diff --git "a/env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/single.py" "b/env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/single.py" new file mode 100644--- /dev/null +++ "b/env-llmeval/lib/python3.10/site-packages/sympy/solvers/ode/single.py" @@ -0,0 +1,2979 @@ +# +# This is the module for ODE solver classes for single ODEs. +# + +from __future__ import annotations +from typing import ClassVar, Iterator + +from .riccati import match_riccati, solve_riccati +from sympy.core import Add, S, Pow, Rational +from sympy.core.cache import cached_property +from sympy.core.exprtools import factor_terms +from sympy.core.expr import Expr +from sympy.core.function import AppliedUndef, Derivative, diff, Function, expand, Subs, _mexpand +from sympy.core.numbers import zoo +from sympy.core.relational import Equality, Eq +from sympy.core.symbol import Symbol, Dummy, Wild +from sympy.core.mul import Mul +from sympy.functions import exp, tan, log, sqrt, besselj, bessely, cbrt, airyai, airybi +from sympy.integrals import Integral +from sympy.polys import Poly +from sympy.polys.polytools import cancel, factor, degree +from sympy.simplify import collect, simplify, separatevars, logcombine, posify # type: ignore +from sympy.simplify.radsimp import fraction +from sympy.utilities import numbered_symbols +from sympy.solvers.solvers import solve +from sympy.solvers.deutils import ode_order, _preprocess +from sympy.polys.matrices.linsolve import _lin_eq2dict +from sympy.polys.solvers import PolyNonlinearError +from .hypergeometric import equivalence_hypergeometric, match_2nd_2F1_hypergeometric, \ + get_sol_2F1_hypergeometric, match_2nd_hypergeometric +from .nonhomogeneous import _get_euler_characteristic_eq_sols, _get_const_characteristic_eq_sols, \ + _solve_undetermined_coefficients, _solve_variation_of_parameters, _test_term, _undetermined_coefficients_match, \ + _get_simplified_sol +from .lie_group import _ode_lie_group + + +class ODEMatchError(NotImplementedError): + """Raised if a SingleODESolver is asked to solve an ODE it does not match""" + pass + + +class SingleODEProblem: + """Represents an ordinary differential equation (ODE) + + This class is used internally in the by dsolve and related + functions/classes so that properties of an ODE can be computed + efficiently. + + Examples + ======== + + This class is used internally by dsolve. To instantiate an instance + directly first define an ODE problem: + + >>> from sympy import Function, Symbol + >>> x = Symbol('x') + >>> f = Function('f') + >>> eq = f(x).diff(x, 2) + + Now you can create a SingleODEProblem instance and query its properties: + + >>> from sympy.solvers.ode.single import SingleODEProblem + >>> problem = SingleODEProblem(f(x).diff(x), f(x), x) + >>> problem.eq + Derivative(f(x), x) + >>> problem.func + f(x) + >>> problem.sym + x + """ + + # Instance attributes: + eq = None # type: Expr + func = None # type: AppliedUndef + sym = None # type: Symbol + _order = None # type: int + _eq_expanded = None # type: Expr + _eq_preprocessed = None # type: Expr + _eq_high_order_free = None + + def __init__(self, eq, func, sym, prep=True, **kwargs): + assert isinstance(eq, Expr) + assert isinstance(func, AppliedUndef) + assert isinstance(sym, Symbol) + assert isinstance(prep, bool) + self.eq = eq + self.func = func + self.sym = sym + self.prep = prep + self.params = kwargs + + @cached_property + def order(self) -> int: + return ode_order(self.eq, self.func) + + @cached_property + def eq_preprocessed(self) -> Expr: + return self._get_eq_preprocessed() + + @cached_property + def eq_high_order_free(self) -> Expr: + a = Wild('a', exclude=[self.func]) + c1 = Wild('c1', exclude=[self.sym]) + # Precondition to try remove f(x) from highest order derivative + reduced_eq = None + if self.eq.is_Add: + deriv_coef = self.eq.coeff(self.func.diff(self.sym, self.order)) + if deriv_coef not in (1, 0): + r = deriv_coef.match(a*self.func**c1) + if r and r[c1]: + den = self.func**r[c1] + reduced_eq = Add(*[arg/den for arg in self.eq.args]) + if not reduced_eq: + reduced_eq = expand(self.eq) + return reduced_eq + + @cached_property + def eq_expanded(self) -> Expr: + return expand(self.eq_preprocessed) + + def _get_eq_preprocessed(self) -> Expr: + if self.prep: + process_eq, process_func = _preprocess(self.eq, self.func) + if process_func != self.func: + raise ValueError + else: + process_eq = self.eq + return process_eq + + def get_numbered_constants(self, num=1, start=1, prefix='C') -> list[Symbol]: + """ + Returns a list of constants that do not occur + in eq already. + """ + ncs = self.iter_numbered_constants(start, prefix) + Cs = [next(ncs) for i in range(num)] + return Cs + + def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]: + """ + Returns an iterator of constants that do not occur + in eq already. + """ + atom_set = self.eq.free_symbols + func_set = self.eq.atoms(Function) + if func_set: + atom_set |= {Symbol(str(f.func)) for f in func_set} + return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) + + @cached_property + def is_autonomous(self): + u = Dummy('u') + x = self.sym + syms = self.eq.subs(self.func, u).free_symbols + return x not in syms + + def get_linear_coefficients(self, eq, func, order): + r""" + Matches a differential equation to the linear form: + + .. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 + + Returns a dict of order:coeff terms, where order is the order of the + derivative on each term, and coeff is the coefficient of that derivative. + The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is + not linear. This function assumes that ``func`` has already been checked + to be good. + + Examples + ======== + + >>> from sympy import Function, cos, sin + >>> from sympy.abc import x + >>> from sympy.solvers.ode.single import SingleODEProblem + >>> f = Function('f') + >>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ + ... sin(x) + >>> obj = SingleODEProblem(eq, f(x), x) + >>> obj.get_linear_coefficients(eq, f(x), 3) + {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} + >>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \ + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \ + ... sin(f(x)) + >>> obj = SingleODEProblem(eq, f(x), x) + >>> obj.get_linear_coefficients(eq, f(x), 3) == None + True + + """ + f = func.func + x = func.args[0] + symset = {Derivative(f(x), x, i) for i in range(order+1)} + try: + rhs, lhs_terms = _lin_eq2dict(eq, symset) + except PolyNonlinearError: + return None + + if rhs.has(func) or any(c.has(func) for c in lhs_terms.values()): + return None + terms = {i: lhs_terms.get(f(x).diff(x, i), S.Zero) for i in range(order+1)} + terms[-1] = rhs + return terms + + # TODO: Add methods that can be used by many ODE solvers: + # order + # is_linear() + # get_linear_coefficients() + # eq_prepared (the ODE in prepared form) + + +class SingleODESolver: + """ + Base class for Single ODE solvers. + + Subclasses should implement the _matches and _get_general_solution + methods. This class is not intended to be instantiated directly but its + subclasses are as part of dsolve. + + Examples + ======== + + You can use a subclass of SingleODEProblem to solve a particular type of + ODE. We first define a particular ODE problem: + + >>> from sympy import Function, Symbol + >>> x = Symbol('x') + >>> f = Function('f') + >>> eq = f(x).diff(x, 2) + + Now we solve this problem using the NthAlgebraic solver which is a + subclass of SingleODESolver: + + >>> from sympy.solvers.ode.single import NthAlgebraic, SingleODEProblem + >>> problem = SingleODEProblem(eq, f(x), x) + >>> solver = NthAlgebraic(problem) + >>> solver.get_general_solution() + [Eq(f(x), _C*x + _C)] + + The normal way to solve an ODE is to use dsolve (which would use + NthAlgebraic and other solvers internally). When using dsolve a number of + other things are done such as evaluating integrals, simplifying the + solution and renumbering the constants: + + >>> from sympy import dsolve + >>> dsolve(eq, hint='nth_algebraic') + Eq(f(x), C1 + C2*x) + """ + + # Subclasses should store the hint name (the argument to dsolve) in this + # attribute + hint: ClassVar[str] + + # Subclasses should define this to indicate if they support an _Integral + # hint. + has_integral: ClassVar[bool] + + # The ODE to be solved + ode_problem = None # type: SingleODEProblem + + # Cache whether or not the equation has matched the method + _matched: bool | None = None + + # Subclasses should store in this attribute the list of order(s) of ODE + # that subclass can solve or leave it to None if not specific to any order + order: list | None = None + + def __init__(self, ode_problem): + self.ode_problem = ode_problem + + def matches(self) -> bool: + if self.order is not None and self.ode_problem.order not in self.order: + self._matched = False + return self._matched + + if self._matched is None: + self._matched = self._matches() + return self._matched + + def get_general_solution(self, *, simplify: bool = True) -> list[Equality]: + if not self.matches(): + msg = "%s solver cannot solve:\n%s" + raise ODEMatchError(msg % (self.hint, self.ode_problem.eq)) + return self._get_general_solution(simplify_flag=simplify) + + def _matches(self) -> bool: + msg = "Subclasses of SingleODESolver should implement matches." + raise NotImplementedError(msg) + + def _get_general_solution(self, *, simplify_flag: bool = True) -> list[Equality]: + msg = "Subclasses of SingleODESolver should implement get_general_solution." + raise NotImplementedError(msg) + + +class SinglePatternODESolver(SingleODESolver): + '''Superclass for ODE solvers based on pattern matching''' + + def wilds(self): + prob = self.ode_problem + f = prob.func.func + x = prob.sym + order = prob.order + return self._wilds(f, x, order) + + def wilds_match(self): + match = self._wilds_match + return [match.get(w, S.Zero) for w in self.wilds()] + + def _matches(self): + eq = self.ode_problem.eq_expanded + f = self.ode_problem.func.func + x = self.ode_problem.sym + order = self.ode_problem.order + df = f(x).diff(x, order) + + if order not in [1, 2]: + return False + + pattern = self._equation(f(x), x, order) + + if not pattern.coeff(df).has(Wild): + eq = expand(eq / eq.coeff(df)) + eq = eq.collect([f(x).diff(x), f(x)], func = cancel) + + self._wilds_match = match = eq.match(pattern) + if match is not None: + return self._verify(f(x)) + return False + + def _verify(self, fx) -> bool: + return True + + def _wilds(self, f, x, order): + msg = "Subclasses of SingleODESolver should implement _wilds" + raise NotImplementedError(msg) + + def _equation(self, fx, x, order): + msg = "Subclasses of SingleODESolver should implement _equation" + raise NotImplementedError(msg) + + +class NthAlgebraic(SingleODESolver): + r""" + Solves an `n`\th order ordinary differential equation using algebra and + integrals. + + There is no general form for the kind of equation that this can solve. The + the equation is solved algebraically treating differentiation as an + invertible algebraic function. + + Examples + ======== + + >>> from sympy import Function, dsolve, Eq + >>> from sympy.abc import x + >>> f = Function('f') + >>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0) + >>> dsolve(eq, f(x), hint='nth_algebraic') + [Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)] + + Note that this solver can return algebraic solutions that do not have any + integration constants (f(x) = 0 in the above example). + """ + + hint = 'nth_algebraic' + has_integral = True # nth_algebraic_Integral hint + + def _matches(self): + r""" + Matches any differential equation that nth_algebraic can solve. Uses + `sympy.solve` but teaches it how to integrate derivatives. + + This involves calling `sympy.solve` and does most of the work of finding a + solution (apart from evaluating the integrals). + """ + eq = self.ode_problem.eq + func = self.ode_problem.func + var = self.ode_problem.sym + + # Derivative that solve can handle: + diffx = self._get_diffx(var) + + # Replace derivatives wrt the independent variable with diffx + def replace(eq, var): + def expand_diffx(*args): + differand, diffs = args[0], args[1:] + toreplace = differand + for v, n in diffs: + for _ in range(n): + if v == var: + toreplace = diffx(toreplace) + else: + toreplace = Derivative(toreplace, v) + return toreplace + return eq.replace(Derivative, expand_diffx) + + # Restore derivatives in solution afterwards + def unreplace(eq, var): + return eq.replace(diffx, lambda e: Derivative(e, var)) + + subs_eqn = replace(eq, var) + try: + # turn off simplification to protect Integrals that have + # _t instead of fx in them and would otherwise factor + # as t_*Integral(1, x) + solns = solve(subs_eqn, func, simplify=False) + except NotImplementedError: + solns = [] + + solns = [simplify(unreplace(soln, var)) for soln in solns] + solns = [Equality(func, soln) for soln in solns] + + self.solutions = solns + return len(solns) != 0 + + def _get_general_solution(self, *, simplify_flag: bool = True): + return self.solutions + + # This needs to produce an invertible function but the inverse depends + # which variable we are integrating with respect to. Since the class can + # be stored in cached results we need to ensure that we always get the + # same class back for each particular integration variable so we store these + # classes in a global dict: + _diffx_stored: dict[Symbol, type[Function]] = {} + + @staticmethod + def _get_diffx(var): + diffcls = NthAlgebraic._diffx_stored.get(var, None) + + if diffcls is None: + # A class that behaves like Derivative wrt var but is "invertible". + class diffx(Function): + def inverse(self): + # don't use integrate here because fx has been replaced by _t + # in the equation; integrals will not be correct while solve + # is at work. + return lambda expr: Integral(expr, var) + Dummy('C') + + diffcls = NthAlgebraic._diffx_stored.setdefault(var, diffx) + + return diffcls + + +class FirstExact(SinglePatternODESolver): + r""" + Solves 1st order exact ordinary differential equations. + + A 1st order differential equation is called exact if it is the total + differential of a function. That is, the differential equation + + .. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0 + + is exact if there is some function `F(x, y)` such that `P(x, y) = + \partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can + be shown that a necessary and sufficient condition for a first order ODE + to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`. + Then, the solution will be as given below:: + + >>> from sympy import Function, Eq, Integral, symbols, pprint + >>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1') + >>> P, Q, F= map(Function, ['P', 'Q', 'F']) + >>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + + ... Integral(Q(x0, t), (t, y0, y))), C1)) + x y + / / + | | + F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1 + | | + / / + x0 y0 + + Where the first partials of `P` and `Q` exist and are continuous in a + simply connected region. + + A note: SymPy currently has no way to represent inert substitution on an + expression, so the hint ``1st_exact_Integral`` will return an integral + with `dy`. This is supposed to represent the function that you are + solving for. + + Examples + ======== + + >>> from sympy import Function, dsolve, cos, sin + >>> from sympy.abc import x + >>> f = Function('f') + >>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), + ... f(x), hint='1st_exact') + Eq(x*cos(f(x)) + f(x)**3/3, C1) + + References + ========== + + - https://en.wikipedia.org/wiki/Exact_differential_equation + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 73 + + # indirect doctest + + """ + hint = "1st_exact" + has_integral = True + order = [1] + + def _wilds(self, f, x, order): + P = Wild('P', exclude=[f(x).diff(x)]) + Q = Wild('Q', exclude=[f(x).diff(x)]) + return P, Q + + def _equation(self, fx, x, order): + P, Q = self.wilds() + return P + Q*fx.diff(x) + + def _verify(self, fx) -> bool: + P, Q = self.wilds() + x = self.ode_problem.sym + y = Dummy('y') + + m, n = self.wilds_match() + + m = m.subs(fx, y) + n = n.subs(fx, y) + numerator = cancel(m.diff(y) - n.diff(x)) + + if numerator.is_zero: + # Is exact + return True + else: + # The following few conditions try to convert a non-exact + # differential equation into an exact one. + # References: + # 1. Differential equations with applications + # and historical notes - George E. Simmons + # 2. https://math.okstate.edu/people/binegar/2233-S99/2233-l12.pdf + + factor_n = cancel(numerator/n) + factor_m = cancel(-numerator/m) + if y not in factor_n.free_symbols: + # If (dP/dy - dQ/dx) / Q = f(x) + # then exp(integral(f(x))*equation becomes exact + factor = factor_n + integration_variable = x + elif x not in factor_m.free_symbols: + # If (dP/dy - dQ/dx) / -P = f(y) + # then exp(integral(f(y))*equation becomes exact + factor = factor_m + integration_variable = y + else: + # Couldn't convert to exact + return False + + factor = exp(Integral(factor, integration_variable)) + m *= factor + n *= factor + self._wilds_match[P] = m.subs(y, fx) + self._wilds_match[Q] = n.subs(y, fx) + return True + + def _get_general_solution(self, *, simplify_flag: bool = True): + m, n = self.wilds_match() + fx = self.ode_problem.func + x = self.ode_problem.sym + (C1,) = self.ode_problem.get_numbered_constants(num=1) + y = Dummy('y') + + m = m.subs(fx, y) + n = n.subs(fx, y) + + gen_sol = Eq(Subs(Integral(m, x) + + Integral(n - Integral(m, x).diff(y), y), y, fx), C1) + return [gen_sol] + + +class FirstLinear(SinglePatternODESolver): + r""" + Solves 1st order linear differential equations. + + These are differential equations of the form + + .. math:: dy/dx + P(x) y = Q(x)\text{.} + + These kinds of differential equations can be solved in a general way. The + integrating factor `e^{\int P(x) \,dx}` will turn the equation into a + separable equation. The general solution is:: + + >>> from sympy import Function, dsolve, Eq, pprint, diff, sin + >>> from sympy.abc import x + >>> f, P, Q = map(Function, ['f', 'P', 'Q']) + >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)) + >>> pprint(genform) + d + P(x)*f(x) + --(f(x)) = Q(x) + dx + >>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral')) + / / \ + | | | + | | / | / + | | | | | + | | | P(x) dx | - | P(x) dx + | | | | | + | | / | / + f(x) = |C1 + | Q(x)*e dx|*e + | | | + \ / / + + + Examples + ======== + + >>> f = Function('f') + >>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), + ... f(x), '1st_linear')) + f(x) = x*(C1 - cos(x)) + + References + ========== + + - https://en.wikipedia.org/wiki/Linear_differential_equation#First-order_equation_with_variable_coefficients + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 92 + + # indirect doctest + + """ + hint = '1st_linear' + has_integral = True + order = [1] + + def _wilds(self, f, x, order): + P = Wild('P', exclude=[f(x)]) + Q = Wild('Q', exclude=[f(x), f(x).diff(x)]) + return P, Q + + def _equation(self, fx, x, order): + P, Q = self.wilds() + return fx.diff(x) + P*fx - Q + + def _get_general_solution(self, *, simplify_flag: bool = True): + P, Q = self.wilds_match() + fx = self.ode_problem.func + x = self.ode_problem.sym + (C1,) = self.ode_problem.get_numbered_constants(num=1) + gensol = Eq(fx, ((C1 + Integral(Q*exp(Integral(P, x)), x)) + * exp(-Integral(P, x)))) + return [gensol] + + +class AlmostLinear(SinglePatternODESolver): + r""" + Solves an almost-linear differential equation. + + The general form of an almost linear differential equation is + + .. math:: a(x) g'(f(x)) f'(x) + b(x) g(f(x)) + c(x) + + Here `f(x)` is the function to be solved for (the dependent variable). + The substitution `g(f(x)) = u(x)` leads to a linear differential equation + for `u(x)` of the form `a(x) u' + b(x) u + c(x) = 0`. This can be solved + for `u(x)` by the `first_linear` hint and then `f(x)` is found by solving + `g(f(x)) = u(x)`. + + See Also + ======== + :obj:`sympy.solvers.ode.single.FirstLinear` + + Examples + ======== + + >>> from sympy import dsolve, Function, pprint, sin, cos + >>> from sympy.abc import x + >>> f = Function('f') + >>> d = f(x).diff(x) + >>> eq = x*d + x*f(x) + 1 + >>> dsolve(eq, f(x), hint='almost_linear') + Eq(f(x), (C1 - Ei(x))*exp(-x)) + >>> pprint(dsolve(eq, f(x), hint='almost_linear')) + -x + f(x) = (C1 - Ei(x))*e + >>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1 + >>> pprint(example) + d + sin(f(x)) + cos(f(x))*--(f(x)) + 1 + dx + >>> pprint(dsolve(example, f(x), hint='almost_linear')) + / -x \ / -x \ + [f(x) = pi - asin\C1*e - 1/, f(x) = asin\C1*e - 1/] + + + References + ========== + + - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications + of the ACM, Volume 14, Number 8, August 1971, pp. 558 + """ + hint = "almost_linear" + has_integral = True + order = [1] + + def _wilds(self, f, x, order): + P = Wild('P', exclude=[f(x).diff(x)]) + Q = Wild('Q', exclude=[f(x).diff(x)]) + return P, Q + + def _equation(self, fx, x, order): + P, Q = self.wilds() + return P*fx.diff(x) + Q + + def _verify(self, fx): + a, b = self.wilds_match() + c, b = b.as_independent(fx) if b.is_Add else (S.Zero, b) + # a, b and c are the function a(x), b(x) and c(x) respectively. + # c(x) is obtained by separating out b as terms with and without fx i.e, l(y) + # The following conditions checks if the given equation is an almost-linear differential equation using the fact that + # a(x)*(l(y))' / l(y)' is independent of l(y) + + if b.diff(fx) != 0 and not simplify(b.diff(fx)/a).has(fx): + self.ly = factor_terms(b).as_independent(fx, as_Add=False)[1] # Gives the term containing fx i.e., l(y) + self.ax = a / self.ly.diff(fx) + self.cx = -c # cx is taken as -c(x) to simplify expression in the solution integral + self.bx = factor_terms(b) / self.ly + return True + + return False + + def _get_general_solution(self, *, simplify_flag: bool = True): + x = self.ode_problem.sym + (C1,) = self.ode_problem.get_numbered_constants(num=1) + gensol = Eq(self.ly, ((C1 + Integral((self.cx/self.ax)*exp(Integral(self.bx/self.ax, x)), x)) + * exp(-Integral(self.bx/self.ax, x)))) + + return [gensol] + + +class Bernoulli(SinglePatternODESolver): + r""" + Solves Bernoulli differential equations. + + These are equations of the form + + .. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.} + + The substitution `w = 1/y^{1-n}` will transform an equation of this form + into one that is linear (see the docstring of + :obj:`~sympy.solvers.ode.single.FirstLinear`). The general solution is:: + + >>> from sympy import Function, dsolve, Eq, pprint + >>> from sympy.abc import x, n + >>> f, P, Q = map(Function, ['f', 'P', 'Q']) + >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n) + >>> pprint(genform) + d n + P(x)*f(x) + --(f(x)) = Q(x)*f (x) + dx + >>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110) + -1 + ----- + n - 1 + // / / \ \ + || | | | | + || | / | / | / | + || | | | | | | | + || | -(n - 1)* | P(x) dx | -(n - 1)* | P(x) dx | (n - 1)* | P(x) dx| + || | | | | | | | + || | / | / | / | + f(x) = ||C1 - n* | Q(x)*e dx + | Q(x)*e dx|*e | + || | | | | + \\ / / / / + + + Note that the equation is separable when `n = 1` (see the docstring of + :obj:`~sympy.solvers.ode.single.Separable`). + + >>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x), + ... hint='separable_Integral')) + f(x) + / + | / + | 1 | + | - dy = C1 + | (-P(x) + Q(x)) dx + | y | + | / + / + + + Examples + ======== + + >>> from sympy import Function, dsolve, Eq, pprint, log + >>> from sympy.abc import x + >>> f = Function('f') + + >>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2), + ... f(x), hint='Bernoulli')) + 1 + f(x) = ----------------- + C1*x + log(x) + 1 + + References + ========== + + - https://en.wikipedia.org/wiki/Bernoulli_differential_equation + + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 95 + + # indirect doctest + + """ + hint = "Bernoulli" + has_integral = True + order = [1] + + def _wilds(self, f, x, order): + P = Wild('P', exclude=[f(x)]) + Q = Wild('Q', exclude=[f(x)]) + n = Wild('n', exclude=[x, f(x), f(x).diff(x)]) + return P, Q, n + + def _equation(self, fx, x, order): + P, Q, n = self.wilds() + return fx.diff(x) + P*fx - Q*fx**n + + def _get_general_solution(self, *, simplify_flag: bool = True): + P, Q, n = self.wilds_match() + fx = self.ode_problem.func + x = self.ode_problem.sym + (C1,) = self.ode_problem.get_numbered_constants(num=1) + if n==1: + gensol = Eq(log(fx), ( + C1 + Integral((-P + Q), x) + )) + else: + gensol = Eq(fx**(1-n), ( + (C1 - (n - 1) * Integral(Q*exp(-n*Integral(P, x)) + * exp(Integral(P, x)), x) + ) * exp(-(1 - n)*Integral(P, x))) + ) + return [gensol] + + +class Factorable(SingleODESolver): + r""" + Solves equations having a solvable factor. + + This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It + will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the + list of solutions. + + Examples + ======== + + >>> from sympy import Function, dsolve, pprint + >>> from sympy.abc import x + >>> f = Function('f') + >>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x)) + >>> pprint(dsolve(eq, f(x))) + -x + [f(x) = 2, f(x) = -2, f(x) = C1*e ] + + + """ + hint = "factorable" + has_integral = False + + def _matches(self): + eq_orig = self.ode_problem.eq + f = self.ode_problem.func.func + x = self.ode_problem.sym + df = f(x).diff(x) + self.eqs = [] + eq = eq_orig.collect(f(x), func = cancel) + eq = fraction(factor(eq))[0] + factors = Mul.make_args(factor(eq)) + roots = [fac.as_base_exp() for fac in factors if len(fac.args)!=0] + if len(roots)>1 or roots[0][1]>1: + for base, expo in roots: + if base.has(f(x)): + self.eqs.append(base) + if len(self.eqs)>0: + return True + roots = solve(eq, df) + if len(roots)>0: + self.eqs = [(df - root) for root in roots] + # Avoid infinite recursion + matches = self.eqs != [eq_orig] + return matches + for i in factors: + if i.has(f(x)): + self.eqs.append(i) + return len(self.eqs)>0 and len(factors)>1 + + def _get_general_solution(self, *, simplify_flag: bool = True): + func = self.ode_problem.func.func + x = self.ode_problem.sym + eqns = self.eqs + sols = [] + for eq in eqns: + try: + sol = dsolve(eq, func(x)) + except NotImplementedError: + continue + else: + if isinstance(sol, list): + sols.extend(sol) + else: + sols.append(sol) + + if sols == []: + raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + + " the factorable group method") + return sols + + +class RiccatiSpecial(SinglePatternODESolver): + r""" + The general Riccati equation has the form + + .. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.} + + While it does not have a general solution [1], the "special" form, `dy/dx + = a y^2 - b x^c`, does have solutions in many cases [2]. This routine + returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained + by using a suitable change of variables to reduce it to the special form + and is valid when neither `a` nor `b` are zero and either `c` or `d` is + zero. + + >>> from sympy.abc import x, a, b, c, d + >>> from sympy import dsolve, checkodesol, pprint, Function + >>> f = Function('f') + >>> y = f(x) + >>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2) + >>> sol = dsolve(genform, y, hint="Riccati_special_minus2") + >>> pprint(sol, wrap_line=False) + / / __________________ \\ + | __________________ | / 2 || + | / 2 | \/ 4*b*d - (a + c) *log(x)|| + -|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------|| + \ \ 2*a // + f(x) = ------------------------------------------------------------------------ + 2*b*x + + >>> checkodesol(genform, sol, order=1)[0] + True + + References + ========== + + - https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati + - https://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - + https://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf + """ + hint = "Riccati_special_minus2" + has_integral = False + order = [1] + + def _wilds(self, f, x, order): + a = Wild('a', exclude=[x, f(x), f(x).diff(x), 0]) + b = Wild('b', exclude=[x, f(x), f(x).diff(x), 0]) + c = Wild('c', exclude=[x, f(x), f(x).diff(x)]) + d = Wild('d', exclude=[x, f(x), f(x).diff(x)]) + return a, b, c, d + + def _equation(self, fx, x, order): + a, b, c, d = self.wilds() + return a*fx.diff(x) + b*fx**2 + c*fx/x + d/x**2 + + def _get_general_solution(self, *, simplify_flag: bool = True): + a, b, c, d = self.wilds_match() + fx = self.ode_problem.func + x = self.ode_problem.sym + (C1,) = self.ode_problem.get_numbered_constants(num=1) + mu = sqrt(4*d*b - (a - c)**2) + + gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x)) + return [gensol] + + +class RationalRiccati(SinglePatternODESolver): + r""" + Gives general solutions to the first order Riccati differential + equations that have atleast one rational particular solution. + + .. math :: y' = b_0(x) + b_1(x) y + b_2(x) y^2 + + where `b_0`, `b_1` and `b_2` are rational functions of `x` + with `b_2 \ne 0` (`b_2 = 0` would make it a Bernoulli equation). + + Examples + ======== + + >>> from sympy import Symbol, Function, dsolve, checkodesol + >>> f = Function('f') + >>> x = Symbol('x') + + >>> eq = -x**4*f(x)**2 + x**3*f(x).diff(x) + x**2*f(x) + 20 + >>> sol = dsolve(eq, hint="1st_rational_riccati") + >>> sol + Eq(f(x), (4*C1 - 5*x**9 - 4)/(x**2*(C1 + x**9 - 1))) + >>> checkodesol(eq, sol) + (True, 0) + + References + ========== + + - Riccati ODE: https://en.wikipedia.org/wiki/Riccati_equation + - N. Thieu Vo - Rational and Algebraic Solutions of First-Order Algebraic ODEs: + Algorithm 11, pp. 78 - https://www3.risc.jku.at/publications/download/risc_5387/PhDThesisThieu.pdf + """ + has_integral = False + hint = "1st_rational_riccati" + order = [1] + + def _wilds(self, f, x, order): + b0 = Wild('b0', exclude=[f(x), f(x).diff(x)]) + b1 = Wild('b1', exclude=[f(x), f(x).diff(x)]) + b2 = Wild('b2', exclude=[f(x), f(x).diff(x)]) + return (b0, b1, b2) + + def _equation(self, fx, x, order): + b0, b1, b2 = self.wilds() + return fx.diff(x) - b0 - b1*fx - b2*fx**2 + + def _matches(self): + eq = self.ode_problem.eq_expanded + f = self.ode_problem.func.func + x = self.ode_problem.sym + order = self.ode_problem.order + + if order != 1: + return False + + match, funcs = match_riccati(eq, f, x) + if not match: + return False + _b0, _b1, _b2 = funcs + b0, b1, b2 = self.wilds() + self._wilds_match = match = {b0: _b0, b1: _b1, b2: _b2} + return True + + def _get_general_solution(self, *, simplify_flag: bool = True): + # Match the equation + b0, b1, b2 = self.wilds_match() + fx = self.ode_problem.func + x = self.ode_problem.sym + return solve_riccati(fx, x, b0, b1, b2, gensol=True) + + +class SecondNonlinearAutonomousConserved(SinglePatternODESolver): + r""" + Gives solution for the autonomous second order nonlinear + differential equation of the form + + .. math :: f''(x) = g(f(x)) + + The solution for this differential equation can be computed + by multiplying by `f'(x)` and integrating on both sides, + converting it into a first order differential equation. + + Examples + ======== + + >>> from sympy import Function, symbols, dsolve + >>> f, g = symbols('f g', cls=Function) + >>> x = symbols('x') + + >>> eq = f(x).diff(x, 2) - g(f(x)) + >>> dsolve(eq, simplify=False) + [Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 + x), + Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 - x)] + + >>> from sympy import exp, log + >>> eq = f(x).diff(x, 2) - exp(f(x)) + log(f(x)) + >>> dsolve(eq, simplify=False) + [Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 + x), + Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 - x)] + + References + ========== + + - https://eqworld.ipmnet.ru/en/solutions/ode/ode0301.pdf + """ + hint = "2nd_nonlinear_autonomous_conserved" + has_integral = True + order = [2] + + def _wilds(self, f, x, order): + fy = Wild('fy', exclude=[0, f(x).diff(x), f(x).diff(x, 2)]) + return (fy, ) + + def _equation(self, fx, x, order): + fy = self.wilds()[0] + return fx.diff(x, 2) + fy + + def _verify(self, fx): + return self.ode_problem.is_autonomous + + def _get_general_solution(self, *, simplify_flag: bool = True): + g = self.wilds_match()[0] + fx = self.ode_problem.func + x = self.ode_problem.sym + u = Dummy('u') + g = g.subs(fx, u) + C1, C2 = self.ode_problem.get_numbered_constants(num=2) + inside = -2*Integral(g, u) + C1 + lhs = Integral(1/sqrt(inside), (u, fx)) + return [Eq(lhs, C2 + x), Eq(lhs, C2 - x)] + + +class Liouville(SinglePatternODESolver): + r""" + Solves 2nd order Liouville differential equations. + + The general form of a Liouville ODE is + + .. math:: \frac{d^2 y}{dx^2} + g(y) \left(\! + \frac{dy}{dx}\!\right)^2 + h(x) + \frac{dy}{dx}\text{.} + + The general solution is: + + >>> from sympy import Function, dsolve, Eq, pprint, diff + >>> from sympy.abc import x + >>> f, g, h = map(Function, ['f', 'g', 'h']) + >>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 + + ... h(x)*diff(f(x),x), 0) + >>> pprint(genform) + 2 2 + /d \ d d + g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0 + \dx / dx 2 + dx + >>> pprint(dsolve(genform, f(x), hint='Liouville_Integral')) + f(x) + / / + | | + | / | / + | | | | + | - | h(x) dx | | g(y) dy + | | | | + | / | / + C1 + C2* | e dx + | e dy = 0 + | | + / / + + Examples + ======== + + >>> from sympy import Function, dsolve, Eq, pprint + >>> from sympy.abc import x + >>> f = Function('f') + >>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + + ... diff(f(x), x)/x, f(x), hint='Liouville')) + ________________ ________________ + [f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ] + + References + ========== + + - Goldstein and Braun, "Advanced Methods for the Solution of Differential + Equations", pp. 98 + - https://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville + + # indirect doctest + + """ + hint = "Liouville" + has_integral = True + order = [2] + + def _wilds(self, f, x, order): + d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) + e = Wild('e', exclude=[f(x).diff(x)]) + k = Wild('k', exclude=[f(x).diff(x)]) + return d, e, k + + def _equation(self, fx, x, order): + # Liouville ODE in the form + # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x) + # See Goldstein and Braun, "Advanced Methods for the Solution of + # Differential Equations", pg. 98 + d, e, k = self.wilds() + return d*fx.diff(x, 2) + e*fx.diff(x)**2 + k*fx.diff(x) + + def _verify(self, fx): + d, e, k = self.wilds_match() + self.y = Dummy('y') + x = self.ode_problem.sym + self.g = simplify(e/d).subs(fx, self.y) + self.h = simplify(k/d).subs(fx, self.y) + if self.y in self.h.free_symbols or x in self.g.free_symbols: + return False + return True + + def _get_general_solution(self, *, simplify_flag: bool = True): + d, e, k = self.wilds_match() + fx = self.ode_problem.func + x = self.ode_problem.sym + C1, C2 = self.ode_problem.get_numbered_constants(num=2) + int = Integral(exp(Integral(self.g, self.y)), (self.y, None, fx)) + gen_sol = Eq(int + C1*Integral(exp(-Integral(self.h, x)), x) + C2, 0) + + return [gen_sol] + + +class Separable(SinglePatternODESolver): + r""" + Solves separable 1st order differential equations. + + This is any differential equation that can be written as `P(y) + \tfrac{dy}{dx} = Q(x)`. The solution can then just be found by + rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`. + This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back + end, so if a separable equation is not caught by this solver, it is most + likely the fault of that function. + :py:meth:`~sympy.simplify.simplify.separatevars` is + smart enough to do most expansion and factoring necessary to convert a + separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The + general solution is:: + + >>> from sympy import Function, dsolve, Eq, pprint + >>> from sympy.abc import x + >>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f']) + >>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x))) + >>> pprint(genform) + d + a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x)) + dx + >>> pprint(dsolve(genform, f(x), hint='separable_Integral')) + f(x) + / / + | | + | b(y) | c(x) + | ---- dy = C1 + | ---- dx + | d(y) | a(x) + | | + / / + + Examples + ======== + + >>> from sympy import Function, dsolve, Eq + >>> from sympy.abc import x + >>> f = Function('f') + >>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x), + ... hint='separable', simplify=False)) + / 2 \ 2 + log\3*f (x) - 1/ x + ---------------- = C1 + -- + 6 2 + + References + ========== + + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 52 + + # indirect doctest + + """ + hint = "separable" + has_integral = True + order = [1] + + def _wilds(self, f, x, order): + d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) + e = Wild('e', exclude=[f(x).diff(x)]) + return d, e + + def _equation(self, fx, x, order): + d, e = self.wilds() + return d + e*fx.diff(x) + + def _verify(self, fx): + d, e = self.wilds_match() + self.y = Dummy('y') + x = self.ode_problem.sym + d = separatevars(d.subs(fx, self.y)) + e = separatevars(e.subs(fx, self.y)) + # m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y' + self.m1 = separatevars(d, dict=True, symbols=(x, self.y)) + self.m2 = separatevars(e, dict=True, symbols=(x, self.y)) + if self.m1 and self.m2: + return True + return False + + def _get_match_object(self): + fx = self.ode_problem.func + x = self.ode_problem.sym + return self.m1, self.m2, x, fx + + def _get_general_solution(self, *, simplify_flag: bool = True): + m1, m2, x, fx = self._get_match_object() + (C1,) = self.ode_problem.get_numbered_constants(num=1) + int = Integral(m2['coeff']*m2[self.y]/m1[self.y], + (self.y, None, fx)) + gen_sol = Eq(int, Integral(-m1['coeff']*m1[x]/ + m2[x], x) + C1) + return [gen_sol] + + +class SeparableReduced(Separable): + r""" + Solves a differential equation that can be reduced to the separable form. + + The general form of this equation is + + .. math:: y' + (y/x) H(x^n y) = 0\text{}. + + This can be solved by substituting `u(y) = x^n y`. The equation then + reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} - + \frac{1}{x} = 0`. + + The general solution is: + + >>> from sympy import Function, dsolve, pprint + >>> from sympy.abc import x, n + >>> f, g = map(Function, ['f', 'g']) + >>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x)) + >>> pprint(genform) + / n \ + d f(x)*g\x *f(x)/ + --(f(x)) + --------------- + dx x + >>> pprint(dsolve(genform, hint='separable_reduced')) + n + x *f(x) + / + | + | 1 + | ------------ dy = C1 + log(x) + | y*(n - g(y)) + | + / + + See Also + ======== + :obj:`sympy.solvers.ode.single.Separable` + + Examples + ======== + + >>> from sympy import dsolve, Function, pprint + >>> from sympy.abc import x + >>> f = Function('f') + >>> d = f(x).diff(x) + >>> eq = (x - x**2*f(x))*d - f(x) + >>> dsolve(eq, hint='separable_reduced') + [Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)] + >>> pprint(dsolve(eq, hint='separable_reduced')) + ___________ ___________ + / 2 / 2 + 1 - \/ C1*x + 1 \/ C1*x + 1 + 1 + [f(x) = ------------------, f(x) = ------------------] + x x + + References + ========== + + - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications + of the ACM, Volume 14, Number 8, August 1971, pp. 558 + """ + hint = "separable_reduced" + has_integral = True + order = [1] + + def _degree(self, expr, x): + # Made this function to calculate the degree of + # x in an expression. If expr will be of form + # x**p*y, (wheare p can be variables/rationals) then it + # will return p. + for val in expr: + if val.has(x): + if isinstance(val, Pow) and val.as_base_exp()[0] == x: + return (val.as_base_exp()[1]) + elif val == x: + return (val.as_base_exp()[1]) + else: + return self._degree(val.args, x) + return 0 + + def _powers(self, expr): + # this function will return all the different relative power of x w.r.t f(x). + # expr = x**p * f(x)**q then it will return {p/q}. + pows = set() + fx = self.ode_problem.func + x = self.ode_problem.sym + self.y = Dummy('y') + if isinstance(expr, Add): + exprs = expr.atoms(Add) + elif isinstance(expr, Mul): + exprs = expr.atoms(Mul) + elif isinstance(expr, Pow): + exprs = expr.atoms(Pow) + else: + exprs = {expr} + + for arg in exprs: + if arg.has(x): + _, u = arg.as_independent(x, fx) + pow = self._degree((u.subs(fx, self.y), ), x)/self._degree((u.subs(fx, self.y), ), self.y) + pows.add(pow) + return pows + + def _verify(self, fx): + num, den = self.wilds_match() + x = self.ode_problem.sym + factor = simplify(x/fx*num/den) + # Try representing factor in terms of x^n*y + # where n is lowest power of x in factor; + # first remove terms like sqrt(2)*3 from factor.atoms(Mul) + num, dem = factor.as_numer_denom() + num = expand(num) + dem = expand(dem) + pows = self._powers(num) + pows.update(self._powers(dem)) + pows = list(pows) + if(len(pows)==1) and pows[0]!=zoo: + self.t = Dummy('t') + self.r2 = {'t': self.t} + num = num.subs(x**pows[0]*fx, self.t) + dem = dem.subs(x**pows[0]*fx, self.t) + test = num/dem + free = test.free_symbols + if len(free) == 1 and free.pop() == self.t: + self.r2.update({'power' : pows[0], 'u' : test}) + return True + return False + return False + + def _get_match_object(self): + fx = self.ode_problem.func + x = self.ode_problem.sym + u = self.r2['u'].subs(self.r2['t'], self.y) + ycoeff = 1/(self.y*(self.r2['power'] - u)) + m1 = {self.y: 1, x: -1/x, 'coeff': 1} + m2 = {self.y: ycoeff, x: 1, 'coeff': 1} + return m1, m2, x, x**self.r2['power']*fx + + +class HomogeneousCoeffSubsDepDivIndep(SinglePatternODESolver): + r""" + Solves a 1st order differential equation with homogeneous coefficients + using the substitution `u_1 = \frac{\text{}}{\text{}}`. + + This is a differential equation + + .. math:: P(x, y) + Q(x, y) dy/dx = 0 + + such that `P` and `Q` are homogeneous and of the same order. A function + `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. + Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See + also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. + + If the coefficients `P` and `Q` in the differential equation above are + homogeneous functions of the same order, then it can be shown that the + substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential + equation into an equation separable in the variables `x` and `u`. If + `h(u_1)` is the function that results from making the substitution `u_1 = + f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the + substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + + Q(x, f(x)) f'(x) = 0`, then the general solution is:: + + >>> from sympy import Function, dsolve, pprint + >>> from sympy.abc import x + >>> f, g, h = map(Function, ['f', 'g', 'h']) + >>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x) + >>> pprint(genform) + /f(x)\ /f(x)\ d + g|----| + h|----|*--(f(x)) + \ x / \ x / dx + >>> pprint(dsolve(genform, f(x), + ... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral')) + f(x) + ---- + x + / + | + | -h(u1) + log(x) = C1 + | ---------------- d(u1) + | u1*h(u1) + g(u1) + | + / + + Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`. + + See also the docstrings of + :obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and + :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`. + + Examples + ======== + + >>> from sympy import Function, dsolve + >>> from sympy.abc import x + >>> f = Function('f') + >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), + ... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False)) + / 3 \ + |3*f(x) f (x)| + log|------ + -----| + | x 3 | + \ x / + log(x) = log(C1) - ------------------- + 3 + + References + ========== + + - https://en.wikipedia.org/wiki/Homogeneous_differential_equation + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 59 + + # indirect doctest + + """ + hint = "1st_homogeneous_coeff_subs_dep_div_indep" + has_integral = True + order = [1] + + def _wilds(self, f, x, order): + d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) + e = Wild('e', exclude=[f(x).diff(x)]) + return d, e + + def _equation(self, fx, x, order): + d, e = self.wilds() + return d + e*fx.diff(x) + + def _verify(self, fx): + self.d, self.e = self.wilds_match() + self.y = Dummy('y') + x = self.ode_problem.sym + self.d = separatevars(self.d.subs(fx, self.y)) + self.e = separatevars(self.e.subs(fx, self.y)) + ordera = homogeneous_order(self.d, x, self.y) + orderb = homogeneous_order(self.e, x, self.y) + if ordera == orderb and ordera is not None: + self.u = Dummy('u') + if simplify((self.d + self.u*self.e).subs({x: 1, self.y: self.u})) != 0: + return True + return False + return False + + def _get_match_object(self): + fx = self.ode_problem.func + x = self.ode_problem.sym + self.u1 = Dummy('u1') + xarg = 0 + yarg = 0 + return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg] + + def _get_general_solution(self, *, simplify_flag: bool = True): + d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object() + (C1,) = self.ode_problem.get_numbered_constants(num=1) + int = Integral( + (-e/(d + u1*e)).subs({x: 1, y: u1}), + (u1, None, fx/x)) + sol = logcombine(Eq(log(x), int + log(C1)), force=True) + gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx))) + return [gen_sol] + + +class HomogeneousCoeffSubsIndepDivDep(SinglePatternODESolver): + r""" + Solves a 1st order differential equation with homogeneous coefficients + using the substitution `u_2 = \frac{\text{}}{\text{}}`. + + This is a differential equation + + .. math:: P(x, y) + Q(x, y) dy/dx = 0 + + such that `P` and `Q` are homogeneous and of the same order. A function + `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. + Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See + also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. + + If the coefficients `P` and `Q` in the differential equation above are + homogeneous functions of the same order, then it can be shown that the + substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential + equation into an equation separable in the variables `y` and `u_2`. If + `h(u_2)` is the function that results from making the substitution `u_2 = + x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the + substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + + Q(x, f(x)) f'(x) = 0`, then the general solution is: + + >>> from sympy import Function, dsolve, pprint + >>> from sympy.abc import x + >>> f, g, h = map(Function, ['f', 'g', 'h']) + >>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x) + >>> pprint(genform) + / x \ / x \ d + g|----| + h|----|*--(f(x)) + \f(x)/ \f(x)/ dx + >>> pprint(dsolve(genform, f(x), + ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral')) + x + ---- + f(x) + / + | + | -g(u1) + | ---------------- d(u1) + | u1*g(u1) + h(u1) + | + / + + f(x) = C1*e + + Where `u_1 g(u_1) + h(u_1) \ne 0` and `f(x) \ne 0`. + + See also the docstrings of + :obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and + :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`. + + Examples + ======== + + >>> from sympy import Function, pprint, dsolve + >>> from sympy.abc import x + >>> f = Function('f') + >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), + ... hint='1st_homogeneous_coeff_subs_indep_div_dep', + ... simplify=False)) + / 2 \ + | 3*x | + log|----- + 1| + | 2 | + \f (x) / + log(f(x)) = log(C1) - -------------- + 3 + + References + ========== + + - https://en.wikipedia.org/wiki/Homogeneous_differential_equation + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 59 + + # indirect doctest + + """ + hint = "1st_homogeneous_coeff_subs_indep_div_dep" + has_integral = True + order = [1] + + def _wilds(self, f, x, order): + d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) + e = Wild('e', exclude=[f(x).diff(x)]) + return d, e + + def _equation(self, fx, x, order): + d, e = self.wilds() + return d + e*fx.diff(x) + + def _verify(self, fx): + self.d, self.e = self.wilds_match() + self.y = Dummy('y') + x = self.ode_problem.sym + self.d = separatevars(self.d.subs(fx, self.y)) + self.e = separatevars(self.e.subs(fx, self.y)) + ordera = homogeneous_order(self.d, x, self.y) + orderb = homogeneous_order(self.e, x, self.y) + if ordera == orderb and ordera is not None: + self.u = Dummy('u') + if simplify((self.e + self.u*self.d).subs({x: self.u, self.y: 1})) != 0: + return True + return False + return False + + def _get_match_object(self): + fx = self.ode_problem.func + x = self.ode_problem.sym + self.u1 = Dummy('u1') + xarg = 0 + yarg = 0 + return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg] + + def _get_general_solution(self, *, simplify_flag: bool = True): + d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object() + (C1,) = self.ode_problem.get_numbered_constants(num=1) + int = Integral(simplify((-d/(e + u1*d)).subs({x: u1, y: 1})), (u1, None, x/fx)) # type: ignore + sol = logcombine(Eq(log(fx), int + log(C1)), force=True) + gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx))) + return [gen_sol] + + +class HomogeneousCoeffBest(HomogeneousCoeffSubsIndepDivDep, HomogeneousCoeffSubsDepDivIndep): + r""" + Returns the best solution to an ODE from the two hints + ``1st_homogeneous_coeff_subs_dep_div_indep`` and + ``1st_homogeneous_coeff_subs_indep_div_dep``. + + This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`. + + See the + :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep` + and + :obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` + docstrings for more information on these hints. Note that there is no + ``ode_1st_homogeneous_coeff_best_Integral`` hint. + + Examples + ======== + + >>> from sympy import Function, dsolve, pprint + >>> from sympy.abc import x + >>> f = Function('f') + >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), + ... hint='1st_homogeneous_coeff_best', simplify=False)) + / 2 \ + | 3*x | + log|----- + 1| + | 2 | + \f (x) / + log(f(x)) = log(C1) - -------------- + 3 + + References + ========== + + - https://en.wikipedia.org/wiki/Homogeneous_differential_equation + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 59 + + # indirect doctest + + """ + hint = "1st_homogeneous_coeff_best" + has_integral = False + order = [1] + + def _verify(self, fx): + if HomogeneousCoeffSubsIndepDivDep._verify(self, fx) and HomogeneousCoeffSubsDepDivIndep._verify(self, fx): + return True + return False + + def _get_general_solution(self, *, simplify_flag: bool = True): + # There are two substitutions that solve the equation, u1=y/x and u2=x/y + # # They produce different integrals, so try them both and see which + # # one is easier + sol1 = HomogeneousCoeffSubsIndepDivDep._get_general_solution(self) + sol2 = HomogeneousCoeffSubsDepDivIndep._get_general_solution(self) + fx = self.ode_problem.func + if simplify_flag: + sol1 = odesimp(self.ode_problem.eq, *sol1, fx, "1st_homogeneous_coeff_subs_indep_div_dep") + sol2 = odesimp(self.ode_problem.eq, *sol2, fx, "1st_homogeneous_coeff_subs_dep_div_indep") + return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, fx, trysolving=not simplify)) + + +class LinearCoefficients(HomogeneousCoeffBest): + r""" + Solves a differential equation with linear coefficients. + + The general form of a differential equation with linear coefficients is + + .. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + + c_2}\!\right) = 0\text{,} + + where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2 + - a_2 b_1 \ne 0`. + + This can be solved by substituting: + + .. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2} + + y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 + b_2}\text{.} + + This substitution reduces the equation to a homogeneous differential + equation. + + See Also + ======== + :obj:`sympy.solvers.ode.single.HomogeneousCoeffBest` + :obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep` + :obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep` + + Examples + ======== + + >>> from sympy import dsolve, Function, pprint + >>> from sympy.abc import x + >>> f = Function('f') + >>> df = f(x).diff(x) + >>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1) + >>> dsolve(eq, hint='linear_coefficients') + [Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)] + >>> pprint(dsolve(eq, hint='linear_coefficients')) + ___________ ___________ + / 2 / 2 + [f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1] + + + References + ========== + + - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications + of the ACM, Volume 14, Number 8, August 1971, pp. 558 + """ + hint = "linear_coefficients" + has_integral = True + order = [1] + + def _wilds(self, f, x, order): + d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) + e = Wild('e', exclude=[f(x).diff(x)]) + return d, e + + def _equation(self, fx, x, order): + d, e = self.wilds() + return d + e*fx.diff(x) + + def _verify(self, fx): + self.d, self.e = self.wilds_match() + a, b = self.wilds() + F = self.d/self.e + x = self.ode_problem.sym + params = self._linear_coeff_match(F, fx) + if params: + self.xarg, self.yarg = params + u = Dummy('u') + t = Dummy('t') + self.y = Dummy('y') + # Dummy substitution for df and f(x). + dummy_eq = self.ode_problem.eq.subs(((fx.diff(x), t), (fx, u))) + reps = ((x, x + self.xarg), (u, u + self.yarg), (t, fx.diff(x)), (u, fx)) + dummy_eq = simplify(dummy_eq.subs(reps)) + # get the re-cast values for e and d + r2 = collect(expand(dummy_eq), [fx.diff(x), fx]).match(a*fx.diff(x) + b) + if r2: + self.d, self.e = r2[b], r2[a] + orderd = homogeneous_order(self.d, x, fx) + ordere = homogeneous_order(self.e, x, fx) + if orderd == ordere and orderd is not None: + self.d = self.d.subs(fx, self.y) + self.e = self.e.subs(fx, self.y) + return True + return False + return False + + def _linear_coeff_match(self, expr, func): + r""" + Helper function to match hint ``linear_coefficients``. + + Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2 + f(x) + c_2)` where the following conditions hold: + + 1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals; + 2. `c_1` or `c_2` are not equal to zero; + 3. `a_2 b_1 - a_1 b_2` is not equal to zero. + + Return ``xarg``, ``yarg`` where + + 1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)` + 2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)` + + + Examples + ======== + + >>> from sympy import Function, sin + >>> from sympy.abc import x + >>> from sympy.solvers.ode.single import LinearCoefficients + >>> f = Function('f') + >>> eq = (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11) + >>> obj = LinearCoefficients(eq) + >>> obj._linear_coeff_match(eq, f(x)) + (1/9, 22/9) + >>> eq = sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)) + >>> obj = LinearCoefficients(eq) + >>> obj._linear_coeff_match(eq, f(x)) + (19/27, 2/27) + >>> eq = sin(f(x)/x) + >>> obj = LinearCoefficients(eq) + >>> obj._linear_coeff_match(eq, f(x)) + + """ + f = func.func + x = func.args[0] + def abc(eq): + r''' + Internal function of _linear_coeff_match + that returns Rationals a, b, c + if eq is a*x + b*f(x) + c, else None. + ''' + eq = _mexpand(eq) + c = eq.as_independent(x, f(x), as_Add=True)[0] + if not c.is_Rational: + return + a = eq.coeff(x) + if not a.is_Rational: + return + b = eq.coeff(f(x)) + if not b.is_Rational: + return + if eq == a*x + b*f(x) + c: + return a, b, c + + def match(arg): + r''' + Internal function of _linear_coeff_match that returns Rationals a1, + b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x) + + c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is + non-zero, else None. + ''' + n, d = arg.together().as_numer_denom() + m = abc(n) + if m is not None: + a1, b1, c1 = m + m = abc(d) + if m is not None: + a2, b2, c2 = m + d = a2*b1 - a1*b2 + if (c1 or c2) and d: + return a1, b1, c1, a2, b2, c2, d + + m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and + len(fi.args) == 1 and not fi.args[0].is_Function] or {expr} + m1 = match(m.pop()) + if m1 and all(match(mi) == m1 for mi in m): + a1, b1, c1, a2, b2, c2, denom = m1 + return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom + + def _get_match_object(self): + fx = self.ode_problem.func + x = self.ode_problem.sym + self.u1 = Dummy('u1') + u = Dummy('u') + return [self.d, self.e, fx, x, u, self.u1, self.y, self.xarg, self.yarg] + + +class NthOrderReducible(SingleODESolver): + r""" + Solves ODEs that only involve derivatives of the dependent variable using + a substitution of the form `f^n(x) = g(x)`. + + For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be + transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and + `f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If + that gives an explicit solution for `g` then `f` is found simply by + integration. + + + Examples + ======== + + >>> from sympy import Function, dsolve, Eq + >>> from sympy.abc import x + >>> f = Function('f') + >>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0) + >>> dsolve(eq, f(x), hint='nth_order_reducible') + ... # doctest: +NORMALIZE_WHITESPACE + Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) + + """ + hint = "nth_order_reducible" + has_integral = False + + def _matches(self): + # Any ODE that can be solved with a substitution and + # repeated integration e.g.: + # `d^2/dx^2(y) + x*d/dx(y) = constant + #f'(x) must be finite for this to work + eq = self.ode_problem.eq_preprocessed + func = self.ode_problem.func + x = self.ode_problem.sym + r""" + Matches any differential equation that can be rewritten with a smaller + order. Only derivatives of ``func`` alone, wrt a single variable, + are considered, and only in them should ``func`` appear. + """ + # ODE only handles functions of 1 variable so this affirms that state + assert len(func.args) == 1 + vc = [d.variable_count[0] for d in eq.atoms(Derivative) + if d.expr == func and len(d.variable_count) == 1] + ords = [c for v, c in vc if v == x] + if len(ords) < 2: + return False + self.smallest = min(ords) + # make sure func does not appear outside of derivatives + D = Dummy() + if eq.subs(func.diff(x, self.smallest), D).has(func): + return False + return True + + def _get_general_solution(self, *, simplify_flag: bool = True): + eq = self.ode_problem.eq + f = self.ode_problem.func.func + x = self.ode_problem.sym + n = self.smallest + # get a unique function name for g + names = [a.name for a in eq.atoms(AppliedUndef)] + while True: + name = Dummy().name + if name not in names: + g = Function(name) + break + w = f(x).diff(x, n) + geq = eq.subs(w, g(x)) + gsol = dsolve(geq, g(x)) + + if not isinstance(gsol, list): + gsol = [gsol] + + # Might be multiple solutions to the reduced ODE: + fsol = [] + for gsoli in gsol: + fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times + fsol.append(fsoli) + + return fsol + + +class SecondHypergeometric(SingleODESolver): + r""" + Solves 2nd order linear differential equations. + + It computes special function solutions which can be expressed using the + 2F1, 1F1 or 0F1 hypergeometric functions. + + .. math:: y'' + A(x) y' + B(x) y = 0\text{,} + + where `A` and `B` are rational functions. + + These kinds of differential equations have solution of non-Liouvillian form. + + Given linear ODE can be obtained from 2F1 given by + + .. math:: (x^2 - x) y'' + ((a + b + 1) x - c) y' + b a y = 0\text{,} + + where {a, b, c} are arbitrary constants. + + Notes + ===== + + The algorithm should find any solution of the form + + .. math:: y = P(x) _pF_q(..; ..;\frac{\alpha x^k + \beta}{\gamma x^k + \delta})\text{,} + + where pFq is any of 2F1, 1F1 or 0F1 and `P` is an "arbitrary function". + Currently only the 2F1 case is implemented in SymPy but the other cases are + described in the paper and could be implemented in future (contributions + welcome!). + + + Examples + ======== + + >>> from sympy import Function, dsolve, pprint + >>> from sympy.abc import x + >>> f = Function('f') + >>> eq = (x*x - x)*f(x).diff(x,2) + (5*x - 1)*f(x).diff(x) + 4*f(x) + >>> pprint(dsolve(eq, f(x), '2nd_hypergeometric')) + _ + / / 4 \\ |_ /-1, -1 | \ + |C1 + C2*|log(x) + -----||* | | | x| + \ \ x + 1// 2 1 \ 1 | / + f(x) = -------------------------------------------- + 3 + (x - 1) + + + References + ========== + + - "Non-Liouvillian solutions for second order linear ODEs" by L. Chan, E.S. Cheb-Terrab + + """ + hint = "2nd_hypergeometric" + has_integral = True + + def _matches(self): + eq = self.ode_problem.eq_preprocessed + func = self.ode_problem.func + r = match_2nd_hypergeometric(eq, func) + self.match_object = None + if r: + A, B = r + d = equivalence_hypergeometric(A, B, func) + if d: + if d['type'] == "2F1": + self.match_object = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func) + if self.match_object is not None: + self.match_object.update({'A':A, 'B':B}) + # We can extend it for 1F1 and 0F1 type also. + return self.match_object is not None + + def _get_general_solution(self, *, simplify_flag: bool = True): + eq = self.ode_problem.eq + func = self.ode_problem.func + if self.match_object['type'] == "2F1": + sol = get_sol_2F1_hypergeometric(eq, func, self.match_object) + if sol is None: + raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + + " the hypergeometric method") + + return [sol] + + +class NthLinearConstantCoeffHomogeneous(SingleODESolver): + r""" + Solves an `n`\th order linear homogeneous differential equation with + constant coefficients. + + This is an equation of the form + + .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + + a_0 f(x) = 0\text{.} + + These equations can be solved in a general manner, by taking the roots of + the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + + a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms, + for each where `C_n` is an arbitrary constant, `r` is a root of the + characteristic equation and `i` is one of each from 0 to the multiplicity + of the root - 1 (for example, a root 3 of multiplicity 2 would create the + terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded + for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`. + Complex roots always come in conjugate pairs in polynomials with real + coefficients, so the two roots will be represented (after simplifying the + constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`. + + If SymPy cannot find exact roots to the characteristic equation, a + :py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return + instead. + + >>> from sympy import Function, dsolve + >>> from sympy.abc import x + >>> f = Function('f') + >>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x), + ... hint='nth_linear_constant_coeff_homogeneous') + ... # doctest: +NORMALIZE_WHITESPACE + Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0)) + + (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))) + + C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1))) + + (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))) + + C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3)))) + + Note that because this method does not involve integration, there is no + ``nth_linear_constant_coeff_homogeneous_Integral`` hint. + + Examples + ======== + + >>> from sympy import Function, dsolve, pprint + >>> from sympy.abc import x + >>> f = Function('f') + >>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) - + ... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x), + ... hint='nth_linear_constant_coeff_homogeneous')) + x -2*x + f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e + + References + ========== + + - https://en.wikipedia.org/wiki/Linear_differential_equation section: + Nonhomogeneous_equation_with_constant_coefficients + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 211 + + # indirect doctest + + """ + hint = "nth_linear_constant_coeff_homogeneous" + has_integral = False + + def _matches(self): + eq = self.ode_problem.eq_high_order_free + func = self.ode_problem.func + order = self.ode_problem.order + x = self.ode_problem.sym + self.r = self.ode_problem.get_linear_coefficients(eq, func, order) + if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): + if not self.r[-1]: + return True + else: + return False + return False + + def _get_general_solution(self, *, simplify_flag: bool = True): + fx = self.ode_problem.func + order = self.ode_problem.order + roots, collectterms = _get_const_characteristic_eq_sols(self.r, fx, order) + # A generator of constants + constants = self.ode_problem.get_numbered_constants(num=len(roots)) + gsol = Add(*[i*j for (i, j) in zip(constants, roots)]) + gsol = Eq(fx, gsol) + if simplify_flag: + gsol = _get_simplified_sol([gsol], fx, collectterms) + + return [gsol] + + +class NthLinearConstantCoeffVariationOfParameters(SingleODESolver): + r""" + Solves an `n`\th order linear differential equation with constant + coefficients using the method of variation of parameters. + + This method works on any differential equations of the form + + .. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 + f(x) = P(x)\text{.} + + This method works by assuming that the particular solution takes the form + + .. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,} + + where `y_i` is the `i`\th solution to the homogeneous equation. The + solution is then solved using Wronskian's and Cramer's Rule. The + particular solution is given by + + .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx + \right) y_i(x) \text{,} + + where `W(x)` is the Wronskian of the fundamental system (the system of `n` + linearly independent solutions to the homogeneous equation), and `W_i(x)` + is the Wronskian of the fundamental system with the `i`\th column replaced + with `[0, 0, \cdots, 0, P(x)]`. + + This method is general enough to solve any `n`\th order inhomogeneous + linear differential equation with constant coefficients, but sometimes + SymPy cannot simplify the Wronskian well enough to integrate it. If this + method hangs, try using the + ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and + simplifying the integrals manually. Also, prefer using + ``nth_linear_constant_coeff_undetermined_coefficients`` when it + applies, because it does not use integration, making it faster and more + reliable. + + Warning, using simplify=False with + 'nth_linear_constant_coeff_variation_of_parameters' in + :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will + not attempt to simplify the Wronskian before integrating. It is + recommended that you only use simplify=False with + 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this + method, especially if the solution to the homogeneous equation has + trigonometric functions in it. + + Examples + ======== + + >>> from sympy import Function, dsolve, pprint, exp, log + >>> from sympy.abc import x + >>> f = Function('f') + >>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + + ... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), + ... hint='nth_linear_constant_coeff_variation_of_parameters')) + / / / x*log(x) 11*x\\\ x + f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e + \ \ \ 6 36 /// + + References + ========== + + - https://en.wikipedia.org/wiki/Variation_of_parameters + - https://planetmath.org/VariationOfParameters + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 233 + + # indirect doctest + + """ + hint = "nth_linear_constant_coeff_variation_of_parameters" + has_integral = True + + def _matches(self): + eq = self.ode_problem.eq_high_order_free + func = self.ode_problem.func + order = self.ode_problem.order + x = self.ode_problem.sym + self.r = self.ode_problem.get_linear_coefficients(eq, func, order) + + if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): + if self.r[-1]: + return True + else: + return False + return False + + def _get_general_solution(self, *, simplify_flag: bool = True): + eq = self.ode_problem.eq_high_order_free + f = self.ode_problem.func.func + x = self.ode_problem.sym + order = self.ode_problem.order + roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order) + # A generator of constants + constants = self.ode_problem.get_numbered_constants(num=len(roots)) + homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)]) + homogen_sol = Eq(f(x), homogen_sol) + homogen_sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag) + if simplify_flag: + homogen_sol = _get_simplified_sol([homogen_sol], f(x), collectterms) + return [homogen_sol] + + +class NthLinearConstantCoeffUndeterminedCoefficients(SingleODESolver): + r""" + Solves an `n`\th order linear differential equation with constant + coefficients using the method of undetermined coefficients. + + This method works on differential equations of the form + + .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + + a_0 f(x) = P(x)\text{,} + + where `P(x)` is a function that has a finite number of linearly + independent derivatives. + + Functions that fit this requirement are finite sums functions of the form + `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` + is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For + example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, + and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have + a finite number of derivatives, because they can be expanded into `\sin(a + x)` and `\cos(b x)` terms. However, SymPy currently cannot do that + expansion, so you will need to manually rewrite the expression in terms of + the above to use this method. So, for example, you will need to manually + convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method + of undetermined coefficients on it. + + This method works by creating a trial function from the expression and all + of its linear independent derivatives and substituting them into the + original ODE. The coefficients for each term will be a system of linear + equations, which are be solved for and substituted, giving the solution. + If any of the trial functions are linearly dependent on the solution to + the homogeneous equation, they are multiplied by sufficient `x` to make + them linearly independent. + + Examples + ======== + + >>> from sympy import Function, dsolve, pprint, exp, cos + >>> from sympy.abc import x + >>> f = Function('f') + >>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) - + ... 4*exp(-x)*x**2 + cos(2*x), f(x), + ... hint='nth_linear_constant_coeff_undetermined_coefficients')) + / / 3\\ + | | x || -x 4*sin(2*x) 3*cos(2*x) + f(x) = |C1 + x*|C2 + --||*e - ---------- + ---------- + \ \ 3 // 25 25 + + References + ========== + + - https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients + - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", + Dover 1963, pp. 221 + + # indirect doctest + + """ + hint = "nth_linear_constant_coeff_undetermined_coefficients" + has_integral = False + + def _matches(self): + eq = self.ode_problem.eq_high_order_free + func = self.ode_problem.func + order = self.ode_problem.order + x = self.ode_problem.sym + self.r = self.ode_problem.get_linear_coefficients(eq, func, order) + does_match = False + if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0): + if self.r[-1]: + eq_homogeneous = Add(eq, -self.r[-1]) + undetcoeff = _undetermined_coefficients_match(self.r[-1], x, func, eq_homogeneous) + if undetcoeff['test']: + self.trialset = undetcoeff['trialset'] + does_match = True + return does_match + + def _get_general_solution(self, *, simplify_flag: bool = True): + eq = self.ode_problem.eq + f = self.ode_problem.func.func + x = self.ode_problem.sym + order = self.ode_problem.order + roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order) + # A generator of constants + constants = self.ode_problem.get_numbered_constants(num=len(roots)) + homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)]) + homogen_sol = Eq(f(x), homogen_sol) + self.r.update({'list': roots, 'sol': homogen_sol, 'simpliy_flag': simplify_flag}) + gsol = _solve_undetermined_coefficients(eq, f(x), order, self.r, self.trialset) + if simplify_flag: + gsol = _get_simplified_sol([gsol], f(x), collectterms) + return [gsol] + + +class NthLinearEulerEqHomogeneous(SingleODESolver): + r""" + Solves an `n`\th order linear homogeneous variable-coefficient + Cauchy-Euler equidimensional ordinary differential equation. + + This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) + \cdots`. + + These equations can be solved in a general manner, by substituting + solutions of the form `f(x) = x^r`, and deriving a characteristic equation + for `r`. When there are repeated roots, we include extra terms of the + form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration + constant, `r` is a root of the characteristic equation, and `k` ranges + over the multiplicity of `r`. In the cases where the roots are complex, + solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))` + are returned, based on expansions with Euler's formula. The general + solution is the sum of the terms found. If SymPy cannot find exact roots + to the characteristic equation, a + :py:obj:`~.ComplexRootOf` instance will be returned + instead. + + >>> from sympy import Function, dsolve + >>> from sympy.abc import x + >>> f = Function('f') + >>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x), + ... hint='nth_linear_euler_eq_homogeneous') + ... # doctest: +NORMALIZE_WHITESPACE + Eq(f(x), sqrt(x)*(C1 + C2*log(x))) + + Note that because this method does not involve integration, there is no + ``nth_linear_euler_eq_homogeneous_Integral`` hint. + + The following is for internal use: + + - ``returns = 'sol'`` returns the solution to the ODE. + - ``returns = 'list'`` returns a list of linearly independent solutions, + corresponding to the fundamental solution set, for use with non + homogeneous solution methods like variation of parameters and + undetermined coefficients. Note that, though the solutions should be + linearly independent, this function does not explicitly check that. You + can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear + independence. Also, ``assert len(sollist) == order`` will need to pass. + - ``returns = 'both'``, return a dictionary ``{'sol': , + 'list': }``. + + Examples + ======== + + >>> from sympy import Function, dsolve, pprint + >>> from sympy.abc import x + >>> f = Function('f') + >>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x) + >>> pprint(dsolve(eq, f(x), + ... hint='nth_linear_euler_eq_homogeneous')) + 2 + f(x) = x *(C1 + C2*x) + + References + ========== + + - https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation + - C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and + Engineers", Springer 1999, pp. 12 + + # indirect doctest + + """ + hint = "nth_linear_euler_eq_homogeneous" + has_integral = False + + def _matches(self): + eq = self.ode_problem.eq_preprocessed + f = self.ode_problem.func.func + order = self.ode_problem.order + x = self.ode_problem.sym + match = self.ode_problem.get_linear_coefficients(eq, f(x), order) + self.r = None + does_match = False + + if order and match: + coeff = match[order] + factor = x**order / coeff + self.r = {i: factor*match[i] for i in match} + if self.r and all(_test_term(self.r[i], f(x), i) for i in + self.r if i >= 0): + if not self.r[-1]: + does_match = True + return does_match + + def _get_general_solution(self, *, simplify_flag: bool = True): + fx = self.ode_problem.func + eq = self.ode_problem.eq + homogen_sol = _get_euler_characteristic_eq_sols(eq, fx, self.r)[0] + return [homogen_sol] + + +class NthLinearEulerEqNonhomogeneousVariationOfParameters(SingleODESolver): + r""" + Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional + ordinary differential equation using variation of parameters. + + This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) + \cdots`. + + This method works by assuming that the particular solution takes the form + + .. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{, } + + where `y_i` is the `i`\th solution to the homogeneous equation. The + solution is then solved using Wronskian's and Cramer's Rule. The + particular solution is given by multiplying eq given below with `a_n x^{n}` + + .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \, dx + \right) y_i(x) \text{, } + + where `W(x)` is the Wronskian of the fundamental system (the system of `n` + linearly independent solutions to the homogeneous equation), and `W_i(x)` + is the Wronskian of the fundamental system with the `i`\th column replaced + with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`. + + This method is general enough to solve any `n`\th order inhomogeneous + linear differential equation, but sometimes SymPy cannot simplify the + Wronskian well enough to integrate it. If this method hangs, try using the + ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and + simplifying the integrals manually. Also, prefer using + ``nth_linear_constant_coeff_undetermined_coefficients`` when it + applies, because it does not use integration, making it faster and more + reliable. + + Warning, using simplify=False with + 'nth_linear_constant_coeff_variation_of_parameters' in + :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will + not attempt to simplify the Wronskian before integrating. It is + recommended that you only use simplify=False with + 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this + method, especially if the solution to the homogeneous equation has + trigonometric functions in it. + + Examples + ======== + + >>> from sympy import Function, dsolve, Derivative + >>> from sympy.abc import x + >>> f = Function('f') + >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4 + >>> dsolve(eq, f(x), + ... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand() + Eq(f(x), C1*x + C2*x**2 + x**4/6) + + """ + hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters" + has_integral = True + + def _matches(self): + eq = self.ode_problem.eq_preprocessed + f = self.ode_problem.func.func + order = self.ode_problem.order + x = self.ode_problem.sym + match = self.ode_problem.get_linear_coefficients(eq, f(x), order) + self.r = None + does_match = False + + if order and match: + coeff = match[order] + factor = x**order / coeff + self.r = {i: factor*match[i] for i in match} + if self.r and all(_test_term(self.r[i], f(x), i) for i in + self.r if i >= 0): + if self.r[-1]: + does_match = True + + return does_match + + def _get_general_solution(self, *, simplify_flag: bool = True): + eq = self.ode_problem.eq + f = self.ode_problem.func.func + x = self.ode_problem.sym + order = self.ode_problem.order + homogen_sol, roots = _get_euler_characteristic_eq_sols(eq, f(x), self.r) + self.r[-1] = self.r[-1]/self.r[order] + sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag) + + return [Eq(f(x), homogen_sol.rhs + (sol.rhs - homogen_sol.rhs)*self.r[order])] + + +class NthLinearEulerEqNonhomogeneousUndeterminedCoefficients(SingleODESolver): + r""" + Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional + ordinary differential equation using undetermined coefficients. + + This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) + \cdots`. + + These equations can be solved in a general manner, by substituting + solutions of the form `x = exp(t)`, and deriving a characteristic equation + of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can + be then solved by nth_linear_constant_coeff_undetermined_coefficients if + g(exp(t)) has finite number of linearly independent derivatives. + + Functions that fit this requirement are finite sums functions of the form + `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` + is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For + example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, + and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have + a finite number of derivatives, because they can be expanded into `\sin(a + x)` and `\cos(b x)` terms. However, SymPy currently cannot do that + expansion, so you will need to manually rewrite the expression in terms of + the above to use this method. So, for example, you will need to manually + convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method + of undetermined coefficients on it. + + After replacement of x by exp(t), this method works by creating a trial function + from the expression and all of its linear independent derivatives and + substituting them into the original ODE. The coefficients for each term + will be a system of linear equations, which are be solved for and + substituted, giving the solution. If any of the trial functions are linearly + dependent on the solution to the homogeneous equation, they are multiplied + by sufficient `x` to make them linearly independent. + + Examples + ======== + + >>> from sympy import dsolve, Function, Derivative, log + >>> from sympy.abc import x + >>> f = Function('f') + >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) + >>> dsolve(eq, f(x), + ... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand() + Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4) + + """ + hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients" + has_integral = False + + def _matches(self): + eq = self.ode_problem.eq_high_order_free + f = self.ode_problem.func.func + order = self.ode_problem.order + x = self.ode_problem.sym + match = self.ode_problem.get_linear_coefficients(eq, f(x), order) + self.r = None + does_match = False + + if order and match: + coeff = match[order] + factor = x**order / coeff + self.r = {i: factor*match[i] for i in match} + if self.r and all(_test_term(self.r[i], f(x), i) for i in + self.r if i >= 0): + if self.r[-1]: + e, re = posify(self.r[-1].subs(x, exp(x))) + undetcoeff = _undetermined_coefficients_match(e.subs(re), x) + if undetcoeff['test']: + does_match = True + return does_match + + def _get_general_solution(self, *, simplify_flag: bool = True): + f = self.ode_problem.func.func + x = self.ode_problem.sym + chareq, eq, symbol = S.Zero, S.Zero, Dummy('x') + for i in self.r.keys(): + if i >= 0: + chareq += (self.r[i]*diff(x**symbol, x, i)*x**-symbol).expand() + + for i in range(1, degree(Poly(chareq, symbol))+1): + eq += chareq.coeff(symbol**i)*diff(f(x), x, i) + + if chareq.as_coeff_add(symbol)[0]: + eq += chareq.as_coeff_add(symbol)[0]*f(x) + e, re = posify(self.r[-1].subs(x, exp(x))) + eq += e.subs(re) + + self.const_undet_instance = NthLinearConstantCoeffUndeterminedCoefficients(SingleODEProblem(eq, f(x), x)) + sol = self.const_undet_instance.get_general_solution(simplify = simplify_flag)[0] + sol = sol.subs(x, log(x)) + sol = sol.subs(f(log(x)), f(x)).expand() + + return [sol] + + +class SecondLinearBessel(SingleODESolver): + r""" + Gives solution of the Bessel differential equation + + .. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x) + + if `n` is integer then the solution is of the form ``Eq(f(x), C0 besselj(n,x) + + C1 bessely(n,x))`` as both the solutions are linearly independent else if + `n` is a fraction then the solution is of the form ``Eq(f(x), C0 besselj(n,x) + + C1 besselj(-n,x))`` which can also transform into ``Eq(f(x), C0 besselj(n,x) + + C1 bessely(n,x))``. + + Examples + ======== + + >>> from sympy.abc import x + >>> from sympy import Symbol + >>> v = Symbol('v', positive=True) + >>> from sympy import dsolve, Function + >>> f = Function('f') + >>> y = f(x) + >>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y + >>> dsolve(genform) + Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x)) + + References + ========== + + https://math24.net/bessel-differential-equation.html + + """ + hint = "2nd_linear_bessel" + has_integral = False + + def _matches(self): + eq = self.ode_problem.eq_high_order_free + f = self.ode_problem.func + order = self.ode_problem.order + x = self.ode_problem.sym + df = f.diff(x) + a = Wild('a', exclude=[f,df]) + b = Wild('b', exclude=[x, f,df]) + a4 = Wild('a4', exclude=[x,f,df]) + b4 = Wild('b4', exclude=[x,f,df]) + c4 = Wild('c4', exclude=[x,f,df]) + d4 = Wild('d4', exclude=[x,f,df]) + a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)]) + b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)]) + c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)]) + deq = a3*(f.diff(x, 2)) + b3*df + c3*f + r = collect(eq, + [f.diff(x, 2), df, f]).match(deq) + if order == 2 and r: + if not all(r[key].is_polynomial() for key in r): + n, d = eq.as_numer_denom() + eq = expand(n) + r = collect(eq, + [f.diff(x, 2), df, f]).match(deq) + + if r and r[a3] != 0: + # leading coeff of f(x).diff(x, 2) + coeff = factor(r[a3]).match(a4*(x-b)**b4) + + if coeff: + # if coeff[b4] = 0 means constant coefficient + if coeff[b4] == 0: + return False + point = coeff[b] + else: + return False + + if point: + r[a3] = simplify(r[a3].subs(x, x+point)) + r[b3] = simplify(r[b3].subs(x, x+point)) + r[c3] = simplify(r[c3].subs(x, x+point)) + + # making a3 in the form of x**2 + r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4]))) + r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4]))) + r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4]))) + # checking if b3 is of form c*(x-b) + coeff1 = factor(r[b3]).match(a4*(x)) + if coeff1 is None: + return False + # c3 maybe of very complex form so I am simply checking (a - b) form + # if yes later I will match with the standerd form of bessel in a and b + # a, b are wild variable defined above. + _coeff2 = r[c3].match(a - b) + if _coeff2 is None: + return False + # matching with standerd form for c3 + coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4)) + if coeff2 is None: + return False + + if _coeff2[b] == 0: + coeff2[d4] = 0 + else: + coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4] + + self.rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]} + self.rn['c4'] = coeff1[a4] + self.rn['b4'] = point + return True + return False + + def _get_general_solution(self, *, simplify_flag: bool = True): + f = self.ode_problem.func.func + x = self.ode_problem.sym + n = self.rn['n'] + a4 = self.rn['a4'] + c4 = self.rn['c4'] + d4 = self.rn['d4'] + b4 = self.rn['b4'] + n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2) + (C1, C2) = self.ode_problem.get_numbered_constants(num=2) + return [Eq(f(x), ((x**(Rational(1-c4,2)))*(C1*besselj(n/d4,a4*x**d4/d4) + + C2*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4))] + + +class SecondLinearAiry(SingleODESolver): + r""" + Gives solution of the Airy differential equation + + .. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0 + + in terms of Airy special functions airyai and airybi. + + Examples + ======== + + >>> from sympy import dsolve, Function + >>> from sympy.abc import x + >>> f = Function("f") + >>> eq = f(x).diff(x, 2) - x*f(x) + >>> dsolve(eq) + Eq(f(x), C1*airyai(x) + C2*airybi(x)) + """ + hint = "2nd_linear_airy" + has_integral = False + + def _matches(self): + eq = self.ode_problem.eq_high_order_free + f = self.ode_problem.func + order = self.ode_problem.order + x = self.ode_problem.sym + df = f.diff(x) + a4 = Wild('a4', exclude=[x,f,df]) + b4 = Wild('b4', exclude=[x,f,df]) + match = self.ode_problem.get_linear_coefficients(eq, f, order) + does_match = False + if order == 2 and match and match[2] != 0: + if match[1].is_zero: + self.rn = cancel(match[0]/match[2]).match(a4+b4*x) + if self.rn and self.rn[b4] != 0: + self.rn = {'b':self.rn[a4],'m':self.rn[b4]} + does_match = True + return does_match + + def _get_general_solution(self, *, simplify_flag: bool = True): + f = self.ode_problem.func.func + x = self.ode_problem.sym + (C1, C2) = self.ode_problem.get_numbered_constants(num=2) + b = self.rn['b'] + m = self.rn['m'] + if m.is_positive: + arg = - b/cbrt(m)**2 - cbrt(m)*x + elif m.is_negative: + arg = - b/cbrt(-m)**2 + cbrt(-m)*x + else: + arg = - b/cbrt(-m)**2 + cbrt(-m)*x + + return [Eq(f(x), C1*airyai(arg) + C2*airybi(arg))] + + +class LieGroup(SingleODESolver): + r""" + This hint implements the Lie group method of solving first order differential + equations. The aim is to convert the given differential equation from the + given coordinate system into another coordinate system where it becomes + invariant under the one-parameter Lie group of translations. The converted + ODE can be easily solved by quadrature. It makes use of the + :py:meth:`sympy.solvers.ode.infinitesimals` function which returns the + infinitesimals of the transformation. + + The coordinates `r` and `s` can be found by solving the following Partial + Differential Equations. + + .. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y} + = 0 + + .. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y} + = 1 + + The differential equation becomes separable in the new coordinate system + + .. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} + + h(x, y)\frac{\partial s}{\partial y}}{ + \frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}} + + After finding the solution by integration, it is then converted back to the original + coordinate system by substituting `r` and `s` in terms of `x` and `y` again. + + Examples + ======== + + >>> from sympy import Function, dsolve, exp, pprint + >>> from sympy.abc import x + >>> f = Function('f') + >>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x), + ... hint='lie_group')) + / 2\ 2 + | x | -x + f(x) = |C1 + --|*e + \ 2 / + + + References + ========== + + - Solving differential equations by Symmetry Groups, + John Starrett, pp. 1 - pp. 14 + + """ + hint = "lie_group" + has_integral = False + + def _has_additional_params(self): + return 'xi' in self.ode_problem.params and 'eta' in self.ode_problem.params + + def _matches(self): + eq = self.ode_problem.eq + f = self.ode_problem.func.func + order = self.ode_problem.order + x = self.ode_problem.sym + df = f(x).diff(x) + y = Dummy('y') + d = Wild('d', exclude=[df, f(x).diff(x, 2)]) + e = Wild('e', exclude=[df]) + does_match = False + if self._has_additional_params() and order == 1: + xi = self.ode_problem.params['xi'] + eta = self.ode_problem.params['eta'] + self.r3 = {'xi': xi, 'eta': eta} + r = collect(eq, df, exact=True).match(d + e * df) + if r: + r['d'] = d + r['e'] = e + r['y'] = y + r[d] = r[d].subs(f(x), y) + r[e] = r[e].subs(f(x), y) + self.r3.update(r) + does_match = True + return does_match + + def _get_general_solution(self, *, simplify_flag: bool = True): + eq = self.ode_problem.eq + x = self.ode_problem.sym + func = self.ode_problem.func + order = self.ode_problem.order + df = func.diff(x) + + try: + eqsol = solve(eq, df) + except NotImplementedError: + eqsol = [] + + desols = [] + for s in eqsol: + sol = _ode_lie_group(s, func, order, match=self.r3) + if sol: + desols.extend(sol) + + if desols == []: + raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + + " the lie group method") + return desols + + +solver_map = { + 'factorable': Factorable, + 'nth_linear_constant_coeff_homogeneous': NthLinearConstantCoeffHomogeneous, + 'nth_linear_euler_eq_homogeneous': NthLinearEulerEqHomogeneous, + 'nth_linear_constant_coeff_undetermined_coefficients': NthLinearConstantCoeffUndeterminedCoefficients, + 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients': NthLinearEulerEqNonhomogeneousUndeterminedCoefficients, + 'separable': Separable, + '1st_exact': FirstExact, + '1st_linear': FirstLinear, + 'Bernoulli': Bernoulli, + 'Riccati_special_minus2': RiccatiSpecial, + '1st_rational_riccati': RationalRiccati, + '1st_homogeneous_coeff_best': HomogeneousCoeffBest, + '1st_homogeneous_coeff_subs_indep_div_dep': HomogeneousCoeffSubsIndepDivDep, + '1st_homogeneous_coeff_subs_dep_div_indep': HomogeneousCoeffSubsDepDivIndep, + 'almost_linear': AlmostLinear, + 'linear_coefficients': LinearCoefficients, + 'separable_reduced': SeparableReduced, + 'nth_linear_constant_coeff_variation_of_parameters': NthLinearConstantCoeffVariationOfParameters, + 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters': NthLinearEulerEqNonhomogeneousVariationOfParameters, + 'Liouville': Liouville, + '2nd_linear_airy': SecondLinearAiry, + '2nd_linear_bessel': SecondLinearBessel, + '2nd_hypergeometric': SecondHypergeometric, + 'nth_order_reducible': NthOrderReducible, + '2nd_nonlinear_autonomous_conserved': SecondNonlinearAutonomousConserved, + 'nth_algebraic': NthAlgebraic, + 'lie_group': LieGroup, + } + +# Avoid circular import: +from .ode import dsolve, ode_sol_simplicity, odesimp, homogeneous_order