diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4722c8a98a586405dd4e306a4f10f62d95df6a87 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..112061abe88c5ab9d5b8276c0856e91fb3e779f7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py new file mode 100644 index 0000000000000000000000000000000000000000..8b54bd3760feeafd41e36eb76777f29b7d1a31dd --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py @@ -0,0 +1,389 @@ +# coding=utf-8 +# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" BlenderbotSmall model configuration""" + +from collections import OrderedDict +from typing import Any, Mapping, Optional + +from ... import PreTrainedTokenizer +from ...configuration_utils import PretrainedConfig +from ...file_utils import TensorType, is_torch_available +from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast +from ...onnx.utils import compute_effective_axis_dimension +from ...utils import logging + + +logger = logging.get_logger(__name__) + +from ..deprecated._archive_maps import BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class BlenderbotSmallConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`BlenderbotSmallModel`]. It is used to instantiate + an BlenderbotSmall model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the BlenderbotSmall + [facebook/blenderbot_small-90M](https://huggingface.co/facebook/blenderbot_small-90M) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50265): + Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be + represented by the `inputs_ids` passed when calling [`BlenderbotSmallModel`] or [`TFBlenderbotSmallModel`]. + d_model (`int`, *optional*, defaults to 512): + Dimensionality of the layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 8): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 8): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + scale_embedding (`bool`, *optional*, defaults to `False`): + Scale embeddings by diving by sqrt(d_model). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models) + forced_eos_token_id (`int`, *optional*, defaults to 2): + The id of the token to force as the last generated token when `max_length` is reached. Usually set to + `eos_token_id`. + + Example: + + ```python + >>> from transformers import BlenderbotSmallConfig, BlenderbotSmallModel + + >>> # Initializing a BlenderbotSmall facebook/blenderbot_small-90M style configuration + >>> configuration = BlenderbotSmallConfig() + + >>> # Initializing a model (with random weights) from the facebook/blenderbot_small-90M style configuration + >>> model = BlenderbotSmallModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "blenderbot-small" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + def __init__( + self, + vocab_size=50265, + max_position_embeddings=512, + encoder_layers=8, + encoder_ffn_dim=2048, + encoder_attention_heads=16, + decoder_layers=8, + decoder_ffn_dim=2048, + decoder_attention_heads=16, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + use_cache=True, + is_encoder_decoder=True, + activation_function="gelu", + d_model=512, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + decoder_start_token_id=1, + scale_embedding=False, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + forced_eos_token_id=2, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + forced_eos_token_id=forced_eos_token_id, + **kwargs, + ) + + +# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig +class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + + if self.use_past: + common_inputs["decoder_input_ids"] = {0: "batch"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + else: + common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} + + if self.use_past: + self.fill_with_past_key_values_(common_inputs, direction="inputs") + elif self.task == "causal-lm": + # TODO: figure this case out. + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + else: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), + ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), + ] + ) + + return common_inputs + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_outputs = super().outputs + else: + common_outputs = super(OnnxConfigWithPast, self).outputs + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + return common_outputs + + def _generate_dummy_inputs_for_default_and_seq2seq_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + # Generate decoder inputs + decoder_seq_length = seq_length if not self.use_past else 1 + decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, decoder_seq_length, is_pair, framework + ) + decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} + common_inputs = dict(**encoder_inputs, **decoder_inputs) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, encoder_seq_length = common_inputs["input_ids"].shape + decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] + num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads + encoder_shape = ( + batch, + num_encoder_attention_heads, + encoder_seq_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + decoder_past_length = decoder_seq_length + 3 + decoder_shape = ( + batch, + num_decoder_attention_heads, + decoder_past_length, + self._config.hidden_size // num_decoder_attention_heads, + ) + + common_inputs["decoder_attention_mask"] = torch.cat( + [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 + ) + + common_inputs["past_key_values"] = [] + # If the number of encoder and decoder layers are present in the model configuration, both are considered + num_encoder_layers, num_decoder_layers = self.num_layers + min_num_layers = min(num_encoder_layers, num_decoder_layers) + max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers + remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" + + for _ in range(min_num_layers): + common_inputs["past_key_values"].append( + ( + torch.zeros(decoder_shape), + torch.zeros(decoder_shape), + torch.zeros(encoder_shape), + torch.zeros(encoder_shape), + ) + ) + # TODO: test this. + shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape + for _ in range(min_num_layers, max_num_layers): + common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) + return common_inputs + + def _generate_dummy_inputs_for_causal_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, seqlen = common_inputs["input_ids"].shape + # Not using the same length for past_key_values + past_key_values_length = seqlen + 2 + num_encoder_layers, _ = self.num_layers + num_encoder_attention_heads, _ = self.num_attention_heads + past_shape = ( + batch, + num_encoder_attention_heads, + past_key_values_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + + mask_dtype = common_inputs["attention_mask"].dtype + common_inputs["attention_mask"] = torch.cat( + [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 + ) + common_inputs["past_key_values"] = [ + (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) + ] + return common_inputs + + def _generate_dummy_inputs_for_sequence_classification_and_question_answering( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + # Copied from OnnxConfig.generate_dummy_inputs + # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. + # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX + batch_size = compute_effective_axis_dimension( + batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 + ) + + # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX + token_to_add = tokenizer.num_special_tokens_to_add(is_pair) + seq_length = compute_effective_axis_dimension( + seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add + ) + + # Generate dummy inputs according to compute batch and sequence + dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size + common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) + return common_inputs + + def generate_dummy_inputs( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + elif self.task == "causal-lm": + common_inputs = self._generate_dummy_inputs_for_causal_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + else: + common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + return common_inputs + + def _flatten_past_key_values_(self, flattened_output, name, idx, t): + if self.task in ["default", "seq2seq-lm"]: + flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) + else: + flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( + flattened_output, name, idx, t + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py new file mode 100644 index 0000000000000000000000000000000000000000..01206831ac96c3cdf3ccb0401be67111bd6d9a4b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py @@ -0,0 +1,1526 @@ +# coding=utf-8 +# Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 BlenderbotSmall model.""" + + +from __future__ import annotations + +import random +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPastAndCrossAttentions, + TFSeq2SeqLMOutput, + TFSeq2SeqModelOutput, +) + +# Public API +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFPreTrainedModel, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_blenderbot_small import BlenderbotSmallConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M" +_CONFIG_FOR_DOC = "BlenderbotSmallConfig" + + +LARGE_NEGATIVE = -1e8 + + +# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): + pad_token_id = tf.cast(pad_token_id, input_ids.dtype) + decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) + start_tokens = tf.fill( + (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) + ) + shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids = tf.where( + shifted_input_ids == -100, + tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), + shifted_input_ids, + ) + + # "Verify that `labels` has only positive values and -100" + assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) + + # Make sure the assertion op is called by wrapping the result in an identity no-op + with tf.control_dependencies([assert_gte0]): + shifted_input_ids = tf.identity(shifted_input_ids) + + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE + mask_cond = tf.range(shape_list(mask)[-1]) + + mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +# Copied from transformers.models.blenderbot.modeling_tf_blenderbot.TFBlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall +class TFBlenderbotSmallLearnedPositionalEmbedding(keras.layers.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): + super().__init__(num_embeddings, embedding_dim, **kwargs) + + def call( + self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None + ): + """Input is expected to be of size [bsz x seqlen].""" + if position_ids is None: + seq_len = input_shape[1] + position_ids = tf.range(seq_len, delta=1, name="range") + position_ids += past_key_values_length + + return super().call(tf.cast(position_ids, dtype=tf.int32)) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->BlenderbotSmall +class TFBlenderbotSmallAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->BlenderbotSmall +class TFBlenderbotSmallEncoderLayer(keras.layers.Layer): + def __init__(self, config: BlenderbotSmallConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFBlenderbotSmallAttention( + self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" + ) + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: np.ndarray | tf.Tensor | None, + layer_head_mask: tf.Tensor | None, + training: Optional[bool] = False, + ) -> tf.Tensor: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`tf.Tensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)` + """ + residual = hidden_states + hidden_states, self_attn_weights, _ = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask + ) + + tf.debugging.assert_equal( + shape_list(hidden_states), + shape_list(residual), + message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", + ) + + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return hidden_states, self_attn_weights + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.encoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->BlenderbotSmall +class TFBlenderbotSmallDecoderLayer(keras.layers.Layer): + def __init__(self, config: BlenderbotSmallConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFBlenderbotSmallAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + name="self_attn", + is_decoder=True, + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.encoder_attn = TFBlenderbotSmallAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + name="encoder_attn", + is_decoder=True, + ) + self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + cross_attn_layer_head_mask: tf.Tensor | None = None, + past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`tf.Tensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`tf.Tensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`tf.Tensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + `(decoder_attention_heads,)` + cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. + `(decoder_attention_heads,)` + past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states + """ + residual = hidden_states + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return ( + hidden_states, + self_attn_weights, + cross_attn_weights, + present_key_value, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "encoder_attn", None) is not None: + with tf.name_scope(self.encoder_attn.name): + self.encoder_attn.build(None) + if getattr(self, "encoder_attn_layer_norm", None) is not None: + with tf.name_scope(self.encoder_attn_layer_norm.name): + self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.decoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFBlenderbotSmallPreTrainedModel(TFPreTrainedModel): + config_class = BlenderbotSmallConfig + base_model_prefix = "model" + + +BLENDERBOT_SMALL_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BLENDERBOT_SMALL_GENERATION_EXAMPLE = r""" + Conversation example:: + + ```py + >>> from transformers import AutoTokenizer, TFBlenderbotSmallForConditionalGeneration + + >>> mname = "facebook/blenderbot_small-90M" + >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname) + >>> tokenizer = AutoTokenizer.from_pretrained(mname) + + >>> UTTERANCE = "My friends are cool but they eat too many carbs." + >>> print("Human: ", UTTERANCE) + >>> inputs = tokenizer([UTTERANCE], return_tensors="tf") + + >>> reply_ids = model.generate(**inputs) + >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]) + what kind of carbs do they eat? i don't know much about carbs. + + >>> REPLY = "I'm not sure" + >>> print("Human: ", REPLY) + >>> NEXT_UTTERANCE = ( + ... "My friends are cool but they eat too many carbs. " + ... "what kind of carbs do they eat? i don't know much about carbs. " + ... "I'm not sure." + ... ) + + >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf") + >>> inputs.pop("token_type_ids") + >>> next_reply_ids = model.generate(**inputs) + >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0]) + ``` +""" + +BLENDERBOT_SMALL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. + decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tf.FloatTensor`, *optional*): + hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + of shape `(batch_size, sequence_length, hidden_size)` is a sequence of + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@keras_serializable +class TFBlenderbotSmallEncoder(keras.layers.Layer): + config_class = BlenderbotSmallConfig + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`TFBlenderbotSmallEncoderLayer`]. + + Args: + config: BlenderbotSmallConfig + """ + + def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.dropout = keras.layers.Dropout(config.dropout) + self.layerdrop = config.encoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + + self.embed_tokens = embed_tokens + self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.layers = [TFBlenderbotSmallEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + self.embed_dim = config.d_model + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids=None, + inputs_embeds=None, + attention_mask=None, + head_mask=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + """ + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input_shape) + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + + # check attention mask and invert + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _expand_mask(attention_mask) + else: + attention_mask = None + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + # encoder layers + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): # skip the layer + continue + + hidden_states, attn = encoder_layer( + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + ) + + if output_attentions: + all_attentions += (attn,) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.embed_dim]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFBlenderbotSmallDecoder(keras.layers.Layer): + config_class = BlenderbotSmallConfig + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotSmallDecoderLayer`] + + Args: + config: BlenderbotSmallConfig + embed_tokens: output embedding + """ + + def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.padding_idx = config.pad_token_id + self.embed_tokens = embed_tokens + self.layerdrop = config.decoder_layerdrop + self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + self.layers = [TFBlenderbotSmallDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + + self.dropout = keras.layers.Dropout(config.dropout) + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids=None, + inputs_embeds=None, + attention_mask=None, + position_ids=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up + decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + else: + combined_attention_mask = _expand_mask( + tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] + ) + + if attention_mask is not None: + combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) + + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) + + # embed positions + if position_ids is None: + positions = self.embed_positions(input_shape, past_key_values_length) + else: + positions = self.embed_positions(input_shape, position_ids=position_ids) + + hidden_states = self.layernorm_embedding(inputs_embeds) + positions + hidden_states = self.dropout(hidden_states, training=training) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None + present_key_values = () if use_cache else None + + # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired + for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: + if attn_mask is not None: + tf.debugging.assert_equal( + shape_list(attn_mask)[0], + len(self.layers), + message=( + f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(attn_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + dropout_probability = random.uniform(0, 1) + + if training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + past_key_value=past_key_value, + ) + + if use_cache: + present_key_values += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + + if encoder_hidden_states is not None: + all_cross_attns += (layer_cross_attn,) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if not return_dict: + return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns + else: + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_values, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFBlenderbotSmallMainLayer(keras.layers.Layer): + config_class = BlenderbotSmallConfig + + def __init__(self, config: BlenderbotSmallConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.shared = keras.layers.Embedding( + input_dim=config.vocab_size, + output_dim=config.d_model, + embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), + name="model.shared", + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "model.shared" + + self.encoder = TFBlenderbotSmallEncoder(config, self.shared, name="encoder") + self.decoder = TFBlenderbotSmallDecoder(config, self.shared, name="decoder") + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + decoder_input_ids=None, + decoder_attention_mask=None, + decoder_position_ids=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values=None, + inputs_embeds=None, + decoder_inputs_embeds=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + **kwargs, + ): + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): + encoder_outputs = TFBaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False + elif not return_dict and not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + + decoder_outputs = self.decoder( + decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return TFSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + "The bare BLENDERBOT_SMALL Model outputting raw hidden-states without any specific head on top.", + BLENDERBOT_SMALL_START_DOCSTRING, +) +class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel): + def __init__(self, config: BlenderbotSmallConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.model = TFBlenderbotSmallMainLayer(config, name="model") + + def get_encoder(self): + return self.model.encoder + + def get_decoder(self): + return self.model.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSeq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values: List[tf.Tensor] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqModelOutput( + last_hidden_state=output.last_hidden_state, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + + +# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer +class BiasLayer(keras.layers.Layer): + """ + Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, + so all weights have to be registered in a layer. + """ + + def __init__(self, shape, initializer, trainable, name, **kwargs): + super().__init__(name=name, **kwargs) + # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of + # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: + # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 + self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) + + def call(self, x): + return x + self.bias + + +@add_start_docstrings( + "The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.", + BLENDERBOT_SMALL_START_DOCSTRING, +) +class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel, TFCausalLanguageModelingLoss): + _keys_to_ignore_on_load_unexpected = [ + r"model.encoder.embed_tokens.weight", + r"model.decoder.embed_tokens.weight", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.model = TFBlenderbotSmallMainLayer(config, name="model") + self.use_cache = config.use_cache + # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False + ) + + def get_decoder(self): + return self.model.decoder + + def get_encoder(self): + return self.model.encoder + + def get_output_embeddings(self): + return self.get_input_embeddings() + + def set_output_embeddings(self, value): + self.set_input_embeddings(value) + + def get_bias(self): + return {"final_logits_bias": self.bias_layer.bias} + + def set_bias(self, value): + # Replaces the existing layers containing bias for correct (de)serialization. + vocab_size = value["final_logits_bias"].shape[-1] + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False + ) + self.bias_layer.bias.assign(value["final_logits_bias"]) + + @unpack_inputs + @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) + def call( + self, + input_ids: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[TFBaseModelOutput] = None, + past_key_values: List[tf.Tensor] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: + r""" + labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + + if labels is not None: + labels = tf.where( + labels == self.config.pad_token_id, + tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), + labels, + ) + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) + lm_logits = self.bias_layer(lm_logits) + masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + return TFSeq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, # index 1 of d outputs + decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs + decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs + cross_attentions=outputs.cross_attentions, # index 4 of d outputs + encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs + encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out + encoder_attentions=outputs.encoder_attentions, # 2 of e out + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + decoder_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + if decoder_attention_mask is not None: # xla + decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] + elif past_key_values is not None: # no xla + past_key_values + decoder_position_ids = past_key_values[0][0].shape[2] + else: # no xla + no past_key_values + decoder_position_ids = tf.range(decoder_input_ids.shape[1]) + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "decoder_position_ids": decoder_position_ids, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + if getattr(self, "bias_layer", None) is not None: + with tf.name_scope(self.bias_layer.name): + self.bias_layer.build(None) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..28b9a34290c8264e37ddd3a20e1c6c15e28bcd5c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/__init__.py @@ -0,0 +1,134 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], + "convert_funnel_original_tf_checkpoint_to_pytorch": [], + "tokenization_funnel": ["FunnelTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_funnel_fast"] = ["FunnelTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_funnel"] = [ + "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", + "FunnelBaseModel", + "FunnelForMaskedLM", + "FunnelForMultipleChoice", + "FunnelForPreTraining", + "FunnelForQuestionAnswering", + "FunnelForSequenceClassification", + "FunnelForTokenClassification", + "FunnelModel", + "FunnelPreTrainedModel", + "load_tf_weights_in_funnel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_funnel"] = [ + "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFFunnelBaseModel", + "TFFunnelForMaskedLM", + "TFFunnelForMultipleChoice", + "TFFunnelForPreTraining", + "TFFunnelForQuestionAnswering", + "TFFunnelForSequenceClassification", + "TFFunnelForTokenClassification", + "TFFunnelModel", + "TFFunnelPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig + from .tokenization_funnel import FunnelTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_funnel_fast import FunnelTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_funnel import ( + FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, + FunnelBaseModel, + FunnelForMaskedLM, + FunnelForMultipleChoice, + FunnelForPreTraining, + FunnelForQuestionAnswering, + FunnelForSequenceClassification, + FunnelForTokenClassification, + FunnelModel, + FunnelPreTrainedModel, + load_tf_weights_in_funnel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_funnel import ( + TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, + TFFunnelBaseModel, + TFFunnelForMaskedLM, + TFFunnelForMultipleChoice, + TFFunnelForPreTraining, + TFFunnelForQuestionAnswering, + TFFunnelForSequenceClassification, + TFFunnelForTokenClassification, + TFFunnelModel, + TFFunnelPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/configuration_funnel.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/configuration_funnel.py new file mode 100644 index 0000000000000000000000000000000000000000..0b49c22fb4c345fa2e997c5bd5eaa865c680068f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/configuration_funnel.py @@ -0,0 +1,166 @@ +# coding=utf-8 +# Copyright 2020, Hugging Face +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Funnel Transformer model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class FunnelConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to + instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel + Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented + by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`]. + block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`): + The sizes of the blocks used in the model. + block_repeats (`List[int]`, *optional*): + If passed along, each layer of each block is repeated the number of times indicated. + num_decoder_layers (`int`, *optional*, defaults to 2): + The number of layers in the decoder (when not using the base model). + d_model (`int`, *optional*, defaults to 768): + Dimensionality of the model's hidden states. + n_head (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + d_head (`int`, *optional*, defaults to 64): + Dimensionality of the model's heads. + d_inner (`int`, *optional*, defaults to 3072): + Inner dimension in the feed-forward blocks. + hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout probability used between the two layers of the feed-forward blocks. + initializer_range (`float`, *optional*, defaults to 0.1): + The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers. + initializer_std (`float`, *optional*): + The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of + linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for + linear layers. + layer_norm_eps (`float`, *optional*, defaults to 1e-09): + The epsilon used by the layer normalization layers. + pooling_type (`str`, *optional*, defaults to `"mean"`): + Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block. + attention_type (`str`, *optional*, defaults to `"relative_shift"`): + Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter + is faster on TPU. + separate_cls (`bool`, *optional*, defaults to `True`): + Whether or not to separate the cls token when applying pooling. + truncate_seq (`bool`, *optional*, defaults to `True`): + When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a + sequence length that is not a multiple of 2. + pool_q_only (`bool`, *optional*, defaults to `True`): + Whether or not to apply the pooling only to the query or to query, key and values for the attention layers. + """ + + model_type = "funnel" + attribute_map = { + "hidden_size": "d_model", + "num_attention_heads": "n_head", + } + + def __init__( + self, + vocab_size=30522, + block_sizes=[4, 4, 4], + block_repeats=None, + num_decoder_layers=2, + d_model=768, + n_head=12, + d_head=64, + d_inner=3072, + hidden_act="gelu_new", + hidden_dropout=0.1, + attention_dropout=0.1, + activation_dropout=0.0, + initializer_range=0.1, + initializer_std=None, + layer_norm_eps=1e-9, + pooling_type="mean", + attention_type="relative_shift", + separate_cls=True, + truncate_seq=True, + pool_q_only=True, + **kwargs, + ): + self.vocab_size = vocab_size + self.block_sizes = block_sizes + self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats + assert len(block_sizes) == len( + self.block_repeats + ), "`block_sizes` and `block_repeats` should have the same length." + self.num_decoder_layers = num_decoder_layers + self.d_model = d_model + self.n_head = n_head + self.d_head = d_head + self.d_inner = d_inner + self.hidden_act = hidden_act + self.hidden_dropout = hidden_dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.initializer_range = initializer_range + self.initializer_std = initializer_std + self.layer_norm_eps = layer_norm_eps + assert pooling_type in [ + "mean", + "max", + ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." + self.pooling_type = pooling_type + assert attention_type in [ + "relative_shift", + "factorized", + ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." + self.attention_type = attention_type + self.separate_cls = separate_cls + self.truncate_seq = truncate_seq + self.pool_q_only = pool_q_only + + super().__init__(**kwargs) + + @property + def num_hidden_layers(self): + return sum(self.block_sizes) + + @num_hidden_layers.setter + def num_hidden_layers(self, value): + raise NotImplementedError( + "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." + ) + + @property + def num_blocks(self): + return len(self.block_sizes) + + @num_blocks.setter + def num_blocks(self, value): + raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.") diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..848101f083582bafa26e58c87aaa612502f3f79c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,65 @@ +# coding=utf-8 +# Copyright 2020 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert Funnel checkpoint.""" + + +import argparse + +import torch + +from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel +from transformers.utils import logging + + +logging.set_verbosity_info() + + +def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, base_model): + # Initialise PyTorch model + config = FunnelConfig.from_json_file(config_file) + print(f"Building PyTorch model from configuration: {config}") + model = FunnelBaseModel(config) if base_model else FunnelModel(config) + + # Load weights from tf checkpoint + load_tf_weights_in_funnel(model, config, tf_checkpoint_path) + + # Save pytorch-model + print(f"Save PyTorch model to {pytorch_dump_path}") + torch.save(model.state_dict(), pytorch_dump_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." + ) + parser.add_argument( + "--config_file", + default=None, + type=str, + required=True, + help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", + ) + parser.add_argument( + "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + parser.add_argument( + "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." + ) + args = parser.parse_args() + convert_tf_checkpoint_to_pytorch( + args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_funnel.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_funnel.py new file mode 100644 index 0000000000000000000000000000000000000000..ce0c7789487d8fa7f376f383a40958f9aeb3fb37 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_funnel.py @@ -0,0 +1,1599 @@ +# coding=utf-8 +# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Funnel Transformer model.""" + +import os +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import numpy as np +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_funnel import FunnelConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "FunnelConfig" +_CHECKPOINT_FOR_DOC = "funnel-transformer/small" + + +from ..deprecated._archive_maps import FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +INF = 1e6 + + +def load_tf_weights_in_funnel(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + _layer_map = { + "k": "k_head", + "q": "q_head", + "v": "v_head", + "o": "post_proj", + "layer_1": "linear_1", + "layer_2": "linear_2", + "rel_attn": "attention", + "ff": "ffn", + "kernel": "weight", + "gamma": "weight", + "beta": "bias", + "lookup_table": "weight", + "word_embedding": "word_embeddings", + "input": "embeddings", + } + + for name, array in zip(names, arrays): + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + if name[0] == "generator": + continue + pointer = model + skipped = False + for m_name in name[1:]: + if not isinstance(pointer, FunnelPositionwiseFFN) and re.fullmatch(r"layer_\d+", m_name): + layer_index = int(re.search(r"layer_(\d+)", m_name).groups()[0]) + if layer_index < config.num_hidden_layers: + block_idx = 0 + while layer_index >= config.block_sizes[block_idx]: + layer_index -= config.block_sizes[block_idx] + block_idx += 1 + pointer = pointer.blocks[block_idx][layer_index] + else: + layer_index -= config.num_hidden_layers + pointer = pointer.layers[layer_index] + elif m_name == "r" and isinstance(pointer, FunnelRelMultiheadAttention): + pointer = pointer.r_kernel + break + elif m_name in _layer_map: + pointer = getattr(pointer, _layer_map[m_name]) + else: + try: + pointer = getattr(pointer, m_name) + except AttributeError: + print(f"Skipping {'/'.join(name)}", array.shape) + skipped = True + break + if not skipped: + if len(pointer.shape) != len(array.shape): + array = array.reshape(pointer.shape) + if m_name == "kernel": + array = np.transpose(array) + pointer.data = torch.from_numpy(array) + + return model + + +class FunnelEmbeddings(nn.Module): + def __init__(self, config: FunnelConfig) -> None: + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout) + + def forward( + self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None + ) -> torch.Tensor: + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + embeddings = self.layer_norm(inputs_embeds) + embeddings = self.dropout(embeddings) + return embeddings + + +class FunnelAttentionStructure(nn.Module): + """ + Contains helpers for `FunnelRelMultiheadAttention `. + """ + + cls_token_type_id: int = 2 + + def __init__(self, config: FunnelConfig) -> None: + super().__init__() + self.config = config + self.sin_dropout = nn.Dropout(config.hidden_dropout) + self.cos_dropout = nn.Dropout(config.hidden_dropout) + # Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was + # divided. + self.pooling_mult = None + + def init_attention_inputs( + self, + inputs_embeds: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor]: + """Returns the attention inputs associated to the inputs of the model.""" + # inputs_embeds has shape batch_size x seq_len x d_model + # attention_mask and token_type_ids have shape batch_size x seq_len + self.pooling_mult = 1 + self.seq_len = seq_len = inputs_embeds.size(1) + position_embeds = self.get_position_embeds(seq_len, inputs_embeds.dtype, inputs_embeds.device) + token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None + cls_mask = ( + nn.functional.pad(inputs_embeds.new_ones([seq_len - 1, seq_len - 1]), (1, 0, 1, 0)) + if self.config.separate_cls + else None + ) + return (position_embeds, token_type_mat, attention_mask, cls_mask) + + def token_type_ids_to_mat(self, token_type_ids: torch.Tensor) -> torch.Tensor: + """Convert `token_type_ids` to `token_type_mat`.""" + token_type_mat = token_type_ids[:, :, None] == token_type_ids[:, None] + # Treat as in the same segment as both A & B + cls_ids = token_type_ids == self.cls_token_type_id + cls_mat = cls_ids[:, :, None] | cls_ids[:, None] + return cls_mat | token_type_mat + + def get_position_embeds( + self, seq_len: int, dtype: torch.dtype, device: torch.device + ) -> Union[Tuple[torch.Tensor], List[List[torch.Tensor]]]: + """ + Create and cache inputs related to relative position encoding. Those are very different depending on whether we + are using the factorized or the relative shift attention: + + For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2, + final formula. + + For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final + formula. + + Paper link: https://arxiv.org/abs/2006.03236 + """ + d_model = self.config.d_model + if self.config.attention_type == "factorized": + # Notations from the paper, appending A.2.2, final formula. + # We need to create and return the matrices phi, psi, pi and omega. + pos_seq = torch.arange(0, seq_len, 1.0, dtype=torch.int64, device=device).to(dtype) + freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype) + inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2))) + sinusoid = pos_seq[:, None] * inv_freq[None] + sin_embed = torch.sin(sinusoid) + sin_embed_d = self.sin_dropout(sin_embed) + cos_embed = torch.cos(sinusoid) + cos_embed_d = self.cos_dropout(cos_embed) + # This is different from the formula on the paper... + phi = torch.cat([sin_embed_d, sin_embed_d], dim=-1) + psi = torch.cat([cos_embed, sin_embed], dim=-1) + pi = torch.cat([cos_embed_d, cos_embed_d], dim=-1) + omega = torch.cat([-sin_embed, cos_embed], dim=-1) + return (phi, pi, psi, omega) + else: + # Notations from the paper, appending A.2.1, final formula. + # We need to create and return all the possible vectors R for all blocks and shifts. + freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=torch.int64, device=device).to(dtype) + inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2))) + # Maximum relative positions for the first input + rel_pos_id = torch.arange(-seq_len * 2, seq_len * 2, 1.0, dtype=torch.int64, device=device).to(dtype) + zero_offset = seq_len * 2 + sinusoid = rel_pos_id[:, None] * inv_freq[None] + sin_embed = self.sin_dropout(torch.sin(sinusoid)) + cos_embed = self.cos_dropout(torch.cos(sinusoid)) + pos_embed = torch.cat([sin_embed, cos_embed], dim=-1) + + pos = torch.arange(0, seq_len, dtype=torch.int64, device=device).to(dtype) + pooled_pos = pos + position_embeds_list = [] + for block_index in range(0, self.config.num_blocks): + # For each block with block_index > 0, we need two types position embeddings: + # - Attention(pooled-q, unpooled-kv) + # - Attention(pooled-q, pooled-kv) + # For block_index = 0 we only need the second one and leave the first one as None. + + # First type + if block_index == 0: + position_embeds_pooling = None + else: + pooled_pos = self.stride_pool_pos(pos, block_index) + + # construct rel_pos_id + stride = 2 ** (block_index - 1) + rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2) + rel_pos = rel_pos[:, None] + zero_offset + rel_pos = rel_pos.expand(rel_pos.size(0), d_model) + position_embeds_pooling = torch.gather(pos_embed, 0, rel_pos) + + # Second type + pos = pooled_pos + stride = 2**block_index + rel_pos = self.relative_pos(pos, stride) + + rel_pos = rel_pos[:, None] + zero_offset + rel_pos = rel_pos.expand(rel_pos.size(0), d_model) + position_embeds_no_pooling = torch.gather(pos_embed, 0, rel_pos) + + position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling]) + return position_embeds_list + + def stride_pool_pos(self, pos_id: torch.Tensor, block_index: int): + """ + Pool `pos_id` while keeping the cls token separate (if `config.separate_cls=True`). + """ + if self.config.separate_cls: + # Under separate , we treat the as the first token in + # the previous block of the 1st real block. Since the 1st real + # block always has position 1, the position of the previous block + # will be at `1 - 2 ** block_index`. + cls_pos = pos_id.new_tensor([-(2**block_index) + 1]) + pooled_pos_id = pos_id[1:-1] if self.config.truncate_seq else pos_id[1:] + return torch.cat([cls_pos, pooled_pos_id[::2]], 0) + else: + return pos_id[::2] + + def relative_pos(self, pos: torch.Tensor, stride: int, pooled_pos=None, shift: int = 1) -> torch.Tensor: + """ + Build the relative positional vector between `pos` and `pooled_pos`. + """ + if pooled_pos is None: + pooled_pos = pos + + ref_point = pooled_pos[0] - pos[0] + num_remove = shift * len(pooled_pos) + max_dist = ref_point + num_remove * stride + min_dist = pooled_pos[0] - pos[-1] + + return torch.arange(max_dist, min_dist - 1, -stride, dtype=torch.long, device=pos.device) + + def stride_pool( + self, + tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], + axis: Union[int, Tuple[int], List[int]], + ) -> torch.Tensor: + """ + Perform pooling by stride slicing the tensor along the given axis. + """ + if tensor is None: + return None + + # Do the stride pool recursively if axis is a list or a tuple of ints. + if isinstance(axis, (list, tuple)): + for ax in axis: + tensor = self.stride_pool(tensor, ax) + return tensor + + # Do the stride pool recursively if tensor is a list or tuple of tensors. + if isinstance(tensor, (tuple, list)): + return type(tensor)(self.stride_pool(x, axis) for x in tensor) + + # Deal with negative axis + axis %= tensor.ndim + + axis_slice = ( + slice(None, -1, 2) if self.config.separate_cls and self.config.truncate_seq else slice(None, None, 2) + ) + enc_slice = [slice(None)] * axis + [axis_slice] + if self.config.separate_cls: + cls_slice = [slice(None)] * axis + [slice(None, 1)] + tensor = torch.cat([tensor[cls_slice], tensor], axis=axis) + return tensor[enc_slice] + + def pool_tensor( + self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], mode: str = "mean", stride: int = 2 + ) -> torch.Tensor: + """Apply 1D pooling to a tensor of size [B x T (x H)].""" + if tensor is None: + return None + + # Do the pool recursively if tensor is a list or tuple of tensors. + if isinstance(tensor, (tuple, list)): + return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor) + + if self.config.separate_cls: + suffix = tensor[:, :-1] if self.config.truncate_seq else tensor + tensor = torch.cat([tensor[:, :1], suffix], dim=1) + + ndim = tensor.ndim + if ndim == 2: + tensor = tensor[:, None, :, None] + elif ndim == 3: + tensor = tensor[:, None, :, :] + # Stride is applied on the second-to-last dimension. + stride = (stride, 1) + + if mode == "mean": + tensor = nn.functional.avg_pool2d(tensor, stride, stride=stride, ceil_mode=True) + elif mode == "max": + tensor = nn.functional.max_pool2d(tensor, stride, stride=stride, ceil_mode=True) + elif mode == "min": + tensor = -nn.functional.max_pool2d(-tensor, stride, stride=stride, ceil_mode=True) + else: + raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.") + + if ndim == 2: + return tensor[:, 0, :, 0] + elif ndim == 3: + return tensor[:, 0] + return tensor + + def pre_attention_pooling( + self, output, attention_inputs: Tuple[torch.Tensor] + ) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]: + """Pool `output` and the proper parts of `attention_inputs` before the attention layer.""" + position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs + if self.config.pool_q_only: + if self.config.attention_type == "factorized": + position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:] + token_type_mat = self.stride_pool(token_type_mat, 1) + cls_mask = self.stride_pool(cls_mask, 0) + output = self.pool_tensor(output, mode=self.config.pooling_type) + else: + self.pooling_mult *= 2 + if self.config.attention_type == "factorized": + position_embeds = self.stride_pool(position_embeds, 0) + token_type_mat = self.stride_pool(token_type_mat, [1, 2]) + cls_mask = self.stride_pool(cls_mask, [1, 2]) + attention_mask = self.pool_tensor(attention_mask, mode="min") + output = self.pool_tensor(output, mode=self.config.pooling_type) + attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) + return output, attention_inputs + + def post_attention_pooling(self, attention_inputs: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]: + """Pool the proper parts of `attention_inputs` after the attention layer.""" + position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs + if self.config.pool_q_only: + self.pooling_mult *= 2 + if self.config.attention_type == "factorized": + position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0) + token_type_mat = self.stride_pool(token_type_mat, 2) + cls_mask = self.stride_pool(cls_mask, 1) + attention_mask = self.pool_tensor(attention_mask, mode="min") + attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) + return attention_inputs + + +def _relative_shift_gather(positional_attn: torch.Tensor, context_len: int, shift: int) -> torch.Tensor: + batch_size, n_head, seq_len, max_rel_len = positional_attn.shape + # max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j + + # What's next is the same as doing the following gather, which might be clearer code but less efficient. + # idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1) + # # matrix of context_len + i-j + # return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len])) + + positional_attn = torch.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len]) + positional_attn = positional_attn[:, :, shift:, :] + positional_attn = torch.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift]) + positional_attn = positional_attn[..., :context_len] + return positional_attn + + +class FunnelRelMultiheadAttention(nn.Module): + def __init__(self, config: FunnelConfig, block_index: int) -> None: + super().__init__() + self.config = config + self.block_index = block_index + d_model, n_head, d_head = config.d_model, config.n_head, config.d_head + + self.hidden_dropout = nn.Dropout(config.hidden_dropout) + self.attention_dropout = nn.Dropout(config.attention_dropout) + + self.q_head = nn.Linear(d_model, n_head * d_head, bias=False) + self.k_head = nn.Linear(d_model, n_head * d_head) + self.v_head = nn.Linear(d_model, n_head * d_head) + + self.r_w_bias = nn.Parameter(torch.zeros([n_head, d_head])) + self.r_r_bias = nn.Parameter(torch.zeros([n_head, d_head])) + self.r_kernel = nn.Parameter(torch.zeros([d_model, n_head, d_head])) + self.r_s_bias = nn.Parameter(torch.zeros([n_head, d_head])) + self.seg_embed = nn.Parameter(torch.zeros([2, n_head, d_head])) + + self.post_proj = nn.Linear(n_head * d_head, d_model) + self.layer_norm = nn.LayerNorm(d_model, eps=config.layer_norm_eps) + self.scale = 1.0 / (d_head**0.5) + + def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None): + """Relative attention score for the positional encodings""" + # q_head has shape batch_size x sea_len x n_head x d_head + if self.config.attention_type == "factorized": + # Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236) + # phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model + phi, pi, psi, omega = position_embeds + # Shape n_head x d_head + u = self.r_r_bias * self.scale + # Shape d_model x n_head x d_head + w_r = self.r_kernel + + # Shape batch_size x sea_len x n_head x d_model + q_r_attention = torch.einsum("binh,dnh->bind", q_head + u, w_r) + q_r_attention_1 = q_r_attention * phi[:, None] + q_r_attention_2 = q_r_attention * pi[:, None] + + # Shape batch_size x n_head x seq_len x context_len + positional_attn = torch.einsum("bind,jd->bnij", q_r_attention_1, psi) + torch.einsum( + "bind,jd->bnij", q_r_attention_2, omega + ) + else: + shift = 2 if q_head.shape[1] != context_len else 1 + # Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236) + # Grab the proper positional encoding, shape max_rel_len x d_model + r = position_embeds[self.block_index][shift - 1] + # Shape n_head x d_head + v = self.r_r_bias * self.scale + # Shape d_model x n_head x d_head + w_r = self.r_kernel + + # Shape max_rel_len x n_head x d_model + r_head = torch.einsum("td,dnh->tnh", r, w_r) + # Shape batch_size x n_head x seq_len x max_rel_len + positional_attn = torch.einsum("binh,tnh->bnit", q_head + v, r_head) + # Shape batch_size x n_head x seq_len x context_len + positional_attn = _relative_shift_gather(positional_attn, context_len, shift) + + if cls_mask is not None: + positional_attn *= cls_mask + return positional_attn + + def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None): + """Relative attention score for the token_type_ids""" + if token_type_mat is None: + return 0 + batch_size, seq_len, context_len = token_type_mat.shape + # q_head has shape batch_size x seq_len x n_head x d_head + # Shape n_head x d_head + r_s_bias = self.r_s_bias * self.scale + + # Shape batch_size x n_head x seq_len x 2 + token_type_bias = torch.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed) + # Shape batch_size x n_head x seq_len x context_len + token_type_mat = token_type_mat[:, None].expand([batch_size, q_head.shape[2], seq_len, context_len]) + # Shapes batch_size x n_head x seq_len + diff_token_type, same_token_type = torch.split(token_type_bias, 1, dim=-1) + # Shape batch_size x n_head x seq_len x context_len + token_type_attn = torch.where( + token_type_mat, same_token_type.expand(token_type_mat.shape), diff_token_type.expand(token_type_mat.shape) + ) + + if cls_mask is not None: + token_type_attn *= cls_mask + return token_type_attn + + def forward( + self, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_inputs: Tuple[torch.Tensor], + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, ...]: + # query has shape batch_size x seq_len x d_model + # key and value have shapes batch_size x context_len x d_model + position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs + + batch_size, seq_len, _ = query.shape + context_len = key.shape[1] + n_head, d_head = self.config.n_head, self.config.d_head + + # Shape batch_size x seq_len x n_head x d_head + q_head = self.q_head(query).view(batch_size, seq_len, n_head, d_head) + # Shapes batch_size x context_len x n_head x d_head + k_head = self.k_head(key).view(batch_size, context_len, n_head, d_head) + v_head = self.v_head(value).view(batch_size, context_len, n_head, d_head) + + q_head = q_head * self.scale + # Shape n_head x d_head + r_w_bias = self.r_w_bias * self.scale + # Shapes batch_size x n_head x seq_len x context_len + content_score = torch.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head) + positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask) + token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask) + + # merge attention scores + attn_score = content_score + positional_attn + token_type_attn + + # precision safe in case of mixed precision training + dtype = attn_score.dtype + attn_score = attn_score.float() + # perform masking + if attention_mask is not None: + attn_score = attn_score - INF * (1 - attention_mask[:, None, None].float()) + # attention probability + attn_prob = torch.softmax(attn_score, dim=-1, dtype=dtype) + attn_prob = self.attention_dropout(attn_prob) + + # attention output, shape batch_size x seq_len x n_head x d_head + attn_vec = torch.einsum("bnij,bjnd->bind", attn_prob, v_head) + + # Shape shape batch_size x seq_len x d_model + attn_out = self.post_proj(attn_vec.reshape(batch_size, seq_len, n_head * d_head)) + attn_out = self.hidden_dropout(attn_out) + + output = self.layer_norm(query + attn_out) + return (output, attn_prob) if output_attentions else (output,) + + +class FunnelPositionwiseFFN(nn.Module): + def __init__(self, config: FunnelConfig) -> None: + super().__init__() + self.linear_1 = nn.Linear(config.d_model, config.d_inner) + self.activation_function = ACT2FN[config.hidden_act] + self.activation_dropout = nn.Dropout(config.activation_dropout) + self.linear_2 = nn.Linear(config.d_inner, config.d_model) + self.dropout = nn.Dropout(config.hidden_dropout) + self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps) + + def forward(self, hidden: torch.Tensor) -> torch.Tensor: + h = self.linear_1(hidden) + h = self.activation_function(h) + h = self.activation_dropout(h) + h = self.linear_2(h) + h = self.dropout(h) + return self.layer_norm(hidden + h) + + +class FunnelLayer(nn.Module): + def __init__(self, config: FunnelConfig, block_index: int) -> None: + super().__init__() + self.attention = FunnelRelMultiheadAttention(config, block_index) + self.ffn = FunnelPositionwiseFFN(config) + + def forward( + self, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_inputs, + output_attentions: bool = False, + ) -> Tuple: + attn = self.attention(query, key, value, attention_inputs, output_attentions=output_attentions) + output = self.ffn(attn[0]) + return (output, attn[1]) if output_attentions else (output,) + + +class FunnelEncoder(nn.Module): + def __init__(self, config: FunnelConfig) -> None: + super().__init__() + self.config = config + self.attention_structure = FunnelAttentionStructure(config) + self.blocks = nn.ModuleList( + [ + nn.ModuleList([FunnelLayer(config, block_index) for _ in range(block_size)]) + for block_index, block_size in enumerate(config.block_sizes) + ] + ) + + def forward( + self, + inputs_embeds: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[Tuple, BaseModelOutput]: + # The pooling is not implemented on long tensors, so we convert this mask. + attention_mask = attention_mask.type_as(inputs_embeds) + attention_inputs = self.attention_structure.init_attention_inputs( + inputs_embeds, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + ) + hidden = inputs_embeds + + all_hidden_states = (inputs_embeds,) if output_hidden_states else None + all_attentions = () if output_attentions else None + + for block_index, block in enumerate(self.blocks): + pooling_flag = hidden.size(1) > (2 if self.config.separate_cls else 1) + pooling_flag = pooling_flag and block_index > 0 + if pooling_flag: + pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling( + hidden, attention_inputs + ) + for layer_index, layer in enumerate(block): + for repeat_index in range(self.config.block_repeats[block_index]): + do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag + if do_pooling: + query = pooled_hidden + key = value = hidden if self.config.pool_q_only else pooled_hidden + else: + query = key = value = hidden + layer_output = layer(query, key, value, attention_inputs, output_attentions=output_attentions) + hidden = layer_output[0] + if do_pooling: + attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs) + + if output_attentions: + all_attentions = all_attentions + layer_output[1:] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden,) + + if not return_dict: + return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) + + +def upsample( + x: torch.Tensor, stride: int, target_len: int, separate_cls: bool = True, truncate_seq: bool = False +) -> torch.Tensor: + """ + Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension. + """ + if stride == 1: + return x + if separate_cls: + cls = x[:, :1] + x = x[:, 1:] + output = torch.repeat_interleave(x, repeats=stride, dim=1) + if separate_cls: + if truncate_seq: + output = nn.functional.pad(output, (0, 0, 0, stride - 1, 0, 0)) + output = output[:, : target_len - 1] + output = torch.cat([cls, output], dim=1) + else: + output = output[:, :target_len] + return output + + +class FunnelDecoder(nn.Module): + def __init__(self, config: FunnelConfig) -> None: + super().__init__() + self.config = config + self.attention_structure = FunnelAttentionStructure(config) + self.layers = nn.ModuleList([FunnelLayer(config, 0) for _ in range(config.num_decoder_layers)]) + + def forward( + self, + final_hidden: torch.Tensor, + first_block_hidden: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[Tuple, BaseModelOutput]: + upsampled_hidden = upsample( + final_hidden, + stride=2 ** (len(self.config.block_sizes) - 1), + target_len=first_block_hidden.shape[1], + separate_cls=self.config.separate_cls, + truncate_seq=self.config.truncate_seq, + ) + + hidden = upsampled_hidden + first_block_hidden + all_hidden_states = (hidden,) if output_hidden_states else None + all_attentions = () if output_attentions else None + + attention_inputs = self.attention_structure.init_attention_inputs( + hidden, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + ) + + for layer in self.layers: + layer_output = layer(hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions) + hidden = layer_output[0] + + if output_attentions: + all_attentions = all_attentions + layer_output[1:] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden,) + + if not return_dict: + return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) + + +class FunnelDiscriminatorPredictions(nn.Module): + """Prediction module for the discriminator, made up of two dense layers.""" + + def __init__(self, config: FunnelConfig) -> None: + super().__init__() + self.config = config + self.dense = nn.Linear(config.d_model, config.d_model) + self.dense_prediction = nn.Linear(config.d_model, 1) + + def forward(self, discriminator_hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(discriminator_hidden_states) + hidden_states = ACT2FN[self.config.hidden_act](hidden_states) + logits = self.dense_prediction(hidden_states).squeeze(-1) + return logits + + +class FunnelPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = FunnelConfig + load_tf_weights = load_tf_weights_in_funnel + base_model_prefix = "funnel" + + def _init_weights(self, module): + classname = module.__class__.__name__ + if classname.find("Linear") != -1: + if getattr(module, "weight", None) is not None: + if self.config.initializer_std is None: + fan_out, fan_in = module.weight.shape + std = np.sqrt(1.0 / float(fan_in + fan_out)) + else: + std = self.config.initializer_std + nn.init.normal_(module.weight, std=std) + if getattr(module, "bias", None) is not None: + nn.init.constant_(module.bias, 0.0) + elif classname == "FunnelRelMultiheadAttention": + nn.init.uniform_(module.r_w_bias, b=self.config.initializer_range) + nn.init.uniform_(module.r_r_bias, b=self.config.initializer_range) + nn.init.uniform_(module.r_kernel, b=self.config.initializer_range) + nn.init.uniform_(module.r_s_bias, b=self.config.initializer_range) + nn.init.uniform_(module.seg_embed, b=self.config.initializer_range) + elif classname == "FunnelEmbeddings": + std = 1.0 if self.config.initializer_std is None else self.config.initializer_std + nn.init.normal_(module.word_embeddings.weight, std=std) + if module.word_embeddings.padding_idx is not None: + module.word_embeddings.weight.data[module.padding_idx].zero_() + + +class FunnelClassificationHead(nn.Module): + def __init__(self, config: FunnelConfig, n_labels: int) -> None: + super().__init__() + self.linear_hidden = nn.Linear(config.d_model, config.d_model) + self.dropout = nn.Dropout(config.hidden_dropout) + self.linear_out = nn.Linear(config.d_model, n_labels) + + def forward(self, hidden: torch.Tensor) -> torch.Tensor: + hidden = self.linear_hidden(hidden) + hidden = torch.tanh(hidden) + hidden = self.dropout(hidden) + return self.linear_out(hidden) + + +@dataclass +class FunnelForPreTrainingOutput(ModelOutput): + """ + Output type of [`FunnelForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss of the ELECTRA-style objective. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Prediction scores of the head (scores for each token before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +FUNNEL_START_DOCSTRING = r""" + + The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient + Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`FunnelConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +FUNNEL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + """ + The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called + decoder) or any task-specific head on top. + """, + FUNNEL_START_DOCSTRING, +) +class FunnelBaseModel(FunnelPreTrainedModel): + def __init__(self, config: FunnelConfig) -> None: + super().__init__(config) + + self.embeddings = FunnelEmbeddings(config) + self.encoder = FunnelEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Embedding: + return self.embeddings.word_embeddings + + def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: + self.embeddings.word_embeddings = new_embeddings + + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small-base", + output_type=BaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # TODO: deal with head_mask + if inputs_embeds is None: + inputs_embeds = self.embeddings(input_ids) + + encoder_outputs = self.encoder( + inputs_embeds, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return encoder_outputs + + +@add_start_docstrings( + "The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.", + FUNNEL_START_DOCSTRING, +) +class FunnelModel(FunnelPreTrainedModel): + def __init__(self, config: FunnelConfig) -> None: + super().__init__(config) + self.config = config + self.embeddings = FunnelEmbeddings(config) + self.encoder = FunnelEncoder(config) + self.decoder = FunnelDecoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Embedding: + return self.embeddings.word_embeddings + + def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: + self.embeddings.word_embeddings = new_embeddings + + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # TODO: deal with head_mask + if inputs_embeds is None: + inputs_embeds = self.embeddings(input_ids) + + encoder_outputs = self.encoder( + inputs_embeds, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + output_attentions=output_attentions, + output_hidden_states=True, + return_dict=return_dict, + ) + + decoder_outputs = self.decoder( + final_hidden=encoder_outputs[0], + first_block_hidden=encoder_outputs[1][self.config.block_sizes[0]], + attention_mask=attention_mask, + token_type_ids=token_type_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + idx = 0 + outputs = (decoder_outputs[0],) + if output_hidden_states: + idx += 1 + outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],) + if output_attentions: + idx += 1 + outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],) + return outputs + + return BaseModelOutput( + last_hidden_state=decoder_outputs[0], + hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states) + if output_hidden_states + else None, + attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None, + ) + + +add_start_docstrings( + """ + Funnel Transformer model with a binary classification head on top as used during pretraining for identifying + generated tokens. + """, + FUNNEL_START_DOCSTRING, +) + + +class FunnelForPreTraining(FunnelPreTrainedModel): + def __init__(self, config: FunnelConfig) -> None: + super().__init__(config) + + self.funnel = FunnelModel(config) + self.discriminator_predictions = FunnelDiscriminatorPredictions(config) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=FunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, FunnelForPreTrainingOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see `input_ids` + docstring) Indices should be in `[0, 1]`: + + - 0 indicates the token is an original token, + - 1 indicates the token was replaced. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, FunnelForPreTraining + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small") + >>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small") + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> logits = model(**inputs).logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + discriminator_hidden_states = self.funnel( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + discriminator_sequence_output = discriminator_hidden_states[0] + + logits = self.discriminator_predictions(discriminator_sequence_output) + + loss = None + if labels is not None: + loss_fct = nn.BCEWithLogitsLoss() + if attention_mask is not None: + active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1 + active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss] + active_labels = labels[active_loss] + loss = loss_fct(active_logits, active_labels.float()) + else: + loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float()) + + if not return_dict: + output = (logits,) + discriminator_hidden_states[1:] + return ((loss,) + output) if loss is not None else output + + return FunnelForPreTrainingOutput( + loss=loss, + logits=logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + +@add_start_docstrings("""Funnel Transformer Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING) +class FunnelForMaskedLM(FunnelPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config: FunnelConfig) -> None: + super().__init__(config) + + self.funnel = FunnelModel(config) + self.lm_head = nn.Linear(config.d_model, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self) -> nn.Linear: + return self.lm_head + + def set_output_embeddings(self, new_embeddings: nn.Embedding) -> None: + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.funnel( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = outputs[0] + prediction_logits = self.lm_head(last_hidden_state) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Funnel Transformer Model with a sequence classification/regression head on top (two linear layer on top of the + first timestep of the last hidden state) e.g. for GLUE tasks. + """, + FUNNEL_START_DOCSTRING, +) +class FunnelForSequenceClassification(FunnelPreTrainedModel): + def __init__(self, config: FunnelConfig) -> None: + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.funnel = FunnelBaseModel(config) + self.classifier = FunnelClassificationHead(config, config.num_labels) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small-base", + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.funnel( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = outputs[0] + pooled_output = last_hidden_state[:, 0] + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Funnel Transformer Model with a multiple choice classification head on top (two linear layer on top of the first + timestep of the last hidden state, and a softmax) e.g. for RocStories/SWAG tasks. + """, + FUNNEL_START_DOCSTRING, +) +class FunnelForMultipleChoice(FunnelPreTrainedModel): + def __init__(self, config: FunnelConfig) -> None: + super().__init__(config) + + self.funnel = FunnelBaseModel(config) + self.classifier = FunnelClassificationHead(config, 1) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small-base", + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.funnel( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = outputs[0] + pooled_output = last_hidden_state[:, 0] + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Funnel Transformer Model with a token classification head on top (a linear layer on top of the hidden-states + output) e.g. for Named-Entity-Recognition (NER) tasks. + """, + FUNNEL_START_DOCSTRING, +) +class FunnelForTokenClassification(FunnelPreTrainedModel): + def __init__(self, config: FunnelConfig) -> None: + super().__init__(config) + self.num_labels = config.num_labels + + self.funnel = FunnelModel(config) + self.dropout = nn.Dropout(config.hidden_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.funnel( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = outputs[0] + last_hidden_state = self.dropout(last_hidden_state) + logits = self.classifier(last_hidden_state) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Funnel Transformer Model with a span classification head on top for extractive question-answering tasks like SQuAD + (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + FUNNEL_START_DOCSTRING, +) +class FunnelForQuestionAnswering(FunnelPreTrainedModel): + def __init__(self, config: FunnelConfig) -> None: + super().__init__(config) + self.num_labels = config.num_labels + + self.funnel = FunnelModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.funnel( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = outputs[0] + + logits = self.qa_outputs(last_hidden_state) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_tf_funnel.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_tf_funnel.py new file mode 100644 index 0000000000000000000000000000000000000000..b50b96df1c54083d552e94f8d0c5e219a62d3e65 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/modeling_tf_funnel.py @@ -0,0 +1,1871 @@ +# coding=utf-8 +# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 Funnel model.""" + + +from __future__ import annotations + +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFMaskedLMOutput, + TFMultipleChoiceModelOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_funnel import FunnelConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "FunnelConfig" + + +from ..deprecated._archive_maps import TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +INF = 1e6 + + +class TFFunnelEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + self.initializer_std = 1.0 if config.initializer_std is None else config.initializer_std + + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_std), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.d_model]) + + def call(self, input_ids=None, inputs_embeds=None, training=False): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + assert not (input_ids is not None and inputs_embeds is not None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(self.weight, input_ids) + + final_embeddings = self.LayerNorm(inputs=inputs_embeds) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +class TFFunnelAttentionStructure: + """ + Contains helpers for `TFFunnelRelMultiheadAttention `. + """ + + cls_token_type_id: int = 2 + + def __init__(self, config): + self.d_model = config.d_model + self.attention_type = config.attention_type + self.num_blocks = config.num_blocks + self.separate_cls = config.separate_cls + self.truncate_seq = config.truncate_seq + self.pool_q_only = config.pool_q_only + self.pooling_type = config.pooling_type + + self.sin_dropout = keras.layers.Dropout(config.hidden_dropout) + self.cos_dropout = keras.layers.Dropout(config.hidden_dropout) + # Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was + # divided. + self.pooling_mult = None + + def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None, training=False): + """Returns the attention inputs associated to the inputs of the model.""" + # inputs_embeds has shape batch_size x seq_len x d_model + # attention_mask and token_type_ids have shape batch_size x seq_len + self.pooling_mult = 1 + self.seq_len = seq_len = shape_list(inputs_embeds)[1] + position_embeds = self.get_position_embeds(seq_len, training=training) + token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None + cls_mask = ( + tf.pad(tf.ones([seq_len - 1, seq_len - 1], dtype=inputs_embeds.dtype), [[1, 0], [1, 0]]) + if self.separate_cls + else None + ) + return (position_embeds, token_type_mat, attention_mask, cls_mask) + + def token_type_ids_to_mat(self, token_type_ids): + """Convert `token_type_ids` to `token_type_mat`.""" + token_type_mat = tf.equal(tf.expand_dims(token_type_ids, -1), tf.expand_dims(token_type_ids, -2)) + # Treat as in the same segment as both A & B + cls_ids = tf.equal(token_type_ids, tf.constant([self.cls_token_type_id], dtype=token_type_ids.dtype)) + cls_mat = tf.logical_or(tf.expand_dims(cls_ids, -1), tf.expand_dims(cls_ids, -2)) + return tf.logical_or(cls_mat, token_type_mat) + + def get_position_embeds(self, seq_len, training=False): + """ + Create and cache inputs related to relative position encoding. Those are very different depending on whether we + are using the factorized or the relative shift attention: + + For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2, + final formula. + + For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final + formula. + + Paper link: https://arxiv.org/abs/2006.03236 + """ + if self.attention_type == "factorized": + # Notations from the paper, appending A.2.2, final formula. + # We need to create and return the matrices phi, psi, pi and omega. + pos_seq = tf.range(0, seq_len, 1.0) + freq_seq = tf.range(0, self.d_model // 2, 1.0) + inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2))) + sinusoid = tf.einsum("i,d->id", pos_seq, inv_freq) + + sin_embed = tf.sin(sinusoid) + sin_embed_d = self.sin_dropout(sin_embed, training=training) + cos_embed = tf.cos(sinusoid) + cos_embed_d = self.cos_dropout(cos_embed, training=training) + # This is different from the formula on the paper... + phi = tf.concat([sin_embed_d, sin_embed_d], axis=-1) + psi = tf.concat([cos_embed, sin_embed], axis=-1) + pi = tf.concat([cos_embed_d, cos_embed_d], axis=-1) + omega = tf.concat([-sin_embed, cos_embed], axis=-1) + return (phi, pi, psi, omega) + else: + # Notations from the paper, appending A.2.1, final formula. + # We need to create and return all the possible vectors R for all blocks and shifts. + freq_seq = tf.range(0, self.d_model // 2, 1.0) + inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2))) + # Maximum relative positions for the first input + rel_pos_id = tf.range(-seq_len * 2, seq_len * 2, 1.0) + zero_offset = seq_len * tf.constant(2) + sinusoid = tf.einsum("i,d->id", rel_pos_id, inv_freq) + sin_embed = self.sin_dropout(tf.sin(sinusoid), training=training) + cos_embed = self.cos_dropout(tf.cos(sinusoid), training=training) + pos_embed = tf.concat([sin_embed, cos_embed], axis=-1) + + pos = tf.range(0, seq_len) + pooled_pos = pos + position_embeds_list = [] + for block_index in range(0, self.num_blocks): + # For each block with block_index > 0, we need two types position embeddings: + # - Attention(pooled-q, unpooled-kv) + # - Attention(pooled-q, pooled-kv) + # For block_index = 0 we only need the second one and leave the first one as None. + + # First type + position_embeds_pooling = tf.fill([1], value=-1.0) + + if block_index != 0: + pooled_pos = self.stride_pool_pos(pos, block_index) + + # construct rel_pos_id + stride = 2 ** (block_index - 1) + rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2) + # rel_pos = tf.expand_dims(rel_pos,1) + zero_offset + # rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model)) + rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype) + rel_pos = rel_pos + zero_offset + position_embeds_pooling = tf.gather(pos_embed, rel_pos, axis=0) + + # Second type + pos = pooled_pos + stride = 2**block_index + rel_pos = self.relative_pos(pos, stride) + + # rel_pos = tf.expand_dims(rel_pos,1) + zero_offset + # rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model)) + rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype) + rel_pos = rel_pos + zero_offset + tf.debugging.assert_less(rel_pos, tf.shape(pos_embed)[0]) + position_embeds_no_pooling = tf.gather(pos_embed, rel_pos, axis=0) + + position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling]) + return position_embeds_list + + def stride_pool_pos(self, pos_id, block_index): + """ + Pool `pos_id` while keeping the cls token separate (if `self.separate_cls=True`). + """ + if self.separate_cls: + # Under separate , we treat the as the first token in + # the previous block of the 1st real block. Since the 1st real + # block always has position 1, the position of the previous block + # will be at `1 - 2 ** block_index`. + cls_pos = tf.constant([-(2**block_index) + 1], dtype=pos_id.dtype) + pooled_pos_id = pos_id[1:-1] if self.truncate_seq else pos_id[1:] + return tf.concat([cls_pos, pooled_pos_id[::2]], 0) + else: + return pos_id[::2] + + def relative_pos(self, pos, stride, pooled_pos=None, shift=1): + """ + Build the relative positional vector between `pos` and `pooled_pos`. + """ + if pooled_pos is None: + pooled_pos = pos + + ref_point = pooled_pos[0] - pos[0] + num_remove = shift * shape_list(pooled_pos)[0] + max_dist = ref_point + num_remove * stride + min_dist = pooled_pos[0] - pos[-1] + + return tf.range(max_dist, min_dist - 1, -stride) + + def stride_pool(self, tensor, axis): + """ + Perform pooling by stride slicing the tensor along the given axis. + """ + if tensor is None: + return None + + # Do the stride pool recursively if axis is a list or a tuple of ints. + if isinstance(axis, (list, tuple)): + for ax in axis: + tensor = self.stride_pool(tensor, ax) + return tensor + + # Do the stride pool recursively if tensor is a list or tuple of tensors. + if isinstance(tensor, (tuple, list)): + return type(tensor)(self.stride_pool(x, axis) for x in tensor) + + # Deal with negative axis + axis %= len(shape_list(tensor)) + + axis_slice = slice(None, -1, 2) if self.separate_cls and self.truncate_seq else slice(None, None, 2) + enc_slice = [slice(None)] * axis + [axis_slice] + if self.separate_cls: + cls_slice = [slice(None)] * axis + [slice(None, 1)] + tensor = tf.concat([tensor[cls_slice], tensor], axis) + return tensor[enc_slice] + + def pool_tensor(self, tensor, mode="mean", stride=2): + """Apply 1D pooling to a tensor of size [B x T (x H)].""" + if tensor is None: + return None + + # Do the pool recursively if tensor is a list or tuple of tensors. + if isinstance(tensor, (tuple, list)): + return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor) + + if self.separate_cls: + suffix = tensor[:, :-1] if self.truncate_seq else tensor + tensor = tf.concat([tensor[:, :1], suffix], axis=1) + + ndim = len(shape_list(tensor)) + if ndim == 2: + tensor = tensor[:, :, None] + + if mode == "mean": + tensor = tf.nn.avg_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME") + elif mode == "max": + tensor = tf.nn.max_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME") + elif mode == "min": + tensor = -tf.nn.max_pool1d(-tensor, stride, strides=stride, data_format="NWC", padding="SAME") + else: + raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.") + + return tf.squeeze(tensor, 2) if ndim == 2 else tensor + + def pre_attention_pooling(self, output, attention_inputs): + """Pool `output` and the proper parts of `attention_inputs` before the attention layer.""" + position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs + if self.pool_q_only: + if self.attention_type == "factorized": + position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:] + token_type_mat = self.stride_pool(token_type_mat, 1) + cls_mask = self.stride_pool(cls_mask, 0) + output = self.pool_tensor(output, mode=self.pooling_type) + else: + self.pooling_mult *= 2 + if self.attention_type == "factorized": + position_embeds = self.stride_pool(position_embeds, 0) + token_type_mat = self.stride_pool(token_type_mat, [1, 2]) + cls_mask = self.stride_pool(cls_mask, [1, 2]) + attention_mask = self.pool_tensor(attention_mask, mode="min") + output = self.pool_tensor(output, mode=self.pooling_type) + attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) + return output, attention_inputs + + def post_attention_pooling(self, attention_inputs): + """Pool the proper parts of `attention_inputs` after the attention layer.""" + position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs + if self.pool_q_only: + self.pooling_mult *= 2 + if self.attention_type == "factorized": + position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0) + token_type_mat = self.stride_pool(token_type_mat, 2) + cls_mask = self.stride_pool(cls_mask, 1) + attention_mask = self.pool_tensor(attention_mask, mode="min") + attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) + return attention_inputs + + +def _relative_shift_gather(positional_attn, context_len, shift): + batch_size, n_head, seq_len, max_rel_len = shape_list(positional_attn) + # max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j + + # What's next is the same as doing the following gather in PyTorch, which might be clearer code but less efficient. + # idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1) + # # matrix of context_len + i-j + # return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len])) + + positional_attn = tf.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len]) + positional_attn = positional_attn[:, :, shift:, :] + positional_attn = tf.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift]) + positional_attn = positional_attn[..., :context_len] + return positional_attn + + +class TFFunnelRelMultiheadAttention(keras.layers.Layer): + def __init__(self, config, block_index, **kwargs): + super().__init__(**kwargs) + self.attention_type = config.attention_type + self.n_head = n_head = config.n_head + self.d_head = d_head = config.d_head + self.d_model = d_model = config.d_model + self.initializer_range = config.initializer_range + self.block_index = block_index + + self.hidden_dropout = keras.layers.Dropout(config.hidden_dropout) + self.attention_dropout = keras.layers.Dropout(config.attention_dropout) + + initializer = get_initializer(config.initializer_range) + + self.q_head = keras.layers.Dense( + n_head * d_head, use_bias=False, kernel_initializer=initializer, name="q_head" + ) + self.k_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="k_head") + self.v_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="v_head") + + self.post_proj = keras.layers.Dense(d_model, kernel_initializer=initializer, name="post_proj") + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.scale = 1.0 / (d_head**0.5) + + def build(self, input_shape=None): + n_head, d_head, d_model = self.n_head, self.d_head, self.d_model + initializer = get_initializer(self.initializer_range) + + self.r_w_bias = self.add_weight( + shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_w_bias" + ) + self.r_r_bias = self.add_weight( + shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_r_bias" + ) + self.r_kernel = self.add_weight( + shape=(d_model, n_head, d_head), initializer=initializer, trainable=True, name="r_kernel" + ) + self.r_s_bias = self.add_weight( + shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_s_bias" + ) + self.seg_embed = self.add_weight( + shape=(2, n_head, d_head), initializer=initializer, trainable=True, name="seg_embed" + ) + + if self.built: + return + self.built = True + if getattr(self, "q_head", None) is not None: + with tf.name_scope(self.q_head.name): + self.q_head.build([None, None, d_model]) + if getattr(self, "k_head", None) is not None: + with tf.name_scope(self.k_head.name): + self.k_head.build([None, None, d_model]) + if getattr(self, "v_head", None) is not None: + with tf.name_scope(self.v_head.name): + self.v_head.build([None, None, d_model]) + if getattr(self, "post_proj", None) is not None: + with tf.name_scope(self.post_proj.name): + self.post_proj.build([None, None, n_head * d_head]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, d_model]) + + def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None): + """Relative attention score for the positional encodings""" + # q_head has shape batch_size x sea_len x n_head x d_head + if self.attention_type == "factorized": + # Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236) + # phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model + phi, pi, psi, omega = position_embeds + # Shape n_head x d_head + u = self.r_r_bias * self.scale + # Shape d_model x n_head x d_head + w_r = self.r_kernel + + # Shape batch_size x sea_len x n_head x d_model + q_r_attention = tf.einsum("binh,dnh->bind", q_head + u, w_r) + q_r_attention_1 = q_r_attention * phi[:, None] + q_r_attention_2 = q_r_attention * pi[:, None] + + # Shape batch_size x n_head x seq_len x context_len + positional_attn = tf.einsum("bind,jd->bnij", q_r_attention_1, psi) + tf.einsum( + "bind,jd->bnij", q_r_attention_2, omega + ) + else: + # Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236) + # Grab the proper positional encoding, shape max_rel_len x d_model + if shape_list(q_head)[1] != context_len: + shift = 2 + r = position_embeds[self.block_index][1] + else: + shift = 1 + r = position_embeds[self.block_index][0] + # Shape n_head x d_head + v = self.r_r_bias * self.scale + # Shape d_model x n_head x d_head + w_r = self.r_kernel + + # Shape max_rel_len x n_head x d_model + r_head = tf.einsum("td,dnh->tnh", r, w_r) + # Shape batch_size x n_head x seq_len x max_rel_len + positional_attn = tf.einsum("binh,tnh->bnit", q_head + v, r_head) + # Shape batch_size x n_head x seq_len x context_len + positional_attn = _relative_shift_gather(positional_attn, context_len, shift) + + if cls_mask is not None: + positional_attn *= cls_mask + return positional_attn + + def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None): + """Relative attention score for the token_type_ids""" + if token_type_mat is None: + return 0 + batch_size, seq_len, context_len = shape_list(token_type_mat) + # q_head has shape batch_size x seq_len x n_head x d_head + # Shape n_head x d_head + r_s_bias = self.r_s_bias * self.scale + + # Shape batch_size x n_head x seq_len x 2 + token_type_bias = tf.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed) + # Shape batch_size x n_head x seq_len x context_len + token_type_mat = tf.tile(token_type_mat[:, None], [1, shape_list(q_head)[2], 1, 1]) + # token_type_mat = tf.broadcast_to(token_type_mat[:, None], new_shape) + # Shapes batch_size x n_head x seq_len + diff_token_type, same_token_type = tf.split(token_type_bias, 2, axis=-1) + # Shape batch_size x n_head x seq_len x context_len + token_type_attn = tf.where( + token_type_mat, + tf.tile(same_token_type, [1, 1, 1, context_len]), + tf.tile(diff_token_type, [1, 1, 1, context_len]), + ) + + if cls_mask is not None: + token_type_attn *= cls_mask + return token_type_attn + + def call(self, query, key, value, attention_inputs, output_attentions=False, training=False): + # query has shape batch_size x seq_len x d_model + # key and value have shapes batch_size x context_len x d_model + position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs + + batch_size, seq_len, _ = shape_list(query) + context_len = shape_list(key)[1] + n_head, d_head = self.n_head, self.d_head + + # Shape batch_size x seq_len x n_head x d_head + q_head = tf.reshape(self.q_head(query), [batch_size, seq_len, n_head, d_head]) + # Shapes batch_size x context_len x n_head x d_head + k_head = tf.reshape(self.k_head(key), [batch_size, context_len, n_head, d_head]) + v_head = tf.reshape(self.v_head(value), [batch_size, context_len, n_head, d_head]) + + q_head = q_head * self.scale + # Shape n_head x d_head + r_w_bias = self.r_w_bias * self.scale + # Shapes batch_size x n_head x seq_len x context_len + content_score = tf.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head) + positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask) + token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask) + + # merge attention scores + attn_score = content_score + positional_attn + token_type_attn + + # perform masking + if attention_mask is not None: + attention_mask = tf.cast(attention_mask, dtype=attn_score.dtype) + attn_score = attn_score - (INF * (1 - attention_mask[:, None, None])) + + # attention probability + attn_prob = stable_softmax(attn_score, axis=-1) + attn_prob = self.attention_dropout(attn_prob, training=training) + + # attention output, shape batch_size x seq_len x n_head x d_head + attn_vec = tf.einsum("bnij,bjnd->bind", attn_prob, v_head) + + # Shape shape batch_size x seq_len x d_model + attn_out = self.post_proj(tf.reshape(attn_vec, [batch_size, seq_len, n_head * d_head])) + attn_out = self.hidden_dropout(attn_out, training=training) + + output = self.layer_norm(query + attn_out) + return (output, attn_prob) if output_attentions else (output,) + + +class TFFunnelPositionwiseFFN(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + initializer = get_initializer(config.initializer_range) + self.linear_1 = keras.layers.Dense(config.d_inner, kernel_initializer=initializer, name="linear_1") + self.activation_function = get_tf_activation(config.hidden_act) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + self.linear_2 = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_2") + self.dropout = keras.layers.Dropout(config.hidden_dropout) + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.config = config + + def call(self, hidden, training=False): + h = self.linear_1(hidden) + h = self.activation_function(h) + h = self.activation_dropout(h, training=training) + h = self.linear_2(h) + h = self.dropout(h, training=training) + return self.layer_norm(hidden + h) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "linear_1", None) is not None: + with tf.name_scope(self.linear_1.name): + self.linear_1.build([None, None, self.config.d_model]) + if getattr(self, "linear_2", None) is not None: + with tf.name_scope(self.linear_2.name): + self.linear_2.build([None, None, self.config.d_inner]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + + +class TFFunnelLayer(keras.layers.Layer): + def __init__(self, config, block_index, **kwargs): + super().__init__(**kwargs) + self.attention = TFFunnelRelMultiheadAttention(config, block_index, name="attention") + self.ffn = TFFunnelPositionwiseFFN(config, name="ffn") + + def call(self, query, key, value, attention_inputs, output_attentions=False, training=False): + attn = self.attention( + query, key, value, attention_inputs, output_attentions=output_attentions, training=training + ) + output = self.ffn(attn[0], training=training) + return (output, attn[1]) if output_attentions else (output,) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "ffn", None) is not None: + with tf.name_scope(self.ffn.name): + self.ffn.build(None) + + +class TFFunnelEncoder(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.separate_cls = config.separate_cls + self.pool_q_only = config.pool_q_only + self.block_repeats = config.block_repeats + self.attention_structure = TFFunnelAttentionStructure(config) + self.blocks = [ + [TFFunnelLayer(config, block_index, name=f"blocks_._{block_index}_._{i}") for i in range(block_size)] + for block_index, block_size in enumerate(config.block_sizes) + ] + + def call( + self, + inputs_embeds, + attention_mask=None, + token_type_ids=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + training=False, + ): + # The pooling is not implemented on long tensors, so we convert this mask. + # attention_mask = tf.cast(attention_mask, inputs_embeds.dtype) + attention_inputs = self.attention_structure.init_attention_inputs( + inputs_embeds, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + training=training, + ) + hidden = inputs_embeds + + all_hidden_states = (inputs_embeds,) if output_hidden_states else None + all_attentions = () if output_attentions else None + + for block_index, block in enumerate(self.blocks): + pooling_flag = shape_list(hidden)[1] > (2 if self.separate_cls else 1) + pooling_flag = pooling_flag and block_index > 0 + pooled_hidden = tf.zeros(shape_list(hidden)) + + if pooling_flag: + pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling( + hidden, attention_inputs + ) + + for layer_index, layer in enumerate(block): + for repeat_index in range(self.block_repeats[block_index]): + do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag + if do_pooling: + query = pooled_hidden + key = value = hidden if self.pool_q_only else pooled_hidden + else: + query = key = value = hidden + layer_output = layer( + query, key, value, attention_inputs, output_attentions=output_attentions, training=training + ) + hidden = layer_output[0] + if do_pooling: + attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs) + + if output_attentions: + all_attentions = all_attentions + layer_output[1:] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden,) + + if not return_dict: + return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) + return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + for block in self.blocks: + for layer in block: + with tf.name_scope(layer.name): + layer.build(None) + + +def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False): + """ + Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension. + """ + if stride == 1: + return x + if separate_cls: + cls = x[:, :1] + x = x[:, 1:] + output = tf.repeat(x, repeats=stride, axis=1) + if separate_cls: + if truncate_seq: + output = tf.pad(output, [[0, 0], [0, stride - 1], [0, 0]]) + output = output[:, : target_len - 1] + output = tf.concat([cls, output], axis=1) + else: + output = output[:, :target_len] + return output + + +class TFFunnelDecoder(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.separate_cls = config.separate_cls + self.truncate_seq = config.truncate_seq + self.stride = 2 ** (len(config.block_sizes) - 1) + self.attention_structure = TFFunnelAttentionStructure(config) + self.layers = [TFFunnelLayer(config, 0, name=f"layers_._{i}") for i in range(config.num_decoder_layers)] + + def call( + self, + final_hidden, + first_block_hidden, + attention_mask=None, + token_type_ids=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + training=False, + ): + upsampled_hidden = upsample( + final_hidden, + stride=self.stride, + target_len=shape_list(first_block_hidden)[1], + separate_cls=self.separate_cls, + truncate_seq=self.truncate_seq, + ) + + hidden = upsampled_hidden + first_block_hidden + all_hidden_states = (hidden,) if output_hidden_states else None + all_attentions = () if output_attentions else None + + attention_inputs = self.attention_structure.init_attention_inputs( + hidden, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + training=training, + ) + + for layer in self.layers: + layer_output = layer( + hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions, training=training + ) + hidden = layer_output[0] + + if output_attentions: + all_attentions = all_attentions + layer_output[1:] + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden,) + + if not return_dict: + return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) + return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFFunnelBaseLayer(keras.layers.Layer): + """Base model without decoder""" + + config_class = FunnelConfig + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + + self.embeddings = TFFunnelEmbeddings(config, name="embeddings") + self.encoder = TFFunnelEncoder(config, name="encoder") + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, value): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + token_type_ids=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(input_shape, 1) + + if token_type_ids is None: + token_type_ids = tf.fill(input_shape, 0) + + if inputs_embeds is None: + inputs_embeds = self.embeddings(input_ids, training=training) + + encoder_outputs = self.encoder( + inputs_embeds, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return encoder_outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + + +@keras_serializable +class TFFunnelMainLayer(keras.layers.Layer): + """Base model with decoder""" + + config_class = FunnelConfig + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.block_sizes = config.block_sizes + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + + self.embeddings = TFFunnelEmbeddings(config, name="embeddings") + self.encoder = TFFunnelEncoder(config, name="encoder") + self.decoder = TFFunnelDecoder(config, name="decoder") + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, value): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + token_type_ids=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(input_shape, 1) + + if token_type_ids is None: + token_type_ids = tf.fill(input_shape, 0) + + if inputs_embeds is None: + inputs_embeds = self.embeddings(input_ids, training=training) + + encoder_outputs = self.encoder( + inputs_embeds, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + output_attentions=output_attentions, + output_hidden_states=True, + return_dict=return_dict, + training=training, + ) + + decoder_outputs = self.decoder( + final_hidden=encoder_outputs[0], + first_block_hidden=encoder_outputs[1][self.block_sizes[0]], + attention_mask=attention_mask, + token_type_ids=token_type_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + idx = 0 + outputs = (decoder_outputs[0],) + if output_hidden_states: + idx += 1 + outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],) + if output_attentions: + idx += 1 + outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],) + return outputs + + return TFBaseModelOutput( + last_hidden_state=decoder_outputs[0], + hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states) + if output_hidden_states + else None, + attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +class TFFunnelDiscriminatorPredictions(keras.layers.Layer): + """Prediction module for the discriminator, made up of two dense layers.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + initializer = get_initializer(config.initializer_range) + self.dense = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="dense") + self.activation_function = get_tf_activation(config.hidden_act) + self.dense_prediction = keras.layers.Dense(1, kernel_initializer=initializer, name="dense_prediction") + self.config = config + + def call(self, discriminator_hidden_states): + hidden_states = self.dense(discriminator_hidden_states) + hidden_states = self.activation_function(hidden_states) + logits = tf.squeeze(self.dense_prediction(hidden_states)) + return logits + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.d_model]) + if getattr(self, "dense_prediction", None) is not None: + with tf.name_scope(self.dense_prediction.name): + self.dense_prediction.build([None, None, self.config.d_model]) + + +class TFFunnelMaskedLMHead(keras.layers.Layer): + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + self.config = config + self.hidden_size = config.hidden_size + self.input_embeddings = input_embeddings + + def build(self, input_shape): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + super().build(input_shape) + + def get_output_embeddings(self): + return self.input_embeddings + + def set_output_embeddings(self, value): + self.input_embeddings.weight = value + self.input_embeddings.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states, training=False): + seq_length = shape_list(tensor=hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +class TFFunnelClassificationHead(keras.layers.Layer): + def __init__(self, config, n_labels, **kwargs): + super().__init__(**kwargs) + initializer = get_initializer(config.initializer_range) + self.linear_hidden = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_hidden") + self.dropout = keras.layers.Dropout(config.hidden_dropout) + self.linear_out = keras.layers.Dense(n_labels, kernel_initializer=initializer, name="linear_out") + self.config = config + + def call(self, hidden, training=False): + hidden = self.linear_hidden(hidden) + hidden = keras.activations.tanh(hidden) + hidden = self.dropout(hidden, training=training) + return self.linear_out(hidden) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "linear_hidden", None) is not None: + with tf.name_scope(self.linear_hidden.name): + self.linear_hidden.build([None, None, self.config.d_model]) + if getattr(self, "linear_out", None) is not None: + with tf.name_scope(self.linear_out.name): + self.linear_out.build([None, None, self.config.d_model]) + + +class TFFunnelPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = FunnelConfig + base_model_prefix = "funnel" + + @property + def dummy_inputs(self): + # Funnel misbehaves with very small inputs, so we override and make them a bit bigger + return {"input_ids": tf.ones((1, 3), dtype=tf.int32)} + + +@dataclass +class TFFunnelForPreTrainingOutput(ModelOutput): + """ + Output type of [`FunnelForPreTraining`]. + + Args: + logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Prediction scores of the head (scores for each token before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +FUNNEL_START_DOCSTRING = r""" + + The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient + Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`XxxConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +FUNNEL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + """ + The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called + decoder) or any task-specific head on top. + """, + FUNNEL_START_DOCSTRING, +) +class TFFunnelBaseModel(TFFunnelPreTrainedModel): + def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: + super().__init__(config, *inputs, **kwargs) + self.funnel = TFFunnelBaseLayer(config, name="funnel") + + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small-base", + output_type=TFBaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: + return self.funnel( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + def serving_output(self, output): + # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of + # different dimensions + return TFBaseModelOutput( + last_hidden_state=output.last_hidden_state, + hidden_states=output.hidden_states, + attentions=output.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "funnel", None) is not None: + with tf.name_scope(self.funnel.name): + self.funnel.build(None) + + +@add_start_docstrings( + "The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.", + FUNNEL_START_DOCSTRING, +) +class TFFunnelModel(TFFunnelPreTrainedModel): + def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: + super().__init__(config, *inputs, **kwargs) + self.funnel = TFFunnelMainLayer(config, name="funnel") + + @unpack_inputs + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small", + output_type=TFBaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: + return self.funnel( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + def serving_output(self, output): + # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of + # different dimensions + return TFBaseModelOutput( + last_hidden_state=output.last_hidden_state, + hidden_states=output.hidden_states, + attentions=output.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "funnel", None) is not None: + with tf.name_scope(self.funnel.name): + self.funnel.build(None) + + +@add_start_docstrings( + """ + Funnel model with a binary classification head on top as used during pretraining for identifying generated tokens. + """, + FUNNEL_START_DOCSTRING, +) +class TFFunnelForPreTraining(TFFunnelPreTrainedModel): + def __init__(self, config: FunnelConfig, **kwargs) -> None: + super().__init__(config, **kwargs) + + self.funnel = TFFunnelMainLayer(config, name="funnel") + self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions") + + @unpack_inputs + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + **kwargs, + ) -> Union[Tuple[tf.Tensor], TFFunnelForPreTrainingOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFFunnelForPreTraining + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small") + >>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small") + + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") + >>> logits = model(inputs).logits + ```""" + discriminator_hidden_states = self.funnel( + input_ids, + attention_mask, + token_type_ids, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + discriminator_sequence_output = discriminator_hidden_states[0] + logits = self.discriminator_predictions(discriminator_sequence_output) + + if not return_dict: + return (logits,) + discriminator_hidden_states[1:] + + return TFFunnelForPreTrainingOutput( + logits=logits, + hidden_states=discriminator_hidden_states.hidden_states, + attentions=discriminator_hidden_states.attentions, + ) + + def serving_output(self, output): + # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of + # different dimensions + return TFFunnelForPreTrainingOutput( + logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "funnel", None) is not None: + with tf.name_scope(self.funnel.name): + self.funnel.build(None) + if getattr(self, "discriminator_predictions", None) is not None: + with tf.name_scope(self.discriminator_predictions.name): + self.discriminator_predictions.build(None) + + +@add_start_docstrings("""Funnel Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING) +class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss): + def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: + super().__init__(config, *inputs, **kwargs) + + self.funnel = TFFunnelMainLayer(config, name="funnel") + self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head") + + def get_lm_head(self) -> TFFunnelMaskedLMHead: + return self.lm_head + + def get_prefix_bias_name(self) -> str: + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.lm_head.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small", + output_type=TFMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + outputs = self.funnel( + input_ids, + attention_mask, + token_type_ids, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output, training=training) + + loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: + # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of + # different dimensions + return TFMaskedLMOutput(logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "funnel", None) is not None: + with tf.name_scope(self.funnel.name): + self.funnel.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build(None) + + +@add_start_docstrings( + """ + Funnel Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + FUNNEL_START_DOCSTRING, +) +class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.funnel = TFFunnelBaseLayer(config, name="funnel") + self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier") + + @unpack_inputs + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small-base", + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + outputs = self.funnel( + input_ids, + attention_mask, + token_type_ids, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + last_hidden_state = outputs[0] + pooled_output = last_hidden_state[:, 0] + logits = self.classifier(pooled_output, training=training) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: + # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of + # different dimensions + return TFSequenceClassifierOutput( + logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "funnel", None) is not None: + with tf.name_scope(self.funnel.name): + self.funnel.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build(None) + + +@add_start_docstrings( + """ + Funnel Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + FUNNEL_START_DOCSTRING, +) +class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss): + def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: + super().__init__(config, *inputs, **kwargs) + + self.funnel = TFFunnelBaseLayer(config, name="funnel") + self.classifier = TFFunnelClassificationHead(config, 1, name="classifier") + + @property + def dummy_inputs(self): + return {"input_ids": tf.ones((3, 3, 4), dtype=tf.int32)} + + @unpack_inputs + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small-base", + output_type=TFMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_inputs_embeds = ( + tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + + outputs = self.funnel( + flat_input_ids, + attention_mask=flat_attention_mask, + token_type_ids=flat_token_type_ids, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + last_hidden_state = outputs[0] + pooled_output = last_hidden_state[:, 0] + logits = self.classifier(pooled_output, training=training) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: + # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of + # different dimensions + return TFMultipleChoiceModelOutput( + logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "funnel", None) is not None: + with tf.name_scope(self.funnel.name): + self.funnel.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build(None) + + +@add_start_docstrings( + """ + Funnel Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + FUNNEL_START_DOCSTRING, +) +class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificationLoss): + def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.funnel = TFFunnelMainLayer(config, name="funnel") + self.dropout = keras.layers.Dropout(config.hidden_dropout) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small", + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + outputs = self.funnel( + input_ids, + attention_mask, + token_type_ids, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output, training=training) + logits = self.classifier(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: + # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of + # different dimensions + return TFTokenClassifierOutput( + logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "funnel", None) is not None: + with tf.name_scope(self.funnel.name): + self.funnel.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Funnel Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + FUNNEL_START_DOCSTRING, +) +class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringLoss): + def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.funnel = TFFunnelMainLayer(config, name="funnel") + self.qa_outputs = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="funnel-transformer/small", + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + + outputs = self.funnel( + input_ids, + attention_mask, + token_type_ids, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + + loss = None + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions, "end_position": end_positions} + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: + # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of + # different dimensions + return TFQuestionAnsweringModelOutput( + start_logits=output.start_logits, + end_logits=output.end_logits, + hidden_states=output.hidden_states, + attentions=output.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "funnel", None) is not None: + with tf.name_scope(self.funnel.name): + self.funnel.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/tokenization_funnel_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/tokenization_funnel_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..9ff2a3bfefc57eb7dd67eb0e0d810cb492e87521 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/funnel/tokenization_funnel_fast.py @@ -0,0 +1,200 @@ +# coding=utf-8 +# Copyright 2020 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization class for Funnel Transformer.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_funnel import FunnelTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} + +_model_names = [ + "small", + "small-base", + "medium", + "medium-base", + "intermediate", + "intermediate-base", + "large", + "large-base", + "xlarge", + "xlarge-base", +] + + +class FunnelTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + bos_token (`str`, `optional`, defaults to `""`): + The beginning of sentence token. + eos_token (`str`, `optional`, defaults to `""`): + The end of sentence token. + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + slow_tokenizer_class = FunnelTokenizer + cls_token_type_id: int = 2 + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="", + sep_token="", + pad_token="", + cls_token="", + mask_token="", + bos_token="", + eos_token="", + clean_text=True, + tokenize_chinese_chars=True, + strip_accents=None, + wordpieces_prefix="##", + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + bos_token=bos_token, + eos_token=eos_token, + clean_text=clean_text, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + wordpieces_prefix=wordpieces_prefix, + **kwargs, + ) + + normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + normalizer_state.get("lowercase", do_lower_case) != do_lower_case + or normalizer_state.get("strip_accents", strip_accents) != strip_accents + or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars + ): + normalizer_class = getattr(normalizers, normalizer_state.pop("type")) + normalizer_state["lowercase"] = do_lower_case + normalizer_state["strip_accents"] = strip_accents + normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars + self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) + + self.do_lower_case = do_lower_case + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens with BERT->Funnel + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A Funnel sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + if token_ids_1 is not None: + output += token_ids_1 + [self.sep_token_id] + + return output + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel + Transformer sequence pair mask has the following format: + + ``` + 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..248cd7280e95e18b78129271a1aba2e6567234a1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/convert_gptsan_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/convert_gptsan_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..682345b1be3993478b4a9085b1779fe6c560aab9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/convert_gptsan_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/modeling_gptsan_japanese.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/modeling_gptsan_japanese.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9441cbda5e7609ac4cd1771990c50e78c2bade88 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/modeling_gptsan_japanese.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..25ea6a9e21b2ae2cb1d9a044df1e6a783b453649 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b7dba0b5dc0cf85f8ed83f8f02b5def4e0b21c95 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__init__.py @@ -0,0 +1,119 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_openai": ["OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenAIGPTConfig"], + "tokenization_openai": ["OpenAIGPTTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_openai_fast"] = ["OpenAIGPTTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_openai"] = [ + "OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST", + "OpenAIGPTDoubleHeadsModel", + "OpenAIGPTForSequenceClassification", + "OpenAIGPTLMHeadModel", + "OpenAIGPTModel", + "OpenAIGPTPreTrainedModel", + "load_tf_weights_in_openai_gpt", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_openai"] = [ + "TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFOpenAIGPTDoubleHeadsModel", + "TFOpenAIGPTForSequenceClassification", + "TFOpenAIGPTLMHeadModel", + "TFOpenAIGPTMainLayer", + "TFOpenAIGPTModel", + "TFOpenAIGPTPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_openai import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenAIGPTConfig + from .tokenization_openai import OpenAIGPTTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_openai_fast import OpenAIGPTTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_openai import ( + OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, + OpenAIGPTDoubleHeadsModel, + OpenAIGPTForSequenceClassification, + OpenAIGPTLMHeadModel, + OpenAIGPTModel, + OpenAIGPTPreTrainedModel, + load_tf_weights_in_openai_gpt, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_openai import ( + TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, + TFOpenAIGPTDoubleHeadsModel, + TFOpenAIGPTForSequenceClassification, + TFOpenAIGPTLMHeadModel, + TFOpenAIGPTMainLayer, + TFOpenAIGPTModel, + TFOpenAIGPTPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b57a778e7ff830481a330a65b22b8b55b7daed5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/configuration_openai.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/configuration_openai.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eb560162bd9dc1812627f12dda3c73ca0f090c95 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/configuration_openai.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/convert_openai_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/convert_openai_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d027c5741a94b9ac0b71af4a4385c678a54d14af Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/convert_openai_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_openai.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_openai.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3bb90a9d0b662e26009f7534251257b34c88bec6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_openai.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_tf_openai.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_tf_openai.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a3fd13d975b3556163de56402f88656769434e81 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/modeling_tf_openai.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c1ff849ba6e88474b488e256a19c3de9c6270250 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3098726c7bcea010b7dbe7ecd5d424f6b01c327b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/__pycache__/tokenization_openai_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/configuration_openai.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/configuration_openai.py new file mode 100644 index 0000000000000000000000000000000000000000..422922c7912dec652fa3aa4a154fe6f24051d0a0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/configuration_openai.py @@ -0,0 +1,156 @@ +# coding=utf-8 +# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" OpenAI GPT configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class OpenAIGPTConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`OpenAIGPTModel`] or a [`TFOpenAIGPTModel`]. It is + used to instantiate a GPT model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT + [openai-community/openai-gpt](https://huggingface.co/openai-community/openai-gpt) architecture from OpenAI. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 40478): + Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`OpenAIGPTModel`] or [`TFOpenAIGPTModel`]. + n_positions (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + n_embd (`int`, *optional*, defaults to 768): + Dimensionality of the embeddings and hidden states. + n_layer (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + n_head (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + afn (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + resid_pdrop (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + embd_pdrop (`int`, *optional*, defaults to 0.1): + The dropout ratio for the embeddings. + attn_pdrop (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention. + layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): + The epsilon to use in the layer normalization layers + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + summary_type (`str`, *optional*, defaults to `"cls_index"`): + Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and + [`OpenAIGPTDoubleHeadsModel`]. + + Has to be one of the following options: + + - `"last"`: Take the last token hidden state (like XLNet). + - `"first"`: Take the first token hidden state (like BERT). + - `"mean"`: Take the mean of all tokens hidden states. + - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). + - `"attn"`: Not implemented now, use multi-head attention. + summary_use_proj (`bool`, *optional*, defaults to `True`): + Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and + [`OpenAIGPTDoubleHeadsModel`]. + + Whether or not to add a projection after the vector extraction. + summary_activation (`str`, *optional*): + Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and + [`OpenAIGPTDoubleHeadsModel`]. + + Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. + summary_proj_to_labels (`bool`, *optional*, defaults to `True`): + Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and + [`OpenAIGPTDoubleHeadsModel`]. + + Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. + summary_first_dropout (`float`, *optional*, defaults to 0.1): + Argument used when doing sequence summary, used in the models [`OpenAIGPTDoubleHeadsModel`] and + [`OpenAIGPTDoubleHeadsModel`]. + + The dropout ratio to be used after the projection and activation. + + + Examples: + + ```python + >>> from transformers import OpenAIGPTConfig, OpenAIGPTModel + + >>> # Initializing a GPT configuration + >>> configuration = OpenAIGPTConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = OpenAIGPTModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "openai-gpt" + attribute_map = { + "max_position_embeddings": "n_positions", + "hidden_size": "n_embd", + "num_attention_heads": "n_head", + "num_hidden_layers": "n_layer", + } + + def __init__( + self, + vocab_size=40478, + n_positions=512, + n_embd=768, + n_layer=12, + n_head=12, + afn="gelu", + resid_pdrop=0.1, + embd_pdrop=0.1, + attn_pdrop=0.1, + layer_norm_epsilon=1e-5, + initializer_range=0.02, + summary_type="cls_index", + summary_use_proj=True, + summary_activation=None, + summary_proj_to_labels=True, + summary_first_dropout=0.1, + **kwargs, + ): + self.vocab_size = vocab_size + self.n_positions = n_positions + self.n_embd = n_embd + self.n_layer = n_layer + self.n_head = n_head + self.afn = afn + self.resid_pdrop = resid_pdrop + self.embd_pdrop = embd_pdrop + self.attn_pdrop = attn_pdrop + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_range = initializer_range + self.summary_type = summary_type + self.summary_use_proj = summary_use_proj + self.summary_activation = summary_activation + self.summary_first_dropout = summary_first_dropout + self.summary_proj_to_labels = summary_proj_to_labels + super().__init__(**kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..1b101aea0cc0de26defb0198b4bc5e762b7ccce8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,75 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert OpenAI GPT checkpoint.""" + + +import argparse + +import torch + +from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt +from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging + + +logging.set_verbosity_info() + + +def convert_openai_checkpoint_to_pytorch(openai_checkpoint_folder_path, openai_config_file, pytorch_dump_folder_path): + # Construct model + if openai_config_file == "": + config = OpenAIGPTConfig() + else: + config = OpenAIGPTConfig.from_json_file(openai_config_file) + model = OpenAIGPTModel(config) + + # Load weights from numpy + load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path) + + # Save pytorch-model + pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME + pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME + print(f"Save PyTorch model to {pytorch_weights_dump_path}") + torch.save(model.state_dict(), pytorch_weights_dump_path) + print(f"Save configuration file to {pytorch_config_dump_path}") + with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: + f.write(config.to_json_string()) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--openai_checkpoint_folder_path", + default=None, + type=str, + required=True, + help="Path to the TensorFlow checkpoint path.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + parser.add_argument( + "--openai_config_file", + default="", + type=str, + help=( + "An optional config json file corresponding to the pre-trained OpenAI model. \n" + "This specifies the model architecture." + ), + ) + args = parser.parse_args() + convert_openai_checkpoint_to_pytorch( + args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_openai.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_openai.py new file mode 100644 index 0000000000000000000000000000000000000000..637aa90cff9f1db4d094b2ae0ae11fa24fde5ca8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_openai.py @@ -0,0 +1,859 @@ +# coding=utf-8 +# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch OpenAI GPT model.""" + + +import json +import math +import os +from dataclasses import dataclass +from typing import Any, Dict, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import gelu_new, silu +from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput +from ...modeling_utils import PreTrainedModel, SequenceSummary +from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_openai import OpenAIGPTConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "openai-community/openai-gpt" +_CONFIG_FOR_DOC = "OpenAIGPTConfig" + + +from ..deprecated._archive_maps import OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path): + """Load tf pre-trained weights in a pytorch model (from NumPy arrays here)""" + import re + + import numpy as np + + if ".ckpt" in openai_checkpoint_folder_path: + openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path) + + logger.info(f"Loading weights from {openai_checkpoint_folder_path}") + + with open(openai_checkpoint_folder_path + "/parameters_names.json", "r", encoding="utf-8") as names_handle: + names = json.load(names_handle) + with open(openai_checkpoint_folder_path + "/params_shapes.json", "r", encoding="utf-8") as shapes_handle: + shapes = json.load(shapes_handle) + offsets = np.cumsum([np.prod(shape) for shape in shapes]) + init_params = [np.load(openai_checkpoint_folder_path + f"/params_{n}.npy") for n in range(10)] + init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] + init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] + + # This was used when we had a single embedding matrix for positions and tokens + # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0) + # del init_params[1] + init_params = [arr.squeeze() for arr in init_params] + + # Check that the token and position embeddings weight dimensions map those of the init parameters. + if model.tokens_embed.weight.shape != init_params[1].shape: + raise ValueError( + f"tokens_embed.weight.shape: {model.tokens_embed.weight.shape} does not match init_param[1].shape:" + f" {init_params[1].shape}" + ) + + if model.positions_embed.weight.shape != init_params[0].shape: + raise ValueError( + f"positions_embed.weight.shape: {model.positions_embed.weight.shape} does not match init_param[0].shape:" + f" {init_params[0].shape}" + ) + + model.tokens_embed.weight.data = torch.from_numpy(init_params[1]) + model.positions_embed.weight.data = torch.from_numpy(init_params[0]) + names.pop(0) + # Pop position and token embedding arrays + init_params.pop(0) + init_params.pop(0) + + for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]): + name = name[6:] # skip "model/" + if name[-2:] != ":0": + raise ValueError(f"Layer {name} does not end with :0") + name = name[:-2] + name = name.split("/") + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+\d+", m_name): + scope_names = re.split(r"(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "g": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "b": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "w": + pointer = getattr(pointer, "weight") + else: + pointer = getattr(pointer, scope_names[0]) + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + + # Ensure that the pointer and array have compatible shapes. + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + return model + + +ACT_FNS = {"relu": nn.ReLU(), "silu": silu, "gelu": gelu_new, "swish": silu} + + +class Attention(nn.Module): + def __init__(self, nx, n_positions, config, scale=False): + super().__init__() + n_state = nx # in Attention: n_state=768 (nx=n_embd) + # [switch nx => n_state from Block to Attention to keep identical to TF implementation] + if n_state % config.n_head != 0: + raise ValueError(f"Attention n_state shape: {n_state} must be divisible by config.n_head {config.n_head}") + self.register_buffer( + "bias", + torch.tril(torch.ones(n_positions, n_positions)).view(1, 1, n_positions, n_positions), + persistent=False, + ) + self.n_head = config.n_head + self.split_size = n_state + self.scale = scale + + self.c_attn = Conv1D(n_state * 3, nx) + self.c_proj = Conv1D(n_state, nx) + self.attn_dropout = nn.Dropout(config.attn_pdrop) + self.resid_dropout = nn.Dropout(config.resid_pdrop) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.n_head, self.split_size // self.n_head, self.pruned_heads + ) + index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) + # Prune conv1d layers + self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) + self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) + # Update hyper params + self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) + self.n_head = self.n_head - len(heads) + self.pruned_heads = self.pruned_heads.union(heads) + + def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False): + w = torch.matmul(q, k) + if self.scale: + w = w / math.sqrt(v.size(-1)) + # w = w * self.bias + -1e9 * (1 - self.bias) # TF implementation method: mask_attn_weights + # XD: self.b may be larger than w, so we need to crop it + b = self.bias[:, :, : w.size(-2), : w.size(-1)] + w = w * b + -1e4 * (1 - b) + + if attention_mask is not None: + # Apply the attention mask + w = w + attention_mask + + w = nn.functional.softmax(w, dim=-1) + w = self.attn_dropout(w) + + # Mask heads if we want to + if head_mask is not None: + w = w * head_mask + + outputs = [torch.matmul(w, v)] + if output_attentions: + outputs.append(w) + return outputs + + def merge_heads(self, x): + x = x.permute(0, 2, 1, 3).contiguous() + new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) + return x.view(*new_x_shape) # in Tensorflow implementation: fct merge_states + + def split_heads(self, x, k=False): + new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) + x = x.view(*new_x_shape) # in Tensorflow implementation: fct split_states + if k: + return x.permute(0, 2, 3, 1) + else: + return x.permute(0, 2, 1, 3) + + def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False): + x = self.c_attn(x) + query, key, value = x.split(self.split_size, dim=2) + query = self.split_heads(query) + key = self.split_heads(key, k=True) + value = self.split_heads(value) + + attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions) + a = attn_outputs[0] + + a = self.merge_heads(a) + a = self.c_proj(a) + a = self.resid_dropout(a) + + outputs = [a] + attn_outputs[1:] + return outputs # a, (attentions) + + +class MLP(nn.Module): + def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) + super().__init__() + nx = config.n_embd + self.c_fc = Conv1D(n_state, nx) + self.c_proj = Conv1D(nx, n_state) + self.act = ACT_FNS[config.afn] + self.dropout = nn.Dropout(config.resid_pdrop) + + def forward(self, x): + h = self.act(self.c_fc(x)) + h2 = self.c_proj(h) + return self.dropout(h2) + + +class Block(nn.Module): + def __init__(self, n_positions, config, scale=False): + super().__init__() + nx = config.n_embd + self.attn = Attention(nx, n_positions, config, scale) + self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) + self.mlp = MLP(4 * nx, config) + self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) + + def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False): + attn_outputs = self.attn( + x, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + ) + a = attn_outputs[0] + + n = self.ln_1(x + a) + m = self.mlp(n) + h = self.ln_2(n + m) + + outputs = [h] + attn_outputs[1:] + return outputs + + +class OpenAIGPTPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = OpenAIGPTConfig + load_tf_weights = load_tf_weights_in_openai_gpt + base_model_prefix = "transformer" + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, (nn.Linear, Conv1D)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +@dataclass +class OpenAIGPTDoubleHeadsModelOutput(ModelOutput): + """ + Base class for outputs of models predicting if two sentences are consecutive or not. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss. + mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided): + Multiple choice classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): + Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + mc_loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + mc_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +OPENAI_GPT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +OPENAI_GPT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.", + OPENAI_GPT_START_DOCSTRING, +) +class OpenAIGPTModel(OpenAIGPTPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd) + self.positions_embed = nn.Embedding(config.n_positions, config.n_embd) + self.drop = nn.Dropout(config.embd_pdrop) + self.h = nn.ModuleList([Block(config.n_positions, config, scale=True) for _ in range(config.n_layer)]) + + self.register_buffer("position_ids", torch.arange(config.n_positions), persistent=False) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.tokens_embed + + def set_input_embeddings(self, new_embeddings): + self.tokens_embed = new_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} + """ + for layer, heads in heads_to_prune.items(): + self.h[layer].attn.prune_heads(heads) + + @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if position_ids is None: + # Code is different from when we had a single embedding matrix from position and token embeddings + position_ids = self.position_ids[None, : input_shape[-1]] + + # Attention mask. + if attention_mask is not None: + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility + attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min + + # Prepare head mask if needed + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if inputs_embeds is None: + inputs_embeds = self.tokens_embed(input_ids) + position_embeds = self.positions_embed(position_ids) + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) + token_type_embeds = self.tokens_embed(token_type_ids) + else: + token_type_embeds = 0 + hidden_states = inputs_embeds + position_embeds + token_type_embeds + hidden_states = self.drop(hidden_states) + + output_shape = input_shape + (hidden_states.size(-1),) + + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + for i, block in enumerate(self.h): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + outputs = block(hidden_states, attention_mask, head_mask[i], output_attentions=output_attentions) + hidden_states = outputs[0] + if output_attentions: + all_attentions = all_attentions + (outputs[1],) + + hidden_states = hidden_states.view(*output_shape) + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + ) + + +@add_start_docstrings( + """ + OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input + embeddings). + """, + OPENAI_GPT_START_DOCSTRING, +) +class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.transformer = OpenAIGPTModel(config) + self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CausalLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + lm_logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return CausalLMOutput( + loss=loss, + logits=lm_logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, Any]: + return {"input_ids": input_ids} + + +@add_start_docstrings( + """ +OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for +RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the +input embeddings, the classification head takes as input the input of a specified classification token index in the +input sequence). +""", + OPENAI_GPT_START_DOCSTRING, +) +class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + + config.num_labels = 1 + self.transformer = OpenAIGPTModel(config) + self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) + self.multiple_choice_head = SequenceSummary(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=OpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + mc_token_ids: Optional[torch.LongTensor] = None, + labels: Optional[torch.LongTensor] = None, + mc_labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], OpenAIGPTDoubleHeadsModelOutput]: + r""" + mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): + Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - + 1]`. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-1, 0, ..., config.vocab_size]` All labels set to `-100` are + ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) + + Return: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, OpenAIGPTDoubleHeadsModel + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt") + >>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt") + >>> tokenizer.add_special_tokens( + ... {"cls_token": "[CLS]"} + ... ) # Add a [CLS] to the vocabulary (we should train it also!) + >>> model.resize_token_embeddings(len(tokenizer)) + + >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] + >>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices + >>> mc_token_ids = torch.tensor([input_ids.size(-1) - 1, input_ids.size(-1) - 1]).unsqueeze(0) # Batch size 1 + + >>> outputs = model(input_ids, mc_token_ids=mc_token_ids) + >>> lm_logits = outputs.logits + >>> mc_logits = outputs.mc_logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + lm_logits = self.lm_head(hidden_states) + mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) + + lm_loss, mc_loss = None, None + if mc_labels is not None: + loss_fct = CrossEntropyLoss() + mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) + if labels is not None: + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) + + if not return_dict: + output = (lm_logits, mc_logits) + transformer_outputs[1:] + if mc_loss is not None: + output = (mc_loss,) + output + return ((lm_loss,) + output) if lm_loss is not None else output + + return OpenAIGPTDoubleHeadsModelOutput( + loss=lm_loss, + mc_loss=mc_loss, + logits=lm_logits, + mc_logits=mc_logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + The Original OpenAI GPT Model transformer with a sequence classification head on top (linear layer). + [`OpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal + models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the + last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding + token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since + it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take + the last value in each row of the batch). + """, + OPENAI_GPT_START_DOCSTRING, +) +class OpenAIGPTForSequenceClassification(OpenAIGPTPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.transformer = OpenAIGPTModel(config) + self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size, sequence_length = input_ids.shape[:2] + else: + batch_size, sequence_length = inputs_embeds.shape[:2] + + # Ensure the batch size is > 1 if there is no padding. + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[range(batch_size), sequence_lengths] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=pooled_logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_tf_openai.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_tf_openai.py new file mode 100644 index 0000000000000000000000000000000000000000..b826936c51fbd672c669a5cc6157d042453cfe16 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/modeling_tf_openai.py @@ -0,0 +1,940 @@ +# coding=utf-8 +# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 OpenAI GPT model.""" + +from __future__ import annotations + +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput, TFSequenceClassifierOutput +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFConv1D, + TFModelInputType, + TFPreTrainedModel, + TFSequenceClassificationLoss, + TFSequenceSummary, + TFSharedEmbeddings, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_openai import OpenAIGPTConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "openai-community/openai-gpt" +_CONFIG_FOR_DOC = "OpenAIGPTConfig" + + +from ..deprecated._archive_maps import TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class TFAttention(keras.layers.Layer): + def __init__(self, nx, config, scale=False, **kwargs): + super().__init__(**kwargs) + + n_state = nx # in Attention: n_state=768 (nx=n_embd) + # [switch nx => n_state from Block to Attention to keep identical to TF implementation] + assert ( + n_state % config.n_head == 0 + ), f"Hidden dimension {n_state} not dividable by number of heads {config.n_head}" + self.n_head = config.n_head + self.split_size = n_state + self.scale = scale + self.output_attentions = config.output_attentions + + self.c_attn = TFConv1D(n_state * 3, nx, initializer_range=config.initializer_range, name="c_attn") + self.c_proj = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_proj") + self.attn_dropout = keras.layers.Dropout(config.attn_pdrop) + self.resid_dropout = keras.layers.Dropout(config.resid_pdrop) + self.n_state = n_state + self.pruned_heads = set() + + def prune_heads(self, heads): + pass + + @staticmethod + def causal_attention_mask(nd, ns): + """ + 1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]), + -1, ns-nd), but doesn't produce garbage on TPUs. + """ + i = tf.range(nd)[:, None] + j = tf.range(ns) + m = i >= j - ns + nd + return m + + def _attn(self, q, k, v, attention_mask, head_mask, output_attentions, training=False): + # q, k, v have shape [batch, heads, sequence, features] + w = tf.matmul(q, k, transpose_b=True) + if self.scale: + dk = tf.cast(shape_list(k)[-1], dtype=w.dtype) # scale attention_scores + w = w / tf.math.sqrt(dk) + + # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst. + _, _, nd, ns = shape_list(w) + b = tf.cast(self.causal_attention_mask(nd, ns), dtype=w.dtype) + b = tf.reshape(b, [1, 1, nd, ns]) + w = w * b - 1e4 * (1 - b) + + if attention_mask is not None: + # Apply the attention mask + attention_mask = tf.cast(attention_mask, dtype=w.dtype) + w = w + attention_mask + + w = stable_softmax(w, axis=-1) + w = self.attn_dropout(w, training=training) + + # Mask heads if we want to + if head_mask is not None: + w = w * head_mask + + outputs = [tf.matmul(w, v)] + if output_attentions: + outputs.append(w) + return outputs + + def merge_heads(self, x): + x = tf.transpose(x, [0, 2, 1, 3]) + x_shape = shape_list(x) + new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]] + return tf.reshape(x, new_x_shape) + + def split_heads(self, x): + x_shape = shape_list(x) + new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head] + x = tf.reshape(x, new_x_shape) + return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features) + + def call(self, x, attention_mask, head_mask, output_attentions, training=False): + x = self.c_attn(x) + query, key, value = tf.split(x, 3, axis=2) + query = self.split_heads(query) + key = self.split_heads(key) + value = self.split_heads(value) + + attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions, training=training) + a = attn_outputs[0] + + a = self.merge_heads(a) + a = self.c_proj(a) + a = self.resid_dropout(a, training=training) + + outputs = [a] + attn_outputs[1:] + return outputs # a, (attentions) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "c_attn", None) is not None: + with tf.name_scope(self.c_attn.name): + self.c_attn.build([None, None, self.n_state * 3]) + if getattr(self, "c_proj", None) is not None: + with tf.name_scope(self.c_proj.name): + self.c_proj.build([None, None, self.n_state]) + + +class TFMLP(keras.layers.Layer): + def __init__(self, n_state, config, **kwargs): + super().__init__(**kwargs) + nx = config.n_embd + self.c_fc = TFConv1D(n_state, nx, initializer_range=config.initializer_range, name="c_fc") + self.c_proj = TFConv1D(nx, n_state, initializer_range=config.initializer_range, name="c_proj") + self.act = get_tf_activation("gelu") + self.dropout = keras.layers.Dropout(config.resid_pdrop) + self.nx = nx + self.n_state = n_state + + def call(self, x, training=False): + h = self.act(self.c_fc(x)) + h2 = self.c_proj(h) + h2 = self.dropout(h2, training=training) + return h2 + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "c_fc", None) is not None: + with tf.name_scope(self.c_fc.name): + self.c_fc.build([None, None, self.n_state]) + if getattr(self, "c_proj", None) is not None: + with tf.name_scope(self.c_proj.name): + self.c_proj.build([None, None, self.nx]) + + +class TFBlock(keras.layers.Layer): + def __init__(self, config, scale=False, **kwargs): + super().__init__(**kwargs) + nx = config.n_embd + self.attn = TFAttention(nx, config, scale, name="attn") + self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1") + self.mlp = TFMLP(4 * nx, config, name="mlp") + self.ln_2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_2") + self.nx = nx + + def call(self, x, attention_mask, head_mask, output_attentions, training=False): + output_attn = self.attn(x, attention_mask, head_mask, output_attentions, training=training) + a = output_attn[0] # output_attn: a, (attentions) + + n = self.ln_1(x + a) + m = self.mlp(n, training=training) + h = self.ln_2(n + m) + + outputs = [h] + output_attn[1:] + return outputs # x, (attentions) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attn", None) is not None: + with tf.name_scope(self.attn.name): + self.attn.build(None) + if getattr(self, "ln_1", None) is not None: + with tf.name_scope(self.ln_1.name): + self.ln_1.build([None, None, self.nx]) + if getattr(self, "mlp", None) is not None: + with tf.name_scope(self.mlp.name): + self.mlp.build(None) + if getattr(self, "ln_2", None) is not None: + with tf.name_scope(self.ln_2.name): + self.ln_2.build([None, None, self.nx]) + + +@keras_serializable +class TFOpenAIGPTMainLayer(keras.layers.Layer): + config_class = OpenAIGPTConfig + + def __init__(self, config, *inputs, **kwargs): + super().__init__(*inputs, **kwargs) + + self.config = config + self.output_hidden_states = config.output_hidden_states + self.output_attentions = config.output_attentions + self.return_dict = config.use_return_dict + self.num_hidden_layers = config.n_layer + self.n_embd = config.n_embd + self.n_positions = config.n_positions + self.initializer_range = config.initializer_range + + self.tokens_embed = TFSharedEmbeddings( + config.vocab_size, config.n_embd, initializer_range=config.initializer_range, name="tokens_embed" + ) + self.drop = keras.layers.Dropout(config.embd_pdrop) + self.h = [TFBlock(config, scale=True, name=f"h_._{i}") for i in range(config.n_layer)] + + def build(self, input_shape=None): + with tf.name_scope("positions_embed"): + self.positions_embed = self.add_weight( + name="embeddings", + shape=[self.n_positions, self.n_embd], + initializer=get_initializer(self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "tokens_embed", None) is not None: + with tf.name_scope(self.tokens_embed.name): + self.tokens_embed.build(None) + if getattr(self, "h", None) is not None: + for layer in self.h: + with tf.name_scope(layer.name): + layer.build(None) + + def get_input_embeddings(self): + return self.tokens_embed + + def set_input_embeddings(self, value): + self.tokens_embed.weight = value + self.tokens_embed.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFBaseModelOutput]: + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + input_ids = tf.reshape(input_ids, [-1, input_shape[-1]]) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if position_ids is None: + position_ids = tf.expand_dims(tf.range(input_shape[-1]), axis=0) + + if attention_mask is not None: + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + + one_cst = tf.constant(1.0) + attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype) + attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0)) + else: + attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.num_hidden_layers + # head_mask = tf.constant([0] * self.num_hidden_layers) + + position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]]) + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = self.tokens_embed(input_ids, mode="embedding") + position_embeds = tf.gather(self.positions_embed, position_ids) + if token_type_ids is not None: + token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]]) + check_embeddings_within_bounds(token_type_ids, self.config.vocab_size, "token_type_ids") + token_type_embeds = self.tokens_embed(token_type_ids, mode="embedding") + else: + token_type_embeds = 0 + hidden_states = inputs_embeds + position_embeds + token_type_embeds + hidden_states = self.drop(hidden_states, training=training) + + output_shape = input_shape + [shape_list(hidden_states)[-1]] + + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + for i, block in enumerate(self.h): + if output_hidden_states: + all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),) + + outputs = block( + hidden_states, + attention_mask, + head_mask[i], + output_attentions, + training=training, + ) + hidden_states = outputs[0] + if output_attentions: + all_attentions = all_attentions + (outputs[1],) + + hidden_states = tf.reshape(hidden_states, output_shape) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if output_attentions: + # let the number of heads free (-1) so we can extract attention even after head pruning + attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:] + all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + + return TFBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + ) + + +class TFOpenAIGPTPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = OpenAIGPTConfig + base_model_prefix = "transformer" + + +@dataclass +class TFOpenAIGPTDoubleHeadsModelOutput(ModelOutput): + """ + Base class for outputs of models predicting if two sentences are consecutive or not. + + Args: + logits (`tf.Tensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + mc_logits (`tf.Tensor` of shape `(batch_size, num_choices)`): + Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + logits: tf.Tensor = None + mc_logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +OPENAI_GPT_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +OPENAI_GPT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.", + OPENAI_GPT_START_DOCSTRING, +) +class TFOpenAIGPTModel(TFOpenAIGPTPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") + + @unpack_inputs + @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFBaseModelOutput]: + outputs = self.transformer( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + + +@add_start_docstrings( + """ + OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input + embeddings). + """, + OPENAI_GPT_START_DOCSTRING, +) +class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel, TFCausalLanguageModelingLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") + # OpenAIGPT does not have past caching features + self.supports_xla_generation = False + + def get_output_embeddings(self): + return self.get_input_embeddings() + + def set_output_embeddings(self, value): + self.set_input_embeddings(value) + + @unpack_inputs + @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFCausalLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFCausalLMOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., + config.vocab_size - 1]`. + """ + + transformer_outputs = self.transformer( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + hidden_states = transformer_outputs[0] + + logits = self.transformer.tokens_embed(hidden_states, mode="linear") + + loss = None + if labels is not None: + # shift labels to the left and cut last logit token + shifted_logits = logits[:, :-1] + labels = labels[:, 1:] + loss = self.hf_compute_loss(labels, shifted_logits) + + if not return_dict: + output = (logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFCausalLMOutput( + loss=loss, + logits=logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def prepare_inputs_for_generation(self, inputs, **kwargs): + return {"input_ids": inputs} + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + + +@add_start_docstrings( + """ + OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for + RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the + input embeddings, the classification head takes as input the input of a specified classification token index in the + input sequence). + """, + OPENAI_GPT_START_DOCSTRING, +) +class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + config.num_labels = 1 + self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") + self.multiple_choice_head = TFSequenceSummary( + config, initializer_range=config.initializer_range, name="multiple_choice_head" + ) + + @unpack_inputs + @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFOpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + mc_token_ids: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFOpenAIGPTDoubleHeadsModelOutput]: + r""" + mc_token_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): + Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - + 1]`. + + Return: + + Examples: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFOpenAIGPTDoubleHeadsModel + + >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt") + >>> model = TFOpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt") + + >>> # Add a [CLS] to the vocabulary (we should train it also!) + >>> tokenizer.add_special_tokens({"cls_token": "[CLS]"}) + >>> model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size + >>> print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary + + >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] + >>> encoding = tokenizer(choices, return_tensors="tf") + >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} + >>> inputs["mc_token_ids"] = tf.constant( + ... [inputs["input_ids"].shape[-1] - 1, inputs["input_ids"].shape[-1] - 1] + ... )[ + ... None, : + ... ] # Batch size 1 + >>> outputs = model(inputs) + >>> lm_prediction_scores, mc_prediction_scores = outputs[:2] + ```""" + + if input_ids is not None: + input_shapes = shape_list(input_ids) + else: + input_shapes = shape_list(inputs_embeds)[:-1] + + seq_length = input_shapes[-1] + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None + transformer_outputs = self.transformer( + flat_input_ids, + flat_attention_mask, + flat_token_type_ids, + flat_position_ids, + head_mask, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + hidden_states = transformer_outputs[0] + hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:]) + if return_dict and output_hidden_states: + # We do this to match the slightly odd PT behaviour - the final hidden state is reshaped to rank 4 when the + # input is rank 3, but all other hidden states remain at rank-3 (with the first 2 dims merged) + all_hidden_states = transformer_outputs.hidden_states[:-1] + (hidden_states,) + else: + all_hidden_states = None + lm_logits = self.transformer.tokens_embed(hidden_states, mode="linear") + mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids, training=training) + mc_logits = tf.squeeze(mc_logits, axis=-1) + + if not return_dict: + return (lm_logits, mc_logits) + transformer_outputs[1:] + + return TFOpenAIGPTDoubleHeadsModelOutput( + logits=lm_logits, + mc_logits=mc_logits, + hidden_states=all_hidden_states, + attentions=transformer_outputs.attentions, + ) + + @property + def input_signature(self): + return { + "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), + "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), + "mc_token_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"), + } + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + if getattr(self, "multiple_choice_head", None) is not None: + with tf.name_scope(self.multiple_choice_head.name): + self.multiple_choice_head.build(None) + + +@add_start_docstrings( + """ + The OpenAI GPT Model transformer with a sequence classification head on top (linear layer). + + [`TFOpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal + models (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + OPENAI_GPT_START_DOCSTRING, +) +class TFOpenAIGPTForSequenceClassification(TFOpenAIGPTPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + self.score = keras.layers.Dense( + config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="score", + use_bias=False, + ) + self.transformer = TFOpenAIGPTMainLayer(config, name="transformer") + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFSequenceClassifierOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., + config.vocab_size - 1]`. + """ + transformer_outputs = self.transformer( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + in_logits = None + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = ( + tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) + - 1 + ) + sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) + in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + loss = None + + if labels is not None: + if input_ids is not None: + batch_size, sequence_length = shape_list(input_ids)[:2] + else: + batch_size, sequence_length = shape_list(inputs_embeds)[:2] + assert ( + self.config.pad_token_id is not None or batch_size == 1 + ), "Cannot handle batch sizes > 1 if no padding token is defined." + + if not tf.is_tensor(sequence_lengths): + in_logits = logits[0:batch_size, sequence_lengths] + + loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels])) + + pooled_logits = in_logits if in_logits is not None else logits + + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=pooled_logits, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "score", None) is not None: + with tf.name_scope(self.score.name): + self.score.build([None, None, self.config.n_embd]) + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai.py new file mode 100644 index 0000000000000000000000000000000000000000..4f2b27916092b2d11cae2955a0179218ac9c9de6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai.py @@ -0,0 +1,394 @@ +# coding=utf-8 +# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for OpenAI GPT.""" + + +import json +import os +import re +import unicodedata +from typing import Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", +} + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length + strings) + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +def text_standardize(text): + """ + fixes some issues the spacy tokenizer had on books corpus also does some whitespace standardization + """ + text = text.replace("—", "-") + text = text.replace("–", "-") + text = text.replace("―", "-") + text = text.replace("…", "...") + text = text.replace("´", "'") + text = re.sub(r"""(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)""", r" \1 ", text) + text = re.sub(r"\s*\n\s*", " \n ", text) + text = re.sub(r"[^\S\n]+", " ", text) + return text.strip() + + +class OpenAIGPTTokenizer(PreTrainedTokenizer): + """ + Construct a GPT Tokenizer. Based on Byte-Pair-Encoding with the following peculiarities: + + - lowercases all inputs, + - uses `SpaCy` tokenizer and `ftfy` for pre-BPE tokenization if they are installed, fallback to BERT's + `BasicTokenizer` if not. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__(self, vocab_file, merges_file, unk_token="", **kwargs): + try: + import ftfy + from spacy.lang.en import English + + _nlp = English() + self.nlp = _nlp.tokenizer + self.fix_text = ftfy.fix_text + except ImportError: + logger.warning("ftfy or spacy is not installed using BERT BasicTokenizer instead of SpaCy & ftfy.") + self.nlp = BasicTokenizer(do_lower_case=True) + self.fix_text = None + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + merges = merges_handle.read().split("\n")[1:-1] + merges = [tuple(merge.split()) for merge in merges] + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {} + + super().__init__(unk_token=unk_token, **kwargs) + + @property + def do_lower_case(self): + return True + + @property + def vocab_size(self): + return len(self.encoder) + + def get_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + def bpe(self, token): + word = tuple(token[:-1]) + (token[-1] + "",) + if token in self.cache: + return self.cache[token] + pairs = get_pairs(word) + + if not pairs: + return token + "" + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + if word == "\n ": + word = "\n" + self.cache[token] = word + return word + + def _tokenize(self, text): + """Tokenize a string.""" + split_tokens = [] + if self.fix_text is None: + # Using BERT's BasicTokenizer + text = self.nlp.tokenize(text) + for token in text: + split_tokens.extend(list(self.bpe(token).split(" "))) + else: + # Using SpaCy & ftfy (original tokenization process of OpenAI GPT) + text = self.nlp(text_standardize(self.fix_text(text))) + for token in text: + split_tokens.extend(list(self.bpe(token.text.lower()).split(" "))) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an id in a token (BPE) using the vocab.""" + return self.decoder.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = "".join(tokens).replace("", " ").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..214db5385044eb8de3518fe379b0f766d8392350 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/openai/tokenization_openai_fast.py @@ -0,0 +1,64 @@ +# coding=utf-8 +# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Fast Tokenization classes for OpenAI GPT.""" + + +from typing import Optional, Tuple + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_openai import OpenAIGPTTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} + + +class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" GPT Tokenizer (backed by HuggingFace's *tokenizers* library). Based on Byte-Pair-Encoding with + the following peculiarities: + + - lower case all inputs + - uses BERT's BasicTokenizer for pre-BPE tokenization + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = OpenAIGPTTokenizer + + def __init__(self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="", **kwargs): + super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, **kwargs) + + @property + def do_lower_case(self): + return True + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f083b454d554a09ef2c0479ef7ae7053cc6e023c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__init__.py @@ -0,0 +1,62 @@ +# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, +) + + +_import_structure = { + "configuration_qwen2_moe": ["QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "Qwen2MoeConfig"], +} + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_qwen2_moe"] = [ + "Qwen2MoeForCausalLM", + "Qwen2MoeModel", + "Qwen2MoePreTrainedModel", + "Qwen2MoeForSequenceClassification", + ] + + +if TYPE_CHECKING: + from .configuration_qwen2_moe import QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, Qwen2MoeConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_qwen2_moe import ( + Qwen2MoeForCausalLM, + Qwen2MoeForSequenceClassification, + Qwen2MoeModel, + Qwen2MoePreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..feeb5adc8edb0e3d452277f36d41e45c619fbaec Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/configuration_qwen2_moe.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/configuration_qwen2_moe.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2b7e2317210b0911b5ee2df684818cfe56ddd01b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/configuration_qwen2_moe.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/modeling_qwen2_moe.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/modeling_qwen2_moe.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1b47eaa674190b94f5f7177d9eeb570cab2e176d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/__pycache__/modeling_qwen2_moe.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/configuration_qwen2_moe.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/configuration_qwen2_moe.py new file mode 100644 index 0000000000000000000000000000000000000000..e3f516ed9c2de4d725b3f8f329768ef71916cb62 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/configuration_qwen2_moe.py @@ -0,0 +1,175 @@ +# coding=utf-8 +# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Qwen2MoE model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +QWEN2MOE_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "Qwen/Qwen1.5-MoE-A2.7B": "https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B/resolve/main/config.json", +} + + +class Qwen2MoeConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Qwen2MoeModel`]. It is used to instantiate a + Qwen2MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of + Qwen1.5-MoE-A2.7B" [Qwen/Qwen1.5-MoE-A2.7B"](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B"). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 151936): + Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`Qwen2MoeModel`] + hidden_size (`int`, *optional*, defaults to 2048): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 5632): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 24): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + num_key_value_heads (`int`, *optional*, defaults to 16): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 32768): + The maximum sequence length that this model might ever be used with. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether the model's input and output word embeddings should be tied. + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + use_sliding_window (`bool`, *optional*, defaults to `False`): + Whether to use sliding window attention. + sliding_window (`int`, *optional*, defaults to 4096): + Sliding window attention (SWA) window size. If not specified, will default to `4096`. + max_window_layers (`int`, *optional*, defaults to 28): + The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + decoder_sparse_step (`int`, *optional*, defaults to 1): + The frequency of the MoE layer. + moe_intermediate_size (`int`, *optional*, defaults to 1408): + Intermediate size of the routed expert. + shared_expert_intermediate_size (`int`, *optional*, defaults to 5632): + Intermediate size of the shared expert. + num_experts_per_tok (`int`, *optional*, defaults to 4): + Number of selected experts. + num_experts (`int`, *optional*, defaults to 60): + Number of routed experts. + norm_topk_prob (`bool`, *optional*, defaults to `False`): + Whether to normalize the topk probabilities. + output_router_logits (`bool`, *optional*, defaults to `False`): + Whether or not the router logits should be returned by the model. Enabeling this will also + allow the model to output the auxiliary loss, including load balancing loss and router z-loss. + router_aux_loss_coef (`float`, *optional*, defaults to 0.001): + The aux loss factor for the total loss. + + ```python + >>> from transformers import Qwen2MoeModel, Qwen2MoeConfig + + >>> # Initializing a Qwen2MoE style configuration + >>> configuration = Qwen2MoeConfig() + + >>> # Initializing a model from the Qwen1.5-MoE-A2.7B" style configuration + >>> model = Qwen2MoeModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "qwen2_moe" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=151936, + hidden_size=2048, + intermediate_size=5632, + num_hidden_layers=24, + num_attention_heads=16, + num_key_value_heads=16, + hidden_act="silu", + max_position_embeddings=32768, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + tie_word_embeddings=False, + rope_theta=10000.0, + use_sliding_window=False, + sliding_window=4096, + max_window_layers=28, + attention_dropout=0.0, + decoder_sparse_step=1, + moe_intermediate_size=1408, + shared_expert_intermediate_size=5632, + num_experts_per_tok=4, + num_experts=60, + norm_topk_prob=False, + output_router_logits=False, + router_aux_loss_coef=0.001, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.use_sliding_window = use_sliding_window + self.sliding_window = sliding_window + self.max_window_layers = max_window_layers + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.rope_theta = rope_theta + self.attention_dropout = attention_dropout + + # MoE arguments + self.decoder_sparse_step = decoder_sparse_step + self.moe_intermediate_size = moe_intermediate_size + self.shared_expert_intermediate_size = shared_expert_intermediate_size + self.num_experts_per_tok = num_experts_per_tok + self.num_experts = num_experts + self.norm_topk_prob = norm_topk_prob + self.output_router_logits = output_router_logits + self.router_aux_loss_coef = router_aux_loss_coef + + super().__init__( + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py new file mode 100644 index 0000000000000000000000000000000000000000..70072c91720a57f44613e404757003973e2b73db --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/qwen2_moe/modeling_qwen2_moe.py @@ -0,0 +1,1595 @@ +# coding=utf-8 +# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Qwen2MoE model.""" +import inspect +import math +import warnings +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...cache_utils import Cache, DynamicCache +from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa +from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast, SequenceClassifierOutputWithPast +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_qwen2_moe import Qwen2MoeConfig + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "Qwen/Qwen1.5-MoE-A2.7B" +_CONFIG_FOR_DOC = "Qwen2MoeConfig" + +QWEN2MOE_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "Qwen/Qwen1.5-MoE-A2.7B", + # See all Qwen2 models at https://huggingface.co/models?filter=qwen2 +] + + +# Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func +def load_balancing_loss_func( + gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None +) -> float: + r""" + Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. + + See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss + function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between + experts is too unbalanced. + + Args: + gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): + Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of + shape [batch_size X sequence_length, num_experts]. + attention_mask (`torch.Tensor`, None): + The attention_mask used in forward function + shape [batch_size X sequence_length] if not None. + num_experts (`int`, *optional*): + Number of experts + + Returns: + The auxiliary loss. + """ + if gate_logits is None or not isinstance(gate_logits, tuple): + return 0 + + if isinstance(gate_logits, tuple): + compute_device = gate_logits[0].device + concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) + + routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) + + _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) + + expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) + + if attention_mask is None: + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.mean(expert_mask.float(), dim=0) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.mean(routing_weights, dim=0) + else: + batch_size, sequence_length = attention_mask.shape + num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) + + # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask + expert_attention_mask = ( + attention_mask[None, :, :, None, None] + .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) + .reshape(-1, top_k, num_experts) + .to(compute_device) + ) + + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( + expert_attention_mask, dim=0 + ) + + # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert + router_per_expert_attention_mask = ( + attention_mask[None, :, :, None] + .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) + .reshape(-1, num_experts) + .to(compute_device) + ) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( + router_per_expert_attention_mask, dim=0 + ) + + overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) + return overall_loss * num_experts + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2Moe +class Qwen2MoeRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Qwen2MoeRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2Moe +class Qwen2MoeRotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() + ) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +# Modified from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2Moe +class Qwen2MoeMLP(nn.Module): + def __init__(self, config, intermediate_size=None): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = intermediate_size + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2Attention with Qwen2->Qwen2Moe +class Qwen2MoeAttention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer + and "Generating Long Sequences with Sparse Transformers". + """ + + def __init__(self, config: Qwen2MoeConfig, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.is_causal = True + self.attention_dropout = config.attention_dropout + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) + self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) + self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) + self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) + + self.rotary_emb = Qwen2MoeRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2FlashAttention2 with Qwen2->Qwen2Moe +class Qwen2MoeFlashAttention2(Qwen2MoeAttention): + """ + Qwen2Moe flash attention module, following Qwen2Moe attention module. This module inherits from `Qwen2MoeAttention` + as the weights of the module stays untouched. The only required change would be on the forward pass + where it needs to correctly call the public API of flash attention and deal with padding tokens + in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom + config.max_window_layers layers. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ): + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + + # Because the input can be padded, the absolute sequence length depends on the max position id. + rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 + cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + use_sliding_windows = ( + _flash_supports_window_size + and getattr(self.config, "sliding_window", None) is not None + and kv_seq_len > self.config.sliding_window + and self.config.use_sliding_window + ) + + if not _flash_supports_window_size: + logger.warning_once( + "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" + " make sure to upgrade flash-attn library." + ) + + if past_key_value is not None: + # Activate slicing cache only if the config has a value `sliding_windows` attribute + cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 + if ( + getattr(self.config, "sliding_window", None) is not None + and kv_seq_len > self.config.sliding_window + and cache_has_contents + ): + slicing_tokens = 1 - self.config.sliding_window + + past_key = past_key_value[self.layer_idx][0] + past_value = past_key_value[self.layer_idx][1] + + past_key = past_key[:, :, slicing_tokens:, :].contiguous() + past_value = past_value[:, :, slicing_tokens:, :].contiguous() + + if past_key.shape[-2] != self.config.sliding_window - 1: + raise ValueError( + f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" + f" {past_key.shape}" + ) + + if attention_mask is not None: + attention_mask = attention_mask[:, slicing_tokens:] + attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) + + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + dropout_rate = 0.0 if not self.training else self.attention_dropout + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in float16 just to be sure everything works as expected. + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + # Reashape to the expected shape for Flash Attention + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + attn_output = self._flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + use_sliding_windows=use_sliding_windows, + ) + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, + query_states, + key_states, + value_states, + attention_mask, + query_length, + dropout=0.0, + softmax_scale=None, + use_sliding_windows=False, + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`float`): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + use_sliding_windows (`bool`, *optional*): + Whether to activate sliding window attention. + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Decide whether to use SWA or not by layer index. + if use_sliding_windows and self.layer_idx >= self.config.max_window_layers: + use_sliding_windows = False + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + if not use_sliding_windows: + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + else: + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + window_size=(self.config.sliding_window, self.config.sliding_window), + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + if not use_sliding_windows: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + else: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + window_size=(self.config.sliding_window, self.config.sliding_window), + ) + + return attn_output + + # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape + + # On the first iteration we need to properly re-create the padding mask + # by slicing it on the proper place + if kv_seq_len != attention_mask.shape[-1]: + attention_mask_num_tokens = attention_mask.shape[-1] + attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] + + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + + key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) + value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) + + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2Moe +class Qwen2MoeSdpaAttention(Qwen2MoeAttention): + """ + Qwen2Moe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from + `Qwen2MoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to + SDPA API. + """ + + # Adapted from Qwen2MoeAttention.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if output_attentions: + # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. + logger.warning_once( + "Qwen2MoeModel is using Qwen2MoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " + 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + return super().forward( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + + # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + if query_states.device.type == "cuda" and attention_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=attention_mask, + dropout_p=self.attention_dropout if self.training else 0.0, + # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. + is_causal=self.is_causal and attention_mask is None and q_len > 1, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.view(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + return attn_output, None, past_key_value + + +QWEN2MOE_ATTENTION_CLASSES = { + "eager": Qwen2MoeAttention, + "flash_attention_2": Qwen2MoeFlashAttention2, + "sdpa": Qwen2MoeSdpaAttention, +} + + +class Qwen2MoeSparseMoeBlock(nn.Module): + def __init__(self, config): + super().__init__() + self.num_experts = config.num_experts + self.top_k = config.num_experts_per_tok + self.norm_topk_prob = config.norm_topk_prob + + # gating + self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) + self.experts = nn.ModuleList( + [Qwen2MoeMLP(config, intermediate_size=config.moe_intermediate_size) for _ in range(self.num_experts)] + ) + + self.shared_expert = Qwen2MoeMLP(config, intermediate_size=config.shared_expert_intermediate_size) + self.shared_expert_gate = torch.nn.Linear(config.hidden_size, 1, bias=False) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + """ """ + batch_size, sequence_length, hidden_dim = hidden_states.shape + hidden_states = hidden_states.view(-1, hidden_dim) + # router_logits: (batch * sequence_length, n_experts) + router_logits = self.gate(hidden_states) + + routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) + routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) + if self.norm_topk_prob: + routing_weights /= routing_weights.sum(dim=-1, keepdim=True) + # we cast back to the input dtype + routing_weights = routing_weights.to(hidden_states.dtype) + + final_hidden_states = torch.zeros( + (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device + ) + + # One hot encode the selected experts to create an expert mask + # this will be used to easily index which expert is going to be sollicitated + expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) + + # Loop over all available experts in the model and perform the computation on each expert + for expert_idx in range(self.num_experts): + expert_layer = self.experts[expert_idx] + idx, top_x = torch.where(expert_mask[expert_idx]) + + # Index the correct hidden states and compute the expert hidden state for + # the current expert. We need to make sure to multiply the output hidden + # states by `routing_weights` on the corresponding tokens (top-1 and top-2) + current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) + current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] + + # However `index_add_` only support torch tensors for indexing so we'll use + # the `top_x` tensor here. + final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) + + shared_expert_output = self.shared_expert(hidden_states) + shared_expert_output = F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output + + final_hidden_states = final_hidden_states + shared_expert_output + + final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) + return final_hidden_states, router_logits + + +class Qwen2MoeDecoderLayer(nn.Module): + def __init__(self, config: Qwen2MoeConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = QWEN2MOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) + + if config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0: + self.mlp = Qwen2MoeSparseMoeBlock(config) + else: + self.mlp = Qwen2MoeMLP(config, intermediate_size=config.intermediate_size) + + self.input_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + output_router_logits: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. " + "Please make sure use `attention_mask` instead.`" + ) + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, sequence_length)` where padding elements are indicated by 0. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, + and should not be returned during inference. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + + hidden_states = self.mlp(hidden_states) + if isinstance(hidden_states, tuple): + hidden_states, router_logits = hidden_states + else: + router_logits = None + + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + if output_router_logits: + outputs += (router_logits,) + + return outputs + + +QWEN2MOE_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Qwen2MoeConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.", + QWEN2MOE_START_DOCSTRING, +) +class Qwen2MoePreTrainedModel(PreTrainedModel): + config_class = Qwen2MoeConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["Qwen2MoeDecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +QWEN2MOE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, and + should not be returned during inference. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.", + QWEN2MOE_START_DOCSTRING, +) +class Qwen2MoeModel(Qwen2MoePreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2MoeDecoderLayer`] + + Args: + config: Qwen2MoeConfig + """ + + def __init__(self, config: Qwen2MoeConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [Qwen2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self._attn_implementation = config._attn_implementation + self.norm = Qwen2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MoeModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_router_logits = ( + output_router_logits if output_router_logits is not None else self.config.output_router_logits + ) + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + past_key_values_length = 0 + + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_length) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0).view(-1, seq_length) + else: + position_ids = position_ids.view(-1, seq_length).long() + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: + is_padding_right = attention_mask[:, -1].sum().item() != batch_size + if is_padding_right: + raise ValueError( + "You are attempting to perform batched generation with padding_side='right'" + " this may lead to unexpected behaviour for Flash Attention version of Qwen2MoE. Make sure to " + " call `tokenizer.padding_side = 'left'` before tokenizing the input. " + ) + + if self._attn_implementation == "flash_attention_2": + # 2d mask is passed through the layers + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + elif self._attn_implementation == "sdpa" and not output_attentions: + # output_attentions=True can not be supported when using SDPA, and we fall back on + # the manual implementation that requires a 4D causal mask in all cases. + attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + sliding_window=self.config.sliding_window, + ) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + sliding_window=self.config.sliding_window, + ) + + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_router_logits = () if output_router_logits else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + position_ids, + past_key_values, + output_attentions, + output_router_logits, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + output_router_logits=output_router_logits, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if output_router_logits and layer_outputs[-1] is not None: + all_router_logits += (layer_outputs[-1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache + + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] + if v is not None + ) + return MoeModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + router_logits=all_router_logits, + ) + + +class Qwen2MoeForCausalLM(Qwen2MoePreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = Qwen2MoeModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.router_aux_loss_coef = config.router_aux_loss_coef + self.num_experts = config.num_experts + self.num_experts_per_tok = config.num_experts_per_tok + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MoeCausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, Qwen2MoeForCausalLM + + >>> model = Qwen2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_router_logits = ( + output_router_logits if output_router_logits is not None else self.config.output_router_logits + ) + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + aux_loss = None + if output_router_logits: + aux_loss = load_balancing_loss_func( + outputs.router_logits if return_dict else outputs[-1], + self.num_experts, + self.num_experts_per_tok, + attention_mask, + ) + if labels is not None: + loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device + + if not return_dict: + output = (logits,) + outputs[1:] + if output_router_logits: + output = (aux_loss,) + output + return (loss,) + output if loss is not None else output + + return MoeCausalLMOutputWithPast( + loss=loss, + aux_loss=aux_loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + router_logits=outputs.router_logits, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + # Omit tokens covered by past_key_values + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + The Qwen2MoE Model transformer with a sequence classification head on top (linear layer). + + [`Qwen2MoeForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + QWEN2MOE_START_DOCSTRING, +) +# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Qwen2Moe, LLAMA->QWEN2MOE +class Qwen2MoeForSequenceClassification(Qwen2MoePreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = Qwen2MoeModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..8d4320cff5bd9bb80670b0ee7db752fdf6f38e60 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/convert_fairseq2_to_hf.py @@ -0,0 +1,405 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Converting Meta SeamlessM4Tv2 checkpoints from seamless_communication to HF.""" + + +import argparse +import os +from pathlib import Path + +import torch +from accelerate.utils.modeling import find_tied_parameters +from seamless_communication.inference import Translator + +from transformers import ( + SeamlessM4TFeatureExtractor, + SeamlessM4TProcessor, + SeamlessM4TTokenizer, + SeamlessM4Tv2Config, + SeamlessM4Tv2Model, +) +from transformers.utils import logging + + +# fmt: off +UNIT_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kan__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tam__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__", ] +# fmt: on + +# fmt: off +VOCODER_SUPPORTED_LANGUAGES = ["__arb__", "__ben__", "__cat__", "__ces__", "__cmn__", "__cym__", "__dan__", "__deu__", "__eng__", "__est__", "__fin__", "__fra__", "__hin__", "__ind__", "__ita__", "__jpn__", "__kor__", "__mlt__", "__nld__", "__pes__", "__pol__", "__por__", "__ron__", "__rus__", "__slk__", "__spa__", "__swe__", "__swh__", "__tel__", "__tgl__", "__tha__", "__tur__", "__ukr__", "__urd__", "__uzn__", "__vie__",] +# fmt: on + +# fmt: off +LARGE_SUPPORTED_LANGUAGES = ["afr","amh","arb","ary","arz","asm","azj","bel","ben","bos","bul","cat","ceb","ces","ckb","cmn","cmn_Hant","cym","dan","deu","ell","eng","est","eus","fin","fra","fuv","gaz","gle","glg","guj","heb","hin","hrv","hun","hye","ibo","ind","isl","ita","jav","jpn","kan","kat","kaz","khk","khm","kir","kor","lao","lit","lug","luo","lvs","mai","mal","mar","mkd","mlt","mni","mya","nld","nno","nob","npi","nya","ory","pan","pbt","pes","pol","por","ron","rus","sat","slk","slv","sna","snd","som","spa","srp","swe","swh","tam","tel","tgk","tgl","tha","tur","ukr","urd","uzn","vie","yor","yue","zlm","zul",] +# fmt: on + + +def assert_param_count(model_1, model_2): + count_1 = sum(p[1].numel() for p in model_1.named_parameters() if "final_proj" not in p[0]) + count_2 = sum(p[1].numel() for p in model_2.named_parameters() if "final_proj" not in p[0]) + assert count_1 == count_2, f"{model_1.__class__}: {count_1} != {model_2.__class__}: {count_2}" + + +def param_count(model): + return sum(p[1].numel() for p in model.named_parameters() if "final_proj" not in p[0]) + + +def _grab_best_device(use_gpu=True): + if torch.cuda.device_count() > 0 and use_gpu: + device = "cuda" + else: + device = "cpu" + return torch.device(device) + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + +vocoder_convert_list = [ + ("ups", "hifi_gan.upsampler"), + ("conv_pre", "hifi_gan.conv_pre"), + ("resblocks", "hifi_gan.resblocks"), + ("conv_post", "hifi_gan.conv_post"), + ("lang", "language_embedding"), + ("spkr", "speaker_embedding"), + ("dict.", "unit_embedding."), + ("dur_predictor.conv1.0", "dur_predictor.conv1"), + ("dur_predictor.conv2.0", "dur_predictor.conv2"), +] + +# order is important +wav2vec_convert_list = [ + ("speech_encoder_frontend.model_dim_proj", "feature_projection.projection"), + ("speech_encoder_frontend.post_extract_layer_norm", "feature_projection.layer_norm"), + ("speech_encoder_frontend.pos_encoder.conv", "encoder.pos_conv_embed.conv"), + ("speech_encoder.inner.layers", "encoder.layers"), + ("speech_encoder.inner_layer_norm", "encoder.layer_norm"), + ("speech_encoder.adaptor_layers", "adapter.layers"), + ("inner_proj", "intermediate_dense"), + ("self_attn.output_proj", "self_attn.linear_out"), + ("output_proj", "output_dense"), + ("self_attn.k_proj", "self_attn.linear_k"), + ("self_attn.v_proj", "self_attn.linear_v"), + ("self_attn.q_proj", "self_attn.linear_q"), + ("self_attn.sdpa.u_bias", "self_attn.pos_bias_u"), + ("self_attn.sdpa.v_bias", "self_attn.pos_bias_v"), + ("self_attn.sdpa.rel_k_embed", "self_attn.distance_embedding"), + ("self_attn.sdpa.r_proj", "self_attn.linear_pos"), + ("conv.pointwise_conv1", "conv_module.pointwise_conv1"), + ("conv.pointwise_conv2", "conv_module.pointwise_conv2"), + ("conv.depthwise_conv", "conv_module.depthwise_conv"), + ("conv.batch_norm", "conv_module.batch_norm"), + ("conv.layer_norm", "conv_module.depthwise_layer_norm"), + ("conv_layer_norm", "conv_module.layer_norm"), + ("speech_encoder.proj1", "intermediate_ffn.intermediate_dense"), + ("speech_encoder.proj2", "intermediate_ffn.output_dense"), + ("speech_encoder.layer_norm", "inner_layer_norm"), +] + +t2u_convert_list = [ + ("t2u_model.final_proj", "lm_head"), + ("t2u_model.", "model."), + ("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"), + ("encoder_decoder_attn", "cross_attention"), + ("linear_k", "k_proj"), + ("linear_v", "v_proj"), + ("linear_q", "q_proj"), + ("ffn.inner_proj", "ffn.fc1"), + ("ffn.output_proj", "ffn.fc2"), + ("output_proj", "out_proj"), + ("decoder_frontend.embed_char", "decoder.embed_char"), + ("decoder_frontend.pos_emb_alpha_char", "decoder.pos_emb_alpha_char"), + ("decoder_frontend.embed", "decoder.embed_tokens"), + ("decoder_frontend.pos_emb_alpha", "decoder.pos_emb_alpha"), + ("conv1d.conv", "conv"), + ("conv1d_layer_norm", "conv_layer_norm"), + ("decoder_frontend.variance_adaptor", "decoder"), + ("duration_predictor.conv1.0", "duration_predictor.conv1"), + ("duration_predictor.conv2.0", "duration_predictor.conv2"), +] + +text_convert_list = [ + ("text_encoder.", ""), + ("text_decoder.", ""), + ("text_encoder_frontend.embed", "embed_tokens"), + ("text_decoder_frontend.embed", "embed_tokens"), + ("encoder_decoder_attn_layer_norm", "cross_attention_layer_norm"), + ("encoder_decoder_attn", "cross_attention"), + ("linear_k", "k_proj"), + ("linear_v", "v_proj"), + ("linear_q", "q_proj"), + ("ffn.inner_proj", "ffn.fc1"), + ("ffn.output_proj", "ffn.fc2"), + ("output_proj", "out_proj"), + ("final_proj", "lm_head"), +] + +CUR_PATH = os.path.dirname(os.path.abspath(__file__)) +default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache") +CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "huggingface", "hub") + + +def _load_hf_config(): + return SeamlessM4Tv2Config() + + +def _convert_model( + original_model, + hf_model, + convert_list, + device, + unwanted_prefix="model.", + filter_state_dict="speech", + exclude_state_dict=None, +): + state_dict = original_model.state_dict() + + # filter func + if isinstance(filter_state_dict, str): + + def filter_func(x): + return filter_state_dict in x[0] + + else: + + def filter_func(item): + if exclude_state_dict is not None and exclude_state_dict in item[0]: + return False + for filter_el in filter_state_dict: + if filter_el in item[0]: + return True + + return False + + state_dict = dict(filter(filter_func, state_dict.items())) + + for k, v in list(state_dict.items()): + new_k = k[len(unwanted_prefix) :] + for old_layer_name, new_layer_name in convert_list: + if old_layer_name in new_k: + new_k = new_k.replace(old_layer_name, new_layer_name) + + # must do it by hand + if ".layer_norm" in new_k and new_k.split(".layer_norm")[0][-1].isnumeric(): + new_k = new_k.replace("layer_norm", "final_layer_norm") + + state_dict[new_k] = state_dict.pop(k) + + extra_keys = set(state_dict.keys()) - set(hf_model.state_dict().keys()) + extra_keys = set(extra_keys) + missing_keys = set(hf_model.state_dict().keys()) - set(state_dict.keys()) + missing_keys = set({k for k in missing_keys if "final_logits_bias" not in k}) + if len(extra_keys) != 0: + raise ValueError(f"extra keys found: {extra_keys}") + if len(missing_keys) != 0: + raise ValueError(f"missing keys: {missing_keys}") + hf_model.load_state_dict(state_dict, strict=False) + n_params = param_count(hf_model) + + logger.info(f"model loaded: {round(n_params/1e6,1)}M params") + + hf_model.eval() + hf_model.to(device) + del state_dict + + return hf_model + + +def load_model(save_dir, model_type, repo_id): + """ + Meta SeamlessM4Tv2 is made of 8 main components: + - speech_encoder (#1) and speech_encoder_frontend (#2) + - t2u_model (#3) + - text_encoder (#4) and text_encoder_frontend (#5) + - text_decoder (#6) [and text_decoder_frontend (#5) = equals to text_encoder_frontend] + - final_proj (#7) + - vocoder (#8) + """ + device = _grab_best_device() + name = "seamlessM4T_v2_large" + + original_model = Translator(name, "vocoder_v2", device, dtype=torch.float32) + + ######### TOKENIZER + + langs = LARGE_SUPPORTED_LANGUAGES + langs = [f"__{lang}__" for lang in langs] + vocab_file = os.path.join(os.path.expanduser("~"), "tokenizer", model_type, "tokenizer.model") + + save_dir = os.path.join(save_dir, name) + Path(save_dir).mkdir(exist_ok=True) + + tokenizer = SeamlessM4TTokenizer(vocab_file, additional_special_tokens=langs) + + sanity_check_lang_id = tokenizer.convert_tokens_to_ids("__fra__") + + tokenizer.save_pretrained(save_dir) + tokenizer = SeamlessM4TTokenizer.from_pretrained(save_dir) + + if sanity_check_lang_id != tokenizer.convert_tokens_to_ids("__fra__"): + raise ValueError( + f"Error in tokenizer saving/loading - __fra__ lang id is not coherent: {sanity_check_lang_id} vs {tokenizer.convert_tokens_to_ids('__fra__')}" + ) + + ####### get language to ids dict + text_decoder_lang_code_to_id = {lang.replace("__", ""): tokenizer.convert_tokens_to_ids(lang) for lang in langs} + # offset: vocoder unit vocab size + 5 (for EOS/PAD/BOS/UNK/MSK) + len(supported_languages) + t2u_lang_code_to_id = { + code.replace("__", ""): i + 10005 + len(UNIT_SUPPORTED_LANGUAGES) + for i, code in enumerate(UNIT_SUPPORTED_LANGUAGES) + } + vocoder_lang_code_to_id = {code.replace("__", ""): i for i, code in enumerate(VOCODER_SUPPORTED_LANGUAGES)} + + ######### FE + + fe = SeamlessM4TFeatureExtractor(language_code=langs) + + fe.save_pretrained(save_dir) + fe = SeamlessM4TFeatureExtractor.from_pretrained(save_dir) + + processor = SeamlessM4TProcessor(feature_extractor=fe, tokenizer=tokenizer) + processor.save_pretrained(save_dir) + processor.push_to_hub(repo_id=repo_id, create_pr=True) + + processor = SeamlessM4TProcessor.from_pretrained(save_dir) + + ######## Model + + # init config + hf_config = _load_hf_config() + + ######## get id_to_text and char_to_id from original model tokenizers + id_to_text = {i: original_model.text_tokenizer.model.index_to_token(i) for i in range(hf_config.vocab_size)} + char_to_id = { + original_model.model.t2u_model.decoder_frontend.char_tokenizer.model.index_to_token(i): i for i in range(10904) + } + + # init model + hf_model = SeamlessM4Tv2Model(hf_config) + + hf_model.generation_config.__setattr__("text_decoder_lang_to_code_id", text_decoder_lang_code_to_id) + hf_model.generation_config.__setattr__("t2u_lang_code_to_id", t2u_lang_code_to_id) + hf_model.generation_config.__setattr__("vocoder_lang_code_to_id", vocoder_lang_code_to_id) + hf_model.generation_config.__setattr__("id_to_text", id_to_text) + hf_model.generation_config.__setattr__("char_to_id", char_to_id) + + # -1. take care of vocoder + # similarly to speech T5 must apply and remove weight norm + hf_model.vocoder.apply_weight_norm() + hf_model.vocoder = _convert_model( + original_model, + hf_model.vocoder, + vocoder_convert_list, + device, + unwanted_prefix="vocoder.code_generator.", + filter_state_dict="vocoder", + ) + hf_model.vocoder.remove_weight_norm() + + # 1. take care of speech encoder + wav2vec = hf_model.speech_encoder + hf_model.speech_encoder = _convert_model( + original_model, wav2vec, wav2vec_convert_list, device, unwanted_prefix="model.", filter_state_dict="speech" + ) + + # 2. take care of t2u + + hf_model.t2u_model = _convert_model( + original_model, + hf_model.t2u_model, + t2u_convert_list, + device, + unwanted_prefix="model.", + filter_state_dict="t2u_model", + ) + + # 3. take care of text encoder + hf_model.text_encoder = _convert_model( + original_model, + hf_model.text_encoder, + text_convert_list, + device, + unwanted_prefix="model.", + filter_state_dict=["model.text_encoder"], + exclude_state_dict="t2u_model", + ) + + # 4. take care of text decoder + hf_model.text_decoder = _convert_model( + original_model, + hf_model.text_decoder, + text_convert_list, + device, + unwanted_prefix="model.", + filter_state_dict=["model.text_decoder"], + exclude_state_dict="t2u_model", + ) + + # 5. take care of final proj + hf_model.lm_head = _convert_model( + original_model, + hf_model.lm_head, + [("final_proj.", "")], + device, + unwanted_prefix="model.", + filter_state_dict=["model.final_proj"], + exclude_state_dict="t2u_model", + ) + + # sanity check + print(find_tied_parameters(hf_model)) + + count_1 = param_count(hf_model) + count_2 = param_count(original_model) + + print(f"HF MODEL:{count_1}, ORIGINAL_MODEL: {count_2}, diff:{count_1 - count_2}") + print(f"HF MODEL excluding embeddings:{hf_model.num_parameters(exclude_embeddings=True)}") + + del original_model + + hf_model.generation_config._from_model_config = False + hf_model.save_pretrained(save_dir) + hf_model.push_to_hub(repo_id=repo_id, create_pr=True) + hf_model = SeamlessM4Tv2Model.from_pretrained(save_dir) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + + parser.add_argument( + "--model_type", + default="large", + type=str, + help="Model type.", + ) + + parser.add_argument( + "--save_dir", + default="/home/ubuntu/weights_v2", + type=str, + help="Path to the output PyTorch model.", + ) + + parser.add_argument( + "--repo_id", + default="facebook/seamless-m4t-v2-large", + type=str, + help="Repo ID.", + ) + + args = parser.parse_args() + + load_model(args.save_dir, args.model_type, args.repo_id) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3194f99931a4d689f6bab0cf3cb9dc6abaf11fb8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__init__.py @@ -0,0 +1,108 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_sentencepiece_available, + is_tf_available, + is_torch_available, +) + + +_import_structure = { + "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], + "feature_extraction_speech_to_text": ["Speech2TextFeatureExtractor"], + "processing_speech_to_text": ["Speech2TextProcessor"], +} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_speech_to_text"] = ["Speech2TextTokenizer"] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_speech_to_text"] = [ + "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFSpeech2TextForConditionalGeneration", + "TFSpeech2TextModel", + "TFSpeech2TextPreTrainedModel", + ] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_speech_to_text"] = [ + "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", + "Speech2TextForConditionalGeneration", + "Speech2TextModel", + "Speech2TextPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, Speech2TextConfig + from .feature_extraction_speech_to_text import Speech2TextFeatureExtractor + from .processing_speech_to_text import Speech2TextProcessor + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_speech_to_text import Speech2TextTokenizer + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_speech_to_text import ( + TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, + TFSpeech2TextForConditionalGeneration, + TFSpeech2TextModel, + TFSpeech2TextPreTrainedModel, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_speech_to_text import ( + SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, + Speech2TextForConditionalGeneration, + Speech2TextModel, + Speech2TextPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dc5263e3cf669c80223b3d37cb7c78eeae787716 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/configuration_speech_to_text.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/configuration_speech_to_text.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ab6169c95b34e9f773bbb4287813f8c00b283b0a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/configuration_speech_to_text.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/convert_s2t_fairseq_to_tfms.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/convert_s2t_fairseq_to_tfms.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..58cfac135cc9be79cffc4bd72ebe26566defdbf2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/convert_s2t_fairseq_to_tfms.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/feature_extraction_speech_to_text.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/feature_extraction_speech_to_text.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5714cea3dadd89e17cd1e6df57360394043005b4 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/feature_extraction_speech_to_text.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_speech_to_text.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_speech_to_text.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8e3c4db29e8682e75bd671455a427a24a3026e6e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_speech_to_text.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_tf_speech_to_text.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_tf_speech_to_text.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..adfa91a51a294681ce13ea573e7354cf1570ecc9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/modeling_tf_speech_to_text.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/processing_speech_to_text.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/processing_speech_to_text.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..245c77b69fa1787bc53ed6f32b39c1b5c08028d4 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/processing_speech_to_text.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/tokenization_speech_to_text.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/tokenization_speech_to_text.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bb078fddb68db8f93f0c87d102a9fd6747a3e7ea Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/__pycache__/tokenization_speech_to_text.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/configuration_speech_to_text.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/configuration_speech_to_text.py new file mode 100644 index 0000000000000000000000000000000000000000..67dee8dc0bc361e5046052263651d36273d41d7f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/configuration_speech_to_text.py @@ -0,0 +1,199 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Speech2Text model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class Speech2TextConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Speech2TextModel`]. It is used to instantiate a + Speech2Text model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the Speech2Text + [facebook/s2t-small-librispeech-asr](https://huggingface.co/facebook/s2t-small-librispeech-asr) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 10000): + Vocabulary size of the Speech2Text model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`Speech2TextModel`] + encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + encoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. + encoder_attention_heads (`int`, *optional*, defaults to 4): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_layers (`int`, *optional*, defaults to 6): + Number of decoder layers. + decoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + decoder_attention_heads (`int`, *optional*, defaults to 4): + Number of attention heads for each attention layer in the Transformer decoder. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for + more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](https://arxiv.org/abs/1909.11556) for + more details. + use_cache (`bool`, *optional*, defaults to `True`): + Whether the model should return the last key/values attentions (not used by all models). + is_encoder_decoder (`bool`, *optional*, defaults to `True`): + Whether the model is set up as an encoder-decoder architecture for sequence-to-sequence tasks. + activation_function (`str` or `function`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + d_model (`int`, *optional*, defaults to 256): + Dimensionality of the layers and the pooler layer. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + decoder_start_token_id (`int`, *optional*, defaults to 2): + The initial token ID of the decoder when decoding sequences. + scale_embedding (`bool`, *optional*, defaults to `True`): + Whether the embeddings are scaled by the square root of `d_model`. + pad_token_id (`int`, *optional*, defaults to 1): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 0): + The id of the beginning-of-sequence token. + eos_token_id (`int`, *optional*, defaults to 2): + The id of the end-of-sequence token. + max_source_positions (`int`, *optional*, defaults to 6000): + The maximum sequence length of log-mel filter-bank features that this model might ever be used with. + max_target_positions (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically, set this to something large + just in case (e.g., 512 or 1024 or 2048). + num_conv_layers (`int`, *optional*, defaults to 2): + Number of 1D convolutional layers in the conv module. + conv_kernel_sizes (`Tuple[int]`, *optional*, defaults to `(5, 5)`): + A tuple of integers defining the kernel size of each 1D convolutional layer in the conv module. The length + of `conv_kernel_sizes` has to match `num_conv_layers`. + conv_channels (`int`, *optional*, defaults to 1024): + An integer defining the number of output channels of each convolution layers except the final one in the + conv module. + input_feat_per_channel (`int`, *optional*, defaults to 80): + An integer specifying the size of feature vector. This is also the dimensions of log-mel filter-bank + features. + input_channels (`int`, *optional*, defaults to 1): + An integer specifying number of input channels of the input feature vector. + + Example: + + ```python + >>> from transformers import Speech2TextConfig, Speech2TextModel + + >>> # Initializing a Speech2Text s2t_transformer_s style configuration + >>> configuration = Speech2TextConfig() + + >>> # Initializing a model (with random weights) from the s2t_transformer_s style configuration + >>> model = Speech2TextModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "speech_to_text" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + def __init__( + self, + vocab_size=10000, + encoder_layers=12, + encoder_ffn_dim=2048, + encoder_attention_heads=4, + decoder_layers=6, + decoder_ffn_dim=2048, + decoder_attention_heads=4, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + use_cache=True, + is_encoder_decoder=True, + activation_function="relu", + d_model=256, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + decoder_start_token_id=2, + scale_embedding=True, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + max_source_positions=6000, + max_target_positions=1024, + num_conv_layers=2, + conv_kernel_sizes=(5, 5), + conv_channels=1024, + input_feat_per_channel=80, + input_channels=1, + **kwargs, + ): + self.vocab_size = vocab_size + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + self.max_source_positions = max_source_positions + self.max_target_positions = max_target_positions + self.num_conv_layers = num_conv_layers + self.conv_kernel_sizes = list(conv_kernel_sizes) + self.conv_channels = conv_channels + self.input_feat_per_channel = input_feat_per_channel + self.input_channels = input_channels + + if len(self.conv_kernel_sizes) != self.num_conv_layers: + raise ValueError( + "Configuration for convolutional module is incorrect. " + "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " + f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, " + f"`config.num_conv_layers = {self.num_conv_layers}`." + ) + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py new file mode 100644 index 0000000000000000000000000000000000000000..eb4d852624790998657161f6b15cd9572aca7f78 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/convert_s2t_fairseq_to_tfms.py @@ -0,0 +1,121 @@ +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse + +import torch +from torch import nn + +from transformers import Speech2TextConfig, Speech2TextForConditionalGeneration + + +def remove_ignore_keys_(state_dict): + ignore_keys = [ + "encoder.version", + "decoder.version", + "model.encoder.version", + "model.decoder.version", + "decoder.output_projection.weight", + "_float_tensor", + "encoder.embed_positions._float_tensor", + "decoder.embed_positions._float_tensor", + ] + for k in ignore_keys: + state_dict.pop(k, None) + + +def rename_keys(s_dict): + keys = list(s_dict.keys()) + for key in keys: + if "transformer_layers" in key: + s_dict[key.replace("transformer_layers", "layers")] = s_dict.pop(key) + elif "subsample" in key: + s_dict[key.replace("subsample", "conv")] = s_dict.pop(key) + + +def make_linear_from_emb(emb): + vocab_size, emb_size = emb.weight.shape + lin_layer = nn.Linear(vocab_size, emb_size, bias=False) + lin_layer.weight.data = emb.weight.data + return lin_layer + + +def convert_fairseq_s2t_checkpoint_to_tfms(checkpoint_path, pytorch_dump_folder_path): + m2m_100 = torch.load(checkpoint_path, map_location="cpu") + args = m2m_100["args"] + state_dict = m2m_100["model"] + lm_head_weights = state_dict["decoder.output_projection.weight"] + + remove_ignore_keys_(state_dict) + rename_keys(state_dict) + + vocab_size = state_dict["decoder.embed_tokens.weight"].shape[0] + + tie_embeds = args.share_decoder_input_output_embed + + conv_kernel_sizes = [int(i) for i in args.conv_kernel_sizes.split(",")] + config = Speech2TextConfig( + vocab_size=vocab_size, + max_source_positions=args.max_source_positions, + max_target_positions=args.max_target_positions, + encoder_layers=args.encoder_layers, + decoder_layers=args.decoder_layers, + encoder_attention_heads=args.encoder_attention_heads, + decoder_attention_heads=args.decoder_attention_heads, + encoder_ffn_dim=args.encoder_ffn_embed_dim, + decoder_ffn_dim=args.decoder_ffn_embed_dim, + d_model=args.encoder_embed_dim, + dropout=args.dropout, + attention_dropout=args.attention_dropout, + activation_dropout=args.activation_dropout, + activation_function="relu", + num_conv_layers=len(conv_kernel_sizes), + conv_channels=args.conv_channels, + conv_kernel_sizes=conv_kernel_sizes, + input_feat_per_channel=args.input_feat_per_channel, + input_channels=args.input_channels, + tie_word_embeddings=tie_embeds, + num_beams=5, + max_length=200, + use_cache=True, + decoder_start_token_id=2, + early_stopping=True, + ) + + model = Speech2TextForConditionalGeneration(config) + missing, unexpected = model.model.load_state_dict(state_dict, strict=False) + if len(missing) > 0 and not set(missing) <= { + "encoder.embed_positions.weights", + "decoder.embed_positions.weights", + }: + raise ValueError( + "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," + f" but all the following weights are missing {missing}" + ) + + if tie_embeds: + model.lm_head = make_linear_from_emb(model.model.decoder.embed_tokens) + else: + model.lm_head.weight.data = lm_head_weights + + model.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") + parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + args = parser.parse_args() + convert_fairseq_s2t_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/feature_extraction_speech_to_text.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/feature_extraction_speech_to_text.py new file mode 100644 index 0000000000000000000000000000000000000000..193f2dda0946f1ca9c121652c95e475f38b3bf0b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/feature_extraction_speech_to_text.py @@ -0,0 +1,297 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Feature extractor class for Speech2Text +""" + +from typing import List, Optional, Union + +import numpy as np + +from ...audio_utils import mel_filter_bank, spectrogram, window_function +from ...feature_extraction_sequence_utils import SequenceFeatureExtractor +from ...feature_extraction_utils import BatchFeature +from ...utils import PaddingStrategy, TensorType, is_speech_available, logging + + +if is_speech_available(): + import torch + import torchaudio.compliance.kaldi as ta_kaldi + +logger = logging.get_logger(__name__) + + +class Speech2TextFeatureExtractor(SequenceFeatureExtractor): + r""" + Constructs a Speech2Text feature extractor. + + This feature extractor inherits from [`Speech2TextFeatureExtractor`] which contains most of the main methods. Users + should refer to this superclass for more information regarding those methods. + + This class extracts mel-filter bank features from raw speech using TorchAudio if installed or using numpy + otherwise, and applies utterance-level cepstral mean and variance normalization to the extracted features. + + Args: + feature_size (`int`, *optional*, defaults to 80): + The feature dimension of the extracted features. + sampling_rate (`int`, *optional*, defaults to 16000): + The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). + num_mel_bins (`int`, *optional*, defaults to 80): + Number of Mel-frequency bins. + padding_value (`float`, *optional*, defaults to 0.0): + The value that is used to fill the padding vectors. + do_ceptral_normalize (`bool`, *optional*, defaults to `True`): + Whether or not to apply utterance-level cepstral mean and variance normalization to extracted features. + normalize_means (`bool`, *optional*, defaults to `True`): + Whether or not to zero-mean normalize the extracted features. + normalize_vars (`bool`, *optional*, defaults to `True`): + Whether or not to unit-variance normalize the extracted features. + """ + + model_input_names = ["input_features", "attention_mask"] + + def __init__( + self, + feature_size=80, + sampling_rate=16000, + num_mel_bins=80, + padding_value=0.0, + do_ceptral_normalize=True, + normalize_means=True, + normalize_vars=True, + **kwargs, + ): + super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) + self.num_mel_bins = num_mel_bins + self.do_ceptral_normalize = do_ceptral_normalize + self.normalize_means = normalize_means + self.normalize_vars = normalize_vars + self.return_attention_mask = True + + if not is_speech_available(): + mel_filters = mel_filter_bank( + num_frequency_bins=256, + num_mel_filters=self.num_mel_bins, + min_frequency=20, + max_frequency=sampling_rate // 2, + sampling_rate=sampling_rate, + norm=None, + mel_scale="kaldi", + triangularize_in_mel_space=True, + ) + + self.mel_filters = np.pad(mel_filters, ((0, 1), (0, 0))) + self.window = window_function(400, "povey", periodic=False) + + def _extract_fbank_features( + self, + waveform: np.ndarray, + ) -> np.ndarray: + """ + Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs + and hence the waveform should not be normalized before feature extraction. + """ + waveform = waveform * (2**15) # Kaldi compliance: 16-bit signed integers + if is_speech_available(): + waveform = torch.from_numpy(waveform).unsqueeze(0) + features = ta_kaldi.fbank(waveform, num_mel_bins=self.num_mel_bins, sample_frequency=self.sampling_rate) + features = features.numpy() + else: + waveform = np.squeeze(waveform) + features = spectrogram( + waveform, + self.window, + frame_length=400, + hop_length=160, + fft_length=512, + power=2.0, + center=False, + preemphasis=0.97, + mel_filters=self.mel_filters, + log_mel="log", + mel_floor=1.192092955078125e-07, + remove_dc_offset=True, + ).T + return features + + @staticmethod + def utterance_cmvn( + x: np.ndarray, + input_length: int, + normalize_means: Optional[bool] = True, + normalize_vars: Optional[bool] = True, + padding_value: float = 0.0, + ) -> np.ndarray: + # make sure we normalize float32 arrays + if normalize_means: + mean = x[:input_length].mean(axis=0) + x = np.subtract(x, mean) + if normalize_vars: + std = x[:input_length].std(axis=0) + x = np.divide(x, std) + + if input_length < x.shape[0]: + x[input_length:] = padding_value + + # make sure array is in float32 + x = x.astype(np.float32) + + return x + + def normalize( + self, input_features: List[np.ndarray], attention_mask: Optional[np.ndarray] = None + ) -> List[np.ndarray]: + lengths = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] + return [ + self.utterance_cmvn(x, n, self.normalize_means, self.normalize_vars, self.padding_value) + for x, n in zip(input_features, lengths) + ] + + def __call__( + self, + raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], + padding: Union[bool, str, PaddingStrategy] = False, + max_length: Optional[int] = None, + truncation: bool = False, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + sampling_rate: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + **kwargs, + ) -> BatchFeature: + """ + Main method to featurize and prepare for the model one or several sequence(s). + + Args: + raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): + The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float + values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not + stereo, i.e. single float per timestep. + padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): + Select a strategy to pad the returned sequences (according to the model's padding side and padding + index) among: + + - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different + lengths). + max_length (`int`, *optional*): + Maximum length of the returned list and optionally padding length (see above). + truncation (`bool`): + Activates truncation to cut input sequences longer than *max_length* to *max_length*. + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. + + This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability + `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. + return_attention_mask (`bool`, *optional*): + Whether to return the attention mask. If left to the default, will return the attention mask according + to the specific feature_extractor's default. + + [What are attention masks?](../glossary#attention-mask) + + + + For Speech2TextTransformer models, `attention_mask` should always be passed for batched inference, to + avoid subtle bugs. + + + + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return Numpy `np.ndarray` objects. + sampling_rate (`int`, *optional*): + The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass + `sampling_rate` at the forward call to prevent silent errors. + padding_value (`float`, defaults to 0.0): + The value that is used to fill the padding values / vectors. + """ + + if sampling_rate is not None: + if sampling_rate != self.sampling_rate: + raise ValueError( + f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" + f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" + f" {self.sampling_rate} and not {sampling_rate}." + ) + else: + logger.warning( + "It is strongly recommended to pass the `sampling_rate` argument to this function. " + "Failing to do so can result in silent errors that might be hard to debug." + ) + + is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 + if is_batched_numpy and len(raw_speech.shape) > 2: + raise ValueError(f"Only mono-channel audio is supported for input to {self}") + is_batched = is_batched_numpy or ( + isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) + ) + + if is_batched: + raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech] + elif not is_batched and not isinstance(raw_speech, np.ndarray): + raw_speech = np.asarray(raw_speech, dtype=np.float32) + elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): + raw_speech = raw_speech.astype(np.float32) + + # always return batch + if not is_batched: + raw_speech = [raw_speech] + + # extract fbank features + features = [self._extract_fbank_features(waveform) for waveform in raw_speech] + + # convert into correct format for padding + encoded_inputs = BatchFeature({"input_features": features}) + + padded_inputs = self.pad( + encoded_inputs, + padding=padding, + max_length=max_length, + truncation=truncation, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + **kwargs, + ) + + # make sure list is in array format + input_features = padded_inputs.get("input_features") + if isinstance(input_features[0], list): + padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features] + + attention_mask = padded_inputs.get("attention_mask") + if attention_mask is not None: + padded_inputs["attention_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask] + + # Utterance-level cepstral mean and variance normalization + if self.do_ceptral_normalize: + attention_mask = ( + np.array(attention_mask, dtype=np.int32) + if self._get_padding_strategies(padding, max_length=max_length) is not PaddingStrategy.DO_NOT_PAD + else None + ) + padded_inputs["input_features"] = self.normalize( + padded_inputs["input_features"], attention_mask=attention_mask + ) + + if return_tensors is not None: + padded_inputs = padded_inputs.convert_to_tensors(return_tensors) + + return padded_inputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_speech_to_text.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_speech_to_text.py new file mode 100644 index 0000000000000000000000000000000000000000..6898cc081fe91f122d1a5a7e059251b7a5a25909 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_speech_to_text.py @@ -0,0 +1,1370 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Speech2Text model.""" + +import math +from typing import Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_speech_to_text import Speech2TextConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "Speech2TextConfig" + + +from ..deprecated._archive_maps import SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.bart.modeling_bart.shift_tokens_right +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +class Conv1dSubsampler(nn.Module): + """ + Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation + via gated linear units (https://arxiv.org/abs/1911.08460) + """ + + def __init__(self, config): + super(Conv1dSubsampler, self).__init__() + self.config = config + self.num_layers = config.num_conv_layers + self.in_channels = config.input_feat_per_channel * config.input_channels + self.mid_channels = config.conv_channels + self.out_channels = config.d_model + self.kernel_sizes = config.conv_kernel_sizes + + self.conv_layers = nn.ModuleList( + nn.Conv1d( + self.in_channels if i == 0 else self.mid_channels // 2, + self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2, + kernel_size=k, + stride=2, + padding=k // 2, + ) + for i, k in enumerate(self.kernel_sizes) + ) + + def forward(self, input_features): + hidden_states = input_features.transpose(1, 2).contiguous() # -> B x (C x D) x T + for conv in self.conv_layers: + hidden_states = conv(hidden_states) + hidden_states = nn.functional.glu(hidden_states, dim=1) + hidden_states = hidden_states.transpose(1, 2).contiguous() # -> T x B x (C x D) + return hidden_states + + +class Speech2TextSinusoidalPositionalEmbedding(nn.Module): + """This module produces sinusoidal positional embeddings of any length.""" + + def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): + super().__init__() + self.offset = 2 + self.embedding_dim = embedding_dim + self.padding_idx = padding_idx + self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) + + def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) + if hasattr(self, "weights"): + # in forward put the weights on the correct dtype and device of the param + emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) + + self.weights = nn.Parameter(emb_weights) + self.weights.requires_grad = False + self.weights.detach_() + + @staticmethod + def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + """ + Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the + description in Section 3.5 of "Attention Is All You Need". + """ + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) + emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) + if embedding_dim % 2 == 1: + # zero pad + emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) + if padding_idx is not None: + emb[padding_idx, :] = 0 + return emb.to(torch.get_default_dtype()) + + @torch.no_grad() + def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): + bsz, seq_len = input_ids.size() + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( + input_ids.device + ) + + # expand embeddings if needed + max_pos = self.padding_idx + 1 + seq_len + if max_pos > self.weights.size(0): + self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) + + return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach() + + def create_position_ids_from_input_ids( + self, input_ids: torch.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 + ): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Speech2Text +class Speech2TextAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[Speech2TextConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +SPEECH_TO_TEXT_ATTENTION_CLASSES = {"eager": Speech2TextAttention} + + +# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT +class Speech2TextEncoderLayer(nn.Module): + def __init__(self, config: Speech2TextConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + config=config, + ) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + layer_head_mask: torch.Tensor, + output_attentions: bool = False, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + if hidden_states.dtype == torch.float16 and ( + torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() + ): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Speech2Text, MBART->SPEECH_TO_TEXT +class Speech2TextDecoderLayer(nn.Module): + def __init__(self, config: Speech2TextConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + is_causal=True, + config=config, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = SPEECH_TO_TEXT_ATTENTION_CLASSES[config._attn_implementation]( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + config=config, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of + size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class Speech2TextPreTrainedModel(PreTrainedModel): + config_class = Speech2TextConfig + base_model_prefix = "model" + main_input_name = "input_features" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, (nn.Linear, nn.Conv1d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): + """ + Computes the output length of the convolutional layers + """ + for i in range(self.config.num_conv_layers): + input_lengths = (input_lengths - 1) // 2 + 1 + + return input_lengths + + def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): + # generate creates 3D attention mask, because of the shape of input_features + # convert it to 2D if thats the case + if len(attention_mask.shape) > 2: + attention_mask = attention_mask[:, :, -1] + + subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) + bsz = attention_mask.size()[0] + attention_mask = torch.zeros( + (bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device + ) + + # these two operations makes sure that all values + # before the output lengths indices are attended to + attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1 + attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long() + return attention_mask + + +SPEECH_TO_TEXT_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`Speech2TextConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +SPEECH_TO_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, feature_size)`): + Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained + by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* + via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the + [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a + tensor of type `torch.FloatTensor`. See [`~Speech2TextFeatureExtractor.__call__`] + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, + 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should read + [`modeling_speech_to_text._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class Speech2TextEncoder(Speech2TextPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`Speech2TextEncoderLayer`]. + + Args: + config: Speech2TextConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: Speech2TextConfig): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_source_positions + self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 + + self.conv = Conv1dSubsampler(config) + + self.embed_positions = Speech2TextSinusoidalPositionalEmbedding( + self.max_source_positions, + embed_dim, + self.padding_idx, + ) + self.layers = nn.ModuleList([Speech2TextEncoderLayer(config) for _ in range(config.encoder_layers)]) + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_features, + attention_mask=None, + head_mask=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + input_features (`torch.LongTensor` of shape `(batch_size, sequence_length, feature_size)`): + Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be + obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a + `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into + `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, + padding and conversion into a tensor of type `torch.FloatTensor`. See + [`~Speech2TextFeatureExtractor.__call__`] + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing convolution and attention on padding token indices. Mask values selected in + `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + inputs_embeds = self.conv(input_features) + inputs_embeds = self.embed_scale * inputs_embeds + + # subsample attention mask if necessary + if attention_mask is not None: + attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask) + padding_mask = attention_mask.ne(1).long() + else: + padding_mask = torch.zeros(inputs_embeds.shape[:2], dtype=torch.long, device=inputs_embeds.device) + + embed_pos = self.embed_positions(padding_mask) + + hidden_states = inputs_embeds + embed_pos + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + assert head_mask.size()[0] == ( + len(self.layers) + ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." + + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + to_drop = False + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: # skip the layer + to_drop = True + + if to_drop: + layer_outputs = (None, None) + else: + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + (head_mask[idx] if head_mask is not None else None), + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + hidden_states = self.layer_norm(hidden_states) + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class Speech2TextDecoder(Speech2TextPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Speech2TextDecoderLayer`] + + Args: + config: Speech2TextConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: Speech2TextConfig): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_target_positions + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) + + self.embed_positions = Speech2TextSinusoidalPositionalEmbedding( + self.max_target_positions, + config.d_model, + self.padding_idx, + ) + + self.layers = nn.ModuleList([Speech2TextDecoderLayer(config) for _ in range(config.decoder_layers)]) + + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + inputs_embeds=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention + on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # embed positions + positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) + + hidden_states = inputs_embeds + positions + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + assert attn_mask.size()[0] == (len(self.layers)), ( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + hidden_states = self.layer_norm(hidden_states) + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + "The bare Speech2Text Model outputting raw hidden-states without any specific head on top.", + SPEECH_TO_TEXT_START_DOCSTRING, +) +class Speech2TextModel(Speech2TextPreTrainedModel): + def __init__(self, config: Speech2TextConfig): + super().__init__(config) + + self.encoder = Speech2TextEncoder(config) + self.decoder = Speech2TextDecoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.decoder.embed_tokens = value + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_features: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: + r""" + Returns: + + Example: + + ```python + >>> import torch + >>> from transformers import Speech2TextModel, AutoFeatureExtractor + >>> from datasets import load_dataset + + >>> model = Speech2TextModel.from_pretrained("facebook/s2t-small-librispeech-asr") + >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-librispeech-asr") + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + >>> inputs = feature_extractor( + ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" + ... ) + >>> input_features = inputs.input_features + >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id + >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state + >>> list(last_hidden_state.shape) + [1, 2, 256] + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_features, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # downsample encoder attention mask + if attention_mask is not None: + encoder_attention_mask = self._get_feature_vector_attention_mask( + encoder_outputs[0].shape[1], attention_mask + ) + else: + encoder_attention_mask = None + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=encoder_attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + "The Speech2Text Model with a language modeling head. Can be used for summarization.", + SPEECH_TO_TEXT_START_DOCSTRING, +) +class Speech2TextForConditionalGeneration(Speech2TextPreTrainedModel): + base_model_prefix = "model" + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config: Speech2TextConfig): + super().__init__(config) + self.model = Speech2TextModel(config) + self.lm_head = nn.Linear(config.d_model, self.config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.model.get_encoder() + + def get_decoder(self): + return self.model.get_decoder() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_features: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` + or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is + only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> import torch + >>> from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration + >>> from datasets import load_dataset + + >>> model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") + >>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") + + + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + + >>> inputs = processor( + ... ds[0]["audio"]["array"], sampling_rate=ds[0]["audio"]["sampling_rate"], return_tensors="pt" + ... ) + >>> input_features = inputs.input_features + + >>> generated_ids = model.generate(inputs=input_features) + + >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] + >>> transcription + 'mister quilter is the apostle of the middle classes and we are glad to welcome his gospel' + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_features, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + lm_logits = self.lm_head(outputs[0]) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqLMOutput( + loss=loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + return { + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_tf_speech_to_text.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_tf_speech_to_text.py new file mode 100644 index 0000000000000000000000000000000000000000..8fd6bd21a593c90d671a595b5faa056a97e71f19 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/modeling_tf_speech_to_text.py @@ -0,0 +1,1607 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TensorFlow Speech2Text model.""" + + +from __future__ import annotations + +import random +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation, glu +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPastAndCrossAttentions, + TFSeq2SeqLMOutput, + TFSeq2SeqModelOutput, +) +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + TFSharedEmbeddings, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_speech_to_text import Speech2TextConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "Speech2TextConfig" +_CHECKPOINT_FOR_DOC = "facebook/s2t-small-librispeech-asr" + + +from ..deprecated._archive_maps import TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +LARGE_NEGATIVE = -1e8 + + +# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): + pad_token_id = tf.cast(pad_token_id, input_ids.dtype) + decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) + start_tokens = tf.fill( + (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) + ) + shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids = tf.where( + shifted_input_ids == -100, + tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), + shifted_input_ids, + ) + + # "Verify that `labels` has only positive values and -100" + assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) + + # Make sure the assertion op is called by wrapping the result in an identity no-op + with tf.control_dependencies([assert_gte0]): + shifted_input_ids = tf.identity(shifted_input_ids) + + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE + mask_cond = tf.range(shape_list(mask)[-1]) + + mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +class TFConv1dSubsampler(keras.layers.Layer): + """ + Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation + via gated linear units (https://arxiv.org/abs/1911.08460) + """ + + def __init__(self, config: Speech2TextConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.num_layers = config.num_conv_layers + self.in_channels = config.input_feat_per_channel * config.input_channels + self.mid_channels = config.conv_channels + self.out_channels = config.d_model + self.kernel_sizes = config.conv_kernel_sizes + + self.conv_layers = [ + keras.layers.Conv1D( + filters=self.mid_channels if i < self.num_layers - 1 else self.out_channels * 2, + kernel_size=k, + strides=2, + name=f"conv_layers.{i}", + ) + for i, k in enumerate(self.kernel_sizes) + ] + + def call(self, input_features: tf.Tensor) -> tf.Tensor: + # TF Conv1D assumes Batch x Time x Channels, same as the input + hidden_states = tf.cast(input_features, tf.float32) + for i, conv in enumerate(self.conv_layers): + # equivalent to `padding=k // 2` on PT's `nn.Conv1d` + pad_len = self.kernel_sizes[i] // 2 + hidden_shapes = shape_list(hidden_states) + hidden_states = tf.concat( + ( + tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])), + hidden_states, + tf.zeros((hidden_shapes[0], pad_len, hidden_shapes[2])), + ), + axis=1, + ) + + hidden_states = conv(hidden_states) + hidden_states = glu(hidden_states, axis=2) # GLU over the Channel dimension + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "conv_layers", None) is not None: + for i, layer in enumerate(self.conv_layers): + with tf.name_scope(layer.name): + layer.build([None, None, self.in_channels] if i == 0 else [None, None, self.mid_channels // 2]) + + +class TFSpeech2TextSinusoidalPositionalEmbedding(keras.layers.Layer): + """This module produces sinusoidal positional embeddings of any length.""" + + def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, **kwargs): + super().__init__(**kwargs) + self.offset = 2 + self.embedding_dim = embedding_dim + self.padding_idx = padding_idx + self.embedding_weights = self._get_embedding(num_positions + self.offset, embedding_dim, padding_idx) + + @staticmethod + def _get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None) -> tf.Tensor: + """ + Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the + description in Section 3.5 of "Attention Is All You Need". + """ + half_dim = embedding_dim // 2 + emb = tf.math.log(10000.0) / (half_dim - 1) + emb = tf.math.exp(tf.range(half_dim, dtype=tf.float32) * -emb) + emb = tf.expand_dims(tf.range(num_embeddings, dtype=tf.float32), axis=1) * tf.expand_dims(emb, axis=0) + emb = tf.reshape(tf.concat([tf.math.sin(emb), tf.math.cos(emb)], axis=1), shape=[num_embeddings, -1]) + if embedding_dim % 2 == 1: + # zero pad + emb = tf.concat([emb, tf.zeros(num_embeddings, 1)], axis=1) + if padding_idx is not None: + emb = tf.concat([emb[:padding_idx, :], tf.zeros((1, tf.shape(emb)[1])), emb[padding_idx + 1 :, :]], axis=0) + return emb + + def call(self, input_ids: tf.Tensor, past_key_values_length: int = 0) -> tf.Tensor: + bsz, seq_len = shape_list(input_ids) + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) + + # Matt: The PyTorch code does a lot of work to cache the embeddings, setting the cached values as a + # model attribute in the forward pass. This is extremely forbidden in TF, which wants forward calls to be + # idempotent. TF doesn't need that caching anyway, since it can just store constants during compilation, + # so we just remove all of that code. + embeddings = self._get_embedding( + self.padding_idx + 1 + seq_len + self.offset + past_key_values_length, self.embedding_dim, self.padding_idx + ) + return tf.reshape(tf.gather(embeddings, tf.reshape(position_ids, (-1,)), axis=0), (bsz, seq_len, -1)) + + @staticmethod + def create_position_ids_from_input_ids( + input_ids: tf.Tensor, padding_idx: int, past_key_values_length: Optional[int] = 0 + ) -> tf.Tensor: + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: tf.Tensor x: + Returns: tf.Tensor + """ + mask = tf.cast(tf.math.not_equal(input_ids, padding_idx), dtype=tf.int32) + incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask + return tf.cast(incremental_indices, dtype=tf.int64) + padding_idx + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Speech2Text +class TFSpeech2TextAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +class TFSpeech2TextEncoderLayer(keras.layers.Layer): + def __init__(self, config: Speech2TextConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFSpeech2TextAttention( + self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" + ) + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False + ): + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`tf.Tensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)` + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, self_attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + training=training, + ) + + tf.debugging.assert_equal( + shape_list(hidden_states), + shape_list(residual), + message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", + ) + + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + return hidden_states, self_attn_weights + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.encoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFSpeech2TextDecoderLayer(keras.layers.Layer): + def __init__(self, config: Speech2TextConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + + self.self_attn = TFSpeech2TextAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + name="self_attn", + is_decoder=True, + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.encoder_attn = TFSpeech2TextAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + name="encoder_attn", + is_decoder=True, + ) + self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states, + attention_mask: tf.Tensor | None = None, + encoder_hidden_states: tf.Tensor | None = None, + encoder_attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + cross_attn_layer_head_mask: tf.Tensor | None = None, + past_key_value: Tuple[tf.Tensor] | None = None, + training=False, + ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`tf.Tensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`tf.Tensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`tf.Tensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + `(decoder_attention_heads,)` + cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. + `(decoder_attention_heads,)` + past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + training=training, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + training=training, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + return ( + hidden_states, + self_attn_weights, + cross_attn_weights, + present_key_value, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "encoder_attn", None) is not None: + with tf.name_scope(self.encoder_attn.name): + self.encoder_attn.build(None) + if getattr(self, "encoder_attn_layer_norm", None) is not None: + with tf.name_scope(self.encoder_attn_layer_norm.name): + self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.decoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFSpeech2TextPreTrainedModel(TFPreTrainedModel): + config_class = Speech2TextConfig + base_model_prefix = "model" + main_input_name = "input_features" + _keys_to_ignore_on_load_unexpected = [r"encoder.embed_positions.weights"] + + def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): + """ + Computes the output length of the convolutional layers + """ + for _ in range(self.config.num_conv_layers): + input_lengths = (input_lengths - 1) // 2 + 1 + + return input_lengths + + @property + def input_signature(self): + return { + "input_features": tf.TensorSpec( + (None, None, self.config.input_feat_per_channel * self.config.input_channels), + tf.float32, + name="input_features", + ), + "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), + "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), + "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), + } + + +SPEECH_TO_TEXT_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`Speech2TextConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +SPEECH_TO_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`): + Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained + by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* + via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the + [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a + tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`] + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tf.FloatTensor`, *optional*): + hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + of shape `(batch_size, sequence_length, hidden_size)` is a sequence of + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + decoder_inputs_embeds (`tf.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@keras_serializable +class TFSpeech2TextEncoder(keras.layers.Layer): + config_class = Speech2TextConfig + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`TFSpeech2TextEncoderLayer`]. + + Args: + config: Speech2TextConfig + """ + + def __init__(self, config: Speech2TextConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + + self.dropout = keras.layers.Dropout(config.dropout) + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_source_positions + self.embed_scale = tf.math.sqrt(float(embed_dim)) if config.scale_embedding else 1.0 + + self.conv = TFConv1dSubsampler(config, name="conv") + + self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding( + num_positions=config.max_source_positions, + embedding_dim=embed_dim, + padding_idx=self.padding_idx, + name="embed_positions", + ) + self.layers = [TFSpeech2TextEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] + self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") + + def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): + """ + Computes the output length of the convolutional layers + """ + for _ in range(self.config.num_conv_layers): + input_lengths = (input_lengths - 1) // 2 + 1 + + return input_lengths + + def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask): + # generate creates 3D attention mask, because of the shape of input_features + # convert it to 2D if thats the case + if len(attention_mask.shape) > 2: + attention_mask = attention_mask[:, :, -1] + + subsampled_lengths = self._get_feat_extract_output_lengths(tf.math.reduce_sum(attention_mask, -1)) + bsz = shape_list(attention_mask)[0] + indices = tf.concat( + ( + tf.expand_dims(tf.range(bsz, dtype=attention_mask.dtype), -1), + tf.expand_dims(subsampled_lengths - 1, -1), + ), + axis=-1, + ) + attention_mask = tf.scatter_nd(indices=indices, updates=tf.ones(bsz), shape=[bsz, feature_vector_length]) + attention_mask = tf.cast(tf.reverse(tf.math.cumsum(tf.reverse(attention_mask, [-1]), -1), [-1]), tf.int64) + return attention_mask + + @unpack_inputs + def call( + self, + input_features=None, + attention_mask=None, + head_mask=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + """ + Args: + input_features (`tf.Tensor` of shape `(batch_size, sequence_length, feature_size)`): + Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be + obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a + `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into + `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, + padding and conversion into a tensor of floats. See [`~Speech2TextFeatureExtractor.__call__`] + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + if input_features is None: + raise ValueError("You have to specify input_features") + + inputs_embeds = self.conv(input_features) + inputs_embeds = self.embed_scale * inputs_embeds + + # subsample attention mask if necessary + if attention_mask is not None: + attention_mask = self._get_feature_vector_attention_mask(tf.shape(inputs_embeds)[1], attention_mask) + padding_mask = tf.cast(tf.math.not_equal(attention_mask, 1), tf.int64) + else: + padding_mask = tf.zeros(tf.shape(inputs_embeds)[:-1], dtype=tf.int64) + + embed_pos = self.embed_positions(padding_mask) + + hidden_states = inputs_embeds + embed_pos + hidden_states = self.dropout(hidden_states, training=training) + + # check attention mask and invert + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _expand_mask(attention_mask) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): # skip the layer + continue + + hidden_states, attn = encoder_layer( + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + training=training, + ) + + if output_attentions: + all_attentions += (attn,) + + hidden_states = self.layer_norm(hidden_states) + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "conv", None) is not None: + with tf.name_scope(self.conv.name): + self.conv.build(None) + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFSpeech2TextDecoder(keras.layers.Layer): + config_class = Speech2TextConfig + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFSpeech2TextDecoderLayer`] + + Args: + config: Speech2TextConfig + """ + + def __init__(self, config: Speech2TextConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.layerdrop = config.decoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_target_positions + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + + self.embed_tokens = TFSharedEmbeddings(config.vocab_size, config.d_model, name="embed_tokens") + + self.embed_positions = TFSpeech2TextSinusoidalPositionalEmbedding( + num_positions=config.max_target_positions, + embedding_dim=config.d_model, + padding_idx=self.padding_idx, + name="embed_positions", + ) + + self.layers = [TFSpeech2TextDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] + self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") + + self.dropout = keras.layers.Dropout(config.dropout) + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids=None, + inputs_embeds=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`Speech2TextTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up + decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + # past_key_values_length + past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + else: + inputs_embeds = inputs_embeds + + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + else: + combined_attention_mask = _expand_mask( + tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] + ) + + if attention_mask is not None: + combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) + + # embed positions + positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) + + hidden_states = inputs_embeds + positions + hidden_states = self.dropout(hidden_states, training=training) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired + for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: + if attn_mask is not None: + tf.debugging.assert_equal( + shape_list(attn_mask)[0], + len(self.layers), + message=( + f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(attn_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + + hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + cross_attn_layer_head_mask=cross_attn_layer_head_mask, + past_key_value=past_key_value, + ) + + if use_cache: + next_decoder_cache += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + + if encoder_hidden_states is not None: + all_cross_attns += (layer_cross_attn,) + + hidden_states = self.layer_norm(hidden_states) + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + + if not return_dict: + return hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attns + else: + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_tokens", None) is not None: + with tf.name_scope(self.embed_tokens.name): + self.embed_tokens.build(None) + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFSpeech2TextMainLayer(keras.layers.Layer): + config_class = Speech2TextConfig + + def __init__(self, config: Speech2TextConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + + self.encoder = TFSpeech2TextEncoder(config, name="encoder") + self.decoder = TFSpeech2TextDecoder(config, name="decoder") + + def get_input_embeddings(self): + return self.decoder.embed_tokens + + def set_input_embeddings(self, new_embeddings): + self.decoder.embed_tokens = new_embeddings + + @unpack_inputs + def call( + self, + input_features=None, + attention_mask=None, + decoder_input_ids=None, + decoder_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + encoder_outputs=None, + past_key_values=None, + decoder_inputs_embeds=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + **kwargs, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_features=input_features, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): + encoder_outputs = TFBaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False + elif not return_dict and not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + + # downsample encoder attention mask + if attention_mask is not None: + encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( + tf.shape(encoder_outputs[0])[1], attention_mask + ) + else: + encoder_attention_mask = None + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=encoder_attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return TFSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + "The bare Speech2Text Model outputting raw hidden-states without any specific head on top.", + SPEECH_TO_TEXT_START_DOCSTRING, +) +class TFSpeech2TextModel(TFSpeech2TextPreTrainedModel): + def __init__(self, config: Speech2TextConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.model = TFSpeech2TextMainLayer(config, name="model") + + def get_encoder(self): + return self.model.encoder + + def get_decoder(self): + return self.model.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSeq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_features: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + decoder_input_ids: np.ndarray | tf.Tensor | None = None, + decoder_attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + decoder_head_mask: np.ndarray | tf.Tensor | None = None, + cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, + encoder_outputs: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + **kwargs, + ) -> Union[Tuple, TFSeq2SeqModelOutput]: + outputs = self.model( + input_features=input_features, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqModelOutput( + last_hidden_state=output.last_hidden_state, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + + +@add_start_docstrings( + "The Speech2Text Model with a language modeling head. Can be used for summarization.", + SPEECH_TO_TEXT_START_DOCSTRING, +) +class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCausalLanguageModelingLoss): + def __init__(self, config: Speech2TextConfig): + super().__init__(config) + self.model = TFSpeech2TextMainLayer(config, name="model") + self.lm_head = keras.layers.Dense(self.config.vocab_size, use_bias=False, name="lm_head") + # TODO (Joao): investigate why Speech2Text has numerical issues in XLA generate + self.supports_xla_generation = False + self.config = config + + def get_encoder(self): + return self.model.encoder + + def get_decoder(self): + return self.model.decoder + + def resize_token_embeddings(self, new_num_tokens: int) -> tf.Variable: + new_embeddings = super().resize_token_embeddings(new_num_tokens) + return new_embeddings + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @unpack_inputs + @add_start_docstrings_to_model_forward(SPEECH_TO_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_features: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + decoder_input_ids: np.ndarray | tf.Tensor | None = None, + decoder_attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + decoder_head_mask: np.ndarray | tf.Tensor | None = None, + cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, + encoder_outputs: np.ndarray | tf.Tensor | None = None, + past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, + labels: np.ndarray | tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[Tuple, TFSeq2SeqLMOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> import tensorflow as tf + >>> from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration + >>> from datasets import load_dataset + >>> import soundfile as sf + + >>> model = TFSpeech2TextForConditionalGeneration.from_pretrained( + ... "facebook/s2t-small-librispeech-asr", from_pt=True + ... ) + >>> processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") + + + >>> def map_to_array(batch): + ... speech, _ = sf.read(batch["file"]) + ... batch["speech"] = speech + ... return batch + + + >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") + >>> ds = ds.map(map_to_array) + >>> ds.set_format(type="tf") + + >>> input_features = processor( + ... ds["speech"][0], sampling_rate=16000, return_tensors="tf" + ... ).input_features # Batch size 1 + >>> generated_ids = model.generate(input_features) + + >>> transcription = processor.batch_decode(generated_ids) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_features=input_features, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + lm_logits = self.lm_head(outputs[0]) + masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return TFSeq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + return { + "input_features": None, # needs to be passed to make Keras.layer.__call__ happy + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build([None, None, self.config.d_model]) + + def tf_to_pt_weight_rename(self, tf_weight): + if tf_weight == "lm_head.weight": + return tf_weight, "model.decoder.embed_tokens.weight" + else: + return (tf_weight,) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/processing_speech_to_text.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/processing_speech_to_text.py new file mode 100644 index 0000000000000000000000000000000000000000..42e900633867b3d83be4238c548932ae582aa623 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/processing_speech_to_text.py @@ -0,0 +1,116 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Speech processor class for Speech2Text +""" +import warnings +from contextlib import contextmanager + +from ...processing_utils import ProcessorMixin + + +class Speech2TextProcessor(ProcessorMixin): + r""" + Constructs a Speech2Text processor which wraps a Speech2Text feature extractor and a Speech2Text tokenizer into a + single processor. + + [`Speech2TextProcessor`] offers all the functionalities of [`Speech2TextFeatureExtractor`] and + [`Speech2TextTokenizer`]. See the [`~Speech2TextProcessor.__call__`] and [`~Speech2TextProcessor.decode`] for more + information. + + Args: + feature_extractor (`Speech2TextFeatureExtractor`): + An instance of [`Speech2TextFeatureExtractor`]. The feature extractor is a required input. + tokenizer (`Speech2TextTokenizer`): + An instance of [`Speech2TextTokenizer`]. The tokenizer is a required input. + """ + + feature_extractor_class = "Speech2TextFeatureExtractor" + tokenizer_class = "Speech2TextTokenizer" + + def __init__(self, feature_extractor, tokenizer): + super().__init__(feature_extractor, tokenizer) + self.current_processor = self.feature_extractor + self._in_target_context_manager = False + + def __call__(self, *args, **kwargs): + """ + When used in normal mode, this method forwards all its arguments to Speech2TextFeatureExtractor's + [`~Speech2TextFeatureExtractor.__call__`] and returns its output. If used in the context + [`~Speech2TextProcessor.as_target_processor`] this method forwards all its arguments to Speech2TextTokenizer's + [`~Speech2TextTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more + information. + """ + # For backward compatibility + if self._in_target_context_manager: + return self.current_processor(*args, **kwargs) + + if "raw_speech" in kwargs: + warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") + audio = kwargs.pop("raw_speech") + else: + audio = kwargs.pop("audio", None) + sampling_rate = kwargs.pop("sampling_rate", None) + text = kwargs.pop("text", None) + if len(args) > 0: + audio = args[0] + args = args[1:] + + if audio is None and text is None: + raise ValueError("You need to specify either an `audio` or `text` input to process.") + + if audio is not None: + inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) + if text is not None: + encodings = self.tokenizer(text, **kwargs) + + if text is None: + return inputs + elif audio is None: + return encodings + else: + inputs["labels"] = encodings["input_ids"] + return inputs + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer + to the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @contextmanager + def as_target_processor(self): + """ + Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning + Speech2Text. + """ + warnings.warn( + "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " + "labels by using the argument `text` of the regular `__call__` method (either in the same call as " + "your audio inputs, or in a separate call." + ) + self._in_target_context_manager = True + self.current_processor = self.tokenizer + yield + self.current_processor = self.feature_extractor + self._in_target_context_manager = False diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/tokenization_speech_to_text.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/tokenization_speech_to_text.py new file mode 100644 index 0000000000000000000000000000000000000000..27db0a671ebc7d251f77a11ff88969921d1ccc7c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/speech_to_text/tokenization_speech_to_text.py @@ -0,0 +1,289 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for Speech2Text.""" +import json +import os +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import sentencepiece + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +SPIECE_UNDERLINE = "▁" + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "spm_file": "sentencepiece.bpe.model", +} + + +MAX_MODEL_INPUT_SIZES = { + "facebook/s2t-small-librispeech-asr": 1024, +} + +MUSTC_LANGS = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] + +LANGUAGES = {"mustc": MUSTC_LANGS} + + +class Speech2TextTokenizer(PreTrainedTokenizer): + """ + Construct an Speech2Text tokenizer. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to + the superclass for more information regarding such methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + spm_file (`str`): + Path to the [SentencePiece](https://github.com/google/sentencepiece) model file + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sentence token. + eos_token (`str`, *optional*, defaults to `""`): + The end of sentence token. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + do_upper_case (`bool`, *optional*, defaults to `False`): + Whether or not to uppercase the output when decoding. + do_lower_case (`bool`, *optional*, defaults to `False`): + Whether or not to lowercase the input when tokenizing. + tgt_lang (`str`, *optional*): + A string representing the target language. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + **kwargs + Additional keyword arguments passed along to [`PreTrainedTokenizer`] + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + prefix_tokens: List[int] = [] + + def __init__( + self, + vocab_file, + spm_file, + bos_token="", + eos_token="", + pad_token="", + unk_token="", + do_upper_case=False, + do_lower_case=False, + tgt_lang=None, + lang_codes=None, + additional_special_tokens=None, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.do_upper_case = do_upper_case + self.do_lower_case = do_lower_case + + self.encoder = load_json(vocab_file) + self.decoder = {v: k for k, v in self.encoder.items()} + self.spm_file = spm_file + self.sp_model = load_spm(spm_file, self.sp_model_kwargs) + + if lang_codes is not None: + self.lang_codes = lang_codes + self.langs = LANGUAGES[lang_codes] + self.lang_tokens = [f"" for lang in self.langs] + self.lang_code_to_id = {lang: self.sp_model.PieceToId(f"") for lang in self.langs} + if additional_special_tokens is not None: + additional_special_tokens = self.lang_tokens + additional_special_tokens + else: + additional_special_tokens = self.lang_tokens + self._tgt_lang = tgt_lang if tgt_lang is not None else self.langs[0] + + self.set_tgt_lang_special_tokens(self._tgt_lang) + else: + self.lang_code_to_id = {} + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + do_upper_case=do_upper_case, + do_lower_case=do_lower_case, + tgt_lang=tgt_lang, + lang_codes=lang_codes, + sp_model_kwargs=self.sp_model_kwargs, + additional_special_tokens=additional_special_tokens, + **kwargs, + ) + + @property + def vocab_size(self) -> int: + return len(self.encoder) + + def get_vocab(self) -> Dict: + vocab = self.encoder.copy() + vocab.update(self.added_tokens_encoder) + return vocab + + @property + def tgt_lang(self) -> str: + return self._tgt_lang + + @tgt_lang.setter + def tgt_lang(self, new_tgt_lang) -> None: + self._tgt_lang = new_tgt_lang + self.set_tgt_lang_special_tokens(new_tgt_lang) + + def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: + """Reset the special tokens to the target language setting. prefix=[eos, tgt_lang_code] and suffix=[eos].""" + lang_code_id = self.lang_code_to_id[tgt_lang] + self.prefix_tokens = [lang_code_id] + + def _tokenize(self, text: str) -> List[str]: + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + return self.encoder.get(token, self.encoder[self.unk_token]) + + def _convert_id_to_token(self, index: int) -> str: + """Converts an index (integer) in a token (str) using the decoder.""" + return self.decoder.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens: List[str]) -> str: + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + current_sub_tokens = [] + out_string = "" + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + decoded = self.sp_model.decode(current_sub_tokens) + out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + decoded = self.sp_model.decode(current_sub_tokens) + out_string += decoded.upper() if self.do_upper_case else decoded + return out_string.strip() + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: + """Build model inputs from a sequence by appending eos_token_id.""" + if token_ids_1 is None: + return self.prefix_tokens + token_ids_0 + [self.eos_token_id] + # We don't expect to process pairs, but leave the pair logic for API consistency + return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + prefix_ones = [1] * len(self.prefix_tokens) + suffix_ones = [1] + if token_ids_1 is None: + return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones + return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones + + def __getstate__(self) -> Dict: + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d: Dict) -> None: + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + save_dir = Path(save_directory) + assert save_dir.is_dir(), f"{save_directory} should be a directory" + vocab_save_path = save_dir / ( + (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] + ) + spm_save_path = save_dir / ( + (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] + ) + + save_json(self.encoder, vocab_save_path) + + if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file): + copyfile(self.spm_file, spm_save_path) + elif not os.path.isfile(self.spm_file): + with open(spm_save_path, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (str(vocab_save_path), str(spm_save_path)) + + +def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: + spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) + spm.Load(str(path)) + return spm + + +def load_json(path: str) -> Union[Dict, List]: + with open(path, "r") as f: + return json.load(f) + + +def save_json(data, path: str) -> None: + with open(path, "w") as f: + json.dump(data, f, indent=2) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..346bc9ef9caaa6412a5402016b9ed9bfec48c04b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__init__.py @@ -0,0 +1,65 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_table_transformer": [ + "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "TableTransformerConfig", + "TableTransformerOnnxConfig", + ] +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_table_transformer"] = [ + "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "TableTransformerForObjectDetection", + "TableTransformerModel", + "TableTransformerPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_table_transformer import ( + TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + TableTransformerConfig, + TableTransformerOnnxConfig, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_table_transformer import ( + TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + TableTransformerForObjectDetection, + TableTransformerModel, + TableTransformerPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4c7eb4713705c69d56dfd39b8b37bd02738c4afb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/configuration_table_transformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/configuration_table_transformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bf07100960b285025863082ad693c61603c989e7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/configuration_table_transformer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..92514cbb60dc241002e4d74a763db0e00fd56226 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf_no_timm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf_no_timm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e44d9f9de6116542fda85ddb658739cf4cc8796e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/convert_table_transformer_to_hf_no_timm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/modeling_table_transformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/modeling_table_transformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9732d06bc54a8c4deac1d3f6982c11971e59489d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/__pycache__/modeling_table_transformer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/configuration_table_transformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/configuration_table_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..9a2ff6bbab3b24c7b45f0b2ca8c58af70e560ba3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/configuration_table_transformer.py @@ -0,0 +1,273 @@ +# coding=utf-8 +# Copyright The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Table Transformer model configuration""" +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging +from ..auto import CONFIG_MAPPING + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class TableTransformerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`TableTransformerModel`]. It is used to + instantiate a Table Transformer model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the Table Transformer + [microsoft/table-transformer-detection](https://huggingface.co/microsoft/table-transformer-detection) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + use_timm_backbone (`bool`, *optional*, defaults to `True`): + Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`] + API. + backbone_config (`PretrainedConfig` or `dict`, *optional*): + The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which + case it will default to `ResNetConfig()`. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + num_queries (`int`, *optional*, defaults to 100): + Number of object queries, i.e. detection slots. This is the maximal number of objects + [`TableTransformerModel`] can detect in a single image. For COCO, we recommend 100 queries. + d_model (`int`, *optional*, defaults to 256): + Dimension of the layers. + encoder_layers (`int`, *optional*, defaults to 6): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 6): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimension of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 2048): + Dimension of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + init_xavier_std (`float`, *optional*, defaults to 1): + The scaling factor used for the Xavier initialization gain in the HM Attention map module. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + auxiliary_loss (`bool`, *optional*, defaults to `False`): + Whether auxiliary decoding losses (loss at each decoder layer) are to be used. + position_embedding_type (`str`, *optional*, defaults to `"sine"`): + Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`. + backbone (`str`, *optional*): + Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this + will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone` + is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights. + use_pretrained_backbone (`bool`, *optional*, `True`): + Whether to use pretrained weights for the backbone. + backbone_kwargs (`dict`, *optional*): + Keyword arguments to be passed to AutoBackbone when loading from a checkpoint + e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set. + dilation (`bool`, *optional*, defaults to `False`): + Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when + `use_timm_backbone` = `True`. + class_cost (`float`, *optional*, defaults to 1): + Relative weight of the classification error in the Hungarian matching cost. + bbox_cost (`float`, *optional*, defaults to 5): + Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost. + giou_cost (`float`, *optional*, defaults to 2): + Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost. + mask_loss_coefficient (`float`, *optional*, defaults to 1): + Relative weight of the Focal loss in the panoptic segmentation loss. + dice_loss_coefficient (`float`, *optional*, defaults to 1): + Relative weight of the DICE/F-1 loss in the panoptic segmentation loss. + bbox_loss_coefficient (`float`, *optional*, defaults to 5): + Relative weight of the L1 bounding box loss in the object detection loss. + giou_loss_coefficient (`float`, *optional*, defaults to 2): + Relative weight of the generalized IoU loss in the object detection loss. + eos_coefficient (`float`, *optional*, defaults to 0.1): + Relative classification weight of the 'no-object' class in the object detection loss. + + Examples: + + ```python + >>> from transformers import TableTransformerModel, TableTransformerConfig + + >>> # Initializing a Table Transformer microsoft/table-transformer-detection style configuration + >>> configuration = TableTransformerConfig() + + >>> # Initializing a model from the microsoft/table-transformer-detection style configuration + >>> model = TableTransformerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "table-transformer" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = { + "hidden_size": "d_model", + "num_attention_heads": "encoder_attention_heads", + } + + # Copied from transformers.models.detr.configuration_detr.DetrConfig.__init__ + def __init__( + self, + use_timm_backbone=True, + backbone_config=None, + num_channels=3, + num_queries=100, + encoder_layers=6, + encoder_ffn_dim=2048, + encoder_attention_heads=8, + decoder_layers=6, + decoder_ffn_dim=2048, + decoder_attention_heads=8, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + is_encoder_decoder=True, + activation_function="relu", + d_model=256, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + init_xavier_std=1.0, + auxiliary_loss=False, + position_embedding_type="sine", + backbone="resnet50", + use_pretrained_backbone=True, + backbone_kwargs=None, + dilation=False, + class_cost=1, + bbox_cost=5, + giou_cost=2, + mask_loss_coefficient=1, + dice_loss_coefficient=1, + bbox_loss_coefficient=5, + giou_loss_coefficient=2, + eos_coefficient=0.1, + **kwargs, + ): + if not use_timm_backbone and use_pretrained_backbone: + raise ValueError( + "Loading pretrained backbone weights from the transformers library is not supported yet. `use_timm_backbone` must be set to `True` when `use_pretrained_backbone=True`" + ) + + if backbone_config is not None and backbone is not None: + raise ValueError("You can't specify both `backbone` and `backbone_config`.") + + if backbone_config is not None and use_timm_backbone: + raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") + + if backbone_kwargs is not None and backbone_kwargs and backbone_config is not None: + raise ValueError("You can't specify both `backbone_kwargs` and `backbone_config`.") + + if not use_timm_backbone: + if backbone_config is None: + logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") + backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"]) + elif isinstance(backbone_config, dict): + backbone_model_type = backbone_config.get("model_type") + config_class = CONFIG_MAPPING[backbone_model_type] + backbone_config = config_class.from_dict(backbone_config) + # set timm attributes to None + dilation, backbone, use_pretrained_backbone = None, None, None + + self.use_timm_backbone = use_timm_backbone + self.backbone_config = backbone_config + self.num_channels = num_channels + self.num_queries = num_queries + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.init_xavier_std = init_xavier_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.num_hidden_layers = encoder_layers + self.auxiliary_loss = auxiliary_loss + self.position_embedding_type = position_embedding_type + self.backbone = backbone + self.use_pretrained_backbone = use_pretrained_backbone + self.backbone_kwargs = backbone_kwargs + self.dilation = dilation + # Hungarian matcher + self.class_cost = class_cost + self.bbox_cost = bbox_cost + self.giou_cost = giou_cost + # Loss coefficients + self.mask_loss_coefficient = mask_loss_coefficient + self.dice_loss_coefficient = dice_loss_coefficient + self.bbox_loss_coefficient = bbox_loss_coefficient + self.giou_loss_coefficient = giou_loss_coefficient + self.eos_coefficient = eos_coefficient + super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) + + @property + def num_attention_heads(self) -> int: + return self.encoder_attention_heads + + @property + def hidden_size(self) -> int: + return self.d_model + + +# Copied from transformers.models.detr.configuration_detr.DetrOnnxConfig +class TableTransformerOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ("pixel_mask", {0: "batch"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-5 + + @property + def default_onnx_opset(self) -> int: + return 12 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..d06c3eb26b616929bf7a9f0c8b2fe7f7ac89dbe9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf.py @@ -0,0 +1,318 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert Table Transformer checkpoints with timm-backbone. + +URL: https://github.com/microsoft/table-transformer +""" + + +import argparse +from collections import OrderedDict +from pathlib import Path + +import torch +from huggingface_hub import hf_hub_download +from PIL import Image +from torchvision.transforms import functional as F + +from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + +# here we list all keys to be renamed (original name on the left, our name on the right) +rename_keys = [] +for i in range(6): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append( + (f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight") + ) + rename_keys.append( + (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") + ) + rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) + rename_keys.append( + (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") + ) + rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias")) + rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) + # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms + rename_keys.append( + (f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") + ) + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", + f"decoder.layers.{i}.encoder_attn.out_proj.weight", + ) + ) + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", + f"decoder.layers.{i}.encoder_attn.out_proj.bias", + ) + ) + rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") + ) + rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias")) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") + ) + rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) + +# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads +rename_keys.extend( + [ + ("input_proj.weight", "input_projection.weight"), + ("input_proj.bias", "input_projection.bias"), + ("query_embed.weight", "query_position_embeddings.weight"), + ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), + ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), + ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), + ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), + ("class_embed.weight", "class_labels_classifier.weight"), + ("class_embed.bias", "class_labels_classifier.bias"), + ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), + ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), + ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), + ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), + ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), + ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), + ] +) + + +def rename_key(state_dict, old, new): + val = state_dict.pop(old) + state_dict[new] = val + + +def rename_backbone_keys(state_dict): + new_state_dict = OrderedDict() + for key, value in state_dict.items(): + if "backbone.0.body" in key: + new_key = key.replace("backbone.0.body", "backbone.conv_encoder.model") + new_state_dict[new_key] = value + else: + new_state_dict[key] = value + + return new_state_dict + + +def read_in_q_k_v(state_dict): + prefix = "" + + # first: transformer encoder + for i in range(6): + # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight") + in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] + state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] + state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] + state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] + state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] + state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] + # next: transformer decoder (which is a bit more complex because it also includes cross-attention) + for i in range(6): + # read in weights + bias of input projection layer of self-attention + in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight") + in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] + state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] + state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] + state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] + state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] + state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] + # read in weights + bias of input projection layer of cross-attention + in_proj_weight_cross_attn = state_dict.pop( + f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" + ) + in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias") + # next, add query, keys and values (in that order) of cross-attention to the state dict + state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :] + state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256] + state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :] + state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512] + state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :] + state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:] + + +def resize(image, checkpoint_url): + width, height = image.size + current_max_size = max(width, height) + target_max_size = 800 if "detection" in checkpoint_url else 1000 + scale = target_max_size / current_max_size + resized_image = image.resize((int(round(scale * width)), int(round(scale * height)))) + + return resized_image + + +def normalize(image): + image = F.to_tensor(image) + image = F.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + return image + + +@torch.no_grad() +def convert_table_transformer_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub): + """ + Copy/paste/tweak model's weights to our DETR structure. + """ + + logger.info("Converting model...") + + # load original state dict + state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") + # rename keys + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + state_dict = rename_backbone_keys(state_dict) + # query, key and value matrices need special treatment + read_in_q_k_v(state_dict) + # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them + prefix = "model." + for key in state_dict.copy().keys(): + if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"): + val = state_dict.pop(key) + state_dict[prefix + key] = val + # create HuggingFace model and load state dict + config = TableTransformerConfig( + backbone="resnet18", + mask_loss_coefficient=1, + dice_loss_coefficient=1, + ce_loss_coefficient=1, + bbox_loss_coefficient=5, + giou_loss_coefficient=2, + eos_coefficient=0.4, + class_cost=1, + bbox_cost=5, + giou_cost=2, + ) + + if "detection" in checkpoint_url: + config.num_queries = 15 + config.num_labels = 2 + id2label = {0: "table", 1: "table rotated"} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + else: + config.num_queries = 125 + config.num_labels = 6 + id2label = { + 0: "table", + 1: "table column", + 2: "table row", + 3: "table column header", + 4: "table projected row header", + 5: "table spanning cell", + } + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + + image_processor = DetrImageProcessor( + format="coco_detection", max_size=800 if "detection" in checkpoint_url else 1000 + ) + model = TableTransformerForObjectDetection(config) + model.load_state_dict(state_dict) + model.eval() + + # verify our conversion + filename = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" + file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename=filename) + image = Image.open(file_path).convert("RGB") + pixel_values = normalize(resize(image, checkpoint_url)).unsqueeze(0) + + outputs = model(pixel_values) + + if "detection" in checkpoint_url: + expected_shape = (1, 15, 3) + expected_logits = torch.tensor( + [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] + ) + expected_boxes = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]]) + + else: + expected_shape = (1, 125, 7) + expected_logits = torch.tensor( + [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] + ) + expected_boxes = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]]) + + assert outputs.logits.shape == expected_shape + assert torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4) + assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4) + print("Looks ok!") + + if pytorch_dump_folder_path is not None: + # Save model and image processor + logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + model.save_pretrained(pytorch_dump_folder_path) + image_processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + # Push model to HF hub + logger.info("Pushing model to the hub...") + model_name = ( + "microsoft/table-transformer-detection" + if "detection" in checkpoint_url + else "microsoft/table-transformer-structure-recognition" + ) + model.push_to_hub(model_name) + image_processor.push_to_hub(model_name) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--checkpoint_url", + default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", + type=str, + choices=[ + "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", + "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", + ], + help="URL of the Table Transformer checkpoint you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." + ) + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + args = parser.parse_args() + convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf_no_timm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf_no_timm.py new file mode 100644 index 0000000000000000000000000000000000000000..0a2b7b87fe972a4c79a4c573b52164eb7e01d0ad --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/convert_table_transformer_to_hf_no_timm.py @@ -0,0 +1,435 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert Table Transformer checkpoints with native (Transformers) backbone. + +URL: https://github.com/microsoft/table-transformer +""" + + +import argparse +from pathlib import Path + +import torch +from huggingface_hub import hf_hub_download +from PIL import Image +from torchvision.transforms import functional as F + +from transformers import DetrImageProcessor, ResNetConfig, TableTransformerConfig, TableTransformerForObjectDetection +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def create_rename_keys(config): + # here we list all keys to be renamed (original name on the left, our name on the right) + rename_keys = [] + + # stem + # fmt: off + rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight")) + rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight")) + rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias")) + rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean")) + rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var")) + # stages + for stage_idx in range(len(config.backbone_config.depths)): + for layer_idx in range(config.backbone_config.depths[stage_idx]): + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv1.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.convolution.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn1.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.normalization.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn1.bias", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.normalization.bias", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn1.running_mean", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.normalization.running_mean", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn1.running_var", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.0.normalization.running_var", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv2.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.convolution.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn2.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.normalization.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn2.bias", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.normalization.bias", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn2.running_mean", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.normalization.running_mean", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn2.running_var", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.1.normalization.running_var", + ) + ) + # all ResNet stages except the first one have a downsample as first layer + if stage_idx != 0 and layer_idx == 0: + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", + ) + ) + rename_keys.append( + ( + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", + ) + ) + rename_keys.append( + ( + # "backbone.conv_encoder.model.encoder.stages.3.layers.0.shortcut.normalization.running_var" + f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", + f"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", + ) + ) + # fmt: on + + for i in range(config.encoder_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append( + ( + f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", + f"encoder.layers.{i}.self_attn.out_proj.weight", + ) + ) + rename_keys.append( + (f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias") + ) + rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight")) + rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias")) + rename_keys.append( + (f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight") + ) + rename_keys.append( + (f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias") + ) + rename_keys.append( + (f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight") + ) + rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias")) + # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", + f"decoder.layers.{i}.self_attn.out_proj.weight", + ) + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias") + ) + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", + f"decoder.layers.{i}.encoder_attn.out_proj.weight", + ) + ) + rename_keys.append( + ( + f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", + f"decoder.layers.{i}.encoder_attn.out_proj.bias", + ) + ) + rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight")) + rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias")) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias") + ) + rename_keys.append( + (f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight") + ) + rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias")) + + # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads + rename_keys.extend( + [ + ("input_proj.weight", "input_projection.weight"), + ("input_proj.bias", "input_projection.bias"), + ("query_embed.weight", "query_position_embeddings.weight"), + ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), + ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), + ("class_embed.weight", "class_labels_classifier.weight"), + ("class_embed.bias", "class_labels_classifier.bias"), + ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), + ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), + ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), + ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), + ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), + ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), + ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), + ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), + ] + ) + + return rename_keys + + +def rename_key(state_dict, old, new): + val = state_dict.pop(old) + state_dict[new] = val + + +def read_in_q_k_v(state_dict, is_panoptic=False): + prefix = "" + if is_panoptic: + prefix = "detr." + + # first: transformer encoder + for i in range(6): + # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight") + in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] + state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] + state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] + state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] + state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] + state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] + # next: transformer decoder (which is a bit more complex because it also includes cross-attention) + for i in range(6): + # read in weights + bias of input projection layer of self-attention + in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight") + in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :] + state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256] + state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] + state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512] + state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] + state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:] + # read in weights + bias of input projection layer of cross-attention + in_proj_weight_cross_attn = state_dict.pop( + f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" + ) + in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias") + # next, add query, keys and values (in that order) of cross-attention to the state dict + state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :] + state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256] + state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :] + state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512] + state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :] + state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:] + + +def resize(image, checkpoint_url): + width, height = image.size + current_max_size = max(width, height) + target_max_size = 800 if "detection" in checkpoint_url else 1000 + scale = target_max_size / current_max_size + resized_image = image.resize((int(round(scale * width)), int(round(scale * height)))) + + return resized_image + + +def normalize(image): + image = F.to_tensor(image) + image = F.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + return image + + +@torch.no_grad() +def convert_table_transformer_checkpoint(checkpoint_url, pytorch_dump_folder_path, push_to_hub): + """ + Copy/paste/tweak model's weights to our DETR structure. + """ + + logger.info("Converting model...") + + # create HuggingFace model and load state dict + backbone_config = ResNetConfig.from_pretrained( + "microsoft/resnet-18", out_features=["stage1", "stage2", "stage3", "stage4"] + ) + + config = TableTransformerConfig( + backbone_config=backbone_config, + use_timm_backbone=False, + mask_loss_coefficient=1, + dice_loss_coefficient=1, + ce_loss_coefficient=1, + bbox_loss_coefficient=5, + giou_loss_coefficient=2, + eos_coefficient=0.4, + class_cost=1, + bbox_cost=5, + giou_cost=2, + ) + + # load original state dict + state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") + + # rename keys + for src, dest in create_rename_keys(config): + rename_key(state_dict, src, dest) + # query, key and value matrices need special treatment + read_in_q_k_v(state_dict) + # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them + prefix = "model." + for key in state_dict.copy().keys(): + if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"): + val = state_dict.pop(key) + state_dict[prefix + key] = val + + if "detection" in checkpoint_url: + config.num_queries = 15 + config.num_labels = 2 + id2label = {0: "table", 1: "table rotated"} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + else: + config.num_queries = 125 + config.num_labels = 6 + id2label = { + 0: "table", + 1: "table column", + 2: "table row", + 3: "table column header", + 4: "table projected row header", + 5: "table spanning cell", + } + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + + image_processor = DetrImageProcessor(format="coco_detection", size={"longest_edge": 800}) + model = TableTransformerForObjectDetection(config) + model.load_state_dict(state_dict) + model.eval() + + # verify our conversion + filename = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" + file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename=filename) + image = Image.open(file_path).convert("RGB") + pixel_values = normalize(resize(image, checkpoint_url)).unsqueeze(0) + + outputs = model(pixel_values) + + if "detection" in checkpoint_url: + expected_shape = (1, 15, 3) + expected_logits = torch.tensor( + [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] + ) + expected_boxes = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]]) + + else: + expected_shape = (1, 125, 7) + expected_logits = torch.tensor( + [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] + ) + expected_boxes = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]]) + + assert outputs.logits.shape == expected_shape + assert torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4) + assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4) + print("Looks ok!") + + if pytorch_dump_folder_path is not None: + # Save model and image processor + logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + model.save_pretrained(pytorch_dump_folder_path) + image_processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + # Push model to HF hub + logger.info("Pushing model to the hub...") + model_name = ( + "microsoft/table-transformer-detection" + if "detection" in checkpoint_url + else "microsoft/table-transformer-structure-recognition" + ) + model.push_to_hub(model_name, revision="no_timm") + image_processor.push_to_hub(model_name, revision="no_timm") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--checkpoint_url", + default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", + type=str, + choices=[ + "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", + "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", + ], + help="URL of the Table Transformer checkpoint you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." + ) + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + args = parser.parse_args() + convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/modeling_table_transformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/modeling_table_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..8e577a65a5fe0073a196c001f67998c49316dc70 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/table_transformer/modeling_table_transformer.py @@ -0,0 +1,2000 @@ +# coding=utf-8 +# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Table Transformer model.""" + + +import math +from dataclasses import dataclass +from typing import Dict, List, Optional, Tuple, Union + +import torch +from torch import Tensor, nn + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask +from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions, Seq2SeqModelOutput +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_accelerate_available, + is_scipy_available, + is_timm_available, + is_vision_available, + logging, + replace_return_docstrings, + requires_backends, +) +from ...utils.backbone_utils import load_backbone +from .configuration_table_transformer import TableTransformerConfig + + +if is_scipy_available(): + from scipy.optimize import linear_sum_assignment + +if is_timm_available(): + from timm import create_model + +if is_vision_available(): + from transformers.image_transforms import center_to_corners_format + +if is_accelerate_available(): + from accelerate import PartialState + from accelerate.utils import reduce + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "TableTransformerConfig" +_CHECKPOINT_FOR_DOC = "microsoft/table-transformer-detection" + + +from ..deprecated._archive_maps import TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +# Copied from transformers.models.detr.modeling_detr.DetrDecoderOutput with DETR->TABLE_TRANSFORMER,Detr->TableTransformer +class TableTransformerDecoderOutput(BaseModelOutputWithCrossAttentions): + """ + Base class for outputs of the TABLE_TRANSFORMER decoder. This class adds one attribute to BaseModelOutputWithCrossAttentions, + namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them + gone through a layernorm. This is useful when training the model with auxiliary decoding losses. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): + Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a + layernorm. + """ + + intermediate_hidden_states: Optional[torch.FloatTensor] = None + + +@dataclass +# Copied from transformers.models.detr.modeling_detr.DetrModelOutput with DETR->TABLE_TRANSFORMER,Detr->TableTransformer +class TableTransformerModelOutput(Seq2SeqModelOutput): + """ + Base class for outputs of the TABLE_TRANSFORMER encoder-decoder model. This class adds one attribute to Seq2SeqModelOutput, + namely an optional stack of intermediate decoder activations, i.e. the output of each decoder layer, each of them + gone through a layernorm. This is useful when training the model with auxiliary decoding losses. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each + layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each + layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): + Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a + layernorm. + """ + + intermediate_hidden_states: Optional[torch.FloatTensor] = None + + +@dataclass +# Copied from transformers.models.detr.modeling_detr.DetrObjectDetectionOutput with Detr->TableTransformer,DetrImageProcessor->DetrImageProcessor +class TableTransformerObjectDetectionOutput(ModelOutput): + """ + Output type of [`TableTransformerForObjectDetection`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): + Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a + bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized + scale-invariant IoU loss. + loss_dict (`Dict`, *optional*): + A dictionary containing the individual losses. Useful for logging. + logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): + Classification logits (including no-object) for all queries. + pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): + Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These + values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding + possible padding). You can use [`~TableTransformerImageProcessor.post_process_object_detection`] to retrieve the + unnormalized bounding boxes. + auxiliary_outputs (`list[Dict]`, *optional*): + Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) + and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and + `pred_boxes`) for each decoder layer. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each + layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each + layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + loss_dict: Optional[Dict] = None + logits: torch.FloatTensor = None + pred_boxes: torch.FloatTensor = None + auxiliary_outputs: Optional[List[Dict]] = None + last_hidden_state: Optional[torch.FloatTensor] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +# Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->TableTransformer +class TableTransformerFrozenBatchNorm2d(nn.Module): + """ + BatchNorm2d where the batch statistics and the affine parameters are fixed. + + Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than + torchvision.models.resnet[18,34,50,101] produce nans. + """ + + def __init__(self, n): + super().__init__() + self.register_buffer("weight", torch.ones(n)) + self.register_buffer("bias", torch.zeros(n)) + self.register_buffer("running_mean", torch.zeros(n)) + self.register_buffer("running_var", torch.ones(n)) + + def _load_from_state_dict( + self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ): + num_batches_tracked_key = prefix + "num_batches_tracked" + if num_batches_tracked_key in state_dict: + del state_dict[num_batches_tracked_key] + + super()._load_from_state_dict( + state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ) + + def forward(self, x): + # move reshapes to the beginning + # to make it user-friendly + weight = self.weight.reshape(1, -1, 1, 1) + bias = self.bias.reshape(1, -1, 1, 1) + running_var = self.running_var.reshape(1, -1, 1, 1) + running_mean = self.running_mean.reshape(1, -1, 1, 1) + epsilon = 1e-5 + scale = weight * (running_var + epsilon).rsqrt() + bias = bias - running_mean * scale + return x * scale + bias + + +# Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->TableTransformer +def replace_batch_norm(model): + r""" + Recursively replace all `torch.nn.BatchNorm2d` with `TableTransformerFrozenBatchNorm2d`. + + Args: + model (torch.nn.Module): + input model + """ + for name, module in model.named_children(): + if isinstance(module, nn.BatchNorm2d): + new_module = TableTransformerFrozenBatchNorm2d(module.num_features) + + if not module.weight.device == torch.device("meta"): + new_module.weight.data.copy_(module.weight) + new_module.bias.data.copy_(module.bias) + new_module.running_mean.data.copy_(module.running_mean) + new_module.running_var.data.copy_(module.running_var) + + model._modules[name] = new_module + + if len(list(module.children())) > 0: + replace_batch_norm(module) + + +# Copied from transformers.models.detr.modeling_detr.DetrConvEncoder with Detr->TableTransformer +class TableTransformerConvEncoder(nn.Module): + """ + Convolutional backbone, using either the AutoBackbone API or one from the timm library. + + nn.BatchNorm2d layers are replaced by TableTransformerFrozenBatchNorm2d as defined above. + + """ + + def __init__(self, config): + super().__init__() + + self.config = config + + if config.use_timm_backbone: + requires_backends(self, ["timm"]) + kwargs = {} + if config.dilation: + kwargs["output_stride"] = 16 + backbone = create_model( + config.backbone, + pretrained=config.use_pretrained_backbone, + features_only=True, + out_indices=(1, 2, 3, 4), + in_chans=config.num_channels, + **kwargs, + ) + else: + backbone = load_backbone(config) + + # replace batch norm by frozen batch norm + with torch.no_grad(): + replace_batch_norm(backbone) + self.model = backbone + self.intermediate_channel_sizes = ( + self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels + ) + + backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type + if "resnet" in backbone_model_type: + for name, parameter in self.model.named_parameters(): + if config.use_timm_backbone: + if "layer2" not in name and "layer3" not in name and "layer4" not in name: + parameter.requires_grad_(False) + else: + if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name: + parameter.requires_grad_(False) + + def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): + # send pixel_values through the model to get list of feature maps + features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps + + out = [] + for feature_map in features: + # downsample pixel_mask to match shape of corresponding feature_map + mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] + out.append((feature_map, mask)) + return out + + +# Copied from transformers.models.detr.modeling_detr.DetrConvModel with Detr->TableTransformer +class TableTransformerConvModel(nn.Module): + """ + This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder. + """ + + def __init__(self, conv_encoder, position_embedding): + super().__init__() + self.conv_encoder = conv_encoder + self.position_embedding = position_embedding + + def forward(self, pixel_values, pixel_mask): + # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples + out = self.conv_encoder(pixel_values, pixel_mask) + pos = [] + for feature_map, mask in out: + # position encoding + pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype)) + + return out, pos + + +# Copied from transformers.models.detr.modeling_detr.DetrSinePositionEmbedding with Detr->TableTransformer +class TableTransformerSinePositionEmbedding(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one used by the Attention is all you + need paper, generalized to work on images. + """ + + def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None): + super().__init__() + self.embedding_dim = embedding_dim + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, pixel_values, pixel_mask): + if pixel_mask is None: + raise ValueError("No pixel mask provided") + y_embed = pixel_mask.cumsum(1, dtype=torch.float32) + x_embed = pixel_mask.cumsum(2, dtype=torch.float32) + if self.normalize: + y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale + + dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float() + dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + + +# Copied from transformers.models.detr.modeling_detr.DetrLearnedPositionEmbedding with Detr->TableTransformer +class TableTransformerLearnedPositionEmbedding(nn.Module): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, embedding_dim=256): + super().__init__() + self.row_embeddings = nn.Embedding(50, embedding_dim) + self.column_embeddings = nn.Embedding(50, embedding_dim) + + def forward(self, pixel_values, pixel_mask=None): + height, width = pixel_values.shape[-2:] + width_values = torch.arange(width, device=pixel_values.device) + height_values = torch.arange(height, device=pixel_values.device) + x_emb = self.column_embeddings(width_values) + y_emb = self.row_embeddings(height_values) + pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) + pos = pos.permute(2, 0, 1) + pos = pos.unsqueeze(0) + pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) + return pos + + +# Copied from transformers.models.detr.modeling_detr.build_position_encoding with Detr->TableTransformer +def build_position_encoding(config): + n_steps = config.d_model // 2 + if config.position_embedding_type == "sine": + # TODO find a better way of exposing other arguments + position_embedding = TableTransformerSinePositionEmbedding(n_steps, normalize=True) + elif config.position_embedding_type == "learned": + position_embedding = TableTransformerLearnedPositionEmbedding(n_steps) + else: + raise ValueError(f"Not supported {config.position_embedding_type}") + + return position_embedding + + +# Copied from transformers.models.detr.modeling_detr.DetrAttention with DETR->TABLE_TRANSFORMER,Detr->TableTransformer +class TableTransformerAttention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper. + + Here, we add position embeddings to the queries and keys (as explained in the TABLE_TRANSFORMER paper). + """ + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + if self.head_dim * num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): + return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs): + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + return tensor if object_queries is None else tensor + object_queries + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + object_queries: Optional[torch.Tensor] = None, + key_value_states: Optional[torch.Tensor] = None, + spatial_position_embeddings: Optional[torch.Tensor] = None, + output_attentions: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + position_embeddings = kwargs.pop("position_ebmeddings", None) + key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if key_value_position_embeddings is not None and spatial_position_embeddings is not None: + raise ValueError( + "Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + if key_value_position_embeddings is not None: + logger.warning_once( + "key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead" + ) + spatial_position_embeddings = key_value_position_embeddings + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size, target_len, embed_dim = hidden_states.size() + + # add position embeddings to the hidden states before projecting to queries and keys + if object_queries is not None: + hidden_states_original = hidden_states + hidden_states = self.with_pos_embed(hidden_states, object_queries) + + # add key-value position embeddings to the key value states + if spatial_position_embeddings is not None: + key_value_states_original = key_value_states + key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) + value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) + value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) + + proj_shape = (batch_size * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + source_len = key_states.size(1) + + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): + raise ValueError( + f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (batch_size, 1, target_len, source_len): + raise ValueError( + f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" + f" {attention_mask.size()}" + ) + attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask + attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(batch_size, target_len, embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped + + +class TableTransformerEncoderLayer(nn.Module): + # Copied from transformers.models.detr.modeling_detr.DetrEncoderLayer.__init__ with Detr->TableTransformer + def __init__(self, config: TableTransformerConfig): + super().__init__() + self.embed_dim = config.d_model + self.self_attn = TableTransformerAttention( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + ) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + object_queries: torch.Tensor = None, + output_attentions: bool = False, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative + values. + object_queries (`torch.FloatTensor`, *optional*): object queries, to be added to hidden_states. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + object_queries=object_queries, + output_attentions=output_attentions, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + hidden_states = residual + hidden_states + + if self.training: + if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class TableTransformerDecoderLayer(nn.Module): + # Copied from transformers.models.detr.modeling_detr.DetrDecoderLayer.__init__ with Detr->TableTransformer + def __init__(self, config: TableTransformerConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = TableTransformerAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = TableTransformerAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + object_queries: Optional[torch.Tensor] = None, + query_position_embeddings: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative + values. + object_queries (`torch.FloatTensor`, *optional*): + object queries that are added to the queries and keys + in the cross-attention layer. + query_position_embeddings (`torch.FloatTensor`, *optional*): + object queries that are added to the queries and keys + in the self-attention layer. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative + values. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, + object_queries=query_position_embeddings, + attention_mask=attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + hidden_states, cross_attn_weights = self.encoder_attn( + hidden_states=hidden_states, + object_queries=query_position_embeddings, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + spatial_position_embeddings=object_queries, + output_attentions=output_attentions, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + # Fully Connected + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + +# Copied from transformers.models.detr.modeling_detr.DetrClassificationHead with Detr->TableTransformer +class TableTransformerClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float): + super().__init__() + self.dense = nn.Linear(input_dim, inner_dim) + self.dropout = nn.Dropout(p=pooler_dropout) + self.out_proj = nn.Linear(inner_dim, num_classes) + + def forward(self, hidden_states: torch.Tensor): + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +class TableTransformerPreTrainedModel(PreTrainedModel): + config_class = TableTransformerConfig + base_model_prefix = "model" + main_input_name = "pixel_values" + _no_split_modules = [ + r"TableTransformerConvEncoder", + r"TableTransformerEncoderLayer", + r"TableTransformerDecoderLayer", + ] + + def _init_weights(self, module): + std = self.config.init_std + + if isinstance(module, TableTransformerLearnedPositionEmbedding): + nn.init.uniform_(module.row_embeddings.weight) + nn.init.uniform_(module.column_embeddings.weight) + if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +TABLE_TRANSFORMER_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`TableTransformerConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +TABLE_TRANSFORMER_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. + + Pixel values can be obtained using [`DetrImageProcessor`]. See [`DetrImageProcessor.__call__`] for details. + + pixel_mask (`torch.FloatTensor` of shape `(batch_size, height, width)`, *optional*): + Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: + + - 1 for pixels that are real (i.e. **not masked**), + - 0 for pixels that are padding (i.e. **masked**). + + [What are attention masks?](../glossary#attention-mask) + + decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*): + Not used by default. Can be used to mask object queries. + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you + can choose to directly pass a flattened representation of an image. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): + Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an + embedded representation. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class TableTransformerEncoder(TableTransformerPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`TableTransformerEncoderLayer`]. + + The encoder updates the flattened feature map through multiple self-attention layers. + + Small tweak for Table Transformer: + + - object_queries are added to the forward pass. + + Args: + config: TableTransformerConfig + """ + + def __init__(self, config: TableTransformerConfig): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + self.layers = nn.ModuleList([TableTransformerEncoderLayer(config) for _ in range(config.encoder_layers)]) + + self.layernorm = nn.LayerNorm(config.d_model) + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + inputs_embeds=None, + attention_mask=None, + object_queries=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. + + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: + + - 1 for pixel features that are real (i.e. **not masked**), + - 0 for pixel features that are padding (i.e. **masked**). + + [What are attention masks?](../glossary#attention-mask) + + object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Position embeddings that are added to the queries and keys in each self-attention layer. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + hidden_states = inputs_embeds + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # expand attention_mask + if attention_mask is not None: + # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for encoder_layer in self.layers: + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + to_drop = False + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: # skip the layer + to_drop = True + + if to_drop: + layer_outputs = (None, None) + else: + # we add object_queries as extra input to the encoder_layer + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + object_queries=object_queries, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + hidden_states = self.layernorm(hidden_states) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +# Copied from transformers.models.detr.modeling_detr.DetrDecoder with DETR->TABLE_TRANSFORMER,Detr->TableTransformer +class TableTransformerDecoder(TableTransformerPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TableTransformerDecoderLayer`]. + + The decoder updates the query embeddings through multiple self-attention and cross-attention layers. + + Some small tweaks for TABLE_TRANSFORMER: + + - object_queries and query_position_embeddings are added to the forward pass. + - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers. + + Args: + config: TableTransformerConfig + """ + + def __init__(self, config: TableTransformerConfig): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + + self.layers = nn.ModuleList([TableTransformerDecoderLayer(config) for _ in range(config.decoder_layers)]) + # in TABLE_TRANSFORMER, the decoder uses layernorm after the last decoder layer output + self.layernorm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + inputs_embeds=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + object_queries=None, + query_position_embeddings=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + **kwargs, + ): + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + The query embeddings that are passed into the decoder. + + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`: + + - 1 for queries that are **not masked**, + - 0 for queries that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected + in `[0, 1]`: + + - 1 for pixels that are real (i.e. **not masked**), + - 0 for pixels that are padding (i.e. **masked**). + + object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Object queries that are added to the queries and keys in each cross-attention layer. + query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): + , *optional*): Position embeddings that are added to the values and keys in each self-attention layer. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if inputs_embeds is not None: + hidden_states = inputs_embeds + input_shape = inputs_embeds.size()[:-1] + + combined_attention_mask = None + + if attention_mask is not None and combined_attention_mask is not None: + # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] + combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask( + attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # optional intermediate hidden states + intermediate = () if self.config.auxiliary_loss else None + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + combined_attention_mask, + encoder_hidden_states, + encoder_attention_mask, + None, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + object_queries=object_queries, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if self.config.auxiliary_loss: + hidden_states = self.layernorm(hidden_states) + intermediate += (hidden_states,) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # finally, apply layernorm + hidden_states = self.layernorm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + # stack intermediate decoder activations + if self.config.auxiliary_loss: + intermediate = torch.stack(intermediate) + + if not return_dict: + return tuple( + v + for v in [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions, intermediate] + if v is not None + ) + return TableTransformerDecoderOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + intermediate_hidden_states=intermediate, + ) + + +@add_start_docstrings( + """ + The bare Table Transformer Model (consisting of a backbone and encoder-decoder Transformer) outputting raw + hidden-states without any specific head on top. + """, + TABLE_TRANSFORMER_START_DOCSTRING, +) +class TableTransformerModel(TableTransformerPreTrainedModel): + # Copied from transformers.models.detr.modeling_detr.DetrModel.__init__ with Detr->TableTransformer + def __init__(self, config: TableTransformerConfig): + super().__init__(config) + + # Create backbone + positional encoding + backbone = TableTransformerConvEncoder(config) + object_queries = build_position_encoding(config) + self.backbone = TableTransformerConvModel(backbone, object_queries) + + # Create projection layer + self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1) + + self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model) + + self.encoder = TableTransformerEncoder(config) + self.decoder = TableTransformerDecoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def freeze_backbone(self): + for name, param in self.backbone.conv_encoder.model.named_parameters(): + param.requires_grad_(False) + + def unfreeze_backbone(self): + for name, param in self.backbone.conv_encoder.model.named_parameters(): + param.requires_grad_(True) + + @add_start_docstrings_to_model_forward(TABLE_TRANSFORMER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TableTransformerModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + pixel_mask: Optional[torch.FloatTensor] = None, + decoder_attention_mask: Optional[torch.FloatTensor] = None, + encoder_outputs: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], TableTransformerModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, TableTransformerModel + >>> from huggingface_hub import hf_hub_download + >>> from PIL import Image + + >>> file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png") + >>> image = Image.open(file_path).convert("RGB") + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") + >>> model = TableTransformerModel.from_pretrained("microsoft/table-transformer-detection") + + >>> # prepare image for the model + >>> inputs = image_processor(images=image, return_tensors="pt") + + >>> # forward pass + >>> outputs = model(**inputs) + + >>> # the last hidden states are the final query embeddings of the Transformer decoder + >>> # these are of shape (batch_size, num_queries, hidden_size) + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 15, 256] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + batch_size, num_channels, height, width = pixel_values.shape + device = pixel_values.device + + if pixel_mask is None: + pixel_mask = torch.ones(((batch_size, height, width)), device=device) + + # First, sent pixel_values + pixel_mask through Backbone to obtain the features + # pixel_values should be of shape (batch_size, num_channels, height, width) + # pixel_mask should be of shape (batch_size, height, width) + features, position_embeddings_list = self.backbone(pixel_values, pixel_mask) + + # get final feature map and downsampled mask + feature_map, mask = features[-1] + + if mask is None: + raise ValueError("Backbone does not return downsampled pixel mask") + + # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) + projected_feature_map = self.input_projection(feature_map) + + # Third, flatten the feature map + object queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC + # In other words, turn their shape into (batch_size, sequence_length, hidden_size) + flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) + object_queries = position_embeddings_list[-1].flatten(2).permute(0, 2, 1) + + flattened_mask = mask.flatten(1) + + # Fourth, sent flattened_features + flattened_mask + object queries through encoder + # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) + # flattened_mask is a Tensor of shape (batch_size, heigth*width) + if encoder_outputs is None: + encoder_outputs = self.encoder( + inputs_embeds=flattened_features, + attention_mask=flattened_mask, + object_queries=object_queries, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # Fifth, sent query embeddings + object queries through the decoder (which is conditioned on the encoder output) + query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1) + queries = torch.zeros_like(query_position_embeddings) + + # decoder outputs consists of (dec_features, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + inputs_embeds=queries, + attention_mask=None, + object_queries=object_queries, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=flattened_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return TableTransformerModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + intermediate_hidden_states=decoder_outputs.intermediate_hidden_states, + ) + + +@add_start_docstrings( + """ + Table Transformer Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on + top, for tasks such as COCO detection. + """, + TABLE_TRANSFORMER_START_DOCSTRING, +) +class TableTransformerForObjectDetection(TableTransformerPreTrainedModel): + # Copied from transformers.models.detr.modeling_detr.DetrForObjectDetection.__init__ with Detr->TableTransformer + def __init__(self, config: TableTransformerConfig): + super().__init__(config) + + # DETR encoder-decoder model + self.model = TableTransformerModel(config) + + # Object detection heads + self.class_labels_classifier = nn.Linear( + config.d_model, config.num_labels + 1 + ) # We add one for the "no object" class + self.bbox_predictor = TableTransformerMLPPredictionHead( + input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3 + ) + + # Initialize weights and apply final processing + self.post_init() + + @torch.jit.unused + # Copied from transformers.models.detr.modeling_detr.DetrForObjectDetection._set_aux_loss + def _set_aux_loss(self, outputs_class, outputs_coord): + # this is a workaround to make torchscript happy, as torchscript + # doesn't support dictionary with non-homogeneous values, such + # as a dict having both a Tensor and a list. + return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] + + @add_start_docstrings_to_model_forward(TABLE_TRANSFORMER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TableTransformerObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + pixel_mask: Optional[torch.FloatTensor] = None, + decoder_attention_mask: Optional[torch.FloatTensor] = None, + encoder_outputs: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[List[Dict]] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], TableTransformerObjectDetectionOutput]: + r""" + labels (`List[Dict]` of len `(batch_size,)`, *optional*): + Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the + following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch + respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes + in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. + + Returns: + + Examples: + + ```python + >>> from huggingface_hub import hf_hub_download + >>> from transformers import AutoImageProcessor, TableTransformerForObjectDetection + >>> import torch + >>> from PIL import Image + + >>> file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png") + >>> image = Image.open(file_path).convert("RGB") + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") + >>> model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection") + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> outputs = model(**inputs) + + >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) + >>> target_sizes = torch.tensor([image.size[::-1]]) + >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[ + ... 0 + ... ] + + >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): + ... box = [round(i, 2) for i in box.tolist()] + ... print( + ... f"Detected {model.config.id2label[label.item()]} with confidence " + ... f"{round(score.item(), 3)} at location {box}" + ... ) + Detected table with confidence 1.0 at location [202.1, 210.59, 1119.22, 385.09] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # First, sent images through TABLE_TRANSFORMER base model to obtain encoder + decoder outputs + outputs = self.model( + pixel_values, + pixel_mask=pixel_mask, + decoder_attention_mask=decoder_attention_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + # class logits + predicted bounding boxes + logits = self.class_labels_classifier(sequence_output) + pred_boxes = self.bbox_predictor(sequence_output).sigmoid() + + loss, loss_dict, auxiliary_outputs = None, None, None + if labels is not None: + # First: create the matcher + matcher = TableTransformerHungarianMatcher( + class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost + ) + # Second: create the criterion + losses = ["labels", "boxes", "cardinality"] + criterion = TableTransformerLoss( + matcher=matcher, + num_classes=self.config.num_labels, + eos_coef=self.config.eos_coefficient, + losses=losses, + ) + criterion.to(self.device) + # Third: compute the losses, based on outputs and labels + outputs_loss = {} + outputs_loss["logits"] = logits + outputs_loss["pred_boxes"] = pred_boxes + if self.config.auxiliary_loss: + intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] + outputs_class = self.class_labels_classifier(intermediate) + outputs_coord = self.bbox_predictor(intermediate).sigmoid() + auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord) + outputs_loss["auxiliary_outputs"] = auxiliary_outputs + + loss_dict = criterion(outputs_loss, labels) + # Fourth: compute total loss, as a weighted sum of the various losses + weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} + weight_dict["loss_giou"] = self.config.giou_loss_coefficient + if self.config.auxiliary_loss: + aux_weight_dict = {} + for i in range(self.config.decoder_layers - 1): + aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) + weight_dict.update(aux_weight_dict) + loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) + + if not return_dict: + if auxiliary_outputs is not None: + output = (logits, pred_boxes) + auxiliary_outputs + outputs + else: + output = (logits, pred_boxes) + outputs + return ((loss, loss_dict) + output) if loss is not None else output + + return TableTransformerObjectDetectionOutput( + loss=loss, + loss_dict=loss_dict, + logits=logits, + pred_boxes=pred_boxes, + auxiliary_outputs=auxiliary_outputs, + last_hidden_state=outputs.last_hidden_state, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +# Copied from transformers.models.detr.modeling_detr.dice_loss +def dice_loss(inputs, targets, num_boxes): + """ + Compute the DICE loss, similar to generalized IOU for masks + + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs (0 for the negative class and 1 for the positive + class). + """ + inputs = inputs.sigmoid() + inputs = inputs.flatten(1) + numerator = 2 * (inputs * targets).sum(1) + denominator = inputs.sum(-1) + targets.sum(-1) + loss = 1 - (numerator + 1) / (denominator + 1) + return loss.sum() / num_boxes + + +# Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss +def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): + """ + Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. + + Args: + inputs (`torch.FloatTensor` of arbitrary shape): + The predictions for each example. + targets (`torch.FloatTensor` with the same shape as `inputs`) + A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class + and 1 for the positive class). + alpha (`float`, *optional*, defaults to `0.25`): + Optional weighting factor in the range (0,1) to balance positive vs. negative examples. + gamma (`int`, *optional*, defaults to `2`): + Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. + + Returns: + Loss tensor + """ + prob = inputs.sigmoid() + ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") + # add modulating factor + p_t = prob * targets + (1 - prob) * (1 - targets) + loss = ce_loss * ((1 - p_t) ** gamma) + + if alpha >= 0: + alpha_t = alpha * targets + (1 - alpha) * (1 - targets) + loss = alpha_t * loss + + return loss.mean(1).sum() / num_boxes + + +# Copied from transformers.models.detr.modeling_detr.DetrLoss with Detr->TableTransformer,detr->table_transformer +class TableTransformerLoss(nn.Module): + """ + This class computes the losses for TableTransformerForObjectDetection/TableTransformerForSegmentation. The process happens in two steps: 1) + we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair + of matched ground-truth / prediction (supervise class and box). + + A note on the `num_classes` argument (copied from original repo in table_transformer.py): "the naming of the `num_classes` + parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is + the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to + be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2 + (`max_obj_id` + 1). For more details on this, check the following discussion + https://github.com/facebookresearch/table_transformer/issues/108#issuecomment-650269223" + + + Args: + matcher (`TableTransformerHungarianMatcher`): + Module able to compute a matching between targets and proposals. + num_classes (`int`): + Number of object categories, omitting the special no-object category. + eos_coef (`float`): + Relative classification weight applied to the no-object category. + losses (`List[str]`): + List of all the losses to be applied. See `get_loss` for a list of all available losses. + """ + + def __init__(self, matcher, num_classes, eos_coef, losses): + super().__init__() + self.matcher = matcher + self.num_classes = num_classes + self.eos_coef = eos_coef + self.losses = losses + empty_weight = torch.ones(self.num_classes + 1) + empty_weight[-1] = self.eos_coef + self.register_buffer("empty_weight", empty_weight) + + # removed logging parameter, which was part of the original implementation + def loss_labels(self, outputs, targets, indices, num_boxes): + """ + Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim + [nb_target_boxes] + """ + if "logits" not in outputs: + raise KeyError("No logits were found in the outputs") + source_logits = outputs["logits"] + + idx = self._get_source_permutation_idx(indices) + target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) + target_classes = torch.full( + source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device + ) + target_classes[idx] = target_classes_o + + loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight) + losses = {"loss_ce": loss_ce} + + return losses + + @torch.no_grad() + def loss_cardinality(self, outputs, targets, indices, num_boxes): + """ + Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. + + This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. + """ + logits = outputs["logits"] + device = logits.device + target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) + # Count the number of predictions that are NOT "no-object" (which is the last class) + card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) + card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) + losses = {"cardinality_error": card_err} + return losses + + def loss_boxes(self, outputs, targets, indices, num_boxes): + """ + Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. + + Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes + are expected in format (center_x, center_y, w, h), normalized by the image size. + """ + if "pred_boxes" not in outputs: + raise KeyError("No predicted boxes found in outputs") + idx = self._get_source_permutation_idx(indices) + source_boxes = outputs["pred_boxes"][idx] + target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) + + loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") + + losses = {} + losses["loss_bbox"] = loss_bbox.sum() / num_boxes + + loss_giou = 1 - torch.diag( + generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) + ) + losses["loss_giou"] = loss_giou.sum() / num_boxes + return losses + + def loss_masks(self, outputs, targets, indices, num_boxes): + """ + Compute the losses related to the masks: the focal loss and the dice loss. + + Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. + """ + if "pred_masks" not in outputs: + raise KeyError("No predicted masks found in outputs") + + source_idx = self._get_source_permutation_idx(indices) + target_idx = self._get_target_permutation_idx(indices) + source_masks = outputs["pred_masks"] + source_masks = source_masks[source_idx] + masks = [t["masks"] for t in targets] + # TODO use valid to mask invalid areas due to padding in loss + target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() + target_masks = target_masks.to(source_masks) + target_masks = target_masks[target_idx] + + # upsample predictions to the target size + source_masks = nn.functional.interpolate( + source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False + ) + source_masks = source_masks[:, 0].flatten(1) + + target_masks = target_masks.flatten(1) + target_masks = target_masks.view(source_masks.shape) + losses = { + "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), + "loss_dice": dice_loss(source_masks, target_masks, num_boxes), + } + return losses + + def _get_source_permutation_idx(self, indices): + # permute predictions following indices + batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) + source_idx = torch.cat([source for (source, _) in indices]) + return batch_idx, source_idx + + def _get_target_permutation_idx(self, indices): + # permute targets following indices + batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) + target_idx = torch.cat([target for (_, target) in indices]) + return batch_idx, target_idx + + def get_loss(self, loss, outputs, targets, indices, num_boxes): + loss_map = { + "labels": self.loss_labels, + "cardinality": self.loss_cardinality, + "boxes": self.loss_boxes, + "masks": self.loss_masks, + } + if loss not in loss_map: + raise ValueError(f"Loss {loss} not supported") + return loss_map[loss](outputs, targets, indices, num_boxes) + + def forward(self, outputs, targets): + """ + This performs the loss computation. + + Args: + outputs (`dict`, *optional*): + Dictionary of tensors, see the output specification of the model for the format. + targets (`List[dict]`, *optional*): + List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the + losses applied, see each loss' doc. + """ + outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} + + # Retrieve the matching between the outputs of the last layer and the targets + indices = self.matcher(outputs_without_aux, targets) + + # Compute the average number of target boxes across all nodes, for normalization purposes + num_boxes = sum(len(t["class_labels"]) for t in targets) + num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) + world_size = 1 + if is_accelerate_available(): + if PartialState._shared_state != {}: + num_boxes = reduce(num_boxes) + world_size = PartialState().num_processes + num_boxes = torch.clamp(num_boxes / world_size, min=1).item() + + # Compute all the requested losses + losses = {} + for loss in self.losses: + losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) + + # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. + if "auxiliary_outputs" in outputs: + for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): + indices = self.matcher(auxiliary_outputs, targets) + for loss in self.losses: + if loss == "masks": + # Intermediate masks losses are too costly to compute, we ignore them. + continue + l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) + l_dict = {k + f"_{i}": v for k, v in l_dict.items()} + losses.update(l_dict) + + return losses + + +# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with Detr->TableTransformer,detr->table_transformer +class TableTransformerMLPPredictionHead(nn.Module): + """ + Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, + height and width of a bounding box w.r.t. an image. + + Copied from https://github.com/facebookresearch/table_transformer/blob/master/models/table_transformer.py + + """ + + def __init__(self, input_dim, hidden_dim, output_dim, num_layers): + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + return x + + +# Copied from transformers.models.detr.modeling_detr.DetrHungarianMatcher with Detr->TableTransformer +class TableTransformerHungarianMatcher(nn.Module): + """ + This class computes an assignment between the targets and the predictions of the network. + + For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more + predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are + un-matched (and thus treated as non-objects). + + Args: + class_cost: + The relative weight of the classification error in the matching cost. + bbox_cost: + The relative weight of the L1 error of the bounding box coordinates in the matching cost. + giou_cost: + The relative weight of the giou loss of the bounding box in the matching cost. + """ + + def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): + super().__init__() + requires_backends(self, ["scipy"]) + + self.class_cost = class_cost + self.bbox_cost = bbox_cost + self.giou_cost = giou_cost + if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: + raise ValueError("All costs of the Matcher can't be 0") + + @torch.no_grad() + def forward(self, outputs, targets): + """ + Args: + outputs (`dict`): + A dictionary that contains at least these entries: + * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits + * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. + targets (`List[dict]`): + A list of targets (len(targets) = batch_size), where each target is a dict containing: + * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of + ground-truth + objects in the target) containing the class labels + * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. + + Returns: + `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: + - index_i is the indices of the selected predictions (in order) + - index_j is the indices of the corresponding selected targets (in order) + For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) + """ + batch_size, num_queries = outputs["logits"].shape[:2] + + # We flatten to compute the cost matrices in a batch + out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes] + out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] + + # Also concat the target labels and boxes + target_ids = torch.cat([v["class_labels"] for v in targets]) + target_bbox = torch.cat([v["boxes"] for v in targets]) + + # Compute the classification cost. Contrary to the loss, we don't use the NLL, + # but approximate it in 1 - proba[target class]. + # The 1 is a constant that doesn't change the matching, it can be ommitted. + class_cost = -out_prob[:, target_ids] + + # Compute the L1 cost between boxes + bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) + + # Compute the giou cost between boxes + giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) + + # Final cost matrix + cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost + cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() + + sizes = [len(v["boxes"]) for v in targets] + indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] + return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] + + +# Copied from transformers.models.detr.modeling_detr._upcast +def _upcast(t: Tensor) -> Tensor: + # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type + if t.is_floating_point(): + return t if t.dtype in (torch.float32, torch.float64) else t.float() + else: + return t if t.dtype in (torch.int32, torch.int64) else t.int() + + +# Copied from transformers.models.detr.modeling_detr.box_area +def box_area(boxes: Tensor) -> Tensor: + """ + Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. + + Args: + boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): + Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 + < x2` and `0 <= y1 < y2`. + + Returns: + `torch.FloatTensor`: a tensor containing the area for each box. + """ + boxes = _upcast(boxes) + return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) + + +# Copied from transformers.models.detr.modeling_detr.box_iou +def box_iou(boxes1, boxes2): + area1 = box_area(boxes1) + area2 = box_area(boxes2) + + left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] + right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] + + width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] + inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] + + union = area1[:, None] + area2 - inter + + iou = inter / union + return iou, union + + +# Copied from transformers.models.detr.modeling_detr.generalized_box_iou +def generalized_box_iou(boxes1, boxes2): + """ + Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. + + Returns: + `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) + """ + # degenerate boxes gives inf / nan results + # so do an early check + if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): + raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") + if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): + raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") + iou, union = box_iou(boxes1, boxes2) + + top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) + bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) + + width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] + area = width_height[:, :, 0] * width_height[:, :, 1] + + return iou - (area - union) / area + + +# Copied from transformers.models.detr.modeling_detr._max_by_axis +def _max_by_axis(the_list): + # type: (List[List[int]]) -> List[int] + maxes = the_list[0] + for sublist in the_list[1:]: + for index, item in enumerate(sublist): + maxes[index] = max(maxes[index], item) + return maxes + + +# Copied from transformers.models.detr.modeling_detr.NestedTensor +class NestedTensor(object): + def __init__(self, tensors, mask: Optional[Tensor]): + self.tensors = tensors + self.mask = mask + + def to(self, device): + cast_tensor = self.tensors.to(device) + mask = self.mask + if mask is not None: + cast_mask = mask.to(device) + else: + cast_mask = None + return NestedTensor(cast_tensor, cast_mask) + + def decompose(self): + return self.tensors, self.mask + + def __repr__(self): + return str(self.tensors) + + +# Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list +def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): + if tensor_list[0].ndim == 3: + max_size = _max_by_axis([list(img.shape) for img in tensor_list]) + batch_shape = [len(tensor_list)] + max_size + batch_size, num_channels, height, width = batch_shape + dtype = tensor_list[0].dtype + device = tensor_list[0].device + tensor = torch.zeros(batch_shape, dtype=dtype, device=device) + mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) + for img, pad_img, m in zip(tensor_list, tensor, mask): + pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) + m[: img.shape[1], : img.shape[2]] = False + else: + raise ValueError("Only 3-dimensional tensors are supported") + return NestedTensor(tensor, mask) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f5e1d4568a66a4864af0d991f7ddf05cf5857bd0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__init__.py @@ -0,0 +1,142 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_xlnet"] = ["XLNetTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_xlnet_fast"] = ["XLNetTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_xlnet"] = [ + "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", + "XLNetForMultipleChoice", + "XLNetForQuestionAnswering", + "XLNetForQuestionAnsweringSimple", + "XLNetForSequenceClassification", + "XLNetForTokenClassification", + "XLNetLMHeadModel", + "XLNetModel", + "XLNetPreTrainedModel", + "load_tf_weights_in_xlnet", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_xlnet"] = [ + "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFXLNetForMultipleChoice", + "TFXLNetForQuestionAnsweringSimple", + "TFXLNetForSequenceClassification", + "TFXLNetForTokenClassification", + "TFXLNetLMHeadModel", + "TFXLNetMainLayer", + "TFXLNetModel", + "TFXLNetPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_xlnet import XLNetTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_xlnet_fast import XLNetTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_xlnet import ( + XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, + XLNetForMultipleChoice, + XLNetForQuestionAnswering, + XLNetForQuestionAnsweringSimple, + XLNetForSequenceClassification, + XLNetForTokenClassification, + XLNetLMHeadModel, + XLNetModel, + XLNetPreTrainedModel, + load_tf_weights_in_xlnet, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_xlnet import ( + TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, + TFXLNetForMultipleChoice, + TFXLNetForQuestionAnsweringSimple, + TFXLNetForSequenceClassification, + TFXLNetForTokenClassification, + TFXLNetLMHeadModel, + TFXLNetMainLayer, + TFXLNetModel, + TFXLNetPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40cc063e0188526a95ffe52298ff4fff3cf9b4a0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/configuration_xlnet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/configuration_xlnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5dee771568c6ae60ea12769100d7ca7960a8a1e8 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/configuration_xlnet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/convert_xlnet_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/convert_xlnet_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7fd6871b2f0a119689c070c00ef7ea85a76525ff Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/convert_xlnet_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_tf_xlnet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_tf_xlnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d748cc475eb56e00814030c1f958327448e1a90 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_tf_xlnet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_xlnet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_xlnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1865536ad3ca58d28e2508be528ae4b6f48c426f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/modeling_xlnet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ee3b31427a9021c9f7fb9941ee2b8e39a253e09 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50ea0cd0c6206bcc10a07a75f260ddfdd91f3fea Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/__pycache__/tokenization_xlnet_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/configuration_xlnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/configuration_xlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..f81c456b61df69163e0bd52d496e889a94e99bad --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/configuration_xlnet.py @@ -0,0 +1,240 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" XLNet configuration""" + +import warnings + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class XLNetConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`XLNetModel`] or a [`TFXLNetModel`]. It is used to + instantiate a XLNet model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the + [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the XLNet model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`XLNetModel`] or [`TFXLNetModel`]. + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the encoder layers and the pooler layer. + n_layer (`int`, *optional*, defaults to 24): + Number of hidden layers in the Transformer encoder. + n_head (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + d_inner (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + ff_activation (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the If string, `"gelu"`, `"relu"`, `"silu"` and + `"gelu_new"` are supported. + untie_r (`bool`, *optional*, defaults to `True`): + Whether or not to untie relative position biases + attn_type (`str`, *optional*, defaults to `"bi"`): + The attention type used by the model. Set `"bi"` for XLNet, `"uni"` for Transformer-XL. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + mem_len (`int` or `None`, *optional*): + The number of tokens to cache. The key/value pairs that have already been pre-computed in a previous + forward pass won't be re-computed. See the + [quickstart](https://huggingface.co/transformers/quickstart.html#using-the-past) for more information. + reuse_len (`int`, *optional*): + The number of tokens in the current batch to be cached and reused in the future. + bi_data (`bool`, *optional*, defaults to `False`): + Whether or not to use bidirectional input pipeline. Usually set to `True` during pretraining and `False` + during finetuning. + clamp_len (`int`, *optional*, defaults to -1): + Clamp all relative distances larger than clamp_len. Setting this attribute to -1 means no clamping. + same_length (`bool`, *optional*, defaults to `False`): + Whether or not to use the same attention length for each token. + summary_type (`str`, *optional*, defaults to "last"): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + Has to be one of the following options: + + - `"last"`: Take the last token hidden state (like XLNet). + - `"first"`: Take the first token hidden state (like BERT). + - `"mean"`: Take the mean of all tokens hidden states. + - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). + - `"attn"`: Not implemented now, use multi-head attention. + summary_use_proj (`bool`, *optional*, defaults to `True`): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + Whether or not to add a projection after the vector extraction. + summary_activation (`str`, *optional*): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. + summary_proj_to_labels (`boo`, *optional*, defaults to `True`): + Used in the sequence classification and multiple choice models. + + Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. + summary_last_dropout (`float`, *optional*, defaults to 0.1): + Used in the sequence classification and multiple choice models. + + The dropout ratio to be used after the projection and activation. + start_n_top (`int`, *optional*, defaults to 5): + Used in the SQuAD evaluation script. + end_n_top (`int`, *optional*, defaults to 5): + Used in the SQuAD evaluation script. + use_mems_eval (`bool`, *optional*, defaults to `True`): + Whether or not the model should make use of the recurrent memory mechanism in evaluation mode. + use_mems_train (`bool`, *optional*, defaults to `False`): + Whether or not the model should make use of the recurrent memory mechanism in train mode. + + + + For pretraining, it is recommended to set `use_mems_train` to `True`. For fine-tuning, it is recommended to + set `use_mems_train` to `False` as discussed + [here](https://github.com/zihangdai/xlnet/issues/41#issuecomment-505102587). If `use_mems_train` is set to + `True`, one has to make sure that the train batches are correctly pre-processed, *e.g.* `batch_1 = [[This + line is], [This is the]]` and `batch_2 = [[ the first line], [ second line]]` and that all batches are of + equal size. + + + + Examples: + + ```python + >>> from transformers import XLNetConfig, XLNetModel + + >>> # Initializing a XLNet configuration + >>> configuration = XLNetConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = XLNetModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "xlnet" + keys_to_ignore_at_inference = ["mems"] + attribute_map = { + "n_token": "vocab_size", # Backward compatibility + "hidden_size": "d_model", + "num_attention_heads": "n_head", + "num_hidden_layers": "n_layer", + } + + def __init__( + self, + vocab_size=32000, + d_model=1024, + n_layer=24, + n_head=16, + d_inner=4096, + ff_activation="gelu", + untie_r=True, + attn_type="bi", + initializer_range=0.02, + layer_norm_eps=1e-12, + dropout=0.1, + mem_len=512, + reuse_len=None, + use_mems_eval=True, + use_mems_train=False, + bi_data=False, + clamp_len=-1, + same_length=False, + summary_type="last", + summary_use_proj=True, + summary_activation="tanh", + summary_last_dropout=0.1, + start_n_top=5, + end_n_top=5, + pad_token_id=5, + bos_token_id=1, + eos_token_id=2, + **kwargs, + ): + """Constructs XLNetConfig.""" + self.vocab_size = vocab_size + self.d_model = d_model + self.n_layer = n_layer + self.n_head = n_head + if d_model % n_head != 0: + raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0") + if "d_head" in kwargs: + if kwargs["d_head"] != d_model // n_head: + raise ValueError( + f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" + ) + self.d_head = d_model // n_head + self.ff_activation = ff_activation + self.d_inner = d_inner + self.untie_r = untie_r + self.attn_type = attn_type + + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + + self.dropout = dropout + self.mem_len = mem_len + self.reuse_len = reuse_len + self.bi_data = bi_data + self.clamp_len = clamp_len + self.same_length = same_length + + self.summary_type = summary_type + self.summary_use_proj = summary_use_proj + self.summary_activation = summary_activation + self.summary_last_dropout = summary_last_dropout + self.start_n_top = start_n_top + self.end_n_top = end_n_top + + self.bos_token_id = bos_token_id + self.pad_token_id = pad_token_id + self.eos_token_id = eos_token_id + + if "use_cache" in kwargs: + warnings.warn( + "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" + " instead.", + FutureWarning, + ) + use_mems_eval = kwargs["use_cache"] + + self.use_mems_eval = use_mems_eval + self.use_mems_train = use_mems_train + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + @property + def max_position_embeddings(self): + logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") + return -1 + + @max_position_embeddings.setter + def max_position_embeddings(self, value): + # Message copied from Transformer-XL documentation + raise NotImplementedError( + f"The model {self.model_type} is one of the few models that has no sequence length limit." + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..804b52b0dc87924fa5ee3eda7aa56e875d075a22 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/convert_xlnet_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,114 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert BERT checkpoint.""" + + +import argparse +import os + +import torch + +from transformers import ( + XLNetConfig, + XLNetForQuestionAnswering, + XLNetForSequenceClassification, + XLNetLMHeadModel, + load_tf_weights_in_xlnet, +) +from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging + + +GLUE_TASKS_NUM_LABELS = { + "cola": 2, + "mnli": 3, + "mrpc": 2, + "sst-2": 2, + "sts-b": 1, + "qqp": 2, + "qnli": 2, + "rte": 2, + "wnli": 2, +} + + +logging.set_verbosity_info() + + +def convert_xlnet_checkpoint_to_pytorch( + tf_checkpoint_path, bert_config_file, pytorch_dump_folder_path, finetuning_task=None +): + # Initialise PyTorch model + config = XLNetConfig.from_json_file(bert_config_file) + + finetuning_task = finetuning_task.lower() if finetuning_task is not None else "" + if finetuning_task in GLUE_TASKS_NUM_LABELS: + print(f"Building PyTorch XLNetForSequenceClassification model from configuration: {config}") + config.finetuning_task = finetuning_task + config.num_labels = GLUE_TASKS_NUM_LABELS[finetuning_task] + model = XLNetForSequenceClassification(config) + elif "squad" in finetuning_task: + config.finetuning_task = finetuning_task + model = XLNetForQuestionAnswering(config) + else: + model = XLNetLMHeadModel(config) + + # Load weights from tf checkpoint + load_tf_weights_in_xlnet(model, config, tf_checkpoint_path) + + # Save pytorch-model + pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) + pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME) + print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}") + torch.save(model.state_dict(), pytorch_weights_dump_path) + print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}") + with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: + f.write(config.to_json_string()) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." + ) + parser.add_argument( + "--xlnet_config_file", + default=None, + type=str, + required=True, + help=( + "The config json file corresponding to the pre-trained XLNet model. \n" + "This specifies the model architecture." + ), + ) + parser.add_argument( + "--pytorch_dump_folder_path", + default=None, + type=str, + required=True, + help="Path to the folder to store the PyTorch model or dataset/vocab.", + ) + parser.add_argument( + "--finetuning_task", + default=None, + type=str, + help="Name of a task on which the XLNet TensorFlow model was fine-tuned", + ) + args = parser.parse_args() + print(args) + + convert_xlnet_checkpoint_to_pytorch( + args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/modeling_tf_xlnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/modeling_tf_xlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..188f5e39a2fba1a6238fbbf019338579cd68b676 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/modeling_tf_xlnet.py @@ -0,0 +1,1813 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + TF 2.0 XLNet model. +""" + + +from __future__ import annotations + +import warnings +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFSequenceSummary, + TFSharedEmbeddings, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_xlnet import XLNetConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "xlnet/xlnet-base-cased" +_CONFIG_FOR_DOC = "XLNetConfig" + + +from ..deprecated._archive_maps import TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class TFXLNetRelativeAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + if config.d_model % config.n_head != 0: + raise ValueError( + f"The hidden size ({config.d_model}) is not a multiple of the number of attention " + f"heads ({config.n_head}" + ) + + self.n_head = config.n_head + self.d_head = config.d_head + self.d_model = config.d_model + self.scale = 1 / (config.d_head**0.5) + self.initializer_range = config.initializer_range + self.output_attentions = config.output_attentions + + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.dropout = keras.layers.Dropout(config.dropout) + self.config = config + + def build(self, input_shape=None): + initializer = get_initializer(self.initializer_range) + self.q = self.add_weight( + shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="q" + ) + self.k = self.add_weight( + shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="k" + ) + self.v = self.add_weight( + shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="v" + ) + self.o = self.add_weight( + shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="o" + ) + self.r = self.add_weight( + shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="r" + ) + self.r_r_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" + ) + self.r_s_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_s_bias" + ) + self.r_w_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" + ) + self.seg_embed = self.add_weight( + shape=(2, self.n_head, self.d_head), initializer=initializer, trainable=True, name="seg_embed" + ) + + if self.built: + return + self.built = True + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + + def prune_heads(self, heads): + raise NotImplementedError + + def rel_shift(self, x, klen=-1): + """perform relative shift to form the relative attention score.""" + x_size = shape_list(x) + + x = tf.reshape(x, (x_size[1], x_size[0], x_size[2], x_size[3])) + x = x[1:, ...] + x = tf.reshape(x, (x_size[0], x_size[1] - 1, x_size[2], x_size[3])) + x = x[:, 0:klen, :, :] + # x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long)) + + return x + + def rel_attn_core( + self, q_head, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask, head_mask, output_attentions, training=False + ): + """Core relative positional attention operations.""" + # content based attention score + ac = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_w_bias, k_head_h) + + # position based attention score + bd = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_r_bias, k_head_r) + bd = self.rel_shift(bd, klen=shape_list(ac)[1]) + + # segment based attention score + if seg_mat is None: + ef = 0 + else: + ef = tf.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed) + ef = tf.einsum("ijbs,ibns->ijbn", seg_mat, ef) + + # merge attention scores and perform masking + attn_score = (ac + bd + ef) * self.scale + if attn_mask is not None: + # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask + if attn_mask.dtype == tf.float16 or attn_mask.dtype == tf.bfloat16: + attn_score = attn_score - 65500 * attn_mask + else: + attn_score = attn_score - 1e30 * attn_mask + + # attention probability + attn_prob = stable_softmax(attn_score, axis=1) + + attn_prob = self.dropout(attn_prob, training=training) + + # Mask heads if we want to + if head_mask is not None: + attn_prob = attn_prob * head_mask + + # attention output + attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h) + + if output_attentions: + return attn_vec, attn_prob + + return attn_vec + + def post_attention(self, h, attn_vec, residual=True, training=False): + """Post-attention processing.""" + # post-attention projection (back to `d_model`) + attn_out = tf.einsum("ibnd,hnd->ibh", attn_vec, self.o) + + attn_out = self.dropout(attn_out, training=training) + + if residual: + attn_out = attn_out + h + output = self.layer_norm(attn_out) + + return output + + def call( + self, + h, + g, + attn_mask_h, + attn_mask_g, + r, + seg_mat, + mems: np.ndarray | tf.Tensor | None = None, + target_mapping: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = False, + training: bool = False, + ): + if g is not None: + # Two-stream attention with relative positional encoding. + # content based attention score + if mems is not None and len(shape_list(mems)) > 1: + cat = tf.concat([mems, h], axis=0) + else: + cat = h + + # content-based key head + k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) + + # content-based value head + v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) + + # position-based key head + k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) + + # h-stream + # content-stream query head + q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) + + # core attention ops + attn_vec_h = self.rel_attn_core( + q_head_h, + k_head_h, + v_head_h, + k_head_r, + seg_mat, + attn_mask_h, + head_mask, + output_attentions, + training=training, + ) + + if output_attentions: + attn_vec_h, attn_prob_h = attn_vec_h + + # post processing + output_h = self.post_attention(h, attn_vec_h, training=training) + + # g-stream + # query-stream query head + q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.q) + + # core attention ops + if target_mapping is not None: + q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping) + attn_vec_g = self.rel_attn_core( + q_head_g, + k_head_h, + v_head_h, + k_head_r, + seg_mat, + attn_mask_g, + head_mask, + output_attentions, + training=training, + ) + + if output_attentions: + attn_vec_g, attn_prob_g = attn_vec_g + + attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping) + else: + attn_vec_g = self.rel_attn_core( + q_head_g, + k_head_h, + v_head_h, + k_head_r, + seg_mat, + attn_mask_g, + head_mask, + output_attentions, + training=training, + ) + + if output_attentions: + attn_vec_g, attn_prob_g = attn_vec_g + + # post processing + output_g = self.post_attention(g, attn_vec_g, training=training) + + if output_attentions: + attn_prob = attn_prob_h, attn_prob_g + + else: + # Multi-head attention with relative positional encoding + if mems is not None and len(shape_list(mems)) > 1: + cat = tf.concat([mems, h], axis=0) + else: + cat = h + + # content heads + q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) + k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) + v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) + + # positional heads + k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) + + # core attention ops + attn_vec = self.rel_attn_core( + q_head_h, + k_head_h, + v_head_h, + k_head_r, + seg_mat, + attn_mask_h, + head_mask, + output_attentions, + training=training, + ) + + if output_attentions: + attn_vec, attn_prob = attn_vec + + # post processing + output_h = self.post_attention(h, attn_vec, training=training) + output_g = None + + outputs = (output_h, output_g) + if output_attentions: + outputs = outputs + (attn_prob,) + return outputs + + +class TFXLNetFeedForward(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.layer_1 = keras.layers.Dense( + config.d_inner, kernel_initializer=get_initializer(config.initializer_range), name="layer_1" + ) + self.layer_2 = keras.layers.Dense( + config.d_model, kernel_initializer=get_initializer(config.initializer_range), name="layer_2" + ) + self.dropout = keras.layers.Dropout(config.dropout) + if isinstance(config.ff_activation, str): + self.activation_function = get_tf_activation(config.ff_activation) + else: + self.activation_function = config.ff_activation + self.config = config + + def call(self, inp, training=False): + output = inp + output = self.layer_1(output) + output = self.activation_function(output) + output = self.dropout(output, training=training) + output = self.layer_2(output) + output = self.dropout(output, training=training) + output = self.layer_norm(output + inp) + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + if getattr(self, "layer_1", None) is not None: + with tf.name_scope(self.layer_1.name): + self.layer_1.build([None, None, self.config.d_model]) + if getattr(self, "layer_2", None) is not None: + with tf.name_scope(self.layer_2.name): + self.layer_2.build([None, None, self.config.d_inner]) + + +class TFXLNetLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.rel_attn = TFXLNetRelativeAttention(config, name="rel_attn") + self.ff = TFXLNetFeedForward(config, name="ff") + self.dropout = keras.layers.Dropout(config.dropout) + + def call( + self, + output_h, + output_g, + non_tgt_mask, + attn_mask, + pos_emb, + seg_mat, + mems: np.ndarray | tf.Tensor | None = None, + target_mapping: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = False, + training: bool = False, + ): + outputs = self.rel_attn( + output_h, + output_g, + non_tgt_mask, + attn_mask, + pos_emb, + seg_mat, + mems, + target_mapping, + head_mask, + output_attentions, + training=training, + ) + output_h, output_g = outputs[:2] + + if output_g is not None: + output_g = self.ff(output_g, training=training) + output_h = self.ff(output_h, training=training) + + outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "rel_attn", None) is not None: + with tf.name_scope(self.rel_attn.name): + self.rel_attn.build(None) + if getattr(self, "ff", None) is not None: + with tf.name_scope(self.ff.name): + self.ff.build(None) + + +class TFXLNetLMHead(keras.layers.Layer): + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + self.config = config + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.input_embeddings = input_embeddings + + def build(self, input_shape): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + super().build(input_shape) + + def get_output_embeddings(self): + return self.input_embeddings + + def set_output_embeddings(self, value): + self.input_embeddings.weight = value + self.input_embeddings.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + hidden_states = self.input_embeddings(hidden_states, mode="linear") + hidden_states = hidden_states + self.bias + return hidden_states + + +@keras_serializable +class TFXLNetMainLayer(keras.layers.Layer): + config_class = XLNetConfig + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.output_hidden_states = config.output_hidden_states + self.output_attentions = config.output_attentions + self.return_dict = config.return_dict + + self.mem_len = config.mem_len + self.reuse_len = config.reuse_len + self.d_model = config.d_model + self.same_length = config.same_length + self.attn_type = config.attn_type + self.bi_data = config.bi_data + self.clamp_len = config.clamp_len + self.n_layer = config.n_layer + self.use_bfloat16 = config.use_bfloat16 + self.initializer_range = config.initializer_range + + self.word_embedding = TFSharedEmbeddings( + config.vocab_size, config.d_model, initializer_range=config.initializer_range, name="word_embedding" + ) + self.layer = [TFXLNetLayer(config, name=f"layer_._{i}") for i in range(config.n_layer)] + self.dropout = keras.layers.Dropout(config.dropout) + + self.use_mems_eval = config.use_mems_eval + self.use_mems_train = config.use_mems_train + + def get_input_embeddings(self): + return self.word_embedding + + def set_input_embeddings(self, value): + self.word_embedding.weight = value + self.word_embedding.vocab_size = shape_list(value)[0] + + def build(self, input_shape=None): + initializer = get_initializer(self.initializer_range) + self.mask_emb = self.add_weight( + shape=(1, 1, self.d_model), initializer=initializer, trainable=True, name="mask_emb" + ) + + if self.built: + return + self.built = True + if getattr(self, "word_embedding", None) is not None: + with tf.name_scope(self.word_embedding.name): + self.word_embedding.build(None) + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError + + def create_mask(self, qlen, mlen): + """ + Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked. + + Args: + qlen: TODO Lysandre didn't fill + mlen: TODO Lysandre didn't fill + + ``` + + same_length=False: same_length=True: + < qlen > < qlen > + ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1] + [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1] + qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1] + [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1] + v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0] + ``` + """ + attn_mask = tf.ones([qlen, qlen]) + mask_u = tf.linalg.band_part(attn_mask, 0, -1) + mask_dia = tf.linalg.band_part(attn_mask, 0, 0) + attn_mask_pad = tf.zeros([qlen, mlen]) + ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1) + if self.same_length: + mask_l = tf.linalg.band_part(attn_mask, -1, 0) + ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1) + return ret + + def cache_mem(self, curr_out, prev_mem): + # cache hidden states into memory. + if self.reuse_len is not None and self.reuse_len > 0: + curr_out = curr_out[: self.reuse_len] + + if self.mem_len is None or self.mem_len == 0: + # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time + # and returns all of the past and current hidden states. + cutoff = 0 + else: + # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden + # states. This is the preferred setting for training and long-form generation. + cutoff = -self.mem_len + if prev_mem is None: + # if `use_mems` is active and `mem_len` is defined, the model + new_mem = curr_out[cutoff:] + else: + new_mem = tf.concat([prev_mem, curr_out], 0)[cutoff:] + + return tf.stop_gradient(new_mem) + + @staticmethod + def positional_embedding(pos_seq, inv_freq, bsz=None): + sinusoid_inp = tf.einsum("i,d->id", pos_seq, inv_freq) + pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], axis=-1) + pos_emb = pos_emb[:, None, :] + + if bsz is not None: + pos_emb = tf.tile(pos_emb, [1, bsz, 1]) + + return pos_emb + + def relative_positional_encoding(self, qlen, klen, bsz=None): + """create relative positional encoding.""" + freq_seq = tf.range(0, self.d_model, 2.0) + inv_freq = 1 / (10000 ** (freq_seq / self.d_model)) + + if self.attn_type == "bi": + # beg, end = klen - 1, -qlen + beg, end = klen, -qlen + elif self.attn_type == "uni": + # beg, end = klen - 1, -1 + beg, end = klen, -1 + else: + raise ValueError(f"Unknown `attn_type` {self.attn_type}.") + + if self.bi_data: + fwd_pos_seq = tf.range(beg, end, -1.0) + bwd_pos_seq = tf.range(-beg, -end, 1.0) + + if self.clamp_len > 0: + fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) + bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len, self.clamp_len) + + if bsz is not None: + if bsz % 2 != 0: + raise ValueError(f"With bi_data, the batch size {bsz} should be divisible by 2") + fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) + bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) + else: + fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) + bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) + + pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1) + else: + fwd_pos_seq = tf.range(beg, end, -1.0) + if self.clamp_len > 0: + fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) + pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) + + return pos_emb + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + mems: np.ndarray | tf.Tensor | None = None, + perm_mask: np.ndarray | tf.Tensor | None = None, + target_mapping: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + input_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ): + if training and use_mems is None: + use_mems = self.use_mems_train + else: + use_mems = self.use_mems_eval + + # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end + # but we want a unified interface in the library with the batch size on the first dimension + # so we move here the first dimension (batch) to the end + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_ids = tf.transpose(input_ids, perm=(1, 0)) + qlen, bsz = shape_list(input_ids)[:2] + elif inputs_embeds is not None: + inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) + qlen, bsz = shape_list(inputs_embeds)[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + token_type_ids = tf.transpose(token_type_ids, perm=(1, 0)) if token_type_ids is not None else None + input_mask = tf.transpose(input_mask, perm=(1, 0)) if input_mask is not None else None + attention_mask = tf.transpose(attention_mask, perm=(1, 0)) if attention_mask is not None else None + perm_mask = tf.transpose(perm_mask, perm=(1, 2, 0)) if perm_mask is not None else None + target_mapping = tf.transpose(target_mapping, perm=(1, 2, 0)) if target_mapping is not None else None + + mlen = shape_list(mems[0])[0] if mems is not None and mems[0] is not None else 0 + klen = mlen + qlen + + # Attention mask + # causal attention mask + if self.attn_type == "uni": + attn_mask = self.create_mask(qlen, mlen) + attn_mask = attn_mask[:, :, None, None] + elif self.attn_type == "bi": + attn_mask = None + else: + raise ValueError(f"Unsupported attention type: {self.attn_type}") + + # data mask: input mask & perm mask + assert input_mask is None or attention_mask is None, ( + "You can only use one of input_mask (uses 1 for padding) " + "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one." + ) + if input_mask is None and attention_mask is not None: + one_cst = tf.constant(1.0) + input_mask = 1.0 - tf.cast(attention_mask, dtype=one_cst.dtype) + if input_mask is not None and perm_mask is not None: + data_mask = input_mask[None] + perm_mask + elif input_mask is not None and perm_mask is None: + data_mask = input_mask[None] + elif input_mask is None and perm_mask is not None: + data_mask = perm_mask + else: + data_mask = None + + if data_mask is not None: + # all mems can be attended to + if mlen > 0: + mems_mask = tf.zeros([shape_list(data_mask)[0], mlen, bsz]) + data_mask = tf.concat([mems_mask, data_mask], axis=1) + if attn_mask is None: + attn_mask = data_mask[:, :, :, None] + else: + attn_mask += data_mask[:, :, :, None] + + if attn_mask is not None: + attn_mask = tf.cast(attn_mask > 0, dtype=attn_mask.dtype) + + if attn_mask is not None: + non_tgt_mask = -tf.eye(qlen) + if mlen > 0: + non_tgt_mask = tf.concat([tf.zeros([qlen, mlen]), non_tgt_mask], axis=-1) + non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=non_tgt_mask.dtype) + else: + non_tgt_mask = None + + # Word embeddings and prepare h & g hidden states + if inputs_embeds is not None: + word_emb_k = inputs_embeds + else: + check_embeddings_within_bounds(input_ids, self.word_embedding.vocab_size) + word_emb_k = self.word_embedding(input_ids) + output_h = self.dropout(word_emb_k, training=training) + if target_mapping is not None: + word_emb_q = tf.tile(self.mask_emb, [shape_list(target_mapping)[0], bsz, 1]) + # else: # We removed the inp_q input which was same as target mapping + # inp_q_ext = inp_q[:, :, None] + # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k + output_g = self.dropout(word_emb_q, training=training) + else: + output_g = None + + # Segment embedding + if token_type_ids is not None: + # Convert `token_type_ids` to one-hot `seg_mat` + if mlen > 0: + mem_pad = tf.zeros([mlen, bsz], dtype=token_type_ids.dtype) + cat_ids = tf.concat([mem_pad, token_type_ids], 0) + else: + cat_ids = token_type_ids + + # `1` indicates not in the same segment [qlen x klen x bsz] + seg_mat = tf.cast( + tf.logical_not(tf.equal(token_type_ids[:, None], cat_ids[None, :])), + dtype=token_type_ids.dtype, + ) + seg_mat = tf.one_hot(seg_mat, 2) + else: + seg_mat = None + + # Positional encoding + pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz) + pos_emb = self.dropout(pos_emb, training=training) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) + # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.n_layer + + new_mems = () + if mems is None: + mems = [None] * len(self.layer) + + attentions = [] if output_attentions else None + hidden_states = [] if output_hidden_states else None + for i, layer_module in enumerate(self.layer): + # cache new mems + if use_mems: + new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) + if output_hidden_states: + hidden_states.append((output_h, output_g) if output_g is not None else output_h) + + outputs = layer_module( + output_h, + output_g, + non_tgt_mask, + attn_mask, + pos_emb, + seg_mat, + mems[i], + target_mapping, + head_mask[i], + output_attentions, + training=training, + ) + output_h, output_g = outputs[:2] + if output_attentions: + attentions.append(outputs[2]) + + # Add last hidden state + if output_hidden_states: + hidden_states.append((output_h, output_g) if output_g is not None else output_h) + + output = self.dropout(output_g if output_g is not None else output_h, training=training) + + # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method) + output = tf.transpose(output, perm=(1, 0, 2)) + + if not use_mems: + new_mems = None + if output_hidden_states: + if output_g is not None: + hidden_states = tuple(tf.transpose(h, perm=(1, 0, 2)) for hs in hidden_states for h in hs) + else: + hidden_states = tuple(tf.transpose(hs, perm=(1, 0, 2)) for hs in hidden_states) + if output_attentions: + if target_mapping is not None: + # when target_mapping is provided, there are 2-tuple of attentions + attentions = tuple( + tuple(tf.transpose(attn_stream, perm=(2, 3, 0, 1)) for attn_stream in t) for t in attentions + ) + else: + attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) + + if not return_dict: + return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None) + + return TFXLNetModelOutput( + last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions + ) + + +class TFXLNetPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = XLNetConfig + base_model_prefix = "transformer" + + +@dataclass +class TFXLNetModelOutput(ModelOutput): + """ + Output type of [`TFXLNetModel`]. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, num_predict, hidden_size)`): + Sequence of hidden-states at the last layer of the model. + + `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` + corresponds to `sequence_length`. + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + last_hidden_state: tf.Tensor = None + mems: List[tf.Tensor] | None = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFXLNetLMHeadModelOutput(ModelOutput): + """ + Output type of [`TFXLNetLMHeadModel`]. + + Args: + loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided) + Language modeling loss (for next-token prediction). + logits (`tf.Tensor` of shape `(batch_size, num_predict, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + + `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` + corresponds to `sequence_length`. + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + mems: List[tf.Tensor] | None = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFXLNetForSequenceClassificationOutput(ModelOutput): + """ + Output type of [`TFXLNetForSequenceClassification`]. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `label` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + mems: List[tf.Tensor] | None = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFXLNetForTokenClassificationOutput(ModelOutput): + """ + Output type of [`TFXLNetForTokenClassificationOutput`]. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : + Classification loss. + logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`): + Classification scores (before SoftMax). + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + mems: List[tf.Tensor] | None = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFXLNetForMultipleChoiceOutput(ModelOutput): + """ + Output type of [`TFXLNetForMultipleChoice`]. + + Args: + loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided): + Classification loss. + logits (`tf.Tensor` of shape `(batch_size, num_choices)`): + *num_choices* is the second dimension of the input tensors. (see *input_ids* above). + + Classification scores (before SoftMax). + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + mems: List[tf.Tensor] | None = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFXLNetForQuestionAnsweringSimpleOutput(ModelOutput): + """ + Output type of [`TFXLNetForQuestionAnsweringSimple`]. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): + Span-start scores (before SoftMax). + end_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): + Span-end scores (before SoftMax). + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor | None = None + start_logits: tf.Tensor = None + end_logits: tf.Tensor = None + mems: List[tf.Tensor] | None = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + + +XLNET_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`XLNetConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +XLNET_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential + decoding. The token ids which have their past given to this model should not be passed as `input_ids` as + they have already been computed. + + `use_mems` has to be set to `True` to make use of `mems`. + perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*): + Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`: + + - if `perm_mask[k, i, j] = 0`, i attend to j in batch k; + - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k. + + If not set, each token attends to all the others (full bidirectional attention). Only used during + pretraining (to define factorization order) or for sequential decoding (generation). + target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*): + Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is + on the j-th token. Only used during pretraining for partial prediction or for sequential decoding + (generation). + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + input_mask (`torch.FloatTensor` of shape `{0}`, *optional*): + Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for + real tokens and 1 for padding which is kept for compatibility with the original code base. + + Mask values selected in `[0, 1]`: + + - 1 for tokens that are **masked**, + - 0 for tokens that are **not masked**. + + You can only uses one of `input_mask` and `attention_mask`. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.", + XLNET_START_DOCSTRING, +) +class TFXLNetModel(TFXLNetPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.transformer = TFXLNetMainLayer(config, name="transformer") + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFXLNetModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + mems: np.ndarray | tf.Tensor | None = None, + perm_mask: np.ndarray | tf.Tensor | None = None, + target_mapping: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + input_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFXLNetModelOutput, Tuple[tf.Tensor]]: + outputs = self.transformer( + input_ids=input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + + +@add_start_docstrings( + """ + XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings). + """, + XLNET_START_DOCSTRING, +) +class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.transformer = TFXLNetMainLayer(config, name="transformer") + self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name="lm_loss") + # generate fails to convert to a graph with XLNet + self.supports_xla_generation = False + + def get_lm_head(self): + return self.lm_loss + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.lm_loss.name + + def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_mems=None, **kwargs): + # Add dummy token at the end (no attention on this one) + effective_batch_size = inputs.shape[0] + dummy_token = tf.zeros((effective_batch_size, 1), dtype=inputs.dtype) + + # At every pass, the attention values for the new token and the two last generated tokens + # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have + # offset = 1; offset = 2 seems to have slightly better computation. + offset = 2 + + if past_key_values: + input_ids = tf.concat([inputs[:, -offset:], dummy_token], axis=1) + else: + input_ids = tf.concat([inputs, dummy_token], axis=1) + + # Build permutation mask so that previous tokens don't see last token + sequence_length = input_ids.shape[1] + perm_mask = tf.zeros((effective_batch_size, sequence_length, sequence_length - 1)) + perm_mask_seq_end = tf.ones((effective_batch_size, sequence_length, 1)) + perm_mask = tf.concat([perm_mask, perm_mask_seq_end], axis=-1) + + # We'll only predict the last token + target_mapping = tf.zeros((effective_batch_size, 1, sequence_length - 1)) + target_mapping_seq_end = tf.ones((effective_batch_size, 1, 1)) + target_mapping = tf.concat([target_mapping, target_mapping_seq_end], axis=-1) + + inputs = { + "input_ids": input_ids, + "perm_mask": perm_mask, + "target_mapping": target_mapping, + "use_mems": use_mems, + } + + # if past is defined in model kwargs then use it for faster decoding + if past_key_values: + inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values) + + return inputs + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFXLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + mems: np.ndarray | tf.Tensor | None = None, + perm_mask: np.ndarray | tf.Tensor | None = None, + target_mapping: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + input_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[TFXLNetLMHeadModelOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., + config.vocab_size - 1]`. + + Return: + + Examples: + + ```python + >>> import tensorflow as tf + >>> import numpy as np + >>> from transformers import AutoTokenizer, TFXLNetLMHeadModel + + >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased") + >>> model = TFXLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased") + + >>> # We show how to setup inputs to predict a next token using a bi-directional context. + >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very ", add_special_tokens=True))[ + ... None, : + ... ] # We will predict the masked token + + >>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1])) + >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token + + >>> target_mapping = np.zeros( + ... (1, 1, input_ids.shape[1]) + ... ) # Shape [1, 1, seq_length] => let's predict one token + >>> target_mapping[ + ... 0, 0, -1 + ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) + + >>> outputs = model( + ... input_ids, + ... perm_mask=tf.constant(perm_mask, dtype=tf.float32), + ... target_mapping=tf.constant(target_mapping, dtype=tf.float32), + ... ) + + >>> next_token_logits = outputs[ + ... 0 + ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] + ```""" + transformer_outputs = self.transformer( + input_ids=input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + hidden_state = transformer_outputs[0] + logits = self.lm_loss(hidden_state, training=training) + + loss = None + if labels is not None: + loss = self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFXLNetLMHeadModelOutput( + loss=loss, + logits=logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + if getattr(self, "lm_loss", None) is not None: + with tf.name_scope(self.lm_loss.name): + self.lm_loss.build(None) + + +@add_start_docstrings( + """ + XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. + for GLUE tasks. + """, + XLNET_START_DOCSTRING, +) +class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.transformer = TFXLNetMainLayer(config, name="transformer") + self.sequence_summary = TFSequenceSummary( + config, initializer_range=config.initializer_range, name="sequence_summary" + ) + self.logits_proj = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFXLNetForSequenceClassificationOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + mems: np.ndarray | tf.Tensor | None = None, + perm_mask: np.ndarray | tf.Tensor | None = None, + target_mapping: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + input_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[TFXLNetForSequenceClassificationOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + transformer_outputs = self.transformer( + input_ids=input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + output = transformer_outputs[0] + + output = self.sequence_summary(output) + logits = self.logits_proj(output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFXLNetForSequenceClassificationOutput( + loss=loss, + logits=logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + if getattr(self, "sequence_summary", None) is not None: + with tf.name_scope(self.sequence_summary.name): + self.sequence_summary.build(None) + if getattr(self, "logits_proj", None) is not None: + with tf.name_scope(self.logits_proj.name): + self.logits_proj.build([None, None, self.config.d_model]) + + +@add_start_docstrings( + """ + XLNET Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + XLNET_START_DOCSTRING, +) +class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.transformer = TFXLNetMainLayer(config, name="transformer") + self.sequence_summary = TFSequenceSummary( + config, initializer_range=config.initializer_range, name="sequence_summary" + ) + self.logits_proj = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFXLNetForMultipleChoiceOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + input_mask: np.ndarray | tf.Tensor | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + mems: np.ndarray | tf.Tensor | None = None, + perm_mask: np.ndarray | tf.Tensor | None = None, + target_mapping: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[TFXLNetForMultipleChoiceOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_input_mask = tf.reshape(input_mask, (-1, seq_length)) if input_mask is not None else None + flat_inputs_embeds = ( + tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + transformer_outputs = self.transformer( + flat_input_ids, + flat_attention_mask, + mems, + perm_mask, + target_mapping, + flat_token_type_ids, + flat_input_mask, + head_mask, + flat_inputs_embeds, + use_mems, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + output = transformer_outputs[0] + logits = self.sequence_summary(output) + logits = self.logits_proj(logits) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFXLNetForMultipleChoiceOutput( + loss=loss, + logits=reshaped_logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + if getattr(self, "sequence_summary", None) is not None: + with tf.name_scope(self.sequence_summary.name): + self.sequence_summary.build(None) + if getattr(self, "logits_proj", None) is not None: + with tf.name_scope(self.logits_proj.name): + self.logits_proj.build([None, None, self.config.d_model]) + + +@add_start_docstrings( + """ + XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + XLNET_START_DOCSTRING, +) +class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificationLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.transformer = TFXLNetMainLayer(config, name="transformer") + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFXLNetForTokenClassificationOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + mems: np.ndarray | tf.Tensor | None = None, + perm_mask: np.ndarray | tf.Tensor | None = None, + target_mapping: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + input_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[TFXLNetForTokenClassificationOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + + transformer_outputs = self.transformer( + input_ids=input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + output = transformer_outputs[0] + logits = self.classifier(output) + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFXLNetForTokenClassificationOutput( + loss=loss, + logits=logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + XLNET_START_DOCSTRING, +) +class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnsweringLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.transformer = TFXLNetMainLayer(config, name="transformer") + self.qa_outputs = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFXLNetForQuestionAnsweringSimpleOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + mems: np.ndarray | tf.Tensor | None = None, + perm_mask: np.ndarray | tf.Tensor | None = None, + target_mapping: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + input_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> Union[TFXLNetForQuestionAnsweringSimpleOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + transformer_outputs = self.transformer( + input_ids=input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = transformer_outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + + loss = None + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFXLNetForQuestionAnsweringSimpleOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "transformer", None) is not None: + with tf.name_scope(self.transformer.name): + self.transformer.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/modeling_xlnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/modeling_xlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..78ca545751a4afef20d5c08be32329d84c206e06 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/modeling_xlnet.py @@ -0,0 +1,2083 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + PyTorch XLNet model. +""" +import warnings +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_utils import PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits, PreTrainedModel, SequenceSummary +from ...pytorch_utils import apply_chunking_to_forward +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_xlnet import XLNetConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "xlnet/xlnet-base-cased" +_CONFIG_FOR_DOC = "XLNetConfig" + + +from ..deprecated._archive_maps import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None): + """ + A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch + model as possible. + """ + + tf_to_pt_map = {} + + if hasattr(model, "transformer"): + if hasattr(model, "lm_loss"): + # We will load also the output bias + tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias + if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights: + # We will load also the sequence summary + tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight + tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias + if ( + hasattr(model, "logits_proj") + and config.finetuning_task is not None + and f"model/regression_{config.finetuning_task}/logit/kernel" in tf_weights + ): + tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/kernel"] = model.logits_proj.weight + tf_to_pt_map[f"model/regression_{config.finetuning_task}/logit/bias"] = model.logits_proj.bias + + # Now load the rest of the transformer + model = model.transformer + + # Embeddings and output + tf_to_pt_map.update( + { + "model/transformer/word_embedding/lookup_table": model.word_embedding.weight, + "model/transformer/mask_emb/mask_emb": model.mask_emb, + } + ) + + # Transformer blocks + for i, b in enumerate(model.layer): + layer_str = f"model/transformer/layer_{i}/" + tf_to_pt_map.update( + { + layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight, + layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias, + layer_str + "rel_attn/o/kernel": b.rel_attn.o, + layer_str + "rel_attn/q/kernel": b.rel_attn.q, + layer_str + "rel_attn/k/kernel": b.rel_attn.k, + layer_str + "rel_attn/r/kernel": b.rel_attn.r, + layer_str + "rel_attn/v/kernel": b.rel_attn.v, + layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight, + layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias, + layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight, + layer_str + "ff/layer_1/bias": b.ff.layer_1.bias, + layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight, + layer_str + "ff/layer_2/bias": b.ff.layer_2.bias, + } + ) + + # Relative positioning biases + if config.untie_r: + r_r_list = [] + r_w_list = [] + r_s_list = [] + seg_embed_list = [] + for b in model.layer: + r_r_list.append(b.rel_attn.r_r_bias) + r_w_list.append(b.rel_attn.r_w_bias) + r_s_list.append(b.rel_attn.r_s_bias) + seg_embed_list.append(b.rel_attn.seg_embed) + else: + r_r_list = [model.r_r_bias] + r_w_list = [model.r_w_bias] + r_s_list = [model.r_s_bias] + seg_embed_list = [model.seg_embed] + tf_to_pt_map.update( + { + "model/transformer/r_r_bias": r_r_list, + "model/transformer/r_w_bias": r_w_list, + "model/transformer/r_s_bias": r_s_list, + "model/transformer/seg_embed": seg_embed_list, + } + ) + return tf_to_pt_map + + +def load_tf_weights_in_xlnet(model, config, tf_path): + """Load tf checkpoints in a pytorch model""" + try: + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + tf_weights = {} + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + tf_weights[name] = array + + # Build TF to PyTorch weights loading map + tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights) + + for name, pointer in tf_to_pt_map.items(): + logger.info(f"Importing {name}") + if name not in tf_weights: + logger.info(f"{name} not in tf pre-trained weights, skipping") + continue + array = tf_weights[name] + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if "kernel" in name and ("ff" in name or "summary" in name or "logit" in name): + logger.info("Transposing") + array = np.transpose(array) + if isinstance(pointer, list): + # Here we will split the TF weights + assert ( + len(pointer) == array.shape[0] + ), f"Pointer length {len(pointer)} and array length {array.shape[0]} mismatched" + for i, p_i in enumerate(pointer): + arr_i = array[i, ...] + try: + assert ( + p_i.shape == arr_i.shape + ), f"Pointer shape {p_i.shape} and array shape {arr_i.shape} mismatched" + except AssertionError as e: + e.args += (p_i.shape, arr_i.shape) + raise + logger.info(f"Initialize PyTorch weight {name} for layer {i}") + p_i.data = torch.from_numpy(arr_i) + else: + try: + assert ( + pointer.shape == array.shape + ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + tf_weights.pop(name, None) + tf_weights.pop(name + "/Adam", None) + tf_weights.pop(name + "/Adam_1", None) + + logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") + return model + + +class XLNetRelativeAttention(nn.Module): + def __init__(self, config): + super().__init__() + + if config.d_model % config.n_head != 0: + raise ValueError( + f"The hidden size ({config.d_model}) is not a multiple of the number of attention " + f"heads ({config.n_head}" + ) + + self.n_head = config.n_head + self.d_head = config.d_head + self.d_model = config.d_model + self.scale = 1 / (config.d_head**0.5) + + self.q = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) + self.k = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) + self.v = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) + self.o = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) + self.r = nn.Parameter(torch.FloatTensor(config.d_model, self.n_head, self.d_head)) + + self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + self.r_s_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + self.seg_embed = nn.Parameter(torch.FloatTensor(2, self.n_head, self.d_head)) + + self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.dropout) + + def prune_heads(self, heads): + raise NotImplementedError + + @staticmethod + def rel_shift(x, klen=-1): + """perform relative shift to form the relative attention score.""" + x_size = x.shape + + x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3]) + x = x[1:, ...] + x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3]) + # x = x[:, 0:klen, :, :] + x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long)) + + return x + + @staticmethod + def rel_shift_bnij(x, klen=-1): + x_size = x.shape + + x = x.reshape(x_size[0], x_size[1], x_size[3], x_size[2]) + x = x[:, :, 1:, :] + x = x.reshape(x_size[0], x_size[1], x_size[2], x_size[3] - 1) + # Note: the tensor-slice form was faster in my testing than torch.index_select + # However, tracing doesn't like the nature of the slice, and if klen changes + # during the run then it'll fail, whereas index_select will be fine. + x = torch.index_select(x, 3, torch.arange(klen, device=x.device, dtype=torch.long)) + # x = x[:, :, :, :klen] + + return x + + def rel_attn_core( + self, + q_head, + k_head_h, + v_head_h, + k_head_r, + seg_mat=None, + attn_mask=None, + head_mask=None, + output_attentions=False, + ): + """Core relative positional attention operations.""" + + # content based attention score + ac = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_w_bias, k_head_h) + + # position based attention score + bd = torch.einsum("ibnd,jbnd->bnij", q_head + self.r_r_bias, k_head_r) + bd = self.rel_shift_bnij(bd, klen=ac.shape[3]) + + # segment based attention score + if seg_mat is None: + ef = 0 + else: + ef = torch.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed) + ef = torch.einsum("ijbs,ibns->bnij", seg_mat, ef) + + # merge attention scores and perform masking + attn_score = (ac + bd + ef) * self.scale + if attn_mask is not None: + # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask + if attn_mask.dtype == torch.float16: + attn_score = attn_score - 65500 * torch.einsum("ijbn->bnij", attn_mask) + else: + attn_score = attn_score - 1e30 * torch.einsum("ijbn->bnij", attn_mask) + + # attention probability + attn_prob = nn.functional.softmax(attn_score, dim=3) + attn_prob = self.dropout(attn_prob) + + # Mask heads if we want to + if head_mask is not None: + attn_prob = attn_prob * torch.einsum("ijbn->bnij", head_mask) + + # attention output + attn_vec = torch.einsum("bnij,jbnd->ibnd", attn_prob, v_head_h) + + if output_attentions: + return attn_vec, torch.einsum("bnij->ijbn", attn_prob) + + return attn_vec + + def post_attention(self, h, attn_vec, residual=True): + """Post-attention processing.""" + # post-attention projection (back to `d_model`) + attn_out = torch.einsum("ibnd,hnd->ibh", attn_vec, self.o) + + attn_out = self.dropout(attn_out) + if residual: + attn_out = attn_out + h + output = self.layer_norm(attn_out) + + return output + + def forward( + self, + h, + g, + attn_mask_h, + attn_mask_g, + r, + seg_mat, + mems=None, + target_mapping=None, + head_mask=None, + output_attentions=False, + ): + if g is not None: + # Two-stream attention with relative positional encoding. + # content based attention score + if mems is not None and mems.dim() > 1: + cat = torch.cat([mems, h], dim=0) + else: + cat = h + + # content-based key head + k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k) + + # content-based value head + v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v) + + # position-based key head + k_head_r = torch.einsum("ibh,hnd->ibnd", r, self.r) + + # h-stream + # content-stream query head + q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q) + + # core attention ops + attn_vec_h = self.rel_attn_core( + q_head_h, + k_head_h, + v_head_h, + k_head_r, + seg_mat=seg_mat, + attn_mask=attn_mask_h, + head_mask=head_mask, + output_attentions=output_attentions, + ) + + if output_attentions: + attn_vec_h, attn_prob_h = attn_vec_h + + # post processing + output_h = self.post_attention(h, attn_vec_h) + + # g-stream + # query-stream query head + q_head_g = torch.einsum("ibh,hnd->ibnd", g, self.q) + + # core attention ops + if target_mapping is not None: + q_head_g = torch.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping) + attn_vec_g = self.rel_attn_core( + q_head_g, + k_head_h, + v_head_h, + k_head_r, + seg_mat=seg_mat, + attn_mask=attn_mask_g, + head_mask=head_mask, + output_attentions=output_attentions, + ) + + if output_attentions: + attn_vec_g, attn_prob_g = attn_vec_g + + attn_vec_g = torch.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping) + else: + attn_vec_g = self.rel_attn_core( + q_head_g, + k_head_h, + v_head_h, + k_head_r, + seg_mat=seg_mat, + attn_mask=attn_mask_g, + head_mask=head_mask, + output_attentions=output_attentions, + ) + + if output_attentions: + attn_vec_g, attn_prob_g = attn_vec_g + + # post processing + output_g = self.post_attention(g, attn_vec_g) + + if output_attentions: + attn_prob = attn_prob_h, attn_prob_g + + else: + # Multi-head attention with relative positional encoding + if mems is not None and mems.dim() > 1: + cat = torch.cat([mems, h], dim=0) + else: + cat = h + + # content heads + q_head_h = torch.einsum("ibh,hnd->ibnd", h, self.q) + k_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.k) + v_head_h = torch.einsum("ibh,hnd->ibnd", cat, self.v) + + # positional heads + # type casting for fp16 support + k_head_r = torch.einsum("ibh,hnd->ibnd", r.type(self.r.dtype), self.r) + + # core attention ops + attn_vec = self.rel_attn_core( + q_head_h, + k_head_h, + v_head_h, + k_head_r, + seg_mat=seg_mat, + attn_mask=attn_mask_h, + head_mask=head_mask, + output_attentions=output_attentions, + ) + + if output_attentions: + attn_vec, attn_prob = attn_vec + + # post processing + output_h = self.post_attention(h, attn_vec) + output_g = None + + outputs = (output_h, output_g) + if output_attentions: + outputs = outputs + (attn_prob,) + return outputs + + +class XLNetFeedForward(nn.Module): + def __init__(self, config): + super().__init__() + self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) + self.layer_1 = nn.Linear(config.d_model, config.d_inner) + self.layer_2 = nn.Linear(config.d_inner, config.d_model) + self.dropout = nn.Dropout(config.dropout) + if isinstance(config.ff_activation, str): + self.activation_function = ACT2FN[config.ff_activation] + else: + self.activation_function = config.ff_activation + + def forward(self, inp): + output = inp + output = self.layer_1(output) + output = self.activation_function(output) + output = self.dropout(output) + output = self.layer_2(output) + output = self.dropout(output) + output = self.layer_norm(output + inp) + return output + + +class XLNetLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.rel_attn = XLNetRelativeAttention(config) + self.ff = XLNetFeedForward(config) + self.dropout = nn.Dropout(config.dropout) + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + + def forward( + self, + output_h, + output_g, + attn_mask_h, + attn_mask_g, + r, + seg_mat, + mems=None, + target_mapping=None, + head_mask=None, + output_attentions=False, + ): + outputs = self.rel_attn( + output_h, + output_g, + attn_mask_h, + attn_mask_g, + r, + seg_mat, + mems=mems, + target_mapping=target_mapping, + head_mask=head_mask, + output_attentions=output_attentions, + ) + output_h, output_g = outputs[:2] + + if output_g is not None: + output_g = apply_chunking_to_forward( + self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_g + ) + output_h = apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, output_h) + + outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there + return outputs + + def ff_chunk(self, output_x): + output_x = self.ff(output_x) + return output_x + + +class XLNetPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = XLNetConfig + load_tf_weights = load_tf_weights_in_xlnet + base_model_prefix = "transformer" + + def _init_weights(self, module): + """Initialize the weights.""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, XLNetRelativeAttention): + for param in [ + module.q, + module.k, + module.v, + module.o, + module.r, + module.r_r_bias, + module.r_s_bias, + module.r_w_bias, + module.seg_embed, + ]: + param.data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, XLNetModel): + module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range) + + +@dataclass +class XLNetModelOutput(ModelOutput): + """ + Output type of [`XLNetModel`]. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`): + Sequence of hidden-states at the last layer of the model. + + `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` + corresponds to `sequence_length`. + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + last_hidden_state: torch.FloatTensor + mems: Optional[List[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class XLNetLMHeadModelOutput(ModelOutput): + """ + Output type of [`XLNetLMHeadModel`]. + + Args: + loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided) + Language modeling loss (for next-token prediction). + logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + + `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` + corresponds to `sequence_length`. + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + mems: Optional[List[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class XLNetForSequenceClassificationOutput(ModelOutput): + """ + Output type of [`XLNetForSequenceClassification`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + mems: Optional[List[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class XLNetForTokenClassificationOutput(ModelOutput): + """ + Output type of [`XLNetForTokenClassificationOutput`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): + Classification scores (before SoftMax). + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + mems: Optional[List[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class XLNetForMultipleChoiceOutput(ModelOutput): + """ + Output type of [`XLNetForMultipleChoice`]. + + Args: + loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided): + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): + *num_choices* is the second dimension of the input tensors. (see *input_ids* above). + + Classification scores (before SoftMax). + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + mems: Optional[List[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class XLNetForQuestionAnsweringSimpleOutput(ModelOutput): + """ + Output type of [`XLNetForQuestionAnsweringSimple`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`): + Span-start scores (before SoftMax). + end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length,)`): + Span-end scores (before SoftMax). + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + start_logits: torch.FloatTensor = None + end_logits: torch.FloatTensor = None + mems: Optional[List[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class XLNetForQuestionAnsweringOutput(ModelOutput): + """ + Output type of [`XLNetForQuestionAnswering`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided): + Classification loss as the sum of start token, end token (and is_impossible if provided) classification + losses. + start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): + Log probabilities for the top config.start_n_top start token possibilities (beam-search). + start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): + Indices for the top config.start_n_top start token possibilities (beam-search). + end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): + Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities + (beam-search). + end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): + Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). + cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided): + Log probabilities for the `is_impossible` label of the answers. + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The + token ids which have their past given to this model should not be passed as `input_ids` as they have + already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + start_top_log_probs: Optional[torch.FloatTensor] = None + start_top_index: Optional[torch.LongTensor] = None + end_top_log_probs: Optional[torch.FloatTensor] = None + end_top_index: Optional[torch.LongTensor] = None + cls_logits: Optional[torch.FloatTensor] = None + mems: Optional[List[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +XLNET_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`XLNetConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +XLNET_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential + decoding. The token ids which have their past given to this model should not be passed as `input_ids` as + they have already been computed. + + `use_mems` has to be set to `True` to make use of `mems`. + perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*): + Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`: + + - if `perm_mask[k, i, j] = 0`, i attend to j in batch k; + - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k. + + If not set, each token attends to all the others (full bidirectional attention). Only used during + pretraining (to define factorization order) or for sequential decoding (generation). + target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*): + Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is + on the j-th token. Only used during pretraining for partial prediction or for sequential decoding + (generation). + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + input_mask (`torch.FloatTensor` of shape `{0}`, *optional*): + Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for + real tokens and 1 for padding which is kept for compatibility with the original code base. + + Mask values selected in `[0, 1]`: + + - 1 for tokens that are **masked**, + - 0 for tokens that are **not masked**. + + You can only uses one of `input_mask` and `attention_mask`. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.", + XLNET_START_DOCSTRING, +) +class XLNetModel(XLNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.mem_len = config.mem_len + self.reuse_len = config.reuse_len + self.d_model = config.d_model + self.same_length = config.same_length + self.attn_type = config.attn_type + self.bi_data = config.bi_data + self.clamp_len = config.clamp_len + self.n_layer = config.n_layer + + self.word_embedding = nn.Embedding(config.vocab_size, config.d_model) + self.mask_emb = nn.Parameter(torch.FloatTensor(1, 1, config.d_model)) + self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)]) + self.dropout = nn.Dropout(config.dropout) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_embedding + + def set_input_embeddings(self, new_embeddings): + self.word_embedding = new_embeddings + + def _prune_heads(self, heads_to_prune): + raise NotImplementedError + + def create_mask(self, qlen, mlen): + """ + Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked. + + Args: + qlen: Sequence length + mlen: Mask length + + :: + + same_length=False: same_length=True: < qlen > < qlen > + ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1] + [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1] + qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1] + [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1] + v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0] + + """ + mask = torch.ones((qlen, qlen + mlen), device=self.device) + if self.same_length: + mask_lo = mask[:, :qlen].tril(-1) + mask.triu_(mlen + 1) + mask[:, :qlen] += mask_lo + else: + mask.triu_(mlen + 1) + + return mask + + def cache_mem(self, curr_out, prev_mem): + # cache hidden states into memory. + if self.reuse_len is not None and self.reuse_len > 0: + curr_out = curr_out[: self.reuse_len] + + if self.mem_len is None or self.mem_len == 0: + # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time + # and returns all of the past and current hidden states. + cutoff = 0 + else: + # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden + # states. This is the preferred setting for training and long-form generation. + cutoff = -self.mem_len + if prev_mem is None: + # if `use_mems` is active and `mem_len` is defined, the model + new_mem = curr_out[cutoff:] + else: + new_mem = torch.cat([prev_mem, curr_out], dim=0)[cutoff:] + + return new_mem.detach() + + @staticmethod + def positional_embedding(pos_seq, inv_freq, bsz=None): + sinusoid_inp = torch.einsum("i,d->id", pos_seq, inv_freq) + pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1) + pos_emb = pos_emb[:, None, :] + + if bsz is not None: + pos_emb = pos_emb.expand(-1, bsz, -1) + + return pos_emb + + def relative_positional_encoding(self, qlen, klen, bsz=None): + # create relative positional encoding. + freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.int64).float() + inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model)) + + if self.attn_type == "bi": + # beg, end = klen - 1, -qlen + beg, end = klen, -qlen + elif self.attn_type == "uni": + # beg, end = klen - 1, -1 + beg, end = klen, -1 + else: + raise ValueError(f"Unknown `attn_type` {self.attn_type}.") + + if self.bi_data: + fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float() + bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.int64).float() + + if self.clamp_len > 0: + fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) + bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) + + if bsz is not None: + fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) + bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) + else: + fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) + bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) + + pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1) + else: + fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.int64).float() + if self.clamp_len > 0: + fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len) + pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) + + return pos_emb + + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=XLNetModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + mems: Optional[torch.Tensor] = None, + perm_mask: Optional[torch.Tensor] = None, + target_mapping: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + input_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, # delete after depreciation warning is removed + ) -> Union[Tuple, XLNetModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if "use_cache" in kwargs: + warnings.warn( + "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems`" + " instead.", + FutureWarning, + ) + use_mems = kwargs["use_cache"] + + if self.training: + use_mems = use_mems if use_mems is not None else self.config.use_mems_train + else: + use_mems = use_mems if use_mems is not None else self.config.use_mems_eval + + # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end + # but we want a unified interface in the library with the batch size on the first dimension + # so we move here the first dimension (batch) to the end + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_ids = input_ids.transpose(0, 1).contiguous() + qlen, bsz = input_ids.shape[0], input_ids.shape[1] + elif inputs_embeds is not None: + inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() + qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None + input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None + attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None + perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None + target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None + + mlen = mems[0].shape[0] if mems is not None and mems[0] is not None else 0 + klen = mlen + qlen + + dtype_float = self.dtype + device = self.device + + # Attention mask + # causal attention mask + if self.attn_type == "uni": + attn_mask = self.create_mask(qlen, mlen) + attn_mask = attn_mask[:, :, None, None] + elif self.attn_type == "bi": + attn_mask = None + else: + raise ValueError(f"Unsupported attention type: {self.attn_type}") + + # data mask: input mask & perm mask + assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) " + "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one." + if input_mask is None and attention_mask is not None: + input_mask = 1.0 - attention_mask + if input_mask is not None and perm_mask is not None: + data_mask = input_mask[None] + perm_mask + elif input_mask is not None and perm_mask is None: + data_mask = input_mask[None] + elif input_mask is None and perm_mask is not None: + data_mask = perm_mask + else: + data_mask = None + + if data_mask is not None: + # all mems can be attended to + if mlen > 0: + mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask) + data_mask = torch.cat([mems_mask, data_mask], dim=1) + if attn_mask is None: + attn_mask = data_mask[:, :, :, None] + else: + attn_mask += data_mask[:, :, :, None] + + if attn_mask is not None: + attn_mask = (attn_mask > 0).to(dtype_float) + + if attn_mask is not None: + non_tgt_mask = -torch.eye(qlen).to(attn_mask) + if mlen > 0: + non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1) + non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask) + else: + non_tgt_mask = None + + # Word embeddings and prepare h & g hidden states + if inputs_embeds is not None: + word_emb_k = inputs_embeds + else: + word_emb_k = self.word_embedding(input_ids) + output_h = self.dropout(word_emb_k) + if target_mapping is not None: + word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1) + # else: # We removed the inp_q input which was same as target mapping + # inp_q_ext = inp_q[:, :, None] + # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k + output_g = self.dropout(word_emb_q) + else: + output_g = None + + # Segment embedding + if token_type_ids is not None: + # Convert `token_type_ids` to one-hot `seg_mat` + if mlen > 0: + mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device) + cat_ids = torch.cat([mem_pad, token_type_ids], dim=0) + else: + cat_ids = token_type_ids + + # `1` indicates not in the same segment [qlen x klen x bsz] + seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long() + seg_mat = nn.functional.one_hot(seg_mat, num_classes=2).to(dtype_float) + else: + seg_mat = None + + # Positional encoding + pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz) + pos_emb = pos_emb.to(output_h.device) + pos_emb = self.dropout(pos_emb) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) + # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] + if head_mask is not None: + if head_mask.dim() == 1: + head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) + head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) + elif head_mask.dim() == 2: + head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) + head_mask = head_mask.to( + dtype=next(self.parameters()).dtype + ) # switch to float if need + fp16 compatibility + else: + head_mask = [None] * self.n_layer + + new_mems = () + if mems is None: + mems = [None] * len(self.layer) + + attentions = [] if output_attentions else None + hidden_states = [] if output_hidden_states else None + for i, layer_module in enumerate(self.layer): + if use_mems: + # cache new mems + new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) + if output_hidden_states: + hidden_states.append((output_h, output_g) if output_g is not None else output_h) + + outputs = layer_module( + output_h, + output_g, + attn_mask_h=non_tgt_mask, + attn_mask_g=attn_mask, + r=pos_emb, + seg_mat=seg_mat, + mems=mems[i], + target_mapping=target_mapping, + head_mask=head_mask[i], + output_attentions=output_attentions, + ) + output_h, output_g = outputs[:2] + if output_attentions: + attentions.append(outputs[2]) + + # Add last hidden state + if output_hidden_states: + hidden_states.append((output_h, output_g) if output_g is not None else output_h) + + output = self.dropout(output_g if output_g is not None else output_h) + + # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method) + output = output.permute(1, 0, 2).contiguous() + + if not use_mems: + new_mems = None + + if output_hidden_states: + if output_g is not None: + hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs) + else: + hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states) + + if output_attentions: + if target_mapping is not None: + # when target_mapping is provided, there are 2-tuple of attentions + attentions = tuple( + tuple(att_stream.permute(2, 3, 0, 1).contiguous() for att_stream in t) for t in attentions + ) + else: + attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions) + + if not return_dict: + return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None) + + return XLNetModelOutput( + last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions + ) + + +@add_start_docstrings( + """ + XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings). + """, + XLNET_START_DOCSTRING, +) +class XLNetLMHeadModel(XLNetPreTrainedModel): + _tied_weights_keys = ["lm_loss.weight"] + + def __init__(self, config): + super().__init__(config) + self.attn_type = config.attn_type + self.same_length = config.same_length + + self.transformer = XLNetModel(config) + self.lm_loss = nn.Linear(config.d_model, config.vocab_size, bias=True) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_loss + + def set_output_embeddings(self, new_embeddings): + self.lm_loss = new_embeddings + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_mems=None, **kwargs): + # Add dummy token at the end (no attention on this one) + + effective_batch_size = input_ids.shape[0] + dummy_token = torch.zeros((effective_batch_size, 1), dtype=torch.long, device=input_ids.device) + + # At every pass, the attention values for the new token and the two last generated tokens + # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have + # offset = 1; offset = 2 seems to have slightly better computation. + offset = 2 + + if past_key_values: + input_ids = torch.cat([input_ids[:, -offset:], dummy_token], dim=1) + else: + input_ids = torch.cat([input_ids, dummy_token], dim=1) + + # Build permutation mask so that previous tokens don't see last token + sequence_length = input_ids.shape[1] + perm_mask = torch.zeros( + (effective_batch_size, sequence_length, sequence_length), dtype=torch.float, device=input_ids.device + ) + perm_mask[:, :, -1] = 1.0 + + # We'll only predict the last token + target_mapping = torch.zeros( + (effective_batch_size, 1, sequence_length), dtype=torch.float, device=input_ids.device + ) + target_mapping[:, 0, -1] = 1.0 + + inputs = { + "input_ids": input_ids, + "perm_mask": perm_mask, + "target_mapping": target_mapping, + "use_mems": use_mems, + } + + # if past is defined in model kwargs then use it for faster decoding + if past_key_values: + inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values) + + return inputs + + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=XLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + mems: Optional[torch.Tensor] = None, + perm_mask: Optional[torch.Tensor] = None, + target_mapping: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + input_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, # delete when `use_cache` is removed in XLNetModel + ) -> Union[Tuple, XLNetLMHeadModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, num_predict)`, *optional*): + Labels for masked language modeling. `num_predict` corresponds to `target_mapping.shape[1]`. If + `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. + + The labels should correspond to the masked input words that should be predicted and depends on + `target_mapping`. Note in order to perform standard auto-regressive language modeling a ** token has + to be added to the `input_ids` (see the `prepare_inputs_for_generation` function and examples below) + + Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored, the loss + is only computed for labels in `[0, ..., config.vocab_size]` + + Return: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, XLNetLMHeadModel + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-large-cased") + >>> model = XLNetLMHeadModel.from_pretrained("xlnet/xlnet-large-cased") + + >>> # We show how to setup inputs to predict a next token using a bi-directional context. + >>> input_ids = torch.tensor( + ... tokenizer.encode("Hello, my dog is very ", add_special_tokens=False) + ... ).unsqueeze( + ... 0 + ... ) # We will predict the masked token + >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) + >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token + >>> target_mapping = torch.zeros( + ... (1, 1, input_ids.shape[1]), dtype=torch.float + ... ) # Shape [1, 1, seq_length] => let's predict one token + >>> target_mapping[ + ... 0, 0, -1 + ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) + + >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping) + >>> next_token_logits = outputs[ + ... 0 + ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] + + >>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling. + >>> input_ids = torch.tensor( + ... tokenizer.encode("Hello, my dog is very ", add_special_tokens=False) + ... ).unsqueeze( + ... 0 + ... ) # We will predict the masked token + >>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0) + >>> assert labels.shape[0] == 1, "only one word will be predicted" + >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) + >>> perm_mask[ + ... :, :, -1 + ... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training + >>> target_mapping = torch.zeros( + ... (1, 1, input_ids.shape[1]), dtype=torch.float + ... ) # Shape [1, 1, seq_length] => let's predict one token + >>> target_mapping[ + ... 0, 0, -1 + ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) + + >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels) + >>> loss = outputs.loss + >>> next_token_logits = ( + ... outputs.logits + ... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + **kwargs, + ) + + logits = self.lm_loss(transformer_outputs[0]) + + loss = None + if labels is not None: + # Flatten the tokens + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) + + if not return_dict: + output = (logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return XLNetLMHeadModelOutput( + loss=loss, + logits=logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + @staticmethod + def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]: + """ + This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or + [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every + generation step. + """ + return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems] + + +@add_start_docstrings( + """ + XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. + for GLUE tasks. + """, + XLNET_START_DOCSTRING, +) +class XLNetForSequenceClassification(XLNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.transformer = XLNetModel(config) + self.sequence_summary = SequenceSummary(config) + self.logits_proj = nn.Linear(config.d_model, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=XLNetForSequenceClassificationOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + mems: Optional[torch.Tensor] = None, + perm_mask: Optional[torch.Tensor] = None, + target_mapping: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + input_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, # delete when `use_cache` is removed in XLNetModel + ) -> Union[Tuple, XLNetForSequenceClassificationOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + **kwargs, + ) + output = transformer_outputs[0] + + output = self.sequence_summary(output) + logits = self.logits_proj(output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return XLNetForSequenceClassificationOutput( + loss=loss, + logits=logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + XLNET_START_DOCSTRING, +) +class XLNetForTokenClassification(XLNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.transformer = XLNetModel(config) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=XLNetForTokenClassificationOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + mems: Optional[torch.Tensor] = None, + perm_mask: Optional[torch.Tensor] = None, + target_mapping: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + input_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, # delete when `use_cache` is removed in XLNetModel + ) -> Union[Tuple, XLNetForTokenClassificationOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return XLNetForTokenClassificationOutput( + loss=loss, + logits=logits, + mems=outputs.mems, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RACE/SWAG tasks. + """, + XLNET_START_DOCSTRING, +) +class XLNetForMultipleChoice(XLNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.transformer = XLNetModel(config) + self.sequence_summary = SequenceSummary(config) + self.logits_proj = nn.Linear(config.d_model, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=XLNetForMultipleChoiceOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + input_mask: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + mems: Optional[torch.Tensor] = None, + perm_mask: Optional[torch.Tensor] = None, + target_mapping: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, # delete when `use_cache` is removed in XLNetModel + ) -> Union[Tuple, XLNetForMultipleChoiceOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + flat_input_mask = input_mask.view(-1, input_mask.size(-1)) if input_mask is not None else None + flat_inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + transformer_outputs = self.transformer( + flat_input_ids, + token_type_ids=flat_token_type_ids, + input_mask=flat_input_mask, + attention_mask=flat_attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + **kwargs, + ) + + output = transformer_outputs[0] + + output = self.sequence_summary(output) + logits = self.logits_proj(output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels.view(-1)) + + if not return_dict: + output = (reshaped_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return XLNetForMultipleChoiceOutput( + loss=loss, + logits=reshaped_logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + XLNET_START_DOCSTRING, +) +class XLNetForQuestionAnsweringSimple(XLNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.transformer = XLNetModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=XLNetForQuestionAnsweringSimpleOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + mems: Optional[torch.Tensor] = None, + perm_mask: Optional[torch.Tensor] = None, + target_mapping: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + input_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, # delete when `use_cache` is removed in XLNetModel + ) -> Union[Tuple, XLNetForQuestionAnsweringSimpleOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + **kwargs, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return XLNetForQuestionAnsweringSimpleOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + mems=outputs.mems, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + XLNET_START_DOCSTRING, +) +class XLNetForQuestionAnswering(XLNetPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.start_n_top = config.start_n_top + self.end_n_top = config.end_n_top + + self.transformer = XLNetModel(config) + self.start_logits = PoolerStartLogits(config) + self.end_logits = PoolerEndLogits(config) + self.answer_class = PoolerAnswerClass(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=XLNetForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + mems: Optional[torch.Tensor] = None, + perm_mask: Optional[torch.Tensor] = None, + target_mapping: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + input_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + is_impossible: Optional[torch.Tensor] = None, + cls_index: Optional[torch.Tensor] = None, + p_mask: Optional[torch.Tensor] = None, + use_mems: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, # delete when `use_cache` is removed in XLNetModel + ) -> Union[Tuple, XLNetForQuestionAnsweringOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels whether a question has an answer or no answer (SQuAD 2.0) + cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the classification token to use as input for computing plausibility of the + answer. + p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be + masked. 0.0 mean token is not masked. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, XLNetForQuestionAnswering + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("xlnet/xlnet-base-cased") + >>> model = XLNetForQuestionAnswering.from_pretrained("xlnet/xlnet-base-cased") + + >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( + ... 0 + ... ) # Batch size 1 + >>> start_positions = torch.tensor([1]) + >>> end_positions = torch.tensor([3]) + >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) + + >>> loss = outputs.loss + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + mems=mems, + perm_mask=perm_mask, + target_mapping=target_mapping, + token_type_ids=token_type_ids, + input_mask=input_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + use_mems=use_mems, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + **kwargs, + ) + hidden_states = transformer_outputs[0] + start_logits = self.start_logits(hidden_states, p_mask=p_mask) + + outputs = transformer_outputs[1:] # Keep mems, hidden states, attentions if there are in it + + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, let's remove the dimension added by batch splitting + for x in (start_positions, end_positions, cls_index, is_impossible): + if x is not None and x.dim() > 1: + x.squeeze_(-1) + + # during training, compute the end logits based on the ground truth of the start position + end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask) + + loss_fct = CrossEntropyLoss() + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if cls_index is not None and is_impossible is not None: + # Predict answerability from the representation of CLS and START + cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index) + loss_fct_cls = nn.BCEWithLogitsLoss() + cls_loss = loss_fct_cls(cls_logits, is_impossible) + + # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss + total_loss += cls_loss * 0.5 + + if not return_dict: + return (total_loss,) + transformer_outputs[1:] + else: + return XLNetForQuestionAnsweringOutput( + loss=total_loss, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + else: + # during inference, compute the end logits based on beam search + bsz, slen, hsz = hidden_states.size() + start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen) + + start_top_log_probs, start_top_index = torch.topk( + start_log_probs, self.start_n_top, dim=-1 + ) # shape (bsz, start_n_top) + start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz) + start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz) + start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz) + + hidden_states_expanded = hidden_states.unsqueeze(2).expand_as( + start_states + ) # shape (bsz, slen, start_n_top, hsz) + p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None + end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask) + end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top) + + end_top_log_probs, end_top_index = torch.topk( + end_log_probs, self.end_n_top, dim=1 + ) # shape (bsz, end_n_top, start_n_top) + end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top) + end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top) + + start_states = torch.einsum( + "blh,bl->bh", hidden_states, start_log_probs + ) # get the representation of START as weighted sum of hidden states + cls_logits = self.answer_class( + hidden_states, start_states=start_states, cls_index=cls_index + ) # Shape (batch size,): one single `cls_logits` for each sample + + if not return_dict: + outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + return outputs + transformer_outputs[1:] + else: + return XLNetForQuestionAnsweringOutput( + start_top_log_probs=start_top_log_probs, + start_top_index=start_top_index, + end_top_log_probs=end_top_log_probs, + end_top_index=end_top_index, + cls_logits=cls_logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet.py new file mode 100644 index 0000000000000000000000000000000000000000..8d87f34ba2462e44c1286f70a9a122267c890c14 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet.py @@ -0,0 +1,383 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization classes for XLNet model.""" + + +import os +import unicodedata +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import SPIECE_UNDERLINE, logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} + + +# Segments (not really needed) +SEG_ID_A = 0 +SEG_ID_B = 1 +SEG_ID_CLS = 2 +SEG_ID_SEP = 3 +SEG_ID_PAD = 4 + + +class XLNetTokenizer(PreTrainedTokenizer): + """ + Construct an XLNet tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that + contains the vocabulary necessary to instantiate a tokenizer. + do_lower_case (`bool`, *optional*, defaults to `False`): + Whether to lowercase the input when tokenizing. + remove_space (`bool`, *optional*, defaults to `True`): + Whether to strip the text when tokenizing (removing excess spaces before and after the string). + keep_accents (`bool`, *optional*, defaults to `False`): + Whether to keep accents when tokenizing. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + additional_special_tokens (`List[str]`, *optional*, defaults to `['', '']`): + Additional special tokens used by the tokenizer. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + padding_side = "left" + + def __init__( + self, + vocab_file, + do_lower_case=False, + remove_space=True, + keep_accents=False, + bos_token="", + eos_token="", + unk_token="", + sep_token="", + pad_token="", + cls_token="", + mask_token="", + additional_special_tokens=["", ""], + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.do_lower_case = do_lower_case + self.remove_space = remove_space + self.keep_accents = keep_accents + self.vocab_file = vocab_file + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + + super().__init__( + do_lower_case=do_lower_case, + remove_space=remove_space, + keep_accents=keep_accents, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + additional_special_tokens=additional_special_tokens, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + self._pad_token_type_id = 3 + + @property + def vocab_size(self): + return len(self.sp_model) + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def preprocess_text(self, inputs): + if self.remove_space: + outputs = " ".join(inputs.strip().split()) + else: + outputs = inputs + outputs = outputs.replace("``", '"').replace("''", '"') + + if not self.keep_accents: + outputs = unicodedata.normalize("NFKD", outputs) + outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) + if self.do_lower_case: + outputs = outputs.lower() + + return outputs + + def _tokenize(self, text: str) -> List[str]: + """Tokenize a string.""" + text = self.preprocess_text(text) + pieces = self.sp_model.encode(text, out_type=str) + new_pieces = [] + for piece in pieces: + if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): + cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) + if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: + if len(cur_pieces[0]) == 1: + cur_pieces = cur_pieces[1:] + else: + cur_pieces[0] = cur_pieces[0][1:] + cur_pieces.append(piece[-1]) + new_pieces.extend(cur_pieces) + else: + new_pieces.append(piece) + + return new_pieces + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.PieceToId(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.sp_model.IdToPiece(index) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() + return out_string + + def _decode( + self, + token_ids: List[int], + skip_special_tokens: bool = False, + clean_up_tokenization_spaces: bool = None, + spaces_between_special_tokens: bool = True, + **kwargs, + ) -> str: + self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) + + filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) + + # To avoid mixing byte-level and unicode for byte-level BPT + # we need to build string separately for added tokens and byte-level tokens + # cf. https://github.com/huggingface/transformers/issues/1133 + sub_texts = [] + current_sub_text = [] + for token in filtered_tokens: + if skip_special_tokens and token in self.all_special_ids: + continue + if token in self.added_tokens_encoder: + if current_sub_text: + sub_texts.append(self.convert_tokens_to_string(current_sub_text)) + current_sub_text = [] + sub_texts.append(token) + else: + current_sub_text.append(token) + if current_sub_text: + sub_texts.append(self.convert_tokens_to_string(current_sub_text)) + + # Mimic the behavior of the Rust tokenizer: + # By default, there are no spaces between special tokens + text = "".join(sub_texts) + + clean_up_tokenization_spaces = ( + clean_up_tokenization_spaces + if clean_up_tokenization_spaces is not None + else self.clean_up_tokenization_spaces + ) + if clean_up_tokenization_spaces: + clean_text = self.clean_up_tokenization(text) + return clean_text + else: + return text + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLNet sequence has the following format: + + - single sequence: `X ` + - pair of sequences: `A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return token_ids_0 + sep + cls + return token_ids_0 + sep + token_ids_1 + sep + cls + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1] + return ([0] * len(token_ids_0)) + [1, 1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet + sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls_segment_id = [2] + + if token_ids_1 is None: + return len(token_ids_0 + sep) * [0] + cls_segment_id + return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..d77307e7a3dfbac9dd42fcf9eb0aa053cabca5ca --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlnet/tokenization_xlnet_fast.py @@ -0,0 +1,232 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization classes for XLNet model.""" + + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from ...tokenization_utils import AddedToken +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_xlnet import XLNetTokenizer +else: + XLNetTokenizer = None + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} + + +SPIECE_UNDERLINE = "▁" + +# Segments (not really needed) +SEG_ID_A = 0 +SEG_ID_B = 1 +SEG_ID_CLS = 2 +SEG_ID_SEP = 3 +SEG_ID_PAD = 4 + + +class XLNetTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" XLNet tokenizer (backed by HuggingFace's *tokenizers* library). Based on + [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that + contains the vocabulary necessary to instantiate a tokenizer. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether to lowercase the input when tokenizing. + remove_space (`bool`, *optional*, defaults to `True`): + Whether to strip the text when tokenizing (removing excess spaces before and after the string). + keep_accents (`bool`, *optional*, defaults to `False`): + Whether to keep accents when tokenizing. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + additional_special_tokens (`List[str]`, *optional*, defaults to `["", ""]`): + Additional special tokens used by the tokenizer. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + padding_side = "left" + slow_tokenizer_class = XLNetTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=False, + remove_space=True, + keep_accents=False, + bos_token="", + eos_token="", + unk_token="", + sep_token="", + pad_token="", + cls_token="", + mask_token="", + additional_special_tokens=["", ""], + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + super().__init__( + vocab_file=vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + remove_space=remove_space, + keep_accents=keep_accents, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + additional_special_tokens=additional_special_tokens, + **kwargs, + ) + + self._pad_token_type_id = 3 + self.do_lower_case = do_lower_case + self.remove_space = remove_space + self.keep_accents = keep_accents + self.vocab_file = vocab_file + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLNet sequence has the following format: + + - single sequence: `X ` + - pair of sequences: `A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return token_ids_0 + sep + cls + return token_ids_0 + sep + token_ids_1 + sep + cls + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet + sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls_segment_id = [2] + + if token_ids_1 is None: + return len(token_ids_0 + sep) * [0] + cls_segment_id + return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,)