diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c4bc0b731995c665cee407da4f2ac3f11038fbdb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/configuration_canine.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/configuration_canine.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2424c101fba64048a8b2dfd77406ef5e96964884 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/configuration_canine.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/convert_canine_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/convert_canine_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..27588bd8cd97137e581198ecb96d84915e5cc570 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/convert_canine_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/modeling_canine.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/modeling_canine.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ddf4af14e260538339aae274a5ac5b0543f13598 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/modeling_canine.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/tokenization_canine.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/tokenization_canine.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3bb470ccdf0ef965593fc78ee47af27ac2d5abe9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/__pycache__/tokenization_canine.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/configuration_canine.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/configuration_canine.py new file mode 100644 index 0000000000000000000000000000000000000000..c5a77a5c4b47bcdf2cb29d8a156d1e071d277b1b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/configuration_canine.py @@ -0,0 +1,141 @@ +# coding=utf-8 +# Copyright Google AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" CANINE model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class CanineConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`CanineModel`]. It is used to instantiate an + CANINE model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the CANINE + [google/canine-s](https://huggingface.co/google/canine-s) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimension of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the deep Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoders. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoders. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoders, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 16384): + The maximum sequence length that this model might ever be used with. + type_vocab_size (`int`, *optional*, defaults to 16): + The vocabulary size of the `token_type_ids` passed when calling [`CanineModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + pad_token_id (`int`, *optional*, defaults to 0): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 57344): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 57345): + End of stream token id. + downsampling_rate (`int`, *optional*, defaults to 4): + The rate at which to downsample the original character sequence length before applying the deep Transformer + encoder. + upsampling_kernel_size (`int`, *optional*, defaults to 4): + The kernel size (i.e. the number of characters in each window) of the convolutional projection layer when + projecting back from `hidden_size`*2 to `hidden_size`. + num_hash_functions (`int`, *optional*, defaults to 8): + The number of hash functions to use. Each hash function has its own embedding matrix. + num_hash_buckets (`int`, *optional*, defaults to 16384): + The number of hash buckets to use. + local_transformer_stride (`int`, *optional*, defaults to 128): + The stride of the local attention of the first shallow Transformer encoder. Defaults to 128 for good + TPU/XLA memory alignment. + + Example: + + ```python + >>> from transformers import CanineConfig, CanineModel + + >>> # Initializing a CANINE google/canine-s style configuration + >>> configuration = CanineConfig() + + >>> # Initializing a model (with random weights) from the google/canine-s style configuration + >>> model = CanineModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "canine" + + def __init__( + self, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=16384, + type_vocab_size=16, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + bos_token_id=0xE000, + eos_token_id=0xE001, + downsampling_rate=4, + upsampling_kernel_size=4, + num_hash_functions=8, + num_hash_buckets=16384, + local_transformer_stride=128, # Good TPU/XLA memory alignment. + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.type_vocab_size = type_vocab_size + self.layer_norm_eps = layer_norm_eps + + # Character config: + self.downsampling_rate = downsampling_rate + self.upsampling_kernel_size = upsampling_kernel_size + self.num_hash_functions = num_hash_functions + self.num_hash_buckets = num_hash_buckets + self.local_transformer_stride = local_transformer_stride diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/modeling_canine.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/modeling_canine.py new file mode 100644 index 0000000000000000000000000000000000000000..39d89c6e0b3da85ef11b8313888118b7de047b70 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/canine/modeling_canine.py @@ -0,0 +1,1645 @@ +# coding=utf-8 +# Copyright 2021 Google AI The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch CANINE model.""" + + +import copy +import math +import os +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + ModelOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_canine import CanineConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/canine-s" +_CONFIG_FOR_DOC = "CanineConfig" + + +from ..deprecated._archive_maps import CANINE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Support up to 16 hash functions. +_PRIMES = [31, 43, 59, 61, 73, 97, 103, 113, 137, 149, 157, 173, 181, 193, 211, 223] + + +@dataclass +class CanineModelOutputWithPooling(ModelOutput): + """ + Output type of [`CanineModel`]. Based on [`~modeling_outputs.BaseModelOutputWithPooling`], but with slightly + different `hidden_states` and `attentions`, as these also include the hidden states and attentions of the shallow + Transformer encoders. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model (i.e. the output of the final + shallow Transformer encoder). + pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + Hidden-state of the first token of the sequence (classification token) at the last layer of the deep + Transformer encoder, further processed by a Linear layer and a Tanh activation function. The Linear layer + weights are trained from the next sentence prediction (classification) objective during pretraining. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the input to each encoder + one for the output of each layer of each + encoder) of shape `(batch_size, sequence_length, hidden_size)` and `(batch_size, sequence_length // + config.downsampling_rate, hidden_size)`. Hidden-states of the model at the output of each layer plus the + initial input to each Transformer encoder. The hidden states of the shallow encoders have length + `sequence_length`, but the hidden states of the deep encoder have length `sequence_length` // + `config.downsampling_rate`. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of the 3 Transformer encoders of shape `(batch_size, + num_heads, sequence_length, sequence_length)` and `(batch_size, num_heads, sequence_length // + config.downsampling_rate, sequence_length // config.downsampling_rate)`. Attentions weights after the + attention softmax, used to compute the weighted average in the self-attention heads. + """ + + last_hidden_state: torch.FloatTensor = None + pooler_output: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +def load_tf_weights_in_canine(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + # also discard the cls weights (which were used for the next sentence prediction pre-training task) + if any( + n + in [ + "adam_v", + "adam_m", + "AdamWeightDecayOptimizer", + "AdamWeightDecayOptimizer_1", + "global_step", + "cls", + "autoregressive_decoder", + "char_output_weights", + ] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + # if first scope name starts with "bert", change it to "encoder" + if name[0] == "bert": + name[0] = "encoder" + # remove "embeddings" middle name of HashBucketCodepointEmbedders + elif name[1] == "embeddings": + name.remove(name[1]) + # rename segment_embeddings to token_type_embeddings + elif name[1] == "segment_embeddings": + name[1] = "token_type_embeddings" + # rename initial convolutional projection layer + elif name[1] == "initial_char_encoder": + name = ["chars_to_molecules"] + name[-2:] + # rename final convolutional projection layer + elif name[0] == "final_char_encoder" and name[1] in ["LayerNorm", "conv"]: + name = ["projection"] + name[1:] + pointer = model + for m_name in name: + if (re.fullmatch(r"[A-Za-z]+_\d+", m_name)) and "Embedder" not in m_name: + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name[-10:] in [f"Embedder_{i}" for i in range(8)]: + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + return model + + +class CanineEmbeddings(nn.Module): + """Construct the character, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + + self.config = config + + # character embeddings + shard_embedding_size = config.hidden_size // config.num_hash_functions + for i in range(config.num_hash_functions): + name = f"HashBucketCodepointEmbedder_{i}" + setattr(self, name, nn.Embedding(config.num_hash_buckets, shard_embedding_size)) + self.char_position_embeddings = nn.Embedding(config.num_hash_buckets, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + + def _hash_bucket_tensors(self, input_ids, num_hashes: int, num_buckets: int): + """ + Converts ids to hash bucket ids via multiple hashing. + + Args: + input_ids: The codepoints or other IDs to be hashed. + num_hashes: The number of hash functions to use. + num_buckets: The number of hash buckets (i.e. embeddings in each table). + + Returns: + A list of tensors, each of which is the hash bucket IDs from one hash function. + """ + if num_hashes > len(_PRIMES): + raise ValueError(f"`num_hashes` must be <= {len(_PRIMES)}") + + primes = _PRIMES[:num_hashes] + + result_tensors = [] + for prime in primes: + hashed = ((input_ids + 1) * prime) % num_buckets + result_tensors.append(hashed) + return result_tensors + + def _embed_hash_buckets(self, input_ids, embedding_size: int, num_hashes: int, num_buckets: int): + """Converts IDs (e.g. codepoints) into embeddings via multiple hashing.""" + if embedding_size % num_hashes != 0: + raise ValueError(f"Expected `embedding_size` ({embedding_size}) % `num_hashes` ({num_hashes}) == 0") + + hash_bucket_tensors = self._hash_bucket_tensors(input_ids, num_hashes=num_hashes, num_buckets=num_buckets) + embedding_shards = [] + for i, hash_bucket_ids in enumerate(hash_bucket_tensors): + name = f"HashBucketCodepointEmbedder_{i}" + shard_embeddings = getattr(self, name)(hash_bucket_ids) + embedding_shards.append(shard_embeddings) + + return torch.cat(embedding_shards, dim=-1) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + ) -> torch.FloatTensor: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self._embed_hash_buckets( + input_ids, self.config.hidden_size, self.config.num_hash_functions, self.config.num_hash_buckets + ) + + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + + if self.position_embedding_type == "absolute": + position_embeddings = self.char_position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class CharactersToMolecules(nn.Module): + """Convert character sequence to initial molecule sequence (i.e. downsample) using strided convolutions.""" + + def __init__(self, config): + super().__init__() + + self.conv = nn.Conv1d( + in_channels=config.hidden_size, + out_channels=config.hidden_size, + kernel_size=config.downsampling_rate, + stride=config.downsampling_rate, + ) + self.activation = ACT2FN[config.hidden_act] + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, char_encoding: torch.Tensor) -> torch.Tensor: + # `cls_encoding`: [batch, 1, hidden_size] + cls_encoding = char_encoding[:, 0:1, :] + + # char_encoding has shape [batch, char_seq, hidden_size] + # We transpose it to be [batch, hidden_size, char_seq] + char_encoding = torch.transpose(char_encoding, 1, 2) + downsampled = self.conv(char_encoding) + downsampled = torch.transpose(downsampled, 1, 2) + downsampled = self.activation(downsampled) + + # Truncate the last molecule in order to reserve a position for [CLS]. + # Often, the last position is never used (unless we completely fill the + # text buffer). This is important in order to maintain alignment on TPUs + # (i.e. a multiple of 128). + downsampled_truncated = downsampled[:, 0:-1, :] + + # We also keep [CLS] as a separate sequence position since we always + # want to reserve a position (and the model capacity that goes along + # with that) in the deep BERT stack. + # `result`: [batch, molecule_seq, molecule_dim] + result = torch.cat([cls_encoding, downsampled_truncated], dim=1) + + result = self.LayerNorm(result) + + return result + + +class ConvProjection(nn.Module): + """ + Project representations from hidden_size*2 back to hidden_size across a window of w = config.upsampling_kernel_size + characters. + """ + + def __init__(self, config): + super().__init__() + self.config = config + self.conv = nn.Conv1d( + in_channels=config.hidden_size * 2, + out_channels=config.hidden_size, + kernel_size=config.upsampling_kernel_size, + stride=1, + ) + self.activation = ACT2FN[config.hidden_act] + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward( + self, + inputs: torch.Tensor, + final_seq_char_positions: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + # inputs has shape [batch, mol_seq, molecule_hidden_size+char_hidden_final] + # we transpose it to be [batch, molecule_hidden_size+char_hidden_final, mol_seq] + inputs = torch.transpose(inputs, 1, 2) + + # PyTorch < 1.9 does not support padding="same" (which is used in the original implementation), + # so we pad the tensor manually before passing it to the conv layer + # based on https://github.com/google-research/big_transfer/blob/49afe42338b62af9fbe18f0258197a33ee578a6b/bit_tf2/models.py#L36-L38 + pad_total = self.config.upsampling_kernel_size - 1 + pad_beg = pad_total // 2 + pad_end = pad_total - pad_beg + + pad = nn.ConstantPad1d((pad_beg, pad_end), 0) + # `result`: shape (batch_size, char_seq_len, hidden_size) + result = self.conv(pad(inputs)) + result = torch.transpose(result, 1, 2) + result = self.activation(result) + result = self.LayerNorm(result) + result = self.dropout(result) + final_char_seq = result + + if final_seq_char_positions is not None: + # Limit transformer query seq and attention mask to these character + # positions to greatly reduce the compute cost. Typically, this is just + # done for the MLM training task. + # TODO add support for MLM + raise NotImplementedError("CanineForMaskedLM is currently not supported") + else: + query_seq = final_char_seq + + return query_seq + + +class CanineSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + from_tensor: torch.Tensor, + to_tensor: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + mixed_query_layer = self.query(from_tensor) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + + key_layer = self.transpose_for_scores(self.key(to_tensor)) + value_layer = self.transpose_for_scores(self.value(to_tensor)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + seq_length = from_tensor.size()[1] + position_ids_l = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(-1, 1) + position_ids_r = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(1, -1) + distance = position_ids_l - position_ids_r + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + if attention_mask.ndim == 3: + # if attention_mask is 3D, do the following: + attention_mask = torch.unsqueeze(attention_mask, dim=1) + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and the dtype's smallest value for masked positions. + attention_mask = (1.0 - attention_mask.float()) * torch.finfo(attention_scores.dtype).min + # Apply the attention mask (precomputed for all layers in CanineModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +class CanineSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward( + self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor + ) -> Tuple[torch.FloatTensor, torch.FloatTensor]: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class CanineAttention(nn.Module): + """ + Additional arguments related to local attention: + + - **local** (`bool`, *optional*, defaults to `False`) -- Whether to apply local attention. + - **always_attend_to_first_position** (`bool`, *optional*, defaults to `False`) -- Should all blocks be able to + attend + to the `to_tensor`'s first position (e.g. a [CLS] position)? - **first_position_attends_to_all** (`bool`, + *optional*, defaults to `False`) -- Should the *from_tensor*'s first position be able to attend to all + positions within the *from_tensor*? - **attend_from_chunk_width** (`int`, *optional*, defaults to 128) -- The + width of each block-wise chunk in `from_tensor`. - **attend_from_chunk_stride** (`int`, *optional*, defaults to + 128) -- The number of elements to skip when moving to the next block in `from_tensor`. - + **attend_to_chunk_width** (`int`, *optional*, defaults to 128) -- The width of each block-wise chunk in + *to_tensor*. - **attend_to_chunk_stride** (`int`, *optional*, defaults to 128) -- The number of elements to + skip when moving to the next block in `to_tensor`. + """ + + def __init__( + self, + config, + local=False, + always_attend_to_first_position: bool = False, + first_position_attends_to_all: bool = False, + attend_from_chunk_width: int = 128, + attend_from_chunk_stride: int = 128, + attend_to_chunk_width: int = 128, + attend_to_chunk_stride: int = 128, + ): + super().__init__() + self.self = CanineSelfAttention(config) + self.output = CanineSelfOutput(config) + self.pruned_heads = set() + + # additional arguments related to local attention + self.local = local + if attend_from_chunk_width < attend_from_chunk_stride: + raise ValueError( + "`attend_from_chunk_width` < `attend_from_chunk_stride` would cause sequence positions to get skipped." + ) + if attend_to_chunk_width < attend_to_chunk_stride: + raise ValueError( + "`attend_to_chunk_width` < `attend_to_chunk_stride`would cause sequence positions to get skipped." + ) + self.always_attend_to_first_position = always_attend_to_first_position + self.first_position_attends_to_all = first_position_attends_to_all + self.attend_from_chunk_width = attend_from_chunk_width + self.attend_from_chunk_stride = attend_from_chunk_stride + self.attend_to_chunk_width = attend_to_chunk_width + self.attend_to_chunk_stride = attend_to_chunk_stride + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: Tuple[torch.FloatTensor], + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: + if not self.local: + self_outputs = self.self(hidden_states, hidden_states, attention_mask, head_mask, output_attentions) + attention_output = self_outputs[0] + else: + from_seq_length = to_seq_length = hidden_states.shape[1] + from_tensor = to_tensor = hidden_states + + # Create chunks (windows) that we will attend *from* and then concatenate them. + from_chunks = [] + if self.first_position_attends_to_all: + from_chunks.append((0, 1)) + # We must skip this first position so that our output sequence is the + # correct length (this matters in the *from* sequence only). + from_start = 1 + else: + from_start = 0 + for chunk_start in range(from_start, from_seq_length, self.attend_from_chunk_stride): + chunk_end = min(from_seq_length, chunk_start + self.attend_from_chunk_width) + from_chunks.append((chunk_start, chunk_end)) + + # Determine the chunks (windows) that will attend *to*. + to_chunks = [] + if self.first_position_attends_to_all: + to_chunks.append((0, to_seq_length)) + for chunk_start in range(0, to_seq_length, self.attend_to_chunk_stride): + chunk_end = min(to_seq_length, chunk_start + self.attend_to_chunk_width) + to_chunks.append((chunk_start, chunk_end)) + + if len(from_chunks) != len(to_chunks): + raise ValueError( + f"Expected to have same number of `from_chunks` ({from_chunks}) and " + f"`to_chunks` ({from_chunks}). Check strides." + ) + + # next, compute attention scores for each pair of windows and concatenate + attention_output_chunks = [] + attention_probs_chunks = [] + for (from_start, from_end), (to_start, to_end) in zip(from_chunks, to_chunks): + from_tensor_chunk = from_tensor[:, from_start:from_end, :] + to_tensor_chunk = to_tensor[:, to_start:to_end, :] + # `attention_mask`: [batch_size, from_seq, to_seq] + # `attention_mask_chunk`: [batch_size, from_seq_chunk, to_seq_chunk] + attention_mask_chunk = attention_mask[:, from_start:from_end, to_start:to_end] + if self.always_attend_to_first_position: + cls_attention_mask = attention_mask[:, from_start:from_end, 0:1] + attention_mask_chunk = torch.cat([cls_attention_mask, attention_mask_chunk], dim=2) + + cls_position = to_tensor[:, 0:1, :] + to_tensor_chunk = torch.cat([cls_position, to_tensor_chunk], dim=1) + + attention_outputs_chunk = self.self( + from_tensor_chunk, to_tensor_chunk, attention_mask_chunk, head_mask, output_attentions + ) + attention_output_chunks.append(attention_outputs_chunk[0]) + if output_attentions: + attention_probs_chunks.append(attention_outputs_chunk[1]) + + attention_output = torch.cat(attention_output_chunks, dim=1) + + attention_output = self.output(attention_output, hidden_states) + outputs = (attention_output,) + if not self.local: + outputs = outputs + self_outputs[1:] # add attentions if we output them + else: + outputs = outputs + tuple(attention_probs_chunks) # add attentions if we output them + return outputs + + +class CanineIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class CanineOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor) -> torch.FloatTensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class CanineLayer(nn.Module): + def __init__( + self, + config, + local, + always_attend_to_first_position, + first_position_attends_to_all, + attend_from_chunk_width, + attend_from_chunk_stride, + attend_to_chunk_width, + attend_to_chunk_stride, + ): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = CanineAttention( + config, + local, + always_attend_to_first_position, + first_position_attends_to_all, + attend_from_chunk_width, + attend_from_chunk_stride, + attend_to_chunk_width, + attend_to_chunk_stride, + ) + self.intermediate = CanineIntermediate(config) + self.output = CanineOutput(config) + + def forward( + self, + hidden_states: Tuple[torch.FloatTensor], + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class CanineEncoder(nn.Module): + def __init__( + self, + config, + local=False, + always_attend_to_first_position=False, + first_position_attends_to_all=False, + attend_from_chunk_width=128, + attend_from_chunk_stride=128, + attend_to_chunk_width=128, + attend_to_chunk_stride=128, + ): + super().__init__() + self.config = config + self.layer = nn.ModuleList( + [ + CanineLayer( + config, + local, + always_attend_to_first_position, + first_position_attends_to_all, + attend_from_chunk_width, + attend_from_chunk_stride, + attend_to_chunk_width, + attend_to_chunk_stride, + ) + for _ in range(config.num_hidden_layers) + ] + ) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: Tuple[torch.FloatTensor], + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class CaninePooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +class CaninePredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class CanineLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = CaninePredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor: + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +class CanineOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = CanineLMPredictionHead(config) + + def forward( + self, + sequence_output: Tuple[torch.Tensor], + ) -> Tuple[torch.Tensor]: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class CaninePreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = CanineConfig + load_tf_weights = load_tf_weights_in_canine + base_model_prefix = "canine" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv1d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +CANINE_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`CanineConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CANINE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare CANINE Model transformer outputting raw hidden-states without any specific head on top.", + CANINE_START_DOCSTRING, +) +class CanineModel(CaninePreTrainedModel): + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + shallow_config = copy.deepcopy(config) + shallow_config.num_hidden_layers = 1 + + self.char_embeddings = CanineEmbeddings(config) + # shallow/low-dim transformer encoder to get a initial character encoding + self.initial_char_encoder = CanineEncoder( + shallow_config, + local=True, + always_attend_to_first_position=False, + first_position_attends_to_all=False, + attend_from_chunk_width=config.local_transformer_stride, + attend_from_chunk_stride=config.local_transformer_stride, + attend_to_chunk_width=config.local_transformer_stride, + attend_to_chunk_stride=config.local_transformer_stride, + ) + self.chars_to_molecules = CharactersToMolecules(config) + # deep transformer encoder + self.encoder = CanineEncoder(config) + self.projection = ConvProjection(config) + # shallow/low-dim transformer encoder to get a final character encoding + self.final_char_encoder = CanineEncoder(shallow_config) + + self.pooler = CaninePooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def _create_3d_attention_mask_from_input_mask(self, from_tensor, to_mask): + """ + Create 3D attention mask from a 2D tensor mask. + + Args: + from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...]. + to_mask: int32 Tensor of shape [batch_size, to_seq_length]. + + Returns: + float Tensor of shape [batch_size, from_seq_length, to_seq_length]. + """ + batch_size, from_seq_length = from_tensor.shape[0], from_tensor.shape[1] + + to_seq_length = to_mask.shape[1] + + to_mask = torch.reshape(to_mask, (batch_size, 1, to_seq_length)).float() + + # We don't assume that `from_tensor` is a mask (although it could be). We + # don't actually care if we attend *from* padding tokens (only *to* padding) + # tokens so we create a tensor of all ones. + broadcast_ones = torch.ones(size=(batch_size, from_seq_length, 1), dtype=torch.float32, device=to_mask.device) + + # Here we broadcast along two dimensions to create the mask. + mask = broadcast_ones * to_mask + + return mask + + def _downsample_attention_mask(self, char_attention_mask: torch.Tensor, downsampling_rate: int): + """Downsample 2D character attention mask to 2D molecule attention mask using MaxPool1d layer.""" + + # first, make char_attention_mask 3D by adding a channel dim + batch_size, char_seq_len = char_attention_mask.shape + poolable_char_mask = torch.reshape(char_attention_mask, (batch_size, 1, char_seq_len)) + + # next, apply MaxPool1d to get pooled_molecule_mask of shape (batch_size, 1, mol_seq_len) + pooled_molecule_mask = torch.nn.MaxPool1d(kernel_size=downsampling_rate, stride=downsampling_rate)( + poolable_char_mask.float() + ) + + # finally, squeeze to get tensor of shape (batch_size, mol_seq_len) + molecule_attention_mask = torch.squeeze(pooled_molecule_mask, dim=-1) + + return molecule_attention_mask + + def _repeat_molecules(self, molecules: torch.Tensor, char_seq_length: torch.Tensor) -> torch.Tensor: + """Repeats molecules to make them the same length as the char sequence.""" + + rate = self.config.downsampling_rate + + molecules_without_extra_cls = molecules[:, 1:, :] + # `repeated`: [batch_size, almost_char_seq_len, molecule_hidden_size] + repeated = torch.repeat_interleave(molecules_without_extra_cls, repeats=rate, dim=-2) + + # So far, we've repeated the elements sufficient for any `char_seq_length` + # that's a multiple of `downsampling_rate`. Now we account for the last + # n elements (n < `downsampling_rate`), i.e. the remainder of floor + # division. We do this by repeating the last molecule a few extra times. + last_molecule = molecules[:, -1:, :] + remainder_length = torch.fmod(torch.tensor(char_seq_length), torch.tensor(rate)).item() + remainder_repeated = torch.repeat_interleave( + last_molecule, + # +1 molecule to compensate for truncation. + repeats=remainder_length + rate, + dim=-2, + ) + + # `repeated`: [batch_size, char_seq_len, molecule_hidden_size] + return torch.cat([repeated, remainder_repeated], dim=-2) + + @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=CanineModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CanineModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length)), device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + molecule_attention_mask = self._downsample_attention_mask( + attention_mask, downsampling_rate=self.config.downsampling_rate + ) + extended_molecule_attention_mask: torch.Tensor = self.get_extended_attention_mask( + molecule_attention_mask, (batch_size, molecule_attention_mask.shape[-1]) + ) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + # `input_char_embeddings`: shape (batch_size, char_seq, char_dim) + input_char_embeddings = self.char_embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + ) + + # Contextualize character embeddings using shallow Transformer. + # We use a 3D attention mask for the local attention. + # `input_char_encoding`: shape (batch_size, char_seq_len, char_dim) + char_attention_mask = self._create_3d_attention_mask_from_input_mask( + input_ids if input_ids is not None else inputs_embeds, attention_mask + ) + init_chars_encoder_outputs = self.initial_char_encoder( + input_char_embeddings, + attention_mask=char_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + ) + input_char_encoding = init_chars_encoder_outputs.last_hidden_state + + # Downsample chars to molecules. + # The following lines have dimensions: [batch, molecule_seq, molecule_dim]. + # In this transformation, we change the dimensionality from `char_dim` to + # `molecule_dim`, but do *NOT* add a resnet connection. Instead, we rely on + # the resnet connections (a) from the final char transformer stack back into + # the original char transformer stack and (b) the resnet connections from + # the final char transformer stack back into the deep BERT stack of + # molecules. + # + # Empirically, it is critical to use a powerful enough transformation here: + # mean pooling causes training to diverge with huge gradient norms in this + # region of the model; using a convolution here resolves this issue. From + # this, it seems that molecules and characters require a very different + # feature space; intuitively, this makes sense. + init_molecule_encoding = self.chars_to_molecules(input_char_encoding) + + # Deep BERT encoder + # `molecule_sequence_output`: shape (batch_size, mol_seq_len, mol_dim) + encoder_outputs = self.encoder( + init_molecule_encoding, + attention_mask=extended_molecule_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + molecule_sequence_output = encoder_outputs[0] + pooled_output = self.pooler(molecule_sequence_output) if self.pooler is not None else None + + # Upsample molecules back to characters. + # `repeated_molecules`: shape (batch_size, char_seq_len, mol_hidden_size) + repeated_molecules = self._repeat_molecules(molecule_sequence_output, char_seq_length=input_shape[-1]) + + # Concatenate representations (contextualized char embeddings and repeated molecules): + # `concat`: shape [batch_size, char_seq_len, molecule_hidden_size+char_hidden_final] + concat = torch.cat([input_char_encoding, repeated_molecules], dim=-1) + + # Project representation dimension back to hidden_size + # `sequence_output`: shape (batch_size, char_seq_len, hidden_size]) + sequence_output = self.projection(concat) + + # Apply final shallow Transformer + # `sequence_output`: shape (batch_size, char_seq_len, hidden_size]) + final_chars_encoder_outputs = self.final_char_encoder( + sequence_output, + attention_mask=extended_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + ) + sequence_output = final_chars_encoder_outputs.last_hidden_state + + if output_hidden_states: + deep_encoder_hidden_states = encoder_outputs.hidden_states if return_dict else encoder_outputs[1] + all_hidden_states = ( + all_hidden_states + + init_chars_encoder_outputs.hidden_states + + deep_encoder_hidden_states + + final_chars_encoder_outputs.hidden_states + ) + + if output_attentions: + deep_encoder_self_attentions = encoder_outputs.attentions if return_dict else encoder_outputs[-1] + all_self_attentions = ( + all_self_attentions + + init_chars_encoder_outputs.attentions + + deep_encoder_self_attentions + + final_chars_encoder_outputs.attentions + ) + + if not return_dict: + output = (sequence_output, pooled_output) + output += tuple(v for v in [all_hidden_states, all_self_attentions] if v is not None) + return output + + return CanineModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +@add_start_docstrings( + """ + CANINE Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled + output) e.g. for GLUE tasks. + """, + CANINE_START_DOCSTRING, +) +class CanineForSequenceClassification(CaninePreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.canine = CanineModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.canine( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + CANINE Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a + softmax) e.g. for RocStories/SWAG tasks. + """, + CANINE_START_DOCSTRING, +) +class CanineForMultipleChoice(CaninePreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.canine = CanineModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.canine( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + CANINE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for + Named-Entity-Recognition (NER) tasks. + """, + CANINE_START_DOCSTRING, +) +class CanineForTokenClassification(CaninePreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.canine = CanineModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, CanineForTokenClassification + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google/canine-s") + >>> model = CanineForTokenClassification.from_pretrained("google/canine-s") + + >>> inputs = tokenizer( + ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt" + ... ) + + >>> with torch.no_grad(): + ... logits = model(**inputs).logits + + >>> predicted_token_class_ids = logits.argmax(-1) + + >>> # Note that tokens are classified rather then input words which means that + >>> # there might be more predicted token classes than words. + >>> # Multiple token classes might account for the same word + >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]] + >>> predicted_tokens_classes # doctest: +SKIP + ``` + + ```python + >>> labels = predicted_token_class_ids + >>> loss = model(**inputs, labels=labels).loss + >>> round(loss.item(), 2) # doctest: +SKIP + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.canine( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + CANINE Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + CANINE_START_DOCSTRING, +) +class CanineForQuestionAnswering(CaninePreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.canine = CanineModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="Splend1dchan/canine-c-squad", + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'nice puppet'", + expected_loss=8.81, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.canine( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions.clamp_(0, ignored_index) + end_positions.clamp_(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0e2e250e507a811c0f1cbbf45dabf236e1721e4a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__init__.py @@ -0,0 +1,71 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_clipseg": [ + "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", + "CLIPSegConfig", + "CLIPSegTextConfig", + "CLIPSegVisionConfig", + ], + "processing_clipseg": ["CLIPSegProcessor"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_clipseg"] = [ + "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", + "CLIPSegModel", + "CLIPSegPreTrainedModel", + "CLIPSegTextModel", + "CLIPSegVisionModel", + "CLIPSegForImageSegmentation", + ] + +if TYPE_CHECKING: + from .configuration_clipseg import ( + CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, + CLIPSegConfig, + CLIPSegTextConfig, + CLIPSegVisionConfig, + ) + from .processing_clipseg import CLIPSegProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_clipseg import ( + CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, + CLIPSegForImageSegmentation, + CLIPSegModel, + CLIPSegPreTrainedModel, + CLIPSegTextModel, + CLIPSegVisionModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bcd81c7af0e8bb44f21e204a0cee31488fc78c8f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/convert_clipseg_original_pytorch_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/convert_clipseg_original_pytorch_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1f83b359542e136af0d57779b7e3a195b14d923d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/convert_clipseg_original_pytorch_to_hf.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/modeling_clipseg.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/modeling_clipseg.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1b6be98f3062b1be8a0bc999b3ecbe055b79a590 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/modeling_clipseg.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/processing_clipseg.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/processing_clipseg.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ed4b9dd76cbf1227a395874a16b051c30d010120 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/__pycache__/processing_clipseg.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/configuration_clipseg.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/configuration_clipseg.py new file mode 100644 index 0000000000000000000000000000000000000000..07ba08f4759c93593c46378ade064c56ce974ada --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/configuration_clipseg.py @@ -0,0 +1,432 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" CLIPSeg model configuration""" + +import os +from typing import Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class CLIPSegTextConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an + CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the CLIPSeg + [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 49408): + Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented + by the `inputs_ids` passed when calling [`CLIPSegModel`]. + hidden_size (`int`, *optional*, defaults to 512): + Dimensionality of the encoder layers and the pooler layer. + intermediate_size (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each attention layer in the Transformer encoder. + max_position_embeddings (`int`, *optional*, defaults to 77): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. + layer_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the layer normalization layers. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + initializer_factor (`float`, *optional*, defaults to 1.0): + A factor for initializing all weight matrices (should be kept to 1, used internally for initialization + testing). + pad_token_id (`int`, *optional*, defaults to 1): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 49406): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 49407): + End of stream token id. + + Example: + + ```python + >>> from transformers import CLIPSegTextConfig, CLIPSegTextModel + + >>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration + >>> configuration = CLIPSegTextConfig() + + >>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration + >>> model = CLIPSegTextModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "clipseg_text_model" + + def __init__( + self, + vocab_size=49408, + hidden_size=512, + intermediate_size=2048, + num_hidden_layers=12, + num_attention_heads=8, + max_position_embeddings=77, + hidden_act="quick_gelu", + layer_norm_eps=1e-5, + attention_dropout=0.0, + initializer_range=0.02, + initializer_factor=1.0, + pad_token_id=1, + bos_token_id=49406, + eos_token_id=49407, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.max_position_embeddings = max_position_embeddings + self.layer_norm_eps = layer_norm_eps + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.initializer_factor = initializer_factor + self.attention_dropout = attention_dropout + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + # get the text config dict if we are loading from CLIPSegConfig + if config_dict.get("model_type") == "clipseg": + config_dict = config_dict["text_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class CLIPSegVisionConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an + CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the CLIPSeg + [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 32): + The size (resolution) of each patch. + hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. + layer_norm_eps (`float`, *optional*, defaults to 1e-05): + The epsilon used by the layer normalization layers. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + initializer_factor (`float`, *optional*, defaults to 1.0): + A factor for initializing all weight matrices (should be kept to 1, used internally for initialization + testing). + + Example: + + ```python + >>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel + + >>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration + >>> configuration = CLIPSegVisionConfig() + + >>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration + >>> model = CLIPSegVisionModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "clipseg_vision_model" + + def __init__( + self, + hidden_size=768, + intermediate_size=3072, + num_hidden_layers=12, + num_attention_heads=12, + num_channels=3, + image_size=224, + patch_size=32, + hidden_act="quick_gelu", + layer_norm_eps=1e-5, + attention_dropout=0.0, + initializer_range=0.02, + initializer_factor=1.0, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_channels = num_channels + self.patch_size = patch_size + self.image_size = image_size + self.initializer_range = initializer_range + self.initializer_factor = initializer_factor + self.attention_dropout = attention_dropout + self.layer_norm_eps = layer_norm_eps + self.hidden_act = hidden_act + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": + cls._set_token_in_kwargs(kwargs) + + config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) + + # get the vision config dict if we are loading from CLIPSegConfig + if config_dict.get("model_type") == "clipseg": + config_dict = config_dict["vision_config"] + + if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: + logger.warning( + f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " + f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." + ) + + return cls.from_dict(config_dict, **kwargs) + + +class CLIPSegConfig(PretrainedConfig): + r""" + [`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to + instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs. + Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg + [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + text_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`CLIPSegTextConfig`]. + vision_config (`dict`, *optional*): + Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`]. + projection_dim (`int`, *optional*, defaults to 512): + Dimensionality of text and vision projection layers. + logit_scale_init_value (`float`, *optional*, defaults to 2.6592): + The inital value of the *logit_scale* paramter. Default is used as per the original CLIPSeg implementation. + extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`): + Layers to extract when forwarding the query image through the frozen visual backbone of CLIP. + reduce_dim (`int`, *optional*, defaults to 64): + Dimensionality to reduce the CLIP vision embedding. + decoder_num_attention_heads (`int`, *optional*, defaults to 4): + Number of attention heads in the decoder of CLIPSeg. + decoder_attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. + decoder_intermediate_size (`int`, *optional*, defaults to 2048): + Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder. + conditional_layer (`int`, *optional*, defaults to 0): + The layer to use of the Transformer encoder whose activations will be combined with the condition + embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used. + use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`): + Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained + segmentation. + kwargs (*optional*): + Dictionary of keyword arguments. + + Example: + + ```python + >>> from transformers import CLIPSegConfig, CLIPSegModel + + >>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration + >>> configuration = CLIPSegConfig() + + >>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration + >>> model = CLIPSegModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + + >>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig + + >>> # Initializing a CLIPSegText and CLIPSegVision configuration + >>> config_text = CLIPSegTextConfig() + >>> config_vision = CLIPSegVisionConfig() + + >>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision) + ```""" + + model_type = "clipseg" + + def __init__( + self, + text_config=None, + vision_config=None, + projection_dim=512, + logit_scale_init_value=2.6592, + extract_layers=[3, 6, 9], + reduce_dim=64, + decoder_num_attention_heads=4, + decoder_attention_dropout=0.0, + decoder_hidden_act="quick_gelu", + decoder_intermediate_size=2048, + conditional_layer=0, + use_complex_transposed_convolution=False, + **kwargs, + ): + # If `_config_dict` exist, we use them for the backward compatibility. + # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot + # of confusion!). + text_config_dict = kwargs.pop("text_config_dict", None) + vision_config_dict = kwargs.pop("vision_config_dict", None) + + super().__init__(**kwargs) + + # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in + # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most + # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. + if text_config_dict is not None: + if text_config is None: + text_config = {} + + # This is the complete result when using `text_config_dict`. + _text_config_dict = CLIPSegTextConfig(**text_config_dict).to_dict() + + # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. + for key, value in _text_config_dict.items(): + if key in text_config and value != text_config[key] and key not in ["transformers_version"]: + # If specified in `text_config_dict` + if key in text_config_dict: + message = ( + f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " + f'The value `text_config_dict["{key}"]` will be used instead.' + ) + # If inferred from default argument values (just to be super careful) + else: + message = ( + f"`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The " + f'value `text_config["{key}"]` will be overriden.' + ) + logger.info(message) + + # Update all values in `text_config` with the ones in `_text_config_dict`. + text_config.update(_text_config_dict) + + if vision_config_dict is not None: + if vision_config is None: + vision_config = {} + + # This is the complete result when using `vision_config_dict`. + _vision_config_dict = CLIPSegVisionConfig(**vision_config_dict).to_dict() + # convert keys to string instead of integer + if "id2label" in _vision_config_dict: + _vision_config_dict["id2label"] = { + str(key): value for key, value in _vision_config_dict["id2label"].items() + } + + # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. + for key, value in _vision_config_dict.items(): + if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: + # If specified in `vision_config_dict` + if key in vision_config_dict: + message = ( + f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " + f'values. The value `vision_config_dict["{key}"]` will be used instead.' + ) + # If inferred from default argument values (just to be super careful) + else: + message = ( + f"`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. " + f'The value `vision_config["{key}"]` will be overriden.' + ) + logger.info(message) + + # Update all values in `vision_config` with the ones in `_vision_config_dict`. + vision_config.update(_vision_config_dict) + + if text_config is None: + text_config = {} + logger.info("`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.") + + if vision_config is None: + vision_config = {} + logger.info("`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.") + + self.text_config = CLIPSegTextConfig(**text_config) + self.vision_config = CLIPSegVisionConfig(**vision_config) + + self.projection_dim = projection_dim + self.logit_scale_init_value = logit_scale_init_value + self.extract_layers = extract_layers + self.reduce_dim = reduce_dim + self.decoder_num_attention_heads = decoder_num_attention_heads + self.decoder_attention_dropout = decoder_attention_dropout + self.decoder_hidden_act = decoder_hidden_act + self.decoder_intermediate_size = decoder_intermediate_size + self.conditional_layer = conditional_layer + self.initializer_factor = 1.0 + self.use_complex_transposed_convolution = use_complex_transposed_convolution + + @classmethod + def from_text_vision_configs(cls, text_config: CLIPSegTextConfig, vision_config: CLIPSegVisionConfig, **kwargs): + r""" + Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision + model configuration. + + Returns: + [`CLIPSegConfig`]: An instance of a configuration object + """ + + return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/convert_clipseg_original_pytorch_to_hf.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/convert_clipseg_original_pytorch_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..c614d61e5b3dd8a51030d6ed71709f44ea4f69b3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/convert_clipseg_original_pytorch_to_hf.py @@ -0,0 +1,264 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Convert CLIPSeg checkpoints from the original repository. URL: https://github.com/timojl/clipseg.""" + +import argparse + +import requests +import torch +from PIL import Image + +from transformers import ( + CLIPSegConfig, + CLIPSegForImageSegmentation, + CLIPSegProcessor, + CLIPSegTextConfig, + CLIPSegVisionConfig, + CLIPTokenizer, + ViTImageProcessor, +) + + +def get_clipseg_config(model_name): + text_config = CLIPSegTextConfig() + vision_config = CLIPSegVisionConfig(patch_size=16) + + use_complex_transposed_convolution = True if "refined" in model_name else False + reduce_dim = 16 if "rd16" in model_name else 64 + + config = CLIPSegConfig.from_text_vision_configs( + text_config, + vision_config, + use_complex_transposed_convolution=use_complex_transposed_convolution, + reduce_dim=reduce_dim, + ) + return config + + +def rename_key(name): + # update prefixes + if "clip_model" in name: + name = name.replace("clip_model", "clip") + if "transformer" in name: + if "visual" in name: + name = name.replace("visual.transformer", "vision_model") + else: + name = name.replace("transformer", "text_model") + if "resblocks" in name: + name = name.replace("resblocks", "encoder.layers") + if "ln_1" in name: + name = name.replace("ln_1", "layer_norm1") + if "ln_2" in name: + name = name.replace("ln_2", "layer_norm2") + if "c_fc" in name: + name = name.replace("c_fc", "fc1") + if "c_proj" in name: + name = name.replace("c_proj", "fc2") + if "attn" in name and "self" not in name: + name = name.replace("attn", "self_attn") + # text encoder + if "token_embedding" in name: + name = name.replace("token_embedding", "text_model.embeddings.token_embedding") + if "positional_embedding" in name and "visual" not in name: + name = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight") + if "ln_final" in name: + name = name.replace("ln_final", "text_model.final_layer_norm") + # vision encoder + if "visual.class_embedding" in name: + name = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding") + if "visual.conv1" in name: + name = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding") + if "visual.positional_embedding" in name: + name = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight") + if "visual.ln_pre" in name: + name = name.replace("visual.ln_pre", "vision_model.pre_layrnorm") + if "visual.ln_post" in name: + name = name.replace("visual.ln_post", "vision_model.post_layernorm") + # projection layers + if "visual.proj" in name: + name = name.replace("visual.proj", "visual_projection.weight") + if "text_projection" in name: + name = name.replace("text_projection", "text_projection.weight") + # decoder + if "trans_conv" in name: + name = name.replace("trans_conv", "transposed_convolution") + if "film_mul" in name or "film_add" in name or "reduce" in name or "transposed_convolution" in name: + name = "decoder." + name + if "blocks" in name: + name = name.replace("blocks", "decoder.layers") + if "linear1" in name: + name = name.replace("linear1", "mlp.fc1") + if "linear2" in name: + name = name.replace("linear2", "mlp.fc2") + if "norm1" in name and "layer_" not in name: + name = name.replace("norm1", "layer_norm1") + if "norm2" in name and "layer_" not in name: + name = name.replace("norm2", "layer_norm2") + + return name + + +def convert_state_dict(orig_state_dict, config): + for key in orig_state_dict.copy().keys(): + val = orig_state_dict.pop(key) + + if key.startswith("clip_model") and "attn.in_proj" in key: + key_split = key.split(".") + if "visual" in key: + layer_num = int(key_split[4]) + dim = config.vision_config.hidden_size + prefix = "vision_model" + else: + layer_num = int(key_split[3]) + dim = config.text_config.hidden_size + prefix = "text_model" + + if "weight" in key: + orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :] + orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[ + dim : dim * 2, : + ] + orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :] + else: + orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] + orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2] + orig_state_dict[f"clip.{prefix}.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] + elif "self_attn" in key and "out_proj" not in key: + key_split = key.split(".") + layer_num = int(key_split[1]) + dim = config.reduce_dim + if "weight" in key: + orig_state_dict[f"decoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :] + orig_state_dict[f"decoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[dim : dim * 2, :] + orig_state_dict[f"decoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :] + else: + orig_state_dict[f"decoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] + orig_state_dict[f"decoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2] + orig_state_dict[f"decoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] + else: + new_name = rename_key(key) + if "visual_projection" in new_name or "text_projection" in new_name: + val = val.T + orig_state_dict[new_name] = val + + return orig_state_dict + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + image = Image.open(requests.get(url, stream=True).raw) + return image + + +def convert_clipseg_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub): + config = get_clipseg_config(model_name) + model = CLIPSegForImageSegmentation(config) + model.eval() + + state_dict = torch.load(checkpoint_path, map_location="cpu") + + # remove some keys + for key in state_dict.copy().keys(): + if key.startswith("model"): + state_dict.pop(key, None) + + # rename some keys + state_dict = convert_state_dict(state_dict, config) + missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) + + if missing_keys != ["clip.text_model.embeddings.position_ids", "clip.vision_model.embeddings.position_ids"]: + raise ValueError("Missing keys that are not expected: {}".format(missing_keys)) + if unexpected_keys != ["decoder.reduce.weight", "decoder.reduce.bias"]: + raise ValueError(f"Unexpected keys: {unexpected_keys}") + + image_processor = ViTImageProcessor(size=352) + tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") + processor = CLIPSegProcessor(image_processor=image_processor, tokenizer=tokenizer) + + image = prepare_img() + text = ["a glass", "something to fill", "wood", "a jar"] + + inputs = processor(text=text, images=[image] * len(text), padding="max_length", return_tensors="pt") + + with torch.no_grad(): + outputs = model(**inputs) + + # verify values + expected_conditional = torch.tensor([0.1110, -0.1882, 0.1645]) + expected_pooled_output = torch.tensor([0.2692, -0.7197, -0.1328]) + if model_name == "clipseg-rd64-refined": + expected_masks_slice = torch.tensor( + [[-10.0407, -9.9431, -10.2646], [-9.9751, -9.7064, -9.9586], [-9.6891, -9.5645, -9.9618]] + ) + elif model_name == "clipseg-rd64": + expected_masks_slice = torch.tensor( + [[-7.2877, -7.2711, -7.2463], [-7.2652, -7.2780, -7.2520], [-7.2239, -7.2204, -7.2001]] + ) + elif model_name == "clipseg-rd16": + expected_masks_slice = torch.tensor( + [[-6.3955, -6.4055, -6.4151], [-6.3911, -6.4033, -6.4100], [-6.3474, -6.3702, -6.3762]] + ) + else: + raise ValueError(f"Model name {model_name} not supported.") + + assert torch.allclose(outputs.logits[0, :3, :3], expected_masks_slice, atol=1e-3) + assert torch.allclose(outputs.conditional_embeddings[0, :3], expected_conditional, atol=1e-3) + assert torch.allclose(outputs.pooled_output[0, :3], expected_pooled_output, atol=1e-3) + print("Looks ok!") + + if pytorch_dump_folder_path is not None: + print(f"Saving model and processor to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + print(f"Pushing model and processor for {model_name} to the hub") + model.push_to_hub(f"CIDAS/{model_name}") + processor.push_to_hub(f"CIDAS/{model_name}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model_name", + default="clipseg-rd64", + type=str, + choices=["clipseg-rd16", "clipseg-rd64", "clipseg-rd64-refined"], + help=( + "Name of the model. Supported models are: clipseg-rd64, clipseg-rd16 and clipseg-rd64-refined (rd meaning" + " reduce dimension)" + ), + ) + parser.add_argument( + "--checkpoint_path", + default="/Users/nielsrogge/Documents/CLIPSeg/clip_plus_rd64-uni.pth", + type=str, + help=( + "Path to the original checkpoint. Note that the script assumes that the checkpoint includes both CLIP and" + " the decoder weights." + ), + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + + args = parser.parse_args() + convert_clipseg_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/modeling_clipseg.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/modeling_clipseg.py new file mode 100644 index 0000000000000000000000000000000000000000..06e4c83e7e532b56fa45fc2192e62556c1c3ecb3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/modeling_clipseg.py @@ -0,0 +1,1477 @@ +# coding=utf-8 +# Copyright 2022 The OpenAI Team Authors and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch CLIPSeg model.""" + +import copy +import math +from dataclasses import dataclass +from typing import Any, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask +from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_clipseg import CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig + + +logger = logging.get_logger(__name__) + + +_CHECKPOINT_FOR_DOC = "CIDAS/clipseg-rd64-refined" + + +from ..deprecated._archive_maps import CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# contrastive loss function, adapted from +# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html +def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: + return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) + + +# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clipseg +def clipseg_loss(similarity: torch.Tensor) -> torch.Tensor: + caption_loss = contrastive_loss(similarity) + image_loss = contrastive_loss(similarity.t()) + return (caption_loss + image_loss) / 2.0 + + +@dataclass +# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->CLIPSeg +class CLIPSegOutput(ModelOutput): + """ + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): + Contrastive loss for image-text similarity. + logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): + The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text + similarity scores. + logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): + The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image + similarity scores. + text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): + The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`]. + image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): + The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`]. + text_model_output(`BaseModelOutputWithPooling`): + The output of the [`CLIPSegTextModel`]. + vision_model_output(`BaseModelOutputWithPooling`): + The output of the [`CLIPSegVisionModel`]. + """ + + loss: Optional[torch.FloatTensor] = None + logits_per_image: torch.FloatTensor = None + logits_per_text: torch.FloatTensor = None + text_embeds: torch.FloatTensor = None + image_embeds: torch.FloatTensor = None + text_model_output: BaseModelOutputWithPooling = None + vision_model_output: BaseModelOutputWithPooling = None + + def to_tuple(self) -> Tuple[Any]: + return tuple( + self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() + for k in self.keys() + ) + + +@dataclass +class CLIPSegDecoderOutput(ModelOutput): + """ + Args: + logits (`torch.FloatTensor` of shape `(batch_size, height, width)`): + Classification scores for each pixel. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class CLIPSegImageSegmentationOutput(ModelOutput): + """ + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): + Contrastive loss for image-text similarity. + ... + vision_model_output (`BaseModelOutputWithPooling`): + The output of the [`CLIPSegVisionModel`]. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + conditional_embeddings: torch.FloatTensor = None + pooled_output: torch.FloatTensor = None + vision_model_output: BaseModelOutputWithPooling = None + decoder_output: CLIPSegDecoderOutput = None + + def to_tuple(self) -> Tuple[Any]: + return tuple( + self[k] if k not in ["vision_model_output", "decoder_output"] else getattr(self, k).to_tuple() + for k in self.keys() + ) + + +class CLIPSegVisionEmbeddings(nn.Module): + # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.__init__ with CLIP->CLIPSeg + def __init__(self, config: CLIPSegVisionConfig): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.image_size = config.image_size + self.patch_size = config.patch_size + + self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) + + self.patch_embedding = nn.Conv2d( + in_channels=config.num_channels, + out_channels=self.embed_dim, + kernel_size=self.patch_size, + stride=self.patch_size, + bias=False, + ) + + self.num_patches = (self.image_size // self.patch_size) ** 2 + self.num_positions = self.num_patches + 1 + self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) + self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) + + def interpolate_position_embeddings(self, new_size): + if len(new_size) != 2: + raise ValueError("new_size should consist of 2 values") + + num_patches_one_direction = int(self.num_patches**0.5) + # we interpolate the position embeddings in 2D + a = self.position_embedding.weight[1:].T.view( + 1, self.config.hidden_size, num_patches_one_direction, num_patches_one_direction + ) + b = ( + nn.functional.interpolate(a, new_size, mode="bicubic", align_corners=False) + .squeeze(0) + .view(self.config.hidden_size, new_size[0] * new_size[1]) + .T + ) + result = torch.cat([self.position_embedding.weight[:1], b]) + + return result + + def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: + batch_size = pixel_values.shape[0] + patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid] + patch_embeds = patch_embeds.flatten(2).transpose(1, 2) + + class_embeds = self.class_embedding.expand(batch_size, 1, -1) + embeddings = torch.cat([class_embeds, patch_embeds], dim=1) + + if embeddings.shape[1] != self.num_positions: + new_shape = int(math.sqrt(embeddings.shape[1] - 1)) + embeddings = embeddings + self.interpolate_position_embeddings((new_shape, new_shape)) + embeddings = embeddings.to(embeddings.dtype) + else: + embeddings = embeddings + self.position_embedding(self.position_ids) + + return embeddings + + +# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->CLIPSeg +class CLIPSegTextEmbeddings(nn.Module): + def __init__(self, config: CLIPSegTextConfig): + super().__init__() + embed_dim = config.hidden_size + + self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) + self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + if inputs_embeds is None: + inputs_embeds = self.token_embedding(input_ids) + + position_embeddings = self.position_embedding(position_ids) + embeddings = inputs_embeds + position_embeddings + + return embeddings + + +# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->CLIPSeg +class CLIPSegAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {self.num_heads})." + ) + self.scale = self.head_dim**-0.5 + self.dropout = config.attention_dropout + + self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + causal_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + bsz, tgt_len, embed_dim = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scale + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + # apply the causal_attention_mask first + if causal_attention_mask is not None: + if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {causal_attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if output_attentions: + # this operation is a bit akward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped + + +# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->CLIPSeg +class CLIPSegMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) + self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->CLIPSeg +class CLIPSegEncoderLayer(nn.Module): + def __init__(self, config: CLIPSegConfig): + super().__init__() + self.embed_dim = config.hidden_size + self.self_attn = CLIPSegAttention(config) + self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.mlp = CLIPSegMLP(config) + self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + causal_attention_mask: torch.Tensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + `(config.encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + hidden_states = self.layer_norm1(hidden_states) + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + causal_attention_mask=causal_attention_mask, + output_attentions=output_attentions, + ) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.layer_norm2(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class CLIPSegPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = CLIPSegConfig + base_model_prefix = "clip" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_factor + if isinstance(module, CLIPSegTextEmbeddings): + module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) + module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) + elif isinstance(module, CLIPSegVisionEmbeddings): + factor = self.config.initializer_factor + nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) + nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) + nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) + elif isinstance(module, CLIPSegAttention): + factor = self.config.initializer_factor + in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor + out_proj_std = (module.embed_dim**-0.5) * factor + nn.init.normal_(module.q_proj.weight, std=in_proj_std) + nn.init.normal_(module.k_proj.weight, std=in_proj_std) + nn.init.normal_(module.v_proj.weight, std=in_proj_std) + nn.init.normal_(module.out_proj.weight, std=out_proj_std) + elif isinstance(module, CLIPSegMLP): + factor = self.config.initializer_factor + in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor + fc_std = (2 * module.config.hidden_size) ** -0.5 * factor + nn.init.normal_(module.fc1.weight, std=fc_std) + nn.init.normal_(module.fc2.weight, std=in_proj_std) + elif isinstance(module, CLIPSegModel): + nn.init.normal_( + module.text_projection.weight, + std=module.text_embed_dim**-0.5 * self.config.initializer_factor, + ) + nn.init.normal_( + module.visual_projection.weight, + std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, + ) + + if isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + + +CLIPSEG_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`CLIPSegConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CLIPSEG_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +CLIPSEG_VISION_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +CLIPSEG_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. + return_loss (`bool`, *optional*): + Whether or not to return the contrastive loss. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->CLIPSeg +class CLIPSegEncoder(nn.Module): + """ + Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a + [`CLIPSegEncoderLayer`]. + + Args: + config: CLIPSegConfig + """ + + def __init__(self, config: CLIPSegConfig): + super().__init__() + self.config = config + self.layers = nn.ModuleList([CLIPSegEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + inputs_embeds, + attention_mask: Optional[torch.Tensor] = None, + causal_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Causal mask for the text model. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + hidden_states = inputs_embeds + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + causal_attention_mask, + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + causal_attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class CLIPSegTextTransformer(nn.Module): + # Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.__init__ with CLIP->CLIPSeg + def __init__(self, config: CLIPSegTextConfig): + super().__init__() + self.config = config + embed_dim = config.hidden_size + self.embeddings = CLIPSegTextEmbeddings(config) + self.encoder = CLIPSegEncoder(config) + self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + + # For `pooled_output` computation + self.eos_token_id = config.eos_token_id + + @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig) + # Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer.forward with clip->clipseg, CLIP->CLIPSeg + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is None: + raise ValueError("You have to specify input_ids") + + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + + hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) + + # CLIPSeg's text model uses causal mask, prepare it here. + # https://github.com/openai/CLIPSeg/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clipseg/model.py#L324 + causal_attention_mask = _create_4d_causal_attention_mask( + input_shape, hidden_states.dtype, device=hidden_states.device + ) + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) + + encoder_outputs = self.encoder( + inputs_embeds=hidden_states, + attention_mask=attention_mask, + causal_attention_mask=causal_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + last_hidden_state = self.final_layer_norm(last_hidden_state) + + if self.eos_token_id == 2: + # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. + # A CLIPSeg model with such `eos_token_id` in the config can't work correctly with extra new tokens added + # ------------------------------------------------------------ + # text_embeds.shape = [batch_size, sequence_length, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 + pooled_output = last_hidden_state[ + torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), + input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), + ] + else: + # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) + pooled_output = last_hidden_state[ + torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), + # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) + (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id) + .int() + .argmax(dim=-1), + ] + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class CLIPSegTextModel(CLIPSegPreTrainedModel): + config_class = CLIPSegTextConfig + + _no_split_modules = ["CLIPSegTextEmbeddings", "CLIPSegEncoderLayer"] + + def __init__(self, config: CLIPSegTextConfig): + super().__init__(config) + self.text_model = CLIPSegTextTransformer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.text_model.embeddings.token_embedding + + def set_input_embeddings(self, value): + self.text_model.embeddings.token_embedding = value + + @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, CLIPSegTextModel + + >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined") + >>> model = CLIPSegTextModel.from_pretrained("CIDAS/clipseg-rd64-refined") + + >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + >>> pooled_output = outputs.pooler_output # pooled (EOS token) states + ```""" + return self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class CLIPSegVisionTransformer(nn.Module): + # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.__init__ with CLIP->CLIPSeg + def __init__(self, config: CLIPSegVisionConfig): + super().__init__() + self.config = config + embed_dim = config.hidden_size + + self.embeddings = CLIPSegVisionEmbeddings(config) + self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + self.encoder = CLIPSegEncoder(config) + self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + + @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig) + # Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + hidden_states = self.embeddings(pixel_values) + hidden_states = self.pre_layrnorm(hidden_states) + + encoder_outputs = self.encoder( + inputs_embeds=hidden_states, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + pooled_output = last_hidden_state[:, 0, :] + pooled_output = self.post_layernorm(pooled_output) + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class CLIPSegVisionModel(CLIPSegPreTrainedModel): + config_class = CLIPSegVisionConfig + main_input_name = "pixel_values" + + def __init__(self, config: CLIPSegVisionConfig): + super().__init__(config) + self.vision_model = CLIPSegVisionTransformer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.vision_model.embeddings.patch_embedding + + @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, CLIPSegVisionModel + + >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") + >>> model = CLIPSegVisionModel.from_pretrained("CIDAS/clipseg-rd64-refined") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor(images=image, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + >>> pooled_output = outputs.pooler_output # pooled CLS states + ```""" + return self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +@add_start_docstrings(CLIPSEG_START_DOCSTRING) +class CLIPSegModel(CLIPSegPreTrainedModel): + config_class = CLIPSegConfig + + def __init__(self, config: CLIPSegConfig): + super().__init__(config) + + if not isinstance(config.text_config, CLIPSegTextConfig): + raise ValueError( + "config.text_config is expected to be of type CLIPSegTextConfig but is of type" + f" {type(config.text_config)}." + ) + + if not isinstance(config.vision_config, CLIPSegVisionConfig): + raise ValueError( + "config.vision_config is expected to be of type CLIPSegVisionConfig but is of type" + f" {type(config.vision_config)}." + ) + + text_config = config.text_config + vision_config = config.vision_config + + self.projection_dim = config.projection_dim + self.text_embed_dim = text_config.hidden_size + self.vision_embed_dim = vision_config.hidden_size + + self.text_model = CLIPSegTextTransformer(text_config) + self.vision_model = CLIPSegVisionTransformer(vision_config) + + self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) + self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) + self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING) + def get_text_features( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by + applying the projection layer to the pooled output of [`CLIPSegTextModel`]. + + Examples: + + ```python + >>> from transformers import AutoTokenizer, CLIPSegModel + + >>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined") + >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") + + >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") + >>> text_features = model.get_text_features(**inputs) + ```""" + # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = text_outputs[1] + text_features = self.text_projection(pooled_output) + + return text_features + + @add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING) + def get_image_features( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by + applying the projection layer to the pooled output of [`CLIPSegVisionModel`]. + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, CLIPSegModel + + >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") + >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor(images=image, return_tensors="pt") + + >>> image_features = model.get_image_features(**inputs) + ```""" + # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = vision_outputs[1] # pooled_output + image_features = self.visual_projection(pooled_output) + + return image_features + + @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CLIPSegOutput, config_class=CLIPSegConfig) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + pixel_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + return_loss: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CLIPSegOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, CLIPSegModel + + >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") + >>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor( + ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True + ... ) + + >>> outputs = model(**inputs) + >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score + >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities + ```""" + # Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + image_embeds = vision_outputs[1] + image_embeds = self.visual_projection(image_embeds) + + text_embeds = text_outputs[1] + text_embeds = self.text_projection(text_embeds) + + # normalized features + image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) + text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) + + # cosine similarity as logits + logit_scale = self.logit_scale.exp() + logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale + logits_per_image = logits_per_text.t() + + loss = None + if return_loss: + loss = clipseg_loss(logits_per_text) + + if not return_dict: + output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) + return ((loss,) + output) if loss is not None else output + + return CLIPSegOutput( + loss=loss, + logits_per_image=logits_per_image, + logits_per_text=logits_per_text, + text_embeds=text_embeds, + image_embeds=image_embeds, + text_model_output=text_outputs, + vision_model_output=vision_outputs, + ) + + +class CLIPSegDecoderLayer(nn.Module): + """ + CLIPSeg decoder layer, which is identical to `CLIPSegEncoderLayer`, except that normalization is applied after + self-attention/MLP, rather than before. + """ + + # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer.__init__ with CLIP->CLIPSeg + def __init__(self, config: CLIPSegConfig): + super().__init__() + self.embed_dim = config.hidden_size + self.self_attn = CLIPSegAttention(config) + self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.mlp = CLIPSegMLP(config) + self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + causal_attention_mask: torch.Tensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + `(config.encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + causal_attention_mask=causal_attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = residual + hidden_states + hidden_states = self.layer_norm1(hidden_states) + + residual = hidden_states + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + hidden_states = self.layer_norm2(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class CLIPSegDecoder(CLIPSegPreTrainedModel): + def __init__(self, config: CLIPSegConfig): + super().__init__(config) + + self.conditional_layer = config.conditional_layer + + self.film_mul = nn.Linear(config.projection_dim, config.reduce_dim) + self.film_add = nn.Linear(config.projection_dim, config.reduce_dim) + + if config.use_complex_transposed_convolution: + transposed_kernels = (config.vision_config.patch_size // 4, config.vision_config.patch_size // 4) + + self.transposed_convolution = nn.Sequential( + nn.Conv2d(config.reduce_dim, config.reduce_dim, kernel_size=3, padding=1), + nn.ReLU(), + nn.ConvTranspose2d( + config.reduce_dim, + config.reduce_dim // 2, + kernel_size=transposed_kernels[0], + stride=transposed_kernels[0], + ), + nn.ReLU(), + nn.ConvTranspose2d( + config.reduce_dim // 2, 1, kernel_size=transposed_kernels[1], stride=transposed_kernels[1] + ), + ) + else: + self.transposed_convolution = nn.ConvTranspose2d( + config.reduce_dim, 1, config.vision_config.patch_size, stride=config.vision_config.patch_size + ) + + depth = len(config.extract_layers) + self.reduces = nn.ModuleList( + [nn.Linear(config.vision_config.hidden_size, config.reduce_dim) for _ in range(depth)] + ) + + decoder_config = copy.deepcopy(config.vision_config) + decoder_config.hidden_size = config.reduce_dim + decoder_config.num_attention_heads = config.decoder_num_attention_heads + decoder_config.intermediate_size = config.decoder_intermediate_size + decoder_config.hidden_act = "relu" + self.layers = nn.ModuleList([CLIPSegDecoderLayer(decoder_config) for _ in range(len(config.extract_layers))]) + + def forward( + self, + hidden_states: Tuple[torch.Tensor], + conditional_embeddings: torch.Tensor, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = True, + ): + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + activations = hidden_states[::-1] + + output = None + for i, (activation, layer, reduce) in enumerate(zip(activations, self.layers, self.reduces)): + if output is not None: + output = reduce(activation) + output + else: + output = reduce(activation) + + if i == self.conditional_layer: + output = self.film_mul(conditional_embeddings) * output.permute(1, 0, 2) + self.film_add( + conditional_embeddings + ) + output = output.permute(1, 0, 2) + + layer_outputs = layer( + output, attention_mask=None, causal_attention_mask=None, output_attentions=output_attentions + ) + + output = layer_outputs[0] + + if output_hidden_states: + all_hidden_states += (output,) + + if output_attentions: + all_attentions += (layer_outputs[1],) + + output = output[:, 1:, :].permute(0, 2, 1) # remove cls token and reshape to [batch_size, reduce_dim, seq_len] + + size = int(math.sqrt(output.shape[2])) + + batch_size = conditional_embeddings.shape[0] + output = output.view(batch_size, output.shape[1], size, size) + + logits = self.transposed_convolution(output).squeeze(1) + + if not return_dict: + return tuple(v for v in [logits, all_hidden_states, all_attentions] if v is not None) + + return CLIPSegDecoderOutput( + logits=logits, + hidden_states=all_hidden_states, + attentions=all_attentions, + ) + + +@add_start_docstrings( + """ + CLIPSeg model with a Transformer-based decoder on top for zero-shot and one-shot image segmentation. + """, + CLIPSEG_START_DOCSTRING, +) +class CLIPSegForImageSegmentation(CLIPSegPreTrainedModel): + config_class = CLIPSegConfig + + def __init__(self, config: CLIPSegConfig): + super().__init__(config) + + self.config = config + + self.clip = CLIPSegModel(config) + self.extract_layers = config.extract_layers + + self.decoder = CLIPSegDecoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_conditional_embeddings( + self, + batch_size: int = None, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + conditional_pixel_values: Optional[torch.Tensor] = None, + ): + if input_ids is not None: + # compute conditional embeddings from texts + if len(input_ids) != batch_size: + raise ValueError("Make sure to pass as many prompt texts as there are query images") + with torch.no_grad(): + conditional_embeddings = self.clip.get_text_features( + input_ids, attention_mask=attention_mask, position_ids=position_ids + ) + elif conditional_pixel_values is not None: + # compute conditional embeddings from images + if len(conditional_pixel_values) != batch_size: + raise ValueError("Make sure to pass as many prompt images as there are query images") + with torch.no_grad(): + conditional_embeddings = self.clip.get_image_features(conditional_pixel_values) + else: + raise ValueError( + "Invalid conditional, should be either provided as `input_ids` or `conditional_pixel_values`" + ) + + return conditional_embeddings + + @add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CLIPSegImageSegmentationOutput, config_class=CLIPSegTextConfig) + def forward( + self, + input_ids: Optional[torch.FloatTensor] = None, + pixel_values: Optional[torch.FloatTensor] = None, + conditional_pixel_values: Optional[torch.FloatTensor] = None, + conditional_embeddings: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CLIPSegOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoProcessor, CLIPSegForImageSegmentation + >>> from PIL import Image + >>> import requests + + >>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") + >>> model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + >>> texts = ["a cat", "a remote", "a blanket"] + >>> inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt") + + >>> outputs = model(**inputs) + + >>> logits = outputs.logits + >>> print(logits.shape) + torch.Size([3, 352, 352]) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # step 1: forward the query images through the frozen CLIP vision encoder + with torch.no_grad(): + vision_outputs = self.clip.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=True, # we need the intermediate hidden states + return_dict=return_dict, + ) + pooled_output = self.clip.visual_projection(vision_outputs[1]) + + hidden_states = vision_outputs.hidden_states if return_dict else vision_outputs[2] + # we add +1 here as the hidden states also include the initial embeddings + activations = [hidden_states[i + 1] for i in self.extract_layers] + + # update vision_outputs + if return_dict: + vision_outputs = BaseModelOutputWithPooling( + last_hidden_state=vision_outputs.last_hidden_state, + pooler_output=vision_outputs.pooler_output, + hidden_states=vision_outputs.hidden_states if output_hidden_states else None, + attentions=vision_outputs.attentions, + ) + else: + vision_outputs = ( + vision_outputs[:2] + vision_outputs[3:] if not output_hidden_states else vision_outputs + ) + + # step 2: compute conditional embeddings, either from text, images or an own provided embedding + if conditional_embeddings is None: + conditional_embeddings = self.get_conditional_embeddings( + batch_size=pixel_values.shape[0], + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + conditional_pixel_values=conditional_pixel_values, + ) + else: + if conditional_embeddings.shape[0] != pixel_values.shape[0]: + raise ValueError( + "Make sure to pass as many conditional embeddings as there are query images in the batch" + ) + if conditional_embeddings.shape[1] != self.config.projection_dim: + raise ValueError( + "Make sure that the feature dimension of the conditional embeddings matches" + " `config.projection_dim`." + ) + + # step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks + decoder_outputs = self.decoder( + activations, + conditional_embeddings, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + logits = decoder_outputs.logits if return_dict else decoder_outputs[0] + + loss = None + if labels is not None: + # move labels to the correct device to enable PP + labels = labels.to(logits.device) + loss_fn = nn.BCEWithLogitsLoss() + loss = loss_fn(logits, labels) + + if not return_dict: + output = (logits, conditional_embeddings, pooled_output, vision_outputs, decoder_outputs) + return ((loss,) + output) if loss is not None else output + + return CLIPSegImageSegmentationOutput( + loss=loss, + logits=logits, + conditional_embeddings=conditional_embeddings, + pooled_output=pooled_output, + vision_model_output=vision_outputs, + decoder_output=decoder_outputs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/processing_clipseg.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/processing_clipseg.py new file mode 100644 index 0000000000000000000000000000000000000000..f8eaca82334a2278b10c772fded4ecfca0780fc0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/clipseg/processing_clipseg.py @@ -0,0 +1,161 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Image/Text processor class for CLIPSeg +""" + +import warnings + +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding + + +class CLIPSegProcessor(ProcessorMixin): + r""" + Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor. + + [`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the + [`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information. + + Args: + image_processor ([`ViTImageProcessor`], *optional*): + The image processor is a required input. + tokenizer ([`CLIPTokenizerFast`], *optional*): + The tokenizer is a required input. + """ + + attributes = ["image_processor", "tokenizer"] + image_processor_class = "ViTImageProcessor" + tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") + + def __init__(self, image_processor=None, tokenizer=None, **kwargs): + feature_extractor = None + if "feature_extractor" in kwargs: + warnings.warn( + "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" + " instead.", + FutureWarning, + ) + feature_extractor = kwargs.pop("feature_extractor") + + image_processor = image_processor if image_processor is not None else feature_extractor + if image_processor is None: + raise ValueError("You need to specify an `image_processor`.") + if tokenizer is None: + raise ValueError("You need to specify a `tokenizer`.") + + super().__init__(image_processor, tokenizer) + + def __call__(self, text=None, images=None, visual_prompt=None, return_tensors=None, **kwargs): + """ + Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` + and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode + the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to + ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of + the above two methods for more information. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings + (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set + `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). + images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): + The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch + tensor. Both channels-first and channels-last formats are supported. + visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): + The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image, + NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape + (C, H, W), where C is a number of channels, H and W are image height and width. + + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors of a particular framework. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return NumPy `np.ndarray` objects. + - `'jax'`: Return JAX `jnp.ndarray` objects. + + Returns: + [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: + + - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. + - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when + `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not + `None`). + - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. + """ + if text is None and visual_prompt is None and images is None: + raise ValueError("You have to specify either text, visual prompt or images.") + + if text is not None and visual_prompt is not None: + raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.") + + if text is not None: + encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) + + if visual_prompt is not None: + prompt_features = self.image_processor(visual_prompt, return_tensors=return_tensors, **kwargs) + + if images is not None: + image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs) + + if visual_prompt is not None and images is not None: + encoding = { + "pixel_values": image_features.pixel_values, + "conditional_pixel_values": prompt_features.pixel_values, + } + return encoding + elif text is not None and images is not None: + encoding["pixel_values"] = image_features.pixel_values + return encoding + elif text is not None: + return encoding + elif visual_prompt is not None: + encoding = { + "conditional_pixel_values": prompt_features.pixel_values, + } + return encoding + else: + return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to + the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + def feature_extractor_class(self): + warnings.warn( + "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", + FutureWarning, + ) + return self.image_processor_class + + @property + def feature_extractor(self): + warnings.warn( + "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", + FutureWarning, + ) + return self.image_processor diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..fbf34012924b901f3a074d36ed9be7b1fc32913b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/dialogpt/convert_dialogpt_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,46 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import os + +import torch + +from transformers.utils import WEIGHTS_NAME + + +DIALOGPT_MODELS = ["small", "medium", "large"] + +OLD_KEY = "lm_head.decoder.weight" +NEW_KEY = "lm_head.weight" + + +def convert_dialogpt_checkpoint(checkpoint_path: str, pytorch_dump_folder_path: str): + d = torch.load(checkpoint_path) + d[NEW_KEY] = d.pop(OLD_KEY) + os.makedirs(pytorch_dump_folder_path, exist_ok=True) + torch.save(d, os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME)) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--dialogpt_path", default=".", type=str) + args = parser.parse_args() + for MODEL in DIALOGPT_MODELS: + checkpoint_path = os.path.join(args.dialogpt_path, f"{MODEL}_ft.pkl") + pytorch_dump_folder_path = f"./DialoGPT-{MODEL}" + convert_dialogpt_checkpoint( + checkpoint_path, + pytorch_dump_folder_path, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e7c08f0e27e747ea5468e0f9f014df4225dbd424 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__init__.py @@ -0,0 +1,43 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available + + +_import_structure = {} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_gpt_sw3"] = ["GPTSw3Tokenizer"] + + +if TYPE_CHECKING: + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_gpt_sw3 import GPTSw3Tokenizer + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8cccb244199fa105b71d8bd11fcb8c26d53b50e3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fc166c6052323397f7200bfe504df813d38631ae Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/tokenization_gpt_sw3.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/tokenization_gpt_sw3.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1e0c28134d39a528fced36ca83f23d5a05f1a8a1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/tokenization_gpt_sw3.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..5562efa287475be8786c28845124795951f6bfa6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py @@ -0,0 +1,197 @@ +# Copyright 2022 The HuggingFace Inc. team and the AI-Sweden team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Convert GPT-SW3 megatron checkpoints to pytorch""" + +import argparse +import os +from os.path import isfile + +import torch + +from transformers import GPT2Config + + +def recursive_print(name, val, spaces=0): + # Format the message. + if name is None: + msg = None + else: + fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" + msg = fmt.format(name) + + # Print and recurse (if needed). + if isinstance(val, dict): + if msg is not None: + print(msg) + for k in val.keys(): + recursive_print(k, val[k], spaces + 2) + elif isinstance(val, torch.Tensor): + print(msg, ":", val.size()) + else: + print(msg, ":", val) + + +def fix_query_key_value_ordering(param, num_splits, num_heads, hidden_size): + # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] + # for compatibility with later versions of NVIDIA Megatron-LM. + # The inverse operation is performed inside Megatron-LM to read checkpoints: + # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 + # If param is the weight tensor of the self-attention block, the returned tensor + # will have to be transposed one more time to be read by HuggingFace GPT2. + input_shape = param.size() + # other versions store [num_heads * num_splits * hidden_size, :] + saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] + param = param.view(*saved_shape) + param = param.transpose(0, 1).contiguous() + param = param.view(*input_shape) + return param + + +def convert_megatron_checkpoint(sd_megatron, config): + """ + Converts a Megatron checkpoint to a HuggingFace GPT-SW3 checkpoint. + """ + n_positions = config.n_positions + layers = config.n_layer + vocab_size = config.vocab_size + heads = config.n_head + hidden_size_per_head = config.n_embd // config.n_head + + word_embeddings = sd_megatron["model.language_model.embedding.word_embeddings.weight"][:vocab_size, :] + sd_hf = { + "transformer.wte.weight": word_embeddings, + "transformer.wpe.weight": sd_megatron["model.language_model.embedding.position_embeddings.weight"], + "transformer.ln_f.weight": sd_megatron["model.language_model.encoder.final_layernorm.weight"], + "transformer.ln_f.bias": sd_megatron["model.language_model.encoder.final_layernorm.bias"], + } + + pf = "model.language_model.encoder.layers." + for i in range(layers): + causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.bool)) + causal_mask = causal_mask.view(1, 1, n_positions, n_positions) + sd_hf[f"transformer.h.{i}.attn.bias"] = causal_mask + sd_hf[f"transformer.h.{i}.attn.masked_bias"] = torch.tensor(-1e4, dtype=torch.bfloat16) + + sd_hf[f"transformer.h.{i}.ln_1.weight"] = sd_megatron[f"{pf}{i}.input_layernorm.weight"] + sd_hf[f"transformer.h.{i}.ln_1.bias"] = sd_megatron[f"{pf}{i}.input_layernorm.bias"] + + val1 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.weight"] + val1 = fix_query_key_value_ordering(val1, 3, heads, hidden_size_per_head) + sd_hf[f"transformer.h.{i}.attn.c_attn.weight"] = val1.transpose(0, 1).contiguous() + + val2 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.bias"] + val2 = fix_query_key_value_ordering(val2, 3, heads, hidden_size_per_head) + sd_hf[f"transformer.h.{i}.attn.c_attn.bias"] = val2 + + sd_hf[f"transformer.h.{i}.attn.c_proj.weight"] = sd_megatron[f"{pf}{i}.self_attention.dense.weight"].transpose( + 0, 1 + ) + sd_hf[f"transformer.h.{i}.attn.c_proj.bias"] = sd_megatron[f"{pf}{i}.self_attention.dense.bias"] + sd_hf[f"transformer.h.{i}.ln_2.weight"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.weight"] + sd_hf[f"transformer.h.{i}.ln_2.bias"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.bias"] + sd_hf[f"transformer.h.{i}.mlp.c_fc.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.weight"].transpose(0, 1) + sd_hf[f"transformer.h.{i}.mlp.c_fc.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.bias"] + sd_hf[f"transformer.h.{i}.mlp.c_proj.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.weight"].transpose( + 0, 1 + ) + sd_hf[f"transformer.h.{i}.mlp.c_proj.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.bias"] + + # For LM head, transformers' wants the matrix to weight embeddings. + sd_hf["lm_head.weight"] = word_embeddings + + return sd_hf + + +def copy_config(config_hf, config_megatron): + """Copy the config from Megatron to hf.""" + config_hf.vocab_size = 64000 + config_hf.n_positions = config_megatron["encoder_seq_length"] + config_hf.n_embd = config_megatron["hidden_size"] + config_hf.n_layer = config_megatron["num_layers"] + config_hf.n_head = config_megatron["num_attention_heads"] + config_hf.n_inner = config_megatron["ffn_hidden_size"] + config_hf.activation_function = "gelu" + config_hf.resid_pdrop = 0.1 + config_hf.embd_pdrop = 0.1 + config_hf.attn_pdrop = 0.1 + config_hf.layer_norm_epsilon = config_megatron["layernorm_epsilon"] # 1e-5 + config_hf.initializer_range = config_megatron["init_method_std"] # 0.02 + config_hf.apply_query_key_layer_scaling = config_megatron["apply_query_key_layer_scaling"] # True + config_hf.normalize_attention_scores = True + config_hf.use_cache = True + + # This identifies the 6.7B (7B) model which uses a different tokenizer + if config_megatron["hidden_size"] == 4096: + config_hf.bos_token_id = 1 # <|endoftext|> + config_hf.eos_token_id = 1 # <|endoftext|> + config_hf.pad_token_id = 0 # + else: + config_hf.bos_token_id = 2 # + config_hf.eos_token_id = 3 # <|endoftext|> + config_hf.pad_token_id = 0 # + + return config_hf + + +def main(args): + print(args) + + checkpoint_path = args.checkpoint_path + save_path = args.save_path + if isfile(checkpoint_path): + raise FileNotFoundError(f"ERROR! could not find file {checkpoint_path}") + + # Load the model. + checkpoint = torch.load(checkpoint_path, map_location="cpu") + + # Load the config. + config_megatron = checkpoint["hyper_parameters"]["cfg"] + config_hf = GPT2Config() + config_hf = copy_config(config_hf=config_hf, config_megatron=config_megatron) + config_hf.architectures = ["GPT2LMHeadModel"] + + sd_megatron = checkpoint["state_dict"] + + # Convert. + print("Converting") + sd_hf = convert_megatron_checkpoint(sd_megatron, config_hf) + + # Print the structure of converted state dict. + if args.print_checkpoint_structure: + recursive_print(None, sd_hf) + + config_hf.tokenizer_class = "GPTSw3Tokenizer" + + # Store the config to file. + print("Saving config") + config_hf.save_pretrained(save_path) + + # Store the state_dict to file. + output_checkpoint_file = os.path.join(save_path, "pytorch_model.bin") + print(f'Saving checkpoint to "{output_checkpoint_file}"') + torch.save(sd_hf, output_checkpoint_file) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--checkpoint_path", + type=str, + required=True, + help="e.g. megatron_gpt--val_loss=2.42-step=38000-consumed_samples=54720000", + ) + parser.add_argument("--save_path", type=str, required=True, help="e.g. /home/user/gpt-sw3/hf") + parser.add_argument("--print-checkpoint-structure", action="store_true") + _args = parser.parse_args() + main(_args) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/tokenization_gpt_sw3.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/tokenization_gpt_sw3.py new file mode 100644 index 0000000000000000000000000000000000000000..7bb2e51f04a0785e59050527c9d8da26ebd03ef7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_sw3/tokenization_gpt_sw3.py @@ -0,0 +1,318 @@ +"""The tokenizer used by the GPT-SW3 models.""" + +import os +import re +import unicodedata +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import sentencepiece as spm + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import is_torch_available, logging + + +if is_torch_available(): + import torch + + +logger = logging.get_logger(__name__) +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} + + +class GPTSw3Tokenizer(PreTrainedTokenizer): + """ + Construct an GPTSw3 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Example usage: + ```python + >>> from transformers import GPTSw3Tokenizer + + >>> tokenizer = GPTSw3Tokenizer.from_pretrained("AI-Sweden-Models/gpt-sw3-126m") + >>> tokenizer("Svenska är kul!")["input_ids"] + [1814, 377, 3617, 63504] + ``` + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + do_lower_case (`bool`, *optional*, defaults to `False`): + Whether or not to lowercase the input when tokenizing. + remove_space (`bool`, *optional*, defaults to `False`): + Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). + keep_accents (`bool`, *optional*, defaults to `False`): + Whether or not to keep accents when tokenizing. + pad_token (`str`, *optional*): + The token used for padding, for example when batching sequences of different lengths. If not provided, will + default to '' or '' depending on model size. + unk_token (`str`, *optional*): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. If not provided, will default to ''. + eos_token (`str`, *optional*): + The end of sequence token seen during pretraining. If not provided, will default to '<|endoftext|>' + bos_token (`str`, *optional*): + The beginning of sequence token that can be used for downstream task, was not seen during pretraining. If + not provided, will default to '' or '<|endoftext|>', depending on model size. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + whitespaces (`set`): + The whitespaces that are replaced in the whitespace normalization in preprocessing. + non_printing_characters_re (`Pattern`): + The compiled regular expression to remove non-printing characters in preprocessing. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + do_lower_case=False, + remove_space=False, + keep_accents=False, + pad_token=None, + unk_token=None, + eos_token=None, + bos_token=None, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + name_or_path = kwargs.get("name_or_path") + if name_or_path is None: + logger.warning( + "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," + " you are testing the model, this can safely be ignored" + ) + name_or_path = "None" + + # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing + eos_token = "<|endoftext|>" if eos_token is None else eos_token + unk_token = "" if unk_token is None else unk_token + if "gpt-sw3-7b" in name_or_path: + pad_token = unk_token if pad_token is None else pad_token + bos_token = eos_token if bos_token is None else bos_token + else: + pad_token = "" if pad_token is None else pad_token + bos_token = "" if bos_token is None else bos_token + + self.do_lower_case = do_lower_case + self.remove_space = remove_space + self.keep_accents = keep_accents + self.vocab_file = vocab_file + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + + # Used for whitespace normalization in input texts + # fmt : off + self.whitespaces = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} + # fmt : on + + # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing + self.non_printing_characters_re = re.compile( + f"[{''.join(map(chr, list(range(0, 9)) + list(range(11, 32)) + list(range(127, 160)) + [160, 173, 8203]))}]" + ) + + super().__init__( + do_lower_case=do_lower_case, + remove_space=remove_space, + keep_accents=keep_accents, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.__getstate__ + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.__setstate__ + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + @property + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size + def vocab_size(self) -> int: + return len(self.sp_model) + + def preprocess_text(self, text: str) -> str: + """ + Returns the preprocessed text. This procedure is identical to what was used when training the tokenizer. + """ + + # Remove non-printing characters + text = self.non_printing_characters_re.sub("", text) + + # Normalize whitespaces + text = "".join([char if char not in self.whitespaces else " " for char in text]) + + # NFC Unicode normalization + text = unicodedata.normalize("NFC", text) + return text + + def _tokenize(self, text: str, **kwargs) -> List[str]: + text = self.preprocess_text(text) + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token: str) -> int: + """Converts a token (str) to an id (int) using the vocab.""" + return self.sp_model.PieceToId(token) + + def _convert_id_to_token(self, index: int) -> str: + """Converts an index (int) to a token (str) using the vocab.""" + return self.sp_model.IdToPiece(index) + + @staticmethod + def clean_up_tokenization(out_string: str) -> str: + """Returns the input string, this function is overridden to remove the default clean up.""" + return out_string + + def convert_tokens_to_string(self, tokens: List[str]) -> str: + """Converts a sequence of tokens (strings) to a single string. Special tokens remain intact.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document + if not prev_is_special: + out_string += " " + + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + + return out_string + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.get_vocab + def get_vocab(self) -> Dict[str, int]: + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def encode_fast( + self, text: Union[str, List[str]], return_tensors: Union[str, bool] = False + ) -> Union[List[int], List[List[int]], "torch.Tensor"]: + """ + Encodes a text or batch of texts to token ids using preprocessing and the raw SP tokenizer. This has reduced + functionality but is often much faster. + + Does NOT handle special tokens correctly, these can manually be added as ids afterwards. + + Does NOT support padding, these can manually be added as ids afterwards. + + Use default HuggingFace tokenization methods for full functionality. + + Args: + text (`str` or `List[str]`): One or several text(s) to convert to token ids. + return_tensors (`str` or `bool`): Returns PyTorch tensors if set to True or "pt" + + Returns: + `List[int]`, `List[List[int]]`, or `torch.Tensor`: The encoded text(s) as token ids. + """ + + if isinstance(text, str): + text = self.preprocess_text(text) + token_ids = self.sp_model.encode(text) + else: + text = [self.preprocess_text(t) for t in text] + token_ids = self.sp_model.encode(text) + + if return_tensors is True or return_tensors == "pt": + token_ids = torch.tensor(token_ids) + + return token_ids + + def decode_fast(self, token_ids: Union[int, List[int]]) -> str: + """ + Encodes a text or batch of texts to token ids using preprocessing and the raw SP tokenizer. This has reduced + functionality but is often much faster. + + Args: + token_ids (`int` or `List[int]`): Encoded token or text as token id(s). + + Returns: + `str`: Decoded text + """ + + return self.sp_model.decode(token_ids) + + @property + def default_chat_template(self): + """ + This chat template formats messages like an instant messenger chat log, with "User:" and "Bot:" strings + preceding messages. BOS tokens are added between all messages. + """ + logger.warning_once( + "\nNo chat template is defined for this tokenizer - using the default template " + f"for the {self.__class__.__name__} class. If the default is not appropriate for " + "your model, please set `tokenizer.chat_template` to an appropriate template. " + "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" + ) + return ( + "{{ eos_token }}{{ bos_token }}" + "{% for message in messages %}" + "{% if message['role'] == 'user' %}{{ 'User: ' + message['content']}}" + "{% else %}{{ 'Bot: ' + message['content']}}{% endif %}" + "{{ message['text'] }}{{ bos_token }}" + "{% endfor %}" + "Bot:" + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4263525682147f42553effe2c7b287ec91c6613d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py @@ -0,0 +1,57 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_graphormer"] = [ + "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "GraphormerForGraphClassification", + "GraphormerModel", + "GraphormerPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_graphormer import ( + GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + GraphormerForGraphClassification, + GraphormerModel, + GraphormerPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..801e2da9783391d8a545e1fc31bfd0157dcf07b1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..027c1731ddd789fe8500bd54f21a6bb8f98c3aee Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4db9625649197db155a04ae8d88738dffb467050 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/modeling_graphormer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/modeling_graphormer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..21ed7bdbdeb069b4767f9e2c4f4a340b36ca4b54 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/modeling_graphormer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx new file mode 100644 index 0000000000000000000000000000000000000000..a0fafbdee53b55efb9596036817b03be0d006992 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx @@ -0,0 +1,107 @@ +# Copyright (c) Microsoft Corporation and HuggingFace +# Licensed under the MIT License. + +import cython + +cimport numpy +from cython.parallel cimport parallel, prange + +import numpy as np + + +# Reduce this number if matrices are too big for large graphs +UNREACHABLE_NODE_DISTANCE = 510 + +def floyd_warshall(adjacency_matrix): + """ + Applies the Floyd-Warshall algorithm to the adjacency matrix, to compute the + shortest paths distance between all nodes, up to UNREACHABLE_NODE_DISTANCE. + """ + (nrows, ncols) = adjacency_matrix.shape + assert nrows == ncols + cdef unsigned int n = nrows + + adj_mat_copy = adjacency_matrix.astype(np.int32, order='C', casting='safe', copy=True) + assert adj_mat_copy.flags['C_CONTIGUOUS'] + cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] M = adj_mat_copy + cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] path = -1 * np.ones([n, n], dtype=np.int32) + + cdef unsigned int i, j, k + cdef numpy.int32_t M_ij, M_ik, cost_ikkj + cdef numpy.int32_t* M_ptr = &M[0,0] + cdef numpy.int32_t* M_i_ptr + cdef numpy.int32_t* M_k_ptr + + # set unreachable nodes distance to UNREACHABLE_NODE_DISTANCE + for i in range(n): + for j in range(n): + if i == j: + M[i][j] = 0 + elif M[i][j] == 0: + M[i][j] = UNREACHABLE_NODE_DISTANCE + + # floyed algo + for k in range(n): + M_k_ptr = M_ptr + n*k + for i in range(n): + M_i_ptr = M_ptr + n*i + M_ik = M_i_ptr[k] + for j in range(n): + cost_ikkj = M_ik + M_k_ptr[j] + M_ij = M_i_ptr[j] + if M_ij > cost_ikkj: + M_i_ptr[j] = cost_ikkj + path[i][j] = k + + # set unreachable path to UNREACHABLE_NODE_DISTANCE + for i in range(n): + for j in range(n): + if M[i][j] >= UNREACHABLE_NODE_DISTANCE: + path[i][j] = UNREACHABLE_NODE_DISTANCE + M[i][j] = UNREACHABLE_NODE_DISTANCE + + return M, path + + +def get_all_edges(path, i, j): + """ + Recursive function to compute all possible paths between two nodes from the graph adjacency matrix. + """ + cdef int k = path[i][j] + if k == -1: + return [] + else: + return get_all_edges(path, i, k) + [k] + get_all_edges(path, k, j) + + +def gen_edge_input(max_dist, path, edge_feat): + """ + Generates the full edge feature and adjacency matrix. + Shape: num_nodes * num_nodes * max_distance_between_nodes * num_edge_features + Dim 1 is the input node, dim 2 the output node of the edge, dim 3 the depth of the edge, dim 4 the feature + """ + (nrows, ncols) = path.shape + assert nrows == ncols + cdef unsigned int n = nrows + cdef unsigned int max_dist_copy = max_dist + + path_copy = path.astype(long, order='C', casting='safe', copy=True) + edge_feat_copy = edge_feat.astype(long, order='C', casting='safe', copy=True) + assert path_copy.flags['C_CONTIGUOUS'] + assert edge_feat_copy.flags['C_CONTIGUOUS'] + + cdef numpy.ndarray[numpy.int32_t, ndim=4, mode='c'] edge_fea_all = -1 * np.ones([n, n, max_dist_copy, edge_feat.shape[-1]], dtype=np.int32) + cdef unsigned int i, j, k, num_path, cur + + for i in range(n): + for j in range(n): + if i == j: + continue + if path_copy[i][j] == UNREACHABLE_NODE_DISTANCE: + continue + path = [i] + get_all_edges(path_copy, i, j) + [j] + num_path = len(path) - 1 + for k in range(num_path): + edge_fea_all[i, j, k, :] = edge_feat_copy[path[k], path[k+1], :] + + return edge_fea_all diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py new file mode 100644 index 0000000000000000000000000000000000000000..58ce602ea28de1a3f5f45c40a9ffb1a0e4f0fdcf --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py @@ -0,0 +1,134 @@ +# Copyright (c) Microsoft Corporation and HuggingFace +# Licensed under the MIT License. + +from typing import Any, Dict, List, Mapping + +import numpy as np +import torch + +from ...utils import is_cython_available, requires_backends + + +if is_cython_available(): + import pyximport + + pyximport.install(setup_args={"include_dirs": np.get_include()}) + from . import algos_graphormer # noqa E402 + + +def convert_to_single_emb(x, offset: int = 512): + feature_num = x.shape[1] if len(x.shape) > 1 else 1 + feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int64) + x = x + feature_offset + return x + + +def preprocess_item(item, keep_features=True): + requires_backends(preprocess_item, ["cython"]) + + if keep_features and "edge_attr" in item.keys(): # edge_attr + edge_attr = np.asarray(item["edge_attr"], dtype=np.int64) + else: + edge_attr = np.ones((len(item["edge_index"][0]), 1), dtype=np.int64) # same embedding for all + + if keep_features and "node_feat" in item.keys(): # input_nodes + node_feature = np.asarray(item["node_feat"], dtype=np.int64) + else: + node_feature = np.ones((item["num_nodes"], 1), dtype=np.int64) # same embedding for all + + edge_index = np.asarray(item["edge_index"], dtype=np.int64) + + input_nodes = convert_to_single_emb(node_feature) + 1 + num_nodes = item["num_nodes"] + + if len(edge_attr.shape) == 1: + edge_attr = edge_attr[:, None] + attn_edge_type = np.zeros([num_nodes, num_nodes, edge_attr.shape[-1]], dtype=np.int64) + attn_edge_type[edge_index[0], edge_index[1]] = convert_to_single_emb(edge_attr) + 1 + + # node adj matrix [num_nodes, num_nodes] bool + adj = np.zeros([num_nodes, num_nodes], dtype=bool) + adj[edge_index[0], edge_index[1]] = True + + shortest_path_result, path = algos_graphormer.floyd_warshall(adj) + max_dist = np.amax(shortest_path_result) + + input_edges = algos_graphormer.gen_edge_input(max_dist, path, attn_edge_type) + attn_bias = np.zeros([num_nodes + 1, num_nodes + 1], dtype=np.single) # with graph token + + # combine + item["input_nodes"] = input_nodes + 1 # we shift all indices by one for padding + item["attn_bias"] = attn_bias + item["attn_edge_type"] = attn_edge_type + item["spatial_pos"] = shortest_path_result.astype(np.int64) + 1 # we shift all indices by one for padding + item["in_degree"] = np.sum(adj, axis=1).reshape(-1) + 1 # we shift all indices by one for padding + item["out_degree"] = item["in_degree"] # for undirected graph + item["input_edges"] = input_edges + 1 # we shift all indices by one for padding + if "labels" not in item: + item["labels"] = item["y"] + + return item + + +class GraphormerDataCollator: + def __init__(self, spatial_pos_max=20, on_the_fly_processing=False): + if not is_cython_available(): + raise ImportError("Graphormer preprocessing needs Cython (pyximport)") + + self.spatial_pos_max = spatial_pos_max + self.on_the_fly_processing = on_the_fly_processing + + def __call__(self, features: List[dict]) -> Dict[str, Any]: + if self.on_the_fly_processing: + features = [preprocess_item(i) for i in features] + + if not isinstance(features[0], Mapping): + features = [vars(f) for f in features] + batch = {} + + max_node_num = max(len(i["input_nodes"]) for i in features) + node_feat_size = len(features[0]["input_nodes"][0]) + edge_feat_size = len(features[0]["attn_edge_type"][0][0]) + max_dist = max(len(i["input_edges"][0][0]) for i in features) + edge_input_size = len(features[0]["input_edges"][0][0][0]) + batch_size = len(features) + + batch["attn_bias"] = torch.zeros(batch_size, max_node_num + 1, max_node_num + 1, dtype=torch.float) + batch["attn_edge_type"] = torch.zeros(batch_size, max_node_num, max_node_num, edge_feat_size, dtype=torch.long) + batch["spatial_pos"] = torch.zeros(batch_size, max_node_num, max_node_num, dtype=torch.long) + batch["in_degree"] = torch.zeros(batch_size, max_node_num, dtype=torch.long) + batch["input_nodes"] = torch.zeros(batch_size, max_node_num, node_feat_size, dtype=torch.long) + batch["input_edges"] = torch.zeros( + batch_size, max_node_num, max_node_num, max_dist, edge_input_size, dtype=torch.long + ) + + for ix, f in enumerate(features): + for k in ["attn_bias", "attn_edge_type", "spatial_pos", "in_degree", "input_nodes", "input_edges"]: + f[k] = torch.tensor(f[k]) + + if len(f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max]) > 0: + f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max] = float("-inf") + + batch["attn_bias"][ix, : f["attn_bias"].shape[0], : f["attn_bias"].shape[1]] = f["attn_bias"] + batch["attn_edge_type"][ix, : f["attn_edge_type"].shape[0], : f["attn_edge_type"].shape[1], :] = f[ + "attn_edge_type" + ] + batch["spatial_pos"][ix, : f["spatial_pos"].shape[0], : f["spatial_pos"].shape[1]] = f["spatial_pos"] + batch["in_degree"][ix, : f["in_degree"].shape[0]] = f["in_degree"] + batch["input_nodes"][ix, : f["input_nodes"].shape[0], :] = f["input_nodes"] + batch["input_edges"][ + ix, : f["input_edges"].shape[0], : f["input_edges"].shape[1], : f["input_edges"].shape[2], : + ] = f["input_edges"] + + batch["out_degree"] = batch["in_degree"] + + sample = features[0]["labels"] + if len(sample) == 1: # one task + if isinstance(sample[0], float): # regression + batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features])) + else: # binary classification + batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features])) + else: # multi task classification, left to float to keep the NaNs + batch["labels"] = torch.from_numpy(np.stack([i["labels"] for i in features], axis=0)) + + return batch diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py new file mode 100644 index 0000000000000000000000000000000000000000..8d1f13598431749f2fd88faaba562bf069934008 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py @@ -0,0 +1,218 @@ +# coding=utf-8 +# Copyright 2022 Microsoft, clefourrier and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Graphormer model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class GraphormerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`~GraphormerModel`]. It is used to instantiate an + Graphormer model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the Graphormer + [graphormer-base-pcqm4mv1](https://huggingface.co/graphormer-base-pcqm4mv1) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + num_classes (`int`, *optional*, defaults to 1): + Number of target classes or labels, set to n for binary classification of n tasks. + num_atoms (`int`, *optional*, defaults to 512*9): + Number of node types in the graphs. + num_edges (`int`, *optional*, defaults to 512*3): + Number of edges types in the graph. + num_in_degree (`int`, *optional*, defaults to 512): + Number of in degrees types in the input graphs. + num_out_degree (`int`, *optional*, defaults to 512): + Number of out degrees types in the input graphs. + num_edge_dis (`int`, *optional*, defaults to 128): + Number of edge dis in the input graphs. + multi_hop_max_dist (`int`, *optional*, defaults to 20): + Maximum distance of multi hop edges between two nodes. + spatial_pos_max (`int`, *optional*, defaults to 1024): + Maximum distance between nodes in the graph attention bias matrices, used during preprocessing and + collation. + edge_type (`str`, *optional*, defaults to multihop): + Type of edge relation chosen. + max_nodes (`int`, *optional*, defaults to 512): + Maximum number of nodes which can be parsed for the input graphs. + share_input_output_embed (`bool`, *optional*, defaults to `False`): + Shares the embedding layer between encoder and decoder - careful, True is not implemented. + num_layers (`int`, *optional*, defaults to 12): + Number of layers. + embedding_dim (`int`, *optional*, defaults to 768): + Dimension of the embedding layer in encoder. + ffn_embedding_dim (`int`, *optional*, defaults to 768): + Dimension of the "intermediate" (often named feed-forward) layer in encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads in the encoder. + self_attention (`bool`, *optional*, defaults to `True`): + Model is self attentive (False not implemented). + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the attention weights. + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the activation of the linear transformer layer. + layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + bias (`bool`, *optional*, defaults to `True`): + Uses bias in the attention module - unsupported at the moment. + embed_scale(`float`, *optional*, defaults to None): + Scaling factor for the node embeddings. + num_trans_layers_to_freeze (`int`, *optional*, defaults to 0): + Number of transformer layers to freeze. + encoder_normalize_before (`bool`, *optional*, defaults to `False`): + Normalize features before encoding the graph. + pre_layernorm (`bool`, *optional*, defaults to `False`): + Apply layernorm before self attention and the feed forward network. Without this, post layernorm will be + used. + apply_graphormer_init (`bool`, *optional*, defaults to `False`): + Apply a custom graphormer initialisation to the model before training. + freeze_embeddings (`bool`, *optional*, defaults to `False`): + Freeze the embedding layer, or train it along the model. + encoder_normalize_before (`bool`, *optional*, defaults to `False`): + Apply the layer norm before each encoder block. + q_noise (`float`, *optional*, defaults to 0.0): + Amount of quantization noise (see "Training with Quantization Noise for Extreme Model Compression"). (For + more detail, see fairseq's documentation on quant_noise). + qn_block_size (`int`, *optional*, defaults to 8): + Size of the blocks for subsequent quantization with iPQ (see q_noise). + kdim (`int`, *optional*, defaults to None): + Dimension of the key in the attention, if different from the other values. + vdim (`int`, *optional*, defaults to None): + Dimension of the value in the attention, if different from the other values. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + traceable (`bool`, *optional*, defaults to `False`): + Changes return value of the encoder's inner_state to stacked tensors. + + Example: + ```python + >>> from transformers import GraphormerForGraphClassification, GraphormerConfig + + >>> # Initializing a Graphormer graphormer-base-pcqm4mv2 style configuration + >>> configuration = GraphormerConfig() + + >>> # Initializing a model from the graphormer-base-pcqm4mv1 style configuration + >>> model = GraphormerForGraphClassification(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + """ + + model_type = "graphormer" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + num_classes: int = 1, + num_atoms: int = 512 * 9, + num_edges: int = 512 * 3, + num_in_degree: int = 512, + num_out_degree: int = 512, + num_spatial: int = 512, + num_edge_dis: int = 128, + multi_hop_max_dist: int = 5, # sometimes is 20 + spatial_pos_max: int = 1024, + edge_type: str = "multi_hop", + max_nodes: int = 512, + share_input_output_embed: bool = False, + num_hidden_layers: int = 12, + embedding_dim: int = 768, + ffn_embedding_dim: int = 768, + num_attention_heads: int = 32, + dropout: float = 0.1, + attention_dropout: float = 0.1, + activation_dropout: float = 0.1, + layerdrop: float = 0.0, + encoder_normalize_before: bool = False, + pre_layernorm: bool = False, + apply_graphormer_init: bool = False, + activation_fn: str = "gelu", + embed_scale: float = None, + freeze_embeddings: bool = False, + num_trans_layers_to_freeze: int = 0, + traceable: bool = False, + q_noise: float = 0.0, + qn_block_size: int = 8, + kdim: int = None, + vdim: int = None, + bias: bool = True, + self_attention: bool = True, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + **kwargs, + ): + self.num_classes = num_classes + self.num_atoms = num_atoms + self.num_in_degree = num_in_degree + self.num_out_degree = num_out_degree + self.num_edges = num_edges + self.num_spatial = num_spatial + self.num_edge_dis = num_edge_dis + self.edge_type = edge_type + self.multi_hop_max_dist = multi_hop_max_dist + self.spatial_pos_max = spatial_pos_max + self.max_nodes = max_nodes + self.num_hidden_layers = num_hidden_layers + self.embedding_dim = embedding_dim + self.hidden_size = embedding_dim + self.ffn_embedding_dim = ffn_embedding_dim + self.num_attention_heads = num_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.layerdrop = layerdrop + self.encoder_normalize_before = encoder_normalize_before + self.pre_layernorm = pre_layernorm + self.apply_graphormer_init = apply_graphormer_init + self.activation_fn = activation_fn + self.embed_scale = embed_scale + self.freeze_embeddings = freeze_embeddings + self.num_trans_layers_to_freeze = num_trans_layers_to_freeze + self.share_input_output_embed = share_input_output_embed + self.traceable = traceable + self.q_noise = q_noise + self.qn_block_size = qn_block_size + + # These parameters are here for future extensions + # atm, the model only supports self attention + self.kdim = kdim + self.vdim = vdim + self.self_attention = self_attention + self.bias = bias + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/modeling_graphormer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/modeling_graphormer.py new file mode 100644 index 0000000000000000000000000000000000000000..8b484fe1e433e5749d3c706fdab4d934cc032b24 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/graphormer/modeling_graphormer.py @@ -0,0 +1,911 @@ +# coding=utf-8 +# Copyright 2022 Microsoft, clefourrier The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Graphormer model.""" + +import math +from typing import Iterable, Iterator, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithNoAttention, + SequenceClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import logging +from .configuration_graphormer import GraphormerConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "graphormer-base-pcqm4mv1" +_CONFIG_FOR_DOC = "GraphormerConfig" + + +from ..deprecated._archive_maps import GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +def quant_noise(module: nn.Module, p: float, block_size: int): + """ + From: + https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/quant_noise.py + + Wraps modules and applies quantization noise to the weights for subsequent quantization with Iterative Product + Quantization as described in "Training with Quantization Noise for Extreme Model Compression" + + Args: + - module: nn.Module + - p: amount of Quantization Noise + - block_size: size of the blocks for subsequent quantization with iPQ + + Remarks: + - Module weights must have the right sizes wrt the block size + - Only Linear, Embedding and Conv2d modules are supported for the moment + - For more detail on how to quantize by blocks with convolutional weights, see "And the Bit Goes Down: + Revisiting the Quantization of Neural Networks" + - We implement the simplest form of noise here as stated in the paper which consists in randomly dropping + blocks + """ + + # if no quantization noise, don't register hook + if p <= 0: + return module + + # supported modules + if not isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)): + raise NotImplementedError("Module unsupported for quant_noise.") + + # test whether module.weight has the right sizes wrt block_size + is_conv = module.weight.ndim == 4 + + # 2D matrix + if not is_conv: + if module.weight.size(1) % block_size != 0: + raise AssertionError("Input features must be a multiple of block sizes") + + # 4D matrix + else: + # 1x1 convolutions + if module.kernel_size == (1, 1): + if module.in_channels % block_size != 0: + raise AssertionError("Input channels must be a multiple of block sizes") + # regular convolutions + else: + k = module.kernel_size[0] * module.kernel_size[1] + if k % block_size != 0: + raise AssertionError("Kernel size must be a multiple of block size") + + def _forward_pre_hook(mod, input): + # no noise for evaluation + if mod.training: + if not is_conv: + # gather weight and sizes + weight = mod.weight + in_features = weight.size(1) + out_features = weight.size(0) + + # split weight matrix into blocks and randomly drop selected blocks + mask = torch.zeros(in_features // block_size * out_features, device=weight.device) + mask.bernoulli_(p) + mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) + + else: + # gather weight and sizes + weight = mod.weight + in_channels = mod.in_channels + out_channels = mod.out_channels + + # split weight matrix into blocks and randomly drop selected blocks + if mod.kernel_size == (1, 1): + mask = torch.zeros( + int(in_channels // block_size * out_channels), + device=weight.device, + ) + mask.bernoulli_(p) + mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) + else: + mask = torch.zeros(weight.size(0), weight.size(1), device=weight.device) + mask.bernoulli_(p) + mask = mask.unsqueeze(2).unsqueeze(3).repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) + + # scale weights and apply mask + mask = mask.to(torch.bool) # x.bool() is not currently supported in TorchScript + s = 1 / (1 - p) + mod.weight.data = s * weight.masked_fill(mask, 0) + + module.register_forward_pre_hook(_forward_pre_hook) + return module + + +class LayerDropModuleList(nn.ModuleList): + """ + From: + https://github.com/facebookresearch/fairseq/blob/dd0079bde7f678b0cd0715cbd0ae68d661b7226d/fairseq/modules/layer_drop.py + A LayerDrop implementation based on [`torch.nn.ModuleList`]. LayerDrop as described in + https://arxiv.org/abs/1909.11556. + + We refresh the choice of which layers to drop every time we iterate over the LayerDropModuleList instance. During + evaluation we always iterate over all layers. + + Usage: + + ```python + layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3]) + for layer in layers: # this might iterate over layers 1 and 3 + x = layer(x) + for layer in layers: # this might iterate over all layers + x = layer(x) + for layer in layers: # this might not iterate over any layers + x = layer(x) + ``` + + Args: + p (float): probability of dropping out each layer + modules (iterable, optional): an iterable of modules to add + """ + + def __init__(self, p: float, modules: Optional[Iterable[nn.Module]] = None): + super().__init__(modules) + self.p = p + + def __iter__(self) -> Iterator[nn.Module]: + dropout_probs = torch.empty(len(self)).uniform_() + for i, m in enumerate(super().__iter__()): + if not self.training or (dropout_probs[i] > self.p): + yield m + + +class GraphormerGraphNodeFeature(nn.Module): + """ + Compute node features for each node in the graph. + """ + + def __init__(self, config: GraphormerConfig): + super().__init__() + self.num_heads = config.num_attention_heads + self.num_atoms = config.num_atoms + + self.atom_encoder = nn.Embedding(config.num_atoms + 1, config.hidden_size, padding_idx=config.pad_token_id) + self.in_degree_encoder = nn.Embedding( + config.num_in_degree, config.hidden_size, padding_idx=config.pad_token_id + ) + self.out_degree_encoder = nn.Embedding( + config.num_out_degree, config.hidden_size, padding_idx=config.pad_token_id + ) + + self.graph_token = nn.Embedding(1, config.hidden_size) + + def forward( + self, + input_nodes: torch.LongTensor, + in_degree: torch.LongTensor, + out_degree: torch.LongTensor, + ) -> torch.Tensor: + n_graph, n_node = input_nodes.size()[:2] + + node_feature = ( # node feature + graph token + self.atom_encoder(input_nodes).sum(dim=-2) # [n_graph, n_node, n_hidden] + + self.in_degree_encoder(in_degree) + + self.out_degree_encoder(out_degree) + ) + + graph_token_feature = self.graph_token.weight.unsqueeze(0).repeat(n_graph, 1, 1) + + graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1) + + return graph_node_feature + + +class GraphormerGraphAttnBias(nn.Module): + """ + Compute attention bias for each head. + """ + + def __init__(self, config: GraphormerConfig): + super().__init__() + self.num_heads = config.num_attention_heads + self.multi_hop_max_dist = config.multi_hop_max_dist + + # We do not change edge feature embedding learning, as edge embeddings are represented as a combination of the original features + # + shortest path + self.edge_encoder = nn.Embedding(config.num_edges + 1, config.num_attention_heads, padding_idx=0) + + self.edge_type = config.edge_type + if self.edge_type == "multi_hop": + self.edge_dis_encoder = nn.Embedding( + config.num_edge_dis * config.num_attention_heads * config.num_attention_heads, + 1, + ) + + self.spatial_pos_encoder = nn.Embedding(config.num_spatial, config.num_attention_heads, padding_idx=0) + + self.graph_token_virtual_distance = nn.Embedding(1, config.num_attention_heads) + + def forward( + self, + input_nodes: torch.LongTensor, + attn_bias: torch.Tensor, + spatial_pos: torch.LongTensor, + input_edges: torch.LongTensor, + attn_edge_type: torch.LongTensor, + ) -> torch.Tensor: + n_graph, n_node = input_nodes.size()[:2] + graph_attn_bias = attn_bias.clone() + graph_attn_bias = graph_attn_bias.unsqueeze(1).repeat( + 1, self.num_heads, 1, 1 + ) # [n_graph, n_head, n_node+1, n_node+1] + + # spatial pos + # [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node] + spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2) + graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias + + # reset spatial pos here + t = self.graph_token_virtual_distance.weight.view(1, self.num_heads, 1) + graph_attn_bias[:, :, 1:, 0] = graph_attn_bias[:, :, 1:, 0] + t + graph_attn_bias[:, :, 0, :] = graph_attn_bias[:, :, 0, :] + t + + # edge feature + if self.edge_type == "multi_hop": + spatial_pos_ = spatial_pos.clone() + + spatial_pos_[spatial_pos_ == 0] = 1 # set pad to 1 + # set 1 to 1, input_nodes > 1 to input_nodes - 1 + spatial_pos_ = torch.where(spatial_pos_ > 1, spatial_pos_ - 1, spatial_pos_) + if self.multi_hop_max_dist > 0: + spatial_pos_ = spatial_pos_.clamp(0, self.multi_hop_max_dist) + input_edges = input_edges[:, :, :, : self.multi_hop_max_dist, :] + # [n_graph, n_node, n_node, max_dist, n_head] + + input_edges = self.edge_encoder(input_edges).mean(-2) + max_dist = input_edges.size(-2) + edge_input_flat = input_edges.permute(3, 0, 1, 2, 4).reshape(max_dist, -1, self.num_heads) + edge_input_flat = torch.bmm( + edge_input_flat, + self.edge_dis_encoder.weight.reshape(-1, self.num_heads, self.num_heads)[:max_dist, :, :], + ) + input_edges = edge_input_flat.reshape(max_dist, n_graph, n_node, n_node, self.num_heads).permute( + 1, 2, 3, 0, 4 + ) + input_edges = (input_edges.sum(-2) / (spatial_pos_.float().unsqueeze(-1))).permute(0, 3, 1, 2) + else: + # [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node] + input_edges = self.edge_encoder(attn_edge_type).mean(-2).permute(0, 3, 1, 2) + + graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + input_edges + graph_attn_bias = graph_attn_bias + attn_bias.unsqueeze(1) # reset + + return graph_attn_bias + + +class GraphormerMultiheadAttention(nn.Module): + """Multi-headed attention. + + See "Attention Is All You Need" for more details. + """ + + def __init__(self, config: GraphormerConfig): + super().__init__() + self.embedding_dim = config.embedding_dim + self.kdim = config.kdim if config.kdim is not None else config.embedding_dim + self.vdim = config.vdim if config.vdim is not None else config.embedding_dim + self.qkv_same_dim = self.kdim == config.embedding_dim and self.vdim == config.embedding_dim + + self.num_heads = config.num_attention_heads + self.attention_dropout_module = torch.nn.Dropout(p=config.attention_dropout, inplace=False) + + self.head_dim = config.embedding_dim // config.num_attention_heads + if not (self.head_dim * config.num_attention_heads == self.embedding_dim): + raise AssertionError("The embedding_dim must be divisible by num_heads.") + self.scaling = self.head_dim**-0.5 + + self.self_attention = True # config.self_attention + if not (self.self_attention): + raise NotImplementedError("The Graphormer model only supports self attention for now.") + if self.self_attention and not self.qkv_same_dim: + raise AssertionError("Self-attention requires query, key and value to be of the same size.") + + self.k_proj = quant_noise( + nn.Linear(self.kdim, config.embedding_dim, bias=config.bias), + config.q_noise, + config.qn_block_size, + ) + self.v_proj = quant_noise( + nn.Linear(self.vdim, config.embedding_dim, bias=config.bias), + config.q_noise, + config.qn_block_size, + ) + self.q_proj = quant_noise( + nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias), + config.q_noise, + config.qn_block_size, + ) + + self.out_proj = quant_noise( + nn.Linear(config.embedding_dim, config.embedding_dim, bias=config.bias), + config.q_noise, + config.qn_block_size, + ) + + self.onnx_trace = False + + def reset_parameters(self): + if self.qkv_same_dim: + # Empirically observed the convergence to be much better with + # the scaled initialization + nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) + nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) + nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) + else: + nn.init.xavier_uniform_(self.k_proj.weight) + nn.init.xavier_uniform_(self.v_proj.weight) + nn.init.xavier_uniform_(self.q_proj.weight) + + nn.init.xavier_uniform_(self.out_proj.weight) + if self.out_proj.bias is not None: + nn.init.constant_(self.out_proj.bias, 0.0) + + def forward( + self, + query: torch.LongTensor, + key: Optional[torch.Tensor], + value: Optional[torch.Tensor], + attn_bias: Optional[torch.Tensor], + key_padding_mask: Optional[torch.Tensor] = None, + need_weights: bool = True, + attn_mask: Optional[torch.Tensor] = None, + before_softmax: bool = False, + need_head_weights: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + """ + Args: + key_padding_mask (Bytetorch.Tensor, optional): mask to exclude + keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. + need_weights (bool, optional): return the attention weights, + averaged over heads (default: False). + attn_mask (Bytetorch.Tensor, optional): typically used to + implement causal attention, where the mask prevents the attention from looking forward in time + (default: None). + before_softmax (bool, optional): return the raw attention + weights and values before the attention softmax. + need_head_weights (bool, optional): return the attention + weights for each head. Implies *need_weights*. Default: return the average attention weights over all + heads. + """ + if need_head_weights: + need_weights = True + + tgt_len, bsz, embedding_dim = query.size() + src_len = tgt_len + if not (embedding_dim == self.embedding_dim): + raise AssertionError( + f"The query embedding dimension {embedding_dim} is not equal to the expected embedding_dim" + f" {self.embedding_dim}." + ) + if not (list(query.size()) == [tgt_len, bsz, embedding_dim]): + raise AssertionError("Query size incorrect in Graphormer, compared to model dimensions.") + + if key is not None: + src_len, key_bsz, _ = key.size() + if not torch.jit.is_scripting(): + if (key_bsz != bsz) or (value is None) or not (src_len, bsz == value.shape[:2]): + raise AssertionError( + "The batch shape does not match the key or value shapes provided to the attention." + ) + + q = self.q_proj(query) + k = self.k_proj(query) + v = self.v_proj(query) + + q *= self.scaling + + q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1) + if k is not None: + k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) + if v is not None: + v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) + + if (k is None) or not (k.size(1) == src_len): + raise AssertionError("The shape of the key generated in the attention is incorrect") + + # This is part of a workaround to get around fork/join parallelism + # not supporting Optional types. + if key_padding_mask is not None and key_padding_mask.dim() == 0: + key_padding_mask = None + + if key_padding_mask is not None: + if key_padding_mask.size(0) != bsz or key_padding_mask.size(1) != src_len: + raise AssertionError( + "The shape of the generated padding mask for the key does not match expected dimensions." + ) + attn_weights = torch.bmm(q, k.transpose(1, 2)) + attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) + + if list(attn_weights.size()) != [bsz * self.num_heads, tgt_len, src_len]: + raise AssertionError("The attention weights generated do not match the expected dimensions.") + + if attn_bias is not None: + attn_weights += attn_bias.view(bsz * self.num_heads, tgt_len, src_len) + + if attn_mask is not None: + attn_mask = attn_mask.unsqueeze(0) + attn_weights += attn_mask + + if key_padding_mask is not None: + # don't attend to padding symbols + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.masked_fill( + key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf") + ) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if before_softmax: + return attn_weights, v + + attn_weights_float = torch.nn.functional.softmax(attn_weights, dim=-1) + attn_weights = attn_weights_float.type_as(attn_weights) + attn_probs = self.attention_dropout_module(attn_weights) + + if v is None: + raise AssertionError("No value generated") + attn = torch.bmm(attn_probs, v) + if list(attn.size()) != [bsz * self.num_heads, tgt_len, self.head_dim]: + raise AssertionError("The attention generated do not match the expected dimensions.") + + attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embedding_dim) + attn: torch.Tensor = self.out_proj(attn) + + attn_weights = None + if need_weights: + attn_weights = attn_weights_float.contiguous().view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) + if not need_head_weights: + # average attention weights over heads + attn_weights = attn_weights.mean(dim=0) + + return attn, attn_weights + + def apply_sparse_mask(self, attn_weights: torch.Tensor, tgt_len: int, src_len: int, bsz: int) -> torch.Tensor: + return attn_weights + + +class GraphormerGraphEncoderLayer(nn.Module): + def __init__(self, config: GraphormerConfig) -> None: + super().__init__() + + # Initialize parameters + self.embedding_dim = config.embedding_dim + self.num_attention_heads = config.num_attention_heads + self.q_noise = config.q_noise + self.qn_block_size = config.qn_block_size + self.pre_layernorm = config.pre_layernorm + + self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) + + self.activation_dropout_module = torch.nn.Dropout(p=config.activation_dropout, inplace=False) + + # Initialize blocks + self.activation_fn = ACT2FN[config.activation_fn] + self.self_attn = GraphormerMultiheadAttention(config) + + # layer norm associated with the self attention layer + self.self_attn_layer_norm = nn.LayerNorm(self.embedding_dim) + + self.fc1 = self.build_fc( + self.embedding_dim, + config.ffn_embedding_dim, + q_noise=config.q_noise, + qn_block_size=config.qn_block_size, + ) + self.fc2 = self.build_fc( + config.ffn_embedding_dim, + self.embedding_dim, + q_noise=config.q_noise, + qn_block_size=config.qn_block_size, + ) + + # layer norm associated with the position wise feed-forward NN + self.final_layer_norm = nn.LayerNorm(self.embedding_dim) + + def build_fc( + self, input_dim: int, output_dim: int, q_noise: float, qn_block_size: int + ) -> Union[nn.Module, nn.Linear, nn.Embedding, nn.Conv2d]: + return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) + + def forward( + self, + input_nodes: torch.Tensor, + self_attn_bias: Optional[torch.Tensor] = None, + self_attn_mask: Optional[torch.Tensor] = None, + self_attn_padding_mask: Optional[torch.Tensor] = None, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: + """ + nn.LayerNorm is applied either before or after the self-attention/ffn modules similar to the original + Transformer implementation. + """ + residual = input_nodes + if self.pre_layernorm: + input_nodes = self.self_attn_layer_norm(input_nodes) + + input_nodes, attn = self.self_attn( + query=input_nodes, + key=input_nodes, + value=input_nodes, + attn_bias=self_attn_bias, + key_padding_mask=self_attn_padding_mask, + need_weights=False, + attn_mask=self_attn_mask, + ) + input_nodes = self.dropout_module(input_nodes) + input_nodes = residual + input_nodes + if not self.pre_layernorm: + input_nodes = self.self_attn_layer_norm(input_nodes) + + residual = input_nodes + if self.pre_layernorm: + input_nodes = self.final_layer_norm(input_nodes) + input_nodes = self.activation_fn(self.fc1(input_nodes)) + input_nodes = self.activation_dropout_module(input_nodes) + input_nodes = self.fc2(input_nodes) + input_nodes = self.dropout_module(input_nodes) + input_nodes = residual + input_nodes + if not self.pre_layernorm: + input_nodes = self.final_layer_norm(input_nodes) + + return input_nodes, attn + + +class GraphormerGraphEncoder(nn.Module): + def __init__(self, config: GraphormerConfig): + super().__init__() + + self.dropout_module = torch.nn.Dropout(p=config.dropout, inplace=False) + self.layerdrop = config.layerdrop + self.embedding_dim = config.embedding_dim + self.apply_graphormer_init = config.apply_graphormer_init + self.traceable = config.traceable + + self.graph_node_feature = GraphormerGraphNodeFeature(config) + self.graph_attn_bias = GraphormerGraphAttnBias(config) + + self.embed_scale = config.embed_scale + + if config.q_noise > 0: + self.quant_noise = quant_noise( + nn.Linear(self.embedding_dim, self.embedding_dim, bias=False), + config.q_noise, + config.qn_block_size, + ) + else: + self.quant_noise = None + + if config.encoder_normalize_before: + self.emb_layer_norm = nn.LayerNorm(self.embedding_dim) + else: + self.emb_layer_norm = None + + if config.pre_layernorm: + self.final_layer_norm = nn.LayerNorm(self.embedding_dim) + + if self.layerdrop > 0.0: + self.layers = LayerDropModuleList(p=self.layerdrop) + else: + self.layers = nn.ModuleList([]) + self.layers.extend([GraphormerGraphEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + + # Apply initialization of model params after building the model + if config.freeze_embeddings: + raise NotImplementedError("Freezing embeddings is not implemented yet.") + + for layer in range(config.num_trans_layers_to_freeze): + m = self.layers[layer] + if m is not None: + for p in m.parameters(): + p.requires_grad = False + + def forward( + self, + input_nodes: torch.LongTensor, + input_edges: torch.LongTensor, + attn_bias: torch.Tensor, + in_degree: torch.LongTensor, + out_degree: torch.LongTensor, + spatial_pos: torch.LongTensor, + attn_edge_type: torch.LongTensor, + perturb=None, + last_state_only: bool = False, + token_embeddings: Optional[torch.Tensor] = None, + attn_mask: Optional[torch.Tensor] = None, + ) -> Tuple[Union[torch.Tensor, List[torch.LongTensor]], torch.Tensor]: + # compute padding mask. This is needed for multi-head attention + data_x = input_nodes + n_graph, n_node = data_x.size()[:2] + padding_mask = (data_x[:, :, 0]).eq(0) + padding_mask_cls = torch.zeros(n_graph, 1, device=padding_mask.device, dtype=padding_mask.dtype) + padding_mask = torch.cat((padding_mask_cls, padding_mask), dim=1) + + attn_bias = self.graph_attn_bias(input_nodes, attn_bias, spatial_pos, input_edges, attn_edge_type) + + if token_embeddings is not None: + input_nodes = token_embeddings + else: + input_nodes = self.graph_node_feature(input_nodes, in_degree, out_degree) + + if perturb is not None: + input_nodes[:, 1:, :] += perturb + + if self.embed_scale is not None: + input_nodes = input_nodes * self.embed_scale + + if self.quant_noise is not None: + input_nodes = self.quant_noise(input_nodes) + + if self.emb_layer_norm is not None: + input_nodes = self.emb_layer_norm(input_nodes) + + input_nodes = self.dropout_module(input_nodes) + + input_nodes = input_nodes.transpose(0, 1) + + inner_states = [] + if not last_state_only: + inner_states.append(input_nodes) + + for layer in self.layers: + input_nodes, _ = layer( + input_nodes, + self_attn_padding_mask=padding_mask, + self_attn_mask=attn_mask, + self_attn_bias=attn_bias, + ) + if not last_state_only: + inner_states.append(input_nodes) + + graph_rep = input_nodes[0, :, :] + + if last_state_only: + inner_states = [input_nodes] + + if self.traceable: + return torch.stack(inner_states), graph_rep + else: + return inner_states, graph_rep + + +class GraphormerDecoderHead(nn.Module): + def __init__(self, embedding_dim: int, num_classes: int): + super().__init__() + """num_classes should be 1 for regression, or the number of classes for classification""" + self.lm_output_learned_bias = nn.Parameter(torch.zeros(1)) + self.classifier = nn.Linear(embedding_dim, num_classes, bias=False) + self.num_classes = num_classes + + def forward(self, input_nodes: torch.Tensor, **unused) -> torch.Tensor: + input_nodes = self.classifier(input_nodes) + input_nodes = input_nodes + self.lm_output_learned_bias + return input_nodes + + +class GraphormerPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = GraphormerConfig + base_model_prefix = "graphormer" + main_input_name_nodes = "input_nodes" + main_input_name_edges = "input_edges" + + def normal_(self, data: torch.Tensor): + # with FSDP, module params will be on CUDA, so we cast them back to CPU + # so that the RNG is consistent with and without FSDP + data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) + + def init_graphormer_params(self, module: Union[nn.Linear, nn.Embedding, GraphormerMultiheadAttention]): + """ + Initialize the weights specific to the Graphormer Model. + """ + if isinstance(module, nn.Linear): + self.normal_(module.weight.data) + if module.bias is not None: + module.bias.data.zero_() + if isinstance(module, nn.Embedding): + self.normal_(module.weight.data) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + if isinstance(module, GraphormerMultiheadAttention): + self.normal_(module.q_proj.weight.data) + self.normal_(module.k_proj.weight.data) + self.normal_(module.v_proj.weight.data) + + def _init_weights( + self, + module: Union[ + nn.Linear, nn.Conv2d, nn.Embedding, nn.LayerNorm, GraphormerMultiheadAttention, GraphormerGraphEncoder + ], + ): + """ + Initialize the weights + """ + if isinstance(module, (nn.Linear, nn.Conv2d)): + # We might be missing part of the Linear init, dependant on the layer num + module.weight.data.normal_(mean=0.0, std=0.02) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=0.02) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, GraphormerMultiheadAttention): + module.q_proj.weight.data.normal_(mean=0.0, std=0.02) + module.k_proj.weight.data.normal_(mean=0.0, std=0.02) + module.v_proj.weight.data.normal_(mean=0.0, std=0.02) + module.reset_parameters() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, GraphormerGraphEncoder): + if module.apply_graphormer_init: + module.apply(self.init_graphormer_params) + + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +class GraphormerModel(GraphormerPreTrainedModel): + """The Graphormer model is a graph-encoder model. + + It goes from a graph to its representation. If you want to use the model for a downstream classification task, use + GraphormerForGraphClassification instead. For any other downstream task, feel free to add a new class, or combine + this model with a downstream model of your choice, following the example in GraphormerForGraphClassification. + """ + + def __init__(self, config: GraphormerConfig): + super().__init__(config) + self.max_nodes = config.max_nodes + + self.graph_encoder = GraphormerGraphEncoder(config) + + self.share_input_output_embed = config.share_input_output_embed + self.lm_output_learned_bias = None + + # Remove head is set to true during fine-tuning + self.load_softmax = not getattr(config, "remove_head", False) + + self.lm_head_transform_weight = nn.Linear(config.embedding_dim, config.embedding_dim) + self.activation_fn = ACT2FN[config.activation_fn] + self.layer_norm = nn.LayerNorm(config.embedding_dim) + + self.post_init() + + def reset_output_layer_parameters(self): + self.lm_output_learned_bias = nn.Parameter(torch.zeros(1)) + + def forward( + self, + input_nodes: torch.LongTensor, + input_edges: torch.LongTensor, + attn_bias: torch.Tensor, + in_degree: torch.LongTensor, + out_degree: torch.LongTensor, + spatial_pos: torch.LongTensor, + attn_edge_type: torch.LongTensor, + perturb: Optional[torch.FloatTensor] = None, + masked_tokens: None = None, + return_dict: Optional[bool] = None, + **unused, + ) -> Union[Tuple[torch.LongTensor], BaseModelOutputWithNoAttention]: + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + inner_states, graph_rep = self.graph_encoder( + input_nodes, input_edges, attn_bias, in_degree, out_degree, spatial_pos, attn_edge_type, perturb=perturb + ) + + # last inner state, then revert Batch and Graph len + input_nodes = inner_states[-1].transpose(0, 1) + + # project masked tokens only + if masked_tokens is not None: + raise NotImplementedError + + input_nodes = self.layer_norm(self.activation_fn(self.lm_head_transform_weight(input_nodes))) + + # project back to size of vocabulary + if self.share_input_output_embed and hasattr(self.graph_encoder.embed_tokens, "weight"): + input_nodes = torch.nn.functional.linear(input_nodes, self.graph_encoder.embed_tokens.weight) + + if not return_dict: + return tuple(x for x in [input_nodes, inner_states] if x is not None) + return BaseModelOutputWithNoAttention(last_hidden_state=input_nodes, hidden_states=inner_states) + + def max_nodes(self): + """Maximum output length supported by the encoder.""" + return self.max_nodes + + +class GraphormerForGraphClassification(GraphormerPreTrainedModel): + """ + This model can be used for graph-level classification or regression tasks. + + It can be trained on + - regression (by setting config.num_classes to 1); there should be one float-type label per graph + - one task classification (by setting config.num_classes to the number of classes); there should be one integer + label per graph + - binary multi-task classification (by setting config.num_classes to the number of labels); there should be a list + of integer labels for each graph. + """ + + def __init__(self, config: GraphormerConfig): + super().__init__(config) + self.encoder = GraphormerModel(config) + self.embedding_dim = config.embedding_dim + self.num_classes = config.num_classes + self.classifier = GraphormerDecoderHead(self.embedding_dim, self.num_classes) + self.is_encoder_decoder = True + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_nodes: torch.LongTensor, + input_edges: torch.LongTensor, + attn_bias: torch.Tensor, + in_degree: torch.LongTensor, + out_degree: torch.LongTensor, + spatial_pos: torch.LongTensor, + attn_edge_type: torch.LongTensor, + labels: Optional[torch.LongTensor] = None, + return_dict: Optional[bool] = None, + **unused, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_outputs = self.encoder( + input_nodes, + input_edges, + attn_bias, + in_degree, + out_degree, + spatial_pos, + attn_edge_type, + return_dict=True, + ) + outputs, hidden_states = encoder_outputs["last_hidden_state"], encoder_outputs["hidden_states"] + + head_outputs = self.classifier(outputs) + logits = head_outputs[:, 0, :].contiguous() + + loss = None + if labels is not None: + mask = ~torch.isnan(labels) + + if self.num_classes == 1: # regression + loss_fct = MSELoss() + loss = loss_fct(logits[mask].squeeze(), labels[mask].squeeze().float()) + elif self.num_classes > 1 and len(labels.shape) == 1: # One task classification + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits[mask].view(-1, self.num_classes), labels[mask].view(-1)) + else: # Binary multi-task classification + loss_fct = BCEWithLogitsLoss(reduction="sum") + loss = loss_fct(logits[mask], labels[mask]) + + if not return_dict: + return tuple(x for x in [loss, logits, hidden_states] if x is not None) + return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=hidden_states, attentions=None) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..68ff40fc18dc24d86e387dc13e299459a1b272b3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__init__.py @@ -0,0 +1,73 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = {"configuration_idefics": ["IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP", "IdeficsConfig"]} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["image_processing_idefics"] = ["IdeficsImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_idefics"] = [ + "IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST", + "IdeficsForVisionText2Text", + "IdeficsModel", + "IdeficsPreTrainedModel", + ] + _import_structure["processing_idefics"] = ["IdeficsProcessor"] + + +if TYPE_CHECKING: + from .configuration_idefics import IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP, IdeficsConfig + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .image_processing_idefics import IdeficsImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_idefics import ( + IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST, + IdeficsForVisionText2Text, + IdeficsModel, + IdeficsPreTrainedModel, + ) + from .processing_idefics import IdeficsProcessor + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/image_processing_idefics.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/image_processing_idefics.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c4a0615ca9a2e332bc62bf4605c44ec91c3a5111 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/image_processing_idefics.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/modeling_idefics.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/modeling_idefics.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..60391aa47224a08e5c71f7faccb8a06b2b097bbd Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/modeling_idefics.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/processing_idefics.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/processing_idefics.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..280df9a0b996a8cc1746d15198c34a6c9fb36b12 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/processing_idefics.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/vision.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/vision.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d51080432dd1c303ef1fcbb3720e3d4a3b3de381 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/__pycache__/vision.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/perceiver.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/perceiver.py new file mode 100644 index 0000000000000000000000000000000000000000..888c5b0bb9395548c90deac4a70350d1ad39e2d8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/idefics/perceiver.py @@ -0,0 +1,188 @@ +# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License. +# +# MIT License +# +# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + + +""" + +Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially +time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note +that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to +prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that +to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore. + +References: + - DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model + - Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch + +""" +from typing import Optional, Tuple + +import torch +import torch.nn as nn + +from .configuration_idefics import IdeficsConfig + + +class IdeficsPerceiverResampler(nn.Module): + def __init__( + self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int + ) -> None: + """ + Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or + MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then + returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed + to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler. + Could be e.g., VIT embed_dim, ResNet pool dim, and so on. + + Args: + config (`IdeficsConfig`): config object + embed_dim (`int`): The size of each embedding vector + depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). + n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention). + head_dim (`int`): Dimensionality of each head projection in the Transformer block. + n_latents (`int`): + Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). + + """ + super().__init__() + self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents + self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver + + # Create Latents for Perceiver + self.latents = nn.Parameter(torch.randn(self.n_latents, self.embed_dim), requires_grad=True) + + self.intermediate_dim = ( + self.embed_dim * 4 + if not hasattr(config.vision_config, "embed_dim") + else config.vision_config.embed_dim * 4 + ) + # Create Transformer Blocks + self.blocks = nn.ModuleList( + [ + nn.ModuleList( + [ + IdeficsPerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms), + IdeficsMLP(self.intermediate_dim, config), + ] + ) + for _ in range(depth) + ] + ) + self.layer_norm = nn.LayerNorm(self.embed_dim) + + def forward(self, context: torch.Tensor) -> torch.Tensor: + """Resample arbitrary length context & *compress* down to self.n_latents latent embeddings""" + # einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0]) + latents = self.latents.repeat(context.shape[0], 1, 1) + + # Feed through Perceiver Attention blocks... + for attn, ff in self.blocks: + latents = attn(context, latents) + latents + latents = ff(latents) + latents + + return self.layer_norm(latents) + + +class IdeficsPerceiverAttention(nn.Module): + def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None: + """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" + super().__init__() + self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim + self.qk_layer_norms = qk_layer_norms + # Normalization & Scaling + self.context_layer_norm = nn.LayerNorm(self.embed_dim) + self.latents_layer_norm = nn.LayerNorm(self.embed_dim) + if self.qk_layer_norms: + self.q_layer_norm = nn.LayerNorm(self.head_dim) + self.k_layer_norm = nn.LayerNorm(self.head_dim) + + self.qk_scale = self.head_dim**-0.5 + + # Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers). + self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) + self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) + self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False) + + self.output_proj = nn.Linear(self.n_heads * self.head_dim, embed_dim, bias=False) + + def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor: + """ + Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! + + Args: + context (`torch.Tensor`): + Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample. + latents (`torch.Tensor`): + Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to. + + Returns: + `torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross + from context. + """ + context = self.context_layer_norm(context) + latents = self.latents_layer_norm(latents) + batch_size, seq_length, embed_dim = context.shape[:3] + + # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn! + # Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents` + q = self.q_proj(latents) + k = self.k_proj(torch.cat([context, latents], dim=-2)) + v = self.v_proj(torch.cat([context, latents], dim=-2)) + + # Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call) + # =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)] + # einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) + q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)] + + if self.qk_layer_norms: + q = self.q_layer_norm(q) + k = self.k_layer_norm(k) + + scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k) + stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach()) + attn = stabilized_scores.softmax(dim=-1) + + # Attend & project back to output... + resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v) + # einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads) + return self.output_proj(resampled.transpose(1, 2).flatten(-2)) + + +class IdeficsMLP(nn.Module): + def __init__(self, intermediate_size, config: IdeficsConfig): + """Simple MLP block with intermediate_size and embedding size""" + super().__init__() + self.embed_dim = config.vision_config.embed_dim + self.ln = nn.LayerNorm(self.embed_dim) + self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False) + self.act = nn.ReLU() + self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False) + + def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: + hidden_states = self.ln(hidden_states) + hidden_states = self.fc(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.c_proj(hidden_states) + + return hidden_states diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7ffc6ec486455bd87ae01a102d2cb1fa0677e076 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/configuration_instructblip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/configuration_instructblip.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f1bb58a3a42ecc63e7518bf85364ad93c93af39 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/configuration_instructblip.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/processing_instructblip.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/processing_instructblip.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fc022f2cb19e02832fe023fc3c82506e8002bf68 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/instructblip/__pycache__/processing_instructblip.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..66ef7c953cff4385424b208313445962d4facf28 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__init__.py @@ -0,0 +1,135 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_longformer": [ + "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "LongformerConfig", + "LongformerOnnxConfig", + ], + "tokenization_longformer": ["LongformerTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_longformer_fast"] = ["LongformerTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_longformer"] = [ + "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "LongformerForMaskedLM", + "LongformerForMultipleChoice", + "LongformerForQuestionAnswering", + "LongformerForSequenceClassification", + "LongformerForTokenClassification", + "LongformerModel", + "LongformerPreTrainedModel", + "LongformerSelfAttention", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_longformer"] = [ + "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFLongformerForMaskedLM", + "TFLongformerForMultipleChoice", + "TFLongformerForQuestionAnswering", + "TFLongformerForSequenceClassification", + "TFLongformerForTokenClassification", + "TFLongformerModel", + "TFLongformerPreTrainedModel", + "TFLongformerSelfAttention", + ] + + +if TYPE_CHECKING: + from .configuration_longformer import ( + LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + LongformerConfig, + LongformerOnnxConfig, + ) + from .tokenization_longformer import LongformerTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_longformer_fast import LongformerTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_longformer import ( + LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + LongformerForMaskedLM, + LongformerForMultipleChoice, + LongformerForQuestionAnswering, + LongformerForSequenceClassification, + LongformerForTokenClassification, + LongformerModel, + LongformerPreTrainedModel, + LongformerSelfAttention, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_longformer import ( + TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + TFLongformerForMaskedLM, + TFLongformerForMultipleChoice, + TFLongformerForQuestionAnswering, + TFLongformerForSequenceClassification, + TFLongformerForTokenClassification, + TFLongformerModel, + TFLongformerPreTrainedModel, + TFLongformerSelfAttention, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cd9bdf0a76022ecc99b934ba5c513835fb9ebc6b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/configuration_longformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/configuration_longformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0082694371c4a20e1efbd1530acc7890c804a997 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/configuration_longformer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/convert_longformer_original_pytorch_lightning_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/convert_longformer_original_pytorch_lightning_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a3959946a73b7e1e9ef3c5284f6c69663d0d9de3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/convert_longformer_original_pytorch_lightning_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_longformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_longformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e2cd581c5297d428435c7e7c70abe1f259327884 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_longformer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_tf_longformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_tf_longformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e0a9bab259392350a8ba3f1d7e0f569b38aef809 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/modeling_tf_longformer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6a52854afaa58174296225adda6bfd85162792bc Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer_fast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c836c7396b998c2af9b78fc330836c7c5b93a9ac Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/__pycache__/tokenization_longformer_fast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/configuration_longformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/configuration_longformer.py new file mode 100644 index 0000000000000000000000000000000000000000..7dce8a74a631c797297931278648508f01bafb4d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/configuration_longformer.py @@ -0,0 +1,203 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Longformer configuration""" +from collections import OrderedDict +from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import TensorType, logging + + +if TYPE_CHECKING: + from ...onnx.config import PatchingSpec + from ...tokenization_utils_base import PreTrainedTokenizerBase + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class LongformerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`LongformerModel`] or a [`TFLongformerModel`]. It + is used to instantiate a Longformer model according to the specified arguments, defining the model architecture. + + This is the configuration class to store the configuration of a [`LongformerModel`]. It is used to instantiate an + Longformer model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the LongFormer + [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) architecture with a sequence + length 4,096. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the Longformer model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`LongformerModel`] or [`TFLongformerModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`LongformerModel`] or + [`TFLongformerModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + attention_window (`int` or `List[int]`, *optional*, defaults to 512): + Size of an attention window around each token. If an `int`, use the same size for all layers. To specify a + different window size for each layer, use a `List[int]` where `len(attention_window) == num_hidden_layers`. + + Example: + + ```python + >>> from transformers import LongformerConfig, LongformerModel + + >>> # Initializing a Longformer configuration + >>> configuration = LongformerConfig() + + >>> # Initializing a model from the configuration + >>> model = LongformerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "longformer" + + def __init__( + self, + attention_window: Union[List[int], int] = 512, + sep_token_id: int = 2, + pad_token_id: int = 1, + bos_token_id: int = 0, + eos_token_id: int = 2, + vocab_size: int = 30522, + hidden_size: int = 768, + num_hidden_layers: int = 12, + num_attention_heads: int = 12, + intermediate_size: int = 3072, + hidden_act: str = "gelu", + hidden_dropout_prob: float = 0.1, + attention_probs_dropout_prob: float = 0.1, + max_position_embeddings: int = 512, + type_vocab_size: int = 2, + initializer_range: float = 0.02, + layer_norm_eps: float = 1e-12, + onnx_export: bool = False, + **kwargs, + ): + """Constructs LongformerConfig.""" + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.attention_window = attention_window + self.sep_token_id = sep_token_id + self.bos_token_id = bos_token_id + self.eos_token_id = eos_token_id + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.onnx_export = onnx_export + + +class LongformerOnnxConfig(OnnxConfig): + def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: "List[PatchingSpec]" = None): + super().__init__(config, task, patching_specs) + config.onnx_export = True + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ("global_attention_mask", dynamic_axis), + ] + ) + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + outputs = super().outputs + if self.task == "default": + outputs["pooler_output"] = {0: "batch"} + return outputs + + @property + def atol_for_validation(self) -> float: + """ + What absolute tolerance value to use during model conversion validation. + + Returns: + Float absolute tolerance value. + """ + return 1e-4 + + @property + def default_onnx_opset(self) -> int: + # needs to be >= 14 to support tril operator + return max(super().default_onnx_opset, 14) + + def generate_dummy_inputs( + self, + tokenizer: "PreTrainedTokenizerBase", + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + inputs = super().generate_dummy_inputs( + preprocessor=tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + import torch + + # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) + # makes the export fail randomly + inputs["global_attention_mask"] = torch.zeros_like(inputs["input_ids"]) + # make every second token global + inputs["global_attention_mask"][:, ::2] = 1 + + return inputs diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..ed7d32ab3edbefa8a16307b7bcf35d615c63a66f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/convert_longformer_original_pytorch_lightning_to_pytorch.py @@ -0,0 +1,86 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert RoBERTa checkpoint.""" + + +import argparse + +import pytorch_lightning as pl +import torch +from torch import nn + +from transformers import LongformerForQuestionAnswering, LongformerModel + + +class LightningModel(pl.LightningModule): + def __init__(self, model): + super().__init__() + self.model = model + self.num_labels = 2 + self.qa_outputs = nn.Linear(self.model.config.hidden_size, self.num_labels) + + # implement only because lightning requires to do so + def forward(self): + pass + + +def convert_longformer_qa_checkpoint_to_pytorch( + longformer_model: str, longformer_question_answering_ckpt_path: str, pytorch_dump_folder_path: str +): + # load longformer model from model identifier + longformer = LongformerModel.from_pretrained(longformer_model) + lightning_model = LightningModel(longformer) + + ckpt = torch.load(longformer_question_answering_ckpt_path, map_location=torch.device("cpu")) + lightning_model.load_state_dict(ckpt["state_dict"]) + + # init longformer question answering model + longformer_for_qa = LongformerForQuestionAnswering.from_pretrained(longformer_model) + + # transfer weights + longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) + longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) + longformer_for_qa.eval() + + # save model + longformer_for_qa.save_pretrained(pytorch_dump_folder_path) + + print(f"Conversion successful. Model saved under {pytorch_dump_folder_path}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--longformer_model", + default=None, + type=str, + required=True, + help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", + ) + parser.add_argument( + "--longformer_question_answering_ckpt_path", + default=None, + type=str, + required=True, + help="Path the official PyTorch Lightning Checkpoint.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_longformer_qa_checkpoint_to_pytorch( + args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/modeling_longformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/modeling_longformer.py new file mode 100644 index 0000000000000000000000000000000000000000..f8c7c44ef9918cbf1de35f7564a4ccfa639ef524 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/modeling_longformer.py @@ -0,0 +1,2327 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch Longformer model.""" + +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN, gelu +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_longformer import LongformerConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096" +_CONFIG_FOR_DOC = "LongformerConfig" + + +from ..deprecated._archive_maps import LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class LongformerBaseModelOutput(ModelOutput): + """ + Base class for Longformer's outputs, with potential hidden states, local and global attentions. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: torch.FloatTensor + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerBaseModelOutputWithPooling(ModelOutput): + """ + Base class for Longformer's outputs that also contains a pooling of the last hidden states. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + Last layer hidden-state of the first token of the sequence (classification token) further processed by a + Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence + prediction (classification) objective during pretraining. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: torch.FloatTensor + pooler_output: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerMaskedLMOutput(ModelOutput): + """ + Base class for masked language models outputs. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Masked language modeling (MLM) loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerQuestionAnsweringModelOutput(ModelOutput): + """ + Base class for outputs of question answering Longformer models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Span-end scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + start_logits: torch.FloatTensor = None + end_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerSequenceClassifierOutput(ModelOutput): + """ + Base class for outputs of sentence classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerMultipleChoiceModelOutput(ModelOutput): + """ + Base class for outputs of multiple choice Longformer models. + + Args: + loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided): + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): + *num_choices* is the second dimension of the input tensors. (see *input_ids* above). + + Classification scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +@dataclass +class LongformerTokenClassifierOutput(ModelOutput): + """ + Base class for outputs of token classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : + Classification loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): + Classification scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, + where `x` is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None + attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None + + +def _get_question_end_index(input_ids, sep_token_id): + """ + Computes the index of the first occurrence of `sep_token_id`. + """ + + sep_token_indices = (input_ids == sep_token_id).nonzero() + batch_size = input_ids.shape[0] + + assert sep_token_indices.shape[1] == 2, "`input_ids` should have two dimensions" + assert sep_token_indices.shape[0] == 3 * batch_size, ( + f"There should be exactly three separator tokens: {sep_token_id} in every sample for questions answering. You" + " might also consider to set `global_attention_mask` manually in the forward function to avoid this error." + ) + return sep_token_indices.view(batch_size, 3, 2)[:, 0, 1] + + +def _compute_global_attention_mask(input_ids, sep_token_id, before_sep_token=True): + """ + Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is + True` else after `sep_token_id`. + """ + question_end_index = _get_question_end_index(input_ids, sep_token_id) + question_end_index = question_end_index.unsqueeze(dim=1) # size: batch_size x 1 + # bool attention mask with True in locations of global attention + attention_mask = torch.arange(input_ids.shape[1], device=input_ids.device) + if before_sep_token is True: + attention_mask = (attention_mask.expand_as(input_ids) < question_end_index).to(torch.bool) + else: + # last token is separation token and should not be counted and in the middle are two separation tokens + attention_mask = (attention_mask.expand_as(input_ids) > (question_end_index + 1)).to(torch.bool) * ( + attention_mask.expand_as(input_ids) < input_ids.shape[-1] + ).to(torch.bool) + + return attention_mask + + +def create_position_ids_from_input_ids(input_ids, padding_idx): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask + return incremental_indices.long() + padding_idx + + +class LongformerEmbeddings(nn.Module): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. + """ + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + self.padding_idx = config.pad_token_id + self.position_embeddings = nn.Embedding( + config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx + ) + + def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) + else: + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + position_embeddings = self.position_embeddings(position_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + position_embeddings + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + def create_position_ids_from_inputs_embeds(self, inputs_embeds): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor inputs_embeds: + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape) + + +class LongformerSelfAttention(nn.Module): + def __init__(self, config, layer_id): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + self.num_heads = config.num_attention_heads + self.head_dim = int(config.hidden_size / config.num_attention_heads) + self.embed_dim = config.hidden_size + + self.query = nn.Linear(config.hidden_size, self.embed_dim) + self.key = nn.Linear(config.hidden_size, self.embed_dim) + self.value = nn.Linear(config.hidden_size, self.embed_dim) + + # separate projection layers for tokens with global attention + self.query_global = nn.Linear(config.hidden_size, self.embed_dim) + self.key_global = nn.Linear(config.hidden_size, self.embed_dim) + self.value_global = nn.Linear(config.hidden_size, self.embed_dim) + + self.dropout = config.attention_probs_dropout_prob + + self.layer_id = layer_id + attention_window = config.attention_window[self.layer_id] + assert ( + attention_window % 2 == 0 + ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" + assert ( + attention_window > 0 + ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" + + self.one_sided_attn_window_size = attention_window // 2 + + self.config = config + + def forward( + self, + hidden_states, + attention_mask=None, + layer_head_mask=None, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=False, + ): + """ + [`LongformerSelfAttention`] expects *len(hidden_states)* to be multiple of *attention_window*. Padding to + *attention_window* happens in [`LongformerModel.forward`] to avoid redoing the padding on each layer. + + The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to: + + - -10000: no attention + - 0: local attention + - +10000: global attention + """ + hidden_states = hidden_states.transpose(0, 1) + + # project hidden states + query_vectors = self.query(hidden_states) + key_vectors = self.key(hidden_states) + value_vectors = self.value(hidden_states) + + seq_len, batch_size, embed_dim = hidden_states.size() + assert ( + embed_dim == self.embed_dim + ), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}" + + # normalize query + query_vectors /= math.sqrt(self.head_dim) + + query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) + key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) + + attn_scores = self._sliding_chunks_query_key_matmul( + query_vectors, key_vectors, self.one_sided_attn_window_size + ) + + # values to pad for attention probs + remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None] + + # cast to fp32/fp16 then replace 1's with -inf + float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill( + remove_from_windowed_attention_mask, torch.finfo(query_vectors.dtype).min + ) + # diagonal mask with zeros everywhere and -inf inplace of padding + diagonal_mask = self._sliding_chunks_query_key_matmul( + float_mask.new_ones(size=float_mask.size()), float_mask, self.one_sided_attn_window_size + ) + + # pad local attention probs + attn_scores += diagonal_mask + + assert list(attn_scores.size()) == [ + batch_size, + seq_len, + self.num_heads, + self.one_sided_attn_window_size * 2 + 1, + ], ( + f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}," + f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}" + ) + + # compute local attention probs from global attention keys and contact over window dim + if is_global_attn: + # compute global attn indices required through out forward fn + ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) = self._get_global_attn_indices(is_index_global_attn) + # calculate global attn probs from global key + + global_key_attn_scores = self._concat_with_global_key_attn_probs( + query_vectors=query_vectors, + key_vectors=key_vectors, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + ) + # concat to local_attn_probs + # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) + attn_scores = torch.cat((global_key_attn_scores, attn_scores), dim=-1) + + # free memory + del global_key_attn_scores + + attn_probs = nn.functional.softmax( + attn_scores, dim=-1, dtype=torch.float32 + ) # use fp32 for numerical stability + + if layer_head_mask is not None: + assert layer_head_mask.size() == ( + self.num_heads, + ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" + attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs + + # softmax sometimes inserts NaN if all positions are masked, replace them with 0 + attn_probs = torch.masked_fill(attn_probs, is_index_masked[:, :, None, None], 0.0) + attn_probs = attn_probs.type_as(attn_scores) + + # free memory + del attn_scores + + # apply dropout + attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training) + + value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1) + + # compute local attention output with global attention value and add + if is_global_attn: + # compute sum of global and local attn + attn_output = self._compute_attn_output_with_global_indices( + value_vectors=value_vectors, + attn_probs=attn_probs, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + ) + else: + # compute local attn only + attn_output = self._sliding_chunks_matmul_attn_probs_value( + attn_probs, value_vectors, self.one_sided_attn_window_size + ) + + assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size" + attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size, embed_dim).contiguous() + + # compute value for global attention and overwrite to attention output + # TODO: remove the redundant computation + if is_global_attn: + global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( + hidden_states=hidden_states, + max_num_global_attn_indices=max_num_global_attn_indices, + layer_head_mask=layer_head_mask, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + is_index_masked=is_index_masked, + ) + + # get only non zero global attn output + nonzero_global_attn_output = global_attn_output[ + is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1] + ] + + # overwrite values with global attention + attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view( + len(is_local_index_global_attn_nonzero[0]), -1 + ) + # The attention weights for tokens with global attention are + # just filler values, they were never used to compute the output. + # Fill with 0 now, the correct values are in 'global_attn_probs'. + attn_probs[is_index_global_attn_nonzero] = 0 + + outputs = (attn_output.transpose(0, 1),) + + if output_attentions: + outputs += (attn_probs,) + + return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs + + @staticmethod + def _pad_and_transpose_last_two_dims(hidden_states_padded, padding): + """pads rows and then flips rows and columns""" + hidden_states_padded = nn.functional.pad( + hidden_states_padded, padding + ) # padding value is not important because it will be overwritten + hidden_states_padded = hidden_states_padded.view( + *hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2) + ) + return hidden_states_padded + + @staticmethod + def _pad_and_diagonalize(chunked_hidden_states): + """ + shift every row 1 step right, converting columns into diagonals. + + Example: + + ```python + chunked_hidden_states: [ + 0.4983, + 2.6918, + -0.0071, + 1.0492, + -1.8348, + 0.7672, + 0.2986, + 0.0285, + -0.7584, + 0.4206, + -0.0405, + 0.1599, + 2.0514, + -1.1600, + 0.5372, + 0.2629, + ] + window_overlap = num_rows = 4 + ``` + + (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 + 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, + -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] + """ + total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size() + chunked_hidden_states = nn.functional.pad( + chunked_hidden_states, (0, window_overlap + 1) + ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten + chunked_hidden_states = chunked_hidden_states.view( + total_num_heads, num_chunks, -1 + ) # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap + chunked_hidden_states = chunked_hidden_states[ + :, :, :-window_overlap + ] # total_num_heads x num_chunks x window_overlap*window_overlap + chunked_hidden_states = chunked_hidden_states.view( + total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim + ) + chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] + return chunked_hidden_states + + @staticmethod + def _chunk(hidden_states, window_overlap, onnx_export: bool = False): + """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" + if not onnx_export: + # non-overlapping chunks of size = 2w + hidden_states = hidden_states.view( + hidden_states.size(0), + torch.div(hidden_states.size(1), (window_overlap * 2), rounding_mode="trunc"), + window_overlap * 2, + hidden_states.size(2), + ) + # use `as_strided` to make the chunks overlap with an overlap size = window_overlap + chunk_size = list(hidden_states.size()) + chunk_size[1] = chunk_size[1] * 2 - 1 + + chunk_stride = list(hidden_states.stride()) + chunk_stride[1] = chunk_stride[1] // 2 + return hidden_states.as_strided(size=chunk_size, stride=chunk_stride) + + # When exporting to ONNX, use this separate logic + # have to use slow implementation since as_strided, unfold and 2d-tensor indexing aren't supported (yet) in ONNX export + + # TODO replace this with + # > return hidden_states.unfold(dimension=1, size=window_overlap * 2, step=window_overlap).transpose(2, 3) + # once `unfold` is supported + # the case hidden_states.size(1) == window_overlap * 2 can also simply return hidden_states.unsqueeze(1), but that's control flow + + chunk_size = [ + hidden_states.size(0), + torch.div(hidden_states.size(1), window_overlap, rounding_mode="trunc") - 1, + window_overlap * 2, + hidden_states.size(2), + ] + + overlapping_chunks = torch.empty(chunk_size, device=hidden_states.device) + for chunk in range(chunk_size[1]): + overlapping_chunks[:, chunk, :, :] = hidden_states[ + :, chunk * window_overlap : chunk * window_overlap + 2 * window_overlap, : + ] + return overlapping_chunks + + @staticmethod + def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor: + beginning_mask_2d = input_tensor.new_ones(affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0]) + beginning_mask = beginning_mask_2d[None, :, None, :] + ending_mask = beginning_mask.flip(dims=(1, 3)) + beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] + beginning_mask = beginning_mask.expand(beginning_input.size()) + input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] = torch.full_like( + beginning_input, -float("inf") + ).where(beginning_mask.bool(), beginning_input) + ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] + ending_mask = ending_mask.expand(ending_input.size()) + input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] = torch.full_like( + ending_input, -float("inf") + ).where(ending_mask.bool(), ending_input) + + def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int): + """ + Matrix multiplication of query and key tensors using with a sliding window attention pattern. This + implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an + overlap of size window_overlap + """ + batch_size, seq_len, num_heads, head_dim = query.size() + assert ( + seq_len % (window_overlap * 2) == 0 + ), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}" + assert query.size() == key.size() + + chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 + query = query.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) + key = key.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) + + query = self._chunk(query, window_overlap, getattr(self.config, "onnx_export", False)) + key = self._chunk(key, window_overlap, getattr(self.config, "onnx_export", False)) + + # matrix multiplication + # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap + diagonal_chunked_attention_scores = torch.einsum("bcxd,bcyd->bcxy", (query, key)) # multiply + + # convert diagonals into columns + diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims( + diagonal_chunked_attention_scores, padding=(0, 0, 0, 1) + ) + + # allocate space for the overall attention matrix where the chunks are combined. The last dimension + # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to + # window_overlap previous words). The following column is attention score from each word to itself, then + # followed by window_overlap columns for the upper triangle. + + diagonal_attention_scores = diagonal_chunked_attention_scores.new_zeros( + (batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1) + ) + + # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions + # - copying the main diagonal and the upper triangle + diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[ + :, :, :window_overlap, : window_overlap + 1 + ] + diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[ + :, -1, window_overlap:, : window_overlap + 1 + ] + # - copying the lower triangle + diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[ + :, :, -(window_overlap + 1) : -1, window_overlap + 1 : + ] + + diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[ + :, 0, : window_overlap - 1, 1 - window_overlap : + ] + + # separate batch_size and num_heads dimensions again + diagonal_attention_scores = diagonal_attention_scores.view( + batch_size, num_heads, seq_len, 2 * window_overlap + 1 + ).transpose(2, 1) + + self._mask_invalid_locations(diagonal_attention_scores, window_overlap) + return diagonal_attention_scores + + def _sliding_chunks_matmul_attn_probs_value( + self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int + ): + """ + Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the + same shape as `attn_probs` + """ + batch_size, seq_len, num_heads, head_dim = value.size() + + assert seq_len % (window_overlap * 2) == 0 + assert attn_probs.size()[:3] == value.size()[:3] + assert attn_probs.size(3) == 2 * window_overlap + 1 + chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1 + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap + + chunked_attn_probs = attn_probs.transpose(1, 2).reshape( + batch_size * num_heads, + torch.div(seq_len, window_overlap, rounding_mode="trunc"), + window_overlap, + 2 * window_overlap + 1, + ) + + # group batch_size and num_heads dimensions into one + value = value.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim) + + # pad seq_len with w at the beginning of the sequence and another window overlap at the end + padded_value = nn.functional.pad(value, (0, 0, window_overlap, window_overlap), value=-1) + + # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap + chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim) + chunked_value_stride = padded_value.stride() + chunked_value_stride = ( + chunked_value_stride[0], + window_overlap * chunked_value_stride[1], + chunked_value_stride[1], + chunked_value_stride[2], + ) + chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride) + + chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) + + context = torch.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value)) + return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2) + + @staticmethod + def _get_global_attn_indices(is_index_global_attn): + """compute global attn indices required throughout forward pass""" + # helper variable + num_global_attn_indices = is_index_global_attn.long().sum(dim=1) + + # max number of global attn indices in batch + max_num_global_attn_indices = num_global_attn_indices.max() + + # indices of global attn + is_index_global_attn_nonzero = is_index_global_attn.nonzero(as_tuple=True) + + # helper variable + is_local_index_global_attn = torch.arange( + max_num_global_attn_indices, device=is_index_global_attn.device + ) < num_global_attn_indices.unsqueeze(dim=-1) + + # location of the non-padding values within global attention indices + is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(as_tuple=True) + + # location of the padding values within global attention indices + is_local_index_no_global_attn_nonzero = (is_local_index_global_attn == 0).nonzero(as_tuple=True) + return ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) + + def _concat_with_global_key_attn_probs( + self, + key_vectors, + query_vectors, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ): + batch_size = key_vectors.shape[0] + + # create only global key vectors + key_vectors_only_global = key_vectors.new_zeros( + batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim + ) + + key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero] + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = torch.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global)) + + # need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets + attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3) + attn_probs_from_global_key[ + is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, : + ] = torch.finfo(attn_probs_from_global_key.dtype).min + attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3) + + return attn_probs_from_global_key + + def _compute_attn_output_with_global_indices( + self, + value_vectors, + attn_probs, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + ): + batch_size = attn_probs.shape[0] + + # cut local attn probs to global only + attn_probs_only_global = attn_probs.narrow(-1, 0, max_num_global_attn_indices) + # get value vectors for global only + value_vectors_only_global = value_vectors.new_zeros( + batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim + ) + value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero] + + # use `matmul` because `einsum` crashes sometimes with fp16 + # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v)) + # compute attn output only global + attn_output_only_global = torch.matmul( + attn_probs_only_global.transpose(1, 2).clone(), value_vectors_only_global.transpose(1, 2).clone() + ).transpose(1, 2) + + # reshape attn probs + attn_probs_without_global = attn_probs.narrow( + -1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices + ).contiguous() + + # compute attn output with global + attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( + attn_probs_without_global, value_vectors, self.one_sided_attn_window_size + ) + return attn_output_only_global + attn_output_without_global + + def _compute_global_attn_output_from_hidden( + self, + hidden_states, + max_num_global_attn_indices, + layer_head_mask, + is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + is_index_masked, + ): + seq_len, batch_size = hidden_states.shape[:2] + + # prepare global hidden states + global_attn_hidden_states = hidden_states.new_zeros(max_num_global_attn_indices, batch_size, self.embed_dim) + global_attn_hidden_states[is_local_index_global_attn_nonzero[::-1]] = hidden_states[ + is_index_global_attn_nonzero[::-1] + ] + + # global key, query, value + global_query_vectors_only_global = self.query_global(global_attn_hidden_states) + global_key_vectors = self.key_global(hidden_states) + global_value_vectors = self.value_global(hidden_states) + + # normalize + global_query_vectors_only_global /= math.sqrt(self.head_dim) + + # reshape + global_query_vectors_only_global = ( + global_query_vectors_only_global.contiguous() + .view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim) + .transpose(0, 1) + ) # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim) + global_key_vectors = ( + global_key_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) + ) # batch_size * self.num_heads, seq_len, head_dim) + global_value_vectors = ( + global_value_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1) + ) # batch_size * self.num_heads, seq_len, head_dim) + + # compute attn scores + global_attn_scores = torch.bmm(global_query_vectors_only_global, global_key_vectors.transpose(1, 2)) + + assert list(global_attn_scores.size()) == [ + batch_size * self.num_heads, + max_num_global_attn_indices, + seq_len, + ], ( + "global_attn_scores have the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is" + f" {global_attn_scores.size()}." + ) + + global_attn_scores = global_attn_scores.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + + # need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets + global_attn_scores = global_attn_scores.transpose(1, 2) + global_attn_scores[ + is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, : + ] = torch.finfo(global_attn_scores.dtype).min + global_attn_scores = global_attn_scores.transpose(1, 2) + + global_attn_scores = global_attn_scores.masked_fill( + is_index_masked[:, None, None, :], + torch.finfo(global_attn_scores.dtype).min, + ) + + global_attn_scores = global_attn_scores.view(batch_size * self.num_heads, max_num_global_attn_indices, seq_len) + + # compute global attn probs + global_attn_probs_float = nn.functional.softmax( + global_attn_scores, dim=-1, dtype=torch.float32 + ) # use fp32 for numerical stability + + # apply layer head masking + if layer_head_mask is not None: + assert layer_head_mask.size() == ( + self.num_heads, + ), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}" + global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view( + batch_size, self.num_heads, max_num_global_attn_indices, seq_len + ) + global_attn_probs_float = global_attn_probs_float.view( + batch_size * self.num_heads, max_num_global_attn_indices, seq_len + ) + + global_attn_probs = nn.functional.dropout( + global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training + ) + + # global attn output + global_attn_output = torch.bmm(global_attn_probs, global_value_vectors) + + assert list(global_attn_output.size()) == [ + batch_size * self.num_heads, + max_num_global_attn_indices, + self.head_dim, + ], ( + "global_attn_output tensor has the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is" + f" {global_attn_output.size()}." + ) + + global_attn_probs = global_attn_probs.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + global_attn_output = global_attn_output.view( + batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim + ) + return global_attn_output, global_attn_probs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class LongformerSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LongformerAttention(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.self = LongformerSelfAttention(config, layer_id) + self.output = LongformerSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states, + attention_mask=None, + layer_head_mask=None, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=False, + ): + self_outputs = self.self( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + ) + attn_output = self.output(self_outputs[0], hidden_states) + outputs = (attn_output,) + self_outputs[1:] + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class LongformerIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class LongformerOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class LongformerLayer(nn.Module): + def __init__(self, config, layer_id=0): + super().__init__() + self.attention = LongformerAttention(config, layer_id) + self.intermediate = LongformerIntermediate(config) + self.output = LongformerOutput(config) + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + + def forward( + self, + hidden_states, + attention_mask=None, + layer_head_mask=None, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=False, + ): + self_attn_outputs = self.attention( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + ) + attn_output = self_attn_outputs[0] + outputs = self_attn_outputs[1:] + + layer_output = apply_chunking_to_forward( + self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attn_output + ) + outputs = (layer_output,) + outputs + return outputs + + def ff_chunk(self, attn_output): + intermediate_output = self.intermediate(attn_output) + layer_output = self.output(intermediate_output, attn_output) + return layer_output + + +class LongformerEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([LongformerLayer(config, layer_id=i) for i in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + padding_len=0, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + is_index_masked = attention_mask < 0 + is_index_global_attn = attention_mask > 0 + + # Record `is_global_attn == True` to enable ONNX export + is_global_attn = is_index_global_attn.flatten().any().item() + + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None # All local attentions. + all_global_attentions = () if (output_attentions and is_global_attn) else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + assert head_mask.size()[0] == ( + len(self.layer) + ), f"The head_mask should be specified for {len(self.layer)} layers, but it is for {head_mask.size()[0]}." + for idx, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + is_index_masked, + is_index_global_attn, + is_global_attn, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask=attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) + all_attentions = all_attentions + (layer_outputs[1].transpose(1, 2),) + + if is_global_attn: + # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn + all_global_attentions = all_global_attentions + (layer_outputs[2].transpose(2, 3),) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + # undo padding if necessary + # unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1) + hidden_states = hidden_states[:, : hidden_states.shape[1] - padding_len] + if output_hidden_states: + all_hidden_states = tuple([state[:, : state.shape[1] - padding_len] for state in all_hidden_states]) + + if output_attentions: + all_attentions = tuple([state[:, :, : state.shape[2] - padding_len, :] for state in all_attentions]) + + if not return_dict: + return tuple( + v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None + ) + return LongformerBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + global_attentions=all_global_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class LongformerPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Longformer +class LongformerLMHead(nn.Module): + """Longformer Head for masked language modeling.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.decoder = nn.Linear(config.hidden_size, config.vocab_size) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.decoder.bias = self.bias + + def forward(self, features, **kwargs): + x = self.dense(features) + x = gelu(x) + x = self.layer_norm(x) + + # project back to size of vocabulary with bias + x = self.decoder(x) + + return x + + def _tie_weights(self): + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + # For accelerate compatibility and to not break backward compatibility + if self.decoder.bias.device.type == "meta": + self.decoder.bias = self.bias + else: + self.bias = self.decoder.bias + + +class LongformerPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LongformerConfig + base_model_prefix = "longformer" + supports_gradient_checkpointing = True + _no_split_modules = ["LongformerSelfAttention"] + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +LONGFORMER_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`LongformerConfig`]): Model configuration class with all the parameters of the + model. Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +LONGFORMER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + global_attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to decide the attention given on each token, local attention or global attention. Tokens with global + attention attends to all other tokens, and all other tokens attend to them. This is important for + task-specific finetuning because it makes the model more flexible at representing the task. For example, + for classification, the token should be given global attention. For QA, all question tokens should also + have global attention. Please refer to the [Longformer paper](https://arxiv.org/abs/2004.05150) for more + details. Mask values selected in `[0, 1]`: + + - 0 for local attention (a sliding window attention), + - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). + + head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Longformer Model outputting raw hidden-states without any specific head on top.", + LONGFORMER_START_DOCSTRING, +) +class LongformerModel(LongformerPreTrainedModel): + """ + This class copied code from [`RobertaModel`] and overwrote standard self-attention with longformer self-attention + to provide the ability to process long sequences following the self-attention approach described in [Longformer: + the Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, and Arman Cohan. + Longformer self-attention combines a local (sliding window) and global attention to extend to long documents + without the O(n^2) increase in memory and compute. + + The self-attention module `LongformerSelfAttention` implemented here supports the combination of local and global + attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated + attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future + release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA + kernel to be memory and compute efficient. + + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + if isinstance(config.attention_window, int): + assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" + assert config.attention_window > 0, "`config.attention_window` has to be positive" + config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer + else: + assert len(config.attention_window) == config.num_hidden_layers, ( + "`len(config.attention_window)` should equal `config.num_hidden_layers`. " + f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" + ) + + self.embeddings = LongformerEmbeddings(config) + self.encoder = LongformerEncoder(config) + self.pooler = LongformerPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def _pad_to_window_size( + self, + input_ids: torch.Tensor, + attention_mask: torch.Tensor, + token_type_ids: torch.Tensor, + position_ids: torch.Tensor, + inputs_embeds: torch.Tensor, + pad_token_id: int, + ): + """A helper function to pad tokens and mask to work with implementation of Longformer self-attention.""" + # padding + attention_window = ( + self.config.attention_window + if isinstance(self.config.attention_window, int) + else max(self.config.attention_window) + ) + + assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" + input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape + batch_size, seq_len = input_shape[:2] + + padding_len = (attention_window - seq_len % attention_window) % attention_window + + # this path should be recorded in the ONNX export, it is fine with padding_len == 0 as well + if padding_len > 0: + logger.warning_once( + f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " + f"`config.attention_window`: {attention_window}" + ) + if input_ids is not None: + input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id) + if position_ids is not None: + # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings + position_ids = nn.functional.pad(position_ids, (0, padding_len), value=pad_token_id) + if inputs_embeds is not None: + input_ids_padding = inputs_embeds.new_full( + (batch_size, padding_len), + self.config.pad_token_id, + dtype=torch.long, + ) + inputs_embeds_padding = self.embeddings(input_ids_padding) + inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2) + + attention_mask = nn.functional.pad( + attention_mask, (0, padding_len), value=0 + ) # no attention on the padding tokens + token_type_ids = nn.functional.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0 + + return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds + + def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor): + # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) + # (global_attention_mask + 1) => 1 for local attention, 2 for global attention + # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention + if attention_mask is not None: + attention_mask = attention_mask * (global_attention_mask + 1) + else: + # simply use `global_attention_mask` as `attention_mask` + # if no `attention_mask` is given + attention_mask = global_attention_mask + 1 + return attention_mask + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=LongformerBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerBaseModelOutputWithPooling]: + r""" + + Returns: + + Examples: + + ```python + >>> import torch + >>> from transformers import LongformerModel, AutoTokenizer + + >>> model = LongformerModel.from_pretrained("allenai/longformer-base-4096") + >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096") + + >>> SAMPLE_TEXT = " ".join(["Hello world! "] * 1000) # long input document + >>> input_ids = torch.tensor(tokenizer.encode(SAMPLE_TEXT)).unsqueeze(0) # batch of size 1 + + >>> attention_mask = torch.ones( + ... input_ids.shape, dtype=torch.long, device=input_ids.device + ... ) # initialize to local attention + >>> global_attention_mask = torch.zeros( + ... input_ids.shape, dtype=torch.long, device=input_ids.device + ... ) # initialize to global attention to be deactivated for all tokens + >>> global_attention_mask[ + ... :, + ... [ + ... 1, + ... 4, + ... 21, + ... ], + ... ] = 1 # Set global attention to random tokens for the sake of this example + >>> # Usually, set global attention based on the task. For example, + >>> # classification: the token + >>> # QA: question tokens + >>> # LM: potentially on the beginning of sentences and paragraphs + >>> outputs = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask) + >>> sequence_output = outputs.last_hidden_state + >>> pooled_output = outputs.pooler_output + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # merge `global_attention_mask` and `attention_mask` + if global_attention_mask is not None: + attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask) + + padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds = self._pad_to_window_size( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + pad_token_id=self.config.pad_token_id, + ) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)[ + :, 0, 0, : + ] + + embedding_output = self.embeddings( + input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds + ) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + padding_len=padding_len, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return LongformerBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + global_attentions=encoder_outputs.global_attentions, + ) + + +@add_start_docstrings("""Longformer Model with a `language modeling` head on top.""", LONGFORMER_START_DOCSTRING) +class LongformerForMaskedLM(LongformerPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder"] + + def __init__(self, config): + super().__init__(config) + + self.longformer = LongformerModel(config, add_pooling_layer=False) + self.lm_head = LongformerLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=LongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerMaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + kwargs (`Dict[str, any]`, optional, defaults to *{}*): + Used to hide legacy arguments that have been deprecated. + + Returns: + + Mask filling example: + + ```python + >>> from transformers import AutoTokenizer, LongformerForMaskedLM + + >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096") + >>> model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096") + ``` + + Let's try a very long input. + + ```python + >>> TXT = ( + ... "My friends are but they eat too many carbs." + ... + " That's why I decide not to eat with them." * 300 + ... ) + >>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"] + >>> logits = model(input_ids).logits + + >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() + >>> probs = logits[0, masked_index].softmax(dim=0) + >>> values, predictions = probs.topk(5) + + >>> tokenizer.decode(predictions).split() + ['healthy', 'skinny', 'thin', 'good', 'vegetarian'] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.longformer( + input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + + labels = labels.to(prediction_scores.device) + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return LongformerMaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + +@add_start_docstrings( + """ + Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class LongformerForSequenceClassification(LongformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.longformer = LongformerModel(config, add_pooling_layer=False) + self.classifier = LongformerClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="jpwahle/longformer-base-plagiarism-detection", + output_type=LongformerSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'ORIGINAL'", + expected_loss=5.44, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerSequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if global_attention_mask is None: + logger.warning_once("Initializing global attention on CLS token...") + global_attention_mask = torch.zeros_like(input_ids) + # global attention on cls token + global_attention_mask[:, 0] = 1 + + outputs = self.longformer( + input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return LongformerSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + +class LongformerClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + def forward(self, hidden_states, **kwargs): + hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS]) + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + output = self.out_proj(hidden_states) + return output + + +@add_start_docstrings( + """ + Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / + TriviaQA (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + LONGFORMER_START_DOCSTRING, +) +class LongformerForQuestionAnswering(LongformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.longformer = LongformerModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=LongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerQuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, LongformerForQuestionAnswering + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") + >>> model = LongformerForQuestionAnswering.from_pretrained("allenai/longformer-large-4096-finetuned-triviaqa") + + >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet" + >>> encoding = tokenizer(question, text, return_tensors="pt") + >>> input_ids = encoding["input_ids"] + + >>> # default is local attention everywhere + >>> # the forward method will automatically set global attention on question tokens + >>> attention_mask = encoding["attention_mask"] + + >>> outputs = model(input_ids, attention_mask=attention_mask) + >>> start_logits = outputs.start_logits + >>> end_logits = outputs.end_logits + >>> all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist()) + + >>> answer_tokens = all_tokens[torch.argmax(start_logits) : torch.argmax(end_logits) + 1] + >>> answer = tokenizer.decode( + ... tokenizer.convert_tokens_to_ids(answer_tokens) + ... ) # remove space prepending space token + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if global_attention_mask is None: + if input_ids is None: + logger.warning( + "It is not possible to automatically generate the `global_attention_mask` because input_ids is" + " None. Please make sure that it is correctly set." + ) + else: + # set global attention on question tokens automatically + global_attention_mask = _compute_global_attention_mask(input_ids, self.config.sep_token_id) + + outputs = self.longformer( + input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return LongformerQuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + +@add_start_docstrings( + """ + Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class LongformerForTokenClassification(LongformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.longformer = LongformerModel(config, add_pooling_layer=False) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="brad1141/Longformer-finetuned-norm", + output_type=LongformerTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=( + "['Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence', 'Evidence'," + " 'Evidence', 'Evidence', 'Evidence', 'Evidence']" + ), + expected_loss=0.63, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerTokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.longformer( + input_ids, + attention_mask=attention_mask, + global_attention_mask=global_attention_mask, + head_mask=head_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + + labels = labels.to(logits.device) + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return LongformerTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + +@add_start_docstrings( + """ + Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class LongformerForMultipleChoice(LongformerPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.longformer = LongformerModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=LongformerMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + global_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, LongformerMultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # set global attention on question tokens + if global_attention_mask is None and input_ids is not None: + logger.warning_once("Initializing global attention on multiple choice...") + # put global attention on all tokens after `config.sep_token_id` + global_attention_mask = torch.stack( + [ + _compute_global_attention_mask(input_ids[:, i], self.config.sep_token_id, before_sep_token=False) + for i in range(num_choices) + ], + dim=1, + ) + + flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + flat_global_attention_mask = ( + global_attention_mask.view(-1, global_attention_mask.size(-1)) + if global_attention_mask is not None + else None + ) + flat_inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.longformer( + flat_input_ids, + position_ids=flat_position_ids, + token_type_ids=flat_token_type_ids, + attention_mask=flat_attention_mask, + global_attention_mask=flat_global_attention_mask, + head_mask=head_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + + labels = labels.to(reshaped_logits.device) + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return LongformerMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/modeling_tf_longformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/modeling_tf_longformer.py new file mode 100644 index 0000000000000000000000000000000000000000..907fbbddf1e68f86fe21223d9ed7a1b4453c525a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/modeling_tf_longformer.py @@ -0,0 +1,2778 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tensorflow Longformer model.""" + + +from __future__ import annotations + +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_longformer import LongformerConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096" +_CONFIG_FOR_DOC = "LongformerConfig" + +LARGE_NEGATIVE = -1e8 + + +from ..deprecated._archive_maps import TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class TFLongformerBaseModelOutput(ModelOutput): + """ + Base class for Longformer's outputs, with potential hidden states, local and global attentions. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerBaseModelOutputWithPooling(ModelOutput): + """ + Base class for Longformer's outputs that also contains a pooling of the last hidden states. + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): + Last layer hidden-state of the first token of the sequence (classification token) further processed by a + Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence + prediction (classification) objective during pretraining. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + last_hidden_state: tf.Tensor = None + pooler_output: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerMaskedLMOutput(ModelOutput): + """ + Base class for masked language models outputs. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Masked language modeling (MLM) loss. + logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerQuestionAnsweringModelOutput(ModelOutput): + """ + Base class for outputs of question answering Longformer models. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. + start_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Span-start scores (before SoftMax). + end_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Span-end scores (before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + start_logits: tf.Tensor = None + end_logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerSequenceClassifierOutput(ModelOutput): + """ + Base class for outputs of sentence classification models. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerMultipleChoiceModelOutput(ModelOutput): + """ + Base class for outputs of multiple choice models. + + Args: + loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided): + Classification loss. + logits (`tf.Tensor` of shape `(batch_size, num_choices)`): + *num_choices* is the second dimension of the input tensors. (see *input_ids* above). + + Classification scores (before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +@dataclass +class TFLongformerTokenClassifierOutput(ModelOutput): + """ + Base class for outputs of token classification models. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : + Classification loss. + logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`): + Classification scores (before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x + + attention_window + 1)`, where `x` is the number of tokens with global attention mask. + + Local attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token in the sequence to every token with + global attention (first `x` values) and to every token in the attention window (remaining `attention_window + + 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the + remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a + token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding + (succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens. + If the attention window contains a token with global attention, the attention weight at the corresponding + index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global + attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be + accessed from `global_attentions`. + global_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`, where `x` + is the number of tokens with global attention mask. + + Global attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. Those are the attention weights from every token with global attention to every token + in the sequence. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor, ...] | None = None + attentions: Tuple[tf.Tensor, ...] | None = None + global_attentions: Tuple[tf.Tensor, ...] | None = None + + +def _compute_global_attention_mask(input_ids_shape, sep_token_indices, before_sep_token=True): + """ + Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is + True` else after `sep_token_id`. + """ + assert shape_list(sep_token_indices)[1] == 2, "`input_ids` should have two dimensions" + question_end_index = tf.reshape(sep_token_indices, (input_ids_shape[0], 3, 2))[:, 0, 1][:, None] + # bool attention mask with True in locations of global attention + attention_mask = tf.expand_dims(tf.range(input_ids_shape[1], dtype=tf.int64), axis=0) + attention_mask = tf.tile(attention_mask, (input_ids_shape[0], 1)) + if before_sep_token is True: + question_end_index = tf.tile(question_end_index, (1, input_ids_shape[1])) + attention_mask = tf.cast(attention_mask < question_end_index, dtype=question_end_index.dtype) + else: + # last token is separation token and should not be counted and in the middle are two separation tokens + question_end_index = tf.tile(question_end_index + 1, (1, input_ids_shape[1])) + attention_mask = tf.cast( + attention_mask > question_end_index, + dtype=question_end_index.dtype, + ) * tf.cast(attention_mask < input_ids_shape[-1], dtype=question_end_index.dtype) + + return attention_mask + + +# Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->Longformer +class TFLongformerLMHead(keras.layers.Layer): + """Longformer Head for masked language modeling.""" + + def __init__(self, config, input_embeddings, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + self.dense = keras.layers.Dense( + config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") + self.act = get_tf_activation("gelu") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.hidden_size]) + + def get_output_embeddings(self): + return self.decoder + + def set_output_embeddings(self, value): + self.decoder.weight = value + self.decoder.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.layer_norm(hidden_states) + + # project back to size of vocabulary with bias + seq_length = shape_list(tensor=hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +class TFLongformerEmbeddings(keras.layers.Layer): + """ + Same as BertEmbeddings with a tiny tweak for positional embeddings indexing and some extra casting. + """ + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.padding_idx = 1 + self.config = config + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding + symbols are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + input_ids: tf.Tensor + Returns: tf.Tensor + """ + mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) + incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask + + return incremental_indices + self.padding_idx + + def call( + self, + input_ids=None, + position_ids=None, + token_type_ids=None, + inputs_embeds=None, + past_key_values_length=0, + training=False, + ): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.cast(tf.fill(dims=input_shape, value=0), tf.int64) + + if position_ids is None: + if input_ids is not None: + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = self.create_position_ids_from_input_ids( + input_ids=input_ids, past_key_values_length=past_key_values_length + ) + else: + position_ids = tf.expand_dims( + tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1, dtype=tf.int64), + axis=0, + ) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = inputs_embeds + position_embeds + token_type_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Longformer +class TFLongformerIntermediate(keras.layers.Layer): + def __init__(self, config: LongformerConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Longformer +class TFLongformerOutput(keras.layers.Layer): + def __init__(self, config: LongformerConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Longformer +class TFLongformerPooler(keras.layers.Layer): + def __init__(self, config: LongformerConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Longformer +class TFLongformerSelfOutput(keras.layers.Layer): + def __init__(self, config: LongformerConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +class TFLongformerSelfAttention(keras.layers.Layer): + def __init__(self, config, layer_id, **kwargs): + super().__init__(**kwargs) + self.config = config + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads}" + ) + + self.num_heads = config.num_attention_heads + self.head_dim = int(config.hidden_size / config.num_attention_heads) + self.embed_dim = config.hidden_size + self.query = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="query", + ) + self.key = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="key", + ) + self.value = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="value", + ) + + # separate projection layers for tokens with global attention + self.query_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="query_global", + ) + self.key_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="key_global", + ) + self.value_global = keras.layers.Dense( + self.embed_dim, + kernel_initializer=get_initializer(config.initializer_range), + name="value_global", + ) + self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.global_dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.layer_id = layer_id + attention_window = config.attention_window[self.layer_id] + + assert ( + attention_window % 2 == 0 + ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" + assert ( + attention_window > 0 + ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" + + self.one_sided_attn_window_size = attention_window // 2 + + def build(self, input_shape=None): + if not self.built: + with tf.name_scope("query_global"): + self.query_global.build((self.config.hidden_size,)) + with tf.name_scope("key_global"): + self.key_global.build((self.config.hidden_size,)) + with tf.name_scope("value_global"): + self.value_global.build((self.config.hidden_size,)) + + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + if getattr(self, "query_global", None) is not None: + with tf.name_scope(self.query_global.name): + self.query_global.build([None, None, self.config.hidden_size]) + if getattr(self, "key_global", None) is not None: + with tf.name_scope(self.key_global.name): + self.key_global.build([None, None, self.config.hidden_size]) + if getattr(self, "value_global", None) is not None: + with tf.name_scope(self.value_global.name): + self.value_global.build([None, None, self.config.hidden_size]) + + def call( + self, + inputs, + training=False, + ): + """ + LongformerSelfAttention expects *len(hidden_states)* to be multiple of *attention_window*. Padding to + *attention_window* happens in LongformerModel.forward to avoid redoing the padding on each layer. + + The *attention_mask* is changed in [`LongformerModel.forward`] from 0, 1, 2 to: + + - -10000: no attention + - 0: local attention + - +10000: global attention + """ + # retrieve input args + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + # project hidden states + query_vectors = self.query(hidden_states) + key_vectors = self.key(hidden_states) + value_vectors = self.value(hidden_states) + batch_size, seq_len, embed_dim = shape_list(hidden_states) + + tf.debugging.assert_equal( + embed_dim, + self.embed_dim, + message=f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}", + ) + + # normalize query + query_vectors /= tf.math.sqrt(tf.cast(self.head_dim, dtype=query_vectors.dtype)) + query_vectors = tf.reshape(query_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + key_vectors = tf.reshape(key_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + + # attn_probs = (batch_size, seq_len, num_heads, window*2+1) + attn_scores = self._sliding_chunks_query_key_matmul( + query_vectors, key_vectors, self.one_sided_attn_window_size + ) + + # values to pad for attention probs + remove_from_windowed_attention_mask = attention_mask != 0 + # cast to fp32/fp16 then replace 1's with -inf + float_mask = tf.cast(remove_from_windowed_attention_mask, dtype=query_vectors.dtype) * LARGE_NEGATIVE + + # diagonal mask with zeros everywhere and -inf inplace of padding + diagonal_mask = self._sliding_chunks_query_key_matmul( + tf.ones(shape_list(attention_mask)), + float_mask, + self.one_sided_attn_window_size, + ) + + # pad local attention probs + attn_scores += diagonal_mask + + tf.debugging.assert_equal( + shape_list(attn_scores), + [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1], + message=( + f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}," + f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {shape_list(attn_scores)}" + ), + ) + + # compute global attn indices required through out forward fn + ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) = self._get_global_attn_indices(is_index_global_attn) + + # this function is only relevant for global attention + if is_global_attn: + attn_scores = self._concat_with_global_key_attn_probs( + attn_scores=attn_scores, + query_vectors=query_vectors, + key_vectors=key_vectors, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + ) + + attn_probs = stable_softmax(attn_scores, axis=-1) + + # softmax sometimes inserts NaN if all positions are masked, replace them with 0 + # Make sure to create a mask with the proper shape: + # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] + # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] + if is_global_attn: + masked_index = tf.tile( + is_index_masked[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), + ) + else: + masked_index = tf.tile( + is_index_masked[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), + ) + attn_probs = tf.where( + masked_index, + tf.zeros(shape_list(masked_index), dtype=attn_probs.dtype), + attn_probs, + ) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_probs = tf.reshape(layer_head_mask, (1, 1, -1, 1)) * attn_probs + + # apply dropout + attn_probs = self.dropout(attn_probs, training=training) + value_vectors = tf.reshape(value_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) + + # if global attention, compute sum of global and local attn + + if is_global_attn: + attn_output = self._compute_attn_output_with_global_indices( + value_vectors=value_vectors, + attn_probs=attn_probs, + max_num_global_attn_indices=max_num_global_attn_indices, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + ) + else: + attn_output = self._sliding_chunks_matmul_attn_probs_value( + attn_probs, value_vectors, self.one_sided_attn_window_size + ) + + tf.debugging.assert_equal( + shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size" + ) + + attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim)) + + # compute value for global attention and overwrite to attention output + if is_global_attn: + attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden( + attn_output=attn_output, + hidden_states=hidden_states, + max_num_global_attn_indices=max_num_global_attn_indices, + layer_head_mask=layer_head_mask, + is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero=is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, + is_index_masked=is_index_masked, + training=training, + ) + else: + # Leave attn_output unchanged + global_attn_probs = tf.zeros((batch_size, self.num_heads, max_num_global_attn_indices, seq_len)) + + # make sure that local attention probabilities are set to 0 for indices of global attn + # Make sure to create a mask with the proper shape: + # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] + # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] + if is_global_attn: + masked_global_attn_index = tf.tile( + is_index_global_attn[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), + ) + else: + masked_global_attn_index = tf.tile( + is_index_global_attn[:, :, None, None], + (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), + ) + attn_probs = tf.where( + masked_global_attn_index, + tf.zeros(shape_list(masked_global_attn_index), dtype=attn_probs.dtype), + attn_probs, + ) + + outputs = (attn_output, attn_probs, global_attn_probs) + + return outputs + + def _sliding_chunks_query_key_matmul(self, query, key, window_overlap): + """ + Matrix multiplication of query and key tensors using with a sliding window attention pattern. This + implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an + overlap of size window_overlap + """ + batch_size, seq_len, num_heads, head_dim = shape_list(query) + + tf.debugging.assert_equal( + seq_len % (window_overlap * 2), + 0, + message=f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}", + ) + tf.debugging.assert_equal( + shape_list(query), + shape_list(key), + message=( + f"Shape of query and key should be equal, but got query: {shape_list(query)} and key:" + f" {shape_list(key)}" + ), + ) + + chunks_count = seq_len // window_overlap - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 + query = tf.reshape( + tf.transpose(query, (0, 2, 1, 3)), + (batch_size * num_heads, seq_len, head_dim), + ) + key = tf.reshape(tf.transpose(key, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim)) + chunked_query = self._chunk(query, window_overlap) + chunked_key = self._chunk(key, window_overlap) + + # matrix multiplication + # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim + # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap + chunked_query = tf.cast(chunked_query, dtype=chunked_key.dtype) + chunked_attention_scores = tf.einsum("bcxd,bcyd->bcxy", chunked_query, chunked_key) # multiply + + # convert diagonals into columns + paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 1], [0, 0]]) + diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(chunked_attention_scores, paddings) + + # allocate space for the overall attention matrix where the chunks are combined. The last dimension + # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to + # window_overlap previous words). The following column is attention score from each word to itself, then + # followed by window_overlap columns for the upper triangle. + + # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions + # - copying the main diagonal and the upper triangle + # TODO: This code is most likely not very efficient and should be improved + diagonal_attn_scores_up_triang = tf.concat( + [ + diagonal_chunked_attention_scores[:, :, :window_overlap, : window_overlap + 1], + diagonal_chunked_attention_scores[:, -1:, window_overlap:, : window_overlap + 1], + ], + axis=1, + ) + + # - copying the lower triangle + diagonal_attn_scores_low_triang = tf.concat( + [ + tf.zeros( + (batch_size * num_heads, 1, window_overlap, window_overlap), + dtype=diagonal_chunked_attention_scores.dtype, + ), + diagonal_chunked_attention_scores[:, :, -(window_overlap + 1) : -1, window_overlap + 1 :], + ], + axis=1, + ) + diagonal_attn_scores_first_chunk = tf.concat( + [ + tf.roll( + diagonal_chunked_attention_scores, + shift=[1, window_overlap], + axis=[2, 3], + )[:, :, :window_overlap, :window_overlap], + tf.zeros( + (batch_size * num_heads, 1, window_overlap, window_overlap), + dtype=diagonal_chunked_attention_scores.dtype, + ), + ], + axis=1, + ) + first_chunk_mask = ( + tf.tile( + tf.range(chunks_count + 1, dtype=tf.int64)[None, :, None, None], + (batch_size * num_heads, 1, window_overlap, window_overlap), + ) + < 1 + ) + diagonal_attn_scores_low_triang = tf.where( + first_chunk_mask, + diagonal_attn_scores_first_chunk, + diagonal_attn_scores_low_triang, + ) + + # merging upper and lower triangle + diagonal_attention_scores = tf.concat( + [diagonal_attn_scores_low_triang, diagonal_attn_scores_up_triang], axis=-1 + ) + + # separate batch_size and num_heads dimensions again + diagonal_attention_scores = tf.transpose( + tf.reshape( + diagonal_attention_scores, + (batch_size, num_heads, seq_len, 2 * window_overlap + 1), + ), + (0, 2, 1, 3), + ) + + diagonal_attention_scores = self._mask_invalid_locations(diagonal_attention_scores, window_overlap) + + return diagonal_attention_scores + + @staticmethod + def _mask_invalid_locations(input_tensor, window_overlap): + # create correct upper triangle bool mask + mask_2d_upper = tf.reverse( + tf.linalg.band_part(tf.ones(shape=(window_overlap, window_overlap + 1)), -1, 0), + axis=[0], + ) + + # pad to full matrix + padding = tf.convert_to_tensor( + [[0, shape_list(input_tensor)[1] - window_overlap], [0, shape_list(input_tensor)[3] - window_overlap - 1]] + ) + + # create lower mask + mask_2d = tf.pad(mask_2d_upper, padding) + + # combine with upper mask + mask_2d = mask_2d + tf.reverse(mask_2d, axis=[0, 1]) + + # broadcast to full matrix + mask_4d = tf.tile(mask_2d[None, :, None, :], (shape_list(input_tensor)[0], 1, 1, 1)) + + # inf tensor used for masking + inf_tensor = -float("inf") * tf.ones_like(input_tensor) + + # mask + input_tensor = tf.where(tf.math.greater(mask_4d, 0), inf_tensor, input_tensor) + + return input_tensor + + def _sliding_chunks_matmul_attn_probs_value(self, attn_probs, value, window_overlap): + """ + Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the + same shape as `attn_probs` + """ + + batch_size, seq_len, num_heads, head_dim = shape_list(value) + + tf.debugging.assert_equal( + seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap" + ) + tf.debugging.assert_equal( + shape_list(attn_probs)[:3], + shape_list(value)[:3], + message="value and attn_probs must have same dims (except head_dim)", + ) + tf.debugging.assert_equal( + shape_list(attn_probs)[3], + 2 * window_overlap + 1, + message="attn_probs last dim has to be 2 * window_overlap + 1", + ) + + chunks_count = seq_len // window_overlap - 1 + + # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap + chunked_attn_probs = tf.reshape( + tf.transpose(attn_probs, (0, 2, 1, 3)), + ( + batch_size * num_heads, + seq_len // window_overlap, + window_overlap, + 2 * window_overlap + 1, + ), + ) + + # group batch_size and num_heads dimensions into one + value = tf.reshape( + tf.transpose(value, (0, 2, 1, 3)), + (batch_size * num_heads, seq_len, head_dim), + ) + + # pad seq_len with w at the beginning of the sequence and another window overlap at the end + paddings = tf.convert_to_tensor([[0, 0], [window_overlap, window_overlap], [0, 0]]) + padded_value = tf.pad(value, paddings, constant_values=-1) + + # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap + frame_size = 3 * window_overlap * head_dim + frame_hop_size = (shape_list(padded_value)[1] * head_dim - frame_size) // chunks_count + chunked_value = tf.signal.frame( + tf.reshape(padded_value, (batch_size * num_heads, -1)), + frame_size, + frame_hop_size, + ) + chunked_value = tf.reshape( + chunked_value, + (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim), + ) + + tf.debugging.assert_equal( + shape_list(chunked_value), + [batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim], + message="Chunked value has the wrong shape", + ) + + chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) + context = tf.einsum("bcwd,bcdh->bcwh", chunked_attn_probs, chunked_value) + context = tf.transpose( + tf.reshape(context, (batch_size, num_heads, seq_len, head_dim)), + (0, 2, 1, 3), + ) + + return context + + @staticmethod + def _pad_and_transpose_last_two_dims(hidden_states_padded, paddings): + """pads rows and then flips rows and columns""" + hidden_states_padded = tf.pad( + hidden_states_padded, paddings + ) # padding value is not important because it will be overwritten + batch_size, chunk_size, seq_length, hidden_dim = shape_list(hidden_states_padded) + hidden_states_padded = tf.reshape(hidden_states_padded, (batch_size, chunk_size, hidden_dim, seq_length)) + + return hidden_states_padded + + @staticmethod + def _pad_and_diagonalize(chunked_hidden_states): + """ + shift every row 1 step right, converting columns into diagonals. + + Example: + + ```python + chunked_hidden_states: [ + 0.4983, + 2.6918, + -0.0071, + 1.0492, + -1.8348, + 0.7672, + 0.2986, + 0.0285, + -0.7584, + 0.4206, + -0.0405, + 0.1599, + 2.0514, + -1.1600, + 0.5372, + 0.2629, + ] + window_overlap = num_rows = 4 + ``` + + (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 + 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, + -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] + """ + total_num_heads, num_chunks, window_overlap, hidden_dim = shape_list(chunked_hidden_states) + paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, window_overlap + 1]]) + chunked_hidden_states = tf.pad( + chunked_hidden_states, paddings + ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten + chunked_hidden_states = tf.reshape( + chunked_hidden_states, (total_num_heads, num_chunks, -1) + ) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap + chunked_hidden_states = chunked_hidden_states[ + :, :, :-window_overlap + ] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap + chunked_hidden_states = tf.reshape( + chunked_hidden_states, + (total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim), + ) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap + chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] + + return chunked_hidden_states + + @staticmethod + def _chunk(hidden_states, window_overlap): + """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" + batch_size, seq_length, hidden_dim = shape_list(hidden_states) + num_output_chunks = 2 * (seq_length // (2 * window_overlap)) - 1 + + # define frame size and frame stride (similar to convolution) + frame_hop_size = window_overlap * hidden_dim + frame_size = 2 * frame_hop_size + hidden_states = tf.reshape(hidden_states, (batch_size, seq_length * hidden_dim)) + + # chunk with overlap + chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size) + + tf.debugging.assert_equal( + shape_list(chunked_hidden_states), + [batch_size, num_output_chunks, frame_size], + message=( + "Make sure chunking is correctly applied. `Chunked hidden states should have output dimension" + f" {[batch_size, frame_size, num_output_chunks]}, but got {shape_list(chunked_hidden_states)}." + ), + ) + + chunked_hidden_states = tf.reshape( + chunked_hidden_states, + (batch_size, num_output_chunks, 2 * window_overlap, hidden_dim), + ) + + return chunked_hidden_states + + @staticmethod + def _get_global_attn_indices(is_index_global_attn): + """compute global attn indices required throughout forward pass""" + # helper variable + num_global_attn_indices = tf.math.count_nonzero(is_index_global_attn, axis=1) + num_global_attn_indices = tf.cast(num_global_attn_indices, dtype=tf.constant(1).dtype) + + # max number of global attn indices in batch + max_num_global_attn_indices = tf.reduce_max(num_global_attn_indices) + + # indices of global attn + is_index_global_attn_nonzero = tf.where(is_index_global_attn) + + # helper variable + is_local_index_global_attn = tf.range(max_num_global_attn_indices) < tf.expand_dims( + num_global_attn_indices, axis=-1 + ) + + # location of the non-padding values within global attention indices + is_local_index_global_attn_nonzero = tf.where(is_local_index_global_attn) + + # location of the padding values within global attention indices + is_local_index_no_global_attn_nonzero = tf.where(tf.math.logical_not(is_local_index_global_attn)) + + return ( + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ) + + def _concat_with_global_key_attn_probs( + self, + attn_scores, + key_vectors, + query_vectors, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + ): + batch_size = shape_list(key_vectors)[0] + + # select global key vectors + global_key_vectors = tf.gather_nd(key_vectors, is_index_global_attn_nonzero) + + # create only global key vectors + key_vectors_only_global = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_key_vectors, + shape=( + batch_size, + max_num_global_attn_indices, + self.num_heads, + self.head_dim, + ), + ) + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = tf.einsum("blhd,bshd->blhs", query_vectors, key_vectors_only_global) + + # (batch_size, max_num_global_attn_indices, seq_len, num_heads) + attn_probs_from_global_key_trans = tf.transpose(attn_probs_from_global_key, (0, 3, 1, 2)) + mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( + shape_list(attn_probs_from_global_key_trans)[-2:] + ) + mask = tf.ones(mask_shape) * -10000.0 + mask = tf.cast(mask, dtype=attn_probs_from_global_key_trans.dtype) + + # scatter mask + attn_probs_from_global_key_trans = tf.tensor_scatter_nd_update( + attn_probs_from_global_key_trans, + is_local_index_no_global_attn_nonzero, + mask, + ) + + # (batch_size, seq_len, num_heads, max_num_global_attn_indices) + attn_probs_from_global_key = tf.transpose(attn_probs_from_global_key_trans, (0, 2, 3, 1)) + + # concat to attn_probs + # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) + attn_scores = tf.concat((attn_probs_from_global_key, attn_scores), axis=-1) + + return attn_scores + + def _compute_attn_output_with_global_indices( + self, + value_vectors, + attn_probs, + max_num_global_attn_indices, + is_index_global_attn_nonzero, + is_local_index_global_attn_nonzero, + ): + batch_size = shape_list(attn_probs)[0] + + # cut local attn probs to global only + attn_probs_only_global = attn_probs[:, :, :, :max_num_global_attn_indices] + + # select global value vectors + global_value_vectors = tf.gather_nd(value_vectors, is_index_global_attn_nonzero) + + # create only global value vectors + value_vectors_only_global = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_value_vectors, + shape=( + batch_size, + max_num_global_attn_indices, + self.num_heads, + self.head_dim, + ), + ) + + # compute attn output only global + attn_output_only_global = tf.einsum("blhs,bshd->blhd", attn_probs_only_global, value_vectors_only_global) + + # reshape attn probs + attn_probs_without_global = attn_probs[:, :, :, max_num_global_attn_indices:] + + # compute attn output with global + attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( + attn_probs_without_global, value_vectors, self.one_sided_attn_window_size + ) + + return attn_output_only_global + attn_output_without_global + + def _compute_global_attn_output_from_hidden( + self, + attn_output, + hidden_states, + max_num_global_attn_indices, + layer_head_mask, + is_local_index_global_attn_nonzero, + is_index_global_attn_nonzero, + is_local_index_no_global_attn_nonzero, + is_index_masked, + training, + ): + batch_size, seq_len = shape_list(hidden_states)[:2] + + # prepare global hidden states + global_attn_hidden_states = tf.gather_nd(hidden_states, is_index_global_attn_nonzero) + global_attn_hidden_states = tf.scatter_nd( + is_local_index_global_attn_nonzero, + global_attn_hidden_states, + shape=(batch_size, max_num_global_attn_indices, self.embed_dim), + ) + + # global key, query, value + global_query_vectors_only_global = self.query_global(global_attn_hidden_states) + global_key_vectors = self.key_global(hidden_states) + global_value_vectors = self.value_global(hidden_states) + + # normalize + global_query_vectors_only_global /= tf.math.sqrt( + tf.cast(self.head_dim, dtype=global_query_vectors_only_global.dtype) + ) + global_query_vectors_only_global = self.reshape_and_transpose(global_query_vectors_only_global, batch_size) + global_key_vectors = self.reshape_and_transpose(global_key_vectors, batch_size) + global_value_vectors = self.reshape_and_transpose(global_value_vectors, batch_size) + + # compute attn scores + global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(global_attn_scores), + [batch_size * self.num_heads, max_num_global_attn_indices, seq_len], + message=( + "global_attn_scores have the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is" + f" {shape_list(global_attn_scores)}." + ), + ) + + global_attn_scores = tf.reshape( + global_attn_scores, + (batch_size, self.num_heads, max_num_global_attn_indices, seq_len), + ) + global_attn_scores_trans = tf.transpose(global_attn_scores, (0, 2, 1, 3)) + mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( + shape_list(global_attn_scores_trans)[-2:] + ) + global_attn_mask = tf.ones(mask_shape) * -10000.0 + global_attn_mask = tf.cast(global_attn_mask, dtype=global_attn_scores_trans.dtype) + + # scatter mask + global_attn_scores_trans = tf.tensor_scatter_nd_update( + global_attn_scores_trans, + is_local_index_no_global_attn_nonzero, + global_attn_mask, + ) + global_attn_scores = tf.transpose(global_attn_scores_trans, (0, 2, 1, 3)) + + # mask global attn scores + attn_mask = tf.tile(is_index_masked[:, None, None, :], (1, shape_list(global_attn_scores)[1], 1, 1)) + global_attn_scores = tf.where(attn_mask, -10000.0, global_attn_scores) + global_attn_scores = tf.reshape( + global_attn_scores, + (batch_size * self.num_heads, max_num_global_attn_indices, seq_len), + ) + + # compute global attn probs + global_attn_probs_float = stable_softmax(global_attn_scores, axis=-1) + + # apply layer head masking + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + global_attn_probs_float = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + global_attn_probs_float, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + ) + global_attn_probs_float = tf.reshape( + global_attn_probs_float, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len) + ) + + # dropout + global_attn_probs = self.global_dropout(global_attn_probs_float, training=training) + + # global attn output + global_attn_output = tf.matmul(global_attn_probs, global_value_vectors) + + tf.debugging.assert_equal( + shape_list(global_attn_output), + [batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim], + message=( + "global_attn_output tensor has the wrong size. Size should be" + f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is" + f" {shape_list(global_attn_output)}." + ), + ) + + global_attn_output = tf.reshape( + global_attn_output, + (batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim), + ) + + # get only non zero global attn output + nonzero_global_attn_output = tf.gather_nd( + tf.transpose(global_attn_output, (0, 2, 1, 3)), + is_local_index_global_attn_nonzero, + ) + nonzero_global_attn_output = tf.reshape( + nonzero_global_attn_output, + (shape_list(is_local_index_global_attn_nonzero)[0], -1), + ) + + # overwrite values with global attention + attn_output = tf.tensor_scatter_nd_update( + attn_output, is_index_global_attn_nonzero, nonzero_global_attn_output + ) + + global_attn_probs = tf.reshape( + global_attn_probs, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) + ) + + return attn_output, global_attn_probs + + def reshape_and_transpose(self, vector, batch_size): + return tf.reshape( + tf.transpose( + tf.reshape(vector, (batch_size, -1, self.num_heads, self.head_dim)), + (0, 2, 1, 3), + ), + (batch_size * self.num_heads, -1, self.head_dim), + ) + + +class TFLongformerAttention(keras.layers.Layer): + def __init__(self, config, layer_id=0, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFLongformerSelfAttention(config, layer_id, name="self") + self.dense_output = TFLongformerSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call(self, inputs, training=False): + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + self_outputs = self.self_attention( + [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], + training=training, + ) + attention_output = self.dense_output(self_outputs[0], hidden_states, training=training) + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +class TFLongformerLayer(keras.layers.Layer): + def __init__(self, config, layer_id=0, **kwargs): + super().__init__(**kwargs) + + self.attention = TFLongformerAttention(config, layer_id, name="attention") + self.intermediate = TFLongformerIntermediate(config, name="intermediate") + self.longformer_output = TFLongformerOutput(config, name="output") + + def call(self, inputs, training=False): + ( + hidden_states, + attention_mask, + layer_head_mask, + is_index_masked, + is_index_global_attn, + is_global_attn, + ) = inputs + + attention_outputs = self.attention( + [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], + training=training, + ) + attention_output = attention_outputs[0] + intermediate_output = self.intermediate(attention_output) + layer_output = self.longformer_output(intermediate_output, attention_output, training=training) + outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "longformer_output", None) is not None: + with tf.name_scope(self.longformer_output.name): + self.longformer_output.build(None) + + +class TFLongformerEncoder(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.output_hidden_states = config.output_hidden_states + self.output_attentions = config.output_attentions + self.layer = [TFLongformerLayer(config, i, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states, + attention_mask=None, + head_mask=None, + padding_len=0, + is_index_masked=None, + is_index_global_attn=None, + is_global_attn=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + all_hidden_states = () if output_hidden_states else None + all_attentions = all_global_attentions = () if output_attentions else None + + for idx, layer_module in enumerate(self.layer): + if output_hidden_states: + hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states + all_hidden_states = all_hidden_states + (hidden_states_to_add,) + + layer_outputs = layer_module( + [ + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + is_index_masked, + is_index_global_attn, + is_global_attn, + ], + training=training, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) + all_attentions = all_attentions + (tf.transpose(layer_outputs[1], (0, 2, 1, 3)),) + + # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn + all_global_attentions = all_global_attentions + (tf.transpose(layer_outputs[2], (0, 1, 3, 2)),) + + # Add last layer + if output_hidden_states: + hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states + all_hidden_states = all_hidden_states + (hidden_states_to_add,) + + # undo padding + # unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1) + hidden_states = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states + if output_attentions: + all_attentions = ( + tuple([state[:, :, :-padding_len, :] for state in all_attentions]) + if padding_len > 0 + else all_attentions + ) + + if not return_dict: + return tuple( + v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None + ) + + return TFLongformerBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + global_attentions=all_global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFLongformerMainLayer(keras.layers.Layer): + config_class = LongformerConfig + + def __init__(self, config, add_pooling_layer=True, **kwargs): + super().__init__(**kwargs) + + if isinstance(config.attention_window, int): + assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" + assert config.attention_window > 0, "`config.attention_window` has to be positive" + config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer + else: + assert len(config.attention_window) == config.num_hidden_layers, ( + "`len(config.attention_window)` should equal `config.num_hidden_layers`. " + f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" + ) + + self.config = config + self.num_hidden_layers = config.num_hidden_layers + self.initializer_range = config.initializer_range + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + self.pad_token_id = config.pad_token_id + self.attention_window = config.attention_window + self.embeddings = TFLongformerEmbeddings(config, name="embeddings") + self.encoder = TFLongformerEncoder(config, name="encoder") + self.pooler = TFLongformerPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, value): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + head_mask=None, + global_attention_mask=None, + token_type_ids=None, + position_ids=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + if input_ids is not None and not isinstance(input_ids, tf.Tensor): + input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64) + elif input_ids is not None: + input_ids = tf.cast(input_ids, tf.int64) + + if attention_mask is not None and not isinstance(attention_mask, tf.Tensor): + attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64) + elif attention_mask is not None: + attention_mask = tf.cast(attention_mask, tf.int64) + + if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor): + global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64) + elif global_attention_mask is not None: + global_attention_mask = tf.cast(global_attention_mask, tf.int64) + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.cast(tf.fill(input_shape, 1), tf.int64) + + if token_type_ids is None: + token_type_ids = tf.cast(tf.fill(input_shape, 0), tf.int64) + + # merge `global_attention_mask` and `attention_mask` + if global_attention_mask is not None: + attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask) + + ( + padding_len, + input_ids, + attention_mask, + token_type_ids, + position_ids, + inputs_embeds, + ) = self._pad_to_window_size( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + pad_token_id=self.pad_token_id, + ) + + # is index masked or global attention + is_index_masked = tf.math.less(attention_mask, 1) + is_index_global_attn = tf.math.greater(attention_mask, 1) + is_global_attn = tf.math.reduce_any(is_index_global_attn) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, to_seq_length, 1, 1] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + attention_mask_shape = shape_list(attention_mask) + extended_attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], attention_mask_shape[1], 1, 1)) + + # Since attention_mask is 1.0 for positions we want to attend locally and 0.0 for + # masked and global attn positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(tf.math.abs(1 - extended_attention_mask), tf.dtypes.float32) * -10000.0 + embedding_output = self.embeddings( + input_ids, + position_ids, + token_type_ids, + inputs_embeds, + training=training, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + padding_len=padding_len, + is_index_masked=is_index_masked, + is_index_global_attn=is_index_global_attn, + is_global_attn=is_global_attn, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFLongformerBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + global_attentions=encoder_outputs.global_attentions, + ) + + def _pad_to_window_size( + self, + input_ids, + attention_mask, + token_type_ids, + position_ids, + inputs_embeds, + pad_token_id, + ): + """A helper function to pad tokens and mask to work with implementation of Longformer selfattention.""" + # padding + attention_window = ( + self.attention_window if isinstance(self.attention_window, int) else max(self.attention_window) + ) + + assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" + + input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds) + batch_size, seq_len = input_shape[:2] + padding_len = (attention_window - seq_len % attention_window) % attention_window + + paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]]) + + if input_ids is not None: + input_ids = tf.pad(input_ids, paddings, constant_values=pad_token_id) + + if position_ids is not None: + # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings + position_ids = tf.pad(position_ids, paddings, constant_values=pad_token_id) + + if inputs_embeds is not None: + if padding_len > 0: + input_ids_padding = tf.cast(tf.fill((batch_size, padding_len), self.pad_token_id), tf.int64) + inputs_embeds_padding = self.embeddings(input_ids_padding) + inputs_embeds = tf.concat([inputs_embeds, inputs_embeds_padding], axis=-2) + + attention_mask = tf.pad(attention_mask, paddings, constant_values=False) # no attention on the padding tokens + token_type_ids = tf.pad(token_type_ids, paddings, constant_values=0) # pad with token_type_id = 0 + + return ( + padding_len, + input_ids, + attention_mask, + token_type_ids, + position_ids, + inputs_embeds, + ) + + @staticmethod + def _merge_to_attention_mask(attention_mask: tf.Tensor, global_attention_mask: tf.Tensor): + # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) + # (global_attention_mask + 1) => 1 for local attention, 2 for global attention + # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention + if attention_mask is not None: + attention_mask = attention_mask * (global_attention_mask + 1) + else: + # simply use `global_attention_mask` as `attention_mask` + # if no `attention_mask` is given + attention_mask = global_attention_mask + 1 + + return attention_mask + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFLongformerPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = LongformerConfig + base_model_prefix = "longformer" + + @property + def input_signature(self): + sig = super().input_signature + sig["global_attention_mask"] = tf.TensorSpec((None, None), tf.int32, name="global_attention_mask") + return sig + + +LONGFORMER_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`LongformerConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +LONGFORMER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`np.ndarray` or `tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + global_attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to decide the attention given on each token, local attention or global attention. Tokens with global + attention attends to all other tokens, and all other tokens attend to them. This is important for + task-specific finetuning because it makes the model more flexible at representing the task. For example, + for classification, the token should be given global attention. For QA, all question tokens should also + have global attention. Please refer to the [Longformer paper](https://arxiv.org/abs/2004.05150) for more + details. Mask values selected in `[0, 1]`: + + - 0 for local attention (a sliding window attention), + - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). + + token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare Longformer Model outputting raw hidden-states without any specific head on top.", + LONGFORMER_START_DOCSTRING, +) +class TFLongformerModel(TFLongformerPreTrainedModel): + """ + + This class copies code from [`TFRobertaModel`] and overwrites standard self-attention with longformer + self-attention to provide the ability to process long sequences following the self-attention approach described in + [Longformer: the Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, and + Arman Cohan. Longformer self-attention combines a local (sliding window) and global attention to extend to long + documents without the O(n^2) increase in memory and compute. + + The self-attention module `TFLongformerSelfAttention` implemented here supports the combination of local and global + attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated + attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future + release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA + kernel to be memory and compute efficient. + + """ + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.longformer = TFLongformerMainLayer(config, name="longformer") + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + + +@add_start_docstrings( + """Longformer Model with a `language modeling` head on top.""", + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") + self.lm_head = TFLongformerLMHead(config, self.longformer.embeddings, name="lm_head") + + def get_lm_head(self): + return self.lm_head + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.lm_head.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="allenai/longformer-base-4096", + output_type=TFLongformerMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + mask="", + expected_output="' Paris'", + expected_loss=0.44, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output, training=training) + loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + + return ((loss,) + output) if loss is not None else output + + return TFLongformerMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build(None) + + +@add_start_docstrings( + """ + Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / + TriviaQA (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAnsweringLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") + self.qa_outputs = keras.layers.Dense( + config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="qa_outputs", + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint="allenai/longformer-large-4096-finetuned-triviaqa", + output_type=TFLongformerQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="' puppet'", + expected_loss=0.96, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + """ + + if input_ids is not None and not isinstance(input_ids, tf.Tensor): + input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64) + elif input_ids is not None: + input_ids = tf.cast(input_ids, tf.int64) + + if attention_mask is not None and not isinstance(attention_mask, tf.Tensor): + attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64) + elif attention_mask is not None: + attention_mask = tf.cast(attention_mask, tf.int64) + + if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor): + global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64) + elif global_attention_mask is not None: + global_attention_mask = tf.cast(global_attention_mask, tf.int64) + + # set global attention on question tokens + if global_attention_mask is None and input_ids is not None: + if shape_list(tf.where(input_ids == self.config.sep_token_id))[0] != 3 * shape_list(input_ids)[0]: + logger.warning( + f"There should be exactly three separator tokens: {self.config.sep_token_id} in every sample for" + " questions answering. You might also consider to set `global_attention_mask` manually in the" + " forward function to avoid this. This is most likely an error. The global attention is disabled" + " for this forward pass." + ) + global_attention_mask = tf.cast(tf.fill(shape_list(input_ids), value=0), tf.int64) + else: + logger.warning_once("Initializing global attention on question tokens...") + # put global attention on all tokens until `config.sep_token_id` is reached + sep_token_indices = tf.where(input_ids == self.config.sep_token_id) + sep_token_indices = tf.cast(sep_token_indices, dtype=tf.int64) + global_attention_mask = _compute_global_attention_mask(shape_list(input_ids), sep_token_indices) + + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + loss = None + + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions} + labels["end_position"] = end_positions + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + + return ((loss,) + output) if loss is not None else output + + return TFLongformerQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) + + +class TFLongformerClassificationHead(keras.layers.Layer): + """Head for sentence-level classification tasks.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.out_proj = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" + ) + self.config = config + + def call(self, hidden_states, training=False): + hidden_states = hidden_states[:, 0, :] # take token (equiv. to [CLS]) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + output = self.out_proj(hidden_states) + return output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForSequenceClassification(TFLongformerPreTrainedModel, TFSequenceClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + + self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") + self.classifier = TFLongformerClassificationHead(config, name="classifier") + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFLongformerSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerSequenceClassifierOutput, Tuple[tf.Tensor]]: + if input_ids is not None and not isinstance(input_ids, tf.Tensor): + input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int64) + elif input_ids is not None: + input_ids = tf.cast(input_ids, tf.int64) + + if attention_mask is not None and not isinstance(attention_mask, tf.Tensor): + attention_mask = tf.convert_to_tensor(attention_mask, dtype=tf.int64) + elif attention_mask is not None: + attention_mask = tf.cast(attention_mask, tf.int64) + + if global_attention_mask is not None and not isinstance(global_attention_mask, tf.Tensor): + global_attention_mask = tf.convert_to_tensor(global_attention_mask, dtype=tf.int64) + elif global_attention_mask is not None: + global_attention_mask = tf.cast(global_attention_mask, tf.int64) + + if global_attention_mask is None and input_ids is not None: + logger.warning_once("Initializing global attention on CLS token...") + # global attention on cls token + global_attention_mask = tf.zeros_like(input_ids) + updates = tf.ones(shape_list(input_ids)[0], dtype=tf.int64) + indices = tf.pad( + tensor=tf.expand_dims(tf.range(shape_list(input_ids)[0], dtype=tf.int64), axis=1), + paddings=[[0, 0], [0, 1]], + constant_values=0, + ) + global_attention_mask = tf.tensor_scatter_nd_update( + global_attention_mask, + indices, + updates, + ) + + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFLongformerSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build(None) + + +@add_start_docstrings( + """ + Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForMultipleChoice(TFLongformerPreTrainedModel, TFMultipleChoiceLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.longformer = TFLongformerMainLayer(config, name="longformer") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @property + def input_signature(self): + return { + "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), + "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), + "global_attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="global_attention_mask"), + } + + @unpack_inputs + @add_start_docstrings_to_model_forward( + LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFLongformerMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerMultipleChoiceModelOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None + flat_global_attention_mask = ( + tf.reshape(global_attention_mask, (-1, shape_list(global_attention_mask)[-1])) + if global_attention_mask is not None + else None + ) + flat_inputs_embeds = ( + tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + + outputs = self.longformer( + flat_input_ids, + position_ids=flat_position_ids, + token_type_ids=flat_token_type_ids, + attention_mask=flat_attention_mask, + head_mask=head_mask, + global_attention_mask=flat_global_attention_mask, + inputs_embeds=flat_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFLongformerMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + LONGFORMER_START_DOCSTRING, +) +class TFLongformerForTokenClassification(TFLongformerPreTrainedModel, TFTokenClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"pooler"] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.longformer = TFLongformerMainLayer(config=config, add_pooling_layer=False, name="longformer") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFLongformerTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + global_attention_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: Optional[Union[np.array, tf.Tensor]] = None, + training: Optional[bool] = False, + ) -> Union[TFLongformerTokenClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + + outputs = self.longformer( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + global_attention_mask=global_attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFLongformerTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + global_attentions=outputs.global_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "longformer", None) is not None: + with tf.name_scope(self.longformer.name): + self.longformer.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer.py new file mode 100644 index 0000000000000000000000000000000000000000..51728d778081580a89ab067577439dfa3e46a6df --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer.py @@ -0,0 +1,399 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import os +from functools import lru_cache +from typing import List, Optional, Tuple + +import regex as re + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} + + +@lru_cache() +# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. + + The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab + if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for + decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup + tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +# Copied from transformers.models.roberta.tokenization_roberta.get_pairs +def get_pairs(word): + """ + Return set of symbol pairs in a word. + + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer with FacebookAI/roberta-base->allenai/longformer-base-4096, RoBERTa->Longformer all-casing, RobertaTokenizer->LongformerTokenizer +class LongformerTokenizer(PreTrainedTokenizer): + """ + Constructs a Longformer tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import LongformerTokenizer + + >>> tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096") + >>> tokenizer("Hello world")["input_ids"] + [0, 31414, 232, 2] + + >>> tokenizer(" Hello world")["input_ids"] + [0, 20920, 232, 2] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you + call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). + + + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (Longformer tokenizer detect beginning of words by the preceding space). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + merges_file, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + **kwargs, + ): + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = ( + AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) + if isinstance(mask_token, str) + else mask_token + ) + + # these special tokens are not part of the vocab.json, let's add them in the correct order + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + bpe_merges = merges_handle.read().split("\n")[1:-1] + bpe_merges = [tuple(merge.split()) for merge in bpe_merges] + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + self.cache = {} + self.add_prefix_space = add_prefix_space + + # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions + self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") + + super().__init__( + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + **kwargs, + ) + + @property + def vocab_size(self): + return len(self.encoder) + + def get_vocab(self): + vocab = dict(self.encoder).copy() + vocab.update(self.added_tokens_encoder) + return vocab + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) + + if not pairs: + return token + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + def _tokenize(self, text): + """Tokenize a string.""" + bpe_tokens = [] + for token in re.findall(self.pat, text): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A Longformer sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. Longformer does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) + if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): + text = " " + text + return (text, kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer_fast.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..02b74818a23ef813c5a03e1e2eba7585cb3b46b7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/longformer/tokenization_longformer_fast.py @@ -0,0 +1,269 @@ +# coding=utf-8 +# Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Fast Tokenization classes for Longformer.""" +import json +from typing import List, Optional, Tuple + +from tokenizers import pre_tokenizers, processors + +from ...tokenization_utils_base import AddedToken, BatchEncoding +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_longformer import LongformerTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} + + +# Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast with FacebookAI/roberta-base->allenai/longformer-base-4096, RoBERTa->Longformer all-casing, Roberta->Longformer +class LongformerTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" Longformer tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 + tokenizer, using byte-level Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import LongformerTokenizerFast + + >>> tokenizer = LongformerTokenizerFast.from_pretrained("allenai/longformer-base-4096") + >>> tokenizer("Hello world")["input_ids"] + [0, 31414, 232, 2] + + >>> tokenizer(" Hello world")["input_ids"] + [0, 20920, 232, 2] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you + call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. + + + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (Longformer tokenizer detect beginning of words by the preceding space). + trim_offsets (`bool`, *optional*, defaults to `True`): + Whether the post processing step should trim offsets to avoid including whitespaces. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = LongformerTokenizer + + def __init__( + self, + vocab_file=None, + merges_file=None, + tokenizer_file=None, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + trim_offsets=True, + **kwargs, + ): + mask_token = ( + AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) + if isinstance(mask_token, str) + else mask_token + ) + super().__init__( + vocab_file, + merges_file, + tokenizer_file=tokenizer_file, + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + trim_offsets=trim_offsets, + **kwargs, + ) + + pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) + if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) + pre_tok_state["add_prefix_space"] = add_prefix_space + self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) + + self.add_prefix_space = add_prefix_space + + tokenizer_component = "post_processor" + tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) + if tokenizer_component_instance: + state = json.loads(tokenizer_component_instance.__getstate__()) + + # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` + if "sep" in state: + state["sep"] = tuple(state["sep"]) + if "cls" in state: + state["cls"] = tuple(state["cls"]) + + changes_to_apply = False + + if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: + state["add_prefix_space"] = add_prefix_space + changes_to_apply = True + + if state.get("trim_offsets", trim_offsets) != trim_offsets: + state["trim_offsets"] = trim_offsets + changes_to_apply = True + + if changes_to_apply: + component_class = getattr(processors, state.pop("type")) + new_value = component_class(**state) + setattr(self.backend_tokenizer, tokenizer_component, new_value) + + @property + def mask_token(self) -> str: + """ + `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not + having been set. + + Longformer tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily + comprise the space before the **. + """ + if self._mask_token is None: + if self.verbose: + logger.error("Using mask_token, but it is not set yet.") + return None + return str(self._mask_token) + + @mask_token.setter + def mask_token(self, value): + """ + Overriding the default behavior of the mask token to have it eat the space before it. + + This is needed to preserve backward compatibility with all the previously used models based on Longformer. + """ + # Mask token behave like a normal word, i.e. include the space before it + # So we set lstrip to True + value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value + self._mask_token = value + + def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + assert self.add_prefix_space or not is_split_into_words, ( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._batch_encode_plus(*args, **kwargs) + + def _encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + + assert self.add_prefix_space or not is_split_into_words, ( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " + "to use it with pretokenized inputs." + ) + + return super()._encode_plus(*args, **kwargs) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] + if token_ids_1 is None: + return output + + return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. Longformer does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..56f0a4e86afba2fc662d686fbe09daac2fee5081 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__init__.py @@ -0,0 +1,113 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_marian": ["MARIAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "MarianConfig", "MarianOnnxConfig"], +} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_marian"] = ["MarianTokenizer"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_marian"] = [ + "MARIAN_PRETRAINED_MODEL_ARCHIVE_LIST", + "MarianForCausalLM", + "MarianModel", + "MarianMTModel", + "MarianPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_marian"] = ["TFMarianModel", "TFMarianMTModel", "TFMarianPreTrainedModel"] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_marian"] = ["FlaxMarianModel", "FlaxMarianMTModel", "FlaxMarianPreTrainedModel"] + +if TYPE_CHECKING: + from .configuration_marian import MARIAN_PRETRAINED_CONFIG_ARCHIVE_MAP, MarianConfig, MarianOnnxConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_marian import MarianTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_marian import ( + MARIAN_PRETRAINED_MODEL_ARCHIVE_LIST, + MarianForCausalLM, + MarianModel, + MarianMTModel, + MarianPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_marian import TFMarianModel, TFMarianMTModel, TFMarianPreTrainedModel + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_marian import FlaxMarianModel, FlaxMarianMTModel, FlaxMarianPreTrainedModel + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fae397b1c9d4f97718e53b3ccb2e003328fbd2dc Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/configuration_marian.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/configuration_marian.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f8ac8cf96604c7356c762e5a53e5e19f96b692c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/configuration_marian.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/convert_marian_tatoeba_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/convert_marian_tatoeba_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9b0fb826a07fc2b4085c86fbc2e88dfd407fb810 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/convert_marian_tatoeba_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/convert_marian_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/convert_marian_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6210b71db1cbabad8da789ccea94f82970a23124 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/convert_marian_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/modeling_flax_marian.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/modeling_flax_marian.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ca81c644051bed5c211c8ffbbf87e2d399198743 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/modeling_flax_marian.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/modeling_marian.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/modeling_marian.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..008e7216e4bc593f322344aaeb10209fc2e781e7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/modeling_marian.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/modeling_tf_marian.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/modeling_tf_marian.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8ecc0710bfa1d4291d29aecf4ccc38f48421ebbb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/modeling_tf_marian.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/tokenization_marian.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/tokenization_marian.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..33b7eebbe53c7ed73ba0e37b7ccb81b4232fbb2d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/__pycache__/tokenization_marian.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/configuration_marian.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/configuration_marian.py new file mode 100644 index 0000000000000000000000000000000000000000..5921fde981be26cfaad725adbf91924551505a9d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/configuration_marian.py @@ -0,0 +1,390 @@ +# coding=utf-8 +# Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Marian model configuration""" +from collections import OrderedDict +from typing import Any, Mapping, Optional + +from ... import PreTrainedTokenizer +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast +from ...onnx.utils import compute_effective_axis_dimension +from ...utils import TensorType, is_torch_available, logging + + +logger = logging.get_logger(__name__) + + +class MarianConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MarianModel`]. It is used to instantiate an + Marian model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Marian + [Helsinki-NLP/opus-mt-en-de](https://huggingface.co/Helsinki-NLP/opus-mt-en-de) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 58101): + Vocabulary size of the Marian model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MarianModel`] or [`TFMarianModel`]. + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + scale_embedding (`bool`, *optional*, defaults to `False`): + Scale embeddings by diving by sqrt(d_model). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models) + forced_eos_token_id (`int`, *optional*, defaults to 0): + The id of the token to force as the last generated token when `max_length` is reached. Usually set to + `eos_token_id`. + + Examples: + + ```python + >>> from transformers import MarianModel, MarianConfig + + >>> # Initializing a Marian Helsinki-NLP/opus-mt-en-de style configuration + >>> configuration = MarianConfig() + + >>> # Initializing a model from the Helsinki-NLP/opus-mt-en-de style configuration + >>> model = MarianModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "marian" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + def __init__( + self, + vocab_size=58101, + decoder_vocab_size=None, + max_position_embeddings=1024, + encoder_layers=12, + encoder_ffn_dim=4096, + encoder_attention_heads=16, + decoder_layers=12, + decoder_ffn_dim=4096, + decoder_attention_heads=16, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + use_cache=True, + is_encoder_decoder=True, + activation_function="gelu", + d_model=1024, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + decoder_start_token_id=58100, + scale_embedding=False, + pad_token_id=58100, + eos_token_id=0, + forced_eos_token_id=0, + share_encoder_decoder_embeddings=True, + **kwargs, + ): + self.vocab_size = vocab_size + self.decoder_vocab_size = decoder_vocab_size or vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + self.share_encoder_decoder_embeddings = share_encoder_decoder_embeddings + super().__init__( + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + forced_eos_token_id=forced_eos_token_id, + **kwargs, + ) + + +class MarianOnnxConfig(OnnxSeq2SeqConfigWithPast): + @property + # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + + if self.use_past: + common_inputs["decoder_input_ids"] = {0: "batch"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + else: + common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} + + if self.use_past: + self.fill_with_past_key_values_(common_inputs, direction="inputs") + elif self.task == "causal-lm": + # TODO: figure this case out. + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + else: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), + ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), + ] + ) + + return common_inputs + + @property + # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs + def outputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_outputs = super().outputs + else: + common_outputs = super(OnnxConfigWithPast, self).outputs + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + return common_outputs + + def _generate_dummy_inputs_for_default_and_seq2seq_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + encoder_inputs = self._generate_dummy_inputs_for_encoder_and_decoder( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + # Generate decoder inputs + decoder_seq_length = seq_length if not self.use_past else 1 + decoder_inputs = self._generate_dummy_inputs_for_encoder_and_decoder( + tokenizer, batch_size, decoder_seq_length, is_pair, framework + ) + decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} + common_inputs = dict(**encoder_inputs, **decoder_inputs) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, encoder_seq_length = common_inputs["input_ids"].shape + decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] + num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads + encoder_shape = ( + batch, + num_encoder_attention_heads, + encoder_seq_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + decoder_past_length = decoder_seq_length + 3 + decoder_shape = ( + batch, + num_decoder_attention_heads, + decoder_past_length, + self._config.hidden_size // num_decoder_attention_heads, + ) + + common_inputs["decoder_attention_mask"] = torch.cat( + [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 + ) + + common_inputs["past_key_values"] = [] + # If the number of encoder and decoder layers are present in the model configuration, both are considered + num_encoder_layers, num_decoder_layers = self.num_layers + min_num_layers = min(num_encoder_layers, num_decoder_layers) + max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers + remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" + + for _ in range(min_num_layers): + common_inputs["past_key_values"].append( + ( + torch.zeros(decoder_shape), + torch.zeros(decoder_shape), + torch.zeros(encoder_shape), + torch.zeros(encoder_shape), + ) + ) + # TODO: test this. + shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape + for _ in range(min_num_layers, max_num_layers): + common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) + return common_inputs + + def _generate_dummy_inputs_for_causal_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + common_inputs = self._generate_dummy_inputs_for_encoder_and_decoder( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, seqlen = common_inputs["input_ids"].shape + # Not using the same length for past_key_values + past_key_values_length = seqlen + 2 + num_encoder_layers, _ = self.num_layers + num_encoder_attention_heads, _ = self.num_attention_heads + past_shape = ( + batch, + num_encoder_attention_heads, + past_key_values_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + + mask_dtype = common_inputs["attention_mask"].dtype + common_inputs["attention_mask"] = torch.cat( + [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 + ) + common_inputs["past_key_values"] = [ + (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) + ] + return common_inputs + + # Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering + # We renamed this function because Marian models do not have a sequence classification or question answering head + def _generate_dummy_inputs_for_encoder_and_decoder( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + # Copied from OnnxConfig.generate_dummy_inputs + # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. + # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX + batch_size = compute_effective_axis_dimension( + batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 + ) + + # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX + token_to_add = tokenizer.num_special_tokens_to_add(is_pair) + seq_length = compute_effective_axis_dimension( + seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add + ) + + # Generate dummy inputs according to compute batch and sequence + dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size + common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) + return common_inputs + + def generate_dummy_inputs( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + else: + common_inputs = self._generate_dummy_inputs_for_causal_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + return common_inputs + + # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._flatten_past_key_values_ + def _flatten_past_key_values_(self, flattened_output, name, idx, t): + if self.task in ["default", "seq2seq-lm"]: + flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) + else: + flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( + flattened_output, name, idx, t + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/convert_marian_tatoeba_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/convert_marian_tatoeba_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..f6b548c2b07f460f7250f76067af728369bcf743 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/convert_marian_tatoeba_to_pytorch.py @@ -0,0 +1,1324 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import datetime +import json +import os +import re +from pathlib import Path +from typing import Tuple + +import yaml +from tqdm import tqdm + +from transformers.models.marian.convert_marian_to_pytorch import ( + FRONT_MATTER_TEMPLATE, + convert, + convert_opus_name_to_hf_name, + download_and_unzip, + get_system_metadata, +) + + +DEFAULT_REPO = "Tatoeba-Challenge" +DEFAULT_MODEL_DIR = os.path.join(DEFAULT_REPO, "models") +LANG_CODE_URL = "https://datahub.io/core/language-codes/r/language-codes-3b2.csv" +ISO_URL = "https://cdn-datasets.huggingface.co/language_codes/iso-639-3.csv" +ISO_PATH = "lang_code_data/iso-639-3.csv" +LANG_CODE_PATH = "lang_code_data/language-codes-3b2.csv" +TATOEBA_MODELS_URL = "https://object.pouta.csc.fi/Tatoeba-MT-models" + + +class TatoebaConverter: + """ + Convert Tatoeba-Challenge models to huggingface format. + + Steps: + + 1. Convert numpy state dict to hf format (same code as OPUS-MT-Train conversion). + 2. Rename opus model to huggingface format. This means replace each alpha3 code with an alpha2 code if a unique + one exists. e.g. aav-eng -> aav-en, heb-eng -> he-en + 3. Select the best model for a particular pair, parse the yml for it and write a model card. By default the + best model is the one listed first in released-model-results, but it's also possible to specify the most + recent one. + """ + + def __init__(self, save_dir="marian_converted"): + assert Path(DEFAULT_REPO).exists(), "need git clone git@github.com:Helsinki-NLP/Tatoeba-Challenge.git" + self.download_lang_info() + self.model_results = json.load(open("Tatoeba-Challenge/models/released-model-results.json")) + self.alpha3_to_alpha2 = {} + for line in open(ISO_PATH): + parts = line.split("\t") + if len(parts[0]) == 3 and len(parts[3]) == 2: + self.alpha3_to_alpha2[parts[0]] = parts[3] + for line in LANG_CODE_PATH: + parts = line.split(",") + if len(parts[0]) == 3 and len(parts[1]) == 2: + self.alpha3_to_alpha2[parts[0]] = parts[1] + self.model_card_dir = Path(save_dir) + self.tag2name = {} + for key, value in GROUP_MEMBERS.items(): + self.tag2name[key] = value[0] + + def convert_models(self, tatoeba_ids, dry_run=False): + models_to_convert = [self.parse_metadata(x) for x in tatoeba_ids] + save_dir = Path("marian_ckpt") + dest_dir = Path(self.model_card_dir) + dest_dir.mkdir(exist_ok=True) + for model in tqdm(models_to_convert): # k, prepro, download, test_set_url in tqdm(model_list): + if "SentencePiece" not in model["pre-processing"]: + print(f"Skipping {model['release']} because it doesn't appear to use SentencePiece") + continue + if not os.path.exists(save_dir / model["_name"]): + download_and_unzip(f"{TATOEBA_MODELS_URL}/{model['release']}", save_dir / model["_name"]) + # from convert_marian_to_pytorch + opus_language_groups_to_hf = convert_opus_name_to_hf_name + pair_name = opus_language_groups_to_hf(model["_name"]) + convert(save_dir / model["_name"], dest_dir / f"opus-mt-{pair_name}") + self.write_model_card(model, dry_run=dry_run) + + def expand_group_to_two_letter_codes(self, grp_name): + return [self.alpha3_to_alpha2.get(x, x) for x in GROUP_MEMBERS[grp_name][1]] + + def is_group(self, code, name): + return "languages" in name or len(GROUP_MEMBERS.get(code, [])) > 1 + + def get_tags(self, code, name): + if len(code) == 2: + assert "languages" not in name, f"{code}: {name}" + return [code] + elif self.is_group(code, name): + group = self.expand_group_to_two_letter_codes(code) + group.append(code) + return group + else: # zho-> zh + print(f"Three letter monolingual code: {code}") + return [code] + + def resolve_lang_code(self, src, tgt) -> Tuple[str, str]: + src_tags = self.get_tags(src, self.tag2name[src]) + tgt_tags = self.get_tags(tgt, self.tag2name[tgt]) + return src_tags, tgt_tags + + @staticmethod + def model_type_info_from_model_name(name): + info = {"_has_backtranslated_data": False} + if "1m" in name: + info["_data_per_pair"] = str(1e6) + if "2m" in name: + info["_data_per_pair"] = str(2e6) + if "4m" in name: + info["_data_per_pair"] = str(4e6) + if "+bt" in name: + info["_has_backtranslated_data"] = True + if "tuned4" in name: + info["_tuned"] = re.search(r"tuned4[^-]+", name).group() + return info + + def write_model_card(self, model_dict, dry_run=False) -> str: + """ + Construct card from data parsed from YAML and the model's name. upload command: aws s3 sync model_card_dir + s3://models.huggingface.co/bert/Helsinki-NLP/ --dryrun + """ + model_dir_url = f"{TATOEBA_MODELS_URL}/{model_dict['release']}" + long_pair = model_dict["_name"].split("-") + assert len(long_pair) == 2, f"got a translation pair {model_dict['_name']} that doesn't appear to be a pair" + short_src = self.alpha3_to_alpha2.get(long_pair[0], long_pair[0]) + short_tgt = self.alpha3_to_alpha2.get(long_pair[1], long_pair[1]) + model_dict["_hf_model_id"] = f"opus-mt-{short_src}-{short_tgt}" + + a3_src, a3_tgt = model_dict["_name"].split("-") + # opus_src_tags, opus_tgt_tags = a3_src.split("+"), a3_tgt.split("+") + + # This messy part tries to deal with language tags in multilingual models, possibly + # not all having three-letter codes + resolved_src_tags, resolved_tgt_tags = self.resolve_lang_code(a3_src, a3_tgt) + a2_src_tags, a2_tgt_tags = [], [] + for tag in resolved_src_tags: + if tag not in self.alpha3_to_alpha2: + a2_src_tags.append(tag) + for tag in resolved_tgt_tags: + if tag not in self.alpha3_to_alpha2: + a2_tgt_tags.append(tag) + + lang_tags = dedup(a2_src_tags + a2_tgt_tags) + src_multilingual, tgt_multilingual = (len(a2_src_tags) > 1), (len(a2_tgt_tags) > 1) + s, t = ",".join(a2_src_tags), ",".join(a2_tgt_tags) + + metadata = { + "hf_name": model_dict["_name"], + "source_languages": s, + "target_languages": t, + "opus_readme_url": f"{model_dir_url}/README.md", + "original_repo": "Tatoeba-Challenge", + "tags": ["translation"], + "languages": lang_tags, + } + lang_tags = l2front_matter(lang_tags) + + metadata["src_constituents"] = list(GROUP_MEMBERS[a3_src][1]) + metadata["tgt_constituents"] = list(GROUP_MEMBERS[a3_tgt][1]) + metadata["src_multilingual"] = src_multilingual + metadata["tgt_multilingual"] = tgt_multilingual + + backtranslated_data = "" + if model_dict["_has_backtranslated_data"]: + backtranslated_data = " with backtranslations" + + multilingual_data = "" + if "_data_per_pair" in model_dict: + multilingual_data = f"* data per pair in multilingual model: {model_dict['_data_per_pair']}\n" + + tuned = "" + if "_tuned" in model_dict: + tuned = f"* multilingual model tuned for: {model_dict['_tuned']}\n" + + model_base_filename = model_dict["release"].split("/")[-1] + download = f"* download original weights: [{model_base_filename}]({model_dir_url}/{model_dict['release']})\n" + + langtoken = "" + if tgt_multilingual: + langtoken = ( + "* a sentence-initial language token is required in the form of >>id<<" + "(id = valid, usually three-letter target language ID)\n" + ) + + metadata.update(get_system_metadata(DEFAULT_REPO)) + + scorestable = "" + for k, v in model_dict.items(): + if "scores" in k: + this_score_table = f"* {k}\n|Test set|score|\n|---|---|\n" + pairs = sorted(v.items(), key=lambda x: x[1], reverse=True) + for pair in pairs: + this_score_table += f"|{pair[0]}|{pair[1]}|\n" + scorestable += this_score_table + + datainfo = "" + if "training-data" in model_dict: + datainfo += "* Training data: \n" + for k, v in model_dict["training-data"].items(): + datainfo += f" * {str(k)}: {str(v)}\n" + if "validation-data" in model_dict: + datainfo += "* Validation data: \n" + for k, v in model_dict["validation-data"].items(): + datainfo += f" * {str(k)}: {str(v)}\n" + if "test-data" in model_dict: + datainfo += "* Test data: \n" + for k, v in model_dict["test-data"].items(): + datainfo += f" * {str(k)}: {str(v)}\n" + + testsetfilename = model_dict["release"].replace(".zip", ".test.txt") + testscoresfilename = model_dict["release"].replace(".zip", ".eval.txt") + testset = f"* test set translations file: [test.txt]({model_dir_url}/{testsetfilename})\n" + testscores = f"* test set scores file: [eval.txt]({model_dir_url}/{testscoresfilename})\n" + + # combine with Tatoeba markdown + readme_url = f"{TATOEBA_MODELS_URL}/{model_dict['_name']}/README.md" + extra_markdown = f""" +### {model_dict['_name']} + +* source language name: {self.tag2name[a3_src]} +* target language name: {self.tag2name[a3_tgt]} +* OPUS readme: [README.md]({readme_url}) +""" + + content = ( + f""" +* model: {model_dict['modeltype']} +* source language code{src_multilingual*'s'}: {', '.join(a2_src_tags)} +* target language code{tgt_multilingual*'s'}: {', '.join(a2_tgt_tags)} +* dataset: opus {backtranslated_data} +* release date: {model_dict['release-date']} +* pre-processing: {model_dict['pre-processing']} +""" + + multilingual_data + + tuned + + download + + langtoken + + datainfo + + testset + + testscores + + scorestable + ) + + content = FRONT_MATTER_TEMPLATE.format(lang_tags) + extra_markdown + content + + items = "\n".join([f"* {k}: {v}" for k, v in metadata.items()]) + sec3 = "\n### System Info: \n" + items + content += sec3 + if dry_run: + print("CONTENT:") + print(content) + print("METADATA:") + print(metadata) + return + sub_dir = self.model_card_dir / model_dict["_hf_model_id"] + sub_dir.mkdir(exist_ok=True) + dest = sub_dir / "README.md" + dest.open("w").write(content) + for k, v in metadata.items(): + if isinstance(v, datetime.date): + metadata[k] = datetime.datetime.strftime(v, "%Y-%m-%d") + with open(sub_dir / "metadata.json", "w", encoding="utf-8") as writeobj: + json.dump(metadata, writeobj) + + def download_lang_info(self): + Path(LANG_CODE_PATH).parent.mkdir(exist_ok=True) + import wget + + if not os.path.exists(ISO_PATH): + wget.download(ISO_URL, ISO_PATH) + if not os.path.exists(LANG_CODE_PATH): + wget.download(LANG_CODE_URL, LANG_CODE_PATH) + + def parse_metadata(self, model_name, repo_path=DEFAULT_MODEL_DIR, method="best"): + p = Path(repo_path) / model_name + + def url_to_name(url): + return url.split("/")[-1].split(".")[0] + + if model_name not in self.model_results: + # This is not a language pair, so model results are ambiguous, go by newest + method = "newest" + + if method == "best": + # Sort by how early they appear in released-models-results + results = [url_to_name(model["download"]) for model in self.model_results[model_name]] + ymls = [f for f in os.listdir(p) if f.endswith(".yml") and f[:-4] in results] + ymls.sort(key=lambda x: results.index(x[:-4])) + metadata = yaml.safe_load(open(p / ymls[0])) + metadata.update(self.model_type_info_from_model_name(ymls[0][:-4])) + elif method == "newest": + ymls = [f for f in os.listdir(p) if f.endswith(".yml")] + # Sort by date + ymls.sort( + key=lambda x: datetime.datetime.strptime(re.search(r"\d\d\d\d-\d\d?-\d\d?", x).group(), "%Y-%m-%d") + ) + metadata = yaml.safe_load(open(p / ymls[-1])) + metadata.update(self.model_type_info_from_model_name(ymls[-1][:-4])) + else: + raise NotImplementedError(f"Don't know argument method='{method}' to parse_metadata()") + metadata["_name"] = model_name + return metadata + + +GROUP_MEMBERS = { + # three letter code -> (group/language name, {constituents...} + # if this language is on the target side the constituents can be used as target language codes. + # if the language is on the source side they are supported natively without special codes. + "aav": ("Austro-Asiatic languages", {"hoc", "hoc_Latn", "kha", "khm", "khm_Latn", "mnw", "vie", "vie_Hani"}), + "afa": ( + "Afro-Asiatic languages", + { + "acm", + "afb", + "amh", + "apc", + "ara", + "arq", + "ary", + "arz", + "hau_Latn", + "heb", + "kab", + "mlt", + "rif_Latn", + "shy_Latn", + "som", + "thv", + "tir", + }, + ), + "afr": ("Afrikaans", {"afr"}), + "alv": ( + "Atlantic-Congo languages", + { + "ewe", + "fuc", + "fuv", + "ibo", + "kin", + "lin", + "lug", + "nya", + "run", + "sag", + "sna", + "swh", + "toi_Latn", + "tso", + "umb", + "wol", + "xho", + "yor", + "zul", + }, + ), + "ara": ("Arabic", {"afb", "apc", "apc_Latn", "ara", "ara_Latn", "arq", "arq_Latn", "arz"}), + "art": ( + "Artificial languages", + { + "afh_Latn", + "avk_Latn", + "dws_Latn", + "epo", + "ido", + "ido_Latn", + "ile_Latn", + "ina_Latn", + "jbo", + "jbo_Cyrl", + "jbo_Latn", + "ldn_Latn", + "lfn_Cyrl", + "lfn_Latn", + "nov_Latn", + "qya", + "qya_Latn", + "sjn_Latn", + "tlh_Latn", + "tzl", + "tzl_Latn", + "vol_Latn", + }, + ), + "aze": ("Azerbaijani", {"aze_Latn"}), + "bat": ("Baltic languages", {"lit", "lav", "prg_Latn", "ltg", "sgs"}), + "bel": ("Belarusian", {"bel", "bel_Latn"}), + "ben": ("Bengali", {"ben"}), + "bnt": ( + "Bantu languages", + {"kin", "lin", "lug", "nya", "run", "sna", "swh", "toi_Latn", "tso", "umb", "xho", "zul"}, + ), + "bul": ("Bulgarian", {"bul", "bul_Latn"}), + "cat": ("Catalan", {"cat"}), + "cau": ("Caucasian languages", {"abk", "kat", "che", "ady"}), + "ccs": ("South Caucasian languages", {"kat"}), + "ceb": ("Cebuano", {"ceb"}), + "cel": ("Celtic languages", {"gla", "gle", "bre", "cor", "glv", "cym"}), + "ces": ("Czech", {"ces"}), + "cpf": ("Creoles and pidgins, French‑based", {"gcf_Latn", "hat", "mfe"}), + "cpp": ( + "Creoles and pidgins, Portuguese-based", + {"zsm_Latn", "ind", "pap", "min", "tmw_Latn", "max_Latn", "zlm_Latn"}, + ), + "cus": ("Cushitic languages", {"som"}), + "dan": ("Danish", {"dan"}), + "deu": ("German", {"deu"}), + "dra": ("Dravidian languages", {"tam", "kan", "mal", "tel"}), + "ell": ("Modern Greek (1453-)", {"ell"}), + "eng": ("English", {"eng"}), + "epo": ("Esperanto", {"epo"}), + "est": ("Estonian", {"est"}), + "euq": ("Basque (family)", {"eus"}), + "eus": ("Basque", {"eus"}), + "fin": ("Finnish", {"fin"}), + "fiu": ( + "Finno-Ugrian languages", + { + "est", + "fin", + "fkv_Latn", + "hun", + "izh", + "kpv", + "krl", + "liv_Latn", + "mdf", + "mhr", + "myv", + "sma", + "sme", + "udm", + "vep", + "vro", + }, + ), + "fra": ("French", {"fra"}), + "gem": ( + "Germanic languages", + { + "afr", + "ang_Latn", + "dan", + "deu", + "eng", + "enm_Latn", + "fao", + "frr", + "fry", + "gos", + "got_Goth", + "gsw", + "isl", + "ksh", + "ltz", + "nds", + "nld", + "nno", + "nob", + "nob_Hebr", + "non_Latn", + "pdc", + "sco", + "stq", + "swe", + "swg", + "yid", + }, + ), + "gle": ("Irish", {"gle"}), + "glg": ("Galician", {"glg"}), + "gmq": ("North Germanic languages", {"dan", "nob", "nob_Hebr", "swe", "isl", "nno", "non_Latn", "fao"}), + "gmw": ( + "West Germanic languages", + { + "afr", + "ang_Latn", + "deu", + "eng", + "enm_Latn", + "frr", + "fry", + "gos", + "gsw", + "ksh", + "ltz", + "nds", + "nld", + "pdc", + "sco", + "stq", + "swg", + "yid", + }, + ), + "grk": ("Greek languages", {"grc_Grek", "ell"}), + "hbs": ("Serbo-Croatian", {"hrv", "srp_Cyrl", "bos_Latn", "srp_Latn"}), + "heb": ("Hebrew", {"heb"}), + "hin": ("Hindi", {"hin"}), + "hun": ("Hungarian", {"hun"}), + "hye": ("Armenian", {"hye", "hye_Latn"}), + "iir": ( + "Indo-Iranian languages", + { + "asm", + "awa", + "ben", + "bho", + "gom", + "guj", + "hif_Latn", + "hin", + "jdt_Cyrl", + "kur_Arab", + "kur_Latn", + "mai", + "mar", + "npi", + "ori", + "oss", + "pan_Guru", + "pes", + "pes_Latn", + "pes_Thaa", + "pnb", + "pus", + "rom", + "san_Deva", + "sin", + "snd_Arab", + "tgk_Cyrl", + "tly_Latn", + "urd", + "zza", + }, + ), + "ilo": ("Iloko", {"ilo"}), + "inc": ( + "Indic languages", + { + "asm", + "awa", + "ben", + "bho", + "gom", + "guj", + "hif_Latn", + "hin", + "mai", + "mar", + "npi", + "ori", + "pan_Guru", + "pnb", + "rom", + "san_Deva", + "sin", + "snd_Arab", + "urd", + }, + ), + "ine": ( + "Indo-European languages", + { + "afr", + "afr_Arab", + "aln", + "ang_Latn", + "arg", + "asm", + "ast", + "awa", + "bel", + "bel_Latn", + "ben", + "bho", + "bjn", + "bos_Latn", + "bre", + "bul", + "bul_Latn", + "cat", + "ces", + "cor", + "cos", + "csb_Latn", + "cym", + "dan", + "deu", + "dsb", + "egl", + "ell", + "eng", + "enm_Latn", + "ext", + "fao", + "fra", + "frm_Latn", + "frr", + "fry", + "gcf_Latn", + "gla", + "gle", + "glg", + "glv", + "gom", + "gos", + "got_Goth", + "grc_Grek", + "gsw", + "guj", + "hat", + "hif_Latn", + "hin", + "hrv", + "hsb", + "hye", + "hye_Latn", + "ind", + "isl", + "ita", + "jdt_Cyrl", + "ksh", + "kur_Arab", + "kur_Latn", + "lad", + "lad_Latn", + "lat_Grek", + "lat_Latn", + "lav", + "lij", + "lit", + "lld_Latn", + "lmo", + "ltg", + "ltz", + "mai", + "mar", + "max_Latn", + "mfe", + "min", + "mkd", + "mwl", + "nds", + "nld", + "nno", + "nob", + "nob_Hebr", + "non_Latn", + "npi", + "oci", + "ori", + "orv_Cyrl", + "oss", + "pan_Guru", + "pap", + "pcd", + "pdc", + "pes", + "pes_Latn", + "pes_Thaa", + "pms", + "pnb", + "pol", + "por", + "prg_Latn", + "pus", + "roh", + "rom", + "ron", + "rue", + "rus", + "rus_Latn", + "san_Deva", + "scn", + "sco", + "sgs", + "sin", + "slv", + "snd_Arab", + "spa", + "sqi", + "srd", + "srp_Cyrl", + "srp_Latn", + "stq", + "swe", + "swg", + "tgk_Cyrl", + "tly_Latn", + "tmw_Latn", + "ukr", + "urd", + "vec", + "wln", + "yid", + "zlm_Latn", + "zsm_Latn", + "zza", + }, + ), + "isl": ("Icelandic", {"isl"}), + "ita": ("Italian", {"ita"}), + "itc": ( + "Italic languages", + { + "arg", + "ast", + "bjn", + "cat", + "cos", + "egl", + "ext", + "fra", + "frm_Latn", + "gcf_Latn", + "glg", + "hat", + "ind", + "ita", + "lad", + "lad_Latn", + "lat_Grek", + "lat_Latn", + "lij", + "lld_Latn", + "lmo", + "max_Latn", + "mfe", + "min", + "mwl", + "oci", + "pap", + "pcd", + "pms", + "por", + "roh", + "ron", + "scn", + "spa", + "srd", + "tmw_Latn", + "vec", + "wln", + "zlm_Latn", + "zsm_Latn", + }, + ), + "jpn": ("Japanese", {"jpn", "jpn_Bopo", "jpn_Hang", "jpn_Hani", "jpn_Hira", "jpn_Kana", "jpn_Latn", "jpn_Yiii"}), + "jpx": ("Japanese (family)", {"jpn"}), + "kat": ("Georgian", {"kat"}), + "kor": ("Korean", {"kor_Hani", "kor_Hang", "kor_Latn", "kor"}), + "lav": ("Latvian", {"lav"}), + "lit": ("Lithuanian", {"lit"}), + "mkd": ("Macedonian", {"mkd"}), + "mkh": ("Mon-Khmer languages", {"vie_Hani", "mnw", "vie", "kha", "khm_Latn", "khm"}), + "msa": ("Malay (macrolanguage)", {"zsm_Latn", "ind", "max_Latn", "zlm_Latn", "min"}), + "mul": ( + "Multiple languages", + { + "abk", + "acm", + "ady", + "afb", + "afh_Latn", + "afr", + "akl_Latn", + "aln", + "amh", + "ang_Latn", + "apc", + "ara", + "arg", + "arq", + "ary", + "arz", + "asm", + "ast", + "avk_Latn", + "awa", + "aze_Latn", + "bak", + "bam_Latn", + "bel", + "bel_Latn", + "ben", + "bho", + "bod", + "bos_Latn", + "bre", + "brx", + "brx_Latn", + "bul", + "bul_Latn", + "cat", + "ceb", + "ces", + "cha", + "che", + "chr", + "chv", + "cjy_Hans", + "cjy_Hant", + "cmn", + "cmn_Hans", + "cmn_Hant", + "cor", + "cos", + "crh", + "crh_Latn", + "csb_Latn", + "cym", + "dan", + "deu", + "dsb", + "dtp", + "dws_Latn", + "egl", + "ell", + "enm_Latn", + "epo", + "est", + "eus", + "ewe", + "ext", + "fao", + "fij", + "fin", + "fkv_Latn", + "fra", + "frm_Latn", + "frr", + "fry", + "fuc", + "fuv", + "gan", + "gcf_Latn", + "gil", + "gla", + "gle", + "glg", + "glv", + "gom", + "gos", + "got_Goth", + "grc_Grek", + "grn", + "gsw", + "guj", + "hat", + "hau_Latn", + "haw", + "heb", + "hif_Latn", + "hil", + "hin", + "hnj_Latn", + "hoc", + "hoc_Latn", + "hrv", + "hsb", + "hun", + "hye", + "iba", + "ibo", + "ido", + "ido_Latn", + "ike_Latn", + "ile_Latn", + "ilo", + "ina_Latn", + "ind", + "isl", + "ita", + "izh", + "jav", + "jav_Java", + "jbo", + "jbo_Cyrl", + "jbo_Latn", + "jdt_Cyrl", + "jpn", + "kab", + "kal", + "kan", + "kat", + "kaz_Cyrl", + "kaz_Latn", + "kek_Latn", + "kha", + "khm", + "khm_Latn", + "kin", + "kir_Cyrl", + "kjh", + "kpv", + "krl", + "ksh", + "kum", + "kur_Arab", + "kur_Latn", + "lad", + "lad_Latn", + "lao", + "lat_Latn", + "lav", + "ldn_Latn", + "lfn_Cyrl", + "lfn_Latn", + "lij", + "lin", + "lit", + "liv_Latn", + "lkt", + "lld_Latn", + "lmo", + "ltg", + "ltz", + "lug", + "lzh", + "lzh_Hans", + "mad", + "mah", + "mai", + "mal", + "mar", + "max_Latn", + "mdf", + "mfe", + "mhr", + "mic", + "min", + "mkd", + "mlg", + "mlt", + "mnw", + "moh", + "mon", + "mri", + "mwl", + "mww", + "mya", + "myv", + "nan", + "nau", + "nav", + "nds", + "niu", + "nld", + "nno", + "nob", + "nob_Hebr", + "nog", + "non_Latn", + "nov_Latn", + "npi", + "nya", + "oci", + "ori", + "orv_Cyrl", + "oss", + "ota_Arab", + "ota_Latn", + "pag", + "pan_Guru", + "pap", + "pau", + "pdc", + "pes", + "pes_Latn", + "pes_Thaa", + "pms", + "pnb", + "pol", + "por", + "ppl_Latn", + "prg_Latn", + "pus", + "quc", + "qya", + "qya_Latn", + "rap", + "rif_Latn", + "roh", + "rom", + "ron", + "rue", + "run", + "rus", + "sag", + "sah", + "san_Deva", + "scn", + "sco", + "sgs", + "shs_Latn", + "shy_Latn", + "sin", + "sjn_Latn", + "slv", + "sma", + "sme", + "smo", + "sna", + "snd_Arab", + "som", + "spa", + "sqi", + "srp_Cyrl", + "srp_Latn", + "stq", + "sun", + "swe", + "swg", + "swh", + "tah", + "tam", + "tat", + "tat_Arab", + "tat_Latn", + "tel", + "tet", + "tgk_Cyrl", + "tha", + "tir", + "tlh_Latn", + "tly_Latn", + "tmw_Latn", + "toi_Latn", + "ton", + "tpw_Latn", + "tso", + "tuk", + "tuk_Latn", + "tur", + "tvl", + "tyv", + "tzl", + "tzl_Latn", + "udm", + "uig_Arab", + "uig_Cyrl", + "ukr", + "umb", + "urd", + "uzb_Cyrl", + "uzb_Latn", + "vec", + "vie", + "vie_Hani", + "vol_Latn", + "vro", + "war", + "wln", + "wol", + "wuu", + "xal", + "xho", + "yid", + "yor", + "yue", + "yue_Hans", + "yue_Hant", + "zho", + "zho_Hans", + "zho_Hant", + "zlm_Latn", + "zsm_Latn", + "zul", + "zza", + }, + ), + "nic": ( + "Niger-Kordofanian languages", + { + "bam_Latn", + "ewe", + "fuc", + "fuv", + "ibo", + "kin", + "lin", + "lug", + "nya", + "run", + "sag", + "sna", + "swh", + "toi_Latn", + "tso", + "umb", + "wol", + "xho", + "yor", + "zul", + }, + ), + "nld": ("Dutch", {"nld"}), + "nor": ("Norwegian", {"nob", "nno"}), + "phi": ("Philippine languages", {"ilo", "akl_Latn", "war", "hil", "pag", "ceb"}), + "pol": ("Polish", {"pol"}), + "por": ("Portuguese", {"por"}), + "pqe": ( + "Eastern Malayo-Polynesian languages", + {"fij", "gil", "haw", "mah", "mri", "nau", "niu", "rap", "smo", "tah", "ton", "tvl"}, + ), + "roa": ( + "Romance languages", + { + "arg", + "ast", + "cat", + "cos", + "egl", + "ext", + "fra", + "frm_Latn", + "gcf_Latn", + "glg", + "hat", + "ind", + "ita", + "lad", + "lad_Latn", + "lij", + "lld_Latn", + "lmo", + "max_Latn", + "mfe", + "min", + "mwl", + "oci", + "pap", + "pms", + "por", + "roh", + "ron", + "scn", + "spa", + "tmw_Latn", + "vec", + "wln", + "zlm_Latn", + "zsm_Latn", + }, + ), + "ron": ("Romanian", {"ron"}), + "run": ("Rundi", {"run"}), + "rus": ("Russian", {"rus"}), + "sal": ("Salishan languages", {"shs_Latn"}), + "sem": ("Semitic languages", {"acm", "afb", "amh", "apc", "ara", "arq", "ary", "arz", "heb", "mlt", "tir"}), + "sla": ( + "Slavic languages", + { + "bel", + "bel_Latn", + "bos_Latn", + "bul", + "bul_Latn", + "ces", + "csb_Latn", + "dsb", + "hrv", + "hsb", + "mkd", + "orv_Cyrl", + "pol", + "rue", + "rus", + "slv", + "srp_Cyrl", + "srp_Latn", + "ukr", + }, + ), + "slv": ("Slovenian", {"slv"}), + "spa": ("Spanish", {"spa"}), + "swe": ("Swedish", {"swe"}), + "taw": ("Tai", {"lao", "tha"}), + "tgl": ("Tagalog", {"tgl_Latn"}), + "tha": ("Thai", {"tha"}), + "trk": ( + "Turkic languages", + { + "aze_Latn", + "bak", + "chv", + "crh", + "crh_Latn", + "kaz_Cyrl", + "kaz_Latn", + "kir_Cyrl", + "kjh", + "kum", + "ota_Arab", + "ota_Latn", + "sah", + "tat", + "tat_Arab", + "tat_Latn", + "tuk", + "tuk_Latn", + "tur", + "tyv", + "uig_Arab", + "uig_Cyrl", + "uzb_Cyrl", + "uzb_Latn", + }, + ), + "tur": ("Turkish", {"tur"}), + "ukr": ("Ukrainian", {"ukr"}), + "urd": ("Urdu", {"urd"}), + "urj": ( + "Uralic languages", + { + "est", + "fin", + "fkv_Latn", + "hun", + "izh", + "kpv", + "krl", + "liv_Latn", + "mdf", + "mhr", + "myv", + "sma", + "sme", + "udm", + "vep", + "vro", + }, + ), + "vie": ("Vietnamese", {"vie", "vie_Hani"}), + "war": ("Waray (Philippines)", {"war"}), + "zho": ( + "Chinese", + { + "cjy_Hans", + "cjy_Hant", + "cmn", + "cmn_Bopo", + "cmn_Hang", + "cmn_Hani", + "cmn_Hans", + "cmn_Hant", + "cmn_Hira", + "cmn_Kana", + "cmn_Latn", + "cmn_Yiii", + "gan", + "hak_Hani", + "lzh", + "lzh_Bopo", + "lzh_Hang", + "lzh_Hani", + "lzh_Hans", + "lzh_Hira", + "lzh_Kana", + "lzh_Yiii", + "nan", + "nan_Hani", + "wuu", + "wuu_Bopo", + "wuu_Hani", + "wuu_Latn", + "yue", + "yue_Bopo", + "yue_Hang", + "yue_Hani", + "yue_Hans", + "yue_Hant", + "yue_Hira", + "yue_Kana", + "zho", + "zho_Hans", + "zho_Hant", + }, + ), + "zle": ("East Slavic languages", {"bel", "orv_Cyrl", "bel_Latn", "rus", "ukr", "rue"}), + "zls": ("South Slavic languages", {"bos_Latn", "bul", "bul_Latn", "hrv", "mkd", "slv", "srp_Cyrl", "srp_Latn"}), + "zlw": ("West Slavic languages", {"csb_Latn", "dsb", "hsb", "pol", "ces"}), +} + + +def l2front_matter(langs): + return "".join(f"- {l}\n" for l in langs) + + +def dedup(lst): + """Preservers order""" + new_lst = [] + for item in lst: + if not item or item in new_lst: + continue + else: + new_lst.append(item) + return new_lst + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "-m", "--models", action="append", help=" Set flag", required=True, nargs="+", dest="models" + ) + parser.add_argument("-save_dir", "--save_dir", default="marian_converted", help="where to save converted models") + args = parser.parse_args() + resolver = TatoebaConverter(save_dir=args.save_dir) + resolver.convert_models(args.models[0]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/convert_marian_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/convert_marian_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..79afd50955ddd180c35d53a45faac6e73e902472 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/convert_marian_to_pytorch.py @@ -0,0 +1,708 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import json +import os +import socket +import time +import warnings +from pathlib import Path +from typing import Dict, List, Union +from zipfile import ZipFile + +import numpy as np +import torch +from huggingface_hub.hf_api import list_models +from torch import nn +from tqdm import tqdm + +from transformers import MarianConfig, MarianMTModel, MarianTokenizer + + +def remove_suffix(text: str, suffix: str): + if text.endswith(suffix): + return text[: -len(suffix)] + return text # or whatever + + +def remove_prefix(text: str, prefix: str): + if text.startswith(prefix): + return text[len(prefix) :] + return text # or whatever + + +def convert_encoder_layer(opus_dict, layer_prefix: str, converter: dict): + sd = {} + for k in opus_dict: + if not k.startswith(layer_prefix): + continue + stripped = remove_prefix(k, layer_prefix) + v = opus_dict[k].T # besides embeddings, everything must be transposed. + sd[converter[stripped]] = torch.tensor(v).squeeze() + return sd + + +def load_layers_(layer_lst: nn.ModuleList, opus_state: dict, converter, is_decoder=False): + for i, layer in enumerate(layer_lst): + layer_tag = f"decoder_l{i + 1}_" if is_decoder else f"encoder_l{i + 1}_" + sd = convert_encoder_layer(opus_state, layer_tag, converter) + layer.load_state_dict(sd, strict=False) + + +def find_pretrained_model(src_lang: str, tgt_lang: str) -> List[str]: + """Find models that can accept src_lang as input and return tgt_lang as output.""" + prefix = "Helsinki-NLP/opus-mt-" + model_list = list_models() + model_ids = [x.modelId for x in model_list if x.modelId.startswith("Helsinki-NLP")] + src_and_targ = [ + remove_prefix(m, prefix).lower().split("-") for m in model_ids if "+" not in m + ] # + cant be loaded. + matching = [f"{prefix}{a}-{b}" for (a, b) in src_and_targ if src_lang in a and tgt_lang in b] + return matching + + +def add_emb_entries(wemb, final_bias, n_special_tokens=1): + vsize, d_model = wemb.shape + embs_to_add = np.zeros((n_special_tokens, d_model)) + new_embs = np.concatenate([wemb, embs_to_add]) + bias_to_add = np.zeros((n_special_tokens, 1)) + new_bias = np.concatenate((final_bias, bias_to_add), axis=1) + return new_embs, new_bias + + +def _cast_yaml_str(v): + bool_dct = {"true": True, "false": False} + if not isinstance(v, str): + return v + elif v in bool_dct: + return bool_dct[v] + try: + return int(v) + except (TypeError, ValueError): + return v + + +def cast_marian_config(raw_cfg: Dict[str, str]) -> Dict: + return {k: _cast_yaml_str(v) for k, v in raw_cfg.items()} + + +CONFIG_KEY = "special:model.yml" + + +def load_config_from_state_dict(opus_dict): + import yaml + + cfg_str = "".join([chr(x) for x in opus_dict[CONFIG_KEY]]) + yaml_cfg = yaml.load(cfg_str[:-1], Loader=yaml.BaseLoader) + return cast_marian_config(yaml_cfg) + + +def find_model_file(dest_dir): # this one better + model_files = list(Path(dest_dir).glob("*.npz")) + if len(model_files) != 1: + raise ValueError(f"Found more than one model file: {model_files}") + model_file = model_files[0] + return model_file + + +# Group Names Logic: change long opus model names to something shorter, like opus-mt-en-ROMANCE +ROM_GROUP = ( + "fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO+es_EC+es_ES+es_GT" + "+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR+pt_PT+gl+lad+an+mwl+it+it_IT+co" + "+nap+scn+vec+sc+ro+la" +) +GROUPS = [ + ("cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh", "ZH"), + (ROM_GROUP, "ROMANCE"), + ("de+nl+fy+af+da+fo+is+no+nb+nn+sv", "NORTH_EU"), + ("da+fo+is+no+nb+nn+sv", "SCANDINAVIA"), + ("se+sma+smj+smn+sms", "SAMI"), + ("nb_NO+nb+nn_NO+nn+nog+no_nb+no", "NORWAY"), + ("ga+cy+br+gd+kw+gv", "CELTIC"), # https://en.wikipedia.org/wiki/Insular_Celtic_languages +] +GROUP_TO_OPUS_NAME = { + "opus-mt-ZH-de": "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-de", + "opus-mt-ZH-fi": "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi", + "opus-mt-ZH-sv": "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-sv", + "opus-mt-SCANDINAVIA-SCANDINAVIA": "da+fo+is+no+nb+nn+sv-da+fo+is+no+nb+nn+sv", + "opus-mt-NORTH_EU-NORTH_EU": "de+nl+fy+af+da+fo+is+no+nb+nn+sv-de+nl+fy+af+da+fo+is+no+nb+nn+sv", + "opus-mt-de-ZH": "de-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh", + "opus-mt-en_el_es_fi-en_el_es_fi": "en+el+es+fi-en+el+es+fi", + "opus-mt-en-ROMANCE": ( + "en-fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO" + "+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR" + "+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la" + ), + "opus-mt-en-CELTIC": "en-ga+cy+br+gd+kw+gv", + "opus-mt-es-NORWAY": "es-nb_NO+nb+nn_NO+nn+nog+no_nb+no", + "opus-mt-fi_nb_no_nn_ru_sv_en-SAMI": "fi+nb+no+nn+ru+sv+en-se+sma+smj+smn+sms", + "opus-mt-fi-ZH": "fi-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh", + "opus-mt-fi-NORWAY": "fi-nb_NO+nb+nn_NO+nn+nog+no_nb+no", + "opus-mt-ROMANCE-en": ( + "fr+fr_BE+fr_CA+fr_FR+wa+frp+oc+ca+rm+lld+fur+lij+lmo+es+es_AR+es_CL+es_CO+es_CR+es_DO" + "+es_EC+es_ES+es_GT+es_HN+es_MX+es_NI+es_PA+es_PE+es_PR+es_SV+es_UY+es_VE+pt+pt_br+pt_BR" + "+pt_PT+gl+lad+an+mwl+it+it_IT+co+nap+scn+vec+sc+ro+la-en" + ), + "opus-mt-CELTIC-en": "ga+cy+br+gd+kw+gv-en", + "opus-mt-sv-ZH": "sv-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh", + "opus-mt-sv-NORWAY": "sv-nb_NO+nb+nn_NO+nn+nog+no_nb+no", +} +OPUS_GITHUB_URL = "https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/" +ORG_NAME = "Helsinki-NLP/" + + +def convert_opus_name_to_hf_name(x): + """For OPUS-MT-Train/ DEPRECATED""" + for substr, grp_name in GROUPS: + x = x.replace(substr, grp_name) + return x.replace("+", "_") + + +def convert_hf_name_to_opus_name(hf_model_name): + """ + Relies on the assumption that there are no language codes like pt_br in models that are not in GROUP_TO_OPUS_NAME. + """ + hf_model_name = remove_prefix(hf_model_name, ORG_NAME) + if hf_model_name in GROUP_TO_OPUS_NAME: + opus_w_prefix = GROUP_TO_OPUS_NAME[hf_model_name] + else: + opus_w_prefix = hf_model_name.replace("_", "+") + return remove_prefix(opus_w_prefix, "opus-mt-") + + +def get_system_metadata(repo_root): + import git + + return { + "helsinki_git_sha": git.Repo(path=repo_root, search_parent_directories=True).head.object.hexsha, + "transformers_git_sha": git.Repo(path=".", search_parent_directories=True).head.object.hexsha, + "port_machine": socket.gethostname(), + "port_time": time.strftime("%Y-%m-%d-%H:%M"), + } + + +# docstyle-ignore +FRONT_MATTER_TEMPLATE = """--- +language: +{} +tags: +- translation + +license: apache-2.0 +--- +""" +DEFAULT_REPO = "Tatoeba-Challenge" +DEFAULT_MODEL_DIR = os.path.join(DEFAULT_REPO, "models") + + +def write_model_card( + hf_model_name: str, + repo_root=DEFAULT_REPO, + save_dir=Path("marian_converted"), + dry_run=False, + extra_metadata={}, +) -> str: + """ + Copy the most recent model's readme section from opus, and add metadata. upload command: aws s3 sync model_card_dir + s3://models.huggingface.co/bert/Helsinki-NLP/ --dryrun + """ + import pandas as pd + + hf_model_name = remove_prefix(hf_model_name, ORG_NAME) + opus_name: str = convert_hf_name_to_opus_name(hf_model_name) + if repo_root not in ("OPUS-MT-train", "Tatoeba-Challenge"): + raise ValueError(f"Repos root is {repo_root}. Expected either OPUS-MT-train or Tatoeba-Challenge") + opus_readme_path = Path(repo_root).joinpath("models", opus_name, "README.md") + if not (opus_readme_path.exists()): + raise ValueError(f"Readme file {opus_readme_path} not found") + + opus_src, opus_tgt = [x.split("+") for x in opus_name.split("-")] + + readme_url = f"https://github.com/Helsinki-NLP/{repo_root}/tree/master/models/{opus_name}/README.md" + + s, t = ",".join(opus_src), ",".join(opus_tgt) + metadata = { + "hf_name": hf_model_name, + "source_languages": s, + "target_languages": t, + "opus_readme_url": readme_url, + "original_repo": repo_root, + "tags": ["translation"], + } + metadata.update(extra_metadata) + metadata.update(get_system_metadata(repo_root)) + + # combine with opus markdown + + extra_markdown = ( + f"### {hf_model_name}\n\n* source group: {metadata['src_name']} \n* target group: " + f"{metadata['tgt_name']} \n* OPUS readme: [{opus_name}]({readme_url})\n" + ) + + content = opus_readme_path.open().read() + content = content.split("\n# ")[-1] # Get the lowest level 1 header in the README -- the most recent model. + splat = content.split("*")[2:] + print(splat[3]) + content = "*".join(splat) + content = ( + FRONT_MATTER_TEMPLATE.format(metadata["src_alpha2"]) + + extra_markdown + + "\n* " + + content.replace("download", "download original weights") + ) + + items = "\n\n".join([f"- {k}: {v}" for k, v in metadata.items()]) + sec3 = "\n### System Info: \n" + items + content += sec3 + if dry_run: + return content, metadata + sub_dir = save_dir / f"opus-mt-{hf_model_name}" + sub_dir.mkdir(exist_ok=True) + dest = sub_dir / "README.md" + dest.open("w").write(content) + pd.Series(metadata).to_json(sub_dir / "metadata.json") + + # if dry_run: + return content, metadata + + +def make_registry(repo_path="Opus-MT-train/models"): + if not (Path(repo_path) / "fr-en" / "README.md").exists(): + raise ValueError( + f"repo_path:{repo_path} does not exist: " + "You must run: git clone git@github.com:Helsinki-NLP/Opus-MT-train.git before calling." + ) + results = {} + for p in Path(repo_path).iterdir(): + n_dash = p.name.count("-") + if n_dash == 0: + continue + else: + lns = list(open(p / "README.md").readlines()) + results[p.name] = _parse_readme(lns) + return [(k, v["pre-processing"], v["download"], v["download"][:-4] + ".test.txt") for k, v in results.items()] + + +def convert_all_sentencepiece_models(model_list=None, repo_path=None, dest_dir=Path("marian_converted")): + """Requires 300GB""" + save_dir = Path("marian_ckpt") + dest_dir = Path(dest_dir) + dest_dir.mkdir(exist_ok=True) + save_paths = [] + if model_list is None: + model_list: list = make_registry(repo_path=repo_path) + for k, prepro, download, test_set_url in tqdm(model_list): + if "SentencePiece" not in prepro: # dont convert BPE models. + continue + if not os.path.exists(save_dir / k): + download_and_unzip(download, save_dir / k) + pair_name = convert_opus_name_to_hf_name(k) + convert(save_dir / k, dest_dir / f"opus-mt-{pair_name}") + + save_paths.append(dest_dir / f"opus-mt-{pair_name}") + return save_paths + + +def lmap(f, x) -> List: + return list(map(f, x)) + + +def fetch_test_set(test_set_url): + import wget + + fname = wget.download(test_set_url, "opus_test.txt") + lns = Path(fname).open().readlines() + src = lmap(str.strip, lns[::4]) + gold = lmap(str.strip, lns[1::4]) + mar_model = lmap(str.strip, lns[2::4]) + if not (len(gold) == len(mar_model) == len(src)): + raise ValueError(f"Gold, marian and source lengths {len(gold)}, {len(mar_model)}, {len(src)} mismatched") + os.remove(fname) + return src, mar_model, gold + + +def convert_whole_dir(path=Path("marian_ckpt/")): + for subdir in tqdm(list(path.ls())): + dest_dir = f"marian_converted/{subdir.name}" + if (dest_dir / "pytorch_model.bin").exists(): + continue + convert(source_dir, dest_dir) + + +def _parse_readme(lns): + """Get link and metadata from opus model card equivalent.""" + subres = {} + for ln in [x.strip() for x in lns]: + if not ln.startswith("*"): + continue + ln = ln[1:].strip() + + for k in ["download", "dataset", "models", "model", "pre-processing"]: + if ln.startswith(k): + break + else: + continue + if k in ["dataset", "model", "pre-processing"]: + splat = ln.split(":") + _, v = splat + subres[k] = v + elif k == "download": + v = ln.split("(")[-1][:-1] + subres[k] = v + return subres + + +def save_tokenizer_config(dest_dir: Path, separate_vocabs=False): + dname = dest_dir.name.split("-") + dct = {"target_lang": dname[-1], "source_lang": "-".join(dname[:-1]), "separate_vocabs": separate_vocabs} + save_json(dct, dest_dir / "tokenizer_config.json") + + +def add_to_vocab_(vocab: Dict[str, int], special_tokens: List[str]): + start = max(vocab.values()) + 1 + added = 0 + for tok in special_tokens: + if tok in vocab: + continue + vocab[tok] = start + added + added += 1 + return added + + +def find_vocab_file(model_dir): + return list(model_dir.glob("*vocab.yml"))[0] + + +def find_src_vocab_file(model_dir): + return list(model_dir.glob("*src.vocab.yml"))[0] + + +def find_tgt_vocab_file(model_dir): + return list(model_dir.glob("*trg.vocab.yml"))[0] + + +def add_special_tokens_to_vocab(model_dir: Path, separate_vocab=False) -> None: + if separate_vocab: + vocab = load_yaml(find_src_vocab_file(model_dir)) + vocab = {k: int(v) for k, v in vocab.items()} + num_added = add_to_vocab_(vocab, [""]) + save_json(vocab, model_dir / "vocab.json") + + vocab = load_yaml(find_tgt_vocab_file(model_dir)) + vocab = {k: int(v) for k, v in vocab.items()} + num_added = add_to_vocab_(vocab, [""]) + save_json(vocab, model_dir / "target_vocab.json") + save_tokenizer_config(model_dir, separate_vocabs=separate_vocab) + else: + vocab = load_yaml(find_vocab_file(model_dir)) + vocab = {k: int(v) for k, v in vocab.items()} + num_added = add_to_vocab_(vocab, [""]) + print(f"added {num_added} tokens to vocab") + save_json(vocab, model_dir / "vocab.json") + save_tokenizer_config(model_dir) + + +def check_equal(marian_cfg, k1, k2): + v1, v2 = marian_cfg[k1], marian_cfg[k2] + if v1 != v2: + raise ValueError(f"hparams {k1},{k2} differ: {v1} != {v2}") + + +def check_marian_cfg_assumptions(marian_cfg): + assumed_settings = { + "layer-normalization": False, + "right-left": False, + "transformer-ffn-depth": 2, + "transformer-aan-depth": 2, + "transformer-no-projection": False, + "transformer-postprocess-emb": "d", + "transformer-postprocess": "dan", # Dropout, add, normalize + "transformer-preprocess": "", + "type": "transformer", + "ulr-dim-emb": 0, + "dec-cell-base-depth": 2, + "dec-cell-high-depth": 1, + "transformer-aan-nogate": False, + } + for k, v in assumed_settings.items(): + actual = marian_cfg[k] + if actual != v: + raise ValueError(f"Unexpected config value for {k} expected {v} got {actual}") + + +BIAS_KEY = "decoder_ff_logit_out_b" +BART_CONVERTER = { # for each encoder and decoder layer + "self_Wq": "self_attn.q_proj.weight", + "self_Wk": "self_attn.k_proj.weight", + "self_Wv": "self_attn.v_proj.weight", + "self_Wo": "self_attn.out_proj.weight", + "self_bq": "self_attn.q_proj.bias", + "self_bk": "self_attn.k_proj.bias", + "self_bv": "self_attn.v_proj.bias", + "self_bo": "self_attn.out_proj.bias", + "self_Wo_ln_scale": "self_attn_layer_norm.weight", + "self_Wo_ln_bias": "self_attn_layer_norm.bias", + "ffn_W1": "fc1.weight", + "ffn_b1": "fc1.bias", + "ffn_W2": "fc2.weight", + "ffn_b2": "fc2.bias", + "ffn_ffn_ln_scale": "final_layer_norm.weight", + "ffn_ffn_ln_bias": "final_layer_norm.bias", + # Decoder Cross Attention + "context_Wk": "encoder_attn.k_proj.weight", + "context_Wo": "encoder_attn.out_proj.weight", + "context_Wq": "encoder_attn.q_proj.weight", + "context_Wv": "encoder_attn.v_proj.weight", + "context_bk": "encoder_attn.k_proj.bias", + "context_bo": "encoder_attn.out_proj.bias", + "context_bq": "encoder_attn.q_proj.bias", + "context_bv": "encoder_attn.v_proj.bias", + "context_Wo_ln_scale": "encoder_attn_layer_norm.weight", + "context_Wo_ln_bias": "encoder_attn_layer_norm.bias", +} + + +class OpusState: + def __init__(self, source_dir, eos_token_id=0): + npz_path = find_model_file(source_dir) + self.state_dict = np.load(npz_path) + cfg = load_config_from_state_dict(self.state_dict) + if cfg["dim-vocabs"][0] != cfg["dim-vocabs"][1]: + raise ValueError + if "Wpos" in self.state_dict: + raise ValueError("Wpos key in state dictionary") + self.state_dict = dict(self.state_dict) + if cfg["tied-embeddings-all"]: + cfg["tied-embeddings-src"] = True + cfg["tied-embeddings"] = True + self.share_encoder_decoder_embeddings = cfg["tied-embeddings-src"] + + # create the tokenizer here because we need to know the eos_token_id + self.source_dir = source_dir + self.tokenizer = self.load_tokenizer() + # retrieve EOS token and set correctly + tokenizer_has_eos_token_id = ( + hasattr(self.tokenizer, "eos_token_id") and self.tokenizer.eos_token_id is not None + ) + eos_token_id = self.tokenizer.eos_token_id if tokenizer_has_eos_token_id else 0 + + if cfg["tied-embeddings-src"]: + self.wemb, self.final_bias = add_emb_entries(self.state_dict["Wemb"], self.state_dict[BIAS_KEY], 1) + self.pad_token_id = self.wemb.shape[0] - 1 + cfg["vocab_size"] = self.pad_token_id + 1 + else: + self.wemb, _ = add_emb_entries(self.state_dict["encoder_Wemb"], self.state_dict[BIAS_KEY], 1) + self.dec_wemb, self.final_bias = add_emb_entries( + self.state_dict["decoder_Wemb"], self.state_dict[BIAS_KEY], 1 + ) + # still assuming that vocab size is same for encoder and decoder + self.pad_token_id = self.wemb.shape[0] - 1 + cfg["vocab_size"] = self.pad_token_id + 1 + cfg["decoder_vocab_size"] = self.pad_token_id + 1 + + if cfg["vocab_size"] != self.tokenizer.vocab_size: + raise ValueError( + f"Original vocab size {cfg['vocab_size']} and new vocab size {len(self.tokenizer.encoder)} mismatched." + ) + + # self.state_dict['Wemb'].sha + self.state_keys = list(self.state_dict.keys()) + if "Wtype" in self.state_dict: + raise ValueError("Wtype key in state dictionary") + self._check_layer_entries() + self.cfg = cfg + hidden_size, intermediate_shape = self.state_dict["encoder_l1_ffn_W1"].shape + if hidden_size != cfg["dim-emb"]: + raise ValueError(f"Hidden size {hidden_size} and configured size {cfg['dim_emb']} mismatched") + + # Process decoder.yml + decoder_yml = cast_marian_config(load_yaml(source_dir / "decoder.yml")) + check_marian_cfg_assumptions(cfg) + self.hf_config = MarianConfig( + vocab_size=cfg["vocab_size"], + decoder_vocab_size=cfg.get("decoder_vocab_size", cfg["vocab_size"]), + share_encoder_decoder_embeddings=cfg["tied-embeddings-src"], + decoder_layers=cfg["dec-depth"], + encoder_layers=cfg["enc-depth"], + decoder_attention_heads=cfg["transformer-heads"], + encoder_attention_heads=cfg["transformer-heads"], + decoder_ffn_dim=cfg["transformer-dim-ffn"], + encoder_ffn_dim=cfg["transformer-dim-ffn"], + d_model=cfg["dim-emb"], + activation_function=cfg["transformer-ffn-activation"], + pad_token_id=self.pad_token_id, + eos_token_id=eos_token_id, + forced_eos_token_id=eos_token_id, + bos_token_id=0, + max_position_embeddings=cfg["dim-emb"], + scale_embedding=True, + normalize_embedding="n" in cfg["transformer-preprocess"], + static_position_embeddings=not cfg["transformer-train-position-embeddings"], + tie_word_embeddings=cfg["tied-embeddings"], + dropout=0.1, # see opus-mt-train repo/transformer-dropout param. + # default: add_final_layer_norm=False, + num_beams=decoder_yml["beam-size"], + decoder_start_token_id=self.pad_token_id, + bad_words_ids=[[self.pad_token_id]], + max_length=512, + ) + + def _check_layer_entries(self): + self.encoder_l1 = self.sub_keys("encoder_l1") + self.decoder_l1 = self.sub_keys("decoder_l1") + self.decoder_l2 = self.sub_keys("decoder_l2") + if len(self.encoder_l1) != 16: + warnings.warn(f"Expected 16 keys for each encoder layer, got {len(self.encoder_l1)}") + if len(self.decoder_l1) != 26: + warnings.warn(f"Expected 26 keys for each decoder layer, got {len(self.decoder_l1)}") + if len(self.decoder_l2) != 26: + warnings.warn(f"Expected 26 keys for each decoder layer, got {len(self.decoder_l1)}") + + @property + def extra_keys(self): + extra = [] + for k in self.state_keys: + if ( + k.startswith("encoder_l") + or k.startswith("decoder_l") + or k in [CONFIG_KEY, "Wemb", "encoder_Wemb", "decoder_Wemb", "Wpos", "decoder_ff_logit_out_b"] + ): + continue + else: + extra.append(k) + return extra + + def sub_keys(self, layer_prefix): + return [remove_prefix(k, layer_prefix) for k in self.state_dict if k.startswith(layer_prefix)] + + def load_tokenizer(self): + # save tokenizer + add_special_tokens_to_vocab(self.source_dir, not self.share_encoder_decoder_embeddings) + return MarianTokenizer.from_pretrained(str(self.source_dir)) + + def load_marian_model(self) -> MarianMTModel: + state_dict, cfg = self.state_dict, self.hf_config + + if not cfg.static_position_embeddings: + raise ValueError("config.static_position_embeddings should be True") + model = MarianMTModel(cfg) + + if "hidden_size" in cfg.to_dict(): + raise ValueError("hidden_size is in config") + load_layers_( + model.model.encoder.layers, + state_dict, + BART_CONVERTER, + ) + load_layers_(model.model.decoder.layers, state_dict, BART_CONVERTER, is_decoder=True) + + # handle tensors not associated with layers + if self.cfg["tied-embeddings-src"]: + wemb_tensor = nn.Parameter(torch.FloatTensor(self.wemb)) + bias_tensor = nn.Parameter(torch.FloatTensor(self.final_bias)) + model.model.shared.weight = wemb_tensor + model.model.encoder.embed_tokens = model.model.decoder.embed_tokens = model.model.shared + else: + wemb_tensor = nn.Parameter(torch.FloatTensor(self.wemb)) + model.model.encoder.embed_tokens.weight = wemb_tensor + + decoder_wemb_tensor = nn.Parameter(torch.FloatTensor(self.dec_wemb)) + bias_tensor = nn.Parameter(torch.FloatTensor(self.final_bias)) + model.model.decoder.embed_tokens.weight = decoder_wemb_tensor + + model.final_logits_bias = bias_tensor + + if "Wpos" in state_dict: + print("Unexpected: got Wpos") + wpos_tensor = torch.tensor(state_dict["Wpos"]) + model.model.encoder.embed_positions.weight = wpos_tensor + model.model.decoder.embed_positions.weight = wpos_tensor + + if cfg.normalize_embedding: + if "encoder_emb_ln_scale_pre" not in state_dict: + raise ValueError("encoder_emb_ln_scale_pre is not in state dictionary") + raise NotImplementedError("Need to convert layernorm_embedding") + + if self.extra_keys: + raise ValueError(f"Failed to convert {self.extra_keys}") + + if model.get_input_embeddings().padding_idx != self.pad_token_id: + raise ValueError( + f"Padding tokens {model.get_input_embeddings().padding_idx} and {self.pad_token_id} mismatched" + ) + return model + + +def download_and_unzip(url, dest_dir): + try: + import wget + except ImportError: + raise ImportError("you must pip install wget") + + filename = wget.download(url) + unzip(filename, dest_dir) + os.remove(filename) + + +def convert(source_dir: Path, dest_dir): + dest_dir = Path(dest_dir) + dest_dir.mkdir(exist_ok=True) + + opus_state = OpusState(source_dir) + + # save tokenizer + opus_state.tokenizer.save_pretrained(dest_dir) + + # save_json(opus_state.cfg, dest_dir / "marian_original_config.json") + # ^^ Uncomment to save human readable marian config for debugging + + model = opus_state.load_marian_model() + model = model.half() + model.save_pretrained(dest_dir) + model.from_pretrained(dest_dir) # sanity check + + +def load_yaml(path): + import yaml + + with open(path, encoding="utf-8") as f: + return yaml.load(f, Loader=yaml.BaseLoader) + + +def save_json(content: Union[Dict, List], path: str) -> None: + with open(path, "w") as f: + json.dump(content, f) + + +def unzip(zip_path: str, dest_dir: str) -> None: + with ZipFile(zip_path, "r") as zipObj: + zipObj.extractall(dest_dir) + + +if __name__ == "__main__": + """ + Tatoeba conversion instructions in scripts/tatoeba/README.md + """ + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument("--src", type=str, help="path to marian model sub dir", default="en-de") + parser.add_argument("--dest", type=str, default=None, help="Path to the output PyTorch model.") + args = parser.parse_args() + + source_dir = Path(args.src) + if not source_dir.exists(): + raise ValueError(f"Source directory {source_dir} not found") + dest_dir = f"converted-{source_dir.name}" if args.dest is None else args.dest + convert(source_dir, dest_dir) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/modeling_flax_marian.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/modeling_flax_marian.py new file mode 100644 index 0000000000000000000000000000000000000000..2002d60caaa3d25fc9271d253ae9753271a9a5fe --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/modeling_flax_marian.py @@ -0,0 +1,1497 @@ +# coding=utf-8 +# Copyright 2021 The Marian Team Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax Marian model.""" + +import math +import random +from functools import partial +from typing import Callable, Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax +from jax.random import PRNGKey + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxSeq2SeqLMOutput, + FlaxSeq2SeqModelOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_marian import MarianConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" +_CONFIG_FOR_DOC = "MarianConfig" + + +MARIAN_START_DOCSTRING = r""" + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`MarianConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +MARIAN_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +MARIAN_ENCODE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +MARIAN_DECODE_INPUTS_DOCSTRING = r""" + Args: + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + encoder_outputs (`tuple(tuple(jnp.ndarray)`): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +def create_sinusoidal_positions(n_pos, dim): + position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) + sentinel = dim // 2 + dim % 2 + out = np.zeros_like(position_enc) + out[:, 0:sentinel] = np.sin(position_enc[:, 0::2]) + out[:, sentinel:] = np.cos(position_enc[:, 1::2]) + + return jnp.array(out) + + +# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right +def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: + """ + Shift input ids one token to the right. + """ + shifted_input_ids = jnp.zeros_like(input_ids) + shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) + shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) + + shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Marian +class FlaxMarianAttention(nn.Module): + config: MarianConfig + embed_dim: int + num_heads: int + dropout: float = 0.0 + causal: bool = False + bias: bool = True + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self) -> None: + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {self.num_heads})." + ) + + dense = partial( + nn.Dense, + self.embed_dim, + use_bias=self.bias, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() + self.out_proj = dense() + + self.dropout_layer = nn.Dropout(rate=self.dropout) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) + + @nn.compact + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states: jnp.ndarray, + key_value_states: Optional[jnp.ndarray] = None, + attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.q_proj(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.k_proj(key_value_states) + value_states = self.v_proj(key_value_states) + else: + # self_attention + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = self._merge_heads(attn_output) + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayer with Bart->Marian +class FlaxMarianEncoderLayer(nn.Module): + config: MarianConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxMarianAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.encoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + ) + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + self.fc1 = nn.Dense( + self.config.encoder_ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) + + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Marian +class FlaxMarianEncoderLayerCollection(nn.Module): + config: MarianConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxMarianEncoderLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.encoder_layers) + ] + self.layerdrop = self.config.encoder_layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for encoder_layer in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.layerdrop): # skip the layer + layer_outputs = (None, None) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + output_attentions, + deterministic, + ) + hidden_states = layer_outputs[0] + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayer with Bart->Marian +class FlaxMarianDecoderLayer(nn.Module): + config: MarianConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxMarianAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + causal=True, + dtype=self.dtype, + ) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.encoder_attn = FlaxMarianAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.fc1 = nn.Dense( + self.config.decoder_ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + hidden_states, cross_attn_weights = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Marian +class FlaxMarianDecoderLayerCollection(nn.Module): + config: MarianConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxMarianDecoderLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.decoder_layers) + ] + self.layerdrop = self.config.decoder_layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.layerdrop): + layer_outputs = (None, None, None) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + deterministic=deterministic, + ) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +class FlaxMarianEncoder(nn.Module): + config: MarianConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.max_source_positions = self.config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 + + self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) + self.layers = FlaxMarianEncoderLayerCollection(self.config, self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + positions = jnp.take(self.embed_positions, position_ids, axis=0) + # explicitly cast the positions here, since self.embed_positions are not registered as parameters + positions = positions.astype(inputs_embeds.dtype) + + hidden_states = inputs_embeds + positions + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return outputs + + return FlaxBaseModelOutput( + last_hidden_state=outputs.last_hidden_state, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class FlaxMarianDecoder(nn.Module): + config: MarianConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.max_target_positions = self.config.max_position_embeddings + self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 + + self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) + self.layers = FlaxMarianDecoderLayerCollection(self.config, self.dtype) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + # embed positions + positions = jnp.take(self.embed_positions, position_ids, axis=0) + # explicitly cast the positions here, since self.embed_positions are not registered as parameters + positions = positions.astype(inputs_embeds.dtype) + + hidden_states = inputs_embeds + positions + + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return outputs + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=outputs.last_hidden_state, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +class FlaxMarianModule(nn.Module): + config: MarianConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.shared = nn.Embed( + self.config.vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.encoder = FlaxMarianEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) + self.decoder = FlaxMarianDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) + + def _get_encoder_module(self): + return self.encoder + + def _get_decoder_module(self): + return self.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return FlaxSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +class FlaxMarianPreTrainedModel(FlaxPreTrainedModel): + config_class = MarianConfig + base_model_prefix: str = "model" + module_class: nn.Module = None + + def __init__( + self, + config: MarianConfig, + input_shape: Tuple[int] = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + # make sure initialization pass will work for FlaxMarianForSequenceClassificationModule + input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) + attention_mask = jnp.ones_like(input_ids) + decoder_input_ids = input_ids + decoder_attention_mask = jnp.ones_like(input_ids) + + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init( + rngs, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + )["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + def init_cache(self, batch_size, max_length, encoder_outputs): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): + `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: + `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) + is a sequence of hidden-states at the output of the last layer of the encoder. Used in the + cross-attention of the decoder. + """ + # init input variables to retrieve cache + decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + decoder_position_ids = jnp.broadcast_to( + jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape + ) + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module(decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs) + + init_variables = self.module.init( + jax.random.PRNGKey(0), + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + init_cache=True, + method=_decoder_forward, # we only need to call the decoder to init the cache + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings(MARIAN_ENCODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=MarianConfig) + def encode( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMarianMTModel + + >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") + >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") + >>> encoder_outputs = model.encode(**inputs) + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): + encode_module = module._get_encoder_module() + return encode_module(input_ids, attention_mask, position_ids, **kwargs) + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + method=_encoder_forward, + ) + + @add_start_docstrings(MARIAN_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=MarianConfig) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> import jax.numpy as jnp + >>> from transformers import AutoTokenizer, FlaxMarianMTModel + + >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") + >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> last_decoder_hidden_states = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxMarianAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past = outputs + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past = outputs + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + decoder_input_ids: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # prepare encoder inputs + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # prepare decoder inputs + if decoder_input_ids is None: + decoder_input_ids = shift_tokens_right( + input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id + ) + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + if decoder_position_ids is None: + batch_size, sequence_length = decoder_input_ids.shape + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + ) + + +@add_start_docstrings( + "The bare Marian Model transformer outputting raw hidden-states without any specific head on top.", + MARIAN_START_DOCSTRING, +) +class FlaxMarianModel(FlaxMarianPreTrainedModel): + config: MarianConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + module_class = FlaxMarianModule + + +append_call_sample_docstring(FlaxMarianModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) + + +class FlaxMarianMTModule(nn.Module): + config: MarianConfig + dtype: jnp.dtype = jnp.float32 + bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.model = FlaxMarianModule(config=self.config, dtype=self.dtype) + self.lm_head = nn.Dense( + self.model.shared.num_embeddings, + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) + + def _get_encoder_module(self): + return self.model.encoder + + def _get_decoder_module(self): + return self.model.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + position_ids=position_ids, + decoder_position_ids=decoder_position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = self.model.variables["params"]["shared"]["embedding"] + lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = self.lm_head(hidden_states) + + lm_logits += self.final_logits_bias.astype(self.dtype) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return output + + return FlaxSeq2SeqLMOutput( + logits=lm_logits, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + "The MARIAN Model with a language modeling head. Can be used for translation.", MARIAN_START_DOCSTRING +) +class FlaxMarianMTModel(FlaxMarianPreTrainedModel): + module_class = FlaxMarianMTModule + dtype: jnp.dtype = jnp.float32 + + @add_start_docstrings(MARIAN_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=MarianConfig) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> import jax.numpy as jnp + >>> from transformers import AutoTokenizer, FlaxMarianMTModel + + >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") + >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=64, return_tensors="jax") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> logits = outputs.logits + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxMarianAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + outputs = decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = module.model.variables["params"]["shared"]["embedding"] + lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = module.lm_head(hidden_states) + lm_logits += module.final_logits_bias.astype(self.dtype) + + return lm_logits, outputs + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + if past_key_values is None: + lm_logits, decoder_outputs = outputs + else: + (lm_logits, decoder_outputs), past = outputs + + if return_dict: + outputs = FlaxCausalLMOutputWithCrossAttentions( + logits=lm_logits, + hidden_states=decoder_outputs.hidden_states, + attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + ) + else: + outputs = (lm_logits,) + decoder_outputs[1:] + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + def _adapt_logits_for_beam_search(self, logits): + """This function enforces the padding token never to be generated.""" + logits = logits.at[:, :, self.config.pad_token_id].set(float("-inf")) + return logits + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + max_length, + attention_mask: Optional[jax.Array] = None, + decoder_attention_mask: Optional[jax.Array] = None, + encoder_outputs=None, + **kwargs, + ): + # initializing the cache + batch_size, seq_length = decoder_input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if decoder_attention_mask is not None: + position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "encoder_attention_mask": attention_mask, + "decoder_attention_mask": extended_attention_mask, + "decoder_position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 + return model_kwargs + + +FLAX_MARIAN_MT_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMarianMTModel + + >>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") + >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") + + >>> text = "My friends are cool but they eat too many carbs." + >>> input_ids = tokenizer(text, max_length=64, return_tensors="jax").input_ids + + >>> sequences = model.generate(input_ids, max_length=64, num_beams=2).sequences + + >>> outputs = tokenizer.batch_decode(sequences, skip_special_tokens=True) + >>> # should give *Meine Freunde sind cool, aber sie essen zu viele Kohlenhydrate.* + ``` +""" + +overwrite_call_docstring( + FlaxMarianMTModel, + MARIAN_INPUTS_DOCSTRING + FLAX_MARIAN_MT_DOCSTRING, +) +append_replace_return_docstrings(FlaxMarianMTModel, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/modeling_marian.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/modeling_marian.py new file mode 100644 index 0000000000000000000000000000000000000000..10d7f1b6b2d16dde3e70fa2cae270f972e37f862 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/modeling_marian.py @@ -0,0 +1,1719 @@ +# coding=utf-8 +# Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch MarianMTModel model, ported from the Marian C++ repo.""" + + +import copy +import math +from typing import Dict, List, Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_marian import MarianConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "MarianConfig" +_CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" + + +# Copied from transformers.models.bart.modeling_bart.shift_tokens_right +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +class MarianSinusoidalPositionalEmbedding(nn.Embedding): + """This module produces sinusoidal positional embeddings of any length.""" + + def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None: + super().__init__(num_positions, embedding_dim) + self.weight = self._init_weight(self.weight) + + @staticmethod + def _init_weight(out: nn.Parameter) -> nn.Parameter: + """ + Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in + the 2nd half of the vector. [dim // 2:] + """ + n_pos, dim = out.shape + position_enc = np.array( + [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] + ) + out.requires_grad = False # set early to avoid an error in pytorch-1.8+ + sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1 + out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) + out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) + out.detach_() + return out + + @torch.no_grad() + def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor: + """`input_ids_shape` is expected to be [bsz x seqlen].""" + bsz, seq_len = input_ids_shape[:2] + positions = torch.arange( + past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device + ) + return super().forward(positions) + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Marian +class MarianAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[MarianConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +# Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->Marian, BART->MARIAN +class MarianEncoderLayer(nn.Module): + def __init__(self, config: MarianConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = MARIAN_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + config=config, + ) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.FloatTensor, + attention_mask: torch.FloatTensor, + layer_head_mask: torch.FloatTensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states, attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + if hidden_states.dtype == torch.float16 and ( + torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() + ): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +MARIAN_ATTENTION_CLASSES = {"eager": MarianAttention} + + +# Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->Marian, BART->MARIAN +class MarianDecoderLayer(nn.Module): + def __init__(self, config: MarianConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = MARIAN_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + is_causal=True, + config=config, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = MARIAN_ATTENTION_CLASSES[config._attn_implementation]( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + config=config, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of + size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +class MarianPreTrainedModel(PreTrainedModel): + config_class = MarianConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + + def _init_weights(self, module: Union[nn.Linear, nn.Embedding, MarianSinusoidalPositionalEmbedding]): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, MarianSinusoidalPositionalEmbedding): + pass + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + @property + def dummy_inputs(self): + pad_token = self.config.pad_token_id + input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) + dummy_inputs = { + "attention_mask": input_ids.ne(pad_token), + "input_ids": input_ids, + "decoder_input_ids": input_ids, + } + return dummy_inputs + + +MARIAN_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MarianConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MARIAN_GENERATION_EXAMPLE = r""" + Pytorch version of marian-nmt's transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available + models are listed [here](https://huggingface.co/models?search=Helsinki-NLP). + + Examples: + + ```python + >>> from transformers import AutoTokenizer, MarianMTModel + + >>> src = "fr" # source language + >>> trg = "en" # target language + + >>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" + >>> model = MarianMTModel.from_pretrained(model_name) + >>> tokenizer = AutoTokenizer.from_pretrained(model_name) + + >>> sample_text = "où est l'arrêt de bus ?" + >>> batch = tokenizer([sample_text], return_tensors="pt") + + >>> generated_ids = model.generate(**batch) + >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] + "Where's the bus stop?" + ``` +""" + +MARIAN_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + Marian uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class MarianEncoder(MarianPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`MarianEncoderLayer`]. + + Args: + config: MarianConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: MarianConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) + + self.embed_positions = MarianSinusoidalPositionalEmbedding( + config.max_position_embeddings, embed_dim, self.padding_idx + ) + self.layers = nn.ModuleList([MarianEncoderLayer(config) for _ in range(config.encoder_layers)]) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input_shape) + + hidden_states = inputs_embeds + embed_pos + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + assert head_mask.size()[0] == ( + len(self.layers) + ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + to_drop = False + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: # skip the layer + to_drop = True + + if to_drop: + layer_outputs = (None, None) + else: + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + (head_mask[idx] if head_mask is not None else None), + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class MarianDecoder(MarianPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MarianDecoderLayer`] + + Args: + config: MarianConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: MarianConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + if embed_tokens is not None: + self.embed_tokens = embed_tokens + else: + self.embed_tokens = nn.Embedding(config.decoder_vocab_size, config.d_model, self.padding_idx) + + self.embed_positions = MarianSinusoidalPositionalEmbedding( + config.max_position_embeddings, config.d_model, self.padding_idx + ) + self.layers = nn.ModuleList([MarianDecoderLayer(config) for _ in range(config.decoder_layers)]) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing + cross-attention on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # embed positions + positions = self.embed_positions(input_shape, past_key_values_length) + + hidden_states = inputs_embeds + positions + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + assert attn_mask.size()[0] == (len(self.layers)), ( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + "The bare Marian Model outputting raw hidden-states without any specific head on top.", MARIAN_START_DOCSTRING +) +class MarianModel(MarianPreTrainedModel): + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + def __init__(self, config: MarianConfig): + super().__init__(config) + + padding_idx, vocab_size = config.pad_token_id, config.vocab_size + + # We always use self.shared for token embeddings to ensure compatibility with all marian models + self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) + if self.config.share_encoder_decoder_embeddings: + encoder_embed_tokens = decoder_embed_tokens = self.shared + else: + # Since the embeddings are not shared, deepcopy the embeddings here for encoder + # and decoder to make sure they are not tied. + encoder_embed_tokens = copy.deepcopy(self.shared) + decoder_embed_tokens = copy.deepcopy(self.shared) + self.shared = None + + self.encoder = MarianEncoder(config, encoder_embed_tokens) + self.decoder = MarianDecoder(config, decoder_embed_tokens) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + # This will return shared embeddings if they are shared else specific to encoder. + return self.get_encoder().get_input_embeddings() + + def set_input_embeddings(self, value): + if self.config.share_encoder_decoder_embeddings: + self.shared = value + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + else: # if not shared only set encoder embeedings + self.encoder.embed_tokens = value + + def get_decoder_input_embeddings(self): + if self.config.share_encoder_decoder_embeddings: + raise ValueError( + "`get_decoder_input_embeddings` should not be called if `config.share_encoder_decoder_embeddings` " + "is `True`. Please use `get_input_embeddings` instead." + ) + return self.get_decoder().get_input_embeddings() + + def set_decoder_input_embeddings(self, value): + if self.config.share_encoder_decoder_embeddings: + raise ValueError( + "`config.share_encoder_decoder_embeddings` is set to `True` meaning the decoder input embeddings " + "are shared with the encoder. In order to set the decoder input embeddings, you should simply set " + "the encoder input embeddings by calling `set_input_embeddings` with the appropriate embeddings." + ) + self.decoder.embed_tokens = value + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def resize_decoder_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: + if self.config.share_encoder_decoder_embeddings: + raise ValueError( + "`resize_decoder_token_embeddings` should not be called if `config.share_encoder_decoder_embeddings` " + "is `True`. Please use `resize_token_embeddings` instead." + ) + + old_embeddings = self.get_decoder_input_embeddings() + new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) + self.set_decoder_input_embeddings(new_embeddings) + + model_embeds = self.get_decoder_input_embeddings() + + if new_num_tokens is None: + return model_embeds + + # Update base model and current model config + self.config.decoder_vocab_size = new_num_tokens + + # Tie weights again if needed + self.tie_weights() + + return model_embeds + + @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Union[Tuple[torch.Tensor], BaseModelOutput]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Seq2SeqModelOutput: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MarianModel + + >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") + >>> model = MarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de") + + >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") + >>> decoder_inputs = tokenizer( + ... " Studien haben gezeigt dass es hilfreich ist einen Hund zu besitzen", + ... return_tensors="pt", + ... add_special_tokens=False, + ... ) + >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) + + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 26, 512] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + "The Marian Model with a language modeling head. Can be used for summarization.", MARIAN_START_DOCSTRING +) +class MarianMTModel(MarianPreTrainedModel): + base_model_prefix = "model" + _keys_to_ignore_on_load_missing = [ + "final_logits_bias", + "encoder.embed_positions.weight", + "decoder.embed_positions.weight", + ] + _keys_to_ignore_on_save = ["model.encoder.embed_positions.weight", "model.decoder.embed_positions.weight"] + _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight"] + + def __init__(self, config: MarianConfig): + super().__init__(config) + self.model = MarianModel(config) + + target_vocab_size = config.vocab_size if config.share_encoder_decoder_embeddings else config.decoder_vocab_size + self.register_buffer("final_logits_bias", torch.zeros((1, target_vocab_size))) + self.lm_head = nn.Linear(config.d_model, target_vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.model.get_encoder() + + def get_decoder(self): + return self.model.get_decoder() + + def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: + new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) + if self.config.share_encoder_decoder_embeddings: + self._resize_final_logits_bias(new_num_tokens) + return new_embeddings + + def _resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of=None) -> nn.Embedding: + old_embeddings = self.get_input_embeddings() + new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of) + self.set_input_embeddings(new_embeddings) + + new_num_tokens = new_embeddings.weight.shape[0] + # update config.decoder_vocab_size if embeddings are tied + if self.config.share_encoder_decoder_embeddings: + self.config.decoder_vocab_size = new_num_tokens + + # if word embeddings are not tied, make sure that lm head is resized as well + if ( + self.config.share_encoder_decoder_embeddings + and self.get_output_embeddings() is not None + and not self.config.tie_word_embeddings + ): + old_lm_head = self.get_output_embeddings() + new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens) + self.set_output_embeddings(new_lm_head) + + return self.get_input_embeddings() + + def resize_decoder_token_embeddings(self, new_num_tokens): + if self.config.share_encoder_decoder_embeddings: + raise ValueError( + "`resize_decoder_token_embeddings` should not be called if `config.share_encoder_decoder_embeddings` " + "is `True`. Please use `resize_token_embeddings` instead." + ) + + old_embeddings = self.model.get_decoder_input_embeddings() + new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) + self.model.set_decoder_input_embeddings(new_embeddings) + + # if word embeddings are not tied, make sure that lm head is resized as well + if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings: + old_lm_head = self.get_output_embeddings() + new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens) + self.set_output_embeddings(new_lm_head) + + model_embeds = self.model.get_decoder_input_embeddings() + + if new_num_tokens is None: + return model_embeds + + # Update base model and current model config + self.config.decoder_vocab_size = new_num_tokens + + # Tie weights again if needed + self.tie_weights() + + self._resize_final_logits_bias(new_num_tokens) + + return model_embeds + + def _resize_final_logits_bias(self, new_num_tokens: int) -> None: + old_num_tokens = self.final_logits_bias.shape[-1] + if new_num_tokens <= old_num_tokens: + new_bias = self.final_logits_bias[:, :new_num_tokens] + else: + extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) + new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) + self.register_buffer("final_logits_bias", new_bias) + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings: nn.Embedding): + self.lm_head = new_embeddings + + def tie_weights(self): + """ + Tie the weights between the input embeddings and the output embeddings. + + If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the + weights instead. + """ + output_embeddings = self.get_output_embeddings() + if output_embeddings is not None and getattr(self.config, "tie_word_embeddings", True): + # if embeddings are shared this will return shared embeddings otherwise decoder embed_tokens + word_embeddings = self.get_decoder().get_input_embeddings() + self._tie_or_clone_weights(output_embeddings, word_embeddings) + + if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False): + if hasattr(self, self.base_model_prefix): + self = getattr(self, self.base_model_prefix) + tied_weights = self._tie_encoder_decoder_weights( + self.encoder, self.decoder, self.base_model_prefix, "encoder" + ) + # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class + # attributed not an instance member, therefore modifying it will modify the entire class + # Leading to issues on subsequent calls by different tests or subsequent calls. + self._dynamic_tied_weights_keys = tied_weights + + for module in self.modules(): + if hasattr(module, "_tie_weights"): + module._tie_weights() + + @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(MARIAN_GENERATION_EXAMPLE) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Union[Tuple[torch.Tensor], BaseModelOutput]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Seq2SeqLMOutput: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if use_cache: + logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.decoder_vocab_size), labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return Seq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids: torch.LongTensor, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + encoder_outputs: Optional[Union[Tuple[torch.Tensor], BaseModelOutput]] = None, + **kwargs, + ) -> Dict: + # cut decoder_input_ids if past is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if decoder_input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = decoder_input_ids.shape[1] - 1 + + decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + # cached cross_attention states don't have to be reordered -> they are always the same + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + + layer_past[2:], + ) + return reordered_past + + +# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Marian +class MarianDecoderWrapper(MarianPreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is + used in combination with the [`EncoderDecoderModel`] framework. + """ + + def __init__(self, config): + super().__init__(config) + self.decoder = MarianDecoder(config) + + def forward(self, *args, **kwargs): + return self.decoder(*args, **kwargs) + + +# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->Marian, facebook/bart-base->Helsinki-NLP/opus-mt-fr-en +class MarianForCausalLM(MarianPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + config = copy.deepcopy(config) + config.is_decoder = True + config.is_encoder_decoder = False + super().__init__(config) + self.model = MarianDecoderWrapper(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.model.decoder.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model.decoder = decoder + + def get_decoder(self): + return self.model.decoder + + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + if the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used + in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional + tensors are only required when the model is used as a decoder in a Sequence to Sequence model. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MarianForCausalLM + + >>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-fr-en") + >>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-fr-en", add_cross_attention=False) + >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> logits = outputs.logits + >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] + >>> list(logits.shape) == expected_shape + True + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = self.lm_head(outputs[0]) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs + ): + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_ids.shape) + + if past_key_values: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + # first step, decoder_cached_states are empty + return { + "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/modeling_tf_marian.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/modeling_tf_marian.py new file mode 100644 index 0000000000000000000000000000000000000000..c6d5355f70c5a12a60ffd731b210cdce820bbf9d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/modeling_tf_marian.py @@ -0,0 +1,1557 @@ +# coding=utf-8 +# Copyright 2021 The Marian Team Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 Marian model.""" + + +from __future__ import annotations + +import random +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPastAndCrossAttentions, + TFSeq2SeqLMOutput, + TFSeq2SeqModelOutput, +) + +# Public API +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFPreTrainedModel, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_marian import MarianConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "Helsinki-NLP/opus-mt-en-de" +_CONFIG_FOR_DOC = "MarianConfig" + + +LARGE_NEGATIVE = -1e8 + + +# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): + pad_token_id = tf.cast(pad_token_id, input_ids.dtype) + decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) + start_tokens = tf.fill( + (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) + ) + shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids = tf.where( + shifted_input_ids == -100, + tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), + shifted_input_ids, + ) + + # "Verify that `labels` has only positive values and -100" + assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) + + # Make sure the assertion op is called by wrapping the result in an identity no-op + with tf.control_dependencies([assert_gte0]): + shifted_input_ids = tf.identity(shifted_input_ids) + + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE + mask_cond = tf.range(shape_list(mask)[-1]) + + mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +class TFMarianSinusoidalPositionalEmbedding(keras.layers.Layer): + """This module produces sinusoidal positional embeddings of any length.""" + + def __init__(self, num_positions: int, embedding_dim: int, **kwargs): + super().__init__(**kwargs) + + if embedding_dim % 2 != 0: + raise NotImplementedError(f"odd embedding_dim {embedding_dim} not supported") + + self.embedding_dim = embedding_dim + self.num_positions = num_positions + + def build(self, input_shape: tf.TensorShape): + """ + Build shared token embedding layer Shared weights logic adapted from + https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 + """ + + weight = self._init_weight(self.num_positions, self.embedding_dim) + + self.weight = self.add_weight( + name="embeddings", + shape=[self.num_positions, self.embedding_dim], + ) + weight = tf.cast(weight, dtype=self.weight.dtype) + + self.weight.assign(weight) + + super().build(input_shape) + + @staticmethod + def _init_weight(n_pos: int, dim: int): + """ + Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in + the 2nd half of the vector. [dim // 2:] + """ + position_enc = np.array( + [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] + ) + table = np.zeros_like(position_enc) + # index 0 is all zero + table[:, 0 : dim // 2] = np.sin(position_enc[:, 0::2]) + table[:, dim // 2 :] = np.cos(position_enc[:, 1::2]) + # convert to tensor + table = tf.convert_to_tensor(table) + tf.stop_gradient(table) + return table + + def call( + self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None + ): + """Input is expected to be of size [bsz x seqlen].""" + if position_ids is None: + seq_len = input_shape[1] + position_ids = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range") + return tf.gather(self.weight, position_ids) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->Marian +class TFMarianAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->Marian +class TFMarianEncoderLayer(keras.layers.Layer): + def __init__(self, config: MarianConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFMarianAttention( + self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" + ) + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: np.ndarray | tf.Tensor | None, + layer_head_mask: tf.Tensor | None, + training: Optional[bool] = False, + ) -> tf.Tensor: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`tf.Tensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)` + """ + residual = hidden_states + hidden_states, self_attn_weights, _ = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask + ) + + tf.debugging.assert_equal( + shape_list(hidden_states), + shape_list(residual), + message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", + ) + + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return hidden_states, self_attn_weights + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.encoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->Marian +class TFMarianDecoderLayer(keras.layers.Layer): + def __init__(self, config: MarianConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFMarianAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + name="self_attn", + is_decoder=True, + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.encoder_attn = TFMarianAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + name="encoder_attn", + is_decoder=True, + ) + self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: np.ndarray | tf.Tensor | None = None, + encoder_hidden_states: np.ndarray | tf.Tensor | None = None, + encoder_attention_mask: np.ndarray | tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + cross_attn_layer_head_mask: tf.Tensor | None = None, + past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`tf.Tensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`tf.Tensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`tf.Tensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + `(decoder_attention_heads,)` + cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. + `(decoder_attention_heads,)` + past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states + """ + residual = hidden_states + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + return ( + hidden_states, + self_attn_weights, + cross_attn_weights, + present_key_value, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "encoder_attn", None) is not None: + with tf.name_scope(self.encoder_attn.name): + self.encoder_attn.build(None) + if getattr(self, "encoder_attn_layer_norm", None) is not None: + with tf.name_scope(self.encoder_attn_layer_norm.name): + self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.decoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFMarianPreTrainedModel(TFPreTrainedModel): + config_class = MarianConfig + base_model_prefix = "model" + + +MARIAN_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`MarianConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MARIAN_GENERATION_EXAMPLE = r""" + TF version of marian-nmt's transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available + models are listed [here](https://huggingface.co/models?search=Helsinki-NLP). + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TFMarianMTModel + >>> from typing import List + + >>> src = "fr" # source language + >>> trg = "en" # target language + >>> sample_text = "où est l'arrêt de bus ?" + >>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" + + >>> model = TFMarianMTModel.from_pretrained(model_name) + >>> tokenizer = AutoTokenizer.from_pretrained(model_name) + >>> batch = tokenizer([sample_text], return_tensors="tf") + >>> gen = model.generate(**batch) + >>> tokenizer.batch_decode(gen, skip_special_tokens=True) + "Where is the bus stop ?" + ``` +""" + +MARIAN_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + Marian uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. + decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tf.FloatTensor`, *optional*): + hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + of shape `(batch_size, sequence_length, hidden_size)` is a sequence of + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@keras_serializable +class TFMarianEncoder(keras.layers.Layer): + config_class = MarianConfig + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`TFMarianEncoderLayer`]. + + Args: + config: MarianConfig + """ + + def __init__(self, config: MarianConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.dropout = keras.layers.Dropout(config.dropout) + self.layerdrop = config.encoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + + self.embed_tokens = embed_tokens + self.embed_positions = TFMarianSinusoidalPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.layers = [TFMarianEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids: tf.Tensor | None = None, + inputs_embeds: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ): + """ + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input_shape) + hidden_states = inputs_embeds + embed_pos + hidden_states = self.dropout(hidden_states, training=training) + + # check attention mask and invert + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _expand_mask(attention_mask) + else: + attention_mask = None + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + # encoder layers + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): # skip the layer + continue + + hidden_states, attn = encoder_layer( + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + ) + + if output_attentions: + all_attentions += (attn,) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFMarianDecoder(keras.layers.Layer): + config_class = MarianConfig + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFMarianDecoderLayer`] + + Args: + config: MarianConfig + embed_tokens: output embedding + """ + + def __init__(self, config: MarianConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.padding_idx = config.pad_token_id + self.embed_tokens = embed_tokens + self.layerdrop = config.decoder_layerdrop + self.embed_positions = TFMarianSinusoidalPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + self.layers = [TFMarianDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] + + self.dropout = keras.layers.Dropout(config.dropout) + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids: tf.Tensor | None = None, + inputs_embeds: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + position_ids: tf.Tensor | None = None, + encoder_hidden_states: tf.Tensor | None = None, + encoder_attention_mask: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ): + r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up + decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 + + # embed positions + if position_ids is None: + positions = self.embed_positions(input_shape, past_key_values_length) + else: + positions = self.embed_positions(input_shape, position_ids=position_ids) + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + hidden_states = inputs_embeds + + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + else: + combined_attention_mask = _expand_mask( + tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] + ) + + if attention_mask is not None: + combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) + + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) + + hidden_states = self.dropout(hidden_states + positions, training=training) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None + present_key_values = () if use_cache else None + + # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired + for attn_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: + if attn_mask is not None: + tf.debugging.assert_equal( + shape_list(attn_mask)[0], + len(self.layers), + message=( + f"The {attn_name} should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(attn_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + dropout_probability = random.uniform(0, 1) + + if training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + past_key_value=past_key_value, + ) + + if use_cache: + present_key_values += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + + if encoder_hidden_states is not None: + all_cross_attns += (layer_cross_attn,) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if not return_dict: + return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns + else: + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_values, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFMarianMainLayer(keras.layers.Layer): + config_class = MarianConfig + + def __init__(self, config: MarianConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.shared = keras.layers.Embedding( + input_dim=config.vocab_size, + output_dim=config.d_model, + embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), + name="model.shared", + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "model.shared" + + self.encoder = TFMarianEncoder(config, self.shared, name="encoder") + self.decoder = TFMarianDecoder(config, self.shared, name="decoder") + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + @unpack_inputs + def call( + self, + input_ids: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values: Tuple[Tuple[tf.Tensor]] = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + **kwargs, + ): + if decoder_input_ids is None and decoder_inputs_embeds is None: + use_cache = False + + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): + encoder_outputs = TFBaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False + elif not return_dict and not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + + decoder_outputs = self.decoder( + decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return TFSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + "The bare MARIAN Model outputting raw hidden-states without any specific head on top.", + MARIAN_START_DOCSTRING, +) +class TFMarianModel(TFMarianPreTrainedModel): + def __init__(self, config: MarianConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.model = TFMarianMainLayer(config, name="model") + + def get_encoder(self): + return self.model.encoder + + def get_decoder(self): + return self.model.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSeq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: tf.Tensor | None = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: bool | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + training: bool = False, + **kwargs, + ) -> Tuple[tf.Tensor] | TFSeq2SeqModelOutput: + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqModelOutput( + last_hidden_state=output.last_hidden_state, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + + +# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer +class BiasLayer(keras.layers.Layer): + """ + Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, + so all weights have to be registered in a layer. + """ + + def __init__(self, shape, initializer, trainable, name, **kwargs): + super().__init__(name=name, **kwargs) + # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of + # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: + # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 + self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) + + def call(self, x): + return x + self.bias + + +@add_start_docstrings( + "The MARIAN Model with a language modeling head. Can be used for summarization.", + MARIAN_START_DOCSTRING, +) +class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss): + _keys_to_ignore_on_load_unexpected = [ + r"model.encoder.embed_tokens.weight", + r"model.decoder.embed_tokens.weight", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.model = TFMarianMainLayer(config, name="model") + self.use_cache = config.use_cache + # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False + ) + + def get_decoder(self): + return self.model.decoder + + def get_encoder(self): + return self.model.encoder + + def get_output_embeddings(self): + return self.get_input_embeddings() + + def set_output_embeddings(self, value): + self.set_input_embeddings(value) + + def get_bias(self): + return {"final_logits_bias": self.bias_layer.bias} + + def set_bias(self, value): + # Replaces the existing layers containing bias for correct (de)serialization. + vocab_size = value["final_logits_bias"].shape[-1] + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False + ) + self.bias_layer.bias.assign(value["final_logits_bias"]) + + @unpack_inputs + @add_start_docstrings_to_model_forward(MARIAN_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(MARIAN_GENERATION_EXAMPLE) + def call( + self, + input_ids: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: TFBaseModelOutput | None = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: bool | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + labels: tf.Tensor | None = None, + training: bool = False, + ) -> Tuple[tf.Tensor] | TFSeq2SeqLMOutput: + r""" + labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + + if labels is not None: + labels = tf.where( + labels == self.config.pad_token_id, + tf.fill(shape_list(labels), tf.cast(-100, labels.dtype)), + labels, + ) + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) + lm_logits = self.bias_layer(lm_logits) + masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + return TFSeq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, # index 1 of d outputs + decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs + decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs + cross_attentions=outputs.cross_attentions, # index 4 of d outputs + encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs + encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out + encoder_attentions=outputs.encoder_attentions, # 2 of e out + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + decoder_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + if decoder_attention_mask is not None: # xla + decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] + elif past_key_values is not None: # no xla + past_key_values + decoder_position_ids = past_key_values[0][0].shape[2] + else: # no xla + no past_key_values + decoder_position_ids = tf.range(decoder_input_ids.shape[1]) + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "decoder_position_ids": decoder_position_ids, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + if getattr(self, "bias_layer", None) is not None: + with tf.name_scope(self.bias_layer.name): + self.bias_layer.build(None) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/tokenization_marian.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/tokenization_marian.py new file mode 100644 index 0000000000000000000000000000000000000000..4f0d90b6f0dffeab448b9f3d34a32b407e02f829 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/marian/tokenization_marian.py @@ -0,0 +1,391 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import json +import os +import re +import warnings +from pathlib import Path +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import sentencepiece + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "source_spm": "source.spm", + "target_spm": "target.spm", + "vocab": "vocab.json", + "target_vocab_file": "target_vocab.json", + "tokenizer_config_file": "tokenizer_config.json", +} + + +SPIECE_UNDERLINE = "▁" + +# Example URL https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/vocab.json + + +class MarianTokenizer(PreTrainedTokenizer): + r""" + Construct a Marian tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + source_spm (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that + contains the vocabulary for the source language. + target_spm (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that + contains the vocabulary for the target language. + source_lang (`str`, *optional*): + A string representing the source language. + target_lang (`str`, *optional*): + A string representing the target language. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + model_max_length (`int`, *optional*, defaults to 512): + The maximum sentence length the model accepts. + additional_special_tokens (`List[str]`, *optional*, defaults to `["", ""]`): + Additional special tokens used by the tokenizer. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Examples: + + ```python + >>> from transformers import MarianForCausalLM, MarianTokenizer + + >>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-en-de") + >>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de") + >>> src_texts = ["I am a small frog.", "Tom asked his teacher for advice."] + >>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional + >>> inputs = tokenizer(src_texts, text_target=tgt_texts, return_tensors="pt", padding=True) + + >>> outputs = model(**inputs) # should work + ```""" + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + language_code_re = re.compile(">>.+<<") # type: re.Pattern + + def __init__( + self, + source_spm, + target_spm, + vocab, + target_vocab_file=None, + source_lang=None, + target_lang=None, + unk_token="", + eos_token="", + pad_token="", + model_max_length=512, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + separate_vocabs=False, + **kwargs, + ) -> None: + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + assert Path(source_spm).exists(), f"cannot find spm source {source_spm}" + + self.separate_vocabs = separate_vocabs + self.encoder = load_json(vocab) + if str(unk_token) not in self.encoder: + raise KeyError(" token must be in the vocab") + assert str(pad_token) in self.encoder + + if separate_vocabs: + self.target_encoder = load_json(target_vocab_file) + self.decoder = {v: k for k, v in self.target_encoder.items()} + self.supported_language_codes = [] + else: + self.decoder = {v: k for k, v in self.encoder.items()} + self.supported_language_codes: list = [k for k in self.encoder if k.startswith(">>") and k.endswith("<<")] + + self.source_lang = source_lang + self.target_lang = target_lang + self.spm_files = [source_spm, target_spm] + + # load SentencePiece model for pre-processing + self.spm_source = load_spm(source_spm, self.sp_model_kwargs) + self.spm_target = load_spm(target_spm, self.sp_model_kwargs) + self.current_spm = self.spm_source + self.current_encoder = self.encoder + + # Multilingual target side: default to using first supported language code. + + self._setup_normalizer() + + super().__init__( + # bos_token=bos_token, unused. Start decoding with config.decoder_start_token_id + source_lang=source_lang, + target_lang=target_lang, + unk_token=unk_token, + eos_token=eos_token, + pad_token=pad_token, + model_max_length=model_max_length, + sp_model_kwargs=self.sp_model_kwargs, + target_vocab_file=target_vocab_file, + separate_vocabs=separate_vocabs, + **kwargs, + ) + + def _setup_normalizer(self): + try: + from sacremoses import MosesPunctNormalizer + + self.punc_normalizer = MosesPunctNormalizer(self.source_lang).normalize + except (ImportError, FileNotFoundError): + warnings.warn("Recommended: pip install sacremoses.") + self.punc_normalizer = lambda x: x + + def normalize(self, x: str) -> str: + """Cover moses empty string edge case. They return empty list for '' input!""" + return self.punc_normalizer(x) if x else "" + + def _convert_token_to_id(self, token): + return self.current_encoder.get(token, self.current_encoder[self.unk_token]) + + def remove_language_code(self, text: str): + """Remove language codes like >>fr<< before sentencepiece""" + match = self.language_code_re.match(text) + code: list = [match.group(0)] if match else [] + return code, self.language_code_re.sub("", text) + + def _tokenize(self, text: str) -> List[str]: + code, text = self.remove_language_code(text) + pieces = self.current_spm.encode(text, out_type=str) + return code + pieces + + def _convert_id_to_token(self, index: int) -> str: + """Converts an index (integer) in a token (str) using the decoder.""" + return self.decoder.get(index, self.unk_token) + + def batch_decode(self, sequences, **kwargs): + """ + Convert a list of lists of token ids into a list of strings by calling decode. + + Args: + sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): + List of tokenized input ids. Can be obtained using the `__call__` method. + skip_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not to remove special tokens in the decoding. + clean_up_tokenization_spaces (`bool`, *optional*): + Whether or not to clean up the tokenization spaces. If `None`, will default to + `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). + use_source_tokenizer (`bool`, *optional*, defaults to `False`): + Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence + problems). + kwargs (additional keyword arguments, *optional*): + Will be passed to the underlying model specific decode method. + + Returns: + `List[str]`: The list of decoded sentences. + """ + return super().batch_decode(sequences, **kwargs) + + def decode(self, token_ids, **kwargs): + """ + Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special + tokens and clean up tokenization spaces. + + Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. + + Args: + token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): + List of tokenized input ids. Can be obtained using the `__call__` method. + skip_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not to remove special tokens in the decoding. + clean_up_tokenization_spaces (`bool`, *optional*): + Whether or not to clean up the tokenization spaces. If `None`, will default to + `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). + use_source_tokenizer (`bool`, *optional*, defaults to `False`): + Whether or not to use the source tokenizer to decode sequences (only applicable in sequence-to-sequence + problems). + kwargs (additional keyword arguments, *optional*): + Will be passed to the underlying model specific decode method. + + Returns: + `str`: The decoded sentence. + """ + return super().decode(token_ids, **kwargs) + + def convert_tokens_to_string(self, tokens: List[str]) -> str: + """Uses source spm if _decode_use_source_tokenizer is True, and target spm otherwise""" + sp_model = self.spm_source if self._decode_use_source_tokenizer else self.spm_target + current_sub_tokens = [] + out_string = "" + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + out_string += sp_model.decode_pieces(current_sub_tokens) + token + " " + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + out_string += sp_model.decode_pieces(current_sub_tokens) + out_string = out_string.replace(SPIECE_UNDERLINE, " ") + return out_string.strip() + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: + """Build model inputs from a sequence by appending eos_token_id.""" + if token_ids_1 is None: + return token_ids_0 + [self.eos_token_id] + # We don't expect to process pairs, but leave the pair logic for API consistency + return token_ids_0 + token_ids_1 + [self.eos_token_id] + + def _switch_to_input_mode(self): + self.current_spm = self.spm_source + self.current_encoder = self.encoder + + def _switch_to_target_mode(self): + self.current_spm = self.spm_target + if self.separate_vocabs: + self.current_encoder = self.target_encoder + + @property + def vocab_size(self) -> int: + return len(self.encoder) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + saved_files = [] + + if self.separate_vocabs: + out_src_vocab_file = os.path.join( + save_directory, + (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"], + ) + out_tgt_vocab_file = os.path.join( + save_directory, + (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["target_vocab_file"], + ) + save_json(self.encoder, out_src_vocab_file) + save_json(self.target_encoder, out_tgt_vocab_file) + saved_files.append(out_src_vocab_file) + saved_files.append(out_tgt_vocab_file) + else: + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab"] + ) + save_json(self.encoder, out_vocab_file) + saved_files.append(out_vocab_file) + + for spm_save_filename, spm_orig_path, spm_model in zip( + [VOCAB_FILES_NAMES["source_spm"], VOCAB_FILES_NAMES["target_spm"]], + self.spm_files, + [self.spm_source, self.spm_target], + ): + spm_save_path = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + spm_save_filename + ) + if os.path.abspath(spm_orig_path) != os.path.abspath(spm_save_path) and os.path.isfile(spm_orig_path): + copyfile(spm_orig_path, spm_save_path) + saved_files.append(spm_save_path) + elif not os.path.isfile(spm_orig_path): + with open(spm_save_path, "wb") as fi: + content_spiece_model = spm_model.serialized_model_proto() + fi.write(content_spiece_model) + saved_files.append(spm_save_path) + + return tuple(saved_files) + + def get_vocab(self) -> Dict: + return self.get_src_vocab() + + def get_src_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + def get_tgt_vocab(self): + return dict(self.target_encoder, **self.added_tokens_decoder) + + def __getstate__(self) -> Dict: + state = self.__dict__.copy() + state.update( + {k: None for k in ["spm_source", "spm_target", "current_spm", "punc_normalizer", "target_vocab_file"]} + ) + return state + + def __setstate__(self, d: Dict) -> None: + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.spm_source, self.spm_target = (load_spm(f, self.sp_model_kwargs) for f in self.spm_files) + self.current_spm = self.spm_source + self._setup_normalizer() + + def num_special_tokens_to_add(self, *args, **kwargs): + """Just EOS""" + return 1 + + def _special_token_mask(self, seq): + all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp + all_special_ids.remove(self.unk_token_id) # is only sometimes special + return [1 if x in all_special_ids else 0 for x in seq] + + def get_special_tokens_mask( + self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """Get list where entries are [1] if a token is [eos] or [pad] else 0.""" + if already_has_special_tokens: + return self._special_token_mask(token_ids_0) + elif token_ids_1 is None: + return self._special_token_mask(token_ids_0) + [1] + else: + return self._special_token_mask(token_ids_0 + token_ids_1) + [1] + + +def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor: + spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs) + spm.Load(path) + return spm + + +def save_json(data, path: str) -> None: + with open(path, "w") as f: + json.dump(data, f, indent=2) + + +def load_json(path: str) -> Union[Dict, List]: + with open(path, "r") as f: + return json.load(f) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm/configuration_xlm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm/configuration_xlm.py new file mode 100644 index 0000000000000000000000000000000000000000..3b1dadd5657e2058be26256104b42a75b8e69f4f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm/configuration_xlm.py @@ -0,0 +1,240 @@ +# coding=utf-8 +# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" XLM configuration""" +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class XLMConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`XLMModel`] or a [`TFXLMModel`]. It is used to + instantiate a XLM model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the + [FacebookAI/xlm-mlm-en-2048](https://huggingface.co/FacebookAI/xlm-mlm-en-2048) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 30145): + Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`XLMModel`] or [`TFXLMModel`]. + emb_dim (`int`, *optional*, defaults to 2048): + Dimensionality of the encoder layers and the pooler layer. + n_layer (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + n_head (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for the attention mechanism + gelu_activation (`bool`, *optional*, defaults to `True`): + Whether or not to use *gelu* for the activations instead of *relu*. + sinusoidal_embeddings (`bool`, *optional*, defaults to `False`): + Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings. + causal (`bool`, *optional*, defaults to `False`): + Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in + order to only attend to the left-side context instead if a bidirectional context. + asm (`bool`, *optional*, defaults to `False`): + Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction + layer. + n_langs (`int`, *optional*, defaults to 1): + The number of languages the model handles. Set to 1 for monolingual models. + use_lang_emb (`bool`, *optional*, defaults to `True`) + Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual + models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information + on how to use them. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + embed_init_std (`float`, *optional*, defaults to 2048^-0.5): + The standard deviation of the truncated_normal_initializer for initializing the embedding matrices. + init_std (`int`, *optional*, defaults to 50257): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the + embedding matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + bos_index (`int`, *optional*, defaults to 0): + The index of the beginning of sentence token in the vocabulary. + eos_index (`int`, *optional*, defaults to 1): + The index of the end of sentence token in the vocabulary. + pad_index (`int`, *optional*, defaults to 2): + The index of the padding token in the vocabulary. + unk_index (`int`, *optional*, defaults to 3): + The index of the unknown token in the vocabulary. + mask_index (`int`, *optional*, defaults to 5): + The index of the masking token in the vocabulary. + is_encoder(`bool`, *optional*, defaults to `True`): + Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al. + summary_type (`string`, *optional*, defaults to "first"): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + Has to be one of the following options: + + - `"last"`: Take the last token hidden state (like XLNet). + - `"first"`: Take the first token hidden state (like BERT). + - `"mean"`: Take the mean of all tokens hidden states. + - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). + - `"attn"`: Not implemented now, use multi-head attention. + summary_use_proj (`bool`, *optional*, defaults to `True`): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + Whether or not to add a projection after the vector extraction. + summary_activation (`str`, *optional*): + Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. + + Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. + summary_proj_to_labels (`bool`, *optional*, defaults to `True`): + Used in the sequence classification and multiple choice models. + + Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. + summary_first_dropout (`float`, *optional*, defaults to 0.1): + Used in the sequence classification and multiple choice models. + + The dropout ratio to be used after the projection and activation. + start_n_top (`int`, *optional*, defaults to 5): + Used in the SQuAD evaluation script. + end_n_top (`int`, *optional*, defaults to 5): + Used in the SQuAD evaluation script. + mask_token_id (`int`, *optional*, defaults to 0): + Model agnostic parameter to identify masked tokens when generating text in an MLM context. + lang_id (`int`, *optional*, defaults to 1): + The ID of the language used by the model. This parameter is used when generating text in a given language. + + Examples: + + ```python + >>> from transformers import XLMConfig, XLMModel + + >>> # Initializing a XLM configuration + >>> configuration = XLMConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = XLMModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "xlm" + attribute_map = { + "hidden_size": "emb_dim", + "num_attention_heads": "n_heads", + "num_hidden_layers": "n_layers", + "n_words": "vocab_size", # For backward compatibility + } + + def __init__( + self, + vocab_size=30145, + emb_dim=2048, + n_layers=12, + n_heads=16, + dropout=0.1, + attention_dropout=0.1, + gelu_activation=True, + sinusoidal_embeddings=False, + causal=False, + asm=False, + n_langs=1, + use_lang_emb=True, + max_position_embeddings=512, + embed_init_std=2048**-0.5, + layer_norm_eps=1e-12, + init_std=0.02, + bos_index=0, + eos_index=1, + pad_index=2, + unk_index=3, + mask_index=5, + is_encoder=True, + summary_type="first", + summary_use_proj=True, + summary_activation=None, + summary_proj_to_labels=True, + summary_first_dropout=0.1, + start_n_top=5, + end_n_top=5, + mask_token_id=0, + lang_id=0, + pad_token_id=2, + bos_token_id=0, + **kwargs, + ): + """Constructs XLMConfig.""" + self.vocab_size = vocab_size + self.emb_dim = emb_dim + self.n_layers = n_layers + self.n_heads = n_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.gelu_activation = gelu_activation + self.sinusoidal_embeddings = sinusoidal_embeddings + self.causal = causal + self.asm = asm + self.n_langs = n_langs + self.use_lang_emb = use_lang_emb + self.layer_norm_eps = layer_norm_eps + self.bos_index = bos_index + self.eos_index = eos_index + self.pad_index = pad_index + self.unk_index = unk_index + self.mask_index = mask_index + self.is_encoder = is_encoder + self.max_position_embeddings = max_position_embeddings + self.embed_init_std = embed_init_std + self.init_std = init_std + self.summary_type = summary_type + self.summary_use_proj = summary_use_proj + self.summary_activation = summary_activation + self.summary_proj_to_labels = summary_proj_to_labels + self.summary_first_dropout = summary_first_dropout + self.start_n_top = start_n_top + self.end_n_top = end_n_top + self.mask_token_id = mask_token_id + self.lang_id = lang_id + + if "n_words" in kwargs: + self.n_words = kwargs["n_words"] + + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs) + + +# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig +class XLMOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ("token_type_ids", dynamic_axis), + ] + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..6f3cdf920a0e1ba34aac737b7672c2b71182e465 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm/convert_xlm_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,78 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert OpenAI GPT checkpoint.""" + + +import argparse +import json + +import numpy +import torch + +from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES +from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging + + +logging.set_verbosity_info() + + +def convert_xlm_checkpoint_to_pytorch(xlm_checkpoint_path, pytorch_dump_folder_path): + # Load checkpoint + chkpt = torch.load(xlm_checkpoint_path, map_location="cpu") + + state_dict = chkpt["model"] + + # We have the base model one level deeper than the original XLM repository + two_levels_state_dict = {} + for k, v in state_dict.items(): + if "pred_layer" in k: + two_levels_state_dict[k] = v + else: + two_levels_state_dict["transformer." + k] = v + + config = chkpt["params"] + config = {n: v for n, v in config.items() if not isinstance(v, (torch.FloatTensor, numpy.ndarray))} + + vocab = chkpt["dico_word2id"] + vocab = {s + "" if s.find("@@") == -1 and i > 13 else s.replace("@@", ""): i for s, i in vocab.items()} + + # Save pytorch-model + pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME + pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME + pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] + + print(f"Save PyTorch model to {pytorch_weights_dump_path}") + torch.save(two_levels_state_dict, pytorch_weights_dump_path) + + print(f"Save configuration file to {pytorch_config_dump_path}") + with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: + f.write(json.dumps(config, indent=2) + "\n") + + print(f"Save vocab file to {pytorch_config_dump_path}") + with open(pytorch_vocab_dump_path, "w", encoding="utf-8") as f: + f.write(json.dumps(vocab, indent=2) + "\n") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm/tokenization_xlm.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm/tokenization_xlm.py new file mode 100644 index 0000000000000000000000000000000000000000..b39e4c2708c791355c33ad827cdf113cdec47d74 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm/tokenization_xlm.py @@ -0,0 +1,604 @@ +# coding=utf-8 +# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for XLM.""" + + +import json +import os +import re +import sys +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "vocab_file": "vocab.json", + "merges_file": "merges.txt", +} + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length + strings) + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +def lowercase_and_remove_accent(text): + """ + Lowercase and strips accents from a piece of text based on + https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py + """ + text = " ".join(text) + text = text.lower() + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output).lower().split(" ") + + +def replace_unicode_punct(text): + """ + Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl + """ + text = text.replace(",", ",") + text = re.sub(r"。\s*", ". ", text) + text = text.replace("、", ",") + text = text.replace("”", '"') + text = text.replace("“", '"') + text = text.replace("∶", ":") + text = text.replace(":", ":") + text = text.replace("?", "?") + text = text.replace("《", '"') + text = text.replace("》", '"') + text = text.replace(")", ")") + text = text.replace("!", "!") + text = text.replace("(", "(") + text = text.replace(";", ";") + text = text.replace("1", "1") + text = text.replace("」", '"') + text = text.replace("「", '"') + text = text.replace("0", "0") + text = text.replace("3", "3") + text = text.replace("2", "2") + text = text.replace("5", "5") + text = text.replace("6", "6") + text = text.replace("9", "9") + text = text.replace("7", "7") + text = text.replace("8", "8") + text = text.replace("4", "4") + text = re.sub(r".\s*", ". ", text) + text = text.replace("~", "~") + text = text.replace("’", "'") + text = text.replace("…", "...") + text = text.replace("━", "-") + text = text.replace("〈", "<") + text = text.replace("〉", ">") + text = text.replace("【", "[") + text = text.replace("】", "]") + text = text.replace("%", "%") + return text + + +def remove_non_printing_char(text): + """ + Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl + """ + output = [] + for char in text: + cat = unicodedata.category(char) + if cat.startswith("C"): + continue + output.append(char) + return "".join(output) + + +def romanian_preprocessing(text): + """Sennrich's WMT16 scripts for Romanian preprocessing, used by model `FacebookAI/xlm-mlm-enro-1024`""" + # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py + text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219") + text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b") + # https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py + text = text.replace("\u0218", "S").replace("\u0219", "s") # s-comma + text = text.replace("\u021a", "T").replace("\u021b", "t") # t-comma + text = text.replace("\u0102", "A").replace("\u0103", "a") + text = text.replace("\u00C2", "A").replace("\u00E2", "a") + text = text.replace("\u00CE", "I").replace("\u00EE", "i") + return text + + +class XLMTokenizer(PreTrainedTokenizer): + """ + Construct an XLM tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: + + - Moses preprocessing and tokenization for most supported languages. + - Language specific tokenization for Chinese (Jieba), Japanese (KyTea) and Thai (PyThaiNLP). + - Optionally lowercases and normalizes all inputs text. + - The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like + "__classify__") to a vocabulary. + - The `lang2id` attribute maps the languages supported by the model with their IDs if provided (automatically set + for pretrained vocabularies). + - The `id2lang` attributes does reverse mapping if provided (automatically set for pretrained vocabularies). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Vocabulary file. + merges_file (`str`): + Merges file. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + additional_special_tokens (`List[str]`, *optional*, defaults to `['', '', '', '', '', '', '', '', '', '']`): + List of additional special tokens. + lang2id (`Dict[str, int]`, *optional*): + Dictionary mapping languages string identifiers to their IDs. + id2lang (`Dict[int, str]`, *optional*): + Dictionary mapping language IDs to their string identifiers. + do_lowercase_and_remove_accent (`bool`, *optional*, defaults to `True`): + Whether to lowercase and remove accents when tokenizing. + """ + + vocab_files_names = VOCAB_FILES_NAMES + + def __init__( + self, + vocab_file, + merges_file, + unk_token="", + bos_token="", + sep_token="", + pad_token="", + cls_token="", + mask_token="", + additional_special_tokens=[ + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + ], + lang2id=None, + id2lang=None, + do_lowercase_and_remove_accent=True, + **kwargs, + ): + try: + import sacremoses + except ImportError: + raise ImportError( + "You need to install sacremoses to use XLMTokenizer. " + "See https://pypi.org/project/sacremoses/ for installation." + ) + + self.sm = sacremoses + + # cache of sm.MosesPunctNormalizer instance + self.cache_moses_punct_normalizer = {} + # cache of sm.MosesTokenizer instance + self.cache_moses_tokenizer = {} + self.lang_with_custom_tokenizer = {"zh", "th", "ja"} + # True for current supported model (v1.2.0), False for XLM-17 & 100 + self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent + self.lang2id = lang2id + self.id2lang = id2lang + if lang2id is not None and id2lang is not None: + assert len(lang2id) == len(id2lang) + + self.ja_word_tokenizer = None + self.zh_word_tokenizer = None + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + merges = merges_handle.read().split("\n")[:-1] + merges = [tuple(merge.split()[:2]) for merge in merges] + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {} + super().__init__( + unk_token=unk_token, + bos_token=bos_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + additional_special_tokens=additional_special_tokens, + lang2id=lang2id, + id2lang=id2lang, + do_lowercase_and_remove_accent=do_lowercase_and_remove_accent, + **kwargs, + ) + + @property + def do_lower_case(self): + return self.do_lowercase_and_remove_accent + + def moses_punct_norm(self, text, lang): + if lang not in self.cache_moses_punct_normalizer: + punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) + self.cache_moses_punct_normalizer[lang] = punct_normalizer + else: + punct_normalizer = self.cache_moses_punct_normalizer[lang] + return punct_normalizer.normalize(text) + + def moses_tokenize(self, text, lang): + if lang not in self.cache_moses_tokenizer: + moses_tokenizer = self.sm.MosesTokenizer(lang=lang) + self.cache_moses_tokenizer[lang] = moses_tokenizer + else: + moses_tokenizer = self.cache_moses_tokenizer[lang] + return moses_tokenizer.tokenize(text, return_str=False, escape=False) + + def moses_pipeline(self, text, lang): + text = replace_unicode_punct(text) + text = self.moses_punct_norm(text, lang) + text = remove_non_printing_char(text) + return text + + def ja_tokenize(self, text): + if self.ja_word_tokenizer is None: + try: + import Mykytea + + self.ja_word_tokenizer = Mykytea.Mykytea( + f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin" + ) + except (AttributeError, ImportError): + logger.error( + "Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper" + " (https://github.com/chezou/Mykytea-python) with the following steps" + ) + logger.error("1. git clone git@github.com:neubig/kytea.git && cd kytea") + logger.error("2. autoreconf -i") + logger.error("3. ./configure --prefix=$HOME/local") + logger.error("4. make && make install") + logger.error("5. pip install kytea") + raise + return list(self.ja_word_tokenizer.getWS(text)) + + @property + def vocab_size(self): + return len(self.encoder) + + def get_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + def bpe(self, token): + word = tuple(token[:-1]) + (token[-1] + "",) + if token in self.cache: + return self.cache[token] + pairs = get_pairs(word) + + if not pairs: + return token + "" + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + if word == "\n ": + word = "\n" + self.cache[token] = word + return word + + def _tokenize(self, text, lang="en", bypass_tokenizer=False): + """ + Tokenize a string given language code. For Chinese, Japanese and Thai, we use a language specific tokenizer. + Otherwise, we use Moses. + + Details of tokenization: + + - [sacremoses](https://github.com/alvations/sacremoses): port of Moses + - Install with `pip install sacremoses` + - [pythainlp](https://github.com/PyThaiNLP/pythainlp): Thai tokenizer + - Install with `pip install pythainlp` + - [kytea](https://github.com/chezou/Mykytea-python): Japanese tokenizer, wrapper of + [KyTea](https://github.com/neubig/kytea) + - Install with the following steps: + + :: + + git clone git@github.com:neubig/kytea.git && cd kytea autoreconf -i ./configure --prefix=$HOME/local + make && make install pip install kytea + + - [jieba](https://github.com/fxsjy/jieba): Chinese tokenizer (*) + - Install with `pip install jieba` + + (*) The original XLM used [Stanford + Segmenter](https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip). However, the wrapper + (`nltk.tokenize.stanford_segmenter`) is slow due to JVM overhead, and it will be deprecated. Jieba is a lot + faster and pip-installable. Note there is some mismatch with the Stanford Segmenter. It should be fine if you + fine-tune the model with Chinese supervisionself. If you want the same exact behaviour, use the original XLM + [preprocessing script](https://github.com/facebookresearch/XLM/tree/master/tools) to tokenize the sentence + externally, and set `bypass_tokenizer=True` to bypass the tokenizer. + + Args: + - lang: ISO language code (default = 'en') (string). Languages should belong of the model supported + languages. However, we don't enforce it. + - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) + (bool). If True, we only apply BPE. + + Returns: + List of tokens. + """ + if lang and self.lang2id and lang not in self.lang2id: + logger.error( + "Supplied language code not found in lang2id mapping. Please check that your language is supported by" + " the loaded pretrained model." + ) + if bypass_tokenizer: + text = text.split() + elif lang not in self.lang_with_custom_tokenizer: + text = self.moses_pipeline(text, lang=lang) + # TODO: make sure we are using `FacebookAI/xlm-mlm-enro-1024`, since XLM-100 doesn't have this step + if lang == "ro": + text = romanian_preprocessing(text) + text = self.moses_tokenize(text, lang=lang) + elif lang == "th": + text = self.moses_pipeline(text, lang=lang) + try: + if "pythainlp" not in sys.modules: + from pythainlp.tokenize import word_tokenize as th_word_tokenize + else: + th_word_tokenize = sys.modules["pythainlp"].word_tokenize + except (AttributeError, ImportError): + logger.error( + "Make sure you install PyThaiNLP (https://github.com/PyThaiNLP/pythainlp) with the following steps" + ) + logger.error("1. pip install pythainlp") + raise + text = th_word_tokenize(text) + elif lang == "zh": + try: + if "jieba" not in sys.modules: + import jieba + else: + jieba = sys.modules["jieba"] + except (AttributeError, ImportError): + logger.error("Make sure you install Jieba (https://github.com/fxsjy/jieba) with the following steps") + logger.error("1. pip install jieba") + raise + text = " ".join(jieba.cut(text)) + text = self.moses_pipeline(text, lang=lang) + text = text.split() + elif lang == "ja": + text = self.moses_pipeline(text, lang=lang) + text = self.ja_tokenize(text) + else: + raise ValueError("It should not reach here") + + if self.do_lowercase_and_remove_accent and not bypass_tokenizer: + text = lowercase_and_remove_accent(text) + + split_tokens = [] + for token in text: + if token: + split_tokens.extend(list(self.bpe(token).split(" "))) + + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = "".join(tokens).replace("", " ").strip() + return out_string + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLM sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + + """ + bos = [self.bos_token_id] + sep = [self.sep_token_id] + + if token_ids_1 is None: + return bos + token_ids_0 + sep + return bos + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + def __getstate__(self): + state = self.__dict__.copy() + state["sm"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + try: + import sacremoses + except ImportError: + raise ImportError( + "You need to install sacremoses to use XLMTokenizer. " + "See https://pypi.org/project/sacremoses/ for installation." + ) + + self.sm = sacremoses