diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d2a484b9b8285083ba958772743207d64a8403bc --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py @@ -0,0 +1,97 @@ +# flake8: noqa +# There's no way to ignore "F401 '...' imported but unused" warnings in this +# module, but to preserve other warnings. So, don't check this module at all. + +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +# rely on isort to merge the imports +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, + is_tf_available, +) + + +_import_structure = { + "configuration_convnextv2": [ + "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP", + "ConvNextV2Config", + ] +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_convnextv2"] = [ + "CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST", + "ConvNextV2ForImageClassification", + "ConvNextV2Model", + "ConvNextV2PreTrainedModel", + "ConvNextV2Backbone", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_convnextv2"] = [ + "TFConvNextV2ForImageClassification", + "TFConvNextV2Model", + "TFConvNextV2PreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_convnextv2 import ( + CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP, + ConvNextV2Config, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_convnextv2 import ( + CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST, + ConvNextV2Backbone, + ConvNextV2ForImageClassification, + ConvNextV2Model, + ConvNextV2PreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_convnextv2 import ( + TFConvNextV2ForImageClassification, + TFConvNextV2Model, + TFConvNextV2PreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py new file mode 100644 index 0000000000000000000000000000000000000000..3d7d1fa7397714868567b935198e83ddb9c296c8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py @@ -0,0 +1,118 @@ +# coding=utf-8 +# Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" ConvNeXTV2 model configuration""" + + +from ...configuration_utils import PretrainedConfig +from ...utils import logging +from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices + + +logger = logging.get_logger(__name__) + +CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json", +} + + +class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an + ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2 + [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + patch_size (`int`, optional, defaults to 4): + Patch size to use in the patch embedding layer. + num_stages (`int`, optional, defaults to 4): + The number of stages in the model. + hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`): + Dimensionality (hidden size) at each stage. + depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`): + Depth (number of blocks) for each stage. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`, + `"selu"` and `"gelu_new"` are supported. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + drop_path_rate (`float`, *optional*, defaults to 0.0): + The drop rate for stochastic depth. + out_features (`List[str]`, *optional*): + If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. + (depending on how many stages the model has). If unset and `out_indices` is set, will default to the + corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. + If unset and `out_features` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + + Example: + ```python + >>> from transformers import ConvNeXTV2Config, ConvNextV2Model + + >>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration + >>> configuration = ConvNeXTV2Config() + + >>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration + >>> model = ConvNextV2Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "convnextv2" + + def __init__( + self, + num_channels=3, + patch_size=4, + num_stages=4, + hidden_sizes=None, + depths=None, + hidden_act="gelu", + initializer_range=0.02, + layer_norm_eps=1e-12, + drop_path_rate=0.0, + image_size=224, + out_features=None, + out_indices=None, + **kwargs, + ): + super().__init__(**kwargs) + + self.num_channels = num_channels + self.patch_size = patch_size + self.num_stages = num_stages + self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes + self.depths = [3, 3, 9, 3] if depths is None else depths + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.drop_path_rate = drop_path_rate + self.image_size = image_size + self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)] + self._out_features, self._out_indices = get_aligned_output_features_output_indices( + out_features=out_features, out_indices=out_indices, stage_names=self.stage_names + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/convert_convnextv2_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/convert_convnextv2_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..8094ecf0d6157a1bb2343817f7e9303f622d9102 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/convert_convnextv2_to_pytorch.py @@ -0,0 +1,286 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ConvNeXTV2 checkpoints from the original repository. + +URL: https://github.com/facebookresearch/ConvNeXt""" + +import argparse +import json +import os + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import ConvNextImageProcessor, ConvNextV2Config, ConvNextV2ForImageClassification +from transformers.image_utils import PILImageResampling +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def get_convnextv2_config(checkpoint_url): + config = ConvNextV2Config() + + if "atto" in checkpoint_url: + depths = [2, 2, 6, 2] + hidden_sizes = [40, 80, 160, 320] + if "femto" in checkpoint_url: + depths = [2, 2, 6, 2] + hidden_sizes = [48, 96, 192, 384] + if "pico" in checkpoint_url: + depths = [2, 2, 6, 2] + hidden_sizes = [64, 128, 256, 512] + if "nano" in checkpoint_url: + depths = [2, 2, 8, 2] + hidden_sizes = [80, 160, 320, 640] + if "tiny" in checkpoint_url: + depths = [3, 3, 9, 3] + hidden_sizes = [96, 192, 384, 768] + if "base" in checkpoint_url: + depths = [3, 3, 27, 3] + hidden_sizes = [128, 256, 512, 1024] + if "large" in checkpoint_url: + depths = [3, 3, 27, 3] + hidden_sizes = [192, 384, 768, 1536] + if "huge" in checkpoint_url: + depths = [3, 3, 27, 3] + hidden_sizes = [352, 704, 1408, 2816] + + num_labels = 1000 + filename = "imagenet-1k-id2label.json" + expected_shape = (1, 1000) + + repo_id = "huggingface/label-files" + config.num_labels = num_labels + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + config.hidden_sizes = hidden_sizes + config.depths = depths + + return config, expected_shape + + +def rename_key(name): + if "downsample_layers.0.0" in name: + name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings") + if "downsample_layers.0.1" in name: + name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on + if "downsample_layers.1.0" in name: + name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0") + if "downsample_layers.1.1" in name: + name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1") + if "downsample_layers.2.0" in name: + name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0") + if "downsample_layers.2.1" in name: + name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1") + if "downsample_layers.3.0" in name: + name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0") + if "downsample_layers.3.1" in name: + name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1") + if "stages" in name and "downsampling_layer" not in name: + # stages.0.0. for instance should be renamed to stages.0.layers.0. + name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :] + if "gamma" in name: + name = name.replace("gamma", "weight") + if "beta" in name: + name = name.replace("beta", "bias") + if "stages" in name: + name = name.replace("stages", "encoder.stages") + if "norm" in name: + name = name.replace("norm", "layernorm") + if "head" in name: + name = name.replace("head", "classifier") + + return name + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +def convert_preprocessor(checkpoint_url): + if "224" in checkpoint_url: + size = 224 + crop_pct = 224 / 256 + elif "384" in checkpoint_url: + size = 384 + crop_pct = None + else: + size = 512 + crop_pct = None + + return ConvNextImageProcessor( + size=size, + crop_pct=crop_pct, + image_mean=[0.485, 0.456, 0.406], + image_std=[0.229, 0.224, 0.225], + resample=PILImageResampling.BICUBIC, + ) + + +@torch.no_grad() +def convert_convnextv2_checkpoint(checkpoint_url, pytorch_dump_folder_path, save_model, push_to_hub): + """ + Copy/paste/tweak model's weights to our ConvNeXTV2 structure. + """ + print("Downloading original model from checkpoint...") + # define ConvNeXTV2 configuration based on URL + config, expected_shape = get_convnextv2_config(checkpoint_url) + # load original state_dict from URL + state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"] + + print("Converting model parameters...") + # rename keys + for key in state_dict.copy().keys(): + val = state_dict.pop(key) + state_dict[rename_key(key)] = val + # add prefix to all keys expect classifier head + for key in state_dict.copy().keys(): + val = state_dict.pop(key) + if not key.startswith("classifier"): + key = "convnextv2." + key + state_dict[key] = val + + # load HuggingFace model + model = ConvNextV2ForImageClassification(config) + model.load_state_dict(state_dict) + model.eval() + + # Check outputs on an image, prepared by ConvNextImageProcessor + preprocessor = convert_preprocessor(checkpoint_url) + inputs = preprocessor(images=prepare_img(), return_tensors="pt") + logits = model(**inputs).logits + + # note: the logits below were obtained without center cropping + if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt": + expected_logits = torch.tensor([-0.3930, 0.1747, -0.5246, 0.4177, 0.4295]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt": + expected_logits = torch.tensor([-0.1727, -0.5341, -0.7818, -0.4745, -0.6566]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt": + expected_logits = torch.tensor([-0.0333, 0.1563, -0.9137, 0.1054, 0.0381]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt": + expected_logits = torch.tensor([-0.1744, -0.1555, -0.0713, 0.0950, -0.1431]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt": + expected_logits = torch.tensor([0.9996, 0.1966, -0.4386, -0.3472, 0.6661]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt": + expected_logits = torch.tensor([-0.2553, -0.6708, -0.1359, 0.2518, -0.2488]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt": + expected_logits = torch.tensor([-0.0673, -0.5627, -0.3753, -0.2722, 0.0178]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt": + expected_logits = torch.tensor([-0.6377, -0.7458, -0.2150, 0.1184, -0.0597]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt": + expected_logits = torch.tensor([1.0799, 0.2322, -0.8860, 1.0219, 0.6231]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt": + expected_logits = torch.tensor([0.3766, 0.4917, -1.1426, 0.9942, 0.6024]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt": + expected_logits = torch.tensor([0.4220, -0.6919, -0.4317, -0.2881, -0.6609]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt": + expected_logits = torch.tensor([0.1082, -0.8286, -0.5095, 0.4681, -0.8085]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt": + expected_logits = torch.tensor([-0.2419, -0.6221, 0.2176, -0.0980, -0.7527]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt": + expected_logits = torch.tensor([0.0391, -0.4371, 0.3786, 0.1251, -0.2784]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt": + expected_logits = torch.tensor([-0.0504, 0.5636, -0.1729, -0.6507, -0.3949]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt": + expected_logits = torch.tensor([0.3560, 0.9486, 0.3149, -0.2667, -0.5138]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt": + expected_logits = torch.tensor([-0.2469, -0.4550, -0.5853, -0.0810, 0.0309]) + elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt": + expected_logits = torch.tensor([-0.3090, 0.0802, -0.0682, -0.1979, -0.2826]) + else: + raise ValueError(f"Unknown URL: {checkpoint_url}") + + assert torch.allclose(logits[0, :5], expected_logits, atol=1e-3) + assert logits.shape == expected_shape + print("Model outputs match the original results!") + + if save_model: + print("Saving model to local...") + # Create folder to save model + if not os.path.isdir(pytorch_dump_folder_path): + os.mkdir(pytorch_dump_folder_path) + + model.save_pretrained(pytorch_dump_folder_path) + preprocessor.save_pretrained(pytorch_dump_folder_path) + + model_name = "convnextv2" + if "atto" in checkpoint_url: + model_name += "-atto" + if "femto" in checkpoint_url: + model_name += "-femto" + if "pico" in checkpoint_url: + model_name += "-pico" + if "nano" in checkpoint_url: + model_name += "-nano" + elif "tiny" in checkpoint_url: + model_name += "-tiny" + elif "base" in checkpoint_url: + model_name += "-base" + elif "large" in checkpoint_url: + model_name += "-large" + elif "huge" in checkpoint_url: + model_name += "-huge" + if "22k" in checkpoint_url and "1k" not in checkpoint_url: + model_name += "-22k" + elif "22k" in checkpoint_url and "1k" in checkpoint_url: + model_name += "-22k-1k" + elif "1k" in checkpoint_url: + model_name += "-1k" + if "224" in checkpoint_url: + model_name += "-224" + elif "384" in checkpoint_url: + model_name += "-384" + elif "512" in checkpoint_url: + model_name += "-512" + + if push_to_hub: + print(f"Pushing {model_name} to the hub...") + model.push_to_hub(model_name) + preprocessor.push_to_hub(model_name) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--checkpoint_url", + default="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt", + type=str, + help="URL of the original ConvNeXTV2 checkpoint you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", + default="model", + type=str, + help="Path to the output PyTorch model directory.", + ) + parser.add_argument("--save_model", action="store_true", help="Save model to local") + parser.add_argument("--push_to_hub", action="store_true", help="Push model and image preprocessor to the hub") + + args = parser.parse_args() + convert_convnextv2_checkpoint( + args.checkpoint_url, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py new file mode 100644 index 0000000000000000000000000000000000000000..8d166200d12253c9992cde427dcc23d88e527826 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py @@ -0,0 +1,576 @@ +# coding=utf-8 +# Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch ConvNextV2 model.""" + + +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BackboneOutput, + BaseModelOutputWithNoAttention, + BaseModelOutputWithPoolingAndNoAttention, + ImageClassifierOutputWithNoAttention, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ...utils.backbone_utils import BackboneMixin +from .configuration_convnextv2 import ConvNextV2Config + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "ConvNextV2Config" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224" +_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + +CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "facebook/convnextv2-tiny-1k-224", + # See all ConvNextV2 models at https://huggingface.co/models?filter=convnextv2 +] + + +# Copied from transformers.models.beit.modeling_beit.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNextV2 +class ConvNextV2DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +class ConvNextV2GRN(nn.Module): + """GRN (Global Response Normalization) layer""" + + def __init__(self, dim: int): + super().__init__() + self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim)) + self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim)) + + def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: + # Compute and normalize global spatial feature maps + global_features = torch.norm(hidden_states, p=2, dim=(1, 2), keepdim=True) + norm_features = global_features / (global_features.mean(dim=-1, keepdim=True) + 1e-6) + hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states + + return hidden_states + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->ConvNextV2 +class ConvNextV2LayerNorm(nn.Module): + r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. + The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, + width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). + """ + + def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): + super().__init__() + self.weight = nn.Parameter(torch.ones(normalized_shape)) + self.bias = nn.Parameter(torch.zeros(normalized_shape)) + self.eps = eps + self.data_format = data_format + if self.data_format not in ["channels_last", "channels_first"]: + raise NotImplementedError(f"Unsupported data format: {self.data_format}") + self.normalized_shape = (normalized_shape,) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + if self.data_format == "channels_last": + x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + elif self.data_format == "channels_first": + input_dtype = x.dtype + x = x.float() + u = x.mean(1, keepdim=True) + s = (x - u).pow(2).mean(1, keepdim=True) + x = (x - u) / torch.sqrt(s + self.eps) + x = x.to(dtype=input_dtype) + x = self.weight[:, None, None] * x + self.bias[:, None, None] + return x + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextEmbeddings with ConvNext->ConvNextV2 +class ConvNextV2Embeddings(nn.Module): + """This class is comparable to (and inspired by) the SwinEmbeddings class + found in src/transformers/models/swin/modeling_swin.py. + """ + + def __init__(self, config): + super().__init__() + self.patch_embeddings = nn.Conv2d( + config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size + ) + self.layernorm = ConvNextV2LayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first") + self.num_channels = config.num_channels + + def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: + num_channels = pixel_values.shape[1] + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + embeddings = self.patch_embeddings(pixel_values) + embeddings = self.layernorm(embeddings) + return embeddings + + +class ConvNextV2Layer(nn.Module): + """This corresponds to the `Block` class in the original implementation. + + There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, + H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back + + The authors used (2) as they find it slightly faster in PyTorch. + + Args: + config ([`ConvNextV2Config`]): Model configuration class. + dim (`int`): Number of input channels. + drop_path (`float`): Stochastic depth rate. Default: 0.0. + """ + + def __init__(self, config, dim, drop_path=0): + super().__init__() + # depthwise conv + self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) + self.layernorm = ConvNextV2LayerNorm(dim, eps=1e-6) + # pointwise/1x1 convs, implemented with linear layers + self.pwconv1 = nn.Linear(dim, 4 * dim) + self.act = ACT2FN[config.hidden_act] + self.grn = ConvNextV2GRN(4 * dim) + self.pwconv2 = nn.Linear(4 * dim, dim) + self.drop_path = ConvNextV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity() + + def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: + input = hidden_states + x = self.dwconv(hidden_states) + # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) + x = x.permute(0, 2, 3, 1) + x = self.layernorm(x) + x = self.pwconv1(x) + x = self.act(x) + x = self.grn(x) + x = self.pwconv2(x) + # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) + x = x.permute(0, 3, 1, 2) + + x = input + self.drop_path(x) + return x + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextStage with ConvNeXT->ConvNeXTV2, ConvNext->ConvNextV2 +class ConvNextV2Stage(nn.Module): + """ConvNeXTV2 stage, consisting of an optional downsampling layer + multiple residual blocks. + + Args: + config ([`ConvNextV2Config`]): Model configuration class. + in_channels (`int`): Number of input channels. + out_channels (`int`): Number of output channels. + depth (`int`): Number of residual blocks. + drop_path_rates(`List[float]`): Stochastic depth rates for each layer. + """ + + def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None): + super().__init__() + + if in_channels != out_channels or stride > 1: + self.downsampling_layer = nn.Sequential( + ConvNextV2LayerNorm(in_channels, eps=1e-6, data_format="channels_first"), + nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride), + ) + else: + self.downsampling_layer = nn.Identity() + drop_path_rates = drop_path_rates or [0.0] * depth + self.layers = nn.Sequential( + *[ConvNextV2Layer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)] + ) + + def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor: + hidden_states = self.downsampling_layer(hidden_states) + hidden_states = self.layers(hidden_states) + return hidden_states + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextEncoder with ConvNext->ConvNextV2 +class ConvNextV2Encoder(nn.Module): + def __init__(self, config): + super().__init__() + self.stages = nn.ModuleList() + drop_path_rates = [ + x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths) + ] + prev_chs = config.hidden_sizes[0] + for i in range(config.num_stages): + out_chs = config.hidden_sizes[i] + stage = ConvNextV2Stage( + config, + in_channels=prev_chs, + out_channels=out_chs, + stride=2 if i > 0 else 1, + depth=config.depths[i], + drop_path_rates=drop_path_rates[i], + ) + self.stages.append(stage) + prev_chs = out_chs + + def forward( + self, + hidden_states: torch.FloatTensor, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, BaseModelOutputWithNoAttention]: + all_hidden_states = () if output_hidden_states else None + + for i, layer_module in enumerate(self.stages): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + hidden_states = layer_module(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) + + return BaseModelOutputWithNoAttention( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + ) + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextPreTrainedModel with ConvNext->ConvNextV2, convnext->convnextv2 +class ConvNextV2PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ConvNextV2Config + base_model_prefix = "convnextv2" + main_input_name = "pixel_values" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +CONVNEXTV2_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CONVNEXTV2_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`ConvNextImageProcessor`]. See + [`ConvNextImageProcessor.__call__`] for details. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare ConvNextV2 model outputting raw features without any specific head on top.", + CONVNEXTV2_START_DOCSTRING, +) +# Copied from transformers.models.convnext.modeling_convnext.ConvNextModel with CONVNEXT->CONVNEXTV2, ConvNext->ConvNextV2 +class ConvNextV2Model(ConvNextV2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embeddings = ConvNextV2Embeddings(config) + self.encoder = ConvNextV2Encoder(config) + + # final layernorm layer + self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndNoAttention, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: torch.FloatTensor = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + embedding_output = self.embeddings(pixel_values) + + encoder_outputs = self.encoder( + embedding_output, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + + # global average pooling, (N, C, H, W) -> (N, C) + pooled_output = self.layernorm(last_hidden_state.mean([-2, -1])) + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + ) + + +@add_start_docstrings( + """ + ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for + ImageNet. + """, + CONVNEXTV2_START_DOCSTRING, +) +# Copied from transformers.models.convnext.modeling_convnext.ConvNextForImageClassification with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,convnext->convnextv2 +class ConvNextV2ForImageClassification(ConvNextV2PreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.num_labels = config.num_labels + self.convnextv2 = ConvNextV2Model(config) + + # Classifier head + self.classifier = ( + nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: torch.FloatTensor = None, + labels: Optional[torch.LongTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.convnextv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutputWithNoAttention( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + ) + + +@add_start_docstrings( + """ + ConvNeXT V2 backbone, to be used with frameworks like DETR and MaskFormer. + """, + CONVNEXTV2_START_DOCSTRING, +) +# Copied from transformers.models.convnext.modeling_convnext.ConvNextBackbone with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,facebook/convnext-tiny-224->facebook/convnextv2-tiny-1k-224 +class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin): + def __init__(self, config): + super().__init__(config) + super()._init_backbone(config) + + self.embeddings = ConvNextV2Embeddings(config) + self.encoder = ConvNextV2Encoder(config) + self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes + + # Add layer norms to hidden states of out_features + hidden_states_norms = {} + for stage, num_channels in zip(self._out_features, self.channels): + hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first") + self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) + + # initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.Tensor, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> BackboneOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoBackbone + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") + >>> model = AutoBackbone.from_pretrained("facebook/convnextv2-tiny-1k-224") + + >>> inputs = processor(image, return_tensors="pt") + >>> outputs = model(**inputs) + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + embedding_output = self.embeddings(pixel_values) + + outputs = self.encoder( + embedding_output, + output_hidden_states=True, + return_dict=return_dict, + ) + + hidden_states = outputs.hidden_states if return_dict else outputs[1] + + feature_maps = () + for stage, hidden_state in zip(self.stage_names, hidden_states): + if stage in self.out_features: + hidden_state = self.hidden_states_norms[stage](hidden_state) + feature_maps += (hidden_state,) + + if not return_dict: + output = (feature_maps,) + if output_hidden_states: + output += (hidden_states,) + return output + + return BackboneOutput( + feature_maps=feature_maps, + hidden_states=hidden_states if output_hidden_states else None, + attentions=None, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py new file mode 100644 index 0000000000000000000000000000000000000000..d4bef6f161d2bf9c5f148741712a2df379315c6e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py @@ -0,0 +1,686 @@ +# coding=utf-8 +# Copyright 2023 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 ConvNextV2 model.""" + + +from __future__ import annotations + +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutputWithNoAttention, + TFBaseModelOutputWithPooling, + TFBaseModelOutputWithPoolingAndNoAttention, + TFImageClassifierOutputWithNoAttention, +) +from ...modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + TFSequenceClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import shape_list +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_convnextv2 import ConvNextV2Config + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "ConvNextV2Config" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224" +_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + +CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "facebook/convnextv2-tiny-1k-224", + # See all ConvNextV2 models at https://huggingface.co/models?filter=convnextv2 +] + + +# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->ConvNextV2 +class TFConvNextV2DropPath(keras.layers.Layer): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + References: + (1) github.com:rwightman/pytorch-image-models + """ + + def __init__(self, drop_path: float, **kwargs): + super().__init__(**kwargs) + self.drop_path = drop_path + + def call(self, x: tf.Tensor, training=None): + if training: + keep_prob = 1 - self.drop_path + shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) + random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) + random_tensor = tf.floor(random_tensor) + return (x / keep_prob) * random_tensor + return x + + +class TFConvNextV2GRN(keras.layers.Layer): + """GRN (Global Response Normalization) layer""" + + def __init__(self, config: ConvNextV2Config, dim: int, **kwargs): + super().__init__(**kwargs) + self.dim = dim + + def build(self, input_shape: tf.TensorShape = None): + # PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa) + self.weight = self.add_weight( + name="weight", + shape=(1, 1, 1, self.dim), + initializer=keras.initializers.Zeros(), + ) + self.bias = self.add_weight( + name="bias", + shape=(1, 1, 1, self.dim), + initializer=keras.initializers.Zeros(), + ) + return super().build(input_shape) + + def call(self, hidden_states: tf.Tensor): + global_features = tf.norm(hidden_states, ord="euclidean", axis=(1, 2), keepdims=True) + norm_features = global_features / (tf.reduce_mean(global_features, axis=-1, keepdims=True) + 1e-6) + hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states + return hidden_states + + +# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextEmbeddings with ConvNext->ConvNextV2 +class TFConvNextV2Embeddings(keras.layers.Layer): + """This class is comparable to (and inspired by) the SwinEmbeddings class + found in src/transformers/models/swin/modeling_swin.py. + """ + + def __init__(self, config: ConvNextV2Config, **kwargs): + super().__init__(**kwargs) + self.patch_embeddings = keras.layers.Conv2D( + filters=config.hidden_sizes[0], + kernel_size=config.patch_size, + strides=config.patch_size, + name="patch_embeddings", + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + ) + self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm") + self.num_channels = config.num_channels + self.config = config + + def call(self, pixel_values): + if isinstance(pixel_values, dict): + pixel_values = pixel_values["pixel_values"] + + tf.debugging.assert_equal( + shape_list(pixel_values)[1], + self.num_channels, + message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.", + ) + + # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. + # So change the input format from `NCHW` to `NHWC`. + # shape = (batch_size, in_height, in_width, in_channels) + pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) + + embeddings = self.patch_embeddings(pixel_values) + embeddings = self.layernorm(embeddings) + return embeddings + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "patch_embeddings", None) is not None: + with tf.name_scope(self.patch_embeddings.name): + self.patch_embeddings.build([None, None, None, self.config.num_channels]) + if getattr(self, "layernorm", None) is not None: + with tf.name_scope(self.layernorm.name): + self.layernorm.build([None, None, None, self.config.hidden_sizes[0]]) + + +class TFConvNextV2Layer(keras.layers.Layer): + """This corresponds to the `Block` class in the original implementation. + + There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C, + H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back + + The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow + NHWC ordering, we can just apply the operations straight-away without the permutation. + + Args: + config (`ConvNextV2Config`): + Model configuration class. + dim (`int`): + Number of input channels. + drop_path (`float`, defaults to 0.0): + Stochastic depth rate. + """ + + def __init__(self, config: ConvNextV2Config, dim: int, drop_path: float = 0.0, **kwargs): + super().__init__(**kwargs) + self.dim = dim + self.config = config + self.dwconv = keras.layers.Conv2D( + filters=dim, + kernel_size=7, + padding="same", + groups=dim, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="dwconv", + ) # depthwise conv + self.layernorm = keras.layers.LayerNormalization( + epsilon=1e-6, + name="layernorm", + ) + self.pwconv1 = keras.layers.Dense( + units=4 * dim, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="pwconv1", + ) # pointwise/1x1 convs, implemented with linear layers + self.act = get_tf_activation(config.hidden_act) + self.grn = TFConvNextV2GRN(config, 4 * dim, dtype=tf.float32, name="grn") + self.pwconv2 = keras.layers.Dense( + units=dim, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="pwconv2", + ) + # Using `layers.Activation` instead of `tf.identity` to better control `training` + # behaviour. + self.drop_path = ( + TFConvNextV2DropPath(drop_path, name="drop_path") + if drop_path > 0.0 + else keras.layers.Activation("linear", name="drop_path") + ) + + def call(self, hidden_states, training=False): + input = hidden_states + x = self.dwconv(hidden_states) + x = self.layernorm(x) + x = self.pwconv1(x) + x = self.act(x) + x = self.grn(x) + x = self.pwconv2(x) + x = self.drop_path(x, training=training) + x = input + x + return x + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dwconv", None) is not None: + with tf.name_scope(self.dwconv.name): + self.dwconv.build([None, None, None, self.dim]) + if getattr(self, "layernorm", None) is not None: + with tf.name_scope(self.layernorm.name): + self.layernorm.build([None, None, None, self.dim]) + if getattr(self, "pwconv1", None) is not None: + with tf.name_scope(self.pwconv1.name): + self.pwconv1.build([None, None, self.dim]) + if getattr(self, "grn", None) is not None: + with tf.name_scope(self.grn.name): + self.grn.build(None) + if getattr(self, "pwconv2", None) is not None: + with tf.name_scope(self.pwconv2.name): + self.pwconv2.build([None, None, 4 * self.dim]) + if getattr(self, "drop_path", None) is not None: + with tf.name_scope(self.drop_path.name): + self.drop_path.build(None) + + +# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextStage with ConvNext->ConvNextV2 +class TFConvNextV2Stage(keras.layers.Layer): + """ConvNextV2 stage, consisting of an optional downsampling layer + multiple residual blocks. + + Args: + config (`ConvNextV2V2Config`): + Model configuration class. + in_channels (`int`): + Number of input channels. + out_channels (`int`): + Number of output channels. + depth (`int`): + Number of residual blocks. + drop_path_rates(`List[float]`): + Stochastic depth rates for each layer. + """ + + def __init__( + self, + config: ConvNextV2Config, + in_channels: int, + out_channels: int, + kernel_size: int = 2, + stride: int = 2, + depth: int = 2, + drop_path_rates: Optional[List[float]] = None, + **kwargs, + ): + super().__init__(**kwargs) + if in_channels != out_channels or stride > 1: + self.downsampling_layer = [ + keras.layers.LayerNormalization( + epsilon=1e-6, + name="downsampling_layer.0", + ), + # Inputs to this layer will follow NHWC format since we + # transposed the inputs from NCHW to NHWC in the `TFConvNextV2Embeddings` + # layer. All the outputs throughout the model will be in NHWC + # from this point on until the output where we again change to + # NCHW. + keras.layers.Conv2D( + filters=out_channels, + kernel_size=kernel_size, + strides=stride, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="downsampling_layer.1", + ), + ] + else: + self.downsampling_layer = [tf.identity] + + drop_path_rates = drop_path_rates or [0.0] * depth + self.layers = [ + TFConvNextV2Layer( + config, + dim=out_channels, + drop_path=drop_path_rates[j], + name=f"layers.{j}", + ) + for j in range(depth) + ] + self.in_channels = in_channels + self.out_channels = out_channels + self.stride = stride + + def call(self, hidden_states): + for layer in self.downsampling_layer: + hidden_states = layer(hidden_states) + for layer in self.layers: + hidden_states = layer(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + if self.in_channels != self.out_channels or self.stride > 1: + with tf.name_scope(self.downsampling_layer[0].name): + self.downsampling_layer[0].build([None, None, None, self.in_channels]) + with tf.name_scope(self.downsampling_layer[1].name): + self.downsampling_layer[1].build([None, None, None, self.in_channels]) + + +class TFConvNextV2Encoder(keras.layers.Layer): + def __init__(self, config: ConvNextV2Config, **kwargs): + super().__init__(**kwargs) + self.stages = [] + drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths)) + drop_path_rates = tf.split(drop_path_rates, config.depths) + drop_path_rates = [x.numpy().tolist() for x in drop_path_rates] + prev_chs = config.hidden_sizes[0] + for i in range(config.num_stages): + out_chs = config.hidden_sizes[i] + stage = TFConvNextV2Stage( + config, + in_channels=prev_chs, + out_channels=out_chs, + stride=2 if i > 0 else 1, + depth=config.depths[i], + drop_path_rates=drop_path_rates[i], + name=f"stages.{i}", + ) + self.stages.append(stage) + prev_chs = out_chs + + def call( + self, + hidden_states: tf.Tensor, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, TFBaseModelOutputWithNoAttention]: + all_hidden_states = () if output_hidden_states else None + + for i, layer_module in enumerate(self.stages): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + hidden_states = layer_module(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) + + return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) + + def build(self, input_shape=None): + for stage in self.stages: + with tf.name_scope(stage.name): + stage.build(None) + + +@keras_serializable +class TFConvNextV2MainLayer(keras.layers.Layer): + config_class = ConvNextV2Config + + def __init__(self, config: ConvNextV2Config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.embeddings = TFConvNextV2Embeddings(config, name="embeddings") + self.encoder = TFConvNextV2Encoder(config, name="encoder") + self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") + # We are setting the `data_format` like so because from here on we will revert to the + # NCHW output format + self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_last") + + @unpack_inputs + def call( + self, + pixel_values: TFModelInputType | None = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + embedding_output = self.embeddings(pixel_values, training=training) + + encoder_outputs = self.encoder( + embedding_output, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + last_hidden_state = encoder_outputs[0] + + # Change to NCHW output format have uniformity in the modules + pooled_output = self.pooler(last_hidden_state) + last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2)) + pooled_output = self.layernorm(pooled_output) + + # Change the other hidden state outputs to NCHW as well + if output_hidden_states: + hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) + + if not return_dict: + hidden_states = hidden_states if output_hidden_states else () + return (last_hidden_state, pooled_output) + hidden_states + + return TFBaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "layernorm", None) is not None: + with tf.name_scope(self.layernorm.name): + self.layernorm.build([None, self.config.hidden_sizes[-1]]) + + +class TFConvNextV2PreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ConvNextV2Config + base_model_prefix = "convnextv2" + main_input_name = "pixel_values" + + +CONVNEXTV2_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CONVNEXTV2_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`ConvNextImageProcessor.__call__`] for details. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to `True`. +""" + + +@add_start_docstrings( + "The bare ConvNextV2 model outputting raw features without any specific head on top.", + CONVNEXTV2_START_DOCSTRING, +) +class TFConvNextV2Model(TFConvNextV2PreTrainedModel): + def __init__(self, config: ConvNextV2Config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2") + + @unpack_inputs + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPoolingAndNoAttention, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + outputs = self.convnextv2( + pixel_values=pixel_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return outputs[:] + + return TFBaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=outputs.last_hidden_state, + pooler_output=outputs.pooler_output, + hidden_states=outputs.hidden_states, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "convnextv2", None) is not None: + with tf.name_scope(self.convnextv2.name): + self.convnextv2.build(None) + + +@add_start_docstrings( + """ + ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for + ImageNet. + """, + CONVNEXTV2_START_DOCSTRING, +) +class TFConvNextV2ForImageClassification(TFConvNextV2PreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config: ConvNextV2Config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.num_labels = config.num_labels + self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2") + + # Classifier head + self.classifier = keras.layers.Dense( + units=config.num_labels, + kernel_initializer=get_initializer(config.initializer_range), + bias_initializer=keras.initializers.Zeros(), + name="classifier", + ) + + @unpack_inputs + @add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=TFImageClassifierOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def call( + self, + pixel_values: TFModelInputType | None = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + outputs = self.convnextv2( + pixel_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(pooled_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFImageClassifierOutputWithNoAttention( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "convnextv2", None) is not None: + with tf.name_scope(self.convnextv2.name): + self.convnextv2.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_sizes[-1]]) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/configuration_distilbert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/configuration_distilbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2c3931276288b5e8357db9d0a24efd1ca47b6def Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/configuration_distilbert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_distilbert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_distilbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b72061536d1e641a299bef9faa17b911b625ed91 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_distilbert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_flax_distilbert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_flax_distilbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..479df14a03e530652b8ed6b788425d13d739e7eb Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_flax_distilbert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_tf_distilbert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_tf_distilbert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5386ed390bce03e777bc8aea0b5d0325c257f1a5 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/modeling_tf_distilbert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c5b767a00716f470141ed26e0db3a04c3b2972d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/distilbert/__pycache__/tokenization_distilbert_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c13163787b2df1cf15bc88949c4804cc2e0f17b9 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/ernie/__pycache__/configuration_ernie.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e7c08f0e27e747ea5468e0f9f014df4225dbd424 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__init__.py @@ -0,0 +1,43 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available + + +_import_structure = {} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_gpt_sw3"] = ["GPTSw3Tokenizer"] + + +if TYPE_CHECKING: + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_gpt_sw3 import GPTSw3Tokenizer + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8522b8ecf945025adfe2e9a1428b0a4bd5ba72a8 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2f2282ac51529d4bcb8512ea5f9f7a1df00860eb Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/convert_megatron_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/tokenization_gpt_sw3.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/tokenization_gpt_sw3.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4a61c251887eb32471917640275f3ecae2811d32 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/__pycache__/tokenization_gpt_sw3.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..5562efa287475be8786c28845124795951f6bfa6 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py @@ -0,0 +1,197 @@ +# Copyright 2022 The HuggingFace Inc. team and the AI-Sweden team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Convert GPT-SW3 megatron checkpoints to pytorch""" + +import argparse +import os +from os.path import isfile + +import torch + +from transformers import GPT2Config + + +def recursive_print(name, val, spaces=0): + # Format the message. + if name is None: + msg = None + else: + fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" + msg = fmt.format(name) + + # Print and recurse (if needed). + if isinstance(val, dict): + if msg is not None: + print(msg) + for k in val.keys(): + recursive_print(k, val[k], spaces + 2) + elif isinstance(val, torch.Tensor): + print(msg, ":", val.size()) + else: + print(msg, ":", val) + + +def fix_query_key_value_ordering(param, num_splits, num_heads, hidden_size): + # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] + # for compatibility with later versions of NVIDIA Megatron-LM. + # The inverse operation is performed inside Megatron-LM to read checkpoints: + # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 + # If param is the weight tensor of the self-attention block, the returned tensor + # will have to be transposed one more time to be read by HuggingFace GPT2. + input_shape = param.size() + # other versions store [num_heads * num_splits * hidden_size, :] + saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] + param = param.view(*saved_shape) + param = param.transpose(0, 1).contiguous() + param = param.view(*input_shape) + return param + + +def convert_megatron_checkpoint(sd_megatron, config): + """ + Converts a Megatron checkpoint to a HuggingFace GPT-SW3 checkpoint. + """ + n_positions = config.n_positions + layers = config.n_layer + vocab_size = config.vocab_size + heads = config.n_head + hidden_size_per_head = config.n_embd // config.n_head + + word_embeddings = sd_megatron["model.language_model.embedding.word_embeddings.weight"][:vocab_size, :] + sd_hf = { + "transformer.wte.weight": word_embeddings, + "transformer.wpe.weight": sd_megatron["model.language_model.embedding.position_embeddings.weight"], + "transformer.ln_f.weight": sd_megatron["model.language_model.encoder.final_layernorm.weight"], + "transformer.ln_f.bias": sd_megatron["model.language_model.encoder.final_layernorm.bias"], + } + + pf = "model.language_model.encoder.layers." + for i in range(layers): + causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.bool)) + causal_mask = causal_mask.view(1, 1, n_positions, n_positions) + sd_hf[f"transformer.h.{i}.attn.bias"] = causal_mask + sd_hf[f"transformer.h.{i}.attn.masked_bias"] = torch.tensor(-1e4, dtype=torch.bfloat16) + + sd_hf[f"transformer.h.{i}.ln_1.weight"] = sd_megatron[f"{pf}{i}.input_layernorm.weight"] + sd_hf[f"transformer.h.{i}.ln_1.bias"] = sd_megatron[f"{pf}{i}.input_layernorm.bias"] + + val1 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.weight"] + val1 = fix_query_key_value_ordering(val1, 3, heads, hidden_size_per_head) + sd_hf[f"transformer.h.{i}.attn.c_attn.weight"] = val1.transpose(0, 1).contiguous() + + val2 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.bias"] + val2 = fix_query_key_value_ordering(val2, 3, heads, hidden_size_per_head) + sd_hf[f"transformer.h.{i}.attn.c_attn.bias"] = val2 + + sd_hf[f"transformer.h.{i}.attn.c_proj.weight"] = sd_megatron[f"{pf}{i}.self_attention.dense.weight"].transpose( + 0, 1 + ) + sd_hf[f"transformer.h.{i}.attn.c_proj.bias"] = sd_megatron[f"{pf}{i}.self_attention.dense.bias"] + sd_hf[f"transformer.h.{i}.ln_2.weight"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.weight"] + sd_hf[f"transformer.h.{i}.ln_2.bias"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.bias"] + sd_hf[f"transformer.h.{i}.mlp.c_fc.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.weight"].transpose(0, 1) + sd_hf[f"transformer.h.{i}.mlp.c_fc.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.bias"] + sd_hf[f"transformer.h.{i}.mlp.c_proj.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.weight"].transpose( + 0, 1 + ) + sd_hf[f"transformer.h.{i}.mlp.c_proj.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.bias"] + + # For LM head, transformers' wants the matrix to weight embeddings. + sd_hf["lm_head.weight"] = word_embeddings + + return sd_hf + + +def copy_config(config_hf, config_megatron): + """Copy the config from Megatron to hf.""" + config_hf.vocab_size = 64000 + config_hf.n_positions = config_megatron["encoder_seq_length"] + config_hf.n_embd = config_megatron["hidden_size"] + config_hf.n_layer = config_megatron["num_layers"] + config_hf.n_head = config_megatron["num_attention_heads"] + config_hf.n_inner = config_megatron["ffn_hidden_size"] + config_hf.activation_function = "gelu" + config_hf.resid_pdrop = 0.1 + config_hf.embd_pdrop = 0.1 + config_hf.attn_pdrop = 0.1 + config_hf.layer_norm_epsilon = config_megatron["layernorm_epsilon"] # 1e-5 + config_hf.initializer_range = config_megatron["init_method_std"] # 0.02 + config_hf.apply_query_key_layer_scaling = config_megatron["apply_query_key_layer_scaling"] # True + config_hf.normalize_attention_scores = True + config_hf.use_cache = True + + # This identifies the 6.7B (7B) model which uses a different tokenizer + if config_megatron["hidden_size"] == 4096: + config_hf.bos_token_id = 1 # <|endoftext|> + config_hf.eos_token_id = 1 # <|endoftext|> + config_hf.pad_token_id = 0 # + else: + config_hf.bos_token_id = 2 # + config_hf.eos_token_id = 3 # <|endoftext|> + config_hf.pad_token_id = 0 # + + return config_hf + + +def main(args): + print(args) + + checkpoint_path = args.checkpoint_path + save_path = args.save_path + if isfile(checkpoint_path): + raise FileNotFoundError(f"ERROR! could not find file {checkpoint_path}") + + # Load the model. + checkpoint = torch.load(checkpoint_path, map_location="cpu") + + # Load the config. + config_megatron = checkpoint["hyper_parameters"]["cfg"] + config_hf = GPT2Config() + config_hf = copy_config(config_hf=config_hf, config_megatron=config_megatron) + config_hf.architectures = ["GPT2LMHeadModel"] + + sd_megatron = checkpoint["state_dict"] + + # Convert. + print("Converting") + sd_hf = convert_megatron_checkpoint(sd_megatron, config_hf) + + # Print the structure of converted state dict. + if args.print_checkpoint_structure: + recursive_print(None, sd_hf) + + config_hf.tokenizer_class = "GPTSw3Tokenizer" + + # Store the config to file. + print("Saving config") + config_hf.save_pretrained(save_path) + + # Store the state_dict to file. + output_checkpoint_file = os.path.join(save_path, "pytorch_model.bin") + print(f'Saving checkpoint to "{output_checkpoint_file}"') + torch.save(sd_hf, output_checkpoint_file) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--checkpoint_path", + type=str, + required=True, + help="e.g. megatron_gpt--val_loss=2.42-step=38000-consumed_samples=54720000", + ) + parser.add_argument("--save_path", type=str, required=True, help="e.g. /home/user/gpt-sw3/hf") + parser.add_argument("--print-checkpoint-structure", action="store_true") + _args = parser.parse_args() + main(_args) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/tokenization_gpt_sw3.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/tokenization_gpt_sw3.py new file mode 100644 index 0000000000000000000000000000000000000000..d740c13d3594a2a18dd5b3e64ffcd3a25c8fce21 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/gpt_sw3/tokenization_gpt_sw3.py @@ -0,0 +1,342 @@ +"""The tokenizer used by the GPT-SW3 models.""" + +import os +import re +import unicodedata +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import sentencepiece as spm + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import is_torch_available, logging + + +if is_torch_available(): + import torch + + +logger = logging.get_logger(__name__) +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "AI-Sweden-Models/gpt-sw3-126m": "https://huggingface.co/AI-Sweden-Models/gpt-sw3-126m/resolve/main/spiece.model", + "AI-Sweden-Models/gpt-sw3-356m": "https://huggingface.co/AI-Sweden-Models/gpt-sw3-356m/resolve/main/spiece.model", + "AI-Sweden-Models/gpt-sw3-1.3b": "https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b/resolve/main/spiece.model", + "AI-Sweden-Models/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b/resolve/main/spiece.model", + "AI-Sweden-Models/gpt-sw3-6.7b-v2": "https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b-v2/resolve/main/spiece.model", + "AI-Sweden-Models/gpt-sw3-20b": "https://huggingface.co/AI-Sweden-Models/gpt-sw3-20b/resolve/main/spiece.model", + "AI-Sweden-Models/gpt-sw3-40b": "https://huggingface.co/AI-Sweden-Models/gpt-sw3-20b/resolve/main/spiece.model", + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "AI-Sweden-Models/gpt-sw3-126m": 2048, + "AI-Sweden-Models/gpt-sw3-356m": 2048, + "AI-Sweden-Models/gpt-sw3-1.3b": 2048, + "AI-Sweden-Models/gpt-sw3-6.7b": 2048, + "AI-Sweden-Models/gpt-sw3-6.7b-v2": 2048, + "AI-Sweden-Models/gpt-sw3-20b": 2048, + "AI-Sweden-Models/gpt-sw3-40b": 2048, +} + + +class GPTSw3Tokenizer(PreTrainedTokenizer): + """ + Construct an GPTSw3 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Example usage: + ```python + >>> from transformers import GPTSw3Tokenizer + + >>> tokenizer = GPTSw3Tokenizer.from_pretrained("AI-Sweden-Models/gpt-sw3-126m") + >>> tokenizer("Svenska är kul!")["input_ids"] + [1814, 377, 3617, 63504] + ``` + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + do_lower_case (`bool`, *optional*, defaults to `False`): + Whether or not to lowercase the input when tokenizing. + remove_space (`bool`, *optional*, defaults to `False`): + Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). + keep_accents (`bool`, *optional*, defaults to `False`): + Whether or not to keep accents when tokenizing. + pad_token (`str`, *optional*): + The token used for padding, for example when batching sequences of different lengths. If not provided, will + default to '' or '' depending on model size. + unk_token (`str`, *optional*): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. If not provided, will default to ''. + eos_token (`str`, *optional*): + The end of sequence token seen during pretraining. If not provided, will default to '<|endoftext|>' + bos_token (`str`, *optional*): + The beginning of sequence token that can be used for downstream task, was not seen during pretraining. If + not provided, will default to '' or '<|endoftext|>', depending on model size. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + whitespaces (`set`): + The whitespaces that are replaced in the whitespace normalization in preprocessing. + non_printing_characters_re (`Pattern`): + The compiled regular expression to remove non-printing characters in preprocessing. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + do_lower_case=False, + remove_space=False, + keep_accents=False, + pad_token=None, + unk_token=None, + eos_token=None, + bos_token=None, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + name_or_path = kwargs.get("name_or_path") + if name_or_path is None: + logger.warning( + "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," + " you are testing the model, this can safely be ignored" + ) + name_or_path = "None" + + # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing + eos_token = "<|endoftext|>" if eos_token is None else eos_token + unk_token = "" if unk_token is None else unk_token + if "gpt-sw3-7b" in name_or_path: + pad_token = unk_token if pad_token is None else pad_token + bos_token = eos_token if bos_token is None else bos_token + else: + pad_token = "" if pad_token is None else pad_token + bos_token = "" if bos_token is None else bos_token + + self.do_lower_case = do_lower_case + self.remove_space = remove_space + self.keep_accents = keep_accents + self.vocab_file = vocab_file + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + + # Used for whitespace normalization in input texts + # fmt : off + self.whitespaces = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} + # fmt : on + + # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing + self.non_printing_characters_re = re.compile( + f"[{''.join(map(chr, list(range(0, 9)) + list(range(11, 32)) + list(range(127, 160)) + [160, 173, 8203]))}]" + ) + + super().__init__( + do_lower_case=do_lower_case, + remove_space=remove_space, + keep_accents=keep_accents, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.__getstate__ + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.__setstate__ + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + @property + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size + def vocab_size(self) -> int: + return len(self.sp_model) + + def preprocess_text(self, text: str) -> str: + """ + Returns the preprocessed text. This procedure is identical to what was used when training the tokenizer. + """ + + # Remove non-printing characters + text = self.non_printing_characters_re.sub("", text) + + # Normalize whitespaces + text = "".join([char if char not in self.whitespaces else " " for char in text]) + + # NFC Unicode normalization + text = unicodedata.normalize("NFC", text) + return text + + def _tokenize(self, text: str, **kwargs) -> List[str]: + text = self.preprocess_text(text) + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token: str) -> int: + """Converts a token (str) to an id (int) using the vocab.""" + return self.sp_model.PieceToId(token) + + def _convert_id_to_token(self, index: int) -> str: + """Converts an index (int) to a token (str) using the vocab.""" + return self.sp_model.IdToPiece(index) + + @staticmethod + def clean_up_tokenization(out_string: str) -> str: + """Returns the input string, this function is overridden to remove the default clean up.""" + return out_string + + def convert_tokens_to_string(self, tokens: List[str]) -> str: + """Converts a sequence of tokens (strings) to a single string. Special tokens remain intact.""" + current_sub_tokens = [] + out_string = "" + prev_is_special = False + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document + if not prev_is_special: + out_string += " " + + out_string += self.sp_model.decode(current_sub_tokens) + token + prev_is_special = True + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + prev_is_special = False + out_string += self.sp_model.decode(current_sub_tokens) + + return out_string + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.get_vocab + def get_vocab(self) -> Dict[str, int]: + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def encode_fast( + self, text: Union[str, List[str]], return_tensors: Union[str, bool] = False + ) -> Union[List[int], List[List[int]], "torch.Tensor"]: + """ + Encodes a text or batch of texts to token ids using preprocessing and the raw SP tokenizer. This has reduced + functionality but is often much faster. + + Does NOT handle special tokens correctly, these can manually be added as ids afterwards. + + Does NOT support padding, these can manually be added as ids afterwards. + + Use default HuggingFace tokenization methods for full functionality. + + Args: + text (`str` or `List[str]`): One or several text(s) to convert to token ids. + return_tensors (`str` or `bool`): Returns PyTorch tensors if set to True or "pt" + + Returns: + `List[int]`, `List[List[int]]`, or `torch.Tensor`: The encoded text(s) as token ids. + """ + + if isinstance(text, str): + text = self.preprocess_text(text) + token_ids = self.sp_model.encode(text) + else: + text = [self.preprocess_text(t) for t in text] + token_ids = self.sp_model.encode(text) + + if return_tensors is True or return_tensors == "pt": + token_ids = torch.tensor(token_ids) + + return token_ids + + def decode_fast(self, token_ids: Union[int, List[int]]) -> str: + """ + Encodes a text or batch of texts to token ids using preprocessing and the raw SP tokenizer. This has reduced + functionality but is often much faster. + + Args: + token_ids (`int` or `List[int]`): Encoded token or text as token id(s). + + Returns: + `str`: Decoded text + """ + + return self.sp_model.decode(token_ids) + + @property + def default_chat_template(self): + """ + This chat template formats messages like an instant messenger chat log, with "User:" and "Bot:" strings + preceding messages. BOS tokens are added between all messages. + """ + logger.warning_once( + "\nNo chat template is defined for this tokenizer - using the default template " + f"for the {self.__class__.__name__} class. If the default is not appropriate for " + "your model, please set `tokenizer.chat_template` to an appropriate template. " + "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" + ) + return ( + "{{ eos_token }}{{ bos_token }}" + "{% for message in messages %}" + "{% if message['role'] == 'user' %}{{ 'User: ' + message['content']}}" + "{% else %}{{ 'Bot: ' + message['content']}}{% endif %}" + "{{ message['text'] }}{{ bos_token }}" + "{% endfor %}" + "Bot:" + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b3635ace91163577201f716c9d67e255f11ea55b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__init__.py @@ -0,0 +1,70 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tf_available, + is_torch_available, +) + + +_import_structure = { + "configuration_gptsan_japanese": ["GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTSanJapaneseConfig"], + "tokenization_gptsan_japanese": ["GPTSanJapaneseTokenizer"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_gptsan_japanese"] = [ + "GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST", + "GPTSanJapaneseForConditionalGeneration", + "GPTSanJapaneseModel", + "GPTSanJapanesePreTrainedModel", + ] + _import_structure["tokenization_gptsan_japanese"] = [ + "GPTSanJapaneseTokenizer", + ] + + +if TYPE_CHECKING: + from .configuration_gptsan_japanese import GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTSanJapaneseConfig + from .tokenization_gptsan_japanese import GPTSanJapaneseTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_gptsan_japanese import ( + GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, + GPTSanJapaneseForConditionalGeneration, + GPTSanJapaneseModel, + GPTSanJapanesePreTrainedModel, + ) + from .tokenization_gptsan_japanese import GPTSanJapaneseTokenizer + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4b9c9d7d87cd4b0792d991e12c6a77099e036872 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py new file mode 100644 index 0000000000000000000000000000000000000000..c25e4b0e1ea2a950353b89ee3016f0a80338ac64 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py @@ -0,0 +1,159 @@ +# coding=utf-8 +# Copyright 2023, HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" GPTSAN-japanese model configuration""" +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( + "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" + ), +} + + +class GPTSanJapaneseConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`GPTSanJapaneseModel`]. It is used to instantiate + a GPTSANJapanese model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the GPTSANJapanese + [Tanrei/GPTSAN-japanese](https://huggingface.co/Tanrei/GPTSAN-japanese) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Arguments: + vocab_size (`int`, *optional*, defaults to 36000): + Vocabulary size of the GPTSANJapanese model. Defines the number of different tokens that can be represented + by the `inputs_ids` passed when calling [`GPTSanJapaneseModel`]. + max_position_embeddings (`int`, *optional*, defaults to 1280): + The maximum sequence length that this model might ever be used with. Defaults set this to 1280. + d_model (`int`, *optional*, defaults to 1024): + Size of the encoder layers and the pooler layer. + d_ff (`int`, *optional*, defaults to 8192): + Size of the intermediate feed forward layer in each `SwitchTransformersBlock`. + d_ext (`int`, *optional*, defaults to 4096): + Size of the intermediate feed forward layer in each Extra-layers. + d_spout (`int`, *optional*, defaults to 128): + Size of the `spout` vector. + num_switch_layers (`int`, *optional*, defaults to 10): + Number of layers in the Switch Transformer layer. + num_ext_layers (`int`, *optional*, defaults to 0): + Number of layers in the Extra-layers. + num_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + num_experts (`int`, *optional*, defaults to 16): + Number of experts for each SwitchTransformer layer. + expert_capacity (`int`, *optional*, defaults to 128): + Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular + Transformer. + dropout_rate (`float`, *optional*, defaults to 0.0): + The ratio for all dropout layers. + layer_norm_eps (`float`, *optional*, defaults to 1e-5): + The epsilon used by the layer normalization layers. + router_bias (`bool`, *optional*, defaults to `False`): + Whether to add a bias to the router. + router_jitter_noise (`float`, *optional*, defaults to 0.0): + Amount of noise to add to the router. Set it to 0.0 during prediction or set small value (usually 1e-2) + during training. + router_dtype (`str`, *optional*, default to `"float32"`): + The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the + *selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961). + router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`): + Whether to ignore padding tokens when routing. + output_hidden_states (`bool`, *optional*, default to `False`): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + output_attentions (`bool`, *optional*, defaults to `False`): + Whether or not to return the attentions tensors of all attention layers. + initializer_factor (`float`, *optional*, defaults to 0.002): + A factor for initializing all weight matrices. + output_router_logits (`bool`, *optional*, default to `False`): + Whether or not to return the router logits of all experts. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models) + """ + + model_type = "gptsan-japanese" + keys_to_ignore_at_inference = [ + "past_key_values", + ] + attribute_map = { + "hidden_size": "d_model", + "num_attention_heads": "num_heads", + "num_hidden_layers": "num_layers", + } + + def __init__( + self, + vocab_size=36000, + max_position_embeddings=1280, + d_model=1024, + d_ff=8192, + d_ext=4096, + d_spout=128, + num_switch_layers=10, + num_ext_layers=0, + num_heads=16, + num_experts=16, + expert_capacity=128, + dropout_rate=0.0, + layer_norm_epsilon=1e-5, + router_bias=False, + router_jitter_noise=0.0, + router_dtype="float32", + router_ignore_padding_tokens=False, + output_hidden_states=False, + output_attentions=False, + initializer_factor=0.002, + output_router_logits=False, + use_cache=True, + separator_token_id=35998, + pad_token_id=35995, + eos_token_id=35999, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.d_ff = d_ff + self.d_ext = d_ext + self.d_spout = d_spout + self.num_switch_layers = num_switch_layers + self.num_ext_layers = num_ext_layers + self.num_layers = num_switch_layers + num_ext_layers + self.num_heads = num_heads + self.num_experts = num_experts + self.expert_capacity = expert_capacity + self.dropout_rate = dropout_rate + self.layer_norm_epsilon = layer_norm_epsilon + self.router_bias = router_bias + self.router_jitter_noise = router_jitter_noise + self.router_dtype = router_dtype + self.router_ignore_padding_tokens = router_ignore_padding_tokens + self.output_hidden_states = output_hidden_states + self.output_attentions = output_attentions + self.initializer_factor = initializer_factor + self.output_router_logits = output_router_logits + self.use_cache = use_cache + + super().__init__( + separator_token_id=separator_token_id, + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + **kwargs, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/convert_gptsan_tf_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/convert_gptsan_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..a84d000d44390fe6ae821fb1cdfba968d40a2b93 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/convert_gptsan_tf_checkpoint_to_pytorch.py @@ -0,0 +1,181 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Convert GPTSANJapanese checkpoints from the original repository to pytorch model.""" + +import argparse +import json +import os +from collections import OrderedDict + +import numpy as np +import tensorflow as tf +import torch + + +def convert_tf_gptsan_to_pt(args): + parameter_file = os.path.join(args.tf_model_dir, "parameters.json") + params = json.loads(open(parameter_file).read()) + if not params: + raise ValueError( + f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." + ) + if not args.output.endswith(".pt"): + args.output = args.output + ".pt" + new_state = OrderedDict() + with tf.device("/CPU:0"): + reader = tf.train.load_checkpoint(args.tf_model_dir) + shapes = reader.get_variable_to_shape_map() + for key_name in shapes.keys(): + vnp = reader.get_tensor(key_name).astype(np.float16) + if key_name.endswith("/adam_m") or key_name.endswith("/adam_v"): + continue + if key_name.startswith("pasts/"): + if key_name.startswith("pasts/mlp"): + player = int(key_name[9]) + elif key_name.startswith("pasts/out"): + player = 8 + name = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time + state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix + new_state[name] = torch.tensor(state) + elif key_name.startswith("model/moe"): + player = int(key_name[9:].split("/")[0]) + if key_name.endswith("/switch_gating/kernel"): + name = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player + state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix + new_state[name] = torch.tensor(state) + elif key_name.endswith("/softmlp/kernel"): + name = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player + state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix + new_state[name] = torch.tensor(state) + elif key_name.endswith("/wo/kernel") or key_name.endswith("/wi/kernel"): + nlayer = key_name[-9:-7] + for i in range(16): + name = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) + state = ( + vnp[i].transpose([1, 0]).copy() + ) # In Mesh-Tensorflow, it is one array, so it is divided + new_state[name] = torch.tensor(state) + elif key_name.startswith("model/mlp"): + player = int(key_name[9:].split("/")[0]) + if key_name.endswith("/p1/kernel"): + name = "model.blocks.%d.feed_forward.mlp.wi.weight" % player + state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix + new_state[name] = torch.tensor(state) + elif key_name.endswith("/p1/bias"): + name = "model.blocks.%d.feed_forward.mlp.wi.bias" % player + state = vnp.copy() # same because it is one dimensional + new_state[name] = torch.tensor(state) + elif key_name.endswith("/p2/kernel"): + name = "model.blocks.%d.feed_forward.mlp.wo.weight" % player + state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix + new_state[name] = torch.tensor(state) + elif key_name.endswith("/p2/bias"): + name = "model.blocks.%d.feed_forward.mlp.wo.bias" % player + state = vnp.copy() # same because it is one dimensional + new_state[name] = torch.tensor(state) + elif key_name.startswith("model/ln"): + player = int(key_name[8:].split("/")[0]) + if key_name.endswith("/b"): + name = "model.blocks.%d.feed_forward.norm.bias" % player + state = vnp.copy() # same because it is one dimensional + new_state[name] = torch.tensor(state) + elif key_name.endswith("/g"): + name = "model.blocks.%d.feed_forward.norm.weight" % player + state = vnp.copy() # same because it is one dimensional + new_state[name] = torch.tensor(state) + elif key_name.startswith("model/att"): + player = int(key_name[9:].split("/")[0]) + if key_name.endswith("/qkv/kernel"): + state = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum + state_q = state[:, 0, :, :] + state_k = state[:, 1, :, :] + state_v = state[:, 2, :, :] + state_q = ( + state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]]) + .transpose([1, 0]) + .copy() + ) # Mesh-Tensorflow is a diagonal matrix + state_k = ( + state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]]) + .transpose([1, 0]) + .copy() + ) # Mesh-Tensorflow is a diagonal matrix + state_v = ( + state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]]) + .transpose([1, 0]) + .copy() + ) # Mesh-Tensorflow is a diagonal matrix + name = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player + new_state[name] = torch.tensor(state_q) + name = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player + new_state[name] = torch.tensor(state_k) + name = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player + new_state[name] = torch.tensor(state_v) + elif key_name.endswith("/o/kernel"): + name = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player + state = ( + vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]]).transpose([1, 0]).copy() + ) # Mesh-Tensorflow is a diagonal matrix + new_state[name] = torch.tensor(state) + elif key_name.startswith("model/an"): + player = int(key_name[8:].split("/")[0]) + if key_name.endswith("/b"): + name = "model.blocks.%d.self_attn.norm.bias" % player + state = vnp.copy() # same because it is one dimensional + new_state[name] = torch.tensor(state) + elif key_name.endswith("/g"): + name = "model.blocks.%d.self_attn.norm.weight" % player + state = vnp.copy() # same because it is one dimensional + new_state[name] = torch.tensor(state) + elif ( + key_name.startswith("model/wte") + or key_name.startswith("model/wpe") + or key_name.startswith("model/ete") + ): + nlayer = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ + key_name[-3:] + ] + name = "model.%s.weight" % nlayer + state = vnp.copy() # same in embedded + new_state[name] = torch.tensor(state) + if key_name.startswith("model/wte"): + name = "lm_head.weight" + state = vnp.copy() # same in embedded + new_state[name] = torch.tensor(state) + elif key_name.startswith("model/wob"): + name = "final_logits_bias" + state = vnp.copy() # same in embedded + state = state.reshape((1, -1)) + new_state[name] = torch.tensor(state) + elif key_name == "model/dense/kernel": + name = "model.last_project.weight" + state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix + new_state[name] = torch.tensor(state) + elif key_name == "model/dense_1/bias": + name = "model.last_project.bias" + state = vnp.copy() # same because it is one dimensional + new_state[name] = torch.tensor(state) + torch.save(new_state, args.output) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter + ) + parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") + parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") + args = parser.parse_args() + convert_tf_gptsan_to_pt(args) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/modeling_gptsan_japanese.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/modeling_gptsan_japanese.py new file mode 100644 index 0000000000000000000000000000000000000000..d9b7003050b11ac76b80b6b624bc226b570f0591 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/modeling_gptsan_japanese.py @@ -0,0 +1,1345 @@ +# coding=utf-8 +# Copyright 2023 Toshiyuki Sakamoto(tanreinama) and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch GPTSANJapanese model.""" + + +import copy +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from ...activations import ACT2FN +from ...modeling_outputs import MoECausalLMOutputWithPast, MoEModelOutputWithPastAndCrossAttentions +from ...modeling_utils import PreTrainedModel +from ...utils import ( + DUMMY_INPUTS, + DUMMY_MASK, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_torch_fx_proxy, + logging, +) +from .configuration_gptsan_japanese import GPTSanJapaneseConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "GPTSanJapaneseConfig" +_CHECKPOINT_FOR_DOC = "Tanrei/GPTSAN-japanese" + +#################################################### +# This dict contains ids and associated url +# for the pretrained weights provided with the models +#################################################### +GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "Tanrei/GPTSAN-japanese", + # See all GPTSAN-japanese models at https://huggingface.co/models?filter=gptsan-japanese +] + + +# Copied from transformers.models.switch_transformers.modeling_switch_transformers.router_z_loss_func +def router_z_loss_func(router_logits: torch.Tensor) -> float: + r""" + Compute the router z-loss implemented in PyTorch. + + The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906). + It encourages router logits to remain small in an effort to improve stability. + + Args: + router_logits (`float`): + Input logits of shape [batch_size, sequence_length, num_experts] + + Returns: + Scalar router z-loss. + """ + num_groups, tokens_per_group, _ = router_logits.shape + log_z = torch.logsumexp(router_logits, dim=-1) + z_loss = log_z**2 + return torch.sum(z_loss) / (num_groups * tokens_per_group) + + +# Copied from transformers.models.switch_transformers.modeling_switch_transformers.load_balancing_loss_func +def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float: + r""" + Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. + + See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss + function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between + experts is too unbalanced. + + Args: + router_probs (`torch.Tensor`): + Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts]. + expert_indices (`torch.Tensor`): + Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token. + + Returns: + The auxiliary loss. + """ + num_experts = router_probs.shape[-1] + + # cast the expert indices to int64, otherwise one-hot encoding will fail + if expert_indices.dtype != torch.int64: + expert_indices = expert_indices.to(torch.int64) + + if len(expert_indices.shape) == 2: + expert_indices = expert_indices.unsqueeze(2) + + expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts) + + # For a given token, determine if it was routed to a given expert. + expert_mask = torch.max(expert_mask, axis=-2).values + + # cast to float32 otherwise mean will fail + expert_mask = expert_mask.to(torch.float32) + tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) + + router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2) + return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2) + + +class GPTSanJapaneseDenseActDense(nn.Module): + """ + FFN Layer for Switch Transformer and Extra layers + + GPTSAN can mix Switch Transformer layers and normal Transformer layers This class is used as Expert in Switch + Transformer layers and as FFN in regular Transformer layers. RELU is used in the Switch Transformer layer, and + Swish is used in the normal Transformer layer, so there is a choice of which is used in the argument. + + """ + + def __init__(self, config: GPTSanJapaneseConfig, ext_layer=False): + super().__init__() + d_inter = config.d_ext if ext_layer else config.d_ff + self.wi = nn.Linear(config.d_model, d_inter, bias=ext_layer) + self.wo = nn.Linear(d_inter, config.d_model, bias=ext_layer) + self.dropout = nn.Identity() if ext_layer else nn.Dropout(config.dropout_rate) + self.act = ACT2FN["swish" if ext_layer else "relu"] + + def forward(self, hidden_states): + r""" + Args: + hidden_states (`torch.Tensor`) : + [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. + Returns: + torch.Tensor[num_groups, tokens_per_group, hidden_dim] + + """ + hidden_states = self.wi(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.wo(hidden_states) + return hidden_states + + +# Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersTop1Router with SwitchTransformers->GPTSanJapanese +class GPTSanJapaneseTop1Router(nn.Module): + """ + Router using tokens choose top-1 experts assignment. + + This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE + (https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then + routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each + token is processed by an expert**, or that each expert receives at least one token. + + """ + + def __init__(self, config: GPTSanJapaneseConfig): + super().__init__() + self.num_experts = config.num_experts + self.expert_capacity = config.expert_capacity + self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) + self.jitter_noise = config.router_jitter_noise + self.ignore_padding_tokens = config.router_ignore_padding_tokens + self.dtype = getattr(torch, config.router_dtype) + + def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + r""" + Computes router probabilities from input hidden states. + + Args: + hidden_states (`torch.Tensor`): + (batch_size, sequence_length, hidden_dim) from which router probabilities are computed. + Returns: + router_probabilities (`torch.Tensor`): + Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each + token and expert. Used for routing tokens to experts. + router_logits (`torch.Tensor`): + Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. + This is used later for computing router z-loss. + """ + # float32 is used to ensure stability. See the discussion of "selective precision" in + # https://arxiv.org/abs/2101.03961. + # We also store the previous dtype to cast back the output to the previous dtype + self.input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(self.dtype) + + if self.training and self.jitter_noise > 0: + # Multiply the token inputs by the uniform distribution - adding some noise + hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) + + # Shape: [num_groups, tokens_per_group, num_experts] + self._cast_classifier() + router_logits = self.classifier(hidden_states) + + # Apply Softmax and cast back to the original `dtype` + router_probabilities = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(self.input_dtype) + return router_probabilities, router_logits + + def _cast_classifier(self): + r""" + `bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an + instance of the `Linear8bitLt` class by checking special attributes. + """ + if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")): + self.classifier = self.classifier.to(self.dtype) + + def forward(self, hidden_states: torch.Tensor) -> Tuple: + r""" + Generic forward function for every Router class. Each Router expects to have the same input hidden states + (`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the + number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert. + + Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and + `router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned + to an expert. Then each Router class will have to define its own `_compute_routing_instructions`. + + Args: + hidden_states (`torch.Tensor`) : + [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. + Returns: + Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs + and the router logits. The router probabilities and logits are required to compute the loss. + """ + router_probs, router_logits = self._compute_router_probabilities(hidden_states) + + expert_index = torch.argmax(router_probs, dim=-1) + expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts) + + # Mask tokens outside expert capacity. Sum over each sequence + token_priority = torch.cumsum(expert_index, dim=-2) + # mask if the token routed to to the expert will overflow + expert_capacity_mask = token_priority <= self.expert_capacity + expert_index = expert_index * expert_capacity_mask + + router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1) + return expert_index, router_probs, router_logits + + +# Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersSparseMLP with SwitchTransformers->GPTSanJapanese +class GPTSanJapaneseSparseMLP(nn.Module): + r""" + Implementation of the Switch Transformers Sparse MLP module. + """ + + def __init__(self, config: GPTSanJapaneseConfig, expert_class: nn.Module = GPTSanJapaneseDenseActDense): + super().__init__() + # Step 1: Get the correct router according to its class + self.router = GPTSanJapaneseTop1Router(config) + + # Step 2: Get the experts + self.experts = nn.ModuleDict() + for idx in range(config.num_experts): + self.experts[f"expert_{idx}"] = expert_class(config) + + def forward(self, hidden_states): + r""" + Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following: + + 1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)` + and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the + hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor). + + 2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each + expert the corresponding hidden states. + + """ + # Step 1: Get the router_mask from the router as wel as the probabilities + router_mask, router_probs, router_logits = self.router(hidden_states) + expert_index = torch.argmax(router_mask, dim=-1) + + # The routers introduced might not always map all the tokens, to a router, which means that some hidden states + # can be unchanged from one layer to another. That is why the hidden states are cloned before updating only the seleced ones. + + next_states = hidden_states.clone() + for idx, expert in enumerate(self.experts.values()): + token_indices = router_mask[:, :, idx].bool() + next_states[token_indices] = expert(hidden_states[token_indices]).to(next_states.dtype) + + hidden_states = router_probs * next_states + return hidden_states, (router_logits, expert_index) + + +class GPTSanJapaneseLayerSparseFF(nn.Module): + r""" + Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module. + + Parameters: + config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. + """ + + def __init__(self, config: GPTSanJapaneseConfig): + super().__init__() + self.mlp = GPTSanJapaneseSparseMLP(config) + self.soft_bypass_mlp = nn.Linear(config.d_model, config.d_model, bias=False) + self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + + def forward(self, hidden_states, output_router_logits): + r""" + Args: + hidden_states (`torch.Tensor`) : + [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. + output_router_logits (`bool`) : + output experts router output. + Returns: + torch.Tensor[num_groups, tokens_per_group, hidden_dim] + + """ + forwarded_states, router_tuple = self.mlp(hidden_states) + forwarded_states += torch.tanh(self.soft_bypass_mlp(hidden_states)) + output = hidden_states + self.norm(forwarded_states) + + if output_router_logits and router_tuple is not None: + return output, router_tuple + else: + return output + + +class GPTSanJapaneseLayerDenseFF(nn.Module): + r""" + Extra Transformers Feed Forward layer module. + + Parameters: + config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. + """ + + def __init__(self, config: GPTSanJapaneseConfig): + super().__init__() + # Check if it is a sparse layer, if not then it is a dense layer + self.mlp = GPTSanJapaneseDenseActDense(config, ext_layer=True) + self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + + def forward(self, hidden_states): + r""" + Args: + hidden_states (`torch.Tensor`) : + [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. + Returns: + torch.Tensor[num_groups, tokens_per_group, hidden_dim] + + """ + forwarded_states = self.mlp(hidden_states) + output = hidden_states + self.norm(forwarded_states) + return output + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->GPTSanJapanese +class GPTSanJapaneseAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[GPTSanJapaneseConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class GPTSanJapaneseLayerSelfAttention(nn.Module): + """ + Self Attention and Normalization Unit + """ + + def __init__(self, config, has_relative_attention_bias=False): + super().__init__() + self.self_attn = GPTSanJapaneseAttention( + embed_dim=config.d_model, + num_heads=config.num_heads, + is_decoder=True, + bias=has_relative_attention_bias, + ) + self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + + def forward( + self, + hidden_states: Optional[Tuple[torch.FloatTensor]], + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: + r""" + Self-attention and normalize block. + + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + if the model is configured as a decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up + decoding. If `past_key_values` are used, the user can optionally input only the last + `decoder_input_ids` (those that don't have their past key value states given to this model) of shape + `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used + in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + head_mask (`numpy.ndarray` of shape `({0})`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + Returns: + Tuple[torch.Tensor[num_groups, tokens_per_group, hidden_dim],...] + """ + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + atten_out = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=(1 - attention_mask) * torch.finfo(hidden_states.dtype).min, + layer_head_mask=head_mask, + output_attentions=output_attentions, + ) + if output_attentions: + attn_weights = (atten_out[1],) + else: + attn_weights = () + + attention_output = atten_out[0] + + hidden = hidden_states + self.norm(attention_output) + + if use_cache: + outputs = (hidden, atten_out[2]) # hidden, present, (attentions) + else: + outputs = (hidden,) # hidden, (attentions) + + return outputs + attn_weights + + +class GPTSanJapaneseBlock(nn.Module): + """ + Self Attention and FFN Unit + """ + + def __init__(self, config, ext_layer=False): + super().__init__() + self.self_attn = GPTSanJapaneseLayerSelfAttention(config) + self.feed_forward = GPTSanJapaneseLayerDenseFF(config) if ext_layer else GPTSanJapaneseLayerSparseFF(config) + + def forward( + self, + hidden_states: Optional[Tuple[torch.FloatTensor]], + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + output_router_tuple: Optional[bool] = False, + ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: + r""" + GPTSAN transformer block. + + Args: + hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + if the model is configured as a decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up + decoding. If `past_key_values` are used, the user can optionally input only the last + `decoder_input_ids` (those that don't have their past key value states given to this model) of shape + `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used + in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + head_mask (`numpy.ndarray` of shape `({0})`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + output_attentions (`bool`) : + output attention probabirities. + output_router_tuple: + output experts router logits and expert id. + Returns: + Tuple[torch.Tensor[num_groups, tokens_per_group, hidden_dim],...] + """ + atten_out = self.self_attn( + hidden_states=hidden_states, + past_key_value=past_key_value, + attention_mask=attention_mask, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + attention_output = atten_out[0] + + if isinstance(self.feed_forward, GPTSanJapaneseLayerSparseFF): + sparse_out = self.feed_forward(attention_output, output_router_tuple) + if output_router_tuple: + hidden, router_tuple = sparse_out + else: + hidden = sparse_out + else: + hidden = self.feed_forward(attention_output) + + outputs = (hidden,) + atten_out[1:] + + if isinstance(self.feed_forward, GPTSanJapaneseLayerSparseFF) and output_router_tuple: + outputs += (router_tuple,) + + return outputs + + +class GPTSanJapanesePreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = GPTSanJapaneseConfig + base_model_prefix = "gptsan_japanese" + supports_gradient_checkpointing = False + _no_split_modules = ["GPTSanJapaneseBlock"] + _skip_keys_device_placement = "past_key_values" + + @property + def dummy_inputs(self): + input_ids = torch.tensor(DUMMY_INPUTS) + input_mask = torch.tensor(DUMMY_MASK) + dummy_inputs = { + "input_ids": input_ids, + "attention_mask": input_mask, + } + return dummy_inputs + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_factor # Used for testing weights initialization + if isinstance(module, nn.LayerNorm): + module.weight.data.fill_(factor * 1.0) + module.bias.data.zero_() + elif isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module, "bias") and module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=factor * 1.0) + elif isinstance(module, GPTSanJapaneseModel): + # Mesh TensorFlow embeddings initialization + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 + module.embed_tokens.weight.data.normal_(mean=0.0, std=factor * 1.0) + module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 1.0) + if hasattr(module, "extra_position_embeddings") and module.extra_position_embeddings is not None: + module.extra_position_embeddings.weight.data.normal_(mean=0.0, std=factor * 1.0) + elif isinstance(module, (GPTSanJapaneseModel, GPTSanJapaneseForConditionalGeneration)): + # Mesh TensorFlow embeddings initialization + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 + module.final_logits_bias.data.normal_(mean=0.0, std=factor * 1.0) + if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: + module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) + elif isinstance(module, GPTSanJapaneseDenseActDense): + # Mesh TensorFlow FF initialization + # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 + # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 + module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.wi, "bias") and module.wi.bias is not None: + module.wi.bias.data.zero_() + module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) + if hasattr(module.wo, "bias") and module.wo.bias is not None: + module.wo.bias.data.zero_() + elif isinstance(module, GPTSanJapaneseAttention): + # Multi-headed attention + d_model = self.config.d_model + key_value_proj_dim = self.config.d_model + n_heads = self.config.num_heads + module.k_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) + module.v_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) + module.q_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) + module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) + elif isinstance(module, GPTSanJapaneseSparseMLP): + # Mesh TensorFlow attention initialization to avoid scaling before softmax + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 + d_model = self.config.d_model + key_value_proj_dim = self.config.d_model + n_heads = self.config.num_heads + module.router.classifier.weight.data.normal_(mean=0.0, std=factor * 1) + for idx in range(self.config.num_experts): + module.experts[f"expert_{idx}"].wi.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + module.experts[f"expert_{idx}"].wo.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + + # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right + def _shift_right(self, input_ids): + decoder_start_token_id = self.config.decoder_start_token_id + pad_token_id = self.config.pad_token_id + + if decoder_start_token_id is None: + raise ValueError( + "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " + "See T5 docs for more information." + ) + + # shift inputs to the right + if is_torch_fx_proxy(input_ids): + # Item assignment is not supported natively for proxies. + shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) + shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) + else: + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() + shifted_input_ids[..., 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +GPTSAN_JAPANESE_START_DOCSTRING = r""" + + The [GPTSAN-japanese](https://github.com/tanreinama/GPTSAN) model was proposed in General-purpose Swich transformer + based Japanese language model + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +GPTSAN_JAPANESE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. GPTSAN-japanese is a model that generates sentence + continuations or predicts tokens at mask positions. Special tokens required for inputs to the model are + automatically appended. + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + An input that masks the Prefix part in the Prefix-LM input. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **prefix** input, + - 0 for tokens that are **not-prefix** input. + spout (`torch.Tensor` of shape `(batch_size, config.d_spout)`): + This vector is transformed through an 8-layer FFN and can be used instead of `past_key_values`. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`. + Router logits of the decoder model, useful to compute the auxiliary loss for Mixture of Experts models. +""" + + +@add_start_docstrings( + "The bare GPTSAN-japanese Model transformer outputting raw hidden-states without any specific head on top.", + GPTSAN_JAPANESE_START_DOCSTRING, +) +class GPTSanJapaneseModel(GPTSanJapanesePreTrainedModel): + def __init__(self, config: GPTSanJapaneseConfig): + super().__init__(config) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model) + self.config = copy.deepcopy(config) + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) + self.last_project = nn.Linear(config.d_model, config.d_model, bias=True) + self.act = ACT2FN["swish"] + + self.blocks = torch.nn.ModuleList([]) + for _ in range(config.num_switch_layers): + self.blocks.append(GPTSanJapaneseBlock(config)) + for _ in range(config.num_ext_layers): + self.blocks.append(GPTSanJapaneseBlock(config, ext_layer=True)) + + if config.num_ext_layers > 0: + self.extra_position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model) + + if config.d_spout: + spouts = [] + for _ in range(8): + spouts.append(nn.Linear(config.d_spout, config.d_spout, bias=False)) + spouts.append(nn.Tanh()) + spouts.append(nn.Linear(config.d_spout, config.num_layers * 2 * config.d_model, bias=False)) + self.spout = nn.Sequential(*spouts) + + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, new_embeddings): + self.embed_tokens = new_embeddings + + @add_start_docstrings_to_model_forward(GPTSAN_JAPANESE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.FloatTensor] = None, + spout: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + num_precontext: Optional[torch.LongTensor] = None, + ) -> Union[MoEModelOutputWithPastAndCrossAttentions, Tuple[torch.FloatTensor]]: + r""" + num_precontext (`torch.LongTensor` of shape `(batch_size,1)`): + length of `hybrid` input tokens in the input. Tokens up to this length refer to both front and back like + BERT, tokens after that refer only to front like GPT. see also: + https://github.com/tanreinama/GPTSAN/blob/main/report/model.md + + Returns: + `MoEModelOutputWithPastAndCrossAttentions` or `tuple` if `return_dict` returns + MoEModelOutputWithPastAndCrossAttentions insted of tuple + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + device = self.position_embeddings.weight.device + if input_ids is None: + input_ids = torch.zeros([1, 1]).int().to(device) # dummy for input_ids was None + num_pasts_contexts = 0 + num_batch = input_ids.shape[0] + pasts_or_spout_value = None + if past_key_values is not None: + num_pasts_contexts = past_key_values[0][0].shape[2] + elif self.config.d_spout and spout is not None: + # `spout` is a special input vector specific to GPTSAN + # This controls the output by projecting embedded information such as the class of sentences during learning. + # It should passed instead of the first past_key_value. + # See the original GPTSAN repository for details + num_pasts_contexts += 1 + + # If there is an attention_mask, increase first one for spout + if self.config.d_spout and spout is not None and attention_mask is not None: + attention_mask_with_spout = torch.ones(num_batch, attention_mask.shape[1] + 1, device=device) + attention_mask_with_spout[:, 1:] -= 1 - attention_mask # 1st token should be spout + attention_mask = attention_mask_with_spout # update attention_mask + + if num_precontext is not None: + # `num_precontext` is the number of tokens that refer to each other in prefix-lm + # created per batch, so dimension of num_precontext should be [batch, 1] + if not ( + len(num_precontext.shape) == 2 and num_precontext.shape[1] == 1 + ): # num_precontext Should be [batch,1] + raise ValueError("num_precontext should be [batch, 1] size.") + num_precontext = torch.reshape(num_precontext, [-1]) + else: + num_precontext = torch.zeros([num_batch]).int().to(device) + + num_input_contexts = input_ids.shape[1] + num_output_contexts = num_input_contexts + num_pasts_contexts + + hidden_states = self.embed_tokens(input_ids) + + if past_key_values is not None: + pasts_or_spout_value = past_key_values + elif self.config.d_spout and spout is not None: + # Make vector from `spout` of GPTSAN to the same shape as past_key_values + pasts_or_spout_value = self.spout(spout) # projecting `spout` vector + pasts_or_spout_value = torch.reshape( + pasts_or_spout_value, + [ + num_batch, + self.config.num_layers, + 2, + self.config.num_heads, + num_pasts_contexts, + self.config.d_model // self.config.num_heads, + ], + ) + pasts_or_spout_value = torch.split(pasts_or_spout_value, [1] * self.config.num_layers, dim=1) + # make same shape as past_key_values + pasts_or_spout_value = tuple( + tuple([b.squeeze(1) for b in torch.split(a.squeeze(1), [1, 1], dim=1)]) for a in pasts_or_spout_value + ) + else: + pasts_or_spout_value = [None] * self.config.num_layers + + # Token position considering spout and pasts + token_position = torch.arange(num_input_contexts).to(device) + num_pasts_contexts + + if attention_mask is None: + attention_mask = torch.ones(num_batch, num_input_contexts, device=device) + + # positions for get position_embeddings + gather_position = ( + ( + torch.zeros((num_batch, self.config.d_model, num_input_contexts)).to(device) + + token_position.unsqueeze(0) + ) + .transpose(1, 2) + .long() + ) + # When padding with padding_side="left", zeros line up on the left side of attention_mask, so position_embeddings is shifted accordingly + gather_position -= (1 - attention_mask).argmin(dim=-1).unsqueeze(1).unsqueeze(2) + gather_position = torch.clip(gather_position, num_pasts_contexts, self.config.max_position_embeddings - 1) + + # attention_mask is applied per batch + for i in range(num_batch): + hidden_states[i] += torch.gather(self.position_embeddings.weight, dim=0, index=gather_position[i]) + + # Create a mask to be used when making the prefix Input length of Prefix-LM variable + causal_mask = ( + torch.tril(torch.ones((num_output_contexts, num_output_contexts), dtype=torch.uint8)) + .view(1, 1, num_output_contexts, num_output_contexts) + .to(device) + ) + prefix_lm_mask = causal_mask[:, :, -num_input_contexts:, :] + if token_type_ids is not None: + token_type_ids = token_type_ids.unsqueeze(1).unsqueeze(2) + prefix_lm_mask = ((prefix_lm_mask + token_type_ids) > 0).float() + # Marge prefix_lm_mask and attention_mask + extended_attention_mask = prefix_lm_mask * attention_mask.unsqueeze(1).unsqueeze(2) + + # Prepare head mask if needed + if head_mask is not None: + head_mask = self.get_head_mask( + head_mask, self.config.num_switch_layers + self.config.num_ext_layers + ) # n_layer x batch x n_heads x N x N + + # outputs + present_key_value_states = () if self.config.use_cache or use_cache else None + all_hidden_states = () if self.config.output_hidden_states or output_hidden_states else None + all_attentions = () if self.config.output_attentions or output_attentions else None + all_router_probs = () if self.config.output_router_logits or output_router_logits else None + + for layer, past in enumerate(pasts_or_spout_value): + if layer == self.config.num_switch_layers: + if self.config.num_ext_layers > 0: + # extra_position_embeddings are extra position embeddings that are only created when extending the model with code from the original GPTSAN repository. Not used in the default model. + # However, it is created when you create an additional layer and partially train only that location. + # Therefore, convert_gptsan_tf_checkpoint_to_pytorch.py is used when converting and loading models created in the original GPTSAN repository. + for i in range(num_batch): + hidden_states[i] += torch.gather( + self.extra_position_embeddings.weight, dim=0, index=gather_position[i] + ) + + output_router_tuple = ( + self.config.output_router_logits or output_router_logits + ) and layer < self.config.num_switch_layers + block_output = self.blocks[layer]( + hidden_states=hidden_states, + past_key_value=past, + attention_mask=extended_attention_mask, + head_mask=head_mask, + use_cache=self.config.use_cache or use_cache, + output_attentions=self.config.output_attentions or output_attentions, + output_router_tuple=output_router_tuple, + ) + + outpos = 0 + hidden_states = block_output[outpos] + if self.config.output_hidden_states or output_hidden_states: + all_hidden_states += (hidden_states,) + if self.config.use_cache or use_cache: + outpos += 1 + present = block_output[outpos] + present_key_value_states += (present,) + if self.config.output_attentions or output_attentions: + outpos += 1 + attention_probs = block_output[outpos] + all_attentions += (attention_probs,) + if output_router_tuple: + outpos += 1 + router_tuple = block_output[outpos] + all_router_probs.append(router_tuple[0]) + + hidden_states = self.last_project(hidden_states) + hidden_states = self.act(hidden_states) + + if self.config.output_hidden_states or output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + present_key_value_states, + all_hidden_states, + all_attentions, + all_router_probs, + ] + if v is not None + ) + + return MoEModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_value_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + router_probs=all_router_probs, + ) + + +@add_start_docstrings( + "The bare GPTSAN-japanese Model with a language modeling head.", + GPTSAN_JAPANESE_START_DOCSTRING, +) +class GPTSanJapaneseForConditionalGeneration(GPTSanJapanesePreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config: GPTSanJapaneseConfig): + super().__init__(config) + self.model = GPTSanJapaneseModel(config) + self.register_buffer("final_logits_bias", torch.zeros([1, config.vocab_size])) + self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) + if not self.config.torchscript: + self.lm_head.weight = self.model.embed_tokens.weight + + @add_start_docstrings_to_model_forward(GPTSAN_JAPANESE_INPUTS_DOCSTRING) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.FloatTensor] = None, + spout: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + head_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + labels: Optional[torch.LongTensor] = None, + ) -> Union[Tuple[torch.FloatTensor], MoECausalLMOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification loss. Indices should be in `[-100, 0, ..., + config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for + labels in `[0, ..., config.vocab_size]` + + Returns: + `MoECausalLMOutputWithPast` or `tuple` if `return_dict` returns MoECausalLMOutputWithPast insted of tuple + + Example: + + Text Generation with regular LM Model + ```python + >>> from transformers import AutoModel, AutoTokenizer, trainer_utils + + >>> device = "cuda" + >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) + >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") + >>> x_token = tokenizer("織田信長は、", return_tensors="pt") + >>> trainer_utils.set_seed(30) + >>> input_ids = x_token.input_ids.to(device) + >>> gen_token = model.generate(input_ids, max_new_tokens=50) + >>> tokenizer.decode(gen_token[0]) + "織田信長は、政治・軍事の中枢まで掌握した政治家であり、日本史上類を見ない驚異的な軍事侵攻を続け..." + ``` + + Text Generation with Prefix-LM Model + ```python + >>> from transformers import AutoModel, AutoTokenizer, trainer_utils + + >>> device = "cuda" + >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) + >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") + >>> x_token = tokenizer("", prefix_text="織田信長は、", return_tensors="pt") + >>> trainer_utils.set_seed(30) + >>> input_ids = x_token.input_ids.to(device) + >>> token_type_ids = x_token.token_type_ids.to(device) + >>> gen_token = model.generate(input_ids, token_type_ids=token_type_ids, max_new_tokens=50) + >>> tokenizer.decode(gen_token[0]) + "織田信長は、政治・外交で数々の戦果を上げるが、1568年からは、いわゆる本能寺の変で細川晴元に暗殺される..." + ``` + + Simultaneously Text Generation And Masked Language Model + ```python + >>> from transformers import AutoModel, AutoTokenizer, trainer_utils + + >>> device = "cuda" + >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) + >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") + >>> masked_sentence = "武田信玄は、<|inputmask|>時代ファンならぜひ押さえ<|inputmask|>きたい名将の一人。" + >>> x_token = tokenizer("", prefix_text=masked_sentence, return_tensors="pt") + >>> trainer_utils.set_seed(30) + >>> input_ids = x_token.input_ids.to(device) + >>> token_type_ids = x_token.token_type_ids.to(device) + >>> out_lm_token = model.generate(input_ids, token_type_ids=token_type_ids, max_new_tokens=50) + >>> out_mlm_token = model(input_ids, token_type_ids=token_type_ids).logits.argmax(axis=-1) + >>> tokenizer.decode(out_mlm_token[0]) + "武田信玄は、戦国時代ファンならぜひ押さえておきたい名将の一人。" + + >>> tokenizer.decode(out_lm_token[0][input_ids.shape[1] :]) + "武田氏の三代に渡った武田家のひとり\n甲斐市に住む、日本史上最大の戦国大名。..." + ```""" + SEG_TOKEN = self.config.separator_token_id + use_cache = use_cache or self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + model_return_dict = True + num_precontext = None + if input_ids is not None: + num_batch = input_ids.shape[0] + num_precontext = torch.zeros([num_batch]).int().to(input_ids.device) + where_separators = torch.where(input_ids == SEG_TOKEN) + num_precontext[where_separators[0]] += where_separators[1] + num_precontext = num_precontext.unsqueeze(1) + + outputs = self.model( + input_ids, + attention_mask, + token_type_ids, + spout, + past_key_values, + head_mask, + use_cache, + inputs_embeds, + decoder_inputs_embeds, + output_attentions, + output_hidden_states, + model_return_dict, + output_router_logits, + num_precontext, + ) + + lm_logits = self.lm_head(outputs[0]) + if lm_logits.shape[-1] == self.final_logits_bias.shape[-1]: + lm_logits = lm_logits + self.final_logits_bias + + loss = None + z_loss = None + router_probs = None + aux_loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(lm_logits.device) + + loss_fct = nn.CrossEntropyLoss(ignore_index=-100) + + if output_router_logits: + # Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder + router_logits, expert_indexes = self._unpack_router_logits(outputs.router_probs) + z_loss = router_z_loss_func(router_logits) + router_probs = nn.Softmax(dim=-1)(router_logits) + aux_loss = load_balancing_loss_func(router_probs, expert_indexes) + + loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) + + if not return_dict: + return tuple( + v + for v in [ + loss, + lm_logits, + outputs.past_key_values, + outputs.hidden_states, + outputs.router_probs, + z_loss, + aux_loss, + ] + if v is not None + ) + + return MoECausalLMOutputWithPast( + loss=loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + router_logits=outputs.router_probs, + z_loss=z_loss, + aux_loss=aux_loss, + ) + + def prepare_inputs_for_generation( + self, + input_ids: torch.LongTensor, + attention_mask: torch.FloatTensor, + token_type_ids: Optional[torch.FloatTensor] = None, + spout: Optional[Union[List, torch.FloatTensor]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + **kwargs, + ): + if isinstance(spout, list): + spout = torch.tensor(spout).float() + if input_ids is not None: + spout = spout.to(input_ids.device) + if past_key_values is not None: + return { + "input_ids": input_ids[:, -1:] if input_ids is not None else None, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids[:, -1:] if token_type_ids is not None else None, + "spout": spout, + "past_key_values": past_key_values, + } + return { + "input_ids": input_ids, + "attention_mask": attention_mask, + "token_type_ids": token_type_ids, + "spout": spout, + "past_key_values": None, + } + + # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.prepare_decoder_input_ids_from_labels with SwitchTransformers->GPTSanJapanese + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return self._shift_right(labels) + + # Copied from transformers.models.mbart.modeling_mbart.MBartForConditionalGeneration.resize_token_embeddings with MBart->GPTSanJapanese + def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: + new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) + self._resize_final_logits_bias(new_embeddings.weight.shape[0]) + return new_embeddings + + # Copied from transformers.models.mbart.modeling_mbart.MBartForConditionalGeneration._resize_final_logits_bias with MBart->GPTSanJapanese + def _resize_final_logits_bias(self, new_num_tokens: int) -> None: + old_num_tokens = self.final_logits_bias.shape[-1] + if new_num_tokens <= old_num_tokens: + new_bias = self.final_logits_bias[:, :new_num_tokens] + else: + extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) + new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) + self.register_buffer("final_logits_bias", new_bias) + + def get_input_embeddings(self): + return self.model.get_input_embeddings() + + def set_input_embeddings(self, new_embeddings): + self.model.set_input_embeddings(new_embeddings) + + # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.set_output_embeddings with SwitchTransformers->GPTSanJapanese + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.get_output_embeddings with SwitchTransformers->GPTSanJapanese + def get_output_embeddings(self): + return self.lm_head + + # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration._unpack_router_logits with SwitchTransformers->GPTSanJapanese + def _unpack_router_logits(self, router_outputs): + total_router_logits = [] + total_expert_indexes = [] + for router_output in router_outputs: + if len(router_output[0].shape) > 1: + router_logits, expert_indexes = router_output + total_router_logits.append(router_logits) + total_expert_indexes.append(expert_indexes) + return torch.cat(total_router_logits, dim=1), torch.cat(total_expert_indexes, dim=1) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/tokenization_gptsan_japanese.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/tokenization_gptsan_japanese.py new file mode 100644 index 0000000000000000000000000000000000000000..df3f94dc1e8965375022f267b80ab207c4683e0e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/gptsan_japanese/tokenization_gptsan_japanese.py @@ -0,0 +1,541 @@ +# coding=utf-8 +# Copyright 2023 HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for GPTSANJapanese.""" +import collections +import json +import os +import re +from typing import List, Optional, Tuple, Union + +import numpy as np + +from ...tokenization_utils import PreTrainedTokenizer +from ...tokenization_utils_base import ( + BatchEncoding, + PreTokenizedInput, + PreTokenizedInputPair, + TextInput, + TextInputPair, + TruncationStrategy, +) +from ...utils import PaddingStrategy, logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "Tanrei/GPTSAN-japanese": "https://huggingface.co/Tanrei/GPTSAN-japanese/blob/main/vocab.txt", + }, + "emoji_file": { + "Tanrei/GPTSAN-japanese": "https://huggingface.co/Tanrei/GPTSAN-japanese/blob/main/emoji.json", + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "Tanrei/GPTSAN-japanese": 1280, +} + + +def load_vocab_and_emoji(vocab_file, emoji_file): + """Loads a vocabulary file and emoji file into a dictionary.""" + with open(emoji_file, "r", encoding="utf-8") as f: + emoji = json.loads(f.read()) + + vocab = collections.OrderedDict() + raw_vocab = collections.OrderedDict() + ids_to_tokens = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as f: + token = f.readlines() + token = [[t.rstrip("\n")] if (t == ",\n" or "," not in t) else t.rstrip("\n").split(",") for t in token] + for idx, b in enumerate(token): + ids_to_tokens[idx] = b + raw_vocab[",".join(b)] = idx + for wd in b: + vocab[wd] = idx + + return vocab, raw_vocab, ids_to_tokens, emoji + + +class GPTSanJapaneseTokenizer(PreTrainedTokenizer): + """ + This tokenizer is based on GPTNeoXJapaneseTokenizer and has the following modifications + - Decoding byte0~byte255 tokens correctly + - Added bagofword token handling + - Return token_type_ids for Prefix-LM model + The bagofword token represents a repetition of the previous token and is converted to 3 consecutive tokens when + decoding In addition, the original Japanese special Sub-Word-Encoding has been released in this repository + (https://github.com/tanreinama/Japanese-BPEEncoder_V2). The token_type_ids is a mask indicating the prefix input + position of the Prefix-LM model. To specify a prefix position, specify a prefix input for prefix_text, or specify a + sentence of the prefix part and the part after it as a text pair of batch input. + + Example: + + ```python + >>> from transformers import GPTSanJapaneseTokenizer + + >>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") + >>> # You can confirm both 慶応 and 慶應 are encoded to 17750 + >>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"] + [35993, 35998, 34347, 31459, 30647, 31448, 25, 30659, 35729, 35676, 32417, 30647, 17750, 35589, 17750, 35590, 321, 1281] + + >>> # Both 慶応 and 慶應 are decoded to 慶応 + >>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]) + '吾輩は猫である🐯。実は慶応(慶応)大学出身' + ``` + + Example for Prefix-LM: + + ```python + >>> from transformers import GPTSanJapaneseTokenizer + + >>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") + >>> tokenizer("実は慶応(慶應)大学出身", prefix_text="吾輩は猫である🐯。")["input_ids"] + [35993, 34347, 31459, 30647, 31448, 25, 30659, 35729, 35676, 35998, 32417, 30647, 17750, 35589, 17750, 35590, 321, 1281] + + >>> # Mask for Prefix-LM inputs + >>> tokenizer("実は慶応(慶應)大学出身", prefix_text="吾輩は猫である🐯。")["token_type_ids"] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] + ``` + + Example for batch encode: + + ```python + >>> from transformers import GPTSanJapaneseTokenizer + + >>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") + >>> tokenizer([["武田信玄", "は、"], ["織田信長", "の配下の、"]], padding=True)["input_ids"] + [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] + + >>> # Mask for Prefix-LM inputs + >>> tokenizer([["武田信玄", "は、"], ["織田信長", "の配下の、"]], padding=True)["token_type_ids"] + [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] + + >>> # Mask for padding + >>> tokenizer([["武田信玄", "は、"], ["織田信長", "の配下の、"]], padding=True)["attention_mask"] + [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] + ``` + + Args: + vocab_file (`str`): + File containing the vocabulary. + emoji_file (`str`): + File containing the emoji. + unk_token (`str`, *optional*, defaults to `"<|nottoken|>"`): + The token used for unknown charactor + pad_token (`str`, *optional*, defaults to `"<|separator|>"`): + The token used for padding + bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`): + The beginning of sequence token. + eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): + The end of sequence token. + sep_token (`str`, *optional*, defaults to `"<|segmenter|>"`): + A special token to separate token to prefix part and general input part. + do_clean_text (`bool`, *optional*, defaults to `False`): + Whether or not to clean text for URL, EMAIL, TEL, Japanese DATE and Japanese PRICE. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids", "attention_mask", "token_type_ids"] + + def __init__( + self, + vocab_file, + emoji_file, + unk_token="<|nottoken|>", + pad_token="<|separator|>", + bos_token="<|startoftext|>", + eos_token="<|endoftext|>", + sep_token="<|segmenter|>", + do_clean_text=False, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = GPTSanJapaneseTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + if not os.path.isfile(emoji_file): + raise ValueError( + f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" + " pretrained model use `tokenizer = GPTSanJapaneseTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.do_clean_text = do_clean_text + self.vocab, self.raw_vocab, self.ids_to_tokens, self.emoji = load_vocab_and_emoji(vocab_file, emoji_file) + self.subword_tokenizer = SubWordJapaneseTokenizer( + vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji + ) + + super().__init__( + unk_token=unk_token, + pad_token=pad_token, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + do_clean_text=do_clean_text, + **kwargs, + ) + + @property + # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer.vocab_size + def vocab_size(self): + # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab + return len(self.raw_vocab) + + # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer.get_vocab + def get_vocab(self): + return dict(self.raw_vocab, **self.added_tokens_encoder) + + # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._tokenize + def _tokenize(self, text): + return self.subword_tokenizer.tokenize(text, clean=self.do_clean_text) + + # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._convert_token_to_id + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._convert_id_to_token + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.subword_tokenizer.convert_id_to_token(index) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + words = [] + byte_tokens = [] + for word in tokens: + if word[:6] == "<|byte" and word[-2:] == "|>": + byte_tokens.append(int(word[6:-2])) + else: + if len(byte_tokens) > 0: + words.append(bytearray(byte_tokens).decode("utf-8", errors="replace")) + byte_tokens = [] + if word[:7] == "<|emoji" and word[-2:] == "|>": + words.append(self.emoji["emoji_inv"][word]) + elif word == "": + words.append(" ") + elif word == "
": + words.append("\n") + elif word == "": + words.append("\t") + elif word == "": + words.append("▀") + elif word == "": + words.append("ǀ") + elif word == "": + words.append("‖") + elif word == "<|bagoftoken|>": + if len(words) > 0: + words.append(words[-1]) + words.append(words[-1]) + words.append(words[-1]) + elif word.startswith("<|") and word.endswith("|>"): + words.append("") + else: + words.append(word) + if len(byte_tokens) > 0: + words.append(bytearray(byte_tokens).decode("utf-8", errors="replace")) + text = "".join(words) + return text + + @property + def default_chat_template(self): + """ + A simple chat template that adds standard BOS, SEP and EOS tokens between messages while discarding role + information. + """ + logger.warning_once( + "\nNo chat template is defined for this tokenizer - using the default template " + f"for the {self.__class__.__name__} class. If the default is not appropriate for " + "your model, please set `tokenizer.chat_template` to an appropriate template. " + "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" + ) + return ( + "{% for message in messages %}" + "{% if not loop.first %}{{ bos_token}}{% endif %}" + "{{ sep_token }}{{ message.content }} {{ eos_token }}" + "{% endfor %}" + ) + + # Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + emoji_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] + ) + else: + vocab_file = ( + (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] + ) + emoji_file = ( + (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] + ) + with open(vocab_file, "w", encoding="utf-8") as writer: + for token_index, token in self.ids_to_tokens.items(): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(",".join(token) + "\n") + index += 1 + with open(emoji_file, "w", encoding="utf-8") as writer: + json.dump(self.emoji, writer) + return vocab_file, emoji_file + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + # docstyle-ignore + """ + The tokenizer returns token_type_ids as separators between the Prefix part and the rest. + token_type_ids is 1 for the Prefix part and 0 for the rest of the token. + + Example: + ```python + >>> from transformers import GPTSanJapaneseTokenizer + + >>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") + >>> x_token = tokenizer("アイウエ") + >>> # input_ids: | SOT | SEG | ア | イ | ウ | エ | + >>> # token_type_ids: | 1 | 0 | 0 | 0 | 0 | 0 | + + >>> x_token = tokenizer("", prefix_text="アイウエ") + >>> # input_ids: | SOT | ア | イ | ウ | エ | SEG | + >>> # token_type_ids: | 1 | 1 | 1 | 1 | 1 | 0 | + + >>> x_token = tokenizer("ウエ", prefix_text="アイ") + >>> # input_ids: | SOT | ア | イ | SEG | ウ | エ | + >>> # token_type_ids: | 1 | 1 | 1 | 0 | 0 | 0 | + ```""" + prefix_len = 0 + if self.sep_token in self.vocab: + segid = self.vocab[self.sep_token] + if segid in token_ids_0: + prefix_len = token_ids_0.index(segid) + if token_ids_1 is None: + total_len = len(token_ids_0) + else: + total_len = len(token_ids_0 + token_ids_1) + return prefix_len * [1] + (total_len - prefix_len) * [0] + + def prepare_for_tokenization(self, text, prefix_text=None, add_sep_token=None, **kwargs): + # GPTSAN inserts extra SEP tokens in Prefix-LM in addition to SOT for text generation. + # SOT at the beginning of the text, and SEP at the separator between the Prefix part and the rest. + if add_sep_token is None: + add_sep_token = self.sep_token not in text # If insert un-prefix position explicitly + prepared = self.bos_token if self.bos_token in self.vocab else "" + prepared += prefix_text if prefix_text is not None else "" + if add_sep_token: + prepared += self.sep_token if self.sep_token in self.vocab else "" + prepared += text + return (prepared, kwargs) + + def _batch_encode_plus( + self, + batch_text_or_text_pairs: Union[ + List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair] + ], + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + is_split_into_words: bool = False, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[str] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + ) -> BatchEncoding: + # This tokenizer converts input text pairs into Prefix input and subsequent input + if isinstance(batch_text_or_text_pairs[0], tuple) or isinstance(tuple(batch_text_or_text_pairs[0]), list): + # As a single text with an explicit un-prefix position + batch_prefix_texts = [] + for pref, txt in batch_text_or_text_pairs: + batch_prefix_texts.append(pref + self.sep_token + txt) + batch_text_or_text_pairs = batch_prefix_texts + + return super()._batch_encode_plus( + batch_text_or_text_pairs, + add_special_tokens, + padding_strategy, + truncation_strategy, + max_length, + stride, + is_split_into_words, + pad_to_multiple_of, + return_tensors, + return_token_type_ids, + return_attention_mask, + return_overflowing_tokens, + return_special_tokens_mask, + return_offsets_mapping, + return_length, + verbose, + ) + + +class SubWordJapaneseTokenizer(object): + """ + This tokenizer is based on GPTNeoXJapaneseTokenizer and has the following modifications + - Decoding byte0~byte255 tokens correctly + - Added bagofword token handling + + https://github.com/tanreinama/Japanese-BPEEncoder_V2 This tokenizer class is under MIT Lisence according to the + original repository. + + MIT License + + Copyright (c) 2020 tanreinama + + Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated + documentation files (the "Software"), to deal in the Software without restriction, including without limitation the + rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be included in all copies or substantial portions of + the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO + THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + SOFTWARE. + """ + + # Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.__init__ + def __init__(self, vocab, ids_to_tokens, emoji): + self.vocab = vocab # same as swe + self.ids_to_tokens = ids_to_tokens # same as bpe + self.emoji = emoji + self.maxlen = np.max([len(w) for w in self.vocab.keys()]) + self.content_repatter1 = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") + self.content_repatter2 = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") + self.content_repatter3 = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") + self.content_repatter4 = re.compile( + r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" + ) + self.content_repatter5 = re.compile( + r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" + ) + self.content_repatter6 = re.compile( + r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" + ) + keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" + blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" + self.content_trans1 = str.maketrans({k: "" for k in keisen + blocks}) + + # Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.__len__ + def __len__(self): + return len(self.ids_to_tokens) + + # Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.clean_text + def clean_text(self, content): + content = self.content_repatter1.sub("", content) + content = self.content_repatter2.sub("", content) + content = self.content_repatter3.sub("", content) + content = self.content_repatter4.sub("", content) + content = self.content_repatter5.sub("", content) + content = self.content_repatter6.sub("", content) + content = content.translate(self.content_trans1) + while "" in content: + content = content.replace("", "") + return content + + # Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.tokenize + def tokenize(self, text, clean=False): + text = text.replace(" ", "") + text = text.replace(" ", "") + text = text.replace("\r\n", "
") + text = text.replace("\n", "
") + text = text.replace("\r", "
") + text = text.replace("\t", "") + text = text.replace("—", "ー") + text = text.replace("−", "ー") + for k, v in self.emoji["emoji"].items(): + if k in text: + text = text.replace(k, v) + if clean: + text = self.clean_text(text) + + def check_simbol(x): + e = x.encode() + if len(x) == 1 and len(e) == 2: + c = (int(e[0]) << 8) + int(e[1]) + if ( + (c >= 0xC2A1 and c <= 0xC2BF) + or (c >= 0xC780 and c <= 0xC783) + or (c >= 0xCAB9 and c <= 0xCBBF) + or (c >= 0xCC80 and c <= 0xCDA2) + ): + return True + return False + + def checku2e(x): + e = x.encode() + if len(x) == 1 and len(e) == 3: + c = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) + if c >= 0xE28080 and c <= 0xE2B07F: + return True + return False + + pos = 0 + result = [] + while pos < len(text): + end = min(len(text), pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 + candidates = [] # (token_id, token, pos) + for e in range(end, pos, -1): + wd = text[pos:e] + if wd in self.vocab: + if wd[0] == "<" and len(wd) > 2: + candidates = [(self.vocab[wd], wd, e)] + break + else: + candidates.append((self.vocab[wd], wd, e)) + if len(candidates) > 0: + # the smallest token_id is adopted + _, wd, e = sorted(candidates, key=lambda x: x[0])[0] + result.append(wd) + pos = e + else: + end = pos + 1 + wd = text[pos:end] + if check_simbol(wd): + result.append("") + elif checku2e(wd): + result.append("") + else: + for i in wd.encode("utf-8"): + result.append("<|byte%d|>" % i) + pos = end + return result + + def convert_id_to_token(self, index): + return self.ids_to_tokens[index][0] diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..984f49973d1b3d5817be05b61b9a1983965ec9da Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/configuration_groupvit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/configuration_groupvit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..964ec48654a7fbfa7d19576b123a21b26a5ec469 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/configuration_groupvit.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/convert_groupvit_nvlab_to_hf.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/convert_groupvit_nvlab_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1725b00237ddaef66a5cc63ae23d640f9166b458 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/convert_groupvit_nvlab_to_hf.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/modeling_groupvit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/modeling_groupvit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d9d6069644dc5f6b187bf5697d5cef14c24be192 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/modeling_groupvit.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/modeling_tf_groupvit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/modeling_tf_groupvit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fac93734e330a45ee5b6a2aa8b4bc6084075e2da Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/__pycache__/modeling_tf_groupvit.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/modeling_groupvit.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/modeling_groupvit.py new file mode 100644 index 0000000000000000000000000000000000000000..c99c96ec87f89dcd9a9f080186ade7388494dfcb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/groupvit/modeling_groupvit.py @@ -0,0 +1,1586 @@ +# coding=utf-8 +# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch GroupViT model.""" + + +import collections.abc +import math +from dataclasses import dataclass +from typing import Any, Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask +from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc" + +GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "nvidia/groupvit-gcc-yfcc", + # See all GroupViT models at https://huggingface.co/models?filter=groupvit +] + + +# contrastive loss function, adapted from +# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html +def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: + return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) + + +# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->groupvit +def groupvit_loss(similarity: torch.Tensor) -> torch.Tensor: + caption_loss = contrastive_loss(similarity) + image_loss = contrastive_loss(similarity.t()) + return (caption_loss + image_loss) / 2.0 + + +def hard_softmax(logits: torch.Tensor, dim: int): + y_soft = logits.softmax(dim) + # Straight through. + index = y_soft.max(dim, keepdim=True)[1] + y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) + ret = y_hard - y_soft.detach() + y_soft + + return ret + + +def gumbel_softmax(logits: torch.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> torch.Tensor: + # more stable https://github.com/pytorch/pytorch/issues/41663 + gumbel_dist = torch.distributions.gumbel.Gumbel( + torch.tensor(0.0, device=logits.device, dtype=logits.dtype), + torch.tensor(1.0, device=logits.device, dtype=logits.dtype), + ) + gumbels = gumbel_dist.sample(logits.shape) + + gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau) + y_soft = gumbels.softmax(dim) + + if hard: + # Straight through. + index = y_soft.max(dim, keepdim=True)[1] + y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) + ret = y_hard - y_soft.detach() + y_soft + else: + # Reparametrization trick. + ret = y_soft + return ret + + +def resize_attention_map(attentions, height, width, align_corners=False): + """ + Args: + attentions (`torch.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width] + height (`int`): height of the output attention map + width (`int`): width of the output attention map + align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`. + + Returns: + `torch.Tensor`: resized attention map of shape [batch_size, groups, height, width] + """ + + scale = (height * width // attentions.shape[2]) ** 0.5 + if height > width: + feat_width = int(np.round(width / scale)) + feat_height = attentions.shape[2] // feat_width + else: + feat_height = int(np.round(height / scale)) + feat_width = attentions.shape[2] // feat_height + + batch_size = attentions.shape[0] + groups = attentions.shape[1] # number of group token + # [batch_size, groups, height*width, groups] -> [batch_size, groups, height, width] + attentions = attentions.reshape(batch_size, groups, feat_height, feat_width) + attentions = nn.functional.interpolate( + attentions, size=(height, width), mode="bilinear", align_corners=align_corners + ) + return attentions + + +def get_grouping_from_attentions(attentions, hw_shape): + """ + Args: + attentions (`tuple(torch.FloatTensor)`: tuple of attention maps returned by `GroupViTVisionTransformer` + hw_shape (`tuple(int)`): height and width of the output attention map + Returns: + `torch.Tensor`: the attention map of shape [batch_size, groups, height, width] + """ + + attn_maps = [] + with torch.no_grad(): + prev_attn_masks = None + for attn_masks in attentions: + # [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups] + attn_masks = attn_masks.permute(0, 2, 1).contiguous() + if prev_attn_masks is None: + prev_attn_masks = attn_masks + else: + prev_attn_masks = prev_attn_masks @ attn_masks + # [batch_size, heightxwidth, num_groups] -> [batch_size, num_groups, heightxwidth] -> [batch_size, num_groups, height, width] + cur_attn_map = resize_attention_map(prev_attn_masks.permute(0, 2, 1).contiguous(), *hw_shape) + attn_maps.append(cur_attn_map) + + # [batch_size, num_groups, height, width] + final_grouping = attn_maps[-1] + + return final_grouping + + +class GroupViTCrossAttentionLayer(nn.Module): + def __init__(self, config: GroupViTVisionConfig): + super().__init__() + self.attn = GroupViTAttention(config) + self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.mlp = GroupViTMLP(config) + self.norm_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, query, key): + x = query + x = x + self.attn(query, encoder_hidden_states=key)[0] + x = x + self.mlp(self.norm2(x)) + x = self.norm_post(x) + return x + + +class GroupViTAssignAttention(nn.Module): + def __init__(self, config: GroupViTVisionConfig): + super().__init__() + self.scale = config.hidden_size**-0.5 + + self.q_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.k_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.v_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.proj = nn.Linear(config.hidden_size, config.hidden_size) + self.assign_eps = config.assign_eps + + def get_attn(self, attn, gumbel=True, hard=True): + if gumbel and self.training: + attn = gumbel_softmax(attn, dim=-2, hard=hard) + else: + if hard: + attn = hard_softmax(attn, dim=-2) + else: + attn = nn.functional.softmax(attn, dim=-2) + + return attn + + def forward(self, query, key): + value = key + # [batch_size, query_length, channels] + query = self.q_proj(query) + + # [batch_size, key_length, channels] + key = self.k_proj(key) + + # [batch_size, key_length, channels] + value = self.v_proj(value) + + # [batch_size, query_length, key_length] + raw_attn = (query @ key.transpose(-2, -1)) * self.scale + + attn = self.get_attn(raw_attn) + soft_attn = self.get_attn(raw_attn, gumbel=False, hard=False) + + attn = attn / (attn.sum(dim=-1, keepdim=True) + self.assign_eps) + + out = attn @ value + + out = self.proj(out) + + return out, soft_attn + + +class GroupViTTokenAssign(nn.Module): + def __init__(self, config: GroupViTVisionConfig, num_group_token, num_output_group): + super().__init__() + self.num_output_group = num_output_group + # norm on group_tokens + self.norm_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + assign_mlp_ratio = ( + config.assign_mlp_ratio + if isinstance(config.assign_mlp_ratio, collections.abc.Iterable) + else (config.assign_mlp_ratio, config.assign_mlp_ratio) + ) + tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio] + self.mlp_inter = GroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group) + self.norm_post_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + # norm on x + self.norm_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pre_assign_attn = GroupViTCrossAttentionLayer(config) + + self.assign = GroupViTAssignAttention(config) + self.norm_new_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.mlp_channels = GroupViTMLP(config, config.hidden_size, channels_dim, config.hidden_size) + + def project_group_token(self, group_tokens): + """ + Args: + group_tokens (torch.Tensor): group tokens, [batch_size, num_group_tokens, channels] + + Returns: + projected_group_tokens (torch.Tensor): [batch_size, num_output_groups, channels] + """ + # [B, num_output_groups, C] <- [B, num_group_tokens, C] + projected_group_tokens = self.mlp_inter(group_tokens) + projected_group_tokens = self.norm_post_tokens(projected_group_tokens) + return projected_group_tokens + + def forward(self, image_tokens, group_tokens): + """ + Args: + image_tokens (`torch.Tensor`): image tokens, of shape [batch_size, input_length, channels] + group_tokens (`torch.Tensor`): group tokens, [batch_size, num_group_tokens, channels] + """ + + group_tokens = self.norm_tokens(group_tokens) + image_tokens = self.norm_x(image_tokens) + # [batch_size, num_output_groups, channels] + projected_group_tokens = self.project_group_token(group_tokens) + projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens) + new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens) + new_image_tokens += projected_group_tokens + + new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens)) + + return new_image_tokens, attention + + +@dataclass +class GroupViTModelOutput(ModelOutput): + """ + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): + Contrastive loss for image-text similarity. + logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): + The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text + similarity scores. + logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): + The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image + similarity scores. + segmentation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`): + Classification scores for each pixel. + + + + The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is + to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the + original image size as post-processing. You should always check your logits shape and resize as needed. + + + + text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): + The text embeddings obtained by applying the projection layer to the pooled output of + [`GroupViTTextModel`]. + image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): + The image embeddings obtained by applying the projection layer to the pooled output of + [`GroupViTVisionModel`]. + text_model_output (`BaseModelOutputWithPooling`): + The output of the [`GroupViTTextModel`]. + vision_model_output (`BaseModelOutputWithPooling`): + The output of the [`GroupViTVisionModel`]. + """ + + loss: Optional[torch.FloatTensor] = None + logits_per_image: torch.FloatTensor = None + logits_per_text: torch.FloatTensor = None + segmentation_logits: torch.FloatTensor = None + text_embeds: torch.FloatTensor = None + image_embeds: torch.FloatTensor = None + text_model_output: BaseModelOutputWithPooling = None + vision_model_output: BaseModelOutputWithPooling = None + + def to_tuple(self) -> Tuple[Any]: + return tuple( + self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() + for k in self.keys() + ) + + +class GroupViTPatchEmbeddings(nn.Module): + """ + Image to Patch Embedding. + """ + + def __init__( + self, + image_size: int = 224, + patch_size: Union[int, Tuple[int, int]] = 16, + num_channels: int = 3, + embed_dim: int = 768, + ): + super().__init__() + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if not interpolate_pos_encoding: + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model" + f" ({self.image_size[0]}*{self.image_size[1]})." + ) + x = self.projection(pixel_values).flatten(2).transpose(1, 2) + return x + + +class GroupViTVisionEmbeddings(nn.Module): + def __init__(self, config: GroupViTVisionConfig): + super().__init__() + + self.patch_embeddings = GroupViTPatchEmbeddings( + image_size=config.image_size, + patch_size=config.patch_size, + num_channels=config.num_channels, + embed_dim=config.hidden_size, + ) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches, config.hidden_size)) + self.dropout = nn.Dropout(config.dropout) + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.config = config + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + npatch = embeddings.shape[1] + if npatch == self.position_embeddings.shape[1] and height == width: + return self.position_embeddings + patch_pos_embed = self.position_embeddings + num_original_pos_embed = patch_pos_embed.shape[1] + dim = embeddings.shape[-1] + feat_height = height // self.config.patch_size + feat_width = width // self.config.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + feat_height, feat_width = feat_height + 0.1, feat_width + 0.1 + original_height = original_width = math.sqrt(num_original_pos_embed) + reshaped_patch_pos_embed = patch_pos_embed.reshape(1, int(original_height), int(original_width), dim).permute( + 0, 3, 1, 2 + ) + scale_factor = (feat_height / original_height, feat_width / original_width) + patch_pos_embed = nn.functional.interpolate( + reshaped_patch_pos_embed, + scale_factor=scale_factor, + mode="bicubic", + align_corners=False, + ) + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return patch_pos_embed + + def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) + + embeddings = self.layernorm(embeddings) + + batch_size, seq_len, _ = embeddings.size() + + # add positional encoding to each token + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + else: + embeddings = embeddings + self.position_embeddings + + embeddings = self.dropout(embeddings) + + return embeddings + + +# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->GroupViT +class GroupViTTextEmbeddings(nn.Module): + def __init__(self, config: GroupViTTextConfig): + super().__init__() + embed_dim = config.hidden_size + + self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) + self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + if inputs_embeds is None: + inputs_embeds = self.token_embedding(input_ids) + + position_embeddings = self.position_embedding(position_ids) + embeddings = inputs_embeds + position_embeddings + + return embeddings + + +class GroupViTStage(nn.Module): + """This corresponds to the `GroupingLayer` class in the GroupViT implementation.""" + + def __init__( + self, + config: GroupViTVisionConfig, + depth: int, + num_prev_group_token: int, + num_group_token: int, + num_output_group: int, + ): + super().__init__() + self.depth = depth + self.num_group_token = num_group_token + if num_group_token > 0: + self.group_token = nn.Parameter(torch.zeros(1, num_group_token, config.hidden_size)) + else: + self.group_token = None + self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(depth)]) + + if num_group_token > 0: + self.downsample = GroupViTTokenAssign( + config=config, + num_group_token=num_group_token, + num_output_group=num_output_group, + ) + else: + self.downsample = None + + if num_prev_group_token > 0 and num_group_token > 0: + self.group_projector = nn.Sequential( + nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps), + GroupViTMixerMLP(config, num_prev_group_token, config.hidden_size // 2, num_group_token), + ) + else: + self.group_projector = None + + @property + def with_group_token(self): + return self.group_token is not None + + def split_x(self, x): + if self.with_group_token: + return x[:, : -self.num_group_token], x[:, -self.num_group_token :] + else: + return x, None + + def concat_x(self, x: torch.Tensor, group_token: Optional[torch.Tensor] = None) -> torch.Tensor: + if group_token is None: + return x + return torch.cat([x, group_token], dim=1) + + def forward( + self, + hidden_states: torch.Tensor, + prev_group_token: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + `(config.encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the grouping tensors of Grouping block. + """ + if self.with_group_token: + group_token = self.group_token.expand(hidden_states.size(0), -1, -1) + if self.group_projector is not None: + group_token = group_token + self.group_projector(prev_group_token) + else: + group_token = None + + x = hidden_states + + cat_x = self.concat_x(x, group_token) + for layer in self.layers: + layer_out = layer(cat_x, attention_mask=None, causal_attention_mask=None) + cat_x = layer_out[0] + + x, group_token = self.split_x(cat_x) + + attention = None + if self.downsample is not None: + x, attention = self.downsample(x, group_token) + + outputs = (x, group_token) + if output_attentions: + outputs = outputs + (attention,) + + return outputs + + +class GroupViTMLP(nn.Module): + def __init__( + self, + config: GroupViTVisionConfig, + hidden_size: Optional[int] = None, + intermediate_size: Optional[int] = None, + output_size: Optional[int] = None, + ): + super().__init__() + self.config = config + self.activation_fn = ACT2FN[config.hidden_act] + hidden_size = hidden_size if hidden_size is not None else config.hidden_size + intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size + output_size = output_size if output_size is not None else hidden_size + self.fc1 = nn.Linear(hidden_size, intermediate_size) + self.fc2 = nn.Linear(intermediate_size, output_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.fc1(hidden_states) + hidden_states = self.activation_fn(hidden_states) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +class GroupViTMixerMLP(GroupViTMLP): + def forward(self, x): + x = super().forward(x.transpose(1, 2)) + return x.transpose(1, 2) + + +class GroupViTAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config): + super().__init__() + self.config = config + self.embed_dim = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {self.num_heads})." + ) + self.scale = self.head_dim**-0.5 + self.dropout = config.attention_dropout + + self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) + self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + causal_attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + bsz, tgt_len, embed_dim = hidden_states.size() + is_cross_attention = encoder_hidden_states is not None + + # get query proj + query_states = self.q_proj(hidden_states) * self.scale + if is_cross_attention: + key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz) + else: + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + # apply the causal_attention_mask first + if causal_attention_mask is not None: + if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {causal_attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if output_attentions: + # this operation is a bit akward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped + + +# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GroupViT +class GroupViTEncoderLayer(nn.Module): + def __init__(self, config: GroupViTConfig): + super().__init__() + self.embed_dim = config.hidden_size + self.self_attn = GroupViTAttention(config) + self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + self.mlp = GroupViTMLP(config) + self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + causal_attention_mask: torch.Tensor, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + `(config.encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + + hidden_states = self.layer_norm1(hidden_states) + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + causal_attention_mask=causal_attention_mask, + output_attentions=output_attentions, + ) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.layer_norm2(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class GroupViTPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = GroupViTConfig + base_model_prefix = "groupvit" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + + init_range = self.config.initializer_range + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=init_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + factor = self.config.initializer_factor + if isinstance(module, GroupViTTextEmbeddings): + module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) + module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) + elif isinstance(module, GroupViTAttention): + factor = self.config.initializer_factor + in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor + out_proj_std = (module.embed_dim**-0.5) * factor + nn.init.normal_(module.q_proj.weight, std=in_proj_std) + nn.init.normal_(module.k_proj.weight, std=in_proj_std) + nn.init.normal_(module.v_proj.weight, std=in_proj_std) + nn.init.normal_(module.out_proj.weight, std=out_proj_std) + elif isinstance(module, GroupViTMLP): + factor = self.config.initializer_factor + in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor + fc_std = (2 * module.config.hidden_size) ** -0.5 * factor + nn.init.normal_(module.fc1.weight, std=fc_std) + nn.init.normal_(module.fc2.weight, std=in_proj_std) + + +GROUPVIT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +GROUPVIT_TEXT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +GROUPVIT_VISION_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +GROUPVIT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`CLIPImageProcessor.__call__`] for details. + return_loss (`bool`, *optional*): + Whether or not to return the contrastive loss. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class GroupViTVisionEncoder(nn.Module): + def __init__(self, config: GroupViTVisionConfig) -> None: + super().__init__() + self.config = config + self.stages = nn.ModuleList( + [ + GroupViTStage( + config=config, + depth=config.depths[i], + num_group_token=config.num_group_tokens[i], + num_output_group=config.num_output_groups[i], + num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0, + ) + for i in range(len(config.depths)) + ] + ) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, BaseModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + all_hidden_states = () if output_hidden_states else None + all_groupings = () if output_attentions else None + + group_tokens = None + + for i, stage in enumerate(self.stages): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = stage(hidden_states, group_tokens, output_attentions) + + hidden_states = layer_outputs[0] + group_tokens = layer_outputs[1] + + if output_attentions and layer_outputs[2] is not None: + all_groupings = all_groupings + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings + ) + + +class GroupViTTextEncoder(nn.Module): + """ + Transformer encoder consisting of `config.num_hidden_layers` self-attention layers. Each layer is a + [`GroupViTEncoderLayer`]. + + Args: + config: GroupViTTextConfig + """ + + def __init__(self, config: GroupViTTextConfig): + super().__init__() + self.config = config + self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + inputs_embeds, + attention_mask: Optional[torch.Tensor] = None, + causal_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Causal mask for the text model. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + hidden_states = inputs_embeds + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + causal_attention_mask, + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + causal_attention_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +# Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer with CLIPText->GroupViTText, CLIPEncoder->GroupViTTextEncoder, CLIP_TEXT->GROUPVIT_TEXT +class GroupViTTextTransformer(nn.Module): + def __init__(self, config: GroupViTTextConfig): + super().__init__() + self.config = config + embed_dim = config.hidden_size + self.embeddings = GroupViTTextEmbeddings(config) + self.encoder = GroupViTTextEncoder(config) + self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + + # For `pooled_output` computation + self.eos_token_id = config.eos_token_id + + @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is None: + raise ValueError("You have to specify input_ids") + + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + + hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) + + # CLIP's text model uses causal mask, prepare it here. + # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 + causal_attention_mask = _create_4d_causal_attention_mask( + input_shape, hidden_states.dtype, device=hidden_states.device + ) + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) + + encoder_outputs = self.encoder( + inputs_embeds=hidden_states, + attention_mask=attention_mask, + causal_attention_mask=causal_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + last_hidden_state = self.final_layer_norm(last_hidden_state) + + if self.eos_token_id == 2: + # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. + # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added + # ------------------------------------------------------------ + # text_embeds.shape = [batch_size, sequence_length, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 + pooled_output = last_hidden_state[ + torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), + input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), + ] + else: + # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) + pooled_output = last_hidden_state[ + torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), + # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) + (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id) + .int() + .argmax(dim=-1), + ] + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class GroupViTTextModel(GroupViTPreTrainedModel): + config_class = GroupViTTextConfig + + def __init__(self, config: GroupViTTextConfig): + super().__init__(config) + self.text_model = GroupViTTextTransformer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> nn.Module: + return self.text_model.embeddings.token_embedding + + def set_input_embeddings(self, value): + self.text_model.embeddings.token_embedding = value + + @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import CLIPTokenizer, GroupViTTextModel + + >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") + >>> model = GroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc") + + >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + >>> pooled_output = outputs.pooler_output # pooled (EOS token) states + ```""" + return self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class GroupViTVisionTransformer(nn.Module): + def __init__(self, config: GroupViTVisionConfig): + super().__init__() + self.config = config + embed_dim = config.hidden_size + + self.embeddings = GroupViTVisionEmbeddings(config) + self.encoder = GroupViTVisionEncoder(config) + self.layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) + + @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + hidden_states = self.embeddings(pixel_values) + + encoder_outputs = self.encoder( + hidden_states=hidden_states, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + + # normalize the last hidden state + last_hidden_state = self.layernorm(last_hidden_state) + pooled_output = last_hidden_state.mean(dim=1) + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class GroupViTVisionModel(GroupViTPreTrainedModel): + config_class = GroupViTVisionConfig + main_input_name = "pixel_values" + + def __init__(self, config: GroupViTVisionConfig): + super().__init__(config) + self.vision_model = GroupViTVisionTransformer(config) + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> GroupViTPatchEmbeddings: + return self.vision_model.embeddings.patch_embeddings + + @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, GroupViTVisionModel + + >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") + >>> model = GroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor(images=image, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> last_hidden_state = outputs.last_hidden_state + >>> pooled_output = outputs.pooler_output # pooled CLS states + ```""" + return self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +@add_start_docstrings(GROUPVIT_START_DOCSTRING) +class GroupViTModel(GroupViTPreTrainedModel): + config_class = GroupViTConfig + + def __init__(self, config: GroupViTConfig): + super().__init__(config) + + if not isinstance(config.text_config, GroupViTTextConfig): + raise ValueError( + "config.text_config is expected to be of type GroupViTTextConfig but is of type" + f" {type(config.text_config)}." + ) + + if not isinstance(config.vision_config, GroupViTVisionConfig): + raise ValueError( + "config.vision_config is expected to be of type GroupViTVisionConfig but is of type" + f" {type(config.vision_config)}." + ) + + text_config = config.text_config + vision_config = config.vision_config + + self.projection_dim = config.projection_dim + self.projection_intermediate_dim = config.projection_intermediate_dim + self.text_embed_dim = text_config.hidden_size + self.vision_embed_dim = vision_config.hidden_size + + self.text_model = GroupViTTextTransformer(text_config) + self.vision_model = GroupViTVisionTransformer(vision_config) + + self.visual_projection = nn.Sequential( + nn.Linear(self.vision_embed_dim, self.projection_intermediate_dim, bias=True), + nn.BatchNorm1d(self.projection_intermediate_dim), + nn.ReLU(inplace=True), + nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True), + ) + self.text_projection = nn.Sequential( + nn.Linear(self.text_embed_dim, self.projection_intermediate_dim, bias=True), + nn.BatchNorm1d(self.projection_intermediate_dim), + nn.ReLU(inplace=True), + nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True), + ) + self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING) + def get_text_features( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by + applying the projection layer to the pooled output of [`GroupViTTextModel`]. + + Examples: + + ```python + >>> from transformers import CLIPTokenizer, GroupViTModel + + >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") + >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") + + >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") + >>> text_features = model.get_text_features(**inputs) + ```""" + # Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = text_outputs[1] + text_features = self.text_projection(pooled_output) + + return text_features + + @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) + def get_image_features( + self, + pixel_values: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> torch.FloatTensor: + r""" + Returns: + image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by + applying the projection layer to the pooled output of [`GroupViTVisionModel`]. + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, GroupViTModel + + >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") + >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor(images=image, return_tensors="pt") + + >>> image_features = model.get_image_features(**inputs) + ```""" + # Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = vision_outputs[1] # pooled_output + image_features = self.visual_projection(pooled_output) + + return image_features + + @add_start_docstrings_to_model_forward(GROUPVIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=GroupViTModelOutput, config_class=GroupViTConfig) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + pixel_values: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + return_loss: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_segmentation: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, GroupViTModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, GroupViTModel + + >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") + >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor( + ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True + ... ) + + >>> outputs = model(**inputs) + >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score + >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities + ```""" + # Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components. + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_segmentation = ( + output_segmentation if output_segmentation is not None else self.config.output_segmentation + ) + if output_segmentation: + output_attentions = True + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + vision_outputs = self.vision_model( + pixel_values=pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + text_outputs = self.text_model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + image_embeds = vision_outputs[1] + image_embeds = self.visual_projection(image_embeds) + + text_embeds = text_outputs[1] + text_embeds = self.text_projection(text_embeds) + + # normalized features + image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True) + text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True) + + # cosine similarity as logits + logit_scale = self.logit_scale.exp() + logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale + logits_per_image = logits_per_text.t() + + seg_logits = None + if output_segmentation: + # grouped features + # [batch_size_image, num_group, hidden_size] + image_group_embeds = vision_outputs[0] + # [batch_size_image*num_group, hidden_size] + image_group_embeds = self.visual_projection(image_group_embeds.reshape(-1, image_group_embeds.shape[-1])) + if output_hidden_states: + attentions = vision_outputs[3] + else: + attentions = vision_outputs[2] + # [batch_size_image, num_group, height, width] + grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:]) + + # normalized features + image_group_embeds = image_group_embeds / image_group_embeds.norm(dim=-1, keepdim=True) + # [batch_size_image x num_group, batch_size_text] + logits_per_image_group = torch.matmul(image_group_embeds, text_embeds.t()) * logit_scale + # [batch_size_image, batch_size_text, num_group] + logits_per_image_group = logits_per_image_group.reshape( + image_embeds.shape[0], -1, text_embeds.shape[0] + ).permute(0, 2, 1) + + # [batch_size_image, batch_size_text, height x width] + flatten_grouping = grouping.reshape(grouping.shape[0], grouping.shape[1], -1) + + # [batch_size_image, batch_size_text, height, width] + seg_logits = torch.matmul(logits_per_image_group, flatten_grouping) * logit_scale + seg_logits = seg_logits.reshape( + seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3] + ) + + loss = None + if return_loss: + loss = groupvit_loss(logits_per_text) + + if not return_dict: + if seg_logits is not None: + output = ( + logits_per_image, + logits_per_text, + seg_logits, + text_embeds, + image_embeds, + text_outputs, + vision_outputs, + ) + else: + output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) + return ((loss,) + output) if loss is not None else output + + return GroupViTModelOutput( + loss=loss, + logits_per_image=logits_per_image, + logits_per_text=logits_per_text, + segmentation_logits=seg_logits, + text_embeds=text_embeds, + image_embeds=image_embeds, + text_model_output=text_outputs, + vision_model_output=vision_outputs, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0d202eb4d4234f2f1615cb3ff6eba885532bbeae --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__init__.py @@ -0,0 +1,145 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_mobilebert": [ + "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "MobileBertConfig", + "MobileBertOnnxConfig", + ], + "tokenization_mobilebert": ["MobileBertTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_mobilebert_fast"] = ["MobileBertTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mobilebert"] = [ + "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "MobileBertForMaskedLM", + "MobileBertForMultipleChoice", + "MobileBertForNextSentencePrediction", + "MobileBertForPreTraining", + "MobileBertForQuestionAnswering", + "MobileBertForSequenceClassification", + "MobileBertForTokenClassification", + "MobileBertLayer", + "MobileBertModel", + "MobileBertPreTrainedModel", + "load_tf_weights_in_mobilebert", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_mobilebert"] = [ + "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFMobileBertForMaskedLM", + "TFMobileBertForMultipleChoice", + "TFMobileBertForNextSentencePrediction", + "TFMobileBertForPreTraining", + "TFMobileBertForQuestionAnswering", + "TFMobileBertForSequenceClassification", + "TFMobileBertForTokenClassification", + "TFMobileBertMainLayer", + "TFMobileBertModel", + "TFMobileBertPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_mobilebert import ( + MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, + MobileBertConfig, + MobileBertOnnxConfig, + ) + from .tokenization_mobilebert import MobileBertTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_mobilebert_fast import MobileBertTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mobilebert import ( + MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + MobileBertForMaskedLM, + MobileBertForMultipleChoice, + MobileBertForNextSentencePrediction, + MobileBertForPreTraining, + MobileBertForQuestionAnswering, + MobileBertForSequenceClassification, + MobileBertForTokenClassification, + MobileBertLayer, + MobileBertModel, + MobileBertPreTrainedModel, + load_tf_weights_in_mobilebert, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_mobilebert import ( + TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + TFMobileBertForMaskedLM, + TFMobileBertForMultipleChoice, + TFMobileBertForNextSentencePrediction, + TFMobileBertForPreTraining, + TFMobileBertForQuestionAnswering, + TFMobileBertForSequenceClassification, + TFMobileBertForTokenClassification, + TFMobileBertMainLayer, + TFMobileBertModel, + TFMobileBertPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d5a9ed7f6bc27fc2477920bf0d5513ab94f78e81 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/configuration_mobilebert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/configuration_mobilebert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ae3b1d6615d219a96ae28f519316b81f3e612e7e Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/configuration_mobilebert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/convert_mobilebert_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/convert_mobilebert_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..28caa2820d76879766bc305e8a568dd7a528197c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/convert_mobilebert_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_mobilebert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_mobilebert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a583051a2089c3f67cbea8b08a2fabab33a16fe7 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_mobilebert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_tf_mobilebert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_tf_mobilebert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7217ac7e080375ee1da1878f8b67d6b7d7e01d82 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/modeling_tf_mobilebert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..36c4197316d2b2fe5f1f6a3e03fe92b86280fbfd Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ac6561ec8c65ef288ef4cced89909e82f4b1b1b7 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/__pycache__/tokenization_mobilebert_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/configuration_mobilebert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/configuration_mobilebert.py new file mode 100644 index 0000000000000000000000000000000000000000..b14d25ea9ed507974fb9ed12cc12d9a11ec4f9ac --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/configuration_mobilebert.py @@ -0,0 +1,188 @@ +# coding=utf-8 +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MobileBERT model configuration""" +from collections import OrderedDict +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "google/mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/config.json" +} + + +class MobileBertConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It + is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT + [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. + hidden_size (`int`, *optional*, defaults to 512): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 24): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 4): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 512): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or + [`TFMobileBertModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + + pad_token_id (`int`, *optional*, defaults to 0): + The ID of the token in the word embedding to use as padding. + embedding_size (`int`, *optional*, defaults to 128): + The dimension of the word embedding vectors. + trigram_input (`bool`, *optional*, defaults to `True`): + Use a convolution of trigram as input. + use_bottleneck (`bool`, *optional*, defaults to `True`): + Whether to use bottleneck in BERT. + intra_bottleneck_size (`int`, *optional*, defaults to 128): + Size of bottleneck layer output. + use_bottleneck_attention (`bool`, *optional*, defaults to `False`): + Whether to use attention inputs from the bottleneck transformation. + key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`): + Whether to use the same linear transformation for query&key in the bottleneck. + num_feedforward_networks (`int`, *optional*, defaults to 4): + Number of FFNs in a block. + normalization_type (`str`, *optional*, defaults to `"no_norm"`): + The normalization type in MobileBERT. + classifier_dropout (`float`, *optional*): + The dropout ratio for the classification head. + + Examples: + + ```python + >>> from transformers import MobileBertConfig, MobileBertModel + + >>> # Initializing a MobileBERT configuration + >>> configuration = MobileBertConfig() + + >>> # Initializing a model (with random weights) from the configuration above + >>> model = MobileBertModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ``` + + Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained + checkpoints. + """ + + pretrained_config_archive_map = MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP + model_type = "mobilebert" + + def __init__( + self, + vocab_size=30522, + hidden_size=512, + num_hidden_layers=24, + num_attention_heads=4, + intermediate_size=512, + hidden_act="relu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + embedding_size=128, + trigram_input=True, + use_bottleneck=True, + intra_bottleneck_size=128, + use_bottleneck_attention=False, + key_query_shared_bottleneck=True, + num_feedforward_networks=4, + normalization_type="no_norm", + classifier_activation=True, + classifier_dropout=None, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.embedding_size = embedding_size + self.trigram_input = trigram_input + self.use_bottleneck = use_bottleneck + self.intra_bottleneck_size = intra_bottleneck_size + self.use_bottleneck_attention = use_bottleneck_attention + self.key_query_shared_bottleneck = key_query_shared_bottleneck + self.num_feedforward_networks = num_feedforward_networks + self.normalization_type = normalization_type + self.classifier_activation = classifier_activation + + if self.use_bottleneck: + self.true_hidden_size = intra_bottleneck_size + else: + self.true_hidden_size = hidden_size + + self.classifier_dropout = classifier_dropout + + +# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Bert->MobileBert +class MobileBertOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("input_ids", dynamic_axis), + ("attention_mask", dynamic_axis), + ("token_type_ids", dynamic_axis), + ] + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..022a9d036cdb24558142222a6aec5fd3ed65afd7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/convert_mobilebert_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,58 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse + +import torch + +from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert +from transformers.utils import logging + + +logging.set_verbosity_info() + + +def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, mobilebert_config_file, pytorch_dump_path): + # Initialise PyTorch model + config = MobileBertConfig.from_json_file(mobilebert_config_file) + print(f"Building PyTorch model from configuration: {config}") + model = MobileBertForPreTraining(config) + # Load weights from tf checkpoint + model = load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path) + # Save pytorch-model + print(f"Save PyTorch model to {pytorch_dump_path}") + torch.save(model.state_dict(), pytorch_dump_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." + ) + parser.add_argument( + "--mobilebert_config_file", + default=None, + type=str, + required=True, + help=( + "The config json file corresponding to the pre-trained MobileBERT model. \n" + "This specifies the model architecture." + ), + ) + parser.add_argument( + "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_mobilebert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_mobilebert.py new file mode 100644 index 0000000000000000000000000000000000000000..70f2ebc7bfd8f73f8597073c775fb0860e36a469 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_mobilebert.py @@ -0,0 +1,1617 @@ +# MIT License +# +# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +import math +import os +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + MaskedLMOutput, + MultipleChoiceModelOutput, + NextSentencePredictorOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_mobilebert import MobileBertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" +_CONFIG_FOR_DOC = "MobileBertConfig" + +# TokenClassification docstring +_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "mrm8488/mobilebert-finetuned-ner" +_TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" +_TOKEN_CLASS_EXPECTED_LOSS = 0.03 + +# QuestionAnswering docstring +_CHECKPOINT_FOR_QA = "csarron/mobilebert-uncased-squad-v2" +_QA_EXPECTED_OUTPUT = "'a nice puppet'" +_QA_EXPECTED_LOSS = 3.98 +_QA_TARGET_START_INDEX = 12 +_QA_TARGET_END_INDEX = 13 + +# SequenceClassification docstring +_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "lordtt13/emo-mobilebert" +_SEQ_CLASS_EXPECTED_OUTPUT = "'others'" +_SEQ_CLASS_EXPECTED_LOSS = "4.72" + +MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = ["google/mobilebert-uncased"] + + +def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + name = name.replace("ffn_layer", "ffn") + name = name.replace("FakeLayerNorm", "LayerNorm") + name = name.replace("extra_output_weights", "dense/kernel") + name = name.replace("bert", "mobilebert") + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + assert ( + pointer.shape == array.shape + ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + return model + + +class NoNorm(nn.Module): + def __init__(self, feat_size, eps=None): + super().__init__() + self.bias = nn.Parameter(torch.zeros(feat_size)) + self.weight = nn.Parameter(torch.ones(feat_size)) + + def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: + return input_tensor * self.weight + self.bias + + +NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm} + + +class MobileBertEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.trigram_input = config.trigram_input + self.embedding_size = config.embedding_size + self.hidden_size = config.hidden_size + + self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + embed_dim_multiplier = 3 if self.trigram_input else 1 + embedded_input_size = self.embedding_size * embed_dim_multiplier + self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) + + self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + ) -> torch.Tensor: + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + if self.trigram_input: + # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited + # Devices (https://arxiv.org/abs/2004.02984) + # + # The embedding table in BERT models accounts for a substantial proportion of model size. To compress + # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. + # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 + # dimensional output. + inputs_embeds = torch.cat( + [ + nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0), + inputs_embeds, + nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0), + ], + dim=2, + ) + if self.trigram_input or self.embedding_size != self.hidden_size: + inputs_embeds = self.embedding_transformation(inputs_embeds) + + # Add positional embeddings and token type embeddings, then layer + # normalize and perform dropout. + position_embeddings = self.position_embeddings(position_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + embeddings = inputs_embeds + position_embeddings + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class MobileBertSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.true_hidden_size, self.all_head_size) + self.key = nn.Linear(config.true_hidden_size, self.all_head_size) + self.value = nn.Linear( + config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size + ) + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + query_tensor: torch.Tensor, + key_tensor: torch.Tensor, + value_tensor: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(query_tensor) + mixed_key_layer = self.key(key_tensor) + mixed_value_layer = self.value(value_tensor) + + query_layer = self.transpose_for_scores(mixed_query_layer) + key_layer = self.transpose_for_scores(mixed_key_layer) + value_layer = self.transpose_for_scores(mixed_value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertModel forward() function) + attention_scores = attention_scores + attention_mask + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + context_layer = torch.matmul(attention_probs, value_layer) + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + return outputs + + +class MobileBertSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.use_bottleneck = config.use_bottleneck + self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) + if not self.use_bottleneck: + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: + layer_outputs = self.dense(hidden_states) + if not self.use_bottleneck: + layer_outputs = self.dropout(layer_outputs) + layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) + return layer_outputs + + +class MobileBertAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.self = MobileBertSelfAttention(config) + self.output = MobileBertSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + query_tensor: torch.Tensor, + key_tensor: torch.Tensor, + value_tensor: torch.Tensor, + layer_input: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + query_tensor, + key_tensor, + value_tensor, + attention_mask, + head_mask, + output_attentions, + ) + # Run a linear projection of `hidden_size` then add a residual + # with `layer_input`. + attention_output = self.output(self_outputs[0], layer_input) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class MobileBertIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +class OutputBottleneck(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: + layer_outputs = self.dense(hidden_states) + layer_outputs = self.dropout(layer_outputs) + layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) + return layer_outputs + + +class MobileBertOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.use_bottleneck = config.use_bottleneck + self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) + if not self.use_bottleneck: + self.dropout = nn.Dropout(config.hidden_dropout_prob) + else: + self.bottleneck = OutputBottleneck(config) + + def forward( + self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor + ) -> torch.Tensor: + layer_output = self.dense(intermediate_states) + if not self.use_bottleneck: + layer_output = self.dropout(layer_output) + layer_output = self.LayerNorm(layer_output + residual_tensor_1) + else: + layer_output = self.LayerNorm(layer_output + residual_tensor_1) + layer_output = self.bottleneck(layer_output, residual_tensor_2) + return layer_output + + +class BottleneckLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + layer_input = self.dense(hidden_states) + layer_input = self.LayerNorm(layer_input) + return layer_input + + +class Bottleneck(nn.Module): + def __init__(self, config): + super().__init__() + self.key_query_shared_bottleneck = config.key_query_shared_bottleneck + self.use_bottleneck_attention = config.use_bottleneck_attention + self.input = BottleneckLayer(config) + if self.key_query_shared_bottleneck: + self.attention = BottleneckLayer(config) + + def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: + # This method can return three different tuples of values. These different values make use of bottlenecks, + # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory + # usage. These linear layer have weights that are learned during training. + # + # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the + # key, query, value, and "layer input" to be used by the attention layer. + # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor + # in the attention self output, after the attention scores have been computed. + # + # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return + # four values, three of which have been passed through a bottleneck: the query and key, passed through the same + # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. + # + # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, + # and the residual layer will be this value passed through a bottleneck. + + bottlenecked_hidden_states = self.input(hidden_states) + if self.use_bottleneck_attention: + return (bottlenecked_hidden_states,) * 4 + elif self.key_query_shared_bottleneck: + shared_attention_input = self.attention(hidden_states) + return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) + else: + return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) + + +class FFNOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) + self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: + layer_outputs = self.dense(hidden_states) + layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) + return layer_outputs + + +class FFNLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.intermediate = MobileBertIntermediate(config) + self.output = FFNOutput(config) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + intermediate_output = self.intermediate(hidden_states) + layer_outputs = self.output(intermediate_output, hidden_states) + return layer_outputs + + +class MobileBertLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.use_bottleneck = config.use_bottleneck + self.num_feedforward_networks = config.num_feedforward_networks + + self.attention = MobileBertAttention(config) + self.intermediate = MobileBertIntermediate(config) + self.output = MobileBertOutput(config) + if self.use_bottleneck: + self.bottleneck = Bottleneck(config) + if config.num_feedforward_networks > 1: + self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + ) -> Tuple[torch.Tensor]: + if self.use_bottleneck: + query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) + else: + query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 + + self_attention_outputs = self.attention( + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_mask, + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + s = (attention_output,) + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + if self.num_feedforward_networks != 1: + for i, ffn_module in enumerate(self.ffn): + attention_output = ffn_module(attention_output) + s += (attention_output,) + + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output, hidden_states) + outputs = ( + (layer_output,) + + outputs + + ( + torch.tensor(1000), + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_output, + intermediate_output, + ) + + s + ) + return outputs + + +class MobileBertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states, + attention_mask, + head_mask[i], + output_attentions, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class MobileBertPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.do_activate = config.classifier_activation + if self.do_activate: + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + if not self.do_activate: + return first_token_tensor + else: + pooled_output = self.dense(first_token_tensor) + pooled_output = torch.tanh(pooled_output) + return pooled_output + + +class MobileBertPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +class MobileBertLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = MobileBertPredictionHeadTransform(config) + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) + self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.transform(hidden_states) + hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) + hidden_states += self.decoder.bias + return hidden_states + + +class MobileBertOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = MobileBertLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class MobileBertPreTrainingHeads(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = MobileBertLMPredictionHead(config) + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]: + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + return prediction_scores, seq_relationship_score + + +class MobileBertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MobileBertConfig + pretrained_model_archive_map = MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST + load_tf_weights = load_tf_weights_in_mobilebert + base_model_prefix = "mobilebert" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, (nn.LayerNorm, NoNorm)): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +@dataclass +class MobileBertForPreTrainingOutput(ModelOutput): + """ + Output type of [`MobileBertForPreTraining`]. + + Args: + loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): + Total loss as the sum of the masked language modeling loss and the next sequence prediction + (classification) loss. + prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + prediction_logits: torch.FloatTensor = None + seq_relationship_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +MOBILEBERT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOBILEBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", + MOBILEBERT_START_DOCSTRING, +) +class MobileBertModel(MobileBertPreTrainedModel): + """ + https://arxiv.org/pdf/2004.02984.pdf + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + self.embeddings = MobileBertEmbeddings(config) + self.encoder = MobileBertEncoder(config) + + self.pooler = MobileBertPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a + `next sentence prediction (classification)` head. + """, + MOBILEBERT_START_DOCSTRING, +) +class MobileBertForPreTraining(MobileBertPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + self.mobilebert = MobileBertModel(config) + self.cls = MobileBertPreTrainingHeads(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddigs): + self.cls.predictions.decoder = new_embeddigs + + def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: + # resize dense output embedings at first + self.cls.predictions.dense = self._get_resized_lm_head( + self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True + ) + + return super().resize_token_embeddings(new_num_tokens=new_num_tokens) + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + next_sentence_label: Optional[torch.LongTensor] = None, + output_attentions: Optional[torch.FloatTensor] = None, + output_hidden_states: Optional[torch.FloatTensor] = None, + return_dict: Optional[torch.FloatTensor] = None, + ) -> Union[Tuple, MobileBertForPreTrainingOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair + (see `input_ids` docstring) Indices should be in `[0, 1]`: + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, MobileBertForPreTraining + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") + >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") + + >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) + >>> # Batch size 1 + >>> outputs = model(input_ids) + + >>> prediction_logits = outputs.prediction_logits + >>> seq_relationship_logits = outputs.seq_relationship_logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output, pooled_output = outputs[:2] + prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) + + total_loss = None + if labels is not None and next_sentence_label is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) + total_loss = masked_lm_loss + next_sentence_loss + + if not return_dict: + output = (prediction_scores, seq_relationship_score) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return MobileBertForPreTrainingOutput( + loss=total_loss, + prediction_logits=prediction_scores, + seq_relationship_logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) +class MobileBertForMaskedLM(MobileBertPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + self.mobilebert = MobileBertModel(config, add_pooling_layer=False) + self.cls = MobileBertOnlyMLMHead(config) + self.config = config + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddigs): + self.cls.predictions.decoder = new_embeddigs + + def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: + # resize dense output embedings at first + self.cls.predictions.dense = self._get_resized_lm_head( + self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True + ) + return super().resize_token_embeddings(new_num_tokens=new_num_tokens) + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'paris'", + expected_loss=0.57, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class MobileBertOnlyNSPHead(nn.Module): + def __init__(self, config): + super().__init__() + self.seq_relationship = nn.Linear(config.hidden_size, 2) + + def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: + seq_relationship_score = self.seq_relationship(pooled_output) + return seq_relationship_score + + +@add_start_docstrings( + """MobileBert Model with a `next sentence prediction (classification)` head on top.""", + MOBILEBERT_START_DOCSTRING, +) +class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.mobilebert = MobileBertModel(config) + self.cls = MobileBertOnlyNSPHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple, NextSentencePredictorOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair + (see `input_ids` docstring) Indices should be in `[0, 1]`. + + - 0 indicates sequence B is a continuation of sequence A, + - 1 indicates sequence B is a random sequence. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") + >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") + + >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." + >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." + >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") + + >>> outputs = model(**encoding, labels=torch.LongTensor([1])) + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + + if "next_sentence_label" in kwargs: + warnings.warn( + "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" + " `labels` instead.", + FutureWarning, + ) + labels = kwargs.pop("next_sentence_label") + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + seq_relationship_score = self.cls(pooled_output) + + next_sentence_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) + + if not return_dict: + output = (seq_relationship_score,) + outputs[2:] + return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output + + return NextSentencePredictorOutput( + loss=next_sentence_loss, + logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing +class MobileBertForSequenceClassification(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.config = config + + self.mobilebert = MobileBertModel(config) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, + expected_loss=_SEQ_CLASS_EXPECTED_LOSS, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MOBILEBERT_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing +class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.mobilebert = MobileBertModel(config, add_pooling_layer=False) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_QA, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + qa_target_start_index=_QA_TARGET_START_INDEX, + qa_target_end_index=_QA_TARGET_END_INDEX, + expected_output=_QA_EXPECTED_OUTPUT, + expected_loss=_QA_EXPECTED_LOSS, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing +class MobileBertForMultipleChoice(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.mobilebert = MobileBertModel(config) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward( + MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +# Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing +class MobileBertForTokenClassification(MobileBertPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.mobilebert = MobileBertModel(config, add_pooling_layer=False) + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = nn.Dropout(classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, + expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_tf_mobilebert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_tf_mobilebert.py new file mode 100644 index 0000000000000000000000000000000000000000..6ccc996557532b0cc8488d18672e3a3ce8f466c0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/modeling_tf_mobilebert.py @@ -0,0 +1,1972 @@ +# coding=utf-8 +# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 MobileBERT model.""" + + +from __future__ import annotations + +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPooling, + TFMaskedLMOutput, + TFMultipleChoiceModelOutput, + TFNextSentencePredictorOutput, + TFQuestionAnsweringModelOutput, + TFSequenceClassifierOutput, + TFTokenClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFMultipleChoiceLoss, + TFNextSentencePredictionLoss, + TFPreTrainedModel, + TFQuestionAnsweringLoss, + TFSequenceClassificationLoss, + TFTokenClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_mobilebert import MobileBertConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" +_CONFIG_FOR_DOC = "MobileBertConfig" + +# TokenClassification docstring +_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "vumichien/mobilebert-finetuned-ner" +_TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" +_TOKEN_CLASS_EXPECTED_LOSS = 0.03 + +# QuestionAnswering docstring +_CHECKPOINT_FOR_QA = "vumichien/mobilebert-uncased-squad-v2" +_QA_EXPECTED_OUTPUT = "'a nice puppet'" +_QA_EXPECTED_LOSS = 3.98 +_QA_TARGET_START_INDEX = 12 +_QA_TARGET_END_INDEX = 13 + +# SequenceClassification docstring +_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "vumichien/emo-mobilebert" +_SEQ_CLASS_EXPECTED_OUTPUT = "'others'" +_SEQ_CLASS_EXPECTED_LOSS = "4.72" + +TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "google/mobilebert-uncased", + # See all MobileBERT models at https://huggingface.co/models?filter=mobilebert +] + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPreTrainingLoss +class TFMobileBertPreTrainingLoss: + """ + Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining + NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss + computation. + """ + + def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor: + loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE) + + # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway + unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0]) + # make sure only labels that are not equal to -100 + # are taken into account for the loss computation + lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype) + masked_lm_losses = unmasked_lm_losses * lm_loss_mask + reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask) + + # Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway + unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1]) + ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype) + masked_ns_loss = unmasked_ns_loss * ns_loss_mask + + reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask) + + return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,)) + + +class TFMobileBertIntermediate(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense(config.intermediate_size, name="dense") + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.true_hidden_size]) + + +class TFLayerNorm(keras.layers.LayerNormalization): + def __init__(self, feat_size, *args, **kwargs): + self.feat_size = feat_size + super().__init__(*args, **kwargs) + + def build(self, input_shape=None): + super().build([None, None, self.feat_size]) + + +class TFNoNorm(keras.layers.Layer): + def __init__(self, feat_size, epsilon=None, **kwargs): + super().__init__(**kwargs) + self.feat_size = feat_size + + def build(self, input_shape): + self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros") + self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones") + super().build(input_shape) + + def call(self, inputs: tf.Tensor): + return inputs * self.weight + self.bias + + +NORM2FN = {"layer_norm": TFLayerNorm, "no_norm": TFNoNorm} + + +class TFMobileBertEmbeddings(keras.layers.Layer): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.trigram_input = config.trigram_input + self.embedding_size = config.embedding_size + self.config = config + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.embedding_transformation = keras.layers.Dense(config.hidden_size, name="embedding_transformation") + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = NORM2FN[config.normalization_type]( + config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.embedded_input_size = self.embedding_size * (3 if self.trigram_input else 1) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.embedding_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + with tf.name_scope("token_type_embeddings"): + self.token_type_embeddings = self.add_weight( + name="embeddings", + shape=[self.config.type_vocab_size, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(initializer_range=self.initializer_range), + ) + + if self.built: + return + self.built = True + if getattr(self, "embedding_transformation", None) is not None: + with tf.name_scope(self.embedding_transformation.name): + self.embedding_transformation.build([None, None, self.embedded_input_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False): + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + input_shape = shape_list(inputs_embeds)[:-1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape, value=0) + + if self.trigram_input: + # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited + # Devices (https://arxiv.org/abs/2004.02984) + # + # The embedding table in BERT models accounts for a substantial proportion of model size. To compress + # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. + # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 + # dimensional output. + inputs_embeds = tf.concat( + [ + tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))), + inputs_embeds, + tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))), + ], + axis=2, + ) + + if self.trigram_input or self.embedding_size != self.hidden_size: + inputs_embeds = self.embedding_transformation(inputs_embeds) + + if position_ids is None: + position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) + + position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) + token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) + final_embeddings = inputs_embeds + position_embeds + token_type_embeds + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +class TFMobileBertSelfAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads}" + ) + + self.num_attention_heads = config.num_attention_heads + self.output_attentions = config.output_attentions + assert config.hidden_size % config.num_attention_heads == 0 + self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + + self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) + self.config = config + + def transpose_for_scores(self, x, batch_size): + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) + return tf.transpose(x, perm=[0, 2, 1, 3]) + + def call( + self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False + ): + batch_size = shape_list(attention_mask)[0] + mixed_query_layer = self.query(query_tensor) + mixed_key_layer = self.key(key_tensor) + mixed_value_layer = self.value(value_tensor) + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) + value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = tf.matmul( + query_layer, key_layer, transpose_b=True + ) # (batch size, num_heads, seq_len_q, seq_len_k) + dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores + attention_scores = attention_scores / tf.math.sqrt(dk) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function) + attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = tf.matmul(attention_probs, value_layer) + + context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) + context_layer = tf.reshape( + context_layer, (batch_size, -1, self.all_head_size) + ) # (batch_size, seq_len_q, all_head_size) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.true_hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.true_hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build( + [ + None, + None, + self.config.true_hidden_size + if self.config.use_bottleneck_attention + else self.config.hidden_size, + ] + ) + + +class TFMobileBertSelfOutput(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.use_bottleneck = config.use_bottleneck + self.dense = keras.layers.Dense( + config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = NORM2FN[config.normalization_type]( + config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + if not self.use_bottleneck: + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states, residual_tensor, training=False): + hidden_states = self.dense(hidden_states) + if not self.use_bottleneck: + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.LayerNorm(hidden_states + residual_tensor) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.true_hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFMobileBertAttention(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.self = TFMobileBertSelfAttention(config, name="self") + self.mobilebert_output = TFMobileBertSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_mask, + head_mask, + output_attentions, + training=False, + ): + self_outputs = self.self( + query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training + ) + + attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self", None) is not None: + with tf.name_scope(self.self.name): + self.self.build(None) + if getattr(self, "mobilebert_output", None) is not None: + with tf.name_scope(self.mobilebert_output.name): + self.mobilebert_output.build(None) + + +class TFOutputBottleneck(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense(config.hidden_size, name="dense") + self.LayerNorm = NORM2FN[config.normalization_type]( + config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states, residual_tensor, training=False): + layer_outputs = self.dense(hidden_states) + layer_outputs = self.dropout(layer_outputs, training=training) + layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) + return layer_outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.true_hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFMobileBertOutput(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.use_bottleneck = config.use_bottleneck + self.dense = keras.layers.Dense( + config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = NORM2FN[config.normalization_type]( + config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + if not self.use_bottleneck: + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + else: + self.bottleneck = TFOutputBottleneck(config, name="bottleneck") + self.config = config + + def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False): + hidden_states = self.dense(hidden_states) + if not self.use_bottleneck: + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) + else: + hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) + hidden_states = self.bottleneck(hidden_states, residual_tensor_2) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + if getattr(self, "bottleneck", None) is not None: + with tf.name_scope(self.bottleneck.name): + self.bottleneck.build(None) + + +class TFBottleneckLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense(config.intra_bottleneck_size, name="dense") + self.LayerNorm = NORM2FN[config.normalization_type]( + config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + self.config = config + + def call(self, inputs): + hidden_states = self.dense(inputs) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFBottleneck(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.key_query_shared_bottleneck = config.key_query_shared_bottleneck + self.use_bottleneck_attention = config.use_bottleneck_attention + self.bottleneck_input = TFBottleneckLayer(config, name="input") + if self.key_query_shared_bottleneck: + self.attention = TFBottleneckLayer(config, name="attention") + + def call(self, hidden_states): + # This method can return three different tuples of values. These different values make use of bottlenecks, + # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory + # usage. These linear layer have weights that are learned during training. + # + # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the + # key, query, value, and "layer input" to be used by the attention layer. + # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor + # in the attention self output, after the attention scores have been computed. + # + # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return + # four values, three of which have been passed through a bottleneck: the query and key, passed through the same + # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. + # + # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, + # and the residual layer will be this value passed through a bottleneck. + + bottlenecked_hidden_states = self.bottleneck_input(hidden_states) + if self.use_bottleneck_attention: + return (bottlenecked_hidden_states,) * 4 + elif self.key_query_shared_bottleneck: + shared_attention_input = self.attention(hidden_states) + return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) + else: + return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "bottleneck_input", None) is not None: + with tf.name_scope(self.bottleneck_input.name): + self.bottleneck_input.build(None) + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + + +class TFFFNOutput(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense(config.true_hidden_size, name="dense") + self.LayerNorm = NORM2FN[config.normalization_type]( + config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" + ) + self.config = config + + def call(self, hidden_states, residual_tensor): + hidden_states = self.dense(hidden_states) + hidden_states = self.LayerNorm(hidden_states + residual_tensor) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFFFNLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.intermediate = TFMobileBertIntermediate(config, name="intermediate") + self.mobilebert_output = TFFFNOutput(config, name="output") + + def call(self, hidden_states): + intermediate_output = self.intermediate(hidden_states) + layer_outputs = self.mobilebert_output(intermediate_output, hidden_states) + return layer_outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "mobilebert_output", None) is not None: + with tf.name_scope(self.mobilebert_output.name): + self.mobilebert_output.build(None) + + +class TFMobileBertLayer(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.use_bottleneck = config.use_bottleneck + self.num_feedforward_networks = config.num_feedforward_networks + self.attention = TFMobileBertAttention(config, name="attention") + self.intermediate = TFMobileBertIntermediate(config, name="intermediate") + self.mobilebert_output = TFMobileBertOutput(config, name="output") + + if self.use_bottleneck: + self.bottleneck = TFBottleneck(config, name="bottleneck") + if config.num_feedforward_networks > 1: + self.ffn = [TFFFNLayer(config, name=f"ffn.{i}") for i in range(config.num_feedforward_networks - 1)] + + def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): + if self.use_bottleneck: + query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) + else: + query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 + + attention_outputs = self.attention( + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_mask, + head_mask, + output_attentions, + training=training, + ) + + attention_output = attention_outputs[0] + s = (attention_output,) + + if self.num_feedforward_networks != 1: + for i, ffn_module in enumerate(self.ffn): + attention_output = ffn_module(attention_output) + s += (attention_output,) + + intermediate_output = self.intermediate(attention_output) + layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training) + + outputs = ( + (layer_output,) + + attention_outputs[1:] + + ( + tf.constant(0), + query_tensor, + key_tensor, + value_tensor, + layer_input, + attention_output, + intermediate_output, + ) + + s + ) # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "mobilebert_output", None) is not None: + with tf.name_scope(self.mobilebert_output.name): + self.mobilebert_output.build(None) + if getattr(self, "bottleneck", None) is not None: + with tf.name_scope(self.bottleneck.name): + self.bottleneck.build(None) + if getattr(self, "ffn", None) is not None: + for layer in self.ffn: + with tf.name_scope(layer.name): + layer.build(None) + + +class TFMobileBertEncoder(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.layer = [TFMobileBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states, + attention_mask, + head_mask, + output_attentions, + output_hidden_states, + return_dict, + training=False, + ): + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states, attention_mask, head_mask[i], output_attentions, training=training + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +class TFMobileBertPooler(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.do_activate = config.classifier_activation + if self.do_activate: + self.dense = keras.layers.Dense( + config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + if not self.do_activate: + return first_token_tensor + else: + pooled_output = self.dense(first_token_tensor) + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFMobileBertPredictionHeadTransform(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.dense = keras.layers.Dense( + config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + if isinstance(config.hidden_act, str): + self.transform_act_fn = get_tf_activation(config.hidden_act) + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm") + self.config = config + + def call(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build(None) + + +class TFMobileBertLMPredictionHead(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.transform = TFMobileBertPredictionHeadTransform(config, name="transform") + self.config = config + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + self.dense = self.add_weight( + shape=(self.config.hidden_size - self.config.embedding_size, self.config.vocab_size), + initializer="zeros", + trainable=True, + name="dense/weight", + ) + self.decoder = self.add_weight( + shape=(self.config.vocab_size, self.config.embedding_size), + initializer="zeros", + trainable=True, + name="decoder/weight", + ) + + if self.built: + return + self.built = True + if getattr(self, "transform", None) is not None: + with tf.name_scope(self.transform.name): + self.transform.build(None) + + def get_output_embeddings(self): + return self + + def set_output_embeddings(self, value): + self.decoder = value + self.config.vocab_size = shape_list(value)[0] + + def get_bias(self): + return {"bias": self.bias} + + def set_bias(self, value): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0)) + hidden_states = hidden_states + self.bias + return hidden_states + + +class TFMobileBertMLMHead(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.predictions = TFMobileBertLMPredictionHead(config, name="predictions") + + def call(self, sequence_output): + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + + +@keras_serializable +class TFMobileBertMainLayer(keras.layers.Layer): + config_class = MobileBertConfig + + def __init__(self, config, add_pooling_layer=True, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.num_hidden_layers = config.num_hidden_layers + self.output_attentions = config.output_attentions + self.output_hidden_states = config.output_hidden_states + self.return_dict = config.use_return_dict + + self.embeddings = TFMobileBertEmbeddings(config, name="embeddings") + self.encoder = TFMobileBertEncoder(config, name="encoder") + self.pooler = TFMobileBertPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self): + return self.embeddings + + def set_input_embeddings(self, value): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids=None, + attention_mask=None, + token_type_ids=None, + position_ids=None, + head_mask=None, + inputs_embeds=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + training=False, + ): + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(input_shape, 1) + + if token_type_ids is None: + token_type_ids = tf.fill(input_shape, 0) + + embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) + one_cst = tf.constant(1.0, dtype=embedding_output.dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.num_hidden_layers + + encoder_outputs = self.encoder( + embedding_output, + extended_attention_mask, + head_mask, + output_attentions, + output_hidden_states, + return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFMobileBertPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MobileBertConfig + base_model_prefix = "mobilebert" + + +@dataclass +class TFMobileBertForPreTrainingOutput(ModelOutput): + """ + Output type of [`TFMobileBertForPreTraining`]. + + Args: + prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`): + Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation + before SoftMax). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor | None = None + prediction_logits: tf.Tensor = None + seq_relationship_logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +MOBILEBERT_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MOBILEBERT_INPUTS_DOCSTRING = r""" + Args: + input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertModel(TFMobileBertPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFBaseModelOutputWithPooling]: + outputs = self.mobilebert( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + + +@add_start_docstrings( + """ + MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a + `next sentence prediction (classification)` head. + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel, TFMobileBertPreTrainingLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") + self.seq_relationship = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") + + def get_lm_head(self): + return self.predictions.predictions + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + next_sentence_label: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFMobileBertForPreTrainingOutput]: + r""" + Return: + + Examples: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFMobileBertForPreTraining + + >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") + >>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") + >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 + >>> outputs = model(input_ids) + >>> prediction_scores, seq_relationship_scores = outputs[:2] + ```""" + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output, pooled_output = outputs[:2] + prediction_scores = self.predictions(sequence_output) + seq_relationship_score = self.seq_relationship(pooled_output) + + total_loss = None + if labels is not None and next_sentence_label is not None: + d_labels = {"labels": labels} + d_labels["next_sentence_label"] = next_sentence_label + total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score)) + + if not return_dict: + output = (prediction_scores, seq_relationship_score) + outputs[2:] + return ((total_loss,) + output) if total_loss is not None else output + + return TFMobileBertForPreTrainingOutput( + loss=total_loss, + prediction_logits=prediction_scores, + seq_relationship_logits=seq_relationship_score, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + if getattr(self, "seq_relationship", None) is not None: + with tf.name_scope(self.seq_relationship.name): + self.seq_relationship.build(None) + + def tf_to_pt_weight_rename(self, tf_weight): + if tf_weight == "cls.predictions.decoder.weight": + return tf_weight, "mobilebert.embeddings.word_embeddings.weight" + else: + return (tf_weight,) + + +@add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) +class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"pooler", + r"seq_relationship___cls", + r"cls.seq_relationship", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") + self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") + + def get_lm_head(self): + return self.predictions.predictions + + def get_prefix_bias_name(self): + warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) + return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + expected_output="'paris'", + expected_loss=0.57, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFMaskedLMOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels + """ + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.predictions(sequence_output, training=training) + + loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + + def tf_to_pt_weight_rename(self, tf_weight): + if tf_weight == "cls.predictions.decoder.weight": + return tf_weight, "mobilebert.embeddings.word_embeddings.weight" + else: + return (tf_weight,) + + +class TFMobileBertOnlyNSPHead(keras.layers.Layer): + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + self.seq_relationship = keras.layers.Dense(2, name="seq_relationship") + self.config = config + + def call(self, pooled_output): + seq_relationship_score = self.seq_relationship(pooled_output) + return seq_relationship_score + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "seq_relationship", None) is not None: + with tf.name_scope(self.seq_relationship.name): + self.seq_relationship.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """MobileBert Model with a `next sentence prediction (classification)` head on top.""", + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextSentencePredictionLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [r"predictions___cls", r"cls.predictions"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + next_sentence_label: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFNextSentencePredictorOutput]: + r""" + Return: + + Examples: + + ```python + >>> import tensorflow as tf + >>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction + + >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") + >>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") + + >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." + >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." + >>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf") + + >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0] + ```""" + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + seq_relationship_scores = self.cls(pooled_output) + + next_sentence_loss = ( + None + if next_sentence_label is None + else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores) + ) + + if not return_dict: + output = (seq_relationship_scores,) + outputs[2:] + return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output + + return TFNextSentencePredictorOutput( + loss=next_sentence_loss, + logits=seq_relationship_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "cls", None) is not None: + with tf.name_scope(self.cls.name): + self.cls.build(None) + + +@add_start_docstrings( + """ + MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the + pooled output) e.g. for GLUE tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"predictions___cls", + r"seq_relationship___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, + output_type=TFSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, + expected_loss=_SEQ_CLASS_EXPECTED_LOSS, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFSequenceClassifierOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output, training=training) + logits = self.classifier(pooled_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a + linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"pooler", + r"predictions___cls", + r"seq_relationship___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") + self.qa_outputs = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_QA, + output_type=TFQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + qa_target_start_index=_QA_TARGET_START_INDEX, + qa_target_end_index=_QA_TARGET_END_INDEX, + expected_output=_QA_EXPECTED_OUTPUT, + expected_loss=_QA_EXPECTED_LOSS, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + start_positions: np.ndarray | tf.Tensor | None = None, + end_positions: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFQuestionAnsweringModelOutput]: + r""" + start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = tf.split(logits, 2, axis=-1) + start_logits = tf.squeeze(start_logits, axis=-1) + end_logits = tf.squeeze(end_logits, axis=-1) + + loss = None + if start_positions is not None and end_positions is not None: + labels = {"start_position": start_positions, "end_position": end_positions} + loss = self.hf_compute_loss(labels, (start_logits, end_logits)) + + if not return_dict: + output = (start_logits, end_logits) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFQuestionAnsweringModelOutput( + loss=loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "qa_outputs", None) is not None: + with tf.name_scope(self.qa_outputs.name): + self.qa_outputs.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and + a softmax) e.g. for RocStories/SWAG tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"predictions___cls", + r"seq_relationship___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + self.classifier = keras.layers.Dense( + 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward( + MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") + ) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFMultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFMultipleChoiceModelOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` + where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) + """ + if input_ids is not None: + num_choices = shape_list(input_ids)[1] + seq_length = shape_list(input_ids)[2] + else: + num_choices = shape_list(inputs_embeds)[1] + seq_length = shape_list(inputs_embeds)[2] + + flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None + flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None + flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None + flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None + flat_inputs_embeds = ( + tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) + if inputs_embeds is not None + else None + ) + outputs = self.mobilebert( + flat_input_ids, + flat_attention_mask, + flat_token_type_ids, + flat_position_ids, + head_mask, + flat_inputs_embeds, + output_attentions, + output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + pooled_output = self.dropout(pooled_output, training=training) + logits = self.classifier(pooled_output) + reshaped_logits = tf.reshape(logits, (-1, num_choices)) + + loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) + + if not return_dict: + output = (reshaped_logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. + for Named-Entity-Recognition (NER) tasks. + """, + MOBILEBERT_START_DOCSTRING, +) +class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss): + # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model + _keys_to_ignore_on_load_unexpected = [ + r"pooler", + r"predictions___cls", + r"seq_relationship___cls", + r"cls.predictions", + r"cls.seq_relationship", + ] + _keys_to_ignore_on_load_missing = [r"dropout"] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") + classifier_dropout = ( + config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob + ) + self.dropout = keras.layers.Dropout(classifier_dropout) + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, + output_type=TFTokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, + expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFTokenClassifierOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + outputs = self.mobilebert( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output, training=training) + logits = self.classifier(sequence_output) + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFTokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "mobilebert", None) is not None: + with tf.name_scope(self.mobilebert.name): + self.mobilebert.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/tokenization_mobilebert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/tokenization_mobilebert.py new file mode 100644 index 0000000000000000000000000000000000000000..f27873e92fcfa9f49ab76aeebf1f8c913f594b23 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/tokenization_mobilebert.py @@ -0,0 +1,518 @@ +# coding=utf-8 +# +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for MobileBERT.""" + + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"} +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"mobilebert-uncased": 512} + + +PRETRAINED_INIT_CONFIGURATION = {} + + +# Copied from transformers.models.bert.tokenization_bert.load_vocab +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +# Copied from transformers.models.bert.tokenization_bert.BertTokenizer with BERT->MobileBERT,Bert->MobileBert +class MobileBertTokenizer(PreTrainedTokenizer): + r""" + Construct a MobileBERT tokenizer. Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original MobileBERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = MobileBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + def _tokenize(self, text, split_special_tokens=False): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize( + text, never_split=self.all_special_tokens if not split_special_tokens else None + ): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A MobileBERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/tokenization_mobilebert_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/tokenization_mobilebert_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..2b137d2ed60a3547d11889453252f2347f823c22 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilebert/tokenization_mobilebert_fast.py @@ -0,0 +1,189 @@ +# coding=utf-8 +# +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for MobileBERT.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging +from .tokenization_mobilebert import MobileBertTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, + "tokenizer_file": { + "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"mobilebert-uncased": 512} + + +PRETRAINED_INIT_CONFIGURATION = {} + + +# Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with BERT->MobileBERT,Bert->MobileBert +class MobileBertTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" MobileBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original MobileBERT). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + slow_tokenizer_class = MobileBertTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + normalizer_state.get("lowercase", do_lower_case) != do_lower_case + or normalizer_state.get("strip_accents", strip_accents) != strip_accents + or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars + ): + normalizer_class = getattr(normalizers, normalizer_state.pop("type")) + normalizer_state["lowercase"] = do_lower_case + normalizer_state["strip_accents"] = strip_accents + normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars + self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) + + self.do_lower_case = do_lower_case + + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A MobileBERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + if token_ids_1 is not None: + output += token_ids_1 + [self.sep_token_id] + + return output + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..997f88234fc2c8341497c7a48a74b5526769aab5 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__init__.py @@ -0,0 +1,96 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tokenizers_available, + is_torch_available, + is_vision_available, +) + + +_import_structure = { + "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], + "tokenization_perceiver": ["PerceiverTokenizer"], +} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_perceiver"] = ["PerceiverFeatureExtractor"] + _import_structure["image_processing_perceiver"] = ["PerceiverImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_perceiver"] = [ + "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", + "PerceiverForImageClassificationConvProcessing", + "PerceiverForImageClassificationFourier", + "PerceiverForImageClassificationLearned", + "PerceiverForMaskedLM", + "PerceiverForMultimodalAutoencoding", + "PerceiverForOpticalFlow", + "PerceiverForSequenceClassification", + "PerceiverLayer", + "PerceiverModel", + "PerceiverPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig + from .tokenization_perceiver import PerceiverTokenizer + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_perceiver import PerceiverFeatureExtractor + from .image_processing_perceiver import PerceiverImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_perceiver import ( + PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, + PerceiverForImageClassificationConvProcessing, + PerceiverForImageClassificationFourier, + PerceiverForImageClassificationLearned, + PerceiverForMaskedLM, + PerceiverForMultimodalAutoencoding, + PerceiverForOpticalFlow, + PerceiverForSequenceClassification, + PerceiverLayer, + PerceiverModel, + PerceiverPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4500f38ac956acfd4e3852ad76b0061fb2df818b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/configuration_perceiver.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/configuration_perceiver.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..13e143e6a95bd4d59b371519eec3e8adc2ad5375 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/configuration_perceiver.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/convert_perceiver_haiku_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/convert_perceiver_haiku_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5da66e09c63b0ba40a6ddc7c5088987fe641901 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/convert_perceiver_haiku_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/feature_extraction_perceiver.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/feature_extraction_perceiver.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e6441c177f368ec3ac7eb36e2900dfd00282bb3d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/feature_extraction_perceiver.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/image_processing_perceiver.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/image_processing_perceiver.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ee432024cf1ea9141bf32568afab94970c10b86 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/image_processing_perceiver.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/modeling_perceiver.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/modeling_perceiver.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..697be4063807489a63617da95b548b369cbfc375 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/modeling_perceiver.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/tokenization_perceiver.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/tokenization_perceiver.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5402357140a9fc6952e061dbc25f753fc6b27eb9 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/__pycache__/tokenization_perceiver.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/configuration_perceiver.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/configuration_perceiver.py new file mode 100644 index 0000000000000000000000000000000000000000..d741b287e5db7c3c5667b982ce7a76be2dc39e43 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/configuration_perceiver.py @@ -0,0 +1,246 @@ +# coding=utf-8 +# Copyright Deepmind and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Perceiver model configuration""" + +from collections import OrderedDict +from typing import Any, Mapping, Optional, Union + +from ...configuration_utils import PretrainedConfig +from ...feature_extraction_utils import FeatureExtractionMixin +from ...onnx import OnnxConfig +from ...onnx.utils import compute_effective_axis_dimension +from ...tokenization_utils_base import PreTrainedTokenizerBase +from ...utils import TensorType, logging + + +logger = logging.get_logger(__name__) + +PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", + # See all Perceiver models at https://huggingface.co/models?filter=perceiver +} + + +class PerceiverConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`PerceiverModel`]. It is used to instantiate an + Perceiver model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the Perceiver + [deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + num_latents (`int`, *optional*, defaults to 256): + The number of latents. + d_latents (`int`, *optional*, defaults to 1280): + Dimension of the latent embeddings. + d_model (`int`, *optional*, defaults to 768): + Dimension of the inputs. Should only be provided in case [*PerceiverTextPreprocessor*] is used or no + preprocessor is provided. + num_blocks (`int`, *optional*, defaults to 1): + Number of blocks in the Transformer encoder. + num_self_attends_per_block (`int`, *optional*, defaults to 26): + The number of self-attention layers per block. + num_self_attention_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each self-attention layer in the Transformer encoder. + num_cross_attention_heads (`int`, *optional*, defaults to 8): + Number of attention heads for each cross-attention layer in the Transformer encoder. + qk_channels (`int`, *optional*): + Dimension to project the queries + keys before applying attention in the cross-attention and self-attention + layers of the encoder. Will default to preserving the dimension of the queries if not specified. + v_channels (`int`, *optional*): + Dimension to project the values before applying attention in the cross-attention and self-attention layers + of the encoder. Will default to preserving the dimension of the queries if not specified. + cross_attention_shape_for_attention (`str`, *optional*, defaults to `"kv"`): + Dimension to use when downsampling the queries and keys in the cross-attention layer of the encoder. + self_attention_widening_factor (`int`, *optional*, defaults to 1): + Dimension of the feed-forward layer in the cross-attention layer of the Transformer encoder. + cross_attention_widening_factor (`int`, *optional*, defaults to 1): + Dimension of the feed-forward layer in the self-attention layers of the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + use_query_residual (`float`, *optional*, defaults to `True`): + Whether to add a query residual in the cross-attention layer of the encoder. + vocab_size (`int`, *optional*, defaults to 262): + Vocabulary size for the masked language modeling model. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that the masked language modeling model might ever be used with. Typically set + this to something large just in case (e.g., 512 or 1024 or 2048). + image_size (`int`, *optional*, defaults to 56): + Size of the images after preprocessing, for [`PerceiverForImageClassificationLearned`]. + train_size (`List[int]`, *optional*, defaults to `[368, 496]`): + Training size of the images for the optical flow model. + num_frames (`int`, *optional*, defaults to 16): + Number of video frames used for the multimodal autoencoding model. + audio_samples_per_frame (`int`, *optional*, defaults to 1920): + Number of audio samples per frame for the multimodal autoencoding model. + samples_per_patch (`int`, *optional*, defaults to 16): + Number of audio samples per patch when preprocessing the audio for the multimodal autoencoding model. + output_shape (`List[int]`, *optional*, defaults to `[1, 16, 224, 224]`): + Shape of the output (batch_size, num_frames, height, width) for the video decoder queries of the multimodal + autoencoding model. This excludes the channel dimension. + output_num_channels (`int`, *optional*, defaults to 512): + Number of output channels for each modalitiy decoder. + + Example: + + ```python + >>> from transformers import PerceiverModel, PerceiverConfig + + >>> # Initializing a Perceiver deepmind/language-perceiver style configuration + >>> configuration = PerceiverConfig() + + >>> # Initializing a model from the deepmind/language-perceiver style configuration + >>> model = PerceiverModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "perceiver" + + def __init__( + self, + num_latents=256, + d_latents=1280, + d_model=768, + num_blocks=1, + num_self_attends_per_block=26, + num_self_attention_heads=8, + num_cross_attention_heads=8, + qk_channels=None, + v_channels=None, + cross_attention_shape_for_attention="kv", + self_attention_widening_factor=1, + cross_attention_widening_factor=1, + hidden_act="gelu", + attention_probs_dropout_prob=0.1, + initializer_range=0.02, + layer_norm_eps=1e-12, + use_query_residual=True, + vocab_size=262, + max_position_embeddings=2048, + image_size=56, + train_size=[368, 496], + num_frames=16, + audio_samples_per_frame=1920, + samples_per_patch=16, + output_shape=[1, 16, 224, 224], + output_num_channels=512, + _label_trainable_num_channels=1024, + **kwargs, + ): + super().__init__(**kwargs) + + self.num_latents = num_latents + self.d_latents = d_latents + self.d_model = d_model + self.num_blocks = num_blocks + self.num_self_attends_per_block = num_self_attends_per_block + self.num_self_attention_heads = num_self_attention_heads + self.num_cross_attention_heads = num_cross_attention_heads + self.qk_channels = qk_channels + self.v_channels = v_channels + self.cross_attention_shape_for_attention = cross_attention_shape_for_attention + self.self_attention_widening_factor = self_attention_widening_factor + self.cross_attention_widening_factor = cross_attention_widening_factor + self.hidden_act = hidden_act + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.use_query_residual = use_query_residual + # masked language modeling attributes + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + # image classification attributes + self.image_size = image_size + # flow attributes + self.train_size = train_size + # multimodal autoencoding attributes + self.num_frames = num_frames + self.audio_samples_per_frame = audio_samples_per_frame + self.samples_per_patch = samples_per_patch + self.output_shape = output_shape + self.output_num_channels = output_num_channels + self._label_trainable_num_channels = _label_trainable_num_channels + + +class PerceiverOnnxConfig(OnnxConfig): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task == "multiple-choice": + dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} + else: + dynamic_axis = {0: "batch", 1: "sequence"} + return OrderedDict( + [ + ("inputs", dynamic_axis), + ("attention_mask", dynamic_axis), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 + + def generate_dummy_inputs( + self, + preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], + batch_size: int = -1, + seq_length: int = -1, + num_choices: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + num_channels: int = 3, + image_width: int = 40, + image_height: int = 40, + ) -> Mapping[str, Any]: + # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified + + if isinstance(preprocessor, PreTrainedTokenizerBase): + # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX + batch_size = compute_effective_axis_dimension( + batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 + ) + # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX + token_to_add = preprocessor.num_special_tokens_to_add(is_pair) + seq_length = compute_effective_axis_dimension( + seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add + ) + # Generate dummy inputs according to compute batch and sequence + dummy_input = [" ".join(["a"]) * seq_length] * batch_size + inputs = dict(preprocessor(dummy_input, return_tensors=framework)) + inputs["inputs"] = inputs.pop("input_ids") + return inputs + elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values": + # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX + batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) + dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) + inputs = dict(preprocessor(images=dummy_input, return_tensors=framework)) + inputs["inputs"] = inputs.pop("pixel_values") + return inputs + else: + raise ValueError( + "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/convert_perceiver_haiku_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/convert_perceiver_haiku_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..1ea97981275227a6a9dcc6dd984562fa8dbf31e5 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/convert_perceiver_haiku_to_pytorch.py @@ -0,0 +1,468 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert Perceiver checkpoints originally implemented in Haiku.""" + + +import argparse +import json +import pickle +from pathlib import Path + +import haiku as hk +import numpy as np +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import ( + PerceiverConfig, + PerceiverForImageClassificationConvProcessing, + PerceiverForImageClassificationFourier, + PerceiverForImageClassificationLearned, + PerceiverForMaskedLM, + PerceiverForMultimodalAutoencoding, + PerceiverForOpticalFlow, + PerceiverImageProcessor, + PerceiverTokenizer, +) +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def prepare_img(): + # We will verify our results on an image of a dog + url = "https://storage.googleapis.com/perceiver_io/dalmation.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +def rename_keys(state_dict, architecture): + for name in list(state_dict): + param = state_dict.pop(name) + + # PREPROCESSORS + # rename text preprocessor embeddings (for MLM model) + name = name.replace("embed/embeddings", "input_preprocessor.embeddings.weight") + if name.startswith("trainable_position_encoding/pos_embs"): + name = name.replace( + "trainable_position_encoding/pos_embs", "input_preprocessor.position_embeddings.weight" + ) + + # rename image preprocessor embeddings (for image classification model with learned position embeddings) + name = name.replace("image_preprocessor/~/conv2_d/w", "input_preprocessor.convnet_1x1.weight") + name = name.replace("image_preprocessor/~/conv2_d/b", "input_preprocessor.convnet_1x1.bias") + name = name.replace( + "image_preprocessor/~_build_network_inputs/trainable_position_encoding/pos_embs", + "input_preprocessor.position_embeddings.position_embeddings", + ) + name = name.replace( + "image_preprocessor/~_build_network_inputs/position_encoding_projector/linear/w", + "input_preprocessor.positions_projection.weight", + ) + name = name.replace( + "image_preprocessor/~_build_network_inputs/position_encoding_projector/linear/b", + "input_preprocessor.positions_projection.bias", + ) + + # rename image preprocessor embeddings (for image classification model with conv processing) + if "counter" in name or "hidden" in name: + continue + name = name.replace( + "image_preprocessor/~/conv2_d_downsample/~/conv/w", "input_preprocessor.convnet.conv.weight" + ) + name = name.replace( + "image_preprocessor/~/conv2_d_downsample/~/batchnorm/offset", "input_preprocessor.convnet.batchnorm.bias" + ) + name = name.replace( + "image_preprocessor/~/conv2_d_downsample/~/batchnorm/scale", "input_preprocessor.convnet.batchnorm.weight" + ) + name = name.replace( + "image_preprocessor/~/conv2_d_downsample/~/batchnorm/~/mean_ema/average", + "input_preprocessor.convnet.batchnorm.running_mean", + ) + name = name.replace( + "image_preprocessor/~/conv2_d_downsample/~/batchnorm/~/var_ema/average", + "input_preprocessor.convnet.batchnorm.running_var", + ) + + # rename image preprocessor embeddings (for optical flow model) + name = name.replace("image_preprocessor/patches_linear/b", "input_preprocessor.conv_after_patches.bias") + name = name.replace("image_preprocessor/patches_linear/w", "input_preprocessor.conv_after_patches.weight") + + # rename multimodal preprocessor embeddings + name = name.replace("multimodal_preprocessor/audio_mask_token/pos_embs", "input_preprocessor.mask.audio") + name = name.replace("multimodal_preprocessor/audio_padding/pos_embs", "input_preprocessor.padding.audio") + name = name.replace("multimodal_preprocessor/image_mask_token/pos_embs", "input_preprocessor.mask.image") + name = name.replace("multimodal_preprocessor/image_padding/pos_embs", "input_preprocessor.padding.image") + name = name.replace("multimodal_preprocessor/label_mask_token/pos_embs", "input_preprocessor.mask.label") + name = name.replace("multimodal_preprocessor/label_padding/pos_embs", "input_preprocessor.padding.label") + + # DECODERS + # rename prefix of decoders + # multimodal autoencoding model + name = name.replace( + "multimodal_decoder/~/basic_decoder/cross_attention/", "decoder.decoder.decoding_cross_attention." + ) + name = name.replace("multimodal_decoder/~decoder_query/audio_padding/pos_embs", "decoder.padding.audio") + name = name.replace("multimodal_decoder/~decoder_query/image_padding/pos_embs", "decoder.padding.image") + name = name.replace("multimodal_decoder/~decoder_query/label_padding/pos_embs", "decoder.padding.label") + name = name.replace("multimodal_decoder/~/basic_decoder/output/b", "decoder.decoder.final_layer.bias") + name = name.replace("multimodal_decoder/~/basic_decoder/output/w", "decoder.decoder.final_layer.weight") + if architecture == "multimodal_autoencoding": + name = name.replace( + "classification_decoder/~/basic_decoder/~/trainable_position_encoding/pos_embs", + "decoder.modalities.label.decoder.output_position_encodings.position_embeddings", + ) + # flow model + name = name.replace( + "flow_decoder/~/basic_decoder/cross_attention/", "decoder.decoder.decoding_cross_attention." + ) + name = name.replace("flow_decoder/~/basic_decoder/output/w", "decoder.decoder.final_layer.weight") + name = name.replace("flow_decoder/~/basic_decoder/output/b", "decoder.decoder.final_layer.bias") + # image models + name = name.replace( + "classification_decoder/~/basic_decoder/~/trainable_position_encoding/pos_embs", + "decoder.decoder.output_position_encodings.position_embeddings", + ) + name = name.replace( + "basic_decoder/~/trainable_position_encoding/pos_embs", + "decoder.output_position_encodings.position_embeddings", + ) + name = name.replace( + "classification_decoder/~/basic_decoder/cross_attention/", "decoder.decoder.decoding_cross_attention." + ) + name = name.replace("classification_decoder/~/basic_decoder/output/b", "decoder.decoder.final_layer.bias") + name = name.replace("classification_decoder/~/basic_decoder/output/w", "decoder.decoder.final_layer.weight") + name = name = name.replace("classification_decoder/~/basic_decoder/~/", "decoder.decoder.") + name = name.replace("basic_decoder/cross_attention/", "decoder.decoding_cross_attention.") + name = name.replace("basic_decoder/~/", "decoder.") + + # POSTPROCESSORS + name = name.replace( + "projection_postprocessor/linear/b", "output_postprocessor.modalities.image.classifier.bias" + ) + name = name.replace( + "projection_postprocessor/linear/w", "output_postprocessor.modalities.image.classifier.weight" + ) + name = name.replace( + "classification_postprocessor/linear/b", "output_postprocessor.modalities.label.classifier.bias" + ) + name = name.replace( + "classification_postprocessor/linear/w", "output_postprocessor.modalities.label.classifier.weight" + ) + name = name.replace("audio_postprocessor/linear/b", "output_postprocessor.modalities.audio.classifier.bias") + name = name.replace("audio_postprocessor/linear/w", "output_postprocessor.modalities.audio.classifier.weight") + + # PERCEIVER MODEL + + # rename latent embeddings + name = name.replace("perceiver_encoder/~/trainable_position_encoding/pos_embs", "embeddings.latents") + # rename latent embeddings (for multimodal model) + name = name.replace("encoder/~/trainable_position_encoding/pos_embs", "embeddings.latents") + + # rename prefixes + if name.startswith("perceiver_encoder/~/"): + if "self_attention" in name: + suffix = "self_attends." + else: + suffix = "" + name = name.replace("perceiver_encoder/~/", "encoder." + suffix) + if name.startswith("encoder/~/"): + if "self_attention" in name: + suffix = "self_attends." + else: + suffix = "" + name = name.replace("encoder/~/", "encoder." + suffix) + # rename layernorm parameters + if "offset" in name: + name = name.replace("offset", "bias") + if "scale" in name: + name = name.replace("scale", "weight") + # in HuggingFace, the layernorm in between attention + MLP is just called "layernorm" + # rename layernorm in between attention + MLP of cross-attention + if "cross_attention" in name and "layer_norm_2" in name: + name = name.replace("layer_norm_2", "layernorm") + # rename layernorm in between attention + MLP of self-attention + if "self_attention" in name and "layer_norm_1" in name: + name = name.replace("layer_norm_1", "layernorm") + + # in HuggingFace, the layernorms for queries + keys are called "layernorm1" and "layernorm2" + if "cross_attention" in name and "layer_norm_1" in name: + name = name.replace("layer_norm_1", "attention.self.layernorm2") + if "cross_attention" in name and "layer_norm" in name: + name = name.replace("layer_norm", "attention.self.layernorm1") + if "self_attention" in name and "layer_norm" in name: + name = name.replace("layer_norm", "attention.self.layernorm1") + + # rename special characters by dots + name = name.replace("-", ".") + name = name.replace("/", ".") + # rename keys, queries, values and output of attention layers + if ("cross_attention" in name or "self_attention" in name) and "mlp" not in name: + if "linear.b" in name: + name = name.replace("linear.b", "self.query.bias") + if "linear.w" in name: + name = name.replace("linear.w", "self.query.weight") + if "linear_1.b" in name: + name = name.replace("linear_1.b", "self.key.bias") + if "linear_1.w" in name: + name = name.replace("linear_1.w", "self.key.weight") + if "linear_2.b" in name: + name = name.replace("linear_2.b", "self.value.bias") + if "linear_2.w" in name: + name = name.replace("linear_2.w", "self.value.weight") + if "linear_3.b" in name: + name = name.replace("linear_3.b", "output.dense.bias") + if "linear_3.w" in name: + name = name.replace("linear_3.w", "output.dense.weight") + if "self_attention_" in name: + name = name.replace("self_attention_", "") + if "self_attention" in name: + name = name.replace("self_attention", "0") + # rename dense layers of 2-layer MLP + if "mlp" in name: + if "linear.b" in name: + name = name.replace("linear.b", "dense1.bias") + if "linear.w" in name: + name = name.replace("linear.w", "dense1.weight") + if "linear_1.b" in name: + name = name.replace("linear_1.b", "dense2.bias") + if "linear_1.w" in name: + name = name.replace("linear_1.w", "dense2.weight") + + # finally, TRANSPOSE if kernel and not embedding layer, and set value + if name[-6:] == "weight" and "embeddings" not in name: + param = np.transpose(param) + + # if batchnorm, we need to squeeze it + if "batchnorm" in name: + param = np.squeeze(param) + + if "embedding_decoder" not in name: + state_dict["perceiver." + name] = torch.from_numpy(param) + else: + state_dict[name] = torch.from_numpy(param) + + +@torch.no_grad() +def convert_perceiver_checkpoint(pickle_file, pytorch_dump_folder_path, architecture="MLM"): + """ + Copy/paste/tweak model's weights to our Perceiver structure. + """ + + # load parameters as FlatMapping data structure + with open(pickle_file, "rb") as f: + checkpoint = pickle.loads(f.read()) + + state = None + if isinstance(checkpoint, dict) and architecture in [ + "image_classification", + "image_classification_fourier", + "image_classification_conv", + ]: + # the image classification_conv checkpoint also has batchnorm states (running_mean and running_var) + params = checkpoint["params"] + state = checkpoint["state"] + else: + params = checkpoint + + # turn into initial state dict + state_dict = {} + for scope_name, parameters in hk.data_structures.to_mutable_dict(params).items(): + for param_name, param in parameters.items(): + state_dict[scope_name + "/" + param_name] = param + + if state is not None: + # add state variables + for scope_name, parameters in hk.data_structures.to_mutable_dict(state).items(): + for param_name, param in parameters.items(): + state_dict[scope_name + "/" + param_name] = param + + # rename keys + rename_keys(state_dict, architecture=architecture) + + # load HuggingFace model + config = PerceiverConfig() + subsampling = None + repo_id = "huggingface/label-files" + if architecture == "MLM": + config.qk_channels = 8 * 32 + config.v_channels = 1280 + model = PerceiverForMaskedLM(config) + elif "image_classification" in architecture: + config.num_latents = 512 + config.d_latents = 1024 + config.d_model = 512 + config.num_blocks = 8 + config.num_self_attends_per_block = 6 + config.num_cross_attention_heads = 1 + config.num_self_attention_heads = 8 + config.qk_channels = None + config.v_channels = None + # set labels + config.num_labels = 1000 + filename = "imagenet-1k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + if architecture == "image_classification": + config.image_size = 224 + model = PerceiverForImageClassificationLearned(config) + elif architecture == "image_classification_fourier": + config.d_model = 261 + model = PerceiverForImageClassificationFourier(config) + elif architecture == "image_classification_conv": + config.d_model = 322 + model = PerceiverForImageClassificationConvProcessing(config) + else: + raise ValueError(f"Architecture {architecture} not supported") + elif architecture == "optical_flow": + config.num_latents = 2048 + config.d_latents = 512 + config.d_model = 322 + config.num_blocks = 1 + config.num_self_attends_per_block = 24 + config.num_self_attention_heads = 16 + config.num_cross_attention_heads = 1 + model = PerceiverForOpticalFlow(config) + elif architecture == "multimodal_autoencoding": + config.num_latents = 28 * 28 * 1 + config.d_latents = 512 + config.d_model = 704 + config.num_blocks = 1 + config.num_self_attends_per_block = 8 + config.num_self_attention_heads = 8 + config.num_cross_attention_heads = 1 + config.num_labels = 700 + # define dummy inputs + subsampling (as each forward pass is only on a chunk of image + audio data) + images = torch.randn((1, 16, 3, 224, 224)) + audio = torch.randn((1, 30720, 1)) + nchunks = 128 + image_chunk_size = np.prod((16, 224, 224)) // nchunks + audio_chunk_size = audio.shape[1] // config.samples_per_patch // nchunks + # process the first chunk + chunk_idx = 0 + subsampling = { + "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)), + "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)), + "label": None, + } + model = PerceiverForMultimodalAutoencoding(config) + # set labels + filename = "kinetics700-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + else: + raise ValueError(f"Architecture {architecture} not supported") + model.eval() + + # load weights + model.load_state_dict(state_dict) + + # prepare dummy input + input_mask = None + if architecture == "MLM": + tokenizer = PerceiverTokenizer.from_pretrained("/Users/NielsRogge/Documents/Perceiver/Tokenizer files") + text = "This is an incomplete sentence where some words are missing." + encoding = tokenizer(text, padding="max_length", return_tensors="pt") + # mask " missing.". Note that the model performs much better if the masked chunk starts with a space. + encoding.input_ids[0, 51:60] = tokenizer.mask_token_id + inputs = encoding.input_ids + input_mask = encoding.attention_mask + elif architecture in ["image_classification", "image_classification_fourier", "image_classification_conv"]: + image_processor = PerceiverImageProcessor() + image = prepare_img() + encoding = image_processor(image, return_tensors="pt") + inputs = encoding.pixel_values + elif architecture == "optical_flow": + inputs = torch.randn(1, 2, 27, 368, 496) + elif architecture == "multimodal_autoencoding": + images = torch.randn((1, 16, 3, 224, 224)) + audio = torch.randn((1, 30720, 1)) + inputs = {"image": images, "audio": audio, "label": torch.zeros((images.shape[0], 700))} + + # forward pass + if architecture == "multimodal_autoencoding": + outputs = model(inputs=inputs, attention_mask=input_mask, subsampled_output_points=subsampling) + else: + outputs = model(inputs=inputs, attention_mask=input_mask) + logits = outputs.logits + + # verify logits + if not isinstance(logits, dict): + print("Shape of logits:", logits.shape) + else: + for k, v in logits.items(): + print(f"Shape of logits of modality {k}", v.shape) + + if architecture == "MLM": + expected_slice = torch.tensor( + [[-11.8336, -11.6850, -11.8483], [-12.8149, -12.5863, -12.7904], [-12.8440, -12.6410, -12.8646]] + ) + assert torch.allclose(logits[0, :3, :3], expected_slice) + masked_tokens_predictions = logits[0, 51:60].argmax(dim=-1).tolist() + expected_list = [38, 115, 111, 121, 121, 111, 116, 109, 52] + assert masked_tokens_predictions == expected_list + print("Greedy predictions:") + print(masked_tokens_predictions) + print() + print("Predicted string:") + print(tokenizer.decode(masked_tokens_predictions)) + + elif architecture in ["image_classification", "image_classification_fourier", "image_classification_conv"]: + print("Predicted class:", model.config.id2label[logits.argmax(-1).item()]) + + # Finally, save files + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--pickle_file", + type=str, + default=None, + required=True, + help="Path to local pickle file of a Perceiver checkpoint you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", + default=None, + type=str, + required=True, + help="Path to the output PyTorch model directory, provided as a string.", + ) + parser.add_argument( + "--architecture", + default="MLM", + type=str, + help=""" + Architecture, provided as a string. One of 'MLM', 'image_classification', image_classification_fourier', + image_classification_fourier', 'optical_flow' or 'multimodal_autoencoding'. + """, + ) + + args = parser.parse_args() + convert_perceiver_checkpoint(args.pickle_file, args.pytorch_dump_folder_path, args.architecture) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/feature_extraction_perceiver.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/feature_extraction_perceiver.py new file mode 100644 index 0000000000000000000000000000000000000000..35f2a6c5c9e72d44ec1b9fdb62aeb452e7581a4c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/feature_extraction_perceiver.py @@ -0,0 +1,33 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for Perceiver.""" + +import warnings + +from ...utils import logging +from .image_processing_perceiver import PerceiverImageProcessor + + +logger = logging.get_logger(__name__) + + +class PerceiverFeatureExtractor(PerceiverImageProcessor): + def __init__(self, *args, **kwargs) -> None: + warnings.warn( + "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." + " Please use PerceiverImageProcessor instead.", + FutureWarning, + ) + super().__init__(*args, **kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/image_processing_perceiver.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/image_processing_perceiver.py new file mode 100644 index 0000000000000000000000000000000000000000..02dd527e437be7e91f59f227354b01865db58ca8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/image_processing_perceiver.py @@ -0,0 +1,367 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for Perceiver.""" + +from typing import Dict, List, Optional, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import center_crop, resize, to_channel_dimension_format +from ...image_utils import ( + IMAGENET_DEFAULT_MEAN, + IMAGENET_DEFAULT_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + get_image_size, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import TensorType, is_vision_available, logging + + +if is_vision_available(): + import PIL + + +logger = logging.get_logger(__name__) + + +class PerceiverImageProcessor(BaseImageProcessor): + r""" + Constructs a Perceiver image processor. + + Args: + do_center_crop (`bool`, `optional`, defaults to `True`): + Whether or not to center crop the image. If the input size if smaller than `crop_size` along any edge, the + image will be padded with zeros and then center cropped. Can be overridden by the `do_center_crop` + parameter in the `preprocess` method. + crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`): + Desired output size when applying center-cropping. Can be overridden by the `crop_size` parameter in the + `preprocess` method. + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image to `(size["height"], size["width"])`. Can be overridden by the `do_resize` + parameter in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): + Size of the image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): + Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter + in the `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` + parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter + in the `preprocess` method. + do_normalize: + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_center_crop: bool = True, + crop_size: Dict[str, int] = None, + do_resize: bool = True, + size: Dict[str, int] = None, + resample: PILImageResampling = PILImageResampling.BICUBIC, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256} + crop_size = get_size_dict(crop_size, param_name="crop_size") + size = size if size is not None else {"height": 224, "width": 224} + size = get_size_dict(size) + + self.do_center_crop = do_center_crop + self.crop_size = crop_size + self.do_resize = do_resize + self.size = size + self.resample = resample + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD + self._valid_processor_keys = [ + "images", + "do_center_crop", + "crop_size", + "do_resize", + "size", + "resample", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "return_tensors", + "data_format", + "input_data_format", + ] + + def center_crop( + self, + image: np.ndarray, + crop_size: Dict[str, int], + size: Optional[int] = None, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Center crop an image to `(size["height"] / crop_size["height"] * min_dim, size["width"] / crop_size["width"] * + min_dim)`. Where `min_dim = min(size["height"], size["width"])`. + + If the input size is smaller than `crop_size` along any edge, the image will be padded with zeros and then + center cropped. + + Args: + image (`np.ndarray`): + Image to center crop. + crop_size (`Dict[str, int]`): + Desired output size after applying the center crop. + size (`Dict[str, int]`, *optional*): + Size of the image after resizing. If not provided, the self.size attribute will be used. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + size = self.size if size is None else size + size = get_size_dict(size) + crop_size = get_size_dict(crop_size, param_name="crop_size") + + height, width = get_image_size(image, channel_dim=input_data_format) + min_dim = min(height, width) + cropped_height = (size["height"] / crop_size["height"]) * min_dim + cropped_width = (size["width"] / crop_size["width"]) * min_dim + return center_crop( + image, + size=(cropped_height, cropped_width), + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BICUBIC, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image to `(size["height"], size["width"])`. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): + `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. + data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + + Returns: + `np.ndarray`: The resized image. + """ + size = get_size_dict(size) + if "height" not in size or "width" not in size: + raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") + output_size = (size["height"], size["width"]) + return resize( + image, + size=output_size, + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def preprocess( + self, + images: ImageInput, + do_center_crop: Optional[bool] = None, + crop_size: Optional[Dict[str, int]] = None, + do_resize: Optional[bool] = None, + size: Optional[Dict[str, int]] = None, + resample: PILImageResampling = None, + do_rescale: Optional[bool] = None, + rescale_factor: Optional[float] = None, + do_normalize: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: ChannelDimension = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> PIL.Image.Image: + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): + Whether to center crop the image to `crop_size`. + crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): + Desired output size after applying the center crop. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after resizing. + resample (`int`, *optional*, defaults to `self.resample`): + Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only + has an effect if `do_resize` is set to `True`. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `ChannelDimension.LAST`: image in (height, width, num_channels) format. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + crop_size = crop_size if crop_size is not None else self.crop_size + crop_size = get_size_dict(crop_size, param_name="crop_size") + do_resize = do_resize if do_resize is not None else self.do_resize + size = size if size is not None else self.size + size = get_size_dict(size) + resample = resample if resample is not None else self.resample + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + + images = make_list_of_images(images) + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_resize=do_resize, + size=size, + resample=resample, + ) + + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + if do_center_crop: + images = [ + self.center_crop(image, crop_size, size=size, input_data_format=input_data_format) for image in images + ] + + if do_resize: + images = [ + self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) + for image in images + ] + + if do_rescale: + images = [ + self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + for image in images + ] + + if do_normalize: + images = [ + self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + for image in images + ] + + images = [ + to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images + ] + + data = {"pixel_values": images} + return BatchFeature(data=data, tensor_type=return_tensors) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/modeling_perceiver.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/modeling_perceiver.py new file mode 100644 index 0000000000000000000000000000000000000000..bb7ac2bc3139e13c7cc99213c9563f11c7831016 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/modeling_perceiver.py @@ -0,0 +1,3437 @@ +# coding=utf-8 +# Copyright 2021 Deepmind and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Perceiver model.""" + +import abc +import math +from dataclasses import dataclass +from functools import reduce +from operator import __add__ +from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutputWithCrossAttentions +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_perceiver import PerceiverConfig + + +ModalitySizeType = Mapping[str, int] +PreprocessorOutputType = Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor] +PreprocessorType = Callable[..., PreprocessorOutputType] +PostprocessorType = Callable[..., Any] + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "deepmind/language-perceiver" +_CONFIG_FOR_DOC = "PerceiverConfig" + +PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "deepmind/language-perceiver", + # See all Perceiver models at https://huggingface.co/models?filter=perceiver +] + + +@dataclass +class PerceiverModelOutput(ModelOutput): + """ + Base class for Perceiver base model's outputs, with potential hidden states, attentions and cross-attentions. + + Args: + logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + """ + + logits: torch.FloatTensor = None + last_hidden_state: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class PerceiverDecoderOutput(ModelOutput): + """ + Base class for Perceiver decoder outputs, with potential cross-attentions. + + Args: + logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`): + Output of the basic decoder. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + """ + + logits: torch.FloatTensor = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class PerceiverMaskedLMOutput(ModelOutput): + """ + Base class for Perceiver's masked language model outputs. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Masked language modeling (MLM) loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_latents, + num_latents)`. Attentions weights after the attention softmax, used to compute the weighted average in the + self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class PerceiverClassifierOutput(ModelOutput): + """ + Base class for Perceiver's outputs of sequence/image classification models, optical flow and multimodal + autoencoding. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +class PerceiverEmbeddings(nn.Module): + """Construct the latent embeddings.""" + + def __init__(self, config): + super().__init__() + self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents)) + + def forward(self, batch_size: int): + return self.latents.expand(batch_size, -1, -1) # Thanks, Phil Wang + + +class PerceiverSelfAttention(nn.Module): + """Multi-headed {cross, self}-attention. Can be used both in the encoder as well as in the decoder.""" + + def __init__( + self, + config, + is_cross_attention=False, + qk_channels=None, + v_channels=None, + num_heads=1, + q_dim=None, + kv_dim=None, + ): + super().__init__() + self.num_heads = num_heads + # Q and K must have the same number of channels. + # Default to preserving Q's input's shape. + if qk_channels is None: + qk_channels = q_dim + # V's num_channels determines the shape of the output of QKV-attention. + # Default to the same number of channels used in the key-query operation. + if v_channels is None: + v_channels = qk_channels + if qk_channels % num_heads != 0: + raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).") + if v_channels % num_heads != 0: + raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).") + + self.qk_channels = qk_channels + self.v_channels = v_channels + self.qk_channels_per_head = self.qk_channels // num_heads + self.v_channels_per_head = self.v_channels // num_heads + + # Layer normalization + self.layernorm1 = nn.LayerNorm(q_dim) + self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity() + + # Projection matrices + self.query = nn.Linear(q_dim, qk_channels) + self.key = nn.Linear(kv_dim, qk_channels) + self.value = nn.Linear(kv_dim, v_channels) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x, channels_per_head): + new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs: Optional[torch.FloatTensor] = None, + inputs_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + hidden_states = self.layernorm1(hidden_states) + inputs = self.layernorm2(inputs) + + # Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module, + # the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to. + is_cross_attention = inputs is not None + queries = self.query(hidden_states) + + if is_cross_attention: + keys = self.key(inputs) + values = self.value(inputs) + attention_mask = inputs_mask + else: + keys = self.key(hidden_states) + values = self.value(hidden_states) + + # Reshape channels for multi-head attention. + # We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head) + queries = self.transpose_for_scores(queries, self.qk_channels_per_head) + keys = self.transpose_for_scores(keys, self.qk_channels_per_head) + values = self.transpose_for_scores(values, self.v_channels_per_head) + + # Take the dot product between the queries and keys to get the raw attention scores. + attention_scores = torch.matmul(queries, keys.transpose(-1, -2)) + + batch_size, num_heads, seq_len, q_head_dim = queries.shape + _, _, _, v_head_dim = values.shape + hiddens = self.num_heads * v_head_dim + + attention_scores = attention_scores / math.sqrt(q_head_dim) + + if attention_mask is not None: + # Apply the attention mask (precomputed for all layers in PerceiverModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.Softmax(dim=-1)(attention_scores) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, values) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (hiddens,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +class PerceiverSelfOutput(nn.Module): + def __init__(self, config, input_channels, output_channels): + super().__init__() + self.dense = nn.Linear(input_channels, output_channels) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + return hidden_states + + +class PerceiverAttention(nn.Module): + """Attention module, including a dense block.""" + + def __init__( + self, + config, + is_cross_attention=False, + qk_channels=None, + v_channels=None, + num_heads=1, + q_dim=None, + kv_dim=None, + use_query_residual=True, + ): + super().__init__() + # MultiHead attention + if is_cross_attention and qk_channels is None: + if config.cross_attention_shape_for_attention == "q": + qk_channels = q_dim + elif config.cross_attention_shape_for_attention == "kv": + qk_channels = kv_dim + else: + raise ValueError( + f"Unknown value {config.cross_attention_shape_for_attention} for " + "cross_attention_shape_for_attention." + ) + else: + if qk_channels is None: + qk_channels = q_dim + if v_channels is None: + v_channels = qk_channels + self.self = PerceiverSelfAttention( + config, + is_cross_attention=is_cross_attention, + qk_channels=qk_channels, + v_channels=v_channels, + num_heads=num_heads, + q_dim=q_dim, + kv_dim=kv_dim, + ) + # dense block + output_channels = None + if is_cross_attention: + output_channels = q_dim + else: + if output_channels is None: + output_channels = v_channels + self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels) + self.use_query_residual = use_query_residual + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs: Optional[torch.FloatTensor] = None, + inputs_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + inputs, + inputs_mask, + output_attentions, + ) + + # Output projection + attention_output = self.output(self_outputs[0]) + + # Optionally include a residual to the original queries. + # Consider omitting the residual if the semantics of query and output + # are different, e.g. if queries are positions and outputs are pixels. + if self.use_query_residual: + attention_output = attention_output + hidden_states + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class PerceiverMLP(nn.Module): + """A Transformer-style dense module to follow attention.""" + + def __init__(self, config, input_size, widening_factor): + super().__init__() + self.dense1 = nn.Linear(input_size, widening_factor * input_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + self.dense2 = nn.Linear(widening_factor * input_size, input_size) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense1(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + hidden_states = self.dense2(hidden_states) + return hidden_states + + +class PerceiverLayer(nn.Module): + def __init__( + self, + config, + is_cross_attention=False, + qk_channels=None, + v_channels=None, + num_heads=1, + q_dim=None, + kv_dim=None, + widening_factor=4, + use_query_residual=True, + ): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = PerceiverAttention( + config, + is_cross_attention=is_cross_attention, + qk_channels=qk_channels, + v_channels=v_channels, + num_heads=num_heads, + q_dim=q_dim, + kv_dim=kv_dim, + use_query_residual=use_query_residual, + ) + self.layernorm = nn.LayerNorm(q_dim) + self.mlp = PerceiverMLP(config, input_size=q_dim, widening_factor=widening_factor) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs: Optional[torch.FloatTensor] = None, + inputs_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + inputs, + inputs_mask, + output_attentions, + ) + attention_output = attention_outputs[0] + + outputs = attention_outputs[1:] # add attentions if we output attention weights + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + + layer_output = layer_output + attention_output # residual connection + + outputs = (layer_output,) + outputs + + return outputs + + def feed_forward_chunk(self, attention_output): + layer_output = self.layernorm(attention_output) + layer_output = self.mlp(layer_output) + return layer_output + + +class PerceiverEncoder(nn.Module): + """The Perceiver Encoder: a scalable, fully attentional encoder.""" + + def __init__(self, config, kv_dim=None): + super().__init__() + self.config = config + + # Check that we can use multihead-attention with these shapes. + if config.d_latents % config.num_self_attention_heads != 0: + raise ValueError( + f"num_z_channels ({config.d_latents}) must be divisible by" + f" num_self_attend_heads ({config.num_self_attention_heads})." + ) + if config.d_latents % config.num_cross_attention_heads != 0: + raise ValueError( + f"num_z_channels ({config.d_latents}) must be divisible by" + f" num_cross_attend_heads ({config.num_cross_attention_heads})." + ) + + # Construct the cross attention layer. + self.cross_attention = PerceiverLayer( + config, + is_cross_attention=True, + qk_channels=config.qk_channels, + v_channels=config.v_channels, + num_heads=config.num_cross_attention_heads, + q_dim=config.d_latents, + kv_dim=kv_dim, + widening_factor=config.cross_attention_widening_factor, + use_query_residual=config.use_query_residual, + ) + + # Construct a single block of self-attention layers. + # We get deeper architectures by applying this block more than once. + self_attention_layers = [] + for _ in range(config.num_self_attends_per_block): + layer = PerceiverLayer( + config, + is_cross_attention=False, + qk_channels=config.qk_channels, + v_channels=config.v_channels, + num_heads=config.num_self_attention_heads, + q_dim=config.d_latents, + kv_dim=config.d_latents, + widening_factor=config.self_attention_widening_factor, + ) + self_attention_layers.append(layer) + + self.self_attends = nn.ModuleList(self_attention_layers) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs: Optional[torch.FloatTensor] = None, + inputs_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions else None + + # Apply the cross-attention between the latents (hidden_states) and inputs: + layer_outputs = self.cross_attention( + hidden_states, + attention_mask=attention_mask, + head_mask=None, + inputs=inputs, + inputs_mask=inputs_mask, + output_attentions=output_attentions, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_cross_attentions = all_cross_attentions + (layer_outputs[1],) + + # Apply the block of self-attention layers more than once: + for _ in range(self.config.num_blocks): + for i, layer_module in enumerate(self.self_attends): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + layer_outputs = layer_module( + hidden_states, + attention_mask=attention_mask, + head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +class PerceiverPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = PerceiverConfig + base_model_prefix = "perceiver" + main_input_name = "inputs" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif hasattr(module, "latents"): + module.latents.data.normal_(mean=0.0, std=self.config.initializer_range) + elif hasattr(module, "position_embeddings") and isinstance(module, PerceiverTrainablePositionEncoding): + module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, nn.ParameterDict): + for modality in module.keys(): + module[modality].data.normal_(mean=0.0, std=self.config.initializer_range) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +PERCEIVER_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +PERCEIVER_MODEL_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. + decoder (*DecoderType*, *optional*): + Optional decoder to use to decode the latent representation of the encoder. Examples include + *transformers.models.perceiver.modeling_perceiver.PerceiverBasicDecoder*, + *transformers.models.perceiver.modeling_perceiver.PerceiverClassificationDecoder*, + *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder*. + input_preprocessor (*PreprocessorType*, *optional*): + Optional input preprocessor to use. Examples include + *transformers.models.perceiver.modeling_perceiver.PerceiverImagePreprocessor*, + *transformers.models.perceiver.modeling_perceiver.PerceiverAudioPreprocessor*, + *transformers.models.perceiver.modeling_perceiver.PerceiverTextPreprocessor*, + *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor*. + output_postprocessor (*PostprocessorType*, *optional*): + Optional output postprocessor to use. Examples include + *transformers.models.perceiver.modeling_perceiver.PerceiverImagePostprocessor*, + *transformers.models.perceiver.modeling_perceiver.PerceiverAudioPostprocessor*, + *transformers.models.perceiver.modeling_perceiver.PerceiverClassificationPostprocessor*, + *transformers.models.perceiver.modeling_perceiver.PerceiverProjectionPostprocessor*, + *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPostprocessor*. + + Note that you can define your own decoders, preprocessors and/or postprocessors to fit your use-case. +""" + +PERCEIVER_INPUTS_DOCSTRING = r""" + Args: + inputs (`torch.FloatTensor`): + Inputs to the perceiver. Can be anything: images, text, audio, video, etc. + attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + """The Perceiver: a scalable, fully attentional architecture.""", + PERCEIVER_MODEL_START_DOCSTRING, +) +class PerceiverModel(PerceiverPreTrainedModel): + def __init__( + self, + config, + decoder=None, + input_preprocessor: PreprocessorType = None, + output_postprocessor: PostprocessorType = None, + ): + super().__init__(config) + self.config = config + + self.input_preprocessor = input_preprocessor + self.output_postprocessor = output_postprocessor + self.embeddings = PerceiverEmbeddings(config) + self.encoder = PerceiverEncoder( + config, kv_dim=input_preprocessor.num_channels if input_preprocessor is not None else config.d_model + ) + self.decoder = decoder + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.latents + + def set_input_embeddings(self, value): + self.embeddings.latents = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) + @replace_return_docstrings(output_type=PerceiverModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + inputs: torch.FloatTensor, + attention_mask: Optional[torch.FloatTensor] = None, + subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None, + head_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, PerceiverModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import PerceiverConfig, PerceiverTokenizer, PerceiverImageProcessor, PerceiverModel + >>> from transformers.models.perceiver.modeling_perceiver import ( + ... PerceiverTextPreprocessor, + ... PerceiverImagePreprocessor, + ... PerceiverClassificationDecoder, + ... ) + >>> import torch + >>> import requests + >>> from PIL import Image + + >>> # EXAMPLE 1: using the Perceiver to classify texts + >>> # - we define a TextPreprocessor, which can be used to embed tokens + >>> # - we define a ClassificationDecoder, which can be used to decode the + >>> # final hidden states of the latents to classification logits + >>> # using trainable position embeddings + >>> config = PerceiverConfig() + >>> preprocessor = PerceiverTextPreprocessor(config) + >>> decoder = PerceiverClassificationDecoder( + ... config, + ... num_channels=config.d_latents, + ... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1), + ... use_query_residual=True, + ... ) + >>> model = PerceiverModel(config, input_preprocessor=preprocessor, decoder=decoder) + + >>> # you can then do a forward pass as follows: + >>> tokenizer = PerceiverTokenizer() + >>> text = "hello world" + >>> inputs = tokenizer(text, return_tensors="pt").input_ids + + >>> with torch.no_grad(): + ... outputs = model(inputs=inputs) + >>> logits = outputs.logits + >>> list(logits.shape) + [1, 2] + + >>> # to train, one can train the model using standard cross-entropy: + >>> criterion = torch.nn.CrossEntropyLoss() + + >>> labels = torch.tensor([1]) + >>> loss = criterion(logits, labels) + + >>> # EXAMPLE 2: using the Perceiver to classify images + >>> # - we define an ImagePreprocessor, which can be used to embed images + >>> config = PerceiverConfig(image_size=224) + >>> preprocessor = PerceiverImagePreprocessor( + ... config, + ... prep_type="conv1x1", + ... spatial_downsample=1, + ... out_channels=256, + ... position_encoding_type="trainable", + ... concat_or_add_pos="concat", + ... project_pos_dim=256, + ... trainable_position_encoding_kwargs=dict( + ... num_channels=256, + ... index_dims=config.image_size**2, + ... ), + ... ) + + >>> model = PerceiverModel( + ... config, + ... input_preprocessor=preprocessor, + ... decoder=PerceiverClassificationDecoder( + ... config, + ... num_channels=config.d_latents, + ... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1), + ... use_query_residual=True, + ... ), + ... ) + + >>> # you can then do a forward pass as follows: + >>> image_processor = PerceiverImageProcessor() + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + >>> inputs = image_processor(image, return_tensors="pt").pixel_values + + >>> with torch.no_grad(): + ... outputs = model(inputs=inputs) + >>> logits = outputs.logits + >>> list(logits.shape) + [1, 2] + + >>> # to train, one can train the model using standard cross-entropy: + >>> criterion = torch.nn.CrossEntropyLoss() + + >>> labels = torch.tensor([1]) + >>> loss = criterion(logits, labels) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.input_preprocessor is not None: + inputs, modality_sizes, inputs_without_pos = self.input_preprocessor(inputs) + else: + modality_sizes = None + inputs_without_pos = None + if inputs.size()[-1] != self.config.d_model: + raise ValueError( + f"Last dimension of the inputs: {inputs.size()[-1]} doesn't correspond to config.d_model:" + f" {self.config.d_model}. Make sure to set config.d_model appropriately." + ) + + batch_size, seq_length, _ = inputs.size() + device = inputs.device + + # If no attention mask is provided, make them all ones + if attention_mask is None: + attention_mask = torch.ones((batch_size, seq_length), device=device) + # Make the attention mask broadcastable to [batch_size, num_heads, seq_length, seq_length] + extended_attention_mask = self.invert_attention_mask(attention_mask) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_blocks x num_heads] + # and head_mask is converted to shape [num_blocks x batch x num_heads x N x N] + head_mask = self.get_head_mask(head_mask, self.config.num_blocks * self.config.num_self_attends_per_block) + + embedding_output = self.embeddings(batch_size=batch_size) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=None, + head_mask=head_mask, + inputs=inputs, + inputs_mask=extended_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + logits = None + if self.decoder: + if subsampled_output_points is not None: + output_modality_sizes = { + "audio": subsampled_output_points["audio"].shape[0], + "image": subsampled_output_points["image"].shape[0], + "label": 1, + } + else: + output_modality_sizes = modality_sizes + decoder_query = self.decoder.decoder_query( + inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_output_points + ) + decoder_outputs = self.decoder( + decoder_query, + z=sequence_output, + query_mask=extended_attention_mask, + output_attentions=output_attentions, + ) + logits = decoder_outputs.logits + + # add cross-attentions of decoder + if output_attentions and decoder_outputs.cross_attentions is not None: + if return_dict: + encoder_outputs.cross_attentions = ( + encoder_outputs.cross_attentions + decoder_outputs.cross_attentions + ) + else: + encoder_outputs = encoder_outputs + decoder_outputs.cross_attentions + + if self.output_postprocessor: + logits = self.output_postprocessor(logits, modality_sizes=output_modality_sizes) + + if not return_dict: + if logits is not None: + return (logits, sequence_output) + encoder_outputs[1:] + else: + return (sequence_output,) + encoder_outputs[1:] + + return PerceiverModelOutput( + logits=logits, + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings("""Example use of Perceiver for masked language modeling.""", PERCEIVER_START_DOCSTRING) +class PerceiverForMaskedLM(PerceiverPreTrainedModel): + def __init__(self, config: PerceiverConfig): + super().__init__(config) + + text_preprocessor = PerceiverTextPreprocessor(config) + + trainable_position_encoding_kwargs_decoder = { + "num_channels": text_preprocessor.num_channels, + "index_dims": config.max_position_embeddings, + } + + self.perceiver = PerceiverModel( + config, + input_preprocessor=text_preprocessor, + decoder=PerceiverBasicDecoder( + config, + output_num_channels=config.d_latents, + output_index_dims=config.max_position_embeddings, # we need to define the seq_len of the inputs beforehand + num_channels=text_preprocessor.num_channels, + qk_channels=8 * 32, + v_channels=text_preprocessor.num_channels, + num_heads=8, + use_query_residual=False, + final_project=False, + trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, + ), + ) + self.embedding_decoder = PerceiverEmbeddingDecoder(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=PerceiverMaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + inputs: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + input_ids: Optional[torch.Tensor] = None, + ) -> Union[Tuple, PerceiverMaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, PerceiverForMaskedLM + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver") + >>> model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver") + + >>> # training + >>> text = "This is an incomplete sentence where some words are missing." + >>> inputs = tokenizer(text, padding="max_length", return_tensors="pt") + >>> # mask " missing." + >>> inputs["input_ids"][0, 52:61] = tokenizer.mask_token_id + >>> labels = tokenizer(text, padding="max_length", return_tensors="pt").input_ids + + >>> outputs = model(**inputs, labels=labels) + >>> loss = outputs.loss + >>> round(loss.item(), 2) + 19.87 + + >>> logits = outputs.logits + >>> list(logits.shape) + [1, 2048, 262] + + >>> # inference + >>> text = "This is an incomplete sentence where some words are missing." + >>> encoding = tokenizer(text, padding="max_length", return_tensors="pt") + + >>> # mask bytes corresponding to " missing.". Note that the model performs much better if the masked span starts with a space. + >>> encoding["input_ids"][0, 52:61] = tokenizer.mask_token_id + + >>> # forward pass + >>> with torch.no_grad(): + ... outputs = model(**encoding) + >>> logits = outputs.logits + >>> list(logits.shape) + [1, 2048, 262] + + >>> masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist() + >>> tokenizer.decode(masked_tokens_predictions) + ' missing.' + ```""" + if inputs is not None and input_ids is not None: + raise ValueError("You cannot use both `inputs` and `input_ids`") + elif inputs is None and input_ids is not None: + inputs = input_ids + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.perceiver( + inputs=inputs, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = self.embedding_decoder( + outputs.logits if return_dict else outputs[0], embedding_layer=self.perceiver.input_preprocessor.embeddings + ) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return PerceiverMaskedLMOutput( + loss=masked_lm_loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings("""Example use of Perceiver for text classification.""", PERCEIVER_START_DOCSTRING) +class PerceiverForSequenceClassification(PerceiverPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} + + self.num_labels = config.num_labels + self.perceiver = PerceiverModel( + config, + input_preprocessor=PerceiverTextPreprocessor(config), + decoder=PerceiverClassificationDecoder( + config, + num_channels=config.d_latents, + trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, + use_query_residual=True, + ), + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + inputs: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + input_ids: Optional[torch.Tensor] = None, + ) -> Union[Tuple, PerceiverClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the classification/regression loss. Indices should be in `[0, ..., config.num_labels - + 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > + 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, PerceiverForSequenceClassification + + >>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver") + >>> model = PerceiverForSequenceClassification.from_pretrained("deepmind/language-perceiver") + + >>> text = "hello world" + >>> inputs = tokenizer(text, return_tensors="pt").input_ids + >>> outputs = model(inputs=inputs) + >>> logits = outputs.logits + >>> list(logits.shape) + [1, 2] + ```""" + if inputs is not None and input_ids is not None: + raise ValueError("You cannot use both `inputs` and `input_ids`") + elif inputs is None and input_ids is not None: + inputs = input_ids + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.perceiver( + inputs=inputs, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = outputs.logits if return_dict else outputs[0] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return PerceiverClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ +Example use of Perceiver for image classification, for tasks such as ImageNet. + +This model uses learned position embeddings. In other words, this model is not given any privileged information about +the structure of images. As shown in the paper, this model can achieve a top-1 accuracy of 72.7 on ImageNet. + +[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] +(with `prep_type="conv1x1"`) to preprocess the input images, and +[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of +[`PerceiverModel`] into classification logits. +""", + PERCEIVER_START_DOCSTRING, +) +class PerceiverForImageClassificationLearned(PerceiverPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + trainable_position_encoding_kwargs_preprocessor = {"num_channels": 256, "index_dims": config.image_size**2} + trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} + + self.num_labels = config.num_labels + self.perceiver = PerceiverModel( + config, + input_preprocessor=PerceiverImagePreprocessor( + config, + prep_type="conv1x1", + spatial_downsample=1, + out_channels=256, + position_encoding_type="trainable", + concat_or_add_pos="concat", + project_pos_dim=256, + trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_preprocessor, + ), + decoder=PerceiverClassificationDecoder( + config, + num_channels=config.d_latents, + trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, + use_query_residual=True, + ), + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + inputs: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + pixel_values: Optional[torch.Tensor] = None, + ) -> Union[Tuple, PerceiverClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationLearned + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-learned") + >>> model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned") + + >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values + >>> outputs = model(inputs=inputs) + >>> logits = outputs.logits + >>> list(logits.shape) + [1, 1000] + + >>> # model predicts one of the 1000 ImageNet classes + >>> predicted_class_idx = logits.argmax(-1).item() + >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) + Predicted class: tabby, tabby cat + ```""" + if inputs is not None and pixel_values is not None: + raise ValueError("You cannot use both `inputs` and `pixel_values`") + elif inputs is None and pixel_values is not None: + inputs = pixel_values + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.perceiver( + inputs=inputs, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + logits = outputs.logits if return_dict else outputs[0] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return PerceiverClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ +Example use of Perceiver for image classification, for tasks such as ImageNet. + +This model uses fixed 2D Fourier position embeddings. As shown in the paper, this model can achieve a top-1 accuracy of +79.0 on ImageNet, and 84.5 when pre-trained on a large-scale dataset (i.e. JFT). + +[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] +(with `prep_type="pixels"`) to preprocess the input images, and +[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of +[`PerceiverModel`] into classification logits. +""", + PERCEIVER_START_DOCSTRING, +) +class PerceiverForImageClassificationFourier(PerceiverPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + fourier_position_encoding_kwargs_preprocessor = { + "concat_pos": True, + "max_resolution": (224, 224), + "num_bands": 64, + "sine_only": False, + } + trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} + + self.num_labels = config.num_labels + self.perceiver = PerceiverModel( + config, + input_preprocessor=PerceiverImagePreprocessor( + config, + prep_type="pixels", + spatial_downsample=1, + fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor, + ), + decoder=PerceiverClassificationDecoder( + config, + num_channels=config.d_latents, + trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, + use_query_residual=True, + ), + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + inputs: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + pixel_values: Optional[torch.Tensor] = None, + ) -> Union[Tuple, PerceiverClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationFourier + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-fourier") + >>> model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier") + + >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values + >>> outputs = model(inputs=inputs) + >>> logits = outputs.logits + >>> list(logits.shape) + [1, 1000] + + >>> # model predicts one of the 1000 ImageNet classes + >>> predicted_class_idx = logits.argmax(-1).item() + >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) + Predicted class: tabby, tabby cat + ```""" + if inputs is not None and pixel_values is not None: + raise ValueError("You cannot use both `inputs` and `pixel_values`") + elif inputs is None and pixel_values is not None: + inputs = pixel_values + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.perceiver( + inputs=inputs, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + logits = outputs.logits if return_dict else outputs[0] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return PerceiverClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ +Example use of Perceiver for image classification, for tasks such as ImageNet. + +This model uses a 2D conv+maxpool preprocessing network. As shown in the paper, this model can achieve a top-1 accuracy +of 82.1 on ImageNet. + +[`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] +(with `prep_type="conv"`) to preprocess the input images, and +[`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of +[`PerceiverModel`] into classification logits. +""", + PERCEIVER_START_DOCSTRING, +) +class PerceiverForImageClassificationConvProcessing(PerceiverPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + fourier_position_encoding_kwargs_preprocessor = { + "concat_pos": True, + "max_resolution": (56, 56), + "num_bands": 64, + "sine_only": False, + } + trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} + + self.num_labels = config.num_labels + self.perceiver = PerceiverModel( + config, + input_preprocessor=PerceiverImagePreprocessor( + config, + prep_type="conv", + spatial_downsample=1, + position_encoding_type="fourier", + fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor, + ), + decoder=PerceiverClassificationDecoder( + config, + num_channels=config.d_latents, + trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, + use_query_residual=True, + ), + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + inputs: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + pixel_values: Optional[torch.Tensor] = None, + ) -> Union[Tuple, PerceiverClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationConvProcessing + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-conv") + >>> model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv") + + >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values + >>> outputs = model(inputs=inputs) + >>> logits = outputs.logits + >>> list(logits.shape) + [1, 1000] + + >>> # model predicts one of the 1000 ImageNet classes + >>> predicted_class_idx = logits.argmax(-1).item() + >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) + Predicted class: tabby, tabby cat + ```""" + if inputs is not None and pixel_values is not None: + raise ValueError("You cannot use both `inputs` and `pixel_values`") + elif inputs is None and pixel_values is not None: + inputs = pixel_values + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.perceiver( + inputs=inputs, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + logits = outputs.logits if return_dict else outputs[0] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return PerceiverClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ +Example use of Perceiver for optical flow, for tasks such as Sintel and KITTI. [`PerceiverForOpticalFlow`] uses +[`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with *prep_type="patches"*) to preprocess the +input images, and [`~models.perceiver.modeling_perceiver.PerceiverOpticalFlowDecoder`] to decode the latent +representation of [`PerceiverModel`]. + +As input, one concatenates 2 subsequent frames along the channel dimension and extract a 3 x 3 patch around each pixel +(leading to 3 x 3 x 3 x 2 = 54 values for each pixel). Fixed Fourier position encodings are used to encode the position +of each pixel in the patch. Next, one applies the Perceiver encoder. To decode, one queries the latent representation +using the same encoding used for the input. +""", + PERCEIVER_START_DOCSTRING, +) +class PerceiverForOpticalFlow(PerceiverPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + fourier_position_encoding_kwargs_preprocessor = { + "num_bands": 64, + "max_resolution": config.train_size, + "sine_only": False, + "concat_pos": True, + } + fourier_position_encoding_kwargs_decoder = { + "concat_pos": True, + "max_resolution": config.train_size, + "num_bands": 64, + "sine_only": False, + } + + image_preprocessor = PerceiverImagePreprocessor( + config, + prep_type="patches", + spatial_downsample=1, + conv_after_patching=True, + conv_after_patching_in_channels=54, + temporal_downsample=2, + position_encoding_type="fourier", + # position_encoding_kwargs + fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor, + ) + + self.perceiver = PerceiverModel( + config, + input_preprocessor=image_preprocessor, + decoder=PerceiverOpticalFlowDecoder( + config, + num_channels=image_preprocessor.num_channels, + output_image_shape=config.train_size, + rescale_factor=100.0, + # decoder kwargs + use_query_residual=False, + output_num_channels=2, + # We query the decoder using the first frame features + # rather than a standard decoder position encoding. + position_encoding_type="fourier", + fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_decoder, + ), + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + inputs: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, PerceiverClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the optical flow loss. Indices should be in `[0, ..., config.num_labels - 1]`. + + Returns: + + Examples: + + ```python + >>> from transformers import PerceiverForOpticalFlow + >>> import torch + + >>> model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver") + + >>> # in the Perceiver IO paper, the authors extract a 3 x 3 patch around each pixel, + >>> # leading to 3 x 3 x 3 = 27 values for each pixel (as each pixel also has 3 color channels) + >>> # patches have shape (batch_size, num_frames, num_channels, height, width) + >>> # the authors train on resolutions of 368 x 496 + >>> patches = torch.randn(1, 2, 27, 368, 496) + >>> outputs = model(inputs=patches) + >>> logits = outputs.logits + >>> list(logits.shape) + [1, 368, 496, 2] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.perceiver( + inputs=inputs, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + logits = outputs.logits if return_dict else outputs[0] + + loss = None + if labels is not None: + raise NotImplementedError("Optical flow training is not yet supported") + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return PerceiverClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +@add_start_docstrings( + """ +Example use of Perceiver for multimodal (video) autoencoding, for tasks such as Kinetics-700. + +[`PerceiverForMultimodalAutoencoding`] uses [`~models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor`] to +preprocess the 3 modalities: images, audio and class labels. This preprocessor uses modality-specific preprocessors to +preprocess every modality separately, after which they are concatenated. Trainable position embeddings are used to pad +each modality to the same number of channels to make concatenation along the time dimension possible. Next, one applies +the Perceiver encoder. + +[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] is used to decode the latent representation of +[`PerceiverModel`]. This decoder uses each modality-specific decoder to construct queries. The decoder queries are +created based on the inputs after preprocessing. However, autoencoding an entire video in a single forward pass is +computationally infeasible, hence one only uses parts of the decoder queries to do cross-attention with the latent +representation. This is determined by the subsampled indices for each modality, which can be provided as additional +input to the forward pass of [`PerceiverForMultimodalAutoencoding`]. + +[`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] also pads the decoder queries of the different +modalities to the same number of channels, in order to concatenate them along the time dimension. Next, cross-attention +is performed with the latent representation of [`PerceiverModel`]. + +Finally, [`~models.perceiver.modeling_perceiver.PerceiverMultiModalPostprocessor`] is used to turn this tensor into an +actual video. It first splits up the output into the different modalities, and then applies the respective +postprocessor for each modality. + +Note that, by masking the classification label during evaluation (i.e. simply providing a tensor of zeros for the +"label" modality), this auto-encoding model becomes a Kinetics 700 video classifier. +""", + PERCEIVER_START_DOCSTRING, +) +class PerceiverForMultimodalAutoencoding(PerceiverPreTrainedModel): + def __init__(self, config: PerceiverConfig): + super().__init__(config) + + n_audio_samples = config.num_frames * config.audio_samples_per_frame + + input_preprocessor = PerceiverMultimodalPreprocessor( + min_padding_size=4, + modalities={ + "audio": PerceiverAudioPreprocessor( + config, + position_encoding_type="fourier", + fourier_position_encoding_kwargs={ + "num_bands": 192, + "max_resolution": (n_audio_samples,), + "sine_only": False, + "concat_pos": True, + }, + prep_type="patches", + samples_per_patch=config.samples_per_patch, + ), + "image": PerceiverImagePreprocessor( + config, + position_encoding_type="fourier", + fourier_position_encoding_kwargs={ + "num_bands": 32, + "max_resolution": (config.num_frames, config.image_size, config.image_size), + "sine_only": False, + "concat_pos": True, + }, + prep_type="patches", + spatial_downsample=4, + temporal_downsample=1, + ), + "label": PerceiverOneHotPreprocessor(config), + }, + mask_probs={"image": 0.0, "audio": 0.0, "label": 1.0}, + ) + + image_decoder = PerceiverBasicVideoAutoencodingDecoder( + config, + # Autoencoding, don't pass inputs to the queries. + concat_preprocessed_input=False, + output_shape=config.output_shape, + output_num_channels=config.output_num_channels, + use_query_residual=False, + position_encoding_only=True, + position_encoding_type="fourier", + fourier_position_encoding_kwargs={ + "num_bands": 32, + "max_resolution": (config.num_frames, config.image_size, config.image_size), + "sine_only": False, + "concat_pos": True, + }, + ) + + decoder = PerceiverMultimodalDecoder( + config, + # Autoencoding, don't pass inputs to the queries. + concat_preprocessed_input=False, + # Modality specific decoders are used ONLY to generate queries. + # All modalties are decoded together using a unified decoder. + modalities={ + "audio": PerceiverBasicDecoder( + config, + # Autoencoding, don't pass inputs to the queries. + concat_preprocessed_input=False, + output_index_dims=(n_audio_samples // config.samples_per_patch,), + output_num_channels=config.output_num_channels, + use_query_residual=False, + position_encoding_only=True, + position_encoding_type="fourier", + fourier_position_encoding_kwargs={ + "num_bands": 192, + "max_resolution": (n_audio_samples,), + "sine_only": False, + "concat_pos": True, + }, + ), + "image": image_decoder, + "label": PerceiverClassificationDecoder( + config, + # Autoencoding, don't pass inputs to the queries. + concat_preprocessed_input=False, + use_query_residual=False, + position_encoding_only=True, + position_encoding_type="trainable", + trainable_position_encoding_kwargs={ + "num_channels": config._label_trainable_num_channels, + "index_dims": 1, + }, + ), + }, + num_outputs=None, + output_num_channels=config.output_num_channels, + use_query_residual=False, + ) + + output_postprocessor = PerceiverMultimodalPostprocessor( + modalities={ + "audio": PerceiverAudioPostprocessor(config, in_channels=config.output_num_channels), + "image": PerceiverProjectionPostprocessor(in_channels=config.output_num_channels, out_channels=3), + "label": PerceiverClassificationPostprocessor(config, in_channels=config.output_num_channels), + } + ) + + self.perceiver = PerceiverModel( + config, + input_preprocessor=input_preprocessor, + decoder=decoder, + output_postprocessor=output_postprocessor, + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + inputs: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + labels: Optional[torch.Tensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, PerceiverClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import PerceiverForMultimodalAutoencoding + >>> import torch + >>> import numpy as np + + >>> # create multimodal inputs + >>> images = torch.randn((1, 16, 3, 224, 224)) + >>> audio = torch.randn((1, 30720, 1)) + >>> inputs = dict(image=images, audio=audio, label=torch.zeros((images.shape[0], 700))) + + >>> model = PerceiverForMultimodalAutoencoding.from_pretrained("deepmind/multimodal-perceiver") + + >>> # in the Perceiver IO paper, videos are auto-encoded in chunks + >>> # each chunk subsamples different index dimensions of the image and audio modality decoder queries + >>> nchunks = 128 + >>> image_chunk_size = np.prod((16, 224, 224)) // nchunks + >>> audio_chunk_size = audio.shape[1] // model.config.samples_per_patch // nchunks + >>> # process the first chunk + >>> chunk_idx = 0 + >>> subsampling = { + ... "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)), + ... "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)), + ... "label": None, + ... } + + >>> outputs = model(inputs=inputs, subsampled_output_points=subsampling) + >>> logits = outputs.logits + >>> list(logits["audio"].shape) + [1, 240] + + >>> list(logits["image"].shape) + [1, 6272, 3] + + >>> list(logits["label"].shape) + [1, 700] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.perceiver( + inputs=inputs, + attention_mask=attention_mask, + subsampled_output_points=subsampled_output_points, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + logits = outputs.logits if return_dict else outputs[0] + + loss = None + if labels is not None: + raise NotImplementedError("Multimodal autoencoding training is not yet supported") + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return PerceiverClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +# Below: position encodings + + +def build_position_encoding( + position_encoding_type, + out_channels=None, + project_pos_dim=-1, + trainable_position_encoding_kwargs=None, + fourier_position_encoding_kwargs=None, +): + """ + Builds the position encoding. + + Args: + - out_channels: refers to the number of channels of the position encodings. + - project_pos_dim: if specified, will project the position encodings to this dimension. + + """ + + if position_encoding_type == "trainable": + if not trainable_position_encoding_kwargs: + raise ValueError("Make sure to pass trainable_position_encoding_kwargs") + output_pos_enc = PerceiverTrainablePositionEncoding(**trainable_position_encoding_kwargs) + elif position_encoding_type == "fourier": + # We don't use the index_dims argument, as this is only known during the forward pass + if not fourier_position_encoding_kwargs: + raise ValueError("Make sure to pass fourier_position_encoding_kwargs") + output_pos_enc = PerceiverFourierPositionEncoding(**fourier_position_encoding_kwargs) + else: + raise ValueError(f"Unknown position encoding type: {position_encoding_type}.") + + # Optionally, project the position encoding to a target dimension: + positions_projection = nn.Linear(out_channels, project_pos_dim) if project_pos_dim > 0 else nn.Identity() + + return output_pos_enc, positions_projection + + +# Below: Perceiver decoders + + +class PerceiverAbstractDecoder(nn.Module, metaclass=abc.ABCMeta): + """Perceiver abstract decoder.""" + + @abc.abstractmethod + def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): + raise NotImplementedError + + @property + @abc.abstractmethod + def num_query_channels(self): + raise NotImplementedError + + @abc.abstractmethod + def forward(self, query, z, query_mask=None): + raise NotImplementedError + + +class PerceiverProjectionDecoder(PerceiverAbstractDecoder): + """ + Baseline projection decoder (no cross-attention). + + Args: + config ([`PerceiverConfig`]): + Model configuration. + """ + + def __init__(self, config): + super().__init__() + self.classifier = nn.Linear(config.d_latents, config.num_labels) + + def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): + return None + + def forward( + self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None + ) -> torch.FloatTensor: + # (batch_size, num_latents, d_latents) -> (batch_size, d_latents) + z = torch.mean(z, dim=1) + # (batch_size, d_latents) -> (batch_size, config.num_labels) + logits = self.classifier(z) + return logits + + +class PerceiverBasicDecoder(PerceiverAbstractDecoder): + """ + Cross-attention-based decoder. This class can be used to decode the final hidden states of the latents using a + cross-attention operation, in which the latents produce keys and values. + + The shape of the output of this class depends on how one defines the output queries (also called decoder queries). + + Args: + config ([*PerceiverConfig*]): + Model configuration. + output_num_channels (`int`, *optional*): + The number of channels in the output. Will only be used in case *final_project* is set to `True`. + position_encoding_type (`str`, *optional*, defaults to "trainable"): + The type of position encoding to use. Can be either "trainable", "fourier", or "none". + output_index_dims (`int`, *optional*): + The number of dimensions of the output queries. Ignored if 'position_encoding_type' == 'none'. + num_channels (`int`, *optional*, defaults to 128): + The number of channels of the decoder queries. Ignored if 'position_encoding_type' == 'none'. + qk_channels (`int`, *optional*): + The number of channels of the queries and keys in the cross-attention layer. + v_channels (`int`, *optional*): + The number of channels of the values in the cross-attention layer. + num_heads (`int`, *optional*, defaults to 1): + The number of attention heads in the cross-attention layer. + widening_factor (`int`, *optional*, defaults to 1): + The widening factor of the cross-attention layer. + use_query_residual (`bool`, *optional*, defaults to `False`): + Whether to use a residual connection between the query and the output of the cross-attention layer. + concat_preprocessed_input (`bool`, *optional*, defaults to `False`): + Whether to concatenate the preprocessed input to the query. + final_project (`bool`, *optional*, defaults to `True`): + Whether to project the output of the cross-attention layer to a target dimension. + position_encoding_only (`bool`, *optional*, defaults to `False`): + Whether to only use this class to define output queries. + """ + + def __init__( + self, + config: PerceiverConfig, + output_num_channels: int, + position_encoding_type: Optional[str] = "trainable", + # The following 2 arguments are ignored if position_encoding_type == 'none': + output_index_dims: Optional[int] = None, + num_channels: Optional[int] = 128, + subsampled_index_dims: Optional[int] = None, + qk_channels: Optional[int] = None, + v_channels: Optional[int] = None, + num_heads: Optional[int] = 1, + widening_factor: Optional[int] = 1, + use_query_residual: Optional[bool] = False, + concat_preprocessed_input: Optional[bool] = False, + final_project: Optional[bool] = True, + position_encoding_only: Optional[bool] = False, + **position_encoding_kwargs, + ) -> None: + super().__init__() + + self.output_num_channels = output_num_channels + # If `none`, the decoder will not construct any position encodings. + # You should construct your own when querying the decoder. + self.output_position_encodings = None + self.position_encoding_type = position_encoding_type + self.position_encoding_kwargs = position_encoding_kwargs + if position_encoding_type != "none": + self.output_position_encodings, self.positions_projection = build_position_encoding( + position_encoding_type=position_encoding_type, **position_encoding_kwargs + ) + + self.output_index_dims = output_index_dims + self.num_channels = num_channels + if subsampled_index_dims is None: + subsampled_index_dims = output_index_dims + self.subsampled_index_dims = subsampled_index_dims + self.concat_preprocessed_input = concat_preprocessed_input + self.final_project = final_project + self.position_encoding_only = position_encoding_only + + # for multimodal autoencoding, we don't need the decoder cross-attention and final layer + # so then we will set position_encoding_only to True + if not self.position_encoding_only: + self.decoding_cross_attention = PerceiverLayer( + config, + is_cross_attention=True, + qk_channels=qk_channels, + v_channels=v_channels, + num_heads=num_heads, + q_dim=num_channels, + kv_dim=config.d_latents, + widening_factor=widening_factor, + use_query_residual=use_query_residual, + ) + self.final_layer = nn.Linear(num_channels, output_num_channels) if final_project else nn.Identity() + + @property + def num_query_channels(self) -> int: + if self.position_encoding_type == "none": # Queries come from elsewhere + raise ValueError( + "You cannot calculate number of decoder query channels when position_encoding_type is set to none" + ) + if self.position_encoding_only: + if "project_pos_dim" in self.position_encoding_kwargs: + return self.position_encoding_kwargs["project_pos_dim"] + return self.output_position_encodings.output_size() + if self.final_project: + return self.output_num_channels + return self.num_channels + + def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): + if self.position_encoding_type == "none": # Queries come from elsewhere + raise ValueError("You cannot construct decoder queries when position_encoding_type is set to none") + if subsampled_points is not None: + # subsampled_points are the indices if the inputs would be flattened + # however, the inputs aren't flattened, that's why we use unravel_index + # to get the indices for the unflattened array + # unravel_index returns a tuple (x_idx, y_idx, ...) + # stack to get the [n, d] tensor of coordinates + indices = [torch.from_numpy(x) for x in np.unravel_index(subsampled_points.cpu(), self.output_index_dims)] + pos = torch.stack(indices, dim=1) + batch_size = inputs.shape[0] + # Map these coordinates to [-1, 1] + pos = -1 + 2 * pos / torch.tensor(self.output_index_dims)[None, :] + pos = torch.broadcast_to(pos[None], [batch_size, pos.shape[0], pos.shape[1]]) + # Construct the position encoding. + if self.position_encoding_type == "trainable": + pos_emb = self.output_position_encodings(batch_size) + elif self.position_encoding_type == "fourier": + pos_emb = self.output_position_encodings( + self.output_index_dims, batch_size=batch_size, device=inputs.device, dtype=inputs.dtype, pos=pos + ) + + # Optionally project them to a target dimension. + pos_emb = self.positions_projection(pos_emb) + pos_emb = torch.reshape(pos_emb, [pos_emb.shape[0], -1, pos_emb.shape[-1]]) + else: + batch_size = inputs.shape[0] + index_dims = inputs.shape[2:] + + # Construct the position encoding. + if self.position_encoding_type == "trainable": + pos_emb = self.output_position_encodings(batch_size) + elif self.position_encoding_type == "fourier": + pos_emb = self.output_position_encodings( + index_dims, batch_size, device=inputs.device, dtype=inputs.dtype + ) + + # Optionally project them to a target dimension. + pos_emb = self.positions_projection(pos_emb) + + if self.concat_preprocessed_input: + if inputs_without_pos is None: + raise ValueError("Value is required for inputs_without_pos if concat_preprocessed_input is True") + pos_emb = torch.cat([inputs_without_pos, pos_emb], dim=-1) + + return pos_emb + + def forward( + self, + query: torch.Tensor, + z: torch.FloatTensor, + query_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> PerceiverDecoderOutput: + # Cross-attention decoding. + # key, value: B x N x K; query: B x M x K + # Attention maps -> B x N x M + # Output -> B x M x K + cross_attentions = () if output_attentions else None + + layer_outputs = self.decoding_cross_attention( + query, + attention_mask=query_mask, + head_mask=None, + inputs=z, + inputs_mask=None, + output_attentions=output_attentions, + ) + output = layer_outputs[0] + + if output_attentions: + cross_attentions = cross_attentions + (layer_outputs[1],) + + logits = self.final_layer(output) + + return PerceiverDecoderOutput(logits=logits, cross_attentions=cross_attentions) + + +class PerceiverClassificationDecoder(PerceiverAbstractDecoder): + """ + Cross-attention based classification decoder. Light-weight wrapper of [`PerceiverBasicDecoder`] for logit output. + Will turn the output of the Perceiver encoder which is of shape (batch_size, num_latents, d_latents) to a tensor of + shape (batch_size, num_labels). The queries are of shape (batch_size, 1, num_labels). + + Args: + config ([`PerceiverConfig`]): + Model configuration. + """ + + def __init__(self, config, **decoder_kwargs): + super().__init__() + + self.num_labels = config.num_labels + self.decoder = PerceiverBasicDecoder( + config, + output_num_channels=self.num_labels, + output_index_dims=1, # Predict a single logit array. + **decoder_kwargs, + ) + + @property + def num_query_channels(self) -> int: + return self.decoder.num_query_channels + + def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): + return self.decoder.decoder_query( + inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_points + ) + + def forward( + self, + query: torch.Tensor, + z: torch.FloatTensor, + query_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> PerceiverDecoderOutput: + decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) + + # B x 1 x num_classes -> B x num_classes + logits = decoder_outputs.logits[:, 0, :] + + return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions) + + +class PerceiverOpticalFlowDecoder(PerceiverAbstractDecoder): + """Cross-attention based optical flow decoder.""" + + def __init__(self, config, output_image_shape, output_num_channels=2, rescale_factor=100.0, **decoder_kwargs): + super().__init__() + + self.output_image_shape = output_image_shape + self.output_num_channels = output_num_channels + self.rescale_factor = rescale_factor + self.decoder = PerceiverBasicDecoder(config, output_num_channels=output_num_channels, **decoder_kwargs) + + @property + def num_query_channels(self) -> int: + return self.decoder.num_query_channels + + def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): + if subsampled_points is not None: + raise ValueError("FlowDecoder doesn't support subsampling yet.") + return inputs + + def forward( + self, + query: torch.Tensor, + z: torch.FloatTensor, + query_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> PerceiverDecoderOutput: + decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) + preds = decoder_outputs.logits + # Output flow and rescale. + preds /= self.rescale_factor + preds = preds.reshape([preds.shape[0]] + list(self.output_image_shape) + [preds.shape[-1]]) + return PerceiverDecoderOutput(logits=preds, cross_attentions=decoder_outputs.cross_attentions) + + +class PerceiverBasicVideoAutoencodingDecoder(PerceiverAbstractDecoder): + """ + Cross-attention based video-autoencoding decoder. Light-weight wrapper of [*PerceiverBasicDecoder*] with video + reshaping logic. + + Args: + config ([*PerceiverConfig*]): + Model configuration. + output_shape (`List[int]`): + Shape of the output as (batch_size, num_frames, height, width), excluding the channel dimension. + position_encoding_type (`str`): + The type of position encoding to use. Can be either "trainable", "fourier", or "none". + """ + + def __init__( + self, config: PerceiverConfig, output_shape: List[int], position_encoding_type: str, **decoder_kwargs + ) -> None: + super().__init__() + if len(output_shape) != 4: # B, T, H, W + raise ValueError(f"Expected rank 4 output_shape, got {output_shape}.") + # Build the decoder components: + self.output_shape = output_shape + self.output_num_channels = decoder_kwargs["output_num_channels"] + + self.decoder = PerceiverBasicDecoder( + config, + output_index_dims=self.output_shape[1:4], # T*H*W + position_encoding_type=position_encoding_type, + **decoder_kwargs, + ) + + @property + def num_query_channels(self) -> int: + return self.decoder.num_query_channels + + def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): + return self.decoder.decoder_query( + inputs, + modality_sizes=modality_sizes, + inputs_without_pos=inputs_without_pos, + subsampled_points=subsampled_points, + ) + + def forward( + self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None + ) -> PerceiverDecoderOutput: + decoder_outputs = self.decoder(query, z) + logits = decoder_outputs.logits + + logits = torch.reshape(logits, self.output_shape + [logits.shape[-1]]) + return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions) + + +def restructure(modality_sizes: ModalitySizeType, inputs: torch.Tensor) -> Mapping[str, torch.Tensor]: + """ + Partitions a [B, N, C] tensor into tensors for each modality. + + Args: + modality_sizes + dict specifying the size of the modality + inputs: + input tensor + + Returns: + dict mapping name of modality to its associated tensor. + """ + outputs = {} + index = 0 + # Apply a predictable ordering to the modalities + for modality in sorted(modality_sizes.keys()): + size = modality_sizes[modality] + inp = inputs[:, index : index + size] + index += size + outputs[modality] = inp + return outputs + + +class PerceiverMultimodalDecoder(PerceiverAbstractDecoder): + """ + Multimodal decoding by composing uni-modal decoders. The *modalities* argument of the constructor is a dictionary + mapping modality name to the decoder of that modality. That decoder will be used to construct queries for that + modality. Modality-specific queries are padded with trainable modality-specific parameters, after which they are + concatenated along the time dimension. + + Next, there is a shared cross attention operation across all modalities. + + Args: + config ([*PerceiverConfig*]): + Model configuration. + modalities (`Dict[str, PerceiverAbstractDecoder]`): + Dictionary mapping modality name to the decoder of that modality. + num_outputs (`int`): + The number of outputs of the decoder. + output_num_channels (`int`): + The number of channels in the output. + min_padding_size (`int`, *optional*, defaults to 2): + The minimum padding size for all modalities. The final output will have num_channels equal to the maximum + channels across all modalities plus min_padding_size. + subsampled_index_dims (`Dict[str, PerceiverAbstractDecoder]`, *optional*): + Dictionary mapping modality name to the subsampled index dimensions to use for the decoder query of that + modality. + """ + + def __init__( + self, + config: PerceiverConfig, + modalities: Dict[str, PerceiverAbstractDecoder], + num_outputs: int, + output_num_channels: int, + min_padding_size: Optional[int] = 2, + subsampled_index_dims: Optional[Dict[str, PerceiverAbstractDecoder]] = None, + **decoder_kwargs, + ) -> None: + super().__init__() + self.modalities = nn.ModuleDict(modalities) + self.subsampled_index_dims = subsampled_index_dims + self.min_padding_size = min_padding_size + self.output_num_channels = output_num_channels + self.num_outputs = num_outputs + self.decoder = PerceiverBasicDecoder( + config, + output_index_dims=(num_outputs,), + output_num_channels=output_num_channels, + position_encoding_type="none", + num_channels=self.num_query_channels, + **decoder_kwargs, + ) + self.padding = nn.ParameterDict( + { + modality: nn.Parameter(torch.randn(1, self.num_query_channels - decoder.num_query_channels)) + for modality, decoder in modalities.items() + } + ) + + @property + def num_query_channels(self) -> int: + max_channel_size = max(decoder.num_query_channels for _, decoder in self.modalities.items()) + common_channel_size = max_channel_size + self.min_padding_size + return common_channel_size + + def decoder_query(self, inputs, modality_sizes, inputs_without_pos=None, subsampled_points=None): + # Partition the flat inputs among the different modalities + inputs = restructure(modality_sizes, inputs) + + # Obtain modality-specific decoders' queries + subsampled_points = subsampled_points or {} + + decoder_queries = {} + for modality, decoder in self.modalities.items(): + # Get input_without_pos for this modality if it exists. + input_without_pos = None + if inputs_without_pos is not None: + input_without_pos = inputs_without_pos.get(modality, None) + query = decoder.decoder_query( + inputs=inputs[modality], + modality_sizes=None, + inputs_without_pos=input_without_pos, + subsampled_points=subsampled_points.get(modality, None), + ) + decoder_queries[modality] = query + + # Pad all queries with trainable position encodings to make them have the same channels + + def embed(modality, x): + x = torch.reshape(x, [x.shape[0], np.prod(x.shape[1:-1]), x.shape[-1]]) + pos = self.padding[modality] + pos = torch.broadcast_to(pos, [x.shape[0], x.shape[1], self.num_query_channels - x.shape[2]]) + return torch.cat([x, pos], dim=2) + + # Apply a predictable ordering to the modalities + return torch.cat( + [embed(modality, decoder_queries[modality]) for modality in sorted(self.modalities.keys())], dim=1 + ) + + def forward( + self, + query: torch.Tensor, + z: torch.FloatTensor, + query_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = False, + ) -> torch.Tensor: + # B x 1 x num_classes -> B x num_classes + decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) + + return decoder_outputs + + +# Below: IO pre- and post-processor classes for Perceiver. +def space_to_depth(frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor: + """ + Space to depth transform. Rearranges blocks of spatial data, into depth. + + This function assumes the channels to be first, but will place the channels last after transformation. + + Based on https://discuss.pytorch.org/t/is-there-any-layer-like-tensorflows-space-to-depth-function/3487/15. + """ + if len(frames.shape) == 4: + batch_size, num_channels, height, width = frames.shape + # split up dimensions (height by spatial_block_size, width by spatial_block_size) + frames = frames.view( + batch_size, + num_channels, + height // spatial_block_size, + spatial_block_size, + width // spatial_block_size, + spatial_block_size, + ) + # move blocks to last dimension: (batch_size, H//bs, W//bs, bs, bs, C) + frames = frames.permute(0, 2, 4, 3, 5, 1).contiguous() + # concatenate blocks along channel dimension: (batch_size, H//bs, W//bs, bs*bs*C) + frames = frames.view( + batch_size, + height // spatial_block_size, + width // spatial_block_size, + (spatial_block_size**2) * num_channels, + ) + return frames + elif len(frames.shape) == 5: + batch_size, time, num_channels, height, width = frames.shape + # split up dimensions (time by temporal_block_size, height by spatial_block_size, width by spatial_block_size) + frames = frames.view( + batch_size, + time // temporal_block_size, + temporal_block_size, + num_channels, + height // spatial_block_size, + spatial_block_size, + width // spatial_block_size, + spatial_block_size, + ) + # move blocks to last dimension: (batch_size, T//ts, H//bs, W//bs, ts, bs, bs, C) + frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous() + # concatenate blocks along channel dimension: (batch_size, T//ts, H//bs, W//bs, ts*bs*bs*C) + frames = frames.view( + batch_size, + time // temporal_block_size, + height // spatial_block_size, + width // spatial_block_size, + temporal_block_size * (spatial_block_size**2) * num_channels, + ) + return frames + else: + raise ValueError( + "Frames should be of rank 4 (batch, channels, height, width)" + " or rank 5 (batch, time, channels, height, width)" + ) + + +class Conv2dSamePadding(nn.Conv2d): + """ + Conv2d layer with padding="same" support. Source: + https://gist.github.com/sumanmichael/4de9dee93f972d47c80c4ade8e149ea6 + """ + + def __init__(self, *args, **kwargs): + super(Conv2dSamePadding, self).__init__(*args, **kwargs) + self.zero_pad_2d = nn.ZeroPad2d( + reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]]) + ) + + def forward(self, input): + return self._conv_forward(self.zero_pad_2d(input), self.weight, self.bias) + + +class Conv2DDownsample(nn.Module): + """Downsamples 4x by applying a 2D convolution and doing max pooling.""" + + def __init__( + self, + num_layers: int = 1, + in_channels: int = 3, + out_channels: int = 64, + use_batchnorm: bool = True, + ): + """ + Constructs a Conv2DDownsample model. + + Args: + in_channels (`int`, *optional*, defaults to 3): + The number of input channels. + out_channels (`int`, *optional*, defaults to 64): + The number of conv output channels. + use_batchnorm (`bool`, *optional*, defaults to `True`): + Whether to use batchnorm. + """ + super().__init__() + + self.conv = Conv2dSamePadding( + in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=2, bias=False + ) + self.batchnorm = nn.BatchNorm2d(num_features=out_channels) if use_batchnorm else nn.Identity() + self.relu = nn.ReLU() + self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2) + + def forward(self, inputs: torch.Tensor) -> torch.Tensor: + out = self.conv(inputs) + out = self.batchnorm(out) + out = self.relu(out) + out = self.max_pool(out) + return out + + +def generate_fourier_features(pos, num_bands, max_resolution=(224, 224), concat_pos=True, sine_only=False): + """ + Generate a Fourier frequency position encoding with linear spacing. + + Args: + pos (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`): + The Tensor containing the position of n points in d dimensional space. + num_bands (`int`): + The number of frequency bands (K) to use. + max_resolution (`Tuple[int]`, *optional*, defaults to (224, 224)): + The maximum resolution (i.e. the number of pixels per dim). A tuple representing resolution for each dimension. + concat_pos (`bool`, *optional*, defaults to `True`): + Whether to concatenate the input position encoding to the Fourier features. + sine_only (`bool`, *optional*, defaults to `False`): + Whether to use a single phase (sin) or two (sin/cos) for each frequency band. + + Returns: + `torch.FloatTensor` of shape `(batch_size, sequence_length, n_channels)`: The Fourier position embeddings. If + `concat_pos` is `True` and `sine_only` is `False`, output dimensions are ordered as: [dim_1, dim_2, ..., dim_d, + sin(pi*f_1*dim_1), ..., sin(pi*f_K*dim_1), ..., sin(pi*f_1*dim_d), ..., sin(pi*f_K*dim_d), cos(pi*f_1*dim_1), + ..., cos(pi*f_K*dim_1), ..., cos(pi*f_1*dim_d), ..., cos(pi*f_K*dim_d)], where dim_i is pos[:, i] and f_k is the + kth frequency band. + """ + + batch_size = pos.shape[0] + + min_freq = 1.0 + # Nyquist frequency at the target resolution: + freq_bands = torch.stack( + [torch.linspace(start=min_freq, end=res / 2, steps=num_bands) for res in max_resolution], dim=0 + ) + + # Get frequency bands for each spatial dimension. + # Output is size [n, d * num_bands] + per_pos_features = pos[0, :, :][:, :, None] * freq_bands[None, :, :] + per_pos_features = torch.reshape(per_pos_features, [-1, np.prod(per_pos_features.shape[1:])]) + + if sine_only: + # Output is size [n, d * num_bands] + per_pos_features = torch.sin(np.pi * (per_pos_features)) + else: + # Output is size [n, 2 * d * num_bands] + per_pos_features = torch.cat( + [torch.sin(np.pi * per_pos_features), torch.cos(np.pi * per_pos_features)], dim=-1 + ) + # Concatenate the raw input positions. + if concat_pos: + # Adds d bands to the encoding. + per_pos_features = torch.cat([pos, per_pos_features.expand(batch_size, -1, -1)], dim=-1) + return per_pos_features + + +def build_linear_positions(index_dims, output_range=(-1.0, 1.0)): + """ + Generate an array of position indices for an N-D input array. + + Args: + index_dims (`List[int]`): + The shape of the index dimensions of the input array. + output_range (`Tuple[float]`, *optional*, defaults to `(-1.0, 1.0)`): + The min and max values taken by each input index dimension. + + Returns: + `torch.FloatTensor` of shape `(index_dims[0], index_dims[1], .., index_dims[-1], N)`. + """ + + def _linspace(n_xels_per_dim): + return torch.linspace(start=output_range[0], end=output_range[1], steps=n_xels_per_dim, dtype=torch.float32) + + dim_ranges = [_linspace(n_xels_per_dim) for n_xels_per_dim in index_dims] + array_index_grid = meshgrid(*dim_ranges, indexing="ij") + + return torch.stack(array_index_grid, dim=-1) + + +class PerceiverAbstractPositionEncoding(nn.Module, metaclass=abc.ABCMeta): + """Perceiver abstract position encoding.""" + + @property + @abc.abstractmethod + def num_dimensions(self) -> int: + raise NotImplementedError + + @abc.abstractmethod + def output_size(self, *args, **kwargs) -> int: + raise NotImplementedError + + @abc.abstractmethod + def forward(self, batch_size, pos): + raise NotImplementedError + + +class PerceiverTrainablePositionEncoding(PerceiverAbstractPositionEncoding): + """Trainable position encoding.""" + + def __init__(self, index_dims, num_channels=128): + super().__init__() + self._num_channels = num_channels + self._index_dims = index_dims + index_dim = np.prod(index_dims) + self.position_embeddings = nn.Parameter(torch.randn(index_dim, num_channels)) + + @property + def num_dimensions(self) -> int: + if isinstance(self._index_dims, int): + return 1 + return len(self._index_dims) + + def output_size(self, *args, **kwargs) -> int: + return self._num_channels + + def forward(self, batch_size: int) -> torch.Tensor: + position_embeddings = self.position_embeddings + + if batch_size is not None: + position_embeddings = position_embeddings.expand(batch_size, -1, -1) + return position_embeddings + + +def _check_or_build_spatial_positions(pos, index_dims, batch_size): + """ + Checks or builds spatial position features (x, y, ...). + + Args: + pos (`torch.FloatTensor`): + None, or an array of position features. If None, position features are built. Otherwise, their size is checked. + index_dims (`List[int]`): + An iterable giving the spatial/index size of the data to be featurized. + batch_size (`int`): + The batch size of the data to be featurized. + + Returns: + `torch.FloatTensor` of shape `(batch_size, prod(index_dims))` an array of position features. + """ + if pos is None: + pos = build_linear_positions(index_dims) + # equivalent to `torch.broadcast_to(pos[None], (batch_size,) + pos.shape)` + # but `torch.broadcast_to` cannot be converted to ONNX + pos = pos[None].expand((batch_size,) + pos.shape) + pos = torch.reshape(pos, [batch_size, np.prod(index_dims), -1]) + else: + # Just a warning label: you probably don't want your spatial features to + # have a different spatial layout than your pos coordinate system. + # But feel free to override if you think it'll work! + if pos.shape[-1] != len(index_dims): + raise ValueError("Spatial features have the wrong number of dimensions.") + return pos + + +class PerceiverFourierPositionEncoding(PerceiverAbstractPositionEncoding): + """Fourier (Sinusoidal) position encoding.""" + + def __init__(self, num_bands, max_resolution, concat_pos=True, sine_only=False): + super().__init__() + self.num_bands = num_bands + self.max_resolution = max_resolution + self.concat_pos = concat_pos + self.sine_only = sine_only + + @property + def num_dimensions(self) -> int: + return len(self.max_resolution) + + def output_size(self): + """Returns size of positional encodings last dimension.""" + num_dims = len(self.max_resolution) + encoding_size = self.num_bands * num_dims + if not self.sine_only: + encoding_size *= 2 + if self.concat_pos: + encoding_size += self.num_dimensions + + return encoding_size + + def forward( + self, + index_dims: List[int], + batch_size: int, + device: torch.device, + dtype: torch.dtype, + pos: torch.FloatTensor = None, + ) -> torch.FloatTensor: + pos = _check_or_build_spatial_positions(pos, index_dims, batch_size) + fourier_pos_enc = generate_fourier_features( + pos, + num_bands=self.num_bands, + max_resolution=self.max_resolution, + concat_pos=self.concat_pos, + sine_only=self.sine_only, + ).to(device=device, dtype=dtype) + return fourier_pos_enc + + +class AbstractPreprocessor(nn.Module): + @property + def num_channels(self) -> int: + """Returns size of preprocessor output.""" + raise NotImplementedError() + + +class PerceiverTextPreprocessor(AbstractPreprocessor): + """ + Text preprocessing for Perceiver Encoder. Can be used to embed `inputs` and add positional encodings. + + The dimensionality of the embeddings is determined by the `d_model` attribute of the configuration. + + Args: + config ([`PerceiverConfig`]): + Model configuration. + """ + + def __init__(self, config: PerceiverConfig) -> None: + super().__init__() + self.config = config + self.embeddings = nn.Embedding(num_embeddings=config.vocab_size, embedding_dim=config.d_model) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model) + + @property + def num_channels(self) -> int: + return self.config.d_model + + def forward(self, inputs: torch.LongTensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True): + embeddings_without_pos = self.embeddings(inputs) + + seq_length = inputs.shape[1] + position_ids = torch.arange(0, seq_length, device=inputs.device) + embeddings = embeddings_without_pos + self.position_embeddings(position_ids) + + return embeddings, None, embeddings_without_pos + + +class PerceiverEmbeddingDecoder(nn.Module): + """ + Module to decode embeddings (for masked language modeling). + + Args: + config ([`PerceiverConfig`]): + Model configuration. + """ + + def __init__(self, config: PerceiverConfig) -> None: + super().__init__() + self.config = config + self.vocab_size = config.vocab_size + self.bias = nn.Parameter(torch.zeros(self.vocab_size)) + + def forward(self, hidden_states: torch.Tensor, embedding_layer: torch.Tensor) -> torch.Tensor: + batch_size, seq_len, d_model = hidden_states.shape + # Flatten batch dim + output = torch.matmul(hidden_states.reshape([-1, d_model]), embedding_layer.weight.transpose(0, 1)) + output = output + self.bias + + return output.reshape([batch_size, seq_len, self.vocab_size]) + + +class PerceiverMultimodalPostprocessor(nn.Module): + """ + Multimodal postprocessing for Perceiver. Can be used to combine modality-specific postprocessors into a single + postprocessor. + + Args: + modalities (`Mapping[str, PostprocessorType]`): + Dictionary mapping modality name to postprocessor class for that modality. + input_is_dict (`bool`, *optional*, defaults to `False`): + If True, input is assumed to be dictionary structured, and outputs keep the same dictionary shape. If + False, input is a tensor which is sliced up during postprocessing by *modality_sizes*. + """ + + def __init__(self, modalities: Mapping[str, PostprocessorType], input_is_dict: bool = False): + super().__init__() + self.modalities = nn.ModuleDict(modalities) + self.input_is_dict = input_is_dict + + def forward( + self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None + ) -> Mapping[str, torch.Tensor]: + if not self.input_is_dict: + # Slice up modalities by their sizes. + if modality_sizes is None: + raise ValueError("Modality sizes should be specified if input is not a dictionary.") + inputs = restructure(modality_sizes=modality_sizes, inputs=inputs) + + outputs = { + modality: postprocessor(inputs[modality], pos=pos, modality_sizes=None) + for modality, postprocessor in self.modalities.items() + } + return outputs + + +class PerceiverClassificationPostprocessor(nn.Module): + """ + Classification postprocessing for Perceiver. Can be used to convert the decoder output to classification logits. + + Args: + config ([*PerceiverConfig*]): + Model configuration. + in_channels (`int`): + Number of channels in the input. + """ + + def __init__(self, config: PerceiverConfig, in_channels: int) -> None: + super().__init__() + self.classifier = nn.Linear(in_channels, config.num_labels) + + def forward(self, inputs, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor: + logits = self.classifier(inputs) + return logits[:, 0, :] + + +class PerceiverAudioPostprocessor(nn.Module): + """ + Audio postprocessing for Perceiver. Can be used to convert the decoder output to audio features. + + Args: + config ([*PerceiverConfig*]): + Model configuration. + in_channels (`int`): + Number of channels in the input. + postproc_type (`str`, *optional*, defaults to `"patches"`): + Postprocessor type to use. Currently, only "patches" is supported. + """ + + def __init__(self, config: PerceiverConfig, in_channels: int, postproc_type: str = "patches") -> None: + super().__init__() + + if postproc_type not in ("patches",): # to be supported: 'conv', 'patches', 'pixels' + raise ValueError("Invalid postproc_type!") + + # Architecture parameters: + self.classifier = nn.Linear(in_channels, config.samples_per_patch) + + def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor: + logits = self.classifier(inputs) + return torch.reshape(logits, [inputs.shape[0], -1]) + + +class PerceiverProjectionPostprocessor(nn.Module): + """ + Projection postprocessing for Perceiver. Can be used to project the channels of the decoder output to a lower + dimension. + + Args: + in_channels (`int`): + Number of channels in the input. + out_channels (`int`): + Number of channels in the output. + """ + + def __init__(self, in_channels: int, out_channels: int) -> None: + super().__init__() + self.classifier = nn.Linear(in_channels, out_channels) + + def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor: + logits = self.classifier(inputs) + return logits + + +class PerceiverImagePreprocessor(AbstractPreprocessor): + """ + Image preprocessing for Perceiver Encoder. + + Note: the *out_channels* argument refers to the output channels of a convolutional layer, if *prep_type* is set to + "conv1x1" or "conv". If one adds absolute position embeddings, one must make sure the *num_channels* of the + position encoding kwargs are set equal to the *out_channels*. + + Args: + config ([*PerceiverConfig*]): + Model configuration. + prep_type (`str`, *optional*, defaults to `"conv"`): + Preprocessing type. Can be "conv1x1", "conv", "patches", "pixels". + spatial_downsample (`int`, *optional*, defaults to 4): + Spatial downsampling factor. + temporal_downsample (`int`, *optional*, defaults to 1): + Temporal downsampling factor (only relevant in case a time dimension is present). + position_encoding_type (`str`, *optional*, defaults to `"fourier"`): + Position encoding type. Can be "fourier" or "trainable". + in_channels (`int`, *optional*, defaults to 3): + Number of channels in the input. + out_channels (`int`, *optional*, defaults to 64): + Number of channels in the output. + conv_after_patching (`bool`, *optional*, defaults to `False`): + Whether to apply a convolutional layer after patching. + conv_after_patching_in_channels (`int`, *optional*, defaults to 54): + Number of channels in the input of the convolutional layer after patching. + conv2d_use_batchnorm (`bool`, *optional*, defaults to `True`): + Whether to use batch normalization in the convolutional layer. + concat_or_add_pos (`str`, *optional*, defaults to `"concat"`): + How to concatenate the position encoding to the input. Can be "concat" or "add". + project_pos_dim (`int`, *optional*, defaults to -1): + Dimension of the position encoding to project to. If -1, no projection is applied. + **position_encoding_kwargs (`Dict`, *optional*): + Keyword arguments for the position encoding. + """ + + def __init__( + self, + config, + prep_type="conv", + spatial_downsample: int = 4, + temporal_downsample: int = 1, + position_encoding_type: str = "fourier", + in_channels: int = 3, + out_channels: int = 64, + conv_after_patching: bool = False, + conv_after_patching_in_channels: int = 54, # only relevant when conv_after_patching = True + conv2d_use_batchnorm: bool = True, + concat_or_add_pos: str = "concat", + project_pos_dim: int = -1, + **position_encoding_kwargs, + ): + super().__init__() + self.config = config + + if prep_type not in ("conv", "patches", "pixels", "conv1x1"): + raise ValueError(f"Prep_type {prep_type} is invalid") + + if concat_or_add_pos not in ["concat", "add"]: + raise ValueError(f"Invalid value {concat_or_add_pos} for concat_or_add_pos.") + + self.in_channels = in_channels + self.prep_type = prep_type + self.spatial_downsample = spatial_downsample + self.temporal_downsample = temporal_downsample + self.position_encoding_type = position_encoding_type + self.concat_or_add_pos = concat_or_add_pos + self.conv_after_patching = conv_after_patching + self.out_channels = out_channels + + if self.prep_type == "conv": + # Downsampling with conv is currently restricted + convnet_num_layers = math.log(spatial_downsample, 4) + convnet_num_layers_is_int = convnet_num_layers == np.round(convnet_num_layers) + if not convnet_num_layers_is_int or temporal_downsample != 1: + raise ValueError( + "Only powers of 4 expected for spatial and 1 expected for temporal downsampling with conv." + ) + self.convnet = Conv2DDownsample( + in_channels=in_channels, + num_layers=int(convnet_num_layers), + out_channels=out_channels, + use_batchnorm=conv2d_use_batchnorm, + ) + + elif self.prep_type == "conv1x1": + if temporal_downsample != 1: + raise ValueError("Conv1x1 does not downsample in time.") + self.convnet_1x1 = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=(1, 1), + # spatial_downsample is unconstrained for 1x1 convolutions. + stride=(spatial_downsample, spatial_downsample), + ) + + # Position embeddings + self.project_pos_dim = project_pos_dim + self.position_embeddings, self.positions_projection = build_position_encoding( + position_encoding_type=position_encoding_type, + out_channels=out_channels, + project_pos_dim=project_pos_dim, + **position_encoding_kwargs, + ) + + # Optional convolutional layer after patches. + self.conv_after_patches = ( + nn.Linear(conv_after_patching_in_channels, self.out_channels) if conv_after_patching else nn.Identity() + ) + + @property + def num_channels(self) -> int: + # Let's assume that the number of resolutions (in the context of image preprocessing) + # of the input data is 2 or 3 depending on whether we are processing image or video respectively. + # In this case, for convenience, we will declare is_temporal variable, + # which will show whether the data has a temporal dimension or not. + is_temporal = self.position_embeddings.num_dimensions > 2 + + # position embedding + if self.project_pos_dim > 0: + pos_dim = self.project_pos_dim + else: + pos_dim = self.position_embeddings.output_size() + if self.concat_or_add_pos == "add": + return pos_dim + + # inputs + if self.conv_after_patching or self.prep_type in ("conv1x1", "conv"): + inp_dim = self.out_channels + elif self.prep_type == "pixels": + inp_dim = self.in_channels + if not is_temporal: + inp_dim = math.ceil(inp_dim / self.spatial_downsample) + elif self.prep_type == "patches": + if self.conv_after_patching: + inp_dim = self.out_channels + else: + inp_dim = self.in_channels * self.spatial_downsample**2 + if is_temporal: + inp_dim *= self.temporal_downsample + + return inp_dim + pos_dim + + def _build_network_inputs(self, inputs: torch.Tensor, network_input_is_1d: bool = True): + """ + Construct the final input, including position encoding. + + This method expects the inputs to always have channels as last dimension. + + """ + batch_size = inputs.shape[0] + index_dims = inputs.shape[1:-1] + indices = np.prod(index_dims) + + # Flatten input features to a 1D index dimension if necessary. + if len(inputs.shape) > 3 and network_input_is_1d: + inputs = torch.reshape(inputs, [batch_size, indices, -1]) + + # Construct the position encoding. + if self.position_encoding_type == "trainable": + pos_enc = self.position_embeddings(batch_size) + elif self.position_encoding_type == "fourier": + pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype) + + # Optionally project them to a target dimension. + pos_enc = self.positions_projection(pos_enc) + + if not network_input_is_1d: + # Reshape pos to match the input feature shape + # if the network takes non-1D inputs + sh = inputs.shape + pos_enc = torch.reshape(pos_enc, list(sh)[:-1] + [-1]) + if self.concat_or_add_pos == "concat": + inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1) + elif self.concat_or_add_pos == "add": + inputs_with_pos = inputs + pos_enc + return inputs_with_pos, inputs + + def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True): + if self.prep_type == "conv": + # Convnet image featurization. + # Downsamples spatially by a factor of 4 + inputs = self.convnet(inputs) + + elif self.prep_type == "conv1x1": + # map inputs to self.out_channels + inputs = self.convnet_1x1(inputs) + + elif self.prep_type == "pixels": + # if requested, downsamples in the crudest way + if inputs.ndim == 4: + inputs = inputs[:: self.spatial_downsample, :: self.spatial_downsample] + elif inputs.ndim == 5: + inputs = inputs[ + :, :: self.temporal_downsample, :, :: self.spatial_downsample, :: self.spatial_downsample + ] + else: + raise ValueError("Unsupported data format for pixels.") + + elif self.prep_type == "patches": + # Space2depth featurization. + # Video: B x T x C x H x W + inputs = space_to_depth( + inputs, temporal_block_size=self.temporal_downsample, spatial_block_size=self.spatial_downsample + ) + + if inputs.ndim == 5 and inputs.shape[1] == 1: + # for flow + inputs = inputs.squeeze(dim=1) + + # Optionally apply conv layer. + inputs = self.conv_after_patches(inputs) + + if self.prep_type != "patches": + # move channels to last dimension, as the _build_network_inputs method below expects this + if inputs.ndim == 4: + inputs = inputs.permute(0, 2, 3, 1) + elif inputs.ndim == 5: + inputs = inputs.permute(0, 1, 3, 4, 2) + else: + raise ValueError("Unsupported data format for conv1x1.") + + inputs, inputs_without_pos = self._build_network_inputs(inputs, network_input_is_1d) + modality_sizes = None # Size for each modality, only needed for multimodal + + return inputs, modality_sizes, inputs_without_pos + + +class PerceiverOneHotPreprocessor(AbstractPreprocessor): + """ + One-hot preprocessor for Perceiver Encoder. Can be used to add a dummy index dimension to the input. + + Args: + config ([`PerceiverConfig`]): + Model configuration. + """ + + def __init__(self, config: PerceiverConfig) -> None: + super().__init__() + self.config: PerceiverConfig = config + + @property + def num_channels(self) -> int: + return self.config.num_labels + + def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True): + # Add a dummy index dimension. + inputs = inputs[:, None, :] + + # No position encodings, so the 1st (input) and 3rd (inputs_without_pos) + # outputs are identical. + return inputs, None, inputs + + +class PerceiverAudioPreprocessor(AbstractPreprocessor): + """ + Audio preprocessing for Perceiver Encoder. + + Args: + config ([*PerceiverConfig*]): + Model configuration. + prep_type (`str`, *optional*, defaults to `"patches"`): + Preprocessor type to use. Only "patches" is supported. + samples_per_patch (`int`, *optional*, defaults to 96): + Number of samples per patch. + position_encoding_type (`str`, *optional*, defaults to `"fourier"`): + Type of position encoding to use. Can be "trainable" or "fourier". + concat_or_add_pos (`str`, *optional*, defaults to `"concat"`): + How to concatenate the position encoding to the input. Can be "concat" or "add". + out_channels (`int`, *optional*, defaults to 64): + Number of channels in the output. + project_pos_dim (`int`, *optional*, defaults to -1): + Dimension of the position encoding to project to. If -1, no projection is applied. + **position_encoding_kwargs (`Dict`, *optional*): + Keyword arguments for the position encoding. + """ + + def __init__( + self, + config, + prep_type: str = "patches", + samples_per_patch: int = 96, + position_encoding_type: str = "fourier", + concat_or_add_pos: str = "concat", + out_channels=64, + project_pos_dim=-1, + **position_encoding_kwargs, + ): + super().__init__() + self.config = config + + if prep_type not in ("patches",): + raise ValueError(f"Prep_type {prep_type} is invalid, can only be 'patches'.") + + if concat_or_add_pos not in ["concat", "add"]: + raise ValueError(f"Concat_or_pos {concat_or_add_pos} is invalid, can only be 'concat' or 'add'.") + + self.samples_per_patch = samples_per_patch + self.position_encoding_type = position_encoding_type + self.concat_or_add_pos = concat_or_add_pos + self.project_pos_dim = project_pos_dim + + # Position embeddings + self.position_embeddings, self.positions_projection = build_position_encoding( + position_encoding_type=position_encoding_type, + out_channels=out_channels, + project_pos_dim=project_pos_dim, + **position_encoding_kwargs, + ) + + @property + def num_channels(self) -> int: + # position embedding + if self.project_pos_dim > 0: + pos_dim = self.project_pos_dim + else: + pos_dim = self.position_embeddings.output_size() + if self.concat_or_add_pos == "add": + return pos_dim + return self.samples_per_patch + pos_dim + + def _build_network_inputs(self, inputs): + """Construct the final input, including position encoding.""" + batch_size = inputs.shape[0] + index_dims = inputs.shape[1:-1] + + # Construct the position encoding. + if self.position_encoding_type == "trainable": + pos_enc = self.position_embeddings(batch_size) + elif self.position_encoding_type == "fourier": + pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype) + + # Optionally project them to a target dimension. + pos_enc = self.positions_projection(pos_enc) + + if self.concat_or_add_pos == "concat": + inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1) + elif self.concat_or_add_pos == "add": + inputs_with_pos = inputs + pos_enc + + return inputs_with_pos, inputs + + def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True): + inputs = torch.reshape(inputs, [inputs.shape[0], -1, self.samples_per_patch]) + + inputs, inputs_without_pos = self._build_network_inputs(inputs) + modality_sizes = None # Size for each modality, only needed for multimodal + + return inputs, modality_sizes, inputs_without_pos + + +class PerceiverMultimodalPreprocessor(AbstractPreprocessor): + """ + Multimodal preprocessing for Perceiver Encoder. + + Inputs for each modality are preprocessed, then padded with trainable position embeddings to have the same number + of channels. + + Args: + modalities (`Mapping[str, PreprocessorType]`): + Dict mapping modality name to preprocessor. + mask_probs (`Dict[str, float]`): + Dict mapping modality name to masking probability of that modality. + min_padding_size (`int`, *optional*, defaults to 2): + The minimum padding size for all modalities. The final output will have num_channels equal to the maximum + channels across all modalities plus min_padding_size. + """ + + def __init__( + self, + modalities: Mapping[str, PreprocessorType], + mask_probs: Optional[Mapping[str, float]] = None, + min_padding_size: int = 2, + ): + super().__init__() + self.modalities = nn.ModuleDict(modalities) + self.min_padding_size = min_padding_size + self.mask_probs = mask_probs if mask_probs is not None else {} + self.padding = nn.ParameterDict( + { + modality: nn.Parameter(torch.randn(1, self.num_channels - preprocessor.num_channels)) + for modality, preprocessor in modalities.items() + } + ) + self.mask = nn.ParameterDict( + {modality: nn.Parameter(torch.randn(1, self.num_channels)) for modality, _ in self.mask_probs.items()} + ) + + @property + def num_channels(self) -> int: + max_channel_size = max(processor.num_channels for _, processor in self.modalities.items()) + common_channel_size = max_channel_size + self.min_padding_size + return common_channel_size + + def forward( + self, inputs: Mapping[str, torch.Tensor], pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True + ) -> PreprocessorOutputType: + padded = {} + modality_sizes = {} + inputs_without_pos = {} + for modality, preprocessor in self.modalities.items(): + # preprocess each modality using the respective preprocessor. + output, _, inputs_without_pos[modality] = preprocessor( + inputs[modality], pos=pos, network_input_is_1d=network_input_is_1d + ) + + # pad to the same common_channel_size. + batch_size, num_samples, num_channels = output.shape + pos_enc = self.padding[modality].expand(batch_size, -1, -1) + + padding = torch.broadcast_to( + pos_enc, + [batch_size, num_samples, self.num_channels - num_channels], + ) + output_padded = torch.cat([output, padding], dim=2) + + # mask if required + if modality in self.mask_probs: + mask_token = self.mask[modality].expand(batch_size, -1, -1) + mask_prob = self.mask_probs[modality] + mask = torch.bernoulli(torch.full([batch_size, num_samples], mask_prob)) + mask = torch.unsqueeze(mask, dim=2).to(mask_token.device) + output_padded = (1 - mask) * output_padded + mask * mask_token + + padded[modality] = output_padded + modality_sizes[modality] = output_padded.shape[1] + + # Apply a predictable ordering to the modalities + padded_ls = [padded[k] for k in sorted(padded.keys())] + + # Finally, concatenate along the time dimension + final_inputs = torch.cat(padded_ls, dim=1) + + return final_inputs, modality_sizes, inputs_without_pos diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/tokenization_perceiver.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/tokenization_perceiver.py new file mode 100644 index 0000000000000000000000000000000000000000..b4ec1e378e567143c6636da6f192c31a7be9e7b9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/perceiver/tokenization_perceiver.py @@ -0,0 +1,198 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization class for Perceiver.""" + + +from typing import Dict, List, Optional, Tuple + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class PerceiverTokenizer(PreTrainedTokenizer): + """ + Construct a Perceiver tokenizer. The Perceiver simply uses raw bytes utf-8 encoding. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + bos_token (`str`, *optional*, defaults to `"[BOS]"`): + The BOS token (reserved in the vocab, but not actually used). + eos_token (`str`, *optional*, defaults to `"[EOS]"`): + The end of sequence token (reserved in the vocab, but not actually used). + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The MASK token, useful for masked language modeling. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The CLS token (reserved in the vocab, but not actually used). + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from two sequences. + + """ + + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + pad_token="[PAD]", + bos_token="[BOS]", + eos_token="[EOS]", + mask_token="[MASK]", + cls_token="[CLS]", + sep_token="[SEP]", + model_max_length=2048, + **kwargs, + ) -> None: + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + mask_token = AddedToken(mask_token, lstrip=False, rstrip=False) if isinstance(mask_token, str) else mask_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + + self._utf_vocab_size = 2**8 # utf is 8 bits + + # Since these tokens are not part of the vocabulary, we manually add them + self._added_tokens_decoder: Dict[str, int] = { + 0: pad_token, + 1: bos_token, + 2: eos_token, + 3: mask_token, + 4: cls_token, + 5: sep_token, + } + self._num_special_tokens = len(self._added_tokens_decoder) + super().__init__( + pad_token=pad_token, + bos_token=bos_token, + eos_token=eos_token, + mask_token=mask_token, + cls_token=cls_token, + sep_token=sep_token, + model_max_length=model_max_length, + **kwargs, + ) + + def get_vocab(self) -> Dict[str, int]: + vocab = {} + for i in range(self._utf_vocab_size): + token = chr(i) + vocab[token] = i + self._num_special_tokens + vocab.update(self.added_tokens_encoder) + return vocab + + @property + def vocab_size(self): + return self._utf_vocab_size + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + # normal case: some special tokens + if token_ids_1 is None: + return [1] + [0] * len(token_ids_0) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks. A sequence has the + following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + else: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 + [self.sep_token_id] + + def _tokenize(self, text: str) -> List[str]: + """Take as input a string and return a list of strings (tokens) for words/sub-words""" + tokens = [chr(i) for i in text.encode("utf-8")] + return tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + if len(token) != 1: + token_id = self.unk_token_id + else: + token_id = ord(token) + self._num_special_tokens + return token_id + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + token = chr(index - self._num_special_tokens) + return token + + # TODO @ArthurZ refactor this as well.... + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + bstring = b"" + for token in tokens: + if token in self.added_tokens_encoder: + tok_string = str(token).encode("utf-8") + else: + tok_string = bytes([ord(token)]) + bstring += tok_string + string = bstring.decode("utf-8", errors="replace") + return string + + # PerceiverTokenizer has no vocab file + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + return () diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/__pycache__/convert_fairseq2_to_hf.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/__pycache__/convert_fairseq2_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a427b42084e51a134baba301565fb66a2e7587fc Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/__pycache__/convert_fairseq2_to_hf.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/__pycache__/modeling_seamless_m4t_v2.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/__pycache__/modeling_seamless_m4t_v2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1d495bc4f71337e4b5b3ef005ad244aaef6b39d4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/seamless_m4t_v2/__pycache__/modeling_seamless_m4t_v2.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..313767c02dda89ccb6c3691c56843bb3559be7ca --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__init__.py @@ -0,0 +1,77 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +# rely on isort to merge the imports +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = { + "configuration_superpoint": [ + "SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP", + "SuperPointConfig", + ] +} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["image_processing_superpoint"] = ["SuperPointImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_superpoint"] = [ + "SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST", + "SuperPointForKeypointDetection", + "SuperPointPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_superpoint import ( + SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP, + SuperPointConfig, + ) + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .image_processing_superpoint import SuperPointImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_superpoint import ( + SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST, + SuperPointForKeypointDetection, + SuperPointPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/configuration_superpoint.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/configuration_superpoint.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..64562f295d9b514d4dce5e499a5fedacaf50c243 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/configuration_superpoint.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/convert_superpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/convert_superpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..53368a8c4787349864696ca5efe19a9d0de1b55e Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/convert_superpoint_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/modeling_superpoint.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/modeling_superpoint.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..137bd3fcc7c9582faf9fc3f7ab082301b220b574 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/__pycache__/modeling_superpoint.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/configuration_superpoint.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/configuration_superpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..5970a6e1b4134d08d1fa17f69bbf50316d341665 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/configuration_superpoint.py @@ -0,0 +1,91 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import List + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "magic-leap-community/superpoint": "https://huggingface.co/magic-leap-community/superpoint/blob/main/config.json" +} + + +class SuperPointConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a + SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the SuperPoint + [magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`): + The number of channels in each convolutional layer in the encoder. + decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder. + keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder. + descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder. + keypoint_threshold (`float`, *optional*, defaults to 0.005): + The threshold to use for extracting keypoints. + max_keypoints (`int`, *optional*, defaults to -1): + The maximum number of keypoints to extract. If `-1`, will extract all keypoints. + nms_radius (`int`, *optional*, defaults to 4): + The radius for non-maximum suppression. + border_removal_distance (`int`, *optional*, defaults to 4): + The distance from the border to remove keypoints. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + + Example: + ```python + >>> from transformers import SuperPointConfig, SuperPointForKeypointDetection + + >>> # Initializing a SuperPoint superpoint style configuration + >>> configuration = SuperPointConfig() + >>> # Initializing a model from the superpoint style configuration + >>> model = SuperPointForKeypointDetection(configuration) + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "superpoint" + + def __init__( + self, + encoder_hidden_sizes: List[int] = [64, 64, 128, 128], + decoder_hidden_size: int = 256, + keypoint_decoder_dim: int = 65, + descriptor_decoder_dim: int = 256, + keypoint_threshold: float = 0.005, + max_keypoints: int = -1, + nms_radius: int = 4, + border_removal_distance: int = 4, + initializer_range=0.02, + **kwargs, + ): + self.encoder_hidden_sizes = encoder_hidden_sizes + self.decoder_hidden_size = decoder_hidden_size + self.keypoint_decoder_dim = keypoint_decoder_dim + self.descriptor_decoder_dim = descriptor_decoder_dim + self.keypoint_threshold = keypoint_threshold + self.max_keypoints = max_keypoints + self.nms_radius = nms_radius + self.border_removal_distance = border_removal_distance + self.initializer_range = initializer_range + + super().__init__(**kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/convert_superpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/convert_superpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..18755bf4fe01b2b6de2a0a2e0970df7f06909c5a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/convert_superpoint_to_pytorch.py @@ -0,0 +1,175 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import os + +import requests +import torch +from PIL import Image + +from transformers import SuperPointConfig, SuperPointForKeypointDetection, SuperPointImageProcessor + + +def get_superpoint_config(): + config = SuperPointConfig( + encoder_hidden_sizes=[64, 64, 128, 128], + decoder_hidden_size=256, + keypoint_decoder_dim=65, + descriptor_decoder_dim=256, + keypoint_threshold=0.005, + max_keypoints=-1, + nms_radius=4, + border_removal_distance=4, + initializer_range=0.02, + ) + + return config + + +def create_rename_keys(config, state_dict): + rename_keys = [] + + # Encoder weights + rename_keys.append(("conv1a.weight", "encoder.conv_blocks.0.conv_a.weight")) + rename_keys.append(("conv1b.weight", "encoder.conv_blocks.0.conv_b.weight")) + rename_keys.append(("conv2a.weight", "encoder.conv_blocks.1.conv_a.weight")) + rename_keys.append(("conv2b.weight", "encoder.conv_blocks.1.conv_b.weight")) + rename_keys.append(("conv3a.weight", "encoder.conv_blocks.2.conv_a.weight")) + rename_keys.append(("conv3b.weight", "encoder.conv_blocks.2.conv_b.weight")) + rename_keys.append(("conv4a.weight", "encoder.conv_blocks.3.conv_a.weight")) + rename_keys.append(("conv4b.weight", "encoder.conv_blocks.3.conv_b.weight")) + rename_keys.append(("conv1a.bias", "encoder.conv_blocks.0.conv_a.bias")) + rename_keys.append(("conv1b.bias", "encoder.conv_blocks.0.conv_b.bias")) + rename_keys.append(("conv2a.bias", "encoder.conv_blocks.1.conv_a.bias")) + rename_keys.append(("conv2b.bias", "encoder.conv_blocks.1.conv_b.bias")) + rename_keys.append(("conv3a.bias", "encoder.conv_blocks.2.conv_a.bias")) + rename_keys.append(("conv3b.bias", "encoder.conv_blocks.2.conv_b.bias")) + rename_keys.append(("conv4a.bias", "encoder.conv_blocks.3.conv_a.bias")) + rename_keys.append(("conv4b.bias", "encoder.conv_blocks.3.conv_b.bias")) + + # Keypoint Decoder weights + rename_keys.append(("convPa.weight", "keypoint_decoder.conv_score_a.weight")) + rename_keys.append(("convPb.weight", "keypoint_decoder.conv_score_b.weight")) + rename_keys.append(("convPa.bias", "keypoint_decoder.conv_score_a.bias")) + rename_keys.append(("convPb.bias", "keypoint_decoder.conv_score_b.bias")) + + # Descriptor Decoder weights + rename_keys.append(("convDa.weight", "descriptor_decoder.conv_descriptor_a.weight")) + rename_keys.append(("convDb.weight", "descriptor_decoder.conv_descriptor_b.weight")) + rename_keys.append(("convDa.bias", "descriptor_decoder.conv_descriptor_a.bias")) + rename_keys.append(("convDb.bias", "descriptor_decoder.conv_descriptor_b.bias")) + + return rename_keys + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +def prepare_imgs(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im1 = Image.open(requests.get(url, stream=True).raw) + url = "http://images.cocodataset.org/test-stuff2017/000000004016.jpg" + im2 = Image.open(requests.get(url, stream=True).raw) + return [im1, im2] + + +@torch.no_grad() +def convert_superpoint_checkpoint(checkpoint_url, pytorch_dump_folder_path, save_model, push_to_hub, test_mode=False): + """ + Copy/paste/tweak model's weights to our SuperPoint structure. + """ + + print("Downloading original model from checkpoint...") + config = get_superpoint_config() + + # load original state_dict from URL + original_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url) + + print("Converting model parameters...") + # rename keys + rename_keys = create_rename_keys(config, original_state_dict) + new_state_dict = original_state_dict.copy() + for src, dest in rename_keys: + rename_key(new_state_dict, src, dest) + + # Load HuggingFace model + model = SuperPointForKeypointDetection(config) + model.load_state_dict(new_state_dict) + model.eval() + print("Successfully loaded weights in the model") + + # Check model outputs + preprocessor = SuperPointImageProcessor() + inputs = preprocessor(images=prepare_imgs(), return_tensors="pt") + outputs = model(**inputs) + + # If test_mode is True, we check that the model outputs match the original results + if test_mode: + torch.count_nonzero(outputs.mask[0]) + expected_keypoints_shape = (2, 830, 2) + expected_scores_shape = (2, 830) + expected_descriptors_shape = (2, 830, 256) + + expected_keypoints_values = torch.tensor([[480.0, 9.0], [494.0, 9.0], [489.0, 16.0]]) + expected_scores_values = torch.tensor([0.0064, 0.0140, 0.0595, 0.0728, 0.5170, 0.0175, 0.1523, 0.2055, 0.0336]) + expected_descriptors_value = torch.tensor(-0.1096) + assert outputs.keypoints.shape == expected_keypoints_shape + assert outputs.scores.shape == expected_scores_shape + assert outputs.descriptors.shape == expected_descriptors_shape + + assert torch.allclose(outputs.keypoints[0, :3], expected_keypoints_values, atol=1e-3) + assert torch.allclose(outputs.scores[0, :9], expected_scores_values, atol=1e-3) + assert torch.allclose(outputs.descriptors[0, 0, 0], expected_descriptors_value, atol=1e-3) + print("Model outputs match the original results!") + + if save_model: + print("Saving model to local...") + # Create folder to save model + if not os.path.isdir(pytorch_dump_folder_path): + os.mkdir(pytorch_dump_folder_path) + + model.save_pretrained(pytorch_dump_folder_path) + preprocessor.save_pretrained(pytorch_dump_folder_path) + + model_name = "superpoint" + if push_to_hub: + print(f"Pushing {model_name} to the hub...") + model.push_to_hub(model_name) + preprocessor.push_to_hub(model_name) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--checkpoint_url", + default="https://github.com/magicleap/SuperPointPretrainedNetwork/raw/master/superpoint_v1.pth", + type=str, + help="URL of the original SuperPoint checkpoint you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", + default="model", + type=str, + help="Path to the output PyTorch model directory.", + ) + parser.add_argument("--save_model", action="store_true", help="Save model to local") + parser.add_argument("--push_to_hub", action="store_true", help="Push model and image preprocessor to the hub") + + args = parser.parse_args() + convert_superpoint_checkpoint( + args.checkpoint_url, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/image_processing_superpoint.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/image_processing_superpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..8c7e2a7debacd510ec6de347a3f94e0f67afc9bf --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/image_processing_superpoint.py @@ -0,0 +1,272 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for SuperPoint.""" + +from typing import Dict, Optional, Union + +import numpy as np + +from ... import is_vision_available, requires_backends +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import resize, to_channel_dimension_format +from ...image_utils import ( + ChannelDimension, + ImageInput, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, +) +from ...utils import TensorType, logging + + +if is_vision_available(): + import PIL + +logger = logging.get_logger(__name__) + + +def is_grayscale( + image: ImageInput, + input_data_format: Optional[Union[str, ChannelDimension]] = None, +): + if input_data_format == ChannelDimension.FIRST: + return np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...]) + elif input_data_format == ChannelDimension.LAST: + return np.all(image[..., 0] == image[..., 1]) and np.all(image[..., 1] == image[..., 2]) + + +def convert_to_grayscale( + image: ImageInput, + input_data_format: Optional[Union[str, ChannelDimension]] = None, +) -> ImageInput: + """ + Converts an image to grayscale format using the NTSC formula. Only support numpy and PIL Image. TODO support torch + and tensorflow grayscale conversion + + This function is supposed to return a 1-channel image, but it returns a 3-channel image with the same value in each + channel, because of an issue that is discussed in : + https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446 + + Args: + image (Image): + The image to convert. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. + """ + requires_backends(convert_to_grayscale, ["vision"]) + + if isinstance(image, np.ndarray): + if input_data_format == ChannelDimension.FIRST: + gray_image = image[0, ...] * 0.2989 + image[1, ...] * 0.5870 + image[2, ...] * 0.1140 + gray_image = np.stack([gray_image] * 3, axis=0) + elif input_data_format == ChannelDimension.LAST: + gray_image = image[..., 0] * 0.2989 + image[..., 1] * 0.5870 + image[..., 2] * 0.1140 + gray_image = np.stack([gray_image] * 3, axis=-1) + return gray_image + + if not isinstance(image, PIL.Image.Image): + return image + + image = image.convert("L") + return image + + +class SuperPointImageProcessor(BaseImageProcessor): + r""" + Constructs a SuperPoint image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden + by `do_resize` in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"height": 480, "width": 640}`): + Resolution of the output image after `resize` is applied. Only has an effect if `do_resize` is set to + `True`. Can be overriden by `size` in the `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in + the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess` + method. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Dict[str, int] = None, + do_rescale: bool = True, + rescale_factor: float = 1 / 255, + **kwargs, + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"height": 480, "width": 640} + size = get_size_dict(size, default_to_square=False) + + self.do_resize = do_resize + self.size = size + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ): + """ + Resize an image. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Dictionary of the form `{"height": int, "width": int}`, specifying the size of the output image. + data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the output image. If not provided, it will be inferred from the input + image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + size = get_size_dict(size, default_to_square=False) + + return resize( + image, + size=(size["height"], size["width"]), + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def preprocess( + self, + images, + do_resize: bool = None, + size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: ChannelDimension = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> BatchFeature: + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image + is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the + image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to + `(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`. + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image values between [0 - 1]. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + + do_resize = do_resize if do_resize is not None else self.do_resize + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + + size = size if size is not None else self.size + size = get_size_dict(size, default_to_square=False) + + images = make_list_of_images(images) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + if do_resize and size is None: + raise ValueError("Size must be specified if do_resize is True.") + + if do_rescale and rescale_factor is None: + raise ValueError("Rescale factor must be specified if do_rescale is True.") + + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + if do_resize: + images = [self.resize(image=image, size=size, input_data_format=input_data_format) for image in images] + + if do_rescale: + images = [ + self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + for image in images + ] + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + # Checking if image is RGB or grayscale + for i in range(len(images)): + if not is_grayscale(images[i], input_data_format): + images[i] = convert_to_grayscale(images[i], input_data_format=input_data_format) + + images = [ + to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images + ] + + data = {"pixel_values": images} + + return BatchFeature(data=data, tensor_type=return_tensors) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/modeling_superpoint.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/modeling_superpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..a4350e6d79af6e54388e767637456e8ea485bbe8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/superpoint/modeling_superpoint.py @@ -0,0 +1,507 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch SuperPoint model.""" +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +from torch import nn + +from transformers import PreTrainedModel +from transformers.modeling_outputs import ( + BaseModelOutputWithNoAttention, +) +from transformers.models.superpoint.configuration_superpoint import SuperPointConfig + +from ...pytorch_utils import is_torch_greater_or_equal_than_1_13 +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "SuperPointConfig" + +_CHECKPOINT_FOR_DOC = "magic-leap-community/superpoint" + +SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST = ["magic-leap-community/superpoint"] + + +def remove_keypoints_from_borders( + keypoints: torch.Tensor, scores: torch.Tensor, border: int, height: int, width: int +) -> Tuple[torch.Tensor, torch.Tensor]: + """Removes keypoints (and their associated scores) that are too close to the border""" + mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border)) + mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border)) + mask = mask_h & mask_w + return keypoints[mask], scores[mask] + + +def top_k_keypoints(keypoints: torch.Tensor, scores: torch.Tensor, k: int) -> Tuple[torch.Tensor, torch.Tensor]: + """Keeps the k keypoints with highest score""" + if k >= len(keypoints): + return keypoints, scores + scores, indices = torch.topk(scores, k, dim=0) + return keypoints[indices], scores + + +def simple_nms(scores: torch.Tensor, nms_radius: int) -> torch.Tensor: + """Applies non-maximum suppression on scores""" + if nms_radius < 0: + raise ValueError("Expected positive values for nms_radius") + + def max_pool(x): + return nn.functional.max_pool2d(x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius) + + zeros = torch.zeros_like(scores) + max_mask = scores == max_pool(scores) + for _ in range(2): + supp_mask = max_pool(max_mask.float()) > 0 + supp_scores = torch.where(supp_mask, zeros, scores) + new_max_mask = supp_scores == max_pool(supp_scores) + max_mask = max_mask | (new_max_mask & (~supp_mask)) + return torch.where(max_mask, scores, zeros) + + +@dataclass +class ImagePointDescriptionOutput(ModelOutput): + """ + Base class for outputs of image point description models. Due to the nature of keypoint detection, the number of + keypoints is not fixed and can vary from image to image, which makes batching non-trivial. In the batch of images, + the maximum number of keypoints is set as the dimension of the keypoints, scores and descriptors tensors. The mask + tensor is used to indicate which values in the keypoints, scores and descriptors tensors are keypoint information + and which are padding. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + keypoints (`torch.FloatTensor` of shape `(batch_size, num_keypoints, 2)`): + Relative (x, y) coordinates of predicted keypoints in a given image. + scores (`torch.FloatTensor` of shape `(batch_size, num_keypoints)`): + Scores of predicted keypoints. + descriptors (`torch.FloatTensor` of shape `(batch_size, num_keypoints, descriptor_size)`): + Descriptors of predicted keypoints. + mask (`torch.BoolTensor` of shape `(batch_size, num_keypoints)`): + Mask indicating which values in keypoints, scores and descriptors are keypoint information. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or + when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states + (also called feature maps) of the model at the output of each stage. + """ + + last_hidden_state: torch.FloatTensor = None + keypoints: Optional[torch.IntTensor] = None + scores: Optional[torch.FloatTensor] = None + descriptors: Optional[torch.FloatTensor] = None + mask: Optional[torch.BoolTensor] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +class SuperPointConvBlock(nn.Module): + def __init__( + self, config: SuperPointConfig, in_channels: int, out_channels: int, add_pooling: bool = False + ) -> None: + super().__init__() + self.conv_a = nn.Conv2d( + in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + self.conv_b = nn.Conv2d( + out_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + ) + self.relu = nn.ReLU(inplace=True) + self.pool = nn.MaxPool2d(kernel_size=2, stride=2) if add_pooling else None + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.relu(self.conv_a(hidden_states)) + hidden_states = self.relu(self.conv_b(hidden_states)) + if self.pool is not None: + hidden_states = self.pool(hidden_states) + return hidden_states + + +class SuperPointEncoder(nn.Module): + """ + SuperPoint encoder module. It is made of 4 convolutional layers with ReLU activation and max pooling, reducing the + dimensionality of the image. + """ + + def __init__(self, config: SuperPointConfig) -> None: + super().__init__() + # SuperPoint uses 1 channel images + self.input_dim = 1 + + conv_blocks = [] + conv_blocks.append( + SuperPointConvBlock(config, self.input_dim, config.encoder_hidden_sizes[0], add_pooling=True) + ) + for i in range(1, len(config.encoder_hidden_sizes) - 1): + conv_blocks.append( + SuperPointConvBlock( + config, config.encoder_hidden_sizes[i - 1], config.encoder_hidden_sizes[i], add_pooling=True + ) + ) + conv_blocks.append( + SuperPointConvBlock( + config, config.encoder_hidden_sizes[-2], config.encoder_hidden_sizes[-1], add_pooling=False + ) + ) + self.conv_blocks = nn.ModuleList(conv_blocks) + + def forward( + self, + input, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, BaseModelOutputWithNoAttention]: + all_hidden_states = () if output_hidden_states else None + + for conv_block in self.conv_blocks: + input = conv_block(input) + if output_hidden_states: + all_hidden_states = all_hidden_states + (input,) + output = input + if not return_dict: + return tuple(v for v in [output, all_hidden_states] if v is not None) + + return BaseModelOutputWithNoAttention( + last_hidden_state=output, + hidden_states=all_hidden_states, + ) + + +class SuperPointInterestPointDecoder(nn.Module): + """ + The SuperPointInterestPointDecoder uses the output of the SuperPointEncoder to compute the keypoint with scores. + The scores are first computed by a convolutional layer, then a softmax is applied to get a probability distribution + over the 65 possible keypoint classes. The keypoints are then extracted from the scores by thresholding and + non-maximum suppression. Post-processing is then applied to remove keypoints too close to the image borders as well + as to keep only the k keypoints with highest score. + """ + + def __init__(self, config: SuperPointConfig) -> None: + super().__init__() + self.keypoint_threshold = config.keypoint_threshold + self.max_keypoints = config.max_keypoints + self.nms_radius = config.nms_radius + self.border_removal_distance = config.border_removal_distance + + self.relu = nn.ReLU(inplace=True) + self.pool = nn.MaxPool2d(kernel_size=2, stride=2) + self.conv_score_a = nn.Conv2d( + config.encoder_hidden_sizes[-1], + config.decoder_hidden_size, + kernel_size=3, + stride=1, + padding=1, + ) + self.conv_score_b = nn.Conv2d( + config.decoder_hidden_size, config.keypoint_decoder_dim, kernel_size=1, stride=1, padding=0 + ) + + def forward(self, encoded: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + scores = self._get_pixel_scores(encoded) + keypoints, scores = self._extract_keypoints(scores) + + return keypoints, scores + + def _get_pixel_scores(self, encoded: torch.Tensor) -> torch.Tensor: + """Based on the encoder output, compute the scores for each pixel of the image""" + scores = self.relu(self.conv_score_a(encoded)) + scores = self.conv_score_b(scores) + scores = nn.functional.softmax(scores, 1)[:, :-1] + batch_size, _, height, width = scores.shape + scores = scores.permute(0, 2, 3, 1).reshape(batch_size, height, width, 8, 8) + scores = scores.permute(0, 1, 3, 2, 4).reshape(batch_size, height * 8, width * 8) + scores = simple_nms(scores, self.nms_radius) + return scores + + def _extract_keypoints(self, scores: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + """Based on their scores, extract the pixels that represent the keypoints that will be used for descriptors computation""" + _, height, width = scores.shape + + # Threshold keypoints by score value + keypoints = torch.nonzero(scores[0] > self.keypoint_threshold) + scores = scores[0][tuple(keypoints.t())] + + # Discard keypoints near the image borders + keypoints, scores = remove_keypoints_from_borders( + keypoints, scores, self.border_removal_distance, height * 8, width * 8 + ) + + # Keep the k keypoints with highest score + if self.max_keypoints >= 0: + keypoints, scores = top_k_keypoints(keypoints, scores, self.max_keypoints) + + # Convert (y, x) to (x, y) + keypoints = torch.flip(keypoints, [1]).float() + + return keypoints, scores + + +class SuperPointDescriptorDecoder(nn.Module): + """ + The SuperPointDescriptorDecoder uses the outputs of both the SuperPointEncoder and the + SuperPointInterestPointDecoder to compute the descriptors at the keypoints locations. + + The descriptors are first computed by a convolutional layer, then normalized to have a norm of 1. The descriptors + are then interpolated at the keypoints locations. + """ + + def __init__(self, config: SuperPointConfig) -> None: + super().__init__() + + self.relu = nn.ReLU(inplace=True) + self.pool = nn.MaxPool2d(kernel_size=2, stride=2) + self.conv_descriptor_a = nn.Conv2d( + config.encoder_hidden_sizes[-1], + config.decoder_hidden_size, + kernel_size=3, + stride=1, + padding=1, + ) + self.conv_descriptor_b = nn.Conv2d( + config.decoder_hidden_size, + config.descriptor_decoder_dim, + kernel_size=1, + stride=1, + padding=0, + ) + + def forward(self, encoded: torch.Tensor, keypoints: torch.Tensor) -> torch.Tensor: + """Based on the encoder output and the keypoints, compute the descriptors for each keypoint""" + descriptors = self.conv_descriptor_b(self.relu(self.conv_descriptor_a(encoded))) + descriptors = nn.functional.normalize(descriptors, p=2, dim=1) + + descriptors = self._sample_descriptors(keypoints[None], descriptors[0][None], 8)[0] + + # [descriptor_dim, num_keypoints] -> [num_keypoints, descriptor_dim] + descriptors = torch.transpose(descriptors, 0, 1) + + return descriptors + + @staticmethod + def _sample_descriptors(keypoints, descriptors, scale: int = 8) -> torch.Tensor: + """Interpolate descriptors at keypoint locations""" + batch_size, num_channels, height, width = descriptors.shape + keypoints = keypoints - scale / 2 + 0.5 + divisor = torch.tensor([[(width * scale - scale / 2 - 0.5), (height * scale - scale / 2 - 0.5)]]) + divisor = divisor.to(keypoints) + keypoints /= divisor + keypoints = keypoints * 2 - 1 # normalize to (-1, 1) + kwargs = {"align_corners": True} if is_torch_greater_or_equal_than_1_13 else {} + # [batch_size, num_channels, num_keypoints, 2] -> [batch_size, num_channels, num_keypoints, 2] + keypoints = keypoints.view(batch_size, 1, -1, 2) + descriptors = nn.functional.grid_sample(descriptors, keypoints, mode="bilinear", **kwargs) + # [batch_size, descriptor_decoder_dim, num_channels, num_keypoints] -> [batch_size, descriptor_decoder_dim, num_keypoints] + descriptors = descriptors.reshape(batch_size, num_channels, -1) + descriptors = nn.functional.normalize(descriptors, p=2, dim=1) + return descriptors + + +class SuperPointPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = SuperPointConfig + base_model_prefix = "superpoint" + main_input_name = "pixel_values" + supports_gradient_checkpointing = False + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def extract_one_channel_pixel_values(self, pixel_values: torch.FloatTensor) -> torch.FloatTensor: + """ + Assuming pixel_values has shape (batch_size, 3, height, width), and that all channels values are the same, + extract the first channel value to get a tensor of shape (batch_size, 1, height, width) for SuperPoint. This is + a workaround for the issue discussed in : + https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446 + + Args: + pixel_values: torch.FloatTensor of shape (batch_size, 3, height, width) + + Returns: + pixel_values: torch.FloatTensor of shape (batch_size, 1, height, width) + + """ + return pixel_values[:, 0, :, :][:, None, :, :] + + +SUPERPOINT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`SuperPointConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. + """ + +SUPERPOINT_INPUTS_DOCSTRING = r""" +Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`SuperPointImageProcessor`]. See + [`SuperPointImageProcessor.__call__`] for details. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more + detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + + +@add_start_docstrings( + "SuperPoint model outputting keypoints and descriptors.", + SUPERPOINT_START_DOCSTRING, +) +class SuperPointForKeypointDetection(SuperPointPreTrainedModel): + """ + SuperPoint model. It consists of a SuperPointEncoder, a SuperPointInterestPointDecoder and a + SuperPointDescriptorDecoder. SuperPoint was proposed in `SuperPoint: Self-Supervised Interest Point Detection and + Description `__ by Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. It + is a fully convolutional neural network that extracts keypoints and descriptors from an image. It is trained in a + self-supervised manner, using a combination of a photometric loss and a loss based on the homographic adaptation of + keypoints. It is made of a convolutional encoder and two decoders: one for keypoints and one for descriptors. + """ + + def __init__(self, config: SuperPointConfig) -> None: + super().__init__(config) + + self.config = config + + self.encoder = SuperPointEncoder(config) + self.keypoint_decoder = SuperPointInterestPointDecoder(config) + self.descriptor_decoder = SuperPointDescriptorDecoder(config) + + self.post_init() + + @add_start_docstrings_to_model_forward(SUPERPOINT_INPUTS_DOCSTRING) + def forward( + self, + pixel_values: torch.FloatTensor = None, + labels: Optional[torch.LongTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ImagePointDescriptionOutput]: + """ + Examples: + + ```python + >>> from transformers import AutoImageProcessor, SuperPointForKeypointDetection + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint") + >>> model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint") + + >>> inputs = processor(image, return_tensors="pt") + >>> outputs = model(**inputs) + ```""" + + if labels is not None: + raise ValueError( + f"SuperPoint is not trainable, no labels should be provided.Therefore, labels should be None but were {type(labels)}" + ) + + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + pixel_values = self.extract_one_channel_pixel_values(pixel_values) + + batch_size = pixel_values.shape[0] + + encoder_outputs = self.encoder( + pixel_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_state = encoder_outputs[0] + + list_keypoints_scores = [ + self.keypoint_decoder(last_hidden_state[None, ...]) for last_hidden_state in last_hidden_state + ] + + list_keypoints = [keypoints_scores[0] for keypoints_scores in list_keypoints_scores] + list_scores = [keypoints_scores[1] for keypoints_scores in list_keypoints_scores] + + list_descriptors = [ + self.descriptor_decoder(last_hidden_state[None, ...], keypoints[None, ...]) + for last_hidden_state, keypoints in zip(last_hidden_state, list_keypoints) + ] + + maximum_num_keypoints = max(keypoints.shape[0] for keypoints in list_keypoints) + + keypoints = torch.zeros((batch_size, maximum_num_keypoints, 2), device=pixel_values.device) + scores = torch.zeros((batch_size, maximum_num_keypoints), device=pixel_values.device) + descriptors = torch.zeros( + (batch_size, maximum_num_keypoints, self.config.descriptor_decoder_dim), + device=pixel_values.device, + ) + mask = torch.zeros((batch_size, maximum_num_keypoints), device=pixel_values.device, dtype=torch.int) + + for i, (_keypoints, _scores, _descriptors) in enumerate(zip(list_keypoints, list_scores, list_descriptors)): + keypoints[i, : _keypoints.shape[0]] = _keypoints + scores[i, : _scores.shape[0]] = _scores + descriptors[i, : _descriptors.shape[0]] = _descriptors + mask[i, : _scores.shape[0]] = 1 + + hidden_states = encoder_outputs[1] if output_hidden_states else None + if not return_dict: + return tuple( + v for v in [last_hidden_state, keypoints, scores, descriptors, mask, hidden_states] if v is not None + ) + + return ImagePointDescriptionOutput( + last_hidden_state=last_hidden_state, + keypoints=keypoints, + scores=scores, + descriptors=descriptors, + mask=mask, + hidden_states=hidden_states, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e1f89d73ac47c588d20ba9eccc6186af0f01781e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__init__.py @@ -0,0 +1,65 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = {"configuration_yoso": ["YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP", "YosoConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_yoso"] = [ + "YOSO_PRETRAINED_MODEL_ARCHIVE_LIST", + "YosoForMaskedLM", + "YosoForMultipleChoice", + "YosoForQuestionAnswering", + "YosoForSequenceClassification", + "YosoForTokenClassification", + "YosoLayer", + "YosoModel", + "YosoPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_yoso import YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP, YosoConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_yoso import ( + YOSO_PRETRAINED_MODEL_ARCHIVE_LIST, + YosoForMaskedLM, + YosoForMultipleChoice, + YosoForQuestionAnswering, + YosoForSequenceClassification, + YosoForTokenClassification, + YosoLayer, + YosoModel, + YosoPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..34c6115c6396af1d6df486b6840c877faab7b7f4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4ad3da2c187e2a33aa518b2cc17768dc62c4e068 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/configuration_yoso.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/convert_yoso_pytorch_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/convert_yoso_pytorch_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5d39688a02e06c2ca7f3d1c3eb51d56224525d4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/convert_yoso_pytorch_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..924a8e72f78ae6793bb1c4691e5c7e9bb14bd01d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/__pycache__/modeling_yoso.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py new file mode 100644 index 0000000000000000000000000000000000000000..02d7f44d3cf2a08fa1bbd59af1c768fd7ed2dfa1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/configuration_yoso.py @@ -0,0 +1,146 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" YOSO model configuration""" + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + +YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "uw-madison/yoso-4096": "https://huggingface.co/uw-madison/yoso-4096/resolve/main/config.json", + # See all YOSO models at https://huggingface.co/models?filter=yoso +} + + +class YosoConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`YosoModel`]. It is used to instantiate an YOSO + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the YOSO + [uw-madison/yoso-4096](https://huggingface.co/uw-madison/yoso-4096) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50265): + Vocabulary size of the YOSO model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`YosoModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimension of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the `token_type_ids` passed when calling [`YosoModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. + use_expectation (`bool`, *optional*, defaults to `True`): + Whether or not to use YOSO Expectation. Overrides any effect of num_hash. + hash_code_len (`int`, *optional*, defaults to 9): + The length of hashes generated by the hash functions. + num_hash (`int`, *optional*, defaults to 64): + Number of hash functions used in [`YosoSelfAttention`]. + conv_window (`int`, *optional*): + Kernel size of depth-wise convolution. + use_fast_hash (`bool`, *optional*, defaults to `False`): + Whether or not to use custom cuda kernels which perform fast random projection via hadamard transform. + lsh_backward (`bool`, *optional*, defaults to `True`): + Whether or not to perform backpropagation using Locality Sensitive Hashing. + + Example: + + ```python + >>> from transformers import YosoConfig, YosoModel + + >>> # Initializing a YOSO uw-madison/yoso-4096 style configuration + >>> configuration = YosoConfig() + + >>> # Initializing a model (with random weights) from the uw-madison/yoso-4096 style configuration + >>> model = YosoModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "yoso" + + def __init__( + self, + vocab_size=50265, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=4096, + type_vocab_size=1, + initializer_range=0.02, + layer_norm_eps=1e-12, + position_embedding_type="absolute", + use_expectation=True, + hash_code_len=9, + num_hash=64, + conv_window=None, + use_fast_hash=True, + lsh_backward=True, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.type_vocab_size = type_vocab_size + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_expectation = use_expectation + self.hash_code_len = hash_code_len + self.num_hash = num_hash + self.conv_window = conv_window + self.use_fast_hash = use_fast_hash + self.lsh_backward = lsh_backward diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..be46a4de81b30cff5c826bd9f298b2ee7a8fecbb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py @@ -0,0 +1,108 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert YOSO checkpoints from the original repository. URL: https://github.com/mlpen/YOSO""" + +import argparse + +import torch + +from transformers import YosoConfig, YosoForMaskedLM + + +def rename_key(orig_key): + if "model" in orig_key: + orig_key = orig_key.replace("model.", "") + if "norm1" in orig_key: + orig_key = orig_key.replace("norm1", "attention.output.LayerNorm") + if "norm2" in orig_key: + orig_key = orig_key.replace("norm2", "output.LayerNorm") + if "norm" in orig_key: + orig_key = orig_key.replace("norm", "LayerNorm") + if "transformer" in orig_key: + layer_num = orig_key.split(".")[0].split("_")[-1] + orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}") + if "mha.attn" in orig_key: + orig_key = orig_key.replace("mha.attn", "attention.self") + if "mha" in orig_key: + orig_key = orig_key.replace("mha", "attention") + if "W_q" in orig_key: + orig_key = orig_key.replace("W_q", "self.query") + if "W_k" in orig_key: + orig_key = orig_key.replace("W_k", "self.key") + if "W_v" in orig_key: + orig_key = orig_key.replace("W_v", "self.value") + if "ff1" in orig_key: + orig_key = orig_key.replace("ff1", "intermediate.dense") + if "ff2" in orig_key: + orig_key = orig_key.replace("ff2", "output.dense") + if "ff" in orig_key: + orig_key = orig_key.replace("ff", "output.dense") + if "mlm_class" in orig_key: + orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder") + if "mlm" in orig_key: + orig_key = orig_key.replace("mlm", "cls.predictions.transform") + if "cls" not in orig_key: + orig_key = "yoso." + orig_key + + return orig_key + + +def convert_checkpoint_helper(max_position_embeddings, orig_state_dict): + for key in orig_state_dict.copy().keys(): + val = orig_state_dict.pop(key) + + if ("pooler" in key) or ("sen_class" in key): + continue + else: + orig_state_dict[rename_key(key)] = val + + orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"] + orig_state_dict["yoso.embeddings.position_ids"] = torch.arange(max_position_embeddings).expand((1, -1)) + 2 + + return orig_state_dict + + +def convert_yoso_checkpoint(checkpoint_path, yoso_config_file, pytorch_dump_path): + orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"] + config = YosoConfig.from_json_file(yoso_config_file) + model = YosoForMaskedLM(config) + + new_state_dict = convert_checkpoint_helper(config.max_position_embeddings, orig_state_dict) + + print(model.load_state_dict(new_state_dict)) + model.eval() + model.save_pretrained(pytorch_dump_path) + + print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." + ) + parser.add_argument( + "--config_file", + default=None, + type=str, + required=True, + help="The json file for YOSO model config.", + ) + parser.add_argument( + "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py new file mode 100644 index 0000000000000000000000000000000000000000..41e34a6c66c42bd54d3711536996b4abd03c5be1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/yoso/modeling_yoso.py @@ -0,0 +1,1309 @@ +# coding=utf-8 +# Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch YOSO model.""" + + +import math +from pathlib import Path +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutputWithCrossAttentions, + MaskedLMOutput, + MultipleChoiceModelOutput, + QuestionAnsweringModelOutput, + SequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_ninja_available, + is_torch_cuda_available, + logging, +) +from .configuration_yoso import YosoConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096" +_CONFIG_FOR_DOC = "YosoConfig" + +YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "uw-madison/yoso-4096", + # See all YOSO models at https://huggingface.co/models?filter=yoso +] + +lsh_cumulation = None + + +def load_cuda_kernels(): + global lsh_cumulation + from torch.utils.cpp_extension import load + + def append_root(files): + src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "yoso" + return [src_folder / file for file in files] + + src_files = append_root(["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"]) + + load("fast_lsh_cumulation", src_files, verbose=True) + + import fast_lsh_cumulation as lsh_cumulation + + +def to_contiguous(input_tensors): + if isinstance(input_tensors, list): + out = [] + for tensor in input_tensors: + if not tensor.is_contiguous(): + tensor = tensor.contiguous() + out.append(tensor) + return out + else: + if not input_tensors.is_contiguous(): + input_tensors = input_tensors.contiguous() + return input_tensors + + +def normalize(input_tensors): + if isinstance(input_tensors, list): + out = [] + for tensor in input_tensors: + out.append(nn.functional.normalize(tensor, p=2, dim=-1)) + return out + else: + return nn.functional.normalize(input_tensors, p=2, dim=-1) + + +def hashing(query, key, num_hash, hash_len): + if len(query.size()) != 3: + raise ValueError("Query has incorrect size.") + if len(key.size()) != 3: + raise ValueError("Key has incorrect size.") + + rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device) + raise_pow = 2 ** torch.arange(hash_len, device=query.device) + + query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len) + key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len) + query_binary = (query_projection > 0).int() + key_binary = (key_projection > 0).int() + query_hash = torch.sum(query_binary * raise_pow, dim=-1) + query_hash = torch.sum(key_binary * raise_pow, dim=-1) + + return query_hash.int(), query_hash.int() + + +class YosoCumulation(torch.autograd.Function): + @staticmethod + def forward(ctx, query_mask, key_mask, query, key, value, config): + hash_code_len = config["hash_code_len"] + + expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len + expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] + cumulation_value = torch.matmul(expectation, value) + + ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value) + ctx.config = config + + return cumulation_value + + @staticmethod + def backward(ctx, grad): + grad = to_contiguous(grad) + + query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors + config = ctx.config + + hash_code_len = config["hash_code_len"] + + weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation + grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) + grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) + grad_value = torch.matmul(expectation.transpose(-1, -2), grad) + + return None, None, grad_query, grad_key, grad_value, None + + +class YosoLSHCumulation(torch.autograd.Function): + @staticmethod + def forward(ctx, query_mask, key_mask, query, key, value, config): + if query_mask.size(0) != key_mask.size(0): + raise ValueError("Query mask and Key mask differ in sizes in dimension 0") + if query_mask.size(0) != query.size(0): + raise ValueError("Query mask and Query differ in sizes in dimension 0") + if query_mask.size(0) != key.size(0): + raise ValueError("Query mask and Key differ in sizes in dimension 0") + if query_mask.size(0) != value.size(0): + raise ValueError("Query mask and Value mask differ in sizes in dimension 0") + if key.size(1) != value.size(1): + raise ValueError("Key and Value differ in sizes in dimension 1") + if query.size(2) != key.size(2): + raise ValueError("Query and Key differ in sizes in dimension 2") + + query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value]) + + use_cuda = query_mask.is_cuda + num_hash = config["num_hash"] + hash_code_len = config["hash_code_len"] + hashtable_capacity = int(2**hash_code_len) + + if config["use_fast_hash"]: + query_hash_code, key_hash_code = lsh_cumulation.fast_hash( + query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1 + ) + else: + query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len) + + cumulation_value = lsh_cumulation.lsh_cumulation( + query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1 + ) + + ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value) + ctx.config = config + + return cumulation_value + + @staticmethod + def backward(ctx, grad): + grad = to_contiguous(grad) + + query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors + config = ctx.config + + use_cuda = grad.is_cuda + hash_code_len = config["hash_code_len"] + hashtable_capacity = int(2**hash_code_len) + + if config["lsh_backward"]: + grad_value = lsh_cumulation.lsh_cumulation( + key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1 + ) + grad_query = lsh_cumulation.lsh_weighted_cumulation( + query_mask, + query_hash_code, + grad, + key_mask, + key_hash_code, + value, + (hash_code_len / 2) * key, + hashtable_capacity, + use_cuda, + 4, + ) + grad_key = lsh_cumulation.lsh_weighted_cumulation( + key_mask, + key_hash_code, + value, + query_mask, + query_hash_code, + grad, + (hash_code_len / 2) * query, + hashtable_capacity, + use_cuda, + 4, + ) + else: + expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len + expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] + weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation + grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) + grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) + grad_value = torch.matmul(expectation.transpose(-1, -2), grad) + + return None, None, grad_query, grad_key, grad_value, None + + +# Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings +class YosoEmbeddings(nn.Module): + """Construct the embeddings from word, position and token_type embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) + self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False + ) + self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") + self.register_buffer( + "token_type_ids", + torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), + persistent=False, + ) + + def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, :seq_length] + + # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs + # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves + # issue #5664 + if token_type_ids is None: + if hasattr(self, "token_type_ids"): + buffered_token_type_ids = self.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + + embeddings = inputs_embeds + token_type_embeddings + if self.position_embedding_type == "absolute": + position_embeddings = self.position_embeddings(position_ids) + embeddings += position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class YosoSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + kernel_loaded = lsh_cumulation is not None + if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded: + try: + load_cuda_kernels() + except Exception as e: + logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}") + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = ( + position_embedding_type if position_embedding_type is not None else config.position_embedding_type + ) + + self.use_expectation = config.use_expectation + self.hash_code_len = config.hash_code_len + self.use_conv = config.conv_window is not None + self.use_fast_hash = config.use_fast_hash + self.num_hash = config.num_hash + self.lsh_backward = config.lsh_backward + + self.lsh_config = { + "hash_code_len": self.hash_code_len, + "use_fast_hash": self.use_fast_hash, + "num_hash": self.num_hash, + "lsh_backward": self.lsh_backward, + } + + if config.conv_window is not None: + self.conv = nn.Conv2d( + in_channels=config.num_attention_heads, + out_channels=config.num_attention_heads, + kernel_size=(config.conv_window, 1), + padding=(config.conv_window // 2, 0), + bias=False, + groups=config.num_attention_heads, + ) + + def transpose_for_scores(self, layer): + new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + layer = layer.view(*new_layer_shape) + return layer.permute(0, 2, 1, 3) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + if self.use_conv: + conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None]) + + batch_size, num_heads, seq_len, head_dim = query_layer.size() + + query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim) + key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim) + value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim) + + attention_mask = 1.0 + attention_mask / 10000.0 + attention_mask = ( + attention_mask.unsqueeze(1) + .repeat_interleave(num_heads, dim=1) + .reshape(batch_size * num_heads, seq_len) + .int() + ) + + # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs + # smaller than this are padded with zeros. + gpu_warp_size = 32 + + if (not self.use_expectation) and head_dim < gpu_warp_size: + pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim + + query_layer = torch.cat( + [ + query_layer, + torch.zeros(pad_size, device=query_layer.device), + ], + dim=-1, + ) + key_layer = torch.cat( + [ + key_layer, + torch.zeros(pad_size, device=key_layer.device), + ], + dim=-1, + ) + value_layer = torch.cat( + [ + value_layer, + torch.zeros(pad_size, device=value_layer.device), + ], + dim=-1, + ) + + if self.use_expectation or self.training: + query_layer, key_layer = normalize([query_layer, key_layer]) + + if self.use_expectation: + context_layer = YosoCumulation.apply( + attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config + ) + else: + context_layer = YosoLSHCumulation.apply( + attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config + ) + + if (not self.use_expectation) and head_dim < gpu_warp_size: + context_layer = context_layer[:, :, :head_dim] + + context_layer = normalize(context_layer) + + context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) + + if self.use_conv: + context_layer += conv_value_layer + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, context_layer) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class YosoSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class YosoAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = YosoSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + self_outputs = self.self(hidden_states, attention_mask, output_attentions) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class YosoIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class YosoOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class YosoLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = YosoAttention(config) + self.add_cross_attention = config.add_cross_attention + self.intermediate = YosoIntermediate(config) + self.output = YosoOutput(config) + + def forward(self, hidden_states, attention_mask=None, output_attentions=False): + self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) + attention_output = self_attention_outputs[0] + + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class YosoEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, attention_mask, output_attentions) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutputWithCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform +class YosoPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso +class YosoLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = YosoPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso +class YosoOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = YosoLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class YosoPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = YosoConfig + base_model_prefix = "yoso" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +YOSO_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`YosoConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +YOSO_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert *input_ids* indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare YOSO Model transformer outputting raw hidden-states without any specific head on top.", + YOSO_START_DOCSTRING, +) +class YosoModel(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embeddings = YosoEmbeddings(config) + self.encoder = YosoEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length)), device=device) + + if token_type_ids is None: + if hasattr(self.embeddings, "token_type_ids"): + buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] + buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) + token_type_ids = buffered_token_type_ids_expanded + else: + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=attention_mask, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + if not return_dict: + return (sequence_output,) + encoder_outputs[1:] + + return BaseModelOutputWithCrossAttentions( + last_hidden_state=sequence_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +@add_start_docstrings("""YOSO Model with a `language modeling` head on top.""", YOSO_START_DOCSTRING) +class YosoForMaskedLM(YosoPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + self.yoso = YosoModel(config) + self.cls = YosoOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MaskedLMOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class YosoClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.out_proj = nn.Linear(config.hidden_size, config.num_labels) + + self.config = config + + def forward(self, features, **kwargs): + x = features[:, 0, :] # take token (equiv. to [CLS]) + x = self.dropout(x) + x = self.dense(x) + x = ACT2FN[self.config.hidden_act](x) + x = self.dropout(x) + x = self.out_proj(x) + return x + + +@add_start_docstrings( + """YOSO Model transformer with a sequence classification/regression head on top (a linear layer on top of + the pooled output) e.g. for GLUE tasks.""", + YOSO_START_DOCSTRING, +) +class YosoForSequenceClassification(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.yoso = YosoModel(config) + self.classifier = YosoClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=SequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """YOSO Model with a multiple choice classification head on top (a linear layer on top of + the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""", + YOSO_START_DOCSTRING, +) +class YosoForMultipleChoice(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.yoso = YosoModel(config) + self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) + self.classifier = nn.Linear(config.hidden_size, 1) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=MultipleChoiceModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, MultipleChoiceModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., + num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See + `input_ids` above) + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] + + input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None + attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None + token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None + position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None + inputs_embeds = ( + inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) + if inputs_embeds is not None + else None + ) + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) + pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) + pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) + pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) + logits = self.classifier(pooled_output) + + reshaped_logits = logits.view(-1, num_choices) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(reshaped_logits, labels) + + if not return_dict: + output = (reshaped_logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return MultipleChoiceModelOutput( + loss=loss, + logits=reshaped_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """YOSO Model with a token classification head on top (a linear layer on top of + the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""", + YOSO_START_DOCSTRING, +) +class YosoForTokenClassification(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.yoso = YosoModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TokenClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + sequence_output = self.dropout(sequence_output) + logits = self.classifier(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + # Only keep active parts of the loss + if attention_mask is not None: + active_loss = attention_mask.view(-1) == 1 + active_logits = logits.view(-1, self.num_labels) + active_labels = torch.where( + active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) + ) + loss = loss_fct(active_logits, active_labels) + else: + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """YOSO Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", + YOSO_START_DOCSTRING, +) +class YosoForQuestionAnswering(YosoPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + config.num_labels = 2 + self.num_labels = config.num_labels + + self.yoso = YosoModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(YOSO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=QuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + token_type_ids: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + start_positions: Optional[torch.Tensor] = None, + end_positions: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, QuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.yoso( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return QuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + )