Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/backends/backend_debug_handler.h +140 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/add_if_then_else.h +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/autocast.h +15 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/bailout_graph.h +34 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/batch_mm.h +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/common_subexpression_elimination.h +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/constant_pooling.h +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/dead_code_elimination.h +42 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/decompose_ops.h +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/dtype_analysis.h +17 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fixup_trace_scope_blocks.h +47 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fold_conv_bn.h +37 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_graph_optimizations.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_linear_transpose.h +13 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fuse_linear.h +24 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/graph_rewrite_helper.h +54 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/guard_elimination.h +19 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/hoist_conv_packed_params.h +12 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inline_fork_wait.h +16 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/insert_guards.h +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lift_closures.h +12 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/liveness.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lower_graph.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/metal_rewrite.h +17 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/mkldnn_rewrite.h +34 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/normalize_ops.h +18 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/onednn_graph_fuser.h +64 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_alias_sensitive.h +17 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_dict_idioms.h +38 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_non_tensor.h +14 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/dedup_module_uses.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/finalize.h +63 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/fusion_passes.h +9 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/helper.h +216 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/insert_observers.h +68 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/insert_quant_dequant.h +46 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/quantization_patterns.h +1272 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/quantization_type.h +15 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/register_packed_params.h +20 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/refine_tuple_types.h +12 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_exceptions.h +23 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_expands.h +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_redundant_profiles.h +11 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/replacement_of_old_operators.h +16 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/restore_mutation.h +63 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/specialize_autogradzero.h +21 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/symbolic_shape_cache.h +57 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/utils/check_alias_annotation.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/utils/memory_dag.h +175 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/utils/op_registry.h +31 -0
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/backends/backend_debug_handler.h
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/ivalue.h>
|
3 |
+
|
4 |
+
#include <torch/csrc/jit/backends/backend_detail.h>
|
5 |
+
#include <torch/csrc/jit/ir/ir.h>
|
6 |
+
#include <torch/csrc/jit/ir/scope.h>
|
7 |
+
|
8 |
+
#include <atomic>
|
9 |
+
|
10 |
+
namespace torch {
|
11 |
+
namespace jit {
|
12 |
+
|
13 |
+
/*
|
14 |
+
* BackendDebugHandleManager is responsible for issuing debug handles to
|
15 |
+
* backends. Debug handles are associated with nodes of a graph.
|
16 |
+
* BackendDebugHandleManager also maintains a map
|
17 |
+
* [debug-handle, DebugInfoTuple = {source range, inlined callstack ptr]} that
|
18 |
+
* will help generate a callstack for exception raised using debug handles.
|
19 |
+
* Effectively debug handles are something that is given to backend and later
|
20 |
+
* when an exception occurs in the backend, backend can tell, using debug
|
21 |
+
* handle, that an exception occurred here. Then the runtime can generate
|
22 |
+
* callstack correspoding to the exception.
|
23 |
+
* There are two parts to BackendDebugHandleManager:
|
24 |
+
* 1. static std::atomic debug_handle
|
25 |
+
* 2. Map of [debug-handle, DebugInfoTuple]
|
26 |
+
*
|
27 |
+
* About 1:
|
28 |
+
* Why do they have to be unique. The reason is that by ensuring
|
29 |
+
* uniqueness of debug handles, we remove the burden of another layer of
|
30 |
+
* mapping where we need to say this set of debug handles were generated for
|
31 |
+
* this lowered module or this bytecode function. This simplifies the API for
|
32 |
+
* serialization since debug handles can uniquely identify DebugInfoTuple.
|
33 |
+
* Thus simplifies the runtime API for throwing exception. Exception throwing
|
34 |
+
* only needs to know debug_handle and not which module or method threw it.
|
35 |
+
* There are 2 issues to keep in mind, though,for static std::atomic
|
36 |
+
* debug_handle: A. Performance implications of using atomic variable. However
|
37 |
+
* this is only used for compilation so we assume to absorb some of that
|
38 |
+
* penalty. Plus if there is no contention then we should have less to worry
|
39 |
+
* about. B. If repeated compilation is part of a long running process then we
|
40 |
+
* may overflow int64_t. We may detect and fail on this. For now this is not
|
41 |
+
* done.
|
42 |
+
*
|
43 |
+
* Now about 2:
|
44 |
+
* There are two usecases for [debug-handle, DebugInfoTuple]
|
45 |
+
* A. During bytecode generation the DebugInfoTuple corresponding to the nodes
|
46 |
+
* of the inlined graph being serialized, are stored in this object and a
|
47 |
+
* unique debug handle is returned. This unique debug handle is stored in
|
48 |
+
* mobile_debug info for pytorch lite models. It will be used for raising
|
49 |
+
* exceptions as well as profiling. B. During backend lowering, each backend's
|
50 |
+
* preprocess/compile method can compile method's graph and serialize those
|
51 |
+
* methods. Once the method is lowered to backend, graph is essentially lost.
|
52 |
+
* Without access to graph it is hard to generate model level debug info. Thus
|
53 |
+
* the debug handles provide a way to map nodes of the graph to the model level
|
54 |
+
* debug info.
|
55 |
+
*
|
56 |
+
* During byte-code model serialization, [debug-handle, DebugInfoTuple] is
|
57 |
+
* serialized. Now we know a. debug handles and b. how to map debug handles to
|
58 |
+
* model source code. Thus we can either do eager symbolication by converting
|
59 |
+
* debug handles to corresponding source code at runtime, or do lazy
|
60 |
+
* symbolicattion offline.
|
61 |
+
*
|
62 |
+
* Note that it is not necessary to serialize [debug-handle, DebugInfoTuple]
|
63 |
+
* corresponding to lowered backend if the lowering process, that is
|
64 |
+
* preprocess/compile, and execution happens in the same session, then eager
|
65 |
+
* symbolication can be employed.
|
66 |
+
*
|
67 |
+
* Now how does BackendDebugHandleManager capture all of the above?
|
68 |
+
* By providing two API.
|
69 |
+
* 1. getNextDebugHandle which given a Node* returns a unique debug handle,
|
70 |
+
* that will uniquely identify DebugInfoTuple.
|
71 |
+
* and
|
72 |
+
* 2. getCallStackPtrMap which returns the map
|
73 |
+
* [debug-handle, DebugInfoTuple]
|
74 |
+
*
|
75 |
+
* 1 provides debug handles to backends and 2 provides runtime a way to map
|
76 |
+
* debug handles to source level debug info.
|
77 |
+
*
|
78 |
+
* So why does debug handle map to DebugInfoTuple = {source range and inlined
|
79 |
+
* cs}? {debug_handle, source_range_tag, serialized_callstack} Take this
|
80 |
+
* example: class L(nn.Module): def __init__(self):
|
81 |
+
* ...
|
82 |
+
* def forward(self, x):
|
83 |
+
* return x * 5
|
84 |
+
* class M(nn.Module):
|
85 |
+
* def __init__(self):
|
86 |
+
* ...
|
87 |
+
* def forward(self, x):
|
88 |
+
* return x - 2
|
89 |
+
* class N(nn.Module):
|
90 |
+
* def __init__(self):
|
91 |
+
* self.m = M()
|
92 |
+
* def forward(self, x):
|
93 |
+
* return self.m(x) + 3
|
94 |
+
* m = torch.jit.script(N())
|
95 |
+
* Once you inline m's forward method, m.forward.graph will look something
|
96 |
+
* like this
|
97 |
+
* graph(%self...):
|
98 |
+
* %x = aten::mul(..)
|
99 |
+
* %x = aten::sub(x, ..)
|
100 |
+
* %y = aten::add(x, ..)
|
101 |
+
* ..
|
102 |
+
* Inlined callstack ptr for these two nodes will look like:
|
103 |
+
* aten::mul's inlined CS (callstack): [N.forward, source range] -> [M.forward,
|
104 |
+
* source range] aten::sub's inlined CS (callstack): [N.forward, source range]
|
105 |
+
* aten::add's inlined CS: null
|
106 |
+
* mul node's inlined CS contains only information about the callsites' source
|
107 |
+
* range The information about mul node's source range ('return x * 5') is not
|
108 |
+
* available in its inlined CS. It is rather part of node's source range
|
109 |
+
* instead of inlined CS. Thus to get full stack: [N.forward, source range] ->
|
110 |
+
* [M.forward, source range] -> [aten::mul's source range] We need to track
|
111 |
+
* mul's source range and inlined CS both.
|
112 |
+
*/
|
113 |
+
|
114 |
+
using BackendDebugInfoMapType =
|
115 |
+
std::unordered_map<torch::jit::DebugHandleType, DebugInfoTuple>;
|
116 |
+
|
117 |
+
/*
|
118 |
+
* This class is used to generate debug info map.
|
119 |
+
* backend's preprocess will call generate_debug_handles (see
|
120 |
+
* backend_detail.cpp), which uses debug_handle_manager to generate debug
|
121 |
+
* handles. When lowering process finishes, calling stopRecording will
|
122 |
+
* return debug info map from debug_handle_manager
|
123 |
+
*/
|
124 |
+
class TORCH_API BackendDebugInfoRecorder {
|
125 |
+
public:
|
126 |
+
BackendDebugInfoRecorder() = default;
|
127 |
+
int64_t getNextDebugHandle(const Node* node);
|
128 |
+
// Reason this is not done as RAII is that work done in stopRecording
|
129 |
+
// can throw, and throwing with dtor will call terminate and thus voids any
|
130 |
+
// exception catching at a higher level.
|
131 |
+
BackendDebugInfoMapType stopRecording();
|
132 |
+
NodeToDebugHandle generate_debug_handles(const std::shared_ptr<Graph>& graph);
|
133 |
+
|
134 |
+
private:
|
135 |
+
static std::atomic<DebugHandleType> unique_debug_handle_;
|
136 |
+
BackendDebugInfoMapType handles_to_inlined_callstack_ptrs_;
|
137 |
+
};
|
138 |
+
|
139 |
+
} // namespace jit
|
140 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/add_if_then_else.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API bool AddIfThenElseOp(std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
} // namespace jit
|
11 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/autocast.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#pragma once
|
3 |
+
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
TORCH_API void Autocast(const std::shared_ptr<Graph>& graph);
|
10 |
+
|
11 |
+
TORCH_API bool setAutocastMode(bool value);
|
12 |
+
TORCH_API bool autocastEnabled();
|
13 |
+
|
14 |
+
} // namespace jit
|
15 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/bailout_graph.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <ATen/core/stack.h>
|
7 |
+
#include <torch/csrc/Export.h>
|
8 |
+
#include <torch/csrc/jit/ir/ir.h>
|
9 |
+
|
10 |
+
#include <list>
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
namespace torch {
|
14 |
+
namespace jit {
|
15 |
+
|
16 |
+
// Replaces prim::Guard nodes with prim::BailOut nodes and
|
17 |
+
// computes sets of inputs needed to resume execution at
|
18 |
+
// bailout points
|
19 |
+
TORCH_API void InsertBailOuts(std::shared_ptr<Graph> graph);
|
20 |
+
|
21 |
+
// Builds a bailout graph into `target` (which is an empty graph)
|
22 |
+
// for a given bailout point `bailout_index`
|
23 |
+
// from the original graph `orig` (the original unoptimized graph)
|
24 |
+
// BailOut graphs allow Interpreter to resume
|
25 |
+
// execution of the (un/de)optimized graph (i.e.
|
26 |
+
// a graph that doesn't rely on any assumptions derived from
|
27 |
+
// on profiling information) from a given BailOut point
|
28 |
+
// should any of the assumptions fail for an actual input.
|
29 |
+
TORCH_API std::shared_ptr<Graph> BuildBailOutGraphFrom(
|
30 |
+
int64_t bailout_index,
|
31 |
+
const std::shared_ptr<Graph>& orig,
|
32 |
+
const std::shared_ptr<Graph>& target);
|
33 |
+
} // namespace jit
|
34 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/batch_mm.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void BatchMM(std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
}
|
11 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/common_subexpression_elimination.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API bool EliminateCommonSubexpression(
|
9 |
+
const std::shared_ptr<Graph>& graph);
|
10 |
+
}
|
11 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/constant_pooling.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void ConstantPooling(const std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
}
|
11 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/dead_code_elimination.h
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// If given a top-level graph, DCE will construct do alias analysis that allows
|
9 |
+
// for "smarter" dead code elimination (we will eliminate mutable ops if we can
|
10 |
+
// prove the mutated values are not used). Otherwise, we will not allow DCE to
|
11 |
+
// eliminate mutable ops.
|
12 |
+
//
|
13 |
+
// So, prefer to use the graph version if you can.
|
14 |
+
enum class DCESideEffectPolicy : uint8_t {
|
15 |
+
// default behavior: dead code elimination will check if a node has side
|
16 |
+
// effects
|
17 |
+
// and not delete it if it does.
|
18 |
+
DONT_DELETE_NODES_WITH_SIDE_EFFECTS,
|
19 |
+
// with this flag, dead code elimination will not check if a node has side
|
20 |
+
// effects and treat nodes with side effects like any other node,
|
21 |
+
// i.e. delete them if their outputs aren't used anywhere.
|
22 |
+
ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS
|
23 |
+
};
|
24 |
+
|
25 |
+
TORCH_API void EliminateDeadCode(
|
26 |
+
const std::shared_ptr<Graph>& graph,
|
27 |
+
DCESideEffectPolicy sideEffectPolicy =
|
28 |
+
DCESideEffectPolicy::DONT_DELETE_NODES_WITH_SIDE_EFFECTS);
|
29 |
+
TORCH_API void EliminateDeadCode(
|
30 |
+
Block* block,
|
31 |
+
bool recurse = true,
|
32 |
+
DCESideEffectPolicy sideEffectPolicy =
|
33 |
+
DCESideEffectPolicy::DONT_DELETE_NODES_WITH_SIDE_EFFECTS);
|
34 |
+
|
35 |
+
// Invoke the user-provided callback on all live values before deleting anything
|
36 |
+
TORCH_API void EliminateDeadCode(
|
37 |
+
Block* block,
|
38 |
+
std::function<void(const std::unordered_set<const Value*>&)> cb,
|
39 |
+
DCESideEffectPolicy sideEffectPolicy =
|
40 |
+
DCESideEffectPolicy::DONT_DELETE_NODES_WITH_SIDE_EFFECTS);
|
41 |
+
} // namespace jit
|
42 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/decompose_ops.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void DecomposeOps(std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
}
|
11 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/dtype_analysis.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
#include <memory>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace jit {
|
9 |
+
struct Graph;
|
10 |
+
|
11 |
+
// Propagate tensor properties (e.g., dtype, device, is_contiguous, layout)
|
12 |
+
// propagation on all tensor objects. Currently, we only support dtype
|
13 |
+
// propagation
|
14 |
+
TORCH_API bool DtypePropagation(std::shared_ptr<Graph>& graph);
|
15 |
+
|
16 |
+
} // namespace jit
|
17 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fixup_trace_scope_blocks.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
// Directly after tracing, we have an ill-formed graph with blocks inserted.
|
10 |
+
// Example:
|
11 |
+
//
|
12 |
+
// graph(%self : ClassType<Module>,
|
13 |
+
// %input.1 : Float(3, 4)):
|
14 |
+
// %1 : ClassType<Module> = prim::GetAttr[name="relu1"](%self)
|
15 |
+
// %2 : ClassType<Module> = prim::GetAttr[name="relu2"](%self)
|
16 |
+
// %3 : ClassType<Module> = prim::GetAttr[name="rrr"](%2)
|
17 |
+
// = prim::TracedModuleForward[scope="__module.relu1"]()
|
18 |
+
// block0():
|
19 |
+
// %input : Float(3, 4) = aten::relu(%input.1),
|
20 |
+
// -> ()
|
21 |
+
// = prim::TracedModuleForward[scope="__module.relu2"](),
|
22 |
+
// block0():
|
23 |
+
// = prim::TracedModuleForward[scope="__module.relu2.rrr"](),
|
24 |
+
// block0():
|
25 |
+
// %6 : Float(3, 4) = aten::relu(%input),
|
26 |
+
// -> ()
|
27 |
+
// -> ()
|
28 |
+
// return (%6)
|
29 |
+
//
|
30 |
+
// In this pass, we:
|
31 |
+
// 1) Lift Value defs to as high of a scope as needed to ensure that
|
32 |
+
// they dominate all their uses. For example, `input` in the above
|
33 |
+
// graph needs to be lifted to the top-level block so that its use
|
34 |
+
// in the second `relu` operator is dominated.
|
35 |
+
// 2) Lambda lift the blocks. This ensures that all values used within
|
36 |
+
// each scope have their defs captured.
|
37 |
+
// 3) Convert the scope blocks into methods on their respective Modules,
|
38 |
+
// and convert TracedModuleForward nodes to CallMethod nodes into those
|
39 |
+
// methods.
|
40 |
+
//
|
41 |
+
// Then, we'll have a well-formed graph with proper method calls.
|
42 |
+
TORCH_API void FixupTraceScopeBlocks(
|
43 |
+
std::shared_ptr<Graph>& graph,
|
44 |
+
Module* self);
|
45 |
+
|
46 |
+
} // namespace jit
|
47 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fold_conv_bn.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
/** \brief Fold Conv2d-BatchNorm2d into Conv2d in all methods of this
|
9 |
+
* module and all its submodules, forward is included by default.
|
10 |
+
*
|
11 |
+
* The weight and bias of the Conv2d are correspondingly updated. Should only be
|
12 |
+
* used on modules in eval mode.
|
13 |
+
*/
|
14 |
+
TORCH_API Module FoldConvBatchNorm(const Module& module);
|
15 |
+
|
16 |
+
struct TORCH_API ConvBNParameters {
|
17 |
+
at::Tensor conv_w;
|
18 |
+
at::Tensor conv_b;
|
19 |
+
at::Tensor bn_rm;
|
20 |
+
at::Tensor bn_rv;
|
21 |
+
double bn_eps = 0.0;
|
22 |
+
at::Tensor bn_w;
|
23 |
+
at::Tensor bn_b;
|
24 |
+
};
|
25 |
+
|
26 |
+
/**
|
27 |
+
* Given the current weight and bias tensors of a Conv module and parameters
|
28 |
+
* of the BatchNorm module we're folding with, compute the updated values
|
29 |
+
* for the weight and bias.
|
30 |
+
*
|
31 |
+
* The function is basically copied from torch/nn/utils/fusion.py
|
32 |
+
*/
|
33 |
+
TORCH_API std::tuple<at::Tensor, at::Tensor> computeUpdatedConvWeightAndBias(
|
34 |
+
const ConvBNParameters& p);
|
35 |
+
|
36 |
+
} // namespace jit
|
37 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_graph_optimizations.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
/** \brief Runs a set of Optimizations that Optimize Frozen Graphs
|
6 |
+
*
|
7 |
+
* Currently this set of optimizations is:
|
8 |
+
* - FoldFrozenConvBatchnorm
|
9 |
+
* - FoldFrozenConvAddOrSub
|
10 |
+
* - FoldFrozenConvMulOrDiv
|
11 |
+
* - FoldFrozenLinearBatchnorm
|
12 |
+
*/
|
13 |
+
|
14 |
+
namespace torch {
|
15 |
+
namespace jit {
|
16 |
+
|
17 |
+
TORCH_API void OptimizeFrozenGraph(
|
18 |
+
std::shared_ptr<Graph>& graph,
|
19 |
+
bool optimize_numerics = true);
|
20 |
+
|
21 |
+
} // namespace jit
|
22 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_linear_transpose.h
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Transposes the weight matrix for frozen linear modules.
|
9 |
+
// and converts it into a matmul
|
10 |
+
TORCH_API bool FrozenLinearTranspose(std::shared_ptr<Graph>& graph);
|
11 |
+
|
12 |
+
} // namespace jit
|
13 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fuse_linear.h
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/** \brief Fusing linear patterns as single at::linear for easier pattern
|
2 |
+
* matching in later passes
|
3 |
+
*/
|
4 |
+
#pragma once
|
5 |
+
|
6 |
+
#include <torch/csrc/jit/ir/ir.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace jit {
|
10 |
+
|
11 |
+
/** \brief Match the at::linear pattern and fuse it into a single at::linear
|
12 |
+
* This pass fuse the addmm or matmul + add generated by JIT back to linear
|
13 |
+
* This pass can be deleted once the JIT can emit the aten::linear in the future
|
14 |
+
*/
|
15 |
+
TORCH_API void FuseLinear(std::shared_ptr<Graph>& graph);
|
16 |
+
|
17 |
+
/** Swap functional linear CallFunctions to aten::linear
|
18 |
+
*/
|
19 |
+
TORCH_API void SwapFunctionalLinear(std::shared_ptr<Graph>& graph);
|
20 |
+
/** Swap all functional linear CallFunctions in module
|
21 |
+
*/
|
22 |
+
TORCH_API void SwapFunctionalLinear(Module& module);
|
23 |
+
} // namespace jit
|
24 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/graph_rewrite_helper.h
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
#include <torch/csrc/jit/ir/irparser.h>
|
5 |
+
#include <torch/csrc/jit/ir/subgraph_matcher.h>
|
6 |
+
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace jit {
|
10 |
+
namespace graph_rewrite_helper {
|
11 |
+
|
12 |
+
std::string getFuncName(Value* func_value);
|
13 |
+
Value* getValue(
|
14 |
+
const std::string& name,
|
15 |
+
const std::unordered_map<const Value*, Value*>& match_vmap,
|
16 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
17 |
+
c10::optional<IValue> getIValue(
|
18 |
+
const std::string& name,
|
19 |
+
const std::unordered_map<const Value*, Value*>& match_vmap,
|
20 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
21 |
+
TORCH_API void replaceConvolutionWithAtenConv(std::shared_ptr<Graph>& graph);
|
22 |
+
|
23 |
+
bool isClampFusable(
|
24 |
+
const Match& match,
|
25 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
26 |
+
|
27 |
+
// This struct contains a compiled IR patterns slated for use in the
|
28 |
+
// findPatternMatches function. The struct encapsulates the common
|
29 |
+
// information from parseIR that is used in conjunction with the
|
30 |
+
// pattern matching facility. A const instance of this struct can
|
31 |
+
// also be stored away to cache the compiled IR pattern and reduce
|
32 |
+
// runtime cost
|
33 |
+
struct PatternInfo {
|
34 |
+
std::string pattern_string;
|
35 |
+
std::unique_ptr<Graph> pattern_graph;
|
36 |
+
std::unordered_map<std::string, Value*> vmap;
|
37 |
+
std::vector<MatchFilter> filters;
|
38 |
+
|
39 |
+
static PatternInfo parse_from_str(
|
40 |
+
std::string pattern_string,
|
41 |
+
const std::vector<MatchFilter>& filters = {}) {
|
42 |
+
PatternInfo rv{
|
43 |
+
std::move(pattern_string),
|
44 |
+
std::make_unique<Graph>(),
|
45 |
+
decltype(vmap){},
|
46 |
+
filters};
|
47 |
+
parseIR(rv.pattern_string, rv.pattern_graph.get(), rv.vmap);
|
48 |
+
return rv;
|
49 |
+
}
|
50 |
+
};
|
51 |
+
|
52 |
+
} // namespace graph_rewrite_helper
|
53 |
+
} // namespace jit
|
54 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/guard_elimination.h
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <ATen/core/stack.h>
|
7 |
+
#include <torch/csrc/Export.h>
|
8 |
+
#include <torch/csrc/jit/ir/ir.h>
|
9 |
+
|
10 |
+
#include <list>
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
namespace torch {
|
14 |
+
namespace jit {
|
15 |
+
|
16 |
+
TORCH_API void EliminateRedundantGuards(std::shared_ptr<Graph> graph);
|
17 |
+
|
18 |
+
} // namespace jit
|
19 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/hoist_conv_packed_params.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
void HoistConvPackedParams(script::Module& m);
|
10 |
+
|
11 |
+
} // namespace jit
|
12 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/inline_fork_wait.h
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Inline Fork and Wait calls. This is used, for example, in ONNX export, where
|
9 |
+
// we do not support the explicit parallelism structures and would rather
|
10 |
+
// just have a flat graph. This inlines the forked section in the fork()
|
11 |
+
// callsite and replaces uses of the result of wait() calls with the values
|
12 |
+
// produced from the (now-inlined) forked section.
|
13 |
+
TORCH_API void InlineForkWait(const std::shared_ptr<Graph>& graph);
|
14 |
+
|
15 |
+
} // namespace jit
|
16 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/insert_guards.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <ATen/core/stack.h>
|
7 |
+
#include <torch/csrc/Export.h>
|
8 |
+
#include <torch/csrc/jit/ir/ir.h>
|
9 |
+
|
10 |
+
#include <list>
|
11 |
+
#include <vector>
|
12 |
+
|
13 |
+
namespace torch {
|
14 |
+
namespace jit {
|
15 |
+
|
16 |
+
TORCH_API void InsertGuards(std::shared_ptr<Graph> graph);
|
17 |
+
|
18 |
+
TORCH_API void RemoveProfilingNodes(const std::shared_ptr<Graph>& graph);
|
19 |
+
|
20 |
+
} // namespace jit
|
21 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lift_closures.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
TORCH_API void liftClosures(const std::shared_ptr<Graph>& graph);
|
10 |
+
|
11 |
+
} // namespace jit
|
12 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/liveness.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/ATen.h>
|
4 |
+
#include <ATen/core/ivalue.h>
|
5 |
+
#include <ATen/core/jit_type.h>
|
6 |
+
#include <ATen/core/stack.h>
|
7 |
+
#include <c10/util/sparse_bitset.h>
|
8 |
+
#include <torch/csrc/Export.h>
|
9 |
+
#include <torch/csrc/jit/ir/ir.h>
|
10 |
+
#include <list>
|
11 |
+
#include <unordered_map>
|
12 |
+
#include <vector>
|
13 |
+
namespace torch {
|
14 |
+
namespace jit {
|
15 |
+
|
16 |
+
using SparseBitVector = ::c10::SparseBitVector<256>;
|
17 |
+
|
18 |
+
// BuildLivenessSets computes "bailout" liveness which is equivalent to
|
19 |
+
// "{LIVE_IN} or {GEN}" or "{LIVE_OUT} - {KILL}"
|
20 |
+
TORCH_API std::unordered_map<Node*, std::vector<Value*>> BuildLivenessSets(
|
21 |
+
std::shared_ptr<Graph> graph);
|
22 |
+
} // namespace jit
|
23 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lower_graph.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
using ModulePtr = c10::intrusive_ptr<c10::ivalue::Object>;
|
9 |
+
|
10 |
+
// Given a graph with of a method which first argument is %self, lower it to a
|
11 |
+
// graph where all attributes accesses are replaced with explicit inputs of the
|
12 |
+
// graph (rather than results of prim::GetAttr executed on %self).
|
13 |
+
//
|
14 |
+
// Returns a tuple (graph, parameters) where the last module.parameters.size()
|
15 |
+
// inputs to the graph are the trainable parameters used in this method. The
|
16 |
+
// remaining inputs are the true inputs to the function.
|
17 |
+
TORCH_API std::pair<std::shared_ptr<Graph>, std::vector<IValue>> LowerGraph(
|
18 |
+
Graph& graph,
|
19 |
+
const ModulePtr& self);
|
20 |
+
|
21 |
+
} // namespace jit
|
22 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/metal_rewrite.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <torch/csrc/jit/api/module.h>
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
#include <string>
|
5 |
+
#include <vector>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace jit {
|
9 |
+
TORCH_API void metalInsertPrePackedOps(std::shared_ptr<Graph>& graph);
|
10 |
+
TORCH_API void metalInsertPrePackedOps(script::Module& module);
|
11 |
+
TORCH_API void metalFusePrePackedConvWithClamp(script::Module& module);
|
12 |
+
TORCH_API void metalFoldPrePackingOps(script::Module& module);
|
13 |
+
TORCH_API script::Module metalOptimizeForMobile(
|
14 |
+
const script::Module& module,
|
15 |
+
const std::vector<std::string>& preserved_methods);
|
16 |
+
} // namespace jit
|
17 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/mkldnn_rewrite.h
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Config.h>
|
4 |
+
#include <torch/csrc/jit/api/module.h>
|
5 |
+
#include <torch/csrc/jit/ir/ir.h>
|
6 |
+
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
|
7 |
+
|
8 |
+
#if AT_MKLDNN_ENABLED()
|
9 |
+
|
10 |
+
#include <ideep/tensor.hpp>
|
11 |
+
|
12 |
+
#endif // AT_MKLDNN_ENABLED()
|
13 |
+
|
14 |
+
namespace torch {
|
15 |
+
namespace jit {
|
16 |
+
|
17 |
+
#if AT_MKLDNN_ENABLED()
|
18 |
+
|
19 |
+
namespace mkldnn {
|
20 |
+
|
21 |
+
const static std::map<std::string, std::vector<torch::jit::MatchFilter>>
|
22 |
+
fusion_rewrite_map = {
|
23 |
+
{"none", {}},
|
24 |
+
{"relu", {}},
|
25 |
+
};
|
26 |
+
|
27 |
+
} // namespace mkldnn
|
28 |
+
|
29 |
+
#endif // AT_MKLDNN_ENABLED()
|
30 |
+
|
31 |
+
void FuseConvWithEltwise(std::shared_ptr<Graph>& graph);
|
32 |
+
|
33 |
+
} // namespace jit
|
34 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/normalize_ops.h
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// This pass converts aten ops to a normalized form. It is
|
9 |
+
// run immediately after IR generation in both the tracer and compiler,
|
10 |
+
// so downstream consumers of the IR do not need handle ops in their
|
11 |
+
// pre-normalized form.
|
12 |
+
// Currently only handles normalization of op aliases.
|
13 |
+
TORCH_API void NormalizeOps(const std::shared_ptr<Graph>& graph);
|
14 |
+
|
15 |
+
const std::unordered_map<Symbol, Symbol>& getOperatorAliasMap();
|
16 |
+
|
17 |
+
} // namespace jit
|
18 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/onednn_graph_fuser.h
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
#include <torch/csrc/jit/passes/pass_manager.h>
|
5 |
+
|
6 |
+
#include <ATen/Config.h>
|
7 |
+
|
8 |
+
namespace torch {
|
9 |
+
namespace jit {
|
10 |
+
namespace fuser {
|
11 |
+
namespace onednn {
|
12 |
+
|
13 |
+
static std::atomic<bool> onednn_enabled{true};
|
14 |
+
|
15 |
+
static std::atomic<bool>& getLlgaEnabled() {
|
16 |
+
return onednn_enabled;
|
17 |
+
}
|
18 |
+
|
19 |
+
TORCH_API void fuseGraph(std::shared_ptr<Graph>& g);
|
20 |
+
|
21 |
+
} // namespace onednn
|
22 |
+
} // namespace fuser
|
23 |
+
|
24 |
+
struct C10_EXPORT RegisterLlgaFuseGraph
|
25 |
+
: public PassManager<RegisterLlgaFuseGraph> {
|
26 |
+
static bool setEnabled(bool enabled) {
|
27 |
+
TORCH_CHECK(
|
28 |
+
AT_MKLDNN_ENABLED(),
|
29 |
+
"Running oneDNN Graph fuser is only supported with MKLDNN builds.");
|
30 |
+
bool oldState = fuser::onednn::getLlgaEnabled();
|
31 |
+
fuser::onednn::getLlgaEnabled() = enabled;
|
32 |
+
if (enabled) {
|
33 |
+
registerPass(fuser::onednn::fuseGraph);
|
34 |
+
} else {
|
35 |
+
clearPass();
|
36 |
+
}
|
37 |
+
return oldState;
|
38 |
+
}
|
39 |
+
|
40 |
+
static bool isEnabled() {
|
41 |
+
return fuser::onednn::getLlgaEnabled();
|
42 |
+
}
|
43 |
+
|
44 |
+
// override PassManager::registerPass to register pre-pass
|
45 |
+
static bool registerPass(GraphPass p) {
|
46 |
+
if (!isRegistered()) {
|
47 |
+
passID(registerPrePass(std::move(p)), true);
|
48 |
+
isRegistered(true);
|
49 |
+
return false;
|
50 |
+
}
|
51 |
+
return true;
|
52 |
+
}
|
53 |
+
|
54 |
+
// override PassManager::clearPass to clear pre-pass
|
55 |
+
static void clearPass() {
|
56 |
+
if (isRegistered()) {
|
57 |
+
clearPrePass(passID());
|
58 |
+
isRegistered(true);
|
59 |
+
}
|
60 |
+
}
|
61 |
+
};
|
62 |
+
|
63 |
+
} // namespace jit
|
64 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_alias_sensitive.h
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Peephole Optimizes alias sensitive peepholes
|
9 |
+
// Currently this is invoked as part of PeepholeOptimize
|
10 |
+
// return true if graph is modified
|
11 |
+
// Optimizes on TensorType if shape_peepholes is true
|
12 |
+
TORCH_API bool PeepholeOptimizeAliasSensitive(
|
13 |
+
const std::shared_ptr<Graph>& graph,
|
14 |
+
bool shape_peepholes);
|
15 |
+
|
16 |
+
} // namespace jit
|
17 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_dict_idioms.h
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Peephole Optimizes Dict Ops such as len() and __getitem__
|
9 |
+
// 1. getitem optimizations
|
10 |
+
// Given a function like this:
|
11 |
+
// def foo():
|
12 |
+
// d = {0 : 1}
|
13 |
+
// x = d[0]
|
14 |
+
// return x
|
15 |
+
// This pass produces (after dead code elimination):
|
16 |
+
// def foo(a, b):
|
17 |
+
// return 1
|
18 |
+
//
|
19 |
+
// This optimization can only happen if the dict is not modified
|
20 |
+
// and the dict has constant, non overlapping keys.
|
21 |
+
//
|
22 |
+
// 2. len optimizations
|
23 |
+
// Given a function like this:
|
24 |
+
// def foo():
|
25 |
+
// d = {0 : 1}
|
26 |
+
// return len(d)
|
27 |
+
// This pass produces (after dead code elimination):
|
28 |
+
// def foo():
|
29 |
+
// return 1
|
30 |
+
//
|
31 |
+
// This has the same requirements as the getitem optimizations.
|
32 |
+
//
|
33 |
+
// Currently this is invoked as part of PeepholeOptimize
|
34 |
+
// return true if graph is modified.
|
35 |
+
TORCH_API bool PeepholeOptimizeDictIdioms(const std::shared_ptr<Graph>& graph);
|
36 |
+
|
37 |
+
} // namespace jit
|
38 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_non_tensor.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// return true if graph is modified
|
9 |
+
// Optimizing General Graph Patterns that
|
10 |
+
// are not covered in peephole.cpp and peephole_list_idioms
|
11 |
+
TORCH_API bool PeepholeOptimizeNonTensor(const std::shared_ptr<Graph>& graph);
|
12 |
+
|
13 |
+
} // namespace jit
|
14 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/dedup_module_uses.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
/** Recursively deduplicate multiple uses of the same module by
|
9 |
+
* creating an instance clone for each use of the module, which means
|
10 |
+
* the type will be the same as before and all the attributes will be
|
11 |
+
* copied, then we'll change the use of the original module to the use
|
12 |
+
* of cloned module in the Graph.
|
13 |
+
*
|
14 |
+
* This is done to ensure that modules can survive destructive passes
|
15 |
+
* without changing model behavior. For example, here:
|
16 |
+
*
|
17 |
+
* x = self.conv1(x)
|
18 |
+
* x = self.relu(x)
|
19 |
+
* x = self.conv2(x)
|
20 |
+
* x = self.relu(x)
|
21 |
+
*
|
22 |
+
* self.relu needs to be deduplicated for potential future destructive passes
|
23 |
+
* to work properly.
|
24 |
+
*/
|
25 |
+
TORCH_API void DedupModuleUses(Module& module);
|
26 |
+
|
27 |
+
} // namespace jit
|
28 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/finalize.h
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace jit {
|
9 |
+
|
10 |
+
/** \brief Backend specific pass to fuse dequantize - op - quantize calls
|
11 |
+
* as quantized_op calls.
|
12 |
+
*
|
13 |
+
* Right now this is a fusion for fbgemm backend and only works for quantized
|
14 |
+
* conv op, we'll extend to more ops and more backends in the future.
|
15 |
+
*
|
16 |
+
* Currently supported fusion:
|
17 |
+
* q(conv2d(dq(a), dq(w), dq(b))) --> to_nchw(fbgemm_conv2d(prepack(to_nhwc(a)),
|
18 |
+
* prepack(to_nhwc(w)),
|
19 |
+
* prepack(to_nhwc(b))))
|
20 |
+
*
|
21 |
+
* q(linear(dq(a), dq(w), dq(b))) --> to_nchw(fbgemm_linear(prepack(to_nhwc(a)),
|
22 |
+
* prepack(to_nhwc(w)),
|
23 |
+
* prepack(to_nhwc(b))))
|
24 |
+
*
|
25 |
+
* \param graph the graph we want to apply fusion
|
26 |
+
*/
|
27 |
+
TORCH_API void QuantFusion(
|
28 |
+
std::shared_ptr<Graph>& graph,
|
29 |
+
QuantType quant_type = QuantType::STATIC);
|
30 |
+
|
31 |
+
/** \brief Insert prepack and unpack function in graph
|
32 |
+
* We want add pack/unpack functions for quantized weight because later we want
|
33 |
+
* to fold the packed weight as an attribute of the module, in order to reduce
|
34 |
+
* the cost of packing the weight on the fly in quantized models.
|
35 |
+
*
|
36 |
+
* Each quantized op has it's corresponding prepack/unpack function,
|
37 |
+
* right now, we only need to do prepack/unpack for quantized::linear
|
38 |
+
* and quantized::conv2d.
|
39 |
+
*/
|
40 |
+
TORCH_API void InsertPrepackUnpack(std::shared_ptr<Graph>& graph);
|
41 |
+
|
42 |
+
/** \brief Insert pack and unpack function in all graphs
|
43 |
+
* of module
|
44 |
+
*
|
45 |
+
* Go through graphs of all the methods of all child modules
|
46 |
+
* and call InsertPrepackUnpack on the graph.
|
47 |
+
*/
|
48 |
+
TORCH_API void InsertPrepackUnpack(Module& module);
|
49 |
+
|
50 |
+
TORCH_API script::Module Finalize(
|
51 |
+
script::Module& module,
|
52 |
+
QuantType quant_type = QuantType::STATIC,
|
53 |
+
const std::vector<std::string>& preserved_attrs =
|
54 |
+
std::vector<std::string>());
|
55 |
+
|
56 |
+
TORCH_API void FoldQuantizedPrepackingOps(Module& module);
|
57 |
+
|
58 |
+
TORCH_API Module FinalizeOnDevicePTQ(
|
59 |
+
Module& module,
|
60 |
+
QuantType quant_type,
|
61 |
+
const std::string& method_name);
|
62 |
+
} // namespace jit
|
63 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/fusion_passes.h
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
TORCH_API void FuseQuantizedAddRelu(std::shared_ptr<Graph>& graph);
|
8 |
+
} // namespace jit
|
9 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/helper.h
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <torch/csrc/jit/api/module.h>
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
#include <torch/csrc/jit/ir/subgraph_matcher.h>
|
5 |
+
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
|
6 |
+
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
|
7 |
+
|
8 |
+
#include <functional>
|
9 |
+
#include <regex>
|
10 |
+
|
11 |
+
namespace torch {
|
12 |
+
namespace jit {
|
13 |
+
|
14 |
+
using graph_rewrite_helper::getFuncName;
|
15 |
+
|
16 |
+
// Vector of a module and the name of its method
|
17 |
+
using ModuleMethodVector = std::vector<std::pair<Module, std::string>>;
|
18 |
+
// Map of quantization parameter name and value
|
19 |
+
// for example _scale, _zero_point,
|
20 |
+
// _scalar_type and _axis(for per channel quantization)
|
21 |
+
using QParamVector = std::vector<std::pair<std::string, IValue>>;
|
22 |
+
|
23 |
+
// =========== helper functions for Value =========
|
24 |
+
// Check if a value is weight, since we need to use weight observer
|
25 |
+
// for weight
|
26 |
+
TORCH_API bool isWeight(Value* v);
|
27 |
+
|
28 |
+
// Check if a value is bias for conv and linear, which we do not
|
29 |
+
// quantize
|
30 |
+
TORCH_API bool isBiasOfConvOrLinear(Value* v);
|
31 |
+
|
32 |
+
TORCH_API bool isEmbeddingBagNonInput(Value* v);
|
33 |
+
|
34 |
+
// Get the use as scalar input of clamp ops for the input value
|
35 |
+
c10::optional<Use> getClampScalarInputUse(Value* v);
|
36 |
+
|
37 |
+
// For a given value `v`, get the list of values that we need to check
|
38 |
+
// if they are observed/quantized or not, if so, we can say the
|
39 |
+
// `v` is also observed/quantized, since we can derive
|
40 |
+
// the quantization parameters for `v` given the list of values
|
41 |
+
TORCH_API std::vector<Value*> getPassThroughInputs(Value* v);
|
42 |
+
|
43 |
+
// Clones the method by the name of orig_method_name into new_method_name method
|
44 |
+
TORCH_API void cloneMethod(
|
45 |
+
Module& module,
|
46 |
+
const std::string& orig_method_name,
|
47 |
+
const std::string& new_method_name);
|
48 |
+
|
49 |
+
// Check if a value in the graph is a Scalar value
|
50 |
+
TORCH_API bool isScalar(Value* v);
|
51 |
+
|
52 |
+
// Check if value is the input of the graph
|
53 |
+
TORCH_API bool hitGraphInput(Value* value);
|
54 |
+
|
55 |
+
// Converts a mangled name, such as
|
56 |
+
// __torch__.torch.ao.nn.quantized.modules.conv.___torch_mangle_7.Conv2d
|
57 |
+
// into an unmangled name, such as
|
58 |
+
// __torch__.torch.ao.nn.quantized.modules.conv.Conv2d
|
59 |
+
TORCH_API std::string removeTorchMangle(const std::string& orig_name);
|
60 |
+
|
61 |
+
// Return the module name that corresponds to the value.
|
62 |
+
TORCH_API c10::optional<std::string> getModuleName(Value* value);
|
63 |
+
|
64 |
+
// =========== helper functions for Node =========
|
65 |
+
TORCH_API bool isSingleInputGeneralShapeAtenFunction(Node* n);
|
66 |
+
|
67 |
+
TORCH_API bool isSingleInputGeneralValueAtenFunction(Node* n);
|
68 |
+
|
69 |
+
TORCH_API bool isSingleInputGeneralCallFunction(Node* n);
|
70 |
+
|
71 |
+
TORCH_API bool isSingleInputGeneralAtenFunction(Node* n);
|
72 |
+
|
73 |
+
TORCH_API bool isClamp(Node* n);
|
74 |
+
|
75 |
+
// Check if the node will produce the same result regardless of whether
|
76 |
+
// the input tensor is quantized or not, example: aten::size
|
77 |
+
TORCH_API bool isTensorInfoNode(Node* n);
|
78 |
+
|
79 |
+
// Check if this the propagate op that has single input, e.g. aten::cat
|
80 |
+
TORCH_API bool isPropagateQuantSingleInputOp(Node* n);
|
81 |
+
|
82 |
+
// Check if this is the propagate op that has two inputs, e.g. aten::add
|
83 |
+
TORCH_API bool isPropagateQuantBinaryOp(Node* n);
|
84 |
+
|
85 |
+
// Check if this is the node that we'll quantize or not quantize depending on
|
86 |
+
// whether the input of the node is quantized, example: aten::cat
|
87 |
+
TORCH_API bool isPropagateQuantOp(Node* n);
|
88 |
+
|
89 |
+
// Check if the node is a binary op like aten::add and aten::mul and
|
90 |
+
// if the input 1 is a scalar, these ops will be quantized to
|
91 |
+
// quantized::{op}_scalar
|
92 |
+
TORCH_API bool isBinaryOpWithScalarInput(Node* n);
|
93 |
+
|
94 |
+
TORCH_API c10::optional<std::tuple<c10::QScheme, QParamVector>> getFixedQParams(
|
95 |
+
Node* n);
|
96 |
+
|
97 |
+
// We don't want to analyze the graph for some `builtin` CallFunctions
|
98 |
+
// like `linear` because we want to preserve the op boundary
|
99 |
+
TORCH_API bool userDefinedCallFunction(Node* n);
|
100 |
+
|
101 |
+
// Check if the node has scalar input
|
102 |
+
TORCH_API bool hasScalarInput(Node* n);
|
103 |
+
|
104 |
+
// Check if a node is quantizable
|
105 |
+
TORCH_API bool nodeQuantizable(
|
106 |
+
Node* n,
|
107 |
+
QuantType quant_type = QuantType::STATIC);
|
108 |
+
|
109 |
+
// Nodes which only require quantization of weight value, eg. embedding_bag
|
110 |
+
bool isWeightOnlyStaticQuantOp(Node* n);
|
111 |
+
|
112 |
+
// Check if a use of the value is quantizable, this depends on
|
113 |
+
// both the use node and the offset
|
114 |
+
TORCH_API bool useQuantizable(const Use& use, QuantType quant_type);
|
115 |
+
|
116 |
+
// Given a CallFunction node, extract the graph of the called function
|
117 |
+
TORCH_API std::shared_ptr<Graph> getCallFunctionGraph(Node* n);
|
118 |
+
|
119 |
+
// Check if `use` is a CallFunction of name `func_name` and if value
|
120 |
+
// `v` is the nth argument (if provided) of the function
|
121 |
+
bool matchCallFuncToUse(
|
122 |
+
const Use& use,
|
123 |
+
const std::string& func_name,
|
124 |
+
c10::optional<int> nth_arg);
|
125 |
+
|
126 |
+
// Check if `use` is a AtenFunction of name `func_name` and if value
|
127 |
+
// `v` is the nth argument (if provided) of the function
|
128 |
+
bool matchAtenFuncToUse(
|
129 |
+
const Use& use,
|
130 |
+
const std::string& func_name,
|
131 |
+
c10::optional<int> nth_arg);
|
132 |
+
|
133 |
+
// =========== helper functions for Block =========
|
134 |
+
// checks if a block will always raise an Exception
|
135 |
+
TORCH_API bool alwaysRaisesException(Block* block);
|
136 |
+
|
137 |
+
// =========== helper functions for Module ==========
|
138 |
+
// TODO: remove
|
139 |
+
TORCH_API std::vector<std::string> getModuleAccessPath(
|
140 |
+
Value* instance,
|
141 |
+
Value* self);
|
142 |
+
// TODO: remove
|
143 |
+
TORCH_API Module
|
144 |
+
findChildModule(const Module& module, const std::vector<std::string>& path);
|
145 |
+
|
146 |
+
// Given an CallMethod node, get the module instance corresponding
|
147 |
+
// to the instance Value
|
148 |
+
// TODO: refactor all current uses of this function to the Opt one
|
149 |
+
TORCH_API Module getInvokedModule(Module& module, Node* n, Value* self);
|
150 |
+
|
151 |
+
// Given an CallMethod node, get the module instance corresponding
|
152 |
+
// to the instance Value if the instance is a module, otherwise return
|
153 |
+
// c10::nullopt
|
154 |
+
c10::optional<Module> getInvokedModuleOpt(
|
155 |
+
const Module& module,
|
156 |
+
Node* n,
|
157 |
+
Value* self);
|
158 |
+
|
159 |
+
// ==================== filter functions for matches ==============
|
160 |
+
// filter to check Value `vname` is a constant of int value `value`
|
161 |
+
bool is_int_constant(
|
162 |
+
const Match& match,
|
163 |
+
const std::unordered_map<std::string, Value*>& vmap,
|
164 |
+
const std::string& vname,
|
165 |
+
int value);
|
166 |
+
|
167 |
+
// filter to check if the %alpha argument of aten::add is constant 1
|
168 |
+
bool aten_add_alpha_is_one(
|
169 |
+
const Match& match,
|
170 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
171 |
+
|
172 |
+
// filter to check if the functional in CallFunction is relu
|
173 |
+
bool is_functional_relu(
|
174 |
+
const Match& match,
|
175 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
176 |
+
|
177 |
+
// filter to check if the module is torch.nn.ReLU
|
178 |
+
bool is_relu_module(
|
179 |
+
const Match& match,
|
180 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
181 |
+
|
182 |
+
bool is_linear_module(
|
183 |
+
const Match& match,
|
184 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
185 |
+
|
186 |
+
// TODO: add a macro to declare the filters
|
187 |
+
bool is_conv1d_module(
|
188 |
+
const Match& match,
|
189 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
190 |
+
|
191 |
+
bool is_conv2d_module(
|
192 |
+
const Match& match,
|
193 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
194 |
+
|
195 |
+
bool is_conv3d_module(
|
196 |
+
const Match& match,
|
197 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
198 |
+
|
199 |
+
bool is_conv_transpose1d_module(
|
200 |
+
const Match& match,
|
201 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
202 |
+
|
203 |
+
bool is_conv_transpose2d_module(
|
204 |
+
const Match& match,
|
205 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
206 |
+
|
207 |
+
bool is_batchnorm2d_module(
|
208 |
+
const Match& match,
|
209 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
210 |
+
|
211 |
+
bool is_batchnorm3d_module(
|
212 |
+
const Match& match,
|
213 |
+
const std::unordered_map<std::string, Value*>& vmap);
|
214 |
+
|
215 |
+
} // namespace jit
|
216 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/insert_observers.h
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
|
5 |
+
|
6 |
+
namespace std {
|
7 |
+
|
8 |
+
template <>
|
9 |
+
struct hash<torch::jit::Module> {
|
10 |
+
inline size_t operator()(const torch::jit::Module& arg) const {
|
11 |
+
return std::hash<c10::intrusive_ptr<c10::ivalue::Object>>()(arg._ivalue());
|
12 |
+
}
|
13 |
+
};
|
14 |
+
|
15 |
+
} // namespace std
|
16 |
+
|
17 |
+
namespace torch {
|
18 |
+
namespace jit {
|
19 |
+
|
20 |
+
using QConfig = std::tuple<Module, Module>;
|
21 |
+
using QConfigDict = std::unordered_map<std::string, c10::optional<QConfig>>;
|
22 |
+
|
23 |
+
/** \brief Insert observer module and observer function call for
|
24 |
+
* the Tensors that needs to be observed.
|
25 |
+
*
|
26 |
+
* For each Tensor that needs to be observed in the method, insert observer
|
27 |
+
* module to the input module and add forward calls of observer to the specified
|
28 |
+
* method.
|
29 |
+
*
|
30 |
+
* \param module the input module
|
31 |
+
* \param method_name the method we want to insert observers for
|
32 |
+
* \param qconfig_dict the qconfig dictionary that specifies how
|
33 |
+
* each module is going to be quantized
|
34 |
+
* \param inplace whether we want to do inplace modification to the input module
|
35 |
+
* or clone the module
|
36 |
+
* \param is_dynamic whether the dynamic quantization script is being used.
|
37 |
+
*/
|
38 |
+
TORCH_API Module InsertObservers(
|
39 |
+
Module& module,
|
40 |
+
const std::string& method_name,
|
41 |
+
const QConfigDict& qconfig_dict,
|
42 |
+
bool inplace,
|
43 |
+
QuantType quant_type = QuantType::STATIC);
|
44 |
+
|
45 |
+
/** \brief Insert observer module and observer method for
|
46 |
+
* the Tensors that needs to be observed.
|
47 |
+
*
|
48 |
+
* For each Tensor that needs to be observed in the method, insert observer
|
49 |
+
* module to the input module and observe_<method-name> methods to the module.
|
50 |
+
* This method is clone of mehtod_name with forward calls of observer added.
|
51 |
+
*
|
52 |
+
* \param module the input module
|
53 |
+
* \param method_name the method we want to insert observers for
|
54 |
+
* \param qconfig_dict the qconfig dictionary that specifies how
|
55 |
+
* each module is going to be quantized
|
56 |
+
* \param inplace whether we want to do inplace modification to the input module
|
57 |
+
* or clone the module
|
58 |
+
* \param is_dynamic whether the dynamic quantization script is being used.
|
59 |
+
*/
|
60 |
+
TORCH_API Module InsertObserversForOnDevicePTQ(
|
61 |
+
Module& module,
|
62 |
+
const std::string& method_name,
|
63 |
+
const QConfigDict& qconfig_dict,
|
64 |
+
bool inplace,
|
65 |
+
QuantType quant_type = QuantType::STATIC);
|
66 |
+
|
67 |
+
} // namespace jit
|
68 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/insert_quant_dequant.h
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
#include <torch/csrc/jit/passes/quantization/quantization_type.h>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace jit {
|
9 |
+
|
10 |
+
/** Replicate quantize node for prim::If blocks, so that we can match
|
11 |
+
* quantization patterns in prim::If blocks
|
12 |
+
*/
|
13 |
+
TORCH_API void ReplicateQuant(std::shared_ptr<Graph>& graph);
|
14 |
+
|
15 |
+
/** Replicate dequantize node for each use, so that we can match
|
16 |
+
* quantization patterns
|
17 |
+
*/
|
18 |
+
TORCH_API void ReplicateDeQuant(std::shared_ptr<Graph>& graph);
|
19 |
+
|
20 |
+
/** \brief Insert quantize - dequantize calls to the Tensors
|
21 |
+
* that are observed in insert_observers pass
|
22 |
+
*
|
23 |
+
* For each Tensor that is observed, get the observer module and call
|
24 |
+
* calculate_qparam on the observer module to get quantization parameters
|
25 |
+
* and add quantize - int_repr - dequantize function calls using these
|
26 |
+
* parameters we also have special handling for quantizing "bias" right now.
|
27 |
+
*
|
28 |
+
* \param module the input module
|
29 |
+
* \param method_name the method we want to insert quantization calls for
|
30 |
+
*/
|
31 |
+
TORCH_API Module InsertQuantDeQuant(
|
32 |
+
Module& module,
|
33 |
+
const std::string& method_name,
|
34 |
+
bool inplace,
|
35 |
+
bool debug,
|
36 |
+
QuantType quant_type = QuantType::STATIC);
|
37 |
+
|
38 |
+
TORCH_API Module InsertQuantDeQuantOnDevicePTQ(
|
39 |
+
Module& module,
|
40 |
+
const std::string& method_name,
|
41 |
+
bool inplace,
|
42 |
+
bool debug,
|
43 |
+
QuantType quant_type = QuantType::STATIC);
|
44 |
+
|
45 |
+
} // namespace jit
|
46 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/quantization_patterns.h
ADDED
@@ -0,0 +1,1272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/util/irange.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
#include <torch/csrc/jit/ir/subgraph_matcher.h>
|
6 |
+
#include <torch/csrc/jit/jit_log.h>
|
7 |
+
#include <torch/csrc/jit/passes/quantization/helper.h>
|
8 |
+
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
|
9 |
+
#include <string>
|
10 |
+
#include <unordered_map>
|
11 |
+
#include <utility>
|
12 |
+
|
13 |
+
namespace torch {
|
14 |
+
namespace jit {
|
15 |
+
|
16 |
+
struct QuantFusionInfo {
|
17 |
+
std::string quantized_op_name;
|
18 |
+
std::string pattern;
|
19 |
+
std::string replacement;
|
20 |
+
std::vector<MatchFilter> filters = {};
|
21 |
+
};
|
22 |
+
|
23 |
+
namespace {
|
24 |
+
std::string getExtraArgList(std::vector<std::string> extra_args) {
|
25 |
+
return std::accumulate(
|
26 |
+
extra_args.begin(),
|
27 |
+
extra_args.end(),
|
28 |
+
std::string(),
|
29 |
+
[](std::string acc, const std::string& arg) { return acc + ", " + arg; });
|
30 |
+
}
|
31 |
+
|
32 |
+
// Get the pattern we want to replace the match with
|
33 |
+
std::string getAtenOpPattern(
|
34 |
+
const std::string& graph_header,
|
35 |
+
const std::string& op_name,
|
36 |
+
const std::vector<std::string>& extra_op_args,
|
37 |
+
bool scalar_args = false) {
|
38 |
+
std::vector<std::string> _extra_op_args = extra_op_args;
|
39 |
+
std::string aten_op_pattern = graph_header;
|
40 |
+
if (scalar_args) {
|
41 |
+
for (const auto& extra_arg : _extra_op_args) {
|
42 |
+
aten_op_pattern
|
43 |
+
.append(R"(
|
44 |
+
)")
|
45 |
+
.append(extra_arg)
|
46 |
+
.append("_scalar = aten::item(")
|
47 |
+
.append(extra_arg)
|
48 |
+
.append(")");
|
49 |
+
}
|
50 |
+
|
51 |
+
for (auto& _extra_op_arg : _extra_op_args) {
|
52 |
+
_extra_op_arg.append("_scalar");
|
53 |
+
}
|
54 |
+
}
|
55 |
+
const auto& extra_op_arg_list = getExtraArgList(std::move(_extra_op_args));
|
56 |
+
aten_op_pattern += R"(
|
57 |
+
%r = )";
|
58 |
+
aten_op_pattern += op_name + "(" + "%a_quant" + extra_op_arg_list + ")";
|
59 |
+
aten_op_pattern += R"(
|
60 |
+
return (%r) )";
|
61 |
+
return aten_op_pattern;
|
62 |
+
}
|
63 |
+
|
64 |
+
// generate ops for quantize pattern for a scalar value
|
65 |
+
std::string getQuantizeForScalar(const std::string& value) {
|
66 |
+
// 6 is `torch.float` ScalarType, we are creating a float scalar
|
67 |
+
// tensor from a scalar value
|
68 |
+
std::string quantize_pattern = R"(
|
69 |
+
)" +
|
70 |
+
value + "_float_scalar_type : int = prim::Constant[value=6]()";
|
71 |
+
quantize_pattern += R"(
|
72 |
+
)" +
|
73 |
+
value + "_none : None = prim::Constant()";
|
74 |
+
quantize_pattern += R"(
|
75 |
+
)" +
|
76 |
+
value + "_tensor : Tensor = aten::scalar_tensor(" + value + ", " + value +
|
77 |
+
"_float_scalar_type";
|
78 |
+
for (const auto i : c10::irange(3)) {
|
79 |
+
(void)i; // Suppress unused variable warning
|
80 |
+
quantize_pattern += ", " + value + "_none";
|
81 |
+
}
|
82 |
+
quantize_pattern += ")";
|
83 |
+
quantize_pattern +=
|
84 |
+
R"(
|
85 |
+
)" +
|
86 |
+
value + "_quant = aten::quantize_per_tensor(" + value + "_tensor" +
|
87 |
+
getExtraArgList(
|
88 |
+
{value + "_scale", value + "_zero_point", value + "_dtype"}) +
|
89 |
+
")";
|
90 |
+
return quantize_pattern;
|
91 |
+
}
|
92 |
+
|
93 |
+
std::string getDequantize(const std::string& value) {
|
94 |
+
return R"(
|
95 |
+
)" +
|
96 |
+
value + "_dequant = aten::dequantize(" + value + "_quant)";
|
97 |
+
}
|
98 |
+
|
99 |
+
std::string getItem(const std::string& value) {
|
100 |
+
return R"(
|
101 |
+
)" +
|
102 |
+
value + "_scalar : float = aten::item(" + value + "_dequant)";
|
103 |
+
}
|
104 |
+
|
105 |
+
// Patterns for the ops that inherit parameters from input
|
106 |
+
std::string getInputTensorQParamOpPattern(
|
107 |
+
const std::string& op_name,
|
108 |
+
const std::vector<std::string>& extra_op_args) {
|
109 |
+
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
|
110 |
+
std::string op_pattern = "graph(%a_quant" + extra_op_arg_list + "):" + R"(
|
111 |
+
%a_dequant = aten::dequantize(%a_quant)
|
112 |
+
%r = )" +
|
113 |
+
op_name + "(" + "%a_dequant" + extra_op_arg_list + ")" + R"(
|
114 |
+
%r_scale : float = aten::q_scale(%a_quant)
|
115 |
+
%r_zero_point : int = aten::q_zero_point(%a_quant)
|
116 |
+
%r_dtype : int = prim::dtype(%a_quant)
|
117 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
118 |
+
return (%r_quant) )";
|
119 |
+
return op_pattern;
|
120 |
+
}
|
121 |
+
|
122 |
+
// QuantFusionInfo for the ops that inherit parameters from input
|
123 |
+
QuantFusionInfo getInputTensorQParamOpFusionInfo(
|
124 |
+
const std::string& op_name,
|
125 |
+
const std::vector<std::string>& extra_op_args) {
|
126 |
+
std::string op_pattern =
|
127 |
+
getInputTensorQParamOpPattern(op_name, extra_op_args);
|
128 |
+
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
|
129 |
+
std::string graph_header = "graph(%a_quant" + extra_op_arg_list + "):";
|
130 |
+
std::string op_replacement =
|
131 |
+
getAtenOpPattern(graph_header, op_name, extra_op_args);
|
132 |
+
|
133 |
+
return {op_name, std::move(op_pattern), std::move(op_replacement)};
|
134 |
+
}
|
135 |
+
|
136 |
+
// quant fusion for ops like `quantized::add_scalar`, `quantized::mul_scalar`
|
137 |
+
QuantFusionInfo getBinaryOpScalarFusionInfo(
|
138 |
+
const std::string& op_name,
|
139 |
+
const std::vector<std::string>& extra_op_args,
|
140 |
+
const std::string& quantized_op_name,
|
141 |
+
const std::vector<std::string>& extra_quantized_op_args,
|
142 |
+
const std::vector<MatchFilter>& filters = {}) {
|
143 |
+
std::string op_pattern =
|
144 |
+
getInputTensorQParamOpPattern(op_name, extra_op_args);
|
145 |
+
|
146 |
+
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
|
147 |
+
std::string graph_header = "graph(%a_quant" + extra_op_arg_list + "):";
|
148 |
+
std::string op_replacement = getAtenOpPattern(
|
149 |
+
graph_header, quantized_op_name, extra_quantized_op_args);
|
150 |
+
|
151 |
+
return {op_name, std::move(op_pattern), std::move(op_replacement), filters};
|
152 |
+
}
|
153 |
+
|
154 |
+
QuantFusionInfo getClampOpFusionInfo(
|
155 |
+
const std::string& op_name,
|
156 |
+
const std::vector<std::string>& extra_op_args) {
|
157 |
+
std::vector<std::string> header_args = extra_op_args;
|
158 |
+
std::vector<std::string> input_qparams = {"_scale", "_zero_point", "_dtype"};
|
159 |
+
for (const auto& arg : extra_op_args) {
|
160 |
+
for (const auto& qparam : input_qparams) {
|
161 |
+
header_args.push_back(arg + qparam);
|
162 |
+
}
|
163 |
+
}
|
164 |
+
for (const auto& qparam : input_qparams) {
|
165 |
+
header_args.push_back("%r" + qparam);
|
166 |
+
}
|
167 |
+
const auto& extra_header_arg_list = getExtraArgList(std::move(header_args));
|
168 |
+
std::string graph_header = "graph(%a_quant" + extra_header_arg_list + "):";
|
169 |
+
std::string op_pattern = graph_header;
|
170 |
+
for (const auto& arg : extra_op_args) {
|
171 |
+
op_pattern += getQuantizeForScalar(arg);
|
172 |
+
op_pattern += getDequantize(arg);
|
173 |
+
op_pattern += getItem(arg);
|
174 |
+
}
|
175 |
+
op_pattern += getDequantize("%a");
|
176 |
+
op_pattern += R"(
|
177 |
+
%r = )";
|
178 |
+
std::vector<std::string> scalar_extra_args;
|
179 |
+
scalar_extra_args.reserve(extra_op_args.size());
|
180 |
+
for (const auto& arg : extra_op_args) {
|
181 |
+
scalar_extra_args.push_back(arg + "_scalar");
|
182 |
+
}
|
183 |
+
op_pattern += op_name + "(" + "%a_dequant" +
|
184 |
+
getExtraArgList(std::move(scalar_extra_args)) + ")";
|
185 |
+
// IR pattern common to all ops that inherit qparam from input
|
186 |
+
op_pattern += R"(
|
187 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
188 |
+
return (%r_quant) )";
|
189 |
+
|
190 |
+
std::string aten_op_pattern =
|
191 |
+
getAtenOpPattern(graph_header, op_name, extra_op_args);
|
192 |
+
|
193 |
+
return {op_name, std::move(op_pattern), std::move(aten_op_pattern)};
|
194 |
+
}
|
195 |
+
|
196 |
+
// Patterns for the ops that has fixed quantization parameters
|
197 |
+
QuantFusionInfo getFixedQParamOpFusionInfo(
|
198 |
+
const std::string& op_name,
|
199 |
+
const std::vector<std::string>& extra_op_args,
|
200 |
+
bool is_symmetric) {
|
201 |
+
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
|
202 |
+
std::string graph_header = "graph(%a_quant" + extra_op_arg_list + "):";
|
203 |
+
std::string op_pattern = graph_header;
|
204 |
+
op_pattern += R"(
|
205 |
+
%a_dequant = aten::dequantize(%a_quant)
|
206 |
+
%r = )";
|
207 |
+
op_pattern += op_name + "(" + "%a_dequant" + extra_op_arg_list + ")";
|
208 |
+
// IR pattern common to all ops with fixed quantization parameters for
|
209 |
+
// asymetric quantization
|
210 |
+
std::string asym_fixed_qparam_op_suffix = R"(
|
211 |
+
%r_scale : float = prim::Constant[value=0.00390625]()
|
212 |
+
%r_zero_point : int = prim::Constant[value=0]()
|
213 |
+
%r_dtype : int = prim::Constant[value=13]()
|
214 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
215 |
+
return (%r_quant) )";
|
216 |
+
|
217 |
+
std::string sym_fixed_qparam_op_suffix = R"(
|
218 |
+
%r_scale : float = prim::Constant[value=0.0078125]()
|
219 |
+
%r_zero_point : int = prim::Constant[value=128]()
|
220 |
+
%r_dtype : int = prim::Constant[value=13]()
|
221 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
222 |
+
return (%r_quant) )";
|
223 |
+
op_pattern +=
|
224 |
+
is_symmetric ? sym_fixed_qparam_op_suffix : asym_fixed_qparam_op_suffix;
|
225 |
+
|
226 |
+
std::string aten_op_pattern =
|
227 |
+
getAtenOpPattern(graph_header, op_name, extra_op_args);
|
228 |
+
|
229 |
+
return {op_name, std::move(op_pattern), std::move(aten_op_pattern)};
|
230 |
+
}
|
231 |
+
|
232 |
+
// filter that checks %b_scalar is a scalar
|
233 |
+
bool input_b_is_scalar(
|
234 |
+
const Match& match,
|
235 |
+
const std::unordered_map<std::string, Value*>& vmap) {
|
236 |
+
const auto& match_vmap = match.values_map;
|
237 |
+
auto b_scalar = match_vmap.at(vmap.at("b_scalar"));
|
238 |
+
return isScalar(b_scalar);
|
239 |
+
}
|
240 |
+
|
241 |
+
// Patterns for ops that require observation for output quantization parameters
|
242 |
+
// Example:
|
243 |
+
//
|
244 |
+
// before fusion:
|
245 |
+
//
|
246 |
+
// graph(%a_quant, %r_scale, %r_zero_point, %r_dtype):
|
247 |
+
// %a_dequant = aten::dequantize(%a_quant)
|
248 |
+
// %r = {op_name}(%a_dequant, {extra_args})
|
249 |
+
// %r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point,
|
250 |
+
// %r_dtype) return (%r_quant)
|
251 |
+
//
|
252 |
+
// after fusion:
|
253 |
+
//
|
254 |
+
// graph(%a_quant, %r_scale, %r_zero_point, %r_dtype):
|
255 |
+
// %r_quant = {quantized_op_name}(%a_quant, {extra_args}, %r_scale,
|
256 |
+
// %r_zero_point) return (%r_quant)
|
257 |
+
QuantFusionInfo getObservedQParamOpFusionInfo(
|
258 |
+
const std::string& fp_op_name,
|
259 |
+
const std::string& q_op_name,
|
260 |
+
const std::vector<std::string>& fp_extra_args,
|
261 |
+
const std::vector<std::string>& q_extra_args) {
|
262 |
+
const auto& fp_extra_arg_list = getExtraArgList(fp_extra_args);
|
263 |
+
const auto& q_extra_arg_list = getExtraArgList(q_extra_args);
|
264 |
+
|
265 |
+
std::string op_pattern = "graph(%a_quant" + fp_extra_arg_list +
|
266 |
+
", %r_scale, %r_zero_point, %r_dtype):" + R"(
|
267 |
+
%a_dequant = aten::dequantize(%a_quant)
|
268 |
+
%r = )" +
|
269 |
+
fp_op_name + "(" + "%a_dequant" + fp_extra_arg_list + ")" + R"(
|
270 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
271 |
+
return (%r_quant) )";
|
272 |
+
|
273 |
+
std::string aten_op_pattern = "graph(%a_quant" + fp_extra_arg_list +
|
274 |
+
", %r_scale, %r_zero_point, %r_dtype):" + R"(
|
275 |
+
%r_quant = )" +
|
276 |
+
q_op_name + "(%a_quant" + q_extra_arg_list +
|
277 |
+
", %r_scale, %r_zero_point)" + R"(
|
278 |
+
return (%r_quant) )";
|
279 |
+
|
280 |
+
return {q_op_name, std::move(op_pattern), std::move(aten_op_pattern)};
|
281 |
+
}
|
282 |
+
|
283 |
+
} // namespace
|
284 |
+
|
285 |
+
static std::vector<QuantFusionInfo> quant_fusion_pattern_and_replacements() {
|
286 |
+
// aten::conv1d
|
287 |
+
std::string conv1d = R"(
|
288 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
289 |
+
%a_dequant = aten::dequantize(%a_quant)
|
290 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params)
|
291 |
+
%w_dequant = aten::dequantize(%w_quant)
|
292 |
+
%r = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
293 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
294 |
+
return (%r_quant) )";
|
295 |
+
|
296 |
+
// aten::conv1d - aten::relu
|
297 |
+
std::string conv1d_relu = R"(
|
298 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
299 |
+
%a_dequant = aten::dequantize(%a_quant)
|
300 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params)
|
301 |
+
%w_dequant = aten::dequantize(%w_quant)
|
302 |
+
%conv_out = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
303 |
+
%r = aten::relu(%conv_out)
|
304 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
305 |
+
return (%r_quant) )";
|
306 |
+
|
307 |
+
// aten::conv1d - aten::relu_
|
308 |
+
std::string conv1d_inplace_relu = R"(
|
309 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
310 |
+
%a_dequant = aten::dequantize(%a_quant)
|
311 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params)
|
312 |
+
%w_dequant = aten::dequantize(%w_quant)
|
313 |
+
%conv_out = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
314 |
+
%r = aten::relu_(%conv_out)
|
315 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
316 |
+
return (%r_quant) )";
|
317 |
+
|
318 |
+
// quantized::conv1d
|
319 |
+
std::string quantized_conv1d = R"(
|
320 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
321 |
+
%r_quant = quantized::conv1d(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
322 |
+
return (%r_quant) )";
|
323 |
+
|
324 |
+
// quantized::conv1d_relu
|
325 |
+
std::string quantized_conv1d_relu = R"(
|
326 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
327 |
+
%r_quant = quantized::conv1d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
328 |
+
return (%r_quant) )";
|
329 |
+
|
330 |
+
// aten::conv2d
|
331 |
+
std::string conv2d = R"(
|
332 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
333 |
+
%a_dequant = aten::dequantize(%a_quant)
|
334 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params)
|
335 |
+
%w_dequant = aten::dequantize(%w_quant)
|
336 |
+
%r = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
337 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
338 |
+
return (%r_quant) )";
|
339 |
+
|
340 |
+
// aten::conv2d - aten::relu
|
341 |
+
std::string conv2d_relu = R"(
|
342 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
343 |
+
%a_dequant = aten::dequantize(%a_quant)
|
344 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params)
|
345 |
+
%w_dequant = aten::dequantize(%w_quant)
|
346 |
+
%conv_out = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
347 |
+
%r = aten::relu(%conv_out)
|
348 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
349 |
+
return (%r_quant) )";
|
350 |
+
|
351 |
+
// aten::conv2d - aten::relu_
|
352 |
+
std::string conv2d_inplace_relu = R"(
|
353 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
354 |
+
%a_dequant = aten::dequantize(%a_quant)
|
355 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params)
|
356 |
+
%w_dequant = aten::dequantize(%w_quant)
|
357 |
+
%conv_out = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
358 |
+
%r = aten::relu_(%conv_out)
|
359 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
360 |
+
return (%r_quant) )";
|
361 |
+
|
362 |
+
// quantized::conv2d
|
363 |
+
std::string quantized_conv2d = R"(
|
364 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
365 |
+
%r_quant = quantized::conv2d(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
366 |
+
return (%r_quant) )";
|
367 |
+
|
368 |
+
// quantized::conv2d_relu
|
369 |
+
std::string quantized_conv2d_relu = R"(
|
370 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
371 |
+
%r_quant = quantized::conv2d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
372 |
+
return (%r_quant) )";
|
373 |
+
|
374 |
+
// aten::conv3d
|
375 |
+
std::string conv3d = R"(
|
376 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
377 |
+
%a_dequant = aten::dequantize(%a_quant)
|
378 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv3d_unpack(%packed_params)
|
379 |
+
%w_dequant = aten::dequantize(%w_quant)
|
380 |
+
%r = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
381 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
382 |
+
return (%r_quant) )";
|
383 |
+
|
384 |
+
// aten::conv3d - aten::relu
|
385 |
+
std::string conv3d_relu = R"(
|
386 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
387 |
+
%a_dequant = aten::dequantize(%a_quant)
|
388 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv3d_unpack(%packed_params)
|
389 |
+
%w_dequant = aten::dequantize(%w_quant)
|
390 |
+
%conv_out = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
391 |
+
%r = aten::relu(%conv_out)
|
392 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
393 |
+
return (%r_quant) )";
|
394 |
+
|
395 |
+
// aten::conv3d - aten::relu_
|
396 |
+
std::string conv3d_inplace_relu = R"(
|
397 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
398 |
+
%a_dequant = aten::dequantize(%a_quant)
|
399 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv3d_unpack(%packed_params)
|
400 |
+
%w_dequant = aten::dequantize(%w_quant)
|
401 |
+
%conv_out = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
402 |
+
%r = aten::relu_(%conv_out)
|
403 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
404 |
+
return (%r_quant) )";
|
405 |
+
|
406 |
+
// quantized::conv3d
|
407 |
+
std::string quantized_conv3d = R"(
|
408 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
409 |
+
%r_quant = quantized::conv3d(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
410 |
+
return (%r_quant) )";
|
411 |
+
|
412 |
+
// quantized::conv3d_relu
|
413 |
+
std::string quantized_conv3d_relu = R"(
|
414 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
|
415 |
+
%r_quant = quantized::conv3d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
416 |
+
return (%r_quant) )";
|
417 |
+
|
418 |
+
// aten::conv_transpose1d
|
419 |
+
std::string conv_transpose1d = R"(
|
420 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %output_padding, %groups, %dilation):
|
421 |
+
%a_dequant = aten::dequantize(%a_quant)
|
422 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv_transpose1d_unpack(%packed_params)
|
423 |
+
%w_dequant = aten::dequantize(%w_quant)
|
424 |
+
%r = aten::conv_transpose1d(%a_dequant, %w_dequant, %b, %stride, %padding, %output_padding, %groups, %dilation)
|
425 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
426 |
+
return (%r_quant) )";
|
427 |
+
|
428 |
+
// quantized::conv_transpose1d
|
429 |
+
std::string quantized_conv_transpose1d = R"(
|
430 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %output_padding, %groups, %dilation):
|
431 |
+
%r_quant = quantized::conv_transpose1d(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
432 |
+
return (%r_quant) )";
|
433 |
+
|
434 |
+
// aten::conv_transpose2d
|
435 |
+
std::string conv_transpose2d = R"(
|
436 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %output_padding, %groups, %dilation):
|
437 |
+
%a_dequant = aten::dequantize(%a_quant)
|
438 |
+
%w_quant : Tensor, %b : Tensor? = quantized::conv_transpose2d_unpack(%packed_params)
|
439 |
+
%w_dequant = aten::dequantize(%w_quant)
|
440 |
+
%r = aten::conv_transpose2d(%a_dequant, %w_dequant, %b, %stride, %padding, %output_padding, %groups, %dilation)
|
441 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
442 |
+
return (%r_quant) )";
|
443 |
+
|
444 |
+
// quantized::conv_transpose1d
|
445 |
+
std::string quantized_conv_transpose2d = R"(
|
446 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %output_padding, %groups, %dilation):
|
447 |
+
%r_quant = quantized::conv_transpose2d(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
448 |
+
return (%r_quant) )";
|
449 |
+
|
450 |
+
std::string add_relu = R"(
|
451 |
+
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
|
452 |
+
%a_dequant = aten::dequantize(%a_quant)
|
453 |
+
%b_dequant = aten::dequantize(%b_quant)
|
454 |
+
%r_add = aten::add(%a_dequant, %b_dequant, %alpha)
|
455 |
+
%r_relu = aten::relu(%r_add)
|
456 |
+
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
|
457 |
+
return (%r) )";
|
458 |
+
|
459 |
+
std::string add_inplace_relu = R"(
|
460 |
+
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
|
461 |
+
%a_dequant = aten::dequantize(%a_quant)
|
462 |
+
%b_dequant = aten::dequantize(%b_quant)
|
463 |
+
%r_add = aten::add(%a_dequant, %b_dequant, %alpha)
|
464 |
+
%r_relu = aten::relu_(%r_add)
|
465 |
+
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
|
466 |
+
return (%r) )";
|
467 |
+
|
468 |
+
std::string inplace_add_relu = R"(
|
469 |
+
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
|
470 |
+
%a_dequant = aten::dequantize(%a_quant)
|
471 |
+
%b_dequant = aten::dequantize(%b_quant)
|
472 |
+
%r_add = aten::add_(%a_dequant, %b_dequant, %alpha)
|
473 |
+
%r_relu = aten::relu(%r_add)
|
474 |
+
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
|
475 |
+
return (%r) )";
|
476 |
+
|
477 |
+
std::string inplace_add_inplace_relu = R"(
|
478 |
+
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
|
479 |
+
%a_dequant = aten::dequantize(%a_quant)
|
480 |
+
%b_dequant = aten::dequantize(%b_quant)
|
481 |
+
%r_add = aten::add_(%a_dequant, %b_dequant, %alpha)
|
482 |
+
%r_relu = aten::relu_(%r_add)
|
483 |
+
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
|
484 |
+
return (%r) )";
|
485 |
+
|
486 |
+
std::string quantized_add_relu = R"(
|
487 |
+
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
|
488 |
+
%r = quantized::add_relu(%a_quant, %b_quant, %scale, %zero_point)
|
489 |
+
return (%r) )";
|
490 |
+
|
491 |
+
// aten::linear
|
492 |
+
std::string linear = R"(
|
493 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
|
494 |
+
%a_dequant = aten::dequantize(%a_quant)
|
495 |
+
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
|
496 |
+
%w_dequant = aten::dequantize(%w_quant)
|
497 |
+
%r = aten::linear(%a_dequant, %w_dequant, %b)
|
498 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
499 |
+
return (%r_quant) )";
|
500 |
+
|
501 |
+
std::string linear_relu = R"(
|
502 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
|
503 |
+
%a_dequant = aten::dequantize(%a_quant)
|
504 |
+
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
|
505 |
+
%w_dequant = aten::dequantize(%w_quant)
|
506 |
+
%linear_out = aten::linear(%a_dequant, %w_dequant, %b)
|
507 |
+
%r = aten::relu(%linear_out)
|
508 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
509 |
+
return (%r_quant) )";
|
510 |
+
|
511 |
+
std::string linear_inplace_relu = R"(
|
512 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
|
513 |
+
%a_dequant = aten::dequantize(%a_quant)
|
514 |
+
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
|
515 |
+
%w_dequant = aten::dequantize(%w_quant)
|
516 |
+
%linear_out = aten::linear(%a_dequant, %w_dequant, %b)
|
517 |
+
%r = aten::relu_(%linear_out)
|
518 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
519 |
+
return (%r_quant) )";
|
520 |
+
|
521 |
+
// quantized::linear
|
522 |
+
std::string quantized_linear = R"(
|
523 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
|
524 |
+
%r = quantized::linear(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
525 |
+
return (%r) )";
|
526 |
+
|
527 |
+
std::string quantized_linear_relu = R"(
|
528 |
+
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
|
529 |
+
%r = quantized::linear_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
|
530 |
+
return (%r) )";
|
531 |
+
|
532 |
+
std::string cat = R"(
|
533 |
+
graph(%input_quant, %dim, %r_scale, %r_zero_point, %r_dtype):
|
534 |
+
%input_dequant = aten::dequantize(%input_quant)
|
535 |
+
%r = aten::cat(%input_dequant, %dim)
|
536 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
537 |
+
return (%r_quant) )";
|
538 |
+
|
539 |
+
std::string quantized_cat = R"(
|
540 |
+
graph(%input_quant, %dim, %r_scale, %r_zero_point, %r_dtype):
|
541 |
+
%r_quant = quantized::cat(%input_quant, %dim, %r_scale, %r_zero_point)
|
542 |
+
return (%r_quant) )";
|
543 |
+
|
544 |
+
// aten::add
|
545 |
+
std::string add = R"(
|
546 |
+
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
|
547 |
+
%a_dequant = aten::dequantize(%a_quant)
|
548 |
+
%b_dequant = aten::dequantize(%b_quant)
|
549 |
+
%r_add = aten::add(%a_dequant, %b_dequant, %alpha)
|
550 |
+
%r = aten::quantize_per_tensor(%r_add, %scale, %zero_point, %dtype)
|
551 |
+
return (%r) )";
|
552 |
+
|
553 |
+
// TODO: add %dtype after when https://github.com/pytorch/pytorch/issues/34351
|
554 |
+
// is fixed
|
555 |
+
// quantized::add
|
556 |
+
std::string quantized_add = R"(
|
557 |
+
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
|
558 |
+
%r = quantized::add(%a_quant, %b_quant, %scale, %zero_point)
|
559 |
+
return (%r) )";
|
560 |
+
|
561 |
+
// aten::add_
|
562 |
+
std::string inplace_add = R"(
|
563 |
+
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
|
564 |
+
%a_dequant = aten::dequantize(%a_quant)
|
565 |
+
%b_dequant = aten::dequantize(%b_quant)
|
566 |
+
%r_add = aten::add_(%a_dequant, %b_dequant, %alpha)
|
567 |
+
%r = aten::quantize_per_tensor(%r_add, %scale, %zero_point, %dtype)
|
568 |
+
return (%r) )";
|
569 |
+
|
570 |
+
auto add_scalar = getBinaryOpScalarFusionInfo(
|
571 |
+
"aten::add",
|
572 |
+
{"%b_scalar", "%alpha"},
|
573 |
+
"quantized::add_scalar",
|
574 |
+
{"%b_scalar"},
|
575 |
+
{aten_add_alpha_is_one, input_b_is_scalar});
|
576 |
+
|
577 |
+
auto add_scalar_out = getBinaryOpScalarFusionInfo(
|
578 |
+
"aten::add_",
|
579 |
+
{"%b_scalar", "%alpha"},
|
580 |
+
"quantized::add_scalar_out",
|
581 |
+
{"%b_scalar", "%a_quant"},
|
582 |
+
{aten_add_alpha_is_one, input_b_is_scalar});
|
583 |
+
|
584 |
+
// quantized::add_scalar_relu -- fusing quantized::add_scalar
|
585 |
+
// and aten::relu
|
586 |
+
auto quantized_add_scalar_relu_pattern = R"(
|
587 |
+
graph(%a_quant, %b_scalar):
|
588 |
+
%r_add = quantized::add_scalar(%a_quant, %b_scalar)
|
589 |
+
%r = aten::relu(%r_add)
|
590 |
+
return (%r) )";
|
591 |
+
|
592 |
+
auto quantized_add_scalar_inplace_relu_pattern = R"(
|
593 |
+
graph(%a_quant, %b_scalar):
|
594 |
+
%r_add = quantized::add_scalar(%a_quant, %b_scalar)
|
595 |
+
%r = aten::relu_(%r_add)
|
596 |
+
return (%r) )";
|
597 |
+
|
598 |
+
auto quantized_add_scalar_relu_replacement = R"(
|
599 |
+
graph(%a_quant, %b_scalar):
|
600 |
+
%r = quantized::add_scalar_relu(%a_quant, %b_scalar)
|
601 |
+
return (%r) )";
|
602 |
+
|
603 |
+
// quantized::add_scalar_relu_out -- fusing quantized::add_scalarOut
|
604 |
+
// and aten::relu
|
605 |
+
auto quantized_add_scalar_relu_out_pattern = R"(
|
606 |
+
graph(%a_quant, %b_scalar):
|
607 |
+
%r_add = quantized::add_scalar_out(%a_quant, %b_scalar, %a_quant)
|
608 |
+
%r = aten::relu(%r_add)
|
609 |
+
return (%r) )";
|
610 |
+
|
611 |
+
auto quantized_add_scalar_inplace_relu_out_pattern = R"(
|
612 |
+
graph(%a_quant, %b_scalar):
|
613 |
+
%r_add = quantized::add_scalar_out(%a_quant, %b_scalar, %a_quant)
|
614 |
+
%r = aten::relu_(%r_add)
|
615 |
+
return (%r) )";
|
616 |
+
|
617 |
+
auto quantized_add_scalar_relu_out_replacement = R"(
|
618 |
+
graph(%a_quant, %b_scalar):
|
619 |
+
%r = quantized::add_scalar_relu_out(%a_quant, %b_scalar, %a_quant)
|
620 |
+
return (%r) )";
|
621 |
+
|
622 |
+
// quantized::batch_norm
|
623 |
+
std::string batch_norm = R"(
|
624 |
+
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
|
625 |
+
%a_dequant = aten::dequantize(%a_quant)
|
626 |
+
%r_bn = aten::batch_norm(%a_dequant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7)
|
627 |
+
%r = aten::quantize_per_tensor(%r_bn, %scale, %zero_point, %scalar_type)
|
628 |
+
return (%r) )";
|
629 |
+
std::string quantized_batch_norm = R"(
|
630 |
+
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
|
631 |
+
%r = quantized::batch_norm(%a_quant, %weight, %bias, %mean, %var, %eps, %scale, %zero_point)
|
632 |
+
return (%r) )";
|
633 |
+
|
634 |
+
std::string batch_norm_relu = R"(
|
635 |
+
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
|
636 |
+
%a_dequant = aten::dequantize(%a_quant)
|
637 |
+
%bn_out = aten::batch_norm(%a_dequant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7)
|
638 |
+
%relu = aten::relu(%bn_out)
|
639 |
+
%r = aten::quantize_per_tensor(%relu, %scale, %zero_point, %scalar_type)
|
640 |
+
return (%r) )";
|
641 |
+
std::string batch_norm_inplace_relu = R"(
|
642 |
+
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
|
643 |
+
%a_dequant = aten::dequantize(%a_quant)
|
644 |
+
%bn_out = aten::batch_norm(%a_dequant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7)
|
645 |
+
%relu = aten::relu_(%bn_out)
|
646 |
+
%r = aten::quantize_per_tensor(%relu, %scale, %zero_point, %scalar_type)
|
647 |
+
return (%r) )";
|
648 |
+
|
649 |
+
std::string quantized_batch_norm_relu = R"(
|
650 |
+
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
|
651 |
+
%r = quantized::batch_norm_relu(%a_quant, %weight, %bias, %mean, %var, %eps, %scale, %zero_point)
|
652 |
+
return (%r) )";
|
653 |
+
|
654 |
+
// aten::mul
|
655 |
+
std::string mul = R"(
|
656 |
+
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
|
657 |
+
%a_dequant = aten::dequantize(%a_quant)
|
658 |
+
%b_dequant = aten::dequantize(%b_quant)
|
659 |
+
%r_mul = aten::mul(%a_dequant, %b_dequant)
|
660 |
+
%r = aten::quantize_per_tensor(%r_mul, %scale, %zero_point, %dtype)
|
661 |
+
return (%r) )";
|
662 |
+
|
663 |
+
// aten::mul_
|
664 |
+
std::string inplace_mul = R"(
|
665 |
+
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
|
666 |
+
%a_dequant = aten::dequantize(%a_quant)
|
667 |
+
%b_dequant = aten::dequantize(%b_quant)
|
668 |
+
%r_mul = aten::mul_(%a_dequant, %b_dequant)
|
669 |
+
%r = aten::quantize_per_tensor(%r_mul, %scale, %zero_point, %dtype)
|
670 |
+
return (%r) )";
|
671 |
+
|
672 |
+
// quantized::mul
|
673 |
+
std::string quantized_mul = R"(
|
674 |
+
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
|
675 |
+
%r = quantized::mul(%a_quant, %b_quant, %scale, %zero_point)
|
676 |
+
return (%r) )";
|
677 |
+
|
678 |
+
auto mul_scalar = getBinaryOpScalarFusionInfo(
|
679 |
+
"aten::mul",
|
680 |
+
{"%b_scalar"},
|
681 |
+
"quantized::mul_scalar",
|
682 |
+
{"%b_scalar"},
|
683 |
+
{input_b_is_scalar});
|
684 |
+
|
685 |
+
auto mul_scalar_out = getBinaryOpScalarFusionInfo(
|
686 |
+
"aten::mul_",
|
687 |
+
{"%b_scalar"},
|
688 |
+
"quantized::mul_scalar_out",
|
689 |
+
{"%b_scalar", "%a_quant"},
|
690 |
+
{input_b_is_scalar});
|
691 |
+
|
692 |
+
// quantized::mul_relu
|
693 |
+
std::string mul_relu = R"(
|
694 |
+
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
|
695 |
+
%a_dequant = aten::dequantize(%a_quant)
|
696 |
+
%b_dequant = aten::dequantize(%b_quant)
|
697 |
+
%r_mul = aten::mul(%a_dequant, %b_dequant)
|
698 |
+
%r_relu = aten::relu(%r_mul)
|
699 |
+
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
|
700 |
+
return (%r) )";
|
701 |
+
|
702 |
+
std::string mul_inplace_relu = R"(
|
703 |
+
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
|
704 |
+
%a_dequant = aten::dequantize(%a_quant)
|
705 |
+
%b_dequant = aten::dequantize(%b_quant)
|
706 |
+
%r_mul = aten::mul(%a_dequant, %b_dequant)
|
707 |
+
%r_relu = aten::relu_(%r_mul)
|
708 |
+
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
|
709 |
+
return (%r) )";
|
710 |
+
|
711 |
+
std::string inplace_mul_relu = R"(
|
712 |
+
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
|
713 |
+
%a_dequant = aten::dequantize(%a_quant)
|
714 |
+
%b_dequant = aten::dequantize(%b_quant)
|
715 |
+
%r_mul = aten::mul_(%a_dequant, %b_dequant)
|
716 |
+
%r_relu = aten::relu(%r_mul)
|
717 |
+
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
|
718 |
+
return (%r) )";
|
719 |
+
|
720 |
+
std::string inplace_mul_inplace_relu = R"(
|
721 |
+
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
|
722 |
+
%a_dequant = aten::dequantize(%a_quant)
|
723 |
+
%b_dequant = aten::dequantize(%b_quant)
|
724 |
+
%r_mul = aten::mul_(%a_dequant, %b_dequant)
|
725 |
+
%r_relu = aten::relu_(%r_mul)
|
726 |
+
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
|
727 |
+
return (%r) )";
|
728 |
+
|
729 |
+
std::string quantized_mul_relu = R"(
|
730 |
+
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
|
731 |
+
%r = quantized::mul_relu(%a_quant, %b_quant, %scale, %zero_point)
|
732 |
+
return (%r) )";
|
733 |
+
|
734 |
+
// quantized::mul_scalar_relu -- fusing quantized::mul_scalar
|
735 |
+
// and aten::relu
|
736 |
+
auto quantized_mul_scalar_relu_pattern = R"(
|
737 |
+
graph(%a_quant, %b_scalar):
|
738 |
+
%r_mul = quantized::mul_scalar(%a_quant, %b_scalar)
|
739 |
+
%r = aten::relu(%r_mul)
|
740 |
+
return (%r) )";
|
741 |
+
|
742 |
+
auto quantized_mul_scalar_inplace_relu_pattern = R"(
|
743 |
+
graph(%a_quant, %b_scalar):
|
744 |
+
%r_mul = quantized::mul_scalar(%a_quant, %b_scalar)
|
745 |
+
%r = aten::relu_(%r_mul)
|
746 |
+
return (%r) )";
|
747 |
+
|
748 |
+
auto quantized_mul_scalar_relu_replacement = R"(
|
749 |
+
graph(%a_quant, %b_scalar):
|
750 |
+
%r = quantized::mul_scalar_relu(%a_quant, %b_scalar)
|
751 |
+
return (%r) )";
|
752 |
+
|
753 |
+
// quantized::mul_scalar_relu_out -- fusing quantized::mul_scalarOut
|
754 |
+
// and aten::relu
|
755 |
+
auto quantized_mul_scalar_relu_out_pattern = R"(
|
756 |
+
graph(%a_quant, %b_scalar):
|
757 |
+
%r_mul = quantized::mul_scalar_out(%a_quant, %b_scalar, %a_quant)
|
758 |
+
%r = aten::relu(%r_mul)
|
759 |
+
return (%r) )";
|
760 |
+
|
761 |
+
auto quantized_mul_scalar_inplace_relu_out_pattern = R"(
|
762 |
+
graph(%a_quant, %b_scalar):
|
763 |
+
%r_mul = quantized::mul_scalar_out(%a_quant, %b_scalar, %a_quant)
|
764 |
+
%r = aten::relu_(%r_mul)
|
765 |
+
return (%r) )";
|
766 |
+
|
767 |
+
auto quantized_mul_scalar_relu_out_replacement = R"(
|
768 |
+
graph(%a_quant, %b_scalar):
|
769 |
+
%r = quantized::mul_scalar_relu_out(%a_quant, %b_scalar, %a_quant)
|
770 |
+
return (%r) )";
|
771 |
+
|
772 |
+
// quantized::elu
|
773 |
+
std::string elu = R"(
|
774 |
+
graph(%a_quant, %alpha, %scale, %input_scale, %r_scale, %r_zero_point, %r_dtype):
|
775 |
+
%a_dequant = aten::dequantize(%a_quant)
|
776 |
+
%r = aten::elu(%a_dequant, %alpha, %scale, %input_scale)
|
777 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
778 |
+
return (%r_quant) )";
|
779 |
+
|
780 |
+
std::string quantized_elu = R"(
|
781 |
+
graph(%a_quant, %alpha, %scale, %input_scale, %r_scale, %r_zero_point, %r_dtype):
|
782 |
+
%r_quant = quantized::elu(%a_quant, %r_scale, %r_zero_point, %alpha, %scale, %input_scale)
|
783 |
+
return (%r_quant) )";
|
784 |
+
|
785 |
+
std::string elu_ = R"(
|
786 |
+
graph(%a_quant, %alpha, %scale, %input_scale, %r_scale, %r_zero_point, %r_dtype):
|
787 |
+
%a_dequant = aten::dequantize(%a_quant)
|
788 |
+
%r = aten::elu_(%a_dequant, %alpha, %scale, %input_scale)
|
789 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
790 |
+
return (%r_quant) )";
|
791 |
+
|
792 |
+
// ============= General Ops that inherit quantization parameters from input
|
793 |
+
// tensor =============
|
794 |
+
auto avg_pool1d = getInputTensorQParamOpFusionInfo(
|
795 |
+
"aten::avg_pool1d",
|
796 |
+
{"%kernel_size",
|
797 |
+
"%stride",
|
798 |
+
"%padding",
|
799 |
+
"%ceil_mode",
|
800 |
+
"%count_include_pad"});
|
801 |
+
|
802 |
+
auto avg_pool2d = getInputTensorQParamOpFusionInfo(
|
803 |
+
"aten::avg_pool2d",
|
804 |
+
{"%kernel_size",
|
805 |
+
"%stride",
|
806 |
+
"%padding",
|
807 |
+
"%ceil_mode",
|
808 |
+
"%count_include_pad",
|
809 |
+
"%divisor_override"});
|
810 |
+
|
811 |
+
std::string common_general_value_op = R"(
|
812 |
+
%r_scale : float = aten::q_scale(%a_quant)
|
813 |
+
%r_zero_point : int = aten::q_zero_point(%a_quant)
|
814 |
+
%r_dtype : int = prim::dtype(%a_quant)
|
815 |
+
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
|
816 |
+
return (%r_quant) )";
|
817 |
+
|
818 |
+
auto avg_pool3d = getInputTensorQParamOpFusionInfo(
|
819 |
+
"aten::avg_pool3d",
|
820 |
+
{"%kernel_size",
|
821 |
+
"%stride",
|
822 |
+
"%padding",
|
823 |
+
"%ceil_mode",
|
824 |
+
"%count_include_pad",
|
825 |
+
"%divisor_override"});
|
826 |
+
|
827 |
+
auto adaptive_avg_pool1d = getInputTensorQParamOpFusionInfo(
|
828 |
+
"aten::adaptive_avg_pool1d", {"%output_size"});
|
829 |
+
|
830 |
+
auto adaptive_avg_pool2d = getInputTensorQParamOpFusionInfo(
|
831 |
+
"aten::adaptive_avg_pool2d", {"%output_size"});
|
832 |
+
|
833 |
+
auto adaptive_avg_pool3d = getInputTensorQParamOpFusionInfo(
|
834 |
+
"aten::adaptive_avg_pool3d", {"%output_size"});
|
835 |
+
|
836 |
+
auto mean1 = getInputTensorQParamOpFusionInfo("aten::mean", {"%dim"});
|
837 |
+
|
838 |
+
auto mean2 = getInputTensorQParamOpFusionInfo(
|
839 |
+
"aten::mean", {"%dim", "%keepdim", "%out"});
|
840 |
+
|
841 |
+
auto upsample_nearest1d_vec = getInputTensorQParamOpFusionInfo(
|
842 |
+
"aten::upsample_nearest1d", {"%output_size", "%scale_factors"});
|
843 |
+
|
844 |
+
auto upsample_nearest2d_vec = getInputTensorQParamOpFusionInfo(
|
845 |
+
"aten::upsample_nearest2d", {"%output_size", "%scale_factors"});
|
846 |
+
|
847 |
+
auto upsample_nearest3d_vec = getInputTensorQParamOpFusionInfo(
|
848 |
+
"aten::upsample_nearest3d", {"%output_size", "%scale_factors"});
|
849 |
+
|
850 |
+
auto upsample_linear1d_vec = getInputTensorQParamOpFusionInfo(
|
851 |
+
"aten::upsample_linear1d",
|
852 |
+
{"%output_size", "%align_corners", "%scale_factors"});
|
853 |
+
|
854 |
+
auto upsample_bilinear2d_vec = getInputTensorQParamOpFusionInfo(
|
855 |
+
"aten::upsample_bilinear2d",
|
856 |
+
{"%output_size", "%align_corners", "%scale_factors"});
|
857 |
+
|
858 |
+
auto upsample_trilinear3d_vec = getInputTensorQParamOpFusionInfo(
|
859 |
+
"aten::upsample_trilinear3d",
|
860 |
+
{"%output_size", "%align_corners", "%scale_factors"});
|
861 |
+
|
862 |
+
auto upsample_nearest1d = getInputTensorQParamOpFusionInfo(
|
863 |
+
"aten::upsample_nearest1d", {"%output_size", "%scales"});
|
864 |
+
|
865 |
+
auto upsample_nearest2d = getInputTensorQParamOpFusionInfo(
|
866 |
+
"aten::upsample_nearest2d", {"%output_size", "%scale_h", "%scale_w"});
|
867 |
+
|
868 |
+
auto upsample_nearest3d = getInputTensorQParamOpFusionInfo(
|
869 |
+
"aten::upsample_nearest3d",
|
870 |
+
{"%output_size", "%scale_d", "%scale_h", "%scale_w"});
|
871 |
+
|
872 |
+
auto upsample_linear1d = getInputTensorQParamOpFusionInfo(
|
873 |
+
"aten::upsample_linear1d", {"%output_size", "%align_corners", "%scales"});
|
874 |
+
|
875 |
+
auto upsample_bilinear2d = getInputTensorQParamOpFusionInfo(
|
876 |
+
"aten::upsample_bilinear2d",
|
877 |
+
{"%output_size", "%align_corners", "%scale_h", "%scale_w"});
|
878 |
+
|
879 |
+
auto upsample_trilinear3d = getInputTensorQParamOpFusionInfo(
|
880 |
+
"aten::upsample_trilinear3d",
|
881 |
+
{"%output_size", "%align_corners", "%scale_d", "%scale_h", "%scale_w"});
|
882 |
+
|
883 |
+
auto clamp = getClampOpFusionInfo("aten::clamp", {"%min", "%max"});
|
884 |
+
|
885 |
+
auto hardtanh = getClampOpFusionInfo("aten::hardtanh", {"%min", "%max"});
|
886 |
+
|
887 |
+
auto hardtanh_ = getClampOpFusionInfo("aten::hardtanh_", {"%min", "%max"});
|
888 |
+
|
889 |
+
auto leaky_relu =
|
890 |
+
getInputTensorQParamOpFusionInfo("aten::leaky_relu", {"%negative_slope"});
|
891 |
+
|
892 |
+
auto leaky_relu_ = getInputTensorQParamOpFusionInfo(
|
893 |
+
"aten::leaky_relu_", {"%negative_slope"});
|
894 |
+
|
895 |
+
// Ops with fixed quantization parameters
|
896 |
+
auto hardsigmoid = getFixedQParamOpFusionInfo("aten::hardsigmoid", {}, false);
|
897 |
+
|
898 |
+
auto hardsigmoid_ =
|
899 |
+
getFixedQParamOpFusionInfo("aten::hardsigmoid_", {}, false);
|
900 |
+
|
901 |
+
auto sigmoid = getFixedQParamOpFusionInfo("aten::sigmoid", {}, false);
|
902 |
+
|
903 |
+
auto sigmoid_ = getFixedQParamOpFusionInfo("aten::sigmoid_", {}, false);
|
904 |
+
|
905 |
+
auto tanh = getFixedQParamOpFusionInfo("aten::tanh", {}, true);
|
906 |
+
|
907 |
+
auto tanh_ = getFixedQParamOpFusionInfo("aten::tanh_", {}, true);
|
908 |
+
|
909 |
+
auto hardswish = getObservedQParamOpFusionInfo(
|
910 |
+
"aten::hardswish", "quantized::hardswish", {}, {});
|
911 |
+
|
912 |
+
auto hardswish_ = getObservedQParamOpFusionInfo(
|
913 |
+
"aten::hardswish_", "quantized::hardswish", {}, {});
|
914 |
+
|
915 |
+
auto layer_norm = getObservedQParamOpFusionInfo(
|
916 |
+
"aten::layer_norm",
|
917 |
+
"quantized::layer_norm",
|
918 |
+
{"%normalized_shape", "%weight", "%bias", "%eps", "%cudnn_enabled"},
|
919 |
+
{"%normalized_shape", "%weight", "%bias", "%eps"});
|
920 |
+
|
921 |
+
auto group_norm = getObservedQParamOpFusionInfo(
|
922 |
+
"aten::group_norm",
|
923 |
+
"quantized::group_norm",
|
924 |
+
{"%num_groups", "%weight", "%bias", "%eps", "%cudnn_enabled"},
|
925 |
+
{"%num_groups", "%weight", "%bias", "%eps"});
|
926 |
+
|
927 |
+
auto instance_norm = getObservedQParamOpFusionInfo(
|
928 |
+
"aten::instance_norm",
|
929 |
+
"quantized::instance_norm",
|
930 |
+
{"%weight",
|
931 |
+
"%bias",
|
932 |
+
"%running_mean",
|
933 |
+
"%running_var",
|
934 |
+
"%use_input_stats",
|
935 |
+
"%momentum",
|
936 |
+
"%eps",
|
937 |
+
"%cudnn_enabled"},
|
938 |
+
{"%weight", "%bias", "%eps"});
|
939 |
+
|
940 |
+
return {
|
941 |
+
{"quantized::conv1d", std::move(conv1d), std::move(quantized_conv1d)},
|
942 |
+
{"quantized::conv1d_relu", std::move(conv1d_relu), quantized_conv1d_relu},
|
943 |
+
{"quantized::conv1d_relu",
|
944 |
+
std::move(conv1d_inplace_relu),
|
945 |
+
std::move(quantized_conv1d_relu)},
|
946 |
+
{"quantized::conv2d", std::move(conv2d), std::move(quantized_conv2d)},
|
947 |
+
{"quantized::conv2d_relu", std::move(conv2d_relu), quantized_conv2d_relu},
|
948 |
+
{"quantized::conv2d_relu",
|
949 |
+
std::move(conv2d_inplace_relu),
|
950 |
+
std::move(quantized_conv2d_relu)},
|
951 |
+
{"quantized::conv3d", std::move(conv3d), std::move(quantized_conv3d)},
|
952 |
+
{"quantized::conv3d_relu", std::move(conv3d_relu), quantized_conv3d_relu},
|
953 |
+
{"quantized::conv3d_relu",
|
954 |
+
std::move(conv3d_inplace_relu),
|
955 |
+
std::move(quantized_conv3d_relu)},
|
956 |
+
{"quantized::conv_transpose1d",
|
957 |
+
std::move(conv_transpose1d),
|
958 |
+
std::move(quantized_conv_transpose1d)},
|
959 |
+
{"quantized::conv_transpose2d",
|
960 |
+
std::move(conv_transpose2d),
|
961 |
+
std::move(quantized_conv_transpose2d)},
|
962 |
+
{"quantized::linear", std::move(linear), std::move(quantized_linear)},
|
963 |
+
{"quantized::linear_relu", std::move(linear_relu), quantized_linear_relu},
|
964 |
+
{"quantized::linear_relu",
|
965 |
+
std::move(linear_inplace_relu),
|
966 |
+
std::move(quantized_linear_relu)},
|
967 |
+
{"quantized::add_relu",
|
968 |
+
std::move(add_relu),
|
969 |
+
quantized_add_relu,
|
970 |
+
{aten_add_alpha_is_one}},
|
971 |
+
{"quantized::add_relu",
|
972 |
+
std::move(add_inplace_relu),
|
973 |
+
quantized_add_relu,
|
974 |
+
{aten_add_alpha_is_one}},
|
975 |
+
{"quantized::add_relu",
|
976 |
+
std::move(inplace_add_relu),
|
977 |
+
quantized_add_relu,
|
978 |
+
{aten_add_alpha_is_one}},
|
979 |
+
{"quantized::add_relu",
|
980 |
+
std::move(inplace_add_inplace_relu),
|
981 |
+
std::move(quantized_add_relu),
|
982 |
+
{aten_add_alpha_is_one}},
|
983 |
+
std::move(add_scalar),
|
984 |
+
std::move(add_scalar_out),
|
985 |
+
// note that these must come after quantized::add_scalar and
|
986 |
+
// quantized::add_scalar_out patterns
|
987 |
+
{"quantized::add_scalar_relu",
|
988 |
+
quantized_add_scalar_relu_pattern,
|
989 |
+
quantized_add_scalar_relu_replacement},
|
990 |
+
{"quantized::add_scalar_relu",
|
991 |
+
quantized_add_scalar_inplace_relu_pattern,
|
992 |
+
quantized_add_scalar_relu_replacement},
|
993 |
+
{"quantized::add_scalar_relu_out",
|
994 |
+
quantized_add_scalar_relu_out_pattern,
|
995 |
+
quantized_add_scalar_relu_out_replacement},
|
996 |
+
{"quantized::add_scalar_relu_out",
|
997 |
+
quantized_add_scalar_inplace_relu_out_pattern,
|
998 |
+
quantized_add_scalar_relu_out_replacement},
|
999 |
+
{"quantized::add",
|
1000 |
+
std::move(add),
|
1001 |
+
quantized_add,
|
1002 |
+
{aten_add_alpha_is_one}},
|
1003 |
+
{"quantized::add",
|
1004 |
+
std::move(inplace_add),
|
1005 |
+
std::move(quantized_add),
|
1006 |
+
{aten_add_alpha_is_one}},
|
1007 |
+
{"quantized::cat", std::move(cat), std::move(quantized_cat)},
|
1008 |
+
{"quantized::batch_norm",
|
1009 |
+
std::move(batch_norm),
|
1010 |
+
std::move(quantized_batch_norm)},
|
1011 |
+
{"quantized::batch_norm_relu",
|
1012 |
+
std::move(batch_norm_relu),
|
1013 |
+
quantized_batch_norm_relu},
|
1014 |
+
{"quantized::batch_norm_relu",
|
1015 |
+
std::move(batch_norm_inplace_relu),
|
1016 |
+
std::move(quantized_batch_norm_relu)},
|
1017 |
+
std::move(mul_scalar),
|
1018 |
+
std::move(mul_scalar_out),
|
1019 |
+
// note that these must come after quantized::mul_scalar and
|
1020 |
+
// quantized::mul_scalar_out patterns
|
1021 |
+
{"quantized::mul_scalar_relu",
|
1022 |
+
quantized_mul_scalar_relu_pattern,
|
1023 |
+
quantized_mul_scalar_relu_replacement},
|
1024 |
+
{"quantized::mul_scalar_relu",
|
1025 |
+
quantized_mul_scalar_inplace_relu_pattern,
|
1026 |
+
quantized_mul_scalar_relu_replacement},
|
1027 |
+
{"quantized::mul_scalar_relu_out",
|
1028 |
+
quantized_mul_scalar_relu_out_pattern,
|
1029 |
+
quantized_mul_scalar_relu_out_replacement},
|
1030 |
+
{"quantized::mul_scalar_relu_out",
|
1031 |
+
quantized_mul_scalar_inplace_relu_out_pattern,
|
1032 |
+
quantized_mul_scalar_relu_out_replacement},
|
1033 |
+
{"quantized::mul_relu", std::move(mul_relu), quantized_mul_relu},
|
1034 |
+
{"quantized::mul_relu", std::move(mul_inplace_relu), quantized_mul_relu},
|
1035 |
+
{"quantized::mul_relu", std::move(inplace_mul_relu), quantized_mul_relu},
|
1036 |
+
{"quantized::mul_relu",
|
1037 |
+
std::move(inplace_mul_inplace_relu),
|
1038 |
+
std::move(quantized_mul_relu)},
|
1039 |
+
{"quantized::mul", std::move(mul), quantized_mul},
|
1040 |
+
{"quantized::mul", std::move(inplace_mul), std::move(quantized_mul)},
|
1041 |
+
std::move(hardswish),
|
1042 |
+
std::move(hardswish_),
|
1043 |
+
std::move(layer_norm),
|
1044 |
+
std::move(group_norm),
|
1045 |
+
std::move(instance_norm),
|
1046 |
+
{"quantized::elu", std::move(elu), quantized_elu},
|
1047 |
+
{"quantized::elu_", std::move(elu_), std::move(quantized_elu)},
|
1048 |
+
std::move(avg_pool1d),
|
1049 |
+
std::move(avg_pool2d),
|
1050 |
+
std::move(avg_pool3d),
|
1051 |
+
std::move(adaptive_avg_pool1d),
|
1052 |
+
std::move(adaptive_avg_pool2d),
|
1053 |
+
std::move(adaptive_avg_pool3d),
|
1054 |
+
std::move(mean1),
|
1055 |
+
std::move(mean2),
|
1056 |
+
std::move(upsample_nearest1d),
|
1057 |
+
std::move(upsample_nearest2d),
|
1058 |
+
std::move(upsample_nearest3d),
|
1059 |
+
std::move(upsample_linear1d),
|
1060 |
+
std::move(upsample_bilinear2d),
|
1061 |
+
std::move(upsample_trilinear3d),
|
1062 |
+
std::move(upsample_nearest1d_vec),
|
1063 |
+
std::move(upsample_nearest2d_vec),
|
1064 |
+
std::move(upsample_nearest3d_vec),
|
1065 |
+
std::move(upsample_linear1d_vec),
|
1066 |
+
std::move(upsample_bilinear2d_vec),
|
1067 |
+
std::move(upsample_trilinear3d_vec),
|
1068 |
+
std::move(clamp),
|
1069 |
+
std::move(hardtanh),
|
1070 |
+
std::move(hardtanh_),
|
1071 |
+
std::move(leaky_relu),
|
1072 |
+
std::move(leaky_relu_),
|
1073 |
+
// fixed qparam ops
|
1074 |
+
std::move(hardsigmoid),
|
1075 |
+
std::move(hardsigmoid_),
|
1076 |
+
std::move(sigmoid),
|
1077 |
+
std::move(sigmoid_),
|
1078 |
+
std::move(tanh),
|
1079 |
+
std::move(tanh_),
|
1080 |
+
};
|
1081 |
+
}
|
1082 |
+
|
1083 |
+
inline std::vector<QuantFusionInfo>
|
1084 |
+
dynamic_quantized_linear_pattern_and_replacements() {
|
1085 |
+
std::string linear_dynamic = R"(
|
1086 |
+
graph(%packed_params, %a):
|
1087 |
+
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
|
1088 |
+
%w_dequant = aten::dequantize(%w_quant)
|
1089 |
+
%r = aten::linear(%a, %w_dequant, %b)
|
1090 |
+
return (%r) )";
|
1091 |
+
|
1092 |
+
// This pattern ignores reduce range
|
1093 |
+
// Set the reduce range to default to true, since qnnpack backend ignores this
|
1094 |
+
// argument.
|
1095 |
+
std::string quantized_linear_dynamic = R"(
|
1096 |
+
graph(%packed_params, %a):
|
1097 |
+
%reduce_range : bool = prim::Constant[value=1]()
|
1098 |
+
%r = quantized::linear_dynamic(%a, %packed_params, %reduce_range)
|
1099 |
+
return (%r) )";
|
1100 |
+
|
1101 |
+
return {
|
1102 |
+
{"quantized::linear_dynamic",
|
1103 |
+
std::move(linear_dynamic),
|
1104 |
+
std::move(quantized_linear_dynamic)},
|
1105 |
+
};
|
1106 |
+
}
|
1107 |
+
|
1108 |
+
static std::vector<QuantFusionInfo>
|
1109 |
+
dynamic_quant_fusion_pattern_and_replacements() {
|
1110 |
+
std::string linear_dynamic = R"(
|
1111 |
+
graph(%packed_params, %a, %reduce_range, %a_dtype):
|
1112 |
+
%a_scale : float, %a_zero_point : int = aten::_choose_qparams_per_tensor(%a, %reduce_range)
|
1113 |
+
%a_quant = aten::quantize_per_tensor(%a, %a_scale, %a_zero_point, %a_dtype)
|
1114 |
+
%a_dequant = aten::dequantize(%a_quant)
|
1115 |
+
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
|
1116 |
+
%w_dequant = aten::dequantize(%w_quant)
|
1117 |
+
%r = aten::linear(%a_dequant, %w_dequant, %b)
|
1118 |
+
return (%r) )";
|
1119 |
+
|
1120 |
+
std::string quantized_linear_dynamic = R"(
|
1121 |
+
graph(%packed_params, %a, %reduce_range, %a_dtype):
|
1122 |
+
%r = quantized::linear_dynamic(%a, %packed_params, %reduce_range)
|
1123 |
+
return (%r) )";
|
1124 |
+
|
1125 |
+
std::string linear_dynamic_fp16 = R"(
|
1126 |
+
graph(%packed_params, %a):
|
1127 |
+
%w_unpacked : Tensor, %b : Tensor? = quantized::linear_unpack_fp16(%packed_params)
|
1128 |
+
%r = aten::linear(%a, %w_unpacked, %b)
|
1129 |
+
return (%r) )";
|
1130 |
+
|
1131 |
+
std::string quantized_linear_dynamic_fp16 = R"(
|
1132 |
+
graph(%packed_params, %a):
|
1133 |
+
%r = quantized::linear_dynamic_fp16(%a, %packed_params)
|
1134 |
+
return (%r) )";
|
1135 |
+
|
1136 |
+
return {
|
1137 |
+
{"quantized::linear_dynamic",
|
1138 |
+
std::move(linear_dynamic),
|
1139 |
+
std::move(quantized_linear_dynamic)},
|
1140 |
+
{"quantized::linear_dynamic_fp16",
|
1141 |
+
std::move(linear_dynamic_fp16),
|
1142 |
+
std::move(quantized_linear_dynamic_fp16)},
|
1143 |
+
};
|
1144 |
+
}
|
1145 |
+
|
1146 |
+
static std::vector<QuantFusionInfo> linear_prepack_unpack_patterns() {
|
1147 |
+
std::string linear_with_quant = R"(
|
1148 |
+
graph(%a_dequant, %w_quant, %b):
|
1149 |
+
%w_dequant = aten::dequantize(%w_quant)
|
1150 |
+
%r = aten::linear(%a_dequant, %w_dequant, %b)
|
1151 |
+
return (%r) )";
|
1152 |
+
|
1153 |
+
std::string linear_with_quant_prepack = R"(
|
1154 |
+
graph(%a_dequant, %w_quant, %b):
|
1155 |
+
%packed_params = quantized::linear_prepack(%w_quant, %b)
|
1156 |
+
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::linear_unpack(%packed_params)
|
1157 |
+
%w_dequant = aten::dequantize(%w_quant_unpacked)
|
1158 |
+
%r = aten::linear(%a_dequant, %w_dequant, %b_unpacked)
|
1159 |
+
return (%r) )";
|
1160 |
+
std::string linear_fp16_with_cast = R"(
|
1161 |
+
graph(%w, %a_dq, %b):
|
1162 |
+
%fp16_tensor = aten::_saturate_weight_to_fp16(%w)
|
1163 |
+
%r = aten::linear(%a_dq, %fp16_tensor, %b)
|
1164 |
+
return (%r) )";
|
1165 |
+
std::string linear_fp16_with_prepack = R"(
|
1166 |
+
graph(%w, %a_dq, %b):
|
1167 |
+
%packed_params = quantized::linear_prepack_fp16(%w, %b)
|
1168 |
+
%w_unpacked : Tensor, %b_unpacked : Tensor? = quantized::linear_unpack_fp16(%packed_params)
|
1169 |
+
%r = aten::linear(%a_dq, %w_unpacked, %b_unpacked)
|
1170 |
+
return (%r) )";
|
1171 |
+
|
1172 |
+
return {
|
1173 |
+
{"linear_prepack_unpack",
|
1174 |
+
std::move(linear_with_quant),
|
1175 |
+
std::move(linear_with_quant_prepack)},
|
1176 |
+
{"linear_fp16_prepack_unpack",
|
1177 |
+
std::move(linear_fp16_with_cast),
|
1178 |
+
std::move(linear_fp16_with_prepack)},
|
1179 |
+
};
|
1180 |
+
}
|
1181 |
+
|
1182 |
+
static std::vector<QuantFusionInfo> conv_prepack_unpack_patterns() {
|
1183 |
+
std::string conv1d_with_quant = R"(
|
1184 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
|
1185 |
+
%w_dequant = aten::dequantize(%w_quant)
|
1186 |
+
%r = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
1187 |
+
return (%r) )";
|
1188 |
+
|
1189 |
+
std::string conv1d_with_quant_prepack = R"(
|
1190 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
|
1191 |
+
%packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase = quantized::conv1d_prepack(%w_quant, %b, %stride, %padding, %dilation, %groups)
|
1192 |
+
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv1d_unpack(%packed_params)
|
1193 |
+
%w_dequant = aten::dequantize(%w_quant_unpacked)
|
1194 |
+
%r = aten::conv1d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %dilation, %groups)
|
1195 |
+
return (%r) )";
|
1196 |
+
|
1197 |
+
std::string conv2d_with_quant = R"(
|
1198 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
|
1199 |
+
%w_dequant = aten::dequantize(%w_quant)
|
1200 |
+
%r = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
1201 |
+
return (%r) )";
|
1202 |
+
|
1203 |
+
std::string conv2d_with_quant_prepack = R"(
|
1204 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
|
1205 |
+
%packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase = quantized::conv2d_prepack(%w_quant, %b, %stride, %padding, %dilation, %groups)
|
1206 |
+
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv2d_unpack(%packed_params)
|
1207 |
+
%w_dequant = aten::dequantize(%w_quant_unpacked)
|
1208 |
+
%r = aten::conv2d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %dilation, %groups)
|
1209 |
+
return (%r) )";
|
1210 |
+
|
1211 |
+
std::string conv3d_with_quant = R"(
|
1212 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
|
1213 |
+
%w_dequant = aten::dequantize(%w_quant)
|
1214 |
+
%r = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
|
1215 |
+
return (%r) )";
|
1216 |
+
|
1217 |
+
std::string conv3d_with_quant_prepack = R"(
|
1218 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
|
1219 |
+
%packed_params : __torch__.torch.classes.quantized.Conv3dPackedParamsBase = quantized::conv3d_prepack(%w_quant, %b, %stride, %padding, %dilation, %groups)
|
1220 |
+
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv3d_unpack(%packed_params)
|
1221 |
+
%w_dequant = aten::dequantize(%w_quant_unpacked)
|
1222 |
+
%r = aten::conv3d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %dilation, %groups)
|
1223 |
+
return (%r) )";
|
1224 |
+
|
1225 |
+
std::string conv_transpose1d_with_quant = R"(
|
1226 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %output_padding, %groups, %dilation):
|
1227 |
+
%w_dequant = aten::dequantize(%w_quant)
|
1228 |
+
%r = aten::conv_transpose1d(%a_dequant, %w_dequant, %b, %stride, %padding, %output_padding, %groups, %dilation)
|
1229 |
+
return (%r) )";
|
1230 |
+
|
1231 |
+
std::string conv_transpose1d_with_quant_prepack = R"(
|
1232 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %output_padding, %groups, %dilation):
|
1233 |
+
%packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase = quantized::conv_transpose1d_prepack(%w_quant, %b, %stride, %padding, %output_padding, %dilation, %groups)
|
1234 |
+
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv_transpose1d_unpack(%packed_params)
|
1235 |
+
%w_dequant = aten::dequantize(%w_quant_unpacked)
|
1236 |
+
%r = aten::conv_transpose1d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %output_padding, %groups, %dilation)
|
1237 |
+
return (%r) )";
|
1238 |
+
|
1239 |
+
std::string conv_transpose2d_with_quant = R"(
|
1240 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %output_padding, %groups, %dilation):
|
1241 |
+
%w_dequant = aten::dequantize(%w_quant)
|
1242 |
+
%r = aten::conv_transpose2d(%a_dequant, %w_dequant, %b, %stride, %padding, %output_padding, %groups, %dilation)
|
1243 |
+
return (%r) )";
|
1244 |
+
|
1245 |
+
std::string conv_transpose2d_with_quant_prepack = R"(
|
1246 |
+
graph(%a_dequant, %w_quant, %b, %stride, %padding, %output_padding, %groups, %dilation):
|
1247 |
+
%packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase = quantized::conv_transpose2d_prepack(%w_quant, %b, %stride, %padding, %output_padding, %dilation, %groups)
|
1248 |
+
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv_transpose2d_unpack(%packed_params)
|
1249 |
+
%w_dequant = aten::dequantize(%w_quant_unpacked)
|
1250 |
+
%r = aten::conv_transpose2d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %output_padding, %groups, %dilation)
|
1251 |
+
return (%r) )";
|
1252 |
+
|
1253 |
+
return {
|
1254 |
+
{"conv1d_prepack_unpack",
|
1255 |
+
std::move(conv1d_with_quant),
|
1256 |
+
std::move(conv1d_with_quant_prepack)},
|
1257 |
+
{"conv2d_prepack_unpack",
|
1258 |
+
std::move(conv2d_with_quant),
|
1259 |
+
std::move(conv2d_with_quant_prepack)},
|
1260 |
+
{"conv3d_prepack_unpack",
|
1261 |
+
std::move(conv3d_with_quant),
|
1262 |
+
std::move(conv3d_with_quant_prepack)},
|
1263 |
+
{"conv_transpose1d_prepack_unpack",
|
1264 |
+
std::move(conv_transpose1d_with_quant),
|
1265 |
+
std::move(conv_transpose1d_with_quant_prepack)},
|
1266 |
+
{"conv_transpose2d_prepack_unpack",
|
1267 |
+
std::move(conv_transpose2d_with_quant),
|
1268 |
+
std::move(conv_transpose2d_with_quant_prepack)}};
|
1269 |
+
}
|
1270 |
+
|
1271 |
+
} // namespace jit
|
1272 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/quantization_type.h
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <cstdint>
|
3 |
+
#include <ostream>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Quantization type (dynamic quantization, static quantization).
|
9 |
+
// Should match the Python enum in quantize_jit.py
|
10 |
+
enum QuantType : std::uint8_t { DYNAMIC = 0, STATIC };
|
11 |
+
|
12 |
+
std::ostream& operator<<(std::ostream& os, QuantType t);
|
13 |
+
|
14 |
+
} // namespace jit
|
15 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/quantization/register_packed_params.h
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/api/module.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
#include <memory>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace jit {
|
9 |
+
|
10 |
+
using PrePackParamFilterFn = std::function<bool(Node*)>;
|
11 |
+
|
12 |
+
TORCH_API std::unordered_set<std::string> RegisterPrePackParams(
|
13 |
+
Module& m,
|
14 |
+
const std::string& method_name,
|
15 |
+
const PrePackParamFilterFn& is_packed_param,
|
16 |
+
const std::string& attr_prefix);
|
17 |
+
|
18 |
+
TORCH_API std::string joinPaths(const std::vector<std::string>& paths);
|
19 |
+
} // namespace jit
|
20 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/refine_tuple_types.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// updates the types of tuples according to the type of their current inputs.
|
9 |
+
TORCH_API void RefineTupleTypes(std::shared_ptr<Graph>& graph);
|
10 |
+
|
11 |
+
} // namespace jit
|
12 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_exceptions.h
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Considering prim::RaiseException nodes unreachable, simplify prim::If nodes
|
9 |
+
// when one of the branches contains prim::RaiseException.
|
10 |
+
//
|
11 |
+
// This pass is illegal in general case as the modified graph might not throw
|
12 |
+
// an exception that the original graph would throw. The purpose of the pass is
|
13 |
+
// to cleanup the graph in a "risky" way by removing pathways leading to
|
14 |
+
// RaiseExceptions nodes. In some sense, this pass could be considered as a
|
15 |
+
// "Release" mode, while the original graph was in a "Debug" mode.
|
16 |
+
// The pass should only be used when such transformation is guaranteed to be
|
17 |
+
// safe by some other mechanisms. For instance, when we know exact shapes of
|
18 |
+
// tensors flowing through the graph and tensors with such shapes never cause
|
19 |
+
// exceptions.
|
20 |
+
TORCH_API void EliminateExceptions(std::shared_ptr<Graph>& graph);
|
21 |
+
|
22 |
+
} // namespace jit
|
23 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_expands.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void RemoveExpands(const std::shared_ptr<Graph>& graph);
|
9 |
+
|
10 |
+
}
|
11 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_redundant_profiles.h
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
TORCH_API void RemoveRedundantProfiles(std::shared_ptr<Graph>& graph);
|
9 |
+
TORCH_API void RemoveRedundantProfiles(Block* block, AliasDb& db);
|
10 |
+
} // namespace jit
|
11 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/replacement_of_old_operators.h
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// Find the valid upgrader graph for the upgrader and cache the result
|
9 |
+
// for later lookups. Will error out if there is no valid upgrader graph
|
10 |
+
// provided for the upgrader name.
|
11 |
+
std::shared_ptr<Graph> getUpgraderGraph(const std::string& upgrader_name);
|
12 |
+
|
13 |
+
TORCH_API void ReplaceOldOperatorsWithUpgraders(std::shared_ptr<Graph> graph);
|
14 |
+
|
15 |
+
} // namespace jit
|
16 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/restore_mutation.h
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/symbol.h>
|
4 |
+
#include <c10/util/Exception.h>
|
5 |
+
#include <torch/csrc/Export.h>
|
6 |
+
#include <torch/csrc/jit/ir/alias_analysis.h>
|
7 |
+
#include <torch/csrc/jit/ir/ir.h>
|
8 |
+
|
9 |
+
namespace torch {
|
10 |
+
namespace jit {
|
11 |
+
|
12 |
+
// A map which stores if an activation operator can perform type promotion
|
13 |
+
const std::unordered_map<Symbol, bool> activation_type_promotion_mapping = {
|
14 |
+
{aten::sigmoid, true},
|
15 |
+
{aten::tanh, true},
|
16 |
+
{aten::celu, false},
|
17 |
+
{aten::elu, false},
|
18 |
+
{aten::gelu, false},
|
19 |
+
{aten::glu, false},
|
20 |
+
{aten::hardshrink, false},
|
21 |
+
{aten::hardsigmoid, false},
|
22 |
+
{aten::hardswish, false},
|
23 |
+
{aten::hardtanh, false},
|
24 |
+
{aten::leaky_relu, false},
|
25 |
+
{aten::prelu, false},
|
26 |
+
{aten::relu6, false},
|
27 |
+
{aten::relu, false},
|
28 |
+
{aten::rrelu, false},
|
29 |
+
{aten::selu, false},
|
30 |
+
{aten::silu, false}};
|
31 |
+
|
32 |
+
class FunctionalToInplaceRewriter {
|
33 |
+
public:
|
34 |
+
FunctionalToInplaceRewriter(std::shared_ptr<Graph> graph);
|
35 |
+
|
36 |
+
bool FunctionalToInplace(Block* block);
|
37 |
+
|
38 |
+
private:
|
39 |
+
AliasDb* getOrCreateAliasDb() {
|
40 |
+
if (!aliasDb_) {
|
41 |
+
aliasDb_ = std::make_unique<AliasDb>(graph_);
|
42 |
+
}
|
43 |
+
return aliasDb_.get();
|
44 |
+
}
|
45 |
+
|
46 |
+
bool CanBeInplace(Node* node);
|
47 |
+
|
48 |
+
std::unique_ptr<AliasDb> aliasDb_ = nullptr;
|
49 |
+
std::shared_ptr<Graph> graph_;
|
50 |
+
};
|
51 |
+
|
52 |
+
// A common application scenario is to apply InplaceToFunctionalActivation
|
53 |
+
// before some JIT optimization passes, so that those passes are less
|
54 |
+
// constrained by in-place ops. After those passes are done, we can call
|
55 |
+
// FunctionalToInplaceActivation to recover in-place activation ops,
|
56 |
+
// so that we won't lose the performance benefit coming from memory reduction.
|
57 |
+
|
58 |
+
// Replaces functional aten activation ops with their in-place equivalents
|
59 |
+
TORCH_API bool FunctionalToInplaceActivation(
|
60 |
+
const std::shared_ptr<Graph>& graph);
|
61 |
+
|
62 |
+
} // namespace jit
|
63 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/specialize_autogradzero.h
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
|
5 |
+
namespace torch {
|
6 |
+
namespace jit {
|
7 |
+
|
8 |
+
// propagate autograd zero information through a gradient graph and
|
9 |
+
// remove grad_of blocks if present.
|
10 |
+
// Note: this is a very limited pass. It only propagates autograd zeros for
|
11 |
+
// operations generated by the symbolic autodiff code and cleans up
|
12 |
+
// AutogradAdds when possible. Outputs of other nodes are conservatively
|
13 |
+
// marked Unknown and not optimized.
|
14 |
+
TORCH_API void specializeAutogradZero(std::shared_ptr<Graph> g);
|
15 |
+
|
16 |
+
struct ProfilingRecord;
|
17 |
+
|
18 |
+
TORCH_API void InsertProfileNodesForSpecializeAutogradZero(ProfilingRecord* pr);
|
19 |
+
|
20 |
+
} // namespace jit
|
21 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/symbolic_shape_cache.h
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/jit/ir/ir.h>
|
4 |
+
#include <torch/csrc/jit/passes/symbolic_shape_analysis.h>
|
5 |
+
|
6 |
+
namespace torch {
|
7 |
+
namespace jit {
|
8 |
+
|
9 |
+
struct TORCH_API CanonicalizedSymbolicShape {
|
10 |
+
// TODO: Consider in the future if it is reasonable to
|
11 |
+
// merge code with SymbolicShape or VaryingShape while keeping
|
12 |
+
// the two not implicitly convertable (and cause bugs).
|
13 |
+
CanonicalizedSymbolicShape(
|
14 |
+
const c10::SymbolicShape& orig_shape,
|
15 |
+
std::unordered_map<int64_t, int64_t>& ss_map) {
|
16 |
+
init(orig_shape, ss_map);
|
17 |
+
}
|
18 |
+
|
19 |
+
CanonicalizedSymbolicShape(c10::SymbolicShape& orig_shape) {
|
20 |
+
std::unordered_map<int64_t, int64_t> new_ssmap;
|
21 |
+
init(orig_shape, new_ssmap);
|
22 |
+
}
|
23 |
+
|
24 |
+
size_t hash() const;
|
25 |
+
|
26 |
+
c10::SymbolicShape toSymbolicShape(
|
27 |
+
std::unordered_map<int64_t, int64_t>& inverse_ss_map) const;
|
28 |
+
|
29 |
+
TORCH_API friend bool operator==(
|
30 |
+
const CanonicalizedSymbolicShape& a,
|
31 |
+
const CanonicalizedSymbolicShape& b);
|
32 |
+
|
33 |
+
private:
|
34 |
+
c10::optional<std::vector<int64_t>> values_;
|
35 |
+
|
36 |
+
void init(
|
37 |
+
const c10::SymbolicShape& orig_shape,
|
38 |
+
std::unordered_map<int64_t, int64_t>& ss_map);
|
39 |
+
};
|
40 |
+
|
41 |
+
// SHAPE CACHE API
|
42 |
+
TORCH_API c10::optional<std::vector<at::SymbolicShape>>
|
43 |
+
get_cached_shape_function(
|
44 |
+
const FunctionSchema* schema,
|
45 |
+
const std::vector<SSAInput>& arg_vec);
|
46 |
+
|
47 |
+
TORCH_API void cache_shape_function(
|
48 |
+
const FunctionSchema* schema,
|
49 |
+
const std::vector<SSAInput>& arg_vec,
|
50 |
+
const std::vector<at::SymbolicShape>& ret_vec);
|
51 |
+
|
52 |
+
// For use in test code
|
53 |
+
TORCH_API void clear_shape_cache();
|
54 |
+
TORCH_API size_t get_shape_cache_size();
|
55 |
+
|
56 |
+
} // namespace jit
|
57 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/utils/check_alias_annotation.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/ivalue.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
#include <memory>
|
6 |
+
#include <string>
|
7 |
+
#include <vector>
|
8 |
+
|
9 |
+
namespace torch {
|
10 |
+
namespace jit {
|
11 |
+
|
12 |
+
// Verify that alias annotations are correct. See impl for definition of
|
13 |
+
// "correct".
|
14 |
+
//
|
15 |
+
// This function expects a graph with a single op with `unqualifiedOpName`, plus
|
16 |
+
// the inputs that you would otherwise have passed to the graph executor.
|
17 |
+
TORCH_API void checkAliasAnnotation(
|
18 |
+
const std::shared_ptr<Graph>& graph,
|
19 |
+
std::vector<IValue> pythonInputs,
|
20 |
+
const std::string& unqualifiedOpName);
|
21 |
+
} // namespace jit
|
22 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/utils/memory_dag.h
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/jit_type.h>
|
4 |
+
#include <c10/util/ArrayRef.h>
|
5 |
+
#include <c10/util/Optional.h>
|
6 |
+
#include <c10/util/flat_hash_map.h>
|
7 |
+
#include <c10/util/sparse_bitset.h>
|
8 |
+
#include <torch/csrc/jit/ir/ir.h>
|
9 |
+
#include <torch/csrc/jit/ir/type_hashing.h>
|
10 |
+
#include <memory>
|
11 |
+
#include <unordered_map>
|
12 |
+
#include <unordered_set>
|
13 |
+
#include <vector>
|
14 |
+
|
15 |
+
#include <torch/csrc/Export.h>
|
16 |
+
|
17 |
+
// Uses a compressed index representation for faster comparisons
|
18 |
+
typedef c10::SparseBitVector<256> MemoryLocations;
|
19 |
+
namespace torch {
|
20 |
+
namespace jit {
|
21 |
+
|
22 |
+
struct Element;
|
23 |
+
struct Value;
|
24 |
+
class MemoryDAG;
|
25 |
+
|
26 |
+
using AliasTypeSet = std::vector<TypePtr>;
|
27 |
+
|
28 |
+
/**
|
29 |
+
* Helper to build up the points-to graph.
|
30 |
+
*
|
31 |
+
* We separate the "building" into a different class because it allows us to
|
32 |
+
* cache internally to MemoryDAG without worrying about how the DAG structure
|
33 |
+
* is mutated.
|
34 |
+
*/
|
35 |
+
class TORCH_API MemoryDAGBuilder {
|
36 |
+
public:
|
37 |
+
MemoryDAGBuilder() = default;
|
38 |
+
MemoryDAGBuilder(const MemoryDAGBuilder&) = delete;
|
39 |
+
MemoryDAGBuilder& operator=(const MemoryDAGBuilder&) = delete;
|
40 |
+
|
41 |
+
// Make `from` point at `to`.
|
42 |
+
void makePointerTo(Element* from, Element* to);
|
43 |
+
|
44 |
+
void addToContainedElements(Element* contained, Element* container);
|
45 |
+
|
46 |
+
// Make a fresh Element (i.e. an Element that doesn't point to anything) and
|
47 |
+
// return it.
|
48 |
+
Element* makeFreshValue(const Value* v);
|
49 |
+
|
50 |
+
friend MemoryDAG;
|
51 |
+
|
52 |
+
private:
|
53 |
+
// `MemoryDAGBuilder` builds up `indexToElementMap_`, then uses
|
54 |
+
// the map to construct the `MemoryDAG`
|
55 |
+
std::vector<std::unique_ptr<Element>> indexToElementMap_;
|
56 |
+
};
|
57 |
+
|
58 |
+
// class MemoryDAG
|
59 |
+
//
|
60 |
+
// This class tracks the "A points to B" graph for all values. It is used by
|
61 |
+
// AliasDb to provide a higher-level API.
|
62 |
+
//
|
63 |
+
// We maintain a DAG where:
|
64 |
+
// - Vertices (called "Elements") represent Values and
|
65 |
+
// other aliasing entities (e.g. the stuff inside a list)
|
66 |
+
// - Edges represent a "points-to" relationship.
|
67 |
+
//
|
68 |
+
// Leaves in this DAG are entities that don't point to anything, and thus
|
69 |
+
// correspond to unique "memory locations".
|
70 |
+
//
|
71 |
+
// So, by traversing the "points-to" graph to the leaves, you can determine
|
72 |
+
// which memory locations an element may point to.
|
73 |
+
class TORCH_API MemoryDAG {
|
74 |
+
public:
|
75 |
+
explicit MemoryDAG(std::unique_ptr<MemoryDAGBuilder> builder)
|
76 |
+
: indexToElementMap_(std::move(builder->indexToElementMap_)) {}
|
77 |
+
// explicitly delete copy constructor because otherwise windows build is
|
78 |
+
// confused for an exported class see
|
79 |
+
// https://stackoverflow.com/a/51033485/105137
|
80 |
+
MemoryDAG(const MemoryDAG&) = delete;
|
81 |
+
MemoryDAG& operator=(const MemoryDAG&) = delete;
|
82 |
+
|
83 |
+
// Return the unique memory locations that `Element` might represent.
|
84 |
+
const MemoryLocations& getMemoryLocations(const Element* e) const;
|
85 |
+
|
86 |
+
// Do `a` and `b` potentially share a memory location?
|
87 |
+
bool mayAlias(const Element* a, const Element* b) const;
|
88 |
+
|
89 |
+
// Does `a` hold reference to any memory that is stored in `b`, or vice versa?
|
90 |
+
bool mayContainAlias(const Element* a, const Element* b) const;
|
91 |
+
|
92 |
+
bool mayContainAlias(const Element* a, const at::ArrayRef<Element*> b) const;
|
93 |
+
|
94 |
+
bool mayContainAlias(
|
95 |
+
const at::ArrayRef<Element*> a,
|
96 |
+
const at::ArrayRef<Element*> b) const;
|
97 |
+
|
98 |
+
// Converts from the compressed index representation
|
99 |
+
const Element* fromIndex(unsigned x) const;
|
100 |
+
Element* fromIndex(unsigned x);
|
101 |
+
void collectAllContainedMemoryLocations(
|
102 |
+
const Element* elem,
|
103 |
+
MemoryLocations& cont) const;
|
104 |
+
|
105 |
+
/**
|
106 |
+
* The following methods are special cases where we need to mutate the
|
107 |
+
* internals of MemoryDAG for efficiency reasons. Don't call them unless you
|
108 |
+
* know what you're doing! In particular, don't add new mutating methods
|
109 |
+
* without ensuring that you are maintaining cache consistency for memory
|
110 |
+
* locations.
|
111 |
+
*/
|
112 |
+
|
113 |
+
// Adding wildcards can trigger extremely expensive cache invalidations. This
|
114 |
+
// method adds them in a more efficient cache-aware way.
|
115 |
+
void setWildcards(
|
116 |
+
const std::unordered_set<const Value*>& wildcards,
|
117 |
+
const ska::flat_hash_map<const Value*, Element*>& elementMap,
|
118 |
+
const std::function<Element*(const Value*)>& getWildcardElement);
|
119 |
+
Element* unsafeMakeFreshValue(const Value* v);
|
120 |
+
|
121 |
+
private:
|
122 |
+
const MemoryLocations& getAllContainedMemoryLocations(
|
123 |
+
const Element* elem) const;
|
124 |
+
void collectAllContainedMemoryLocationsImpl(
|
125 |
+
const Element* elem,
|
126 |
+
MemoryLocations& cont) const;
|
127 |
+
std::vector<std::unique_ptr<Element>> indexToElementMap_;
|
128 |
+
};
|
129 |
+
|
130 |
+
// `Element` represents a vertex in the points-to graph. It represents
|
131 |
+
// anything that could have an aliasing relationship--mostly IR
|
132 |
+
// `Value`s, but also wildcards or the type inside a container (e.g. `T`
|
133 |
+
// in `List[T]`)
|
134 |
+
struct Element {
|
135 |
+
Element(const Value* value_, unsigned index_);
|
136 |
+
// wildcard constructor
|
137 |
+
explicit Element(unsigned index_);
|
138 |
+
|
139 |
+
// Index into the owning DAG's bit vector that represents this element.
|
140 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
141 |
+
unsigned index;
|
142 |
+
|
143 |
+
// All elements that this element *may* point to. It's possible to have
|
144 |
+
// multiple elements that you might point to due to control flow/complex ops
|
145 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
146 |
+
MemoryLocations pointsTo;
|
147 |
+
// Backreference for points-to.
|
148 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
149 |
+
MemoryLocations pointedFrom;
|
150 |
+
|
151 |
+
// Elements can contain other elements (e.g. List[Tensor])
|
152 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
153 |
+
MemoryLocations containedElements;
|
154 |
+
|
155 |
+
// The values that this element corresponds to. May be empty if this element
|
156 |
+
// doesn't represent a first-class value.
|
157 |
+
// This is for debug information only.
|
158 |
+
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
|
159 |
+
std::unordered_set<const Value*> values;
|
160 |
+
|
161 |
+
private:
|
162 |
+
// Make `from` point at `to`.
|
163 |
+
void makePointerTo(Element* from, Element* to);
|
164 |
+
|
165 |
+
friend class MemoryDAG;
|
166 |
+
// We memoize the results of `getMemoryLocations` to speed up queries.
|
167 |
+
// A nullopt means that this cache is not yet populated. Since `MemoryDAG` is
|
168 |
+
// immutable, this cache should never need to be invalidated.
|
169 |
+
mutable c10::optional<MemoryLocations> cachedMemoryLocations_;
|
170 |
+
|
171 |
+
mutable c10::optional<MemoryLocations> cachedAllContainedMemoryLocations_;
|
172 |
+
};
|
173 |
+
|
174 |
+
} // namespace jit
|
175 |
+
} // namespace torch
|
env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/utils/op_registry.h
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <torch/csrc/Export.h>
|
4 |
+
#include <torch/csrc/jit/ir/ir.h>
|
5 |
+
#include <memory>
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace jit {
|
9 |
+
// Moved from shape_analysis.cpp
|
10 |
+
|
11 |
+
// Requirements:
|
12 |
+
// dims : preserved from the first argument
|
13 |
+
// scalar type : preserved from the first argument (doesn't have to
|
14 |
+
// match other arguments)
|
15 |
+
// device : always matching and preserved
|
16 |
+
// tensor inputs : *
|
17 |
+
// tensor outputs : 1
|
18 |
+
// NB: those ops (with slight adjustments) are good candidates for restarts.
|
19 |
+
// Knowing the type and device of weights or biases is usually enough to
|
20 |
+
// infer the output type.
|
21 |
+
std::shared_ptr<OperatorSet> nn_ops_first_input_preserving();
|
22 |
+
|
23 |
+
// Requirements:
|
24 |
+
// dims : Changed from first argument
|
25 |
+
// scalar type : preserved from the first argument
|
26 |
+
// device : always matching and preserved
|
27 |
+
// tensor inputs : 1
|
28 |
+
// tensor outputs : 1
|
29 |
+
std::shared_ptr<OperatorSet> ops_one_tensor_in_shape_transform();
|
30 |
+
} // namespace jit
|
31 |
+
} // namespace torch
|