
42 |
+
List of (name, class), where ``name`` is the class name as string
|
43 |
+
and ``class`` is the actual type of the class.
|
44 |
+
|
45 |
+
Examples
|
46 |
+
--------
|
47 |
+
>>> from sklearn.utils.discovery import all_estimators
|
48 |
+
>>> estimators = all_estimators()
|
49 |
+
>>> type(estimators)
|
50 |
+
<class 'list'>
|
51 |
+
>>> type(estimators[0])
|
52 |
+
<class 'tuple'>
|
53 |
+
>>> estimators[:2]
|
54 |
+
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
|
55 |
+
('AdaBoostClassifier',
|
56 |
+
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)]
|
57 |
+
>>> classifiers = all_estimators(type_filter="classifier")
|
58 |
+
>>> classifiers[:2]
|
59 |
+
[('AdaBoostClassifier',
|
60 |
+
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>),
|
61 |
+
('BaggingClassifier', <class 'sklearn.ensemble._bagging.BaggingClassifier'>)]
|
62 |
+
>>> regressors = all_estimators(type_filter="regressor")
|
63 |
+
>>> regressors[:2]
|
64 |
+
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
|
65 |
+
('AdaBoostRegressor',
|
66 |
+
<class 'sklearn.ensemble._weight_boosting.AdaBoostRegressor'>)]
|
67 |
+
>>> both = all_estimators(type_filter=["classifier", "regressor"])
|
68 |
+
>>> both[:2]
|
69 |
+
[('ARDRegression', <class 'sklearn.linear_model._bayes.ARDRegression'>),
|
70 |
+
('AdaBoostClassifier',
|
71 |
+
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>)]
|
72 |
+
"""
|
73 |
+
# lazy import to avoid circular imports from sklearn.base
|
74 |
+
from ..base import (
|
75 |
+
BaseEstimator,
|
76 |
+
ClassifierMixin,
|
77 |
+
ClusterMixin,
|
78 |
+
RegressorMixin,
|
79 |
+
TransformerMixin,
|
80 |
+
)
|
81 |
+
from . import IS_PYPY
|
82 |
+
from ._testing import ignore_warnings
|
83 |
+
|
84 |
+
def is_abstract(c):
|
85 |
+
if not (hasattr(c, "__abstractmethods__")):
|
86 |
+
return False
|
87 |
+
if not len(c.__abstractmethods__):
|
88 |
+
return False
|
89 |
+
return True
|
90 |
+
|
91 |
+
all_classes = []
|
92 |
+
root = str(Path(__file__).parent.parent) # sklearn package
|
93 |
+
# Ignore deprecation warnings triggered at import time and from walking
|
94 |
+
# packages
|
95 |
+
with ignore_warnings(category=FutureWarning):
|
96 |
+
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
|
97 |
+
module_parts = module_name.split(".")
|
98 |
+
if (
|
99 |
+
any(part in _MODULE_TO_IGNORE for part in module_parts)
|
100 |
+
or "._" in module_name
|
101 |
+
):
|
102 |
+
continue
|
103 |
+
module = import_module(module_name)
|
104 |
+
classes = inspect.getmembers(module, inspect.isclass)
|
105 |
+
classes = [
|
106 |
+
(name, est_cls) for name, est_cls in classes if not name.startswith("_")
|
107 |
+
]
|
108 |
+
|
109 |
+
# TODO: Remove when FeatureHasher is implemented in PYPY
|
110 |
+
# Skips FeatureHasher for PYPY
|
111 |
+
if IS_PYPY and "feature_extraction" in module_name:
|
112 |
+
classes = [
|
113 |
+
(name, est_cls)
|
114 |
+
for name, est_cls in classes
|
115 |
+
if name == "FeatureHasher"
|
116 |
+
]
|
117 |
+
|
118 |
+
all_classes.extend(classes)
|
119 |
+
|
120 |
+
all_classes = set(all_classes)
|
121 |
+
|
122 |
+
estimators = [
|
123 |
+
c
|
124 |
+
for c in all_classes
|
125 |
+
if (issubclass(c[1], BaseEstimator) and c[0] != "BaseEstimator")
|
126 |
+
]
|
127 |
+
# get rid of abstract base classes
|
128 |
+
estimators = [c for c in estimators if not is_abstract(c[1])]
|
129 |
+
|
130 |
+
if type_filter is not None:
|
131 |
+
if not isinstance(type_filter, list):
|
132 |
+
type_filter = [type_filter]
|
133 |
+
else:
|
134 |
+
type_filter = list(type_filter) # copy
|
135 |
+
filtered_estimators = []
|
136 |
+
filters = {
|
137 |
+
"classifier": ClassifierMixin,
|
138 |
+
"regressor": RegressorMixin,
|
139 |
+
"transformer": TransformerMixin,
|
140 |
+
"cluster": ClusterMixin,
|
141 |
+
}
|
142 |
+
for name, mixin in filters.items():
|
143 |
+
if name in type_filter:
|
144 |
+
type_filter.remove(name)
|
145 |
+
filtered_estimators.extend(
|
146 |
+
[est for est in estimators if issubclass(est[1], mixin)]
|
147 |
+
)
|
148 |
+
estimators = filtered_estimators
|
149 |
+
if type_filter:
|
150 |
+
raise ValueError(
|
151 |
+
"Parameter type_filter must be 'classifier', "
|
152 |
+
"'regressor', 'transformer', 'cluster' or "
|
153 |
+
"None, got"
|
154 |
+
f" {repr(type_filter)}."
|
155 |
+
)
|
156 |
+
|
157 |
+
# drop duplicates, sort for reproducibility
|
158 |
+
# itemgetter is used to ensure the sort does not extend to the 2nd item of
|
159 |
+
# the tuple
|
160 |
+
return sorted(set(estimators), key=itemgetter(0))
|
161 |
+
|
162 |
+
|
163 |
+
def all_displays():
|
164 |
+
"""Get a list of all displays from `sklearn`.
|
165 |
+
|
166 |
+
Returns
|
167 |
+
-------
|
168 |
+
displays : list of tuples
|
169 |
+
List of (name, class), where ``name`` is the display class name as
|
170 |
+
string and ``class`` is the actual type of the class.
|
171 |
+
|
172 |
+
Examples
|
173 |
+
--------
|
174 |
+
>>> from sklearn.utils.discovery import all_displays
|
175 |
+
>>> displays = all_displays()
|
176 |
+
>>> displays[0]
|
177 |
+
('CalibrationDisplay', <class 'sklearn.calibration.CalibrationDisplay'>)
|
178 |
+
"""
|
179 |
+
# lazy import to avoid circular imports from sklearn.base
|
180 |
+
from ._testing import ignore_warnings
|
181 |
+
|
182 |
+
all_classes = []
|
183 |
+
root = str(Path(__file__).parent.parent) # sklearn package
|
184 |
+
# Ignore deprecation warnings triggered at import time and from walking
|
185 |
+
# packages
|
186 |
+
with ignore_warnings(category=FutureWarning):
|
187 |
+
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
|
188 |
+
module_parts = module_name.split(".")
|
189 |
+
if (
|
190 |
+
any(part in _MODULE_TO_IGNORE for part in module_parts)
|
191 |
+
or "._" in module_name
|
192 |
+
):
|
193 |
+
continue
|
194 |
+
module = import_module(module_name)
|
195 |
+
classes = inspect.getmembers(module, inspect.isclass)
|
196 |
+
classes = [
|
197 |
+
(name, display_class)
|
198 |
+
for name, display_class in classes
|
199 |
+
if not name.startswith("_") and name.endswith("Display")
|
200 |
+
]
|
201 |
+
all_classes.extend(classes)
|
202 |
+
|
203 |
+
return sorted(set(all_classes), key=itemgetter(0))
|
204 |
+
|
205 |
+
|
206 |
+
def _is_checked_function(item):
|
207 |
+
if not inspect.isfunction(item):
|
208 |
+
return False
|
209 |
+
|
210 |
+
if item.__name__.startswith("_"):
|
211 |
+
return False
|
212 |
+
|
213 |
+
mod = item.__module__
|
214 |
+
if not mod.startswith("sklearn.") or mod.endswith("estimator_checks"):
|
215 |
+
return False
|
216 |
+
|
217 |
+
return True
|
218 |
+
|
219 |
+
|
220 |
+
def all_functions():
|
221 |
+
"""Get a list of all functions from `sklearn`.
|
222 |
+
|
223 |
+
Returns
|
224 |
+
-------
|
225 |
+
functions : list of tuples
|
226 |
+
List of (name, function), where ``name`` is the function name as
|
227 |
+
string and ``function`` is the actual function.
|
228 |
+
|
229 |
+
Examples
|
230 |
+
--------
|
231 |
+
>>> from sklearn.utils.discovery import all_functions
|
232 |
+
>>> functions = all_functions()
|
233 |
+
>>> name, function = functions[0]
|
234 |
+
>>> name
|
235 |
+
'accuracy_score'
|
236 |
+
"""
|
237 |
+
# lazy import to avoid circular imports from sklearn.base
|
238 |
+
from ._testing import ignore_warnings
|
239 |
+
|
240 |
+
all_functions = []
|
241 |
+
root = str(Path(__file__).parent.parent) # sklearn package
|
242 |
+
# Ignore deprecation warnings triggered at import time and from walking
|
243 |
+
# packages
|
244 |
+
with ignore_warnings(category=FutureWarning):
|
245 |
+
for _, module_name, _ in pkgutil.walk_packages(path=[root], prefix="sklearn."):
|
246 |
+
module_parts = module_name.split(".")
|
247 |
+
if (
|
248 |
+
any(part in _MODULE_TO_IGNORE for part in module_parts)
|
249 |
+
or "._" in module_name
|
250 |
+
):
|
251 |
+
continue
|
252 |
+
|
253 |
+
module = import_module(module_name)
|
254 |
+
functions = inspect.getmembers(module, _is_checked_function)
|
255 |
+
functions = [
|
256 |
+
(func.__name__, func)
|
257 |
+
for name, func in functions
|
258 |
+
if not name.startswith("_")
|
259 |
+
]
|
260 |
+
all_functions.extend(functions)
|
261 |
+
|
262 |
+
# drop duplicates, sort for reproducibility
|
263 |
+
# itemgetter is used to ensure the sort does not extend to the 2nd item of
|
264 |
+
# the tuple
|
265 |
+
return sorted(set(all_functions), key=itemgetter(0))
|