applied-ai-018 commited on
Commit
ac5fea4
·
verified ·
1 Parent(s): 53af1b7

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/constructor.cpython-310.pyc +0 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/densearith.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/densetools.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/dispersion.cpython-310.pyc +0 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/distributedmodules.cpython-310.pyc +0 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/galoistools.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyerrors.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyquinticconst.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/rootisolation.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/rootoftools.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__init__.py +5 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/__init__.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/extensions.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/homomorphisms.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/ideals.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/modules.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/extensions.py +346 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/homomorphisms.py +691 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/ideals.py +394 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/modules.py +1484 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__init__.py +0 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_extensions.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_homomorphisms.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_ideals.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_modules.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/test_extensions.py +196 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/test_homomorphisms.py +113 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/test_ideals.py +131 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/test_modules.py +408 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__init__.py +15 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/__init__.cpython-310.pyc +0 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/_typing.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/ddm.cpython-310.pyc +0 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/dense.cpython-310.pyc +0 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainmatrix.cpython-310.pyc +0 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainscalar.cpython-310.pyc +0 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/eigen.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/exceptions.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/linsolve.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/lll.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/normalforms.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/sdm.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/_typing.py +12 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/ddm.py +496 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/dense.py +348 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/domainmatrix.py +1791 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/domainscalar.py +116 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/eigen.py +90 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/exceptions.py +67 -0
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/constructor.cpython-310.pyc ADDED
Binary file (9.27 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/densearith.cpython-310.pyc ADDED
Binary file (34.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/densetools.cpython-310.pyc ADDED
Binary file (26.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/dispersion.cpython-310.pyc ADDED
Binary file (5.18 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/distributedmodules.cpython-310.pyc ADDED
Binary file (23 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/galoistools.cpython-310.pyc ADDED
Binary file (53.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyerrors.cpython-310.pyc ADDED
Binary file (7.17 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/polyquinticconst.cpython-310.pyc ADDED
Binary file (132 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/rootisolation.cpython-310.pyc ADDED
Binary file (51.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/__pycache__/rootoftools.cpython-310.pyc ADDED
Binary file (34.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """Module for algebraic geometry and commutative algebra."""
2
+
3
+ from .homomorphisms import homomorphism
4
+
5
+ __all__ = ['homomorphism']
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (324 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/extensions.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/homomorphisms.cpython-310.pyc ADDED
Binary file (25.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/ideals.cpython-310.pyc ADDED
Binary file (13.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/__pycache__/modules.cpython-310.pyc ADDED
Binary file (52.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/extensions.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Finite extensions of ring domains."""
2
+
3
+ from sympy.polys.domains.domain import Domain
4
+ from sympy.polys.domains.domainelement import DomainElement
5
+ from sympy.polys.polyerrors import (CoercionFailed, NotInvertible,
6
+ GeneratorsError)
7
+ from sympy.polys.polytools import Poly
8
+ from sympy.printing.defaults import DefaultPrinting
9
+
10
+
11
+ class ExtensionElement(DomainElement, DefaultPrinting):
12
+ """
13
+ Element of a finite extension.
14
+
15
+ A class of univariate polynomials modulo the ``modulus``
16
+ of the extension ``ext``. It is represented by the
17
+ unique polynomial ``rep`` of lowest degree. Both
18
+ ``rep`` and the representation ``mod`` of ``modulus``
19
+ are of class DMP.
20
+
21
+ """
22
+ __slots__ = ('rep', 'ext')
23
+
24
+ def __init__(self, rep, ext):
25
+ self.rep = rep
26
+ self.ext = ext
27
+
28
+ def parent(f):
29
+ return f.ext
30
+
31
+ def __bool__(f):
32
+ return bool(f.rep)
33
+
34
+ def __pos__(f):
35
+ return f
36
+
37
+ def __neg__(f):
38
+ return ExtElem(-f.rep, f.ext)
39
+
40
+ def _get_rep(f, g):
41
+ if isinstance(g, ExtElem):
42
+ if g.ext == f.ext:
43
+ return g.rep
44
+ else:
45
+ return None
46
+ else:
47
+ try:
48
+ g = f.ext.convert(g)
49
+ return g.rep
50
+ except CoercionFailed:
51
+ return None
52
+
53
+ def __add__(f, g):
54
+ rep = f._get_rep(g)
55
+ if rep is not None:
56
+ return ExtElem(f.rep + rep, f.ext)
57
+ else:
58
+ return NotImplemented
59
+
60
+ __radd__ = __add__
61
+
62
+ def __sub__(f, g):
63
+ rep = f._get_rep(g)
64
+ if rep is not None:
65
+ return ExtElem(f.rep - rep, f.ext)
66
+ else:
67
+ return NotImplemented
68
+
69
+ def __rsub__(f, g):
70
+ rep = f._get_rep(g)
71
+ if rep is not None:
72
+ return ExtElem(rep - f.rep, f.ext)
73
+ else:
74
+ return NotImplemented
75
+
76
+ def __mul__(f, g):
77
+ rep = f._get_rep(g)
78
+ if rep is not None:
79
+ return ExtElem((f.rep * rep) % f.ext.mod, f.ext)
80
+ else:
81
+ return NotImplemented
82
+
83
+ __rmul__ = __mul__
84
+
85
+ def _divcheck(f):
86
+ """Raise if division is not implemented for this divisor"""
87
+ if not f:
88
+ raise NotInvertible('Zero divisor')
89
+ elif f.ext.is_Field:
90
+ return True
91
+ elif f.rep.is_ground and f.ext.domain.is_unit(f.rep.rep[0]):
92
+ return True
93
+ else:
94
+ # Some cases like (2*x + 2)/2 over ZZ will fail here. It is
95
+ # unclear how to implement division in general if the ground
96
+ # domain is not a field so for now it was decided to restrict the
97
+ # implementation to division by invertible constants.
98
+ msg = (f"Can not invert {f} in {f.ext}. "
99
+ "Only division by invertible constants is implemented.")
100
+ raise NotImplementedError(msg)
101
+
102
+ def inverse(f):
103
+ """Multiplicative inverse.
104
+
105
+ Raises
106
+ ======
107
+
108
+ NotInvertible
109
+ If the element is a zero divisor.
110
+
111
+ """
112
+ f._divcheck()
113
+
114
+ if f.ext.is_Field:
115
+ invrep = f.rep.invert(f.ext.mod)
116
+ else:
117
+ R = f.ext.ring
118
+ invrep = R.exquo(R.one, f.rep)
119
+
120
+ return ExtElem(invrep, f.ext)
121
+
122
+ def __truediv__(f, g):
123
+ rep = f._get_rep(g)
124
+ if rep is None:
125
+ return NotImplemented
126
+ g = ExtElem(rep, f.ext)
127
+
128
+ try:
129
+ ginv = g.inverse()
130
+ except NotInvertible:
131
+ raise ZeroDivisionError(f"{f} / {g}")
132
+
133
+ return f * ginv
134
+
135
+ __floordiv__ = __truediv__
136
+
137
+ def __rtruediv__(f, g):
138
+ try:
139
+ g = f.ext.convert(g)
140
+ except CoercionFailed:
141
+ return NotImplemented
142
+ return g / f
143
+
144
+ __rfloordiv__ = __rtruediv__
145
+
146
+ def __mod__(f, g):
147
+ rep = f._get_rep(g)
148
+ if rep is None:
149
+ return NotImplemented
150
+ g = ExtElem(rep, f.ext)
151
+
152
+ try:
153
+ g._divcheck()
154
+ except NotInvertible:
155
+ raise ZeroDivisionError(f"{f} % {g}")
156
+
157
+ # Division where defined is always exact so there is no remainder
158
+ return f.ext.zero
159
+
160
+ def __rmod__(f, g):
161
+ try:
162
+ g = f.ext.convert(g)
163
+ except CoercionFailed:
164
+ return NotImplemented
165
+ return g % f
166
+
167
+ def __pow__(f, n):
168
+ if not isinstance(n, int):
169
+ raise TypeError("exponent of type 'int' expected")
170
+ if n < 0:
171
+ try:
172
+ f, n = f.inverse(), -n
173
+ except NotImplementedError:
174
+ raise ValueError("negative powers are not defined")
175
+
176
+ b = f.rep
177
+ m = f.ext.mod
178
+ r = f.ext.one.rep
179
+ while n > 0:
180
+ if n % 2:
181
+ r = (r*b) % m
182
+ b = (b*b) % m
183
+ n //= 2
184
+
185
+ return ExtElem(r, f.ext)
186
+
187
+ def __eq__(f, g):
188
+ if isinstance(g, ExtElem):
189
+ return f.rep == g.rep and f.ext == g.ext
190
+ else:
191
+ return NotImplemented
192
+
193
+ def __ne__(f, g):
194
+ return not f == g
195
+
196
+ def __hash__(f):
197
+ return hash((f.rep, f.ext))
198
+
199
+ def __str__(f):
200
+ from sympy.printing.str import sstr
201
+ return sstr(f.rep)
202
+
203
+ __repr__ = __str__
204
+
205
+ @property
206
+ def is_ground(f):
207
+ return f.rep.is_ground
208
+
209
+ def to_ground(f):
210
+ [c] = f.rep.to_list()
211
+ return c
212
+
213
+ ExtElem = ExtensionElement
214
+
215
+
216
+ class MonogenicFiniteExtension(Domain):
217
+ r"""
218
+ Finite extension generated by an integral element.
219
+
220
+ The generator is defined by a monic univariate
221
+ polynomial derived from the argument ``mod``.
222
+
223
+ A shorter alias is ``FiniteExtension``.
224
+
225
+ Examples
226
+ ========
227
+
228
+ Quadratic integer ring $\mathbb{Z}[\sqrt2]$:
229
+
230
+ >>> from sympy import Symbol, Poly
231
+ >>> from sympy.polys.agca.extensions import FiniteExtension
232
+ >>> x = Symbol('x')
233
+ >>> R = FiniteExtension(Poly(x**2 - 2)); R
234
+ ZZ[x]/(x**2 - 2)
235
+ >>> R.rank
236
+ 2
237
+ >>> R(1 + x)*(3 - 2*x)
238
+ x - 1
239
+
240
+ Finite field $GF(5^3)$ defined by the primitive
241
+ polynomial $x^3 + x^2 + 2$ (over $\mathbb{Z}_5$).
242
+
243
+ >>> F = FiniteExtension(Poly(x**3 + x**2 + 2, modulus=5)); F
244
+ GF(5)[x]/(x**3 + x**2 + 2)
245
+ >>> F.basis
246
+ (1, x, x**2)
247
+ >>> F(x + 3)/(x**2 + 2)
248
+ -2*x**2 + x + 2
249
+
250
+ Function field of an elliptic curve:
251
+
252
+ >>> t = Symbol('t')
253
+ >>> FiniteExtension(Poly(t**2 - x**3 - x + 1, t, field=True))
254
+ ZZ(x)[t]/(t**2 - x**3 - x + 1)
255
+
256
+ """
257
+ is_FiniteExtension = True
258
+
259
+ dtype = ExtensionElement
260
+
261
+ def __init__(self, mod):
262
+ if not (isinstance(mod, Poly) and mod.is_univariate):
263
+ raise TypeError("modulus must be a univariate Poly")
264
+
265
+ # Using auto=True (default) potentially changes the ground domain to a
266
+ # field whereas auto=False raises if division is not exact. We'll let
267
+ # the caller decide whether or not they want to put the ground domain
268
+ # over a field. In most uses mod is already monic.
269
+ mod = mod.monic(auto=False)
270
+
271
+ self.rank = mod.degree()
272
+ self.modulus = mod
273
+ self.mod = mod.rep # DMP representation
274
+
275
+ self.domain = dom = mod.domain
276
+ self.ring = mod.rep.ring or dom.old_poly_ring(*mod.gens)
277
+
278
+ self.zero = self.convert(self.ring.zero)
279
+ self.one = self.convert(self.ring.one)
280
+
281
+ gen = self.ring.gens[0]
282
+ self.symbol = self.ring.symbols[0]
283
+ self.generator = self.convert(gen)
284
+ self.basis = tuple(self.convert(gen**i) for i in range(self.rank))
285
+
286
+ # XXX: It might be necessary to check mod.is_irreducible here
287
+ self.is_Field = self.domain.is_Field
288
+
289
+ def new(self, arg):
290
+ rep = self.ring.convert(arg)
291
+ return ExtElem(rep % self.mod, self)
292
+
293
+ def __eq__(self, other):
294
+ if not isinstance(other, FiniteExtension):
295
+ return False
296
+ return self.modulus == other.modulus
297
+
298
+ def __hash__(self):
299
+ return hash((self.__class__.__name__, self.modulus))
300
+
301
+ def __str__(self):
302
+ return "%s/(%s)" % (self.ring, self.modulus.as_expr())
303
+
304
+ __repr__ = __str__
305
+
306
+ def convert(self, f, base=None):
307
+ rep = self.ring.convert(f, base)
308
+ return ExtElem(rep % self.mod, self)
309
+
310
+ def convert_from(self, f, base):
311
+ rep = self.ring.convert(f, base)
312
+ return ExtElem(rep % self.mod, self)
313
+
314
+ def to_sympy(self, f):
315
+ return self.ring.to_sympy(f.rep)
316
+
317
+ def from_sympy(self, f):
318
+ return self.convert(f)
319
+
320
+ def set_domain(self, K):
321
+ mod = self.modulus.set_domain(K)
322
+ return self.__class__(mod)
323
+
324
+ def drop(self, *symbols):
325
+ if self.symbol in symbols:
326
+ raise GeneratorsError('Can not drop generator from FiniteExtension')
327
+ K = self.domain.drop(*symbols)
328
+ return self.set_domain(K)
329
+
330
+ def quo(self, f, g):
331
+ return self.exquo(f, g)
332
+
333
+ def exquo(self, f, g):
334
+ rep = self.ring.exquo(f.rep, g.rep)
335
+ return ExtElem(rep % self.mod, self)
336
+
337
+ def is_negative(self, a):
338
+ return False
339
+
340
+ def is_unit(self, a):
341
+ if self.is_Field:
342
+ return bool(a)
343
+ elif a.is_ground:
344
+ return self.domain.is_unit(a.to_ground())
345
+
346
+ FiniteExtension = MonogenicFiniteExtension
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/homomorphisms.py ADDED
@@ -0,0 +1,691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Computations with homomorphisms of modules and rings.
3
+
4
+ This module implements classes for representing homomorphisms of rings and
5
+ their modules. Instead of instantiating the classes directly, you should use
6
+ the function ``homomorphism(from, to, matrix)`` to create homomorphism objects.
7
+ """
8
+
9
+
10
+ from sympy.polys.agca.modules import (Module, FreeModule, QuotientModule,
11
+ SubModule, SubQuotientModule)
12
+ from sympy.polys.polyerrors import CoercionFailed
13
+
14
+ # The main computational task for module homomorphisms is kernels.
15
+ # For this reason, the concrete classes are organised by domain module type.
16
+
17
+
18
+ class ModuleHomomorphism:
19
+ """
20
+ Abstract base class for module homomoprhisms. Do not instantiate.
21
+
22
+ Instead, use the ``homomorphism`` function:
23
+
24
+ >>> from sympy import QQ
25
+ >>> from sympy.abc import x
26
+ >>> from sympy.polys.agca import homomorphism
27
+
28
+ >>> F = QQ.old_poly_ring(x).free_module(2)
29
+ >>> homomorphism(F, F, [[1, 0], [0, 1]])
30
+ Matrix([
31
+ [1, 0], : QQ[x]**2 -> QQ[x]**2
32
+ [0, 1]])
33
+
34
+ Attributes:
35
+
36
+ - ring - the ring over which we are considering modules
37
+ - domain - the domain module
38
+ - codomain - the codomain module
39
+ - _ker - cached kernel
40
+ - _img - cached image
41
+
42
+ Non-implemented methods:
43
+
44
+ - _kernel
45
+ - _image
46
+ - _restrict_domain
47
+ - _restrict_codomain
48
+ - _quotient_domain
49
+ - _quotient_codomain
50
+ - _apply
51
+ - _mul_scalar
52
+ - _compose
53
+ - _add
54
+ """
55
+
56
+ def __init__(self, domain, codomain):
57
+ if not isinstance(domain, Module):
58
+ raise TypeError('Source must be a module, got %s' % domain)
59
+ if not isinstance(codomain, Module):
60
+ raise TypeError('Target must be a module, got %s' % codomain)
61
+ if domain.ring != codomain.ring:
62
+ raise ValueError('Source and codomain must be over same ring, '
63
+ 'got %s != %s' % (domain, codomain))
64
+ self.domain = domain
65
+ self.codomain = codomain
66
+ self.ring = domain.ring
67
+ self._ker = None
68
+ self._img = None
69
+
70
+ def kernel(self):
71
+ r"""
72
+ Compute the kernel of ``self``.
73
+
74
+ That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute
75
+ `ker(\phi) = \{x \in M | \phi(x) = 0\}`. This is a submodule of `M`.
76
+
77
+ Examples
78
+ ========
79
+
80
+ >>> from sympy import QQ
81
+ >>> from sympy.abc import x
82
+ >>> from sympy.polys.agca import homomorphism
83
+
84
+ >>> F = QQ.old_poly_ring(x).free_module(2)
85
+ >>> homomorphism(F, F, [[1, 0], [x, 0]]).kernel()
86
+ <[x, -1]>
87
+ """
88
+ if self._ker is None:
89
+ self._ker = self._kernel()
90
+ return self._ker
91
+
92
+ def image(self):
93
+ r"""
94
+ Compute the image of ``self``.
95
+
96
+ That is, if ``self`` is the homomorphism `\phi: M \to N`, then compute
97
+ `im(\phi) = \{\phi(x) | x \in M \}`. This is a submodule of `N`.
98
+
99
+ Examples
100
+ ========
101
+
102
+ >>> from sympy import QQ
103
+ >>> from sympy.abc import x
104
+ >>> from sympy.polys.agca import homomorphism
105
+
106
+ >>> F = QQ.old_poly_ring(x).free_module(2)
107
+ >>> homomorphism(F, F, [[1, 0], [x, 0]]).image() == F.submodule([1, 0])
108
+ True
109
+ """
110
+ if self._img is None:
111
+ self._img = self._image()
112
+ return self._img
113
+
114
+ def _kernel(self):
115
+ """Compute the kernel of ``self``."""
116
+ raise NotImplementedError
117
+
118
+ def _image(self):
119
+ """Compute the image of ``self``."""
120
+ raise NotImplementedError
121
+
122
+ def _restrict_domain(self, sm):
123
+ """Implementation of domain restriction."""
124
+ raise NotImplementedError
125
+
126
+ def _restrict_codomain(self, sm):
127
+ """Implementation of codomain restriction."""
128
+ raise NotImplementedError
129
+
130
+ def _quotient_domain(self, sm):
131
+ """Implementation of domain quotient."""
132
+ raise NotImplementedError
133
+
134
+ def _quotient_codomain(self, sm):
135
+ """Implementation of codomain quotient."""
136
+ raise NotImplementedError
137
+
138
+ def restrict_domain(self, sm):
139
+ """
140
+ Return ``self``, with the domain restricted to ``sm``.
141
+
142
+ Here ``sm`` has to be a submodule of ``self.domain``.
143
+
144
+ Examples
145
+ ========
146
+
147
+ >>> from sympy import QQ
148
+ >>> from sympy.abc import x
149
+ >>> from sympy.polys.agca import homomorphism
150
+
151
+ >>> F = QQ.old_poly_ring(x).free_module(2)
152
+ >>> h = homomorphism(F, F, [[1, 0], [x, 0]])
153
+ >>> h
154
+ Matrix([
155
+ [1, x], : QQ[x]**2 -> QQ[x]**2
156
+ [0, 0]])
157
+ >>> h.restrict_domain(F.submodule([1, 0]))
158
+ Matrix([
159
+ [1, x], : <[1, 0]> -> QQ[x]**2
160
+ [0, 0]])
161
+
162
+ This is the same as just composing on the right with the submodule
163
+ inclusion:
164
+
165
+ >>> h * F.submodule([1, 0]).inclusion_hom()
166
+ Matrix([
167
+ [1, x], : <[1, 0]> -> QQ[x]**2
168
+ [0, 0]])
169
+ """
170
+ if not self.domain.is_submodule(sm):
171
+ raise ValueError('sm must be a submodule of %s, got %s'
172
+ % (self.domain, sm))
173
+ if sm == self.domain:
174
+ return self
175
+ return self._restrict_domain(sm)
176
+
177
+ def restrict_codomain(self, sm):
178
+ """
179
+ Return ``self``, with codomain restricted to to ``sm``.
180
+
181
+ Here ``sm`` has to be a submodule of ``self.codomain`` containing the
182
+ image.
183
+
184
+ Examples
185
+ ========
186
+
187
+ >>> from sympy import QQ
188
+ >>> from sympy.abc import x
189
+ >>> from sympy.polys.agca import homomorphism
190
+
191
+ >>> F = QQ.old_poly_ring(x).free_module(2)
192
+ >>> h = homomorphism(F, F, [[1, 0], [x, 0]])
193
+ >>> h
194
+ Matrix([
195
+ [1, x], : QQ[x]**2 -> QQ[x]**2
196
+ [0, 0]])
197
+ >>> h.restrict_codomain(F.submodule([1, 0]))
198
+ Matrix([
199
+ [1, x], : QQ[x]**2 -> <[1, 0]>
200
+ [0, 0]])
201
+ """
202
+ if not sm.is_submodule(self.image()):
203
+ raise ValueError('the image %s must contain sm, got %s'
204
+ % (self.image(), sm))
205
+ if sm == self.codomain:
206
+ return self
207
+ return self._restrict_codomain(sm)
208
+
209
+ def quotient_domain(self, sm):
210
+ """
211
+ Return ``self`` with domain replaced by ``domain/sm``.
212
+
213
+ Here ``sm`` must be a submodule of ``self.kernel()``.
214
+
215
+ Examples
216
+ ========
217
+
218
+ >>> from sympy import QQ
219
+ >>> from sympy.abc import x
220
+ >>> from sympy.polys.agca import homomorphism
221
+
222
+ >>> F = QQ.old_poly_ring(x).free_module(2)
223
+ >>> h = homomorphism(F, F, [[1, 0], [x, 0]])
224
+ >>> h
225
+ Matrix([
226
+ [1, x], : QQ[x]**2 -> QQ[x]**2
227
+ [0, 0]])
228
+ >>> h.quotient_domain(F.submodule([-x, 1]))
229
+ Matrix([
230
+ [1, x], : QQ[x]**2/<[-x, 1]> -> QQ[x]**2
231
+ [0, 0]])
232
+ """
233
+ if not self.kernel().is_submodule(sm):
234
+ raise ValueError('kernel %s must contain sm, got %s' %
235
+ (self.kernel(), sm))
236
+ if sm.is_zero():
237
+ return self
238
+ return self._quotient_domain(sm)
239
+
240
+ def quotient_codomain(self, sm):
241
+ """
242
+ Return ``self`` with codomain replaced by ``codomain/sm``.
243
+
244
+ Here ``sm`` must be a submodule of ``self.codomain``.
245
+
246
+ Examples
247
+ ========
248
+
249
+ >>> from sympy import QQ
250
+ >>> from sympy.abc import x
251
+ >>> from sympy.polys.agca import homomorphism
252
+
253
+ >>> F = QQ.old_poly_ring(x).free_module(2)
254
+ >>> h = homomorphism(F, F, [[1, 0], [x, 0]])
255
+ >>> h
256
+ Matrix([
257
+ [1, x], : QQ[x]**2 -> QQ[x]**2
258
+ [0, 0]])
259
+ >>> h.quotient_codomain(F.submodule([1, 1]))
260
+ Matrix([
261
+ [1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]>
262
+ [0, 0]])
263
+
264
+ This is the same as composing with the quotient map on the left:
265
+
266
+ >>> (F/[(1, 1)]).quotient_hom() * h
267
+ Matrix([
268
+ [1, x], : QQ[x]**2 -> QQ[x]**2/<[1, 1]>
269
+ [0, 0]])
270
+ """
271
+ if not self.codomain.is_submodule(sm):
272
+ raise ValueError('sm must be a submodule of codomain %s, got %s'
273
+ % (self.codomain, sm))
274
+ if sm.is_zero():
275
+ return self
276
+ return self._quotient_codomain(sm)
277
+
278
+ def _apply(self, elem):
279
+ """Apply ``self`` to ``elem``."""
280
+ raise NotImplementedError
281
+
282
+ def __call__(self, elem):
283
+ return self.codomain.convert(self._apply(self.domain.convert(elem)))
284
+
285
+ def _compose(self, oth):
286
+ """
287
+ Compose ``self`` with ``oth``, that is, return the homomorphism
288
+ obtained by first applying then ``self``, then ``oth``.
289
+
290
+ (This method is private since in this syntax, it is non-obvious which
291
+ homomorphism is executed first.)
292
+ """
293
+ raise NotImplementedError
294
+
295
+ def _mul_scalar(self, c):
296
+ """Scalar multiplication. ``c`` is guaranteed in self.ring."""
297
+ raise NotImplementedError
298
+
299
+ def _add(self, oth):
300
+ """
301
+ Homomorphism addition.
302
+ ``oth`` is guaranteed to be a homomorphism with same domain/codomain.
303
+ """
304
+ raise NotImplementedError
305
+
306
+ def _check_hom(self, oth):
307
+ """Helper to check that oth is a homomorphism with same domain/codomain."""
308
+ if not isinstance(oth, ModuleHomomorphism):
309
+ return False
310
+ return oth.domain == self.domain and oth.codomain == self.codomain
311
+
312
+ def __mul__(self, oth):
313
+ if isinstance(oth, ModuleHomomorphism) and self.domain == oth.codomain:
314
+ return oth._compose(self)
315
+ try:
316
+ return self._mul_scalar(self.ring.convert(oth))
317
+ except CoercionFailed:
318
+ return NotImplemented
319
+
320
+ # NOTE: _compose will never be called from rmul
321
+ __rmul__ = __mul__
322
+
323
+ def __truediv__(self, oth):
324
+ try:
325
+ return self._mul_scalar(1/self.ring.convert(oth))
326
+ except CoercionFailed:
327
+ return NotImplemented
328
+
329
+ def __add__(self, oth):
330
+ if self._check_hom(oth):
331
+ return self._add(oth)
332
+ return NotImplemented
333
+
334
+ def __sub__(self, oth):
335
+ if self._check_hom(oth):
336
+ return self._add(oth._mul_scalar(self.ring.convert(-1)))
337
+ return NotImplemented
338
+
339
+ def is_injective(self):
340
+ """
341
+ Return True if ``self`` is injective.
342
+
343
+ That is, check if the elements of the domain are mapped to the same
344
+ codomain element.
345
+
346
+ Examples
347
+ ========
348
+
349
+ >>> from sympy import QQ
350
+ >>> from sympy.abc import x
351
+ >>> from sympy.polys.agca import homomorphism
352
+
353
+ >>> F = QQ.old_poly_ring(x).free_module(2)
354
+ >>> h = homomorphism(F, F, [[1, 0], [x, 0]])
355
+ >>> h.is_injective()
356
+ False
357
+ >>> h.quotient_domain(h.kernel()).is_injective()
358
+ True
359
+ """
360
+ return self.kernel().is_zero()
361
+
362
+ def is_surjective(self):
363
+ """
364
+ Return True if ``self`` is surjective.
365
+
366
+ That is, check if every element of the codomain has at least one
367
+ preimage.
368
+
369
+ Examples
370
+ ========
371
+
372
+ >>> from sympy import QQ
373
+ >>> from sympy.abc import x
374
+ >>> from sympy.polys.agca import homomorphism
375
+
376
+ >>> F = QQ.old_poly_ring(x).free_module(2)
377
+ >>> h = homomorphism(F, F, [[1, 0], [x, 0]])
378
+ >>> h.is_surjective()
379
+ False
380
+ >>> h.restrict_codomain(h.image()).is_surjective()
381
+ True
382
+ """
383
+ return self.image() == self.codomain
384
+
385
+ def is_isomorphism(self):
386
+ """
387
+ Return True if ``self`` is an isomorphism.
388
+
389
+ That is, check if every element of the codomain has precisely one
390
+ preimage. Equivalently, ``self`` is both injective and surjective.
391
+
392
+ Examples
393
+ ========
394
+
395
+ >>> from sympy import QQ
396
+ >>> from sympy.abc import x
397
+ >>> from sympy.polys.agca import homomorphism
398
+
399
+ >>> F = QQ.old_poly_ring(x).free_module(2)
400
+ >>> h = homomorphism(F, F, [[1, 0], [x, 0]])
401
+ >>> h = h.restrict_codomain(h.image())
402
+ >>> h.is_isomorphism()
403
+ False
404
+ >>> h.quotient_domain(h.kernel()).is_isomorphism()
405
+ True
406
+ """
407
+ return self.is_injective() and self.is_surjective()
408
+
409
+ def is_zero(self):
410
+ """
411
+ Return True if ``self`` is a zero morphism.
412
+
413
+ That is, check if every element of the domain is mapped to zero
414
+ under self.
415
+
416
+ Examples
417
+ ========
418
+
419
+ >>> from sympy import QQ
420
+ >>> from sympy.abc import x
421
+ >>> from sympy.polys.agca import homomorphism
422
+
423
+ >>> F = QQ.old_poly_ring(x).free_module(2)
424
+ >>> h = homomorphism(F, F, [[1, 0], [x, 0]])
425
+ >>> h.is_zero()
426
+ False
427
+ >>> h.restrict_domain(F.submodule()).is_zero()
428
+ True
429
+ >>> h.quotient_codomain(h.image()).is_zero()
430
+ True
431
+ """
432
+ return self.image().is_zero()
433
+
434
+ def __eq__(self, oth):
435
+ try:
436
+ return (self - oth).is_zero()
437
+ except TypeError:
438
+ return False
439
+
440
+ def __ne__(self, oth):
441
+ return not (self == oth)
442
+
443
+
444
+ class MatrixHomomorphism(ModuleHomomorphism):
445
+ r"""
446
+ Helper class for all homomoprhisms which are expressed via a matrix.
447
+
448
+ That is, for such homomorphisms ``domain`` is contained in a module
449
+ generated by finitely many elements `e_1, \ldots, e_n`, so that the
450
+ homomorphism is determined uniquely by its action on the `e_i`. It
451
+ can thus be represented as a vector of elements of the codomain module,
452
+ or potentially a supermodule of the codomain module
453
+ (and hence conventionally as a matrix, if there is a similar interpretation
454
+ for elements of the codomain module).
455
+
456
+ Note that this class does *not* assume that the `e_i` freely generate a
457
+ submodule, nor that ``domain`` is even all of this submodule. It exists
458
+ only to unify the interface.
459
+
460
+ Do not instantiate.
461
+
462
+ Attributes:
463
+
464
+ - matrix - the list of images determining the homomorphism.
465
+ NOTE: the elements of matrix belong to either self.codomain or
466
+ self.codomain.container
467
+
468
+ Still non-implemented methods:
469
+
470
+ - kernel
471
+ - _apply
472
+ """
473
+
474
+ def __init__(self, domain, codomain, matrix):
475
+ ModuleHomomorphism.__init__(self, domain, codomain)
476
+ if len(matrix) != domain.rank:
477
+ raise ValueError('Need to provide %s elements, got %s'
478
+ % (domain.rank, len(matrix)))
479
+
480
+ converter = self.codomain.convert
481
+ if isinstance(self.codomain, (SubModule, SubQuotientModule)):
482
+ converter = self.codomain.container.convert
483
+ self.matrix = tuple(converter(x) for x in matrix)
484
+
485
+ def _sympy_matrix(self):
486
+ """Helper function which returns a SymPy matrix ``self.matrix``."""
487
+ from sympy.matrices import Matrix
488
+ c = lambda x: x
489
+ if isinstance(self.codomain, (QuotientModule, SubQuotientModule)):
490
+ c = lambda x: x.data
491
+ return Matrix([[self.ring.to_sympy(y) for y in c(x)] for x in self.matrix]).T
492
+
493
+ def __repr__(self):
494
+ lines = repr(self._sympy_matrix()).split('\n')
495
+ t = " : %s -> %s" % (self.domain, self.codomain)
496
+ s = ' '*len(t)
497
+ n = len(lines)
498
+ for i in range(n // 2):
499
+ lines[i] += s
500
+ lines[n // 2] += t
501
+ for i in range(n//2 + 1, n):
502
+ lines[i] += s
503
+ return '\n'.join(lines)
504
+
505
+ def _restrict_domain(self, sm):
506
+ """Implementation of domain restriction."""
507
+ return SubModuleHomomorphism(sm, self.codomain, self.matrix)
508
+
509
+ def _restrict_codomain(self, sm):
510
+ """Implementation of codomain restriction."""
511
+ return self.__class__(self.domain, sm, self.matrix)
512
+
513
+ def _quotient_domain(self, sm):
514
+ """Implementation of domain quotient."""
515
+ return self.__class__(self.domain/sm, self.codomain, self.matrix)
516
+
517
+ def _quotient_codomain(self, sm):
518
+ """Implementation of codomain quotient."""
519
+ Q = self.codomain/sm
520
+ converter = Q.convert
521
+ if isinstance(self.codomain, SubModule):
522
+ converter = Q.container.convert
523
+ return self.__class__(self.domain, self.codomain/sm,
524
+ [converter(x) for x in self.matrix])
525
+
526
+ def _add(self, oth):
527
+ return self.__class__(self.domain, self.codomain,
528
+ [x + y for x, y in zip(self.matrix, oth.matrix)])
529
+
530
+ def _mul_scalar(self, c):
531
+ return self.__class__(self.domain, self.codomain, [c*x for x in self.matrix])
532
+
533
+ def _compose(self, oth):
534
+ return self.__class__(self.domain, oth.codomain, [oth(x) for x in self.matrix])
535
+
536
+
537
+ class FreeModuleHomomorphism(MatrixHomomorphism):
538
+ """
539
+ Concrete class for homomorphisms with domain a free module or a quotient
540
+ thereof.
541
+
542
+ Do not instantiate; the constructor does not check that your data is well
543
+ defined. Use the ``homomorphism`` function instead:
544
+
545
+ >>> from sympy import QQ
546
+ >>> from sympy.abc import x
547
+ >>> from sympy.polys.agca import homomorphism
548
+
549
+ >>> F = QQ.old_poly_ring(x).free_module(2)
550
+ >>> homomorphism(F, F, [[1, 0], [0, 1]])
551
+ Matrix([
552
+ [1, 0], : QQ[x]**2 -> QQ[x]**2
553
+ [0, 1]])
554
+ """
555
+
556
+ def _apply(self, elem):
557
+ if isinstance(self.domain, QuotientModule):
558
+ elem = elem.data
559
+ return sum(x * e for x, e in zip(elem, self.matrix))
560
+
561
+ def _image(self):
562
+ return self.codomain.submodule(*self.matrix)
563
+
564
+ def _kernel(self):
565
+ # The domain is either a free module or a quotient thereof.
566
+ # It does not matter if it is a quotient, because that won't increase
567
+ # the kernel.
568
+ # Our generators {e_i} are sent to the matrix entries {b_i}.
569
+ # The kernel is essentially the syzygy module of these {b_i}.
570
+ syz = self.image().syzygy_module()
571
+ return self.domain.submodule(*syz.gens)
572
+
573
+
574
+ class SubModuleHomomorphism(MatrixHomomorphism):
575
+ """
576
+ Concrete class for homomorphism with domain a submodule of a free module
577
+ or a quotient thereof.
578
+
579
+ Do not instantiate; the constructor does not check that your data is well
580
+ defined. Use the ``homomorphism`` function instead:
581
+
582
+ >>> from sympy import QQ
583
+ >>> from sympy.abc import x
584
+ >>> from sympy.polys.agca import homomorphism
585
+
586
+ >>> M = QQ.old_poly_ring(x).free_module(2)*x
587
+ >>> homomorphism(M, M, [[1, 0], [0, 1]])
588
+ Matrix([
589
+ [1, 0], : <[x, 0], [0, x]> -> <[x, 0], [0, x]>
590
+ [0, 1]])
591
+ """
592
+
593
+ def _apply(self, elem):
594
+ if isinstance(self.domain, SubQuotientModule):
595
+ elem = elem.data
596
+ return sum(x * e for x, e in zip(elem, self.matrix))
597
+
598
+ def _image(self):
599
+ return self.codomain.submodule(*[self(x) for x in self.domain.gens])
600
+
601
+ def _kernel(self):
602
+ syz = self.image().syzygy_module()
603
+ return self.domain.submodule(
604
+ *[sum(xi*gi for xi, gi in zip(s, self.domain.gens))
605
+ for s in syz.gens])
606
+
607
+
608
+ def homomorphism(domain, codomain, matrix):
609
+ r"""
610
+ Create a homomorphism object.
611
+
612
+ This function tries to build a homomorphism from ``domain`` to ``codomain``
613
+ via the matrix ``matrix``.
614
+
615
+ Examples
616
+ ========
617
+
618
+ >>> from sympy import QQ
619
+ >>> from sympy.abc import x
620
+ >>> from sympy.polys.agca import homomorphism
621
+
622
+ >>> R = QQ.old_poly_ring(x)
623
+ >>> T = R.free_module(2)
624
+
625
+ If ``domain`` is a free module generated by `e_1, \ldots, e_n`, then
626
+ ``matrix`` should be an n-element iterable `(b_1, \ldots, b_n)` where
627
+ the `b_i` are elements of ``codomain``. The constructed homomorphism is the
628
+ unique homomorphism sending `e_i` to `b_i`.
629
+
630
+ >>> F = R.free_module(2)
631
+ >>> h = homomorphism(F, T, [[1, x], [x**2, 0]])
632
+ >>> h
633
+ Matrix([
634
+ [1, x**2], : QQ[x]**2 -> QQ[x]**2
635
+ [x, 0]])
636
+ >>> h([1, 0])
637
+ [1, x]
638
+ >>> h([0, 1])
639
+ [x**2, 0]
640
+ >>> h([1, 1])
641
+ [x**2 + 1, x]
642
+
643
+ If ``domain`` is a submodule of a free module, them ``matrix`` determines
644
+ a homomoprhism from the containing free module to ``codomain``, and the
645
+ homomorphism returned is obtained by restriction to ``domain``.
646
+
647
+ >>> S = F.submodule([1, 0], [0, x])
648
+ >>> homomorphism(S, T, [[1, x], [x**2, 0]])
649
+ Matrix([
650
+ [1, x**2], : <[1, 0], [0, x]> -> QQ[x]**2
651
+ [x, 0]])
652
+
653
+ If ``domain`` is a (sub)quotient `N/K`, then ``matrix`` determines a
654
+ homomorphism from `N` to ``codomain``. If the kernel contains `K`, this
655
+ homomorphism descends to ``domain`` and is returned; otherwise an exception
656
+ is raised.
657
+
658
+ >>> homomorphism(S/[(1, 0)], T, [0, [x**2, 0]])
659
+ Matrix([
660
+ [0, x**2], : <[1, 0] + <[1, 0]>, [0, x] + <[1, 0]>, [1, 0] + <[1, 0]>> -> QQ[x]**2
661
+ [0, 0]])
662
+ >>> homomorphism(S/[(0, x)], T, [0, [x**2, 0]])
663
+ Traceback (most recent call last):
664
+ ...
665
+ ValueError: kernel <[1, 0], [0, 0]> must contain sm, got <[0,x]>
666
+
667
+ """
668
+ def freepres(module):
669
+ """
670
+ Return a tuple ``(F, S, Q, c)`` where ``F`` is a free module, ``S`` is a
671
+ submodule of ``F``, and ``Q`` a submodule of ``S``, such that
672
+ ``module = S/Q``, and ``c`` is a conversion function.
673
+ """
674
+ if isinstance(module, FreeModule):
675
+ return module, module, module.submodule(), lambda x: module.convert(x)
676
+ if isinstance(module, QuotientModule):
677
+ return (module.base, module.base, module.killed_module,
678
+ lambda x: module.convert(x).data)
679
+ if isinstance(module, SubQuotientModule):
680
+ return (module.base.container, module.base, module.killed_module,
681
+ lambda x: module.container.convert(x).data)
682
+ # an ordinary submodule
683
+ return (module.container, module, module.submodule(),
684
+ lambda x: module.container.convert(x))
685
+
686
+ SF, SS, SQ, _ = freepres(domain)
687
+ TF, TS, TQ, c = freepres(codomain)
688
+ # NOTE this is probably a bit inefficient (redundant checks)
689
+ return FreeModuleHomomorphism(SF, TF, [c(x) for x in matrix]
690
+ ).restrict_domain(SS).restrict_codomain(TS
691
+ ).quotient_codomain(TQ).quotient_domain(SQ)
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/ideals.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Computations with ideals of polynomial rings."""
2
+
3
+ from sympy.polys.polyerrors import CoercionFailed
4
+ from sympy.polys.polyutils import IntegerPowerable
5
+
6
+
7
+ class Ideal(IntegerPowerable):
8
+ """
9
+ Abstract base class for ideals.
10
+
11
+ Do not instantiate - use explicit constructors in the ring class instead:
12
+
13
+ >>> from sympy import QQ
14
+ >>> from sympy.abc import x
15
+ >>> QQ.old_poly_ring(x).ideal(x+1)
16
+ <x + 1>
17
+
18
+ Attributes
19
+
20
+ - ring - the ring this ideal belongs to
21
+
22
+ Non-implemented methods:
23
+
24
+ - _contains_elem
25
+ - _contains_ideal
26
+ - _quotient
27
+ - _intersect
28
+ - _union
29
+ - _product
30
+ - is_whole_ring
31
+ - is_zero
32
+ - is_prime, is_maximal, is_primary, is_radical
33
+ - is_principal
34
+ - height, depth
35
+ - radical
36
+
37
+ Methods that likely should be overridden in subclasses:
38
+
39
+ - reduce_element
40
+ """
41
+
42
+ def _contains_elem(self, x):
43
+ """Implementation of element containment."""
44
+ raise NotImplementedError
45
+
46
+ def _contains_ideal(self, I):
47
+ """Implementation of ideal containment."""
48
+ raise NotImplementedError
49
+
50
+ def _quotient(self, J):
51
+ """Implementation of ideal quotient."""
52
+ raise NotImplementedError
53
+
54
+ def _intersect(self, J):
55
+ """Implementation of ideal intersection."""
56
+ raise NotImplementedError
57
+
58
+ def is_whole_ring(self):
59
+ """Return True if ``self`` is the whole ring."""
60
+ raise NotImplementedError
61
+
62
+ def is_zero(self):
63
+ """Return True if ``self`` is the zero ideal."""
64
+ raise NotImplementedError
65
+
66
+ def _equals(self, J):
67
+ """Implementation of ideal equality."""
68
+ return self._contains_ideal(J) and J._contains_ideal(self)
69
+
70
+ def is_prime(self):
71
+ """Return True if ``self`` is a prime ideal."""
72
+ raise NotImplementedError
73
+
74
+ def is_maximal(self):
75
+ """Return True if ``self`` is a maximal ideal."""
76
+ raise NotImplementedError
77
+
78
+ def is_radical(self):
79
+ """Return True if ``self`` is a radical ideal."""
80
+ raise NotImplementedError
81
+
82
+ def is_primary(self):
83
+ """Return True if ``self`` is a primary ideal."""
84
+ raise NotImplementedError
85
+
86
+ def is_principal(self):
87
+ """Return True if ``self`` is a principal ideal."""
88
+ raise NotImplementedError
89
+
90
+ def radical(self):
91
+ """Compute the radical of ``self``."""
92
+ raise NotImplementedError
93
+
94
+ def depth(self):
95
+ """Compute the depth of ``self``."""
96
+ raise NotImplementedError
97
+
98
+ def height(self):
99
+ """Compute the height of ``self``."""
100
+ raise NotImplementedError
101
+
102
+ # TODO more
103
+
104
+ # non-implemented methods end here
105
+
106
+ def __init__(self, ring):
107
+ self.ring = ring
108
+
109
+ def _check_ideal(self, J):
110
+ """Helper to check ``J`` is an ideal of our ring."""
111
+ if not isinstance(J, Ideal) or J.ring != self.ring:
112
+ raise ValueError(
113
+ 'J must be an ideal of %s, got %s' % (self.ring, J))
114
+
115
+ def contains(self, elem):
116
+ """
117
+ Return True if ``elem`` is an element of this ideal.
118
+
119
+ Examples
120
+ ========
121
+
122
+ >>> from sympy.abc import x
123
+ >>> from sympy import QQ
124
+ >>> QQ.old_poly_ring(x).ideal(x+1, x-1).contains(3)
125
+ True
126
+ >>> QQ.old_poly_ring(x).ideal(x**2, x**3).contains(x)
127
+ False
128
+ """
129
+ return self._contains_elem(self.ring.convert(elem))
130
+
131
+ def subset(self, other):
132
+ """
133
+ Returns True if ``other`` is is a subset of ``self``.
134
+
135
+ Here ``other`` may be an ideal.
136
+
137
+ Examples
138
+ ========
139
+
140
+ >>> from sympy.abc import x
141
+ >>> from sympy import QQ
142
+ >>> I = QQ.old_poly_ring(x).ideal(x+1)
143
+ >>> I.subset([x**2 - 1, x**2 + 2*x + 1])
144
+ True
145
+ >>> I.subset([x**2 + 1, x + 1])
146
+ False
147
+ >>> I.subset(QQ.old_poly_ring(x).ideal(x**2 - 1))
148
+ True
149
+ """
150
+ if isinstance(other, Ideal):
151
+ return self._contains_ideal(other)
152
+ return all(self._contains_elem(x) for x in other)
153
+
154
+ def quotient(self, J, **opts):
155
+ r"""
156
+ Compute the ideal quotient of ``self`` by ``J``.
157
+
158
+ That is, if ``self`` is the ideal `I`, compute the set
159
+ `I : J = \{x \in R | xJ \subset I \}`.
160
+
161
+ Examples
162
+ ========
163
+
164
+ >>> from sympy.abc import x, y
165
+ >>> from sympy import QQ
166
+ >>> R = QQ.old_poly_ring(x, y)
167
+ >>> R.ideal(x*y).quotient(R.ideal(x))
168
+ <y>
169
+ """
170
+ self._check_ideal(J)
171
+ return self._quotient(J, **opts)
172
+
173
+ def intersect(self, J):
174
+ """
175
+ Compute the intersection of self with ideal J.
176
+
177
+ Examples
178
+ ========
179
+
180
+ >>> from sympy.abc import x, y
181
+ >>> from sympy import QQ
182
+ >>> R = QQ.old_poly_ring(x, y)
183
+ >>> R.ideal(x).intersect(R.ideal(y))
184
+ <x*y>
185
+ """
186
+ self._check_ideal(J)
187
+ return self._intersect(J)
188
+
189
+ def saturate(self, J):
190
+ r"""
191
+ Compute the ideal saturation of ``self`` by ``J``.
192
+
193
+ That is, if ``self`` is the ideal `I`, compute the set
194
+ `I : J^\infty = \{x \in R | xJ^n \subset I \text{ for some } n\}`.
195
+ """
196
+ raise NotImplementedError
197
+ # Note this can be implemented using repeated quotient
198
+
199
+ def union(self, J):
200
+ """
201
+ Compute the ideal generated by the union of ``self`` and ``J``.
202
+
203
+ Examples
204
+ ========
205
+
206
+ >>> from sympy.abc import x
207
+ >>> from sympy import QQ
208
+ >>> QQ.old_poly_ring(x).ideal(x**2 - 1).union(QQ.old_poly_ring(x).ideal((x+1)**2)) == QQ.old_poly_ring(x).ideal(x+1)
209
+ True
210
+ """
211
+ self._check_ideal(J)
212
+ return self._union(J)
213
+
214
+ def product(self, J):
215
+ r"""
216
+ Compute the ideal product of ``self`` and ``J``.
217
+
218
+ That is, compute the ideal generated by products `xy`, for `x` an element
219
+ of ``self`` and `y \in J`.
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy.abc import x, y
225
+ >>> from sympy import QQ
226
+ >>> QQ.old_poly_ring(x, y).ideal(x).product(QQ.old_poly_ring(x, y).ideal(y))
227
+ <x*y>
228
+ """
229
+ self._check_ideal(J)
230
+ return self._product(J)
231
+
232
+ def reduce_element(self, x):
233
+ """
234
+ Reduce the element ``x`` of our ring modulo the ideal ``self``.
235
+
236
+ Here "reduce" has no specific meaning: it could return a unique normal
237
+ form, simplify the expression a bit, or just do nothing.
238
+ """
239
+ return x
240
+
241
+ def __add__(self, e):
242
+ if not isinstance(e, Ideal):
243
+ R = self.ring.quotient_ring(self)
244
+ if isinstance(e, R.dtype):
245
+ return e
246
+ if isinstance(e, R.ring.dtype):
247
+ return R(e)
248
+ return R.convert(e)
249
+ self._check_ideal(e)
250
+ return self.union(e)
251
+
252
+ __radd__ = __add__
253
+
254
+ def __mul__(self, e):
255
+ if not isinstance(e, Ideal):
256
+ try:
257
+ e = self.ring.ideal(e)
258
+ except CoercionFailed:
259
+ return NotImplemented
260
+ self._check_ideal(e)
261
+ return self.product(e)
262
+
263
+ __rmul__ = __mul__
264
+
265
+ def _zeroth_power(self):
266
+ return self.ring.ideal(1)
267
+
268
+ def _first_power(self):
269
+ # Raising to any power but 1 returns a new instance. So we mult by 1
270
+ # here so that the first power is no exception.
271
+ return self * 1
272
+
273
+ def __eq__(self, e):
274
+ if not isinstance(e, Ideal) or e.ring != self.ring:
275
+ return False
276
+ return self._equals(e)
277
+
278
+ def __ne__(self, e):
279
+ return not (self == e)
280
+
281
+
282
+ class ModuleImplementedIdeal(Ideal):
283
+ """
284
+ Ideal implementation relying on the modules code.
285
+
286
+ Attributes:
287
+
288
+ - _module - the underlying module
289
+ """
290
+
291
+ def __init__(self, ring, module):
292
+ Ideal.__init__(self, ring)
293
+ self._module = module
294
+
295
+ def _contains_elem(self, x):
296
+ return self._module.contains([x])
297
+
298
+ def _contains_ideal(self, J):
299
+ if not isinstance(J, ModuleImplementedIdeal):
300
+ raise NotImplementedError
301
+ return self._module.is_submodule(J._module)
302
+
303
+ def _intersect(self, J):
304
+ if not isinstance(J, ModuleImplementedIdeal):
305
+ raise NotImplementedError
306
+ return self.__class__(self.ring, self._module.intersect(J._module))
307
+
308
+ def _quotient(self, J, **opts):
309
+ if not isinstance(J, ModuleImplementedIdeal):
310
+ raise NotImplementedError
311
+ return self._module.module_quotient(J._module, **opts)
312
+
313
+ def _union(self, J):
314
+ if not isinstance(J, ModuleImplementedIdeal):
315
+ raise NotImplementedError
316
+ return self.__class__(self.ring, self._module.union(J._module))
317
+
318
+ @property
319
+ def gens(self):
320
+ """
321
+ Return generators for ``self``.
322
+
323
+ Examples
324
+ ========
325
+
326
+ >>> from sympy import QQ
327
+ >>> from sympy.abc import x, y
328
+ >>> list(QQ.old_poly_ring(x, y).ideal(x, y, x**2 + y).gens)
329
+ [x, y, x**2 + y]
330
+ """
331
+ return (x[0] for x in self._module.gens)
332
+
333
+ def is_zero(self):
334
+ """
335
+ Return True if ``self`` is the zero ideal.
336
+
337
+ Examples
338
+ ========
339
+
340
+ >>> from sympy.abc import x
341
+ >>> from sympy import QQ
342
+ >>> QQ.old_poly_ring(x).ideal(x).is_zero()
343
+ False
344
+ >>> QQ.old_poly_ring(x).ideal().is_zero()
345
+ True
346
+ """
347
+ return self._module.is_zero()
348
+
349
+ def is_whole_ring(self):
350
+ """
351
+ Return True if ``self`` is the whole ring, i.e. one generator is a unit.
352
+
353
+ Examples
354
+ ========
355
+
356
+ >>> from sympy.abc import x
357
+ >>> from sympy import QQ, ilex
358
+ >>> QQ.old_poly_ring(x).ideal(x).is_whole_ring()
359
+ False
360
+ >>> QQ.old_poly_ring(x).ideal(3).is_whole_ring()
361
+ True
362
+ >>> QQ.old_poly_ring(x, order=ilex).ideal(2 + x).is_whole_ring()
363
+ True
364
+ """
365
+ return self._module.is_full_module()
366
+
367
+ def __repr__(self):
368
+ from sympy.printing.str import sstr
369
+ return '<' + ','.join(sstr(x) for [x] in self._module.gens) + '>'
370
+
371
+ # NOTE this is the only method using the fact that the module is a SubModule
372
+ def _product(self, J):
373
+ if not isinstance(J, ModuleImplementedIdeal):
374
+ raise NotImplementedError
375
+ return self.__class__(self.ring, self._module.submodule(
376
+ *[[x*y] for [x] in self._module.gens for [y] in J._module.gens]))
377
+
378
+ def in_terms_of_generators(self, e):
379
+ """
380
+ Express ``e`` in terms of the generators of ``self``.
381
+
382
+ Examples
383
+ ========
384
+
385
+ >>> from sympy.abc import x
386
+ >>> from sympy import QQ
387
+ >>> I = QQ.old_poly_ring(x).ideal(x**2 + 1, x)
388
+ >>> I.in_terms_of_generators(1)
389
+ [1, -x]
390
+ """
391
+ return self._module.in_terms_of_generators([e])
392
+
393
+ def reduce_element(self, x, **options):
394
+ return self._module.reduce_element([x], **options)[0]
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/modules.py ADDED
@@ -0,0 +1,1484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Computations with modules over polynomial rings.
3
+
4
+ This module implements various classes that encapsulate groebner basis
5
+ computations for modules. Most of them should not be instantiated by hand.
6
+ Instead, use the constructing routines on objects you already have.
7
+
8
+ For example, to construct a free module over ``QQ[x, y]``, call
9
+ ``QQ[x, y].free_module(rank)`` instead of the ``FreeModule`` constructor.
10
+ In fact ``FreeModule`` is an abstract base class that should not be
11
+ instantiated, the ``free_module`` method instead returns the implementing class
12
+ ``FreeModulePolyRing``.
13
+
14
+ In general, the abstract base classes implement most functionality in terms of
15
+ a few non-implemented methods. The concrete base classes supply only these
16
+ non-implemented methods. They may also supply new implementations of the
17
+ convenience methods, for example if there are faster algorithms available.
18
+ """
19
+
20
+
21
+ from copy import copy
22
+ from functools import reduce
23
+
24
+ from sympy.polys.agca.ideals import Ideal
25
+ from sympy.polys.domains.field import Field
26
+ from sympy.polys.orderings import ProductOrder, monomial_key
27
+ from sympy.polys.polyerrors import CoercionFailed
28
+ from sympy.core.basic import _aresame
29
+ from sympy.utilities.iterables import iterable
30
+
31
+ # TODO
32
+ # - module saturation
33
+ # - module quotient/intersection for quotient rings
34
+ # - free resoltutions / syzygies
35
+ # - finding small/minimal generating sets
36
+ # - ...
37
+
38
+ ##########################################################################
39
+ ## Abstract base classes #################################################
40
+ ##########################################################################
41
+
42
+
43
+ class Module:
44
+ """
45
+ Abstract base class for modules.
46
+
47
+ Do not instantiate - use ring explicit constructors instead:
48
+
49
+ >>> from sympy import QQ
50
+ >>> from sympy.abc import x
51
+ >>> QQ.old_poly_ring(x).free_module(2)
52
+ QQ[x]**2
53
+
54
+ Attributes:
55
+
56
+ - dtype - type of elements
57
+ - ring - containing ring
58
+
59
+ Non-implemented methods:
60
+
61
+ - submodule
62
+ - quotient_module
63
+ - is_zero
64
+ - is_submodule
65
+ - multiply_ideal
66
+
67
+ The method convert likely needs to be changed in subclasses.
68
+ """
69
+
70
+ def __init__(self, ring):
71
+ self.ring = ring
72
+
73
+ def convert(self, elem, M=None):
74
+ """
75
+ Convert ``elem`` into internal representation of this module.
76
+
77
+ If ``M`` is not None, it should be a module containing it.
78
+ """
79
+ if not isinstance(elem, self.dtype):
80
+ raise CoercionFailed
81
+ return elem
82
+
83
+ def submodule(self, *gens):
84
+ """Generate a submodule."""
85
+ raise NotImplementedError
86
+
87
+ def quotient_module(self, other):
88
+ """Generate a quotient module."""
89
+ raise NotImplementedError
90
+
91
+ def __truediv__(self, e):
92
+ if not isinstance(e, Module):
93
+ e = self.submodule(*e)
94
+ return self.quotient_module(e)
95
+
96
+ def contains(self, elem):
97
+ """Return True if ``elem`` is an element of this module."""
98
+ try:
99
+ self.convert(elem)
100
+ return True
101
+ except CoercionFailed:
102
+ return False
103
+
104
+ def __contains__(self, elem):
105
+ return self.contains(elem)
106
+
107
+ def subset(self, other):
108
+ """
109
+ Returns True if ``other`` is is a subset of ``self``.
110
+
111
+ Examples
112
+ ========
113
+
114
+ >>> from sympy.abc import x
115
+ >>> from sympy import QQ
116
+ >>> F = QQ.old_poly_ring(x).free_module(2)
117
+ >>> F.subset([(1, x), (x, 2)])
118
+ True
119
+ >>> F.subset([(1/x, x), (x, 2)])
120
+ False
121
+ """
122
+ return all(self.contains(x) for x in other)
123
+
124
+ def __eq__(self, other):
125
+ return self.is_submodule(other) and other.is_submodule(self)
126
+
127
+ def __ne__(self, other):
128
+ return not (self == other)
129
+
130
+ def is_zero(self):
131
+ """Returns True if ``self`` is a zero module."""
132
+ raise NotImplementedError
133
+
134
+ def is_submodule(self, other):
135
+ """Returns True if ``other`` is a submodule of ``self``."""
136
+ raise NotImplementedError
137
+
138
+ def multiply_ideal(self, other):
139
+ """
140
+ Multiply ``self`` by the ideal ``other``.
141
+ """
142
+ raise NotImplementedError
143
+
144
+ def __mul__(self, e):
145
+ if not isinstance(e, Ideal):
146
+ try:
147
+ e = self.ring.ideal(e)
148
+ except (CoercionFailed, NotImplementedError):
149
+ return NotImplemented
150
+ return self.multiply_ideal(e)
151
+
152
+ __rmul__ = __mul__
153
+
154
+ def identity_hom(self):
155
+ """Return the identity homomorphism on ``self``."""
156
+ raise NotImplementedError
157
+
158
+
159
+ class ModuleElement:
160
+ """
161
+ Base class for module element wrappers.
162
+
163
+ Use this class to wrap primitive data types as module elements. It stores
164
+ a reference to the containing module, and implements all the arithmetic
165
+ operators.
166
+
167
+ Attributes:
168
+
169
+ - module - containing module
170
+ - data - internal data
171
+
172
+ Methods that likely need change in subclasses:
173
+
174
+ - add
175
+ - mul
176
+ - div
177
+ - eq
178
+ """
179
+
180
+ def __init__(self, module, data):
181
+ self.module = module
182
+ self.data = data
183
+
184
+ def add(self, d1, d2):
185
+ """Add data ``d1`` and ``d2``."""
186
+ return d1 + d2
187
+
188
+ def mul(self, m, d):
189
+ """Multiply module data ``m`` by coefficient d."""
190
+ return m * d
191
+
192
+ def div(self, m, d):
193
+ """Divide module data ``m`` by coefficient d."""
194
+ return m / d
195
+
196
+ def eq(self, d1, d2):
197
+ """Return true if d1 and d2 represent the same element."""
198
+ return d1 == d2
199
+
200
+ def __add__(self, om):
201
+ if not isinstance(om, self.__class__) or om.module != self.module:
202
+ try:
203
+ om = self.module.convert(om)
204
+ except CoercionFailed:
205
+ return NotImplemented
206
+ return self.__class__(self.module, self.add(self.data, om.data))
207
+
208
+ __radd__ = __add__
209
+
210
+ def __neg__(self):
211
+ return self.__class__(self.module, self.mul(self.data,
212
+ self.module.ring.convert(-1)))
213
+
214
+ def __sub__(self, om):
215
+ if not isinstance(om, self.__class__) or om.module != self.module:
216
+ try:
217
+ om = self.module.convert(om)
218
+ except CoercionFailed:
219
+ return NotImplemented
220
+ return self.__add__(-om)
221
+
222
+ def __rsub__(self, om):
223
+ return (-self).__add__(om)
224
+
225
+ def __mul__(self, o):
226
+ if not isinstance(o, self.module.ring.dtype):
227
+ try:
228
+ o = self.module.ring.convert(o)
229
+ except CoercionFailed:
230
+ return NotImplemented
231
+ return self.__class__(self.module, self.mul(self.data, o))
232
+
233
+ __rmul__ = __mul__
234
+
235
+ def __truediv__(self, o):
236
+ if not isinstance(o, self.module.ring.dtype):
237
+ try:
238
+ o = self.module.ring.convert(o)
239
+ except CoercionFailed:
240
+ return NotImplemented
241
+ return self.__class__(self.module, self.div(self.data, o))
242
+
243
+ def __eq__(self, om):
244
+ if not isinstance(om, self.__class__) or om.module != self.module:
245
+ try:
246
+ om = self.module.convert(om)
247
+ except CoercionFailed:
248
+ return False
249
+ return self.eq(self.data, om.data)
250
+
251
+ def __ne__(self, om):
252
+ return not self == om
253
+
254
+ ##########################################################################
255
+ ## Free Modules ##########################################################
256
+ ##########################################################################
257
+
258
+
259
+ class FreeModuleElement(ModuleElement):
260
+ """Element of a free module. Data stored as a tuple."""
261
+
262
+ def add(self, d1, d2):
263
+ return tuple(x + y for x, y in zip(d1, d2))
264
+
265
+ def mul(self, d, p):
266
+ return tuple(x * p for x in d)
267
+
268
+ def div(self, d, p):
269
+ return tuple(x / p for x in d)
270
+
271
+ def __repr__(self):
272
+ from sympy.printing.str import sstr
273
+ return '[' + ', '.join(sstr(x) for x in self.data) + ']'
274
+
275
+ def __iter__(self):
276
+ return self.data.__iter__()
277
+
278
+ def __getitem__(self, idx):
279
+ return self.data[idx]
280
+
281
+
282
+ class FreeModule(Module):
283
+ """
284
+ Abstract base class for free modules.
285
+
286
+ Additional attributes:
287
+
288
+ - rank - rank of the free module
289
+
290
+ Non-implemented methods:
291
+
292
+ - submodule
293
+ """
294
+
295
+ dtype = FreeModuleElement
296
+
297
+ def __init__(self, ring, rank):
298
+ Module.__init__(self, ring)
299
+ self.rank = rank
300
+
301
+ def __repr__(self):
302
+ return repr(self.ring) + "**" + repr(self.rank)
303
+
304
+ def is_submodule(self, other):
305
+ """
306
+ Returns True if ``other`` is a submodule of ``self``.
307
+
308
+ Examples
309
+ ========
310
+
311
+ >>> from sympy.abc import x
312
+ >>> from sympy import QQ
313
+ >>> F = QQ.old_poly_ring(x).free_module(2)
314
+ >>> M = F.submodule([2, x])
315
+ >>> F.is_submodule(F)
316
+ True
317
+ >>> F.is_submodule(M)
318
+ True
319
+ >>> M.is_submodule(F)
320
+ False
321
+ """
322
+ if isinstance(other, SubModule):
323
+ return other.container == self
324
+ if isinstance(other, FreeModule):
325
+ return other.ring == self.ring and other.rank == self.rank
326
+ return False
327
+
328
+ def convert(self, elem, M=None):
329
+ """
330
+ Convert ``elem`` into the internal representation.
331
+
332
+ This method is called implicitly whenever computations involve elements
333
+ not in the internal representation.
334
+
335
+ Examples
336
+ ========
337
+
338
+ >>> from sympy.abc import x
339
+ >>> from sympy import QQ
340
+ >>> F = QQ.old_poly_ring(x).free_module(2)
341
+ >>> F.convert([1, 0])
342
+ [1, 0]
343
+ """
344
+ if isinstance(elem, FreeModuleElement):
345
+ if elem.module is self:
346
+ return elem
347
+ if elem.module.rank != self.rank:
348
+ raise CoercionFailed
349
+ return FreeModuleElement(self,
350
+ tuple(self.ring.convert(x, elem.module.ring) for x in elem.data))
351
+ elif iterable(elem):
352
+ tpl = tuple(self.ring.convert(x) for x in elem)
353
+ if len(tpl) != self.rank:
354
+ raise CoercionFailed
355
+ return FreeModuleElement(self, tpl)
356
+ elif _aresame(elem, 0):
357
+ return FreeModuleElement(self, (self.ring.convert(0),)*self.rank)
358
+ else:
359
+ raise CoercionFailed
360
+
361
+ def is_zero(self):
362
+ """
363
+ Returns True if ``self`` is a zero module.
364
+
365
+ (If, as this implementation assumes, the coefficient ring is not the
366
+ zero ring, then this is equivalent to the rank being zero.)
367
+
368
+ Examples
369
+ ========
370
+
371
+ >>> from sympy.abc import x
372
+ >>> from sympy import QQ
373
+ >>> QQ.old_poly_ring(x).free_module(0).is_zero()
374
+ True
375
+ >>> QQ.old_poly_ring(x).free_module(1).is_zero()
376
+ False
377
+ """
378
+ return self.rank == 0
379
+
380
+ def basis(self):
381
+ """
382
+ Return a set of basis elements.
383
+
384
+ Examples
385
+ ========
386
+
387
+ >>> from sympy.abc import x
388
+ >>> from sympy import QQ
389
+ >>> QQ.old_poly_ring(x).free_module(3).basis()
390
+ ([1, 0, 0], [0, 1, 0], [0, 0, 1])
391
+ """
392
+ from sympy.matrices import eye
393
+ M = eye(self.rank)
394
+ return tuple(self.convert(M.row(i)) for i in range(self.rank))
395
+
396
+ def quotient_module(self, submodule):
397
+ """
398
+ Return a quotient module.
399
+
400
+ Examples
401
+ ========
402
+
403
+ >>> from sympy.abc import x
404
+ >>> from sympy import QQ
405
+ >>> M = QQ.old_poly_ring(x).free_module(2)
406
+ >>> M.quotient_module(M.submodule([1, x], [x, 2]))
407
+ QQ[x]**2/<[1, x], [x, 2]>
408
+
409
+ Or more conicisely, using the overloaded division operator:
410
+
411
+ >>> QQ.old_poly_ring(x).free_module(2) / [[1, x], [x, 2]]
412
+ QQ[x]**2/<[1, x], [x, 2]>
413
+ """
414
+ return QuotientModule(self.ring, self, submodule)
415
+
416
+ def multiply_ideal(self, other):
417
+ """
418
+ Multiply ``self`` by the ideal ``other``.
419
+
420
+ Examples
421
+ ========
422
+
423
+ >>> from sympy.abc import x
424
+ >>> from sympy import QQ
425
+ >>> I = QQ.old_poly_ring(x).ideal(x)
426
+ >>> F = QQ.old_poly_ring(x).free_module(2)
427
+ >>> F.multiply_ideal(I)
428
+ <[x, 0], [0, x]>
429
+ """
430
+ return self.submodule(*self.basis()).multiply_ideal(other)
431
+
432
+ def identity_hom(self):
433
+ """
434
+ Return the identity homomorphism on ``self``.
435
+
436
+ Examples
437
+ ========
438
+
439
+ >>> from sympy.abc import x
440
+ >>> from sympy import QQ
441
+ >>> QQ.old_poly_ring(x).free_module(2).identity_hom()
442
+ Matrix([
443
+ [1, 0], : QQ[x]**2 -> QQ[x]**2
444
+ [0, 1]])
445
+ """
446
+ from sympy.polys.agca.homomorphisms import homomorphism
447
+ return homomorphism(self, self, self.basis())
448
+
449
+
450
+ class FreeModulePolyRing(FreeModule):
451
+ """
452
+ Free module over a generalized polynomial ring.
453
+
454
+ Do not instantiate this, use the constructor method of the ring instead:
455
+
456
+ Examples
457
+ ========
458
+
459
+ >>> from sympy.abc import x
460
+ >>> from sympy import QQ
461
+ >>> F = QQ.old_poly_ring(x).free_module(3)
462
+ >>> F
463
+ QQ[x]**3
464
+ >>> F.contains([x, 1, 0])
465
+ True
466
+ >>> F.contains([1/x, 0, 1])
467
+ False
468
+ """
469
+
470
+ def __init__(self, ring, rank):
471
+ from sympy.polys.domains.old_polynomialring import PolynomialRingBase
472
+ FreeModule.__init__(self, ring, rank)
473
+ if not isinstance(ring, PolynomialRingBase):
474
+ raise NotImplementedError('This implementation only works over '
475
+ + 'polynomial rings, got %s' % ring)
476
+ if not isinstance(ring.dom, Field):
477
+ raise NotImplementedError('Ground domain must be a field, '
478
+ + 'got %s' % ring.dom)
479
+
480
+ def submodule(self, *gens, **opts):
481
+ """
482
+ Generate a submodule.
483
+
484
+ Examples
485
+ ========
486
+
487
+ >>> from sympy.abc import x, y
488
+ >>> from sympy import QQ
489
+ >>> M = QQ.old_poly_ring(x, y).free_module(2).submodule([x, x + y])
490
+ >>> M
491
+ <[x, x + y]>
492
+ >>> M.contains([2*x, 2*x + 2*y])
493
+ True
494
+ >>> M.contains([x, y])
495
+ False
496
+ """
497
+ return SubModulePolyRing(gens, self, **opts)
498
+
499
+
500
+ class FreeModuleQuotientRing(FreeModule):
501
+ """
502
+ Free module over a quotient ring.
503
+
504
+ Do not instantiate this, use the constructor method of the ring instead:
505
+
506
+ Examples
507
+ ========
508
+
509
+ >>> from sympy.abc import x
510
+ >>> from sympy import QQ
511
+ >>> F = (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(3)
512
+ >>> F
513
+ (QQ[x]/<x**2 + 1>)**3
514
+
515
+ Attributes
516
+
517
+ - quot - the quotient module `R^n / IR^n`, where `R/I` is our ring
518
+ """
519
+
520
+ def __init__(self, ring, rank):
521
+ from sympy.polys.domains.quotientring import QuotientRing
522
+ FreeModule.__init__(self, ring, rank)
523
+ if not isinstance(ring, QuotientRing):
524
+ raise NotImplementedError('This implementation only works over '
525
+ + 'quotient rings, got %s' % ring)
526
+ F = self.ring.ring.free_module(self.rank)
527
+ self.quot = F / (self.ring.base_ideal*F)
528
+
529
+ def __repr__(self):
530
+ return "(" + repr(self.ring) + ")" + "**" + repr(self.rank)
531
+
532
+ def submodule(self, *gens, **opts):
533
+ """
534
+ Generate a submodule.
535
+
536
+ Examples
537
+ ========
538
+
539
+ >>> from sympy.abc import x, y
540
+ >>> from sympy import QQ
541
+ >>> M = (QQ.old_poly_ring(x, y)/[x**2 - y**2]).free_module(2).submodule([x, x + y])
542
+ >>> M
543
+ <[x + <x**2 - y**2>, x + y + <x**2 - y**2>]>
544
+ >>> M.contains([y**2, x**2 + x*y])
545
+ True
546
+ >>> M.contains([x, y])
547
+ False
548
+ """
549
+ return SubModuleQuotientRing(gens, self, **opts)
550
+
551
+ def lift(self, elem):
552
+ """
553
+ Lift the element ``elem`` of self to the module self.quot.
554
+
555
+ Note that self.quot is the same set as self, just as an R-module
556
+ and not as an R/I-module, so this makes sense.
557
+
558
+ Examples
559
+ ========
560
+
561
+ >>> from sympy.abc import x
562
+ >>> from sympy import QQ
563
+ >>> F = (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2)
564
+ >>> e = F.convert([1, 0])
565
+ >>> e
566
+ [1 + <x**2 + 1>, 0 + <x**2 + 1>]
567
+ >>> L = F.quot
568
+ >>> l = F.lift(e)
569
+ >>> l
570
+ [1, 0] + <[x**2 + 1, 0], [0, x**2 + 1]>
571
+ >>> L.contains(l)
572
+ True
573
+ """
574
+ return self.quot.convert([x.data for x in elem])
575
+
576
+ def unlift(self, elem):
577
+ """
578
+ Push down an element of self.quot to self.
579
+
580
+ This undoes ``lift``.
581
+
582
+ Examples
583
+ ========
584
+
585
+ >>> from sympy.abc import x
586
+ >>> from sympy import QQ
587
+ >>> F = (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2)
588
+ >>> e = F.convert([1, 0])
589
+ >>> l = F.lift(e)
590
+ >>> e == l
591
+ False
592
+ >>> e == F.unlift(l)
593
+ True
594
+ """
595
+ return self.convert(elem.data)
596
+
597
+ ##########################################################################
598
+ ## Submodules and subquotients ###########################################
599
+ ##########################################################################
600
+
601
+
602
+ class SubModule(Module):
603
+ """
604
+ Base class for submodules.
605
+
606
+ Attributes:
607
+
608
+ - container - containing module
609
+ - gens - generators (subset of containing module)
610
+ - rank - rank of containing module
611
+
612
+ Non-implemented methods:
613
+
614
+ - _contains
615
+ - _syzygies
616
+ - _in_terms_of_generators
617
+ - _intersect
618
+ - _module_quotient
619
+
620
+ Methods that likely need change in subclasses:
621
+
622
+ - reduce_element
623
+ """
624
+
625
+ def __init__(self, gens, container):
626
+ Module.__init__(self, container.ring)
627
+ self.gens = tuple(container.convert(x) for x in gens)
628
+ self.container = container
629
+ self.rank = container.rank
630
+ self.ring = container.ring
631
+ self.dtype = container.dtype
632
+
633
+ def __repr__(self):
634
+ return "<" + ", ".join(repr(x) for x in self.gens) + ">"
635
+
636
+ def _contains(self, other):
637
+ """Implementation of containment.
638
+ Other is guaranteed to be FreeModuleElement."""
639
+ raise NotImplementedError
640
+
641
+ def _syzygies(self):
642
+ """Implementation of syzygy computation wrt self generators."""
643
+ raise NotImplementedError
644
+
645
+ def _in_terms_of_generators(self, e):
646
+ """Implementation of expression in terms of generators."""
647
+ raise NotImplementedError
648
+
649
+ def convert(self, elem, M=None):
650
+ """
651
+ Convert ``elem`` into the internal represantition.
652
+
653
+ Mostly called implicitly.
654
+
655
+ Examples
656
+ ========
657
+
658
+ >>> from sympy.abc import x
659
+ >>> from sympy import QQ
660
+ >>> M = QQ.old_poly_ring(x).free_module(2).submodule([1, x])
661
+ >>> M.convert([2, 2*x])
662
+ [2, 2*x]
663
+ """
664
+ if isinstance(elem, self.container.dtype) and elem.module is self:
665
+ return elem
666
+ r = copy(self.container.convert(elem, M))
667
+ r.module = self
668
+ if not self._contains(r):
669
+ raise CoercionFailed
670
+ return r
671
+
672
+ def _intersect(self, other):
673
+ """Implementation of intersection.
674
+ Other is guaranteed to be a submodule of same free module."""
675
+ raise NotImplementedError
676
+
677
+ def _module_quotient(self, other):
678
+ """Implementation of quotient.
679
+ Other is guaranteed to be a submodule of same free module."""
680
+ raise NotImplementedError
681
+
682
+ def intersect(self, other, **options):
683
+ """
684
+ Returns the intersection of ``self`` with submodule ``other``.
685
+
686
+ Examples
687
+ ========
688
+
689
+ >>> from sympy.abc import x, y
690
+ >>> from sympy import QQ
691
+ >>> F = QQ.old_poly_ring(x, y).free_module(2)
692
+ >>> F.submodule([x, x]).intersect(F.submodule([y, y]))
693
+ <[x*y, x*y]>
694
+
695
+ Some implementation allow further options to be passed. Currently, to
696
+ only one implemented is ``relations=True``, in which case the function
697
+ will return a triple ``(res, rela, relb)``, where ``res`` is the
698
+ intersection module, and ``rela`` and ``relb`` are lists of coefficient
699
+ vectors, expressing the generators of ``res`` in terms of the
700
+ generators of ``self`` (``rela``) and ``other`` (``relb``).
701
+
702
+ >>> F.submodule([x, x]).intersect(F.submodule([y, y]), relations=True)
703
+ (<[x*y, x*y]>, [(y,)], [(x,)])
704
+
705
+ The above result says: the intersection module is generated by the
706
+ single element `(-xy, -xy) = -y (x, x) = -x (y, y)`, where
707
+ `(x, x)` and `(y, y)` respectively are the unique generators of
708
+ the two modules being intersected.
709
+ """
710
+ if not isinstance(other, SubModule):
711
+ raise TypeError('%s is not a SubModule' % other)
712
+ if other.container != self.container:
713
+ raise ValueError(
714
+ '%s is contained in a different free module' % other)
715
+ return self._intersect(other, **options)
716
+
717
+ def module_quotient(self, other, **options):
718
+ r"""
719
+ Returns the module quotient of ``self`` by submodule ``other``.
720
+
721
+ That is, if ``self`` is the module `M` and ``other`` is `N`, then
722
+ return the ideal `\{f \in R | fN \subset M\}`.
723
+
724
+ Examples
725
+ ========
726
+
727
+ >>> from sympy import QQ
728
+ >>> from sympy.abc import x, y
729
+ >>> F = QQ.old_poly_ring(x, y).free_module(2)
730
+ >>> S = F.submodule([x*y, x*y])
731
+ >>> T = F.submodule([x, x])
732
+ >>> S.module_quotient(T)
733
+ <y>
734
+
735
+ Some implementations allow further options to be passed. Currently, the
736
+ only one implemented is ``relations=True``, which may only be passed
737
+ if ``other`` is principal. In this case the function
738
+ will return a pair ``(res, rel)`` where ``res`` is the ideal, and
739
+ ``rel`` is a list of coefficient vectors, expressing the generators of
740
+ the ideal, multiplied by the generator of ``other`` in terms of
741
+ generators of ``self``.
742
+
743
+ >>> S.module_quotient(T, relations=True)
744
+ (<y>, [[1]])
745
+
746
+ This means that the quotient ideal is generated by the single element
747
+ `y`, and that `y (x, x) = 1 (xy, xy)`, `(x, x)` and `(xy, xy)` being
748
+ the generators of `T` and `S`, respectively.
749
+ """
750
+ if not isinstance(other, SubModule):
751
+ raise TypeError('%s is not a SubModule' % other)
752
+ if other.container != self.container:
753
+ raise ValueError(
754
+ '%s is contained in a different free module' % other)
755
+ return self._module_quotient(other, **options)
756
+
757
+ def union(self, other):
758
+ """
759
+ Returns the module generated by the union of ``self`` and ``other``.
760
+
761
+ Examples
762
+ ========
763
+
764
+ >>> from sympy.abc import x
765
+ >>> from sympy import QQ
766
+ >>> F = QQ.old_poly_ring(x).free_module(1)
767
+ >>> M = F.submodule([x**2 + x]) # <x(x+1)>
768
+ >>> N = F.submodule([x**2 - 1]) # <(x-1)(x+1)>
769
+ >>> M.union(N) == F.submodule([x+1])
770
+ True
771
+ """
772
+ if not isinstance(other, SubModule):
773
+ raise TypeError('%s is not a SubModule' % other)
774
+ if other.container != self.container:
775
+ raise ValueError(
776
+ '%s is contained in a different free module' % other)
777
+ return self.__class__(self.gens + other.gens, self.container)
778
+
779
+ def is_zero(self):
780
+ """
781
+ Return True if ``self`` is a zero module.
782
+
783
+ Examples
784
+ ========
785
+
786
+ >>> from sympy.abc import x
787
+ >>> from sympy import QQ
788
+ >>> F = QQ.old_poly_ring(x).free_module(2)
789
+ >>> F.submodule([x, 1]).is_zero()
790
+ False
791
+ >>> F.submodule([0, 0]).is_zero()
792
+ True
793
+ """
794
+ return all(x == 0 for x in self.gens)
795
+
796
+ def submodule(self, *gens):
797
+ """
798
+ Generate a submodule.
799
+
800
+ Examples
801
+ ========
802
+
803
+ >>> from sympy.abc import x
804
+ >>> from sympy import QQ
805
+ >>> M = QQ.old_poly_ring(x).free_module(2).submodule([x, 1])
806
+ >>> M.submodule([x**2, x])
807
+ <[x**2, x]>
808
+ """
809
+ if not self.subset(gens):
810
+ raise ValueError('%s not a subset of %s' % (gens, self))
811
+ return self.__class__(gens, self.container)
812
+
813
+ def is_full_module(self):
814
+ """
815
+ Return True if ``self`` is the entire free module.
816
+
817
+ Examples
818
+ ========
819
+
820
+ >>> from sympy.abc import x
821
+ >>> from sympy import QQ
822
+ >>> F = QQ.old_poly_ring(x).free_module(2)
823
+ >>> F.submodule([x, 1]).is_full_module()
824
+ False
825
+ >>> F.submodule([1, 1], [1, 2]).is_full_module()
826
+ True
827
+ """
828
+ return all(self.contains(x) for x in self.container.basis())
829
+
830
+ def is_submodule(self, other):
831
+ """
832
+ Returns True if ``other`` is a submodule of ``self``.
833
+
834
+ >>> from sympy.abc import x
835
+ >>> from sympy import QQ
836
+ >>> F = QQ.old_poly_ring(x).free_module(2)
837
+ >>> M = F.submodule([2, x])
838
+ >>> N = M.submodule([2*x, x**2])
839
+ >>> M.is_submodule(M)
840
+ True
841
+ >>> M.is_submodule(N)
842
+ True
843
+ >>> N.is_submodule(M)
844
+ False
845
+ """
846
+ if isinstance(other, SubModule):
847
+ return self.container == other.container and \
848
+ all(self.contains(x) for x in other.gens)
849
+ if isinstance(other, (FreeModule, QuotientModule)):
850
+ return self.container == other and self.is_full_module()
851
+ return False
852
+
853
+ def syzygy_module(self, **opts):
854
+ r"""
855
+ Compute the syzygy module of the generators of ``self``.
856
+
857
+ Suppose `M` is generated by `f_1, \ldots, f_n` over the ring
858
+ `R`. Consider the homomorphism `\phi: R^n \to M`, given by
859
+ sending `(r_1, \ldots, r_n) \to r_1 f_1 + \cdots + r_n f_n`.
860
+ The syzygy module is defined to be the kernel of `\phi`.
861
+
862
+ Examples
863
+ ========
864
+
865
+ The syzygy module is zero iff the generators generate freely a free
866
+ submodule:
867
+
868
+ >>> from sympy.abc import x, y
869
+ >>> from sympy import QQ
870
+ >>> QQ.old_poly_ring(x).free_module(2).submodule([1, 0], [1, 1]).syzygy_module().is_zero()
871
+ True
872
+
873
+ A slightly more interesting example:
874
+
875
+ >>> M = QQ.old_poly_ring(x, y).free_module(2).submodule([x, 2*x], [y, 2*y])
876
+ >>> S = QQ.old_poly_ring(x, y).free_module(2).submodule([y, -x])
877
+ >>> M.syzygy_module() == S
878
+ True
879
+ """
880
+ F = self.ring.free_module(len(self.gens))
881
+ # NOTE we filter out zero syzygies. This is for convenience of the
882
+ # _syzygies function and not meant to replace any real "generating set
883
+ # reduction" algorithm
884
+ return F.submodule(*[x for x in self._syzygies() if F.convert(x) != 0],
885
+ **opts)
886
+
887
+ def in_terms_of_generators(self, e):
888
+ """
889
+ Express element ``e`` of ``self`` in terms of the generators.
890
+
891
+ Examples
892
+ ========
893
+
894
+ >>> from sympy.abc import x
895
+ >>> from sympy import QQ
896
+ >>> F = QQ.old_poly_ring(x).free_module(2)
897
+ >>> M = F.submodule([1, 0], [1, 1])
898
+ >>> M.in_terms_of_generators([x, x**2])
899
+ [-x**2 + x, x**2]
900
+ """
901
+ try:
902
+ e = self.convert(e)
903
+ except CoercionFailed:
904
+ raise ValueError('%s is not an element of %s' % (e, self))
905
+ return self._in_terms_of_generators(e)
906
+
907
+ def reduce_element(self, x):
908
+ """
909
+ Reduce the element ``x`` of our ring modulo the ideal ``self``.
910
+
911
+ Here "reduce" has no specific meaning, it could return a unique normal
912
+ form, simplify the expression a bit, or just do nothing.
913
+ """
914
+ return x
915
+
916
+ def quotient_module(self, other, **opts):
917
+ """
918
+ Return a quotient module.
919
+
920
+ This is the same as taking a submodule of a quotient of the containing
921
+ module.
922
+
923
+ Examples
924
+ ========
925
+
926
+ >>> from sympy.abc import x
927
+ >>> from sympy import QQ
928
+ >>> F = QQ.old_poly_ring(x).free_module(2)
929
+ >>> S1 = F.submodule([x, 1])
930
+ >>> S2 = F.submodule([x**2, x])
931
+ >>> S1.quotient_module(S2)
932
+ <[x, 1] + <[x**2, x]>>
933
+
934
+ Or more coincisely, using the overloaded division operator:
935
+
936
+ >>> F.submodule([x, 1]) / [(x**2, x)]
937
+ <[x, 1] + <[x**2, x]>>
938
+ """
939
+ if not self.is_submodule(other):
940
+ raise ValueError('%s not a submodule of %s' % (other, self))
941
+ return SubQuotientModule(self.gens,
942
+ self.container.quotient_module(other), **opts)
943
+
944
+ def __add__(self, oth):
945
+ return self.container.quotient_module(self).convert(oth)
946
+
947
+ __radd__ = __add__
948
+
949
+ def multiply_ideal(self, I):
950
+ """
951
+ Multiply ``self`` by the ideal ``I``.
952
+
953
+ Examples
954
+ ========
955
+
956
+ >>> from sympy.abc import x
957
+ >>> from sympy import QQ
958
+ >>> I = QQ.old_poly_ring(x).ideal(x**2)
959
+ >>> M = QQ.old_poly_ring(x).free_module(2).submodule([1, 1])
960
+ >>> I*M
961
+ <[x**2, x**2]>
962
+ """
963
+ return self.submodule(*[x*g for [x] in I._module.gens for g in self.gens])
964
+
965
+ def inclusion_hom(self):
966
+ """
967
+ Return a homomorphism representing the inclusion map of ``self``.
968
+
969
+ That is, the natural map from ``self`` to ``self.container``.
970
+
971
+ Examples
972
+ ========
973
+
974
+ >>> from sympy.abc import x
975
+ >>> from sympy import QQ
976
+ >>> QQ.old_poly_ring(x).free_module(2).submodule([x, x]).inclusion_hom()
977
+ Matrix([
978
+ [1, 0], : <[x, x]> -> QQ[x]**2
979
+ [0, 1]])
980
+ """
981
+ return self.container.identity_hom().restrict_domain(self)
982
+
983
+ def identity_hom(self):
984
+ """
985
+ Return the identity homomorphism on ``self``.
986
+
987
+ Examples
988
+ ========
989
+
990
+ >>> from sympy.abc import x
991
+ >>> from sympy import QQ
992
+ >>> QQ.old_poly_ring(x).free_module(2).submodule([x, x]).identity_hom()
993
+ Matrix([
994
+ [1, 0], : <[x, x]> -> <[x, x]>
995
+ [0, 1]])
996
+ """
997
+ return self.container.identity_hom().restrict_domain(
998
+ self).restrict_codomain(self)
999
+
1000
+
1001
+ class SubQuotientModule(SubModule):
1002
+ """
1003
+ Submodule of a quotient module.
1004
+
1005
+ Equivalently, quotient module of a submodule.
1006
+
1007
+ Do not instantiate this, instead use the submodule or quotient_module
1008
+ constructing methods:
1009
+
1010
+ >>> from sympy.abc import x
1011
+ >>> from sympy import QQ
1012
+ >>> F = QQ.old_poly_ring(x).free_module(2)
1013
+ >>> S = F.submodule([1, 0], [1, x])
1014
+ >>> Q = F/[(1, 0)]
1015
+ >>> S/[(1, 0)] == Q.submodule([5, x])
1016
+ True
1017
+
1018
+ Attributes:
1019
+
1020
+ - base - base module we are quotient of
1021
+ - killed_module - submodule used to form the quotient
1022
+ """
1023
+ def __init__(self, gens, container, **opts):
1024
+ SubModule.__init__(self, gens, container)
1025
+ self.killed_module = self.container.killed_module
1026
+ # XXX it is important for some code below that the generators of base
1027
+ # are in this particular order!
1028
+ self.base = self.container.base.submodule(
1029
+ *[x.data for x in self.gens], **opts).union(self.killed_module)
1030
+
1031
+ def _contains(self, elem):
1032
+ return self.base.contains(elem.data)
1033
+
1034
+ def _syzygies(self):
1035
+ # let N = self.killed_module be generated by e_1, ..., e_r
1036
+ # let F = self.base be generated by f_1, ..., f_s and e_1, ..., e_r
1037
+ # Then self = F/N.
1038
+ # Let phi: R**s --> self be the evident surjection.
1039
+ # Similarly psi: R**(s + r) --> F.
1040
+ # We need to find generators for ker(phi). Let chi: R**s --> F be the
1041
+ # evident lift of phi. For X in R**s, phi(X) = 0 iff chi(X) is
1042
+ # contained in N, iff there exists Y in R**r such that
1043
+ # psi(X, Y) = 0.
1044
+ # Hence if alpha: R**(s + r) --> R**s is the projection map, then
1045
+ # ker(phi) = alpha ker(psi).
1046
+ return [X[:len(self.gens)] for X in self.base._syzygies()]
1047
+
1048
+ def _in_terms_of_generators(self, e):
1049
+ return self.base._in_terms_of_generators(e.data)[:len(self.gens)]
1050
+
1051
+ def is_full_module(self):
1052
+ """
1053
+ Return True if ``self`` is the entire free module.
1054
+
1055
+ Examples
1056
+ ========
1057
+
1058
+ >>> from sympy.abc import x
1059
+ >>> from sympy import QQ
1060
+ >>> F = QQ.old_poly_ring(x).free_module(2)
1061
+ >>> F.submodule([x, 1]).is_full_module()
1062
+ False
1063
+ >>> F.submodule([1, 1], [1, 2]).is_full_module()
1064
+ True
1065
+ """
1066
+ return self.base.is_full_module()
1067
+
1068
+ def quotient_hom(self):
1069
+ """
1070
+ Return the quotient homomorphism to self.
1071
+
1072
+ That is, return the natural map from ``self.base`` to ``self``.
1073
+
1074
+ Examples
1075
+ ========
1076
+
1077
+ >>> from sympy.abc import x
1078
+ >>> from sympy import QQ
1079
+ >>> M = (QQ.old_poly_ring(x).free_module(2) / [(1, x)]).submodule([1, 0])
1080
+ >>> M.quotient_hom()
1081
+ Matrix([
1082
+ [1, 0], : <[1, 0], [1, x]> -> <[1, 0] + <[1, x]>, [1, x] + <[1, x]>>
1083
+ [0, 1]])
1084
+ """
1085
+ return self.base.identity_hom().quotient_codomain(self.killed_module)
1086
+
1087
+
1088
+ _subs0 = lambda x: x[0]
1089
+ _subs1 = lambda x: x[1:]
1090
+
1091
+
1092
+ class ModuleOrder(ProductOrder):
1093
+ """A product monomial order with a zeroth term as module index."""
1094
+
1095
+ def __init__(self, o1, o2, TOP):
1096
+ if TOP:
1097
+ ProductOrder.__init__(self, (o2, _subs1), (o1, _subs0))
1098
+ else:
1099
+ ProductOrder.__init__(self, (o1, _subs0), (o2, _subs1))
1100
+
1101
+
1102
+ class SubModulePolyRing(SubModule):
1103
+ """
1104
+ Submodule of a free module over a generalized polynomial ring.
1105
+
1106
+ Do not instantiate this, use the constructor method of FreeModule instead:
1107
+
1108
+ >>> from sympy.abc import x, y
1109
+ >>> from sympy import QQ
1110
+ >>> F = QQ.old_poly_ring(x, y).free_module(2)
1111
+ >>> F.submodule([x, y], [1, 0])
1112
+ <[x, y], [1, 0]>
1113
+
1114
+ Attributes:
1115
+
1116
+ - order - monomial order used
1117
+ """
1118
+
1119
+ #self._gb - cached groebner basis
1120
+ #self._gbe - cached groebner basis relations
1121
+
1122
+ def __init__(self, gens, container, order="lex", TOP=True):
1123
+ SubModule.__init__(self, gens, container)
1124
+ if not isinstance(container, FreeModulePolyRing):
1125
+ raise NotImplementedError('This implementation is for submodules of '
1126
+ + 'FreeModulePolyRing, got %s' % container)
1127
+ self.order = ModuleOrder(monomial_key(order), self.ring.order, TOP)
1128
+ self._gb = None
1129
+ self._gbe = None
1130
+
1131
+ def __eq__(self, other):
1132
+ if isinstance(other, SubModulePolyRing) and self.order != other.order:
1133
+ return False
1134
+ return SubModule.__eq__(self, other)
1135
+
1136
+ def _groebner(self, extended=False):
1137
+ """Returns a standard basis in sdm form."""
1138
+ from sympy.polys.distributedmodules import sdm_groebner, sdm_nf_mora
1139
+ if self._gbe is None and extended:
1140
+ gb, gbe = sdm_groebner(
1141
+ [self.ring._vector_to_sdm(x, self.order) for x in self.gens],
1142
+ sdm_nf_mora, self.order, self.ring.dom, extended=True)
1143
+ self._gb, self._gbe = tuple(gb), tuple(gbe)
1144
+ if self._gb is None:
1145
+ self._gb = tuple(sdm_groebner(
1146
+ [self.ring._vector_to_sdm(x, self.order) for x in self.gens],
1147
+ sdm_nf_mora, self.order, self.ring.dom))
1148
+ if extended:
1149
+ return self._gb, self._gbe
1150
+ else:
1151
+ return self._gb
1152
+
1153
+ def _groebner_vec(self, extended=False):
1154
+ """Returns a standard basis in element form."""
1155
+ if not extended:
1156
+ return [FreeModuleElement(self,
1157
+ tuple(self.ring._sdm_to_vector(x, self.rank)))
1158
+ for x in self._groebner()]
1159
+ gb, gbe = self._groebner(extended=True)
1160
+ return ([self.convert(self.ring._sdm_to_vector(x, self.rank))
1161
+ for x in gb],
1162
+ [self.ring._sdm_to_vector(x, len(self.gens)) for x in gbe])
1163
+
1164
+ def _contains(self, x):
1165
+ from sympy.polys.distributedmodules import sdm_zero, sdm_nf_mora
1166
+ return sdm_nf_mora(self.ring._vector_to_sdm(x, self.order),
1167
+ self._groebner(), self.order, self.ring.dom) == \
1168
+ sdm_zero()
1169
+
1170
+ def _syzygies(self):
1171
+ """Compute syzygies. See [SCA, algorithm 2.5.4]."""
1172
+ # NOTE if self.gens is a standard basis, this can be done more
1173
+ # efficiently using Schreyer's theorem
1174
+
1175
+ # First bullet point
1176
+ k = len(self.gens)
1177
+ r = self.rank
1178
+ zero = self.ring.convert(0)
1179
+ one = self.ring.convert(1)
1180
+ Rkr = self.ring.free_module(r + k)
1181
+ newgens = []
1182
+ for j, f in enumerate(self.gens):
1183
+ m = [0]*(r + k)
1184
+ for i, v in enumerate(f):
1185
+ m[i] = f[i]
1186
+ for i in range(k):
1187
+ m[r + i] = one if j == i else zero
1188
+ m = FreeModuleElement(Rkr, tuple(m))
1189
+ newgens.append(m)
1190
+ # Note: we need *descending* order on module index, and TOP=False to
1191
+ # get an elimination order
1192
+ F = Rkr.submodule(*newgens, order='ilex', TOP=False)
1193
+
1194
+ # Second bullet point: standard basis of F
1195
+ G = F._groebner_vec()
1196
+
1197
+ # Third bullet point: G0 = G intersect the new k components
1198
+ G0 = [x[r:] for x in G if all(y == zero for y in x[:r])]
1199
+
1200
+ # Fourth and fifth bullet points: we are done
1201
+ return G0
1202
+
1203
+ def _in_terms_of_generators(self, e):
1204
+ """Expression in terms of generators. See [SCA, 2.8.1]."""
1205
+ # NOTE: if gens is a standard basis, this can be done more efficiently
1206
+ M = self.ring.free_module(self.rank).submodule(*((e,) + self.gens))
1207
+ S = M.syzygy_module(
1208
+ order="ilex", TOP=False) # We want decreasing order!
1209
+ G = S._groebner_vec()
1210
+ # This list cannot not be empty since e is an element
1211
+ e = [x for x in G if self.ring.is_unit(x[0])][0]
1212
+ return [-x/e[0] for x in e[1:]]
1213
+
1214
+ def reduce_element(self, x, NF=None):
1215
+ """
1216
+ Reduce the element ``x`` of our container modulo ``self``.
1217
+
1218
+ This applies the normal form ``NF`` to ``x``. If ``NF`` is passed
1219
+ as none, the default Mora normal form is used (which is not unique!).
1220
+ """
1221
+ from sympy.polys.distributedmodules import sdm_nf_mora
1222
+ if NF is None:
1223
+ NF = sdm_nf_mora
1224
+ return self.container.convert(self.ring._sdm_to_vector(NF(
1225
+ self.ring._vector_to_sdm(x, self.order), self._groebner(),
1226
+ self.order, self.ring.dom),
1227
+ self.rank))
1228
+
1229
+ def _intersect(self, other, relations=False):
1230
+ # See: [SCA, section 2.8.2]
1231
+ fi = self.gens
1232
+ hi = other.gens
1233
+ r = self.rank
1234
+ ci = [[0]*(2*r) for _ in range(r)]
1235
+ for k in range(r):
1236
+ ci[k][k] = 1
1237
+ ci[k][r + k] = 1
1238
+ di = [list(f) + [0]*r for f in fi]
1239
+ ei = [[0]*r + list(h) for h in hi]
1240
+ syz = self.ring.free_module(2*r).submodule(*(ci + di + ei))._syzygies()
1241
+ nonzero = [x for x in syz if any(y != self.ring.zero for y in x[:r])]
1242
+ res = self.container.submodule(*([-y for y in x[:r]] for x in nonzero))
1243
+ reln1 = [x[r:r + len(fi)] for x in nonzero]
1244
+ reln2 = [x[r + len(fi):] for x in nonzero]
1245
+ if relations:
1246
+ return res, reln1, reln2
1247
+ return res
1248
+
1249
+ def _module_quotient(self, other, relations=False):
1250
+ # See: [SCA, section 2.8.4]
1251
+ if relations and len(other.gens) != 1:
1252
+ raise NotImplementedError
1253
+ if len(other.gens) == 0:
1254
+ return self.ring.ideal(1)
1255
+ elif len(other.gens) == 1:
1256
+ # We do some trickery. Let f be the (vector!) generating ``other``
1257
+ # and f1, .., fn be the (vectors) generating self.
1258
+ # Consider the submodule of R^{r+1} generated by (f, 1) and
1259
+ # {(fi, 0) | i}. Then the intersection with the last module
1260
+ # component yields the quotient.
1261
+ g1 = list(other.gens[0]) + [1]
1262
+ gi = [list(x) + [0] for x in self.gens]
1263
+ # NOTE: We *need* to use an elimination order
1264
+ M = self.ring.free_module(self.rank + 1).submodule(*([g1] + gi),
1265
+ order='ilex', TOP=False)
1266
+ if not relations:
1267
+ return self.ring.ideal(*[x[-1] for x in M._groebner_vec() if
1268
+ all(y == self.ring.zero for y in x[:-1])])
1269
+ else:
1270
+ G, R = M._groebner_vec(extended=True)
1271
+ indices = [i for i, x in enumerate(G) if
1272
+ all(y == self.ring.zero for y in x[:-1])]
1273
+ return (self.ring.ideal(*[G[i][-1] for i in indices]),
1274
+ [[-x for x in R[i][1:]] for i in indices])
1275
+ # For more generators, we use I : <h1, .., hn> = intersection of
1276
+ # {I : <hi> | i}
1277
+ # TODO this can be done more efficiently
1278
+ return reduce(lambda x, y: x.intersect(y),
1279
+ (self._module_quotient(self.container.submodule(x)) for x in other.gens))
1280
+
1281
+
1282
+ class SubModuleQuotientRing(SubModule):
1283
+ """
1284
+ Class for submodules of free modules over quotient rings.
1285
+
1286
+ Do not instantiate this. Instead use the submodule methods.
1287
+
1288
+ >>> from sympy.abc import x, y
1289
+ >>> from sympy import QQ
1290
+ >>> M = (QQ.old_poly_ring(x, y)/[x**2 - y**2]).free_module(2).submodule([x, x + y])
1291
+ >>> M
1292
+ <[x + <x**2 - y**2>, x + y + <x**2 - y**2>]>
1293
+ >>> M.contains([y**2, x**2 + x*y])
1294
+ True
1295
+ >>> M.contains([x, y])
1296
+ False
1297
+
1298
+ Attributes:
1299
+
1300
+ - quot - the subquotient of `R^n/IR^n` generated by lifts of our generators
1301
+ """
1302
+
1303
+ def __init__(self, gens, container):
1304
+ SubModule.__init__(self, gens, container)
1305
+ self.quot = self.container.quot.submodule(
1306
+ *[self.container.lift(x) for x in self.gens])
1307
+
1308
+ def _contains(self, elem):
1309
+ return self.quot._contains(self.container.lift(elem))
1310
+
1311
+ def _syzygies(self):
1312
+ return [tuple(self.ring.convert(y, self.quot.ring) for y in x)
1313
+ for x in self.quot._syzygies()]
1314
+
1315
+ def _in_terms_of_generators(self, elem):
1316
+ return [self.ring.convert(x, self.quot.ring) for x in
1317
+ self.quot._in_terms_of_generators(self.container.lift(elem))]
1318
+
1319
+ ##########################################################################
1320
+ ## Quotient Modules ######################################################
1321
+ ##########################################################################
1322
+
1323
+
1324
+ class QuotientModuleElement(ModuleElement):
1325
+ """Element of a quotient module."""
1326
+
1327
+ def eq(self, d1, d2):
1328
+ """Equality comparison."""
1329
+ return self.module.killed_module.contains(d1 - d2)
1330
+
1331
+ def __repr__(self):
1332
+ return repr(self.data) + " + " + repr(self.module.killed_module)
1333
+
1334
+
1335
+ class QuotientModule(Module):
1336
+ """
1337
+ Class for quotient modules.
1338
+
1339
+ Do not instantiate this directly. For subquotients, see the
1340
+ SubQuotientModule class.
1341
+
1342
+ Attributes:
1343
+
1344
+ - base - the base module we are a quotient of
1345
+ - killed_module - the submodule used to form the quotient
1346
+ - rank of the base
1347
+ """
1348
+
1349
+ dtype = QuotientModuleElement
1350
+
1351
+ def __init__(self, ring, base, submodule):
1352
+ Module.__init__(self, ring)
1353
+ if not base.is_submodule(submodule):
1354
+ raise ValueError('%s is not a submodule of %s' % (submodule, base))
1355
+ self.base = base
1356
+ self.killed_module = submodule
1357
+ self.rank = base.rank
1358
+
1359
+ def __repr__(self):
1360
+ return repr(self.base) + "/" + repr(self.killed_module)
1361
+
1362
+ def is_zero(self):
1363
+ """
1364
+ Return True if ``self`` is a zero module.
1365
+
1366
+ This happens if and only if the base module is the same as the
1367
+ submodule being killed.
1368
+
1369
+ Examples
1370
+ ========
1371
+
1372
+ >>> from sympy.abc import x
1373
+ >>> from sympy import QQ
1374
+ >>> F = QQ.old_poly_ring(x).free_module(2)
1375
+ >>> (F/[(1, 0)]).is_zero()
1376
+ False
1377
+ >>> (F/[(1, 0), (0, 1)]).is_zero()
1378
+ True
1379
+ """
1380
+ return self.base == self.killed_module
1381
+
1382
+ def is_submodule(self, other):
1383
+ """
1384
+ Return True if ``other`` is a submodule of ``self``.
1385
+
1386
+ Examples
1387
+ ========
1388
+
1389
+ >>> from sympy.abc import x
1390
+ >>> from sympy import QQ
1391
+ >>> Q = QQ.old_poly_ring(x).free_module(2) / [(x, x)]
1392
+ >>> S = Q.submodule([1, 0])
1393
+ >>> Q.is_submodule(S)
1394
+ True
1395
+ >>> S.is_submodule(Q)
1396
+ False
1397
+ """
1398
+ if isinstance(other, QuotientModule):
1399
+ return self.killed_module == other.killed_module and \
1400
+ self.base.is_submodule(other.base)
1401
+ if isinstance(other, SubQuotientModule):
1402
+ return other.container == self
1403
+ return False
1404
+
1405
+ def submodule(self, *gens, **opts):
1406
+ """
1407
+ Generate a submodule.
1408
+
1409
+ This is the same as taking a quotient of a submodule of the base
1410
+ module.
1411
+
1412
+ Examples
1413
+ ========
1414
+
1415
+ >>> from sympy.abc import x
1416
+ >>> from sympy import QQ
1417
+ >>> Q = QQ.old_poly_ring(x).free_module(2) / [(x, x)]
1418
+ >>> Q.submodule([x, 0])
1419
+ <[x, 0] + <[x, x]>>
1420
+ """
1421
+ return SubQuotientModule(gens, self, **opts)
1422
+
1423
+ def convert(self, elem, M=None):
1424
+ """
1425
+ Convert ``elem`` into the internal representation.
1426
+
1427
+ This method is called implicitly whenever computations involve elements
1428
+ not in the internal representation.
1429
+
1430
+ Examples
1431
+ ========
1432
+
1433
+ >>> from sympy.abc import x
1434
+ >>> from sympy import QQ
1435
+ >>> F = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)]
1436
+ >>> F.convert([1, 0])
1437
+ [1, 0] + <[1, 2], [1, x]>
1438
+ """
1439
+ if isinstance(elem, QuotientModuleElement):
1440
+ if elem.module is self:
1441
+ return elem
1442
+ if self.killed_module.is_submodule(elem.module.killed_module):
1443
+ return QuotientModuleElement(self, self.base.convert(elem.data))
1444
+ raise CoercionFailed
1445
+ return QuotientModuleElement(self, self.base.convert(elem))
1446
+
1447
+ def identity_hom(self):
1448
+ """
1449
+ Return the identity homomorphism on ``self``.
1450
+
1451
+ Examples
1452
+ ========
1453
+
1454
+ >>> from sympy.abc import x
1455
+ >>> from sympy import QQ
1456
+ >>> M = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)]
1457
+ >>> M.identity_hom()
1458
+ Matrix([
1459
+ [1, 0], : QQ[x]**2/<[1, 2], [1, x]> -> QQ[x]**2/<[1, 2], [1, x]>
1460
+ [0, 1]])
1461
+ """
1462
+ return self.base.identity_hom().quotient_codomain(
1463
+ self.killed_module).quotient_domain(self.killed_module)
1464
+
1465
+ def quotient_hom(self):
1466
+ """
1467
+ Return the quotient homomorphism to ``self``.
1468
+
1469
+ That is, return a homomorphism representing the natural map from
1470
+ ``self.base`` to ``self``.
1471
+
1472
+ Examples
1473
+ ========
1474
+
1475
+ >>> from sympy.abc import x
1476
+ >>> from sympy import QQ
1477
+ >>> M = QQ.old_poly_ring(x).free_module(2) / [(1, 2), (1, x)]
1478
+ >>> M.quotient_hom()
1479
+ Matrix([
1480
+ [1, 0], : QQ[x]**2 -> QQ[x]**2/<[1, 2], [1, x]>
1481
+ [0, 1]])
1482
+ """
1483
+ return self.base.identity_hom().quotient_codomain(
1484
+ self.killed_module)
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (187 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_extensions.cpython-310.pyc ADDED
Binary file (7.86 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_homomorphisms.cpython-310.pyc ADDED
Binary file (5.62 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_ideals.cpython-310.pyc ADDED
Binary file (4.73 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_modules.cpython-310.pyc ADDED
Binary file (15.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/test_extensions.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.symbol import symbols
2
+ from sympy.functions.elementary.trigonometric import (cos, sin)
3
+ from sympy.polys import QQ, ZZ
4
+ from sympy.polys.polytools import Poly
5
+ from sympy.polys.polyerrors import NotInvertible
6
+ from sympy.polys.agca.extensions import FiniteExtension
7
+ from sympy.polys.domainmatrix import DomainMatrix
8
+
9
+ from sympy.testing.pytest import raises
10
+
11
+ from sympy.abc import x, y, t
12
+
13
+
14
+ def test_FiniteExtension():
15
+ # Gaussian integers
16
+ A = FiniteExtension(Poly(x**2 + 1, x))
17
+ assert A.rank == 2
18
+ assert str(A) == 'ZZ[x]/(x**2 + 1)'
19
+ i = A.generator
20
+ assert i.parent() is A
21
+
22
+ assert i*i == A(-1)
23
+ raises(TypeError, lambda: i*())
24
+
25
+ assert A.basis == (A.one, i)
26
+ assert A(1) == A.one
27
+ assert i**2 == A(-1)
28
+ assert i**2 != -1 # no coercion
29
+ assert (2 + i)*(1 - i) == 3 - i
30
+ assert (1 + i)**8 == A(16)
31
+ assert A(1).inverse() == A(1)
32
+ raises(NotImplementedError, lambda: A(2).inverse())
33
+
34
+ # Finite field of order 27
35
+ F = FiniteExtension(Poly(x**3 - x + 1, x, modulus=3))
36
+ assert F.rank == 3
37
+ a = F.generator # also generates the cyclic group F - {0}
38
+ assert F.basis == (F(1), a, a**2)
39
+ assert a**27 == a
40
+ assert a**26 == F(1)
41
+ assert a**13 == F(-1)
42
+ assert a**9 == a + 1
43
+ assert a**3 == a - 1
44
+ assert a**6 == a**2 + a + 1
45
+ assert F(x**2 + x).inverse() == 1 - a
46
+ assert F(x + 2)**(-1) == F(x + 2).inverse()
47
+ assert a**19 * a**(-19) == F(1)
48
+ assert (a - 1) / (2*a**2 - 1) == a**2 + 1
49
+ assert (a - 1) // (2*a**2 - 1) == a**2 + 1
50
+ assert 2/(a**2 + 1) == a**2 - a + 1
51
+ assert (a**2 + 1)/2 == -a**2 - 1
52
+ raises(NotInvertible, lambda: F(0).inverse())
53
+
54
+ # Function field of an elliptic curve
55
+ K = FiniteExtension(Poly(t**2 - x**3 - x + 1, t, field=True))
56
+ assert K.rank == 2
57
+ assert str(K) == 'ZZ(x)[t]/(t**2 - x**3 - x + 1)'
58
+ y = K.generator
59
+ c = 1/(x**3 - x**2 + x - 1)
60
+ assert ((y + x)*(y - x)).inverse() == K(c)
61
+ assert (y + x)*(y - x)*c == K(1) # explicit inverse of y + x
62
+
63
+
64
+ def test_FiniteExtension_eq_hash():
65
+ # Test eq and hash
66
+ p1 = Poly(x**2 - 2, x, domain=ZZ)
67
+ p2 = Poly(x**2 - 2, x, domain=QQ)
68
+ K1 = FiniteExtension(p1)
69
+ K2 = FiniteExtension(p2)
70
+ assert K1 == FiniteExtension(Poly(x**2 - 2))
71
+ assert K2 != FiniteExtension(Poly(x**2 - 2))
72
+ assert len({K1, K2, FiniteExtension(p1)}) == 2
73
+
74
+
75
+ def test_FiniteExtension_mod():
76
+ # Test mod
77
+ K = FiniteExtension(Poly(x**3 + 1, x, domain=QQ))
78
+ xf = K(x)
79
+ assert (xf**2 - 1) % 1 == K.zero
80
+ assert 1 % (xf**2 - 1) == K.zero
81
+ assert (xf**2 - 1) / (xf - 1) == xf + 1
82
+ assert (xf**2 - 1) // (xf - 1) == xf + 1
83
+ assert (xf**2 - 1) % (xf - 1) == K.zero
84
+ raises(ZeroDivisionError, lambda: (xf**2 - 1) % 0)
85
+ raises(TypeError, lambda: xf % [])
86
+ raises(TypeError, lambda: [] % xf)
87
+
88
+ # Test mod over ring
89
+ K = FiniteExtension(Poly(x**3 + 1, x, domain=ZZ))
90
+ xf = K(x)
91
+ assert (xf**2 - 1) % 1 == K.zero
92
+ raises(NotImplementedError, lambda: (xf**2 - 1) % (xf - 1))
93
+
94
+
95
+ def test_FiniteExtension_from_sympy():
96
+ # Test to_sympy/from_sympy
97
+ K = FiniteExtension(Poly(x**3 + 1, x, domain=ZZ))
98
+ xf = K(x)
99
+ assert K.from_sympy(x) == xf
100
+ assert K.to_sympy(xf) == x
101
+
102
+
103
+ def test_FiniteExtension_set_domain():
104
+ KZ = FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))
105
+ KQ = FiniteExtension(Poly(x**2 + 1, x, domain='QQ'))
106
+ assert KZ.set_domain(QQ) == KQ
107
+
108
+
109
+ def test_FiniteExtension_exquo():
110
+ # Test exquo
111
+ K = FiniteExtension(Poly(x**4 + 1))
112
+ xf = K(x)
113
+ assert K.exquo(xf**2 - 1, xf - 1) == xf + 1
114
+
115
+
116
+ def test_FiniteExtension_convert():
117
+ # Test from_MonogenicFiniteExtension
118
+ K1 = FiniteExtension(Poly(x**2 + 1))
119
+ K2 = QQ[x]
120
+ x1, x2 = K1(x), K2(x)
121
+ assert K1.convert(x2) == x1
122
+ assert K2.convert(x1) == x2
123
+
124
+ K = FiniteExtension(Poly(x**2 - 1, domain=QQ))
125
+ assert K.convert_from(QQ(1, 2), QQ) == K.one/2
126
+
127
+
128
+ def test_FiniteExtension_division_ring():
129
+ # Test division in FiniteExtension over a ring
130
+ KQ = FiniteExtension(Poly(x**2 - 1, x, domain=QQ))
131
+ KZ = FiniteExtension(Poly(x**2 - 1, x, domain=ZZ))
132
+ KQt = FiniteExtension(Poly(x**2 - 1, x, domain=QQ[t]))
133
+ KQtf = FiniteExtension(Poly(x**2 - 1, x, domain=QQ.frac_field(t)))
134
+ assert KQ.is_Field is True
135
+ assert KZ.is_Field is False
136
+ assert KQt.is_Field is False
137
+ assert KQtf.is_Field is True
138
+ for K in KQ, KZ, KQt, KQtf:
139
+ xK = K.convert(x)
140
+ assert xK / K.one == xK
141
+ assert xK // K.one == xK
142
+ assert xK % K.one == K.zero
143
+ raises(ZeroDivisionError, lambda: xK / K.zero)
144
+ raises(ZeroDivisionError, lambda: xK // K.zero)
145
+ raises(ZeroDivisionError, lambda: xK % K.zero)
146
+ if K.is_Field:
147
+ assert xK / xK == K.one
148
+ assert xK // xK == K.one
149
+ assert xK % xK == K.zero
150
+ else:
151
+ raises(NotImplementedError, lambda: xK / xK)
152
+ raises(NotImplementedError, lambda: xK // xK)
153
+ raises(NotImplementedError, lambda: xK % xK)
154
+
155
+
156
+ def test_FiniteExtension_Poly():
157
+ K = FiniteExtension(Poly(x**2 - 2))
158
+ p = Poly(x, y, domain=K)
159
+ assert p.domain == K
160
+ assert p.as_expr() == x
161
+ assert (p**2).as_expr() == 2
162
+
163
+ K = FiniteExtension(Poly(x**2 - 2, x, domain=QQ))
164
+ K2 = FiniteExtension(Poly(t**2 - 2, t, domain=K))
165
+ assert str(K2) == 'QQ[x]/(x**2 - 2)[t]/(t**2 - 2)'
166
+
167
+ eK = K2.convert(x + t)
168
+ assert K2.to_sympy(eK) == x + t
169
+ assert K2.to_sympy(eK ** 2) == 4 + 2*x*t
170
+ p = Poly(x + t, y, domain=K2)
171
+ assert p**2 == Poly(4 + 2*x*t, y, domain=K2)
172
+
173
+
174
+ def test_FiniteExtension_sincos_jacobian():
175
+ # Use FiniteExtensino to compute the Jacobian of a matrix involving sin
176
+ # and cos of different symbols.
177
+ r, p, t = symbols('rho, phi, theta')
178
+ elements = [
179
+ [sin(p)*cos(t), r*cos(p)*cos(t), -r*sin(p)*sin(t)],
180
+ [sin(p)*sin(t), r*cos(p)*sin(t), r*sin(p)*cos(t)],
181
+ [ cos(p), -r*sin(p), 0],
182
+ ]
183
+
184
+ def make_extension(K):
185
+ K = FiniteExtension(Poly(sin(p)**2+cos(p)**2-1, sin(p), domain=K[cos(p)]))
186
+ K = FiniteExtension(Poly(sin(t)**2+cos(t)**2-1, sin(t), domain=K[cos(t)]))
187
+ return K
188
+
189
+ Ksc1 = make_extension(ZZ[r])
190
+ Ksc2 = make_extension(ZZ)[r]
191
+
192
+ for K in [Ksc1, Ksc2]:
193
+ elements_K = [[K.convert(e) for e in row] for row in elements]
194
+ J = DomainMatrix(elements_K, (3, 3), K)
195
+ det = J.charpoly()[-1] * (-K.one)**3
196
+ assert det == K.convert(r**2*sin(p))
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/test_homomorphisms.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for homomorphisms."""
2
+
3
+ from sympy.core.singleton import S
4
+ from sympy.polys.domains.rationalfield import QQ
5
+ from sympy.abc import x, y
6
+ from sympy.polys.agca import homomorphism
7
+ from sympy.testing.pytest import raises
8
+
9
+
10
+ def test_printing():
11
+ R = QQ.old_poly_ring(x)
12
+
13
+ assert str(homomorphism(R.free_module(1), R.free_module(1), [0])) == \
14
+ 'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1'
15
+ assert str(homomorphism(R.free_module(2), R.free_module(2), [0, 0])) == \
16
+ 'Matrix([ \n[0, 0], : QQ[x]**2 -> QQ[x]**2\n[0, 0]]) '
17
+ assert str(homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])) == \
18
+ 'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1/<[x]>'
19
+ assert str(R.free_module(0).identity_hom()) == 'Matrix(0, 0, []) : QQ[x]**0 -> QQ[x]**0'
20
+
21
+ def test_operations():
22
+ F = QQ.old_poly_ring(x).free_module(2)
23
+ G = QQ.old_poly_ring(x).free_module(3)
24
+ f = F.identity_hom()
25
+ g = homomorphism(F, F, [0, [1, x]])
26
+ h = homomorphism(F, F, [[1, 0], 0])
27
+ i = homomorphism(F, G, [[1, 0, 0], [0, 1, 0]])
28
+
29
+ assert f == f
30
+ assert f != g
31
+ assert f != i
32
+ assert (f != F.identity_hom()) is False
33
+ assert 2*f == f*2 == homomorphism(F, F, [[2, 0], [0, 2]])
34
+ assert f/2 == homomorphism(F, F, [[S.Half, 0], [0, S.Half]])
35
+ assert f + g == homomorphism(F, F, [[1, 0], [1, x + 1]])
36
+ assert f - g == homomorphism(F, F, [[1, 0], [-1, 1 - x]])
37
+ assert f*g == g == g*f
38
+ assert h*g == homomorphism(F, F, [0, [1, 0]])
39
+ assert g*h == homomorphism(F, F, [0, 0])
40
+ assert i*f == i
41
+ assert f([1, 2]) == [1, 2]
42
+ assert g([1, 2]) == [2, 2*x]
43
+
44
+ assert i.restrict_domain(F.submodule([x, x]))([x, x]) == i([x, x])
45
+ h1 = h.quotient_domain(F.submodule([0, 1]))
46
+ assert h1([1, 0]) == h([1, 0])
47
+ assert h1.restrict_domain(h1.domain.submodule([x, 0]))([x, 0]) == h([x, 0])
48
+
49
+ raises(TypeError, lambda: f/g)
50
+ raises(TypeError, lambda: f + 1)
51
+ raises(TypeError, lambda: f + i)
52
+ raises(TypeError, lambda: f - 1)
53
+ raises(TypeError, lambda: f*i)
54
+
55
+
56
+ def test_creation():
57
+ F = QQ.old_poly_ring(x).free_module(3)
58
+ G = QQ.old_poly_ring(x).free_module(2)
59
+ SM = F.submodule([1, 1, 1])
60
+ Q = F / SM
61
+ SQ = Q.submodule([1, 0, 0])
62
+
63
+ matrix = [[1, 0], [0, 1], [-1, -1]]
64
+ h = homomorphism(F, G, matrix)
65
+ h2 = homomorphism(Q, G, matrix)
66
+ assert h.quotient_domain(SM) == h2
67
+ raises(ValueError, lambda: h.quotient_domain(F.submodule([1, 0, 0])))
68
+ assert h2.restrict_domain(SQ) == homomorphism(SQ, G, matrix)
69
+ raises(ValueError, lambda: h.restrict_domain(G))
70
+ raises(ValueError, lambda: h.restrict_codomain(G.submodule([1, 0])))
71
+ raises(ValueError, lambda: h.quotient_codomain(F))
72
+
73
+ im = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
74
+ for M in [F, SM, Q, SQ]:
75
+ assert M.identity_hom() == homomorphism(M, M, im)
76
+ assert SM.inclusion_hom() == homomorphism(SM, F, im)
77
+ assert SQ.inclusion_hom() == homomorphism(SQ, Q, im)
78
+ assert Q.quotient_hom() == homomorphism(F, Q, im)
79
+ assert SQ.quotient_hom() == homomorphism(SQ.base, SQ, im)
80
+
81
+ class conv:
82
+ def convert(x, y=None):
83
+ return x
84
+
85
+ class dummy:
86
+ container = conv()
87
+
88
+ def submodule(*args):
89
+ return None
90
+ raises(TypeError, lambda: homomorphism(dummy(), G, matrix))
91
+ raises(TypeError, lambda: homomorphism(F, dummy(), matrix))
92
+ raises(
93
+ ValueError, lambda: homomorphism(QQ.old_poly_ring(x, y).free_module(3), G, matrix))
94
+ raises(ValueError, lambda: homomorphism(F, G, [0, 0]))
95
+
96
+
97
+ def test_properties():
98
+ R = QQ.old_poly_ring(x, y)
99
+ F = R.free_module(2)
100
+ h = homomorphism(F, F, [[x, 0], [y, 0]])
101
+ assert h.kernel() == F.submodule([-y, x])
102
+ assert h.image() == F.submodule([x, 0], [y, 0])
103
+ assert not h.is_injective()
104
+ assert not h.is_surjective()
105
+ assert h.restrict_codomain(h.image()).is_surjective()
106
+ assert h.restrict_domain(F.submodule([1, 0])).is_injective()
107
+ assert h.quotient_domain(
108
+ h.kernel()).restrict_codomain(h.image()).is_isomorphism()
109
+
110
+ R2 = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y))) / [x**2 + 1]
111
+ F = R2.free_module(2)
112
+ h = homomorphism(F, F, [[x, 0], [y, y + 1]])
113
+ assert h.is_isomorphism()
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/test_ideals.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Test ideals.py code."""
2
+
3
+ from sympy.polys import QQ, ilex
4
+ from sympy.abc import x, y, z
5
+ from sympy.testing.pytest import raises
6
+
7
+
8
+ def test_ideal_operations():
9
+ R = QQ.old_poly_ring(x, y)
10
+ I = R.ideal(x)
11
+ J = R.ideal(y)
12
+ S = R.ideal(x*y)
13
+ T = R.ideal(x, y)
14
+
15
+ assert not (I == J)
16
+ assert I == I
17
+
18
+ assert I.union(J) == T
19
+ assert I + J == T
20
+ assert I + T == T
21
+
22
+ assert not I.subset(T)
23
+ assert T.subset(I)
24
+
25
+ assert I.product(J) == S
26
+ assert I*J == S
27
+ assert x*J == S
28
+ assert I*y == S
29
+ assert R.convert(x)*J == S
30
+ assert I*R.convert(y) == S
31
+
32
+ assert not I.is_zero()
33
+ assert not J.is_whole_ring()
34
+
35
+ assert R.ideal(x**2 + 1, x).is_whole_ring()
36
+ assert R.ideal() == R.ideal(0)
37
+ assert R.ideal().is_zero()
38
+
39
+ assert T.contains(x*y)
40
+ assert T.subset([x, y])
41
+
42
+ assert T.in_terms_of_generators(x) == [R(1), R(0)]
43
+
44
+ assert T**0 == R.ideal(1)
45
+ assert T**1 == T
46
+ assert T**2 == R.ideal(x**2, y**2, x*y)
47
+ assert I**5 == R.ideal(x**5)
48
+
49
+
50
+ def test_exceptions():
51
+ I = QQ.old_poly_ring(x).ideal(x)
52
+ J = QQ.old_poly_ring(y).ideal(1)
53
+ raises(ValueError, lambda: I.union(x))
54
+ raises(ValueError, lambda: I + J)
55
+ raises(ValueError, lambda: I * J)
56
+ raises(ValueError, lambda: I.union(J))
57
+ assert (I == J) is False
58
+ assert I != J
59
+
60
+
61
+ def test_nontriv_global():
62
+ R = QQ.old_poly_ring(x, y, z)
63
+
64
+ def contains(I, f):
65
+ return R.ideal(*I).contains(f)
66
+
67
+ assert contains([x, y], x)
68
+ assert contains([x, y], x + y)
69
+ assert not contains([x, y], 1)
70
+ assert not contains([x, y], z)
71
+ assert contains([x**2 + y, x**2 + x], x - y)
72
+ assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
73
+ assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3)
74
+ assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4)
75
+ assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2)
76
+ assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x)
77
+ assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z)
78
+ assert contains([x, 1 + x + y, 5 - 7*y], 1)
79
+ assert contains(
80
+ [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
81
+ x**3)
82
+ assert not contains(
83
+ [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
84
+ x**2 + y**2)
85
+
86
+ # compare local order
87
+ assert not contains([x*(1 + x + y), y*(1 + z)], x)
88
+ assert not contains([x*(1 + x + y), y*(1 + z)], x + y)
89
+
90
+
91
+ def test_nontriv_local():
92
+ R = QQ.old_poly_ring(x, y, z, order=ilex)
93
+
94
+ def contains(I, f):
95
+ return R.ideal(*I).contains(f)
96
+
97
+ assert contains([x, y], x)
98
+ assert contains([x, y], x + y)
99
+ assert not contains([x, y], 1)
100
+ assert not contains([x, y], z)
101
+ assert contains([x**2 + y, x**2 + x], x - y)
102
+ assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
103
+ assert contains([x*(1 + x + y), y*(1 + z)], x)
104
+ assert contains([x*(1 + x + y), y*(1 + z)], x + y)
105
+
106
+
107
+ def test_intersection():
108
+ R = QQ.old_poly_ring(x, y, z)
109
+ # SCA, example 1.8.11
110
+ assert R.ideal(x, y).intersect(R.ideal(y**2, z)) == R.ideal(y**2, y*z, x*z)
111
+
112
+ assert R.ideal(x, y).intersect(R.ideal()).is_zero()
113
+
114
+ R = QQ.old_poly_ring(x, y, z, order="ilex")
115
+ assert R.ideal(x, y).intersect(R.ideal(y**2 + y**2*z, z + z*x**3*y)) == \
116
+ R.ideal(y**2, y*z, x*z)
117
+
118
+
119
+ def test_quotient():
120
+ # SCA, example 1.8.13
121
+ R = QQ.old_poly_ring(x, y, z)
122
+ assert R.ideal(x, y).quotient(R.ideal(y**2, z)) == R.ideal(x, y)
123
+
124
+
125
+ def test_reduction():
126
+ from sympy.polys.distributedmodules import sdm_nf_buchberger_reduced
127
+ R = QQ.old_poly_ring(x, y)
128
+ I = R.ideal(x**5, y)
129
+ e = R.convert(x**3 + y**2)
130
+ assert I.reduce_element(e) == e
131
+ assert I.reduce_element(e, NF=sdm_nf_buchberger_reduced) == R.convert(x**3)
env-llmeval/lib/python3.10/site-packages/sympy/polys/agca/tests/test_modules.py ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Test modules.py code."""
2
+
3
+ from sympy.polys.agca.modules import FreeModule, ModuleOrder, FreeModulePolyRing
4
+ from sympy.polys import CoercionFailed, QQ, lex, grlex, ilex, ZZ
5
+ from sympy.abc import x, y, z
6
+ from sympy.testing.pytest import raises
7
+ from sympy.core.numbers import Rational
8
+
9
+
10
+ def test_FreeModuleElement():
11
+ M = QQ.old_poly_ring(x).free_module(3)
12
+ e = M.convert([1, x, x**2])
13
+ f = [QQ.old_poly_ring(x).convert(1), QQ.old_poly_ring(x).convert(x), QQ.old_poly_ring(x).convert(x**2)]
14
+ assert list(e) == f
15
+ assert f[0] == e[0]
16
+ assert f[1] == e[1]
17
+ assert f[2] == e[2]
18
+ raises(IndexError, lambda: e[3])
19
+
20
+ g = M.convert([x, 0, 0])
21
+ assert e + g == M.convert([x + 1, x, x**2])
22
+ assert f + g == M.convert([x + 1, x, x**2])
23
+ assert -e == M.convert([-1, -x, -x**2])
24
+ assert e - g == M.convert([1 - x, x, x**2])
25
+ assert e != g
26
+
27
+ assert M.convert([x, x, x]) / QQ.old_poly_ring(x).convert(x) == [1, 1, 1]
28
+ R = QQ.old_poly_ring(x, order="ilex")
29
+ assert R.free_module(1).convert([x]) / R.convert(x) == [1]
30
+
31
+
32
+ def test_FreeModule():
33
+ M1 = FreeModule(QQ.old_poly_ring(x), 2)
34
+ assert M1 == FreeModule(QQ.old_poly_ring(x), 2)
35
+ assert M1 != FreeModule(QQ.old_poly_ring(y), 2)
36
+ assert M1 != FreeModule(QQ.old_poly_ring(x), 3)
37
+ M2 = FreeModule(QQ.old_poly_ring(x, order="ilex"), 2)
38
+
39
+ assert [x, 1] in M1
40
+ assert [x] not in M1
41
+ assert [2, y] not in M1
42
+ assert [1/(x + 1), 2] not in M1
43
+
44
+ e = M1.convert([x, x**2 + 1])
45
+ X = QQ.old_poly_ring(x).convert(x)
46
+ assert e == [X, X**2 + 1]
47
+ assert e == [x, x**2 + 1]
48
+ assert 2*e == [2*x, 2*x**2 + 2]
49
+ assert e*2 == [2*x, 2*x**2 + 2]
50
+ assert e/2 == [x/2, (x**2 + 1)/2]
51
+ assert x*e == [x**2, x**3 + x]
52
+ assert e*x == [x**2, x**3 + x]
53
+ assert X*e == [x**2, x**3 + x]
54
+ assert e*X == [x**2, x**3 + x]
55
+
56
+ assert [x, 1] in M2
57
+ assert [x] not in M2
58
+ assert [2, y] not in M2
59
+ assert [1/(x + 1), 2] in M2
60
+
61
+ e = M2.convert([x, x**2 + 1])
62
+ X = QQ.old_poly_ring(x, order="ilex").convert(x)
63
+ assert e == [X, X**2 + 1]
64
+ assert e == [x, x**2 + 1]
65
+ assert 2*e == [2*x, 2*x**2 + 2]
66
+ assert e*2 == [2*x, 2*x**2 + 2]
67
+ assert e/2 == [x/2, (x**2 + 1)/2]
68
+ assert x*e == [x**2, x**3 + x]
69
+ assert e*x == [x**2, x**3 + x]
70
+ assert e/(1 + x) == [x/(1 + x), (x**2 + 1)/(1 + x)]
71
+ assert X*e == [x**2, x**3 + x]
72
+ assert e*X == [x**2, x**3 + x]
73
+
74
+ M3 = FreeModule(QQ.old_poly_ring(x, y), 2)
75
+ assert M3.convert(e) == M3.convert([x, x**2 + 1])
76
+
77
+ assert not M3.is_submodule(0)
78
+ assert not M3.is_zero()
79
+
80
+ raises(NotImplementedError, lambda: ZZ.old_poly_ring(x).free_module(2))
81
+ raises(NotImplementedError, lambda: FreeModulePolyRing(ZZ, 2))
82
+ raises(CoercionFailed, lambda: M1.convert(QQ.old_poly_ring(x).free_module(3)
83
+ .convert([1, 2, 3])))
84
+ raises(CoercionFailed, lambda: M3.convert(1))
85
+
86
+
87
+ def test_ModuleOrder():
88
+ o1 = ModuleOrder(lex, grlex, False)
89
+ o2 = ModuleOrder(ilex, lex, False)
90
+
91
+ assert o1 == ModuleOrder(lex, grlex, False)
92
+ assert (o1 != ModuleOrder(lex, grlex, False)) is False
93
+ assert o1 != o2
94
+
95
+ assert o1((1, 2, 3)) == (1, (5, (2, 3)))
96
+ assert o2((1, 2, 3)) == (-1, (2, 3))
97
+
98
+
99
+ def test_SubModulePolyRing_global():
100
+ R = QQ.old_poly_ring(x, y)
101
+ F = R.free_module(3)
102
+ Fd = F.submodule([1, 0, 0], [1, 2, 0], [1, 2, 3])
103
+ M = F.submodule([x**2 + y**2, 1, 0], [x, y, 1])
104
+
105
+ assert F == Fd
106
+ assert Fd == F
107
+ assert F != M
108
+ assert M != F
109
+ assert Fd != M
110
+ assert M != Fd
111
+ assert Fd == F.submodule(*F.basis())
112
+
113
+ assert Fd.is_full_module()
114
+ assert not M.is_full_module()
115
+ assert not Fd.is_zero()
116
+ assert not M.is_zero()
117
+ assert Fd.submodule().is_zero()
118
+
119
+ assert M.contains([x**2 + y**2 + x, 1 + y, 1])
120
+ assert not M.contains([x**2 + y**2 + x, 1 + y, 2])
121
+ assert M.contains([y**2, 1 - x*y, -x])
122
+
123
+ assert not F.submodule([1 + x, 0, 0]) == F.submodule([1, 0, 0])
124
+ assert F.submodule([1, 0, 0], [0, 1, 0]).union(F.submodule([0, 0, 1])) == F
125
+ assert not M.is_submodule(0)
126
+
127
+ m = F.convert([x**2 + y**2, 1, 0])
128
+ n = M.convert(m)
129
+ assert m.module is F
130
+ assert n.module is M
131
+
132
+ raises(ValueError, lambda: M.submodule([1, 0, 0]))
133
+ raises(TypeError, lambda: M.union(1))
134
+ raises(ValueError, lambda: M.union(R.free_module(1).submodule([x])))
135
+
136
+ assert F.submodule([x, x, x]) != F.submodule([x, x, x], order="ilex")
137
+
138
+
139
+ def test_SubModulePolyRing_local():
140
+ R = QQ.old_poly_ring(x, y, order=ilex)
141
+ F = R.free_module(3)
142
+ Fd = F.submodule([1 + x, 0, 0], [1 + y, 2 + 2*y, 0], [1, 2, 3])
143
+ M = F.submodule([x**2 + y**2, 1, 0], [x, y, 1])
144
+
145
+ assert F == Fd
146
+ assert Fd == F
147
+ assert F != M
148
+ assert M != F
149
+ assert Fd != M
150
+ assert M != Fd
151
+ assert Fd == F.submodule(*F.basis())
152
+
153
+ assert Fd.is_full_module()
154
+ assert not M.is_full_module()
155
+ assert not Fd.is_zero()
156
+ assert not M.is_zero()
157
+ assert Fd.submodule().is_zero()
158
+
159
+ assert M.contains([x**2 + y**2 + x, 1 + y, 1])
160
+ assert not M.contains([x**2 + y**2 + x, 1 + y, 2])
161
+ assert M.contains([y**2, 1 - x*y, -x])
162
+
163
+ assert F.submodule([1 + x, 0, 0]) == F.submodule([1, 0, 0])
164
+ assert F.submodule(
165
+ [1, 0, 0], [0, 1, 0]).union(F.submodule([0, 0, 1 + x*y])) == F
166
+
167
+ raises(ValueError, lambda: M.submodule([1, 0, 0]))
168
+
169
+
170
+ def test_SubModulePolyRing_nontriv_global():
171
+ R = QQ.old_poly_ring(x, y, z)
172
+ F = R.free_module(1)
173
+
174
+ def contains(I, f):
175
+ return F.submodule(*[[g] for g in I]).contains([f])
176
+
177
+ assert contains([x, y], x)
178
+ assert contains([x, y], x + y)
179
+ assert not contains([x, y], 1)
180
+ assert not contains([x, y], z)
181
+ assert contains([x**2 + y, x**2 + x], x - y)
182
+ assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
183
+ assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3)
184
+ assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4)
185
+ assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2)
186
+ assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x)
187
+ assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z)
188
+ assert contains([x, 1 + x + y, 5 - 7*y], 1)
189
+ assert contains(
190
+ [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
191
+ x**3)
192
+ assert not contains(
193
+ [x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
194
+ x**2 + y**2)
195
+
196
+ # compare local order
197
+ assert not contains([x*(1 + x + y), y*(1 + z)], x)
198
+ assert not contains([x*(1 + x + y), y*(1 + z)], x + y)
199
+
200
+
201
+ def test_SubModulePolyRing_nontriv_local():
202
+ R = QQ.old_poly_ring(x, y, z, order=ilex)
203
+ F = R.free_module(1)
204
+
205
+ def contains(I, f):
206
+ return F.submodule(*[[g] for g in I]).contains([f])
207
+
208
+ assert contains([x, y], x)
209
+ assert contains([x, y], x + y)
210
+ assert not contains([x, y], 1)
211
+ assert not contains([x, y], z)
212
+ assert contains([x**2 + y, x**2 + x], x - y)
213
+ assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
214
+ assert contains([x*(1 + x + y), y*(1 + z)], x)
215
+ assert contains([x*(1 + x + y), y*(1 + z)], x + y)
216
+
217
+
218
+ def test_syzygy():
219
+ R = QQ.old_poly_ring(x, y, z)
220
+ M = R.free_module(1).submodule([x*y], [y*z], [x*z])
221
+ S = R.free_module(3).submodule([0, x, -y], [z, -x, 0])
222
+ assert M.syzygy_module() == S
223
+
224
+ M2 = M / ([x*y*z],)
225
+ S2 = R.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y])
226
+ assert M2.syzygy_module() == S2
227
+
228
+ F = R.free_module(3)
229
+ assert F.submodule(*F.basis()).syzygy_module() == F.submodule()
230
+
231
+ R2 = QQ.old_poly_ring(x, y, z) / [x*y*z]
232
+ M3 = R2.free_module(1).submodule([x*y], [y*z], [x*z])
233
+ S3 = R2.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y])
234
+ assert M3.syzygy_module() == S3
235
+
236
+
237
+ def test_in_terms_of_generators():
238
+ R = QQ.old_poly_ring(x, order="ilex")
239
+ M = R.free_module(2).submodule([2*x, 0], [1, 2])
240
+ assert M.in_terms_of_generators(
241
+ [x, x]) == [R.convert(Rational(1, 4)), R.convert(x/2)]
242
+ raises(ValueError, lambda: M.in_terms_of_generators([1, 0]))
243
+
244
+ M = R.free_module(2) / ([x, 0], [1, 1])
245
+ SM = M.submodule([1, x])
246
+ assert SM.in_terms_of_generators([2, 0]) == [R.convert(-2/(x - 1))]
247
+
248
+ R = QQ.old_poly_ring(x, y) / [x**2 - y**2]
249
+ M = R.free_module(2)
250
+ SM = M.submodule([x, 0], [0, y])
251
+ assert SM.in_terms_of_generators(
252
+ [x**2, x**2]) == [R.convert(x), R.convert(y)]
253
+
254
+
255
+ def test_QuotientModuleElement():
256
+ R = QQ.old_poly_ring(x)
257
+ F = R.free_module(3)
258
+ N = F.submodule([1, x, x**2])
259
+ M = F/N
260
+ e = M.convert([x**2, 2, 0])
261
+
262
+ assert M.convert([x + 1, x**2 + x, x**3 + x**2]) == 0
263
+ assert e == [x**2, 2, 0] + N == F.convert([x**2, 2, 0]) + N == \
264
+ M.convert(F.convert([x**2, 2, 0]))
265
+
266
+ assert M.convert([x**2 + 1, 2*x + 2, x**2]) == e + [0, x, 0] == \
267
+ e + M.convert([0, x, 0]) == e + F.convert([0, x, 0])
268
+ assert M.convert([x**2 + 1, 2, x**2]) == e - [0, x, 0] == \
269
+ e - M.convert([0, x, 0]) == e - F.convert([0, x, 0])
270
+ assert M.convert([0, 2, 0]) == M.convert([x**2, 4, 0]) - e == \
271
+ [x**2, 4, 0] - e == F.convert([x**2, 4, 0]) - e
272
+ assert M.convert([x**3 + x**2, 2*x + 2, 0]) == (1 + x)*e == \
273
+ R.convert(1 + x)*e == e*(1 + x) == e*R.convert(1 + x)
274
+ assert -e == [-x**2, -2, 0]
275
+
276
+ f = [x, x, 0] + N
277
+ assert M.convert([1, 1, 0]) == f / x == f / R.convert(x)
278
+
279
+ M2 = F/[(2, 2*x, 2*x**2), (0, 0, 1)]
280
+ G = R.free_module(2)
281
+ M3 = G/[[1, x]]
282
+ M4 = F.submodule([1, x, x**2], [1, 0, 0]) / N
283
+ raises(CoercionFailed, lambda: M.convert(G.convert([1, x])))
284
+ raises(CoercionFailed, lambda: M.convert(M3.convert([1, x])))
285
+ raises(CoercionFailed, lambda: M.convert(M2.convert([1, x, x])))
286
+ assert M2.convert(M.convert([2, x, x**2])) == [2, x, 0]
287
+ assert M.convert(M4.convert([2, 0, 0])) == [2, 0, 0]
288
+
289
+
290
+ def test_QuotientModule():
291
+ R = QQ.old_poly_ring(x)
292
+ F = R.free_module(3)
293
+ N = F.submodule([1, x, x**2])
294
+ M = F/N
295
+
296
+ assert M != F
297
+ assert M != N
298
+ assert M == F / [(1, x, x**2)]
299
+ assert not M.is_zero()
300
+ assert (F / F.basis()).is_zero()
301
+
302
+ SQ = F.submodule([1, x, x**2], [2, 0, 0]) / N
303
+ assert SQ == M.submodule([2, x, x**2])
304
+ assert SQ != M.submodule([2, 1, 0])
305
+ assert SQ != M
306
+ assert M.is_submodule(SQ)
307
+ assert not SQ.is_full_module()
308
+
309
+ raises(ValueError, lambda: N/F)
310
+ raises(ValueError, lambda: F.submodule([2, 0, 0]) / N)
311
+ raises(ValueError, lambda: R.free_module(2)/F)
312
+ raises(CoercionFailed, lambda: F.convert(M.convert([1, x, x**2])))
313
+
314
+ M1 = F / [[1, 1, 1]]
315
+ M2 = M1.submodule([1, 0, 0], [0, 1, 0])
316
+ assert M1 == M2
317
+
318
+
319
+ def test_ModulesQuotientRing():
320
+ R = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y))) / [x**2 + 1]
321
+ M1 = R.free_module(2)
322
+ assert M1 == R.free_module(2)
323
+ assert M1 != QQ.old_poly_ring(x).free_module(2)
324
+ assert M1 != R.free_module(3)
325
+
326
+ assert [x, 1] in M1
327
+ assert [x] not in M1
328
+ assert [1/(R.convert(x) + 1), 2] in M1
329
+ assert [1, 2/(1 + y)] in M1
330
+ assert [1, 2/y] not in M1
331
+
332
+ assert M1.convert([x**2, y]) == [-1, y]
333
+
334
+ F = R.free_module(3)
335
+ Fd = F.submodule([x**2, 0, 0], [1, 2, 0], [1, 2, 3])
336
+ M = F.submodule([x**2 + y**2, 1, 0], [x, y, 1])
337
+
338
+ assert F == Fd
339
+ assert Fd == F
340
+ assert F != M
341
+ assert M != F
342
+ assert Fd != M
343
+ assert M != Fd
344
+ assert Fd == F.submodule(*F.basis())
345
+
346
+ assert Fd.is_full_module()
347
+ assert not M.is_full_module()
348
+ assert not Fd.is_zero()
349
+ assert not M.is_zero()
350
+ assert Fd.submodule().is_zero()
351
+
352
+ assert M.contains([x**2 + y**2 + x, -x**2 + y, 1])
353
+ assert not M.contains([x**2 + y**2 + x, 1 + y, 2])
354
+ assert M.contains([y**2, 1 - x*y, -x])
355
+
356
+ assert F.submodule([x, 0, 0]) == F.submodule([1, 0, 0])
357
+ assert not F.submodule([y, 0, 0]) == F.submodule([1, 0, 0])
358
+ assert F.submodule([1, 0, 0], [0, 1, 0]).union(F.submodule([0, 0, 1])) == F
359
+ assert not M.is_submodule(0)
360
+
361
+
362
+ def test_module_mul():
363
+ R = QQ.old_poly_ring(x)
364
+ M = R.free_module(2)
365
+ S1 = M.submodule([x, 0], [0, x])
366
+ S2 = M.submodule([x**2, 0], [0, x**2])
367
+ I = R.ideal(x)
368
+
369
+ assert I*M == M*I == S1 == x*M == M*x
370
+ assert I*S1 == S2 == x*S1
371
+
372
+
373
+ def test_intersection():
374
+ # SCA, example 2.8.5
375
+ F = QQ.old_poly_ring(x, y).free_module(2)
376
+ M1 = F.submodule([x, y], [y, 1])
377
+ M2 = F.submodule([0, y - 1], [x, 1], [y, x])
378
+ I = F.submodule([x, y], [y**2 - y, y - 1], [x*y + y, x + 1])
379
+ I1, rel1, rel2 = M1.intersect(M2, relations=True)
380
+ assert I1 == M2.intersect(M1) == I
381
+ for i, g in enumerate(I1.gens):
382
+ assert g == sum(c*x for c, x in zip(rel1[i], M1.gens)) \
383
+ == sum(d*y for d, y in zip(rel2[i], M2.gens))
384
+
385
+ assert F.submodule([x, y]).intersect(F.submodule([y, x])).is_zero()
386
+
387
+
388
+ def test_quotient():
389
+ # SCA, example 2.8.6
390
+ R = QQ.old_poly_ring(x, y, z)
391
+ F = R.free_module(2)
392
+ assert F.submodule([x*y, x*z], [y*z, x*y]).module_quotient(
393
+ F.submodule([y, z], [z, y])) == QQ.old_poly_ring(x, y, z).ideal(x**2*y**2 - x*y*z**2)
394
+ assert F.submodule([x, y]).module_quotient(F.submodule()).is_whole_ring()
395
+
396
+ M = F.submodule([x**2, x**2], [y**2, y**2])
397
+ N = F.submodule([x + y, x + y])
398
+ q, rel = M.module_quotient(N, relations=True)
399
+ assert q == R.ideal(y**2, x - y)
400
+ for i, g in enumerate(q.gens):
401
+ assert g*N.gens[0] == sum(c*x for c, x in zip(rel[i], M.gens))
402
+
403
+
404
+ def test_groebner_extendend():
405
+ M = QQ.old_poly_ring(x, y, z).free_module(3).submodule([x + 1, y, 1], [x*y, z, z**2])
406
+ G, R = M._groebner_vec(extended=True)
407
+ for i, g in enumerate(G):
408
+ assert g == sum(c*gen for c, gen in zip(R[i], M.gens))
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+
3
+ sympy.polys.matrices package.
4
+
5
+ The main export from this package is the DomainMatrix class which is a
6
+ lower-level implementation of matrices based on the polys Domains. This
7
+ implementation is typically a lot faster than SymPy's standard Matrix class
8
+ but is a work in progress and is still experimental.
9
+
10
+ """
11
+ from .domainmatrix import DomainMatrix, DM
12
+
13
+ __all__ = [
14
+ 'DomainMatrix', 'DM',
15
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (604 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/_typing.cpython-310.pyc ADDED
Binary file (1.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/ddm.cpython-310.pyc ADDED
Binary file (17.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/dense.cpython-310.pyc ADDED
Binary file (8.91 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainmatrix.cpython-310.pyc ADDED
Binary file (51.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/domainscalar.cpython-310.pyc ADDED
Binary file (4.37 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/eigen.cpython-310.pyc ADDED
Binary file (3.78 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/exceptions.cpython-310.pyc ADDED
Binary file (2.12 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/linsolve.cpython-310.pyc ADDED
Binary file (5.45 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/lll.cpython-310.pyc ADDED
Binary file (4.88 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/normalforms.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/__pycache__/sdm.cpython-310.pyc ADDED
Binary file (34.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/_typing.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import TypeVar, Protocol
2
+
3
+
4
+ T = TypeVar('T')
5
+
6
+
7
+ class RingElement(Protocol):
8
+ def __add__(self: T, other: T, /) -> T: ...
9
+ def __sub__(self: T, other: T, /) -> T: ...
10
+ def __mul__(self: T, other: T, /) -> T: ...
11
+ def __pow__(self: T, other: int, /) -> T: ...
12
+ def __neg__(self: T, /) -> T: ...
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/ddm.py ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+
3
+ Module for the DDM class.
4
+
5
+ The DDM class is an internal representation used by DomainMatrix. The letters
6
+ DDM stand for Dense Domain Matrix. A DDM instance represents a matrix using
7
+ elements from a polynomial Domain (e.g. ZZ, QQ, ...) in a dense-matrix
8
+ representation.
9
+
10
+ Basic usage:
11
+
12
+ >>> from sympy import ZZ, QQ
13
+ >>> from sympy.polys.matrices.ddm import DDM
14
+ >>> A = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
15
+ >>> A.shape
16
+ (2, 2)
17
+ >>> A
18
+ [[0, 1], [-1, 0]]
19
+ >>> type(A)
20
+ <class 'sympy.polys.matrices.ddm.DDM'>
21
+ >>> A @ A
22
+ [[-1, 0], [0, -1]]
23
+
24
+ The ddm_* functions are designed to operate on DDM as well as on an ordinary
25
+ list of lists:
26
+
27
+ >>> from sympy.polys.matrices.dense import ddm_idet
28
+ >>> ddm_idet(A, QQ)
29
+ 1
30
+ >>> ddm_idet([[0, 1], [-1, 0]], QQ)
31
+ 1
32
+ >>> A
33
+ [[-1, 0], [0, -1]]
34
+
35
+ Note that ddm_idet modifies the input matrix in-place. It is recommended to
36
+ use the DDM.det method as a friendlier interface to this instead which takes
37
+ care of copying the matrix:
38
+
39
+ >>> B = DDM([[ZZ(0), ZZ(1)], [ZZ(-1), ZZ(0)]], (2, 2), ZZ)
40
+ >>> B.det()
41
+ 1
42
+
43
+ Normally DDM would not be used directly and is just part of the internal
44
+ representation of DomainMatrix which adds further functionality including e.g.
45
+ unifying domains.
46
+
47
+ The dense format used by DDM is a list of lists of elements e.g. the 2x2
48
+ identity matrix is like [[1, 0], [0, 1]]. The DDM class itself is a subclass
49
+ of list and its list items are plain lists. Elements are accessed as e.g.
50
+ ddm[i][j] where ddm[i] gives the ith row and ddm[i][j] gets the element in the
51
+ jth column of that row. Subclassing list makes e.g. iteration and indexing
52
+ very efficient. We do not override __getitem__ because it would lose that
53
+ benefit.
54
+
55
+ The core routines are implemented by the ddm_* functions defined in dense.py.
56
+ Those functions are intended to be able to operate on a raw list-of-lists
57
+ representation of matrices with most functions operating in-place. The DDM
58
+ class takes care of copying etc and also stores a Domain object associated
59
+ with its elements. This makes it possible to implement things like A + B with
60
+ domain checking and also shape checking so that the list of lists
61
+ representation is friendlier.
62
+
63
+ """
64
+ from itertools import chain
65
+
66
+ from .exceptions import DMBadInputError, DMShapeError, DMDomainError
67
+
68
+ from .dense import (
69
+ ddm_transpose,
70
+ ddm_iadd,
71
+ ddm_isub,
72
+ ddm_ineg,
73
+ ddm_imul,
74
+ ddm_irmul,
75
+ ddm_imatmul,
76
+ ddm_irref,
77
+ ddm_idet,
78
+ ddm_iinv,
79
+ ddm_ilu_split,
80
+ ddm_ilu_solve,
81
+ ddm_berk,
82
+ )
83
+
84
+ from sympy.polys.domains import QQ
85
+ from .lll import ddm_lll, ddm_lll_transform
86
+
87
+
88
+ class DDM(list):
89
+ """Dense matrix based on polys domain elements
90
+
91
+ This is a list subclass and is a wrapper for a list of lists that supports
92
+ basic matrix arithmetic +, -, *, **.
93
+ """
94
+
95
+ fmt = 'dense'
96
+
97
+ def __init__(self, rowslist, shape, domain):
98
+ super().__init__(rowslist)
99
+ self.shape = self.rows, self.cols = m, n = shape
100
+ self.domain = domain
101
+
102
+ if not (len(self) == m and all(len(row) == n for row in self)):
103
+ raise DMBadInputError("Inconsistent row-list/shape")
104
+
105
+ def getitem(self, i, j):
106
+ return self[i][j]
107
+
108
+ def setitem(self, i, j, value):
109
+ self[i][j] = value
110
+
111
+ def extract_slice(self, slice1, slice2):
112
+ ddm = [row[slice2] for row in self[slice1]]
113
+ rows = len(ddm)
114
+ cols = len(ddm[0]) if ddm else len(range(self.shape[1])[slice2])
115
+ return DDM(ddm, (rows, cols), self.domain)
116
+
117
+ def extract(self, rows, cols):
118
+ ddm = []
119
+ for i in rows:
120
+ rowi = self[i]
121
+ ddm.append([rowi[j] for j in cols])
122
+ return DDM(ddm, (len(rows), len(cols)), self.domain)
123
+
124
+ def to_list(self):
125
+ return list(self)
126
+
127
+ def to_list_flat(self):
128
+ flat = []
129
+ for row in self:
130
+ flat.extend(row)
131
+ return flat
132
+
133
+ def flatiter(self):
134
+ return chain.from_iterable(self)
135
+
136
+ def flat(self):
137
+ items = []
138
+ for row in self:
139
+ items.extend(row)
140
+ return items
141
+
142
+ def to_dok(self):
143
+ return {(i, j): e for i, row in enumerate(self) for j, e in enumerate(row)}
144
+
145
+ def to_ddm(self):
146
+ return self
147
+
148
+ def to_sdm(self):
149
+ return SDM.from_list(self, self.shape, self.domain)
150
+
151
+ def convert_to(self, K):
152
+ Kold = self.domain
153
+ if K == Kold:
154
+ return self.copy()
155
+ rows = ([K.convert_from(e, Kold) for e in row] for row in self)
156
+ return DDM(rows, self.shape, K)
157
+
158
+ def __str__(self):
159
+ rowsstr = ['[%s]' % ', '.join(map(str, row)) for row in self]
160
+ return '[%s]' % ', '.join(rowsstr)
161
+
162
+ def __repr__(self):
163
+ cls = type(self).__name__
164
+ rows = list.__repr__(self)
165
+ return '%s(%s, %s, %s)' % (cls, rows, self.shape, self.domain)
166
+
167
+ def __eq__(self, other):
168
+ if not isinstance(other, DDM):
169
+ return False
170
+ return (super().__eq__(other) and self.domain == other.domain)
171
+
172
+ def __ne__(self, other):
173
+ return not self.__eq__(other)
174
+
175
+ @classmethod
176
+ def zeros(cls, shape, domain):
177
+ z = domain.zero
178
+ m, n = shape
179
+ rowslist = ([z] * n for _ in range(m))
180
+ return DDM(rowslist, shape, domain)
181
+
182
+ @classmethod
183
+ def ones(cls, shape, domain):
184
+ one = domain.one
185
+ m, n = shape
186
+ rowlist = ([one] * n for _ in range(m))
187
+ return DDM(rowlist, shape, domain)
188
+
189
+ @classmethod
190
+ def eye(cls, size, domain):
191
+ one = domain.one
192
+ ddm = cls.zeros((size, size), domain)
193
+ for i in range(size):
194
+ ddm[i][i] = one
195
+ return ddm
196
+
197
+ def copy(self):
198
+ copyrows = (row[:] for row in self)
199
+ return DDM(copyrows, self.shape, self.domain)
200
+
201
+ def transpose(self):
202
+ rows, cols = self.shape
203
+ if rows:
204
+ ddmT = ddm_transpose(self)
205
+ else:
206
+ ddmT = [[]] * cols
207
+ return DDM(ddmT, (cols, rows), self.domain)
208
+
209
+ def __add__(a, b):
210
+ if not isinstance(b, DDM):
211
+ return NotImplemented
212
+ return a.add(b)
213
+
214
+ def __sub__(a, b):
215
+ if not isinstance(b, DDM):
216
+ return NotImplemented
217
+ return a.sub(b)
218
+
219
+ def __neg__(a):
220
+ return a.neg()
221
+
222
+ def __mul__(a, b):
223
+ if b in a.domain:
224
+ return a.mul(b)
225
+ else:
226
+ return NotImplemented
227
+
228
+ def __rmul__(a, b):
229
+ if b in a.domain:
230
+ return a.mul(b)
231
+ else:
232
+ return NotImplemented
233
+
234
+ def __matmul__(a, b):
235
+ if isinstance(b, DDM):
236
+ return a.matmul(b)
237
+ else:
238
+ return NotImplemented
239
+
240
+ @classmethod
241
+ def _check(cls, a, op, b, ashape, bshape):
242
+ if a.domain != b.domain:
243
+ msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
244
+ raise DMDomainError(msg)
245
+ if ashape != bshape:
246
+ msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
247
+ raise DMShapeError(msg)
248
+
249
+ def add(a, b):
250
+ """a + b"""
251
+ a._check(a, '+', b, a.shape, b.shape)
252
+ c = a.copy()
253
+ ddm_iadd(c, b)
254
+ return c
255
+
256
+ def sub(a, b):
257
+ """a - b"""
258
+ a._check(a, '-', b, a.shape, b.shape)
259
+ c = a.copy()
260
+ ddm_isub(c, b)
261
+ return c
262
+
263
+ def neg(a):
264
+ """-a"""
265
+ b = a.copy()
266
+ ddm_ineg(b)
267
+ return b
268
+
269
+ def mul(a, b):
270
+ c = a.copy()
271
+ ddm_imul(c, b)
272
+ return c
273
+
274
+ def rmul(a, b):
275
+ c = a.copy()
276
+ ddm_irmul(c, b)
277
+ return c
278
+
279
+ def matmul(a, b):
280
+ """a @ b (matrix product)"""
281
+ m, o = a.shape
282
+ o2, n = b.shape
283
+ a._check(a, '*', b, o, o2)
284
+ c = a.zeros((m, n), a.domain)
285
+ ddm_imatmul(c, a, b)
286
+ return c
287
+
288
+ def mul_elementwise(a, b):
289
+ assert a.shape == b.shape
290
+ assert a.domain == b.domain
291
+ c = [[aij * bij for aij, bij in zip(ai, bi)] for ai, bi in zip(a, b)]
292
+ return DDM(c, a.shape, a.domain)
293
+
294
+ def hstack(A, *B):
295
+ """Horizontally stacks :py:class:`~.DDM` matrices.
296
+
297
+ Examples
298
+ ========
299
+
300
+ >>> from sympy import ZZ
301
+ >>> from sympy.polys.matrices.sdm import DDM
302
+
303
+ >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
304
+ >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
305
+ >>> A.hstack(B)
306
+ [[1, 2, 5, 6], [3, 4, 7, 8]]
307
+
308
+ >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
309
+ >>> A.hstack(B, C)
310
+ [[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]]
311
+ """
312
+ Anew = list(A.copy())
313
+ rows, cols = A.shape
314
+ domain = A.domain
315
+
316
+ for Bk in B:
317
+ Bkrows, Bkcols = Bk.shape
318
+ assert Bkrows == rows
319
+ assert Bk.domain == domain
320
+
321
+ cols += Bkcols
322
+
323
+ for i, Bki in enumerate(Bk):
324
+ Anew[i].extend(Bki)
325
+
326
+ return DDM(Anew, (rows, cols), A.domain)
327
+
328
+ def vstack(A, *B):
329
+ """Vertically stacks :py:class:`~.DDM` matrices.
330
+
331
+ Examples
332
+ ========
333
+
334
+ >>> from sympy import ZZ
335
+ >>> from sympy.polys.matrices.sdm import DDM
336
+
337
+ >>> A = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
338
+ >>> B = DDM([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
339
+ >>> A.vstack(B)
340
+ [[1, 2], [3, 4], [5, 6], [7, 8]]
341
+
342
+ >>> C = DDM([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
343
+ >>> A.vstack(B, C)
344
+ [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]]
345
+ """
346
+ Anew = list(A.copy())
347
+ rows, cols = A.shape
348
+ domain = A.domain
349
+
350
+ for Bk in B:
351
+ Bkrows, Bkcols = Bk.shape
352
+ assert Bkcols == cols
353
+ assert Bk.domain == domain
354
+
355
+ rows += Bkrows
356
+
357
+ Anew.extend(Bk.copy())
358
+
359
+ return DDM(Anew, (rows, cols), A.domain)
360
+
361
+ def applyfunc(self, func, domain):
362
+ elements = (list(map(func, row)) for row in self)
363
+ return DDM(elements, self.shape, domain)
364
+
365
+ def scc(a):
366
+ """Strongly connected components of a square matrix *a*.
367
+
368
+ Examples
369
+ ========
370
+
371
+ >>> from sympy import ZZ
372
+ >>> from sympy.polys.matrices.sdm import DDM
373
+ >>> A = DDM([[ZZ(1), ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ)
374
+ >>> A.scc()
375
+ [[0], [1]]
376
+
377
+ See also
378
+ ========
379
+
380
+ sympy.polys.matrices.domainmatrix.DomainMatrix.scc
381
+
382
+ """
383
+ return a.to_sdm().scc()
384
+
385
+ def rref(a):
386
+ """Reduced-row echelon form of a and list of pivots"""
387
+ b = a.copy()
388
+ K = a.domain
389
+ partial_pivot = K.is_RealField or K.is_ComplexField
390
+ pivots = ddm_irref(b, _partial_pivot=partial_pivot)
391
+ return b, pivots
392
+
393
+ def nullspace(a):
394
+ rref, pivots = a.rref()
395
+ rows, cols = a.shape
396
+ domain = a.domain
397
+
398
+ basis = []
399
+ nonpivots = []
400
+ for i in range(cols):
401
+ if i in pivots:
402
+ continue
403
+ nonpivots.append(i)
404
+ vec = [domain.one if i == j else domain.zero for j in range(cols)]
405
+ for ii, jj in enumerate(pivots):
406
+ vec[jj] -= rref[ii][i]
407
+ basis.append(vec)
408
+
409
+ return DDM(basis, (len(basis), cols), domain), nonpivots
410
+
411
+ def particular(a):
412
+ return a.to_sdm().particular().to_ddm()
413
+
414
+ def det(a):
415
+ """Determinant of a"""
416
+ m, n = a.shape
417
+ if m != n:
418
+ raise DMShapeError("Determinant of non-square matrix")
419
+ b = a.copy()
420
+ K = b.domain
421
+ deta = ddm_idet(b, K)
422
+ return deta
423
+
424
+ def inv(a):
425
+ """Inverse of a"""
426
+ m, n = a.shape
427
+ if m != n:
428
+ raise DMShapeError("Determinant of non-square matrix")
429
+ ainv = a.copy()
430
+ K = a.domain
431
+ ddm_iinv(ainv, a, K)
432
+ return ainv
433
+
434
+ def lu(a):
435
+ """L, U decomposition of a"""
436
+ m, n = a.shape
437
+ K = a.domain
438
+
439
+ U = a.copy()
440
+ L = a.eye(m, K)
441
+ swaps = ddm_ilu_split(L, U, K)
442
+
443
+ return L, U, swaps
444
+
445
+ def lu_solve(a, b):
446
+ """x where a*x = b"""
447
+ m, n = a.shape
448
+ m2, o = b.shape
449
+ a._check(a, 'lu_solve', b, m, m2)
450
+
451
+ L, U, swaps = a.lu()
452
+ x = a.zeros((n, o), a.domain)
453
+ ddm_ilu_solve(x, L, U, swaps, b)
454
+ return x
455
+
456
+ def charpoly(a):
457
+ """Coefficients of characteristic polynomial of a"""
458
+ K = a.domain
459
+ m, n = a.shape
460
+ if m != n:
461
+ raise DMShapeError("Charpoly of non-square matrix")
462
+ vec = ddm_berk(a, K)
463
+ coeffs = [vec[i][0] for i in range(n+1)]
464
+ return coeffs
465
+
466
+ def is_zero_matrix(self):
467
+ """
468
+ Says whether this matrix has all zero entries.
469
+ """
470
+ zero = self.domain.zero
471
+ return all(Mij == zero for Mij in self.flatiter())
472
+
473
+ def is_upper(self):
474
+ """
475
+ Says whether this matrix is upper-triangular. True can be returned
476
+ even if the matrix is not square.
477
+ """
478
+ zero = self.domain.zero
479
+ return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[:i])
480
+
481
+ def is_lower(self):
482
+ """
483
+ Says whether this matrix is lower-triangular. True can be returned
484
+ even if the matrix is not square.
485
+ """
486
+ zero = self.domain.zero
487
+ return all(Mij == zero for i, Mi in enumerate(self) for Mij in Mi[i+1:])
488
+
489
+ def lll(A, delta=QQ(3, 4)):
490
+ return ddm_lll(A, delta=delta)
491
+
492
+ def lll_transform(A, delta=QQ(3, 4)):
493
+ return ddm_lll_transform(A, delta=delta)
494
+
495
+
496
+ from .sdm import SDM
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/dense.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+
3
+ Module for the ddm_* routines for operating on a matrix in list of lists
4
+ matrix representation.
5
+
6
+ These routines are used internally by the DDM class which also provides a
7
+ friendlier interface for them. The idea here is to implement core matrix
8
+ routines in a way that can be applied to any simple list representation
9
+ without the need to use any particular matrix class. For example we can
10
+ compute the RREF of a matrix like:
11
+
12
+ >>> from sympy.polys.matrices.dense import ddm_irref
13
+ >>> M = [[1, 2, 3], [4, 5, 6]]
14
+ >>> pivots = ddm_irref(M)
15
+ >>> M
16
+ [[1.0, 0.0, -1.0], [0, 1.0, 2.0]]
17
+
18
+ These are lower-level routines that work mostly in place.The routines at this
19
+ level should not need to know what the domain of the elements is but should
20
+ ideally document what operations they will use and what functions they need to
21
+ be provided with.
22
+
23
+ The next-level up is the DDM class which uses these routines but wraps them up
24
+ with an interface that handles copying etc and keeps track of the Domain of
25
+ the elements of the matrix:
26
+
27
+ >>> from sympy.polys.domains import QQ
28
+ >>> from sympy.polys.matrices.ddm import DDM
29
+ >>> M = DDM([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ)
30
+ >>> M
31
+ [[1, 2, 3], [4, 5, 6]]
32
+ >>> Mrref, pivots = M.rref()
33
+ >>> Mrref
34
+ [[1, 0, -1], [0, 1, 2]]
35
+
36
+ """
37
+ from __future__ import annotations
38
+ from operator import mul
39
+ from .exceptions import (
40
+ DMShapeError,
41
+ DMNonInvertibleMatrixError,
42
+ DMNonSquareMatrixError,
43
+ )
44
+ from typing import Sequence, TypeVar
45
+ from sympy.polys.matrices._typing import RingElement
46
+
47
+
48
+ T = TypeVar('T')
49
+ R = TypeVar('R', bound=RingElement)
50
+
51
+
52
+ def ddm_transpose(matrix: Sequence[Sequence[T]]) -> list[list[T]]:
53
+ """matrix transpose"""
54
+ return list(map(list, zip(*matrix)))
55
+
56
+
57
+ def ddm_iadd(a: list[list[R]], b: Sequence[Sequence[R]]) -> None:
58
+ """a += b"""
59
+ for ai, bi in zip(a, b):
60
+ for j, bij in enumerate(bi):
61
+ ai[j] += bij
62
+
63
+
64
+ def ddm_isub(a: list[list[R]], b: Sequence[Sequence[R]]) -> None:
65
+ """a -= b"""
66
+ for ai, bi in zip(a, b):
67
+ for j, bij in enumerate(bi):
68
+ ai[j] -= bij
69
+
70
+
71
+ def ddm_ineg(a: list[list[R]]) -> None:
72
+ """a <-- -a"""
73
+ for ai in a:
74
+ for j, aij in enumerate(ai):
75
+ ai[j] = -aij
76
+
77
+
78
+ def ddm_imul(a: list[list[R]], b: R) -> None:
79
+ for ai in a:
80
+ for j, aij in enumerate(ai):
81
+ ai[j] = aij * b
82
+
83
+
84
+ def ddm_irmul(a: list[list[R]], b: R) -> None:
85
+ for ai in a:
86
+ for j, aij in enumerate(ai):
87
+ ai[j] = b * aij
88
+
89
+
90
+ def ddm_imatmul(
91
+ a: list[list[R]], b: Sequence[Sequence[R]], c: Sequence[Sequence[R]]
92
+ ) -> None:
93
+ """a += b @ c"""
94
+ cT = list(zip(*c))
95
+
96
+ for bi, ai in zip(b, a):
97
+ for j, cTj in enumerate(cT):
98
+ ai[j] = sum(map(mul, bi, cTj), ai[j])
99
+
100
+
101
+ def ddm_irref(a, _partial_pivot=False):
102
+ """a <-- rref(a)"""
103
+ # a is (m x n)
104
+ m = len(a)
105
+ if not m:
106
+ return []
107
+ n = len(a[0])
108
+
109
+ i = 0
110
+ pivots = []
111
+
112
+ for j in range(n):
113
+ # Proper pivoting should be used for all domains for performance
114
+ # reasons but it is only strictly needed for RR and CC (and possibly
115
+ # other domains like RR(x)). This path is used by DDM.rref() if the
116
+ # domain is RR or CC. It uses partial (row) pivoting based on the
117
+ # absolute value of the pivot candidates.
118
+ if _partial_pivot:
119
+ ip = max(range(i, m), key=lambda ip: abs(a[ip][j]))
120
+ a[i], a[ip] = a[ip], a[i]
121
+
122
+ # pivot
123
+ aij = a[i][j]
124
+
125
+ # zero-pivot
126
+ if not aij:
127
+ for ip in range(i+1, m):
128
+ aij = a[ip][j]
129
+ # row-swap
130
+ if aij:
131
+ a[i], a[ip] = a[ip], a[i]
132
+ break
133
+ else:
134
+ # next column
135
+ continue
136
+
137
+ # normalise row
138
+ ai = a[i]
139
+ aijinv = aij**-1
140
+ for l in range(j, n):
141
+ ai[l] *= aijinv # ai[j] = one
142
+
143
+ # eliminate above and below to the right
144
+ for k, ak in enumerate(a):
145
+ if k == i or not ak[j]:
146
+ continue
147
+ akj = ak[j]
148
+ ak[j] -= akj # ak[j] = zero
149
+ for l in range(j+1, n):
150
+ ak[l] -= akj * ai[l]
151
+
152
+ # next row
153
+ pivots.append(j)
154
+ i += 1
155
+
156
+ # no more rows?
157
+ if i >= m:
158
+ break
159
+
160
+ return pivots
161
+
162
+
163
+ def ddm_idet(a, K):
164
+ """a <-- echelon(a); return det"""
165
+ # Bareiss algorithm
166
+ # https://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
167
+
168
+ # a is (m x n)
169
+ m = len(a)
170
+ if not m:
171
+ return K.one
172
+ n = len(a[0])
173
+
174
+ exquo = K.exquo
175
+ # uf keeps track of the sign change from row swaps
176
+ uf = K.one
177
+
178
+ for k in range(n-1):
179
+ if not a[k][k]:
180
+ for i in range(k+1, n):
181
+ if a[i][k]:
182
+ a[k], a[i] = a[i], a[k]
183
+ uf = -uf
184
+ break
185
+ else:
186
+ return K.zero
187
+
188
+ akkm1 = a[k-1][k-1] if k else K.one
189
+
190
+ for i in range(k+1, n):
191
+ for j in range(k+1, n):
192
+ a[i][j] = exquo(a[i][j]*a[k][k] - a[i][k]*a[k][j], akkm1)
193
+
194
+ return uf * a[-1][-1]
195
+
196
+
197
+ def ddm_iinv(ainv, a, K):
198
+ if not K.is_Field:
199
+ raise ValueError('Not a field')
200
+
201
+ # a is (m x n)
202
+ m = len(a)
203
+ if not m:
204
+ return
205
+ n = len(a[0])
206
+ if m != n:
207
+ raise DMNonSquareMatrixError
208
+
209
+ eye = [[K.one if i==j else K.zero for j in range(n)] for i in range(n)]
210
+ Aaug = [row + eyerow for row, eyerow in zip(a, eye)]
211
+ pivots = ddm_irref(Aaug)
212
+ if pivots != list(range(n)):
213
+ raise DMNonInvertibleMatrixError('Matrix det == 0; not invertible.')
214
+ ainv[:] = [row[n:] for row in Aaug]
215
+
216
+
217
+ def ddm_ilu_split(L, U, K):
218
+ """L, U <-- LU(U)"""
219
+ m = len(U)
220
+ if not m:
221
+ return []
222
+ n = len(U[0])
223
+
224
+ swaps = ddm_ilu(U)
225
+
226
+ zeros = [K.zero] * min(m, n)
227
+ for i in range(1, m):
228
+ j = min(i, n)
229
+ L[i][:j] = U[i][:j]
230
+ U[i][:j] = zeros[:j]
231
+
232
+ return swaps
233
+
234
+
235
+ def ddm_ilu(a):
236
+ """a <-- LU(a)"""
237
+ m = len(a)
238
+ if not m:
239
+ return []
240
+ n = len(a[0])
241
+
242
+ swaps = []
243
+
244
+ for i in range(min(m, n)):
245
+ if not a[i][i]:
246
+ for ip in range(i+1, m):
247
+ if a[ip][i]:
248
+ swaps.append((i, ip))
249
+ a[i], a[ip] = a[ip], a[i]
250
+ break
251
+ else:
252
+ # M = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]])
253
+ continue
254
+ for j in range(i+1, m):
255
+ l_ji = a[j][i] / a[i][i]
256
+ a[j][i] = l_ji
257
+ for k in range(i+1, n):
258
+ a[j][k] -= l_ji * a[i][k]
259
+
260
+ return swaps
261
+
262
+
263
+ def ddm_ilu_solve(x, L, U, swaps, b):
264
+ """x <-- solve(L*U*x = swaps(b))"""
265
+ m = len(U)
266
+ if not m:
267
+ return
268
+ n = len(U[0])
269
+
270
+ m2 = len(b)
271
+ if not m2:
272
+ raise DMShapeError("Shape mismtch")
273
+ o = len(b[0])
274
+
275
+ if m != m2:
276
+ raise DMShapeError("Shape mismtch")
277
+ if m < n:
278
+ raise NotImplementedError("Underdetermined")
279
+
280
+ if swaps:
281
+ b = [row[:] for row in b]
282
+ for i1, i2 in swaps:
283
+ b[i1], b[i2] = b[i2], b[i1]
284
+
285
+ # solve Ly = b
286
+ y = [[None] * o for _ in range(m)]
287
+ for k in range(o):
288
+ for i in range(m):
289
+ rhs = b[i][k]
290
+ for j in range(i):
291
+ rhs -= L[i][j] * y[j][k]
292
+ y[i][k] = rhs
293
+
294
+ if m > n:
295
+ for i in range(n, m):
296
+ for j in range(o):
297
+ if y[i][j]:
298
+ raise DMNonInvertibleMatrixError
299
+
300
+ # Solve Ux = y
301
+ for k in range(o):
302
+ for i in reversed(range(n)):
303
+ if not U[i][i]:
304
+ raise DMNonInvertibleMatrixError
305
+ rhs = y[i][k]
306
+ for j in range(i+1, n):
307
+ rhs -= U[i][j] * x[j][k]
308
+ x[i][k] = rhs / U[i][i]
309
+
310
+
311
+ def ddm_berk(M, K):
312
+ m = len(M)
313
+ if not m:
314
+ return [[K.one]]
315
+ n = len(M[0])
316
+
317
+ if m != n:
318
+ raise DMShapeError("Not square")
319
+
320
+ if n == 1:
321
+ return [[K.one], [-M[0][0]]]
322
+
323
+ a = M[0][0]
324
+ R = [M[0][1:]]
325
+ C = [[row[0]] for row in M[1:]]
326
+ A = [row[1:] for row in M[1:]]
327
+
328
+ q = ddm_berk(A, K)
329
+
330
+ T = [[K.zero] * n for _ in range(n+1)]
331
+ for i in range(n):
332
+ T[i][i] = K.one
333
+ T[i+1][i] = -a
334
+ for i in range(2, n+1):
335
+ if i == 2:
336
+ AnC = C
337
+ else:
338
+ C = AnC
339
+ AnC = [[K.zero] for row in C]
340
+ ddm_imatmul(AnC, A, C)
341
+ RAnC = [[K.zero]]
342
+ ddm_imatmul(RAnC, R, AnC)
343
+ for j in range(0, n+1-i):
344
+ T[i+j][j] = -RAnC[0][0]
345
+
346
+ qout = [[K.zero] for _ in range(n+1)]
347
+ ddm_imatmul(qout, T, q)
348
+ return qout
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/domainmatrix.py ADDED
@@ -0,0 +1,1791 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+
3
+ Module for the DomainMatrix class.
4
+
5
+ A DomainMatrix represents a matrix with elements that are in a particular
6
+ Domain. Each DomainMatrix internally wraps a DDM which is used for the
7
+ lower-level operations. The idea is that the DomainMatrix class provides the
8
+ convenience routines for converting between Expr and the poly domains as well
9
+ as unifying matrices with different domains.
10
+
11
+ """
12
+ from functools import reduce
13
+ from typing import Union as tUnion, Tuple as tTuple
14
+
15
+ from sympy.core.sympify import _sympify
16
+
17
+ from ..domains import Domain
18
+
19
+ from ..constructor import construct_domain
20
+
21
+ from .exceptions import (DMNonSquareMatrixError, DMShapeError,
22
+ DMDomainError, DMFormatError, DMBadInputError,
23
+ DMNotAField)
24
+
25
+ from .ddm import DDM
26
+
27
+ from .sdm import SDM
28
+
29
+ from .domainscalar import DomainScalar
30
+
31
+ from sympy.polys.domains import ZZ, EXRAW, QQ
32
+
33
+
34
+ def DM(rows, domain):
35
+ """Convenient alias for DomainMatrix.from_list
36
+
37
+ Examples
38
+ =======
39
+
40
+ >>> from sympy import ZZ
41
+ >>> from sympy.polys.matrices import DM
42
+ >>> DM([[1, 2], [3, 4]], ZZ)
43
+ DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
44
+
45
+ See also
46
+ =======
47
+
48
+ DomainMatrix.from_list
49
+ """
50
+ return DomainMatrix.from_list(rows, domain)
51
+
52
+
53
+ class DomainMatrix:
54
+ r"""
55
+ Associate Matrix with :py:class:`~.Domain`
56
+
57
+ Explanation
58
+ ===========
59
+
60
+ DomainMatrix uses :py:class:`~.Domain` for its internal representation
61
+ which makes it faster than the SymPy Matrix class (currently) for many
62
+ common operations, but this advantage makes it not entirely compatible
63
+ with Matrix. DomainMatrix are analogous to numpy arrays with "dtype".
64
+ In the DomainMatrix, each element has a domain such as :ref:`ZZ`
65
+ or :ref:`QQ(a)`.
66
+
67
+
68
+ Examples
69
+ ========
70
+
71
+ Creating a DomainMatrix from the existing Matrix class:
72
+
73
+ >>> from sympy import Matrix
74
+ >>> from sympy.polys.matrices import DomainMatrix
75
+ >>> Matrix1 = Matrix([
76
+ ... [1, 2],
77
+ ... [3, 4]])
78
+ >>> A = DomainMatrix.from_Matrix(Matrix1)
79
+ >>> A
80
+ DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
81
+
82
+ Directly forming a DomainMatrix:
83
+
84
+ >>> from sympy import ZZ
85
+ >>> from sympy.polys.matrices import DomainMatrix
86
+ >>> A = DomainMatrix([
87
+ ... [ZZ(1), ZZ(2)],
88
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
89
+ >>> A
90
+ DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
91
+
92
+ See Also
93
+ ========
94
+
95
+ DDM
96
+ SDM
97
+ Domain
98
+ Poly
99
+
100
+ """
101
+ rep: tUnion[SDM, DDM]
102
+ shape: tTuple[int, int]
103
+ domain: Domain
104
+
105
+ def __new__(cls, rows, shape, domain, *, fmt=None):
106
+ """
107
+ Creates a :py:class:`~.DomainMatrix`.
108
+
109
+ Parameters
110
+ ==========
111
+
112
+ rows : Represents elements of DomainMatrix as list of lists
113
+ shape : Represents dimension of DomainMatrix
114
+ domain : Represents :py:class:`~.Domain` of DomainMatrix
115
+
116
+ Raises
117
+ ======
118
+
119
+ TypeError
120
+ If any of rows, shape and domain are not provided
121
+
122
+ """
123
+ if isinstance(rows, (DDM, SDM)):
124
+ raise TypeError("Use from_rep to initialise from SDM/DDM")
125
+ elif isinstance(rows, list):
126
+ rep = DDM(rows, shape, domain)
127
+ elif isinstance(rows, dict):
128
+ rep = SDM(rows, shape, domain)
129
+ else:
130
+ msg = "Input should be list-of-lists or dict-of-dicts"
131
+ raise TypeError(msg)
132
+
133
+ if fmt is not None:
134
+ if fmt == 'sparse':
135
+ rep = rep.to_sdm()
136
+ elif fmt == 'dense':
137
+ rep = rep.to_ddm()
138
+ else:
139
+ raise ValueError("fmt should be 'sparse' or 'dense'")
140
+
141
+ return cls.from_rep(rep)
142
+
143
+ def __getnewargs__(self):
144
+ rep = self.rep
145
+ if isinstance(rep, DDM):
146
+ arg = list(rep)
147
+ elif isinstance(rep, SDM):
148
+ arg = dict(rep)
149
+ else:
150
+ raise RuntimeError # pragma: no cover
151
+ return arg, self.shape, self.domain
152
+
153
+ def __getitem__(self, key):
154
+ i, j = key
155
+ m, n = self.shape
156
+ if not (isinstance(i, slice) or isinstance(j, slice)):
157
+ return DomainScalar(self.rep.getitem(i, j), self.domain)
158
+
159
+ if not isinstance(i, slice):
160
+ if not -m <= i < m:
161
+ raise IndexError("Row index out of range")
162
+ i = i % m
163
+ i = slice(i, i+1)
164
+ if not isinstance(j, slice):
165
+ if not -n <= j < n:
166
+ raise IndexError("Column index out of range")
167
+ j = j % n
168
+ j = slice(j, j+1)
169
+
170
+ return self.from_rep(self.rep.extract_slice(i, j))
171
+
172
+ def getitem_sympy(self, i, j):
173
+ return self.domain.to_sympy(self.rep.getitem(i, j))
174
+
175
+ def extract(self, rowslist, colslist):
176
+ return self.from_rep(self.rep.extract(rowslist, colslist))
177
+
178
+ def __setitem__(self, key, value):
179
+ i, j = key
180
+ if not self.domain.of_type(value):
181
+ raise TypeError
182
+ if isinstance(i, int) and isinstance(j, int):
183
+ self.rep.setitem(i, j, value)
184
+ else:
185
+ raise NotImplementedError
186
+
187
+ @classmethod
188
+ def from_rep(cls, rep):
189
+ """Create a new DomainMatrix efficiently from DDM/SDM.
190
+
191
+ Examples
192
+ ========
193
+
194
+ Create a :py:class:`~.DomainMatrix` with an dense internal
195
+ representation as :py:class:`~.DDM`:
196
+
197
+ >>> from sympy.polys.domains import ZZ
198
+ >>> from sympy.polys.matrices import DomainMatrix
199
+ >>> from sympy.polys.matrices.ddm import DDM
200
+ >>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
201
+ >>> dM = DomainMatrix.from_rep(drep)
202
+ >>> dM
203
+ DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
204
+
205
+ Create a :py:class:`~.DomainMatrix` with a sparse internal
206
+ representation as :py:class:`~.SDM`:
207
+
208
+ >>> from sympy.polys.matrices import DomainMatrix
209
+ >>> from sympy.polys.matrices.sdm import SDM
210
+ >>> from sympy import ZZ
211
+ >>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ)
212
+ >>> dM = DomainMatrix.from_rep(drep)
213
+ >>> dM
214
+ DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)
215
+
216
+ Parameters
217
+ ==========
218
+
219
+ rep: SDM or DDM
220
+ The internal sparse or dense representation of the matrix.
221
+
222
+ Returns
223
+ =======
224
+
225
+ DomainMatrix
226
+ A :py:class:`~.DomainMatrix` wrapping *rep*.
227
+
228
+ Notes
229
+ =====
230
+
231
+ This takes ownership of rep as its internal representation. If rep is
232
+ being mutated elsewhere then a copy should be provided to
233
+ ``from_rep``. Only minimal verification or checking is done on *rep*
234
+ as this is supposed to be an efficient internal routine.
235
+
236
+ """
237
+ if not isinstance(rep, (DDM, SDM)):
238
+ raise TypeError("rep should be of type DDM or SDM")
239
+ self = super().__new__(cls)
240
+ self.rep = rep
241
+ self.shape = rep.shape
242
+ self.domain = rep.domain
243
+ return self
244
+
245
+
246
+ @classmethod
247
+ def from_list(cls, rows, domain):
248
+ r"""
249
+ Convert a list of lists into a DomainMatrix
250
+
251
+ Parameters
252
+ ==========
253
+
254
+ rows: list of lists
255
+ Each element of the inner lists should be either the single arg,
256
+ or tuple of args, that would be passed to the domain constructor
257
+ in order to form an element of the domain. See examples.
258
+
259
+ Returns
260
+ =======
261
+
262
+ DomainMatrix containing elements defined in rows
263
+
264
+ Examples
265
+ ========
266
+
267
+ >>> from sympy.polys.matrices import DomainMatrix
268
+ >>> from sympy import FF, QQ, ZZ
269
+ >>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ)
270
+ >>> A
271
+ DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ)
272
+ >>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7))
273
+ >>> B
274
+ DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7))
275
+ >>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ)
276
+ >>> C
277
+ DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ)
278
+
279
+ See Also
280
+ ========
281
+
282
+ from_list_sympy
283
+
284
+ """
285
+ nrows = len(rows)
286
+ ncols = 0 if not nrows else len(rows[0])
287
+ conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e)
288
+ domain_rows = [[conv(e) for e in row] for row in rows]
289
+ return DomainMatrix(domain_rows, (nrows, ncols), domain)
290
+
291
+
292
+ @classmethod
293
+ def from_list_sympy(cls, nrows, ncols, rows, **kwargs):
294
+ r"""
295
+ Convert a list of lists of Expr into a DomainMatrix using construct_domain
296
+
297
+ Parameters
298
+ ==========
299
+
300
+ nrows: number of rows
301
+ ncols: number of columns
302
+ rows: list of lists
303
+
304
+ Returns
305
+ =======
306
+
307
+ DomainMatrix containing elements of rows
308
+
309
+ Examples
310
+ ========
311
+
312
+ >>> from sympy.polys.matrices import DomainMatrix
313
+ >>> from sympy.abc import x, y, z
314
+ >>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]])
315
+ >>> A
316
+ DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z])
317
+
318
+ See Also
319
+ ========
320
+
321
+ sympy.polys.constructor.construct_domain, from_dict_sympy
322
+
323
+ """
324
+ assert len(rows) == nrows
325
+ assert all(len(row) == ncols for row in rows)
326
+
327
+ items_sympy = [_sympify(item) for row in rows for item in row]
328
+
329
+ domain, items_domain = cls.get_domain(items_sympy, **kwargs)
330
+
331
+ domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)]
332
+
333
+ return DomainMatrix(domain_rows, (nrows, ncols), domain)
334
+
335
+ @classmethod
336
+ def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs):
337
+ """
338
+
339
+ Parameters
340
+ ==========
341
+
342
+ nrows: number of rows
343
+ ncols: number of cols
344
+ elemsdict: dict of dicts containing non-zero elements of the DomainMatrix
345
+
346
+ Returns
347
+ =======
348
+
349
+ DomainMatrix containing elements of elemsdict
350
+
351
+ Examples
352
+ ========
353
+
354
+ >>> from sympy.polys.matrices import DomainMatrix
355
+ >>> from sympy.abc import x,y,z
356
+ >>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}}
357
+ >>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict)
358
+ >>> A
359
+ DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z])
360
+
361
+ See Also
362
+ ========
363
+
364
+ from_list_sympy
365
+
366
+ """
367
+ if not all(0 <= r < nrows for r in elemsdict):
368
+ raise DMBadInputError("Row out of range")
369
+ if not all(0 <= c < ncols for row in elemsdict.values() for c in row):
370
+ raise DMBadInputError("Column out of range")
371
+
372
+ items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()]
373
+ domain, items_domain = cls.get_domain(items_sympy, **kwargs)
374
+
375
+ idx = 0
376
+ items_dict = {}
377
+ for i, row in elemsdict.items():
378
+ items_dict[i] = {}
379
+ for j in row:
380
+ items_dict[i][j] = items_domain[idx]
381
+ idx += 1
382
+
383
+ return DomainMatrix(items_dict, (nrows, ncols), domain)
384
+
385
+ @classmethod
386
+ def from_Matrix(cls, M, fmt='sparse',**kwargs):
387
+ r"""
388
+ Convert Matrix to DomainMatrix
389
+
390
+ Parameters
391
+ ==========
392
+
393
+ M: Matrix
394
+
395
+ Returns
396
+ =======
397
+
398
+ Returns DomainMatrix with identical elements as M
399
+
400
+ Examples
401
+ ========
402
+
403
+ >>> from sympy import Matrix
404
+ >>> from sympy.polys.matrices import DomainMatrix
405
+ >>> M = Matrix([
406
+ ... [1.0, 3.4],
407
+ ... [2.4, 1]])
408
+ >>> A = DomainMatrix.from_Matrix(M)
409
+ >>> A
410
+ DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR)
411
+
412
+ We can keep internal representation as ddm using fmt='dense'
413
+ >>> from sympy import Matrix, QQ
414
+ >>> from sympy.polys.matrices import DomainMatrix
415
+ >>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense')
416
+ >>> A.rep
417
+ [[1/2, 3/4], [0, 0]]
418
+
419
+ See Also
420
+ ========
421
+
422
+ Matrix
423
+
424
+ """
425
+ if fmt == 'dense':
426
+ return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs)
427
+
428
+ return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs)
429
+
430
+ @classmethod
431
+ def get_domain(cls, items_sympy, **kwargs):
432
+ K, items_K = construct_domain(items_sympy, **kwargs)
433
+ return K, items_K
434
+
435
+ def copy(self):
436
+ return self.from_rep(self.rep.copy())
437
+
438
+ def convert_to(self, K):
439
+ r"""
440
+ Change the domain of DomainMatrix to desired domain or field
441
+
442
+ Parameters
443
+ ==========
444
+
445
+ K : Represents the desired domain or field.
446
+ Alternatively, ``None`` may be passed, in which case this method
447
+ just returns a copy of this DomainMatrix.
448
+
449
+ Returns
450
+ =======
451
+
452
+ DomainMatrix
453
+ DomainMatrix with the desired domain or field
454
+
455
+ Examples
456
+ ========
457
+
458
+ >>> from sympy import ZZ, ZZ_I
459
+ >>> from sympy.polys.matrices import DomainMatrix
460
+ >>> A = DomainMatrix([
461
+ ... [ZZ(1), ZZ(2)],
462
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
463
+
464
+ >>> A.convert_to(ZZ_I)
465
+ DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I)
466
+
467
+ """
468
+ if K is None:
469
+ return self.copy()
470
+ return self.from_rep(self.rep.convert_to(K))
471
+
472
+ def to_sympy(self):
473
+ return self.convert_to(EXRAW)
474
+
475
+ def to_field(self):
476
+ r"""
477
+ Returns a DomainMatrix with the appropriate field
478
+
479
+ Returns
480
+ =======
481
+
482
+ DomainMatrix
483
+ DomainMatrix with the appropriate field
484
+
485
+ Examples
486
+ ========
487
+
488
+ >>> from sympy import ZZ
489
+ >>> from sympy.polys.matrices import DomainMatrix
490
+ >>> A = DomainMatrix([
491
+ ... [ZZ(1), ZZ(2)],
492
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
493
+
494
+ >>> A.to_field()
495
+ DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)
496
+
497
+ """
498
+ K = self.domain.get_field()
499
+ return self.convert_to(K)
500
+
501
+ def to_sparse(self):
502
+ """
503
+ Return a sparse DomainMatrix representation of *self*.
504
+
505
+ Examples
506
+ ========
507
+
508
+ >>> from sympy.polys.matrices import DomainMatrix
509
+ >>> from sympy import QQ
510
+ >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
511
+ >>> A.rep
512
+ [[1, 0], [0, 2]]
513
+ >>> B = A.to_sparse()
514
+ >>> B.rep
515
+ {0: {0: 1}, 1: {1: 2}}
516
+ """
517
+ if self.rep.fmt == 'sparse':
518
+ return self
519
+
520
+ return self.from_rep(SDM.from_ddm(self.rep))
521
+
522
+ def to_dense(self):
523
+ """
524
+ Return a dense DomainMatrix representation of *self*.
525
+
526
+ Examples
527
+ ========
528
+
529
+ >>> from sympy.polys.matrices import DomainMatrix
530
+ >>> from sympy import QQ
531
+ >>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ)
532
+ >>> A.rep
533
+ {0: {0: 1}, 1: {1: 2}}
534
+ >>> B = A.to_dense()
535
+ >>> B.rep
536
+ [[1, 0], [0, 2]]
537
+
538
+ """
539
+ if self.rep.fmt == 'dense':
540
+ return self
541
+
542
+ return self.from_rep(SDM.to_ddm(self.rep))
543
+
544
+ @classmethod
545
+ def _unify_domain(cls, *matrices):
546
+ """Convert matrices to a common domain"""
547
+ domains = {matrix.domain for matrix in matrices}
548
+ if len(domains) == 1:
549
+ return matrices
550
+ domain = reduce(lambda x, y: x.unify(y), domains)
551
+ return tuple(matrix.convert_to(domain) for matrix in matrices)
552
+
553
+ @classmethod
554
+ def _unify_fmt(cls, *matrices, fmt=None):
555
+ """Convert matrices to the same format.
556
+
557
+ If all matrices have the same format, then return unmodified.
558
+ Otherwise convert both to the preferred format given as *fmt* which
559
+ should be 'dense' or 'sparse'.
560
+ """
561
+ formats = {matrix.rep.fmt for matrix in matrices}
562
+ if len(formats) == 1:
563
+ return matrices
564
+ if fmt == 'sparse':
565
+ return tuple(matrix.to_sparse() for matrix in matrices)
566
+ elif fmt == 'dense':
567
+ return tuple(matrix.to_dense() for matrix in matrices)
568
+ else:
569
+ raise ValueError("fmt should be 'sparse' or 'dense'")
570
+
571
+ def unify(self, *others, fmt=None):
572
+ """
573
+ Unifies the domains and the format of self and other
574
+ matrices.
575
+
576
+ Parameters
577
+ ==========
578
+
579
+ others : DomainMatrix
580
+
581
+ fmt: string 'dense', 'sparse' or `None` (default)
582
+ The preferred format to convert to if self and other are not
583
+ already in the same format. If `None` or not specified then no
584
+ conversion if performed.
585
+
586
+ Returns
587
+ =======
588
+
589
+ Tuple[DomainMatrix]
590
+ Matrices with unified domain and format
591
+
592
+ Examples
593
+ ========
594
+
595
+ Unify the domain of DomainMatrix that have different domains:
596
+
597
+ >>> from sympy import ZZ, QQ
598
+ >>> from sympy.polys.matrices import DomainMatrix
599
+ >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
600
+ >>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ)
601
+ >>> Aq, Bq = A.unify(B)
602
+ >>> Aq
603
+ DomainMatrix([[1, 2]], (1, 2), QQ)
604
+ >>> Bq
605
+ DomainMatrix([[1/2, 2]], (1, 2), QQ)
606
+
607
+ Unify the format (dense or sparse):
608
+
609
+ >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
610
+ >>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ)
611
+ >>> B.rep
612
+ {0: {0: 1}}
613
+
614
+ >>> A2, B2 = A.unify(B, fmt='dense')
615
+ >>> B2.rep
616
+ [[1, 0], [0, 0]]
617
+
618
+ See Also
619
+ ========
620
+
621
+ convert_to, to_dense, to_sparse
622
+
623
+ """
624
+ matrices = (self,) + others
625
+ matrices = DomainMatrix._unify_domain(*matrices)
626
+ if fmt is not None:
627
+ matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt)
628
+ return matrices
629
+
630
+ def to_Matrix(self):
631
+ r"""
632
+ Convert DomainMatrix to Matrix
633
+
634
+ Returns
635
+ =======
636
+
637
+ Matrix
638
+ MutableDenseMatrix for the DomainMatrix
639
+
640
+ Examples
641
+ ========
642
+
643
+ >>> from sympy import ZZ
644
+ >>> from sympy.polys.matrices import DomainMatrix
645
+ >>> A = DomainMatrix([
646
+ ... [ZZ(1), ZZ(2)],
647
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
648
+
649
+ >>> A.to_Matrix()
650
+ Matrix([
651
+ [1, 2],
652
+ [3, 4]])
653
+
654
+ See Also
655
+ ========
656
+
657
+ from_Matrix
658
+
659
+ """
660
+ from sympy.matrices.dense import MutableDenseMatrix
661
+ elemlist = self.rep.to_list()
662
+ elements_sympy = [self.domain.to_sympy(e) for row in elemlist for e in row]
663
+ return MutableDenseMatrix(*self.shape, elements_sympy)
664
+
665
+ def to_list(self):
666
+ return self.rep.to_list()
667
+
668
+ def to_list_flat(self):
669
+ return self.rep.to_list_flat()
670
+
671
+ def to_dok(self):
672
+ return self.rep.to_dok()
673
+
674
+ def __repr__(self):
675
+ return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain)
676
+
677
+ def transpose(self):
678
+ """Matrix transpose of ``self``"""
679
+ return self.from_rep(self.rep.transpose())
680
+
681
+ def flat(self):
682
+ rows, cols = self.shape
683
+ return [self[i,j].element for i in range(rows) for j in range(cols)]
684
+
685
+ @property
686
+ def is_zero_matrix(self):
687
+ return self.rep.is_zero_matrix()
688
+
689
+ @property
690
+ def is_upper(self):
691
+ """
692
+ Says whether this matrix is upper-triangular. True can be returned
693
+ even if the matrix is not square.
694
+ """
695
+ return self.rep.is_upper()
696
+
697
+ @property
698
+ def is_lower(self):
699
+ """
700
+ Says whether this matrix is lower-triangular. True can be returned
701
+ even if the matrix is not square.
702
+ """
703
+ return self.rep.is_lower()
704
+
705
+ @property
706
+ def is_square(self):
707
+ return self.shape[0] == self.shape[1]
708
+
709
+ def rank(self):
710
+ rref, pivots = self.rref()
711
+ return len(pivots)
712
+
713
+ def hstack(A, *B):
714
+ r"""Horizontally stack the given matrices.
715
+
716
+ Parameters
717
+ ==========
718
+
719
+ B: DomainMatrix
720
+ Matrices to stack horizontally.
721
+
722
+ Returns
723
+ =======
724
+
725
+ DomainMatrix
726
+ DomainMatrix by stacking horizontally.
727
+
728
+ Examples
729
+ ========
730
+
731
+ >>> from sympy import ZZ
732
+ >>> from sympy.polys.matrices import DomainMatrix
733
+
734
+ >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
735
+ >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
736
+ >>> A.hstack(B)
737
+ DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ)
738
+
739
+ >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
740
+ >>> A.hstack(B, C)
741
+ DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ)
742
+
743
+ See Also
744
+ ========
745
+
746
+ unify
747
+ """
748
+ A, *B = A.unify(*B, fmt='dense')
749
+ return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B)))
750
+
751
+ def vstack(A, *B):
752
+ r"""Vertically stack the given matrices.
753
+
754
+ Parameters
755
+ ==========
756
+
757
+ B: DomainMatrix
758
+ Matrices to stack vertically.
759
+
760
+ Returns
761
+ =======
762
+
763
+ DomainMatrix
764
+ DomainMatrix by stacking vertically.
765
+
766
+ Examples
767
+ ========
768
+
769
+ >>> from sympy import ZZ
770
+ >>> from sympy.polys.matrices import DomainMatrix
771
+
772
+ >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
773
+ >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
774
+ >>> A.vstack(B)
775
+ DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ)
776
+
777
+ >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
778
+ >>> A.vstack(B, C)
779
+ DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ)
780
+
781
+ See Also
782
+ ========
783
+
784
+ unify
785
+ """
786
+ A, *B = A.unify(*B, fmt='dense')
787
+ return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B)))
788
+
789
+ def applyfunc(self, func, domain=None):
790
+ if domain is None:
791
+ domain = self.domain
792
+ return self.from_rep(self.rep.applyfunc(func, domain))
793
+
794
+ def __add__(A, B):
795
+ if not isinstance(B, DomainMatrix):
796
+ return NotImplemented
797
+ A, B = A.unify(B, fmt='dense')
798
+ return A.add(B)
799
+
800
+ def __sub__(A, B):
801
+ if not isinstance(B, DomainMatrix):
802
+ return NotImplemented
803
+ A, B = A.unify(B, fmt='dense')
804
+ return A.sub(B)
805
+
806
+ def __neg__(A):
807
+ return A.neg()
808
+
809
+ def __mul__(A, B):
810
+ """A * B"""
811
+ if isinstance(B, DomainMatrix):
812
+ A, B = A.unify(B, fmt='dense')
813
+ return A.matmul(B)
814
+ elif B in A.domain:
815
+ return A.scalarmul(B)
816
+ elif isinstance(B, DomainScalar):
817
+ A, B = A.unify(B)
818
+ return A.scalarmul(B.element)
819
+ else:
820
+ return NotImplemented
821
+
822
+ def __rmul__(A, B):
823
+ if B in A.domain:
824
+ return A.rscalarmul(B)
825
+ elif isinstance(B, DomainScalar):
826
+ A, B = A.unify(B)
827
+ return A.rscalarmul(B.element)
828
+ else:
829
+ return NotImplemented
830
+
831
+ def __pow__(A, n):
832
+ """A ** n"""
833
+ if not isinstance(n, int):
834
+ return NotImplemented
835
+ return A.pow(n)
836
+
837
+ def _check(a, op, b, ashape, bshape):
838
+ if a.domain != b.domain:
839
+ msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
840
+ raise DMDomainError(msg)
841
+ if ashape != bshape:
842
+ msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
843
+ raise DMShapeError(msg)
844
+ if a.rep.fmt != b.rep.fmt:
845
+ msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt)
846
+ raise DMFormatError(msg)
847
+
848
+ def add(A, B):
849
+ r"""
850
+ Adds two DomainMatrix matrices of the same Domain
851
+
852
+ Parameters
853
+ ==========
854
+
855
+ A, B: DomainMatrix
856
+ matrices to add
857
+
858
+ Returns
859
+ =======
860
+
861
+ DomainMatrix
862
+ DomainMatrix after Addition
863
+
864
+ Raises
865
+ ======
866
+
867
+ DMShapeError
868
+ If the dimensions of the two DomainMatrix are not equal
869
+
870
+ ValueError
871
+ If the domain of the two DomainMatrix are not same
872
+
873
+ Examples
874
+ ========
875
+
876
+ >>> from sympy import ZZ
877
+ >>> from sympy.polys.matrices import DomainMatrix
878
+ >>> A = DomainMatrix([
879
+ ... [ZZ(1), ZZ(2)],
880
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
881
+ >>> B = DomainMatrix([
882
+ ... [ZZ(4), ZZ(3)],
883
+ ... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
884
+
885
+ >>> A.add(B)
886
+ DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ)
887
+
888
+ See Also
889
+ ========
890
+
891
+ sub, matmul
892
+
893
+ """
894
+ A._check('+', B, A.shape, B.shape)
895
+ return A.from_rep(A.rep.add(B.rep))
896
+
897
+
898
+ def sub(A, B):
899
+ r"""
900
+ Subtracts two DomainMatrix matrices of the same Domain
901
+
902
+ Parameters
903
+ ==========
904
+
905
+ A, B: DomainMatrix
906
+ matrices to subtract
907
+
908
+ Returns
909
+ =======
910
+
911
+ DomainMatrix
912
+ DomainMatrix after Subtraction
913
+
914
+ Raises
915
+ ======
916
+
917
+ DMShapeError
918
+ If the dimensions of the two DomainMatrix are not equal
919
+
920
+ ValueError
921
+ If the domain of the two DomainMatrix are not same
922
+
923
+ Examples
924
+ ========
925
+
926
+ >>> from sympy import ZZ
927
+ >>> from sympy.polys.matrices import DomainMatrix
928
+ >>> A = DomainMatrix([
929
+ ... [ZZ(1), ZZ(2)],
930
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
931
+ >>> B = DomainMatrix([
932
+ ... [ZZ(4), ZZ(3)],
933
+ ... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
934
+
935
+ >>> A.sub(B)
936
+ DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ)
937
+
938
+ See Also
939
+ ========
940
+
941
+ add, matmul
942
+
943
+ """
944
+ A._check('-', B, A.shape, B.shape)
945
+ return A.from_rep(A.rep.sub(B.rep))
946
+
947
+ def neg(A):
948
+ r"""
949
+ Returns the negative of DomainMatrix
950
+
951
+ Parameters
952
+ ==========
953
+
954
+ A : Represents a DomainMatrix
955
+
956
+ Returns
957
+ =======
958
+
959
+ DomainMatrix
960
+ DomainMatrix after Negation
961
+
962
+ Examples
963
+ ========
964
+
965
+ >>> from sympy import ZZ
966
+ >>> from sympy.polys.matrices import DomainMatrix
967
+ >>> A = DomainMatrix([
968
+ ... [ZZ(1), ZZ(2)],
969
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
970
+
971
+ >>> A.neg()
972
+ DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ)
973
+
974
+ """
975
+ return A.from_rep(A.rep.neg())
976
+
977
+ def mul(A, b):
978
+ r"""
979
+ Performs term by term multiplication for the second DomainMatrix
980
+ w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are
981
+ list of DomainMatrix matrices created after term by term multiplication.
982
+
983
+ Parameters
984
+ ==========
985
+
986
+ A, B: DomainMatrix
987
+ matrices to multiply term-wise
988
+
989
+ Returns
990
+ =======
991
+
992
+ DomainMatrix
993
+ DomainMatrix after term by term multiplication
994
+
995
+ Examples
996
+ ========
997
+
998
+ >>> from sympy import ZZ
999
+ >>> from sympy.polys.matrices import DomainMatrix
1000
+ >>> A = DomainMatrix([
1001
+ ... [ZZ(1), ZZ(2)],
1002
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
1003
+ >>> B = DomainMatrix([
1004
+ ... [ZZ(1), ZZ(1)],
1005
+ ... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
1006
+
1007
+ >>> A.mul(B)
1008
+ DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ),
1009
+ DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)],
1010
+ [DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ),
1011
+ DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]], (2, 2), ZZ)
1012
+
1013
+ See Also
1014
+ ========
1015
+
1016
+ matmul
1017
+
1018
+ """
1019
+ return A.from_rep(A.rep.mul(b))
1020
+
1021
+ def rmul(A, b):
1022
+ return A.from_rep(A.rep.rmul(b))
1023
+
1024
+ def matmul(A, B):
1025
+ r"""
1026
+ Performs matrix multiplication of two DomainMatrix matrices
1027
+
1028
+ Parameters
1029
+ ==========
1030
+
1031
+ A, B: DomainMatrix
1032
+ to multiply
1033
+
1034
+ Returns
1035
+ =======
1036
+
1037
+ DomainMatrix
1038
+ DomainMatrix after multiplication
1039
+
1040
+ Examples
1041
+ ========
1042
+
1043
+ >>> from sympy import ZZ
1044
+ >>> from sympy.polys.matrices import DomainMatrix
1045
+ >>> A = DomainMatrix([
1046
+ ... [ZZ(1), ZZ(2)],
1047
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
1048
+ >>> B = DomainMatrix([
1049
+ ... [ZZ(1), ZZ(1)],
1050
+ ... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
1051
+
1052
+ >>> A.matmul(B)
1053
+ DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ)
1054
+
1055
+ See Also
1056
+ ========
1057
+
1058
+ mul, pow, add, sub
1059
+
1060
+ """
1061
+
1062
+ A._check('*', B, A.shape[1], B.shape[0])
1063
+ return A.from_rep(A.rep.matmul(B.rep))
1064
+
1065
+ def _scalarmul(A, lamda, reverse):
1066
+ if lamda == A.domain.zero:
1067
+ return DomainMatrix.zeros(A.shape, A.domain)
1068
+ elif lamda == A.domain.one:
1069
+ return A.copy()
1070
+ elif reverse:
1071
+ return A.rmul(lamda)
1072
+ else:
1073
+ return A.mul(lamda)
1074
+
1075
+ def scalarmul(A, lamda):
1076
+ return A._scalarmul(lamda, reverse=False)
1077
+
1078
+ def rscalarmul(A, lamda):
1079
+ return A._scalarmul(lamda, reverse=True)
1080
+
1081
+ def mul_elementwise(A, B):
1082
+ assert A.domain == B.domain
1083
+ return A.from_rep(A.rep.mul_elementwise(B.rep))
1084
+
1085
+ def __truediv__(A, lamda):
1086
+ """ Method for Scalar Division"""
1087
+ if isinstance(lamda, int) or ZZ.of_type(lamda):
1088
+ lamda = DomainScalar(ZZ(lamda), ZZ)
1089
+
1090
+ if not isinstance(lamda, DomainScalar):
1091
+ return NotImplemented
1092
+
1093
+ A, lamda = A.to_field().unify(lamda)
1094
+ if lamda.element == lamda.domain.zero:
1095
+ raise ZeroDivisionError
1096
+ if lamda.element == lamda.domain.one:
1097
+ return A.to_field()
1098
+
1099
+ return A.mul(1 / lamda.element)
1100
+
1101
+ def pow(A, n):
1102
+ r"""
1103
+ Computes A**n
1104
+
1105
+ Parameters
1106
+ ==========
1107
+
1108
+ A : DomainMatrix
1109
+
1110
+ n : exponent for A
1111
+
1112
+ Returns
1113
+ =======
1114
+
1115
+ DomainMatrix
1116
+ DomainMatrix on computing A**n
1117
+
1118
+ Raises
1119
+ ======
1120
+
1121
+ NotImplementedError
1122
+ if n is negative.
1123
+
1124
+ Examples
1125
+ ========
1126
+
1127
+ >>> from sympy import ZZ
1128
+ >>> from sympy.polys.matrices import DomainMatrix
1129
+ >>> A = DomainMatrix([
1130
+ ... [ZZ(1), ZZ(1)],
1131
+ ... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
1132
+
1133
+ >>> A.pow(2)
1134
+ DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ)
1135
+
1136
+ See Also
1137
+ ========
1138
+
1139
+ matmul
1140
+
1141
+ """
1142
+ nrows, ncols = A.shape
1143
+ if nrows != ncols:
1144
+ raise DMNonSquareMatrixError('Power of a nonsquare matrix')
1145
+ if n < 0:
1146
+ raise NotImplementedError('Negative powers')
1147
+ elif n == 0:
1148
+ return A.eye(nrows, A.domain)
1149
+ elif n == 1:
1150
+ return A
1151
+ elif n % 2 == 1:
1152
+ return A * A**(n - 1)
1153
+ else:
1154
+ sqrtAn = A ** (n // 2)
1155
+ return sqrtAn * sqrtAn
1156
+
1157
+ def scc(self):
1158
+ """Compute the strongly connected components of a DomainMatrix
1159
+
1160
+ Explanation
1161
+ ===========
1162
+
1163
+ A square matrix can be considered as the adjacency matrix for a
1164
+ directed graph where the row and column indices are the vertices. In
1165
+ this graph if there is an edge from vertex ``i`` to vertex ``j`` if
1166
+ ``M[i, j]`` is nonzero. This routine computes the strongly connected
1167
+ components of that graph which are subsets of the rows and columns that
1168
+ are connected by some nonzero element of the matrix. The strongly
1169
+ connected components are useful because many operations such as the
1170
+ determinant can be computed by working with the submatrices
1171
+ corresponding to each component.
1172
+
1173
+ Examples
1174
+ ========
1175
+
1176
+ Find the strongly connected components of a matrix:
1177
+
1178
+ >>> from sympy import ZZ
1179
+ >>> from sympy.polys.matrices import DomainMatrix
1180
+ >>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)],
1181
+ ... [ZZ(0), ZZ(3), ZZ(0)],
1182
+ ... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ)
1183
+ >>> M.scc()
1184
+ [[1], [0, 2]]
1185
+
1186
+ Compute the determinant from the components:
1187
+
1188
+ >>> MM = M.to_Matrix()
1189
+ >>> MM
1190
+ Matrix([
1191
+ [1, 0, 2],
1192
+ [0, 3, 0],
1193
+ [4, 6, 5]])
1194
+ >>> MM[[1], [1]]
1195
+ Matrix([[3]])
1196
+ >>> MM[[0, 2], [0, 2]]
1197
+ Matrix([
1198
+ [1, 2],
1199
+ [4, 5]])
1200
+ >>> MM.det()
1201
+ -9
1202
+ >>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det()
1203
+ -9
1204
+
1205
+ The components are given in reverse topological order and represent a
1206
+ permutation of the rows and columns that will bring the matrix into
1207
+ block lower-triangular form:
1208
+
1209
+ >>> MM[[1, 0, 2], [1, 0, 2]]
1210
+ Matrix([
1211
+ [3, 0, 0],
1212
+ [0, 1, 2],
1213
+ [6, 4, 5]])
1214
+
1215
+ Returns
1216
+ =======
1217
+
1218
+ List of lists of integers
1219
+ Each list represents a strongly connected component.
1220
+
1221
+ See also
1222
+ ========
1223
+
1224
+ sympy.matrices.matrices.MatrixBase.strongly_connected_components
1225
+ sympy.utilities.iterables.strongly_connected_components
1226
+
1227
+ """
1228
+ rows, cols = self.shape
1229
+ assert rows == cols
1230
+ return self.rep.scc()
1231
+
1232
+ def rref(self):
1233
+ r"""
1234
+ Returns reduced-row echelon form and list of pivots for the DomainMatrix
1235
+
1236
+ Returns
1237
+ =======
1238
+
1239
+ (DomainMatrix, list)
1240
+ reduced-row echelon form and list of pivots for the DomainMatrix
1241
+
1242
+ Raises
1243
+ ======
1244
+
1245
+ ValueError
1246
+ If the domain of DomainMatrix not a Field
1247
+
1248
+ Examples
1249
+ ========
1250
+
1251
+ >>> from sympy import QQ
1252
+ >>> from sympy.polys.matrices import DomainMatrix
1253
+ >>> A = DomainMatrix([
1254
+ ... [QQ(2), QQ(-1), QQ(0)],
1255
+ ... [QQ(-1), QQ(2), QQ(-1)],
1256
+ ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
1257
+
1258
+ >>> rref_matrix, rref_pivots = A.rref()
1259
+ >>> rref_matrix
1260
+ DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ)
1261
+ >>> rref_pivots
1262
+ (0, 1, 2)
1263
+
1264
+ See Also
1265
+ ========
1266
+
1267
+ convert_to, lu
1268
+
1269
+ """
1270
+ if not self.domain.is_Field:
1271
+ raise DMNotAField('Not a field')
1272
+ rref_ddm, pivots = self.rep.rref()
1273
+ return self.from_rep(rref_ddm), tuple(pivots)
1274
+
1275
+ def columnspace(self):
1276
+ r"""
1277
+ Returns the columnspace for the DomainMatrix
1278
+
1279
+ Returns
1280
+ =======
1281
+
1282
+ DomainMatrix
1283
+ The columns of this matrix form a basis for the columnspace.
1284
+
1285
+ Examples
1286
+ ========
1287
+
1288
+ >>> from sympy import QQ
1289
+ >>> from sympy.polys.matrices import DomainMatrix
1290
+ >>> A = DomainMatrix([
1291
+ ... [QQ(1), QQ(-1)],
1292
+ ... [QQ(2), QQ(-2)]], (2, 2), QQ)
1293
+ >>> A.columnspace()
1294
+ DomainMatrix([[1], [2]], (2, 1), QQ)
1295
+
1296
+ """
1297
+ if not self.domain.is_Field:
1298
+ raise DMNotAField('Not a field')
1299
+ rref, pivots = self.rref()
1300
+ rows, cols = self.shape
1301
+ return self.extract(range(rows), pivots)
1302
+
1303
+ def rowspace(self):
1304
+ r"""
1305
+ Returns the rowspace for the DomainMatrix
1306
+
1307
+ Returns
1308
+ =======
1309
+
1310
+ DomainMatrix
1311
+ The rows of this matrix form a basis for the rowspace.
1312
+
1313
+ Examples
1314
+ ========
1315
+
1316
+ >>> from sympy import QQ
1317
+ >>> from sympy.polys.matrices import DomainMatrix
1318
+ >>> A = DomainMatrix([
1319
+ ... [QQ(1), QQ(-1)],
1320
+ ... [QQ(2), QQ(-2)]], (2, 2), QQ)
1321
+ >>> A.rowspace()
1322
+ DomainMatrix([[1, -1]], (1, 2), QQ)
1323
+
1324
+ """
1325
+ if not self.domain.is_Field:
1326
+ raise DMNotAField('Not a field')
1327
+ rref, pivots = self.rref()
1328
+ rows, cols = self.shape
1329
+ return self.extract(range(len(pivots)), range(cols))
1330
+
1331
+ def nullspace(self):
1332
+ r"""
1333
+ Returns the nullspace for the DomainMatrix
1334
+
1335
+ Returns
1336
+ =======
1337
+
1338
+ DomainMatrix
1339
+ The rows of this matrix form a basis for the nullspace.
1340
+
1341
+ Examples
1342
+ ========
1343
+
1344
+ >>> from sympy import QQ
1345
+ >>> from sympy.polys.matrices import DomainMatrix
1346
+ >>> A = DomainMatrix([
1347
+ ... [QQ(1), QQ(-1)],
1348
+ ... [QQ(2), QQ(-2)]], (2, 2), QQ)
1349
+ >>> A.nullspace()
1350
+ DomainMatrix([[1, 1]], (1, 2), QQ)
1351
+
1352
+ """
1353
+ if not self.domain.is_Field:
1354
+ raise DMNotAField('Not a field')
1355
+ return self.from_rep(self.rep.nullspace()[0])
1356
+
1357
+ def inv(self):
1358
+ r"""
1359
+ Finds the inverse of the DomainMatrix if exists
1360
+
1361
+ Returns
1362
+ =======
1363
+
1364
+ DomainMatrix
1365
+ DomainMatrix after inverse
1366
+
1367
+ Raises
1368
+ ======
1369
+
1370
+ ValueError
1371
+ If the domain of DomainMatrix not a Field
1372
+
1373
+ DMNonSquareMatrixError
1374
+ If the DomainMatrix is not a not Square DomainMatrix
1375
+
1376
+ Examples
1377
+ ========
1378
+
1379
+ >>> from sympy import QQ
1380
+ >>> from sympy.polys.matrices import DomainMatrix
1381
+ >>> A = DomainMatrix([
1382
+ ... [QQ(2), QQ(-1), QQ(0)],
1383
+ ... [QQ(-1), QQ(2), QQ(-1)],
1384
+ ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
1385
+ >>> A.inv()
1386
+ DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ)
1387
+
1388
+ See Also
1389
+ ========
1390
+
1391
+ neg
1392
+
1393
+ """
1394
+ if not self.domain.is_Field:
1395
+ raise DMNotAField('Not a field')
1396
+ m, n = self.shape
1397
+ if m != n:
1398
+ raise DMNonSquareMatrixError
1399
+ inv = self.rep.inv()
1400
+ return self.from_rep(inv)
1401
+
1402
+ def det(self):
1403
+ r"""
1404
+ Returns the determinant of a Square DomainMatrix
1405
+
1406
+ Returns
1407
+ =======
1408
+
1409
+ S.Complexes
1410
+ determinant of Square DomainMatrix
1411
+
1412
+ Raises
1413
+ ======
1414
+
1415
+ ValueError
1416
+ If the domain of DomainMatrix not a Field
1417
+
1418
+ Examples
1419
+ ========
1420
+
1421
+ >>> from sympy import ZZ
1422
+ >>> from sympy.polys.matrices import DomainMatrix
1423
+ >>> A = DomainMatrix([
1424
+ ... [ZZ(1), ZZ(2)],
1425
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
1426
+
1427
+ >>> A.det()
1428
+ -2
1429
+
1430
+ """
1431
+ m, n = self.shape
1432
+ if m != n:
1433
+ raise DMNonSquareMatrixError
1434
+ return self.rep.det()
1435
+
1436
+ def lu(self):
1437
+ r"""
1438
+ Returns Lower and Upper decomposition of the DomainMatrix
1439
+
1440
+ Returns
1441
+ =======
1442
+
1443
+ (L, U, exchange)
1444
+ L, U are Lower and Upper decomposition of the DomainMatrix,
1445
+ exchange is the list of indices of rows exchanged in the decomposition.
1446
+
1447
+ Raises
1448
+ ======
1449
+
1450
+ ValueError
1451
+ If the domain of DomainMatrix not a Field
1452
+
1453
+ Examples
1454
+ ========
1455
+
1456
+ >>> from sympy import QQ
1457
+ >>> from sympy.polys.matrices import DomainMatrix
1458
+ >>> A = DomainMatrix([
1459
+ ... [QQ(1), QQ(-1)],
1460
+ ... [QQ(2), QQ(-2)]], (2, 2), QQ)
1461
+ >>> A.lu()
1462
+ (DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ), [])
1463
+
1464
+ See Also
1465
+ ========
1466
+
1467
+ lu_solve
1468
+
1469
+ """
1470
+ if not self.domain.is_Field:
1471
+ raise DMNotAField('Not a field')
1472
+ L, U, swaps = self.rep.lu()
1473
+ return self.from_rep(L), self.from_rep(U), swaps
1474
+
1475
+ def lu_solve(self, rhs):
1476
+ r"""
1477
+ Solver for DomainMatrix x in the A*x = B
1478
+
1479
+ Parameters
1480
+ ==========
1481
+
1482
+ rhs : DomainMatrix B
1483
+
1484
+ Returns
1485
+ =======
1486
+
1487
+ DomainMatrix
1488
+ x in A*x = B
1489
+
1490
+ Raises
1491
+ ======
1492
+
1493
+ DMShapeError
1494
+ If the DomainMatrix A and rhs have different number of rows
1495
+
1496
+ ValueError
1497
+ If the domain of DomainMatrix A not a Field
1498
+
1499
+ Examples
1500
+ ========
1501
+
1502
+ >>> from sympy import QQ
1503
+ >>> from sympy.polys.matrices import DomainMatrix
1504
+ >>> A = DomainMatrix([
1505
+ ... [QQ(1), QQ(2)],
1506
+ ... [QQ(3), QQ(4)]], (2, 2), QQ)
1507
+ >>> B = DomainMatrix([
1508
+ ... [QQ(1), QQ(1)],
1509
+ ... [QQ(0), QQ(1)]], (2, 2), QQ)
1510
+
1511
+ >>> A.lu_solve(B)
1512
+ DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ)
1513
+
1514
+ See Also
1515
+ ========
1516
+
1517
+ lu
1518
+
1519
+ """
1520
+ if self.shape[0] != rhs.shape[0]:
1521
+ raise DMShapeError("Shape")
1522
+ if not self.domain.is_Field:
1523
+ raise DMNotAField('Not a field')
1524
+ sol = self.rep.lu_solve(rhs.rep)
1525
+ return self.from_rep(sol)
1526
+
1527
+ def _solve(A, b):
1528
+ # XXX: Not sure about this method or its signature. It is just created
1529
+ # because it is needed by the holonomic module.
1530
+ if A.shape[0] != b.shape[0]:
1531
+ raise DMShapeError("Shape")
1532
+ if A.domain != b.domain or not A.domain.is_Field:
1533
+ raise DMNotAField('Not a field')
1534
+ Aaug = A.hstack(b)
1535
+ Arref, pivots = Aaug.rref()
1536
+ particular = Arref.from_rep(Arref.rep.particular())
1537
+ nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace()
1538
+ nullspace = Arref.from_rep(nullspace_rep)
1539
+ return particular, nullspace
1540
+
1541
+ def charpoly(self):
1542
+ r"""
1543
+ Returns the coefficients of the characteristic polynomial
1544
+ of the DomainMatrix. These elements will be domain elements.
1545
+ The domain of the elements will be same as domain of the DomainMatrix.
1546
+
1547
+ Returns
1548
+ =======
1549
+
1550
+ list
1551
+ coefficients of the characteristic polynomial
1552
+
1553
+ Raises
1554
+ ======
1555
+
1556
+ DMNonSquareMatrixError
1557
+ If the DomainMatrix is not a not Square DomainMatrix
1558
+
1559
+ Examples
1560
+ ========
1561
+
1562
+ >>> from sympy import ZZ
1563
+ >>> from sympy.polys.matrices import DomainMatrix
1564
+ >>> A = DomainMatrix([
1565
+ ... [ZZ(1), ZZ(2)],
1566
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
1567
+
1568
+ >>> A.charpoly()
1569
+ [1, -5, -2]
1570
+
1571
+ """
1572
+ m, n = self.shape
1573
+ if m != n:
1574
+ raise DMNonSquareMatrixError("not square")
1575
+ return self.rep.charpoly()
1576
+
1577
+ @classmethod
1578
+ def eye(cls, shape, domain):
1579
+ r"""
1580
+ Return identity matrix of size n
1581
+
1582
+ Examples
1583
+ ========
1584
+
1585
+ >>> from sympy.polys.matrices import DomainMatrix
1586
+ >>> from sympy import QQ
1587
+ >>> DomainMatrix.eye(3, QQ)
1588
+ DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ)
1589
+
1590
+ """
1591
+ if isinstance(shape, int):
1592
+ shape = (shape, shape)
1593
+ return cls.from_rep(SDM.eye(shape, domain))
1594
+
1595
+ @classmethod
1596
+ def diag(cls, diagonal, domain, shape=None):
1597
+ r"""
1598
+ Return diagonal matrix with entries from ``diagonal``.
1599
+
1600
+ Examples
1601
+ ========
1602
+
1603
+ >>> from sympy.polys.matrices import DomainMatrix
1604
+ >>> from sympy import ZZ
1605
+ >>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ)
1606
+ DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ)
1607
+
1608
+ """
1609
+ if shape is None:
1610
+ N = len(diagonal)
1611
+ shape = (N, N)
1612
+ return cls.from_rep(SDM.diag(diagonal, domain, shape))
1613
+
1614
+ @classmethod
1615
+ def zeros(cls, shape, domain, *, fmt='sparse'):
1616
+ """Returns a zero DomainMatrix of size shape, belonging to the specified domain
1617
+
1618
+ Examples
1619
+ ========
1620
+
1621
+ >>> from sympy.polys.matrices import DomainMatrix
1622
+ >>> from sympy import QQ
1623
+ >>> DomainMatrix.zeros((2, 3), QQ)
1624
+ DomainMatrix({}, (2, 3), QQ)
1625
+
1626
+ """
1627
+ return cls.from_rep(SDM.zeros(shape, domain))
1628
+
1629
+ @classmethod
1630
+ def ones(cls, shape, domain):
1631
+ """Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain
1632
+
1633
+ Examples
1634
+ ========
1635
+
1636
+ >>> from sympy.polys.matrices import DomainMatrix
1637
+ >>> from sympy import QQ
1638
+ >>> DomainMatrix.ones((2,3), QQ)
1639
+ DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ)
1640
+
1641
+ """
1642
+ return cls.from_rep(DDM.ones(shape, domain))
1643
+
1644
+ def __eq__(A, B):
1645
+ r"""
1646
+ Checks for two DomainMatrix matrices to be equal or not
1647
+
1648
+ Parameters
1649
+ ==========
1650
+
1651
+ A, B: DomainMatrix
1652
+ to check equality
1653
+
1654
+ Returns
1655
+ =======
1656
+
1657
+ Boolean
1658
+ True for equal, else False
1659
+
1660
+ Raises
1661
+ ======
1662
+
1663
+ NotImplementedError
1664
+ If B is not a DomainMatrix
1665
+
1666
+ Examples
1667
+ ========
1668
+
1669
+ >>> from sympy import ZZ
1670
+ >>> from sympy.polys.matrices import DomainMatrix
1671
+ >>> A = DomainMatrix([
1672
+ ... [ZZ(1), ZZ(2)],
1673
+ ... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
1674
+ >>> B = DomainMatrix([
1675
+ ... [ZZ(1), ZZ(1)],
1676
+ ... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
1677
+ >>> A.__eq__(A)
1678
+ True
1679
+ >>> A.__eq__(B)
1680
+ False
1681
+
1682
+ """
1683
+ if not isinstance(A, type(B)):
1684
+ return NotImplemented
1685
+ return A.domain == B.domain and A.rep == B.rep
1686
+
1687
+ def unify_eq(A, B):
1688
+ if A.shape != B.shape:
1689
+ return False
1690
+ if A.domain != B.domain:
1691
+ A, B = A.unify(B)
1692
+ return A == B
1693
+
1694
+ def lll(A, delta=QQ(3, 4)):
1695
+ """
1696
+ Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm.
1697
+ See [1]_ and [2]_.
1698
+
1699
+ Parameters
1700
+ ==========
1701
+
1702
+ delta : QQ, optional
1703
+ The Lovász parameter. Must be in the interval (0.25, 1), with larger
1704
+ values producing a more reduced basis. The default is 0.75 for
1705
+ historical reasons.
1706
+
1707
+ Returns
1708
+ =======
1709
+
1710
+ The reduced basis as a DomainMatrix over ZZ.
1711
+
1712
+ Throws
1713
+ ======
1714
+
1715
+ DMValueError: if delta is not in the range (0.25, 1)
1716
+ DMShapeError: if the matrix is not of shape (m, n) with m <= n
1717
+ DMDomainError: if the matrix domain is not ZZ
1718
+ DMRankError: if the matrix contains linearly dependent rows
1719
+
1720
+ Examples
1721
+ ========
1722
+
1723
+ >>> from sympy.polys.domains import ZZ, QQ
1724
+ >>> from sympy.polys.matrices import DM
1725
+ >>> x = DM([[1, 0, 0, 0, -20160],
1726
+ ... [0, 1, 0, 0, 33768],
1727
+ ... [0, 0, 1, 0, 39578],
1728
+ ... [0, 0, 0, 1, 47757]], ZZ)
1729
+ >>> y = DM([[10, -3, -2, 8, -4],
1730
+ ... [3, -9, 8, 1, -11],
1731
+ ... [-3, 13, -9, -3, -9],
1732
+ ... [-12, -7, -11, 9, -1]], ZZ)
1733
+ >>> assert x.lll(delta=QQ(5, 6)) == y
1734
+
1735
+ Notes
1736
+ =====
1737
+
1738
+ The implementation is derived from the Maple code given in Figures 4.3
1739
+ and 4.4 of [3]_ (pp.68-69). It uses the efficient method of only calculating
1740
+ state updates as they are required.
1741
+
1742
+ See also
1743
+ ========
1744
+
1745
+ lll_transform
1746
+
1747
+ References
1748
+ ==========
1749
+
1750
+ .. [1] https://en.wikipedia.org/wiki/Lenstra–Lenstra–Lovász_lattice_basis_reduction_algorithm
1751
+ .. [2] https://web.archive.org/web/20221029115428/https://web.cs.elte.hu/~lovasz/scans/lll.pdf
1752
+ .. [3] Murray R. Bremner, "Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications"
1753
+
1754
+ """
1755
+ return DomainMatrix.from_rep(A.rep.lll(delta=delta))
1756
+
1757
+ def lll_transform(A, delta=QQ(3, 4)):
1758
+ """
1759
+ Performs the Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm
1760
+ and returns the reduced basis and transformation matrix.
1761
+
1762
+ Explanation
1763
+ ===========
1764
+
1765
+ Parameters, algorithm and basis are the same as for :meth:`lll` except that
1766
+ the return value is a tuple `(B, T)` with `B` the reduced basis and
1767
+ `T` a transformation matrix. The original basis `A` is transformed to
1768
+ `B` with `T*A == B`. If only `B` is needed then :meth:`lll` should be
1769
+ used as it is a little faster.
1770
+
1771
+ Examples
1772
+ ========
1773
+
1774
+ >>> from sympy.polys.domains import ZZ, QQ
1775
+ >>> from sympy.polys.matrices import DM
1776
+ >>> X = DM([[1, 0, 0, 0, -20160],
1777
+ ... [0, 1, 0, 0, 33768],
1778
+ ... [0, 0, 1, 0, 39578],
1779
+ ... [0, 0, 0, 1, 47757]], ZZ)
1780
+ >>> B, T = X.lll_transform(delta=QQ(5, 6))
1781
+ >>> T * X == B
1782
+ True
1783
+
1784
+ See also
1785
+ ========
1786
+
1787
+ lll
1788
+
1789
+ """
1790
+ reduced, transform = A.rep.lll_transform(delta=delta)
1791
+ return DomainMatrix.from_rep(reduced), DomainMatrix.from_rep(transform)
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/domainscalar.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+
3
+ Module for the DomainScalar class.
4
+
5
+ A DomainScalar represents an element which is in a particular
6
+ Domain. The idea is that the DomainScalar class provides the
7
+ convenience routines for unifying elements with different domains.
8
+
9
+ It assists in Scalar Multiplication and getitem for DomainMatrix.
10
+
11
+ """
12
+ from ..constructor import construct_domain
13
+
14
+ from sympy.polys.domains import Domain, ZZ
15
+
16
+
17
+ class DomainScalar:
18
+ r"""
19
+ docstring
20
+ """
21
+
22
+ def __new__(cls, element, domain):
23
+ if not isinstance(domain, Domain):
24
+ raise TypeError("domain should be of type Domain")
25
+ if not domain.of_type(element):
26
+ raise TypeError("element %s should be in domain %s" % (element, domain))
27
+ return cls.new(element, domain)
28
+
29
+ @classmethod
30
+ def new(cls, element, domain):
31
+ obj = super().__new__(cls)
32
+ obj.element = element
33
+ obj.domain = domain
34
+ return obj
35
+
36
+ def __repr__(self):
37
+ return repr(self.element)
38
+
39
+ @classmethod
40
+ def from_sympy(cls, expr):
41
+ [domain, [element]] = construct_domain([expr])
42
+ return cls.new(element, domain)
43
+
44
+ def to_sympy(self):
45
+ return self.domain.to_sympy(self.element)
46
+
47
+ def to_domain(self, domain):
48
+ element = domain.convert_from(self.element, self.domain)
49
+ return self.new(element, domain)
50
+
51
+ def convert_to(self, domain):
52
+ return self.to_domain(domain)
53
+
54
+ def unify(self, other):
55
+ domain = self.domain.unify(other.domain)
56
+ return self.to_domain(domain), other.to_domain(domain)
57
+
58
+ def __add__(self, other):
59
+ if not isinstance(other, DomainScalar):
60
+ return NotImplemented
61
+ self, other = self.unify(other)
62
+ return self.new(self.element + other.element, self.domain)
63
+
64
+ def __sub__(self, other):
65
+ if not isinstance(other, DomainScalar):
66
+ return NotImplemented
67
+ self, other = self.unify(other)
68
+ return self.new(self.element - other.element, self.domain)
69
+
70
+ def __mul__(self, other):
71
+ if not isinstance(other, DomainScalar):
72
+ if isinstance(other, int):
73
+ other = DomainScalar(ZZ(other), ZZ)
74
+ else:
75
+ return NotImplemented
76
+
77
+ self, other = self.unify(other)
78
+ return self.new(self.element * other.element, self.domain)
79
+
80
+ def __floordiv__(self, other):
81
+ if not isinstance(other, DomainScalar):
82
+ return NotImplemented
83
+ self, other = self.unify(other)
84
+ return self.new(self.domain.quo(self.element, other.element), self.domain)
85
+
86
+ def __mod__(self, other):
87
+ if not isinstance(other, DomainScalar):
88
+ return NotImplemented
89
+ self, other = self.unify(other)
90
+ return self.new(self.domain.rem(self.element, other.element), self.domain)
91
+
92
+ def __divmod__(self, other):
93
+ if not isinstance(other, DomainScalar):
94
+ return NotImplemented
95
+ self, other = self.unify(other)
96
+ q, r = self.domain.div(self.element, other.element)
97
+ return (self.new(q, self.domain), self.new(r, self.domain))
98
+
99
+ def __pow__(self, n):
100
+ if not isinstance(n, int):
101
+ return NotImplemented
102
+ return self.new(self.element**n, self.domain)
103
+
104
+ def __pos__(self):
105
+ return self.new(+self.element, self.domain)
106
+
107
+ def __eq__(self, other):
108
+ if not isinstance(other, DomainScalar):
109
+ return NotImplemented
110
+ return self.element == other.element and self.domain == other.domain
111
+
112
+ def is_zero(self):
113
+ return self.element == self.domain.zero
114
+
115
+ def is_one(self):
116
+ return self.element == self.domain.one
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/eigen.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+
3
+ Routines for computing eigenvectors with DomainMatrix.
4
+
5
+ """
6
+ from sympy.core.symbol import Dummy
7
+
8
+ from ..agca.extensions import FiniteExtension
9
+ from ..factortools import dup_factor_list
10
+ from ..polyroots import roots
11
+ from ..polytools import Poly
12
+ from ..rootoftools import CRootOf
13
+
14
+ from .domainmatrix import DomainMatrix
15
+
16
+
17
+ def dom_eigenvects(A, l=Dummy('lambda')):
18
+ charpoly = A.charpoly()
19
+ rows, cols = A.shape
20
+ domain = A.domain
21
+ _, factors = dup_factor_list(charpoly, domain)
22
+
23
+ rational_eigenvects = []
24
+ algebraic_eigenvects = []
25
+ for base, exp in factors:
26
+ if len(base) == 2:
27
+ field = domain
28
+ eigenval = -base[1] / base[0]
29
+
30
+ EE_items = [
31
+ [eigenval if i == j else field.zero for j in range(cols)]
32
+ for i in range(rows)]
33
+ EE = DomainMatrix(EE_items, (rows, cols), field)
34
+
35
+ basis = (A - EE).nullspace()
36
+ rational_eigenvects.append((field, eigenval, exp, basis))
37
+ else:
38
+ minpoly = Poly.from_list(base, l, domain=domain)
39
+ field = FiniteExtension(minpoly)
40
+ eigenval = field(l)
41
+
42
+ AA_items = [
43
+ [Poly.from_list([item], l, domain=domain).rep for item in row]
44
+ for row in A.rep.to_ddm()]
45
+ AA_items = [[field(item) for item in row] for row in AA_items]
46
+ AA = DomainMatrix(AA_items, (rows, cols), field)
47
+ EE_items = [
48
+ [eigenval if i == j else field.zero for j in range(cols)]
49
+ for i in range(rows)]
50
+ EE = DomainMatrix(EE_items, (rows, cols), field)
51
+
52
+ basis = (AA - EE).nullspace()
53
+ algebraic_eigenvects.append((field, minpoly, exp, basis))
54
+
55
+ return rational_eigenvects, algebraic_eigenvects
56
+
57
+
58
+ def dom_eigenvects_to_sympy(
59
+ rational_eigenvects, algebraic_eigenvects,
60
+ Matrix, **kwargs
61
+ ):
62
+ result = []
63
+
64
+ for field, eigenvalue, multiplicity, eigenvects in rational_eigenvects:
65
+ eigenvects = eigenvects.rep.to_ddm()
66
+ eigenvalue = field.to_sympy(eigenvalue)
67
+ new_eigenvects = [
68
+ Matrix([field.to_sympy(x) for x in vect])
69
+ for vect in eigenvects]
70
+ result.append((eigenvalue, multiplicity, new_eigenvects))
71
+
72
+ for field, minpoly, multiplicity, eigenvects in algebraic_eigenvects:
73
+ eigenvects = eigenvects.rep.to_ddm()
74
+ l = minpoly.gens[0]
75
+
76
+ eigenvects = [[field.to_sympy(x) for x in vect] for vect in eigenvects]
77
+
78
+ degree = minpoly.degree()
79
+ minpoly = minpoly.as_expr()
80
+ eigenvals = roots(minpoly, l, **kwargs)
81
+ if len(eigenvals) != degree:
82
+ eigenvals = [CRootOf(minpoly, l, idx) for idx in range(degree)]
83
+
84
+ for eigenvalue in eigenvals:
85
+ new_eigenvects = [
86
+ Matrix([x.subs(l, eigenvalue) for x in vect])
87
+ for vect in eigenvects]
88
+ result.append((eigenvalue, multiplicity, new_eigenvects))
89
+
90
+ return result
env-llmeval/lib/python3.10/site-packages/sympy/polys/matrices/exceptions.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+
3
+ Module to define exceptions to be used in sympy.polys.matrices modules and
4
+ classes.
5
+
6
+ Ideally all exceptions raised in these modules would be defined and documented
7
+ here and not e.g. imported from matrices. Also ideally generic exceptions like
8
+ ValueError/TypeError would not be raised anywhere.
9
+
10
+ """
11
+
12
+
13
+ class DMError(Exception):
14
+ """Base class for errors raised by DomainMatrix"""
15
+ pass
16
+
17
+
18
+ class DMBadInputError(DMError):
19
+ """list of lists is inconsistent with shape"""
20
+ pass
21
+
22
+
23
+ class DMDomainError(DMError):
24
+ """domains do not match"""
25
+ pass
26
+
27
+
28
+ class DMNotAField(DMDomainError):
29
+ """domain is not a field"""
30
+ pass
31
+
32
+
33
+ class DMFormatError(DMError):
34
+ """mixed dense/sparse not supported"""
35
+ pass
36
+
37
+
38
+ class DMNonInvertibleMatrixError(DMError):
39
+ """The matrix in not invertible"""
40
+ pass
41
+
42
+
43
+ class DMRankError(DMError):
44
+ """matrix does not have expected rank"""
45
+ pass
46
+
47
+
48
+ class DMShapeError(DMError):
49
+ """shapes are inconsistent"""
50
+ pass
51
+
52
+
53
+ class DMNonSquareMatrixError(DMShapeError):
54
+ """The matrix is not square"""
55
+ pass
56
+
57
+
58
+ class DMValueError(DMError):
59
+ """The value passed is invalid"""
60
+ pass
61
+
62
+
63
+ __all__ = [
64
+ 'DMError', 'DMBadInputError', 'DMDomainError', 'DMFormatError',
65
+ 'DMRankError', 'DMShapeError', 'DMNotAField',
66
+ 'DMNonInvertibleMatrixError', 'DMNonSquareMatrixError', 'DMValueError'
67
+ ]