diff --git a/.gitattributes b/.gitattributes index 9c0f1411f3891fdee3b1b240711ae20d9c38c49b..73520fbd7c52cd6a534c598e787d30b1f7c3c077 100644 --- a/.gitattributes +++ b/.gitattributes @@ -190,3 +190,4 @@ llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_adv_infer.so. llmeval-env/lib/python3.10/site-packages/nvidia/nccl/lib/libnccl.so.2 filter=lfs diff=lfs merge=lfs -text llmeval-env/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12 filter=lfs diff=lfs merge=lfs -text llmeval-env/lib/python3.10/site-packages/numexpr/interpreter.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text +llmeval-env/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 filter=lfs diff=lfs merge=lfs -text diff --git a/llmeval-env/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 b/llmeval-env/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 new file mode 100644 index 0000000000000000000000000000000000000000..865db36d7f0d3bacc0d780d90cc7850d8b5e987b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9203da41484a93c1da684567bf6d732687b9b1307e3098256cb69225d6f575e4 +size 192713344 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aa0c3d1bacc39c32fefce7be8649c822113769d6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/executor.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/executor.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..98cd49079b3b8385891f60b6d1b304287ab6c105 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/executor.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/extensions.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/extensions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b0a0c56f5e357e0823e00e16e26b4e34ee9ee88 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/extensions.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/executor.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/executor.py new file mode 100644 index 0000000000000000000000000000000000000000..0a26acb7df60a20a253ca3b864568c984bb86e3d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/executor.py @@ -0,0 +1,239 @@ +from __future__ import annotations + +import functools +from typing import ( + TYPE_CHECKING, + Any, + Callable, +) + +if TYPE_CHECKING: + from pandas._typing import Scalar + +import numpy as np + +from pandas.compat._optional import import_optional_dependency + + +@functools.cache +def generate_apply_looper(func, nopython=True, nogil=True, parallel=False): + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + nb_compat_func = numba.extending.register_jitable(func) + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def nb_looper(values, axis): + # Operate on the first row/col in order to get + # the output shape + if axis == 0: + first_elem = values[:, 0] + dim0 = values.shape[1] + else: + first_elem = values[0] + dim0 = values.shape[0] + res0 = nb_compat_func(first_elem) + # Use np.asarray to get shape for + # https://github.com/numba/numba/issues/4202#issuecomment-1185981507 + buf_shape = (dim0,) + np.atleast_1d(np.asarray(res0)).shape + if axis == 0: + buf_shape = buf_shape[::-1] + buff = np.empty(buf_shape) + + if axis == 1: + buff[0] = res0 + for i in numba.prange(1, values.shape[0]): + buff[i] = nb_compat_func(values[i]) + else: + buff[:, 0] = res0 + for j in numba.prange(1, values.shape[1]): + buff[:, j] = nb_compat_func(values[:, j]) + return buff + + return nb_looper + + +@functools.cache +def make_looper(func, result_dtype, is_grouped_kernel, nopython, nogil, parallel): + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + if is_grouped_kernel: + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def column_looper( + values: np.ndarray, + labels: np.ndarray, + ngroups: int, + min_periods: int, + *args, + ): + result = np.empty((values.shape[0], ngroups), dtype=result_dtype) + na_positions = {} + for i in numba.prange(values.shape[0]): + output, na_pos = func( + values[i], result_dtype, labels, ngroups, min_periods, *args + ) + result[i] = output + if len(na_pos) > 0: + na_positions[i] = np.array(na_pos) + return result, na_positions + + else: + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def column_looper( + values: np.ndarray, + start: np.ndarray, + end: np.ndarray, + min_periods: int, + *args, + ): + result = np.empty((values.shape[0], len(start)), dtype=result_dtype) + na_positions = {} + for i in numba.prange(values.shape[0]): + output, na_pos = func( + values[i], result_dtype, start, end, min_periods, *args + ) + result[i] = output + if len(na_pos) > 0: + na_positions[i] = np.array(na_pos) + return result, na_positions + + return column_looper + + +default_dtype_mapping: dict[np.dtype, Any] = { + np.dtype("int8"): np.int64, + np.dtype("int16"): np.int64, + np.dtype("int32"): np.int64, + np.dtype("int64"): np.int64, + np.dtype("uint8"): np.uint64, + np.dtype("uint16"): np.uint64, + np.dtype("uint32"): np.uint64, + np.dtype("uint64"): np.uint64, + np.dtype("float32"): np.float64, + np.dtype("float64"): np.float64, + np.dtype("complex64"): np.complex128, + np.dtype("complex128"): np.complex128, +} + + +# TODO: Preserve complex dtypes + +float_dtype_mapping: dict[np.dtype, Any] = { + np.dtype("int8"): np.float64, + np.dtype("int16"): np.float64, + np.dtype("int32"): np.float64, + np.dtype("int64"): np.float64, + np.dtype("uint8"): np.float64, + np.dtype("uint16"): np.float64, + np.dtype("uint32"): np.float64, + np.dtype("uint64"): np.float64, + np.dtype("float32"): np.float64, + np.dtype("float64"): np.float64, + np.dtype("complex64"): np.float64, + np.dtype("complex128"): np.float64, +} + +identity_dtype_mapping: dict[np.dtype, Any] = { + np.dtype("int8"): np.int8, + np.dtype("int16"): np.int16, + np.dtype("int32"): np.int32, + np.dtype("int64"): np.int64, + np.dtype("uint8"): np.uint8, + np.dtype("uint16"): np.uint16, + np.dtype("uint32"): np.uint32, + np.dtype("uint64"): np.uint64, + np.dtype("float32"): np.float32, + np.dtype("float64"): np.float64, + np.dtype("complex64"): np.complex64, + np.dtype("complex128"): np.complex128, +} + + +def generate_shared_aggregator( + func: Callable[..., Scalar], + dtype_mapping: dict[np.dtype, np.dtype], + is_grouped_kernel: bool, + nopython: bool, + nogil: bool, + parallel: bool, +): + """ + Generate a Numba function that loops over the columns 2D object and applies + a 1D numba kernel over each column. + + Parameters + ---------- + func : function + aggregation function to be applied to each column + dtype_mapping: dict or None + If not None, maps a dtype to a result dtype. + Otherwise, will fall back to default mapping. + is_grouped_kernel: bool, default False + Whether func operates using the group labels (True) + or using starts/ends arrays + + If true, you also need to pass the number of groups to this function + nopython : bool + nopython to be passed into numba.jit + nogil : bool + nogil to be passed into numba.jit + parallel : bool + parallel to be passed into numba.jit + + Returns + ------- + Numba function + """ + + # A wrapper around the looper function, + # to dispatch based on dtype since numba is unable to do that in nopython mode + + # It also post-processes the values by inserting nans where number of observations + # is less than min_periods + # Cannot do this in numba nopython mode + # (you'll run into type-unification error when you cast int -> float) + def looper_wrapper( + values, + start=None, + end=None, + labels=None, + ngroups=None, + min_periods: int = 0, + **kwargs, + ): + result_dtype = dtype_mapping[values.dtype] + column_looper = make_looper( + func, result_dtype, is_grouped_kernel, nopython, nogil, parallel + ) + # Need to unpack kwargs since numba only supports *args + if is_grouped_kernel: + result, na_positions = column_looper( + values, labels, ngroups, min_periods, *kwargs.values() + ) + else: + result, na_positions = column_looper( + values, start, end, min_periods, *kwargs.values() + ) + if result.dtype.kind == "i": + # Look if na_positions is not empty + # If so, convert the whole block + # This is OK since int dtype cannot hold nan, + # so if min_periods not satisfied for 1 col, it is not satisfied for + # all columns at that index + for na_pos in na_positions.values(): + if len(na_pos) > 0: + result = result.astype("float64") + break + # TODO: Optimize this + for i, na_pos in na_positions.items(): + if len(na_pos) > 0: + result[i, na_pos] = np.nan + return result + + return looper_wrapper diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/extensions.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/extensions.py new file mode 100644 index 0000000000000000000000000000000000000000..ee09c9380fb0f2bbc2b84d2ad6fa44b21a0ab8ce --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/extensions.py @@ -0,0 +1,584 @@ +# Disable type checking for this module since numba's internals +# are not typed, and we use numba's internals via its extension API +# mypy: ignore-errors +""" +Utility classes/functions to let numba recognize +pandas Index/Series/DataFrame + +Mostly vendored from https://github.com/numba/numba/blob/main/numba/tests/pdlike_usecase.py +""" + +from __future__ import annotations + +from contextlib import contextmanager +import operator + +import numba +from numba import types +from numba.core import cgutils +from numba.core.datamodel import models +from numba.core.extending import ( + NativeValue, + box, + lower_builtin, + make_attribute_wrapper, + overload, + overload_attribute, + overload_method, + register_model, + type_callable, + typeof_impl, + unbox, +) +from numba.core.imputils import impl_ret_borrowed +import numpy as np + +from pandas._libs import lib + +from pandas.core.indexes.base import Index +from pandas.core.indexing import _iLocIndexer +from pandas.core.internals import SingleBlockManager +from pandas.core.series import Series + + +# Helper function to hack around fact that Index casts numpy string dtype to object +# +# Idea is to set an attribute on a Index called _numba_data +# that is the original data, or the object data casted to numpy string dtype, +# with a context manager that is unset afterwards +@contextmanager +def set_numba_data(index: Index): + numba_data = index._data + if numba_data.dtype == object: + if not lib.is_string_array(numba_data): + raise ValueError( + "The numba engine only supports using string or numeric column names" + ) + numba_data = numba_data.astype("U") + try: + index._numba_data = numba_data + yield index + finally: + del index._numba_data + + +# TODO: Range index support +# (this currently lowers OK, but does not round-trip) +class IndexType(types.Type): + """ + The type class for Index objects. + """ + + def __init__(self, dtype, layout, pyclass: any) -> None: + self.pyclass = pyclass + name = f"index({dtype}, {layout})" + self.dtype = dtype + self.layout = layout + super().__init__(name) + + @property + def key(self): + return self.pyclass, self.dtype, self.layout + + @property + def as_array(self): + return types.Array(self.dtype, 1, self.layout) + + def copy(self, dtype=None, ndim: int = 1, layout=None): + assert ndim == 1 + if dtype is None: + dtype = self.dtype + layout = layout or self.layout + return type(self)(dtype, layout, self.pyclass) + + +class SeriesType(types.Type): + """ + The type class for Series objects. + """ + + def __init__(self, dtype, index, namety) -> None: + assert isinstance(index, IndexType) + self.dtype = dtype + self.index = index + self.values = types.Array(self.dtype, 1, "C") + self.namety = namety + name = f"series({dtype}, {index}, {namety})" + super().__init__(name) + + @property + def key(self): + return self.dtype, self.index, self.namety + + @property + def as_array(self): + return self.values + + def copy(self, dtype=None, ndim: int = 1, layout: str = "C"): + assert ndim == 1 + assert layout == "C" + if dtype is None: + dtype = self.dtype + return type(self)(dtype, self.index, self.namety) + + +@typeof_impl.register(Index) +def typeof_index(val, c): + """ + This will assume that only strings are in object dtype + index. + (you should check this before this gets lowered down to numba) + """ + # arrty = typeof_impl(val._data, c) + arrty = typeof_impl(val._numba_data, c) + assert arrty.ndim == 1 + return IndexType(arrty.dtype, arrty.layout, type(val)) + + +@typeof_impl.register(Series) +def typeof_series(val, c): + index = typeof_impl(val.index, c) + arrty = typeof_impl(val.values, c) + namety = typeof_impl(val.name, c) + assert arrty.ndim == 1 + assert arrty.layout == "C" + return SeriesType(arrty.dtype, index, namety) + + +@type_callable(Series) +def type_series_constructor(context): + def typer(data, index, name=None): + if isinstance(index, IndexType) and isinstance(data, types.Array): + assert data.ndim == 1 + if name is None: + name = types.intp + return SeriesType(data.dtype, index, name) + + return typer + + +@type_callable(Index) +def type_index_constructor(context): + def typer(data, hashmap=None): + if isinstance(data, types.Array): + assert data.layout == "C" + assert data.ndim == 1 + assert hashmap is None or isinstance(hashmap, types.DictType) + return IndexType(data.dtype, layout=data.layout, pyclass=Index) + + return typer + + +# Backend extensions for Index and Series and Frame +@register_model(IndexType) +class IndexModel(models.StructModel): + def __init__(self, dmm, fe_type) -> None: + # We don't want the numpy string scalar type in our hashmap + members = [ + ("data", fe_type.as_array), + # This is an attempt to emulate our hashtable code with a numba + # typed dict + # It maps from values in the index to their integer positions in the array + ("hashmap", types.DictType(fe_type.dtype, types.intp)), + # Pointer to the Index object this was created from, or that it + # boxes to + # https://numba.discourse.group/t/qst-how-to-cache-the-boxing-of-an-object/2128/2?u=lithomas1 + ("parent", types.pyobject), + ] + models.StructModel.__init__(self, dmm, fe_type, members) + + +@register_model(SeriesType) +class SeriesModel(models.StructModel): + def __init__(self, dmm, fe_type) -> None: + members = [ + ("index", fe_type.index), + ("values", fe_type.as_array), + ("name", fe_type.namety), + ] + models.StructModel.__init__(self, dmm, fe_type, members) + + +make_attribute_wrapper(IndexType, "data", "_data") +make_attribute_wrapper(IndexType, "hashmap", "hashmap") + +make_attribute_wrapper(SeriesType, "index", "index") +make_attribute_wrapper(SeriesType, "values", "values") +make_attribute_wrapper(SeriesType, "name", "name") + + +@lower_builtin(Series, types.Array, IndexType) +def pdseries_constructor(context, builder, sig, args): + data, index = args + series = cgutils.create_struct_proxy(sig.return_type)(context, builder) + series.index = index + series.values = data + series.name = context.get_constant(types.intp, 0) + return impl_ret_borrowed(context, builder, sig.return_type, series._getvalue()) + + +@lower_builtin(Series, types.Array, IndexType, types.intp) +@lower_builtin(Series, types.Array, IndexType, types.float64) +@lower_builtin(Series, types.Array, IndexType, types.unicode_type) +def pdseries_constructor_with_name(context, builder, sig, args): + data, index, name = args + series = cgutils.create_struct_proxy(sig.return_type)(context, builder) + series.index = index + series.values = data + series.name = name + return impl_ret_borrowed(context, builder, sig.return_type, series._getvalue()) + + +@lower_builtin(Index, types.Array, types.DictType, types.pyobject) +def index_constructor_2arg(context, builder, sig, args): + (data, hashmap, parent) = args + index = cgutils.create_struct_proxy(sig.return_type)(context, builder) + + index.data = data + index.hashmap = hashmap + index.parent = parent + return impl_ret_borrowed(context, builder, sig.return_type, index._getvalue()) + + +@lower_builtin(Index, types.Array, types.DictType) +def index_constructor_2arg_parent(context, builder, sig, args): + # Basically same as index_constructor_1arg, but also lets you specify the + # parent object + (data, hashmap) = args + index = cgutils.create_struct_proxy(sig.return_type)(context, builder) + + index.data = data + index.hashmap = hashmap + return impl_ret_borrowed(context, builder, sig.return_type, index._getvalue()) + + +@lower_builtin(Index, types.Array) +def index_constructor_1arg(context, builder, sig, args): + from numba.typed import Dict + + key_type = sig.return_type.dtype + value_type = types.intp + + def index_impl(data): + return Index(data, Dict.empty(key_type, value_type)) + + return context.compile_internal(builder, index_impl, sig, args) + + +# Helper to convert the unicodecharseq (numpy string scalar) into a unicode_type +# (regular string) +def maybe_cast_str(x): + # Dummy function that numba can overload + pass + + +@overload(maybe_cast_str) +def maybe_cast_str_impl(x): + """Converts numba UnicodeCharSeq (numpy string scalar) -> unicode type (string). + Is a no-op for other types.""" + if isinstance(x, types.UnicodeCharSeq): + return lambda x: str(x) + else: + return lambda x: x + + +@unbox(IndexType) +def unbox_index(typ, obj, c): + """ + Convert a Index object to a native structure. + + Note: Object dtype is not allowed here + """ + data_obj = c.pyapi.object_getattr_string(obj, "_numba_data") + index = cgutils.create_struct_proxy(typ)(c.context, c.builder) + # If we see an object array, assume its been validated as only containing strings + # We still need to do the conversion though + index.data = c.unbox(typ.as_array, data_obj).value + typed_dict_obj = c.pyapi.unserialize(c.pyapi.serialize_object(numba.typed.Dict)) + # Create an empty typed dict in numba for the hashmap for indexing + # equiv of numba.typed.Dict.empty(typ.dtype, types.intp) + arr_type_obj = c.pyapi.unserialize(c.pyapi.serialize_object(typ.dtype)) + intp_type_obj = c.pyapi.unserialize(c.pyapi.serialize_object(types.intp)) + hashmap_obj = c.pyapi.call_method( + typed_dict_obj, "empty", (arr_type_obj, intp_type_obj) + ) + index.hashmap = c.unbox(types.DictType(typ.dtype, types.intp), hashmap_obj).value + # Set the parent for speedy boxing. + index.parent = obj + + # Decrefs + c.pyapi.decref(data_obj) + c.pyapi.decref(arr_type_obj) + c.pyapi.decref(intp_type_obj) + c.pyapi.decref(typed_dict_obj) + + return NativeValue(index._getvalue()) + + +@unbox(SeriesType) +def unbox_series(typ, obj, c): + """ + Convert a Series object to a native structure. + """ + index_obj = c.pyapi.object_getattr_string(obj, "index") + values_obj = c.pyapi.object_getattr_string(obj, "values") + name_obj = c.pyapi.object_getattr_string(obj, "name") + + series = cgutils.create_struct_proxy(typ)(c.context, c.builder) + series.index = c.unbox(typ.index, index_obj).value + series.values = c.unbox(typ.values, values_obj).value + series.name = c.unbox(typ.namety, name_obj).value + + # Decrefs + c.pyapi.decref(index_obj) + c.pyapi.decref(values_obj) + c.pyapi.decref(name_obj) + + return NativeValue(series._getvalue()) + + +@box(IndexType) +def box_index(typ, val, c): + """ + Convert a native index structure to a Index object. + + If our native index is of a numpy string dtype, we'll cast it to + object. + """ + # First build a Numpy array object, then wrap it in a Index + index = cgutils.create_struct_proxy(typ)(c.context, c.builder, value=val) + + res = cgutils.alloca_once_value(c.builder, index.parent) + + # Does parent exist? + # (it means already boxed once, or Index same as original df.index or df.columns) + # xref https://github.com/numba/numba/blob/596e8a55334cc46854e3192766e643767bd7c934/numba/core/boxing.py#L593C17-L593C17 + with c.builder.if_else(cgutils.is_not_null(c.builder, index.parent)) as ( + has_parent, + otherwise, + ): + with has_parent: + c.pyapi.incref(index.parent) + with otherwise: + # TODO: preserve the original class for the index + # Also need preserve the name of the Index + # class_obj = c.pyapi.unserialize(c.pyapi.serialize_object(typ.pyclass)) + class_obj = c.pyapi.unserialize(c.pyapi.serialize_object(Index)) + array_obj = c.box(typ.as_array, index.data) + if isinstance(typ.dtype, types.UnicodeCharSeq): + # We converted to numpy string dtype, convert back + # to object since _simple_new won't do that for uss + object_str_obj = c.pyapi.unserialize(c.pyapi.serialize_object("object")) + array_obj = c.pyapi.call_method(array_obj, "astype", (object_str_obj,)) + c.pyapi.decref(object_str_obj) + # this is basically Index._simple_new(array_obj, name_obj) in python + index_obj = c.pyapi.call_method(class_obj, "_simple_new", (array_obj,)) + index.parent = index_obj + c.builder.store(index_obj, res) + + # Decrefs + c.pyapi.decref(class_obj) + c.pyapi.decref(array_obj) + return c.builder.load(res) + + +@box(SeriesType) +def box_series(typ, val, c): + """ + Convert a native series structure to a Series object. + """ + series = cgutils.create_struct_proxy(typ)(c.context, c.builder, value=val) + series_const_obj = c.pyapi.unserialize(c.pyapi.serialize_object(Series._from_mgr)) + mgr_const_obj = c.pyapi.unserialize( + c.pyapi.serialize_object(SingleBlockManager.from_array) + ) + index_obj = c.box(typ.index, series.index) + array_obj = c.box(typ.as_array, series.values) + name_obj = c.box(typ.namety, series.name) + # This is basically equivalent of + # pd.Series(data=array_obj, index=index_obj) + # To improve perf, we will construct the Series from a manager + # object to avoid checks. + # We'll also set the name attribute manually to avoid validation + mgr_obj = c.pyapi.call_function_objargs( + mgr_const_obj, + ( + array_obj, + index_obj, + ), + ) + mgr_axes_obj = c.pyapi.object_getattr_string(mgr_obj, "axes") + # Series._constructor_from_mgr(mgr, axes) + series_obj = c.pyapi.call_function_objargs( + series_const_obj, (mgr_obj, mgr_axes_obj) + ) + c.pyapi.object_setattr_string(series_obj, "_name", name_obj) + + # Decrefs + c.pyapi.decref(series_const_obj) + c.pyapi.decref(mgr_axes_obj) + c.pyapi.decref(mgr_obj) + c.pyapi.decref(mgr_const_obj) + c.pyapi.decref(index_obj) + c.pyapi.decref(array_obj) + c.pyapi.decref(name_obj) + + return series_obj + + +# Add common series reductions (e.g. mean, sum), +# and also add common binops (e.g. add, sub, mul, div) +def generate_series_reduction(ser_reduction, ser_method): + @overload_method(SeriesType, ser_reduction) + def series_reduction(series): + def series_reduction_impl(series): + return ser_method(series.values) + + return series_reduction_impl + + return series_reduction + + +def generate_series_binop(binop): + @overload(binop) + def series_binop(series1, value): + if isinstance(series1, SeriesType): + if isinstance(value, SeriesType): + + def series_binop_impl(series1, series2): + # TODO: Check index matching? + return Series( + binop(series1.values, series2.values), + series1.index, + series1.name, + ) + + return series_binop_impl + else: + + def series_binop_impl(series1, value): + return Series( + binop(series1.values, value), series1.index, series1.name + ) + + return series_binop_impl + + return series_binop + + +series_reductions = [ + ("sum", np.sum), + ("mean", np.mean), + # Disabled due to discrepancies between numba std. dev + # and pandas std. dev (no way to specify dof) + # ("std", np.std), + # ("var", np.var), + ("min", np.min), + ("max", np.max), +] +for reduction, reduction_method in series_reductions: + generate_series_reduction(reduction, reduction_method) + +series_binops = [operator.add, operator.sub, operator.mul, operator.truediv] + +for ser_binop in series_binops: + generate_series_binop(ser_binop) + + +# get_loc on Index +@overload_method(IndexType, "get_loc") +def index_get_loc(index, item): + def index_get_loc_impl(index, item): + # Initialize the hash table if not initialized + if len(index.hashmap) == 0: + for i, val in enumerate(index._data): + index.hashmap[val] = i + return index.hashmap[item] + + return index_get_loc_impl + + +# Indexing for Series/Index +@overload(operator.getitem) +def series_indexing(series, item): + if isinstance(series, SeriesType): + + def series_getitem(series, item): + loc = series.index.get_loc(item) + return series.iloc[loc] + + return series_getitem + + +@overload(operator.getitem) +def index_indexing(index, idx): + if isinstance(index, IndexType): + + def index_getitem(index, idx): + return index._data[idx] + + return index_getitem + + +class IlocType(types.Type): + def __init__(self, obj_type) -> None: + self.obj_type = obj_type + name = f"iLocIndexer({obj_type})" + super().__init__(name=name) + + @property + def key(self): + return self.obj_type + + +@typeof_impl.register(_iLocIndexer) +def typeof_iloc(val, c): + objtype = typeof_impl(val.obj, c) + return IlocType(objtype) + + +@type_callable(_iLocIndexer) +def type_iloc_constructor(context): + def typer(obj): + if isinstance(obj, SeriesType): + return IlocType(obj) + + return typer + + +@lower_builtin(_iLocIndexer, SeriesType) +def iloc_constructor(context, builder, sig, args): + (obj,) = args + iloc_indexer = cgutils.create_struct_proxy(sig.return_type)(context, builder) + iloc_indexer.obj = obj + return impl_ret_borrowed( + context, builder, sig.return_type, iloc_indexer._getvalue() + ) + + +@register_model(IlocType) +class ILocModel(models.StructModel): + def __init__(self, dmm, fe_type) -> None: + members = [("obj", fe_type.obj_type)] + models.StructModel.__init__(self, dmm, fe_type, members) + + +make_attribute_wrapper(IlocType, "obj", "obj") + + +@overload_attribute(SeriesType, "iloc") +def series_iloc(series): + def get(series): + return _iLocIndexer(series) + + return get + + +@overload(operator.getitem) +def iloc_getitem(iloc_indexer, i): + if isinstance(iloc_indexer, IlocType): + + def getitem_impl(iloc_indexer, i): + return iloc_indexer.obj.values[i] + + return getitem_impl diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1116c61c4ca8e48d94a6c9c6222aaf545d989e86 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__init__.py @@ -0,0 +1,27 @@ +from pandas.core._numba.kernels.mean_ import ( + grouped_mean, + sliding_mean, +) +from pandas.core._numba.kernels.min_max_ import ( + grouped_min_max, + sliding_min_max, +) +from pandas.core._numba.kernels.sum_ import ( + grouped_sum, + sliding_sum, +) +from pandas.core._numba.kernels.var_ import ( + grouped_var, + sliding_var, +) + +__all__ = [ + "sliding_mean", + "grouped_mean", + "sliding_sum", + "grouped_sum", + "sliding_var", + "grouped_var", + "sliding_min_max", + "grouped_min_max", +] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..292dfc5e393cbb902898f4dfbf8bd2c2bd2b05e4 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/mean_.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/mean_.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3aec6b39862cd7218f9a150130dad66ff5e63cbe Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/mean_.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/min_max_.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/min_max_.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..16a8169160a749722ff0b5d256eb883f1a8a334f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/min_max_.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/shared.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/shared.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d47fe667dff3f7dc01dd10a157f8eeaa13eca82 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/shared.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/sum_.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/sum_.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..68c704539e4efc0fb513a61b623d2ddc7ab51255 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/sum_.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/var_.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/var_.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19c5ba2f7127a4d9d0ef0618616bd094a8abd1fb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/__pycache__/var_.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/mean_.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/mean_.py new file mode 100644 index 0000000000000000000000000000000000000000..f415804781753372a5715b6ffee6a7ab8cc70b64 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/mean_.py @@ -0,0 +1,196 @@ +""" +Numba 1D mean kernels that can be shared by +* Dataframe / Series +* groupby +* rolling / expanding + +Mirrors pandas/_libs/window/aggregation.pyx +""" +from __future__ import annotations + +from typing import TYPE_CHECKING + +import numba +import numpy as np + +from pandas.core._numba.kernels.shared import is_monotonic_increasing +from pandas.core._numba.kernels.sum_ import grouped_kahan_sum + +if TYPE_CHECKING: + from pandas._typing import npt + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def add_mean( + val: float, + nobs: int, + sum_x: float, + neg_ct: int, + compensation: float, + num_consecutive_same_value: int, + prev_value: float, +) -> tuple[int, float, int, float, int, float]: + if not np.isnan(val): + nobs += 1 + y = val - compensation + t = sum_x + y + compensation = t - sum_x - y + sum_x = t + if val < 0: + neg_ct += 1 + + if val == prev_value: + num_consecutive_same_value += 1 + else: + num_consecutive_same_value = 1 + prev_value = val + + return nobs, sum_x, neg_ct, compensation, num_consecutive_same_value, prev_value + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def remove_mean( + val: float, nobs: int, sum_x: float, neg_ct: int, compensation: float +) -> tuple[int, float, int, float]: + if not np.isnan(val): + nobs -= 1 + y = -val - compensation + t = sum_x + y + compensation = t - sum_x - y + sum_x = t + if val < 0: + neg_ct -= 1 + return nobs, sum_x, neg_ct, compensation + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def sliding_mean( + values: np.ndarray, + result_dtype: np.dtype, + start: np.ndarray, + end: np.ndarray, + min_periods: int, +) -> tuple[np.ndarray, list[int]]: + N = len(start) + nobs = 0 + sum_x = 0.0 + neg_ct = 0 + compensation_add = 0.0 + compensation_remove = 0.0 + + is_monotonic_increasing_bounds = is_monotonic_increasing( + start + ) and is_monotonic_increasing(end) + + output = np.empty(N, dtype=result_dtype) + + for i in range(N): + s = start[i] + e = end[i] + if i == 0 or not is_monotonic_increasing_bounds: + prev_value = values[s] + num_consecutive_same_value = 0 + + for j in range(s, e): + val = values[j] + ( + nobs, + sum_x, + neg_ct, + compensation_add, + num_consecutive_same_value, + prev_value, + ) = add_mean( + val, + nobs, + sum_x, + neg_ct, + compensation_add, + num_consecutive_same_value, + prev_value, # pyright: ignore[reportGeneralTypeIssues] + ) + else: + for j in range(start[i - 1], s): + val = values[j] + nobs, sum_x, neg_ct, compensation_remove = remove_mean( + val, nobs, sum_x, neg_ct, compensation_remove + ) + + for j in range(end[i - 1], e): + val = values[j] + ( + nobs, + sum_x, + neg_ct, + compensation_add, + num_consecutive_same_value, + prev_value, + ) = add_mean( + val, + nobs, + sum_x, + neg_ct, + compensation_add, + num_consecutive_same_value, + prev_value, # pyright: ignore[reportGeneralTypeIssues] + ) + + if nobs >= min_periods and nobs > 0: + result = sum_x / nobs + if num_consecutive_same_value >= nobs: + result = prev_value + elif neg_ct == 0 and result < 0: + result = 0 + elif neg_ct == nobs and result > 0: + result = 0 + else: + result = np.nan + + output[i] = result + + if not is_monotonic_increasing_bounds: + nobs = 0 + sum_x = 0.0 + neg_ct = 0 + compensation_remove = 0.0 + + # na_position is empty list since float64 can already hold nans + # Do list comprehension, since numba cannot figure out that na_pos is + # empty list of ints on its own + na_pos = [0 for i in range(0)] + return output, na_pos + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def grouped_mean( + values: np.ndarray, + result_dtype: np.dtype, + labels: npt.NDArray[np.intp], + ngroups: int, + min_periods: int, +) -> tuple[np.ndarray, list[int]]: + output, nobs_arr, comp_arr, consecutive_counts, prev_vals = grouped_kahan_sum( + values, result_dtype, labels, ngroups + ) + + # Post-processing, replace sums that don't satisfy min_periods + for lab in range(ngroups): + nobs = nobs_arr[lab] + num_consecutive_same_value = consecutive_counts[lab] + prev_value = prev_vals[lab] + sum_x = output[lab] + if nobs >= min_periods: + if num_consecutive_same_value >= nobs: + result = prev_value * nobs + else: + result = sum_x + else: + result = np.nan + result /= nobs + output[lab] = result + + # na_position is empty list since float64 can already hold nans + # Do list comprehension, since numba cannot figure out that na_pos is + # empty list of ints on its own + na_pos = [0 for i in range(0)] + return output, na_pos diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/min_max_.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/min_max_.py new file mode 100644 index 0000000000000000000000000000000000000000..c9803980e64a6bf2ec5b274acd582850e3a07420 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/min_max_.py @@ -0,0 +1,125 @@ +""" +Numba 1D min/max kernels that can be shared by +* Dataframe / Series +* groupby +* rolling / expanding + +Mirrors pandas/_libs/window/aggregation.pyx +""" +from __future__ import annotations + +from typing import TYPE_CHECKING + +import numba +import numpy as np + +if TYPE_CHECKING: + from pandas._typing import npt + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def sliding_min_max( + values: np.ndarray, + result_dtype: np.dtype, + start: np.ndarray, + end: np.ndarray, + min_periods: int, + is_max: bool, +) -> tuple[np.ndarray, list[int]]: + N = len(start) + nobs = 0 + output = np.empty(N, dtype=result_dtype) + na_pos = [] + # Use deque once numba supports it + # https://github.com/numba/numba/issues/7417 + Q: list = [] + W: list = [] + for i in range(N): + curr_win_size = end[i] - start[i] + if i == 0: + st = start[i] + else: + st = end[i - 1] + + for k in range(st, end[i]): + ai = values[k] + if not np.isnan(ai): + nobs += 1 + elif is_max: + ai = -np.inf + else: + ai = np.inf + # Discard previous entries if we find new min or max + if is_max: + while Q and ((ai >= values[Q[-1]]) or values[Q[-1]] != values[Q[-1]]): + Q.pop() + else: + while Q and ((ai <= values[Q[-1]]) or values[Q[-1]] != values[Q[-1]]): + Q.pop() + Q.append(k) + W.append(k) + + # Discard entries outside and left of current window + while Q and Q[0] <= start[i] - 1: + Q.pop(0) + while W and W[0] <= start[i] - 1: + if not np.isnan(values[W[0]]): + nobs -= 1 + W.pop(0) + + # Save output based on index in input value array + if Q and curr_win_size > 0 and nobs >= min_periods: + output[i] = values[Q[0]] + else: + if values.dtype.kind != "i": + output[i] = np.nan + else: + na_pos.append(i) + + return output, na_pos + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def grouped_min_max( + values: np.ndarray, + result_dtype: np.dtype, + labels: npt.NDArray[np.intp], + ngroups: int, + min_periods: int, + is_max: bool, +) -> tuple[np.ndarray, list[int]]: + N = len(labels) + nobs = np.zeros(ngroups, dtype=np.int64) + na_pos = [] + output = np.empty(ngroups, dtype=result_dtype) + + for i in range(N): + lab = labels[i] + val = values[i] + if lab < 0: + continue + + if values.dtype.kind == "i" or not np.isnan(val): + nobs[lab] += 1 + else: + # NaN value cannot be a min/max value + continue + + if nobs[lab] == 1: + # First element in group, set output equal to this + output[lab] = val + continue + + if is_max: + if val > output[lab]: + output[lab] = val + else: + if val < output[lab]: + output[lab] = val + + # Set labels that don't satisfy min_periods as np.nan + for lab, count in enumerate(nobs): + if count < min_periods: + na_pos.append(lab) + + return output, na_pos diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/shared.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/shared.py new file mode 100644 index 0000000000000000000000000000000000000000..c52372fe6b08f3ec9ec6e836341e08ac804d50f3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/shared.py @@ -0,0 +1,29 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING + +import numba + +if TYPE_CHECKING: + import numpy as np + + +@numba.jit( + # error: Any? not callable + numba.boolean(numba.int64[:]), # type: ignore[misc] + nopython=True, + nogil=True, + parallel=False, +) +def is_monotonic_increasing(bounds: np.ndarray) -> bool: + """Check if int64 values are monotonically increasing.""" + n = len(bounds) + if n < 2: + return True + prev = bounds[0] + for i in range(1, n): + cur = bounds[i] + if cur < prev: + return False + prev = cur + return True diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/sum_.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/sum_.py new file mode 100644 index 0000000000000000000000000000000000000000..94db84267ceecb83234fc2e0b231566a2fdffd66 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/sum_.py @@ -0,0 +1,244 @@ +""" +Numba 1D sum kernels that can be shared by +* Dataframe / Series +* groupby +* rolling / expanding + +Mirrors pandas/_libs/window/aggregation.pyx +""" +from __future__ import annotations + +from typing import ( + TYPE_CHECKING, + Any, +) + +import numba +from numba.extending import register_jitable +import numpy as np + +if TYPE_CHECKING: + from pandas._typing import npt + +from pandas.core._numba.kernels.shared import is_monotonic_increasing + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def add_sum( + val: Any, + nobs: int, + sum_x: Any, + compensation: Any, + num_consecutive_same_value: int, + prev_value: Any, +) -> tuple[int, Any, Any, int, Any]: + if not np.isnan(val): + nobs += 1 + y = val - compensation + t = sum_x + y + compensation = t - sum_x - y + sum_x = t + + if val == prev_value: + num_consecutive_same_value += 1 + else: + num_consecutive_same_value = 1 + prev_value = val + + return nobs, sum_x, compensation, num_consecutive_same_value, prev_value + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def remove_sum( + val: Any, nobs: int, sum_x: Any, compensation: Any +) -> tuple[int, Any, Any]: + if not np.isnan(val): + nobs -= 1 + y = -val - compensation + t = sum_x + y + compensation = t - sum_x - y + sum_x = t + return nobs, sum_x, compensation + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def sliding_sum( + values: np.ndarray, + result_dtype: np.dtype, + start: np.ndarray, + end: np.ndarray, + min_periods: int, +) -> tuple[np.ndarray, list[int]]: + dtype = values.dtype + + na_val: object = np.nan + if dtype.kind == "i": + na_val = 0 + + N = len(start) + nobs = 0 + sum_x = 0 + compensation_add = 0 + compensation_remove = 0 + na_pos = [] + + is_monotonic_increasing_bounds = is_monotonic_increasing( + start + ) and is_monotonic_increasing(end) + + output = np.empty(N, dtype=result_dtype) + + for i in range(N): + s = start[i] + e = end[i] + if i == 0 or not is_monotonic_increasing_bounds: + prev_value = values[s] + num_consecutive_same_value = 0 + + for j in range(s, e): + val = values[j] + ( + nobs, + sum_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) = add_sum( + val, + nobs, + sum_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) + else: + for j in range(start[i - 1], s): + val = values[j] + nobs, sum_x, compensation_remove = remove_sum( + val, nobs, sum_x, compensation_remove + ) + + for j in range(end[i - 1], e): + val = values[j] + ( + nobs, + sum_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) = add_sum( + val, + nobs, + sum_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) + + if nobs == 0 == min_periods: + result: object = 0 + elif nobs >= min_periods: + if num_consecutive_same_value >= nobs: + result = prev_value * nobs + else: + result = sum_x + else: + result = na_val + if dtype.kind == "i": + na_pos.append(i) + + output[i] = result + + if not is_monotonic_increasing_bounds: + nobs = 0 + sum_x = 0 + compensation_remove = 0 + + return output, na_pos + + +# Mypy/pyright don't like the fact that the decorator is untyped +@register_jitable # type: ignore[misc] +def grouped_kahan_sum( + values: np.ndarray, + result_dtype: np.dtype, + labels: npt.NDArray[np.intp], + ngroups: int, +) -> tuple[ + np.ndarray, npt.NDArray[np.int64], np.ndarray, npt.NDArray[np.int64], np.ndarray +]: + N = len(labels) + + nobs_arr = np.zeros(ngroups, dtype=np.int64) + comp_arr = np.zeros(ngroups, dtype=values.dtype) + consecutive_counts = np.zeros(ngroups, dtype=np.int64) + prev_vals = np.zeros(ngroups, dtype=values.dtype) + output = np.zeros(ngroups, dtype=result_dtype) + + for i in range(N): + lab = labels[i] + val = values[i] + + if lab < 0: + continue + + sum_x = output[lab] + nobs = nobs_arr[lab] + compensation_add = comp_arr[lab] + num_consecutive_same_value = consecutive_counts[lab] + prev_value = prev_vals[lab] + + ( + nobs, + sum_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) = add_sum( + val, + nobs, + sum_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) + + output[lab] = sum_x + consecutive_counts[lab] = num_consecutive_same_value + prev_vals[lab] = prev_value + comp_arr[lab] = compensation_add + nobs_arr[lab] = nobs + return output, nobs_arr, comp_arr, consecutive_counts, prev_vals + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def grouped_sum( + values: np.ndarray, + result_dtype: np.dtype, + labels: npt.NDArray[np.intp], + ngroups: int, + min_periods: int, +) -> tuple[np.ndarray, list[int]]: + na_pos = [] + + output, nobs_arr, comp_arr, consecutive_counts, prev_vals = grouped_kahan_sum( + values, result_dtype, labels, ngroups + ) + + # Post-processing, replace sums that don't satisfy min_periods + for lab in range(ngroups): + nobs = nobs_arr[lab] + num_consecutive_same_value = consecutive_counts[lab] + prev_value = prev_vals[lab] + sum_x = output[lab] + if nobs >= min_periods: + if num_consecutive_same_value >= nobs: + result = prev_value * nobs + else: + result = sum_x + else: + result = sum_x # Don't change val, will be replaced by nan later + na_pos.append(lab) + output[lab] = result + + return output, na_pos diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/var_.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/var_.py new file mode 100644 index 0000000000000000000000000000000000000000..c63d0b90b0fc3f4a4a532b9ce85e57d8bd823fb1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/_numba/kernels/var_.py @@ -0,0 +1,245 @@ +""" +Numba 1D var kernels that can be shared by +* Dataframe / Series +* groupby +* rolling / expanding + +Mirrors pandas/_libs/window/aggregation.pyx +""" +from __future__ import annotations + +from typing import TYPE_CHECKING + +import numba +import numpy as np + +if TYPE_CHECKING: + from pandas._typing import npt + +from pandas.core._numba.kernels.shared import is_monotonic_increasing + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def add_var( + val: float, + nobs: int, + mean_x: float, + ssqdm_x: float, + compensation: float, + num_consecutive_same_value: int, + prev_value: float, +) -> tuple[int, float, float, float, int, float]: + if not np.isnan(val): + if val == prev_value: + num_consecutive_same_value += 1 + else: + num_consecutive_same_value = 1 + prev_value = val + + nobs += 1 + prev_mean = mean_x - compensation + y = val - compensation + t = y - mean_x + compensation = t + mean_x - y + delta = t + if nobs: + mean_x += delta / nobs + else: + mean_x = 0 + ssqdm_x += (val - prev_mean) * (val - mean_x) + return nobs, mean_x, ssqdm_x, compensation, num_consecutive_same_value, prev_value + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def remove_var( + val: float, nobs: int, mean_x: float, ssqdm_x: float, compensation: float +) -> tuple[int, float, float, float]: + if not np.isnan(val): + nobs -= 1 + if nobs: + prev_mean = mean_x - compensation + y = val - compensation + t = y - mean_x + compensation = t + mean_x - y + delta = t + mean_x -= delta / nobs + ssqdm_x -= (val - prev_mean) * (val - mean_x) + else: + mean_x = 0 + ssqdm_x = 0 + return nobs, mean_x, ssqdm_x, compensation + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def sliding_var( + values: np.ndarray, + result_dtype: np.dtype, + start: np.ndarray, + end: np.ndarray, + min_periods: int, + ddof: int = 1, +) -> tuple[np.ndarray, list[int]]: + N = len(start) + nobs = 0 + mean_x = 0.0 + ssqdm_x = 0.0 + compensation_add = 0.0 + compensation_remove = 0.0 + + min_periods = max(min_periods, 1) + is_monotonic_increasing_bounds = is_monotonic_increasing( + start + ) and is_monotonic_increasing(end) + + output = np.empty(N, dtype=result_dtype) + + for i in range(N): + s = start[i] + e = end[i] + if i == 0 or not is_monotonic_increasing_bounds: + prev_value = values[s] + num_consecutive_same_value = 0 + + for j in range(s, e): + val = values[j] + ( + nobs, + mean_x, + ssqdm_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) = add_var( + val, + nobs, + mean_x, + ssqdm_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) + else: + for j in range(start[i - 1], s): + val = values[j] + nobs, mean_x, ssqdm_x, compensation_remove = remove_var( + val, nobs, mean_x, ssqdm_x, compensation_remove + ) + + for j in range(end[i - 1], e): + val = values[j] + ( + nobs, + mean_x, + ssqdm_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) = add_var( + val, + nobs, + mean_x, + ssqdm_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) + + if nobs >= min_periods and nobs > ddof: + if nobs == 1 or num_consecutive_same_value >= nobs: + result = 0.0 + else: + result = ssqdm_x / (nobs - ddof) + else: + result = np.nan + + output[i] = result + + if not is_monotonic_increasing_bounds: + nobs = 0 + mean_x = 0.0 + ssqdm_x = 0.0 + compensation_remove = 0.0 + + # na_position is empty list since float64 can already hold nans + # Do list comprehension, since numba cannot figure out that na_pos is + # empty list of ints on its own + na_pos = [0 for i in range(0)] + return output, na_pos + + +@numba.jit(nopython=True, nogil=True, parallel=False) +def grouped_var( + values: np.ndarray, + result_dtype: np.dtype, + labels: npt.NDArray[np.intp], + ngroups: int, + min_periods: int, + ddof: int = 1, +) -> tuple[np.ndarray, list[int]]: + N = len(labels) + + nobs_arr = np.zeros(ngroups, dtype=np.int64) + comp_arr = np.zeros(ngroups, dtype=values.dtype) + consecutive_counts = np.zeros(ngroups, dtype=np.int64) + prev_vals = np.zeros(ngroups, dtype=values.dtype) + output = np.zeros(ngroups, dtype=result_dtype) + means = np.zeros(ngroups, dtype=result_dtype) + + for i in range(N): + lab = labels[i] + val = values[i] + + if lab < 0: + continue + + mean_x = means[lab] + ssqdm_x = output[lab] + nobs = nobs_arr[lab] + compensation_add = comp_arr[lab] + num_consecutive_same_value = consecutive_counts[lab] + prev_value = prev_vals[lab] + + ( + nobs, + mean_x, + ssqdm_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) = add_var( + val, + nobs, + mean_x, + ssqdm_x, + compensation_add, + num_consecutive_same_value, + prev_value, + ) + + output[lab] = ssqdm_x + means[lab] = mean_x + consecutive_counts[lab] = num_consecutive_same_value + prev_vals[lab] = prev_value + comp_arr[lab] = compensation_add + nobs_arr[lab] = nobs + + # Post-processing, replace vars that don't satisfy min_periods + for lab in range(ngroups): + nobs = nobs_arr[lab] + num_consecutive_same_value = consecutive_counts[lab] + ssqdm_x = output[lab] + if nobs >= min_periods and nobs > ddof: + if nobs == 1 or num_consecutive_same_value >= nobs: + result = 0.0 + else: + result = ssqdm_x / (nobs - ddof) + else: + result = np.nan + output[lab] = result + + # Second pass to get the std.dev + # na_position is empty list since float64 can already hold nans + # Do list comprehension, since numba cannot figure out that na_pos is + # empty list of ints on its own + na_pos = [0 for i in range(0)] + return output, na_pos diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/base.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/base.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2c5464528677f5f9d4ba3834de6f308727810843 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/base.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/cast.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/cast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..695e2e2842f122646b9c11aa2e897d2c6b850b4d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/cast.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/common.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/common.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..84d4be5a8bcedcf17ab8b2c4365a8367038bcf8f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/common.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/concat.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/concat.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9629cc6c9257d04ab42acf00d4abc0f8dc2a9a26 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/concat.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/generic.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/generic.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0d4606162d27a4e2a09e16ded915de1d85fde944 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/generic.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/inference.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/inference.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c2616b952bae6fa1f9b62d9c5671888ee41a8e7f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/inference.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/missing.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/missing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0da3b34ae4d6a9a02b60a49a1066ceec2f053b78 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/missing.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..8248f378e2c1acea37bdc2d41065c591360b902a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__init__.py @@ -0,0 +1,15 @@ +from pandas.core.groupby.generic import ( + DataFrameGroupBy, + NamedAgg, + SeriesGroupBy, +) +from pandas.core.groupby.groupby import GroupBy +from pandas.core.groupby.grouper import Grouper + +__all__ = [ + "DataFrameGroupBy", + "NamedAgg", + "SeriesGroupBy", + "GroupBy", + "Grouper", +] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..662cd04fe8852ac096b725eb83a646a24d65fd67 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/grouper.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/grouper.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f122c07751ebc94a6f598fd397f5df1809e5b581 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/grouper.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/numba_.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/numba_.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d3f4a8cb005789e46adaeb5cca1b2b237238b4e5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/numba_.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/ops.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/ops.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e081b8da11afc9e87c246e824659ba96f9f5ed87 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/ops.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/base.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/base.py new file mode 100644 index 0000000000000000000000000000000000000000..a443597347283887deb9cbd3eafb5f6d3bb6d9a6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/base.py @@ -0,0 +1,121 @@ +""" +Provide basic components for groupby. +""" +from __future__ import annotations + +import dataclasses +from typing import TYPE_CHECKING + +if TYPE_CHECKING: + from collections.abc import Hashable + + +@dataclasses.dataclass(order=True, frozen=True) +class OutputKey: + label: Hashable + position: int + + +# special case to prevent duplicate plots when catching exceptions when +# forwarding methods from NDFrames +plotting_methods = frozenset(["plot", "hist"]) + +# cythonized transformations or canned "agg+broadcast", which do not +# require postprocessing of the result by transform. +cythonized_kernels = frozenset(["cumprod", "cumsum", "shift", "cummin", "cummax"]) + +# List of aggregation/reduction functions. +# These map each group to a single numeric value +reduction_kernels = frozenset( + [ + "all", + "any", + "corrwith", + "count", + "first", + "idxmax", + "idxmin", + "last", + "max", + "mean", + "median", + "min", + "nunique", + "prod", + # as long as `quantile`'s signature accepts only + # a single quantile value, it's a reduction. + # GH#27526 might change that. + "quantile", + "sem", + "size", + "skew", + "std", + "sum", + "var", + ] +) + +# List of transformation functions. +# a transformation is a function that, for each group, +# produces a result that has the same shape as the group. + + +transformation_kernels = frozenset( + [ + "bfill", + "cumcount", + "cummax", + "cummin", + "cumprod", + "cumsum", + "diff", + "ffill", + "fillna", + "ngroup", + "pct_change", + "rank", + "shift", + ] +) + +# these are all the public methods on Grouper which don't belong +# in either of the above lists +groupby_other_methods = frozenset( + [ + "agg", + "aggregate", + "apply", + "boxplot", + # corr and cov return ngroups*ncolumns rows, so they + # are neither a transformation nor a reduction + "corr", + "cov", + "describe", + "dtypes", + "expanding", + "ewm", + "filter", + "get_group", + "groups", + "head", + "hist", + "indices", + "ndim", + "ngroups", + "nth", + "ohlc", + "pipe", + "plot", + "resample", + "rolling", + "tail", + "take", + "transform", + "sample", + "value_counts", + ] +) +# Valid values of `name` for `groupby.transform(name)` +# NOTE: do NOT edit this directly. New additions should be inserted +# into the appropriate list above. +transform_kernel_allowlist = reduction_kernels | transformation_kernels diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/categorical.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/categorical.py new file mode 100644 index 0000000000000000000000000000000000000000..6ab98cf4fe55e9b064db99e61d1245cb83b63dc1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/categorical.py @@ -0,0 +1,87 @@ +from __future__ import annotations + +import numpy as np + +from pandas.core.algorithms import unique1d +from pandas.core.arrays.categorical import ( + Categorical, + CategoricalDtype, + recode_for_categories, +) + + +def recode_for_groupby( + c: Categorical, sort: bool, observed: bool +) -> tuple[Categorical, Categorical | None]: + """ + Code the categories to ensure we can groupby for categoricals. + + If observed=True, we return a new Categorical with the observed + categories only. + + If sort=False, return a copy of self, coded with categories as + returned by .unique(), followed by any categories not appearing in + the data. If sort=True, return self. + + This method is needed solely to ensure the categorical index of the + GroupBy result has categories in the order of appearance in the data + (GH-8868). + + Parameters + ---------- + c : Categorical + sort : bool + The value of the sort parameter groupby was called with. + observed : bool + Account only for the observed values + + Returns + ------- + Categorical + If sort=False, the new categories are set to the order of + appearance in codes (unless ordered=True, in which case the + original order is preserved), followed by any unrepresented + categories in the original order. + Categorical or None + If we are observed, return the original categorical, otherwise None + """ + # we only care about observed values + if observed: + # In cases with c.ordered, this is equivalent to + # return c.remove_unused_categories(), c + + unique_codes = unique1d(c.codes) + + take_codes = unique_codes[unique_codes != -1] + if sort: + take_codes = np.sort(take_codes) + + # we recode according to the uniques + categories = c.categories.take(take_codes) + codes = recode_for_categories(c.codes, c.categories, categories) + + # return a new categorical that maps our new codes + # and categories + dtype = CategoricalDtype(categories, ordered=c.ordered) + return Categorical._simple_new(codes, dtype=dtype), c + + # Already sorted according to c.categories; all is fine + if sort: + return c, None + + # sort=False should order groups in as-encountered order (GH-8868) + + # xref GH:46909: Re-ordering codes faster than using (set|add|reorder)_categories + all_codes = np.arange(c.categories.nunique()) + # GH 38140: exclude nan from indexer for categories + unique_notnan_codes = unique1d(c.codes[c.codes != -1]) + if sort: + unique_notnan_codes = np.sort(unique_notnan_codes) + if len(all_codes) > len(unique_notnan_codes): + # GH 13179: All categories need to be present, even if missing from the data + missing_codes = np.setdiff1d(all_codes, unique_notnan_codes, assume_unique=True) + take_codes = np.concatenate((unique_notnan_codes, missing_codes)) + else: + take_codes = unique_notnan_codes + + return Categorical(c, c.unique().categories.take(take_codes)), None diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/generic.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/generic.py new file mode 100644 index 0000000000000000000000000000000000000000..f2e314046fb749e7d32bf7fc76ca22eb1194a328 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/generic.py @@ -0,0 +1,2852 @@ +""" +Define the SeriesGroupBy and DataFrameGroupBy +classes that hold the groupby interfaces (and some implementations). + +These are user facing as the result of the ``df.groupby(...)`` operations, +which here returns a DataFrameGroupBy object. +""" +from __future__ import annotations + +from collections import abc +from functools import partial +from textwrap import dedent +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Literal, + NamedTuple, + TypeVar, + Union, + cast, +) +import warnings + +import numpy as np + +from pandas._libs import ( + Interval, + lib, +) +from pandas._libs.hashtable import duplicated +from pandas.errors import SpecificationError +from pandas.util._decorators import ( + Appender, + Substitution, + doc, +) +from pandas.util._exceptions import find_stack_level + +from pandas.core.dtypes.common import ( + ensure_int64, + is_bool, + is_dict_like, + is_integer_dtype, + is_list_like, + is_numeric_dtype, + is_scalar, +) +from pandas.core.dtypes.dtypes import ( + CategoricalDtype, + IntervalDtype, +) +from pandas.core.dtypes.inference import is_hashable +from pandas.core.dtypes.missing import ( + isna, + notna, +) + +from pandas.core import algorithms +from pandas.core.apply import ( + GroupByApply, + maybe_mangle_lambdas, + reconstruct_func, + validate_func_kwargs, + warn_alias_replacement, +) +import pandas.core.common as com +from pandas.core.frame import DataFrame +from pandas.core.groupby import ( + base, + ops, +) +from pandas.core.groupby.groupby import ( + GroupBy, + GroupByPlot, + _agg_template_frame, + _agg_template_series, + _apply_docs, + _transform_template, +) +from pandas.core.indexes.api import ( + Index, + MultiIndex, + all_indexes_same, + default_index, +) +from pandas.core.series import Series +from pandas.core.sorting import get_group_index +from pandas.core.util.numba_ import maybe_use_numba + +from pandas.plotting import boxplot_frame_groupby + +if TYPE_CHECKING: + from collections.abc import ( + Hashable, + Mapping, + Sequence, + ) + + from pandas._typing import ( + ArrayLike, + Axis, + AxisInt, + CorrelationMethod, + FillnaOptions, + IndexLabel, + Manager, + Manager2D, + SingleManager, + TakeIndexer, + ) + + from pandas import Categorical + from pandas.core.generic import NDFrame + +# TODO(typing) the return value on this callable should be any *scalar*. +AggScalar = Union[str, Callable[..., Any]] +# TODO: validate types on ScalarResult and move to _typing +# Blocked from using by https://github.com/python/mypy/issues/1484 +# See note at _mangle_lambda_list +ScalarResult = TypeVar("ScalarResult") + + +class NamedAgg(NamedTuple): + """ + Helper for column specific aggregation with control over output column names. + + Subclass of typing.NamedTuple. + + Parameters + ---------- + column : Hashable + Column label in the DataFrame to apply aggfunc. + aggfunc : function or str + Function to apply to the provided column. If string, the name of a built-in + pandas function. + + Examples + -------- + >>> df = pd.DataFrame({"key": [1, 1, 2], "a": [-1, 0, 1], 1: [10, 11, 12]}) + >>> agg_a = pd.NamedAgg(column="a", aggfunc="min") + >>> agg_1 = pd.NamedAgg(column=1, aggfunc=lambda x: np.mean(x)) + >>> df.groupby("key").agg(result_a=agg_a, result_1=agg_1) + result_a result_1 + key + 1 -1 10.5 + 2 1 12.0 + """ + + column: Hashable + aggfunc: AggScalar + + +class SeriesGroupBy(GroupBy[Series]): + def _wrap_agged_manager(self, mgr: Manager) -> Series: + out = self.obj._constructor_from_mgr(mgr, axes=mgr.axes) + out._name = self.obj.name + return out + + def _get_data_to_aggregate( + self, *, numeric_only: bool = False, name: str | None = None + ) -> SingleManager: + ser = self._obj_with_exclusions + single = ser._mgr + if numeric_only and not is_numeric_dtype(ser.dtype): + # GH#41291 match Series behavior + kwd_name = "numeric_only" + raise TypeError( + f"Cannot use {kwd_name}=True with " + f"{type(self).__name__}.{name} and non-numeric dtypes." + ) + return single + + _agg_examples_doc = dedent( + """ + Examples + -------- + >>> s = pd.Series([1, 2, 3, 4]) + + >>> s + 0 1 + 1 2 + 2 3 + 3 4 + dtype: int64 + + >>> s.groupby([1, 1, 2, 2]).min() + 1 1 + 2 3 + dtype: int64 + + >>> s.groupby([1, 1, 2, 2]).agg('min') + 1 1 + 2 3 + dtype: int64 + + >>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) + min max + 1 1 2 + 2 3 4 + + The output column names can be controlled by passing + the desired column names and aggregations as keyword arguments. + + >>> s.groupby([1, 1, 2, 2]).agg( + ... minimum='min', + ... maximum='max', + ... ) + minimum maximum + 1 1 2 + 2 3 4 + + .. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the aggregating function. + + >>> s.groupby([1, 1, 2, 2]).agg(lambda x: x.astype(float).min()) + 1 1.0 + 2 3.0 + dtype: float64 + """ + ) + + @Appender( + _apply_docs["template"].format( + input="series", examples=_apply_docs["series_examples"] + ) + ) + def apply(self, func, *args, **kwargs) -> Series: + return super().apply(func, *args, **kwargs) + + @doc(_agg_template_series, examples=_agg_examples_doc, klass="Series") + def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): + relabeling = func is None + columns = None + if relabeling: + columns, func = validate_func_kwargs(kwargs) + kwargs = {} + + if isinstance(func, str): + if maybe_use_numba(engine) and engine is not None: + # Not all agg functions support numba, only propagate numba kwargs + # if user asks for numba, and engine is not None + # (if engine is None, the called function will handle the case where + # numba is requested via the global option) + kwargs["engine"] = engine + if engine_kwargs is not None: + kwargs["engine_kwargs"] = engine_kwargs + return getattr(self, func)(*args, **kwargs) + + elif isinstance(func, abc.Iterable): + # Catch instances of lists / tuples + # but not the class list / tuple itself. + func = maybe_mangle_lambdas(func) + kwargs["engine"] = engine + kwargs["engine_kwargs"] = engine_kwargs + ret = self._aggregate_multiple_funcs(func, *args, **kwargs) + if relabeling: + # columns is not narrowed by mypy from relabeling flag + assert columns is not None # for mypy + ret.columns = columns + if not self.as_index: + ret = ret.reset_index() + return ret + + else: + cyfunc = com.get_cython_func(func) + if cyfunc and not args and not kwargs: + warn_alias_replacement(self, func, cyfunc) + return getattr(self, cyfunc)() + + if maybe_use_numba(engine): + return self._aggregate_with_numba( + func, *args, engine_kwargs=engine_kwargs, **kwargs + ) + + if self.ngroups == 0: + # e.g. test_evaluate_with_empty_groups without any groups to + # iterate over, we have no output on which to do dtype + # inference. We default to using the existing dtype. + # xref GH#51445 + obj = self._obj_with_exclusions + return self.obj._constructor( + [], + name=self.obj.name, + index=self._grouper.result_index, + dtype=obj.dtype, + ) + + if self._grouper.nkeys > 1: + return self._python_agg_general(func, *args, **kwargs) + + try: + return self._python_agg_general(func, *args, **kwargs) + except KeyError: + # KeyError raised in test_groupby.test_basic is bc the func does + # a dictionary lookup on group.name, but group name is not + # pinned in _python_agg_general, only in _aggregate_named + result = self._aggregate_named(func, *args, **kwargs) + + warnings.warn( + "Pinning the groupby key to each group in " + f"{type(self).__name__}.agg is deprecated, and cases that " + "relied on it will raise in a future version. " + "If your operation requires utilizing the groupby keys, " + "iterate over the groupby object instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + + # result is a dict whose keys are the elements of result_index + result = Series(result, index=self._grouper.result_index) + result = self._wrap_aggregated_output(result) + return result + + agg = aggregate + + def _python_agg_general(self, func, *args, **kwargs): + orig_func = func + func = com.is_builtin_func(func) + if orig_func != func: + alias = com._builtin_table_alias[func] + warn_alias_replacement(self, orig_func, alias) + f = lambda x: func(x, *args, **kwargs) + + obj = self._obj_with_exclusions + result = self._grouper.agg_series(obj, f) + res = obj._constructor(result, name=obj.name) + return self._wrap_aggregated_output(res) + + def _aggregate_multiple_funcs(self, arg, *args, **kwargs) -> DataFrame: + if isinstance(arg, dict): + if self.as_index: + # GH 15931 + raise SpecificationError("nested renamer is not supported") + else: + # GH#50684 - This accidentally worked in 1.x + msg = ( + "Passing a dictionary to SeriesGroupBy.agg is deprecated " + "and will raise in a future version of pandas. Pass a list " + "of aggregations instead." + ) + warnings.warn( + message=msg, + category=FutureWarning, + stacklevel=find_stack_level(), + ) + arg = list(arg.items()) + elif any(isinstance(x, (tuple, list)) for x in arg): + arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] + else: + # list of functions / function names + columns = (com.get_callable_name(f) or f for f in arg) + arg = zip(columns, arg) + + results: dict[base.OutputKey, DataFrame | Series] = {} + with com.temp_setattr(self, "as_index", True): + # Combine results using the index, need to adjust index after + # if as_index=False (GH#50724) + for idx, (name, func) in enumerate(arg): + key = base.OutputKey(label=name, position=idx) + results[key] = self.aggregate(func, *args, **kwargs) + + if any(isinstance(x, DataFrame) for x in results.values()): + from pandas import concat + + res_df = concat( + results.values(), axis=1, keys=[key.label for key in results] + ) + return res_df + + indexed_output = {key.position: val for key, val in results.items()} + output = self.obj._constructor_expanddim(indexed_output, index=None) + output.columns = Index(key.label for key in results) + + return output + + def _wrap_applied_output( + self, + data: Series, + values: list[Any], + not_indexed_same: bool = False, + is_transform: bool = False, + ) -> DataFrame | Series: + """ + Wrap the output of SeriesGroupBy.apply into the expected result. + + Parameters + ---------- + data : Series + Input data for groupby operation. + values : List[Any] + Applied output for each group. + not_indexed_same : bool, default False + Whether the applied outputs are not indexed the same as the group axes. + + Returns + ------- + DataFrame or Series + """ + if len(values) == 0: + # GH #6265 + if is_transform: + # GH#47787 see test_group_on_empty_multiindex + res_index = data.index + else: + res_index = self._grouper.result_index + + return self.obj._constructor( + [], + name=self.obj.name, + index=res_index, + dtype=data.dtype, + ) + assert values is not None + + if isinstance(values[0], dict): + # GH #823 #24880 + index = self._grouper.result_index + res_df = self.obj._constructor_expanddim(values, index=index) + res_df = self._reindex_output(res_df) + # if self.observed is False, + # keep all-NaN rows created while re-indexing + res_ser = res_df.stack(future_stack=True) + res_ser.name = self.obj.name + return res_ser + elif isinstance(values[0], (Series, DataFrame)): + result = self._concat_objects( + values, + not_indexed_same=not_indexed_same, + is_transform=is_transform, + ) + if isinstance(result, Series): + result.name = self.obj.name + if not self.as_index and not_indexed_same: + result = self._insert_inaxis_grouper(result) + result.index = default_index(len(result)) + return result + else: + # GH #6265 #24880 + result = self.obj._constructor( + data=values, index=self._grouper.result_index, name=self.obj.name + ) + if not self.as_index: + result = self._insert_inaxis_grouper(result) + result.index = default_index(len(result)) + return self._reindex_output(result) + + def _aggregate_named(self, func, *args, **kwargs): + # Note: this is very similar to _aggregate_series_pure_python, + # but that does not pin group.name + result = {} + initialized = False + + for name, group in self._grouper.get_iterator( + self._obj_with_exclusions, axis=self.axis + ): + # needed for pandas/tests/groupby/test_groupby.py::test_basic_aggregations + object.__setattr__(group, "name", name) + + output = func(group, *args, **kwargs) + output = ops.extract_result(output) + if not initialized: + # We only do this validation on the first iteration + ops.check_result_array(output, group.dtype) + initialized = True + result[name] = output + + return result + + __examples_series_doc = dedent( + """ + >>> ser = pd.Series([390.0, 350.0, 30.0, 20.0], + ... index=["Falcon", "Falcon", "Parrot", "Parrot"], + ... name="Max Speed") + >>> grouped = ser.groupby([1, 1, 2, 2]) + >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) + Falcon 0.707107 + Falcon -0.707107 + Parrot 0.707107 + Parrot -0.707107 + Name: Max Speed, dtype: float64 + + Broadcast result of the transformation + + >>> grouped.transform(lambda x: x.max() - x.min()) + Falcon 40.0 + Falcon 40.0 + Parrot 10.0 + Parrot 10.0 + Name: Max Speed, dtype: float64 + + >>> grouped.transform("mean") + Falcon 370.0 + Falcon 370.0 + Parrot 25.0 + Parrot 25.0 + Name: Max Speed, dtype: float64 + + .. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the passed ``func``, + for example: + + >>> grouped.transform(lambda x: x.astype(int).max()) + Falcon 390 + Falcon 390 + Parrot 30 + Parrot 30 + Name: Max Speed, dtype: int64 + """ + ) + + @Substitution(klass="Series", example=__examples_series_doc) + @Appender(_transform_template) + def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): + return self._transform( + func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs + ) + + def _cython_transform( + self, how: str, numeric_only: bool = False, axis: AxisInt = 0, **kwargs + ): + assert axis == 0 # handled by caller + + obj = self._obj_with_exclusions + + try: + result = self._grouper._cython_operation( + "transform", obj._values, how, axis, **kwargs + ) + except NotImplementedError as err: + # e.g. test_groupby_raises_string + raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err + + return obj._constructor(result, index=self.obj.index, name=obj.name) + + def _transform_general( + self, func: Callable, engine, engine_kwargs, *args, **kwargs + ) -> Series: + """ + Transform with a callable `func`. + """ + if maybe_use_numba(engine): + return self._transform_with_numba( + func, *args, engine_kwargs=engine_kwargs, **kwargs + ) + assert callable(func) + klass = type(self.obj) + + results = [] + for name, group in self._grouper.get_iterator( + self._obj_with_exclusions, axis=self.axis + ): + # this setattr is needed for test_transform_lambda_with_datetimetz + object.__setattr__(group, "name", name) + res = func(group, *args, **kwargs) + + results.append(klass(res, index=group.index)) + + # check for empty "results" to avoid concat ValueError + if results: + from pandas.core.reshape.concat import concat + + concatenated = concat(results) + result = self._set_result_index_ordered(concatenated) + else: + result = self.obj._constructor(dtype=np.float64) + + result.name = self.obj.name + return result + + def filter(self, func, dropna: bool = True, *args, **kwargs): + """ + Filter elements from groups that don't satisfy a criterion. + + Elements from groups are filtered if they do not satisfy the + boolean criterion specified by func. + + Parameters + ---------- + func : function + Criterion to apply to each group. Should return True or False. + dropna : bool + Drop groups that do not pass the filter. True by default; if False, + groups that evaluate False are filled with NaNs. + + Returns + ------- + Series + + Notes + ----- + Functions that mutate the passed object can produce unexpected + behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` + for more details. + + Examples + -------- + >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', + ... 'foo', 'bar'], + ... 'B' : [1, 2, 3, 4, 5, 6], + ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) + >>> grouped = df.groupby('A') + >>> df.groupby('A').B.filter(lambda x: x.mean() > 3.) + 1 2 + 3 4 + 5 6 + Name: B, dtype: int64 + """ + if isinstance(func, str): + wrapper = lambda x: getattr(x, func)(*args, **kwargs) + else: + wrapper = lambda x: func(x, *args, **kwargs) + + # Interpret np.nan as False. + def true_and_notna(x) -> bool: + b = wrapper(x) + return notna(b) and b + + try: + indices = [ + self._get_index(name) + for name, group in self._grouper.get_iterator( + self._obj_with_exclusions, axis=self.axis + ) + if true_and_notna(group) + ] + except (ValueError, TypeError) as err: + raise TypeError("the filter must return a boolean result") from err + + filtered = self._apply_filter(indices, dropna) + return filtered + + def nunique(self, dropna: bool = True) -> Series | DataFrame: + """ + Return number of unique elements in the group. + + Returns + ------- + Series + Number of unique values within each group. + + Examples + -------- + For SeriesGroupby: + + >>> lst = ['a', 'a', 'b', 'b'] + >>> ser = pd.Series([1, 2, 3, 3], index=lst) + >>> ser + a 1 + a 2 + b 3 + b 3 + dtype: int64 + >>> ser.groupby(level=0).nunique() + a 2 + b 1 + dtype: int64 + + For Resampler: + + >>> ser = pd.Series([1, 2, 3, 3], index=pd.DatetimeIndex( + ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15'])) + >>> ser + 2023-01-01 1 + 2023-01-15 2 + 2023-02-01 3 + 2023-02-15 3 + dtype: int64 + >>> ser.resample('MS').nunique() + 2023-01-01 2 + 2023-02-01 1 + Freq: MS, dtype: int64 + """ + ids, _, ngroups = self._grouper.group_info + val = self.obj._values + codes, uniques = algorithms.factorize(val, use_na_sentinel=dropna, sort=False) + + if self._grouper.has_dropped_na: + mask = ids >= 0 + ids = ids[mask] + codes = codes[mask] + + group_index = get_group_index( + labels=[ids, codes], + shape=(ngroups, len(uniques)), + sort=False, + xnull=dropna, + ) + + if dropna: + mask = group_index >= 0 + if (~mask).any(): + ids = ids[mask] + group_index = group_index[mask] + + mask = duplicated(group_index, "first") + res = np.bincount(ids[~mask], minlength=ngroups) + res = ensure_int64(res) + + ri = self._grouper.result_index + result: Series | DataFrame = self.obj._constructor( + res, index=ri, name=self.obj.name + ) + if not self.as_index: + result = self._insert_inaxis_grouper(result) + result.index = default_index(len(result)) + return self._reindex_output(result, fill_value=0) + + @doc(Series.describe) + def describe(self, percentiles=None, include=None, exclude=None) -> Series: + return super().describe( + percentiles=percentiles, include=include, exclude=exclude + ) + + def value_counts( + self, + normalize: bool = False, + sort: bool = True, + ascending: bool = False, + bins=None, + dropna: bool = True, + ) -> Series | DataFrame: + name = "proportion" if normalize else "count" + + if bins is None: + result = self._value_counts( + normalize=normalize, sort=sort, ascending=ascending, dropna=dropna + ) + result.name = name + return result + + from pandas.core.reshape.merge import get_join_indexers + from pandas.core.reshape.tile import cut + + ids, _, _ = self._grouper.group_info + val = self.obj._values + + index_names = self._grouper.names + [self.obj.name] + + if isinstance(val.dtype, CategoricalDtype) or ( + bins is not None and not np.iterable(bins) + ): + # scalar bins cannot be done at top level + # in a backward compatible way + # GH38672 relates to categorical dtype + ser = self.apply( + Series.value_counts, + normalize=normalize, + sort=sort, + ascending=ascending, + bins=bins, + ) + ser.name = name + ser.index.names = index_names + return ser + + # groupby removes null keys from groupings + mask = ids != -1 + ids, val = ids[mask], val[mask] + + lab: Index | np.ndarray + if bins is None: + lab, lev = algorithms.factorize(val, sort=True) + llab = lambda lab, inc: lab[inc] + else: + # lab is a Categorical with categories an IntervalIndex + cat_ser = cut(Series(val, copy=False), bins, include_lowest=True) + cat_obj = cast("Categorical", cat_ser._values) + lev = cat_obj.categories + lab = lev.take( + cat_obj.codes, + allow_fill=True, + fill_value=lev._na_value, + ) + llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] + + if isinstance(lab.dtype, IntervalDtype): + # TODO: should we do this inside II? + lab_interval = cast(Interval, lab) + + sorter = np.lexsort((lab_interval.left, lab_interval.right, ids)) + else: + sorter = np.lexsort((lab, ids)) + + ids, lab = ids[sorter], lab[sorter] + + # group boundaries are where group ids change + idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0] + idx = np.r_[0, idchanges] + if not len(ids): + idx = idchanges + + # new values are where sorted labels change + lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) + inc = np.r_[True, lchanges] + if not len(val): + inc = lchanges + inc[idx] = True # group boundaries are also new values + out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts + + # num. of times each group should be repeated + rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) + + # multi-index components + codes = self._grouper.reconstructed_codes + codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] + levels = [ping._group_index for ping in self._grouper.groupings] + [lev] + + if dropna: + mask = codes[-1] != -1 + if mask.all(): + dropna = False + else: + out, codes = out[mask], [level_codes[mask] for level_codes in codes] + + if normalize: + out = out.astype("float") + d = np.diff(np.r_[idx, len(ids)]) + if dropna: + m = ids[lab == -1] + np.add.at(d, m, -1) + acc = rep(d)[mask] + else: + acc = rep(d) + out /= acc + + if sort and bins is None: + cat = ids[inc][mask] if dropna else ids[inc] + sorter = np.lexsort((out if ascending else -out, cat)) + out, codes[-1] = out[sorter], codes[-1][sorter] + + if bins is not None: + # for compat. with libgroupby.value_counts need to ensure every + # bin is present at every index level, null filled with zeros + diff = np.zeros(len(out), dtype="bool") + for level_codes in codes[:-1]: + diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] + + ncat, nbin = diff.sum(), len(levels[-1]) + + left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] + + right = [diff.cumsum() - 1, codes[-1]] + + # error: Argument 1 to "get_join_indexers" has incompatible type + # "List[ndarray[Any, Any]]"; expected "List[Union[Union[ExtensionArray, + # ndarray[Any, Any]], Index, Series]] + _, idx = get_join_indexers( + left, right, sort=False, how="left" # type: ignore[arg-type] + ) + if idx is not None: + out = np.where(idx != -1, out[idx], 0) + + if sort: + sorter = np.lexsort((out if ascending else -out, left[0])) + out, left[-1] = out[sorter], left[-1][sorter] + + # build the multi-index w/ full levels + def build_codes(lev_codes: np.ndarray) -> np.ndarray: + return np.repeat(lev_codes[diff], nbin) + + codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] + codes.append(left[-1]) + + mi = MultiIndex( + levels=levels, codes=codes, names=index_names, verify_integrity=False + ) + + if is_integer_dtype(out.dtype): + out = ensure_int64(out) + result = self.obj._constructor(out, index=mi, name=name) + if not self.as_index: + result = result.reset_index() + return result + + def fillna( + self, + value: object | ArrayLike | None = None, + method: FillnaOptions | None = None, + axis: Axis | None | lib.NoDefault = lib.no_default, + inplace: bool = False, + limit: int | None = None, + downcast: dict | None | lib.NoDefault = lib.no_default, + ) -> Series | None: + """ + Fill NA/NaN values using the specified method within groups. + + .. deprecated:: 2.2.0 + This method is deprecated and will be removed in a future version. + Use the :meth:`.SeriesGroupBy.ffill` or :meth:`.SeriesGroupBy.bfill` + for forward or backward filling instead. If you want to fill with a + single value, use :meth:`Series.fillna` instead. + + Parameters + ---------- + value : scalar, dict, Series, or DataFrame + Value to use to fill holes (e.g. 0), alternately a + dict/Series/DataFrame of values specifying which value to use for + each index (for a Series) or column (for a DataFrame). Values not + in the dict/Series/DataFrame will not be filled. This value cannot + be a list. Users wanting to use the ``value`` argument and not ``method`` + should prefer :meth:`.Series.fillna` as this + will produce the same result and be more performant. + method : {{'bfill', 'ffill', None}}, default None + Method to use for filling holes. ``'ffill'`` will propagate + the last valid observation forward within a group. + ``'bfill'`` will use next valid observation to fill the gap. + axis : {0 or 'index', 1 or 'columns'} + Unused, only for compatibility with :meth:`DataFrameGroupBy.fillna`. + inplace : bool, default False + Broken. Do not set to True. + limit : int, default None + If method is specified, this is the maximum number of consecutive + NaN values to forward/backward fill within a group. In other words, + if there is a gap with more than this number of consecutive NaNs, + it will only be partially filled. If method is not specified, this is the + maximum number of entries along the entire axis where NaNs will be + filled. Must be greater than 0 if not None. + downcast : dict, default is None + A dict of item->dtype of what to downcast if possible, + or the string 'infer' which will try to downcast to an appropriate + equal type (e.g. float64 to int64 if possible). + + Returns + ------- + Series + Object with missing values filled within groups. + + See Also + -------- + ffill : Forward fill values within a group. + bfill : Backward fill values within a group. + + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['cat', 'cat', 'cat', 'mouse', 'mouse'] + >>> ser = pd.Series([1, None, None, 2, None], index=lst) + >>> ser + cat 1.0 + cat NaN + cat NaN + mouse 2.0 + mouse NaN + dtype: float64 + >>> ser.groupby(level=0).fillna(0, limit=1) + cat 1.0 + cat 0.0 + cat NaN + mouse 2.0 + mouse 0.0 + dtype: float64 + """ + warnings.warn( + f"{type(self).__name__}.fillna is deprecated and " + "will be removed in a future version. Use obj.ffill() or obj.bfill() " + "for forward or backward filling instead. If you want to fill with a " + f"single value, use {type(self.obj).__name__}.fillna instead", + FutureWarning, + stacklevel=find_stack_level(), + ) + result = self._op_via_apply( + "fillna", + value=value, + method=method, + axis=axis, + inplace=inplace, + limit=limit, + downcast=downcast, + ) + return result + + def take( + self, + indices: TakeIndexer, + axis: Axis | lib.NoDefault = lib.no_default, + **kwargs, + ) -> Series: + """ + Return the elements in the given *positional* indices in each group. + + This means that we are not indexing according to actual values in + the index attribute of the object. We are indexing according to the + actual position of the element in the object. + + If a requested index does not exist for some group, this method will raise. + To get similar behavior that ignores indices that don't exist, see + :meth:`.SeriesGroupBy.nth`. + + Parameters + ---------- + indices : array-like + An array of ints indicating which positions to take in each group. + axis : {0 or 'index', 1 or 'columns', None}, default 0 + The axis on which to select elements. ``0`` means that we are + selecting rows, ``1`` means that we are selecting columns. + For `SeriesGroupBy` this parameter is unused and defaults to 0. + + .. deprecated:: 2.1.0 + For axis=1, operate on the underlying object instead. Otherwise + the axis keyword is not necessary. + + **kwargs + For compatibility with :meth:`numpy.take`. Has no effect on the + output. + + Returns + ------- + Series + A Series containing the elements taken from each group. + + See Also + -------- + Series.take : Take elements from a Series along an axis. + Series.loc : Select a subset of a DataFrame by labels. + Series.iloc : Select a subset of a DataFrame by positions. + numpy.take : Take elements from an array along an axis. + SeriesGroupBy.nth : Similar to take, won't raise if indices don't exist. + + Examples + -------- + >>> df = pd.DataFrame([('falcon', 'bird', 389.0), + ... ('parrot', 'bird', 24.0), + ... ('lion', 'mammal', 80.5), + ... ('monkey', 'mammal', np.nan), + ... ('rabbit', 'mammal', 15.0)], + ... columns=['name', 'class', 'max_speed'], + ... index=[4, 3, 2, 1, 0]) + >>> df + name class max_speed + 4 falcon bird 389.0 + 3 parrot bird 24.0 + 2 lion mammal 80.5 + 1 monkey mammal NaN + 0 rabbit mammal 15.0 + >>> gb = df["name"].groupby([1, 1, 2, 2, 2]) + + Take elements at positions 0 and 1 along the axis 0 in each group (default). + + >>> gb.take([0, 1]) + 1 4 falcon + 3 parrot + 2 2 lion + 1 monkey + Name: name, dtype: object + + We may take elements using negative integers for positive indices, + starting from the end of the object, just like with Python lists. + + >>> gb.take([-1, -2]) + 1 3 parrot + 4 falcon + 2 0 rabbit + 1 monkey + Name: name, dtype: object + """ + result = self._op_via_apply("take", indices=indices, axis=axis, **kwargs) + return result + + def skew( + self, + axis: Axis | lib.NoDefault = lib.no_default, + skipna: bool = True, + numeric_only: bool = False, + **kwargs, + ) -> Series: + """ + Return unbiased skew within groups. + + Normalized by N-1. + + Parameters + ---------- + axis : {0 or 'index', 1 or 'columns', None}, default 0 + Axis for the function to be applied on. + This parameter is only for compatibility with DataFrame and is unused. + + .. deprecated:: 2.1.0 + For axis=1, operate on the underlying object instead. Otherwise + the axis keyword is not necessary. + + skipna : bool, default True + Exclude NA/null values when computing the result. + + numeric_only : bool, default False + Include only float, int, boolean columns. Not implemented for Series. + + **kwargs + Additional keyword arguments to be passed to the function. + + Returns + ------- + Series + + See Also + -------- + Series.skew : Return unbiased skew over requested axis. + + Examples + -------- + >>> ser = pd.Series([390., 350., 357., np.nan, 22., 20., 30.], + ... index=['Falcon', 'Falcon', 'Falcon', 'Falcon', + ... 'Parrot', 'Parrot', 'Parrot'], + ... name="Max Speed") + >>> ser + Falcon 390.0 + Falcon 350.0 + Falcon 357.0 + Falcon NaN + Parrot 22.0 + Parrot 20.0 + Parrot 30.0 + Name: Max Speed, dtype: float64 + >>> ser.groupby(level=0).skew() + Falcon 1.525174 + Parrot 1.457863 + Name: Max Speed, dtype: float64 + >>> ser.groupby(level=0).skew(skipna=False) + Falcon NaN + Parrot 1.457863 + Name: Max Speed, dtype: float64 + """ + if axis is lib.no_default: + axis = 0 + + if axis != 0: + result = self._op_via_apply( + "skew", + axis=axis, + skipna=skipna, + numeric_only=numeric_only, + **kwargs, + ) + return result + + def alt(obj): + # This should not be reached since the cython path should raise + # TypeError and not NotImplementedError. + raise TypeError(f"'skew' is not supported for dtype={obj.dtype}") + + return self._cython_agg_general( + "skew", alt=alt, skipna=skipna, numeric_only=numeric_only, **kwargs + ) + + @property + @doc(Series.plot.__doc__) + def plot(self) -> GroupByPlot: + result = GroupByPlot(self) + return result + + @doc(Series.nlargest.__doc__) + def nlargest( + self, n: int = 5, keep: Literal["first", "last", "all"] = "first" + ) -> Series: + f = partial(Series.nlargest, n=n, keep=keep) + data = self._obj_with_exclusions + # Don't change behavior if result index happens to be the same, i.e. + # already ordered and n >= all group sizes. + result = self._python_apply_general(f, data, not_indexed_same=True) + return result + + @doc(Series.nsmallest.__doc__) + def nsmallest( + self, n: int = 5, keep: Literal["first", "last", "all"] = "first" + ) -> Series: + f = partial(Series.nsmallest, n=n, keep=keep) + data = self._obj_with_exclusions + # Don't change behavior if result index happens to be the same, i.e. + # already ordered and n >= all group sizes. + result = self._python_apply_general(f, data, not_indexed_same=True) + return result + + @doc(Series.idxmin.__doc__) + def idxmin( + self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True + ) -> Series: + return self._idxmax_idxmin("idxmin", axis=axis, skipna=skipna) + + @doc(Series.idxmax.__doc__) + def idxmax( + self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True + ) -> Series: + return self._idxmax_idxmin("idxmax", axis=axis, skipna=skipna) + + @doc(Series.corr.__doc__) + def corr( + self, + other: Series, + method: CorrelationMethod = "pearson", + min_periods: int | None = None, + ) -> Series: + result = self._op_via_apply( + "corr", other=other, method=method, min_periods=min_periods + ) + return result + + @doc(Series.cov.__doc__) + def cov( + self, other: Series, min_periods: int | None = None, ddof: int | None = 1 + ) -> Series: + result = self._op_via_apply( + "cov", other=other, min_periods=min_periods, ddof=ddof + ) + return result + + @property + def is_monotonic_increasing(self) -> Series: + """ + Return whether each group's values are monotonically increasing. + + Returns + ------- + Series + + Examples + -------- + >>> s = pd.Series([2, 1, 3, 4], index=['Falcon', 'Falcon', 'Parrot', 'Parrot']) + >>> s.groupby(level=0).is_monotonic_increasing + Falcon False + Parrot True + dtype: bool + """ + return self.apply(lambda ser: ser.is_monotonic_increasing) + + @property + def is_monotonic_decreasing(self) -> Series: + """ + Return whether each group's values are monotonically decreasing. + + Returns + ------- + Series + + Examples + -------- + >>> s = pd.Series([2, 1, 3, 4], index=['Falcon', 'Falcon', 'Parrot', 'Parrot']) + >>> s.groupby(level=0).is_monotonic_decreasing + Falcon True + Parrot False + dtype: bool + """ + return self.apply(lambda ser: ser.is_monotonic_decreasing) + + @doc(Series.hist.__doc__) + def hist( + self, + by=None, + ax=None, + grid: bool = True, + xlabelsize: int | None = None, + xrot: float | None = None, + ylabelsize: int | None = None, + yrot: float | None = None, + figsize: tuple[int, int] | None = None, + bins: int | Sequence[int] = 10, + backend: str | None = None, + legend: bool = False, + **kwargs, + ): + result = self._op_via_apply( + "hist", + by=by, + ax=ax, + grid=grid, + xlabelsize=xlabelsize, + xrot=xrot, + ylabelsize=ylabelsize, + yrot=yrot, + figsize=figsize, + bins=bins, + backend=backend, + legend=legend, + **kwargs, + ) + return result + + @property + @doc(Series.dtype.__doc__) + def dtype(self) -> Series: + return self.apply(lambda ser: ser.dtype) + + def unique(self) -> Series: + """ + Return unique values for each group. + + It returns unique values for each of the grouped values. Returned in + order of appearance. Hash table-based unique, therefore does NOT sort. + + Returns + ------- + Series + Unique values for each of the grouped values. + + See Also + -------- + Series.unique : Return unique values of Series object. + + Examples + -------- + >>> df = pd.DataFrame([('Chihuahua', 'dog', 6.1), + ... ('Beagle', 'dog', 15.2), + ... ('Chihuahua', 'dog', 6.9), + ... ('Persian', 'cat', 9.2), + ... ('Chihuahua', 'dog', 7), + ... ('Persian', 'cat', 8.8)], + ... columns=['breed', 'animal', 'height_in']) + >>> df + breed animal height_in + 0 Chihuahua dog 6.1 + 1 Beagle dog 15.2 + 2 Chihuahua dog 6.9 + 3 Persian cat 9.2 + 4 Chihuahua dog 7.0 + 5 Persian cat 8.8 + >>> ser = df.groupby('animal')['breed'].unique() + >>> ser + animal + cat [Persian] + dog [Chihuahua, Beagle] + Name: breed, dtype: object + """ + result = self._op_via_apply("unique") + return result + + +class DataFrameGroupBy(GroupBy[DataFrame]): + _agg_examples_doc = dedent( + """ + Examples + -------- + >>> data = {"A": [1, 1, 2, 2], + ... "B": [1, 2, 3, 4], + ... "C": [0.362838, 0.227877, 1.267767, -0.562860]} + >>> df = pd.DataFrame(data) + >>> df + A B C + 0 1 1 0.362838 + 1 1 2 0.227877 + 2 2 3 1.267767 + 3 2 4 -0.562860 + + The aggregation is for each column. + + >>> df.groupby('A').agg('min') + B C + A + 1 1 0.227877 + 2 3 -0.562860 + + Multiple aggregations + + >>> df.groupby('A').agg(['min', 'max']) + B C + min max min max + A + 1 1 2 0.227877 0.362838 + 2 3 4 -0.562860 1.267767 + + Select a column for aggregation + + >>> df.groupby('A').B.agg(['min', 'max']) + min max + A + 1 1 2 + 2 3 4 + + User-defined function for aggregation + + >>> df.groupby('A').agg(lambda x: sum(x) + 2) + B C + A + 1 5 2.590715 + 2 9 2.704907 + + Different aggregations per column + + >>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) + B C + min max sum + A + 1 1 2 0.590715 + 2 3 4 0.704907 + + To control the output names with different aggregations per column, + pandas supports "named aggregation" + + >>> df.groupby("A").agg( + ... b_min=pd.NamedAgg(column="B", aggfunc="min"), + ... c_sum=pd.NamedAgg(column="C", aggfunc="sum") + ... ) + b_min c_sum + A + 1 1 0.590715 + 2 3 0.704907 + + - The keywords are the *output* column names + - The values are tuples whose first element is the column to select + and the second element is the aggregation to apply to that column. + Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields + ``['column', 'aggfunc']`` to make it clearer what the arguments are. + As usual, the aggregation can be a callable or a string alias. + + See :ref:`groupby.aggregate.named` for more. + + .. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the aggregating function. + + >>> df.groupby("A")[["B"]].agg(lambda x: x.astype(float).min()) + B + A + 1 1.0 + 2 3.0 + """ + ) + + @doc(_agg_template_frame, examples=_agg_examples_doc, klass="DataFrame") + def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): + relabeling, func, columns, order = reconstruct_func(func, **kwargs) + func = maybe_mangle_lambdas(func) + + if maybe_use_numba(engine): + # Not all agg functions support numba, only propagate numba kwargs + # if user asks for numba + kwargs["engine"] = engine + kwargs["engine_kwargs"] = engine_kwargs + + op = GroupByApply(self, func, args=args, kwargs=kwargs) + result = op.agg() + if not is_dict_like(func) and result is not None: + # GH #52849 + if not self.as_index and is_list_like(func): + return result.reset_index() + else: + return result + elif relabeling: + # this should be the only (non-raising) case with relabeling + # used reordered index of columns + result = cast(DataFrame, result) + result = result.iloc[:, order] + result = cast(DataFrame, result) + # error: Incompatible types in assignment (expression has type + # "Optional[List[str]]", variable has type + # "Union[Union[Union[ExtensionArray, ndarray[Any, Any]], + # Index, Series], Sequence[Any]]") + result.columns = columns # type: ignore[assignment] + + if result is None: + # Remove the kwargs we inserted + # (already stored in engine, engine_kwargs arguments) + if "engine" in kwargs: + del kwargs["engine"] + del kwargs["engine_kwargs"] + # at this point func is not a str, list-like, dict-like, + # or a known callable(e.g. sum) + if maybe_use_numba(engine): + return self._aggregate_with_numba( + func, *args, engine_kwargs=engine_kwargs, **kwargs + ) + # grouper specific aggregations + if self._grouper.nkeys > 1: + # test_groupby_as_index_series_scalar gets here with 'not self.as_index' + return self._python_agg_general(func, *args, **kwargs) + elif args or kwargs: + # test_pass_args_kwargs gets here (with and without as_index) + # can't return early + result = self._aggregate_frame(func, *args, **kwargs) + + elif self.axis == 1: + # _aggregate_multiple_funcs does not allow self.axis == 1 + # Note: axis == 1 precludes 'not self.as_index', see __init__ + result = self._aggregate_frame(func) + return result + + else: + # try to treat as if we are passing a list + gba = GroupByApply(self, [func], args=(), kwargs={}) + try: + result = gba.agg() + + except ValueError as err: + if "No objects to concatenate" not in str(err): + raise + # _aggregate_frame can fail with e.g. func=Series.mode, + # where it expects 1D values but would be getting 2D values + # In other tests, using aggregate_frame instead of GroupByApply + # would give correct values but incorrect dtypes + # object vs float64 in test_cython_agg_empty_buckets + # float64 vs int64 in test_category_order_apply + result = self._aggregate_frame(func) + + else: + # GH#32040, GH#35246 + # e.g. test_groupby_as_index_select_column_sum_empty_df + result = cast(DataFrame, result) + result.columns = self._obj_with_exclusions.columns.copy() + + if not self.as_index: + result = self._insert_inaxis_grouper(result) + result.index = default_index(len(result)) + + return result + + agg = aggregate + + def _python_agg_general(self, func, *args, **kwargs): + orig_func = func + func = com.is_builtin_func(func) + if orig_func != func: + alias = com._builtin_table_alias[func] + warn_alias_replacement(self, orig_func, alias) + f = lambda x: func(x, *args, **kwargs) + + if self.ngroups == 0: + # e.g. test_evaluate_with_empty_groups different path gets different + # result dtype in empty case. + return self._python_apply_general(f, self._selected_obj, is_agg=True) + + obj = self._obj_with_exclusions + if self.axis == 1: + obj = obj.T + + if not len(obj.columns): + # e.g. test_margins_no_values_no_cols + return self._python_apply_general(f, self._selected_obj) + + output: dict[int, ArrayLike] = {} + for idx, (name, ser) in enumerate(obj.items()): + result = self._grouper.agg_series(ser, f) + output[idx] = result + + res = self.obj._constructor(output) + res.columns = obj.columns.copy(deep=False) + return self._wrap_aggregated_output(res) + + def _aggregate_frame(self, func, *args, **kwargs) -> DataFrame: + if self._grouper.nkeys != 1: + raise AssertionError("Number of keys must be 1") + + obj = self._obj_with_exclusions + + result: dict[Hashable, NDFrame | np.ndarray] = {} + for name, grp_df in self._grouper.get_iterator(obj, self.axis): + fres = func(grp_df, *args, **kwargs) + result[name] = fres + + result_index = self._grouper.result_index + other_ax = obj.axes[1 - self.axis] + out = self.obj._constructor(result, index=other_ax, columns=result_index) + if self.axis == 0: + out = out.T + + return out + + def _wrap_applied_output( + self, + data: DataFrame, + values: list, + not_indexed_same: bool = False, + is_transform: bool = False, + ): + if len(values) == 0: + if is_transform: + # GH#47787 see test_group_on_empty_multiindex + res_index = data.index + else: + res_index = self._grouper.result_index + + result = self.obj._constructor(index=res_index, columns=data.columns) + result = result.astype(data.dtypes, copy=False) + return result + + # GH12824 + # using values[0] here breaks test_groupby_apply_none_first + first_not_none = next(com.not_none(*values), None) + + if first_not_none is None: + # GH9684 - All values are None, return an empty frame. + return self.obj._constructor() + elif isinstance(first_not_none, DataFrame): + return self._concat_objects( + values, + not_indexed_same=not_indexed_same, + is_transform=is_transform, + ) + + key_index = self._grouper.result_index if self.as_index else None + + if isinstance(first_not_none, (np.ndarray, Index)): + # GH#1738: values is list of arrays of unequal lengths + # fall through to the outer else clause + # TODO: sure this is right? we used to do this + # after raising AttributeError above + # GH 18930 + if not is_hashable(self._selection): + # error: Need type annotation for "name" + name = tuple(self._selection) # type: ignore[var-annotated, arg-type] + else: + # error: Incompatible types in assignment + # (expression has type "Hashable", variable + # has type "Tuple[Any, ...]") + name = self._selection # type: ignore[assignment] + return self.obj._constructor_sliced(values, index=key_index, name=name) + elif not isinstance(first_not_none, Series): + # values are not series or array-like but scalars + # self._selection not passed through to Series as the + # result should not take the name of original selection + # of columns + if self.as_index: + return self.obj._constructor_sliced(values, index=key_index) + else: + result = self.obj._constructor(values, columns=[self._selection]) + result = self._insert_inaxis_grouper(result) + return result + else: + # values are Series + return self._wrap_applied_output_series( + values, + not_indexed_same, + first_not_none, + key_index, + is_transform, + ) + + def _wrap_applied_output_series( + self, + values: list[Series], + not_indexed_same: bool, + first_not_none, + key_index: Index | None, + is_transform: bool, + ) -> DataFrame | Series: + kwargs = first_not_none._construct_axes_dict() + backup = Series(**kwargs) + values = [x if (x is not None) else backup for x in values] + + all_indexed_same = all_indexes_same(x.index for x in values) + + if not all_indexed_same: + # GH 8467 + return self._concat_objects( + values, + not_indexed_same=True, + is_transform=is_transform, + ) + + # Combine values + # vstack+constructor is faster than concat and handles MI-columns + stacked_values = np.vstack([np.asarray(v) for v in values]) + + if self.axis == 0: + index = key_index + columns = first_not_none.index.copy() + if columns.name is None: + # GH6124 - propagate name of Series when it's consistent + names = {v.name for v in values} + if len(names) == 1: + columns.name = next(iter(names)) + else: + index = first_not_none.index + columns = key_index + stacked_values = stacked_values.T + + if stacked_values.dtype == object: + # We'll have the DataFrame constructor do inference + stacked_values = stacked_values.tolist() + result = self.obj._constructor(stacked_values, index=index, columns=columns) + + if not self.as_index: + result = self._insert_inaxis_grouper(result) + + return self._reindex_output(result) + + def _cython_transform( + self, + how: str, + numeric_only: bool = False, + axis: AxisInt = 0, + **kwargs, + ) -> DataFrame: + assert axis == 0 # handled by caller + + # With self.axis == 0, we have multi-block tests + # e.g. test_rank_min_int, test_cython_transform_frame + # test_transform_numeric_ret + # With self.axis == 1, _get_data_to_aggregate does a transpose + # so we always have a single block. + mgr: Manager2D = self._get_data_to_aggregate( + numeric_only=numeric_only, name=how + ) + + def arr_func(bvalues: ArrayLike) -> ArrayLike: + return self._grouper._cython_operation( + "transform", bvalues, how, 1, **kwargs + ) + + # We could use `mgr.apply` here and not have to set_axis, but + # we would have to do shape gymnastics for ArrayManager compat + res_mgr = mgr.grouped_reduce(arr_func) + res_mgr.set_axis(1, mgr.axes[1]) + + res_df = self.obj._constructor_from_mgr(res_mgr, axes=res_mgr.axes) + res_df = self._maybe_transpose_result(res_df) + return res_df + + def _transform_general(self, func, engine, engine_kwargs, *args, **kwargs): + if maybe_use_numba(engine): + return self._transform_with_numba( + func, *args, engine_kwargs=engine_kwargs, **kwargs + ) + from pandas.core.reshape.concat import concat + + applied = [] + obj = self._obj_with_exclusions + gen = self._grouper.get_iterator(obj, axis=self.axis) + fast_path, slow_path = self._define_paths(func, *args, **kwargs) + + # Determine whether to use slow or fast path by evaluating on the first group. + # Need to handle the case of an empty generator and process the result so that + # it does not need to be computed again. + try: + name, group = next(gen) + except StopIteration: + pass + else: + # 2023-02-27 No tests broken by disabling this pinning + object.__setattr__(group, "name", name) + try: + path, res = self._choose_path(fast_path, slow_path, group) + except ValueError as err: + # e.g. test_transform_with_non_scalar_group + msg = "transform must return a scalar value for each group" + raise ValueError(msg) from err + if group.size > 0: + res = _wrap_transform_general_frame(self.obj, group, res) + applied.append(res) + + # Compute and process with the remaining groups + for name, group in gen: + if group.size == 0: + continue + # 2023-02-27 No tests broken by disabling this pinning + object.__setattr__(group, "name", name) + res = path(group) + + res = _wrap_transform_general_frame(self.obj, group, res) + applied.append(res) + + concat_index = obj.columns if self.axis == 0 else obj.index + other_axis = 1 if self.axis == 0 else 0 # switches between 0 & 1 + concatenated = concat(applied, axis=self.axis, verify_integrity=False) + concatenated = concatenated.reindex(concat_index, axis=other_axis, copy=False) + return self._set_result_index_ordered(concatenated) + + __examples_dataframe_doc = dedent( + """ + >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', + ... 'foo', 'bar'], + ... 'B' : ['one', 'one', 'two', 'three', + ... 'two', 'two'], + ... 'C' : [1, 5, 5, 2, 5, 5], + ... 'D' : [2.0, 5., 8., 1., 2., 9.]}) + >>> grouped = df.groupby('A')[['C', 'D']] + >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) + C D + 0 -1.154701 -0.577350 + 1 0.577350 0.000000 + 2 0.577350 1.154701 + 3 -1.154701 -1.000000 + 4 0.577350 -0.577350 + 5 0.577350 1.000000 + + Broadcast result of the transformation + + >>> grouped.transform(lambda x: x.max() - x.min()) + C D + 0 4.0 6.0 + 1 3.0 8.0 + 2 4.0 6.0 + 3 3.0 8.0 + 4 4.0 6.0 + 5 3.0 8.0 + + >>> grouped.transform("mean") + C D + 0 3.666667 4.0 + 1 4.000000 5.0 + 2 3.666667 4.0 + 3 4.000000 5.0 + 4 3.666667 4.0 + 5 4.000000 5.0 + + .. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the passed ``func``, + for example: + + >>> grouped.transform(lambda x: x.astype(int).max()) + C D + 0 5 8 + 1 5 9 + 2 5 8 + 3 5 9 + 4 5 8 + 5 5 9 + """ + ) + + @Substitution(klass="DataFrame", example=__examples_dataframe_doc) + @Appender(_transform_template) + def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): + return self._transform( + func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs + ) + + def _define_paths(self, func, *args, **kwargs): + if isinstance(func, str): + fast_path = lambda group: getattr(group, func)(*args, **kwargs) + slow_path = lambda group: group.apply( + lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis + ) + else: + fast_path = lambda group: func(group, *args, **kwargs) + slow_path = lambda group: group.apply( + lambda x: func(x, *args, **kwargs), axis=self.axis + ) + return fast_path, slow_path + + def _choose_path(self, fast_path: Callable, slow_path: Callable, group: DataFrame): + path = slow_path + res = slow_path(group) + + if self.ngroups == 1: + # no need to evaluate multiple paths when only + # a single group exists + return path, res + + # if we make it here, test if we can use the fast path + try: + res_fast = fast_path(group) + except AssertionError: + raise # pragma: no cover + except Exception: + # GH#29631 For user-defined function, we can't predict what may be + # raised; see test_transform.test_transform_fastpath_raises + return path, res + + # verify fast path returns either: + # a DataFrame with columns equal to group.columns + # OR a Series with index equal to group.columns + if isinstance(res_fast, DataFrame): + if not res_fast.columns.equals(group.columns): + return path, res + elif isinstance(res_fast, Series): + if not res_fast.index.equals(group.columns): + return path, res + else: + return path, res + + if res_fast.equals(res): + path = fast_path + + return path, res + + def filter(self, func, dropna: bool = True, *args, **kwargs): + """ + Filter elements from groups that don't satisfy a criterion. + + Elements from groups are filtered if they do not satisfy the + boolean criterion specified by func. + + Parameters + ---------- + func : function + Criterion to apply to each group. Should return True or False. + dropna : bool + Drop groups that do not pass the filter. True by default; if False, + groups that evaluate False are filled with NaNs. + + Returns + ------- + DataFrame + + Notes + ----- + Each subframe is endowed the attribute 'name' in case you need to know + which group you are working on. + + Functions that mutate the passed object can produce unexpected + behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` + for more details. + + Examples + -------- + >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', + ... 'foo', 'bar'], + ... 'B' : [1, 2, 3, 4, 5, 6], + ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) + >>> grouped = df.groupby('A') + >>> grouped.filter(lambda x: x['B'].mean() > 3.) + A B C + 1 bar 2 5.0 + 3 bar 4 1.0 + 5 bar 6 9.0 + """ + indices = [] + + obj = self._selected_obj + gen = self._grouper.get_iterator(obj, axis=self.axis) + + for name, group in gen: + # 2023-02-27 no tests are broken this pinning, but it is documented in the + # docstring above. + object.__setattr__(group, "name", name) + + res = func(group, *args, **kwargs) + + try: + res = res.squeeze() + except AttributeError: # allow e.g., scalars and frames to pass + pass + + # interpret the result of the filter + if is_bool(res) or (is_scalar(res) and isna(res)): + if notna(res) and res: + indices.append(self._get_index(name)) + else: + # non scalars aren't allowed + raise TypeError( + f"filter function returned a {type(res).__name__}, " + "but expected a scalar bool" + ) + + return self._apply_filter(indices, dropna) + + def __getitem__(self, key) -> DataFrameGroupBy | SeriesGroupBy: + if self.axis == 1: + # GH 37725 + raise ValueError("Cannot subset columns when using axis=1") + # per GH 23566 + if isinstance(key, tuple) and len(key) > 1: + # if len == 1, then it becomes a SeriesGroupBy and this is actually + # valid syntax, so don't raise + raise ValueError( + "Cannot subset columns with a tuple with more than one element. " + "Use a list instead." + ) + return super().__getitem__(key) + + def _gotitem(self, key, ndim: int, subset=None): + """ + sub-classes to define + return a sliced object + + Parameters + ---------- + key : string / list of selections + ndim : {1, 2} + requested ndim of result + subset : object, default None + subset to act on + """ + if ndim == 2: + if subset is None: + subset = self.obj + return DataFrameGroupBy( + subset, + self.keys, + axis=self.axis, + level=self.level, + grouper=self._grouper, + exclusions=self.exclusions, + selection=key, + as_index=self.as_index, + sort=self.sort, + group_keys=self.group_keys, + observed=self.observed, + dropna=self.dropna, + ) + elif ndim == 1: + if subset is None: + subset = self.obj[key] + return SeriesGroupBy( + subset, + self.keys, + level=self.level, + grouper=self._grouper, + exclusions=self.exclusions, + selection=key, + as_index=self.as_index, + sort=self.sort, + group_keys=self.group_keys, + observed=self.observed, + dropna=self.dropna, + ) + + raise AssertionError("invalid ndim for _gotitem") + + def _get_data_to_aggregate( + self, *, numeric_only: bool = False, name: str | None = None + ) -> Manager2D: + obj = self._obj_with_exclusions + if self.axis == 1: + mgr = obj.T._mgr + else: + mgr = obj._mgr + + if numeric_only: + mgr = mgr.get_numeric_data() + return mgr + + def _wrap_agged_manager(self, mgr: Manager2D) -> DataFrame: + return self.obj._constructor_from_mgr(mgr, axes=mgr.axes) + + def _apply_to_column_groupbys(self, func) -> DataFrame: + from pandas.core.reshape.concat import concat + + obj = self._obj_with_exclusions + columns = obj.columns + sgbs = [ + SeriesGroupBy( + obj.iloc[:, i], + selection=colname, + grouper=self._grouper, + exclusions=self.exclusions, + observed=self.observed, + ) + for i, colname in enumerate(obj.columns) + ] + results = [func(sgb) for sgb in sgbs] + + if not len(results): + # concat would raise + res_df = DataFrame([], columns=columns, index=self._grouper.result_index) + else: + res_df = concat(results, keys=columns, axis=1) + + if not self.as_index: + res_df.index = default_index(len(res_df)) + res_df = self._insert_inaxis_grouper(res_df) + return res_df + + def nunique(self, dropna: bool = True) -> DataFrame: + """ + Return DataFrame with counts of unique elements in each position. + + Parameters + ---------- + dropna : bool, default True + Don't include NaN in the counts. + + Returns + ------- + nunique: DataFrame + + Examples + -------- + >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', + ... 'ham', 'ham'], + ... 'value1': [1, 5, 5, 2, 5, 5], + ... 'value2': list('abbaxy')}) + >>> df + id value1 value2 + 0 spam 1 a + 1 egg 5 b + 2 egg 5 b + 3 spam 2 a + 4 ham 5 x + 5 ham 5 y + + >>> df.groupby('id').nunique() + value1 value2 + id + egg 1 1 + ham 1 2 + spam 2 1 + + Check for rows with the same id but conflicting values: + + >>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any()) + id value1 value2 + 0 spam 1 a + 3 spam 2 a + 4 ham 5 x + 5 ham 5 y + """ + + if self.axis != 0: + # see test_groupby_crash_on_nunique + return self._python_apply_general( + lambda sgb: sgb.nunique(dropna), self._obj_with_exclusions, is_agg=True + ) + + return self._apply_to_column_groupbys(lambda sgb: sgb.nunique(dropna)) + + def idxmax( + self, + axis: Axis | None | lib.NoDefault = lib.no_default, + skipna: bool = True, + numeric_only: bool = False, + ) -> DataFrame: + """ + Return index of first occurrence of maximum over requested axis. + + NA/null values are excluded. + + Parameters + ---------- + axis : {{0 or 'index', 1 or 'columns'}}, default None + The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. + If axis is not provided, grouper's axis is used. + + .. versionchanged:: 2.0.0 + + .. deprecated:: 2.1.0 + For axis=1, operate on the underlying object instead. Otherwise + the axis keyword is not necessary. + + skipna : bool, default True + Exclude NA/null values. If an entire row/column is NA, the result + will be NA. + numeric_only : bool, default False + Include only `float`, `int` or `boolean` data. + + .. versionadded:: 1.5.0 + + Returns + ------- + Series + Indexes of maxima along the specified axis. + + Raises + ------ + ValueError + * If the row/column is empty + + See Also + -------- + Series.idxmax : Return index of the maximum element. + + Notes + ----- + This method is the DataFrame version of ``ndarray.argmax``. + + Examples + -------- + Consider a dataset containing food consumption in Argentina. + + >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], + ... 'co2_emissions': [37.2, 19.66, 1712]}, + ... index=['Pork', 'Wheat Products', 'Beef']) + + >>> df + consumption co2_emissions + Pork 10.51 37.20 + Wheat Products 103.11 19.66 + Beef 55.48 1712.00 + + By default, it returns the index for the maximum value in each column. + + >>> df.idxmax() + consumption Wheat Products + co2_emissions Beef + dtype: object + + To return the index for the maximum value in each row, use ``axis="columns"``. + + >>> df.idxmax(axis="columns") + Pork co2_emissions + Wheat Products consumption + Beef co2_emissions + dtype: object + """ + return self._idxmax_idxmin( + "idxmax", axis=axis, numeric_only=numeric_only, skipna=skipna + ) + + def idxmin( + self, + axis: Axis | None | lib.NoDefault = lib.no_default, + skipna: bool = True, + numeric_only: bool = False, + ) -> DataFrame: + """ + Return index of first occurrence of minimum over requested axis. + + NA/null values are excluded. + + Parameters + ---------- + axis : {{0 or 'index', 1 or 'columns'}}, default None + The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. + If axis is not provided, grouper's axis is used. + + .. versionchanged:: 2.0.0 + + .. deprecated:: 2.1.0 + For axis=1, operate on the underlying object instead. Otherwise + the axis keyword is not necessary. + + skipna : bool, default True + Exclude NA/null values. If an entire row/column is NA, the result + will be NA. + numeric_only : bool, default False + Include only `float`, `int` or `boolean` data. + + .. versionadded:: 1.5.0 + + Returns + ------- + Series + Indexes of minima along the specified axis. + + Raises + ------ + ValueError + * If the row/column is empty + + See Also + -------- + Series.idxmin : Return index of the minimum element. + + Notes + ----- + This method is the DataFrame version of ``ndarray.argmin``. + + Examples + -------- + Consider a dataset containing food consumption in Argentina. + + >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], + ... 'co2_emissions': [37.2, 19.66, 1712]}, + ... index=['Pork', 'Wheat Products', 'Beef']) + + >>> df + consumption co2_emissions + Pork 10.51 37.20 + Wheat Products 103.11 19.66 + Beef 55.48 1712.00 + + By default, it returns the index for the minimum value in each column. + + >>> df.idxmin() + consumption Pork + co2_emissions Wheat Products + dtype: object + + To return the index for the minimum value in each row, use ``axis="columns"``. + + >>> df.idxmin(axis="columns") + Pork consumption + Wheat Products co2_emissions + Beef consumption + dtype: object + """ + return self._idxmax_idxmin( + "idxmin", axis=axis, numeric_only=numeric_only, skipna=skipna + ) + + boxplot = boxplot_frame_groupby + + def value_counts( + self, + subset: Sequence[Hashable] | None = None, + normalize: bool = False, + sort: bool = True, + ascending: bool = False, + dropna: bool = True, + ) -> DataFrame | Series: + """ + Return a Series or DataFrame containing counts of unique rows. + + .. versionadded:: 1.4.0 + + Parameters + ---------- + subset : list-like, optional + Columns to use when counting unique combinations. + normalize : bool, default False + Return proportions rather than frequencies. + sort : bool, default True + Sort by frequencies. + ascending : bool, default False + Sort in ascending order. + dropna : bool, default True + Don't include counts of rows that contain NA values. + + Returns + ------- + Series or DataFrame + Series if the groupby as_index is True, otherwise DataFrame. + + See Also + -------- + Series.value_counts: Equivalent method on Series. + DataFrame.value_counts: Equivalent method on DataFrame. + SeriesGroupBy.value_counts: Equivalent method on SeriesGroupBy. + + Notes + ----- + - If the groupby as_index is True then the returned Series will have a + MultiIndex with one level per input column. + - If the groupby as_index is False then the returned DataFrame will have an + additional column with the value_counts. The column is labelled 'count' or + 'proportion', depending on the ``normalize`` parameter. + + By default, rows that contain any NA values are omitted from + the result. + + By default, the result will be in descending order so that the + first element of each group is the most frequently-occurring row. + + Examples + -------- + >>> df = pd.DataFrame({ + ... 'gender': ['male', 'male', 'female', 'male', 'female', 'male'], + ... 'education': ['low', 'medium', 'high', 'low', 'high', 'low'], + ... 'country': ['US', 'FR', 'US', 'FR', 'FR', 'FR'] + ... }) + + >>> df + gender education country + 0 male low US + 1 male medium FR + 2 female high US + 3 male low FR + 4 female high FR + 5 male low FR + + >>> df.groupby('gender').value_counts() + gender education country + female high FR 1 + US 1 + male low FR 2 + US 1 + medium FR 1 + Name: count, dtype: int64 + + >>> df.groupby('gender').value_counts(ascending=True) + gender education country + female high FR 1 + US 1 + male low US 1 + medium FR 1 + low FR 2 + Name: count, dtype: int64 + + >>> df.groupby('gender').value_counts(normalize=True) + gender education country + female high FR 0.50 + US 0.50 + male low FR 0.50 + US 0.25 + medium FR 0.25 + Name: proportion, dtype: float64 + + >>> df.groupby('gender', as_index=False).value_counts() + gender education country count + 0 female high FR 1 + 1 female high US 1 + 2 male low FR 2 + 3 male low US 1 + 4 male medium FR 1 + + >>> df.groupby('gender', as_index=False).value_counts(normalize=True) + gender education country proportion + 0 female high FR 0.50 + 1 female high US 0.50 + 2 male low FR 0.50 + 3 male low US 0.25 + 4 male medium FR 0.25 + """ + return self._value_counts(subset, normalize, sort, ascending, dropna) + + def fillna( + self, + value: Hashable | Mapping | Series | DataFrame | None = None, + method: FillnaOptions | None = None, + axis: Axis | None | lib.NoDefault = lib.no_default, + inplace: bool = False, + limit: int | None = None, + downcast=lib.no_default, + ) -> DataFrame | None: + """ + Fill NA/NaN values using the specified method within groups. + + .. deprecated:: 2.2.0 + This method is deprecated and will be removed in a future version. + Use the :meth:`.DataFrameGroupBy.ffill` or :meth:`.DataFrameGroupBy.bfill` + for forward or backward filling instead. If you want to fill with a + single value, use :meth:`DataFrame.fillna` instead. + + Parameters + ---------- + value : scalar, dict, Series, or DataFrame + Value to use to fill holes (e.g. 0), alternately a + dict/Series/DataFrame of values specifying which value to use for + each index (for a Series) or column (for a DataFrame). Values not + in the dict/Series/DataFrame will not be filled. This value cannot + be a list. Users wanting to use the ``value`` argument and not ``method`` + should prefer :meth:`.DataFrame.fillna` as this + will produce the same result and be more performant. + method : {{'bfill', 'ffill', None}}, default None + Method to use for filling holes. ``'ffill'`` will propagate + the last valid observation forward within a group. + ``'bfill'`` will use next valid observation to fill the gap. + axis : {0 or 'index', 1 or 'columns'} + Axis along which to fill missing values. When the :class:`DataFrameGroupBy` + ``axis`` argument is ``0``, using ``axis=1`` here will produce + the same results as :meth:`.DataFrame.fillna`. When the + :class:`DataFrameGroupBy` ``axis`` argument is ``1``, using ``axis=0`` + or ``axis=1`` here will produce the same results. + inplace : bool, default False + Broken. Do not set to True. + limit : int, default None + If method is specified, this is the maximum number of consecutive + NaN values to forward/backward fill within a group. In other words, + if there is a gap with more than this number of consecutive NaNs, + it will only be partially filled. If method is not specified, this is the + maximum number of entries along the entire axis where NaNs will be + filled. Must be greater than 0 if not None. + downcast : dict, default is None + A dict of item->dtype of what to downcast if possible, + or the string 'infer' which will try to downcast to an appropriate + equal type (e.g. float64 to int64 if possible). + + Returns + ------- + DataFrame + Object with missing values filled. + + See Also + -------- + ffill : Forward fill values within a group. + bfill : Backward fill values within a group. + + Examples + -------- + >>> df = pd.DataFrame( + ... { + ... "key": [0, 0, 1, 1, 1], + ... "A": [np.nan, 2, np.nan, 3, np.nan], + ... "B": [2, 3, np.nan, np.nan, np.nan], + ... "C": [np.nan, np.nan, 2, np.nan, np.nan], + ... } + ... ) + >>> df + key A B C + 0 0 NaN 2.0 NaN + 1 0 2.0 3.0 NaN + 2 1 NaN NaN 2.0 + 3 1 3.0 NaN NaN + 4 1 NaN NaN NaN + + Propagate non-null values forward or backward within each group along columns. + + >>> df.groupby("key").fillna(method="ffill") + A B C + 0 NaN 2.0 NaN + 1 2.0 3.0 NaN + 2 NaN NaN 2.0 + 3 3.0 NaN 2.0 + 4 3.0 NaN 2.0 + + >>> df.groupby("key").fillna(method="bfill") + A B C + 0 2.0 2.0 NaN + 1 2.0 3.0 NaN + 2 3.0 NaN 2.0 + 3 3.0 NaN NaN + 4 NaN NaN NaN + + Propagate non-null values forward or backward within each group along rows. + + >>> df.T.groupby(np.array([0, 0, 1, 1])).fillna(method="ffill").T + key A B C + 0 0.0 0.0 2.0 2.0 + 1 0.0 2.0 3.0 3.0 + 2 1.0 1.0 NaN 2.0 + 3 1.0 3.0 NaN NaN + 4 1.0 1.0 NaN NaN + + >>> df.T.groupby(np.array([0, 0, 1, 1])).fillna(method="bfill").T + key A B C + 0 0.0 NaN 2.0 NaN + 1 0.0 2.0 3.0 NaN + 2 1.0 NaN 2.0 2.0 + 3 1.0 3.0 NaN NaN + 4 1.0 NaN NaN NaN + + Only replace the first NaN element within a group along rows. + + >>> df.groupby("key").fillna(method="ffill", limit=1) + A B C + 0 NaN 2.0 NaN + 1 2.0 3.0 NaN + 2 NaN NaN 2.0 + 3 3.0 NaN 2.0 + 4 3.0 NaN NaN + """ + warnings.warn( + f"{type(self).__name__}.fillna is deprecated and " + "will be removed in a future version. Use obj.ffill() or obj.bfill() " + "for forward or backward filling instead. If you want to fill with a " + f"single value, use {type(self.obj).__name__}.fillna instead", + FutureWarning, + stacklevel=find_stack_level(), + ) + + result = self._op_via_apply( + "fillna", + value=value, + method=method, + axis=axis, + inplace=inplace, + limit=limit, + downcast=downcast, + ) + return result + + def take( + self, + indices: TakeIndexer, + axis: Axis | None | lib.NoDefault = lib.no_default, + **kwargs, + ) -> DataFrame: + """ + Return the elements in the given *positional* indices in each group. + + This means that we are not indexing according to actual values in + the index attribute of the object. We are indexing according to the + actual position of the element in the object. + + If a requested index does not exist for some group, this method will raise. + To get similar behavior that ignores indices that don't exist, see + :meth:`.DataFrameGroupBy.nth`. + + Parameters + ---------- + indices : array-like + An array of ints indicating which positions to take. + axis : {0 or 'index', 1 or 'columns', None}, default 0 + The axis on which to select elements. ``0`` means that we are + selecting rows, ``1`` means that we are selecting columns. + + .. deprecated:: 2.1.0 + For axis=1, operate on the underlying object instead. Otherwise + the axis keyword is not necessary. + + **kwargs + For compatibility with :meth:`numpy.take`. Has no effect on the + output. + + Returns + ------- + DataFrame + An DataFrame containing the elements taken from each group. + + See Also + -------- + DataFrame.take : Take elements from a Series along an axis. + DataFrame.loc : Select a subset of a DataFrame by labels. + DataFrame.iloc : Select a subset of a DataFrame by positions. + numpy.take : Take elements from an array along an axis. + + Examples + -------- + >>> df = pd.DataFrame([('falcon', 'bird', 389.0), + ... ('parrot', 'bird', 24.0), + ... ('lion', 'mammal', 80.5), + ... ('monkey', 'mammal', np.nan), + ... ('rabbit', 'mammal', 15.0)], + ... columns=['name', 'class', 'max_speed'], + ... index=[4, 3, 2, 1, 0]) + >>> df + name class max_speed + 4 falcon bird 389.0 + 3 parrot bird 24.0 + 2 lion mammal 80.5 + 1 monkey mammal NaN + 0 rabbit mammal 15.0 + >>> gb = df.groupby([1, 1, 2, 2, 2]) + + Take elements at positions 0 and 1 along the axis 0 (default). + + Note how the indices selected in the result do not correspond to + our input indices 0 and 1. That's because we are selecting the 0th + and 1st rows, not rows whose indices equal 0 and 1. + + >>> gb.take([0, 1]) + name class max_speed + 1 4 falcon bird 389.0 + 3 parrot bird 24.0 + 2 2 lion mammal 80.5 + 1 monkey mammal NaN + + The order of the specified indices influences the order in the result. + Here, the order is swapped from the previous example. + + >>> gb.take([1, 0]) + name class max_speed + 1 3 parrot bird 24.0 + 4 falcon bird 389.0 + 2 1 monkey mammal NaN + 2 lion mammal 80.5 + + Take elements at indices 1 and 2 along the axis 1 (column selection). + + We may take elements using negative integers for positive indices, + starting from the end of the object, just like with Python lists. + + >>> gb.take([-1, -2]) + name class max_speed + 1 3 parrot bird 24.0 + 4 falcon bird 389.0 + 2 0 rabbit mammal 15.0 + 1 monkey mammal NaN + """ + result = self._op_via_apply("take", indices=indices, axis=axis, **kwargs) + return result + + def skew( + self, + axis: Axis | None | lib.NoDefault = lib.no_default, + skipna: bool = True, + numeric_only: bool = False, + **kwargs, + ) -> DataFrame: + """ + Return unbiased skew within groups. + + Normalized by N-1. + + Parameters + ---------- + axis : {0 or 'index', 1 or 'columns', None}, default 0 + Axis for the function to be applied on. + + Specifying ``axis=None`` will apply the aggregation across both axes. + + .. versionadded:: 2.0.0 + + .. deprecated:: 2.1.0 + For axis=1, operate on the underlying object instead. Otherwise + the axis keyword is not necessary. + + skipna : bool, default True + Exclude NA/null values when computing the result. + + numeric_only : bool, default False + Include only float, int, boolean columns. + + **kwargs + Additional keyword arguments to be passed to the function. + + Returns + ------- + DataFrame + + See Also + -------- + DataFrame.skew : Return unbiased skew over requested axis. + + Examples + -------- + >>> arrays = [['falcon', 'parrot', 'cockatoo', 'kiwi', + ... 'lion', 'monkey', 'rabbit'], + ... ['bird', 'bird', 'bird', 'bird', + ... 'mammal', 'mammal', 'mammal']] + >>> index = pd.MultiIndex.from_arrays(arrays, names=('name', 'class')) + >>> df = pd.DataFrame({'max_speed': [389.0, 24.0, 70.0, np.nan, + ... 80.5, 21.5, 15.0]}, + ... index=index) + >>> df + max_speed + name class + falcon bird 389.0 + parrot bird 24.0 + cockatoo bird 70.0 + kiwi bird NaN + lion mammal 80.5 + monkey mammal 21.5 + rabbit mammal 15.0 + >>> gb = df.groupby(["class"]) + >>> gb.skew() + max_speed + class + bird 1.628296 + mammal 1.669046 + >>> gb.skew(skipna=False) + max_speed + class + bird NaN + mammal 1.669046 + """ + if axis is lib.no_default: + axis = 0 + + if axis != 0: + result = self._op_via_apply( + "skew", + axis=axis, + skipna=skipna, + numeric_only=numeric_only, + **kwargs, + ) + return result + + def alt(obj): + # This should not be reached since the cython path should raise + # TypeError and not NotImplementedError. + raise TypeError(f"'skew' is not supported for dtype={obj.dtype}") + + return self._cython_agg_general( + "skew", alt=alt, skipna=skipna, numeric_only=numeric_only, **kwargs + ) + + @property + @doc(DataFrame.plot.__doc__) + def plot(self) -> GroupByPlot: + result = GroupByPlot(self) + return result + + @doc(DataFrame.corr.__doc__) + def corr( + self, + method: str | Callable[[np.ndarray, np.ndarray], float] = "pearson", + min_periods: int = 1, + numeric_only: bool = False, + ) -> DataFrame: + result = self._op_via_apply( + "corr", method=method, min_periods=min_periods, numeric_only=numeric_only + ) + return result + + @doc(DataFrame.cov.__doc__) + def cov( + self, + min_periods: int | None = None, + ddof: int | None = 1, + numeric_only: bool = False, + ) -> DataFrame: + result = self._op_via_apply( + "cov", min_periods=min_periods, ddof=ddof, numeric_only=numeric_only + ) + return result + + @doc(DataFrame.hist.__doc__) + def hist( + self, + column: IndexLabel | None = None, + by=None, + grid: bool = True, + xlabelsize: int | None = None, + xrot: float | None = None, + ylabelsize: int | None = None, + yrot: float | None = None, + ax=None, + sharex: bool = False, + sharey: bool = False, + figsize: tuple[int, int] | None = None, + layout: tuple[int, int] | None = None, + bins: int | Sequence[int] = 10, + backend: str | None = None, + legend: bool = False, + **kwargs, + ): + result = self._op_via_apply( + "hist", + column=column, + by=by, + grid=grid, + xlabelsize=xlabelsize, + xrot=xrot, + ylabelsize=ylabelsize, + yrot=yrot, + ax=ax, + sharex=sharex, + sharey=sharey, + figsize=figsize, + layout=layout, + bins=bins, + backend=backend, + legend=legend, + **kwargs, + ) + return result + + @property + @doc(DataFrame.dtypes.__doc__) + def dtypes(self) -> Series: + # GH#51045 + warnings.warn( + f"{type(self).__name__}.dtypes is deprecated and will be removed in " + "a future version. Check the dtypes on the base object instead", + FutureWarning, + stacklevel=find_stack_level(), + ) + + # error: Incompatible return value type (got "DataFrame", expected "Series") + return self._python_apply_general( # type: ignore[return-value] + lambda df: df.dtypes, self._selected_obj + ) + + @doc(DataFrame.corrwith.__doc__) + def corrwith( + self, + other: DataFrame | Series, + axis: Axis | lib.NoDefault = lib.no_default, + drop: bool = False, + method: CorrelationMethod = "pearson", + numeric_only: bool = False, + ) -> DataFrame: + result = self._op_via_apply( + "corrwith", + other=other, + axis=axis, + drop=drop, + method=method, + numeric_only=numeric_only, + ) + return result + + +def _wrap_transform_general_frame( + obj: DataFrame, group: DataFrame, res: DataFrame | Series +) -> DataFrame: + from pandas import concat + + if isinstance(res, Series): + # we need to broadcast across the + # other dimension; this will preserve dtypes + # GH14457 + if res.index.is_(obj.index): + res_frame = concat([res] * len(group.columns), axis=1) + res_frame.columns = group.columns + res_frame.index = group.index + else: + res_frame = obj._constructor( + np.tile(res.values, (len(group.index), 1)), + columns=group.columns, + index=group.index, + ) + assert isinstance(res_frame, DataFrame) + return res_frame + elif isinstance(res, DataFrame) and not res.index.is_(group.index): + return res._align_frame(group)[0] + else: + return res diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/groupby.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/groupby.py new file mode 100644 index 0000000000000000000000000000000000000000..db8949788567b76bd8df0580d19dcc3e5069e923 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/groupby.py @@ -0,0 +1,5997 @@ +""" +Provide the groupby split-apply-combine paradigm. Define the GroupBy +class providing the base-class of operations. + +The SeriesGroupBy and DataFrameGroupBy sub-class +(defined in pandas.core.groupby.generic) +expose these user-facing objects to provide specific functionality. +""" +from __future__ import annotations + +from collections.abc import ( + Hashable, + Iterator, + Mapping, + Sequence, +) +import datetime +from functools import ( + partial, + wraps, +) +import inspect +from textwrap import dedent +from typing import ( + TYPE_CHECKING, + Callable, + Literal, + TypeVar, + Union, + cast, + final, +) +import warnings + +import numpy as np + +from pandas._config.config import option_context + +from pandas._libs import ( + Timestamp, + lib, +) +from pandas._libs.algos import rank_1d +import pandas._libs.groupby as libgroupby +from pandas._libs.missing import NA +from pandas._typing import ( + AnyArrayLike, + ArrayLike, + Axis, + AxisInt, + DtypeObj, + FillnaOptions, + IndexLabel, + NDFrameT, + PositionalIndexer, + RandomState, + Scalar, + T, + npt, +) +from pandas.compat.numpy import function as nv +from pandas.errors import ( + AbstractMethodError, + DataError, +) +from pandas.util._decorators import ( + Appender, + Substitution, + cache_readonly, + doc, +) +from pandas.util._exceptions import find_stack_level + +from pandas.core.dtypes.cast import ( + coerce_indexer_dtype, + ensure_dtype_can_hold_na, +) +from pandas.core.dtypes.common import ( + is_bool_dtype, + is_float_dtype, + is_hashable, + is_integer, + is_integer_dtype, + is_list_like, + is_numeric_dtype, + is_object_dtype, + is_scalar, + needs_i8_conversion, + pandas_dtype, +) +from pandas.core.dtypes.missing import ( + isna, + na_value_for_dtype, + notna, +) + +from pandas.core import ( + algorithms, + sample, +) +from pandas.core._numba import executor +from pandas.core.apply import warn_alias_replacement +from pandas.core.arrays import ( + ArrowExtensionArray, + BaseMaskedArray, + Categorical, + ExtensionArray, + FloatingArray, + IntegerArray, + SparseArray, +) +from pandas.core.arrays.string_ import StringDtype +from pandas.core.arrays.string_arrow import ( + ArrowStringArray, + ArrowStringArrayNumpySemantics, +) +from pandas.core.base import ( + PandasObject, + SelectionMixin, +) +import pandas.core.common as com +from pandas.core.frame import DataFrame +from pandas.core.generic import NDFrame +from pandas.core.groupby import ( + base, + numba_, + ops, +) +from pandas.core.groupby.grouper import get_grouper +from pandas.core.groupby.indexing import ( + GroupByIndexingMixin, + GroupByNthSelector, +) +from pandas.core.indexes.api import ( + CategoricalIndex, + Index, + MultiIndex, + RangeIndex, + default_index, +) +from pandas.core.internals.blocks import ensure_block_shape +from pandas.core.series import Series +from pandas.core.sorting import get_group_index_sorter +from pandas.core.util.numba_ import ( + get_jit_arguments, + maybe_use_numba, +) + +if TYPE_CHECKING: + from typing import Any + + from pandas.core.resample import Resampler + from pandas.core.window import ( + ExpandingGroupby, + ExponentialMovingWindowGroupby, + RollingGroupby, + ) + +_common_see_also = """ + See Also + -------- + Series.%(name)s : Apply a function %(name)s to a Series. + DataFrame.%(name)s : Apply a function %(name)s + to each row or column of a DataFrame. +""" + +_apply_docs = { + "template": """ + Apply function ``func`` group-wise and combine the results together. + + The function passed to ``apply`` must take a {input} as its first + argument and return a DataFrame, Series or scalar. ``apply`` will + then take care of combining the results back together into a single + dataframe or series. ``apply`` is therefore a highly flexible + grouping method. + + While ``apply`` is a very flexible method, its downside is that + using it can be quite a bit slower than using more specific methods + like ``agg`` or ``transform``. Pandas offers a wide range of method that will + be much faster than using ``apply`` for their specific purposes, so try to + use them before reaching for ``apply``. + + Parameters + ---------- + func : callable + A callable that takes a {input} as its first argument, and + returns a dataframe, a series or a scalar. In addition the + callable may take positional and keyword arguments. + include_groups : bool, default True + When True, will attempt to apply ``func`` to the groupings in + the case that they are columns of the DataFrame. If this raises a + TypeError, the result will be computed with the groupings excluded. + When False, the groupings will be excluded when applying ``func``. + + .. versionadded:: 2.2.0 + + .. deprecated:: 2.2.0 + + Setting include_groups to True is deprecated. Only the value + False will be allowed in a future version of pandas. + + args, kwargs : tuple and dict + Optional positional and keyword arguments to pass to ``func``. + + Returns + ------- + Series or DataFrame + + See Also + -------- + pipe : Apply function to the full GroupBy object instead of to each + group. + aggregate : Apply aggregate function to the GroupBy object. + transform : Apply function column-by-column to the GroupBy object. + Series.apply : Apply a function to a Series. + DataFrame.apply : Apply a function to each row or column of a DataFrame. + + Notes + ----- + + .. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the passed ``func``, + see the examples below. + + Functions that mutate the passed object can produce unexpected + behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` + for more details. + + Examples + -------- + {examples} + """, + "dataframe_examples": """ + >>> df = pd.DataFrame({'A': 'a a b'.split(), + ... 'B': [1, 2, 3], + ... 'C': [4, 6, 5]}) + >>> g1 = df.groupby('A', group_keys=False) + >>> g2 = df.groupby('A', group_keys=True) + + Notice that ``g1`` and ``g2`` have two groups, ``a`` and ``b``, and only + differ in their ``group_keys`` argument. Calling `apply` in various ways, + we can get different grouping results: + + Example 1: below the function passed to `apply` takes a DataFrame as + its argument and returns a DataFrame. `apply` combines the result for + each group together into a new DataFrame: + + >>> g1[['B', 'C']].apply(lambda x: x / x.sum()) + B C + 0 0.333333 0.4 + 1 0.666667 0.6 + 2 1.000000 1.0 + + In the above, the groups are not part of the index. We can have them included + by using ``g2`` where ``group_keys=True``: + + >>> g2[['B', 'C']].apply(lambda x: x / x.sum()) + B C + A + a 0 0.333333 0.4 + 1 0.666667 0.6 + b 2 1.000000 1.0 + + Example 2: The function passed to `apply` takes a DataFrame as + its argument and returns a Series. `apply` combines the result for + each group together into a new DataFrame. + + .. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the passed ``func``. + + >>> g1[['B', 'C']].apply(lambda x: x.astype(float).max() - x.min()) + B C + A + a 1.0 2.0 + b 0.0 0.0 + + >>> g2[['B', 'C']].apply(lambda x: x.astype(float).max() - x.min()) + B C + A + a 1.0 2.0 + b 0.0 0.0 + + The ``group_keys`` argument has no effect here because the result is not + like-indexed (i.e. :ref:`a transform `) when compared + to the input. + + Example 3: The function passed to `apply` takes a DataFrame as + its argument and returns a scalar. `apply` combines the result for + each group together into a Series, including setting the index as + appropriate: + + >>> g1.apply(lambda x: x.C.max() - x.B.min(), include_groups=False) + A + a 5 + b 2 + dtype: int64""", + "series_examples": """ + >>> s = pd.Series([0, 1, 2], index='a a b'.split()) + >>> g1 = s.groupby(s.index, group_keys=False) + >>> g2 = s.groupby(s.index, group_keys=True) + + From ``s`` above we can see that ``g`` has two groups, ``a`` and ``b``. + Notice that ``g1`` have ``g2`` have two groups, ``a`` and ``b``, and only + differ in their ``group_keys`` argument. Calling `apply` in various ways, + we can get different grouping results: + + Example 1: The function passed to `apply` takes a Series as + its argument and returns a Series. `apply` combines the result for + each group together into a new Series. + + .. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the passed ``func``. + + >>> g1.apply(lambda x: x * 2 if x.name == 'a' else x / 2) + a 0.0 + a 2.0 + b 1.0 + dtype: float64 + + In the above, the groups are not part of the index. We can have them included + by using ``g2`` where ``group_keys=True``: + + >>> g2.apply(lambda x: x * 2 if x.name == 'a' else x / 2) + a a 0.0 + a 2.0 + b b 1.0 + dtype: float64 + + Example 2: The function passed to `apply` takes a Series as + its argument and returns a scalar. `apply` combines the result for + each group together into a Series, including setting the index as + appropriate: + + >>> g1.apply(lambda x: x.max() - x.min()) + a 1 + b 0 + dtype: int64 + + The ``group_keys`` argument has no effect here because the result is not + like-indexed (i.e. :ref:`a transform `) when compared + to the input. + + >>> g2.apply(lambda x: x.max() - x.min()) + a 1 + b 0 + dtype: int64""", +} + +_groupby_agg_method_template = """ +Compute {fname} of group values. + +Parameters +---------- +numeric_only : bool, default {no} + Include only float, int, boolean columns. + + .. versionchanged:: 2.0.0 + + numeric_only no longer accepts ``None``. + +min_count : int, default {mc} + The required number of valid values to perform the operation. If fewer + than ``min_count`` non-NA values are present the result will be NA. + +Returns +------- +Series or DataFrame + Computed {fname} of values within each group. + +Examples +-------- +{example} +""" + +_groupby_agg_method_engine_template = """ +Compute {fname} of group values. + +Parameters +---------- +numeric_only : bool, default {no} + Include only float, int, boolean columns. + + .. versionchanged:: 2.0.0 + + numeric_only no longer accepts ``None``. + +min_count : int, default {mc} + The required number of valid values to perform the operation. If fewer + than ``min_count`` non-NA values are present the result will be NA. + +engine : str, default None {e} + * ``'cython'`` : Runs rolling apply through C-extensions from cython. + * ``'numba'`` : Runs rolling apply through JIT compiled code from numba. + Only available when ``raw`` is set to ``True``. + * ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba`` + +engine_kwargs : dict, default None {ek} + * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be + applied to both the ``func`` and the ``apply`` groupby aggregation. + +Returns +------- +Series or DataFrame + Computed {fname} of values within each group. + +Examples +-------- +{example} +""" + +_pipe_template = """ +Apply a ``func`` with arguments to this %(klass)s object and return its result. + +Use `.pipe` when you want to improve readability by chaining together +functions that expect Series, DataFrames, GroupBy or Resampler objects. +Instead of writing + +>>> h = lambda x, arg2, arg3: x + 1 - arg2 * arg3 +>>> g = lambda x, arg1: x * 5 / arg1 +>>> f = lambda x: x ** 4 +>>> df = pd.DataFrame([["a", 4], ["b", 5]], columns=["group", "value"]) +>>> h(g(f(df.groupby('group')), arg1=1), arg2=2, arg3=3) # doctest: +SKIP + +You can write + +>>> (df.groupby('group') +... .pipe(f) +... .pipe(g, arg1=1) +... .pipe(h, arg2=2, arg3=3)) # doctest: +SKIP + +which is much more readable. + +Parameters +---------- +func : callable or tuple of (callable, str) + Function to apply to this %(klass)s object or, alternatively, + a `(callable, data_keyword)` tuple where `data_keyword` is a + string indicating the keyword of `callable` that expects the + %(klass)s object. +args : iterable, optional + Positional arguments passed into `func`. +kwargs : dict, optional + A dictionary of keyword arguments passed into `func`. + +Returns +------- +the return type of `func`. + +See Also +-------- +Series.pipe : Apply a function with arguments to a series. +DataFrame.pipe: Apply a function with arguments to a dataframe. +apply : Apply function to each group instead of to the + full %(klass)s object. + +Notes +----- +See more `here +`_ + +Examples +-------- +%(examples)s +""" + +_transform_template = """ +Call function producing a same-indexed %(klass)s on each group. + +Returns a %(klass)s having the same indexes as the original object +filled with the transformed values. + +Parameters +---------- +f : function, str + Function to apply to each group. See the Notes section below for requirements. + + Accepted inputs are: + + - String + - Python function + - Numba JIT function with ``engine='numba'`` specified. + + Only passing a single function is supported with this engine. + If the ``'numba'`` engine is chosen, the function must be + a user defined function with ``values`` and ``index`` as the + first and second arguments respectively in the function signature. + Each group's index will be passed to the user defined function + and optionally available for use. + + If a string is chosen, then it needs to be the name + of the groupby method you want to use. +*args + Positional arguments to pass to func. +engine : str, default None + * ``'cython'`` : Runs the function through C-extensions from cython. + * ``'numba'`` : Runs the function through JIT compiled code from numba. + * ``None`` : Defaults to ``'cython'`` or the global setting ``compute.use_numba`` + +engine_kwargs : dict, default None + * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be + applied to the function + +**kwargs + Keyword arguments to be passed into func. + +Returns +------- +%(klass)s + +See Also +-------- +%(klass)s.groupby.apply : Apply function ``func`` group-wise and combine + the results together. +%(klass)s.groupby.aggregate : Aggregate using one or more + operations over the specified axis. +%(klass)s.transform : Call ``func`` on self producing a %(klass)s with the + same axis shape as self. + +Notes +----- +Each group is endowed the attribute 'name' in case you need to know +which group you are working on. + +The current implementation imposes three requirements on f: + +* f must return a value that either has the same shape as the input + subframe or can be broadcast to the shape of the input subframe. + For example, if `f` returns a scalar it will be broadcast to have the + same shape as the input subframe. +* if this is a DataFrame, f must support application column-by-column + in the subframe. If f also supports application to the entire subframe, + then a fast path is used starting from the second chunk. +* f must not mutate groups. Mutation is not supported and may + produce unexpected results. See :ref:`gotchas.udf-mutation` for more details. + +When using ``engine='numba'``, there will be no "fall back" behavior internally. +The group data and group index will be passed as numpy arrays to the JITed +user defined function, and no alternative execution attempts will be tried. + +.. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the passed ``func``, + see the examples below. + +.. versionchanged:: 2.0.0 + + When using ``.transform`` on a grouped DataFrame and the transformation function + returns a DataFrame, pandas now aligns the result's index + with the input's index. You can call ``.to_numpy()`` on the + result of the transformation function to avoid alignment. + +Examples +-------- +%(example)s""" + +_agg_template_series = """ +Aggregate using one or more operations over the specified axis. + +Parameters +---------- +func : function, str, list, dict or None + Function to use for aggregating the data. If a function, must either + work when passed a {klass} or when passed to {klass}.apply. + + Accepted combinations are: + + - function + - string function name + - list of functions and/or function names, e.g. ``[np.sum, 'mean']`` + - None, in which case ``**kwargs`` are used with Named Aggregation. Here the + output has one column for each element in ``**kwargs``. The name of the + column is keyword, whereas the value determines the aggregation used to compute + the values in the column. + + Can also accept a Numba JIT function with + ``engine='numba'`` specified. Only passing a single function is supported + with this engine. + + If the ``'numba'`` engine is chosen, the function must be + a user defined function with ``values`` and ``index`` as the + first and second arguments respectively in the function signature. + Each group's index will be passed to the user defined function + and optionally available for use. + + .. deprecated:: 2.1.0 + + Passing a dictionary is deprecated and will raise in a future version + of pandas. Pass a list of aggregations instead. +*args + Positional arguments to pass to func. +engine : str, default None + * ``'cython'`` : Runs the function through C-extensions from cython. + * ``'numba'`` : Runs the function through JIT compiled code from numba. + * ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba`` + +engine_kwargs : dict, default None + * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be + applied to the function + +**kwargs + * If ``func`` is None, ``**kwargs`` are used to define the output names and + aggregations via Named Aggregation. See ``func`` entry. + * Otherwise, keyword arguments to be passed into func. + +Returns +------- +{klass} + +See Also +-------- +{klass}.groupby.apply : Apply function func group-wise + and combine the results together. +{klass}.groupby.transform : Transforms the Series on each group + based on the given function. +{klass}.aggregate : Aggregate using one or more + operations over the specified axis. + +Notes +----- +When using ``engine='numba'``, there will be no "fall back" behavior internally. +The group data and group index will be passed as numpy arrays to the JITed +user defined function, and no alternative execution attempts will be tried. + +Functions that mutate the passed object can produce unexpected +behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` +for more details. + +.. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the passed ``func``, + see the examples below. +{examples}""" + +_agg_template_frame = """ +Aggregate using one or more operations over the specified axis. + +Parameters +---------- +func : function, str, list, dict or None + Function to use for aggregating the data. If a function, must either + work when passed a {klass} or when passed to {klass}.apply. + + Accepted combinations are: + + - function + - string function name + - list of functions and/or function names, e.g. ``[np.sum, 'mean']`` + - dict of axis labels -> functions, function names or list of such. + - None, in which case ``**kwargs`` are used with Named Aggregation. Here the + output has one column for each element in ``**kwargs``. The name of the + column is keyword, whereas the value determines the aggregation used to compute + the values in the column. + + Can also accept a Numba JIT function with + ``engine='numba'`` specified. Only passing a single function is supported + with this engine. + + If the ``'numba'`` engine is chosen, the function must be + a user defined function with ``values`` and ``index`` as the + first and second arguments respectively in the function signature. + Each group's index will be passed to the user defined function + and optionally available for use. + +*args + Positional arguments to pass to func. +engine : str, default None + * ``'cython'`` : Runs the function through C-extensions from cython. + * ``'numba'`` : Runs the function through JIT compiled code from numba. + * ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba`` + +engine_kwargs : dict, default None + * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be + applied to the function + +**kwargs + * If ``func`` is None, ``**kwargs`` are used to define the output names and + aggregations via Named Aggregation. See ``func`` entry. + * Otherwise, keyword arguments to be passed into func. + +Returns +------- +{klass} + +See Also +-------- +{klass}.groupby.apply : Apply function func group-wise + and combine the results together. +{klass}.groupby.transform : Transforms the Series on each group + based on the given function. +{klass}.aggregate : Aggregate using one or more + operations over the specified axis. + +Notes +----- +When using ``engine='numba'``, there will be no "fall back" behavior internally. +The group data and group index will be passed as numpy arrays to the JITed +user defined function, and no alternative execution attempts will be tried. + +Functions that mutate the passed object can produce unexpected +behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` +for more details. + +.. versionchanged:: 1.3.0 + + The resulting dtype will reflect the return value of the passed ``func``, + see the examples below. +{examples}""" + + +@final +class GroupByPlot(PandasObject): + """ + Class implementing the .plot attribute for groupby objects. + """ + + def __init__(self, groupby: GroupBy) -> None: + self._groupby = groupby + + def __call__(self, *args, **kwargs): + def f(self): + return self.plot(*args, **kwargs) + + f.__name__ = "plot" + return self._groupby._python_apply_general(f, self._groupby._selected_obj) + + def __getattr__(self, name: str): + def attr(*args, **kwargs): + def f(self): + return getattr(self.plot, name)(*args, **kwargs) + + return self._groupby._python_apply_general(f, self._groupby._selected_obj) + + return attr + + +_KeysArgType = Union[ + Hashable, + list[Hashable], + Callable[[Hashable], Hashable], + list[Callable[[Hashable], Hashable]], + Mapping[Hashable, Hashable], +] + + +class BaseGroupBy(PandasObject, SelectionMixin[NDFrameT], GroupByIndexingMixin): + _hidden_attrs = PandasObject._hidden_attrs | { + "as_index", + "axis", + "dropna", + "exclusions", + "grouper", + "group_keys", + "keys", + "level", + "obj", + "observed", + "sort", + } + + axis: AxisInt + _grouper: ops.BaseGrouper + keys: _KeysArgType | None = None + level: IndexLabel | None = None + group_keys: bool + + @final + def __len__(self) -> int: + return len(self.groups) + + @final + def __repr__(self) -> str: + # TODO: Better repr for GroupBy object + return object.__repr__(self) + + @final + @property + def grouper(self) -> ops.BaseGrouper: + warnings.warn( + f"{type(self).__name__}.grouper is deprecated and will be removed in a " + "future version of pandas.", + category=FutureWarning, + stacklevel=find_stack_level(), + ) + return self._grouper + + @final + @property + def groups(self) -> dict[Hashable, np.ndarray]: + """ + Dict {group name -> group labels}. + + Examples + -------- + + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([1, 2, 3], index=lst) + >>> ser + a 1 + a 2 + b 3 + dtype: int64 + >>> ser.groupby(level=0).groups + {'a': ['a', 'a'], 'b': ['b']} + + For DataFrameGroupBy: + + >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"]) + >>> df + a b c + 0 1 2 3 + 1 1 5 6 + 2 7 8 9 + >>> df.groupby(by=["a"]).groups + {1: [0, 1], 7: [2]} + + For Resampler: + + >>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex( + ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15'])) + >>> ser + 2023-01-01 1 + 2023-01-15 2 + 2023-02-01 3 + 2023-02-15 4 + dtype: int64 + >>> ser.resample('MS').groups + {Timestamp('2023-01-01 00:00:00'): 2, Timestamp('2023-02-01 00:00:00'): 4} + """ + return self._grouper.groups + + @final + @property + def ngroups(self) -> int: + return self._grouper.ngroups + + @final + @property + def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]: + """ + Dict {group name -> group indices}. + + Examples + -------- + + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([1, 2, 3], index=lst) + >>> ser + a 1 + a 2 + b 3 + dtype: int64 + >>> ser.groupby(level=0).indices + {'a': array([0, 1]), 'b': array([2])} + + For DataFrameGroupBy: + + >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["owl", "toucan", "eagle"]) + >>> df + a b c + owl 1 2 3 + toucan 1 5 6 + eagle 7 8 9 + >>> df.groupby(by=["a"]).indices + {1: array([0, 1]), 7: array([2])} + + For Resampler: + + >>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex( + ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15'])) + >>> ser + 2023-01-01 1 + 2023-01-15 2 + 2023-02-01 3 + 2023-02-15 4 + dtype: int64 + >>> ser.resample('MS').indices + defaultdict(, {Timestamp('2023-01-01 00:00:00'): [0, 1], + Timestamp('2023-02-01 00:00:00'): [2, 3]}) + """ + return self._grouper.indices + + @final + def _get_indices(self, names): + """ + Safe get multiple indices, translate keys for + datelike to underlying repr. + """ + + def get_converter(s): + # possibly convert to the actual key types + # in the indices, could be a Timestamp or a np.datetime64 + if isinstance(s, datetime.datetime): + return lambda key: Timestamp(key) + elif isinstance(s, np.datetime64): + return lambda key: Timestamp(key).asm8 + else: + return lambda key: key + + if len(names) == 0: + return [] + + if len(self.indices) > 0: + index_sample = next(iter(self.indices)) + else: + index_sample = None # Dummy sample + + name_sample = names[0] + if isinstance(index_sample, tuple): + if not isinstance(name_sample, tuple): + msg = "must supply a tuple to get_group with multiple grouping keys" + raise ValueError(msg) + if not len(name_sample) == len(index_sample): + try: + # If the original grouper was a tuple + return [self.indices[name] for name in names] + except KeyError as err: + # turns out it wasn't a tuple + msg = ( + "must supply a same-length tuple to get_group " + "with multiple grouping keys" + ) + raise ValueError(msg) from err + + converters = [get_converter(s) for s in index_sample] + names = (tuple(f(n) for f, n in zip(converters, name)) for name in names) + + else: + converter = get_converter(index_sample) + names = (converter(name) for name in names) + + return [self.indices.get(name, []) for name in names] + + @final + def _get_index(self, name): + """ + Safe get index, translate keys for datelike to underlying repr. + """ + return self._get_indices([name])[0] + + @final + @cache_readonly + def _selected_obj(self): + # Note: _selected_obj is always just `self.obj` for SeriesGroupBy + if isinstance(self.obj, Series): + return self.obj + + if self._selection is not None: + if is_hashable(self._selection): + # i.e. a single key, so selecting it will return a Series. + # In this case, _obj_with_exclusions would wrap the key + # in a list and return a single-column DataFrame. + return self.obj[self._selection] + + # Otherwise _selection is equivalent to _selection_list, so + # _selected_obj matches _obj_with_exclusions, so we can reuse + # that and avoid making a copy. + return self._obj_with_exclusions + + return self.obj + + @final + def _dir_additions(self) -> set[str]: + return self.obj._dir_additions() + + @Substitution( + klass="GroupBy", + examples=dedent( + """\ + >>> df = pd.DataFrame({'A': 'a b a b'.split(), 'B': [1, 2, 3, 4]}) + >>> df + A B + 0 a 1 + 1 b 2 + 2 a 3 + 3 b 4 + + To get the difference between each groups maximum and minimum value in one + pass, you can do + + >>> df.groupby('A').pipe(lambda x: x.max() - x.min()) + B + A + a 2 + b 2""" + ), + ) + @Appender(_pipe_template) + def pipe( + self, + func: Callable[..., T] | tuple[Callable[..., T], str], + *args, + **kwargs, + ) -> T: + return com.pipe(self, func, *args, **kwargs) + + @final + def get_group(self, name, obj=None) -> DataFrame | Series: + """ + Construct DataFrame from group with provided name. + + Parameters + ---------- + name : object + The name of the group to get as a DataFrame. + obj : DataFrame, default None + The DataFrame to take the DataFrame out of. If + it is None, the object groupby was called on will + be used. + + .. deprecated:: 2.1.0 + The obj is deprecated and will be removed in a future version. + Do ``df.iloc[gb.indices.get(name)]`` + instead of ``gb.get_group(name, obj=df)``. + + Returns + ------- + same type as obj + + Examples + -------- + + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([1, 2, 3], index=lst) + >>> ser + a 1 + a 2 + b 3 + dtype: int64 + >>> ser.groupby(level=0).get_group("a") + a 1 + a 2 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["owl", "toucan", "eagle"]) + >>> df + a b c + owl 1 2 3 + toucan 1 5 6 + eagle 7 8 9 + >>> df.groupby(by=["a"]).get_group((1,)) + a b c + owl 1 2 3 + toucan 1 5 6 + + For Resampler: + + >>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex( + ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15'])) + >>> ser + 2023-01-01 1 + 2023-01-15 2 + 2023-02-01 3 + 2023-02-15 4 + dtype: int64 + >>> ser.resample('MS').get_group('2023-01-01') + 2023-01-01 1 + 2023-01-15 2 + dtype: int64 + """ + keys = self.keys + level = self.level + # mypy doesn't recognize level/keys as being sized when passed to len + if (is_list_like(level) and len(level) == 1) or ( # type: ignore[arg-type] + is_list_like(keys) and len(keys) == 1 # type: ignore[arg-type] + ): + # GH#25971 + if isinstance(name, tuple) and len(name) == 1: + # Allow users to pass tuples of length 1 to silence warning + name = name[0] + elif not isinstance(name, tuple): + warnings.warn( + "When grouping with a length-1 list-like, " + "you will need to pass a length-1 tuple to get_group in a future " + "version of pandas. Pass `(name,)` instead of `name` to silence " + "this warning.", + FutureWarning, + stacklevel=find_stack_level(), + ) + + inds = self._get_index(name) + if not len(inds): + raise KeyError(name) + + if obj is None: + indexer = inds if self.axis == 0 else (slice(None), inds) + return self._selected_obj.iloc[indexer] + else: + warnings.warn( + "obj is deprecated and will be removed in a future version. " + "Do ``df.iloc[gb.indices.get(name)]`` " + "instead of ``gb.get_group(name, obj=df)``.", + FutureWarning, + stacklevel=find_stack_level(), + ) + return obj._take_with_is_copy(inds, axis=self.axis) + + @final + def __iter__(self) -> Iterator[tuple[Hashable, NDFrameT]]: + """ + Groupby iterator. + + Returns + ------- + Generator yielding sequence of (name, subsetted object) + for each group + + Examples + -------- + + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([1, 2, 3], index=lst) + >>> ser + a 1 + a 2 + b 3 + dtype: int64 + >>> for x, y in ser.groupby(level=0): + ... print(f'{x}\\n{y}\\n') + a + a 1 + a 2 + dtype: int64 + b + b 3 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"]) + >>> df + a b c + 0 1 2 3 + 1 1 5 6 + 2 7 8 9 + >>> for x, y in df.groupby(by=["a"]): + ... print(f'{x}\\n{y}\\n') + (1,) + a b c + 0 1 2 3 + 1 1 5 6 + (7,) + a b c + 2 7 8 9 + + For Resampler: + + >>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex( + ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15'])) + >>> ser + 2023-01-01 1 + 2023-01-15 2 + 2023-02-01 3 + 2023-02-15 4 + dtype: int64 + >>> for x, y in ser.resample('MS'): + ... print(f'{x}\\n{y}\\n') + 2023-01-01 00:00:00 + 2023-01-01 1 + 2023-01-15 2 + dtype: int64 + 2023-02-01 00:00:00 + 2023-02-01 3 + 2023-02-15 4 + dtype: int64 + """ + keys = self.keys + level = self.level + result = self._grouper.get_iterator(self._selected_obj, axis=self.axis) + # error: Argument 1 to "len" has incompatible type "Hashable"; expected "Sized" + if is_list_like(level) and len(level) == 1: # type: ignore[arg-type] + # GH 51583 + warnings.warn( + "Creating a Groupby object with a length-1 list-like " + "level parameter will yield indexes as tuples in a future version. " + "To keep indexes as scalars, create Groupby objects with " + "a scalar level parameter instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + if isinstance(keys, list) and len(keys) == 1: + # GH#42795 - when keys is a list, return tuples even when length is 1 + result = (((key,), group) for key, group in result) + return result + + +# To track operations that expand dimensions, like ohlc +OutputFrameOrSeries = TypeVar("OutputFrameOrSeries", bound=NDFrame) + + +class GroupBy(BaseGroupBy[NDFrameT]): + """ + Class for grouping and aggregating relational data. + + See aggregate, transform, and apply functions on this object. + + It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: + + :: + + grouped = groupby(obj, ...) + + Parameters + ---------- + obj : pandas object + axis : int, default 0 + level : int, default None + Level of MultiIndex + groupings : list of Grouping objects + Most users should ignore this + exclusions : array-like, optional + List of columns to exclude + name : str + Most users should ignore this + + Returns + ------- + **Attributes** + groups : dict + {group name -> group labels} + len(grouped) : int + Number of groups + + Notes + ----- + After grouping, see aggregate, apply, and transform functions. Here are + some other brief notes about usage. When grouping by multiple groups, the + result index will be a MultiIndex (hierarchical) by default. + + Iteration produces (key, group) tuples, i.e. chunking the data by group. So + you can write code like: + + :: + + grouped = obj.groupby(keys, axis=axis) + for key, group in grouped: + # do something with the data + + Function calls on GroupBy, if not specially implemented, "dispatch" to the + grouped data. So if you group a DataFrame and wish to invoke the std() + method on each group, you can simply do: + + :: + + df.groupby(mapper).std() + + rather than + + :: + + df.groupby(mapper).aggregate(np.std) + + You can pass arguments to these "wrapped" functions, too. + + See the online documentation for full exposition on these topics and much + more + """ + + _grouper: ops.BaseGrouper + as_index: bool + + @final + def __init__( + self, + obj: NDFrameT, + keys: _KeysArgType | None = None, + axis: Axis = 0, + level: IndexLabel | None = None, + grouper: ops.BaseGrouper | None = None, + exclusions: frozenset[Hashable] | None = None, + selection: IndexLabel | None = None, + as_index: bool = True, + sort: bool = True, + group_keys: bool = True, + observed: bool | lib.NoDefault = lib.no_default, + dropna: bool = True, + ) -> None: + self._selection = selection + + assert isinstance(obj, NDFrame), type(obj) + + self.level = level + + if not as_index: + if axis != 0: + raise ValueError("as_index=False only valid for axis=0") + + self.as_index = as_index + self.keys = keys + self.sort = sort + self.group_keys = group_keys + self.dropna = dropna + + if grouper is None: + grouper, exclusions, obj = get_grouper( + obj, + keys, + axis=axis, + level=level, + sort=sort, + observed=False if observed is lib.no_default else observed, + dropna=self.dropna, + ) + + if observed is lib.no_default: + if any(ping._passed_categorical for ping in grouper.groupings): + warnings.warn( + "The default of observed=False is deprecated and will be changed " + "to True in a future version of pandas. Pass observed=False to " + "retain current behavior or observed=True to adopt the future " + "default and silence this warning.", + FutureWarning, + stacklevel=find_stack_level(), + ) + observed = False + self.observed = observed + + self.obj = obj + self.axis = obj._get_axis_number(axis) + self._grouper = grouper + self.exclusions = frozenset(exclusions) if exclusions else frozenset() + + def __getattr__(self, attr: str): + if attr in self._internal_names_set: + return object.__getattribute__(self, attr) + if attr in self.obj: + return self[attr] + + raise AttributeError( + f"'{type(self).__name__}' object has no attribute '{attr}'" + ) + + @final + def _deprecate_axis(self, axis: int, name: str) -> None: + if axis == 1: + warnings.warn( + f"{type(self).__name__}.{name} with axis=1 is deprecated and " + "will be removed in a future version. Operate on the un-grouped " + "DataFrame instead", + FutureWarning, + stacklevel=find_stack_level(), + ) + else: + warnings.warn( + f"The 'axis' keyword in {type(self).__name__}.{name} is deprecated " + "and will be removed in a future version. " + "Call without passing 'axis' instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + + @final + def _op_via_apply(self, name: str, *args, **kwargs): + """Compute the result of an operation by using GroupBy's apply.""" + f = getattr(type(self._obj_with_exclusions), name) + sig = inspect.signature(f) + + if "axis" in kwargs and kwargs["axis"] is not lib.no_default: + axis = self.obj._get_axis_number(kwargs["axis"]) + self._deprecate_axis(axis, name) + elif "axis" in kwargs: + # exclude skew here because that was already defaulting to lib.no_default + # before this deprecation was instituted + if name == "skew": + pass + elif name == "fillna": + # maintain the behavior from before the deprecation + kwargs["axis"] = None + else: + kwargs["axis"] = 0 + + # a little trickery for aggregation functions that need an axis + # argument + if "axis" in sig.parameters: + if kwargs.get("axis", None) is None or kwargs.get("axis") is lib.no_default: + kwargs["axis"] = self.axis + + def curried(x): + return f(x, *args, **kwargs) + + # preserve the name so we can detect it when calling plot methods, + # to avoid duplicates + curried.__name__ = name + + # special case otherwise extra plots are created when catching the + # exception below + if name in base.plotting_methods: + return self._python_apply_general(curried, self._selected_obj) + + is_transform = name in base.transformation_kernels + result = self._python_apply_general( + curried, + self._obj_with_exclusions, + is_transform=is_transform, + not_indexed_same=not is_transform, + ) + + if self._grouper.has_dropped_na and is_transform: + # result will have dropped rows due to nans, fill with null + # and ensure index is ordered same as the input + result = self._set_result_index_ordered(result) + return result + + # ----------------------------------------------------------------- + # Dispatch/Wrapping + + @final + def _concat_objects( + self, + values, + not_indexed_same: bool = False, + is_transform: bool = False, + ): + from pandas.core.reshape.concat import concat + + if self.group_keys and not is_transform: + if self.as_index: + # possible MI return case + group_keys = self._grouper.result_index + group_levels = self._grouper.levels + group_names = self._grouper.names + + result = concat( + values, + axis=self.axis, + keys=group_keys, + levels=group_levels, + names=group_names, + sort=False, + ) + else: + # GH5610, returns a MI, with the first level being a + # range index + keys = list(range(len(values))) + result = concat(values, axis=self.axis, keys=keys) + + elif not not_indexed_same: + result = concat(values, axis=self.axis) + + ax = self._selected_obj._get_axis(self.axis) + if self.dropna: + labels = self._grouper.group_info[0] + mask = labels != -1 + ax = ax[mask] + + # this is a very unfortunate situation + # we can't use reindex to restore the original order + # when the ax has duplicates + # so we resort to this + # GH 14776, 30667 + # TODO: can we reuse e.g. _reindex_non_unique? + if ax.has_duplicates and not result.axes[self.axis].equals(ax): + # e.g. test_category_order_transformer + target = algorithms.unique1d(ax._values) + indexer, _ = result.index.get_indexer_non_unique(target) + result = result.take(indexer, axis=self.axis) + else: + result = result.reindex(ax, axis=self.axis, copy=False) + + else: + result = concat(values, axis=self.axis) + + if self.obj.ndim == 1: + name = self.obj.name + elif is_hashable(self._selection): + name = self._selection + else: + name = None + + if isinstance(result, Series) and name is not None: + result.name = name + + return result + + @final + def _set_result_index_ordered( + self, result: OutputFrameOrSeries + ) -> OutputFrameOrSeries: + # set the result index on the passed values object and + # return the new object, xref 8046 + + obj_axis = self.obj._get_axis(self.axis) + + if self._grouper.is_monotonic and not self._grouper.has_dropped_na: + # shortcut if we have an already ordered grouper + result = result.set_axis(obj_axis, axis=self.axis, copy=False) + return result + + # row order is scrambled => sort the rows by position in original index + original_positions = Index(self._grouper.result_ilocs()) + result = result.set_axis(original_positions, axis=self.axis, copy=False) + result = result.sort_index(axis=self.axis) + if self._grouper.has_dropped_na: + # Add back in any missing rows due to dropna - index here is integral + # with values referring to the row of the input so can use RangeIndex + result = result.reindex(RangeIndex(len(obj_axis)), axis=self.axis) + result = result.set_axis(obj_axis, axis=self.axis, copy=False) + + return result + + @final + def _insert_inaxis_grouper(self, result: Series | DataFrame) -> DataFrame: + if isinstance(result, Series): + result = result.to_frame() + + # zip in reverse so we can always insert at loc 0 + columns = result.columns + for name, lev, in_axis in zip( + reversed(self._grouper.names), + reversed(self._grouper.get_group_levels()), + reversed([grp.in_axis for grp in self._grouper.groupings]), + ): + # GH #28549 + # When using .apply(-), name will be in columns already + if name not in columns: + if in_axis: + result.insert(0, name, lev) + else: + msg = ( + "A grouping was used that is not in the columns of the " + "DataFrame and so was excluded from the result. This grouping " + "will be included in a future version of pandas. Add the " + "grouping as a column of the DataFrame to silence this warning." + ) + warnings.warn( + message=msg, + category=FutureWarning, + stacklevel=find_stack_level(), + ) + + return result + + @final + def _maybe_transpose_result(self, result: NDFrameT) -> NDFrameT: + if self.axis == 1: + # Only relevant for DataFrameGroupBy, no-op for SeriesGroupBy + result = result.T + if result.index.equals(self.obj.index): + # Retain e.g. DatetimeIndex/TimedeltaIndex freq + # e.g. test_groupby_crash_on_nunique + result.index = self.obj.index.copy() + return result + + @final + def _wrap_aggregated_output( + self, + result: Series | DataFrame, + qs: npt.NDArray[np.float64] | None = None, + ): + """ + Wraps the output of GroupBy aggregations into the expected result. + + Parameters + ---------- + result : Series, DataFrame + + Returns + ------- + Series or DataFrame + """ + # ATM we do not get here for SeriesGroupBy; when we do, we will + # need to require that result.name already match self.obj.name + + if not self.as_index: + # `not self.as_index` is only relevant for DataFrameGroupBy, + # enforced in __init__ + result = self._insert_inaxis_grouper(result) + result = result._consolidate() + index = Index(range(self._grouper.ngroups)) + + else: + index = self._grouper.result_index + + if qs is not None: + # We get here with len(qs) != 1 and not self.as_index + # in test_pass_args_kwargs + index = _insert_quantile_level(index, qs) + + result.index = index + + # error: Argument 1 to "_maybe_transpose_result" of "GroupBy" has + # incompatible type "Union[Series, DataFrame]"; expected "NDFrameT" + res = self._maybe_transpose_result(result) # type: ignore[arg-type] + return self._reindex_output(res, qs=qs) + + def _wrap_applied_output( + self, + data, + values: list, + not_indexed_same: bool = False, + is_transform: bool = False, + ): + raise AbstractMethodError(self) + + # ----------------------------------------------------------------- + # numba + + @final + def _numba_prep(self, data: DataFrame): + ids, _, ngroups = self._grouper.group_info + sorted_index = self._grouper._sort_idx + sorted_ids = self._grouper._sorted_ids + + sorted_data = data.take(sorted_index, axis=self.axis).to_numpy() + # GH 46867 + index_data = data.index + if isinstance(index_data, MultiIndex): + if len(self._grouper.groupings) > 1: + raise NotImplementedError( + "Grouping with more than 1 grouping labels and " + "a MultiIndex is not supported with engine='numba'" + ) + group_key = self._grouper.groupings[0].name + index_data = index_data.get_level_values(group_key) + sorted_index_data = index_data.take(sorted_index).to_numpy() + + starts, ends = lib.generate_slices(sorted_ids, ngroups) + return ( + starts, + ends, + sorted_index_data, + sorted_data, + ) + + def _numba_agg_general( + self, + func: Callable, + dtype_mapping: dict[np.dtype, Any], + engine_kwargs: dict[str, bool] | None, + **aggregator_kwargs, + ): + """ + Perform groupby with a standard numerical aggregation function (e.g. mean) + with Numba. + """ + if not self.as_index: + raise NotImplementedError( + "as_index=False is not supported. Use .reset_index() instead." + ) + if self.axis == 1: + raise NotImplementedError("axis=1 is not supported.") + + data = self._obj_with_exclusions + df = data if data.ndim == 2 else data.to_frame() + + aggregator = executor.generate_shared_aggregator( + func, + dtype_mapping, + True, # is_grouped_kernel + **get_jit_arguments(engine_kwargs), + ) + # Pass group ids to kernel directly if it can handle it + # (This is faster since it doesn't require a sort) + ids, _, _ = self._grouper.group_info + ngroups = self._grouper.ngroups + + res_mgr = df._mgr.apply( + aggregator, labels=ids, ngroups=ngroups, **aggregator_kwargs + ) + res_mgr.axes[1] = self._grouper.result_index + result = df._constructor_from_mgr(res_mgr, axes=res_mgr.axes) + + if data.ndim == 1: + result = result.squeeze("columns") + result.name = data.name + else: + result.columns = data.columns + return result + + @final + def _transform_with_numba(self, func, *args, engine_kwargs=None, **kwargs): + """ + Perform groupby transform routine with the numba engine. + + This routine mimics the data splitting routine of the DataSplitter class + to generate the indices of each group in the sorted data and then passes the + data and indices into a Numba jitted function. + """ + data = self._obj_with_exclusions + df = data if data.ndim == 2 else data.to_frame() + + starts, ends, sorted_index, sorted_data = self._numba_prep(df) + numba_.validate_udf(func) + numba_transform_func = numba_.generate_numba_transform_func( + func, **get_jit_arguments(engine_kwargs, kwargs) + ) + result = numba_transform_func( + sorted_data, + sorted_index, + starts, + ends, + len(df.columns), + *args, + ) + # result values needs to be resorted to their original positions since we + # evaluated the data sorted by group + result = result.take(np.argsort(sorted_index), axis=0) + index = data.index + if data.ndim == 1: + result_kwargs = {"name": data.name} + result = result.ravel() + else: + result_kwargs = {"columns": data.columns} + return data._constructor(result, index=index, **result_kwargs) + + @final + def _aggregate_with_numba(self, func, *args, engine_kwargs=None, **kwargs): + """ + Perform groupby aggregation routine with the numba engine. + + This routine mimics the data splitting routine of the DataSplitter class + to generate the indices of each group in the sorted data and then passes the + data and indices into a Numba jitted function. + """ + data = self._obj_with_exclusions + df = data if data.ndim == 2 else data.to_frame() + + starts, ends, sorted_index, sorted_data = self._numba_prep(df) + numba_.validate_udf(func) + numba_agg_func = numba_.generate_numba_agg_func( + func, **get_jit_arguments(engine_kwargs, kwargs) + ) + result = numba_agg_func( + sorted_data, + sorted_index, + starts, + ends, + len(df.columns), + *args, + ) + index = self._grouper.result_index + if data.ndim == 1: + result_kwargs = {"name": data.name} + result = result.ravel() + else: + result_kwargs = {"columns": data.columns} + res = data._constructor(result, index=index, **result_kwargs) + if not self.as_index: + res = self._insert_inaxis_grouper(res) + res.index = default_index(len(res)) + return res + + # ----------------------------------------------------------------- + # apply/agg/transform + + @Appender( + _apply_docs["template"].format( + input="dataframe", examples=_apply_docs["dataframe_examples"] + ) + ) + def apply(self, func, *args, include_groups: bool = True, **kwargs) -> NDFrameT: + orig_func = func + func = com.is_builtin_func(func) + if orig_func != func: + alias = com._builtin_table_alias[orig_func] + warn_alias_replacement(self, orig_func, alias) + + if isinstance(func, str): + if hasattr(self, func): + res = getattr(self, func) + if callable(res): + return res(*args, **kwargs) + elif args or kwargs: + raise ValueError(f"Cannot pass arguments to property {func}") + return res + + else: + raise TypeError(f"apply func should be callable, not '{func}'") + + elif args or kwargs: + if callable(func): + + @wraps(func) + def f(g): + return func(g, *args, **kwargs) + + else: + raise ValueError( + "func must be a callable if args or kwargs are supplied" + ) + else: + f = func + + if not include_groups: + return self._python_apply_general(f, self._obj_with_exclusions) + + # ignore SettingWithCopy here in case the user mutates + with option_context("mode.chained_assignment", None): + try: + result = self._python_apply_general(f, self._selected_obj) + if ( + not isinstance(self.obj, Series) + and self._selection is None + and self._selected_obj.shape != self._obj_with_exclusions.shape + ): + warnings.warn( + message=_apply_groupings_depr.format( + type(self).__name__, "apply" + ), + category=DeprecationWarning, + stacklevel=find_stack_level(), + ) + except TypeError: + # gh-20949 + # try again, with .apply acting as a filtering + # operation, by excluding the grouping column + # This would normally not be triggered + # except if the udf is trying an operation that + # fails on *some* columns, e.g. a numeric operation + # on a string grouper column + + return self._python_apply_general(f, self._obj_with_exclusions) + + return result + + @final + def _python_apply_general( + self, + f: Callable, + data: DataFrame | Series, + not_indexed_same: bool | None = None, + is_transform: bool = False, + is_agg: bool = False, + ) -> NDFrameT: + """ + Apply function f in python space + + Parameters + ---------- + f : callable + Function to apply + data : Series or DataFrame + Data to apply f to + not_indexed_same: bool, optional + When specified, overrides the value of not_indexed_same. Apply behaves + differently when the result index is equal to the input index, but + this can be coincidental leading to value-dependent behavior. + is_transform : bool, default False + Indicator for whether the function is actually a transform + and should not have group keys prepended. + is_agg : bool, default False + Indicator for whether the function is an aggregation. When the + result is empty, we don't want to warn for this case. + See _GroupBy._python_agg_general. + + Returns + ------- + Series or DataFrame + data after applying f + """ + values, mutated = self._grouper.apply_groupwise(f, data, self.axis) + if not_indexed_same is None: + not_indexed_same = mutated + + return self._wrap_applied_output( + data, + values, + not_indexed_same, + is_transform, + ) + + @final + def _agg_general( + self, + numeric_only: bool = False, + min_count: int = -1, + *, + alias: str, + npfunc: Callable | None = None, + **kwargs, + ): + result = self._cython_agg_general( + how=alias, + alt=npfunc, + numeric_only=numeric_only, + min_count=min_count, + **kwargs, + ) + return result.__finalize__(self.obj, method="groupby") + + def _agg_py_fallback( + self, how: str, values: ArrayLike, ndim: int, alt: Callable + ) -> ArrayLike: + """ + Fallback to pure-python aggregation if _cython_operation raises + NotImplementedError. + """ + # We get here with a) EADtypes and b) object dtype + assert alt is not None + + if values.ndim == 1: + # For DataFrameGroupBy we only get here with ExtensionArray + ser = Series(values, copy=False) + else: + # We only get here with values.dtype == object + df = DataFrame(values.T, dtype=values.dtype) + # bc we split object blocks in grouped_reduce, we have only 1 col + # otherwise we'd have to worry about block-splitting GH#39329 + assert df.shape[1] == 1 + # Avoid call to self.values that can occur in DataFrame + # reductions; see GH#28949 + ser = df.iloc[:, 0] + + # We do not get here with UDFs, so we know that our dtype + # should always be preserved by the implemented aggregations + # TODO: Is this exactly right; see WrappedCythonOp get_result_dtype? + try: + res_values = self._grouper.agg_series(ser, alt, preserve_dtype=True) + except Exception as err: + msg = f"agg function failed [how->{how},dtype->{ser.dtype}]" + # preserve the kind of exception that raised + raise type(err)(msg) from err + + if ser.dtype == object: + res_values = res_values.astype(object, copy=False) + + # If we are DataFrameGroupBy and went through a SeriesGroupByPath + # then we need to reshape + # GH#32223 includes case with IntegerArray values, ndarray res_values + # test_groupby_duplicate_columns with object dtype values + return ensure_block_shape(res_values, ndim=ndim) + + @final + def _cython_agg_general( + self, + how: str, + alt: Callable | None = None, + numeric_only: bool = False, + min_count: int = -1, + **kwargs, + ): + # Note: we never get here with how="ohlc" for DataFrameGroupBy; + # that goes through SeriesGroupBy + + data = self._get_data_to_aggregate(numeric_only=numeric_only, name=how) + + def array_func(values: ArrayLike) -> ArrayLike: + try: + result = self._grouper._cython_operation( + "aggregate", + values, + how, + axis=data.ndim - 1, + min_count=min_count, + **kwargs, + ) + except NotImplementedError: + # generally if we have numeric_only=False + # and non-applicable functions + # try to python agg + # TODO: shouldn't min_count matter? + # TODO: avoid special casing SparseArray here + if how in ["any", "all"] and isinstance(values, SparseArray): + pass + elif alt is None or how in ["any", "all", "std", "sem"]: + raise # TODO: re-raise as TypeError? should not be reached + else: + return result + + assert alt is not None + result = self._agg_py_fallback(how, values, ndim=data.ndim, alt=alt) + return result + + new_mgr = data.grouped_reduce(array_func) + res = self._wrap_agged_manager(new_mgr) + if how in ["idxmin", "idxmax"]: + res = self._wrap_idxmax_idxmin(res) + out = self._wrap_aggregated_output(res) + if self.axis == 1: + out = out.infer_objects(copy=False) + return out + + def _cython_transform( + self, how: str, numeric_only: bool = False, axis: AxisInt = 0, **kwargs + ): + raise AbstractMethodError(self) + + @final + def _transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): + # optimized transforms + orig_func = func + func = com.get_cython_func(func) or func + if orig_func != func: + warn_alias_replacement(self, orig_func, func) + + if not isinstance(func, str): + return self._transform_general(func, engine, engine_kwargs, *args, **kwargs) + + elif func not in base.transform_kernel_allowlist: + msg = f"'{func}' is not a valid function name for transform(name)" + raise ValueError(msg) + elif func in base.cythonized_kernels or func in base.transformation_kernels: + # cythonized transform or canned "agg+broadcast" + if engine is not None: + kwargs["engine"] = engine + kwargs["engine_kwargs"] = engine_kwargs + return getattr(self, func)(*args, **kwargs) + + else: + # i.e. func in base.reduction_kernels + + # GH#30918 Use _transform_fast only when we know func is an aggregation + # If func is a reduction, we need to broadcast the + # result to the whole group. Compute func result + # and deal with possible broadcasting below. + with com.temp_setattr(self, "as_index", True): + # GH#49834 - result needs groups in the index for + # _wrap_transform_fast_result + if func in ["idxmin", "idxmax"]: + func = cast(Literal["idxmin", "idxmax"], func) + result = self._idxmax_idxmin(func, True, *args, **kwargs) + else: + if engine is not None: + kwargs["engine"] = engine + kwargs["engine_kwargs"] = engine_kwargs + result = getattr(self, func)(*args, **kwargs) + + return self._wrap_transform_fast_result(result) + + @final + def _wrap_transform_fast_result(self, result: NDFrameT) -> NDFrameT: + """ + Fast transform path for aggregations. + """ + obj = self._obj_with_exclusions + + # for each col, reshape to size of original frame by take operation + ids, _, _ = self._grouper.group_info + result = result.reindex(self._grouper.result_index, axis=self.axis, copy=False) + + if self.obj.ndim == 1: + # i.e. SeriesGroupBy + out = algorithms.take_nd(result._values, ids) + output = obj._constructor(out, index=obj.index, name=obj.name) + else: + # `.size()` gives Series output on DataFrame input, need axis 0 + axis = 0 if result.ndim == 1 else self.axis + # GH#46209 + # Don't convert indices: negative indices need to give rise + # to null values in the result + new_ax = result.axes[axis].take(ids) + output = result._reindex_with_indexers( + {axis: (new_ax, ids)}, allow_dups=True, copy=False + ) + output = output.set_axis(obj._get_axis(self.axis), axis=axis) + return output + + # ----------------------------------------------------------------- + # Utilities + + @final + def _apply_filter(self, indices, dropna): + if len(indices) == 0: + indices = np.array([], dtype="int64") + else: + indices = np.sort(np.concatenate(indices)) + if dropna: + filtered = self._selected_obj.take(indices, axis=self.axis) + else: + mask = np.empty(len(self._selected_obj.index), dtype=bool) + mask.fill(False) + mask[indices.astype(int)] = True + # mask fails to broadcast when passed to where; broadcast manually. + mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T + filtered = self._selected_obj.where(mask) # Fill with NaNs. + return filtered + + @final + def _cumcount_array(self, ascending: bool = True) -> np.ndarray: + """ + Parameters + ---------- + ascending : bool, default True + If False, number in reverse, from length of group - 1 to 0. + + Notes + ----- + this is currently implementing sort=False + (though the default is sort=True) for groupby in general + """ + ids, _, ngroups = self._grouper.group_info + sorter = get_group_index_sorter(ids, ngroups) + ids, count = ids[sorter], len(ids) + + if count == 0: + return np.empty(0, dtype=np.int64) + + run = np.r_[True, ids[:-1] != ids[1:]] + rep = np.diff(np.r_[np.nonzero(run)[0], count]) + out = (~run).cumsum() + + if ascending: + out -= np.repeat(out[run], rep) + else: + out = np.repeat(out[np.r_[run[1:], True]], rep) - out + + if self._grouper.has_dropped_na: + out = np.where(ids == -1, np.nan, out.astype(np.float64, copy=False)) + else: + out = out.astype(np.int64, copy=False) + + rev = np.empty(count, dtype=np.intp) + rev[sorter] = np.arange(count, dtype=np.intp) + return out[rev] + + # ----------------------------------------------------------------- + + @final + @property + def _obj_1d_constructor(self) -> Callable: + # GH28330 preserve subclassed Series/DataFrames + if isinstance(self.obj, DataFrame): + return self.obj._constructor_sliced + assert isinstance(self.obj, Series) + return self.obj._constructor + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def any(self, skipna: bool = True) -> NDFrameT: + """ + Return True if any value in the group is truthful, else False. + + Parameters + ---------- + skipna : bool, default True + Flag to ignore nan values during truth testing. + + Returns + ------- + Series or DataFrame + DataFrame or Series of boolean values, where a value is True if any element + is True within its respective group, False otherwise. + %(see_also)s + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([1, 2, 0], index=lst) + >>> ser + a 1 + a 2 + b 0 + dtype: int64 + >>> ser.groupby(level=0).any() + a True + b False + dtype: bool + + For DataFrameGroupBy: + + >>> data = [[1, 0, 3], [1, 0, 6], [7, 1, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["ostrich", "penguin", "parrot"]) + >>> df + a b c + ostrich 1 0 3 + penguin 1 0 6 + parrot 7 1 9 + >>> df.groupby(by=["a"]).any() + b c + a + 1 False True + 7 True True + """ + return self._cython_agg_general( + "any", + alt=lambda x: Series(x, copy=False).any(skipna=skipna), + skipna=skipna, + ) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def all(self, skipna: bool = True) -> NDFrameT: + """ + Return True if all values in the group are truthful, else False. + + Parameters + ---------- + skipna : bool, default True + Flag to ignore nan values during truth testing. + + Returns + ------- + Series or DataFrame + DataFrame or Series of boolean values, where a value is True if all elements + are True within its respective group, False otherwise. + %(see_also)s + Examples + -------- + + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([1, 2, 0], index=lst) + >>> ser + a 1 + a 2 + b 0 + dtype: int64 + >>> ser.groupby(level=0).all() + a True + b False + dtype: bool + + For DataFrameGroupBy: + + >>> data = [[1, 0, 3], [1, 5, 6], [7, 8, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["ostrich", "penguin", "parrot"]) + >>> df + a b c + ostrich 1 0 3 + penguin 1 5 6 + parrot 7 8 9 + >>> df.groupby(by=["a"]).all() + b c + a + 1 False True + 7 True True + """ + return self._cython_agg_general( + "all", + alt=lambda x: Series(x, copy=False).all(skipna=skipna), + skipna=skipna, + ) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def count(self) -> NDFrameT: + """ + Compute count of group, excluding missing values. + + Returns + ------- + Series or DataFrame + Count of values within each group. + %(see_also)s + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([1, 2, np.nan], index=lst) + >>> ser + a 1.0 + a 2.0 + b NaN + dtype: float64 + >>> ser.groupby(level=0).count() + a 2 + b 0 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, np.nan, 3], [1, np.nan, 6], [7, 8, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["cow", "horse", "bull"]) + >>> df + a b c + cow 1 NaN 3 + horse 1 NaN 6 + bull 7 8.0 9 + >>> df.groupby("a").count() + b c + a + 1 0 2 + 7 1 1 + + For Resampler: + + >>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex( + ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15'])) + >>> ser + 2023-01-01 1 + 2023-01-15 2 + 2023-02-01 3 + 2023-02-15 4 + dtype: int64 + >>> ser.resample('MS').count() + 2023-01-01 2 + 2023-02-01 2 + Freq: MS, dtype: int64 + """ + data = self._get_data_to_aggregate() + ids, _, ngroups = self._grouper.group_info + mask = ids != -1 + + is_series = data.ndim == 1 + + def hfunc(bvalues: ArrayLike) -> ArrayLike: + # TODO(EA2D): reshape would not be necessary with 2D EAs + if bvalues.ndim == 1: + # EA + masked = mask & ~isna(bvalues).reshape(1, -1) + else: + masked = mask & ~isna(bvalues) + + counted = lib.count_level_2d(masked, labels=ids, max_bin=ngroups) + if isinstance(bvalues, BaseMaskedArray): + return IntegerArray( + counted[0], mask=np.zeros(counted.shape[1], dtype=np.bool_) + ) + elif isinstance(bvalues, ArrowExtensionArray) and not isinstance( + bvalues.dtype, StringDtype + ): + dtype = pandas_dtype("int64[pyarrow]") + return type(bvalues)._from_sequence(counted[0], dtype=dtype) + if is_series: + assert counted.ndim == 2 + assert counted.shape[0] == 1 + return counted[0] + return counted + + new_mgr = data.grouped_reduce(hfunc) + new_obj = self._wrap_agged_manager(new_mgr) + + # If we are grouping on categoricals we want unobserved categories to + # return zero, rather than the default of NaN which the reindexing in + # _wrap_aggregated_output() returns. GH 35028 + # e.g. test_dataframe_groupby_on_2_categoricals_when_observed_is_false + with com.temp_setattr(self, "observed", True): + result = self._wrap_aggregated_output(new_obj) + + return self._reindex_output(result, fill_value=0) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def mean( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + """ + Compute mean of groups, excluding missing values. + + Parameters + ---------- + numeric_only : bool, default False + Include only float, int, boolean columns. + + .. versionchanged:: 2.0.0 + + numeric_only no longer accepts ``None`` and defaults to ``False``. + + engine : str, default None + * ``'cython'`` : Runs the operation through C-extensions from cython. + * ``'numba'`` : Runs the operation through JIT compiled code from numba. + * ``None`` : Defaults to ``'cython'`` or globally setting + ``compute.use_numba`` + + .. versionadded:: 1.4.0 + + engine_kwargs : dict, default None + * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` + + .. versionadded:: 1.4.0 + + Returns + ------- + pandas.Series or pandas.DataFrame + %(see_also)s + Examples + -------- + >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], + ... 'B': [np.nan, 2, 3, 4, 5], + ... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C']) + + Groupby one column and return the mean of the remaining columns in + each group. + + >>> df.groupby('A').mean() + B C + A + 1 3.0 1.333333 + 2 4.0 1.500000 + + Groupby two columns and return the mean of the remaining column. + + >>> df.groupby(['A', 'B']).mean() + C + A B + 1 2.0 2.0 + 4.0 1.0 + 2 3.0 1.0 + 5.0 2.0 + + Groupby one column and return the mean of only particular column in + the group. + + >>> df.groupby('A')['B'].mean() + A + 1 3.0 + 2 4.0 + Name: B, dtype: float64 + """ + + if maybe_use_numba(engine): + from pandas.core._numba.kernels import grouped_mean + + return self._numba_agg_general( + grouped_mean, + executor.float_dtype_mapping, + engine_kwargs, + min_periods=0, + ) + else: + result = self._cython_agg_general( + "mean", + alt=lambda x: Series(x, copy=False).mean(numeric_only=numeric_only), + numeric_only=numeric_only, + ) + return result.__finalize__(self.obj, method="groupby") + + @final + def median(self, numeric_only: bool = False) -> NDFrameT: + """ + Compute median of groups, excluding missing values. + + For multiple groupings, the result index will be a MultiIndex + + Parameters + ---------- + numeric_only : bool, default False + Include only float, int, boolean columns. + + .. versionchanged:: 2.0.0 + + numeric_only no longer accepts ``None`` and defaults to False. + + Returns + ------- + Series or DataFrame + Median of values within each group. + + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] + >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst) + >>> ser + a 7 + a 2 + a 8 + b 4 + b 3 + b 3 + dtype: int64 + >>> ser.groupby(level=0).median() + a 7.0 + b 3.0 + dtype: float64 + + For DataFrameGroupBy: + + >>> data = {'a': [1, 3, 5, 7, 7, 8, 3], 'b': [1, 4, 8, 4, 4, 2, 1]} + >>> df = pd.DataFrame(data, index=['dog', 'dog', 'dog', + ... 'mouse', 'mouse', 'mouse', 'mouse']) + >>> df + a b + dog 1 1 + dog 3 4 + dog 5 8 + mouse 7 4 + mouse 7 4 + mouse 8 2 + mouse 3 1 + >>> df.groupby(level=0).median() + a b + dog 3.0 4.0 + mouse 7.0 3.0 + + For Resampler: + + >>> ser = pd.Series([1, 2, 3, 3, 4, 5], + ... index=pd.DatetimeIndex(['2023-01-01', + ... '2023-01-10', + ... '2023-01-15', + ... '2023-02-01', + ... '2023-02-10', + ... '2023-02-15'])) + >>> ser.resample('MS').median() + 2023-01-01 2.0 + 2023-02-01 4.0 + Freq: MS, dtype: float64 + """ + result = self._cython_agg_general( + "median", + alt=lambda x: Series(x, copy=False).median(numeric_only=numeric_only), + numeric_only=numeric_only, + ) + return result.__finalize__(self.obj, method="groupby") + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def std( + self, + ddof: int = 1, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + numeric_only: bool = False, + ): + """ + Compute standard deviation of groups, excluding missing values. + + For multiple groupings, the result index will be a MultiIndex. + + Parameters + ---------- + ddof : int, default 1 + Degrees of freedom. + + engine : str, default None + * ``'cython'`` : Runs the operation through C-extensions from cython. + * ``'numba'`` : Runs the operation through JIT compiled code from numba. + * ``None`` : Defaults to ``'cython'`` or globally setting + ``compute.use_numba`` + + .. versionadded:: 1.4.0 + + engine_kwargs : dict, default None + * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` + + .. versionadded:: 1.4.0 + + numeric_only : bool, default False + Include only `float`, `int` or `boolean` data. + + .. versionadded:: 1.5.0 + + .. versionchanged:: 2.0.0 + + numeric_only now defaults to ``False``. + + Returns + ------- + Series or DataFrame + Standard deviation of values within each group. + %(see_also)s + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] + >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst) + >>> ser + a 7 + a 2 + a 8 + b 4 + b 3 + b 3 + dtype: int64 + >>> ser.groupby(level=0).std() + a 3.21455 + b 0.57735 + dtype: float64 + + For DataFrameGroupBy: + + >>> data = {'a': [1, 3, 5, 7, 7, 8, 3], 'b': [1, 4, 8, 4, 4, 2, 1]} + >>> df = pd.DataFrame(data, index=['dog', 'dog', 'dog', + ... 'mouse', 'mouse', 'mouse', 'mouse']) + >>> df + a b + dog 1 1 + dog 3 4 + dog 5 8 + mouse 7 4 + mouse 7 4 + mouse 8 2 + mouse 3 1 + >>> df.groupby(level=0).std() + a b + dog 2.000000 3.511885 + mouse 2.217356 1.500000 + """ + if maybe_use_numba(engine): + from pandas.core._numba.kernels import grouped_var + + return np.sqrt( + self._numba_agg_general( + grouped_var, + executor.float_dtype_mapping, + engine_kwargs, + min_periods=0, + ddof=ddof, + ) + ) + else: + return self._cython_agg_general( + "std", + alt=lambda x: Series(x, copy=False).std(ddof=ddof), + numeric_only=numeric_only, + ddof=ddof, + ) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def var( + self, + ddof: int = 1, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + numeric_only: bool = False, + ): + """ + Compute variance of groups, excluding missing values. + + For multiple groupings, the result index will be a MultiIndex. + + Parameters + ---------- + ddof : int, default 1 + Degrees of freedom. + + engine : str, default None + * ``'cython'`` : Runs the operation through C-extensions from cython. + * ``'numba'`` : Runs the operation through JIT compiled code from numba. + * ``None`` : Defaults to ``'cython'`` or globally setting + ``compute.use_numba`` + + .. versionadded:: 1.4.0 + + engine_kwargs : dict, default None + * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` + + .. versionadded:: 1.4.0 + + numeric_only : bool, default False + Include only `float`, `int` or `boolean` data. + + .. versionadded:: 1.5.0 + + .. versionchanged:: 2.0.0 + + numeric_only now defaults to ``False``. + + Returns + ------- + Series or DataFrame + Variance of values within each group. + %(see_also)s + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] + >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst) + >>> ser + a 7 + a 2 + a 8 + b 4 + b 3 + b 3 + dtype: int64 + >>> ser.groupby(level=0).var() + a 10.333333 + b 0.333333 + dtype: float64 + + For DataFrameGroupBy: + + >>> data = {'a': [1, 3, 5, 7, 7, 8, 3], 'b': [1, 4, 8, 4, 4, 2, 1]} + >>> df = pd.DataFrame(data, index=['dog', 'dog', 'dog', + ... 'mouse', 'mouse', 'mouse', 'mouse']) + >>> df + a b + dog 1 1 + dog 3 4 + dog 5 8 + mouse 7 4 + mouse 7 4 + mouse 8 2 + mouse 3 1 + >>> df.groupby(level=0).var() + a b + dog 4.000000 12.333333 + mouse 4.916667 2.250000 + """ + if maybe_use_numba(engine): + from pandas.core._numba.kernels import grouped_var + + return self._numba_agg_general( + grouped_var, + executor.float_dtype_mapping, + engine_kwargs, + min_periods=0, + ddof=ddof, + ) + else: + return self._cython_agg_general( + "var", + alt=lambda x: Series(x, copy=False).var(ddof=ddof), + numeric_only=numeric_only, + ddof=ddof, + ) + + @final + def _value_counts( + self, + subset: Sequence[Hashable] | None = None, + normalize: bool = False, + sort: bool = True, + ascending: bool = False, + dropna: bool = True, + ) -> DataFrame | Series: + """ + Shared implementation of value_counts for SeriesGroupBy and DataFrameGroupBy. + + SeriesGroupBy additionally supports a bins argument. See the docstring of + DataFrameGroupBy.value_counts for a description of arguments. + """ + if self.axis == 1: + raise NotImplementedError( + "DataFrameGroupBy.value_counts only handles axis=0" + ) + name = "proportion" if normalize else "count" + + df = self.obj + obj = self._obj_with_exclusions + + in_axis_names = { + grouping.name for grouping in self._grouper.groupings if grouping.in_axis + } + if isinstance(obj, Series): + _name = obj.name + keys = [] if _name in in_axis_names else [obj] + else: + unique_cols = set(obj.columns) + if subset is not None: + subsetted = set(subset) + clashing = subsetted & set(in_axis_names) + if clashing: + raise ValueError( + f"Keys {clashing} in subset cannot be in " + "the groupby column keys." + ) + doesnt_exist = subsetted - unique_cols + if doesnt_exist: + raise ValueError( + f"Keys {doesnt_exist} in subset do not " + f"exist in the DataFrame." + ) + else: + subsetted = unique_cols + + keys = [ + # Can't use .values because the column label needs to be preserved + obj.iloc[:, idx] + for idx, _name in enumerate(obj.columns) + if _name not in in_axis_names and _name in subsetted + ] + + groupings = list(self._grouper.groupings) + for key in keys: + grouper, _, _ = get_grouper( + df, + key=key, + axis=self.axis, + sort=self.sort, + observed=False, + dropna=dropna, + ) + groupings += list(grouper.groupings) + + # Take the size of the overall columns + gb = df.groupby( + groupings, + sort=self.sort, + observed=self.observed, + dropna=self.dropna, + ) + result_series = cast(Series, gb.size()) + result_series.name = name + + # GH-46357 Include non-observed categories + # of non-grouping columns regardless of `observed` + if any( + isinstance(grouping.grouping_vector, (Categorical, CategoricalIndex)) + and not grouping._observed + for grouping in groupings + ): + levels_list = [ping._result_index for ping in groupings] + multi_index = MultiIndex.from_product( + levels_list, names=[ping.name for ping in groupings] + ) + result_series = result_series.reindex(multi_index, fill_value=0) + + if sort: + # Sort by the values + result_series = result_series.sort_values( + ascending=ascending, kind="stable" + ) + if self.sort: + # Sort by the groupings + names = result_series.index.names + # GH#55951 - Temporarily replace names in case they are integers + result_series.index.names = range(len(names)) + index_level = list(range(len(self._grouper.groupings))) + result_series = result_series.sort_index( + level=index_level, sort_remaining=False + ) + result_series.index.names = names + + if normalize: + # Normalize the results by dividing by the original group sizes. + # We are guaranteed to have the first N levels be the + # user-requested grouping. + levels = list( + range(len(self._grouper.groupings), result_series.index.nlevels) + ) + indexed_group_size = result_series.groupby( + result_series.index.droplevel(levels), + sort=self.sort, + dropna=self.dropna, + # GH#43999 - deprecation of observed=False + observed=False, + ).transform("sum") + result_series /= indexed_group_size + + # Handle groups of non-observed categories + result_series = result_series.fillna(0.0) + + result: Series | DataFrame + if self.as_index: + result = result_series + else: + # Convert to frame + index = result_series.index + columns = com.fill_missing_names(index.names) + if name in columns: + raise ValueError(f"Column label '{name}' is duplicate of result column") + result_series.name = name + result_series.index = index.set_names(range(len(columns))) + result_frame = result_series.reset_index() + orig_dtype = self._grouper.groupings[0].obj.columns.dtype # type: ignore[union-attr] + cols = Index(columns, dtype=orig_dtype).insert(len(columns), name) + result_frame.columns = cols + result = result_frame + return result.__finalize__(self.obj, method="value_counts") + + @final + def sem(self, ddof: int = 1, numeric_only: bool = False) -> NDFrameT: + """ + Compute standard error of the mean of groups, excluding missing values. + + For multiple groupings, the result index will be a MultiIndex. + + Parameters + ---------- + ddof : int, default 1 + Degrees of freedom. + + numeric_only : bool, default False + Include only `float`, `int` or `boolean` data. + + .. versionadded:: 1.5.0 + + .. versionchanged:: 2.0.0 + + numeric_only now defaults to ``False``. + + Returns + ------- + Series or DataFrame + Standard error of the mean of values within each group. + + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b', 'b'] + >>> ser = pd.Series([5, 10, 8, 14], index=lst) + >>> ser + a 5 + a 10 + b 8 + b 14 + dtype: int64 + >>> ser.groupby(level=0).sem() + a 2.5 + b 3.0 + dtype: float64 + + For DataFrameGroupBy: + + >>> data = [[1, 12, 11], [1, 15, 2], [2, 5, 8], [2, 6, 12]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["tuna", "salmon", "catfish", "goldfish"]) + >>> df + a b c + tuna 1 12 11 + salmon 1 15 2 + catfish 2 5 8 + goldfish 2 6 12 + >>> df.groupby("a").sem() + b c + a + 1 1.5 4.5 + 2 0.5 2.0 + + For Resampler: + + >>> ser = pd.Series([1, 3, 2, 4, 3, 8], + ... index=pd.DatetimeIndex(['2023-01-01', + ... '2023-01-10', + ... '2023-01-15', + ... '2023-02-01', + ... '2023-02-10', + ... '2023-02-15'])) + >>> ser.resample('MS').sem() + 2023-01-01 0.577350 + 2023-02-01 1.527525 + Freq: MS, dtype: float64 + """ + if numeric_only and self.obj.ndim == 1 and not is_numeric_dtype(self.obj.dtype): + raise TypeError( + f"{type(self).__name__}.sem called with " + f"numeric_only={numeric_only} and dtype {self.obj.dtype}" + ) + return self._cython_agg_general( + "sem", + alt=lambda x: Series(x, copy=False).sem(ddof=ddof), + numeric_only=numeric_only, + ddof=ddof, + ) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def size(self) -> DataFrame | Series: + """ + Compute group sizes. + + Returns + ------- + DataFrame or Series + Number of rows in each group as a Series if as_index is True + or a DataFrame if as_index is False. + %(see_also)s + Examples + -------- + + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([1, 2, 3], index=lst) + >>> ser + a 1 + a 2 + b 3 + dtype: int64 + >>> ser.groupby(level=0).size() + a 2 + b 1 + dtype: int64 + + >>> data = [[1, 2, 3], [1, 5, 6], [7, 8, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["owl", "toucan", "eagle"]) + >>> df + a b c + owl 1 2 3 + toucan 1 5 6 + eagle 7 8 9 + >>> df.groupby("a").size() + a + 1 2 + 7 1 + dtype: int64 + + For Resampler: + + >>> ser = pd.Series([1, 2, 3], index=pd.DatetimeIndex( + ... ['2023-01-01', '2023-01-15', '2023-02-01'])) + >>> ser + 2023-01-01 1 + 2023-01-15 2 + 2023-02-01 3 + dtype: int64 + >>> ser.resample('MS').size() + 2023-01-01 2 + 2023-02-01 1 + Freq: MS, dtype: int64 + """ + result = self._grouper.size() + dtype_backend: None | Literal["pyarrow", "numpy_nullable"] = None + if isinstance(self.obj, Series): + if isinstance(self.obj.array, ArrowExtensionArray): + if isinstance(self.obj.array, ArrowStringArrayNumpySemantics): + dtype_backend = None + elif isinstance(self.obj.array, ArrowStringArray): + dtype_backend = "numpy_nullable" + else: + dtype_backend = "pyarrow" + elif isinstance(self.obj.array, BaseMaskedArray): + dtype_backend = "numpy_nullable" + # TODO: For DataFrames what if columns are mixed arrow/numpy/masked? + + # GH28330 preserve subclassed Series/DataFrames through calls + if isinstance(self.obj, Series): + result = self._obj_1d_constructor(result, name=self.obj.name) + else: + result = self._obj_1d_constructor(result) + + if dtype_backend is not None: + result = result.convert_dtypes( + infer_objects=False, + convert_string=False, + convert_boolean=False, + convert_floating=False, + dtype_backend=dtype_backend, + ) + + with com.temp_setattr(self, "as_index", True): + # size already has the desired behavior in GH#49519, but this makes the + # as_index=False path of _reindex_output fail on categorical groupers. + result = self._reindex_output(result, fill_value=0) + if not self.as_index: + # error: Incompatible types in assignment (expression has + # type "DataFrame", variable has type "Series") + result = result.rename("size").reset_index() # type: ignore[assignment] + return result + + @final + @doc( + _groupby_agg_method_engine_template, + fname="sum", + no=False, + mc=0, + e=None, + ek=None, + example=dedent( + """\ + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b', 'b'] + >>> ser = pd.Series([1, 2, 3, 4], index=lst) + >>> ser + a 1 + a 2 + b 3 + b 4 + dtype: int64 + >>> ser.groupby(level=0).sum() + a 3 + b 7 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["tiger", "leopard", "cheetah", "lion"]) + >>> df + a b c + tiger 1 8 2 + leopard 1 2 5 + cheetah 2 5 8 + lion 2 6 9 + >>> df.groupby("a").sum() + b c + a + 1 10 7 + 2 11 17""" + ), + ) + def sum( + self, + numeric_only: bool = False, + min_count: int = 0, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + from pandas.core._numba.kernels import grouped_sum + + return self._numba_agg_general( + grouped_sum, + executor.default_dtype_mapping, + engine_kwargs, + min_periods=min_count, + ) + else: + # If we are grouping on categoricals we want unobserved categories to + # return zero, rather than the default of NaN which the reindexing in + # _agg_general() returns. GH #31422 + with com.temp_setattr(self, "observed", True): + result = self._agg_general( + numeric_only=numeric_only, + min_count=min_count, + alias="sum", + npfunc=np.sum, + ) + + return self._reindex_output(result, fill_value=0) + + @final + @doc( + _groupby_agg_method_template, + fname="prod", + no=False, + mc=0, + example=dedent( + """\ + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b', 'b'] + >>> ser = pd.Series([1, 2, 3, 4], index=lst) + >>> ser + a 1 + a 2 + b 3 + b 4 + dtype: int64 + >>> ser.groupby(level=0).prod() + a 2 + b 12 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["tiger", "leopard", "cheetah", "lion"]) + >>> df + a b c + tiger 1 8 2 + leopard 1 2 5 + cheetah 2 5 8 + lion 2 6 9 + >>> df.groupby("a").prod() + b c + a + 1 16 10 + 2 30 72""" + ), + ) + def prod(self, numeric_only: bool = False, min_count: int = 0) -> NDFrameT: + return self._agg_general( + numeric_only=numeric_only, min_count=min_count, alias="prod", npfunc=np.prod + ) + + @final + @doc( + _groupby_agg_method_engine_template, + fname="min", + no=False, + mc=-1, + e=None, + ek=None, + example=dedent( + """\ + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b', 'b'] + >>> ser = pd.Series([1, 2, 3, 4], index=lst) + >>> ser + a 1 + a 2 + b 3 + b 4 + dtype: int64 + >>> ser.groupby(level=0).min() + a 1 + b 3 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["tiger", "leopard", "cheetah", "lion"]) + >>> df + a b c + tiger 1 8 2 + leopard 1 2 5 + cheetah 2 5 8 + lion 2 6 9 + >>> df.groupby("a").min() + b c + a + 1 2 2 + 2 5 8""" + ), + ) + def min( + self, + numeric_only: bool = False, + min_count: int = -1, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + from pandas.core._numba.kernels import grouped_min_max + + return self._numba_agg_general( + grouped_min_max, + executor.identity_dtype_mapping, + engine_kwargs, + min_periods=min_count, + is_max=False, + ) + else: + return self._agg_general( + numeric_only=numeric_only, + min_count=min_count, + alias="min", + npfunc=np.min, + ) + + @final + @doc( + _groupby_agg_method_engine_template, + fname="max", + no=False, + mc=-1, + e=None, + ek=None, + example=dedent( + """\ + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b', 'b'] + >>> ser = pd.Series([1, 2, 3, 4], index=lst) + >>> ser + a 1 + a 2 + b 3 + b 4 + dtype: int64 + >>> ser.groupby(level=0).max() + a 2 + b 4 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 8, 2], [1, 2, 5], [2, 5, 8], [2, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["tiger", "leopard", "cheetah", "lion"]) + >>> df + a b c + tiger 1 8 2 + leopard 1 2 5 + cheetah 2 5 8 + lion 2 6 9 + >>> df.groupby("a").max() + b c + a + 1 8 5 + 2 6 9""" + ), + ) + def max( + self, + numeric_only: bool = False, + min_count: int = -1, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + from pandas.core._numba.kernels import grouped_min_max + + return self._numba_agg_general( + grouped_min_max, + executor.identity_dtype_mapping, + engine_kwargs, + min_periods=min_count, + is_max=True, + ) + else: + return self._agg_general( + numeric_only=numeric_only, + min_count=min_count, + alias="max", + npfunc=np.max, + ) + + @final + def first( + self, numeric_only: bool = False, min_count: int = -1, skipna: bool = True + ) -> NDFrameT: + """ + Compute the first entry of each column within each group. + + Defaults to skipping NA elements. + + Parameters + ---------- + numeric_only : bool, default False + Include only float, int, boolean columns. + min_count : int, default -1 + The required number of valid values to perform the operation. If fewer + than ``min_count`` valid values are present the result will be NA. + skipna : bool, default True + Exclude NA/null values. If an entire row/column is NA, the result + will be NA. + + .. versionadded:: 2.2.1 + + Returns + ------- + Series or DataFrame + First values within each group. + + See Also + -------- + DataFrame.groupby : Apply a function groupby to each row or column of a + DataFrame. + pandas.core.groupby.DataFrameGroupBy.last : Compute the last non-null entry + of each column. + pandas.core.groupby.DataFrameGroupBy.nth : Take the nth row from each group. + + Examples + -------- + >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[None, 5, 6], C=[1, 2, 3], + ... D=['3/11/2000', '3/12/2000', '3/13/2000'])) + >>> df['D'] = pd.to_datetime(df['D']) + >>> df.groupby("A").first() + B C D + A + 1 5.0 1 2000-03-11 + 3 6.0 3 2000-03-13 + >>> df.groupby("A").first(min_count=2) + B C D + A + 1 NaN 1.0 2000-03-11 + 3 NaN NaN NaT + >>> df.groupby("A").first(numeric_only=True) + B C + A + 1 5.0 1 + 3 6.0 3 + """ + + def first_compat(obj: NDFrameT, axis: AxisInt = 0): + def first(x: Series): + """Helper function for first item that isn't NA.""" + arr = x.array[notna(x.array)] + if not len(arr): + return x.array.dtype.na_value + return arr[0] + + if isinstance(obj, DataFrame): + return obj.apply(first, axis=axis) + elif isinstance(obj, Series): + return first(obj) + else: # pragma: no cover + raise TypeError(type(obj)) + + return self._agg_general( + numeric_only=numeric_only, + min_count=min_count, + alias="first", + npfunc=first_compat, + skipna=skipna, + ) + + @final + def last( + self, numeric_only: bool = False, min_count: int = -1, skipna: bool = True + ) -> NDFrameT: + """ + Compute the last entry of each column within each group. + + Defaults to skipping NA elements. + + Parameters + ---------- + numeric_only : bool, default False + Include only float, int, boolean columns. If None, will attempt to use + everything, then use only numeric data. + min_count : int, default -1 + The required number of valid values to perform the operation. If fewer + than ``min_count`` valid values are present the result will be NA. + skipna : bool, default True + Exclude NA/null values. If an entire row/column is NA, the result + will be NA. + + .. versionadded:: 2.2.1 + + Returns + ------- + Series or DataFrame + Last of values within each group. + + See Also + -------- + DataFrame.groupby : Apply a function groupby to each row or column of a + DataFrame. + pandas.core.groupby.DataFrameGroupBy.first : Compute the first non-null entry + of each column. + pandas.core.groupby.DataFrameGroupBy.nth : Take the nth row from each group. + + Examples + -------- + >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[5, None, 6], C=[1, 2, 3])) + >>> df.groupby("A").last() + B C + A + 1 5.0 2 + 3 6.0 3 + """ + + def last_compat(obj: NDFrameT, axis: AxisInt = 0): + def last(x: Series): + """Helper function for last item that isn't NA.""" + arr = x.array[notna(x.array)] + if not len(arr): + return x.array.dtype.na_value + return arr[-1] + + if isinstance(obj, DataFrame): + return obj.apply(last, axis=axis) + elif isinstance(obj, Series): + return last(obj) + else: # pragma: no cover + raise TypeError(type(obj)) + + return self._agg_general( + numeric_only=numeric_only, + min_count=min_count, + alias="last", + npfunc=last_compat, + skipna=skipna, + ) + + @final + def ohlc(self) -> DataFrame: + """ + Compute open, high, low and close values of a group, excluding missing values. + + For multiple groupings, the result index will be a MultiIndex + + Returns + ------- + DataFrame + Open, high, low and close values within each group. + + Examples + -------- + + For SeriesGroupBy: + + >>> lst = ['SPX', 'CAC', 'SPX', 'CAC', 'SPX', 'CAC', 'SPX', 'CAC',] + >>> ser = pd.Series([3.4, 9.0, 7.2, 5.2, 8.8, 9.4, 0.1, 0.5], index=lst) + >>> ser + SPX 3.4 + CAC 9.0 + SPX 7.2 + CAC 5.2 + SPX 8.8 + CAC 9.4 + SPX 0.1 + CAC 0.5 + dtype: float64 + >>> ser.groupby(level=0).ohlc() + open high low close + CAC 9.0 9.4 0.5 0.5 + SPX 3.4 8.8 0.1 0.1 + + For DataFrameGroupBy: + + >>> data = {2022: [1.2, 2.3, 8.9, 4.5, 4.4, 3, 2 , 1], + ... 2023: [3.4, 9.0, 7.2, 5.2, 8.8, 9.4, 8.2, 1.0]} + >>> df = pd.DataFrame(data, index=['SPX', 'CAC', 'SPX', 'CAC', + ... 'SPX', 'CAC', 'SPX', 'CAC']) + >>> df + 2022 2023 + SPX 1.2 3.4 + CAC 2.3 9.0 + SPX 8.9 7.2 + CAC 4.5 5.2 + SPX 4.4 8.8 + CAC 3.0 9.4 + SPX 2.0 8.2 + CAC 1.0 1.0 + >>> df.groupby(level=0).ohlc() + 2022 2023 + open high low close open high low close + CAC 2.3 4.5 1.0 1.0 9.0 9.4 1.0 1.0 + SPX 1.2 8.9 1.2 2.0 3.4 8.8 3.4 8.2 + + For Resampler: + + >>> ser = pd.Series([1, 3, 2, 4, 3, 5], + ... index=pd.DatetimeIndex(['2023-01-01', + ... '2023-01-10', + ... '2023-01-15', + ... '2023-02-01', + ... '2023-02-10', + ... '2023-02-15'])) + >>> ser.resample('MS').ohlc() + open high low close + 2023-01-01 1 3 1 2 + 2023-02-01 4 5 3 5 + """ + if self.obj.ndim == 1: + obj = self._selected_obj + + is_numeric = is_numeric_dtype(obj.dtype) + if not is_numeric: + raise DataError("No numeric types to aggregate") + + res_values = self._grouper._cython_operation( + "aggregate", obj._values, "ohlc", axis=0, min_count=-1 + ) + + agg_names = ["open", "high", "low", "close"] + result = self.obj._constructor_expanddim( + res_values, index=self._grouper.result_index, columns=agg_names + ) + return self._reindex_output(result) + + result = self._apply_to_column_groupbys(lambda sgb: sgb.ohlc()) + return result + + @doc(DataFrame.describe) + def describe( + self, + percentiles=None, + include=None, + exclude=None, + ) -> NDFrameT: + obj = self._obj_with_exclusions + + if len(obj) == 0: + described = obj.describe( + percentiles=percentiles, include=include, exclude=exclude + ) + if obj.ndim == 1: + result = described + else: + result = described.unstack() + return result.to_frame().T.iloc[:0] + + with com.temp_setattr(self, "as_index", True): + result = self._python_apply_general( + lambda x: x.describe( + percentiles=percentiles, include=include, exclude=exclude + ), + obj, + not_indexed_same=True, + ) + if self.axis == 1: + return result.T + + # GH#49256 - properly handle the grouping column(s) + result = result.unstack() + if not self.as_index: + result = self._insert_inaxis_grouper(result) + result.index = default_index(len(result)) + + return result + + @final + def resample(self, rule, *args, include_groups: bool = True, **kwargs) -> Resampler: + """ + Provide resampling when using a TimeGrouper. + + Given a grouper, the function resamples it according to a string + "string" -> "frequency". + + See the :ref:`frequency aliases ` + documentation for more details. + + Parameters + ---------- + rule : str or DateOffset + The offset string or object representing target grouper conversion. + *args + Possible arguments are `how`, `fill_method`, `limit`, `kind` and + `on`, and other arguments of `TimeGrouper`. + include_groups : bool, default True + When True, will attempt to include the groupings in the operation in + the case that they are columns of the DataFrame. If this raises a + TypeError, the result will be computed with the groupings excluded. + When False, the groupings will be excluded when applying ``func``. + + .. versionadded:: 2.2.0 + + .. deprecated:: 2.2.0 + + Setting include_groups to True is deprecated. Only the value + False will be allowed in a future version of pandas. + + **kwargs + Possible arguments are `how`, `fill_method`, `limit`, `kind` and + `on`, and other arguments of `TimeGrouper`. + + Returns + ------- + pandas.api.typing.DatetimeIndexResamplerGroupby, + pandas.api.typing.PeriodIndexResamplerGroupby, or + pandas.api.typing.TimedeltaIndexResamplerGroupby + Return a new groupby object, with type depending on the data + being resampled. + + See Also + -------- + Grouper : Specify a frequency to resample with when + grouping by a key. + DatetimeIndex.resample : Frequency conversion and resampling of + time series. + + Examples + -------- + >>> idx = pd.date_range('1/1/2000', periods=4, freq='min') + >>> df = pd.DataFrame(data=4 * [range(2)], + ... index=idx, + ... columns=['a', 'b']) + >>> df.iloc[2, 0] = 5 + >>> df + a b + 2000-01-01 00:00:00 0 1 + 2000-01-01 00:01:00 0 1 + 2000-01-01 00:02:00 5 1 + 2000-01-01 00:03:00 0 1 + + Downsample the DataFrame into 3 minute bins and sum the values of + the timestamps falling into a bin. + + >>> df.groupby('a').resample('3min', include_groups=False).sum() + b + a + 0 2000-01-01 00:00:00 2 + 2000-01-01 00:03:00 1 + 5 2000-01-01 00:00:00 1 + + Upsample the series into 30 second bins. + + >>> df.groupby('a').resample('30s', include_groups=False).sum() + b + a + 0 2000-01-01 00:00:00 1 + 2000-01-01 00:00:30 0 + 2000-01-01 00:01:00 1 + 2000-01-01 00:01:30 0 + 2000-01-01 00:02:00 0 + 2000-01-01 00:02:30 0 + 2000-01-01 00:03:00 1 + 5 2000-01-01 00:02:00 1 + + Resample by month. Values are assigned to the month of the period. + + >>> df.groupby('a').resample('ME', include_groups=False).sum() + b + a + 0 2000-01-31 3 + 5 2000-01-31 1 + + Downsample the series into 3 minute bins as above, but close the right + side of the bin interval. + + >>> ( + ... df.groupby('a') + ... .resample('3min', closed='right', include_groups=False) + ... .sum() + ... ) + b + a + 0 1999-12-31 23:57:00 1 + 2000-01-01 00:00:00 2 + 5 2000-01-01 00:00:00 1 + + Downsample the series into 3 minute bins and close the right side of + the bin interval, but label each bin using the right edge instead of + the left. + + >>> ( + ... df.groupby('a') + ... .resample('3min', closed='right', label='right', include_groups=False) + ... .sum() + ... ) + b + a + 0 2000-01-01 00:00:00 1 + 2000-01-01 00:03:00 2 + 5 2000-01-01 00:03:00 1 + """ + from pandas.core.resample import get_resampler_for_grouping + + # mypy flags that include_groups could be specified via `*args` or `**kwargs` + # GH#54961 would resolve. + return get_resampler_for_grouping( # type: ignore[misc] + self, rule, *args, include_groups=include_groups, **kwargs + ) + + @final + def rolling(self, *args, **kwargs) -> RollingGroupby: + """ + Return a rolling grouper, providing rolling functionality per group. + + Parameters + ---------- + window : int, timedelta, str, offset, or BaseIndexer subclass + Size of the moving window. + + If an integer, the fixed number of observations used for + each window. + + If a timedelta, str, or offset, the time period of each window. Each + window will be a variable sized based on the observations included in + the time-period. This is only valid for datetimelike indexes. + To learn more about the offsets & frequency strings, please see `this link + `__. + + If a BaseIndexer subclass, the window boundaries + based on the defined ``get_window_bounds`` method. Additional rolling + keyword arguments, namely ``min_periods``, ``center``, ``closed`` and + ``step`` will be passed to ``get_window_bounds``. + + min_periods : int, default None + Minimum number of observations in window required to have a value; + otherwise, result is ``np.nan``. + + For a window that is specified by an offset, + ``min_periods`` will default to 1. + + For a window that is specified by an integer, ``min_periods`` will default + to the size of the window. + + center : bool, default False + If False, set the window labels as the right edge of the window index. + + If True, set the window labels as the center of the window index. + + win_type : str, default None + If ``None``, all points are evenly weighted. + + If a string, it must be a valid `scipy.signal window function + `__. + + Certain Scipy window types require additional parameters to be passed + in the aggregation function. The additional parameters must match + the keywords specified in the Scipy window type method signature. + + on : str, optional + For a DataFrame, a column label or Index level on which + to calculate the rolling window, rather than the DataFrame's index. + + Provided integer column is ignored and excluded from result since + an integer index is not used to calculate the rolling window. + + axis : int or str, default 0 + If ``0`` or ``'index'``, roll across the rows. + + If ``1`` or ``'columns'``, roll across the columns. + + For `Series` this parameter is unused and defaults to 0. + + closed : str, default None + If ``'right'``, the first point in the window is excluded from calculations. + + If ``'left'``, the last point in the window is excluded from calculations. + + If ``'both'``, no points in the window are excluded from calculations. + + If ``'neither'``, the first and last points in the window are excluded + from calculations. + + Default ``None`` (``'right'``). + + method : str {'single', 'table'}, default 'single' + Execute the rolling operation per single column or row (``'single'``) + or over the entire object (``'table'``). + + This argument is only implemented when specifying ``engine='numba'`` + in the method call. + + Returns + ------- + pandas.api.typing.RollingGroupby + Return a new grouper with our rolling appended. + + See Also + -------- + Series.rolling : Calling object with Series data. + DataFrame.rolling : Calling object with DataFrames. + Series.groupby : Apply a function groupby to a Series. + DataFrame.groupby : Apply a function groupby. + + Examples + -------- + >>> df = pd.DataFrame({'A': [1, 1, 2, 2], + ... 'B': [1, 2, 3, 4], + ... 'C': [0.362, 0.227, 1.267, -0.562]}) + >>> df + A B C + 0 1 1 0.362 + 1 1 2 0.227 + 2 2 3 1.267 + 3 2 4 -0.562 + + >>> df.groupby('A').rolling(2).sum() + B C + A + 1 0 NaN NaN + 1 3.0 0.589 + 2 2 NaN NaN + 3 7.0 0.705 + + >>> df.groupby('A').rolling(2, min_periods=1).sum() + B C + A + 1 0 1.0 0.362 + 1 3.0 0.589 + 2 2 3.0 1.267 + 3 7.0 0.705 + + >>> df.groupby('A').rolling(2, on='B').sum() + B C + A + 1 0 1 NaN + 1 2 0.589 + 2 2 3 NaN + 3 4 0.705 + """ + from pandas.core.window import RollingGroupby + + return RollingGroupby( + self._selected_obj, + *args, + _grouper=self._grouper, + _as_index=self.as_index, + **kwargs, + ) + + @final + @Substitution(name="groupby") + @Appender(_common_see_also) + def expanding(self, *args, **kwargs) -> ExpandingGroupby: + """ + Return an expanding grouper, providing expanding + functionality per group. + + Returns + ------- + pandas.api.typing.ExpandingGroupby + """ + from pandas.core.window import ExpandingGroupby + + return ExpandingGroupby( + self._selected_obj, + *args, + _grouper=self._grouper, + **kwargs, + ) + + @final + @Substitution(name="groupby") + @Appender(_common_see_also) + def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby: + """ + Return an ewm grouper, providing ewm functionality per group. + + Returns + ------- + pandas.api.typing.ExponentialMovingWindowGroupby + """ + from pandas.core.window import ExponentialMovingWindowGroupby + + return ExponentialMovingWindowGroupby( + self._selected_obj, + *args, + _grouper=self._grouper, + **kwargs, + ) + + @final + def _fill(self, direction: Literal["ffill", "bfill"], limit: int | None = None): + """ + Shared function for `pad` and `backfill` to call Cython method. + + Parameters + ---------- + direction : {'ffill', 'bfill'} + Direction passed to underlying Cython function. `bfill` will cause + values to be filled backwards. `ffill` and any other values will + default to a forward fill + limit : int, default None + Maximum number of consecutive values to fill. If `None`, this + method will convert to -1 prior to passing to Cython + + Returns + ------- + `Series` or `DataFrame` with filled values + + See Also + -------- + pad : Returns Series with minimum number of char in object. + backfill : Backward fill the missing values in the dataset. + """ + # Need int value for Cython + if limit is None: + limit = -1 + + ids, _, _ = self._grouper.group_info + sorted_labels = np.argsort(ids, kind="mergesort").astype(np.intp, copy=False) + if direction == "bfill": + sorted_labels = sorted_labels[::-1] + + col_func = partial( + libgroupby.group_fillna_indexer, + labels=ids, + sorted_labels=sorted_labels, + limit=limit, + dropna=self.dropna, + ) + + def blk_func(values: ArrayLike) -> ArrayLike: + mask = isna(values) + if values.ndim == 1: + indexer = np.empty(values.shape, dtype=np.intp) + col_func(out=indexer, mask=mask) + return algorithms.take_nd(values, indexer) + + else: + # We broadcast algorithms.take_nd analogous to + # np.take_along_axis + if isinstance(values, np.ndarray): + dtype = values.dtype + if self._grouper.has_dropped_na: + # dropped null groups give rise to nan in the result + dtype = ensure_dtype_can_hold_na(values.dtype) + out = np.empty(values.shape, dtype=dtype) + else: + # Note: we only get here with backfill/pad, + # so if we have a dtype that cannot hold NAs, + # then there will be no -1s in indexer, so we can use + # the original dtype (no need to ensure_dtype_can_hold_na) + out = type(values)._empty(values.shape, dtype=values.dtype) + + for i, value_element in enumerate(values): + # call group_fillna_indexer column-wise + indexer = np.empty(values.shape[1], dtype=np.intp) + col_func(out=indexer, mask=mask[i]) + out[i, :] = algorithms.take_nd(value_element, indexer) + return out + + mgr = self._get_data_to_aggregate() + res_mgr = mgr.apply(blk_func) + + new_obj = self._wrap_agged_manager(res_mgr) + + if self.axis == 1: + # Only relevant for DataFrameGroupBy + new_obj = new_obj.T + new_obj.columns = self.obj.columns + + new_obj.index = self.obj.index + return new_obj + + @final + @Substitution(name="groupby") + def ffill(self, limit: int | None = None): + """ + Forward fill the values. + + Parameters + ---------- + limit : int, optional + Limit of how many values to fill. + + Returns + ------- + Series or DataFrame + Object with missing values filled. + + See Also + -------- + Series.ffill: Returns Series with minimum number of char in object. + DataFrame.ffill: Object with missing values filled or None if inplace=True. + Series.fillna: Fill NaN values of a Series. + DataFrame.fillna: Fill NaN values of a DataFrame. + + Examples + -------- + + For SeriesGroupBy: + + >>> key = [0, 0, 1, 1] + >>> ser = pd.Series([np.nan, 2, 3, np.nan], index=key) + >>> ser + 0 NaN + 0 2.0 + 1 3.0 + 1 NaN + dtype: float64 + >>> ser.groupby(level=0).ffill() + 0 NaN + 0 2.0 + 1 3.0 + 1 3.0 + dtype: float64 + + For DataFrameGroupBy: + + >>> df = pd.DataFrame( + ... { + ... "key": [0, 0, 1, 1, 1], + ... "A": [np.nan, 2, np.nan, 3, np.nan], + ... "B": [2, 3, np.nan, np.nan, np.nan], + ... "C": [np.nan, np.nan, 2, np.nan, np.nan], + ... } + ... ) + >>> df + key A B C + 0 0 NaN 2.0 NaN + 1 0 2.0 3.0 NaN + 2 1 NaN NaN 2.0 + 3 1 3.0 NaN NaN + 4 1 NaN NaN NaN + + Propagate non-null values forward or backward within each group along columns. + + >>> df.groupby("key").ffill() + A B C + 0 NaN 2.0 NaN + 1 2.0 3.0 NaN + 2 NaN NaN 2.0 + 3 3.0 NaN 2.0 + 4 3.0 NaN 2.0 + + Propagate non-null values forward or backward within each group along rows. + + >>> df.T.groupby(np.array([0, 0, 1, 1])).ffill().T + key A B C + 0 0.0 0.0 2.0 2.0 + 1 0.0 2.0 3.0 3.0 + 2 1.0 1.0 NaN 2.0 + 3 1.0 3.0 NaN NaN + 4 1.0 1.0 NaN NaN + + Only replace the first NaN element within a group along rows. + + >>> df.groupby("key").ffill(limit=1) + A B C + 0 NaN 2.0 NaN + 1 2.0 3.0 NaN + 2 NaN NaN 2.0 + 3 3.0 NaN 2.0 + 4 3.0 NaN NaN + """ + return self._fill("ffill", limit=limit) + + @final + @Substitution(name="groupby") + def bfill(self, limit: int | None = None): + """ + Backward fill the values. + + Parameters + ---------- + limit : int, optional + Limit of how many values to fill. + + Returns + ------- + Series or DataFrame + Object with missing values filled. + + See Also + -------- + Series.bfill : Backward fill the missing values in the dataset. + DataFrame.bfill: Backward fill the missing values in the dataset. + Series.fillna: Fill NaN values of a Series. + DataFrame.fillna: Fill NaN values of a DataFrame. + + Examples + -------- + + With Series: + + >>> index = ['Falcon', 'Falcon', 'Parrot', 'Parrot', 'Parrot'] + >>> s = pd.Series([None, 1, None, None, 3], index=index) + >>> s + Falcon NaN + Falcon 1.0 + Parrot NaN + Parrot NaN + Parrot 3.0 + dtype: float64 + >>> s.groupby(level=0).bfill() + Falcon 1.0 + Falcon 1.0 + Parrot 3.0 + Parrot 3.0 + Parrot 3.0 + dtype: float64 + >>> s.groupby(level=0).bfill(limit=1) + Falcon 1.0 + Falcon 1.0 + Parrot NaN + Parrot 3.0 + Parrot 3.0 + dtype: float64 + + With DataFrame: + + >>> df = pd.DataFrame({'A': [1, None, None, None, 4], + ... 'B': [None, None, 5, None, 7]}, index=index) + >>> df + A B + Falcon 1.0 NaN + Falcon NaN NaN + Parrot NaN 5.0 + Parrot NaN NaN + Parrot 4.0 7.0 + >>> df.groupby(level=0).bfill() + A B + Falcon 1.0 NaN + Falcon NaN NaN + Parrot 4.0 5.0 + Parrot 4.0 7.0 + Parrot 4.0 7.0 + >>> df.groupby(level=0).bfill(limit=1) + A B + Falcon 1.0 NaN + Falcon NaN NaN + Parrot NaN 5.0 + Parrot 4.0 7.0 + Parrot 4.0 7.0 + """ + return self._fill("bfill", limit=limit) + + @final + @property + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def nth(self) -> GroupByNthSelector: + """ + Take the nth row from each group if n is an int, otherwise a subset of rows. + + Can be either a call or an index. dropna is not available with index notation. + Index notation accepts a comma separated list of integers and slices. + + If dropna, will take the nth non-null row, dropna is either + 'all' or 'any'; this is equivalent to calling dropna(how=dropna) + before the groupby. + + Parameters + ---------- + n : int, slice or list of ints and slices + A single nth value for the row or a list of nth values or slices. + + .. versionchanged:: 1.4.0 + Added slice and lists containing slices. + Added index notation. + + dropna : {'any', 'all', None}, default None + Apply the specified dropna operation before counting which row is + the nth row. Only supported if n is an int. + + Returns + ------- + Series or DataFrame + N-th value within each group. + %(see_also)s + Examples + -------- + + >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], + ... 'B': [np.nan, 2, 3, 4, 5]}, columns=['A', 'B']) + >>> g = df.groupby('A') + >>> g.nth(0) + A B + 0 1 NaN + 2 2 3.0 + >>> g.nth(1) + A B + 1 1 2.0 + 4 2 5.0 + >>> g.nth(-1) + A B + 3 1 4.0 + 4 2 5.0 + >>> g.nth([0, 1]) + A B + 0 1 NaN + 1 1 2.0 + 2 2 3.0 + 4 2 5.0 + >>> g.nth(slice(None, -1)) + A B + 0 1 NaN + 1 1 2.0 + 2 2 3.0 + + Index notation may also be used + + >>> g.nth[0, 1] + A B + 0 1 NaN + 1 1 2.0 + 2 2 3.0 + 4 2 5.0 + >>> g.nth[:-1] + A B + 0 1 NaN + 1 1 2.0 + 2 2 3.0 + + Specifying `dropna` allows ignoring ``NaN`` values + + >>> g.nth(0, dropna='any') + A B + 1 1 2.0 + 2 2 3.0 + + When the specified ``n`` is larger than any of the groups, an + empty DataFrame is returned + + >>> g.nth(3, dropna='any') + Empty DataFrame + Columns: [A, B] + Index: [] + """ + return GroupByNthSelector(self) + + def _nth( + self, + n: PositionalIndexer | tuple, + dropna: Literal["any", "all", None] = None, + ) -> NDFrameT: + if not dropna: + mask = self._make_mask_from_positional_indexer(n) + + ids, _, _ = self._grouper.group_info + + # Drop NA values in grouping + mask = mask & (ids != -1) + + out = self._mask_selected_obj(mask) + return out + + # dropna is truthy + if not is_integer(n): + raise ValueError("dropna option only supported for an integer argument") + + if dropna not in ["any", "all"]: + # Note: when agg-ing picker doesn't raise this, just returns NaN + raise ValueError( + "For a DataFrame or Series groupby.nth, dropna must be " + "either None, 'any' or 'all', " + f"(was passed {dropna})." + ) + + # old behaviour, but with all and any support for DataFrames. + # modified in GH 7559 to have better perf + n = cast(int, n) + dropped = self._selected_obj.dropna(how=dropna, axis=self.axis) + + # get a new grouper for our dropped obj + grouper: np.ndarray | Index | ops.BaseGrouper + if len(dropped) == len(self._selected_obj): + # Nothing was dropped, can use the same grouper + grouper = self._grouper + else: + # we don't have the grouper info available + # (e.g. we have selected out + # a column that is not in the current object) + axis = self._grouper.axis + grouper = self._grouper.codes_info[axis.isin(dropped.index)] + if self._grouper.has_dropped_na: + # Null groups need to still be encoded as -1 when passed to groupby + nulls = grouper == -1 + # error: No overload variant of "where" matches argument types + # "Any", "NAType", "Any" + values = np.where(nulls, NA, grouper) # type: ignore[call-overload] + grouper = Index(values, dtype="Int64") + + if self.axis == 1: + grb = dropped.T.groupby(grouper, as_index=self.as_index, sort=self.sort) + else: + grb = dropped.groupby(grouper, as_index=self.as_index, sort=self.sort) + return grb.nth(n) + + @final + def quantile( + self, + q: float | AnyArrayLike = 0.5, + interpolation: str = "linear", + numeric_only: bool = False, + ): + """ + Return group values at the given quantile, a la numpy.percentile. + + Parameters + ---------- + q : float or array-like, default 0.5 (50% quantile) + Value(s) between 0 and 1 providing the quantile(s) to compute. + interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} + Method to use when the desired quantile falls between two points. + numeric_only : bool, default False + Include only `float`, `int` or `boolean` data. + + .. versionadded:: 1.5.0 + + .. versionchanged:: 2.0.0 + + numeric_only now defaults to ``False``. + + Returns + ------- + Series or DataFrame + Return type determined by caller of GroupBy object. + + See Also + -------- + Series.quantile : Similar method for Series. + DataFrame.quantile : Similar method for DataFrame. + numpy.percentile : NumPy method to compute qth percentile. + + Examples + -------- + >>> df = pd.DataFrame([ + ... ['a', 1], ['a', 2], ['a', 3], + ... ['b', 1], ['b', 3], ['b', 5] + ... ], columns=['key', 'val']) + >>> df.groupby('key').quantile() + val + key + a 2.0 + b 3.0 + """ + mgr = self._get_data_to_aggregate(numeric_only=numeric_only, name="quantile") + obj = self._wrap_agged_manager(mgr) + if self.axis == 1: + splitter = self._grouper._get_splitter(obj.T, axis=self.axis) + sdata = splitter._sorted_data.T + else: + splitter = self._grouper._get_splitter(obj, axis=self.axis) + sdata = splitter._sorted_data + + starts, ends = lib.generate_slices(splitter._slabels, splitter.ngroups) + + def pre_processor(vals: ArrayLike) -> tuple[np.ndarray, DtypeObj | None]: + if is_object_dtype(vals.dtype): + raise TypeError( + "'quantile' cannot be performed against 'object' dtypes!" + ) + + inference: DtypeObj | None = None + if isinstance(vals, BaseMaskedArray) and is_numeric_dtype(vals.dtype): + out = vals.to_numpy(dtype=float, na_value=np.nan) + inference = vals.dtype + elif is_integer_dtype(vals.dtype): + if isinstance(vals, ExtensionArray): + out = vals.to_numpy(dtype=float, na_value=np.nan) + else: + out = vals + inference = np.dtype(np.int64) + elif is_bool_dtype(vals.dtype) and isinstance(vals, ExtensionArray): + out = vals.to_numpy(dtype=float, na_value=np.nan) + elif is_bool_dtype(vals.dtype): + # GH#51424 deprecate to match Series/DataFrame behavior + warnings.warn( + f"Allowing bool dtype in {type(self).__name__}.quantile is " + "deprecated and will raise in a future version, matching " + "the Series/DataFrame behavior. Cast to uint8 dtype before " + "calling quantile instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + out = np.asarray(vals) + elif needs_i8_conversion(vals.dtype): + inference = vals.dtype + # In this case we need to delay the casting until after the + # np.lexsort below. + # error: Incompatible return value type (got + # "Tuple[Union[ExtensionArray, ndarray[Any, Any]], Union[Any, + # ExtensionDtype]]", expected "Tuple[ndarray[Any, Any], + # Optional[Union[dtype[Any], ExtensionDtype]]]") + return vals, inference # type: ignore[return-value] + elif isinstance(vals, ExtensionArray) and is_float_dtype(vals.dtype): + inference = np.dtype(np.float64) + out = vals.to_numpy(dtype=float, na_value=np.nan) + else: + out = np.asarray(vals) + + return out, inference + + def post_processor( + vals: np.ndarray, + inference: DtypeObj | None, + result_mask: np.ndarray | None, + orig_vals: ArrayLike, + ) -> ArrayLike: + if inference: + # Check for edge case + if isinstance(orig_vals, BaseMaskedArray): + assert result_mask is not None # for mypy + + if interpolation in {"linear", "midpoint"} and not is_float_dtype( + orig_vals + ): + return FloatingArray(vals, result_mask) + else: + # Item "ExtensionDtype" of "Union[ExtensionDtype, str, + # dtype[Any], Type[object]]" has no attribute "numpy_dtype" + # [union-attr] + with warnings.catch_warnings(): + # vals.astype with nan can warn with numpy >1.24 + warnings.filterwarnings("ignore", category=RuntimeWarning) + return type(orig_vals)( + vals.astype( + inference.numpy_dtype # type: ignore[union-attr] + ), + result_mask, + ) + + elif not ( + is_integer_dtype(inference) + and interpolation in {"linear", "midpoint"} + ): + if needs_i8_conversion(inference): + # error: Item "ExtensionArray" of "Union[ExtensionArray, + # ndarray[Any, Any]]" has no attribute "_ndarray" + vals = vals.astype("i8").view( + orig_vals._ndarray.dtype # type: ignore[union-attr] + ) + # error: Item "ExtensionArray" of "Union[ExtensionArray, + # ndarray[Any, Any]]" has no attribute "_from_backing_data" + return orig_vals._from_backing_data( # type: ignore[union-attr] + vals + ) + + assert isinstance(inference, np.dtype) # for mypy + return vals.astype(inference) + + return vals + + qs = np.array(q, dtype=np.float64) + pass_qs: np.ndarray | None = qs + if is_scalar(q): + qs = np.array([q], dtype=np.float64) + pass_qs = None + + ids, _, ngroups = self._grouper.group_info + nqs = len(qs) + + func = partial( + libgroupby.group_quantile, + labels=ids, + qs=qs, + interpolation=interpolation, + starts=starts, + ends=ends, + ) + + def blk_func(values: ArrayLike) -> ArrayLike: + orig_vals = values + if isinstance(values, BaseMaskedArray): + mask = values._mask + result_mask = np.zeros((ngroups, nqs), dtype=np.bool_) + else: + mask = isna(values) + result_mask = None + + is_datetimelike = needs_i8_conversion(values.dtype) + + vals, inference = pre_processor(values) + + ncols = 1 + if vals.ndim == 2: + ncols = vals.shape[0] + + out = np.empty((ncols, ngroups, nqs), dtype=np.float64) + + if is_datetimelike: + vals = vals.view("i8") + + if vals.ndim == 1: + # EA is always 1d + func( + out[0], + values=vals, + mask=mask, + result_mask=result_mask, + is_datetimelike=is_datetimelike, + ) + else: + for i in range(ncols): + func( + out[i], + values=vals[i], + mask=mask[i], + result_mask=None, + is_datetimelike=is_datetimelike, + ) + + if vals.ndim == 1: + out = out.ravel("K") + if result_mask is not None: + result_mask = result_mask.ravel("K") + else: + out = out.reshape(ncols, ngroups * nqs) + + return post_processor(out, inference, result_mask, orig_vals) + + res_mgr = sdata._mgr.grouped_reduce(blk_func) + + res = self._wrap_agged_manager(res_mgr) + return self._wrap_aggregated_output(res, qs=pass_qs) + + @final + @Substitution(name="groupby") + def ngroup(self, ascending: bool = True): + """ + Number each group from 0 to the number of groups - 1. + + This is the enumerative complement of cumcount. Note that the + numbers given to the groups match the order in which the groups + would be seen when iterating over the groupby object, not the + order they are first observed. + + Groups with missing keys (where `pd.isna()` is True) will be labeled with `NaN` + and will be skipped from the count. + + Parameters + ---------- + ascending : bool, default True + If False, number in reverse, from number of group - 1 to 0. + + Returns + ------- + Series + Unique numbers for each group. + + See Also + -------- + .cumcount : Number the rows in each group. + + Examples + -------- + >>> df = pd.DataFrame({"color": ["red", None, "red", "blue", "blue", "red"]}) + >>> df + color + 0 red + 1 None + 2 red + 3 blue + 4 blue + 5 red + >>> df.groupby("color").ngroup() + 0 1.0 + 1 NaN + 2 1.0 + 3 0.0 + 4 0.0 + 5 1.0 + dtype: float64 + >>> df.groupby("color", dropna=False).ngroup() + 0 1 + 1 2 + 2 1 + 3 0 + 4 0 + 5 1 + dtype: int64 + >>> df.groupby("color", dropna=False).ngroup(ascending=False) + 0 1 + 1 0 + 2 1 + 3 2 + 4 2 + 5 1 + dtype: int64 + """ + obj = self._obj_with_exclusions + index = obj._get_axis(self.axis) + comp_ids = self._grouper.group_info[0] + + dtype: type + if self._grouper.has_dropped_na: + comp_ids = np.where(comp_ids == -1, np.nan, comp_ids) + dtype = np.float64 + else: + dtype = np.int64 + + if any(ping._passed_categorical for ping in self._grouper.groupings): + # comp_ids reflect non-observed groups, we need only observed + comp_ids = rank_1d(comp_ids, ties_method="dense") - 1 + + result = self._obj_1d_constructor(comp_ids, index, dtype=dtype) + if not ascending: + result = self.ngroups - 1 - result + return result + + @final + @Substitution(name="groupby") + def cumcount(self, ascending: bool = True): + """ + Number each item in each group from 0 to the length of that group - 1. + + Essentially this is equivalent to + + .. code-block:: python + + self.apply(lambda x: pd.Series(np.arange(len(x)), x.index)) + + Parameters + ---------- + ascending : bool, default True + If False, number in reverse, from length of group - 1 to 0. + + Returns + ------- + Series + Sequence number of each element within each group. + + See Also + -------- + .ngroup : Number the groups themselves. + + Examples + -------- + >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], + ... columns=['A']) + >>> df + A + 0 a + 1 a + 2 a + 3 b + 4 b + 5 a + >>> df.groupby('A').cumcount() + 0 0 + 1 1 + 2 2 + 3 0 + 4 1 + 5 3 + dtype: int64 + >>> df.groupby('A').cumcount(ascending=False) + 0 3 + 1 2 + 2 1 + 3 1 + 4 0 + 5 0 + dtype: int64 + """ + index = self._obj_with_exclusions._get_axis(self.axis) + cumcounts = self._cumcount_array(ascending=ascending) + return self._obj_1d_constructor(cumcounts, index) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def rank( + self, + method: str = "average", + ascending: bool = True, + na_option: str = "keep", + pct: bool = False, + axis: AxisInt | lib.NoDefault = lib.no_default, + ) -> NDFrameT: + """ + Provide the rank of values within each group. + + Parameters + ---------- + method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' + * average: average rank of group. + * min: lowest rank in group. + * max: highest rank in group. + * first: ranks assigned in order they appear in the array. + * dense: like 'min', but rank always increases by 1 between groups. + ascending : bool, default True + False for ranks by high (1) to low (N). + na_option : {'keep', 'top', 'bottom'}, default 'keep' + * keep: leave NA values where they are. + * top: smallest rank if ascending. + * bottom: smallest rank if descending. + pct : bool, default False + Compute percentage rank of data within each group. + axis : int, default 0 + The axis of the object over which to compute the rank. + + .. deprecated:: 2.1.0 + For axis=1, operate on the underlying object instead. Otherwise + the axis keyword is not necessary. + + Returns + ------- + DataFrame with ranking of values within each group + %(see_also)s + Examples + -------- + >>> df = pd.DataFrame( + ... { + ... "group": ["a", "a", "a", "a", "a", "b", "b", "b", "b", "b"], + ... "value": [2, 4, 2, 3, 5, 1, 2, 4, 1, 5], + ... } + ... ) + >>> df + group value + 0 a 2 + 1 a 4 + 2 a 2 + 3 a 3 + 4 a 5 + 5 b 1 + 6 b 2 + 7 b 4 + 8 b 1 + 9 b 5 + >>> for method in ['average', 'min', 'max', 'dense', 'first']: + ... df[f'{method}_rank'] = df.groupby('group')['value'].rank(method) + >>> df + group value average_rank min_rank max_rank dense_rank first_rank + 0 a 2 1.5 1.0 2.0 1.0 1.0 + 1 a 4 4.0 4.0 4.0 3.0 4.0 + 2 a 2 1.5 1.0 2.0 1.0 2.0 + 3 a 3 3.0 3.0 3.0 2.0 3.0 + 4 a 5 5.0 5.0 5.0 4.0 5.0 + 5 b 1 1.5 1.0 2.0 1.0 1.0 + 6 b 2 3.0 3.0 3.0 2.0 3.0 + 7 b 4 4.0 4.0 4.0 3.0 4.0 + 8 b 1 1.5 1.0 2.0 1.0 2.0 + 9 b 5 5.0 5.0 5.0 4.0 5.0 + """ + if na_option not in {"keep", "top", "bottom"}: + msg = "na_option must be one of 'keep', 'top', or 'bottom'" + raise ValueError(msg) + + if axis is not lib.no_default: + axis = self.obj._get_axis_number(axis) + self._deprecate_axis(axis, "rank") + else: + axis = 0 + + kwargs = { + "ties_method": method, + "ascending": ascending, + "na_option": na_option, + "pct": pct, + } + if axis != 0: + # DataFrame uses different keyword name + kwargs["method"] = kwargs.pop("ties_method") + f = lambda x: x.rank(axis=axis, numeric_only=False, **kwargs) + result = self._python_apply_general( + f, self._selected_obj, is_transform=True + ) + return result + + return self._cython_transform( + "rank", + numeric_only=False, + axis=axis, + **kwargs, + ) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def cumprod( + self, axis: Axis | lib.NoDefault = lib.no_default, *args, **kwargs + ) -> NDFrameT: + """ + Cumulative product for each group. + + Returns + ------- + Series or DataFrame + %(see_also)s + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([6, 2, 0], index=lst) + >>> ser + a 6 + a 2 + b 0 + dtype: int64 + >>> ser.groupby(level=0).cumprod() + a 6 + a 12 + b 0 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 8, 2], [1, 2, 5], [2, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["cow", "horse", "bull"]) + >>> df + a b c + cow 1 8 2 + horse 1 2 5 + bull 2 6 9 + >>> df.groupby("a").groups + {1: ['cow', 'horse'], 2: ['bull']} + >>> df.groupby("a").cumprod() + b c + cow 8 2 + horse 16 10 + bull 6 9 + """ + nv.validate_groupby_func("cumprod", args, kwargs, ["numeric_only", "skipna"]) + if axis is not lib.no_default: + axis = self.obj._get_axis_number(axis) + self._deprecate_axis(axis, "cumprod") + else: + axis = 0 + + if axis != 0: + f = lambda x: x.cumprod(axis=axis, **kwargs) + return self._python_apply_general(f, self._selected_obj, is_transform=True) + + return self._cython_transform("cumprod", **kwargs) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def cumsum( + self, axis: Axis | lib.NoDefault = lib.no_default, *args, **kwargs + ) -> NDFrameT: + """ + Cumulative sum for each group. + + Returns + ------- + Series or DataFrame + %(see_also)s + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b'] + >>> ser = pd.Series([6, 2, 0], index=lst) + >>> ser + a 6 + a 2 + b 0 + dtype: int64 + >>> ser.groupby(level=0).cumsum() + a 6 + a 8 + b 0 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 8, 2], [1, 2, 5], [2, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["fox", "gorilla", "lion"]) + >>> df + a b c + fox 1 8 2 + gorilla 1 2 5 + lion 2 6 9 + >>> df.groupby("a").groups + {1: ['fox', 'gorilla'], 2: ['lion']} + >>> df.groupby("a").cumsum() + b c + fox 8 2 + gorilla 10 7 + lion 6 9 + """ + nv.validate_groupby_func("cumsum", args, kwargs, ["numeric_only", "skipna"]) + if axis is not lib.no_default: + axis = self.obj._get_axis_number(axis) + self._deprecate_axis(axis, "cumsum") + else: + axis = 0 + + if axis != 0: + f = lambda x: x.cumsum(axis=axis, **kwargs) + return self._python_apply_general(f, self._selected_obj, is_transform=True) + + return self._cython_transform("cumsum", **kwargs) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def cummin( + self, + axis: AxisInt | lib.NoDefault = lib.no_default, + numeric_only: bool = False, + **kwargs, + ) -> NDFrameT: + """ + Cumulative min for each group. + + Returns + ------- + Series or DataFrame + %(see_also)s + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] + >>> ser = pd.Series([1, 6, 2, 3, 0, 4], index=lst) + >>> ser + a 1 + a 6 + a 2 + b 3 + b 0 + b 4 + dtype: int64 + >>> ser.groupby(level=0).cummin() + a 1 + a 1 + a 1 + b 3 + b 0 + b 0 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 0, 2], [1, 1, 5], [6, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["snake", "rabbit", "turtle"]) + >>> df + a b c + snake 1 0 2 + rabbit 1 1 5 + turtle 6 6 9 + >>> df.groupby("a").groups + {1: ['snake', 'rabbit'], 6: ['turtle']} + >>> df.groupby("a").cummin() + b c + snake 0 2 + rabbit 0 2 + turtle 6 9 + """ + skipna = kwargs.get("skipna", True) + if axis is not lib.no_default: + axis = self.obj._get_axis_number(axis) + self._deprecate_axis(axis, "cummin") + else: + axis = 0 + + if axis != 0: + f = lambda x: np.minimum.accumulate(x, axis) + obj = self._selected_obj + if numeric_only: + obj = obj._get_numeric_data() + return self._python_apply_general(f, obj, is_transform=True) + + return self._cython_transform( + "cummin", numeric_only=numeric_only, skipna=skipna + ) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def cummax( + self, + axis: AxisInt | lib.NoDefault = lib.no_default, + numeric_only: bool = False, + **kwargs, + ) -> NDFrameT: + """ + Cumulative max for each group. + + Returns + ------- + Series or DataFrame + %(see_also)s + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] + >>> ser = pd.Series([1, 6, 2, 3, 1, 4], index=lst) + >>> ser + a 1 + a 6 + a 2 + b 3 + b 1 + b 4 + dtype: int64 + >>> ser.groupby(level=0).cummax() + a 1 + a 6 + a 6 + b 3 + b 3 + b 4 + dtype: int64 + + For DataFrameGroupBy: + + >>> data = [[1, 8, 2], [1, 1, 0], [2, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["cow", "horse", "bull"]) + >>> df + a b c + cow 1 8 2 + horse 1 1 0 + bull 2 6 9 + >>> df.groupby("a").groups + {1: ['cow', 'horse'], 2: ['bull']} + >>> df.groupby("a").cummax() + b c + cow 8 2 + horse 8 2 + bull 6 9 + """ + skipna = kwargs.get("skipna", True) + if axis is not lib.no_default: + axis = self.obj._get_axis_number(axis) + self._deprecate_axis(axis, "cummax") + else: + axis = 0 + + if axis != 0: + f = lambda x: np.maximum.accumulate(x, axis) + obj = self._selected_obj + if numeric_only: + obj = obj._get_numeric_data() + return self._python_apply_general(f, obj, is_transform=True) + + return self._cython_transform( + "cummax", numeric_only=numeric_only, skipna=skipna + ) + + @final + @Substitution(name="groupby") + def shift( + self, + periods: int | Sequence[int] = 1, + freq=None, + axis: Axis | lib.NoDefault = lib.no_default, + fill_value=lib.no_default, + suffix: str | None = None, + ): + """ + Shift each group by periods observations. + + If freq is passed, the index will be increased using the periods and the freq. + + Parameters + ---------- + periods : int | Sequence[int], default 1 + Number of periods to shift. If a list of values, shift each group by + each period. + freq : str, optional + Frequency string. + axis : axis to shift, default 0 + Shift direction. + + .. deprecated:: 2.1.0 + For axis=1, operate on the underlying object instead. Otherwise + the axis keyword is not necessary. + + fill_value : optional + The scalar value to use for newly introduced missing values. + + .. versionchanged:: 2.1.0 + Will raise a ``ValueError`` if ``freq`` is provided too. + + suffix : str, optional + A string to add to each shifted column if there are multiple periods. + Ignored otherwise. + + Returns + ------- + Series or DataFrame + Object shifted within each group. + + See Also + -------- + Index.shift : Shift values of Index. + + Examples + -------- + + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b', 'b'] + >>> ser = pd.Series([1, 2, 3, 4], index=lst) + >>> ser + a 1 + a 2 + b 3 + b 4 + dtype: int64 + >>> ser.groupby(level=0).shift(1) + a NaN + a 1.0 + b NaN + b 3.0 + dtype: float64 + + For DataFrameGroupBy: + + >>> data = [[1, 2, 3], [1, 5, 6], [2, 5, 8], [2, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["tuna", "salmon", "catfish", "goldfish"]) + >>> df + a b c + tuna 1 2 3 + salmon 1 5 6 + catfish 2 5 8 + goldfish 2 6 9 + >>> df.groupby("a").shift(1) + b c + tuna NaN NaN + salmon 2.0 3.0 + catfish NaN NaN + goldfish 5.0 8.0 + """ + if axis is not lib.no_default: + axis = self.obj._get_axis_number(axis) + self._deprecate_axis(axis, "shift") + else: + axis = 0 + + if is_list_like(periods): + if axis == 1: + raise ValueError( + "If `periods` contains multiple shifts, `axis` cannot be 1." + ) + periods = cast(Sequence, periods) + if len(periods) == 0: + raise ValueError("If `periods` is an iterable, it cannot be empty.") + from pandas.core.reshape.concat import concat + + add_suffix = True + else: + if not is_integer(periods): + raise TypeError( + f"Periods must be integer, but {periods} is {type(periods)}." + ) + if suffix: + raise ValueError("Cannot specify `suffix` if `periods` is an int.") + periods = [cast(int, periods)] + add_suffix = False + + shifted_dataframes = [] + for period in periods: + if not is_integer(period): + raise TypeError( + f"Periods must be integer, but {period} is {type(period)}." + ) + period = cast(int, period) + if freq is not None or axis != 0: + f = lambda x: x.shift( + period, freq, axis, fill_value # pylint: disable=cell-var-from-loop + ) + shifted = self._python_apply_general( + f, self._selected_obj, is_transform=True + ) + else: + if fill_value is lib.no_default: + fill_value = None + ids, _, ngroups = self._grouper.group_info + res_indexer = np.zeros(len(ids), dtype=np.int64) + + libgroupby.group_shift_indexer(res_indexer, ids, ngroups, period) + + obj = self._obj_with_exclusions + + shifted = obj._reindex_with_indexers( + {self.axis: (obj.axes[self.axis], res_indexer)}, + fill_value=fill_value, + allow_dups=True, + ) + + if add_suffix: + if isinstance(shifted, Series): + shifted = cast(NDFrameT, shifted.to_frame()) + shifted = shifted.add_suffix( + f"{suffix}_{period}" if suffix else f"_{period}" + ) + shifted_dataframes.append(cast(Union[Series, DataFrame], shifted)) + + return ( + shifted_dataframes[0] + if len(shifted_dataframes) == 1 + else concat(shifted_dataframes, axis=1) + ) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def diff( + self, periods: int = 1, axis: AxisInt | lib.NoDefault = lib.no_default + ) -> NDFrameT: + """ + First discrete difference of element. + + Calculates the difference of each element compared with another + element in the group (default is element in previous row). + + Parameters + ---------- + periods : int, default 1 + Periods to shift for calculating difference, accepts negative values. + axis : axis to shift, default 0 + Take difference over rows (0) or columns (1). + + .. deprecated:: 2.1.0 + For axis=1, operate on the underlying object instead. Otherwise + the axis keyword is not necessary. + + Returns + ------- + Series or DataFrame + First differences. + %(see_also)s + Examples + -------- + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'a', 'b', 'b', 'b'] + >>> ser = pd.Series([7, 2, 8, 4, 3, 3], index=lst) + >>> ser + a 7 + a 2 + a 8 + b 4 + b 3 + b 3 + dtype: int64 + >>> ser.groupby(level=0).diff() + a NaN + a -5.0 + a 6.0 + b NaN + b -1.0 + b 0.0 + dtype: float64 + + For DataFrameGroupBy: + + >>> data = {'a': [1, 3, 5, 7, 7, 8, 3], 'b': [1, 4, 8, 4, 4, 2, 1]} + >>> df = pd.DataFrame(data, index=['dog', 'dog', 'dog', + ... 'mouse', 'mouse', 'mouse', 'mouse']) + >>> df + a b + dog 1 1 + dog 3 4 + dog 5 8 + mouse 7 4 + mouse 7 4 + mouse 8 2 + mouse 3 1 + >>> df.groupby(level=0).diff() + a b + dog NaN NaN + dog 2.0 3.0 + dog 2.0 4.0 + mouse NaN NaN + mouse 0.0 0.0 + mouse 1.0 -2.0 + mouse -5.0 -1.0 + """ + if axis is not lib.no_default: + axis = self.obj._get_axis_number(axis) + self._deprecate_axis(axis, "diff") + else: + axis = 0 + + if axis != 0: + return self.apply(lambda x: x.diff(periods=periods, axis=axis)) + + obj = self._obj_with_exclusions + shifted = self.shift(periods=periods) + + # GH45562 - to retain existing behavior and match behavior of Series.diff(), + # int8 and int16 are coerced to float32 rather than float64. + dtypes_to_f32 = ["int8", "int16"] + if obj.ndim == 1: + if obj.dtype in dtypes_to_f32: + shifted = shifted.astype("float32") + else: + to_coerce = [c for c, dtype in obj.dtypes.items() if dtype in dtypes_to_f32] + if len(to_coerce): + shifted = shifted.astype({c: "float32" for c in to_coerce}) + + return obj - shifted + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def pct_change( + self, + periods: int = 1, + fill_method: FillnaOptions | None | lib.NoDefault = lib.no_default, + limit: int | None | lib.NoDefault = lib.no_default, + freq=None, + axis: Axis | lib.NoDefault = lib.no_default, + ): + """ + Calculate pct_change of each value to previous entry in group. + + Returns + ------- + Series or DataFrame + Percentage changes within each group. + %(see_also)s + Examples + -------- + + For SeriesGroupBy: + + >>> lst = ['a', 'a', 'b', 'b'] + >>> ser = pd.Series([1, 2, 3, 4], index=lst) + >>> ser + a 1 + a 2 + b 3 + b 4 + dtype: int64 + >>> ser.groupby(level=0).pct_change() + a NaN + a 1.000000 + b NaN + b 0.333333 + dtype: float64 + + For DataFrameGroupBy: + + >>> data = [[1, 2, 3], [1, 5, 6], [2, 5, 8], [2, 6, 9]] + >>> df = pd.DataFrame(data, columns=["a", "b", "c"], + ... index=["tuna", "salmon", "catfish", "goldfish"]) + >>> df + a b c + tuna 1 2 3 + salmon 1 5 6 + catfish 2 5 8 + goldfish 2 6 9 + >>> df.groupby("a").pct_change() + b c + tuna NaN NaN + salmon 1.5 1.000 + catfish NaN NaN + goldfish 0.2 0.125 + """ + # GH#53491 + if fill_method not in (lib.no_default, None) or limit is not lib.no_default: + warnings.warn( + "The 'fill_method' keyword being not None and the 'limit' keyword in " + f"{type(self).__name__}.pct_change are deprecated and will be removed " + "in a future version. Either fill in any non-leading NA values prior " + "to calling pct_change or specify 'fill_method=None' to not fill NA " + "values.", + FutureWarning, + stacklevel=find_stack_level(), + ) + if fill_method is lib.no_default: + if limit is lib.no_default and any( + grp.isna().values.any() for _, grp in self + ): + warnings.warn( + "The default fill_method='ffill' in " + f"{type(self).__name__}.pct_change is deprecated and will " + "be removed in a future version. Either fill in any " + "non-leading NA values prior to calling pct_change or " + "specify 'fill_method=None' to not fill NA values.", + FutureWarning, + stacklevel=find_stack_level(), + ) + fill_method = "ffill" + if limit is lib.no_default: + limit = None + + if axis is not lib.no_default: + axis = self.obj._get_axis_number(axis) + self._deprecate_axis(axis, "pct_change") + else: + axis = 0 + + # TODO(GH#23918): Remove this conditional for SeriesGroupBy when + # GH#23918 is fixed + if freq is not None or axis != 0: + f = lambda x: x.pct_change( + periods=periods, + fill_method=fill_method, + limit=limit, + freq=freq, + axis=axis, + ) + return self._python_apply_general(f, self._selected_obj, is_transform=True) + + if fill_method is None: # GH30463 + fill_method = "ffill" + limit = 0 + filled = getattr(self, fill_method)(limit=limit) + if self.axis == 0: + fill_grp = filled.groupby(self._grouper.codes, group_keys=self.group_keys) + else: + fill_grp = filled.T.groupby(self._grouper.codes, group_keys=self.group_keys) + shifted = fill_grp.shift(periods=periods, freq=freq) + if self.axis == 1: + shifted = shifted.T + return (filled / shifted) - 1 + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def head(self, n: int = 5) -> NDFrameT: + """ + Return first n rows of each group. + + Similar to ``.apply(lambda x: x.head(n))``, but it returns a subset of rows + from the original DataFrame with original index and order preserved + (``as_index`` flag is ignored). + + Parameters + ---------- + n : int + If positive: number of entries to include from start of each group. + If negative: number of entries to exclude from end of each group. + + Returns + ------- + Series or DataFrame + Subset of original Series or DataFrame as determined by n. + %(see_also)s + Examples + -------- + + >>> df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], + ... columns=['A', 'B']) + >>> df.groupby('A').head(1) + A B + 0 1 2 + 2 5 6 + >>> df.groupby('A').head(-1) + A B + 0 1 2 + """ + mask = self._make_mask_from_positional_indexer(slice(None, n)) + return self._mask_selected_obj(mask) + + @final + @Substitution(name="groupby") + @Substitution(see_also=_common_see_also) + def tail(self, n: int = 5) -> NDFrameT: + """ + Return last n rows of each group. + + Similar to ``.apply(lambda x: x.tail(n))``, but it returns a subset of rows + from the original DataFrame with original index and order preserved + (``as_index`` flag is ignored). + + Parameters + ---------- + n : int + If positive: number of entries to include from end of each group. + If negative: number of entries to exclude from start of each group. + + Returns + ------- + Series or DataFrame + Subset of original Series or DataFrame as determined by n. + %(see_also)s + Examples + -------- + + >>> df = pd.DataFrame([['a', 1], ['a', 2], ['b', 1], ['b', 2]], + ... columns=['A', 'B']) + >>> df.groupby('A').tail(1) + A B + 1 a 2 + 3 b 2 + >>> df.groupby('A').tail(-1) + A B + 1 a 2 + 3 b 2 + """ + if n: + mask = self._make_mask_from_positional_indexer(slice(-n, None)) + else: + mask = self._make_mask_from_positional_indexer([]) + + return self._mask_selected_obj(mask) + + @final + def _mask_selected_obj(self, mask: npt.NDArray[np.bool_]) -> NDFrameT: + """ + Return _selected_obj with mask applied to the correct axis. + + Parameters + ---------- + mask : np.ndarray[bool] + Boolean mask to apply. + + Returns + ------- + Series or DataFrame + Filtered _selected_obj. + """ + ids = self._grouper.group_info[0] + mask = mask & (ids != -1) + + if self.axis == 0: + return self._selected_obj[mask] + else: + return self._selected_obj.iloc[:, mask] + + @final + def _reindex_output( + self, + output: OutputFrameOrSeries, + fill_value: Scalar = np.nan, + qs: npt.NDArray[np.float64] | None = None, + ) -> OutputFrameOrSeries: + """ + If we have categorical groupers, then we might want to make sure that + we have a fully re-indexed output to the levels. This means expanding + the output space to accommodate all values in the cartesian product of + our groups, regardless of whether they were observed in the data or + not. This will expand the output space if there are missing groups. + + The method returns early without modifying the input if the number of + groupings is less than 2, self.observed == True or none of the groupers + are categorical. + + Parameters + ---------- + output : Series or DataFrame + Object resulting from grouping and applying an operation. + fill_value : scalar, default np.nan + Value to use for unobserved categories if self.observed is False. + qs : np.ndarray[float64] or None, default None + quantile values, only relevant for quantile. + + Returns + ------- + Series or DataFrame + Object (potentially) re-indexed to include all possible groups. + """ + groupings = self._grouper.groupings + if len(groupings) == 1: + return output + + # if we only care about the observed values + # we are done + elif self.observed: + return output + + # reindexing only applies to a Categorical grouper + elif not any( + isinstance(ping.grouping_vector, (Categorical, CategoricalIndex)) + for ping in groupings + ): + return output + + levels_list = [ping._group_index for ping in groupings] + names = self._grouper.names + if qs is not None: + # error: Argument 1 to "append" of "list" has incompatible type + # "ndarray[Any, dtype[floating[_64Bit]]]"; expected "Index" + levels_list.append(qs) # type: ignore[arg-type] + names = names + [None] + index = MultiIndex.from_product(levels_list, names=names) + if self.sort: + index = index.sort_values() + + if self.as_index: + # Always holds for SeriesGroupBy unless GH#36507 is implemented + d = { + self.obj._get_axis_name(self.axis): index, + "copy": False, + "fill_value": fill_value, + } + return output.reindex(**d) # type: ignore[arg-type] + + # GH 13204 + # Here, the categorical in-axis groupers, which need to be fully + # expanded, are columns in `output`. An idea is to do: + # output = output.set_index(self._grouper.names) + # .reindex(index).reset_index() + # but special care has to be taken because of possible not-in-axis + # groupers. + # So, we manually select and drop the in-axis grouper columns, + # reindex `output`, and then reset the in-axis grouper columns. + + # Select in-axis groupers + in_axis_grps = [ + (i, ping.name) for (i, ping) in enumerate(groupings) if ping.in_axis + ] + if len(in_axis_grps) > 0: + g_nums, g_names = zip(*in_axis_grps) + output = output.drop(labels=list(g_names), axis=1) + + # Set a temp index and reindex (possibly expanding) + output = output.set_index(self._grouper.result_index).reindex( + index, copy=False, fill_value=fill_value + ) + + # Reset in-axis grouper columns + # (using level numbers `g_nums` because level names may not be unique) + if len(in_axis_grps) > 0: + output = output.reset_index(level=g_nums) + + return output.reset_index(drop=True) + + @final + def sample( + self, + n: int | None = None, + frac: float | None = None, + replace: bool = False, + weights: Sequence | Series | None = None, + random_state: RandomState | None = None, + ): + """ + Return a random sample of items from each group. + + You can use `random_state` for reproducibility. + + Parameters + ---------- + n : int, optional + Number of items to return for each group. Cannot be used with + `frac` and must be no larger than the smallest group unless + `replace` is True. Default is one if `frac` is None. + frac : float, optional + Fraction of items to return. Cannot be used with `n`. + replace : bool, default False + Allow or disallow sampling of the same row more than once. + weights : list-like, optional + Default None results in equal probability weighting. + If passed a list-like then values must have the same length as + the underlying DataFrame or Series object and will be used as + sampling probabilities after normalization within each group. + Values must be non-negative with at least one positive element + within each group. + random_state : int, array-like, BitGenerator, np.random.RandomState, np.random.Generator, optional + If int, array-like, or BitGenerator, seed for random number generator. + If np.random.RandomState or np.random.Generator, use as given. + + .. versionchanged:: 1.4.0 + + np.random.Generator objects now accepted + + Returns + ------- + Series or DataFrame + A new object of same type as caller containing items randomly + sampled within each group from the caller object. + + See Also + -------- + DataFrame.sample: Generate random samples from a DataFrame object. + numpy.random.choice: Generate a random sample from a given 1-D numpy + array. + + Examples + -------- + >>> df = pd.DataFrame( + ... {"a": ["red"] * 2 + ["blue"] * 2 + ["black"] * 2, "b": range(6)} + ... ) + >>> df + a b + 0 red 0 + 1 red 1 + 2 blue 2 + 3 blue 3 + 4 black 4 + 5 black 5 + + Select one row at random for each distinct value in column a. The + `random_state` argument can be used to guarantee reproducibility: + + >>> df.groupby("a").sample(n=1, random_state=1) + a b + 4 black 4 + 2 blue 2 + 1 red 1 + + Set `frac` to sample fixed proportions rather than counts: + + >>> df.groupby("a")["b"].sample(frac=0.5, random_state=2) + 5 5 + 2 2 + 0 0 + Name: b, dtype: int64 + + Control sample probabilities within groups by setting weights: + + >>> df.groupby("a").sample( + ... n=1, + ... weights=[1, 1, 1, 0, 0, 1], + ... random_state=1, + ... ) + a b + 5 black 5 + 2 blue 2 + 0 red 0 + """ # noqa: E501 + if self._selected_obj.empty: + # GH48459 prevent ValueError when object is empty + return self._selected_obj + size = sample.process_sampling_size(n, frac, replace) + if weights is not None: + weights_arr = sample.preprocess_weights( + self._selected_obj, weights, axis=self.axis + ) + + random_state = com.random_state(random_state) + + group_iterator = self._grouper.get_iterator(self._selected_obj, self.axis) + + sampled_indices = [] + for labels, obj in group_iterator: + grp_indices = self.indices[labels] + group_size = len(grp_indices) + if size is not None: + sample_size = size + else: + assert frac is not None + sample_size = round(frac * group_size) + + grp_sample = sample.sample( + group_size, + size=sample_size, + replace=replace, + weights=None if weights is None else weights_arr[grp_indices], + random_state=random_state, + ) + sampled_indices.append(grp_indices[grp_sample]) + + sampled_indices = np.concatenate(sampled_indices) + return self._selected_obj.take(sampled_indices, axis=self.axis) + + def _idxmax_idxmin( + self, + how: Literal["idxmax", "idxmin"], + ignore_unobserved: bool = False, + axis: Axis | None | lib.NoDefault = lib.no_default, + skipna: bool = True, + numeric_only: bool = False, + ) -> NDFrameT: + """Compute idxmax/idxmin. + + Parameters + ---------- + how : {'idxmin', 'idxmax'} + Whether to compute idxmin or idxmax. + axis : {{0 or 'index', 1 or 'columns'}}, default None + The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. + If axis is not provided, grouper's axis is used. + numeric_only : bool, default False + Include only float, int, boolean columns. + skipna : bool, default True + Exclude NA/null values. If an entire row/column is NA, the result + will be NA. + ignore_unobserved : bool, default False + When True and an unobserved group is encountered, do not raise. This used + for transform where unobserved groups do not play an impact on the result. + + Returns + ------- + Series or DataFrame + idxmax or idxmin for the groupby operation. + """ + if axis is not lib.no_default: + if axis is None: + axis = self.axis + axis = self.obj._get_axis_number(axis) + self._deprecate_axis(axis, how) + else: + axis = self.axis + + if not self.observed and any( + ping._passed_categorical for ping in self._grouper.groupings + ): + expected_len = np.prod( + [len(ping._group_index) for ping in self._grouper.groupings] + ) + if len(self._grouper.groupings) == 1: + result_len = len(self._grouper.groupings[0].grouping_vector.unique()) + else: + # result_index only contains observed groups in this case + result_len = len(self._grouper.result_index) + assert result_len <= expected_len + has_unobserved = result_len < expected_len + + raise_err: bool | np.bool_ = not ignore_unobserved and has_unobserved + # Only raise an error if there are columns to compute; otherwise we return + # an empty DataFrame with an index (possibly including unobserved) but no + # columns + data = self._obj_with_exclusions + if raise_err and isinstance(data, DataFrame): + if numeric_only: + data = data._get_numeric_data() + raise_err = len(data.columns) > 0 + + if raise_err: + raise ValueError( + f"Can't get {how} of an empty group due to unobserved categories. " + "Specify observed=True in groupby instead." + ) + elif not skipna: + if self._obj_with_exclusions.isna().any(axis=None): + warnings.warn( + f"The behavior of {type(self).__name__}.{how} with all-NA " + "values, or any-NA and skipna=False, is deprecated. In a future " + "version this will raise ValueError", + FutureWarning, + stacklevel=find_stack_level(), + ) + + if axis == 1: + try: + + def func(df): + method = getattr(df, how) + return method(axis=axis, skipna=skipna, numeric_only=numeric_only) + + func.__name__ = how + result = self._python_apply_general( + func, self._obj_with_exclusions, not_indexed_same=True + ) + except ValueError as err: + name = "argmax" if how == "idxmax" else "argmin" + if f"attempt to get {name} of an empty sequence" in str(err): + raise ValueError( + f"Can't get {how} of an empty group due to unobserved " + "categories. Specify observed=True in groupby instead." + ) from None + raise + return result + + result = self._agg_general( + numeric_only=numeric_only, + min_count=1, + alias=how, + skipna=skipna, + ) + return result + + def _wrap_idxmax_idxmin(self, res: NDFrameT) -> NDFrameT: + index = self.obj._get_axis(self.axis) + if res.size == 0: + result = res.astype(index.dtype) + else: + if isinstance(index, MultiIndex): + index = index.to_flat_index() + values = res._values + assert isinstance(values, np.ndarray) + na_value = na_value_for_dtype(index.dtype, compat=False) + if isinstance(res, Series): + # mypy: expression has type "Series", variable has type "NDFrameT" + result = res._constructor( # type: ignore[assignment] + index.array.take(values, allow_fill=True, fill_value=na_value), + index=res.index, + name=res.name, + ) + else: + data = {} + for k, column_values in enumerate(values.T): + data[k] = index.array.take( + column_values, allow_fill=True, fill_value=na_value + ) + result = self.obj._constructor(data, index=res.index) + result.columns = res.columns + return result + + +@doc(GroupBy) +def get_groupby( + obj: NDFrame, + by: _KeysArgType | None = None, + axis: AxisInt = 0, + grouper: ops.BaseGrouper | None = None, + group_keys: bool = True, +) -> GroupBy: + klass: type[GroupBy] + if isinstance(obj, Series): + from pandas.core.groupby.generic import SeriesGroupBy + + klass = SeriesGroupBy + elif isinstance(obj, DataFrame): + from pandas.core.groupby.generic import DataFrameGroupBy + + klass = DataFrameGroupBy + else: # pragma: no cover + raise TypeError(f"invalid type: {obj}") + + return klass( + obj=obj, + keys=by, + axis=axis, + grouper=grouper, + group_keys=group_keys, + ) + + +def _insert_quantile_level(idx: Index, qs: npt.NDArray[np.float64]) -> MultiIndex: + """ + Insert the sequence 'qs' of quantiles as the inner-most level of a MultiIndex. + + The quantile level in the MultiIndex is a repeated copy of 'qs'. + + Parameters + ---------- + idx : Index + qs : np.ndarray[float64] + + Returns + ------- + MultiIndex + """ + nqs = len(qs) + lev_codes, lev = Index(qs).factorize() + lev_codes = coerce_indexer_dtype(lev_codes, lev) + + if idx._is_multi: + idx = cast(MultiIndex, idx) + levels = list(idx.levels) + [lev] + codes = [np.repeat(x, nqs) for x in idx.codes] + [np.tile(lev_codes, len(idx))] + mi = MultiIndex(levels=levels, codes=codes, names=idx.names + [None]) + else: + nidx = len(idx) + idx_codes = coerce_indexer_dtype(np.arange(nidx), idx) + levels = [idx, lev] + codes = [np.repeat(idx_codes, nqs), np.tile(lev_codes, nidx)] + mi = MultiIndex(levels=levels, codes=codes, names=[idx.name, None]) + + return mi + + +# GH#7155 +_apply_groupings_depr = ( + "{}.{} operated on the grouping columns. This behavior is deprecated, " + "and in a future version of pandas the grouping columns will be excluded " + "from the operation. Either pass `include_groups=False` to exclude the " + "groupings or explicitly select the grouping columns after groupby to silence " + "this warning." +) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/grouper.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/grouper.py new file mode 100644 index 0000000000000000000000000000000000000000..e2224caad9e846f5e386019e6da5b47d16ab3694 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/grouper.py @@ -0,0 +1,1102 @@ +""" +Provide user facing operators for doing the split part of the +split-apply-combine paradigm. +""" +from __future__ import annotations + +from typing import ( + TYPE_CHECKING, + final, +) +import warnings + +import numpy as np + +from pandas._config import ( + using_copy_on_write, + warn_copy_on_write, +) + +from pandas._libs import lib +from pandas._libs.tslibs import OutOfBoundsDatetime +from pandas.errors import InvalidIndexError +from pandas.util._decorators import cache_readonly +from pandas.util._exceptions import find_stack_level + +from pandas.core.dtypes.common import ( + is_list_like, + is_scalar, +) +from pandas.core.dtypes.dtypes import CategoricalDtype + +from pandas.core import algorithms +from pandas.core.arrays import ( + Categorical, + ExtensionArray, +) +import pandas.core.common as com +from pandas.core.frame import DataFrame +from pandas.core.groupby import ops +from pandas.core.groupby.categorical import recode_for_groupby +from pandas.core.indexes.api import ( + CategoricalIndex, + Index, + MultiIndex, +) +from pandas.core.series import Series + +from pandas.io.formats.printing import pprint_thing + +if TYPE_CHECKING: + from collections.abc import ( + Hashable, + Iterator, + ) + + from pandas._typing import ( + ArrayLike, + Axis, + NDFrameT, + npt, + ) + + from pandas.core.generic import NDFrame + + +class Grouper: + """ + A Grouper allows the user to specify a groupby instruction for an object. + + This specification will select a column via the key parameter, or if the + level and/or axis parameters are given, a level of the index of the target + object. + + If `axis` and/or `level` are passed as keywords to both `Grouper` and + `groupby`, the values passed to `Grouper` take precedence. + + Parameters + ---------- + key : str, defaults to None + Groupby key, which selects the grouping column of the target. + level : name/number, defaults to None + The level for the target index. + freq : str / frequency object, defaults to None + This will groupby the specified frequency if the target selection + (via key or level) is a datetime-like object. For full specification + of available frequencies, please see `here + `_. + axis : str, int, defaults to 0 + Number/name of the axis. + sort : bool, default to False + Whether to sort the resulting labels. + closed : {'left' or 'right'} + Closed end of interval. Only when `freq` parameter is passed. + label : {'left' or 'right'} + Interval boundary to use for labeling. + Only when `freq` parameter is passed. + convention : {'start', 'end', 'e', 's'} + If grouper is PeriodIndex and `freq` parameter is passed. + + origin : Timestamp or str, default 'start_day' + The timestamp on which to adjust the grouping. The timezone of origin must + match the timezone of the index. + If string, must be one of the following: + + - 'epoch': `origin` is 1970-01-01 + - 'start': `origin` is the first value of the timeseries + - 'start_day': `origin` is the first day at midnight of the timeseries + + - 'end': `origin` is the last value of the timeseries + - 'end_day': `origin` is the ceiling midnight of the last day + + .. versionadded:: 1.3.0 + + offset : Timedelta or str, default is None + An offset timedelta added to the origin. + + dropna : bool, default True + If True, and if group keys contain NA values, NA values together with + row/column will be dropped. If False, NA values will also be treated as + the key in groups. + + Returns + ------- + Grouper or pandas.api.typing.TimeGrouper + A TimeGrouper is returned if ``freq`` is not ``None``. Otherwise, a Grouper + is returned. + + Examples + -------- + ``df.groupby(pd.Grouper(key="Animal"))`` is equivalent to ``df.groupby('Animal')`` + + >>> df = pd.DataFrame( + ... { + ... "Animal": ["Falcon", "Parrot", "Falcon", "Falcon", "Parrot"], + ... "Speed": [100, 5, 200, 300, 15], + ... } + ... ) + >>> df + Animal Speed + 0 Falcon 100 + 1 Parrot 5 + 2 Falcon 200 + 3 Falcon 300 + 4 Parrot 15 + >>> df.groupby(pd.Grouper(key="Animal")).mean() + Speed + Animal + Falcon 200.0 + Parrot 10.0 + + Specify a resample operation on the column 'Publish date' + + >>> df = pd.DataFrame( + ... { + ... "Publish date": [ + ... pd.Timestamp("2000-01-02"), + ... pd.Timestamp("2000-01-02"), + ... pd.Timestamp("2000-01-09"), + ... pd.Timestamp("2000-01-16") + ... ], + ... "ID": [0, 1, 2, 3], + ... "Price": [10, 20, 30, 40] + ... } + ... ) + >>> df + Publish date ID Price + 0 2000-01-02 0 10 + 1 2000-01-02 1 20 + 2 2000-01-09 2 30 + 3 2000-01-16 3 40 + >>> df.groupby(pd.Grouper(key="Publish date", freq="1W")).mean() + ID Price + Publish date + 2000-01-02 0.5 15.0 + 2000-01-09 2.0 30.0 + 2000-01-16 3.0 40.0 + + If you want to adjust the start of the bins based on a fixed timestamp: + + >>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00' + >>> rng = pd.date_range(start, end, freq='7min') + >>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng) + >>> ts + 2000-10-01 23:30:00 0 + 2000-10-01 23:37:00 3 + 2000-10-01 23:44:00 6 + 2000-10-01 23:51:00 9 + 2000-10-01 23:58:00 12 + 2000-10-02 00:05:00 15 + 2000-10-02 00:12:00 18 + 2000-10-02 00:19:00 21 + 2000-10-02 00:26:00 24 + Freq: 7min, dtype: int64 + + >>> ts.groupby(pd.Grouper(freq='17min')).sum() + 2000-10-01 23:14:00 0 + 2000-10-01 23:31:00 9 + 2000-10-01 23:48:00 21 + 2000-10-02 00:05:00 54 + 2000-10-02 00:22:00 24 + Freq: 17min, dtype: int64 + + >>> ts.groupby(pd.Grouper(freq='17min', origin='epoch')).sum() + 2000-10-01 23:18:00 0 + 2000-10-01 23:35:00 18 + 2000-10-01 23:52:00 27 + 2000-10-02 00:09:00 39 + 2000-10-02 00:26:00 24 + Freq: 17min, dtype: int64 + + >>> ts.groupby(pd.Grouper(freq='17min', origin='2000-01-01')).sum() + 2000-10-01 23:24:00 3 + 2000-10-01 23:41:00 15 + 2000-10-01 23:58:00 45 + 2000-10-02 00:15:00 45 + Freq: 17min, dtype: int64 + + If you want to adjust the start of the bins with an `offset` Timedelta, the two + following lines are equivalent: + + >>> ts.groupby(pd.Grouper(freq='17min', origin='start')).sum() + 2000-10-01 23:30:00 9 + 2000-10-01 23:47:00 21 + 2000-10-02 00:04:00 54 + 2000-10-02 00:21:00 24 + Freq: 17min, dtype: int64 + + >>> ts.groupby(pd.Grouper(freq='17min', offset='23h30min')).sum() + 2000-10-01 23:30:00 9 + 2000-10-01 23:47:00 21 + 2000-10-02 00:04:00 54 + 2000-10-02 00:21:00 24 + Freq: 17min, dtype: int64 + + To replace the use of the deprecated `base` argument, you can now use `offset`, + in this example it is equivalent to have `base=2`: + + >>> ts.groupby(pd.Grouper(freq='17min', offset='2min')).sum() + 2000-10-01 23:16:00 0 + 2000-10-01 23:33:00 9 + 2000-10-01 23:50:00 36 + 2000-10-02 00:07:00 39 + 2000-10-02 00:24:00 24 + Freq: 17min, dtype: int64 + """ + + sort: bool + dropna: bool + _gpr_index: Index | None + _grouper: Index | None + + _attributes: tuple[str, ...] = ("key", "level", "freq", "axis", "sort", "dropna") + + def __new__(cls, *args, **kwargs): + if kwargs.get("freq") is not None: + from pandas.core.resample import TimeGrouper + + cls = TimeGrouper + return super().__new__(cls) + + def __init__( + self, + key=None, + level=None, + freq=None, + axis: Axis | lib.NoDefault = lib.no_default, + sort: bool = False, + dropna: bool = True, + ) -> None: + if type(self) is Grouper: + # i.e. not TimeGrouper + if axis is not lib.no_default: + warnings.warn( + "Grouper axis keyword is deprecated and will be removed in a " + "future version. To group on axis=1, use obj.T.groupby(...) " + "instead", + FutureWarning, + stacklevel=find_stack_level(), + ) + else: + axis = 0 + if axis is lib.no_default: + axis = 0 + + self.key = key + self.level = level + self.freq = freq + self.axis = axis + self.sort = sort + self.dropna = dropna + + self._grouper_deprecated = None + self._indexer_deprecated: npt.NDArray[np.intp] | None = None + self._obj_deprecated = None + self._gpr_index = None + self.binner = None + self._grouper = None + self._indexer: npt.NDArray[np.intp] | None = None + + def _get_grouper( + self, obj: NDFrameT, validate: bool = True + ) -> tuple[ops.BaseGrouper, NDFrameT]: + """ + Parameters + ---------- + obj : Series or DataFrame + validate : bool, default True + if True, validate the grouper + + Returns + ------- + a tuple of grouper, obj (possibly sorted) + """ + obj, _, _ = self._set_grouper(obj) + grouper, _, obj = get_grouper( + obj, + [self.key], + axis=self.axis, + level=self.level, + sort=self.sort, + validate=validate, + dropna=self.dropna, + ) + # Without setting this, subsequent lookups to .groups raise + # error: Incompatible types in assignment (expression has type "BaseGrouper", + # variable has type "None") + self._grouper_deprecated = grouper # type: ignore[assignment] + + return grouper, obj + + def _set_grouper( + self, obj: NDFrameT, sort: bool = False, *, gpr_index: Index | None = None + ) -> tuple[NDFrameT, Index, npt.NDArray[np.intp] | None]: + """ + given an object and the specifications, setup the internal grouper + for this particular specification + + Parameters + ---------- + obj : Series or DataFrame + sort : bool, default False + whether the resulting grouper should be sorted + gpr_index : Index or None, default None + + Returns + ------- + NDFrame + Index + np.ndarray[np.intp] | None + """ + assert obj is not None + + if self.key is not None and self.level is not None: + raise ValueError("The Grouper cannot specify both a key and a level!") + + # Keep self._grouper value before overriding + if self._grouper is None: + # TODO: What are we assuming about subsequent calls? + self._grouper = gpr_index + self._indexer = self._indexer_deprecated + + # the key must be a valid info item + if self.key is not None: + key = self.key + # The 'on' is already defined + if getattr(gpr_index, "name", None) == key and isinstance(obj, Series): + # Sometimes self._grouper will have been resorted while + # obj has not. In this case there is a mismatch when we + # call self._grouper.take(obj.index) so we need to undo the sorting + # before we call _grouper.take. + assert self._grouper is not None + if self._indexer is not None: + reverse_indexer = self._indexer.argsort() + unsorted_ax = self._grouper.take(reverse_indexer) + ax = unsorted_ax.take(obj.index) + else: + ax = self._grouper.take(obj.index) + else: + if key not in obj._info_axis: + raise KeyError(f"The grouper name {key} is not found") + ax = Index(obj[key], name=key) + + else: + ax = obj._get_axis(self.axis) + if self.level is not None: + level = self.level + + # if a level is given it must be a mi level or + # equivalent to the axis name + if isinstance(ax, MultiIndex): + level = ax._get_level_number(level) + ax = Index(ax._get_level_values(level), name=ax.names[level]) + + else: + if level not in (0, ax.name): + raise ValueError(f"The level {level} is not valid") + + # possibly sort + indexer: npt.NDArray[np.intp] | None = None + if (self.sort or sort) and not ax.is_monotonic_increasing: + # use stable sort to support first, last, nth + # TODO: why does putting na_position="first" fix datetimelike cases? + indexer = self._indexer_deprecated = ax.array.argsort( + kind="mergesort", na_position="first" + ) + ax = ax.take(indexer) + obj = obj.take(indexer, axis=self.axis) + + # error: Incompatible types in assignment (expression has type + # "NDFrameT", variable has type "None") + self._obj_deprecated = obj # type: ignore[assignment] + self._gpr_index = ax + return obj, ax, indexer + + @final + @property + def ax(self) -> Index: + warnings.warn( + f"{type(self).__name__}.ax is deprecated and will be removed in a " + "future version. Use Resampler.ax instead", + FutureWarning, + stacklevel=find_stack_level(), + ) + index = self._gpr_index + if index is None: + raise ValueError("_set_grouper must be called before ax is accessed") + return index + + @final + @property + def indexer(self): + warnings.warn( + f"{type(self).__name__}.indexer is deprecated and will be removed " + "in a future version. Use Resampler.indexer instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + return self._indexer_deprecated + + @final + @property + def obj(self): + # TODO(3.0): enforcing these deprecations on Grouper should close + # GH#25564, GH#41930 + warnings.warn( + f"{type(self).__name__}.obj is deprecated and will be removed " + "in a future version. Use GroupBy.indexer instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + return self._obj_deprecated + + @final + @property + def grouper(self): + warnings.warn( + f"{type(self).__name__}.grouper is deprecated and will be removed " + "in a future version. Use GroupBy.grouper instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + return self._grouper_deprecated + + @final + @property + def groups(self): + warnings.warn( + f"{type(self).__name__}.groups is deprecated and will be removed " + "in a future version. Use GroupBy.groups instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + # error: "None" has no attribute "groups" + return self._grouper_deprecated.groups # type: ignore[attr-defined] + + @final + def __repr__(self) -> str: + attrs_list = ( + f"{attr_name}={repr(getattr(self, attr_name))}" + for attr_name in self._attributes + if getattr(self, attr_name) is not None + ) + attrs = ", ".join(attrs_list) + cls_name = type(self).__name__ + return f"{cls_name}({attrs})" + + +@final +class Grouping: + """ + Holds the grouping information for a single key + + Parameters + ---------- + index : Index + grouper : + obj : DataFrame or Series + name : Label + level : + observed : bool, default False + If we are a Categorical, use the observed values + in_axis : if the Grouping is a column in self.obj and hence among + Groupby.exclusions list + dropna : bool, default True + Whether to drop NA groups. + uniques : Array-like, optional + When specified, will be used for unique values. Enables including empty groups + in the result for a BinGrouper. Must not contain duplicates. + + Attributes + ------- + indices : dict + Mapping of {group -> index_list} + codes : ndarray + Group codes + group_index : Index or None + unique groups + groups : dict + Mapping of {group -> label_list} + """ + + _codes: npt.NDArray[np.signedinteger] | None = None + _all_grouper: Categorical | None + _orig_cats: Index | None + _index: Index + + def __init__( + self, + index: Index, + grouper=None, + obj: NDFrame | None = None, + level=None, + sort: bool = True, + observed: bool = False, + in_axis: bool = False, + dropna: bool = True, + uniques: ArrayLike | None = None, + ) -> None: + self.level = level + self._orig_grouper = grouper + grouping_vector = _convert_grouper(index, grouper) + self._all_grouper = None + self._orig_cats = None + self._index = index + self._sort = sort + self.obj = obj + self._observed = observed + self.in_axis = in_axis + self._dropna = dropna + self._uniques = uniques + + # we have a single grouper which may be a myriad of things, + # some of which are dependent on the passing in level + + ilevel = self._ilevel + if ilevel is not None: + # In extant tests, the new self.grouping_vector matches + # `index.get_level_values(ilevel)` whenever + # mapper is None and isinstance(index, MultiIndex) + if isinstance(index, MultiIndex): + index_level = index.get_level_values(ilevel) + else: + index_level = index + + if grouping_vector is None: + grouping_vector = index_level + else: + mapper = grouping_vector + grouping_vector = index_level.map(mapper) + + # a passed Grouper like, directly get the grouper in the same way + # as single grouper groupby, use the group_info to get codes + elif isinstance(grouping_vector, Grouper): + # get the new grouper; we already have disambiguated + # what key/level refer to exactly, don't need to + # check again as we have by this point converted these + # to an actual value (rather than a pd.Grouper) + assert self.obj is not None # for mypy + newgrouper, newobj = grouping_vector._get_grouper(self.obj, validate=False) + self.obj = newobj + + if isinstance(newgrouper, ops.BinGrouper): + # TODO: can we unwrap this and get a tighter typing + # for self.grouping_vector? + grouping_vector = newgrouper + else: + # ops.BaseGrouper + # TODO: 2023-02-03 no test cases with len(newgrouper.groupings) > 1. + # If that were to occur, would we be throwing out information? + # error: Cannot determine type of "grouping_vector" [has-type] + ng = newgrouper.groupings[0].grouping_vector # type: ignore[has-type] + # use Index instead of ndarray so we can recover the name + grouping_vector = Index(ng, name=newgrouper.result_index.name) + + elif not isinstance( + grouping_vector, (Series, Index, ExtensionArray, np.ndarray) + ): + # no level passed + if getattr(grouping_vector, "ndim", 1) != 1: + t = str(type(grouping_vector)) + raise ValueError(f"Grouper for '{t}' not 1-dimensional") + + grouping_vector = index.map(grouping_vector) + + if not ( + hasattr(grouping_vector, "__len__") + and len(grouping_vector) == len(index) + ): + grper = pprint_thing(grouping_vector) + errmsg = ( + "Grouper result violates len(labels) == " + f"len(data)\nresult: {grper}" + ) + raise AssertionError(errmsg) + + if isinstance(grouping_vector, np.ndarray): + if grouping_vector.dtype.kind in "mM": + # if we have a date/time-like grouper, make sure that we have + # Timestamps like + # TODO 2022-10-08 we only have one test that gets here and + # values are already in nanoseconds in that case. + grouping_vector = Series(grouping_vector).to_numpy() + elif isinstance(getattr(grouping_vector, "dtype", None), CategoricalDtype): + # a passed Categorical + self._orig_cats = grouping_vector.categories + grouping_vector, self._all_grouper = recode_for_groupby( + grouping_vector, sort, observed + ) + + self.grouping_vector = grouping_vector + + def __repr__(self) -> str: + return f"Grouping({self.name})" + + def __iter__(self) -> Iterator: + return iter(self.indices) + + @cache_readonly + def _passed_categorical(self) -> bool: + dtype = getattr(self.grouping_vector, "dtype", None) + return isinstance(dtype, CategoricalDtype) + + @cache_readonly + def name(self) -> Hashable: + ilevel = self._ilevel + if ilevel is not None: + return self._index.names[ilevel] + + if isinstance(self._orig_grouper, (Index, Series)): + return self._orig_grouper.name + + elif isinstance(self.grouping_vector, ops.BaseGrouper): + return self.grouping_vector.result_index.name + + elif isinstance(self.grouping_vector, Index): + return self.grouping_vector.name + + # otherwise we have ndarray or ExtensionArray -> no name + return None + + @cache_readonly + def _ilevel(self) -> int | None: + """ + If necessary, converted index level name to index level position. + """ + level = self.level + if level is None: + return None + if not isinstance(level, int): + index = self._index + if level not in index.names: + raise AssertionError(f"Level {level} not in index") + return index.names.index(level) + return level + + @property + def ngroups(self) -> int: + return len(self._group_index) + + @cache_readonly + def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]: + # we have a list of groupers + if isinstance(self.grouping_vector, ops.BaseGrouper): + return self.grouping_vector.indices + + values = Categorical(self.grouping_vector) + return values._reverse_indexer() + + @property + def codes(self) -> npt.NDArray[np.signedinteger]: + return self._codes_and_uniques[0] + + @cache_readonly + def _group_arraylike(self) -> ArrayLike: + """ + Analogous to result_index, but holding an ArrayLike to ensure + we can retain ExtensionDtypes. + """ + if self._all_grouper is not None: + # retain dtype for categories, including unobserved ones + return self._result_index._values + + elif self._passed_categorical: + return self._group_index._values + + return self._codes_and_uniques[1] + + @property + def group_arraylike(self) -> ArrayLike: + """ + Analogous to result_index, but holding an ArrayLike to ensure + we can retain ExtensionDtypes. + """ + warnings.warn( + "group_arraylike is deprecated and will be removed in a future " + "version of pandas", + category=FutureWarning, + stacklevel=find_stack_level(), + ) + return self._group_arraylike + + @cache_readonly + def _result_index(self) -> Index: + # result_index retains dtype for categories, including unobserved ones, + # which group_index does not + if self._all_grouper is not None: + group_idx = self._group_index + assert isinstance(group_idx, CategoricalIndex) + cats = self._orig_cats + # set_categories is dynamically added + return group_idx.set_categories(cats) # type: ignore[attr-defined] + return self._group_index + + @property + def result_index(self) -> Index: + warnings.warn( + "result_index is deprecated and will be removed in a future " + "version of pandas", + category=FutureWarning, + stacklevel=find_stack_level(), + ) + return self._result_index + + @cache_readonly + def _group_index(self) -> Index: + codes, uniques = self._codes_and_uniques + if not self._dropna and self._passed_categorical: + assert isinstance(uniques, Categorical) + if self._sort and (codes == len(uniques)).any(): + # Add NA value on the end when sorting + uniques = Categorical.from_codes( + np.append(uniques.codes, [-1]), uniques.categories, validate=False + ) + elif len(codes) > 0: + # Need to determine proper placement of NA value when not sorting + cat = self.grouping_vector + na_idx = (cat.codes < 0).argmax() + if cat.codes[na_idx] < 0: + # count number of unique codes that comes before the nan value + na_unique_idx = algorithms.nunique_ints(cat.codes[:na_idx]) + new_codes = np.insert(uniques.codes, na_unique_idx, -1) + uniques = Categorical.from_codes( + new_codes, uniques.categories, validate=False + ) + return Index._with_infer(uniques, name=self.name) + + @property + def group_index(self) -> Index: + warnings.warn( + "group_index is deprecated and will be removed in a future " + "version of pandas", + category=FutureWarning, + stacklevel=find_stack_level(), + ) + return self._group_index + + @cache_readonly + def _codes_and_uniques(self) -> tuple[npt.NDArray[np.signedinteger], ArrayLike]: + uniques: ArrayLike + if self._passed_categorical: + # we make a CategoricalIndex out of the cat grouper + # preserving the categories / ordered attributes; + # doesn't (yet - GH#46909) handle dropna=False + cat = self.grouping_vector + categories = cat.categories + + if self._observed: + ucodes = algorithms.unique1d(cat.codes) + ucodes = ucodes[ucodes != -1] + if self._sort: + ucodes = np.sort(ucodes) + else: + ucodes = np.arange(len(categories)) + + uniques = Categorical.from_codes( + codes=ucodes, categories=categories, ordered=cat.ordered, validate=False + ) + + codes = cat.codes + if not self._dropna: + na_mask = codes < 0 + if np.any(na_mask): + if self._sort: + # Replace NA codes with `largest code + 1` + na_code = len(categories) + codes = np.where(na_mask, na_code, codes) + else: + # Insert NA code into the codes based on first appearance + # A negative code must exist, no need to check codes[na_idx] < 0 + na_idx = na_mask.argmax() + # count number of unique codes that comes before the nan value + na_code = algorithms.nunique_ints(codes[:na_idx]) + codes = np.where(codes >= na_code, codes + 1, codes) + codes = np.where(na_mask, na_code, codes) + + if not self._observed: + uniques = uniques.reorder_categories(self._orig_cats) + + return codes, uniques + + elif isinstance(self.grouping_vector, ops.BaseGrouper): + # we have a list of groupers + codes = self.grouping_vector.codes_info + uniques = self.grouping_vector.result_index._values + elif self._uniques is not None: + # GH#50486 Code grouping_vector using _uniques; allows + # including uniques that are not present in grouping_vector. + cat = Categorical(self.grouping_vector, categories=self._uniques) + codes = cat.codes + uniques = self._uniques + else: + # GH35667, replace dropna=False with use_na_sentinel=False + # error: Incompatible types in assignment (expression has type "Union[ + # ndarray[Any, Any], Index]", variable has type "Categorical") + codes, uniques = algorithms.factorize( # type: ignore[assignment] + self.grouping_vector, sort=self._sort, use_na_sentinel=self._dropna + ) + return codes, uniques + + @cache_readonly + def groups(self) -> dict[Hashable, np.ndarray]: + cats = Categorical.from_codes(self.codes, self._group_index, validate=False) + return self._index.groupby(cats) + + +def get_grouper( + obj: NDFrameT, + key=None, + axis: Axis = 0, + level=None, + sort: bool = True, + observed: bool = False, + validate: bool = True, + dropna: bool = True, +) -> tuple[ops.BaseGrouper, frozenset[Hashable], NDFrameT]: + """ + Create and return a BaseGrouper, which is an internal + mapping of how to create the grouper indexers. + This may be composed of multiple Grouping objects, indicating + multiple groupers + + Groupers are ultimately index mappings. They can originate as: + index mappings, keys to columns, functions, or Groupers + + Groupers enable local references to axis,level,sort, while + the passed in axis, level, and sort are 'global'. + + This routine tries to figure out what the passing in references + are and then creates a Grouping for each one, combined into + a BaseGrouper. + + If observed & we have a categorical grouper, only show the observed + values. + + If validate, then check for key/level overlaps. + + """ + group_axis = obj._get_axis(axis) + + # validate that the passed single level is compatible with the passed + # axis of the object + if level is not None: + # TODO: These if-block and else-block are almost same. + # MultiIndex instance check is removable, but it seems that there are + # some processes only for non-MultiIndex in else-block, + # eg. `obj.index.name != level`. We have to consider carefully whether + # these are applicable for MultiIndex. Even if these are applicable, + # we need to check if it makes no side effect to subsequent processes + # on the outside of this condition. + # (GH 17621) + if isinstance(group_axis, MultiIndex): + if is_list_like(level) and len(level) == 1: + level = level[0] + + if key is None and is_scalar(level): + # Get the level values from group_axis + key = group_axis.get_level_values(level) + level = None + + else: + # allow level to be a length-one list-like object + # (e.g., level=[0]) + # GH 13901 + if is_list_like(level): + nlevels = len(level) + if nlevels == 1: + level = level[0] + elif nlevels == 0: + raise ValueError("No group keys passed!") + else: + raise ValueError("multiple levels only valid with MultiIndex") + + if isinstance(level, str): + if obj._get_axis(axis).name != level: + raise ValueError( + f"level name {level} is not the name " + f"of the {obj._get_axis_name(axis)}" + ) + elif level > 0 or level < -1: + raise ValueError("level > 0 or level < -1 only valid with MultiIndex") + + # NOTE: `group_axis` and `group_axis.get_level_values(level)` + # are same in this section. + level = None + key = group_axis + + # a passed-in Grouper, directly convert + if isinstance(key, Grouper): + grouper, obj = key._get_grouper(obj, validate=False) + if key.key is None: + return grouper, frozenset(), obj + else: + return grouper, frozenset({key.key}), obj + + # already have a BaseGrouper, just return it + elif isinstance(key, ops.BaseGrouper): + return key, frozenset(), obj + + if not isinstance(key, list): + keys = [key] + match_axis_length = False + else: + keys = key + match_axis_length = len(keys) == len(group_axis) + + # what are we after, exactly? + any_callable = any(callable(g) or isinstance(g, dict) for g in keys) + any_groupers = any(isinstance(g, (Grouper, Grouping)) for g in keys) + any_arraylike = any( + isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys + ) + + # is this an index replacement? + if ( + not any_callable + and not any_arraylike + and not any_groupers + and match_axis_length + and level is None + ): + if isinstance(obj, DataFrame): + all_in_columns_index = all( + g in obj.columns or g in obj.index.names for g in keys + ) + else: + assert isinstance(obj, Series) + all_in_columns_index = all(g in obj.index.names for g in keys) + + if not all_in_columns_index: + keys = [com.asarray_tuplesafe(keys)] + + if isinstance(level, (tuple, list)): + if key is None: + keys = [None] * len(level) + levels = level + else: + levels = [level] * len(keys) + + groupings: list[Grouping] = [] + exclusions: set[Hashable] = set() + + # if the actual grouper should be obj[key] + def is_in_axis(key) -> bool: + if not _is_label_like(key): + if obj.ndim == 1: + return False + + # items -> .columns for DataFrame, .index for Series + items = obj.axes[-1] + try: + items.get_loc(key) + except (KeyError, TypeError, InvalidIndexError): + # TypeError shows up here if we pass e.g. an Index + return False + + return True + + # if the grouper is obj[name] + def is_in_obj(gpr) -> bool: + if not hasattr(gpr, "name"): + return False + if using_copy_on_write() or warn_copy_on_write(): + # For the CoW case, we check the references to determine if the + # series is part of the object + try: + obj_gpr_column = obj[gpr.name] + except (KeyError, IndexError, InvalidIndexError, OutOfBoundsDatetime): + return False + if isinstance(gpr, Series) and isinstance(obj_gpr_column, Series): + return gpr._mgr.references_same_values( # type: ignore[union-attr] + obj_gpr_column._mgr, 0 # type: ignore[arg-type] + ) + return False + try: + return gpr is obj[gpr.name] + except (KeyError, IndexError, InvalidIndexError, OutOfBoundsDatetime): + # IndexError reached in e.g. test_skip_group_keys when we pass + # lambda here + # InvalidIndexError raised on key-types inappropriate for index, + # e.g. DatetimeIndex.get_loc(tuple()) + # OutOfBoundsDatetime raised when obj is a Series with DatetimeIndex + # and gpr.name is month str + return False + + for gpr, level in zip(keys, levels): + if is_in_obj(gpr): # df.groupby(df['name']) + in_axis = True + exclusions.add(gpr.name) + + elif is_in_axis(gpr): # df.groupby('name') + if obj.ndim != 1 and gpr in obj: + if validate: + obj._check_label_or_level_ambiguity(gpr, axis=axis) + in_axis, name, gpr = True, gpr, obj[gpr] + if gpr.ndim != 1: + # non-unique columns; raise here to get the name in the + # exception message + raise ValueError(f"Grouper for '{name}' not 1-dimensional") + exclusions.add(name) + elif obj._is_level_reference(gpr, axis=axis): + in_axis, level, gpr = False, gpr, None + else: + raise KeyError(gpr) + elif isinstance(gpr, Grouper) and gpr.key is not None: + # Add key to exclusions + exclusions.add(gpr.key) + in_axis = True + else: + in_axis = False + + # create the Grouping + # allow us to passing the actual Grouping as the gpr + ping = ( + Grouping( + group_axis, + gpr, + obj=obj, + level=level, + sort=sort, + observed=observed, + in_axis=in_axis, + dropna=dropna, + ) + if not isinstance(gpr, Grouping) + else gpr + ) + + groupings.append(ping) + + if len(groupings) == 0 and len(obj): + raise ValueError("No group keys passed!") + if len(groupings) == 0: + groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp))) + + # create the internals grouper + grouper = ops.BaseGrouper(group_axis, groupings, sort=sort, dropna=dropna) + return grouper, frozenset(exclusions), obj + + +def _is_label_like(val) -> bool: + return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val)) + + +def _convert_grouper(axis: Index, grouper): + if isinstance(grouper, dict): + return grouper.get + elif isinstance(grouper, Series): + if grouper.index.equals(axis): + return grouper._values + else: + return grouper.reindex(axis)._values + elif isinstance(grouper, MultiIndex): + return grouper._values + elif isinstance(grouper, (list, tuple, Index, Categorical, np.ndarray)): + if len(grouper) != len(axis): + raise ValueError("Grouper and axis must be same length") + + if isinstance(grouper, (list, tuple)): + grouper = com.asarray_tuplesafe(grouper) + return grouper + else: + return grouper diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/indexing.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/indexing.py new file mode 100644 index 0000000000000000000000000000000000000000..a3c5ab8edc94e4f91175891282252d0e8cdfd3ec --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/indexing.py @@ -0,0 +1,304 @@ +from __future__ import annotations + +from collections.abc import Iterable +from typing import ( + TYPE_CHECKING, + Literal, + cast, +) + +import numpy as np + +from pandas.util._decorators import ( + cache_readonly, + doc, +) + +from pandas.core.dtypes.common import ( + is_integer, + is_list_like, +) + +if TYPE_CHECKING: + from pandas._typing import PositionalIndexer + + from pandas import ( + DataFrame, + Series, + ) + from pandas.core.groupby import groupby + + +class GroupByIndexingMixin: + """ + Mixin for adding ._positional_selector to GroupBy. + """ + + @cache_readonly + def _positional_selector(self) -> GroupByPositionalSelector: + """ + Return positional selection for each group. + + ``groupby._positional_selector[i:j]`` is similar to + ``groupby.apply(lambda x: x.iloc[i:j])`` + but much faster and preserves the original index and order. + + ``_positional_selector[]`` is compatible with and extends :meth:`~GroupBy.head` + and :meth:`~GroupBy.tail`. For example: + + - ``head(5)`` + - ``_positional_selector[5:-5]`` + - ``tail(5)`` + + together return all the rows. + + Allowed inputs for the index are: + + - An integer valued iterable, e.g. ``range(2, 4)``. + - A comma separated list of integers and slices, e.g. ``5``, ``2, 4``, ``2:4``. + + The output format is the same as :meth:`~GroupBy.head` and + :meth:`~GroupBy.tail`, namely + a subset of the ``DataFrame`` or ``Series`` with the index and order preserved. + + Returns + ------- + Series + The filtered subset of the original Series. + DataFrame + The filtered subset of the original DataFrame. + + See Also + -------- + DataFrame.iloc : Purely integer-location based indexing for selection by + position. + GroupBy.head : Return first n rows of each group. + GroupBy.tail : Return last n rows of each group. + GroupBy.nth : Take the nth row from each group if n is an int, or a + subset of rows, if n is a list of ints. + + Notes + ----- + - The slice step cannot be negative. + - If the index specification results in overlaps, the item is not duplicated. + - If the index specification changes the order of items, then + they are returned in their original order. + By contrast, ``DataFrame.iloc`` can change the row order. + - ``groupby()`` parameters such as as_index and dropna are ignored. + + The differences between ``_positional_selector[]`` and :meth:`~GroupBy.nth` + with ``as_index=False`` are: + + - Input to ``_positional_selector`` can include + one or more slices whereas ``nth`` + just handles an integer or a list of integers. + - ``_positional_selector`` can accept a slice relative to the + last row of each group. + - ``_positional_selector`` does not have an equivalent to the + ``nth()`` ``dropna`` parameter. + + Examples + -------- + >>> df = pd.DataFrame([["a", 1], ["a", 2], ["a", 3], ["b", 4], ["b", 5]], + ... columns=["A", "B"]) + >>> df.groupby("A")._positional_selector[1:2] + A B + 1 a 2 + 4 b 5 + + >>> df.groupby("A")._positional_selector[1, -1] + A B + 1 a 2 + 2 a 3 + 4 b 5 + """ + if TYPE_CHECKING: + # pylint: disable-next=used-before-assignment + groupby_self = cast(groupby.GroupBy, self) + else: + groupby_self = self + + return GroupByPositionalSelector(groupby_self) + + def _make_mask_from_positional_indexer( + self, + arg: PositionalIndexer | tuple, + ) -> np.ndarray: + if is_list_like(arg): + if all(is_integer(i) for i in cast(Iterable, arg)): + mask = self._make_mask_from_list(cast(Iterable[int], arg)) + else: + mask = self._make_mask_from_tuple(cast(tuple, arg)) + + elif isinstance(arg, slice): + mask = self._make_mask_from_slice(arg) + elif is_integer(arg): + mask = self._make_mask_from_int(cast(int, arg)) + else: + raise TypeError( + f"Invalid index {type(arg)}. " + "Must be integer, list-like, slice or a tuple of " + "integers and slices" + ) + + if isinstance(mask, bool): + if mask: + mask = self._ascending_count >= 0 + else: + mask = self._ascending_count < 0 + + return cast(np.ndarray, mask) + + def _make_mask_from_int(self, arg: int) -> np.ndarray: + if arg >= 0: + return self._ascending_count == arg + else: + return self._descending_count == (-arg - 1) + + def _make_mask_from_list(self, args: Iterable[int]) -> bool | np.ndarray: + positive = [arg for arg in args if arg >= 0] + negative = [-arg - 1 for arg in args if arg < 0] + + mask: bool | np.ndarray = False + + if positive: + mask |= np.isin(self._ascending_count, positive) + + if negative: + mask |= np.isin(self._descending_count, negative) + + return mask + + def _make_mask_from_tuple(self, args: tuple) -> bool | np.ndarray: + mask: bool | np.ndarray = False + + for arg in args: + if is_integer(arg): + mask |= self._make_mask_from_int(cast(int, arg)) + elif isinstance(arg, slice): + mask |= self._make_mask_from_slice(arg) + else: + raise ValueError( + f"Invalid argument {type(arg)}. Should be int or slice." + ) + + return mask + + def _make_mask_from_slice(self, arg: slice) -> bool | np.ndarray: + start = arg.start + stop = arg.stop + step = arg.step + + if step is not None and step < 0: + raise ValueError(f"Invalid step {step}. Must be non-negative") + + mask: bool | np.ndarray = True + + if step is None: + step = 1 + + if start is None: + if step > 1: + mask &= self._ascending_count % step == 0 + + elif start >= 0: + mask &= self._ascending_count >= start + + if step > 1: + mask &= (self._ascending_count - start) % step == 0 + + else: + mask &= self._descending_count < -start + + offset_array = self._descending_count + start + 1 + limit_array = ( + self._ascending_count + self._descending_count + (start + 1) + ) < 0 + offset_array = np.where(limit_array, self._ascending_count, offset_array) + + mask &= offset_array % step == 0 + + if stop is not None: + if stop >= 0: + mask &= self._ascending_count < stop + else: + mask &= self._descending_count >= -stop + + return mask + + @cache_readonly + def _ascending_count(self) -> np.ndarray: + if TYPE_CHECKING: + groupby_self = cast(groupby.GroupBy, self) + else: + groupby_self = self + + return groupby_self._cumcount_array() + + @cache_readonly + def _descending_count(self) -> np.ndarray: + if TYPE_CHECKING: + groupby_self = cast(groupby.GroupBy, self) + else: + groupby_self = self + + return groupby_self._cumcount_array(ascending=False) + + +@doc(GroupByIndexingMixin._positional_selector) +class GroupByPositionalSelector: + def __init__(self, groupby_object: groupby.GroupBy) -> None: + self.groupby_object = groupby_object + + def __getitem__(self, arg: PositionalIndexer | tuple) -> DataFrame | Series: + """ + Select by positional index per group. + + Implements GroupBy._positional_selector + + Parameters + ---------- + arg : PositionalIndexer | tuple + Allowed values are: + - int + - int valued iterable such as list or range + - slice with step either None or positive + - tuple of integers and slices + + Returns + ------- + Series + The filtered subset of the original groupby Series. + DataFrame + The filtered subset of the original groupby DataFrame. + + See Also + -------- + DataFrame.iloc : Integer-location based indexing for selection by position. + GroupBy.head : Return first n rows of each group. + GroupBy.tail : Return last n rows of each group. + GroupBy._positional_selector : Return positional selection for each group. + GroupBy.nth : Take the nth row from each group if n is an int, or a + subset of rows, if n is a list of ints. + """ + mask = self.groupby_object._make_mask_from_positional_indexer(arg) + return self.groupby_object._mask_selected_obj(mask) + + +class GroupByNthSelector: + """ + Dynamically substituted for GroupBy.nth to enable both call and index + """ + + def __init__(self, groupby_object: groupby.GroupBy) -> None: + self.groupby_object = groupby_object + + def __call__( + self, + n: PositionalIndexer | tuple, + dropna: Literal["any", "all", None] = None, + ) -> DataFrame | Series: + return self.groupby_object._nth(n, dropna) + + def __getitem__(self, n: PositionalIndexer | tuple) -> DataFrame | Series: + return self.groupby_object._nth(n) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/numba_.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/numba_.py new file mode 100644 index 0000000000000000000000000000000000000000..3b7a58e87603e578216c4c80e8c88e06828d5dfa --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/numba_.py @@ -0,0 +1,181 @@ +"""Common utilities for Numba operations with groupby ops""" +from __future__ import annotations + +import functools +import inspect +from typing import ( + TYPE_CHECKING, + Any, + Callable, +) + +import numpy as np + +from pandas.compat._optional import import_optional_dependency + +from pandas.core.util.numba_ import ( + NumbaUtilError, + jit_user_function, +) + +if TYPE_CHECKING: + from pandas._typing import Scalar + + +def validate_udf(func: Callable) -> None: + """ + Validate user defined function for ops when using Numba with groupby ops. + + The first signature arguments should include: + + def f(values, index, ...): + ... + + Parameters + ---------- + func : function, default False + user defined function + + Returns + ------- + None + + Raises + ------ + NumbaUtilError + """ + if not callable(func): + raise NotImplementedError( + "Numba engine can only be used with a single function." + ) + udf_signature = list(inspect.signature(func).parameters.keys()) + expected_args = ["values", "index"] + min_number_args = len(expected_args) + if ( + len(udf_signature) < min_number_args + or udf_signature[:min_number_args] != expected_args + ): + raise NumbaUtilError( + f"The first {min_number_args} arguments to {func.__name__} must be " + f"{expected_args}" + ) + + +@functools.cache +def generate_numba_agg_func( + func: Callable[..., Scalar], + nopython: bool, + nogil: bool, + parallel: bool, +) -> Callable[[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int, Any], np.ndarray]: + """ + Generate a numba jitted agg function specified by values from engine_kwargs. + + 1. jit the user's function + 2. Return a groupby agg function with the jitted function inline + + Configurations specified in engine_kwargs apply to both the user's + function _AND_ the groupby evaluation loop. + + Parameters + ---------- + func : function + function to be applied to each group and will be JITed + nopython : bool + nopython to be passed into numba.jit + nogil : bool + nogil to be passed into numba.jit + parallel : bool + parallel to be passed into numba.jit + + Returns + ------- + Numba function + """ + numba_func = jit_user_function(func) + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def group_agg( + values: np.ndarray, + index: np.ndarray, + begin: np.ndarray, + end: np.ndarray, + num_columns: int, + *args: Any, + ) -> np.ndarray: + assert len(begin) == len(end) + num_groups = len(begin) + + result = np.empty((num_groups, num_columns)) + for i in numba.prange(num_groups): + group_index = index[begin[i] : end[i]] + for j in numba.prange(num_columns): + group = values[begin[i] : end[i], j] + result[i, j] = numba_func(group, group_index, *args) + return result + + return group_agg + + +@functools.cache +def generate_numba_transform_func( + func: Callable[..., np.ndarray], + nopython: bool, + nogil: bool, + parallel: bool, +) -> Callable[[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int, Any], np.ndarray]: + """ + Generate a numba jitted transform function specified by values from engine_kwargs. + + 1. jit the user's function + 2. Return a groupby transform function with the jitted function inline + + Configurations specified in engine_kwargs apply to both the user's + function _AND_ the groupby evaluation loop. + + Parameters + ---------- + func : function + function to be applied to each window and will be JITed + nopython : bool + nopython to be passed into numba.jit + nogil : bool + nogil to be passed into numba.jit + parallel : bool + parallel to be passed into numba.jit + + Returns + ------- + Numba function + """ + numba_func = jit_user_function(func) + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def group_transform( + values: np.ndarray, + index: np.ndarray, + begin: np.ndarray, + end: np.ndarray, + num_columns: int, + *args: Any, + ) -> np.ndarray: + assert len(begin) == len(end) + num_groups = len(begin) + + result = np.empty((len(values), num_columns)) + for i in numba.prange(num_groups): + group_index = index[begin[i] : end[i]] + for j in numba.prange(num_columns): + group = values[begin[i] : end[i], j] + result[begin[i] : end[i], j] = numba_func(group, group_index, *args) + return result + + return group_transform diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/ops.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/ops.py new file mode 100644 index 0000000000000000000000000000000000000000..e2ddf9aa5c0c1752e1de9b81e2e72873db050e85 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/groupby/ops.py @@ -0,0 +1,1208 @@ +""" +Provide classes to perform the groupby aggregate operations. + +These are not exposed to the user and provide implementations of the grouping +operations, primarily in cython. These classes (BaseGrouper and BinGrouper) +are contained *in* the SeriesGroupBy and DataFrameGroupBy objects. +""" +from __future__ import annotations + +import collections +import functools +from typing import ( + TYPE_CHECKING, + Callable, + Generic, + final, +) + +import numpy as np + +from pandas._libs import ( + NaT, + lib, +) +import pandas._libs.groupby as libgroupby +from pandas._typing import ( + ArrayLike, + AxisInt, + NDFrameT, + Shape, + npt, +) +from pandas.errors import AbstractMethodError +from pandas.util._decorators import cache_readonly + +from pandas.core.dtypes.cast import ( + maybe_cast_pointwise_result, + maybe_downcast_to_dtype, +) +from pandas.core.dtypes.common import ( + ensure_float64, + ensure_int64, + ensure_platform_int, + ensure_uint64, + is_1d_only_ea_dtype, +) +from pandas.core.dtypes.missing import ( + isna, + maybe_fill, +) + +from pandas.core.frame import DataFrame +from pandas.core.groupby import grouper +from pandas.core.indexes.api import ( + CategoricalIndex, + Index, + MultiIndex, + ensure_index, +) +from pandas.core.series import Series +from pandas.core.sorting import ( + compress_group_index, + decons_obs_group_ids, + get_flattened_list, + get_group_index, + get_group_index_sorter, + get_indexer_dict, +) + +if TYPE_CHECKING: + from collections.abc import ( + Hashable, + Iterator, + Sequence, + ) + + from pandas.core.generic import NDFrame + + +def check_result_array(obj, dtype) -> None: + # Our operation is supposed to be an aggregation/reduction. If + # it returns an ndarray, this likely means an invalid operation has + # been passed. See test_apply_without_aggregation, test_agg_must_agg + if isinstance(obj, np.ndarray): + if dtype != object: + # If it is object dtype, the function can be a reduction/aggregation + # and still return an ndarray e.g. test_agg_over_numpy_arrays + raise ValueError("Must produce aggregated value") + + +def extract_result(res): + """ + Extract the result object, it might be a 0-dim ndarray + or a len-1 0-dim, or a scalar + """ + if hasattr(res, "_values"): + # Preserve EA + res = res._values + if res.ndim == 1 and len(res) == 1: + # see test_agg_lambda_with_timezone, test_resampler_grouper.py::test_apply + res = res[0] + return res + + +class WrappedCythonOp: + """ + Dispatch logic for functions defined in _libs.groupby + + Parameters + ---------- + kind: str + Whether the operation is an aggregate or transform. + how: str + Operation name, e.g. "mean". + has_dropped_na: bool + True precisely when dropna=True and the grouper contains a null value. + """ + + # Functions for which we do _not_ attempt to cast the cython result + # back to the original dtype. + cast_blocklist = frozenset( + ["any", "all", "rank", "count", "size", "idxmin", "idxmax"] + ) + + def __init__(self, kind: str, how: str, has_dropped_na: bool) -> None: + self.kind = kind + self.how = how + self.has_dropped_na = has_dropped_na + + _CYTHON_FUNCTIONS: dict[str, dict] = { + "aggregate": { + "any": functools.partial(libgroupby.group_any_all, val_test="any"), + "all": functools.partial(libgroupby.group_any_all, val_test="all"), + "sum": "group_sum", + "prod": "group_prod", + "idxmin": functools.partial(libgroupby.group_idxmin_idxmax, name="idxmin"), + "idxmax": functools.partial(libgroupby.group_idxmin_idxmax, name="idxmax"), + "min": "group_min", + "max": "group_max", + "mean": "group_mean", + "median": "group_median_float64", + "var": "group_var", + "std": functools.partial(libgroupby.group_var, name="std"), + "sem": functools.partial(libgroupby.group_var, name="sem"), + "skew": "group_skew", + "first": "group_nth", + "last": "group_last", + "ohlc": "group_ohlc", + }, + "transform": { + "cumprod": "group_cumprod", + "cumsum": "group_cumsum", + "cummin": "group_cummin", + "cummax": "group_cummax", + "rank": "group_rank", + }, + } + + _cython_arity = {"ohlc": 4} # OHLC + + @classmethod + def get_kind_from_how(cls, how: str) -> str: + if how in cls._CYTHON_FUNCTIONS["aggregate"]: + return "aggregate" + return "transform" + + # Note: we make this a classmethod and pass kind+how so that caching + # works at the class level and not the instance level + @classmethod + @functools.cache + def _get_cython_function( + cls, kind: str, how: str, dtype: np.dtype, is_numeric: bool + ): + dtype_str = dtype.name + ftype = cls._CYTHON_FUNCTIONS[kind][how] + + # see if there is a fused-type version of function + # only valid for numeric + if callable(ftype): + f = ftype + else: + f = getattr(libgroupby, ftype) + if is_numeric: + return f + elif dtype == np.dtype(object): + if how in ["median", "cumprod"]: + # no fused types -> no __signatures__ + raise NotImplementedError( + f"function is not implemented for this dtype: " + f"[how->{how},dtype->{dtype_str}]" + ) + elif how in ["std", "sem", "idxmin", "idxmax"]: + # We have a partial object that does not have __signatures__ + return f + elif how == "skew": + # _get_cython_vals will convert to float64 + pass + elif "object" not in f.__signatures__: + # raise NotImplementedError here rather than TypeError later + raise NotImplementedError( + f"function is not implemented for this dtype: " + f"[how->{how},dtype->{dtype_str}]" + ) + return f + else: + raise NotImplementedError( + "This should not be reached. Please report a bug at " + "github.com/pandas-dev/pandas/", + dtype, + ) + + def _get_cython_vals(self, values: np.ndarray) -> np.ndarray: + """ + Cast numeric dtypes to float64 for functions that only support that. + + Parameters + ---------- + values : np.ndarray + + Returns + ------- + values : np.ndarray + """ + how = self.how + + if how in ["median", "std", "sem", "skew"]: + # median only has a float64 implementation + # We should only get here with is_numeric, as non-numeric cases + # should raise in _get_cython_function + values = ensure_float64(values) + + elif values.dtype.kind in "iu": + if how in ["var", "mean"] or ( + self.kind == "transform" and self.has_dropped_na + ): + # has_dropped_na check need for test_null_group_str_transformer + # result may still include NaN, so we have to cast + values = ensure_float64(values) + + elif how in ["sum", "ohlc", "prod", "cumsum", "cumprod"]: + # Avoid overflow during group op + if values.dtype.kind == "i": + values = ensure_int64(values) + else: + values = ensure_uint64(values) + + return values + + def _get_output_shape(self, ngroups: int, values: np.ndarray) -> Shape: + how = self.how + kind = self.kind + + arity = self._cython_arity.get(how, 1) + + out_shape: Shape + if how == "ohlc": + out_shape = (ngroups, arity) + elif arity > 1: + raise NotImplementedError( + "arity of more than 1 is not supported for the 'how' argument" + ) + elif kind == "transform": + out_shape = values.shape + else: + out_shape = (ngroups,) + values.shape[1:] + return out_shape + + def _get_out_dtype(self, dtype: np.dtype) -> np.dtype: + how = self.how + + if how == "rank": + out_dtype = "float64" + elif how in ["idxmin", "idxmax"]: + # The Cython implementation only produces the row number; we'll take + # from the index using this in post processing + out_dtype = "intp" + else: + if dtype.kind in "iufcb": + out_dtype = f"{dtype.kind}{dtype.itemsize}" + else: + out_dtype = "object" + return np.dtype(out_dtype) + + def _get_result_dtype(self, dtype: np.dtype) -> np.dtype: + """ + Get the desired dtype of a result based on the + input dtype and how it was computed. + + Parameters + ---------- + dtype : np.dtype + + Returns + ------- + np.dtype + The desired dtype of the result. + """ + how = self.how + + if how in ["sum", "cumsum", "sum", "prod", "cumprod"]: + if dtype == np.dtype(bool): + return np.dtype(np.int64) + elif how in ["mean", "median", "var", "std", "sem"]: + if dtype.kind in "fc": + return dtype + elif dtype.kind in "iub": + return np.dtype(np.float64) + return dtype + + @final + def _cython_op_ndim_compat( + self, + values: np.ndarray, + *, + min_count: int, + ngroups: int, + comp_ids: np.ndarray, + mask: npt.NDArray[np.bool_] | None = None, + result_mask: npt.NDArray[np.bool_] | None = None, + **kwargs, + ) -> np.ndarray: + if values.ndim == 1: + # expand to 2d, dispatch, then squeeze if appropriate + values2d = values[None, :] + if mask is not None: + mask = mask[None, :] + if result_mask is not None: + result_mask = result_mask[None, :] + res = self._call_cython_op( + values2d, + min_count=min_count, + ngroups=ngroups, + comp_ids=comp_ids, + mask=mask, + result_mask=result_mask, + **kwargs, + ) + if res.shape[0] == 1: + return res[0] + + # otherwise we have OHLC + return res.T + + return self._call_cython_op( + values, + min_count=min_count, + ngroups=ngroups, + comp_ids=comp_ids, + mask=mask, + result_mask=result_mask, + **kwargs, + ) + + @final + def _call_cython_op( + self, + values: np.ndarray, # np.ndarray[ndim=2] + *, + min_count: int, + ngroups: int, + comp_ids: np.ndarray, + mask: npt.NDArray[np.bool_] | None, + result_mask: npt.NDArray[np.bool_] | None, + **kwargs, + ) -> np.ndarray: # np.ndarray[ndim=2] + orig_values = values + + dtype = values.dtype + is_numeric = dtype.kind in "iufcb" + + is_datetimelike = dtype.kind in "mM" + + if is_datetimelike: + values = values.view("int64") + is_numeric = True + elif dtype.kind == "b": + values = values.view("uint8") + if values.dtype == "float16": + values = values.astype(np.float32) + + if self.how in ["any", "all"]: + if mask is None: + mask = isna(values) + if dtype == object: + if kwargs["skipna"]: + # GH#37501: don't raise on pd.NA when skipna=True + if mask.any(): + # mask on original values computed separately + values = values.copy() + values[mask] = True + values = values.astype(bool, copy=False).view(np.int8) + is_numeric = True + + values = values.T + if mask is not None: + mask = mask.T + if result_mask is not None: + result_mask = result_mask.T + + out_shape = self._get_output_shape(ngroups, values) + func = self._get_cython_function(self.kind, self.how, values.dtype, is_numeric) + values = self._get_cython_vals(values) + out_dtype = self._get_out_dtype(values.dtype) + + result = maybe_fill(np.empty(out_shape, dtype=out_dtype)) + if self.kind == "aggregate": + counts = np.zeros(ngroups, dtype=np.int64) + if self.how in [ + "idxmin", + "idxmax", + "min", + "max", + "mean", + "last", + "first", + "sum", + ]: + func( + out=result, + counts=counts, + values=values, + labels=comp_ids, + min_count=min_count, + mask=mask, + result_mask=result_mask, + is_datetimelike=is_datetimelike, + **kwargs, + ) + elif self.how in ["sem", "std", "var", "ohlc", "prod", "median"]: + if self.how in ["std", "sem"]: + kwargs["is_datetimelike"] = is_datetimelike + func( + result, + counts, + values, + comp_ids, + min_count=min_count, + mask=mask, + result_mask=result_mask, + **kwargs, + ) + elif self.how in ["any", "all"]: + func( + out=result, + values=values, + labels=comp_ids, + mask=mask, + result_mask=result_mask, + **kwargs, + ) + result = result.astype(bool, copy=False) + elif self.how in ["skew"]: + func( + out=result, + counts=counts, + values=values, + labels=comp_ids, + mask=mask, + result_mask=result_mask, + **kwargs, + ) + if dtype == object: + result = result.astype(object) + + else: + raise NotImplementedError(f"{self.how} is not implemented") + else: + # TODO: min_count + if self.how != "rank": + # TODO: should rank take result_mask? + kwargs["result_mask"] = result_mask + func( + out=result, + values=values, + labels=comp_ids, + ngroups=ngroups, + is_datetimelike=is_datetimelike, + mask=mask, + **kwargs, + ) + + if self.kind == "aggregate" and self.how not in ["idxmin", "idxmax"]: + # i.e. counts is defined. Locations where count None: + if values.ndim > 2: + raise NotImplementedError("number of dimensions is currently limited to 2") + if values.ndim == 2: + assert axis == 1, axis + elif not is_1d_only_ea_dtype(values.dtype): + # Note: it is *not* the case that axis is always 0 for 1-dim values, + # as we can have 1D ExtensionArrays that we need to treat as 2D + assert axis == 0 + + @final + def cython_operation( + self, + *, + values: ArrayLike, + axis: AxisInt, + min_count: int = -1, + comp_ids: np.ndarray, + ngroups: int, + **kwargs, + ) -> ArrayLike: + """ + Call our cython function, with appropriate pre- and post- processing. + """ + self._validate_axis(axis, values) + + if not isinstance(values, np.ndarray): + # i.e. ExtensionArray + return values._groupby_op( + how=self.how, + has_dropped_na=self.has_dropped_na, + min_count=min_count, + ngroups=ngroups, + ids=comp_ids, + **kwargs, + ) + + return self._cython_op_ndim_compat( + values, + min_count=min_count, + ngroups=ngroups, + comp_ids=comp_ids, + mask=None, + **kwargs, + ) + + +class BaseGrouper: + """ + This is an internal Grouper class, which actually holds + the generated groups + + Parameters + ---------- + axis : Index + groupings : Sequence[Grouping] + all the grouping instances to handle in this grouper + for example for grouper list to groupby, need to pass the list + sort : bool, default True + whether this grouper will give sorted result or not + + """ + + axis: Index + + def __init__( + self, + axis: Index, + groupings: Sequence[grouper.Grouping], + sort: bool = True, + dropna: bool = True, + ) -> None: + assert isinstance(axis, Index), axis + + self.axis = axis + self._groupings: list[grouper.Grouping] = list(groupings) + self._sort = sort + self.dropna = dropna + + @property + def groupings(self) -> list[grouper.Grouping]: + return self._groupings + + @property + def shape(self) -> Shape: + return tuple(ping.ngroups for ping in self.groupings) + + def __iter__(self) -> Iterator[Hashable]: + return iter(self.indices) + + @property + def nkeys(self) -> int: + return len(self.groupings) + + def get_iterator( + self, data: NDFrameT, axis: AxisInt = 0 + ) -> Iterator[tuple[Hashable, NDFrameT]]: + """ + Groupby iterator + + Returns + ------- + Generator yielding sequence of (name, subsetted object) + for each group + """ + splitter = self._get_splitter(data, axis=axis) + keys = self.group_keys_seq + yield from zip(keys, splitter) + + @final + def _get_splitter(self, data: NDFrame, axis: AxisInt = 0) -> DataSplitter: + """ + Returns + ------- + Generator yielding subsetted objects + """ + ids, _, ngroups = self.group_info + return _get_splitter( + data, + ids, + ngroups, + sorted_ids=self._sorted_ids, + sort_idx=self._sort_idx, + axis=axis, + ) + + @final + @cache_readonly + def group_keys_seq(self): + if len(self.groupings) == 1: + return self.levels[0] + else: + ids, _, ngroups = self.group_info + + # provide "flattened" iterator for multi-group setting + return get_flattened_list(ids, ngroups, self.levels, self.codes) + + @cache_readonly + def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]: + """dict {group name -> group indices}""" + if len(self.groupings) == 1 and isinstance(self.result_index, CategoricalIndex): + # This shows unused categories in indices GH#38642 + return self.groupings[0].indices + codes_list = [ping.codes for ping in self.groupings] + keys = [ping._group_index for ping in self.groupings] + return get_indexer_dict(codes_list, keys) + + @final + def result_ilocs(self) -> npt.NDArray[np.intp]: + """ + Get the original integer locations of result_index in the input. + """ + # Original indices are where group_index would go via sorting. + # But when dropna is true, we need to remove null values while accounting for + # any gaps that then occur because of them. + group_index = get_group_index( + self.codes, self.shape, sort=self._sort, xnull=True + ) + group_index, _ = compress_group_index(group_index, sort=self._sort) + + if self.has_dropped_na: + mask = np.where(group_index >= 0) + # Count how many gaps are caused by previous null values for each position + null_gaps = np.cumsum(group_index == -1)[mask] + group_index = group_index[mask] + + result = get_group_index_sorter(group_index, self.ngroups) + + if self.has_dropped_na: + # Shift by the number of prior null gaps + result += np.take(null_gaps, result) + + return result + + @final + @property + def codes(self) -> list[npt.NDArray[np.signedinteger]]: + return [ping.codes for ping in self.groupings] + + @property + def levels(self) -> list[Index]: + return [ping._group_index for ping in self.groupings] + + @property + def names(self) -> list[Hashable]: + return [ping.name for ping in self.groupings] + + @final + def size(self) -> Series: + """ + Compute group sizes. + """ + ids, _, ngroups = self.group_info + out: np.ndarray | list + if ngroups: + out = np.bincount(ids[ids != -1], minlength=ngroups) + else: + out = [] + return Series(out, index=self.result_index, dtype="int64", copy=False) + + @cache_readonly + def groups(self) -> dict[Hashable, np.ndarray]: + """dict {group name -> group labels}""" + if len(self.groupings) == 1: + return self.groupings[0].groups + else: + to_groupby = [] + for ping in self.groupings: + gv = ping.grouping_vector + if not isinstance(gv, BaseGrouper): + to_groupby.append(gv) + else: + to_groupby.append(gv.groupings[0].grouping_vector) + index = MultiIndex.from_arrays(to_groupby) + return self.axis.groupby(index) + + @final + @cache_readonly + def is_monotonic(self) -> bool: + # return if my group orderings are monotonic + return Index(self.group_info[0]).is_monotonic_increasing + + @final + @cache_readonly + def has_dropped_na(self) -> bool: + """ + Whether grouper has null value(s) that are dropped. + """ + return bool((self.group_info[0] < 0).any()) + + @cache_readonly + def group_info(self) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp], int]: + comp_ids, obs_group_ids = self._get_compressed_codes() + + ngroups = len(obs_group_ids) + comp_ids = ensure_platform_int(comp_ids) + + return comp_ids, obs_group_ids, ngroups + + @cache_readonly + def codes_info(self) -> npt.NDArray[np.intp]: + # return the codes of items in original grouped axis + ids, _, _ = self.group_info + return ids + + @final + def _get_compressed_codes( + self, + ) -> tuple[npt.NDArray[np.signedinteger], npt.NDArray[np.intp]]: + # The first returned ndarray may have any signed integer dtype + if len(self.groupings) > 1: + group_index = get_group_index(self.codes, self.shape, sort=True, xnull=True) + return compress_group_index(group_index, sort=self._sort) + # FIXME: compress_group_index's second return value is int64, not intp + + ping = self.groupings[0] + return ping.codes, np.arange(len(ping._group_index), dtype=np.intp) + + @final + @cache_readonly + def ngroups(self) -> int: + return len(self.result_index) + + @property + def reconstructed_codes(self) -> list[npt.NDArray[np.intp]]: + codes = self.codes + ids, obs_ids, _ = self.group_info + return decons_obs_group_ids(ids, obs_ids, self.shape, codes, xnull=True) + + @cache_readonly + def result_index(self) -> Index: + if len(self.groupings) == 1: + return self.groupings[0]._result_index.rename(self.names[0]) + + codes = self.reconstructed_codes + levels = [ping._result_index for ping in self.groupings] + return MultiIndex( + levels=levels, codes=codes, verify_integrity=False, names=self.names + ) + + @final + def get_group_levels(self) -> list[ArrayLike]: + # Note: only called from _insert_inaxis_grouper, which + # is only called for BaseGrouper, never for BinGrouper + if len(self.groupings) == 1: + return [self.groupings[0]._group_arraylike] + + name_list = [] + for ping, codes in zip(self.groupings, self.reconstructed_codes): + codes = ensure_platform_int(codes) + levels = ping._group_arraylike.take(codes) + + name_list.append(levels) + + return name_list + + # ------------------------------------------------------------ + # Aggregation functions + + @final + def _cython_operation( + self, + kind: str, + values, + how: str, + axis: AxisInt, + min_count: int = -1, + **kwargs, + ) -> ArrayLike: + """ + Returns the values of a cython operation. + """ + assert kind in ["transform", "aggregate"] + + cy_op = WrappedCythonOp(kind=kind, how=how, has_dropped_na=self.has_dropped_na) + + ids, _, _ = self.group_info + ngroups = self.ngroups + return cy_op.cython_operation( + values=values, + axis=axis, + min_count=min_count, + comp_ids=ids, + ngroups=ngroups, + **kwargs, + ) + + @final + def agg_series( + self, obj: Series, func: Callable, preserve_dtype: bool = False + ) -> ArrayLike: + """ + Parameters + ---------- + obj : Series + func : function taking a Series and returning a scalar-like + preserve_dtype : bool + Whether the aggregation is known to be dtype-preserving. + + Returns + ------- + np.ndarray or ExtensionArray + """ + + if not isinstance(obj._values, np.ndarray): + # we can preserve a little bit more aggressively with EA dtype + # because maybe_cast_pointwise_result will do a try/except + # with _from_sequence. NB we are assuming here that _from_sequence + # is sufficiently strict that it casts appropriately. + preserve_dtype = True + + result = self._aggregate_series_pure_python(obj, func) + + npvalues = lib.maybe_convert_objects(result, try_float=False) + if preserve_dtype: + out = maybe_cast_pointwise_result(npvalues, obj.dtype, numeric_only=True) + else: + out = npvalues + return out + + @final + def _aggregate_series_pure_python( + self, obj: Series, func: Callable + ) -> npt.NDArray[np.object_]: + _, _, ngroups = self.group_info + + result = np.empty(ngroups, dtype="O") + initialized = False + + splitter = self._get_splitter(obj, axis=0) + + for i, group in enumerate(splitter): + res = func(group) + res = extract_result(res) + + if not initialized: + # We only do this validation on the first iteration + check_result_array(res, group.dtype) + initialized = True + + result[i] = res + + return result + + @final + def apply_groupwise( + self, f: Callable, data: DataFrame | Series, axis: AxisInt = 0 + ) -> tuple[list, bool]: + mutated = False + splitter = self._get_splitter(data, axis=axis) + group_keys = self.group_keys_seq + result_values = [] + + # This calls DataSplitter.__iter__ + zipped = zip(group_keys, splitter) + + for key, group in zipped: + # Pinning name is needed for + # test_group_apply_once_per_group, + # test_inconsistent_return_type, test_set_group_name, + # test_group_name_available_in_inference_pass, + # test_groupby_multi_timezone + object.__setattr__(group, "name", key) + + # group might be modified + group_axes = group.axes + res = f(group) + if not mutated and not _is_indexed_like(res, group_axes, axis): + mutated = True + result_values.append(res) + # getattr pattern for __name__ is needed for functools.partial objects + if len(group_keys) == 0 and getattr(f, "__name__", None) in [ + "skew", + "sum", + "prod", + ]: + # If group_keys is empty, then no function calls have been made, + # so we will not have raised even if this is an invalid dtype. + # So do one dummy call here to raise appropriate TypeError. + f(data.iloc[:0]) + + return result_values, mutated + + # ------------------------------------------------------------ + # Methods for sorting subsets of our GroupBy's object + + @final + @cache_readonly + def _sort_idx(self) -> npt.NDArray[np.intp]: + # Counting sort indexer + ids, _, ngroups = self.group_info + return get_group_index_sorter(ids, ngroups) + + @final + @cache_readonly + def _sorted_ids(self) -> npt.NDArray[np.intp]: + ids, _, _ = self.group_info + return ids.take(self._sort_idx) + + +class BinGrouper(BaseGrouper): + """ + This is an internal Grouper class + + Parameters + ---------- + bins : the split index of binlabels to group the item of axis + binlabels : the label list + indexer : np.ndarray[np.intp], optional + the indexer created by Grouper + some groupers (TimeGrouper) will sort its axis and its + group_info is also sorted, so need the indexer to reorder + + Examples + -------- + bins: [2, 4, 6, 8, 10] + binlabels: DatetimeIndex(['2005-01-01', '2005-01-03', + '2005-01-05', '2005-01-07', '2005-01-09'], + dtype='datetime64[ns]', freq='2D') + + the group_info, which contains the label of each item in grouped + axis, the index of label in label list, group number, is + + (array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]), array([0, 1, 2, 3, 4]), 5) + + means that, the grouped axis has 10 items, can be grouped into 5 + labels, the first and second items belong to the first label, the + third and forth items belong to the second label, and so on + + """ + + bins: npt.NDArray[np.int64] + binlabels: Index + + def __init__( + self, + bins, + binlabels, + indexer=None, + ) -> None: + self.bins = ensure_int64(bins) + self.binlabels = ensure_index(binlabels) + self.indexer = indexer + + # These lengths must match, otherwise we could call agg_series + # with empty self.bins, which would raise later. + assert len(self.binlabels) == len(self.bins) + + @cache_readonly + def groups(self): + """dict {group name -> group labels}""" + # this is mainly for compat + # GH 3881 + result = { + key: value + for key, value in zip(self.binlabels, self.bins) + if key is not NaT + } + return result + + @property + def nkeys(self) -> int: + # still matches len(self.groupings), but we can hard-code + return 1 + + @cache_readonly + def codes_info(self) -> npt.NDArray[np.intp]: + # return the codes of items in original grouped axis + ids, _, _ = self.group_info + if self.indexer is not None: + sorter = np.lexsort((ids, self.indexer)) + ids = ids[sorter] + return ids + + def get_iterator(self, data: NDFrame, axis: AxisInt = 0): + """ + Groupby iterator + + Returns + ------- + Generator yielding sequence of (name, subsetted object) + for each group + """ + if axis == 0: + slicer = lambda start, edge: data.iloc[start:edge] + else: + slicer = lambda start, edge: data.iloc[:, start:edge] + + length = len(data.axes[axis]) + + start = 0 + for edge, label in zip(self.bins, self.binlabels): + if label is not NaT: + yield label, slicer(start, edge) + start = edge + + if start < length: + yield self.binlabels[-1], slicer(start, None) + + @cache_readonly + def indices(self): + indices = collections.defaultdict(list) + + i = 0 + for label, bin in zip(self.binlabels, self.bins): + if i < bin: + if label is not NaT: + indices[label] = list(range(i, bin)) + i = bin + return indices + + @cache_readonly + def group_info(self) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp], int]: + ngroups = self.ngroups + obs_group_ids = np.arange(ngroups, dtype=np.intp) + rep = np.diff(np.r_[0, self.bins]) + + rep = ensure_platform_int(rep) + if ngroups == len(self.bins): + comp_ids = np.repeat(np.arange(ngroups), rep) + else: + comp_ids = np.repeat(np.r_[-1, np.arange(ngroups)], rep) + + return ( + ensure_platform_int(comp_ids), + obs_group_ids, + ngroups, + ) + + @cache_readonly + def reconstructed_codes(self) -> list[np.ndarray]: + # get unique result indices, and prepend 0 as groupby starts from the first + return [np.r_[0, np.flatnonzero(self.bins[1:] != self.bins[:-1]) + 1]] + + @cache_readonly + def result_index(self) -> Index: + if len(self.binlabels) != 0 and isna(self.binlabels[0]): + return self.binlabels[1:] + + return self.binlabels + + @property + def levels(self) -> list[Index]: + return [self.binlabels] + + @property + def names(self) -> list[Hashable]: + return [self.binlabels.name] + + @property + def groupings(self) -> list[grouper.Grouping]: + lev = self.binlabels + codes = self.group_info[0] + labels = lev.take(codes) + ping = grouper.Grouping( + labels, labels, in_axis=False, level=None, uniques=lev._values + ) + return [ping] + + +def _is_indexed_like(obj, axes, axis: AxisInt) -> bool: + if isinstance(obj, Series): + if len(axes) > 1: + return False + return obj.axes[axis].equals(axes[axis]) + elif isinstance(obj, DataFrame): + return obj.axes[axis].equals(axes[axis]) + + return False + + +# ---------------------------------------------------------------------- +# Splitting / application + + +class DataSplitter(Generic[NDFrameT]): + def __init__( + self, + data: NDFrameT, + labels: npt.NDArray[np.intp], + ngroups: int, + *, + sort_idx: npt.NDArray[np.intp], + sorted_ids: npt.NDArray[np.intp], + axis: AxisInt = 0, + ) -> None: + self.data = data + self.labels = ensure_platform_int(labels) # _should_ already be np.intp + self.ngroups = ngroups + + self._slabels = sorted_ids + self._sort_idx = sort_idx + + self.axis = axis + assert isinstance(axis, int), axis + + def __iter__(self) -> Iterator: + sdata = self._sorted_data + + if self.ngroups == 0: + # we are inside a generator, rather than raise StopIteration + # we merely return signal the end + return + + starts, ends = lib.generate_slices(self._slabels, self.ngroups) + + for start, end in zip(starts, ends): + yield self._chop(sdata, slice(start, end)) + + @cache_readonly + def _sorted_data(self) -> NDFrameT: + return self.data.take(self._sort_idx, axis=self.axis) + + def _chop(self, sdata, slice_obj: slice) -> NDFrame: + raise AbstractMethodError(self) + + +class SeriesSplitter(DataSplitter): + def _chop(self, sdata: Series, slice_obj: slice) -> Series: + # fastpath equivalent to `sdata.iloc[slice_obj]` + mgr = sdata._mgr.get_slice(slice_obj) + ser = sdata._constructor_from_mgr(mgr, axes=mgr.axes) + ser._name = sdata.name + return ser.__finalize__(sdata, method="groupby") + + +class FrameSplitter(DataSplitter): + def _chop(self, sdata: DataFrame, slice_obj: slice) -> DataFrame: + # Fastpath equivalent to: + # if self.axis == 0: + # return sdata.iloc[slice_obj] + # else: + # return sdata.iloc[:, slice_obj] + mgr = sdata._mgr.get_slice(slice_obj, axis=1 - self.axis) + df = sdata._constructor_from_mgr(mgr, axes=mgr.axes) + return df.__finalize__(sdata, method="groupby") + + +def _get_splitter( + data: NDFrame, + labels: npt.NDArray[np.intp], + ngroups: int, + *, + sort_idx: npt.NDArray[np.intp], + sorted_ids: npt.NDArray[np.intp], + axis: AxisInt = 0, +) -> DataSplitter: + if isinstance(data, Series): + klass: type[DataSplitter] = SeriesSplitter + else: + # i.e. DataFrame + klass = FrameSplitter + + return klass( + data, labels, ngroups, sort_idx=sort_idx, sorted_ids=sorted_ids, axis=axis + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..d4ce75f768c5d1dcd8586264fe1faf756d5d5e94 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__init__.py @@ -0,0 +1,28 @@ +""" +Implementation of pandas.Series.str and its interface. + +* strings.accessor.StringMethods : Accessor for Series.str +* strings.base.BaseStringArrayMethods: Mixin ABC for EAs to implement str methods + +Most methods on the StringMethods accessor follow the pattern: + + 1. extract the array from the series (or index) + 2. Call that array's implementation of the string method + 3. Wrap the result (in a Series, index, or DataFrame) + +Pandas extension arrays implementing string methods should inherit from +pandas.core.strings.base.BaseStringArrayMethods. This is an ABC defining +the various string methods. To avoid namespace clashes and pollution, +these are prefixed with `_str_`. So ``Series.str.upper()`` calls +``Series.array._str_upper()``. The interface isn't currently public +to other string extension arrays. +""" +# Pandas current implementation is in ObjectStringArrayMixin. This is designed +# to work on object-dtype ndarrays. +# +# BaseStringArrayMethods +# - ObjectStringArrayMixin +# - StringArray +# - NumpyExtensionArray +# - Categorical +# - ArrowStringArray diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..892aef34affd1b1dcfb576ff3ae16443e4deeef5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/accessor.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/accessor.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d4d86a4f9b029ed7bb77f93a2b484a9ab49d2fc3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/accessor.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/base.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/base.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6386dad75731c29e32fd477fa165b48b47d7cad7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/base.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/object_array.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/object_array.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5a1e3df7522b34dbc5c84b08d1b4520a21e90c3b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/__pycache__/object_array.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/accessor.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/accessor.py new file mode 100644 index 0000000000000000000000000000000000000000..da10a12d02ae40a147812d1158d256543cc2492e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/accessor.py @@ -0,0 +1,3543 @@ +from __future__ import annotations + +import codecs +from functools import wraps +import re +from typing import ( + TYPE_CHECKING, + Callable, + Literal, + cast, +) +import warnings + +import numpy as np + +from pandas._libs import lib +from pandas._typing import ( + AlignJoin, + DtypeObj, + F, + Scalar, + npt, +) +from pandas.util._decorators import Appender +from pandas.util._exceptions import find_stack_level + +from pandas.core.dtypes.common import ( + ensure_object, + is_bool_dtype, + is_integer, + is_list_like, + is_object_dtype, + is_re, +) +from pandas.core.dtypes.dtypes import ( + ArrowDtype, + CategoricalDtype, +) +from pandas.core.dtypes.generic import ( + ABCDataFrame, + ABCIndex, + ABCMultiIndex, + ABCSeries, +) +from pandas.core.dtypes.missing import isna + +from pandas.core.arrays import ExtensionArray +from pandas.core.base import NoNewAttributesMixin +from pandas.core.construction import extract_array + +if TYPE_CHECKING: + from collections.abc import ( + Hashable, + Iterator, + ) + + from pandas import ( + DataFrame, + Index, + Series, + ) + +_shared_docs: dict[str, str] = {} +_cpython_optimized_encoders = ( + "utf-8", + "utf8", + "latin-1", + "latin1", + "iso-8859-1", + "mbcs", + "ascii", +) +_cpython_optimized_decoders = _cpython_optimized_encoders + ("utf-16", "utf-32") + + +def forbid_nonstring_types( + forbidden: list[str] | None, name: str | None = None +) -> Callable[[F], F]: + """ + Decorator to forbid specific types for a method of StringMethods. + + For calling `.str.{method}` on a Series or Index, it is necessary to first + initialize the :class:`StringMethods` object, and then call the method. + However, different methods allow different input types, and so this can not + be checked during :meth:`StringMethods.__init__`, but must be done on a + per-method basis. This decorator exists to facilitate this process, and + make it explicit which (inferred) types are disallowed by the method. + + :meth:`StringMethods.__init__` allows the *union* of types its different + methods allow (after skipping NaNs; see :meth:`StringMethods._validate`), + namely: ['string', 'empty', 'bytes', 'mixed', 'mixed-integer']. + + The default string types ['string', 'empty'] are allowed for all methods. + For the additional types ['bytes', 'mixed', 'mixed-integer'], each method + then needs to forbid the types it is not intended for. + + Parameters + ---------- + forbidden : list-of-str or None + List of forbidden non-string types, may be one or more of + `['bytes', 'mixed', 'mixed-integer']`. + name : str, default None + Name of the method to use in the error message. By default, this is + None, in which case the name from the method being wrapped will be + copied. However, for working with further wrappers (like _pat_wrapper + and _noarg_wrapper), it is necessary to specify the name. + + Returns + ------- + func : wrapper + The method to which the decorator is applied, with an added check that + enforces the inferred type to not be in the list of forbidden types. + + Raises + ------ + TypeError + If the inferred type of the underlying data is in `forbidden`. + """ + # deal with None + forbidden = [] if forbidden is None else forbidden + + allowed_types = {"string", "empty", "bytes", "mixed", "mixed-integer"} - set( + forbidden + ) + + def _forbid_nonstring_types(func: F) -> F: + func_name = func.__name__ if name is None else name + + @wraps(func) + def wrapper(self, *args, **kwargs): + if self._inferred_dtype not in allowed_types: + msg = ( + f"Cannot use .str.{func_name} with values of " + f"inferred dtype '{self._inferred_dtype}'." + ) + raise TypeError(msg) + return func(self, *args, **kwargs) + + wrapper.__name__ = func_name + return cast(F, wrapper) + + return _forbid_nonstring_types + + +def _map_and_wrap(name: str | None, docstring: str | None): + @forbid_nonstring_types(["bytes"], name=name) + def wrapper(self): + result = getattr(self._data.array, f"_str_{name}")() + return self._wrap_result( + result, returns_string=name not in ("isnumeric", "isdecimal") + ) + + wrapper.__doc__ = docstring + return wrapper + + +class StringMethods(NoNewAttributesMixin): + """ + Vectorized string functions for Series and Index. + + NAs stay NA unless handled otherwise by a particular method. + Patterned after Python's string methods, with some inspiration from + R's stringr package. + + Examples + -------- + >>> s = pd.Series(["A_Str_Series"]) + >>> s + 0 A_Str_Series + dtype: object + + >>> s.str.split("_") + 0 [A, Str, Series] + dtype: object + + >>> s.str.replace("_", "") + 0 AStrSeries + dtype: object + """ + + # Note: see the docstring in pandas.core.strings.__init__ + # for an explanation of the implementation. + # TODO: Dispatch all the methods + # Currently the following are not dispatched to the array + # * cat + # * extractall + + def __init__(self, data) -> None: + from pandas.core.arrays.string_ import StringDtype + + self._inferred_dtype = self._validate(data) + self._is_categorical = isinstance(data.dtype, CategoricalDtype) + self._is_string = isinstance(data.dtype, StringDtype) + self._data = data + + self._index = self._name = None + if isinstance(data, ABCSeries): + self._index = data.index + self._name = data.name + + # ._values.categories works for both Series/Index + self._parent = data._values.categories if self._is_categorical else data + # save orig to blow up categoricals to the right type + self._orig = data + self._freeze() + + @staticmethod + def _validate(data): + """ + Auxiliary function for StringMethods, infers and checks dtype of data. + + This is a "first line of defence" at the creation of the StringMethods- + object, and just checks that the dtype is in the + *union* of the allowed types over all string methods below; this + restriction is then refined on a per-method basis using the decorator + @forbid_nonstring_types (more info in the corresponding docstring). + + This really should exclude all series/index with any non-string values, + but that isn't practical for performance reasons until we have a str + dtype (GH 9343 / 13877) + + Parameters + ---------- + data : The content of the Series + + Returns + ------- + dtype : inferred dtype of data + """ + if isinstance(data, ABCMultiIndex): + raise AttributeError( + "Can only use .str accessor with Index, not MultiIndex" + ) + + # see _libs/lib.pyx for list of inferred types + allowed_types = ["string", "empty", "bytes", "mixed", "mixed-integer"] + + data = extract_array(data) + + values = getattr(data, "categories", data) # categorical / normal + + inferred_dtype = lib.infer_dtype(values, skipna=True) + + if inferred_dtype not in allowed_types: + raise AttributeError("Can only use .str accessor with string values!") + return inferred_dtype + + def __getitem__(self, key): + result = self._data.array._str_getitem(key) + return self._wrap_result(result) + + def __iter__(self) -> Iterator: + raise TypeError(f"'{type(self).__name__}' object is not iterable") + + def _wrap_result( + self, + result, + name=None, + expand: bool | None = None, + fill_value=np.nan, + returns_string: bool = True, + returns_bool: bool = False, + dtype=None, + ): + from pandas import ( + Index, + MultiIndex, + ) + + if not hasattr(result, "ndim") or not hasattr(result, "dtype"): + if isinstance(result, ABCDataFrame): + result = result.__finalize__(self._orig, name="str") + return result + assert result.ndim < 3 + + # We can be wrapping a string / object / categorical result, in which + # case we'll want to return the same dtype as the input. + # Or we can be wrapping a numeric output, in which case we don't want + # to return a StringArray. + # Ideally the array method returns the right array type. + if expand is None: + # infer from ndim if expand is not specified + expand = result.ndim != 1 + elif expand is True and not isinstance(self._orig, ABCIndex): + # required when expand=True is explicitly specified + # not needed when inferred + if isinstance(result.dtype, ArrowDtype): + import pyarrow as pa + + from pandas.compat import pa_version_under11p0 + + from pandas.core.arrays.arrow.array import ArrowExtensionArray + + value_lengths = pa.compute.list_value_length(result._pa_array) + max_len = pa.compute.max(value_lengths).as_py() + min_len = pa.compute.min(value_lengths).as_py() + if result._hasna: + # ArrowExtensionArray.fillna doesn't work for list scalars + result = ArrowExtensionArray( + result._pa_array.fill_null([None] * max_len) + ) + if min_len < max_len: + # append nulls to each scalar list element up to max_len + if not pa_version_under11p0: + result = ArrowExtensionArray( + pa.compute.list_slice( + result._pa_array, + start=0, + stop=max_len, + return_fixed_size_list=True, + ) + ) + else: + all_null = np.full(max_len, fill_value=None, dtype=object) + values = result.to_numpy() + new_values = [] + for row in values: + if len(row) < max_len: + nulls = all_null[: max_len - len(row)] + row = np.append(row, nulls) + new_values.append(row) + pa_type = result._pa_array.type + result = ArrowExtensionArray(pa.array(new_values, type=pa_type)) + if name is not None: + labels = name + else: + labels = range(max_len) + result = ( + pa.compute.list_flatten(result._pa_array) + .to_numpy() + .reshape(len(result), max_len) + ) + result = { + label: ArrowExtensionArray(pa.array(res)) + for label, res in zip(labels, result.T) + } + elif is_object_dtype(result): + + def cons_row(x): + if is_list_like(x): + return x + else: + return [x] + + result = [cons_row(x) for x in result] + if result and not self._is_string: + # propagate nan values to match longest sequence (GH 18450) + max_len = max(len(x) for x in result) + result = [ + x * max_len if len(x) == 0 or x[0] is np.nan else x + for x in result + ] + + if not isinstance(expand, bool): + raise ValueError("expand must be True or False") + + if expand is False: + # if expand is False, result should have the same name + # as the original otherwise specified + if name is None: + name = getattr(result, "name", None) + if name is None: + # do not use logical or, _orig may be a DataFrame + # which has "name" column + name = self._orig.name + + # Wait until we are sure result is a Series or Index before + # checking attributes (GH 12180) + if isinstance(self._orig, ABCIndex): + # if result is a boolean np.array, return the np.array + # instead of wrapping it into a boolean Index (GH 8875) + if is_bool_dtype(result): + return result + + if expand: + result = list(result) + out: Index = MultiIndex.from_tuples(result, names=name) + if out.nlevels == 1: + # We had all tuples of length-one, which are + # better represented as a regular Index. + out = out.get_level_values(0) + return out + else: + return Index(result, name=name, dtype=dtype) + else: + index = self._orig.index + # This is a mess. + _dtype: DtypeObj | str | None = dtype + vdtype = getattr(result, "dtype", None) + if self._is_string: + if is_bool_dtype(vdtype): + _dtype = result.dtype + elif returns_string: + _dtype = self._orig.dtype + else: + _dtype = vdtype + elif vdtype is not None: + _dtype = vdtype + + if expand: + cons = self._orig._constructor_expanddim + result = cons(result, columns=name, index=index, dtype=_dtype) + else: + # Must be a Series + cons = self._orig._constructor + result = cons(result, name=name, index=index, dtype=_dtype) + result = result.__finalize__(self._orig, method="str") + if name is not None and result.ndim == 1: + # __finalize__ might copy over the original name, but we may + # want the new name (e.g. str.extract). + result.name = name + return result + + def _get_series_list(self, others): + """ + Auxiliary function for :meth:`str.cat`. Turn potentially mixed input + into a list of Series (elements without an index must match the length + of the calling Series/Index). + + Parameters + ---------- + others : Series, DataFrame, np.ndarray, list-like or list-like of + Objects that are either Series, Index or np.ndarray (1-dim). + + Returns + ------- + list of Series + Others transformed into list of Series. + """ + from pandas import ( + DataFrame, + Series, + ) + + # self._orig is either Series or Index + idx = self._orig if isinstance(self._orig, ABCIndex) else self._orig.index + + # Generally speaking, all objects without an index inherit the index + # `idx` of the calling Series/Index - i.e. must have matching length. + # Objects with an index (i.e. Series/Index/DataFrame) keep their own. + if isinstance(others, ABCSeries): + return [others] + elif isinstance(others, ABCIndex): + return [Series(others, index=idx, dtype=others.dtype)] + elif isinstance(others, ABCDataFrame): + return [others[x] for x in others] + elif isinstance(others, np.ndarray) and others.ndim == 2: + others = DataFrame(others, index=idx) + return [others[x] for x in others] + elif is_list_like(others, allow_sets=False): + try: + others = list(others) # ensure iterators do not get read twice etc + except TypeError: + # e.g. ser.str, raise below + pass + else: + # in case of list-like `others`, all elements must be + # either Series/Index/np.ndarray (1-dim)... + if all( + isinstance(x, (ABCSeries, ABCIndex, ExtensionArray)) + or (isinstance(x, np.ndarray) and x.ndim == 1) + for x in others + ): + los: list[Series] = [] + while others: # iterate through list and append each element + los = los + self._get_series_list(others.pop(0)) + return los + # ... or just strings + elif all(not is_list_like(x) for x in others): + return [Series(others, index=idx)] + raise TypeError( + "others must be Series, Index, DataFrame, np.ndarray " + "or list-like (either containing only strings or " + "containing only objects of type Series/Index/" + "np.ndarray[1-dim])" + ) + + @forbid_nonstring_types(["bytes", "mixed", "mixed-integer"]) + def cat( + self, + others=None, + sep: str | None = None, + na_rep=None, + join: AlignJoin = "left", + ) -> str | Series | Index: + """ + Concatenate strings in the Series/Index with given separator. + + If `others` is specified, this function concatenates the Series/Index + and elements of `others` element-wise. + If `others` is not passed, then all values in the Series/Index are + concatenated into a single string with a given `sep`. + + Parameters + ---------- + others : Series, Index, DataFrame, np.ndarray or list-like + Series, Index, DataFrame, np.ndarray (one- or two-dimensional) and + other list-likes of strings must have the same length as the + calling Series/Index, with the exception of indexed objects (i.e. + Series/Index/DataFrame) if `join` is not None. + + If others is a list-like that contains a combination of Series, + Index or np.ndarray (1-dim), then all elements will be unpacked and + must satisfy the above criteria individually. + + If others is None, the method returns the concatenation of all + strings in the calling Series/Index. + sep : str, default '' + The separator between the different elements/columns. By default + the empty string `''` is used. + na_rep : str or None, default None + Representation that is inserted for all missing values: + + - If `na_rep` is None, and `others` is None, missing values in the + Series/Index are omitted from the result. + - If `na_rep` is None, and `others` is not None, a row containing a + missing value in any of the columns (before concatenation) will + have a missing value in the result. + join : {'left', 'right', 'outer', 'inner'}, default 'left' + Determines the join-style between the calling Series/Index and any + Series/Index/DataFrame in `others` (objects without an index need + to match the length of the calling Series/Index). To disable + alignment, use `.values` on any Series/Index/DataFrame in `others`. + + Returns + ------- + str, Series or Index + If `others` is None, `str` is returned, otherwise a `Series/Index` + (same type as caller) of objects is returned. + + See Also + -------- + split : Split each string in the Series/Index. + join : Join lists contained as elements in the Series/Index. + + Examples + -------- + When not passing `others`, all values are concatenated into a single + string: + + >>> s = pd.Series(['a', 'b', np.nan, 'd']) + >>> s.str.cat(sep=' ') + 'a b d' + + By default, NA values in the Series are ignored. Using `na_rep`, they + can be given a representation: + + >>> s.str.cat(sep=' ', na_rep='?') + 'a b ? d' + + If `others` is specified, corresponding values are concatenated with + the separator. Result will be a Series of strings. + + >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',') + 0 a,A + 1 b,B + 2 NaN + 3 d,D + dtype: object + + Missing values will remain missing in the result, but can again be + represented using `na_rep` + + >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',', na_rep='-') + 0 a,A + 1 b,B + 2 -,C + 3 d,D + dtype: object + + If `sep` is not specified, the values are concatenated without + separation. + + >>> s.str.cat(['A', 'B', 'C', 'D'], na_rep='-') + 0 aA + 1 bB + 2 -C + 3 dD + dtype: object + + Series with different indexes can be aligned before concatenation. The + `join`-keyword works as in other methods. + + >>> t = pd.Series(['d', 'a', 'e', 'c'], index=[3, 0, 4, 2]) + >>> s.str.cat(t, join='left', na_rep='-') + 0 aa + 1 b- + 2 -c + 3 dd + dtype: object + >>> + >>> s.str.cat(t, join='outer', na_rep='-') + 0 aa + 1 b- + 2 -c + 3 dd + 4 -e + dtype: object + >>> + >>> s.str.cat(t, join='inner', na_rep='-') + 0 aa + 2 -c + 3 dd + dtype: object + >>> + >>> s.str.cat(t, join='right', na_rep='-') + 3 dd + 0 aa + 4 -e + 2 -c + dtype: object + + For more examples, see :ref:`here `. + """ + # TODO: dispatch + from pandas import ( + Index, + Series, + concat, + ) + + if isinstance(others, str): + raise ValueError("Did you mean to supply a `sep` keyword?") + if sep is None: + sep = "" + + if isinstance(self._orig, ABCIndex): + data = Series(self._orig, index=self._orig, dtype=self._orig.dtype) + else: # Series + data = self._orig + + # concatenate Series/Index with itself if no "others" + if others is None: + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "Series") + data = ensure_object(data) # type: ignore[assignment] + na_mask = isna(data) + if na_rep is None and na_mask.any(): + return sep.join(data[~na_mask]) + elif na_rep is not None and na_mask.any(): + return sep.join(np.where(na_mask, na_rep, data)) + else: + return sep.join(data) + + try: + # turn anything in "others" into lists of Series + others = self._get_series_list(others) + except ValueError as err: # do not catch TypeError raised by _get_series_list + raise ValueError( + "If `others` contains arrays or lists (or other " + "list-likes without an index), these must all be " + "of the same length as the calling Series/Index." + ) from err + + # align if required + if any(not data.index.equals(x.index) for x in others): + # Need to add keys for uniqueness in case of duplicate columns + others = concat( + others, + axis=1, + join=(join if join == "inner" else "outer"), + keys=range(len(others)), + sort=False, + copy=False, + ) + data, others = data.align(others, join=join) + others = [others[x] for x in others] # again list of Series + + all_cols = [ensure_object(x) for x in [data] + others] + na_masks = np.array([isna(x) for x in all_cols]) + union_mask = np.logical_or.reduce(na_masks, axis=0) + + if na_rep is None and union_mask.any(): + # no na_rep means NaNs for all rows where any column has a NaN + # only necessary if there are actually any NaNs + result = np.empty(len(data), dtype=object) + np.putmask(result, union_mask, np.nan) + + not_masked = ~union_mask + result[not_masked] = cat_safe([x[not_masked] for x in all_cols], sep) + elif na_rep is not None and union_mask.any(): + # fill NaNs with na_rep in case there are actually any NaNs + all_cols = [ + np.where(nm, na_rep, col) for nm, col in zip(na_masks, all_cols) + ] + result = cat_safe(all_cols, sep) + else: + # no NaNs - can just concatenate + result = cat_safe(all_cols, sep) + + out: Index | Series + if isinstance(self._orig.dtype, CategoricalDtype): + # We need to infer the new categories. + dtype = self._orig.dtype.categories.dtype + else: + dtype = self._orig.dtype + if isinstance(self._orig, ABCIndex): + # add dtype for case that result is all-NA + if isna(result).all(): + dtype = object # type: ignore[assignment] + + out = Index(result, dtype=dtype, name=self._orig.name) + else: # Series + res_ser = Series( + result, dtype=dtype, index=data.index, name=self._orig.name, copy=False + ) + out = res_ser.__finalize__(self._orig, method="str_cat") + return out + + _shared_docs[ + "str_split" + ] = r""" + Split strings around given separator/delimiter. + + Splits the string in the Series/Index from the %(side)s, + at the specified delimiter string. + + Parameters + ---------- + pat : str%(pat_regex)s, optional + %(pat_description)s. + If not specified, split on whitespace. + n : int, default -1 (all) + Limit number of splits in output. + ``None``, 0 and -1 will be interpreted as return all splits. + expand : bool, default False + Expand the split strings into separate columns. + + - If ``True``, return DataFrame/MultiIndex expanding dimensionality. + - If ``False``, return Series/Index, containing lists of strings. + %(regex_argument)s + Returns + ------- + Series, Index, DataFrame or MultiIndex + Type matches caller unless ``expand=True`` (see Notes). + %(raises_split)s + See Also + -------- + Series.str.split : Split strings around given separator/delimiter. + Series.str.rsplit : Splits string around given separator/delimiter, + starting from the right. + Series.str.join : Join lists contained as elements in the Series/Index + with passed delimiter. + str.split : Standard library version for split. + str.rsplit : Standard library version for rsplit. + + Notes + ----- + The handling of the `n` keyword depends on the number of found splits: + + - If found splits > `n`, make first `n` splits only + - If found splits <= `n`, make all splits + - If for a certain row the number of found splits < `n`, + append `None` for padding up to `n` if ``expand=True`` + + If using ``expand=True``, Series and Index callers return DataFrame and + MultiIndex objects, respectively. + %(regex_pat_note)s + Examples + -------- + >>> s = pd.Series( + ... [ + ... "this is a regular sentence", + ... "https://docs.python.org/3/tutorial/index.html", + ... np.nan + ... ] + ... ) + >>> s + 0 this is a regular sentence + 1 https://docs.python.org/3/tutorial/index.html + 2 NaN + dtype: object + + In the default setting, the string is split by whitespace. + + >>> s.str.split() + 0 [this, is, a, regular, sentence] + 1 [https://docs.python.org/3/tutorial/index.html] + 2 NaN + dtype: object + + Without the `n` parameter, the outputs of `rsplit` and `split` + are identical. + + >>> s.str.rsplit() + 0 [this, is, a, regular, sentence] + 1 [https://docs.python.org/3/tutorial/index.html] + 2 NaN + dtype: object + + The `n` parameter can be used to limit the number of splits on the + delimiter. The outputs of `split` and `rsplit` are different. + + >>> s.str.split(n=2) + 0 [this, is, a regular sentence] + 1 [https://docs.python.org/3/tutorial/index.html] + 2 NaN + dtype: object + + >>> s.str.rsplit(n=2) + 0 [this is a, regular, sentence] + 1 [https://docs.python.org/3/tutorial/index.html] + 2 NaN + dtype: object + + The `pat` parameter can be used to split by other characters. + + >>> s.str.split(pat="/") + 0 [this is a regular sentence] + 1 [https:, , docs.python.org, 3, tutorial, index... + 2 NaN + dtype: object + + When using ``expand=True``, the split elements will expand out into + separate columns. If NaN is present, it is propagated throughout + the columns during the split. + + >>> s.str.split(expand=True) + 0 1 2 3 4 + 0 this is a regular sentence + 1 https://docs.python.org/3/tutorial/index.html None None None None + 2 NaN NaN NaN NaN NaN + + For slightly more complex use cases like splitting the html document name + from a url, a combination of parameter settings can be used. + + >>> s.str.rsplit("/", n=1, expand=True) + 0 1 + 0 this is a regular sentence None + 1 https://docs.python.org/3/tutorial index.html + 2 NaN NaN + %(regex_examples)s""" + + @Appender( + _shared_docs["str_split"] + % { + "side": "beginning", + "pat_regex": " or compiled regex", + "pat_description": "String or regular expression to split on", + "regex_argument": """ + regex : bool, default None + Determines if the passed-in pattern is a regular expression: + + - If ``True``, assumes the passed-in pattern is a regular expression + - If ``False``, treats the pattern as a literal string. + - If ``None`` and `pat` length is 1, treats `pat` as a literal string. + - If ``None`` and `pat` length is not 1, treats `pat` as a regular expression. + - Cannot be set to False if `pat` is a compiled regex + + .. versionadded:: 1.4.0 + """, + "raises_split": """ + Raises + ------ + ValueError + * if `regex` is False and `pat` is a compiled regex + """, + "regex_pat_note": """ + Use of `regex =False` with a `pat` as a compiled regex will raise an error. + """, + "method": "split", + "regex_examples": r""" + Remember to escape special characters when explicitly using regular expressions. + + >>> s = pd.Series(["foo and bar plus baz"]) + >>> s.str.split(r"and|plus", expand=True) + 0 1 2 + 0 foo bar baz + + Regular expressions can be used to handle urls or file names. + When `pat` is a string and ``regex=None`` (the default), the given `pat` is compiled + as a regex only if ``len(pat) != 1``. + + >>> s = pd.Series(['foojpgbar.jpg']) + >>> s.str.split(r".", expand=True) + 0 1 + 0 foojpgbar jpg + + >>> s.str.split(r"\.jpg", expand=True) + 0 1 + 0 foojpgbar + + When ``regex=True``, `pat` is interpreted as a regex + + >>> s.str.split(r"\.jpg", regex=True, expand=True) + 0 1 + 0 foojpgbar + + A compiled regex can be passed as `pat` + + >>> import re + >>> s.str.split(re.compile(r"\.jpg"), expand=True) + 0 1 + 0 foojpgbar + + When ``regex=False``, `pat` is interpreted as the string itself + + >>> s.str.split(r"\.jpg", regex=False, expand=True) + 0 + 0 foojpgbar.jpg + """, + } + ) + @forbid_nonstring_types(["bytes"]) + def split( + self, + pat: str | re.Pattern | None = None, + *, + n=-1, + expand: bool = False, + regex: bool | None = None, + ): + if regex is False and is_re(pat): + raise ValueError( + "Cannot use a compiled regex as replacement pattern with regex=False" + ) + if is_re(pat): + regex = True + result = self._data.array._str_split(pat, n, expand, regex) + if self._data.dtype == "category": + dtype = self._data.dtype.categories.dtype + else: + dtype = object if self._data.dtype == object else None + return self._wrap_result( + result, expand=expand, returns_string=expand, dtype=dtype + ) + + @Appender( + _shared_docs["str_split"] + % { + "side": "end", + "pat_regex": "", + "pat_description": "String to split on", + "regex_argument": "", + "raises_split": "", + "regex_pat_note": "", + "method": "rsplit", + "regex_examples": "", + } + ) + @forbid_nonstring_types(["bytes"]) + def rsplit(self, pat=None, *, n=-1, expand: bool = False): + result = self._data.array._str_rsplit(pat, n=n) + dtype = object if self._data.dtype == object else None + return self._wrap_result( + result, expand=expand, returns_string=expand, dtype=dtype + ) + + _shared_docs[ + "str_partition" + ] = """ + Split the string at the %(side)s occurrence of `sep`. + + This method splits the string at the %(side)s occurrence of `sep`, + and returns 3 elements containing the part before the separator, + the separator itself, and the part after the separator. + If the separator is not found, return %(return)s. + + Parameters + ---------- + sep : str, default whitespace + String to split on. + expand : bool, default True + If True, return DataFrame/MultiIndex expanding dimensionality. + If False, return Series/Index. + + Returns + ------- + DataFrame/MultiIndex or Series/Index of objects + + See Also + -------- + %(also)s + Series.str.split : Split strings around given separators. + str.partition : Standard library version. + + Examples + -------- + + >>> s = pd.Series(['Linda van der Berg', 'George Pitt-Rivers']) + >>> s + 0 Linda van der Berg + 1 George Pitt-Rivers + dtype: object + + >>> s.str.partition() + 0 1 2 + 0 Linda van der Berg + 1 George Pitt-Rivers + + To partition by the last space instead of the first one: + + >>> s.str.rpartition() + 0 1 2 + 0 Linda van der Berg + 1 George Pitt-Rivers + + To partition by something different than a space: + + >>> s.str.partition('-') + 0 1 2 + 0 Linda van der Berg + 1 George Pitt - Rivers + + To return a Series containing tuples instead of a DataFrame: + + >>> s.str.partition('-', expand=False) + 0 (Linda van der Berg, , ) + 1 (George Pitt, -, Rivers) + dtype: object + + Also available on indices: + + >>> idx = pd.Index(['X 123', 'Y 999']) + >>> idx + Index(['X 123', 'Y 999'], dtype='object') + + Which will create a MultiIndex: + + >>> idx.str.partition() + MultiIndex([('X', ' ', '123'), + ('Y', ' ', '999')], + ) + + Or an index with tuples with ``expand=False``: + + >>> idx.str.partition(expand=False) + Index([('X', ' ', '123'), ('Y', ' ', '999')], dtype='object') + """ + + @Appender( + _shared_docs["str_partition"] + % { + "side": "first", + "return": "3 elements containing the string itself, followed by two " + "empty strings", + "also": "rpartition : Split the string at the last occurrence of `sep`.", + } + ) + @forbid_nonstring_types(["bytes"]) + def partition(self, sep: str = " ", expand: bool = True): + result = self._data.array._str_partition(sep, expand) + if self._data.dtype == "category": + dtype = self._data.dtype.categories.dtype + else: + dtype = object if self._data.dtype == object else None + return self._wrap_result( + result, expand=expand, returns_string=expand, dtype=dtype + ) + + @Appender( + _shared_docs["str_partition"] + % { + "side": "last", + "return": "3 elements containing two empty strings, followed by the " + "string itself", + "also": "partition : Split the string at the first occurrence of `sep`.", + } + ) + @forbid_nonstring_types(["bytes"]) + def rpartition(self, sep: str = " ", expand: bool = True): + result = self._data.array._str_rpartition(sep, expand) + if self._data.dtype == "category": + dtype = self._data.dtype.categories.dtype + else: + dtype = object if self._data.dtype == object else None + return self._wrap_result( + result, expand=expand, returns_string=expand, dtype=dtype + ) + + def get(self, i): + """ + Extract element from each component at specified position or with specified key. + + Extract element from lists, tuples, dict, or strings in each element in the + Series/Index. + + Parameters + ---------- + i : int or hashable dict label + Position or key of element to extract. + + Returns + ------- + Series or Index + + Examples + -------- + >>> s = pd.Series(["String", + ... (1, 2, 3), + ... ["a", "b", "c"], + ... 123, + ... -456, + ... {1: "Hello", "2": "World"}]) + >>> s + 0 String + 1 (1, 2, 3) + 2 [a, b, c] + 3 123 + 4 -456 + 5 {1: 'Hello', '2': 'World'} + dtype: object + + >>> s.str.get(1) + 0 t + 1 2 + 2 b + 3 NaN + 4 NaN + 5 Hello + dtype: object + + >>> s.str.get(-1) + 0 g + 1 3 + 2 c + 3 NaN + 4 NaN + 5 None + dtype: object + + Return element with given key + + >>> s = pd.Series([{"name": "Hello", "value": "World"}, + ... {"name": "Goodbye", "value": "Planet"}]) + >>> s.str.get('name') + 0 Hello + 1 Goodbye + dtype: object + """ + result = self._data.array._str_get(i) + return self._wrap_result(result) + + @forbid_nonstring_types(["bytes"]) + def join(self, sep: str): + """ + Join lists contained as elements in the Series/Index with passed delimiter. + + If the elements of a Series are lists themselves, join the content of these + lists using the delimiter passed to the function. + This function is an equivalent to :meth:`str.join`. + + Parameters + ---------- + sep : str + Delimiter to use between list entries. + + Returns + ------- + Series/Index: object + The list entries concatenated by intervening occurrences of the + delimiter. + + Raises + ------ + AttributeError + If the supplied Series contains neither strings nor lists. + + See Also + -------- + str.join : Standard library version of this method. + Series.str.split : Split strings around given separator/delimiter. + + Notes + ----- + If any of the list items is not a string object, the result of the join + will be `NaN`. + + Examples + -------- + Example with a list that contains non-string elements. + + >>> s = pd.Series([['lion', 'elephant', 'zebra'], + ... [1.1, 2.2, 3.3], + ... ['cat', np.nan, 'dog'], + ... ['cow', 4.5, 'goat'], + ... ['duck', ['swan', 'fish'], 'guppy']]) + >>> s + 0 [lion, elephant, zebra] + 1 [1.1, 2.2, 3.3] + 2 [cat, nan, dog] + 3 [cow, 4.5, goat] + 4 [duck, [swan, fish], guppy] + dtype: object + + Join all lists using a '-'. The lists containing object(s) of types other + than str will produce a NaN. + + >>> s.str.join('-') + 0 lion-elephant-zebra + 1 NaN + 2 NaN + 3 NaN + 4 NaN + dtype: object + """ + result = self._data.array._str_join(sep) + return self._wrap_result(result) + + @forbid_nonstring_types(["bytes"]) + def contains( + self, pat, case: bool = True, flags: int = 0, na=None, regex: bool = True + ): + r""" + Test if pattern or regex is contained within a string of a Series or Index. + + Return boolean Series or Index based on whether a given pattern or regex is + contained within a string of a Series or Index. + + Parameters + ---------- + pat : str + Character sequence or regular expression. + case : bool, default True + If True, case sensitive. + flags : int, default 0 (no flags) + Flags to pass through to the re module, e.g. re.IGNORECASE. + na : scalar, optional + Fill value for missing values. The default depends on dtype of the + array. For object-dtype, ``numpy.nan`` is used. For ``StringDtype``, + ``pandas.NA`` is used. + regex : bool, default True + If True, assumes the pat is a regular expression. + + If False, treats the pat as a literal string. + + Returns + ------- + Series or Index of boolean values + A Series or Index of boolean values indicating whether the + given pattern is contained within the string of each element + of the Series or Index. + + See Also + -------- + match : Analogous, but stricter, relying on re.match instead of re.search. + Series.str.startswith : Test if the start of each string element matches a + pattern. + Series.str.endswith : Same as startswith, but tests the end of string. + + Examples + -------- + Returning a Series of booleans using only a literal pattern. + + >>> s1 = pd.Series(['Mouse', 'dog', 'house and parrot', '23', np.nan]) + >>> s1.str.contains('og', regex=False) + 0 False + 1 True + 2 False + 3 False + 4 NaN + dtype: object + + Returning an Index of booleans using only a literal pattern. + + >>> ind = pd.Index(['Mouse', 'dog', 'house and parrot', '23.0', np.nan]) + >>> ind.str.contains('23', regex=False) + Index([False, False, False, True, nan], dtype='object') + + Specifying case sensitivity using `case`. + + >>> s1.str.contains('oG', case=True, regex=True) + 0 False + 1 False + 2 False + 3 False + 4 NaN + dtype: object + + Specifying `na` to be `False` instead of `NaN` replaces NaN values + with `False`. If Series or Index does not contain NaN values + the resultant dtype will be `bool`, otherwise, an `object` dtype. + + >>> s1.str.contains('og', na=False, regex=True) + 0 False + 1 True + 2 False + 3 False + 4 False + dtype: bool + + Returning 'house' or 'dog' when either expression occurs in a string. + + >>> s1.str.contains('house|dog', regex=True) + 0 False + 1 True + 2 True + 3 False + 4 NaN + dtype: object + + Ignoring case sensitivity using `flags` with regex. + + >>> import re + >>> s1.str.contains('PARROT', flags=re.IGNORECASE, regex=True) + 0 False + 1 False + 2 True + 3 False + 4 NaN + dtype: object + + Returning any digit using regular expression. + + >>> s1.str.contains('\\d', regex=True) + 0 False + 1 False + 2 False + 3 True + 4 NaN + dtype: object + + Ensure `pat` is a not a literal pattern when `regex` is set to True. + Note in the following example one might expect only `s2[1]` and `s2[3]` to + return `True`. However, '.0' as a regex matches any character + followed by a 0. + + >>> s2 = pd.Series(['40', '40.0', '41', '41.0', '35']) + >>> s2.str.contains('.0', regex=True) + 0 True + 1 True + 2 False + 3 True + 4 False + dtype: bool + """ + if regex and re.compile(pat).groups: + warnings.warn( + "This pattern is interpreted as a regular expression, and has " + "match groups. To actually get the groups, use str.extract.", + UserWarning, + stacklevel=find_stack_level(), + ) + + result = self._data.array._str_contains(pat, case, flags, na, regex) + return self._wrap_result(result, fill_value=na, returns_string=False) + + @forbid_nonstring_types(["bytes"]) + def match(self, pat: str, case: bool = True, flags: int = 0, na=None): + """ + Determine if each string starts with a match of a regular expression. + + Parameters + ---------- + pat : str + Character sequence. + case : bool, default True + If True, case sensitive. + flags : int, default 0 (no flags) + Regex module flags, e.g. re.IGNORECASE. + na : scalar, optional + Fill value for missing values. The default depends on dtype of the + array. For object-dtype, ``numpy.nan`` is used. For ``StringDtype``, + ``pandas.NA`` is used. + + Returns + ------- + Series/Index/array of boolean values + + See Also + -------- + fullmatch : Stricter matching that requires the entire string to match. + contains : Analogous, but less strict, relying on re.search instead of + re.match. + extract : Extract matched groups. + + Examples + -------- + >>> ser = pd.Series(["horse", "eagle", "donkey"]) + >>> ser.str.match("e") + 0 False + 1 True + 2 False + dtype: bool + """ + result = self._data.array._str_match(pat, case=case, flags=flags, na=na) + return self._wrap_result(result, fill_value=na, returns_string=False) + + @forbid_nonstring_types(["bytes"]) + def fullmatch(self, pat, case: bool = True, flags: int = 0, na=None): + """ + Determine if each string entirely matches a regular expression. + + Parameters + ---------- + pat : str + Character sequence or regular expression. + case : bool, default True + If True, case sensitive. + flags : int, default 0 (no flags) + Regex module flags, e.g. re.IGNORECASE. + na : scalar, optional + Fill value for missing values. The default depends on dtype of the + array. For object-dtype, ``numpy.nan`` is used. For ``StringDtype``, + ``pandas.NA`` is used. + + Returns + ------- + Series/Index/array of boolean values + + See Also + -------- + match : Similar, but also returns `True` when only a *prefix* of the string + matches the regular expression. + extract : Extract matched groups. + + Examples + -------- + >>> ser = pd.Series(["cat", "duck", "dove"]) + >>> ser.str.fullmatch(r'd.+') + 0 False + 1 True + 2 True + dtype: bool + """ + result = self._data.array._str_fullmatch(pat, case=case, flags=flags, na=na) + return self._wrap_result(result, fill_value=na, returns_string=False) + + @forbid_nonstring_types(["bytes"]) + def replace( + self, + pat: str | re.Pattern, + repl: str | Callable, + n: int = -1, + case: bool | None = None, + flags: int = 0, + regex: bool = False, + ): + r""" + Replace each occurrence of pattern/regex in the Series/Index. + + Equivalent to :meth:`str.replace` or :func:`re.sub`, depending on + the regex value. + + Parameters + ---------- + pat : str or compiled regex + String can be a character sequence or regular expression. + repl : str or callable + Replacement string or a callable. The callable is passed the regex + match object and must return a replacement string to be used. + See :func:`re.sub`. + n : int, default -1 (all) + Number of replacements to make from start. + case : bool, default None + Determines if replace is case sensitive: + + - If True, case sensitive (the default if `pat` is a string) + - Set to False for case insensitive + - Cannot be set if `pat` is a compiled regex. + + flags : int, default 0 (no flags) + Regex module flags, e.g. re.IGNORECASE. Cannot be set if `pat` is a compiled + regex. + regex : bool, default False + Determines if the passed-in pattern is a regular expression: + + - If True, assumes the passed-in pattern is a regular expression. + - If False, treats the pattern as a literal string + - Cannot be set to False if `pat` is a compiled regex or `repl` is + a callable. + + Returns + ------- + Series or Index of object + A copy of the object with all matching occurrences of `pat` replaced by + `repl`. + + Raises + ------ + ValueError + * if `regex` is False and `repl` is a callable or `pat` is a compiled + regex + * if `pat` is a compiled regex and `case` or `flags` is set + + Notes + ----- + When `pat` is a compiled regex, all flags should be included in the + compiled regex. Use of `case`, `flags`, or `regex=False` with a compiled + regex will raise an error. + + Examples + -------- + When `pat` is a string and `regex` is True, the given `pat` + is compiled as a regex. When `repl` is a string, it replaces matching + regex patterns as with :meth:`re.sub`. NaN value(s) in the Series are + left as is: + + >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f.', 'ba', regex=True) + 0 bao + 1 baz + 2 NaN + dtype: object + + When `pat` is a string and `regex` is False, every `pat` is replaced with + `repl` as with :meth:`str.replace`: + + >>> pd.Series(['f.o', 'fuz', np.nan]).str.replace('f.', 'ba', regex=False) + 0 bao + 1 fuz + 2 NaN + dtype: object + + When `repl` is a callable, it is called on every `pat` using + :func:`re.sub`. The callable should expect one positional argument + (a regex object) and return a string. + + To get the idea: + + >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', repr, regex=True) + 0 oo + 1 uz + 2 NaN + dtype: object + + Reverse every lowercase alphabetic word: + + >>> repl = lambda m: m.group(0)[::-1] + >>> ser = pd.Series(['foo 123', 'bar baz', np.nan]) + >>> ser.str.replace(r'[a-z]+', repl, regex=True) + 0 oof 123 + 1 rab zab + 2 NaN + dtype: object + + Using regex groups (extract second group and swap case): + + >>> pat = r"(?P\w+) (?P\w+) (?P\w+)" + >>> repl = lambda m: m.group('two').swapcase() + >>> ser = pd.Series(['One Two Three', 'Foo Bar Baz']) + >>> ser.str.replace(pat, repl, regex=True) + 0 tWO + 1 bAR + dtype: object + + Using a compiled regex with flags + + >>> import re + >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) + >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar', regex=True) + 0 foo + 1 bar + 2 NaN + dtype: object + """ + # Check whether repl is valid (GH 13438, GH 15055) + if not (isinstance(repl, str) or callable(repl)): + raise TypeError("repl must be a string or callable") + + is_compiled_re = is_re(pat) + if regex or regex is None: + if is_compiled_re and (case is not None or flags != 0): + raise ValueError( + "case and flags cannot be set when pat is a compiled regex" + ) + + elif is_compiled_re: + raise ValueError( + "Cannot use a compiled regex as replacement pattern with regex=False" + ) + elif callable(repl): + raise ValueError("Cannot use a callable replacement when regex=False") + + if case is None: + case = True + + result = self._data.array._str_replace( + pat, repl, n=n, case=case, flags=flags, regex=regex + ) + return self._wrap_result(result) + + @forbid_nonstring_types(["bytes"]) + def repeat(self, repeats): + """ + Duplicate each string in the Series or Index. + + Parameters + ---------- + repeats : int or sequence of int + Same value for all (int) or different value per (sequence). + + Returns + ------- + Series or pandas.Index + Series or Index of repeated string objects specified by + input parameter repeats. + + Examples + -------- + >>> s = pd.Series(['a', 'b', 'c']) + >>> s + 0 a + 1 b + 2 c + dtype: object + + Single int repeats string in Series + + >>> s.str.repeat(repeats=2) + 0 aa + 1 bb + 2 cc + dtype: object + + Sequence of int repeats corresponding string in Series + + >>> s.str.repeat(repeats=[1, 2, 3]) + 0 a + 1 bb + 2 ccc + dtype: object + """ + result = self._data.array._str_repeat(repeats) + return self._wrap_result(result) + + @forbid_nonstring_types(["bytes"]) + def pad( + self, + width: int, + side: Literal["left", "right", "both"] = "left", + fillchar: str = " ", + ): + """ + Pad strings in the Series/Index up to width. + + Parameters + ---------- + width : int + Minimum width of resulting string; additional characters will be filled + with character defined in `fillchar`. + side : {'left', 'right', 'both'}, default 'left' + Side from which to fill resulting string. + fillchar : str, default ' ' + Additional character for filling, default is whitespace. + + Returns + ------- + Series or Index of object + Returns Series or Index with minimum number of char in object. + + See Also + -------- + Series.str.rjust : Fills the left side of strings with an arbitrary + character. Equivalent to ``Series.str.pad(side='left')``. + Series.str.ljust : Fills the right side of strings with an arbitrary + character. Equivalent to ``Series.str.pad(side='right')``. + Series.str.center : Fills both sides of strings with an arbitrary + character. Equivalent to ``Series.str.pad(side='both')``. + Series.str.zfill : Pad strings in the Series/Index by prepending '0' + character. Equivalent to ``Series.str.pad(side='left', fillchar='0')``. + + Examples + -------- + >>> s = pd.Series(["caribou", "tiger"]) + >>> s + 0 caribou + 1 tiger + dtype: object + + >>> s.str.pad(width=10) + 0 caribou + 1 tiger + dtype: object + + >>> s.str.pad(width=10, side='right', fillchar='-') + 0 caribou--- + 1 tiger----- + dtype: object + + >>> s.str.pad(width=10, side='both', fillchar='-') + 0 -caribou-- + 1 --tiger--- + dtype: object + """ + if not isinstance(fillchar, str): + msg = f"fillchar must be a character, not {type(fillchar).__name__}" + raise TypeError(msg) + + if len(fillchar) != 1: + raise TypeError("fillchar must be a character, not str") + + if not is_integer(width): + msg = f"width must be of integer type, not {type(width).__name__}" + raise TypeError(msg) + + result = self._data.array._str_pad(width, side=side, fillchar=fillchar) + return self._wrap_result(result) + + _shared_docs[ + "str_pad" + ] = """ + Pad %(side)s side of strings in the Series/Index. + + Equivalent to :meth:`str.%(method)s`. + + Parameters + ---------- + width : int + Minimum width of resulting string; additional characters will be filled + with ``fillchar``. + fillchar : str + Additional character for filling, default is whitespace. + + Returns + ------- + Series/Index of objects. + + Examples + -------- + For Series.str.center: + + >>> ser = pd.Series(['dog', 'bird', 'mouse']) + >>> ser.str.center(8, fillchar='.') + 0 ..dog... + 1 ..bird.. + 2 .mouse.. + dtype: object + + For Series.str.ljust: + + >>> ser = pd.Series(['dog', 'bird', 'mouse']) + >>> ser.str.ljust(8, fillchar='.') + 0 dog..... + 1 bird.... + 2 mouse... + dtype: object + + For Series.str.rjust: + + >>> ser = pd.Series(['dog', 'bird', 'mouse']) + >>> ser.str.rjust(8, fillchar='.') + 0 .....dog + 1 ....bird + 2 ...mouse + dtype: object + """ + + @Appender(_shared_docs["str_pad"] % {"side": "left and right", "method": "center"}) + @forbid_nonstring_types(["bytes"]) + def center(self, width: int, fillchar: str = " "): + return self.pad(width, side="both", fillchar=fillchar) + + @Appender(_shared_docs["str_pad"] % {"side": "right", "method": "ljust"}) + @forbid_nonstring_types(["bytes"]) + def ljust(self, width: int, fillchar: str = " "): + return self.pad(width, side="right", fillchar=fillchar) + + @Appender(_shared_docs["str_pad"] % {"side": "left", "method": "rjust"}) + @forbid_nonstring_types(["bytes"]) + def rjust(self, width: int, fillchar: str = " "): + return self.pad(width, side="left", fillchar=fillchar) + + @forbid_nonstring_types(["bytes"]) + def zfill(self, width: int): + """ + Pad strings in the Series/Index by prepending '0' characters. + + Strings in the Series/Index are padded with '0' characters on the + left of the string to reach a total string length `width`. Strings + in the Series/Index with length greater or equal to `width` are + unchanged. + + Parameters + ---------- + width : int + Minimum length of resulting string; strings with length less + than `width` be prepended with '0' characters. + + Returns + ------- + Series/Index of objects. + + See Also + -------- + Series.str.rjust : Fills the left side of strings with an arbitrary + character. + Series.str.ljust : Fills the right side of strings with an arbitrary + character. + Series.str.pad : Fills the specified sides of strings with an arbitrary + character. + Series.str.center : Fills both sides of strings with an arbitrary + character. + + Notes + ----- + Differs from :meth:`str.zfill` which has special handling + for '+'/'-' in the string. + + Examples + -------- + >>> s = pd.Series(['-1', '1', '1000', 10, np.nan]) + >>> s + 0 -1 + 1 1 + 2 1000 + 3 10 + 4 NaN + dtype: object + + Note that ``10`` and ``NaN`` are not strings, therefore they are + converted to ``NaN``. The minus sign in ``'-1'`` is treated as a + special character and the zero is added to the right of it + (:meth:`str.zfill` would have moved it to the left). ``1000`` + remains unchanged as it is longer than `width`. + + >>> s.str.zfill(3) + 0 -01 + 1 001 + 2 1000 + 3 NaN + 4 NaN + dtype: object + """ + if not is_integer(width): + msg = f"width must be of integer type, not {type(width).__name__}" + raise TypeError(msg) + f = lambda x: x.zfill(width) + result = self._data.array._str_map(f) + return self._wrap_result(result) + + def slice(self, start=None, stop=None, step=None): + """ + Slice substrings from each element in the Series or Index. + + Parameters + ---------- + start : int, optional + Start position for slice operation. + stop : int, optional + Stop position for slice operation. + step : int, optional + Step size for slice operation. + + Returns + ------- + Series or Index of object + Series or Index from sliced substring from original string object. + + See Also + -------- + Series.str.slice_replace : Replace a slice with a string. + Series.str.get : Return element at position. + Equivalent to `Series.str.slice(start=i, stop=i+1)` with `i` + being the position. + + Examples + -------- + >>> s = pd.Series(["koala", "dog", "chameleon"]) + >>> s + 0 koala + 1 dog + 2 chameleon + dtype: object + + >>> s.str.slice(start=1) + 0 oala + 1 og + 2 hameleon + dtype: object + + >>> s.str.slice(start=-1) + 0 a + 1 g + 2 n + dtype: object + + >>> s.str.slice(stop=2) + 0 ko + 1 do + 2 ch + dtype: object + + >>> s.str.slice(step=2) + 0 kaa + 1 dg + 2 caeen + dtype: object + + >>> s.str.slice(start=0, stop=5, step=3) + 0 kl + 1 d + 2 cm + dtype: object + + Equivalent behaviour to: + + >>> s.str[0:5:3] + 0 kl + 1 d + 2 cm + dtype: object + """ + result = self._data.array._str_slice(start, stop, step) + return self._wrap_result(result) + + @forbid_nonstring_types(["bytes"]) + def slice_replace(self, start=None, stop=None, repl=None): + """ + Replace a positional slice of a string with another value. + + Parameters + ---------- + start : int, optional + Left index position to use for the slice. If not specified (None), + the slice is unbounded on the left, i.e. slice from the start + of the string. + stop : int, optional + Right index position to use for the slice. If not specified (None), + the slice is unbounded on the right, i.e. slice until the + end of the string. + repl : str, optional + String for replacement. If not specified (None), the sliced region + is replaced with an empty string. + + Returns + ------- + Series or Index + Same type as the original object. + + See Also + -------- + Series.str.slice : Just slicing without replacement. + + Examples + -------- + >>> s = pd.Series(['a', 'ab', 'abc', 'abdc', 'abcde']) + >>> s + 0 a + 1 ab + 2 abc + 3 abdc + 4 abcde + dtype: object + + Specify just `start`, meaning replace `start` until the end of the + string with `repl`. + + >>> s.str.slice_replace(1, repl='X') + 0 aX + 1 aX + 2 aX + 3 aX + 4 aX + dtype: object + + Specify just `stop`, meaning the start of the string to `stop` is replaced + with `repl`, and the rest of the string is included. + + >>> s.str.slice_replace(stop=2, repl='X') + 0 X + 1 X + 2 Xc + 3 Xdc + 4 Xcde + dtype: object + + Specify `start` and `stop`, meaning the slice from `start` to `stop` is + replaced with `repl`. Everything before or after `start` and `stop` is + included as is. + + >>> s.str.slice_replace(start=1, stop=3, repl='X') + 0 aX + 1 aX + 2 aX + 3 aXc + 4 aXde + dtype: object + """ + result = self._data.array._str_slice_replace(start, stop, repl) + return self._wrap_result(result) + + def decode(self, encoding, errors: str = "strict"): + """ + Decode character string in the Series/Index using indicated encoding. + + Equivalent to :meth:`str.decode` in python2 and :meth:`bytes.decode` in + python3. + + Parameters + ---------- + encoding : str + errors : str, optional + + Returns + ------- + Series or Index + + Examples + -------- + For Series: + + >>> ser = pd.Series([b'cow', b'123', b'()']) + >>> ser.str.decode('ascii') + 0 cow + 1 123 + 2 () + dtype: object + """ + # TODO: Add a similar _bytes interface. + if encoding in _cpython_optimized_decoders: + # CPython optimized implementation + f = lambda x: x.decode(encoding, errors) + else: + decoder = codecs.getdecoder(encoding) + f = lambda x: decoder(x, errors)[0] + arr = self._data.array + # assert isinstance(arr, (StringArray,)) + result = arr._str_map(f) + return self._wrap_result(result) + + @forbid_nonstring_types(["bytes"]) + def encode(self, encoding, errors: str = "strict"): + """ + Encode character string in the Series/Index using indicated encoding. + + Equivalent to :meth:`str.encode`. + + Parameters + ---------- + encoding : str + errors : str, optional + + Returns + ------- + Series/Index of objects + + Examples + -------- + >>> ser = pd.Series(['cow', '123', '()']) + >>> ser.str.encode(encoding='ascii') + 0 b'cow' + 1 b'123' + 2 b'()' + dtype: object + """ + result = self._data.array._str_encode(encoding, errors) + return self._wrap_result(result, returns_string=False) + + _shared_docs[ + "str_strip" + ] = r""" + Remove %(position)s characters. + + Strip whitespaces (including newlines) or a set of specified characters + from each string in the Series/Index from %(side)s. + Replaces any non-strings in Series with NaNs. + Equivalent to :meth:`str.%(method)s`. + + Parameters + ---------- + to_strip : str or None, default None + Specifying the set of characters to be removed. + All combinations of this set of characters will be stripped. + If None then whitespaces are removed. + + Returns + ------- + Series or Index of object + + See Also + -------- + Series.str.strip : Remove leading and trailing characters in Series/Index. + Series.str.lstrip : Remove leading characters in Series/Index. + Series.str.rstrip : Remove trailing characters in Series/Index. + + Examples + -------- + >>> s = pd.Series(['1. Ant. ', '2. Bee!\n', '3. Cat?\t', np.nan, 10, True]) + >>> s + 0 1. Ant. + 1 2. Bee!\n + 2 3. Cat?\t + 3 NaN + 4 10 + 5 True + dtype: object + + >>> s.str.strip() + 0 1. Ant. + 1 2. Bee! + 2 3. Cat? + 3 NaN + 4 NaN + 5 NaN + dtype: object + + >>> s.str.lstrip('123.') + 0 Ant. + 1 Bee!\n + 2 Cat?\t + 3 NaN + 4 NaN + 5 NaN + dtype: object + + >>> s.str.rstrip('.!? \n\t') + 0 1. Ant + 1 2. Bee + 2 3. Cat + 3 NaN + 4 NaN + 5 NaN + dtype: object + + >>> s.str.strip('123.!? \n\t') + 0 Ant + 1 Bee + 2 Cat + 3 NaN + 4 NaN + 5 NaN + dtype: object + """ + + @Appender( + _shared_docs["str_strip"] + % { + "side": "left and right sides", + "method": "strip", + "position": "leading and trailing", + } + ) + @forbid_nonstring_types(["bytes"]) + def strip(self, to_strip=None): + result = self._data.array._str_strip(to_strip) + return self._wrap_result(result) + + @Appender( + _shared_docs["str_strip"] + % {"side": "left side", "method": "lstrip", "position": "leading"} + ) + @forbid_nonstring_types(["bytes"]) + def lstrip(self, to_strip=None): + result = self._data.array._str_lstrip(to_strip) + return self._wrap_result(result) + + @Appender( + _shared_docs["str_strip"] + % {"side": "right side", "method": "rstrip", "position": "trailing"} + ) + @forbid_nonstring_types(["bytes"]) + def rstrip(self, to_strip=None): + result = self._data.array._str_rstrip(to_strip) + return self._wrap_result(result) + + _shared_docs[ + "str_removefix" + ] = r""" + Remove a %(side)s from an object series. + + If the %(side)s is not present, the original string will be returned. + + Parameters + ---------- + %(side)s : str + Remove the %(side)s of the string. + + Returns + ------- + Series/Index: object + The Series or Index with given %(side)s removed. + + See Also + -------- + Series.str.remove%(other_side)s : Remove a %(other_side)s from an object series. + + Examples + -------- + >>> s = pd.Series(["str_foo", "str_bar", "no_prefix"]) + >>> s + 0 str_foo + 1 str_bar + 2 no_prefix + dtype: object + >>> s.str.removeprefix("str_") + 0 foo + 1 bar + 2 no_prefix + dtype: object + + >>> s = pd.Series(["foo_str", "bar_str", "no_suffix"]) + >>> s + 0 foo_str + 1 bar_str + 2 no_suffix + dtype: object + >>> s.str.removesuffix("_str") + 0 foo + 1 bar + 2 no_suffix + dtype: object + """ + + @Appender( + _shared_docs["str_removefix"] % {"side": "prefix", "other_side": "suffix"} + ) + @forbid_nonstring_types(["bytes"]) + def removeprefix(self, prefix: str): + result = self._data.array._str_removeprefix(prefix) + return self._wrap_result(result) + + @Appender( + _shared_docs["str_removefix"] % {"side": "suffix", "other_side": "prefix"} + ) + @forbid_nonstring_types(["bytes"]) + def removesuffix(self, suffix: str): + result = self._data.array._str_removesuffix(suffix) + return self._wrap_result(result) + + @forbid_nonstring_types(["bytes"]) + def wrap(self, width: int, **kwargs): + r""" + Wrap strings in Series/Index at specified line width. + + This method has the same keyword parameters and defaults as + :class:`textwrap.TextWrapper`. + + Parameters + ---------- + width : int + Maximum line width. + expand_tabs : bool, optional + If True, tab characters will be expanded to spaces (default: True). + replace_whitespace : bool, optional + If True, each whitespace character (as defined by string.whitespace) + remaining after tab expansion will be replaced by a single space + (default: True). + drop_whitespace : bool, optional + If True, whitespace that, after wrapping, happens to end up at the + beginning or end of a line is dropped (default: True). + break_long_words : bool, optional + If True, then words longer than width will be broken in order to ensure + that no lines are longer than width. If it is false, long words will + not be broken, and some lines may be longer than width (default: True). + break_on_hyphens : bool, optional + If True, wrapping will occur preferably on whitespace and right after + hyphens in compound words, as it is customary in English. If false, + only whitespaces will be considered as potentially good places for line + breaks, but you need to set break_long_words to false if you want truly + insecable words (default: True). + + Returns + ------- + Series or Index + + Notes + ----- + Internally, this method uses a :class:`textwrap.TextWrapper` instance with + default settings. To achieve behavior matching R's stringr library str_wrap + function, use the arguments: + + - expand_tabs = False + - replace_whitespace = True + - drop_whitespace = True + - break_long_words = False + - break_on_hyphens = False + + Examples + -------- + >>> s = pd.Series(['line to be wrapped', 'another line to be wrapped']) + >>> s.str.wrap(12) + 0 line to be\nwrapped + 1 another line\nto be\nwrapped + dtype: object + """ + result = self._data.array._str_wrap(width, **kwargs) + return self._wrap_result(result) + + @forbid_nonstring_types(["bytes"]) + def get_dummies(self, sep: str = "|"): + """ + Return DataFrame of dummy/indicator variables for Series. + + Each string in Series is split by sep and returned as a DataFrame + of dummy/indicator variables. + + Parameters + ---------- + sep : str, default "|" + String to split on. + + Returns + ------- + DataFrame + Dummy variables corresponding to values of the Series. + + See Also + -------- + get_dummies : Convert categorical variable into dummy/indicator + variables. + + Examples + -------- + >>> pd.Series(['a|b', 'a', 'a|c']).str.get_dummies() + a b c + 0 1 1 0 + 1 1 0 0 + 2 1 0 1 + + >>> pd.Series(['a|b', np.nan, 'a|c']).str.get_dummies() + a b c + 0 1 1 0 + 1 0 0 0 + 2 1 0 1 + """ + # we need to cast to Series of strings as only that has all + # methods available for making the dummies... + result, name = self._data.array._str_get_dummies(sep) + return self._wrap_result( + result, + name=name, + expand=True, + returns_string=False, + ) + + @forbid_nonstring_types(["bytes"]) + def translate(self, table): + """ + Map all characters in the string through the given mapping table. + + Equivalent to standard :meth:`str.translate`. + + Parameters + ---------- + table : dict + Table is a mapping of Unicode ordinals to Unicode ordinals, strings, or + None. Unmapped characters are left untouched. + Characters mapped to None are deleted. :meth:`str.maketrans` is a + helper function for making translation tables. + + Returns + ------- + Series or Index + + Examples + -------- + >>> ser = pd.Series(["El niño", "Françoise"]) + >>> mytable = str.maketrans({'ñ': 'n', 'ç': 'c'}) + >>> ser.str.translate(mytable) + 0 El nino + 1 Francoise + dtype: object + """ + result = self._data.array._str_translate(table) + dtype = object if self._data.dtype == "object" else None + return self._wrap_result(result, dtype=dtype) + + @forbid_nonstring_types(["bytes"]) + def count(self, pat, flags: int = 0): + r""" + Count occurrences of pattern in each string of the Series/Index. + + This function is used to count the number of times a particular regex + pattern is repeated in each of the string elements of the + :class:`~pandas.Series`. + + Parameters + ---------- + pat : str + Valid regular expression. + flags : int, default 0, meaning no flags + Flags for the `re` module. For a complete list, `see here + `_. + **kwargs + For compatibility with other string methods. Not used. + + Returns + ------- + Series or Index + Same type as the calling object containing the integer counts. + + See Also + -------- + re : Standard library module for regular expressions. + str.count : Standard library version, without regular expression support. + + Notes + ----- + Some characters need to be escaped when passing in `pat`. + eg. ``'$'`` has a special meaning in regex and must be escaped when + finding this literal character. + + Examples + -------- + >>> s = pd.Series(['A', 'B', 'Aaba', 'Baca', np.nan, 'CABA', 'cat']) + >>> s.str.count('a') + 0 0.0 + 1 0.0 + 2 2.0 + 3 2.0 + 4 NaN + 5 0.0 + 6 1.0 + dtype: float64 + + Escape ``'$'`` to find the literal dollar sign. + + >>> s = pd.Series(['$', 'B', 'Aab$', '$$ca', 'C$B$', 'cat']) + >>> s.str.count('\\$') + 0 1 + 1 0 + 2 1 + 3 2 + 4 2 + 5 0 + dtype: int64 + + This is also available on Index + + >>> pd.Index(['A', 'A', 'Aaba', 'cat']).str.count('a') + Index([0, 0, 2, 1], dtype='int64') + """ + result = self._data.array._str_count(pat, flags) + return self._wrap_result(result, returns_string=False) + + @forbid_nonstring_types(["bytes"]) + def startswith( + self, pat: str | tuple[str, ...], na: Scalar | None = None + ) -> Series | Index: + """ + Test if the start of each string element matches a pattern. + + Equivalent to :meth:`str.startswith`. + + Parameters + ---------- + pat : str or tuple[str, ...] + Character sequence or tuple of strings. Regular expressions are not + accepted. + na : object, default NaN + Object shown if element tested is not a string. The default depends + on dtype of the array. For object-dtype, ``numpy.nan`` is used. + For ``StringDtype``, ``pandas.NA`` is used. + + Returns + ------- + Series or Index of bool + A Series of booleans indicating whether the given pattern matches + the start of each string element. + + See Also + -------- + str.startswith : Python standard library string method. + Series.str.endswith : Same as startswith, but tests the end of string. + Series.str.contains : Tests if string element contains a pattern. + + Examples + -------- + >>> s = pd.Series(['bat', 'Bear', 'cat', np.nan]) + >>> s + 0 bat + 1 Bear + 2 cat + 3 NaN + dtype: object + + >>> s.str.startswith('b') + 0 True + 1 False + 2 False + 3 NaN + dtype: object + + >>> s.str.startswith(('b', 'B')) + 0 True + 1 True + 2 False + 3 NaN + dtype: object + + Specifying `na` to be `False` instead of `NaN`. + + >>> s.str.startswith('b', na=False) + 0 True + 1 False + 2 False + 3 False + dtype: bool + """ + if not isinstance(pat, (str, tuple)): + msg = f"expected a string or tuple, not {type(pat).__name__}" + raise TypeError(msg) + result = self._data.array._str_startswith(pat, na=na) + return self._wrap_result(result, returns_string=False) + + @forbid_nonstring_types(["bytes"]) + def endswith( + self, pat: str | tuple[str, ...], na: Scalar | None = None + ) -> Series | Index: + """ + Test if the end of each string element matches a pattern. + + Equivalent to :meth:`str.endswith`. + + Parameters + ---------- + pat : str or tuple[str, ...] + Character sequence or tuple of strings. Regular expressions are not + accepted. + na : object, default NaN + Object shown if element tested is not a string. The default depends + on dtype of the array. For object-dtype, ``numpy.nan`` is used. + For ``StringDtype``, ``pandas.NA`` is used. + + Returns + ------- + Series or Index of bool + A Series of booleans indicating whether the given pattern matches + the end of each string element. + + See Also + -------- + str.endswith : Python standard library string method. + Series.str.startswith : Same as endswith, but tests the start of string. + Series.str.contains : Tests if string element contains a pattern. + + Examples + -------- + >>> s = pd.Series(['bat', 'bear', 'caT', np.nan]) + >>> s + 0 bat + 1 bear + 2 caT + 3 NaN + dtype: object + + >>> s.str.endswith('t') + 0 True + 1 False + 2 False + 3 NaN + dtype: object + + >>> s.str.endswith(('t', 'T')) + 0 True + 1 False + 2 True + 3 NaN + dtype: object + + Specifying `na` to be `False` instead of `NaN`. + + >>> s.str.endswith('t', na=False) + 0 True + 1 False + 2 False + 3 False + dtype: bool + """ + if not isinstance(pat, (str, tuple)): + msg = f"expected a string or tuple, not {type(pat).__name__}" + raise TypeError(msg) + result = self._data.array._str_endswith(pat, na=na) + return self._wrap_result(result, returns_string=False) + + @forbid_nonstring_types(["bytes"]) + def findall(self, pat, flags: int = 0): + """ + Find all occurrences of pattern or regular expression in the Series/Index. + + Equivalent to applying :func:`re.findall` to all the elements in the + Series/Index. + + Parameters + ---------- + pat : str + Pattern or regular expression. + flags : int, default 0 + Flags from ``re`` module, e.g. `re.IGNORECASE` (default is 0, which + means no flags). + + Returns + ------- + Series/Index of lists of strings + All non-overlapping matches of pattern or regular expression in each + string of this Series/Index. + + See Also + -------- + count : Count occurrences of pattern or regular expression in each string + of the Series/Index. + extractall : For each string in the Series, extract groups from all matches + of regular expression and return a DataFrame with one row for each + match and one column for each group. + re.findall : The equivalent ``re`` function to all non-overlapping matches + of pattern or regular expression in string, as a list of strings. + + Examples + -------- + >>> s = pd.Series(['Lion', 'Monkey', 'Rabbit']) + + The search for the pattern 'Monkey' returns one match: + + >>> s.str.findall('Monkey') + 0 [] + 1 [Monkey] + 2 [] + dtype: object + + On the other hand, the search for the pattern 'MONKEY' doesn't return any + match: + + >>> s.str.findall('MONKEY') + 0 [] + 1 [] + 2 [] + dtype: object + + Flags can be added to the pattern or regular expression. For instance, + to find the pattern 'MONKEY' ignoring the case: + + >>> import re + >>> s.str.findall('MONKEY', flags=re.IGNORECASE) + 0 [] + 1 [Monkey] + 2 [] + dtype: object + + When the pattern matches more than one string in the Series, all matches + are returned: + + >>> s.str.findall('on') + 0 [on] + 1 [on] + 2 [] + dtype: object + + Regular expressions are supported too. For instance, the search for all the + strings ending with the word 'on' is shown next: + + >>> s.str.findall('on$') + 0 [on] + 1 [] + 2 [] + dtype: object + + If the pattern is found more than once in the same string, then a list of + multiple strings is returned: + + >>> s.str.findall('b') + 0 [] + 1 [] + 2 [b, b] + dtype: object + """ + result = self._data.array._str_findall(pat, flags) + return self._wrap_result(result, returns_string=False) + + @forbid_nonstring_types(["bytes"]) + def extract( + self, pat: str, flags: int = 0, expand: bool = True + ) -> DataFrame | Series | Index: + r""" + Extract capture groups in the regex `pat` as columns in a DataFrame. + + For each subject string in the Series, extract groups from the + first match of regular expression `pat`. + + Parameters + ---------- + pat : str + Regular expression pattern with capturing groups. + flags : int, default 0 (no flags) + Flags from the ``re`` module, e.g. ``re.IGNORECASE``, that + modify regular expression matching for things like case, + spaces, etc. For more details, see :mod:`re`. + expand : bool, default True + If True, return DataFrame with one column per capture group. + If False, return a Series/Index if there is one capture group + or DataFrame if there are multiple capture groups. + + Returns + ------- + DataFrame or Series or Index + A DataFrame with one row for each subject string, and one + column for each group. Any capture group names in regular + expression pat will be used for column names; otherwise + capture group numbers will be used. The dtype of each result + column is always object, even when no match is found. If + ``expand=False`` and pat has only one capture group, then + return a Series (if subject is a Series) or Index (if subject + is an Index). + + See Also + -------- + extractall : Returns all matches (not just the first match). + + Examples + -------- + A pattern with two groups will return a DataFrame with two columns. + Non-matches will be NaN. + + >>> s = pd.Series(['a1', 'b2', 'c3']) + >>> s.str.extract(r'([ab])(\d)') + 0 1 + 0 a 1 + 1 b 2 + 2 NaN NaN + + A pattern may contain optional groups. + + >>> s.str.extract(r'([ab])?(\d)') + 0 1 + 0 a 1 + 1 b 2 + 2 NaN 3 + + Named groups will become column names in the result. + + >>> s.str.extract(r'(?P[ab])(?P\d)') + letter digit + 0 a 1 + 1 b 2 + 2 NaN NaN + + A pattern with one group will return a DataFrame with one column + if expand=True. + + >>> s.str.extract(r'[ab](\d)', expand=True) + 0 + 0 1 + 1 2 + 2 NaN + + A pattern with one group will return a Series if expand=False. + + >>> s.str.extract(r'[ab](\d)', expand=False) + 0 1 + 1 2 + 2 NaN + dtype: object + """ + from pandas import DataFrame + + if not isinstance(expand, bool): + raise ValueError("expand must be True or False") + + regex = re.compile(pat, flags=flags) + if regex.groups == 0: + raise ValueError("pattern contains no capture groups") + + if not expand and regex.groups > 1 and isinstance(self._data, ABCIndex): + raise ValueError("only one regex group is supported with Index") + + obj = self._data + result_dtype = _result_dtype(obj) + + returns_df = regex.groups > 1 or expand + + if returns_df: + name = None + columns = _get_group_names(regex) + + if obj.array.size == 0: + result = DataFrame(columns=columns, dtype=result_dtype) + + else: + result_list = self._data.array._str_extract( + pat, flags=flags, expand=returns_df + ) + + result_index: Index | None + if isinstance(obj, ABCSeries): + result_index = obj.index + else: + result_index = None + + result = DataFrame( + result_list, columns=columns, index=result_index, dtype=result_dtype + ) + + else: + name = _get_single_group_name(regex) + result = self._data.array._str_extract(pat, flags=flags, expand=returns_df) + return self._wrap_result(result, name=name, dtype=result_dtype) + + @forbid_nonstring_types(["bytes"]) + def extractall(self, pat, flags: int = 0) -> DataFrame: + r""" + Extract capture groups in the regex `pat` as columns in DataFrame. + + For each subject string in the Series, extract groups from all + matches of regular expression pat. When each subject string in the + Series has exactly one match, extractall(pat).xs(0, level='match') + is the same as extract(pat). + + Parameters + ---------- + pat : str + Regular expression pattern with capturing groups. + flags : int, default 0 (no flags) + A ``re`` module flag, for example ``re.IGNORECASE``. These allow + to modify regular expression matching for things like case, spaces, + etc. Multiple flags can be combined with the bitwise OR operator, + for example ``re.IGNORECASE | re.MULTILINE``. + + Returns + ------- + DataFrame + A ``DataFrame`` with one row for each match, and one column for each + group. Its rows have a ``MultiIndex`` with first levels that come from + the subject ``Series``. The last level is named 'match' and indexes the + matches in each item of the ``Series``. Any capture group names in + regular expression pat will be used for column names; otherwise capture + group numbers will be used. + + See Also + -------- + extract : Returns first match only (not all matches). + + Examples + -------- + A pattern with one group will return a DataFrame with one column. + Indices with no matches will not appear in the result. + + >>> s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"]) + >>> s.str.extractall(r"[ab](\d)") + 0 + match + A 0 1 + 1 2 + B 0 1 + + Capture group names are used for column names of the result. + + >>> s.str.extractall(r"[ab](?P\d)") + digit + match + A 0 1 + 1 2 + B 0 1 + + A pattern with two groups will return a DataFrame with two columns. + + >>> s.str.extractall(r"(?P[ab])(?P\d)") + letter digit + match + A 0 a 1 + 1 a 2 + B 0 b 1 + + Optional groups that do not match are NaN in the result. + + >>> s.str.extractall(r"(?P[ab])?(?P\d)") + letter digit + match + A 0 a 1 + 1 a 2 + B 0 b 1 + C 0 NaN 1 + """ + # TODO: dispatch + return str_extractall(self._orig, pat, flags) + + _shared_docs[ + "find" + ] = """ + Return %(side)s indexes in each strings in the Series/Index. + + Each of returned indexes corresponds to the position where the + substring is fully contained between [start:end]. Return -1 on + failure. Equivalent to standard :meth:`str.%(method)s`. + + Parameters + ---------- + sub : str + Substring being searched. + start : int + Left edge index. + end : int + Right edge index. + + Returns + ------- + Series or Index of int. + + See Also + -------- + %(also)s + + Examples + -------- + For Series.str.find: + + >>> ser = pd.Series(["cow_", "duck_", "do_ve"]) + >>> ser.str.find("_") + 0 3 + 1 4 + 2 2 + dtype: int64 + + For Series.str.rfind: + + >>> ser = pd.Series(["_cow_", "duck_", "do_v_e"]) + >>> ser.str.rfind("_") + 0 4 + 1 4 + 2 4 + dtype: int64 + """ + + @Appender( + _shared_docs["find"] + % { + "side": "lowest", + "method": "find", + "also": "rfind : Return highest indexes in each strings.", + } + ) + @forbid_nonstring_types(["bytes"]) + def find(self, sub, start: int = 0, end=None): + if not isinstance(sub, str): + msg = f"expected a string object, not {type(sub).__name__}" + raise TypeError(msg) + + result = self._data.array._str_find(sub, start, end) + return self._wrap_result(result, returns_string=False) + + @Appender( + _shared_docs["find"] + % { + "side": "highest", + "method": "rfind", + "also": "find : Return lowest indexes in each strings.", + } + ) + @forbid_nonstring_types(["bytes"]) + def rfind(self, sub, start: int = 0, end=None): + if not isinstance(sub, str): + msg = f"expected a string object, not {type(sub).__name__}" + raise TypeError(msg) + + result = self._data.array._str_rfind(sub, start=start, end=end) + return self._wrap_result(result, returns_string=False) + + @forbid_nonstring_types(["bytes"]) + def normalize(self, form): + """ + Return the Unicode normal form for the strings in the Series/Index. + + For more information on the forms, see the + :func:`unicodedata.normalize`. + + Parameters + ---------- + form : {'NFC', 'NFKC', 'NFD', 'NFKD'} + Unicode form. + + Returns + ------- + Series/Index of objects + + Examples + -------- + >>> ser = pd.Series(['ñ']) + >>> ser.str.normalize('NFC') == ser.str.normalize('NFD') + 0 False + dtype: bool + """ + result = self._data.array._str_normalize(form) + return self._wrap_result(result) + + _shared_docs[ + "index" + ] = """ + Return %(side)s indexes in each string in Series/Index. + + Each of the returned indexes corresponds to the position where the + substring is fully contained between [start:end]. This is the same + as ``str.%(similar)s`` except instead of returning -1, it raises a + ValueError when the substring is not found. Equivalent to standard + ``str.%(method)s``. + + Parameters + ---------- + sub : str + Substring being searched. + start : int + Left edge index. + end : int + Right edge index. + + Returns + ------- + Series or Index of object + + See Also + -------- + %(also)s + + Examples + -------- + For Series.str.index: + + >>> ser = pd.Series(["horse", "eagle", "donkey"]) + >>> ser.str.index("e") + 0 4 + 1 0 + 2 4 + dtype: int64 + + For Series.str.rindex: + + >>> ser = pd.Series(["Deer", "eagle", "Sheep"]) + >>> ser.str.rindex("e") + 0 2 + 1 4 + 2 3 + dtype: int64 + """ + + @Appender( + _shared_docs["index"] + % { + "side": "lowest", + "similar": "find", + "method": "index", + "also": "rindex : Return highest indexes in each strings.", + } + ) + @forbid_nonstring_types(["bytes"]) + def index(self, sub, start: int = 0, end=None): + if not isinstance(sub, str): + msg = f"expected a string object, not {type(sub).__name__}" + raise TypeError(msg) + + result = self._data.array._str_index(sub, start=start, end=end) + return self._wrap_result(result, returns_string=False) + + @Appender( + _shared_docs["index"] + % { + "side": "highest", + "similar": "rfind", + "method": "rindex", + "also": "index : Return lowest indexes in each strings.", + } + ) + @forbid_nonstring_types(["bytes"]) + def rindex(self, sub, start: int = 0, end=None): + if not isinstance(sub, str): + msg = f"expected a string object, not {type(sub).__name__}" + raise TypeError(msg) + + result = self._data.array._str_rindex(sub, start=start, end=end) + return self._wrap_result(result, returns_string=False) + + def len(self): + """ + Compute the length of each element in the Series/Index. + + The element may be a sequence (such as a string, tuple or list) or a collection + (such as a dictionary). + + Returns + ------- + Series or Index of int + A Series or Index of integer values indicating the length of each + element in the Series or Index. + + See Also + -------- + str.len : Python built-in function returning the length of an object. + Series.size : Returns the length of the Series. + + Examples + -------- + Returns the length (number of characters) in a string. Returns the + number of entries for dictionaries, lists or tuples. + + >>> s = pd.Series(['dog', + ... '', + ... 5, + ... {'foo' : 'bar'}, + ... [2, 3, 5, 7], + ... ('one', 'two', 'three')]) + >>> s + 0 dog + 1 + 2 5 + 3 {'foo': 'bar'} + 4 [2, 3, 5, 7] + 5 (one, two, three) + dtype: object + >>> s.str.len() + 0 3.0 + 1 0.0 + 2 NaN + 3 1.0 + 4 4.0 + 5 3.0 + dtype: float64 + """ + result = self._data.array._str_len() + return self._wrap_result(result, returns_string=False) + + _shared_docs[ + "casemethods" + ] = """ + Convert strings in the Series/Index to %(type)s. + %(version)s + Equivalent to :meth:`str.%(method)s`. + + Returns + ------- + Series or Index of object + + See Also + -------- + Series.str.lower : Converts all characters to lowercase. + Series.str.upper : Converts all characters to uppercase. + Series.str.title : Converts first character of each word to uppercase and + remaining to lowercase. + Series.str.capitalize : Converts first character to uppercase and + remaining to lowercase. + Series.str.swapcase : Converts uppercase to lowercase and lowercase to + uppercase. + Series.str.casefold: Removes all case distinctions in the string. + + Examples + -------- + >>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) + >>> s + 0 lower + 1 CAPITALS + 2 this is a sentence + 3 SwApCaSe + dtype: object + + >>> s.str.lower() + 0 lower + 1 capitals + 2 this is a sentence + 3 swapcase + dtype: object + + >>> s.str.upper() + 0 LOWER + 1 CAPITALS + 2 THIS IS A SENTENCE + 3 SWAPCASE + dtype: object + + >>> s.str.title() + 0 Lower + 1 Capitals + 2 This Is A Sentence + 3 Swapcase + dtype: object + + >>> s.str.capitalize() + 0 Lower + 1 Capitals + 2 This is a sentence + 3 Swapcase + dtype: object + + >>> s.str.swapcase() + 0 LOWER + 1 capitals + 2 THIS IS A SENTENCE + 3 sWaPcAsE + dtype: object + """ + # Types: + # cases: + # upper, lower, title, capitalize, swapcase, casefold + # boolean: + # isalpha, isnumeric isalnum isdigit isdecimal isspace islower isupper istitle + # _doc_args holds dict of strings to use in substituting casemethod docs + _doc_args: dict[str, dict[str, str]] = {} + _doc_args["lower"] = {"type": "lowercase", "method": "lower", "version": ""} + _doc_args["upper"] = {"type": "uppercase", "method": "upper", "version": ""} + _doc_args["title"] = {"type": "titlecase", "method": "title", "version": ""} + _doc_args["capitalize"] = { + "type": "be capitalized", + "method": "capitalize", + "version": "", + } + _doc_args["swapcase"] = { + "type": "be swapcased", + "method": "swapcase", + "version": "", + } + _doc_args["casefold"] = { + "type": "be casefolded", + "method": "casefold", + "version": "", + } + + @Appender(_shared_docs["casemethods"] % _doc_args["lower"]) + @forbid_nonstring_types(["bytes"]) + def lower(self): + result = self._data.array._str_lower() + return self._wrap_result(result) + + @Appender(_shared_docs["casemethods"] % _doc_args["upper"]) + @forbid_nonstring_types(["bytes"]) + def upper(self): + result = self._data.array._str_upper() + return self._wrap_result(result) + + @Appender(_shared_docs["casemethods"] % _doc_args["title"]) + @forbid_nonstring_types(["bytes"]) + def title(self): + result = self._data.array._str_title() + return self._wrap_result(result) + + @Appender(_shared_docs["casemethods"] % _doc_args["capitalize"]) + @forbid_nonstring_types(["bytes"]) + def capitalize(self): + result = self._data.array._str_capitalize() + return self._wrap_result(result) + + @Appender(_shared_docs["casemethods"] % _doc_args["swapcase"]) + @forbid_nonstring_types(["bytes"]) + def swapcase(self): + result = self._data.array._str_swapcase() + return self._wrap_result(result) + + @Appender(_shared_docs["casemethods"] % _doc_args["casefold"]) + @forbid_nonstring_types(["bytes"]) + def casefold(self): + result = self._data.array._str_casefold() + return self._wrap_result(result) + + _shared_docs[ + "ismethods" + ] = """ + Check whether all characters in each string are %(type)s. + + This is equivalent to running the Python string method + :meth:`str.%(method)s` for each element of the Series/Index. If a string + has zero characters, ``False`` is returned for that check. + + Returns + ------- + Series or Index of bool + Series or Index of boolean values with the same length as the original + Series/Index. + + See Also + -------- + Series.str.isalpha : Check whether all characters are alphabetic. + Series.str.isnumeric : Check whether all characters are numeric. + Series.str.isalnum : Check whether all characters are alphanumeric. + Series.str.isdigit : Check whether all characters are digits. + Series.str.isdecimal : Check whether all characters are decimal. + Series.str.isspace : Check whether all characters are whitespace. + Series.str.islower : Check whether all characters are lowercase. + Series.str.isupper : Check whether all characters are uppercase. + Series.str.istitle : Check whether all characters are titlecase. + + Examples + -------- + **Checks for Alphabetic and Numeric Characters** + + >>> s1 = pd.Series(['one', 'one1', '1', '']) + + >>> s1.str.isalpha() + 0 True + 1 False + 2 False + 3 False + dtype: bool + + >>> s1.str.isnumeric() + 0 False + 1 False + 2 True + 3 False + dtype: bool + + >>> s1.str.isalnum() + 0 True + 1 True + 2 True + 3 False + dtype: bool + + Note that checks against characters mixed with any additional punctuation + or whitespace will evaluate to false for an alphanumeric check. + + >>> s2 = pd.Series(['A B', '1.5', '3,000']) + >>> s2.str.isalnum() + 0 False + 1 False + 2 False + dtype: bool + + **More Detailed Checks for Numeric Characters** + + There are several different but overlapping sets of numeric characters that + can be checked for. + + >>> s3 = pd.Series(['23', '³', '⅕', '']) + + The ``s3.str.isdecimal`` method checks for characters used to form numbers + in base 10. + + >>> s3.str.isdecimal() + 0 True + 1 False + 2 False + 3 False + dtype: bool + + The ``s.str.isdigit`` method is the same as ``s3.str.isdecimal`` but also + includes special digits, like superscripted and subscripted digits in + unicode. + + >>> s3.str.isdigit() + 0 True + 1 True + 2 False + 3 False + dtype: bool + + The ``s.str.isnumeric`` method is the same as ``s3.str.isdigit`` but also + includes other characters that can represent quantities such as unicode + fractions. + + >>> s3.str.isnumeric() + 0 True + 1 True + 2 True + 3 False + dtype: bool + + **Checks for Whitespace** + + >>> s4 = pd.Series([' ', '\\t\\r\\n ', '']) + >>> s4.str.isspace() + 0 True + 1 True + 2 False + dtype: bool + + **Checks for Character Case** + + >>> s5 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) + + >>> s5.str.islower() + 0 True + 1 False + 2 False + 3 False + dtype: bool + + >>> s5.str.isupper() + 0 False + 1 False + 2 True + 3 False + dtype: bool + + The ``s5.str.istitle`` method checks for whether all words are in title + case (whether only the first letter of each word is capitalized). Words are + assumed to be as any sequence of non-numeric characters separated by + whitespace characters. + + >>> s5.str.istitle() + 0 False + 1 True + 2 False + 3 False + dtype: bool + """ + _doc_args["isalnum"] = {"type": "alphanumeric", "method": "isalnum"} + _doc_args["isalpha"] = {"type": "alphabetic", "method": "isalpha"} + _doc_args["isdigit"] = {"type": "digits", "method": "isdigit"} + _doc_args["isspace"] = {"type": "whitespace", "method": "isspace"} + _doc_args["islower"] = {"type": "lowercase", "method": "islower"} + _doc_args["isupper"] = {"type": "uppercase", "method": "isupper"} + _doc_args["istitle"] = {"type": "titlecase", "method": "istitle"} + _doc_args["isnumeric"] = {"type": "numeric", "method": "isnumeric"} + _doc_args["isdecimal"] = {"type": "decimal", "method": "isdecimal"} + # force _noarg_wrapper return type with dtype=np.dtype(bool) (GH 29624) + + isalnum = _map_and_wrap( + "isalnum", docstring=_shared_docs["ismethods"] % _doc_args["isalnum"] + ) + isalpha = _map_and_wrap( + "isalpha", docstring=_shared_docs["ismethods"] % _doc_args["isalpha"] + ) + isdigit = _map_and_wrap( + "isdigit", docstring=_shared_docs["ismethods"] % _doc_args["isdigit"] + ) + isspace = _map_and_wrap( + "isspace", docstring=_shared_docs["ismethods"] % _doc_args["isspace"] + ) + islower = _map_and_wrap( + "islower", docstring=_shared_docs["ismethods"] % _doc_args["islower"] + ) + isupper = _map_and_wrap( + "isupper", docstring=_shared_docs["ismethods"] % _doc_args["isupper"] + ) + istitle = _map_and_wrap( + "istitle", docstring=_shared_docs["ismethods"] % _doc_args["istitle"] + ) + isnumeric = _map_and_wrap( + "isnumeric", docstring=_shared_docs["ismethods"] % _doc_args["isnumeric"] + ) + isdecimal = _map_and_wrap( + "isdecimal", docstring=_shared_docs["ismethods"] % _doc_args["isdecimal"] + ) + + +def cat_safe(list_of_columns: list[npt.NDArray[np.object_]], sep: str): + """ + Auxiliary function for :meth:`str.cat`. + + Same signature as cat_core, but handles TypeErrors in concatenation, which + happen if the arrays in list_of columns have the wrong dtypes or content. + + Parameters + ---------- + list_of_columns : list of numpy arrays + List of arrays to be concatenated with sep; + these arrays may not contain NaNs! + sep : string + The separator string for concatenating the columns. + + Returns + ------- + nd.array + The concatenation of list_of_columns with sep. + """ + try: + result = cat_core(list_of_columns, sep) + except TypeError: + # if there are any non-string values (wrong dtype or hidden behind + # object dtype), np.sum will fail; catch and return with better message + for column in list_of_columns: + dtype = lib.infer_dtype(column, skipna=True) + if dtype not in ["string", "empty"]: + raise TypeError( + "Concatenation requires list-likes containing only " + "strings (or missing values). Offending values found in " + f"column {dtype}" + ) from None + return result + + +def cat_core(list_of_columns: list, sep: str): + """ + Auxiliary function for :meth:`str.cat` + + Parameters + ---------- + list_of_columns : list of numpy arrays + List of arrays to be concatenated with sep; + these arrays may not contain NaNs! + sep : string + The separator string for concatenating the columns. + + Returns + ------- + nd.array + The concatenation of list_of_columns with sep. + """ + if sep == "": + # no need to interleave sep if it is empty + arr_of_cols = np.asarray(list_of_columns, dtype=object) + return np.sum(arr_of_cols, axis=0) + list_with_sep = [sep] * (2 * len(list_of_columns) - 1) + list_with_sep[::2] = list_of_columns + arr_with_sep = np.asarray(list_with_sep, dtype=object) + return np.sum(arr_with_sep, axis=0) + + +def _result_dtype(arr): + # workaround #27953 + # ideally we just pass `dtype=arr.dtype` unconditionally, but this fails + # when the list of values is empty. + from pandas.core.arrays.string_ import StringDtype + + if isinstance(arr.dtype, (ArrowDtype, StringDtype)): + return arr.dtype + return object + + +def _get_single_group_name(regex: re.Pattern) -> Hashable: + if regex.groupindex: + return next(iter(regex.groupindex)) + else: + return None + + +def _get_group_names(regex: re.Pattern) -> list[Hashable]: + """ + Get named groups from compiled regex. + + Unnamed groups are numbered. + + Parameters + ---------- + regex : compiled regex + + Returns + ------- + list of column labels + """ + names = {v: k for k, v in regex.groupindex.items()} + return [names.get(1 + i, i) for i in range(regex.groups)] + + +def str_extractall(arr, pat, flags: int = 0) -> DataFrame: + regex = re.compile(pat, flags=flags) + # the regex must contain capture groups. + if regex.groups == 0: + raise ValueError("pattern contains no capture groups") + + if isinstance(arr, ABCIndex): + arr = arr.to_series().reset_index(drop=True).astype(arr.dtype) + + columns = _get_group_names(regex) + match_list = [] + index_list = [] + is_mi = arr.index.nlevels > 1 + + for subject_key, subject in arr.items(): + if isinstance(subject, str): + if not is_mi: + subject_key = (subject_key,) + + for match_i, match_tuple in enumerate(regex.findall(subject)): + if isinstance(match_tuple, str): + match_tuple = (match_tuple,) + na_tuple = [np.nan if group == "" else group for group in match_tuple] + match_list.append(na_tuple) + result_key = tuple(subject_key + (match_i,)) + index_list.append(result_key) + + from pandas import MultiIndex + + index = MultiIndex.from_tuples(index_list, names=arr.index.names + ["match"]) + dtype = _result_dtype(arr) + + result = arr._constructor_expanddim( + match_list, index=index, columns=columns, dtype=dtype + ) + return result diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/base.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/base.py new file mode 100644 index 0000000000000000000000000000000000000000..96b0352666b412cf36a7c9aecfc9ab42628e29df --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/base.py @@ -0,0 +1,262 @@ +from __future__ import annotations + +import abc +from typing import ( + TYPE_CHECKING, + Callable, + Literal, +) + +import numpy as np + +if TYPE_CHECKING: + from collections.abc import Sequence + import re + + from pandas._typing import Scalar + + from pandas import Series + + +class BaseStringArrayMethods(abc.ABC): + """ + Base class for extension arrays implementing string methods. + + This is where our ExtensionArrays can override the implementation of + Series.str.. We don't expect this to work with + 3rd-party extension arrays. + + * User calls Series.str. + * pandas extracts the extension array from the Series + * pandas calls ``extension_array._str_(*args, **kwargs)`` + * pandas wraps the result, to return to the user. + + See :ref:`Series.str` for the docstring of each method. + """ + + def _str_getitem(self, key): + if isinstance(key, slice): + return self._str_slice(start=key.start, stop=key.stop, step=key.step) + else: + return self._str_get(key) + + @abc.abstractmethod + def _str_count(self, pat, flags: int = 0): + pass + + @abc.abstractmethod + def _str_pad( + self, + width: int, + side: Literal["left", "right", "both"] = "left", + fillchar: str = " ", + ): + pass + + @abc.abstractmethod + def _str_contains( + self, pat, case: bool = True, flags: int = 0, na=None, regex: bool = True + ): + pass + + @abc.abstractmethod + def _str_startswith(self, pat, na=None): + pass + + @abc.abstractmethod + def _str_endswith(self, pat, na=None): + pass + + @abc.abstractmethod + def _str_replace( + self, + pat: str | re.Pattern, + repl: str | Callable, + n: int = -1, + case: bool = True, + flags: int = 0, + regex: bool = True, + ): + pass + + @abc.abstractmethod + def _str_repeat(self, repeats: int | Sequence[int]): + pass + + @abc.abstractmethod + def _str_match( + self, pat: str, case: bool = True, flags: int = 0, na: Scalar = np.nan + ): + pass + + @abc.abstractmethod + def _str_fullmatch( + self, + pat: str | re.Pattern, + case: bool = True, + flags: int = 0, + na: Scalar = np.nan, + ): + pass + + @abc.abstractmethod + def _str_encode(self, encoding, errors: str = "strict"): + pass + + @abc.abstractmethod + def _str_find(self, sub, start: int = 0, end=None): + pass + + @abc.abstractmethod + def _str_rfind(self, sub, start: int = 0, end=None): + pass + + @abc.abstractmethod + def _str_findall(self, pat, flags: int = 0): + pass + + @abc.abstractmethod + def _str_get(self, i): + pass + + @abc.abstractmethod + def _str_index(self, sub, start: int = 0, end=None): + pass + + @abc.abstractmethod + def _str_rindex(self, sub, start: int = 0, end=None): + pass + + @abc.abstractmethod + def _str_join(self, sep: str): + pass + + @abc.abstractmethod + def _str_partition(self, sep: str, expand): + pass + + @abc.abstractmethod + def _str_rpartition(self, sep: str, expand): + pass + + @abc.abstractmethod + def _str_len(self): + pass + + @abc.abstractmethod + def _str_slice(self, start=None, stop=None, step=None): + pass + + @abc.abstractmethod + def _str_slice_replace(self, start=None, stop=None, repl=None): + pass + + @abc.abstractmethod + def _str_translate(self, table): + pass + + @abc.abstractmethod + def _str_wrap(self, width: int, **kwargs): + pass + + @abc.abstractmethod + def _str_get_dummies(self, sep: str = "|"): + pass + + @abc.abstractmethod + def _str_isalnum(self): + pass + + @abc.abstractmethod + def _str_isalpha(self): + pass + + @abc.abstractmethod + def _str_isdecimal(self): + pass + + @abc.abstractmethod + def _str_isdigit(self): + pass + + @abc.abstractmethod + def _str_islower(self): + pass + + @abc.abstractmethod + def _str_isnumeric(self): + pass + + @abc.abstractmethod + def _str_isspace(self): + pass + + @abc.abstractmethod + def _str_istitle(self): + pass + + @abc.abstractmethod + def _str_isupper(self): + pass + + @abc.abstractmethod + def _str_capitalize(self): + pass + + @abc.abstractmethod + def _str_casefold(self): + pass + + @abc.abstractmethod + def _str_title(self): + pass + + @abc.abstractmethod + def _str_swapcase(self): + pass + + @abc.abstractmethod + def _str_lower(self): + pass + + @abc.abstractmethod + def _str_upper(self): + pass + + @abc.abstractmethod + def _str_normalize(self, form): + pass + + @abc.abstractmethod + def _str_strip(self, to_strip=None): + pass + + @abc.abstractmethod + def _str_lstrip(self, to_strip=None): + pass + + @abc.abstractmethod + def _str_rstrip(self, to_strip=None): + pass + + @abc.abstractmethod + def _str_removeprefix(self, prefix: str) -> Series: + pass + + @abc.abstractmethod + def _str_removesuffix(self, suffix: str) -> Series: + pass + + @abc.abstractmethod + def _str_split( + self, pat=None, n=-1, expand: bool = False, regex: bool | None = None + ): + pass + + @abc.abstractmethod + def _str_rsplit(self, pat=None, n=-1): + pass + + @abc.abstractmethod + def _str_extract(self, pat: str, flags: int = 0, expand: bool = True): + pass diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/object_array.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/object_array.py new file mode 100644 index 0000000000000000000000000000000000000000..0029beccc40a8d3a671802c7d68fab21612704e9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/strings/object_array.py @@ -0,0 +1,497 @@ +from __future__ import annotations + +import functools +import re +import textwrap +from typing import ( + TYPE_CHECKING, + Callable, + Literal, + cast, +) +import unicodedata + +import numpy as np + +from pandas._libs import lib +import pandas._libs.missing as libmissing +import pandas._libs.ops as libops + +from pandas.core.dtypes.missing import isna + +from pandas.core.strings.base import BaseStringArrayMethods + +if TYPE_CHECKING: + from collections.abc import Sequence + + from pandas._typing import ( + NpDtype, + Scalar, + ) + + from pandas import Series + + +class ObjectStringArrayMixin(BaseStringArrayMethods): + """ + String Methods operating on object-dtype ndarrays. + """ + + _str_na_value = np.nan + + def __len__(self) -> int: + # For typing, _str_map relies on the object being sized. + raise NotImplementedError + + def _str_map( + self, f, na_value=None, dtype: NpDtype | None = None, convert: bool = True + ): + """ + Map a callable over valid elements of the array. + + Parameters + ---------- + f : Callable + A function to call on each non-NA element. + na_value : Scalar, optional + The value to set for NA values. Might also be used for the + fill value if the callable `f` raises an exception. + This defaults to ``self._str_na_value`` which is ``np.nan`` + for object-dtype and Categorical and ``pd.NA`` for StringArray. + dtype : Dtype, optional + The dtype of the result array. + convert : bool, default True + Whether to call `maybe_convert_objects` on the resulting ndarray + """ + if dtype is None: + dtype = np.dtype("object") + if na_value is None: + na_value = self._str_na_value + + if not len(self): + return np.array([], dtype=dtype) + + arr = np.asarray(self, dtype=object) + mask = isna(arr) + map_convert = convert and not np.all(mask) + try: + result = lib.map_infer_mask(arr, f, mask.view(np.uint8), map_convert) + except (TypeError, AttributeError) as err: + # Reraise the exception if callable `f` got wrong number of args. + # The user may want to be warned by this, instead of getting NaN + p_err = ( + r"((takes)|(missing)) (?(2)from \d+ to )?\d+ " + r"(?(3)required )positional arguments?" + ) + + if len(err.args) >= 1 and re.search(p_err, err.args[0]): + # FIXME: this should be totally avoidable + raise err + + def g(x): + # This type of fallback behavior can be removed once + # we remove object-dtype .str accessor. + try: + return f(x) + except (TypeError, AttributeError): + return na_value + + return self._str_map(g, na_value=na_value, dtype=dtype) + if not isinstance(result, np.ndarray): + return result + if na_value is not np.nan: + np.putmask(result, mask, na_value) + if convert and result.dtype == object: + result = lib.maybe_convert_objects(result) + return result + + def _str_count(self, pat, flags: int = 0): + regex = re.compile(pat, flags=flags) + f = lambda x: len(regex.findall(x)) + return self._str_map(f, dtype="int64") + + def _str_pad( + self, + width: int, + side: Literal["left", "right", "both"] = "left", + fillchar: str = " ", + ): + if side == "left": + f = lambda x: x.rjust(width, fillchar) + elif side == "right": + f = lambda x: x.ljust(width, fillchar) + elif side == "both": + f = lambda x: x.center(width, fillchar) + else: # pragma: no cover + raise ValueError("Invalid side") + return self._str_map(f) + + def _str_contains( + self, pat, case: bool = True, flags: int = 0, na=np.nan, regex: bool = True + ): + if regex: + if not case: + flags |= re.IGNORECASE + + pat = re.compile(pat, flags=flags) + + f = lambda x: pat.search(x) is not None + else: + if case: + f = lambda x: pat in x + else: + upper_pat = pat.upper() + f = lambda x: upper_pat in x.upper() + return self._str_map(f, na, dtype=np.dtype("bool")) + + def _str_startswith(self, pat, na=None): + f = lambda x: x.startswith(pat) + return self._str_map(f, na_value=na, dtype=np.dtype(bool)) + + def _str_endswith(self, pat, na=None): + f = lambda x: x.endswith(pat) + return self._str_map(f, na_value=na, dtype=np.dtype(bool)) + + def _str_replace( + self, + pat: str | re.Pattern, + repl: str | Callable, + n: int = -1, + case: bool = True, + flags: int = 0, + regex: bool = True, + ): + if case is False: + # add case flag, if provided + flags |= re.IGNORECASE + + if regex or flags or callable(repl): + if not isinstance(pat, re.Pattern): + if regex is False: + pat = re.escape(pat) + pat = re.compile(pat, flags=flags) + + n = n if n >= 0 else 0 + f = lambda x: pat.sub(repl=repl, string=x, count=n) + else: + f = lambda x: x.replace(pat, repl, n) + + return self._str_map(f, dtype=str) + + def _str_repeat(self, repeats: int | Sequence[int]): + if lib.is_integer(repeats): + rint = cast(int, repeats) + + def scalar_rep(x): + try: + return bytes.__mul__(x, rint) + except TypeError: + return str.__mul__(x, rint) + + return self._str_map(scalar_rep, dtype=str) + else: + from pandas.core.arrays.string_ import BaseStringArray + + def rep(x, r): + if x is libmissing.NA: + return x + try: + return bytes.__mul__(x, r) + except TypeError: + return str.__mul__(x, r) + + result = libops.vec_binop( + np.asarray(self), + np.asarray(repeats, dtype=object), + rep, + ) + if isinstance(self, BaseStringArray): + # Not going through map, so we have to do this here. + result = type(self)._from_sequence(result, dtype=self.dtype) + return result + + def _str_match( + self, pat: str, case: bool = True, flags: int = 0, na: Scalar | None = None + ): + if not case: + flags |= re.IGNORECASE + + regex = re.compile(pat, flags=flags) + + f = lambda x: regex.match(x) is not None + return self._str_map(f, na_value=na, dtype=np.dtype(bool)) + + def _str_fullmatch( + self, + pat: str | re.Pattern, + case: bool = True, + flags: int = 0, + na: Scalar | None = None, + ): + if not case: + flags |= re.IGNORECASE + + regex = re.compile(pat, flags=flags) + + f = lambda x: regex.fullmatch(x) is not None + return self._str_map(f, na_value=na, dtype=np.dtype(bool)) + + def _str_encode(self, encoding, errors: str = "strict"): + f = lambda x: x.encode(encoding, errors=errors) + return self._str_map(f, dtype=object) + + def _str_find(self, sub, start: int = 0, end=None): + return self._str_find_(sub, start, end, side="left") + + def _str_rfind(self, sub, start: int = 0, end=None): + return self._str_find_(sub, start, end, side="right") + + def _str_find_(self, sub, start, end, side): + if side == "left": + method = "find" + elif side == "right": + method = "rfind" + else: # pragma: no cover + raise ValueError("Invalid side") + + if end is None: + f = lambda x: getattr(x, method)(sub, start) + else: + f = lambda x: getattr(x, method)(sub, start, end) + return self._str_map(f, dtype="int64") + + def _str_findall(self, pat, flags: int = 0): + regex = re.compile(pat, flags=flags) + return self._str_map(regex.findall, dtype="object") + + def _str_get(self, i): + def f(x): + if isinstance(x, dict): + return x.get(i) + elif len(x) > i >= -len(x): + return x[i] + return self._str_na_value + + return self._str_map(f) + + def _str_index(self, sub, start: int = 0, end=None): + if end: + f = lambda x: x.index(sub, start, end) + else: + f = lambda x: x.index(sub, start, end) + return self._str_map(f, dtype="int64") + + def _str_rindex(self, sub, start: int = 0, end=None): + if end: + f = lambda x: x.rindex(sub, start, end) + else: + f = lambda x: x.rindex(sub, start, end) + return self._str_map(f, dtype="int64") + + def _str_join(self, sep: str): + return self._str_map(sep.join) + + def _str_partition(self, sep: str, expand): + result = self._str_map(lambda x: x.partition(sep), dtype="object") + return result + + def _str_rpartition(self, sep: str, expand): + return self._str_map(lambda x: x.rpartition(sep), dtype="object") + + def _str_len(self): + return self._str_map(len, dtype="int64") + + def _str_slice(self, start=None, stop=None, step=None): + obj = slice(start, stop, step) + return self._str_map(lambda x: x[obj]) + + def _str_slice_replace(self, start=None, stop=None, repl=None): + if repl is None: + repl = "" + + def f(x): + if x[start:stop] == "": + local_stop = start + else: + local_stop = stop + y = "" + if start is not None: + y += x[:start] + y += repl + if stop is not None: + y += x[local_stop:] + return y + + return self._str_map(f) + + def _str_split( + self, + pat: str | re.Pattern | None = None, + n=-1, + expand: bool = False, + regex: bool | None = None, + ): + if pat is None: + if n is None or n == 0: + n = -1 + f = lambda x: x.split(pat, n) + else: + new_pat: str | re.Pattern + if regex is True or isinstance(pat, re.Pattern): + new_pat = re.compile(pat) + elif regex is False: + new_pat = pat + # regex is None so link to old behavior #43563 + else: + if len(pat) == 1: + new_pat = pat + else: + new_pat = re.compile(pat) + + if isinstance(new_pat, re.Pattern): + if n is None or n == -1: + n = 0 + f = lambda x: new_pat.split(x, maxsplit=n) + else: + if n is None or n == 0: + n = -1 + f = lambda x: x.split(pat, n) + return self._str_map(f, dtype=object) + + def _str_rsplit(self, pat=None, n=-1): + if n is None or n == 0: + n = -1 + f = lambda x: x.rsplit(pat, n) + return self._str_map(f, dtype="object") + + def _str_translate(self, table): + return self._str_map(lambda x: x.translate(table)) + + def _str_wrap(self, width: int, **kwargs): + kwargs["width"] = width + tw = textwrap.TextWrapper(**kwargs) + return self._str_map(lambda s: "\n".join(tw.wrap(s))) + + def _str_get_dummies(self, sep: str = "|"): + from pandas import Series + + arr = Series(self).fillna("") + try: + arr = sep + arr + sep + except (TypeError, NotImplementedError): + arr = sep + arr.astype(str) + sep + + tags: set[str] = set() + for ts in Series(arr, copy=False).str.split(sep): + tags.update(ts) + tags2 = sorted(tags - {""}) + + dummies = np.empty((len(arr), len(tags2)), dtype=np.int64) + + def _isin(test_elements: str, element: str) -> bool: + return element in test_elements + + for i, t in enumerate(tags2): + pat = sep + t + sep + dummies[:, i] = lib.map_infer( + arr.to_numpy(), functools.partial(_isin, element=pat) + ) + return dummies, tags2 + + def _str_upper(self): + return self._str_map(lambda x: x.upper()) + + def _str_isalnum(self): + return self._str_map(str.isalnum, dtype="bool") + + def _str_isalpha(self): + return self._str_map(str.isalpha, dtype="bool") + + def _str_isdecimal(self): + return self._str_map(str.isdecimal, dtype="bool") + + def _str_isdigit(self): + return self._str_map(str.isdigit, dtype="bool") + + def _str_islower(self): + return self._str_map(str.islower, dtype="bool") + + def _str_isnumeric(self): + return self._str_map(str.isnumeric, dtype="bool") + + def _str_isspace(self): + return self._str_map(str.isspace, dtype="bool") + + def _str_istitle(self): + return self._str_map(str.istitle, dtype="bool") + + def _str_isupper(self): + return self._str_map(str.isupper, dtype="bool") + + def _str_capitalize(self): + return self._str_map(str.capitalize) + + def _str_casefold(self): + return self._str_map(str.casefold) + + def _str_title(self): + return self._str_map(str.title) + + def _str_swapcase(self): + return self._str_map(str.swapcase) + + def _str_lower(self): + return self._str_map(str.lower) + + def _str_normalize(self, form): + f = lambda x: unicodedata.normalize(form, x) + return self._str_map(f) + + def _str_strip(self, to_strip=None): + return self._str_map(lambda x: x.strip(to_strip)) + + def _str_lstrip(self, to_strip=None): + return self._str_map(lambda x: x.lstrip(to_strip)) + + def _str_rstrip(self, to_strip=None): + return self._str_map(lambda x: x.rstrip(to_strip)) + + def _str_removeprefix(self, prefix: str) -> Series: + # outstanding question on whether to use native methods for users on Python 3.9+ + # https://github.com/pandas-dev/pandas/pull/39226#issuecomment-836719770, + # in which case we could do return self._str_map(str.removeprefix) + + def removeprefix(text: str) -> str: + if text.startswith(prefix): + return text[len(prefix) :] + return text + + return self._str_map(removeprefix) + + def _str_removesuffix(self, suffix: str) -> Series: + return self._str_map(lambda x: x.removesuffix(suffix)) + + def _str_extract(self, pat: str, flags: int = 0, expand: bool = True): + regex = re.compile(pat, flags=flags) + na_value = self._str_na_value + + if not expand: + + def g(x): + m = regex.search(x) + return m.groups()[0] if m else na_value + + return self._str_map(g, convert=False) + + empty_row = [na_value] * regex.groups + + def f(x): + if not isinstance(x, str): + return empty_row + m = regex.search(x) + if m: + return [na_value if item is None else item for item in m.groups()] + else: + return empty_row + + return [f(val) for val in np.asarray(self)] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7955e083cce7a5257697c4e9c3dd2383071fb1ff Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/hashing.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/hashing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3754a1193e73d998725e841b6cf814a357f00901 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/hashing.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/numba_.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/numba_.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6f5494a4961250e619fbd8af14774fad059403e9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/__pycache__/numba_.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/util/hashing.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/hashing.py new file mode 100644 index 0000000000000000000000000000000000000000..4933de32125814baa6cc96926721c0c839540b2a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/hashing.py @@ -0,0 +1,339 @@ +""" +data hash pandas / numpy objects +""" +from __future__ import annotations + +import itertools +from typing import TYPE_CHECKING + +import numpy as np + +from pandas._libs.hashing import hash_object_array + +from pandas.core.dtypes.common import is_list_like +from pandas.core.dtypes.dtypes import CategoricalDtype +from pandas.core.dtypes.generic import ( + ABCDataFrame, + ABCExtensionArray, + ABCIndex, + ABCMultiIndex, + ABCSeries, +) + +if TYPE_CHECKING: + from collections.abc import ( + Hashable, + Iterable, + Iterator, + ) + + from pandas._typing import ( + ArrayLike, + npt, + ) + + from pandas import ( + DataFrame, + Index, + MultiIndex, + Series, + ) + + +# 16 byte long hashing key +_default_hash_key = "0123456789123456" + + +def combine_hash_arrays( + arrays: Iterator[np.ndarray], num_items: int +) -> npt.NDArray[np.uint64]: + """ + Parameters + ---------- + arrays : Iterator[np.ndarray] + num_items : int + + Returns + ------- + np.ndarray[uint64] + + Should be the same as CPython's tupleobject.c + """ + try: + first = next(arrays) + except StopIteration: + return np.array([], dtype=np.uint64) + + arrays = itertools.chain([first], arrays) + + mult = np.uint64(1000003) + out = np.zeros_like(first) + np.uint64(0x345678) + last_i = 0 + for i, a in enumerate(arrays): + inverse_i = num_items - i + out ^= a + out *= mult + mult += np.uint64(82520 + inverse_i + inverse_i) + last_i = i + assert last_i + 1 == num_items, "Fed in wrong num_items" + out += np.uint64(97531) + return out + + +def hash_pandas_object( + obj: Index | DataFrame | Series, + index: bool = True, + encoding: str = "utf8", + hash_key: str | None = _default_hash_key, + categorize: bool = True, +) -> Series: + """ + Return a data hash of the Index/Series/DataFrame. + + Parameters + ---------- + obj : Index, Series, or DataFrame + index : bool, default True + Include the index in the hash (if Series/DataFrame). + encoding : str, default 'utf8' + Encoding for data & key when strings. + hash_key : str, default _default_hash_key + Hash_key for string key to encode. + categorize : bool, default True + Whether to first categorize object arrays before hashing. This is more + efficient when the array contains duplicate values. + + Returns + ------- + Series of uint64, same length as the object + + Examples + -------- + >>> pd.util.hash_pandas_object(pd.Series([1, 2, 3])) + 0 14639053686158035780 + 1 3869563279212530728 + 2 393322362522515241 + dtype: uint64 + """ + from pandas import Series + + if hash_key is None: + hash_key = _default_hash_key + + if isinstance(obj, ABCMultiIndex): + return Series(hash_tuples(obj, encoding, hash_key), dtype="uint64", copy=False) + + elif isinstance(obj, ABCIndex): + h = hash_array(obj._values, encoding, hash_key, categorize).astype( + "uint64", copy=False + ) + ser = Series(h, index=obj, dtype="uint64", copy=False) + + elif isinstance(obj, ABCSeries): + h = hash_array(obj._values, encoding, hash_key, categorize).astype( + "uint64", copy=False + ) + if index: + index_iter = ( + hash_pandas_object( + obj.index, + index=False, + encoding=encoding, + hash_key=hash_key, + categorize=categorize, + )._values + for _ in [None] + ) + arrays = itertools.chain([h], index_iter) + h = combine_hash_arrays(arrays, 2) + + ser = Series(h, index=obj.index, dtype="uint64", copy=False) + + elif isinstance(obj, ABCDataFrame): + hashes = ( + hash_array(series._values, encoding, hash_key, categorize) + for _, series in obj.items() + ) + num_items = len(obj.columns) + if index: + index_hash_generator = ( + hash_pandas_object( + obj.index, + index=False, + encoding=encoding, + hash_key=hash_key, + categorize=categorize, + )._values + for _ in [None] + ) + num_items += 1 + + # keep `hashes` specifically a generator to keep mypy happy + _hashes = itertools.chain(hashes, index_hash_generator) + hashes = (x for x in _hashes) + h = combine_hash_arrays(hashes, num_items) + + ser = Series(h, index=obj.index, dtype="uint64", copy=False) + else: + raise TypeError(f"Unexpected type for hashing {type(obj)}") + + return ser + + +def hash_tuples( + vals: MultiIndex | Iterable[tuple[Hashable, ...]], + encoding: str = "utf8", + hash_key: str = _default_hash_key, +) -> npt.NDArray[np.uint64]: + """ + Hash an MultiIndex / listlike-of-tuples efficiently. + + Parameters + ---------- + vals : MultiIndex or listlike-of-tuples + encoding : str, default 'utf8' + hash_key : str, default _default_hash_key + + Returns + ------- + ndarray[np.uint64] of hashed values + """ + if not is_list_like(vals): + raise TypeError("must be convertible to a list-of-tuples") + + from pandas import ( + Categorical, + MultiIndex, + ) + + if not isinstance(vals, ABCMultiIndex): + mi = MultiIndex.from_tuples(vals) + else: + mi = vals + + # create a list-of-Categoricals + cat_vals = [ + Categorical._simple_new( + mi.codes[level], + CategoricalDtype(categories=mi.levels[level], ordered=False), + ) + for level in range(mi.nlevels) + ] + + # hash the list-of-ndarrays + hashes = ( + cat._hash_pandas_object(encoding=encoding, hash_key=hash_key, categorize=False) + for cat in cat_vals + ) + h = combine_hash_arrays(hashes, len(cat_vals)) + + return h + + +def hash_array( + vals: ArrayLike, + encoding: str = "utf8", + hash_key: str = _default_hash_key, + categorize: bool = True, +) -> npt.NDArray[np.uint64]: + """ + Given a 1d array, return an array of deterministic integers. + + Parameters + ---------- + vals : ndarray or ExtensionArray + encoding : str, default 'utf8' + Encoding for data & key when strings. + hash_key : str, default _default_hash_key + Hash_key for string key to encode. + categorize : bool, default True + Whether to first categorize object arrays before hashing. This is more + efficient when the array contains duplicate values. + + Returns + ------- + ndarray[np.uint64, ndim=1] + Hashed values, same length as the vals. + + Examples + -------- + >>> pd.util.hash_array(np.array([1, 2, 3])) + array([ 6238072747940578789, 15839785061582574730, 2185194620014831856], + dtype=uint64) + """ + if not hasattr(vals, "dtype"): + raise TypeError("must pass a ndarray-like") + + if isinstance(vals, ABCExtensionArray): + return vals._hash_pandas_object( + encoding=encoding, hash_key=hash_key, categorize=categorize + ) + + if not isinstance(vals, np.ndarray): + # GH#42003 + raise TypeError( + "hash_array requires np.ndarray or ExtensionArray, not " + f"{type(vals).__name__}. Use hash_pandas_object instead." + ) + + return _hash_ndarray(vals, encoding, hash_key, categorize) + + +def _hash_ndarray( + vals: np.ndarray, + encoding: str = "utf8", + hash_key: str = _default_hash_key, + categorize: bool = True, +) -> npt.NDArray[np.uint64]: + """ + See hash_array.__doc__. + """ + dtype = vals.dtype + + # _hash_ndarray only takes 64-bit values, so handle 128-bit by parts + if np.issubdtype(dtype, np.complex128): + hash_real = _hash_ndarray(vals.real, encoding, hash_key, categorize) + hash_imag = _hash_ndarray(vals.imag, encoding, hash_key, categorize) + return hash_real + 23 * hash_imag + + # First, turn whatever array this is into unsigned 64-bit ints, if we can + # manage it. + if dtype == bool: + vals = vals.astype("u8") + elif issubclass(dtype.type, (np.datetime64, np.timedelta64)): + vals = vals.view("i8").astype("u8", copy=False) + elif issubclass(dtype.type, np.number) and dtype.itemsize <= 8: + vals = vals.view(f"u{vals.dtype.itemsize}").astype("u8") + else: + # With repeated values, its MUCH faster to categorize object dtypes, + # then hash and rename categories. We allow skipping the categorization + # when the values are known/likely to be unique. + if categorize: + from pandas import ( + Categorical, + Index, + factorize, + ) + + codes, categories = factorize(vals, sort=False) + dtype = CategoricalDtype(categories=Index(categories), ordered=False) + cat = Categorical._simple_new(codes, dtype) + return cat._hash_pandas_object( + encoding=encoding, hash_key=hash_key, categorize=False + ) + + try: + vals = hash_object_array(vals, hash_key, encoding) + except TypeError: + # we have mixed types + vals = hash_object_array( + vals.astype(str).astype(object), hash_key, encoding + ) + + # Then, redistribute these 64-bit ints within the space of 64-bit ints + vals ^= vals >> 30 + vals *= np.uint64(0xBF58476D1CE4E5B9) + vals ^= vals >> 27 + vals *= np.uint64(0x94D049BB133111EB) + vals ^= vals >> 31 + return vals diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/util/numba_.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/numba_.py new file mode 100644 index 0000000000000000000000000000000000000000..4825c9fee24b1b1272c5f245a9c7ae49f53003fc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/util/numba_.py @@ -0,0 +1,98 @@ +"""Common utilities for Numba operations""" +from __future__ import annotations + +import types +from typing import ( + TYPE_CHECKING, + Callable, +) + +import numpy as np + +from pandas.compat._optional import import_optional_dependency +from pandas.errors import NumbaUtilError + +GLOBAL_USE_NUMBA: bool = False + + +def maybe_use_numba(engine: str | None) -> bool: + """Signal whether to use numba routines.""" + return engine == "numba" or (engine is None and GLOBAL_USE_NUMBA) + + +def set_use_numba(enable: bool = False) -> None: + global GLOBAL_USE_NUMBA + if enable: + import_optional_dependency("numba") + GLOBAL_USE_NUMBA = enable + + +def get_jit_arguments( + engine_kwargs: dict[str, bool] | None = None, kwargs: dict | None = None +) -> dict[str, bool]: + """ + Return arguments to pass to numba.JIT, falling back on pandas default JIT settings. + + Parameters + ---------- + engine_kwargs : dict, default None + user passed keyword arguments for numba.JIT + kwargs : dict, default None + user passed keyword arguments to pass into the JITed function + + Returns + ------- + dict[str, bool] + nopython, nogil, parallel + + Raises + ------ + NumbaUtilError + """ + if engine_kwargs is None: + engine_kwargs = {} + + nopython = engine_kwargs.get("nopython", True) + if kwargs and nopython: + raise NumbaUtilError( + "numba does not support kwargs with nopython=True: " + "https://github.com/numba/numba/issues/2916" + ) + nogil = engine_kwargs.get("nogil", False) + parallel = engine_kwargs.get("parallel", False) + return {"nopython": nopython, "nogil": nogil, "parallel": parallel} + + +def jit_user_function(func: Callable) -> Callable: + """ + If user function is not jitted already, mark the user's function + as jitable. + + Parameters + ---------- + func : function + user defined function + + Returns + ------- + function + Numba JITed function, or function marked as JITable by numba + """ + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + if numba.extending.is_jitted(func): + # Don't jit a user passed jitted function + numba_func = func + elif getattr(np, func.__name__, False) is func or isinstance( + func, types.BuiltinFunctionType + ): + # Not necessary to jit builtins or np functions + # This will mess up register_jitable + numba_func = func + else: + numba_func = numba.extending.register_jitable(func) + + return numba_func diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..857e12e5467a6a7d2263d9add33e65b9499778fa --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__init__.py @@ -0,0 +1,23 @@ +from pandas.core.window.ewm import ( + ExponentialMovingWindow, + ExponentialMovingWindowGroupby, +) +from pandas.core.window.expanding import ( + Expanding, + ExpandingGroupby, +) +from pandas.core.window.rolling import ( + Rolling, + RollingGroupby, + Window, +) + +__all__ = [ + "Expanding", + "ExpandingGroupby", + "ExponentialMovingWindow", + "ExponentialMovingWindowGroupby", + "Rolling", + "RollingGroupby", + "Window", +] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..de5d20d47e930047de3c0752dc1f3a2b94efc6bd Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/common.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/common.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5679ebabc5bbf9092e4ccd1babe5f4fe7526e321 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/common.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/doc.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/doc.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f746f597d1f887ab6b742037f773f02a2ccb0a84 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/doc.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/ewm.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/ewm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c10ceb3e2a652b4ae5b1ef353defbeeaeae45b2c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/ewm.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/expanding.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/expanding.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c87d5ee7fd1a5269f89c92d82b6a3437e0751d63 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/expanding.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/numba_.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/numba_.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c37650267132d0310eecdf9a93d6142e3b797a5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/numba_.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/online.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/online.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4de9c7b1a3fe8b7705c1dcc6932713a65b698d8d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/online.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/rolling.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/rolling.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..022a95da0c462bf7a1e3c1b341fa7b761fa4ffdb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/__pycache__/rolling.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/common.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/common.py new file mode 100644 index 0000000000000000000000000000000000000000..fc8eddca09c84029b9ac92b658a47b45e4764414 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/common.py @@ -0,0 +1,169 @@ +"""Common utility functions for rolling operations""" +from __future__ import annotations + +from collections import defaultdict +from typing import cast + +import numpy as np + +from pandas.core.dtypes.generic import ( + ABCDataFrame, + ABCSeries, +) + +from pandas.core.indexes.api import MultiIndex + + +def flex_binary_moment(arg1, arg2, f, pairwise: bool = False): + if isinstance(arg1, ABCSeries) and isinstance(arg2, ABCSeries): + X, Y = prep_binary(arg1, arg2) + return f(X, Y) + + elif isinstance(arg1, ABCDataFrame): + from pandas import DataFrame + + def dataframe_from_int_dict(data, frame_template) -> DataFrame: + result = DataFrame(data, index=frame_template.index) + if len(result.columns) > 0: + result.columns = frame_template.columns[result.columns] + else: + result.columns = frame_template.columns.copy() + return result + + results = {} + if isinstance(arg2, ABCDataFrame): + if pairwise is False: + if arg1 is arg2: + # special case in order to handle duplicate column names + for i in range(len(arg1.columns)): + results[i] = f(arg1.iloc[:, i], arg2.iloc[:, i]) + return dataframe_from_int_dict(results, arg1) + else: + if not arg1.columns.is_unique: + raise ValueError("'arg1' columns are not unique") + if not arg2.columns.is_unique: + raise ValueError("'arg2' columns are not unique") + X, Y = arg1.align(arg2, join="outer") + X, Y = prep_binary(X, Y) + res_columns = arg1.columns.union(arg2.columns) + for col in res_columns: + if col in X and col in Y: + results[col] = f(X[col], Y[col]) + return DataFrame(results, index=X.index, columns=res_columns) + elif pairwise is True: + results = defaultdict(dict) + for i in range(len(arg1.columns)): + for j in range(len(arg2.columns)): + if j < i and arg2 is arg1: + # Symmetric case + results[i][j] = results[j][i] + else: + results[i][j] = f( + *prep_binary(arg1.iloc[:, i], arg2.iloc[:, j]) + ) + + from pandas import concat + + result_index = arg1.index.union(arg2.index) + if len(result_index): + # construct result frame + result = concat( + [ + concat( + [results[i][j] for j in range(len(arg2.columns))], + ignore_index=True, + ) + for i in range(len(arg1.columns)) + ], + ignore_index=True, + axis=1, + ) + result.columns = arg1.columns + + # set the index and reorder + if arg2.columns.nlevels > 1: + # mypy needs to know columns is a MultiIndex, Index doesn't + # have levels attribute + arg2.columns = cast(MultiIndex, arg2.columns) + # GH 21157: Equivalent to MultiIndex.from_product( + # [result_index], , + # ) + # A normal MultiIndex.from_product will produce too many + # combinations. + result_level = np.tile( + result_index, len(result) // len(result_index) + ) + arg2_levels = ( + np.repeat( + arg2.columns.get_level_values(i), + len(result) // len(arg2.columns), + ) + for i in range(arg2.columns.nlevels) + ) + result_names = list(arg2.columns.names) + [result_index.name] + result.index = MultiIndex.from_arrays( + [*arg2_levels, result_level], names=result_names + ) + # GH 34440 + num_levels = len(result.index.levels) + new_order = [num_levels - 1] + list(range(num_levels - 1)) + result = result.reorder_levels(new_order).sort_index() + else: + result.index = MultiIndex.from_product( + [range(len(arg2.columns)), range(len(result_index))] + ) + result = result.swaplevel(1, 0).sort_index() + result.index = MultiIndex.from_product( + [result_index] + [arg2.columns] + ) + else: + # empty result + result = DataFrame( + index=MultiIndex( + levels=[arg1.index, arg2.columns], codes=[[], []] + ), + columns=arg2.columns, + dtype="float64", + ) + + # reset our index names to arg1 names + # reset our column names to arg2 names + # careful not to mutate the original names + result.columns = result.columns.set_names(arg1.columns.names) + result.index = result.index.set_names( + result_index.names + arg2.columns.names + ) + + return result + else: + results = { + i: f(*prep_binary(arg1.iloc[:, i], arg2)) + for i in range(len(arg1.columns)) + } + return dataframe_from_int_dict(results, arg1) + + else: + return flex_binary_moment(arg2, arg1, f) + + +def zsqrt(x): + with np.errstate(all="ignore"): + result = np.sqrt(x) + mask = x < 0 + + if isinstance(x, ABCDataFrame): + if mask._values.any(): + result[mask] = 0 + else: + if mask.any(): + result[mask] = 0 + + return result + + +def prep_binary(arg1, arg2): + # mask out values, this also makes a common index... + X = arg1 + 0 * arg2 + Y = arg2 + 0 * arg1 + + return X, Y diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/doc.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/doc.py new file mode 100644 index 0000000000000000000000000000000000000000..2a5cbc04921fadacf18a89608f2c0665bd8177e2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/doc.py @@ -0,0 +1,116 @@ +"""Any shareable docstring components for rolling/expanding/ewm""" +from __future__ import annotations + +from textwrap import dedent + +from pandas.core.shared_docs import _shared_docs + +_shared_docs = dict(**_shared_docs) + + +def create_section_header(header: str) -> str: + """Create numpydoc section header""" + return f"{header}\n{'-' * len(header)}\n" + + +template_header = "\nCalculate the {window_method} {aggregation_description}.\n\n" + +template_returns = dedent( + """ + Series or DataFrame + Return type is the same as the original object with ``np.float64`` dtype.\n + """ +).replace("\n", "", 1) + +template_see_also = dedent( + """ + pandas.Series.{window_method} : Calling {window_method} with Series data. + pandas.DataFrame.{window_method} : Calling {window_method} with DataFrames. + pandas.Series.{agg_method} : Aggregating {agg_method} for Series. + pandas.DataFrame.{agg_method} : Aggregating {agg_method} for DataFrame.\n + """ +).replace("\n", "", 1) + +kwargs_numeric_only = dedent( + """ + numeric_only : bool, default False + Include only float, int, boolean columns. + + .. versionadded:: 1.5.0\n + """ +).replace("\n", "", 1) + +kwargs_scipy = dedent( + """ + **kwargs + Keyword arguments to configure the ``SciPy`` weighted window type.\n + """ +).replace("\n", "", 1) + +window_apply_parameters = dedent( + """ + func : function + Must produce a single value from an ndarray input if ``raw=True`` + or a single value from a Series if ``raw=False``. Can also accept a + Numba JIT function with ``engine='numba'`` specified. + + raw : bool, default False + * ``False`` : passes each row or column as a Series to the + function. + * ``True`` : the passed function will receive ndarray + objects instead. + If you are just applying a NumPy reduction function this will + achieve much better performance. + + engine : str, default None + * ``'cython'`` : Runs rolling apply through C-extensions from cython. + * ``'numba'`` : Runs rolling apply through JIT compiled code from numba. + Only available when ``raw`` is set to ``True``. + * ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba`` + + engine_kwargs : dict, default None + * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be + applied to both the ``func`` and the ``apply`` rolling aggregation. + + args : tuple, default None + Positional arguments to be passed into func. + + kwargs : dict, default None + Keyword arguments to be passed into func.\n + """ +).replace("\n", "", 1) + +numba_notes = ( + "See :ref:`window.numba_engine` and :ref:`enhancingperf.numba` for " + "extended documentation and performance considerations for the Numba engine.\n\n" +) + + +def window_agg_numba_parameters(version: str = "1.3") -> str: + return ( + dedent( + """ + engine : str, default None + * ``'cython'`` : Runs the operation through C-extensions from cython. + * ``'numba'`` : Runs the operation through JIT compiled code from numba. + * ``None`` : Defaults to ``'cython'`` or globally setting ``compute.use_numba`` + + .. versionadded:: {version}.0 + + engine_kwargs : dict, default None + * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` + + .. versionadded:: {version}.0\n + """ + ) + .replace("\n", "", 1) + .replace("{version}", version) + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/ewm.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/ewm.py new file mode 100644 index 0000000000000000000000000000000000000000..9ebf32d3e536eee7233b911acb880f3d40521793 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/ewm.py @@ -0,0 +1,1095 @@ +from __future__ import annotations + +import datetime +from functools import partial +from textwrap import dedent +from typing import TYPE_CHECKING + +import numpy as np + +from pandas._libs.tslibs import Timedelta +import pandas._libs.window.aggregations as window_aggregations +from pandas.util._decorators import doc + +from pandas.core.dtypes.common import ( + is_datetime64_dtype, + is_numeric_dtype, +) +from pandas.core.dtypes.dtypes import DatetimeTZDtype +from pandas.core.dtypes.generic import ABCSeries +from pandas.core.dtypes.missing import isna + +from pandas.core import common +from pandas.core.arrays.datetimelike import dtype_to_unit +from pandas.core.indexers.objects import ( + BaseIndexer, + ExponentialMovingWindowIndexer, + GroupbyIndexer, +) +from pandas.core.util.numba_ import ( + get_jit_arguments, + maybe_use_numba, +) +from pandas.core.window.common import zsqrt +from pandas.core.window.doc import ( + _shared_docs, + create_section_header, + kwargs_numeric_only, + numba_notes, + template_header, + template_returns, + template_see_also, + window_agg_numba_parameters, +) +from pandas.core.window.numba_ import ( + generate_numba_ewm_func, + generate_numba_ewm_table_func, +) +from pandas.core.window.online import ( + EWMMeanState, + generate_online_numba_ewma_func, +) +from pandas.core.window.rolling import ( + BaseWindow, + BaseWindowGroupby, +) + +if TYPE_CHECKING: + from pandas._typing import ( + Axis, + TimedeltaConvertibleTypes, + npt, + ) + + from pandas import ( + DataFrame, + Series, + ) + from pandas.core.generic import NDFrame + + +def get_center_of_mass( + comass: float | None, + span: float | None, + halflife: float | None, + alpha: float | None, +) -> float: + valid_count = common.count_not_none(comass, span, halflife, alpha) + if valid_count > 1: + raise ValueError("comass, span, halflife, and alpha are mutually exclusive") + + # Convert to center of mass; domain checks ensure 0 < alpha <= 1 + if comass is not None: + if comass < 0: + raise ValueError("comass must satisfy: comass >= 0") + elif span is not None: + if span < 1: + raise ValueError("span must satisfy: span >= 1") + comass = (span - 1) / 2 + elif halflife is not None: + if halflife <= 0: + raise ValueError("halflife must satisfy: halflife > 0") + decay = 1 - np.exp(np.log(0.5) / halflife) + comass = 1 / decay - 1 + elif alpha is not None: + if alpha <= 0 or alpha > 1: + raise ValueError("alpha must satisfy: 0 < alpha <= 1") + comass = (1 - alpha) / alpha + else: + raise ValueError("Must pass one of comass, span, halflife, or alpha") + + return float(comass) + + +def _calculate_deltas( + times: np.ndarray | NDFrame, + halflife: float | TimedeltaConvertibleTypes | None, +) -> npt.NDArray[np.float64]: + """ + Return the diff of the times divided by the half-life. These values are used in + the calculation of the ewm mean. + + Parameters + ---------- + times : np.ndarray, Series + Times corresponding to the observations. Must be monotonically increasing + and ``datetime64[ns]`` dtype. + halflife : float, str, timedelta, optional + Half-life specifying the decay + + Returns + ------- + np.ndarray + Diff of the times divided by the half-life + """ + unit = dtype_to_unit(times.dtype) + if isinstance(times, ABCSeries): + times = times._values + _times = np.asarray(times.view(np.int64), dtype=np.float64) + _halflife = float(Timedelta(halflife).as_unit(unit)._value) + return np.diff(_times) / _halflife + + +class ExponentialMovingWindow(BaseWindow): + r""" + Provide exponentially weighted (EW) calculations. + + Exactly one of ``com``, ``span``, ``halflife``, or ``alpha`` must be + provided if ``times`` is not provided. If ``times`` is provided, + ``halflife`` and one of ``com``, ``span`` or ``alpha`` may be provided. + + Parameters + ---------- + com : float, optional + Specify decay in terms of center of mass + + :math:`\alpha = 1 / (1 + com)`, for :math:`com \geq 0`. + + span : float, optional + Specify decay in terms of span + + :math:`\alpha = 2 / (span + 1)`, for :math:`span \geq 1`. + + halflife : float, str, timedelta, optional + Specify decay in terms of half-life + + :math:`\alpha = 1 - \exp\left(-\ln(2) / halflife\right)`, for + :math:`halflife > 0`. + + If ``times`` is specified, a timedelta convertible unit over which an + observation decays to half its value. Only applicable to ``mean()``, + and halflife value will not apply to the other functions. + + alpha : float, optional + Specify smoothing factor :math:`\alpha` directly + + :math:`0 < \alpha \leq 1`. + + min_periods : int, default 0 + Minimum number of observations in window required to have a value; + otherwise, result is ``np.nan``. + + adjust : bool, default True + Divide by decaying adjustment factor in beginning periods to account + for imbalance in relative weightings (viewing EWMA as a moving average). + + - When ``adjust=True`` (default), the EW function is calculated using weights + :math:`w_i = (1 - \alpha)^i`. For example, the EW moving average of the series + [:math:`x_0, x_1, ..., x_t`] would be: + + .. math:: + y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - + \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t} + + - When ``adjust=False``, the exponentially weighted function is calculated + recursively: + + .. math:: + \begin{split} + y_0 &= x_0\\ + y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, + \end{split} + ignore_na : bool, default False + Ignore missing values when calculating weights. + + - When ``ignore_na=False`` (default), weights are based on absolute positions. + For example, the weights of :math:`x_0` and :math:`x_2` used in calculating + the final weighted average of [:math:`x_0`, None, :math:`x_2`] are + :math:`(1-\alpha)^2` and :math:`1` if ``adjust=True``, and + :math:`(1-\alpha)^2` and :math:`\alpha` if ``adjust=False``. + + - When ``ignore_na=True``, weights are based + on relative positions. For example, the weights of :math:`x_0` and :math:`x_2` + used in calculating the final weighted average of + [:math:`x_0`, None, :math:`x_2`] are :math:`1-\alpha` and :math:`1` if + ``adjust=True``, and :math:`1-\alpha` and :math:`\alpha` if ``adjust=False``. + + axis : {0, 1}, default 0 + If ``0`` or ``'index'``, calculate across the rows. + + If ``1`` or ``'columns'``, calculate across the columns. + + For `Series` this parameter is unused and defaults to 0. + + times : np.ndarray, Series, default None + + Only applicable to ``mean()``. + + Times corresponding to the observations. Must be monotonically increasing and + ``datetime64[ns]`` dtype. + + If 1-D array like, a sequence with the same shape as the observations. + + method : str {'single', 'table'}, default 'single' + .. versionadded:: 1.4.0 + + Execute the rolling operation per single column or row (``'single'``) + or over the entire object (``'table'``). + + This argument is only implemented when specifying ``engine='numba'`` + in the method call. + + Only applicable to ``mean()`` + + Returns + ------- + pandas.api.typing.ExponentialMovingWindow + + See Also + -------- + rolling : Provides rolling window calculations. + expanding : Provides expanding transformations. + + Notes + ----- + See :ref:`Windowing Operations ` + for further usage details and examples. + + Examples + -------- + >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) + >>> df + B + 0 0.0 + 1 1.0 + 2 2.0 + 3 NaN + 4 4.0 + + >>> df.ewm(com=0.5).mean() + B + 0 0.000000 + 1 0.750000 + 2 1.615385 + 3 1.615385 + 4 3.670213 + >>> df.ewm(alpha=2 / 3).mean() + B + 0 0.000000 + 1 0.750000 + 2 1.615385 + 3 1.615385 + 4 3.670213 + + **adjust** + + >>> df.ewm(com=0.5, adjust=True).mean() + B + 0 0.000000 + 1 0.750000 + 2 1.615385 + 3 1.615385 + 4 3.670213 + >>> df.ewm(com=0.5, adjust=False).mean() + B + 0 0.000000 + 1 0.666667 + 2 1.555556 + 3 1.555556 + 4 3.650794 + + **ignore_na** + + >>> df.ewm(com=0.5, ignore_na=True).mean() + B + 0 0.000000 + 1 0.750000 + 2 1.615385 + 3 1.615385 + 4 3.225000 + >>> df.ewm(com=0.5, ignore_na=False).mean() + B + 0 0.000000 + 1 0.750000 + 2 1.615385 + 3 1.615385 + 4 3.670213 + + **times** + + Exponentially weighted mean with weights calculated with a timedelta ``halflife`` + relative to ``times``. + + >>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17'] + >>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean() + B + 0 0.000000 + 1 0.585786 + 2 1.523889 + 3 1.523889 + 4 3.233686 + """ + + _attributes = [ + "com", + "span", + "halflife", + "alpha", + "min_periods", + "adjust", + "ignore_na", + "axis", + "times", + "method", + ] + + def __init__( + self, + obj: NDFrame, + com: float | None = None, + span: float | None = None, + halflife: float | TimedeltaConvertibleTypes | None = None, + alpha: float | None = None, + min_periods: int | None = 0, + adjust: bool = True, + ignore_na: bool = False, + axis: Axis = 0, + times: np.ndarray | NDFrame | None = None, + method: str = "single", + *, + selection=None, + ) -> None: + super().__init__( + obj=obj, + min_periods=1 if min_periods is None else max(int(min_periods), 1), + on=None, + center=False, + closed=None, + method=method, + axis=axis, + selection=selection, + ) + self.com = com + self.span = span + self.halflife = halflife + self.alpha = alpha + self.adjust = adjust + self.ignore_na = ignore_na + self.times = times + if self.times is not None: + if not self.adjust: + raise NotImplementedError("times is not supported with adjust=False.") + times_dtype = getattr(self.times, "dtype", None) + if not ( + is_datetime64_dtype(times_dtype) + or isinstance(times_dtype, DatetimeTZDtype) + ): + raise ValueError("times must be datetime64 dtype.") + if len(self.times) != len(obj): + raise ValueError("times must be the same length as the object.") + if not isinstance(self.halflife, (str, datetime.timedelta, np.timedelta64)): + raise ValueError("halflife must be a timedelta convertible object") + if isna(self.times).any(): + raise ValueError("Cannot convert NaT values to integer") + self._deltas = _calculate_deltas(self.times, self.halflife) + # Halflife is no longer applicable when calculating COM + # But allow COM to still be calculated if the user passes other decay args + if common.count_not_none(self.com, self.span, self.alpha) > 0: + self._com = get_center_of_mass(self.com, self.span, None, self.alpha) + else: + self._com = 1.0 + else: + if self.halflife is not None and isinstance( + self.halflife, (str, datetime.timedelta, np.timedelta64) + ): + raise ValueError( + "halflife can only be a timedelta convertible argument if " + "times is not None." + ) + # Without times, points are equally spaced + self._deltas = np.ones( + max(self.obj.shape[self.axis] - 1, 0), dtype=np.float64 + ) + self._com = get_center_of_mass( + # error: Argument 3 to "get_center_of_mass" has incompatible type + # "Union[float, Any, None, timedelta64, signedinteger[_64Bit]]"; + # expected "Optional[float]" + self.com, + self.span, + self.halflife, # type: ignore[arg-type] + self.alpha, + ) + + def _check_window_bounds( + self, start: np.ndarray, end: np.ndarray, num_vals: int + ) -> None: + # emw algorithms are iterative with each point + # ExponentialMovingWindowIndexer "bounds" are the entire window + pass + + def _get_window_indexer(self) -> BaseIndexer: + """ + Return an indexer class that will compute the window start and end bounds + """ + return ExponentialMovingWindowIndexer() + + def online( + self, engine: str = "numba", engine_kwargs=None + ) -> OnlineExponentialMovingWindow: + """ + Return an ``OnlineExponentialMovingWindow`` object to calculate + exponentially moving window aggregations in an online method. + + .. versionadded:: 1.3.0 + + Parameters + ---------- + engine: str, default ``'numba'`` + Execution engine to calculate online aggregations. + Applies to all supported aggregation methods. + + engine_kwargs : dict, default None + Applies to all supported aggregation methods. + + * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` + and ``parallel`` dictionary keys. The values must either be ``True`` or + ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is + ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be + applied to the function + + Returns + ------- + OnlineExponentialMovingWindow + """ + return OnlineExponentialMovingWindow( + obj=self.obj, + com=self.com, + span=self.span, + halflife=self.halflife, + alpha=self.alpha, + min_periods=self.min_periods, + adjust=self.adjust, + ignore_na=self.ignore_na, + axis=self.axis, + times=self.times, + engine=engine, + engine_kwargs=engine_kwargs, + selection=self._selection, + ) + + @doc( + _shared_docs["aggregate"], + see_also=dedent( + """ + See Also + -------- + pandas.DataFrame.rolling.aggregate + """ + ), + examples=dedent( + """ + Examples + -------- + >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) + >>> df + A B C + 0 1 4 7 + 1 2 5 8 + 2 3 6 9 + + >>> df.ewm(alpha=0.5).mean() + A B C + 0 1.000000 4.000000 7.000000 + 1 1.666667 4.666667 7.666667 + 2 2.428571 5.428571 8.428571 + """ + ), + klass="Series/Dataframe", + axis="", + ) + def aggregate(self, func, *args, **kwargs): + return super().aggregate(func, *args, **kwargs) + + agg = aggregate + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4]) + >>> ser.ewm(alpha=.2).mean() + 0 1.000000 + 1 1.555556 + 2 2.147541 + 3 2.775068 + dtype: float64 + """ + ), + window_method="ewm", + aggregation_description="(exponential weighted moment) mean", + agg_method="mean", + ) + def mean( + self, + numeric_only: bool = False, + engine=None, + engine_kwargs=None, + ): + if maybe_use_numba(engine): + if self.method == "single": + func = generate_numba_ewm_func + else: + func = generate_numba_ewm_table_func + ewm_func = func( + **get_jit_arguments(engine_kwargs), + com=self._com, + adjust=self.adjust, + ignore_na=self.ignore_na, + deltas=tuple(self._deltas), + normalize=True, + ) + return self._apply(ewm_func, name="mean") + elif engine in ("cython", None): + if engine_kwargs is not None: + raise ValueError("cython engine does not accept engine_kwargs") + + deltas = None if self.times is None else self._deltas + window_func = partial( + window_aggregations.ewm, + com=self._com, + adjust=self.adjust, + ignore_na=self.ignore_na, + deltas=deltas, + normalize=True, + ) + return self._apply(window_func, name="mean", numeric_only=numeric_only) + else: + raise ValueError("engine must be either 'numba' or 'cython'") + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4]) + >>> ser.ewm(alpha=.2).sum() + 0 1.000 + 1 2.800 + 2 5.240 + 3 8.192 + dtype: float64 + """ + ), + window_method="ewm", + aggregation_description="(exponential weighted moment) sum", + agg_method="sum", + ) + def sum( + self, + numeric_only: bool = False, + engine=None, + engine_kwargs=None, + ): + if not self.adjust: + raise NotImplementedError("sum is not implemented with adjust=False") + if maybe_use_numba(engine): + if self.method == "single": + func = generate_numba_ewm_func + else: + func = generate_numba_ewm_table_func + ewm_func = func( + **get_jit_arguments(engine_kwargs), + com=self._com, + adjust=self.adjust, + ignore_na=self.ignore_na, + deltas=tuple(self._deltas), + normalize=False, + ) + return self._apply(ewm_func, name="sum") + elif engine in ("cython", None): + if engine_kwargs is not None: + raise ValueError("cython engine does not accept engine_kwargs") + + deltas = None if self.times is None else self._deltas + window_func = partial( + window_aggregations.ewm, + com=self._com, + adjust=self.adjust, + ignore_na=self.ignore_na, + deltas=deltas, + normalize=False, + ) + return self._apply(window_func, name="sum", numeric_only=numeric_only) + else: + raise ValueError("engine must be either 'numba' or 'cython'") + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """\ + bias : bool, default False + Use a standard estimation bias correction. + """ + ), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4]) + >>> ser.ewm(alpha=.2).std() + 0 NaN + 1 0.707107 + 2 0.995893 + 3 1.277320 + dtype: float64 + """ + ), + window_method="ewm", + aggregation_description="(exponential weighted moment) standard deviation", + agg_method="std", + ) + def std(self, bias: bool = False, numeric_only: bool = False): + if ( + numeric_only + and self._selected_obj.ndim == 1 + and not is_numeric_dtype(self._selected_obj.dtype) + ): + # Raise directly so error message says std instead of var + raise NotImplementedError( + f"{type(self).__name__}.std does not implement numeric_only" + ) + return zsqrt(self.var(bias=bias, numeric_only=numeric_only)) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """\ + bias : bool, default False + Use a standard estimation bias correction. + """ + ), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4]) + >>> ser.ewm(alpha=.2).var() + 0 NaN + 1 0.500000 + 2 0.991803 + 3 1.631547 + dtype: float64 + """ + ), + window_method="ewm", + aggregation_description="(exponential weighted moment) variance", + agg_method="var", + ) + def var(self, bias: bool = False, numeric_only: bool = False): + window_func = window_aggregations.ewmcov + wfunc = partial( + window_func, + com=self._com, + adjust=self.adjust, + ignore_na=self.ignore_na, + bias=bias, + ) + + def var_func(values, begin, end, min_periods): + return wfunc(values, begin, end, min_periods, values) + + return self._apply(var_func, name="var", numeric_only=numeric_only) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """\ + other : Series or DataFrame , optional + If not supplied then will default to self and produce pairwise + output. + pairwise : bool, default None + If False then only matching columns between self and other will be + used and the output will be a DataFrame. + If True then all pairwise combinations will be calculated and the + output will be a MultiIndex DataFrame in the case of DataFrame + inputs. In the case of missing elements, only complete pairwise + observations will be used. + bias : bool, default False + Use a standard estimation bias correction. + """ + ), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser1 = pd.Series([1, 2, 3, 4]) + >>> ser2 = pd.Series([10, 11, 13, 16]) + >>> ser1.ewm(alpha=.2).cov(ser2) + 0 NaN + 1 0.500000 + 2 1.524590 + 3 3.408836 + dtype: float64 + """ + ), + window_method="ewm", + aggregation_description="(exponential weighted moment) sample covariance", + agg_method="cov", + ) + def cov( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + bias: bool = False, + numeric_only: bool = False, + ): + from pandas import Series + + self._validate_numeric_only("cov", numeric_only) + + def cov_func(x, y): + x_array = self._prep_values(x) + y_array = self._prep_values(y) + window_indexer = self._get_window_indexer() + min_periods = ( + self.min_periods + if self.min_periods is not None + else window_indexer.window_size + ) + start, end = window_indexer.get_window_bounds( + num_values=len(x_array), + min_periods=min_periods, + center=self.center, + closed=self.closed, + step=self.step, + ) + result = window_aggregations.ewmcov( + x_array, + start, + end, + # error: Argument 4 to "ewmcov" has incompatible type + # "Optional[int]"; expected "int" + self.min_periods, # type: ignore[arg-type] + y_array, + self._com, + self.adjust, + self.ignore_na, + bias, + ) + return Series(result, index=x.index, name=x.name, copy=False) + + return self._apply_pairwise( + self._selected_obj, other, pairwise, cov_func, numeric_only + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """\ + other : Series or DataFrame, optional + If not supplied then will default to self and produce pairwise + output. + pairwise : bool, default None + If False then only matching columns between self and other will be + used and the output will be a DataFrame. + If True then all pairwise combinations will be calculated and the + output will be a MultiIndex DataFrame in the case of DataFrame + inputs. In the case of missing elements, only complete pairwise + observations will be used. + """ + ), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser1 = pd.Series([1, 2, 3, 4]) + >>> ser2 = pd.Series([10, 11, 13, 16]) + >>> ser1.ewm(alpha=.2).corr(ser2) + 0 NaN + 1 1.000000 + 2 0.982821 + 3 0.977802 + dtype: float64 + """ + ), + window_method="ewm", + aggregation_description="(exponential weighted moment) sample correlation", + agg_method="corr", + ) + def corr( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + numeric_only: bool = False, + ): + from pandas import Series + + self._validate_numeric_only("corr", numeric_only) + + def cov_func(x, y): + x_array = self._prep_values(x) + y_array = self._prep_values(y) + window_indexer = self._get_window_indexer() + min_periods = ( + self.min_periods + if self.min_periods is not None + else window_indexer.window_size + ) + start, end = window_indexer.get_window_bounds( + num_values=len(x_array), + min_periods=min_periods, + center=self.center, + closed=self.closed, + step=self.step, + ) + + def _cov(X, Y): + return window_aggregations.ewmcov( + X, + start, + end, + min_periods, + Y, + self._com, + self.adjust, + self.ignore_na, + True, + ) + + with np.errstate(all="ignore"): + cov = _cov(x_array, y_array) + x_var = _cov(x_array, x_array) + y_var = _cov(y_array, y_array) + result = cov / zsqrt(x_var * y_var) + return Series(result, index=x.index, name=x.name, copy=False) + + return self._apply_pairwise( + self._selected_obj, other, pairwise, cov_func, numeric_only + ) + + +class ExponentialMovingWindowGroupby(BaseWindowGroupby, ExponentialMovingWindow): + """ + Provide an exponential moving window groupby implementation. + """ + + _attributes = ExponentialMovingWindow._attributes + BaseWindowGroupby._attributes + + def __init__(self, obj, *args, _grouper=None, **kwargs) -> None: + super().__init__(obj, *args, _grouper=_grouper, **kwargs) + + if not obj.empty and self.times is not None: + # sort the times and recalculate the deltas according to the groups + groupby_order = np.concatenate(list(self._grouper.indices.values())) + self._deltas = _calculate_deltas( + self.times.take(groupby_order), + self.halflife, + ) + + def _get_window_indexer(self) -> GroupbyIndexer: + """ + Return an indexer class that will compute the window start and end bounds + + Returns + ------- + GroupbyIndexer + """ + window_indexer = GroupbyIndexer( + groupby_indices=self._grouper.indices, + window_indexer=ExponentialMovingWindowIndexer, + ) + return window_indexer + + +class OnlineExponentialMovingWindow(ExponentialMovingWindow): + def __init__( + self, + obj: NDFrame, + com: float | None = None, + span: float | None = None, + halflife: float | TimedeltaConvertibleTypes | None = None, + alpha: float | None = None, + min_periods: int | None = 0, + adjust: bool = True, + ignore_na: bool = False, + axis: Axis = 0, + times: np.ndarray | NDFrame | None = None, + engine: str = "numba", + engine_kwargs: dict[str, bool] | None = None, + *, + selection=None, + ) -> None: + if times is not None: + raise NotImplementedError( + "times is not implemented with online operations." + ) + super().__init__( + obj=obj, + com=com, + span=span, + halflife=halflife, + alpha=alpha, + min_periods=min_periods, + adjust=adjust, + ignore_na=ignore_na, + axis=axis, + times=times, + selection=selection, + ) + self._mean = EWMMeanState( + self._com, self.adjust, self.ignore_na, self.axis, obj.shape + ) + if maybe_use_numba(engine): + self.engine = engine + self.engine_kwargs = engine_kwargs + else: + raise ValueError("'numba' is the only supported engine") + + def reset(self) -> None: + """ + Reset the state captured by `update` calls. + """ + self._mean.reset() + + def aggregate(self, func, *args, **kwargs): + raise NotImplementedError("aggregate is not implemented.") + + def std(self, bias: bool = False, *args, **kwargs): + raise NotImplementedError("std is not implemented.") + + def corr( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + numeric_only: bool = False, + ): + raise NotImplementedError("corr is not implemented.") + + def cov( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + bias: bool = False, + numeric_only: bool = False, + ): + raise NotImplementedError("cov is not implemented.") + + def var(self, bias: bool = False, numeric_only: bool = False): + raise NotImplementedError("var is not implemented.") + + def mean(self, *args, update=None, update_times=None, **kwargs): + """ + Calculate an online exponentially weighted mean. + + Parameters + ---------- + update: DataFrame or Series, default None + New values to continue calculating the + exponentially weighted mean from the last values and weights. + Values should be float64 dtype. + + ``update`` needs to be ``None`` the first time the + exponentially weighted mean is calculated. + + update_times: Series or 1-D np.ndarray, default None + New times to continue calculating the + exponentially weighted mean from the last values and weights. + If ``None``, values are assumed to be evenly spaced + in time. + This feature is currently unsupported. + + Returns + ------- + DataFrame or Series + + Examples + -------- + >>> df = pd.DataFrame({"a": range(5), "b": range(5, 10)}) + >>> online_ewm = df.head(2).ewm(0.5).online() + >>> online_ewm.mean() + a b + 0 0.00 5.00 + 1 0.75 5.75 + >>> online_ewm.mean(update=df.tail(3)) + a b + 2 1.615385 6.615385 + 3 2.550000 7.550000 + 4 3.520661 8.520661 + >>> online_ewm.reset() + >>> online_ewm.mean() + a b + 0 0.00 5.00 + 1 0.75 5.75 + """ + result_kwargs = {} + is_frame = self._selected_obj.ndim == 2 + if update_times is not None: + raise NotImplementedError("update_times is not implemented.") + update_deltas = np.ones( + max(self._selected_obj.shape[self.axis - 1] - 1, 0), dtype=np.float64 + ) + if update is not None: + if self._mean.last_ewm is None: + raise ValueError( + "Must call mean with update=None first before passing update" + ) + result_from = 1 + result_kwargs["index"] = update.index + if is_frame: + last_value = self._mean.last_ewm[np.newaxis, :] + result_kwargs["columns"] = update.columns + else: + last_value = self._mean.last_ewm + result_kwargs["name"] = update.name + np_array = np.concatenate((last_value, update.to_numpy())) + else: + result_from = 0 + result_kwargs["index"] = self._selected_obj.index + if is_frame: + result_kwargs["columns"] = self._selected_obj.columns + else: + result_kwargs["name"] = self._selected_obj.name + np_array = self._selected_obj.astype(np.float64, copy=False).to_numpy() + ewma_func = generate_online_numba_ewma_func( + **get_jit_arguments(self.engine_kwargs) + ) + result = self._mean.run_ewm( + np_array if is_frame else np_array[:, np.newaxis], + update_deltas, + self.min_periods, + ewma_func, + ) + if not is_frame: + result = result.squeeze() + result = result[result_from:] + result = self._selected_obj._constructor(result, **result_kwargs) + return result diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/expanding.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/expanding.py new file mode 100644 index 0000000000000000000000000000000000000000..aac10596ffc699c2b229f959b9c1b26393384b03 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/expanding.py @@ -0,0 +1,964 @@ +from __future__ import annotations + +from textwrap import dedent +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Literal, +) + +from pandas.util._decorators import ( + deprecate_kwarg, + doc, +) + +from pandas.core.indexers.objects import ( + BaseIndexer, + ExpandingIndexer, + GroupbyIndexer, +) +from pandas.core.window.doc import ( + _shared_docs, + create_section_header, + kwargs_numeric_only, + numba_notes, + template_header, + template_returns, + template_see_also, + window_agg_numba_parameters, + window_apply_parameters, +) +from pandas.core.window.rolling import ( + BaseWindowGroupby, + RollingAndExpandingMixin, +) + +if TYPE_CHECKING: + from pandas._typing import ( + Axis, + QuantileInterpolation, + WindowingRankType, + ) + + from pandas import ( + DataFrame, + Series, + ) + from pandas.core.generic import NDFrame + + +class Expanding(RollingAndExpandingMixin): + """ + Provide expanding window calculations. + + Parameters + ---------- + min_periods : int, default 1 + Minimum number of observations in window required to have a value; + otherwise, result is ``np.nan``. + + axis : int or str, default 0 + If ``0`` or ``'index'``, roll across the rows. + + If ``1`` or ``'columns'``, roll across the columns. + + For `Series` this parameter is unused and defaults to 0. + + method : str {'single', 'table'}, default 'single' + Execute the rolling operation per single column or row (``'single'``) + or over the entire object (``'table'``). + + This argument is only implemented when specifying ``engine='numba'`` + in the method call. + + .. versionadded:: 1.3.0 + + Returns + ------- + pandas.api.typing.Expanding + + See Also + -------- + rolling : Provides rolling window calculations. + ewm : Provides exponential weighted functions. + + Notes + ----- + See :ref:`Windowing Operations ` for further usage details + and examples. + + Examples + -------- + >>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) + >>> df + B + 0 0.0 + 1 1.0 + 2 2.0 + 3 NaN + 4 4.0 + + **min_periods** + + Expanding sum with 1 vs 3 observations needed to calculate a value. + + >>> df.expanding(1).sum() + B + 0 0.0 + 1 1.0 + 2 3.0 + 3 3.0 + 4 7.0 + >>> df.expanding(3).sum() + B + 0 NaN + 1 NaN + 2 3.0 + 3 3.0 + 4 7.0 + """ + + _attributes: list[str] = ["min_periods", "axis", "method"] + + def __init__( + self, + obj: NDFrame, + min_periods: int = 1, + axis: Axis = 0, + method: str = "single", + selection=None, + ) -> None: + super().__init__( + obj=obj, + min_periods=min_periods, + axis=axis, + method=method, + selection=selection, + ) + + def _get_window_indexer(self) -> BaseIndexer: + """ + Return an indexer class that will compute the window start and end bounds + """ + return ExpandingIndexer() + + @doc( + _shared_docs["aggregate"], + see_also=dedent( + """ + See Also + -------- + pandas.DataFrame.aggregate : Similar DataFrame method. + pandas.Series.aggregate : Similar Series method. + """ + ), + examples=dedent( + """ + Examples + -------- + >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) + >>> df + A B C + 0 1 4 7 + 1 2 5 8 + 2 3 6 9 + + >>> df.ewm(alpha=0.5).mean() + A B C + 0 1.000000 4.000000 7.000000 + 1 1.666667 4.666667 7.666667 + 2 2.428571 5.428571 8.428571 + """ + ), + klass="Series/Dataframe", + axis="", + ) + def aggregate(self, func, *args, **kwargs): + return super().aggregate(func, *args, **kwargs) + + agg = aggregate + + @doc( + template_header, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) + >>> ser.expanding().count() + a 1.0 + b 2.0 + c 3.0 + d 4.0 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="count of non NaN observations", + agg_method="count", + ) + def count(self, numeric_only: bool = False): + return super().count(numeric_only=numeric_only) + + @doc( + template_header, + create_section_header("Parameters"), + window_apply_parameters, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) + >>> ser.expanding().apply(lambda s: s.max() - 2 * s.min()) + a -1.0 + b 0.0 + c 1.0 + d 2.0 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="custom aggregation function", + agg_method="apply", + ) + def apply( + self, + func: Callable[..., Any], + raw: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + args: tuple[Any, ...] | None = None, + kwargs: dict[str, Any] | None = None, + ): + return super().apply( + func, + raw=raw, + engine=engine, + engine_kwargs=engine_kwargs, + args=args, + kwargs=kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) + >>> ser.expanding().sum() + a 1.0 + b 3.0 + c 6.0 + d 10.0 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="sum", + agg_method="sum", + ) + def sum( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().sum( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([3, 2, 1, 4], index=['a', 'b', 'c', 'd']) + >>> ser.expanding().max() + a 3.0 + b 3.0 + c 3.0 + d 4.0 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="maximum", + agg_method="max", + ) + def max( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().max( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([2, 3, 4, 1], index=['a', 'b', 'c', 'd']) + >>> ser.expanding().min() + a 2.0 + b 2.0 + c 2.0 + d 1.0 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="minimum", + agg_method="min", + ) + def min( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().min( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) + >>> ser.expanding().mean() + a 1.0 + b 1.5 + c 2.0 + d 2.5 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="mean", + agg_method="mean", + ) + def mean( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().mean( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) + >>> ser.expanding().median() + a 1.0 + b 1.5 + c 2.0 + d 2.5 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="median", + agg_method="median", + ) + def median( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().median( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + ddof : int, default 1 + Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements.\n + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + window_agg_numba_parameters("1.4"), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + "numpy.std : Equivalent method for NumPy array.\n", + template_see_also, + create_section_header("Notes"), + dedent( + """ + The default ``ddof`` of 1 used in :meth:`Series.std` is different + than the default ``ddof`` of 0 in :func:`numpy.std`. + + A minimum of one period is required for the rolling calculation.\n + """ + ).replace("\n", "", 1), + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) + + >>> s.expanding(3).std() + 0 NaN + 1 NaN + 2 0.577350 + 3 0.957427 + 4 0.894427 + 5 0.836660 + 6 0.786796 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="expanding", + aggregation_description="standard deviation", + agg_method="std", + ) + def std( + self, + ddof: int = 1, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().std( + ddof=ddof, + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + ddof : int, default 1 + Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements.\n + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + window_agg_numba_parameters("1.4"), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + "numpy.var : Equivalent method for NumPy array.\n", + template_see_also, + create_section_header("Notes"), + dedent( + """ + The default ``ddof`` of 1 used in :meth:`Series.var` is different + than the default ``ddof`` of 0 in :func:`numpy.var`. + + A minimum of one period is required for the rolling calculation.\n + """ + ).replace("\n", "", 1), + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) + + >>> s.expanding(3).var() + 0 NaN + 1 NaN + 2 0.333333 + 3 0.916667 + 4 0.800000 + 5 0.700000 + 6 0.619048 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="expanding", + aggregation_description="variance", + agg_method="var", + ) + def var( + self, + ddof: int = 1, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().var( + ddof=ddof, + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + ddof : int, default 1 + Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements.\n + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + "A minimum of one period is required for the calculation.\n\n", + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([0, 1, 2, 3]) + + >>> s.expanding().sem() + 0 NaN + 1 0.707107 + 2 0.707107 + 3 0.745356 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="expanding", + aggregation_description="standard error of mean", + agg_method="sem", + ) + def sem(self, ddof: int = 1, numeric_only: bool = False): + return super().sem(ddof=ddof, numeric_only=numeric_only) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + "scipy.stats.skew : Third moment of a probability density.\n", + template_see_also, + create_section_header("Notes"), + "A minimum of three periods is required for the rolling calculation.\n\n", + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([-1, 0, 2, -1, 2], index=['a', 'b', 'c', 'd', 'e']) + >>> ser.expanding().skew() + a NaN + b NaN + c 0.935220 + d 1.414214 + e 0.315356 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="unbiased skewness", + agg_method="skew", + ) + def skew(self, numeric_only: bool = False): + return super().skew(numeric_only=numeric_only) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + "scipy.stats.kurtosis : Reference SciPy method.\n", + template_see_also, + create_section_header("Notes"), + "A minimum of four periods is required for the calculation.\n\n", + create_section_header("Examples"), + dedent( + """ + The example below will show a rolling calculation with a window size of + four matching the equivalent function call using `scipy.stats`. + + >>> arr = [1, 2, 3, 4, 999] + >>> import scipy.stats + >>> print(f"{{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}}") + -1.200000 + >>> print(f"{{scipy.stats.kurtosis(arr, bias=False):.6f}}") + 4.999874 + >>> s = pd.Series(arr) + >>> s.expanding(4).kurt() + 0 NaN + 1 NaN + 2 NaN + 3 -1.200000 + 4 4.999874 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="expanding", + aggregation_description="Fisher's definition of kurtosis without bias", + agg_method="kurt", + ) + def kurt(self, numeric_only: bool = False): + return super().kurt(numeric_only=numeric_only) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + quantile : float + Quantile to compute. 0 <= quantile <= 1. + + .. deprecated:: 2.1.0 + This will be renamed to 'q' in a future version. + interpolation : {{'linear', 'lower', 'higher', 'midpoint', 'nearest'}} + This optional parameter specifies the interpolation method to use, + when the desired quantile lies between two data points `i` and `j`: + + * linear: `i + (j - i) * fraction`, where `fraction` is the + fractional part of the index surrounded by `i` and `j`. + * lower: `i`. + * higher: `j`. + * nearest: `i` or `j` whichever is nearest. + * midpoint: (`i` + `j`) / 2. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4, 5, 6], index=['a', 'b', 'c', 'd', 'e', 'f']) + >>> ser.expanding(min_periods=4).quantile(.25) + a NaN + b NaN + c NaN + d 1.75 + e 2.00 + f 2.25 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="quantile", + agg_method="quantile", + ) + @deprecate_kwarg(old_arg_name="quantile", new_arg_name="q") + def quantile( + self, + q: float, + interpolation: QuantileInterpolation = "linear", + numeric_only: bool = False, + ): + return super().quantile( + q=q, + interpolation=interpolation, + numeric_only=numeric_only, + ) + + @doc( + template_header, + ".. versionadded:: 1.4.0 \n\n", + create_section_header("Parameters"), + dedent( + """ + method : {{'average', 'min', 'max'}}, default 'average' + How to rank the group of records that have the same value (i.e. ties): + + * average: average rank of the group + * min: lowest rank in the group + * max: highest rank in the group + + ascending : bool, default True + Whether or not the elements should be ranked in ascending order. + pct : bool, default False + Whether or not to display the returned rankings in percentile + form. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([1, 4, 2, 3, 5, 3]) + >>> s.expanding().rank() + 0 1.0 + 1 2.0 + 2 2.0 + 3 3.0 + 4 5.0 + 5 3.5 + dtype: float64 + + >>> s.expanding().rank(method="max") + 0 1.0 + 1 2.0 + 2 2.0 + 3 3.0 + 4 5.0 + 5 4.0 + dtype: float64 + + >>> s.expanding().rank(method="min") + 0 1.0 + 1 2.0 + 2 2.0 + 3 3.0 + 4 5.0 + 5 3.0 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="expanding", + aggregation_description="rank", + agg_method="rank", + ) + def rank( + self, + method: WindowingRankType = "average", + ascending: bool = True, + pct: bool = False, + numeric_only: bool = False, + ): + return super().rank( + method=method, + ascending=ascending, + pct=pct, + numeric_only=numeric_only, + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + other : Series or DataFrame, optional + If not supplied then will default to self and produce pairwise + output. + pairwise : bool, default None + If False then only matching columns between self and other will be + used and the output will be a DataFrame. + If True then all pairwise combinations will be calculated and the + output will be a MultiIndexed DataFrame in the case of DataFrame + inputs. In the case of missing elements, only complete pairwise + observations will be used. + ddof : int, default 1 + Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) + >>> ser2 = pd.Series([10, 11, 13, 16], index=['a', 'b', 'c', 'd']) + >>> ser1.expanding().cov(ser2) + a NaN + b 0.500000 + c 1.500000 + d 3.333333 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="sample covariance", + agg_method="cov", + ) + def cov( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + ddof: int = 1, + numeric_only: bool = False, + ): + return super().cov( + other=other, + pairwise=pairwise, + ddof=ddof, + numeric_only=numeric_only, + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + other : Series or DataFrame, optional + If not supplied then will default to self and produce pairwise + output. + pairwise : bool, default None + If False then only matching columns between self and other will be + used and the output will be a DataFrame. + If True then all pairwise combinations will be calculated and the + output will be a MultiIndexed DataFrame in the case of DataFrame + inputs. In the case of missing elements, only complete pairwise + observations will be used. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + dedent( + """ + cov : Similar method to calculate covariance. + numpy.corrcoef : NumPy Pearson's correlation calculation. + """ + ).replace("\n", "", 1), + template_see_also, + create_section_header("Notes"), + dedent( + """ + This function uses Pearson's definition of correlation + (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). + + When `other` is not specified, the output will be self correlation (e.g. + all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise` + set to `True`. + + Function will return ``NaN`` for correlations of equal valued sequences; + this is the result of a 0/0 division error. + + When `pairwise` is set to `False`, only matching columns between `self` and + `other` will be used. + + When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame + with the original index on the first level, and the `other` DataFrame + columns on the second level. + + In the case of missing elements, only complete pairwise observations + will be used.\n + """ + ), + create_section_header("Examples"), + dedent( + """\ + >>> ser1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd']) + >>> ser2 = pd.Series([10, 11, 13, 16], index=['a', 'b', 'c', 'd']) + >>> ser1.expanding().corr(ser2) + a NaN + b 1.000000 + c 0.981981 + d 0.975900 + dtype: float64 + """ + ), + window_method="expanding", + aggregation_description="correlation", + agg_method="corr", + ) + def corr( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + ddof: int = 1, + numeric_only: bool = False, + ): + return super().corr( + other=other, + pairwise=pairwise, + ddof=ddof, + numeric_only=numeric_only, + ) + + +class ExpandingGroupby(BaseWindowGroupby, Expanding): + """ + Provide a expanding groupby implementation. + """ + + _attributes = Expanding._attributes + BaseWindowGroupby._attributes + + def _get_window_indexer(self) -> GroupbyIndexer: + """ + Return an indexer class that will compute the window start and end bounds + + Returns + ------- + GroupbyIndexer + """ + window_indexer = GroupbyIndexer( + groupby_indices=self._grouper.indices, + window_indexer=ExpandingIndexer, + ) + return window_indexer diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/numba_.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/numba_.py new file mode 100644 index 0000000000000000000000000000000000000000..9357945e78c631a3fada24ec3015ca0cf183b99c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/numba_.py @@ -0,0 +1,351 @@ +from __future__ import annotations + +import functools +from typing import ( + TYPE_CHECKING, + Any, + Callable, +) + +import numpy as np + +from pandas.compat._optional import import_optional_dependency + +from pandas.core.util.numba_ import jit_user_function + +if TYPE_CHECKING: + from pandas._typing import Scalar + + +@functools.cache +def generate_numba_apply_func( + func: Callable[..., Scalar], + nopython: bool, + nogil: bool, + parallel: bool, +): + """ + Generate a numba jitted apply function specified by values from engine_kwargs. + + 1. jit the user's function + 2. Return a rolling apply function with the jitted function inline + + Configurations specified in engine_kwargs apply to both the user's + function _AND_ the rolling apply function. + + Parameters + ---------- + func : function + function to be applied to each window and will be JITed + nopython : bool + nopython to be passed into numba.jit + nogil : bool + nogil to be passed into numba.jit + parallel : bool + parallel to be passed into numba.jit + + Returns + ------- + Numba function + """ + numba_func = jit_user_function(func) + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def roll_apply( + values: np.ndarray, + begin: np.ndarray, + end: np.ndarray, + minimum_periods: int, + *args: Any, + ) -> np.ndarray: + result = np.empty(len(begin)) + for i in numba.prange(len(result)): + start = begin[i] + stop = end[i] + window = values[start:stop] + count_nan = np.sum(np.isnan(window)) + if len(window) - count_nan >= minimum_periods: + result[i] = numba_func(window, *args) + else: + result[i] = np.nan + return result + + return roll_apply + + +@functools.cache +def generate_numba_ewm_func( + nopython: bool, + nogil: bool, + parallel: bool, + com: float, + adjust: bool, + ignore_na: bool, + deltas: tuple, + normalize: bool, +): + """ + Generate a numba jitted ewm mean or sum function specified by values + from engine_kwargs. + + Parameters + ---------- + nopython : bool + nopython to be passed into numba.jit + nogil : bool + nogil to be passed into numba.jit + parallel : bool + parallel to be passed into numba.jit + com : float + adjust : bool + ignore_na : bool + deltas : tuple + normalize : bool + + Returns + ------- + Numba function + """ + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def ewm( + values: np.ndarray, + begin: np.ndarray, + end: np.ndarray, + minimum_periods: int, + ) -> np.ndarray: + result = np.empty(len(values)) + alpha = 1.0 / (1.0 + com) + old_wt_factor = 1.0 - alpha + new_wt = 1.0 if adjust else alpha + + for i in numba.prange(len(begin)): + start = begin[i] + stop = end[i] + window = values[start:stop] + sub_result = np.empty(len(window)) + + weighted = window[0] + nobs = int(not np.isnan(weighted)) + sub_result[0] = weighted if nobs >= minimum_periods else np.nan + old_wt = 1.0 + + for j in range(1, len(window)): + cur = window[j] + is_observation = not np.isnan(cur) + nobs += is_observation + if not np.isnan(weighted): + if is_observation or not ignore_na: + if normalize: + # note that len(deltas) = len(vals) - 1 and deltas[i] + # is to be used in conjunction with vals[i+1] + old_wt *= old_wt_factor ** deltas[start + j - 1] + else: + weighted = old_wt_factor * weighted + if is_observation: + if normalize: + # avoid numerical errors on constant series + if weighted != cur: + weighted = old_wt * weighted + new_wt * cur + if normalize: + weighted = weighted / (old_wt + new_wt) + if adjust: + old_wt += new_wt + else: + old_wt = 1.0 + else: + weighted += cur + elif is_observation: + weighted = cur + + sub_result[j] = weighted if nobs >= minimum_periods else np.nan + + result[start:stop] = sub_result + + return result + + return ewm + + +@functools.cache +def generate_numba_table_func( + func: Callable[..., np.ndarray], + nopython: bool, + nogil: bool, + parallel: bool, +): + """ + Generate a numba jitted function to apply window calculations table-wise. + + Func will be passed a M window size x N number of columns array, and + must return a 1 x N number of columns array. Func is intended to operate + row-wise, but the result will be transposed for axis=1. + + 1. jit the user's function + 2. Return a rolling apply function with the jitted function inline + + Parameters + ---------- + func : function + function to be applied to each window and will be JITed + nopython : bool + nopython to be passed into numba.jit + nogil : bool + nogil to be passed into numba.jit + parallel : bool + parallel to be passed into numba.jit + + Returns + ------- + Numba function + """ + numba_func = jit_user_function(func) + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def roll_table( + values: np.ndarray, + begin: np.ndarray, + end: np.ndarray, + minimum_periods: int, + *args: Any, + ): + result = np.empty((len(begin), values.shape[1])) + min_periods_mask = np.empty(result.shape) + for i in numba.prange(len(result)): + start = begin[i] + stop = end[i] + window = values[start:stop] + count_nan = np.sum(np.isnan(window), axis=0) + sub_result = numba_func(window, *args) + nan_mask = len(window) - count_nan >= minimum_periods + min_periods_mask[i, :] = nan_mask + result[i, :] = sub_result + result = np.where(min_periods_mask, result, np.nan) + return result + + return roll_table + + +# This function will no longer be needed once numba supports +# axis for all np.nan* agg functions +# https://github.com/numba/numba/issues/1269 +@functools.cache +def generate_manual_numpy_nan_agg_with_axis(nan_func): + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + @numba.jit(nopython=True, nogil=True, parallel=True) + def nan_agg_with_axis(table): + result = np.empty(table.shape[1]) + for i in numba.prange(table.shape[1]): + partition = table[:, i] + result[i] = nan_func(partition) + return result + + return nan_agg_with_axis + + +@functools.cache +def generate_numba_ewm_table_func( + nopython: bool, + nogil: bool, + parallel: bool, + com: float, + adjust: bool, + ignore_na: bool, + deltas: tuple, + normalize: bool, +): + """ + Generate a numba jitted ewm mean or sum function applied table wise specified + by values from engine_kwargs. + + Parameters + ---------- + nopython : bool + nopython to be passed into numba.jit + nogil : bool + nogil to be passed into numba.jit + parallel : bool + parallel to be passed into numba.jit + com : float + adjust : bool + ignore_na : bool + deltas : tuple + normalize: bool + + Returns + ------- + Numba function + """ + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def ewm_table( + values: np.ndarray, + begin: np.ndarray, + end: np.ndarray, + minimum_periods: int, + ) -> np.ndarray: + alpha = 1.0 / (1.0 + com) + old_wt_factor = 1.0 - alpha + new_wt = 1.0 if adjust else alpha + old_wt = np.ones(values.shape[1]) + + result = np.empty(values.shape) + weighted = values[0].copy() + nobs = (~np.isnan(weighted)).astype(np.int64) + result[0] = np.where(nobs >= minimum_periods, weighted, np.nan) + for i in range(1, len(values)): + cur = values[i] + is_observations = ~np.isnan(cur) + nobs += is_observations.astype(np.int64) + for j in numba.prange(len(cur)): + if not np.isnan(weighted[j]): + if is_observations[j] or not ignore_na: + if normalize: + # note that len(deltas) = len(vals) - 1 and deltas[i] + # is to be used in conjunction with vals[i+1] + old_wt[j] *= old_wt_factor ** deltas[i - 1] + else: + weighted[j] = old_wt_factor * weighted[j] + if is_observations[j]: + if normalize: + # avoid numerical errors on constant series + if weighted[j] != cur[j]: + weighted[j] = ( + old_wt[j] * weighted[j] + new_wt * cur[j] + ) + if normalize: + weighted[j] = weighted[j] / (old_wt[j] + new_wt) + if adjust: + old_wt[j] += new_wt + else: + old_wt[j] = 1.0 + else: + weighted[j] += cur[j] + elif is_observations[j]: + weighted[j] = cur[j] + + result[i] = np.where(nobs >= minimum_periods, weighted, np.nan) + + return result + + return ewm_table diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/online.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/online.py new file mode 100644 index 0000000000000000000000000000000000000000..29d1f740e021fd30d3bfc7d72a5e6baefe62ac4c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/online.py @@ -0,0 +1,118 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING + +import numpy as np + +from pandas.compat._optional import import_optional_dependency + + +def generate_online_numba_ewma_func( + nopython: bool, + nogil: bool, + parallel: bool, +): + """ + Generate a numba jitted groupby ewma function specified by values + from engine_kwargs. + + Parameters + ---------- + nopython : bool + nopython to be passed into numba.jit + nogil : bool + nogil to be passed into numba.jit + parallel : bool + parallel to be passed into numba.jit + + Returns + ------- + Numba function + """ + if TYPE_CHECKING: + import numba + else: + numba = import_optional_dependency("numba") + + @numba.jit(nopython=nopython, nogil=nogil, parallel=parallel) + def online_ewma( + values: np.ndarray, + deltas: np.ndarray, + minimum_periods: int, + old_wt_factor: float, + new_wt: float, + old_wt: np.ndarray, + adjust: bool, + ignore_na: bool, + ): + """ + Compute online exponentially weighted mean per column over 2D values. + + Takes the first observation as is, then computes the subsequent + exponentially weighted mean accounting minimum periods. + """ + result = np.empty(values.shape) + weighted_avg = values[0].copy() + nobs = (~np.isnan(weighted_avg)).astype(np.int64) + result[0] = np.where(nobs >= minimum_periods, weighted_avg, np.nan) + + for i in range(1, len(values)): + cur = values[i] + is_observations = ~np.isnan(cur) + nobs += is_observations.astype(np.int64) + for j in numba.prange(len(cur)): + if not np.isnan(weighted_avg[j]): + if is_observations[j] or not ignore_na: + # note that len(deltas) = len(vals) - 1 and deltas[i] is to be + # used in conjunction with vals[i+1] + old_wt[j] *= old_wt_factor ** deltas[j - 1] + if is_observations[j]: + # avoid numerical errors on constant series + if weighted_avg[j] != cur[j]: + weighted_avg[j] = ( + (old_wt[j] * weighted_avg[j]) + (new_wt * cur[j]) + ) / (old_wt[j] + new_wt) + if adjust: + old_wt[j] += new_wt + else: + old_wt[j] = 1.0 + elif is_observations[j]: + weighted_avg[j] = cur[j] + + result[i] = np.where(nobs >= minimum_periods, weighted_avg, np.nan) + + return result, old_wt + + return online_ewma + + +class EWMMeanState: + def __init__(self, com, adjust, ignore_na, axis, shape) -> None: + alpha = 1.0 / (1.0 + com) + self.axis = axis + self.shape = shape + self.adjust = adjust + self.ignore_na = ignore_na + self.new_wt = 1.0 if adjust else alpha + self.old_wt_factor = 1.0 - alpha + self.old_wt = np.ones(self.shape[self.axis - 1]) + self.last_ewm = None + + def run_ewm(self, weighted_avg, deltas, min_periods, ewm_func): + result, old_wt = ewm_func( + weighted_avg, + deltas, + min_periods, + self.old_wt_factor, + self.new_wt, + self.old_wt, + self.adjust, + self.ignore_na, + ) + self.old_wt = old_wt + self.last_ewm = result[-1] + return result + + def reset(self) -> None: + self.old_wt = np.ones(self.shape[self.axis - 1]) + self.last_ewm = None diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/core/window/rolling.py b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/rolling.py new file mode 100644 index 0000000000000000000000000000000000000000..68cec16ec9eca8b34fadd9e67221219ebd7fe736 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/core/window/rolling.py @@ -0,0 +1,2930 @@ +""" +Provide a generic structure to support window functions, +similar to how we have a Groupby object. +""" +from __future__ import annotations + +import copy +from datetime import timedelta +from functools import partial +import inspect +from textwrap import dedent +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Literal, +) + +import numpy as np + +from pandas._libs.tslibs import ( + BaseOffset, + Timedelta, + to_offset, +) +import pandas._libs.window.aggregations as window_aggregations +from pandas.compat._optional import import_optional_dependency +from pandas.errors import DataError +from pandas.util._decorators import ( + deprecate_kwarg, + doc, +) + +from pandas.core.dtypes.common import ( + ensure_float64, + is_bool, + is_integer, + is_numeric_dtype, + needs_i8_conversion, +) +from pandas.core.dtypes.dtypes import ArrowDtype +from pandas.core.dtypes.generic import ( + ABCDataFrame, + ABCSeries, +) +from pandas.core.dtypes.missing import notna + +from pandas.core._numba import executor +from pandas.core.algorithms import factorize +from pandas.core.apply import ResamplerWindowApply +from pandas.core.arrays import ExtensionArray +from pandas.core.base import SelectionMixin +import pandas.core.common as com +from pandas.core.indexers.objects import ( + BaseIndexer, + FixedWindowIndexer, + GroupbyIndexer, + VariableWindowIndexer, +) +from pandas.core.indexes.api import ( + DatetimeIndex, + Index, + MultiIndex, + PeriodIndex, + TimedeltaIndex, +) +from pandas.core.reshape.concat import concat +from pandas.core.util.numba_ import ( + get_jit_arguments, + maybe_use_numba, +) +from pandas.core.window.common import ( + flex_binary_moment, + zsqrt, +) +from pandas.core.window.doc import ( + _shared_docs, + create_section_header, + kwargs_numeric_only, + kwargs_scipy, + numba_notes, + template_header, + template_returns, + template_see_also, + window_agg_numba_parameters, + window_apply_parameters, +) +from pandas.core.window.numba_ import ( + generate_manual_numpy_nan_agg_with_axis, + generate_numba_apply_func, + generate_numba_table_func, +) + +if TYPE_CHECKING: + from collections.abc import ( + Hashable, + Iterator, + Sized, + ) + + from pandas._typing import ( + ArrayLike, + Axis, + NDFrameT, + QuantileInterpolation, + WindowingRankType, + npt, + ) + + from pandas import ( + DataFrame, + Series, + ) + from pandas.core.generic import NDFrame + from pandas.core.groupby.ops import BaseGrouper + +from pandas.core.arrays.datetimelike import dtype_to_unit + + +class BaseWindow(SelectionMixin): + """Provides utilities for performing windowing operations.""" + + _attributes: list[str] = [] + exclusions: frozenset[Hashable] = frozenset() + _on: Index + + def __init__( + self, + obj: NDFrame, + window=None, + min_periods: int | None = None, + center: bool | None = False, + win_type: str | None = None, + axis: Axis = 0, + on: str | Index | None = None, + closed: str | None = None, + step: int | None = None, + method: str = "single", + *, + selection=None, + ) -> None: + self.obj = obj + self.on = on + self.closed = closed + self.step = step + self.window = window + self.min_periods = min_periods + self.center = center + self.win_type = win_type + self.axis = obj._get_axis_number(axis) if axis is not None else None + self.method = method + self._win_freq_i8: int | None = None + if self.on is None: + if self.axis == 0: + self._on = self.obj.index + else: + # i.e. self.axis == 1 + self._on = self.obj.columns + elif isinstance(self.on, Index): + self._on = self.on + elif isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns: + self._on = Index(self.obj[self.on]) + else: + raise ValueError( + f"invalid on specified as {self.on}, " + "must be a column (of DataFrame), an Index or None" + ) + + self._selection = selection + self._validate() + + def _validate(self) -> None: + if self.center is not None and not is_bool(self.center): + raise ValueError("center must be a boolean") + if self.min_periods is not None: + if not is_integer(self.min_periods): + raise ValueError("min_periods must be an integer") + if self.min_periods < 0: + raise ValueError("min_periods must be >= 0") + if is_integer(self.window) and self.min_periods > self.window: + raise ValueError( + f"min_periods {self.min_periods} must be <= window {self.window}" + ) + if self.closed is not None and self.closed not in [ + "right", + "both", + "left", + "neither", + ]: + raise ValueError("closed must be 'right', 'left', 'both' or 'neither'") + if not isinstance(self.obj, (ABCSeries, ABCDataFrame)): + raise TypeError(f"invalid type: {type(self)}") + if isinstance(self.window, BaseIndexer): + # Validate that the passed BaseIndexer subclass has + # a get_window_bounds with the correct signature. + get_window_bounds_signature = inspect.signature( + self.window.get_window_bounds + ).parameters.keys() + expected_signature = inspect.signature( + BaseIndexer().get_window_bounds + ).parameters.keys() + if get_window_bounds_signature != expected_signature: + raise ValueError( + f"{type(self.window).__name__} does not implement " + f"the correct signature for get_window_bounds" + ) + if self.method not in ["table", "single"]: + raise ValueError("method must be 'table' or 'single") + if self.step is not None: + if not is_integer(self.step): + raise ValueError("step must be an integer") + if self.step < 0: + raise ValueError("step must be >= 0") + + def _check_window_bounds( + self, start: np.ndarray, end: np.ndarray, num_vals: int + ) -> None: + if len(start) != len(end): + raise ValueError( + f"start ({len(start)}) and end ({len(end)}) bounds must be the " + f"same length" + ) + if len(start) != (num_vals + (self.step or 1) - 1) // (self.step or 1): + raise ValueError( + f"start and end bounds ({len(start)}) must be the same length " + f"as the object ({num_vals}) divided by the step ({self.step}) " + f"if given and rounded up" + ) + + def _slice_axis_for_step(self, index: Index, result: Sized | None = None) -> Index: + """ + Slices the index for a given result and the preset step. + """ + return ( + index + if result is None or len(result) == len(index) + else index[:: self.step] + ) + + def _validate_numeric_only(self, name: str, numeric_only: bool) -> None: + """ + Validate numeric_only argument, raising if invalid for the input. + + Parameters + ---------- + name : str + Name of the operator (kernel). + numeric_only : bool + Value passed by user. + """ + if ( + self._selected_obj.ndim == 1 + and numeric_only + and not is_numeric_dtype(self._selected_obj.dtype) + ): + raise NotImplementedError( + f"{type(self).__name__}.{name} does not implement numeric_only" + ) + + def _make_numeric_only(self, obj: NDFrameT) -> NDFrameT: + """Subset DataFrame to numeric columns. + + Parameters + ---------- + obj : DataFrame + + Returns + ------- + obj subset to numeric-only columns. + """ + result = obj.select_dtypes(include=["number"], exclude=["timedelta"]) + return result + + def _create_data(self, obj: NDFrameT, numeric_only: bool = False) -> NDFrameT: + """ + Split data into blocks & return conformed data. + """ + # filter out the on from the object + if self.on is not None and not isinstance(self.on, Index) and obj.ndim == 2: + obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) + if obj.ndim > 1 and (numeric_only or self.axis == 1): + # GH: 20649 in case of mixed dtype and axis=1 we have to convert everything + # to float to calculate the complete row at once. We exclude all non-numeric + # dtypes. + obj = self._make_numeric_only(obj) + if self.axis == 1: + obj = obj.astype("float64", copy=False) + obj._mgr = obj._mgr.consolidate() + return obj + + def _gotitem(self, key, ndim, subset=None): + """ + Sub-classes to define. Return a sliced object. + + Parameters + ---------- + key : str / list of selections + ndim : {1, 2} + requested ndim of result + subset : object, default None + subset to act on + """ + # create a new object to prevent aliasing + if subset is None: + subset = self.obj + + # we need to make a shallow copy of ourselves + # with the same groupby + kwargs = {attr: getattr(self, attr) for attr in self._attributes} + + selection = self._infer_selection(key, subset) + new_win = type(self)(subset, selection=selection, **kwargs) + return new_win + + def __getattr__(self, attr: str): + if attr in self._internal_names_set: + return object.__getattribute__(self, attr) + if attr in self.obj: + return self[attr] + + raise AttributeError( + f"'{type(self).__name__}' object has no attribute '{attr}'" + ) + + def _dir_additions(self): + return self.obj._dir_additions() + + def __repr__(self) -> str: + """ + Provide a nice str repr of our rolling object. + """ + attrs_list = ( + f"{attr_name}={getattr(self, attr_name)}" + for attr_name in self._attributes + if getattr(self, attr_name, None) is not None and attr_name[0] != "_" + ) + attrs = ",".join(attrs_list) + return f"{type(self).__name__} [{attrs}]" + + def __iter__(self) -> Iterator: + obj = self._selected_obj.set_axis(self._on) + obj = self._create_data(obj) + indexer = self._get_window_indexer() + + start, end = indexer.get_window_bounds( + num_values=len(obj), + min_periods=self.min_periods, + center=self.center, + closed=self.closed, + step=self.step, + ) + self._check_window_bounds(start, end, len(obj)) + + for s, e in zip(start, end): + result = obj.iloc[slice(s, e)] + yield result + + def _prep_values(self, values: ArrayLike) -> np.ndarray: + """Convert input to numpy arrays for Cython routines""" + if needs_i8_conversion(values.dtype): + raise NotImplementedError( + f"ops for {type(self).__name__} for this " + f"dtype {values.dtype} are not implemented" + ) + # GH #12373 : rolling functions error on float32 data + # make sure the data is coerced to float64 + try: + if isinstance(values, ExtensionArray): + values = values.to_numpy(np.float64, na_value=np.nan) + else: + values = ensure_float64(values) + except (ValueError, TypeError) as err: + raise TypeError(f"cannot handle this type -> {values.dtype}") from err + + # Convert inf to nan for C funcs + inf = np.isinf(values) + if inf.any(): + values = np.where(inf, np.nan, values) + + return values + + def _insert_on_column(self, result: DataFrame, obj: DataFrame) -> None: + # if we have an 'on' column we want to put it back into + # the results in the same location + from pandas import Series + + if self.on is not None and not self._on.equals(obj.index): + name = self._on.name + extra_col = Series(self._on, index=self.obj.index, name=name, copy=False) + if name in result.columns: + # TODO: sure we want to overwrite results? + result[name] = extra_col + elif name in result.index.names: + pass + elif name in self._selected_obj.columns: + # insert in the same location as we had in _selected_obj + old_cols = self._selected_obj.columns + new_cols = result.columns + old_loc = old_cols.get_loc(name) + overlap = new_cols.intersection(old_cols[:old_loc]) + new_loc = len(overlap) + result.insert(new_loc, name, extra_col) + else: + # insert at the end + result[name] = extra_col + + @property + def _index_array(self) -> npt.NDArray[np.int64] | None: + # TODO: why do we get here with e.g. MultiIndex? + if isinstance(self._on, (PeriodIndex, DatetimeIndex, TimedeltaIndex)): + return self._on.asi8 + elif isinstance(self._on.dtype, ArrowDtype) and self._on.dtype.kind in "mM": + return self._on.to_numpy(dtype=np.int64) + return None + + def _resolve_output(self, out: DataFrame, obj: DataFrame) -> DataFrame: + """Validate and finalize result.""" + if out.shape[1] == 0 and obj.shape[1] > 0: + raise DataError("No numeric types to aggregate") + if out.shape[1] == 0: + return obj.astype("float64") + + self._insert_on_column(out, obj) + return out + + def _get_window_indexer(self) -> BaseIndexer: + """ + Return an indexer class that will compute the window start and end bounds + """ + if isinstance(self.window, BaseIndexer): + return self.window + if self._win_freq_i8 is not None: + return VariableWindowIndexer( + index_array=self._index_array, + window_size=self._win_freq_i8, + center=self.center, + ) + return FixedWindowIndexer(window_size=self.window) + + def _apply_series( + self, homogeneous_func: Callable[..., ArrayLike], name: str | None = None + ) -> Series: + """ + Series version of _apply_columnwise + """ + obj = self._create_data(self._selected_obj) + + if name == "count": + # GH 12541: Special case for count where we support date-like types + obj = notna(obj).astype(int) + try: + values = self._prep_values(obj._values) + except (TypeError, NotImplementedError) as err: + raise DataError("No numeric types to aggregate") from err + + result = homogeneous_func(values) + index = self._slice_axis_for_step(obj.index, result) + return obj._constructor(result, index=index, name=obj.name) + + def _apply_columnwise( + self, + homogeneous_func: Callable[..., ArrayLike], + name: str, + numeric_only: bool = False, + ) -> DataFrame | Series: + """ + Apply the given function to the DataFrame broken down into homogeneous + sub-frames. + """ + self._validate_numeric_only(name, numeric_only) + if self._selected_obj.ndim == 1: + return self._apply_series(homogeneous_func, name) + + obj = self._create_data(self._selected_obj, numeric_only) + if name == "count": + # GH 12541: Special case for count where we support date-like types + obj = notna(obj).astype(int) + obj._mgr = obj._mgr.consolidate() + + if self.axis == 1: + obj = obj.T + + taker = [] + res_values = [] + for i, arr in enumerate(obj._iter_column_arrays()): + # GH#42736 operate column-wise instead of block-wise + # As of 2.0, hfunc will raise for nuisance columns + try: + arr = self._prep_values(arr) + except (TypeError, NotImplementedError) as err: + raise DataError( + f"Cannot aggregate non-numeric type: {arr.dtype}" + ) from err + res = homogeneous_func(arr) + res_values.append(res) + taker.append(i) + + index = self._slice_axis_for_step( + obj.index, res_values[0] if len(res_values) > 0 else None + ) + df = type(obj)._from_arrays( + res_values, + index=index, + columns=obj.columns.take(taker), + verify_integrity=False, + ) + + if self.axis == 1: + df = df.T + + return self._resolve_output(df, obj) + + def _apply_tablewise( + self, + homogeneous_func: Callable[..., ArrayLike], + name: str | None = None, + numeric_only: bool = False, + ) -> DataFrame | Series: + """ + Apply the given function to the DataFrame across the entire object + """ + if self._selected_obj.ndim == 1: + raise ValueError("method='table' not applicable for Series objects.") + obj = self._create_data(self._selected_obj, numeric_only) + values = self._prep_values(obj.to_numpy()) + values = values.T if self.axis == 1 else values + result = homogeneous_func(values) + result = result.T if self.axis == 1 else result + index = self._slice_axis_for_step(obj.index, result) + columns = ( + obj.columns + if result.shape[1] == len(obj.columns) + else obj.columns[:: self.step] + ) + out = obj._constructor(result, index=index, columns=columns) + + return self._resolve_output(out, obj) + + def _apply_pairwise( + self, + target: DataFrame | Series, + other: DataFrame | Series | None, + pairwise: bool | None, + func: Callable[[DataFrame | Series, DataFrame | Series], DataFrame | Series], + numeric_only: bool, + ) -> DataFrame | Series: + """ + Apply the given pairwise function given 2 pandas objects (DataFrame/Series) + """ + target = self._create_data(target, numeric_only) + if other is None: + other = target + # only default unset + pairwise = True if pairwise is None else pairwise + elif not isinstance(other, (ABCDataFrame, ABCSeries)): + raise ValueError("other must be a DataFrame or Series") + elif other.ndim == 2 and numeric_only: + other = self._make_numeric_only(other) + + return flex_binary_moment(target, other, func, pairwise=bool(pairwise)) + + def _apply( + self, + func: Callable[..., Any], + name: str, + numeric_only: bool = False, + numba_args: tuple[Any, ...] = (), + **kwargs, + ): + """ + Rolling statistical measure using supplied function. + + Designed to be used with passed-in Cython array-based functions. + + Parameters + ---------- + func : callable function to apply + name : str, + numba_args : tuple + args to be passed when func is a numba func + **kwargs + additional arguments for rolling function and window function + + Returns + ------- + y : type of input + """ + window_indexer = self._get_window_indexer() + min_periods = ( + self.min_periods + if self.min_periods is not None + else window_indexer.window_size + ) + + def homogeneous_func(values: np.ndarray): + # calculation function + + if values.size == 0: + return values.copy() + + def calc(x): + start, end = window_indexer.get_window_bounds( + num_values=len(x), + min_periods=min_periods, + center=self.center, + closed=self.closed, + step=self.step, + ) + self._check_window_bounds(start, end, len(x)) + + return func(x, start, end, min_periods, *numba_args) + + with np.errstate(all="ignore"): + result = calc(values) + + return result + + if self.method == "single": + return self._apply_columnwise(homogeneous_func, name, numeric_only) + else: + return self._apply_tablewise(homogeneous_func, name, numeric_only) + + def _numba_apply( + self, + func: Callable[..., Any], + engine_kwargs: dict[str, bool] | None = None, + **func_kwargs, + ): + window_indexer = self._get_window_indexer() + min_periods = ( + self.min_periods + if self.min_periods is not None + else window_indexer.window_size + ) + obj = self._create_data(self._selected_obj) + if self.axis == 1: + obj = obj.T + values = self._prep_values(obj.to_numpy()) + if values.ndim == 1: + values = values.reshape(-1, 1) + start, end = window_indexer.get_window_bounds( + num_values=len(values), + min_periods=min_periods, + center=self.center, + closed=self.closed, + step=self.step, + ) + self._check_window_bounds(start, end, len(values)) + # For now, map everything to float to match the Cython impl + # even though it is wrong + # TODO: Could preserve correct dtypes in future + # xref #53214 + dtype_mapping = executor.float_dtype_mapping + aggregator = executor.generate_shared_aggregator( + func, + dtype_mapping, + is_grouped_kernel=False, + **get_jit_arguments(engine_kwargs), + ) + result = aggregator( + values.T, start=start, end=end, min_periods=min_periods, **func_kwargs + ).T + result = result.T if self.axis == 1 else result + index = self._slice_axis_for_step(obj.index, result) + if obj.ndim == 1: + result = result.squeeze() + out = obj._constructor(result, index=index, name=obj.name) + return out + else: + columns = self._slice_axis_for_step(obj.columns, result.T) + out = obj._constructor(result, index=index, columns=columns) + return self._resolve_output(out, obj) + + def aggregate(self, func, *args, **kwargs): + result = ResamplerWindowApply(self, func, args=args, kwargs=kwargs).agg() + if result is None: + return self.apply(func, raw=False, args=args, kwargs=kwargs) + return result + + agg = aggregate + + +class BaseWindowGroupby(BaseWindow): + """ + Provide the groupby windowing facilities. + """ + + _grouper: BaseGrouper + _as_index: bool + _attributes: list[str] = ["_grouper"] + + def __init__( + self, + obj: DataFrame | Series, + *args, + _grouper: BaseGrouper, + _as_index: bool = True, + **kwargs, + ) -> None: + from pandas.core.groupby.ops import BaseGrouper + + if not isinstance(_grouper, BaseGrouper): + raise ValueError("Must pass a BaseGrouper object.") + self._grouper = _grouper + self._as_index = _as_index + # GH 32262: It's convention to keep the grouping column in + # groupby., but unexpected to users in + # groupby.rolling. + obj = obj.drop(columns=self._grouper.names, errors="ignore") + # GH 15354 + if kwargs.get("step") is not None: + raise NotImplementedError("step not implemented for groupby") + super().__init__(obj, *args, **kwargs) + + def _apply( + self, + func: Callable[..., Any], + name: str, + numeric_only: bool = False, + numba_args: tuple[Any, ...] = (), + **kwargs, + ) -> DataFrame | Series: + result = super()._apply( + func, + name, + numeric_only, + numba_args, + **kwargs, + ) + # Reconstruct the resulting MultiIndex + # 1st set of levels = group by labels + # 2nd set of levels = original DataFrame/Series index + grouped_object_index = self.obj.index + grouped_index_name = [*grouped_object_index.names] + groupby_keys = copy.copy(self._grouper.names) + result_index_names = groupby_keys + grouped_index_name + + drop_columns = [ + key + for key in self._grouper.names + if key not in self.obj.index.names or key is None + ] + + if len(drop_columns) != len(groupby_keys): + # Our result will have still kept the column in the result + result = result.drop(columns=drop_columns, errors="ignore") + + codes = self._grouper.codes + levels = copy.copy(self._grouper.levels) + + group_indices = self._grouper.indices.values() + if group_indices: + indexer = np.concatenate(list(group_indices)) + else: + indexer = np.array([], dtype=np.intp) + codes = [c.take(indexer) for c in codes] + + # if the index of the original dataframe needs to be preserved, append + # this index (but reordered) to the codes/levels from the groupby + if grouped_object_index is not None: + idx = grouped_object_index.take(indexer) + if not isinstance(idx, MultiIndex): + idx = MultiIndex.from_arrays([idx]) + codes.extend(list(idx.codes)) + levels.extend(list(idx.levels)) + + result_index = MultiIndex( + levels, codes, names=result_index_names, verify_integrity=False + ) + + result.index = result_index + if not self._as_index: + result = result.reset_index(level=list(range(len(groupby_keys)))) + return result + + def _apply_pairwise( + self, + target: DataFrame | Series, + other: DataFrame | Series | None, + pairwise: bool | None, + func: Callable[[DataFrame | Series, DataFrame | Series], DataFrame | Series], + numeric_only: bool, + ) -> DataFrame | Series: + """ + Apply the given pairwise function given 2 pandas objects (DataFrame/Series) + """ + # Manually drop the grouping column first + target = target.drop(columns=self._grouper.names, errors="ignore") + result = super()._apply_pairwise(target, other, pairwise, func, numeric_only) + # 1) Determine the levels + codes of the groupby levels + if other is not None and not all( + len(group) == len(other) for group in self._grouper.indices.values() + ): + # GH 42915 + # len(other) != len(any group), so must reindex (expand) the result + # from flex_binary_moment to a "transform"-like result + # per groupby combination + old_result_len = len(result) + result = concat( + [ + result.take(gb_indices).reindex(result.index) + for gb_indices in self._grouper.indices.values() + ] + ) + + gb_pairs = ( + com.maybe_make_list(pair) for pair in self._grouper.indices.keys() + ) + groupby_codes = [] + groupby_levels = [] + # e.g. [[1, 2], [4, 5]] as [[1, 4], [2, 5]] + for gb_level_pair in map(list, zip(*gb_pairs)): + labels = np.repeat(np.array(gb_level_pair), old_result_len) + codes, levels = factorize(labels) + groupby_codes.append(codes) + groupby_levels.append(levels) + else: + # pairwise=True or len(other) == len(each group), so repeat + # the groupby labels by the number of columns in the original object + groupby_codes = self._grouper.codes + # error: Incompatible types in assignment (expression has type + # "List[Index]", variable has type "List[Union[ndarray, Index]]") + groupby_levels = self._grouper.levels # type: ignore[assignment] + + group_indices = self._grouper.indices.values() + if group_indices: + indexer = np.concatenate(list(group_indices)) + else: + indexer = np.array([], dtype=np.intp) + + if target.ndim == 1: + repeat_by = 1 + else: + repeat_by = len(target.columns) + groupby_codes = [ + np.repeat(c.take(indexer), repeat_by) for c in groupby_codes + ] + # 2) Determine the levels + codes of the result from super()._apply_pairwise + if isinstance(result.index, MultiIndex): + result_codes = list(result.index.codes) + result_levels = list(result.index.levels) + result_names = list(result.index.names) + else: + idx_codes, idx_levels = factorize(result.index) + result_codes = [idx_codes] + result_levels = [idx_levels] + result_names = [result.index.name] + + # 3) Create the resulting index by combining 1) + 2) + result_codes = groupby_codes + result_codes + result_levels = groupby_levels + result_levels + result_names = self._grouper.names + result_names + + result_index = MultiIndex( + result_levels, result_codes, names=result_names, verify_integrity=False + ) + result.index = result_index + return result + + def _create_data(self, obj: NDFrameT, numeric_only: bool = False) -> NDFrameT: + """ + Split data into blocks & return conformed data. + """ + # Ensure the object we're rolling over is monotonically sorted relative + # to the groups + # GH 36197 + if not obj.empty: + groupby_order = np.concatenate(list(self._grouper.indices.values())).astype( + np.int64 + ) + obj = obj.take(groupby_order) + return super()._create_data(obj, numeric_only) + + def _gotitem(self, key, ndim, subset=None): + # we are setting the index on the actual object + # here so our index is carried through to the selected obj + # when we do the splitting for the groupby + if self.on is not None: + # GH 43355 + subset = self.obj.set_index(self._on) + return super()._gotitem(key, ndim, subset=subset) + + +class Window(BaseWindow): + """ + Provide rolling window calculations. + + Parameters + ---------- + window : int, timedelta, str, offset, or BaseIndexer subclass + Size of the moving window. + + If an integer, the fixed number of observations used for + each window. + + If a timedelta, str, or offset, the time period of each window. Each + window will be a variable sized based on the observations included in + the time-period. This is only valid for datetimelike indexes. + To learn more about the offsets & frequency strings, please see `this link + `__. + + If a BaseIndexer subclass, the window boundaries + based on the defined ``get_window_bounds`` method. Additional rolling + keyword arguments, namely ``min_periods``, ``center``, ``closed`` and + ``step`` will be passed to ``get_window_bounds``. + + min_periods : int, default None + Minimum number of observations in window required to have a value; + otherwise, result is ``np.nan``. + + For a window that is specified by an offset, ``min_periods`` will default to 1. + + For a window that is specified by an integer, ``min_periods`` will default + to the size of the window. + + center : bool, default False + If False, set the window labels as the right edge of the window index. + + If True, set the window labels as the center of the window index. + + win_type : str, default None + If ``None``, all points are evenly weighted. + + If a string, it must be a valid `scipy.signal window function + `__. + + Certain Scipy window types require additional parameters to be passed + in the aggregation function. The additional parameters must match + the keywords specified in the Scipy window type method signature. + + on : str, optional + For a DataFrame, a column label or Index level on which + to calculate the rolling window, rather than the DataFrame's index. + + Provided integer column is ignored and excluded from result since + an integer index is not used to calculate the rolling window. + + axis : int or str, default 0 + If ``0`` or ``'index'``, roll across the rows. + + If ``1`` or ``'columns'``, roll across the columns. + + For `Series` this parameter is unused and defaults to 0. + + .. deprecated:: 2.1.0 + + The axis keyword is deprecated. For ``axis=1``, + transpose the DataFrame first instead. + + closed : str, default None + If ``'right'``, the first point in the window is excluded from calculations. + + If ``'left'``, the last point in the window is excluded from calculations. + + If ``'both'``, the no points in the window are excluded from calculations. + + If ``'neither'``, the first and last points in the window are excluded + from calculations. + + Default ``None`` (``'right'``). + + step : int, default None + + .. versionadded:: 1.5.0 + + Evaluate the window at every ``step`` result, equivalent to slicing as + ``[::step]``. ``window`` must be an integer. Using a step argument other + than None or 1 will produce a result with a different shape than the input. + + method : str {'single', 'table'}, default 'single' + + .. versionadded:: 1.3.0 + + Execute the rolling operation per single column or row (``'single'``) + or over the entire object (``'table'``). + + This argument is only implemented when specifying ``engine='numba'`` + in the method call. + + Returns + ------- + pandas.api.typing.Window or pandas.api.typing.Rolling + An instance of Window is returned if ``win_type`` is passed. Otherwise, + an instance of Rolling is returned. + + See Also + -------- + expanding : Provides expanding transformations. + ewm : Provides exponential weighted functions. + + Notes + ----- + See :ref:`Windowing Operations ` for further usage details + and examples. + + Examples + -------- + >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) + >>> df + B + 0 0.0 + 1 1.0 + 2 2.0 + 3 NaN + 4 4.0 + + **window** + + Rolling sum with a window length of 2 observations. + + >>> df.rolling(2).sum() + B + 0 NaN + 1 1.0 + 2 3.0 + 3 NaN + 4 NaN + + Rolling sum with a window span of 2 seconds. + + >>> df_time = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, + ... index=[pd.Timestamp('20130101 09:00:00'), + ... pd.Timestamp('20130101 09:00:02'), + ... pd.Timestamp('20130101 09:00:03'), + ... pd.Timestamp('20130101 09:00:05'), + ... pd.Timestamp('20130101 09:00:06')]) + + >>> df_time + B + 2013-01-01 09:00:00 0.0 + 2013-01-01 09:00:02 1.0 + 2013-01-01 09:00:03 2.0 + 2013-01-01 09:00:05 NaN + 2013-01-01 09:00:06 4.0 + + >>> df_time.rolling('2s').sum() + B + 2013-01-01 09:00:00 0.0 + 2013-01-01 09:00:02 1.0 + 2013-01-01 09:00:03 3.0 + 2013-01-01 09:00:05 NaN + 2013-01-01 09:00:06 4.0 + + Rolling sum with forward looking windows with 2 observations. + + >>> indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=2) + >>> df.rolling(window=indexer, min_periods=1).sum() + B + 0 1.0 + 1 3.0 + 2 2.0 + 3 4.0 + 4 4.0 + + **min_periods** + + Rolling sum with a window length of 2 observations, but only needs a minimum of 1 + observation to calculate a value. + + >>> df.rolling(2, min_periods=1).sum() + B + 0 0.0 + 1 1.0 + 2 3.0 + 3 2.0 + 4 4.0 + + **center** + + Rolling sum with the result assigned to the center of the window index. + + >>> df.rolling(3, min_periods=1, center=True).sum() + B + 0 1.0 + 1 3.0 + 2 3.0 + 3 6.0 + 4 4.0 + + >>> df.rolling(3, min_periods=1, center=False).sum() + B + 0 0.0 + 1 1.0 + 2 3.0 + 3 3.0 + 4 6.0 + + **step** + + Rolling sum with a window length of 2 observations, minimum of 1 observation to + calculate a value, and a step of 2. + + >>> df.rolling(2, min_periods=1, step=2).sum() + B + 0 0.0 + 2 3.0 + 4 4.0 + + **win_type** + + Rolling sum with a window length of 2, using the Scipy ``'gaussian'`` + window type. ``std`` is required in the aggregation function. + + >>> df.rolling(2, win_type='gaussian').sum(std=3) + B + 0 NaN + 1 0.986207 + 2 2.958621 + 3 NaN + 4 NaN + + **on** + + Rolling sum with a window length of 2 days. + + >>> df = pd.DataFrame({ + ... 'A': [pd.to_datetime('2020-01-01'), + ... pd.to_datetime('2020-01-01'), + ... pd.to_datetime('2020-01-02'),], + ... 'B': [1, 2, 3], }, + ... index=pd.date_range('2020', periods=3)) + + >>> df + A B + 2020-01-01 2020-01-01 1 + 2020-01-02 2020-01-01 2 + 2020-01-03 2020-01-02 3 + + >>> df.rolling('2D', on='A').sum() + A B + 2020-01-01 2020-01-01 1.0 + 2020-01-02 2020-01-01 3.0 + 2020-01-03 2020-01-02 6.0 + """ + + _attributes = [ + "window", + "min_periods", + "center", + "win_type", + "axis", + "on", + "closed", + "step", + "method", + ] + + def _validate(self): + super()._validate() + + if not isinstance(self.win_type, str): + raise ValueError(f"Invalid win_type {self.win_type}") + signal = import_optional_dependency( + "scipy.signal.windows", extra="Scipy is required to generate window weight." + ) + self._scipy_weight_generator = getattr(signal, self.win_type, None) + if self._scipy_weight_generator is None: + raise ValueError(f"Invalid win_type {self.win_type}") + + if isinstance(self.window, BaseIndexer): + raise NotImplementedError( + "BaseIndexer subclasses not implemented with win_types." + ) + if not is_integer(self.window) or self.window < 0: + raise ValueError("window must be an integer 0 or greater") + + if self.method != "single": + raise NotImplementedError("'single' is the only supported method type.") + + def _center_window(self, result: np.ndarray, offset: int) -> np.ndarray: + """ + Center the result in the window for weighted rolling aggregations. + """ + if offset > 0: + lead_indexer = [slice(offset, None)] + result = np.copy(result[tuple(lead_indexer)]) + return result + + def _apply( + self, + func: Callable[[np.ndarray, int, int], np.ndarray], + name: str, + numeric_only: bool = False, + numba_args: tuple[Any, ...] = (), + **kwargs, + ): + """ + Rolling with weights statistical measure using supplied function. + + Designed to be used with passed-in Cython array-based functions. + + Parameters + ---------- + func : callable function to apply + name : str, + numeric_only : bool, default False + Whether to only operate on bool, int, and float columns + numba_args : tuple + unused + **kwargs + additional arguments for scipy windows if necessary + + Returns + ------- + y : type of input + """ + # "None" not callable [misc] + window = self._scipy_weight_generator( # type: ignore[misc] + self.window, **kwargs + ) + offset = (len(window) - 1) // 2 if self.center else 0 + + def homogeneous_func(values: np.ndarray): + # calculation function + + if values.size == 0: + return values.copy() + + def calc(x): + additional_nans = np.array([np.nan] * offset) + x = np.concatenate((x, additional_nans)) + return func( + x, + window, + self.min_periods if self.min_periods is not None else len(window), + ) + + with np.errstate(all="ignore"): + # Our weighted aggregations return memoryviews + result = np.asarray(calc(values)) + + if self.center: + result = self._center_window(result, offset) + + return result + + return self._apply_columnwise(homogeneous_func, name, numeric_only)[ + :: self.step + ] + + @doc( + _shared_docs["aggregate"], + see_also=dedent( + """ + See Also + -------- + pandas.DataFrame.aggregate : Similar DataFrame method. + pandas.Series.aggregate : Similar Series method. + """ + ), + examples=dedent( + """ + Examples + -------- + >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) + >>> df + A B C + 0 1 4 7 + 1 2 5 8 + 2 3 6 9 + + >>> df.rolling(2, win_type="boxcar").agg("mean") + A B C + 0 NaN NaN NaN + 1 1.5 4.5 7.5 + 2 2.5 5.5 8.5 + """ + ), + klass="Series/DataFrame", + axis="", + ) + def aggregate(self, func, *args, **kwargs): + result = ResamplerWindowApply(self, func, args=args, kwargs=kwargs).agg() + if result is None: + # these must apply directly + result = func(self) + + return result + + agg = aggregate + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + kwargs_scipy, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([0, 1, 5, 2, 8]) + + To get an instance of :class:`~pandas.core.window.rolling.Window` we need + to pass the parameter `win_type`. + + >>> type(ser.rolling(2, win_type='gaussian')) + + + In order to use the `SciPy` Gaussian window we need to provide the parameters + `M` and `std`. The parameter `M` corresponds to 2 in our example. + We pass the second parameter `std` as a parameter of the following method + (`sum` in this case): + + >>> ser.rolling(2, win_type='gaussian').sum(std=3) + 0 NaN + 1 0.986207 + 2 5.917243 + 3 6.903450 + 4 9.862071 + dtype: float64 + """ + ), + window_method="rolling", + aggregation_description="weighted window sum", + agg_method="sum", + ) + def sum(self, numeric_only: bool = False, **kwargs): + window_func = window_aggregations.roll_weighted_sum + # error: Argument 1 to "_apply" of "Window" has incompatible type + # "Callable[[ndarray, ndarray, int], ndarray]"; expected + # "Callable[[ndarray, int, int], ndarray]" + return self._apply( + window_func, # type: ignore[arg-type] + name="sum", + numeric_only=numeric_only, + **kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + kwargs_scipy, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([0, 1, 5, 2, 8]) + + To get an instance of :class:`~pandas.core.window.rolling.Window` we need + to pass the parameter `win_type`. + + >>> type(ser.rolling(2, win_type='gaussian')) + + + In order to use the `SciPy` Gaussian window we need to provide the parameters + `M` and `std`. The parameter `M` corresponds to 2 in our example. + We pass the second parameter `std` as a parameter of the following method: + + >>> ser.rolling(2, win_type='gaussian').mean(std=3) + 0 NaN + 1 0.5 + 2 3.0 + 3 3.5 + 4 5.0 + dtype: float64 + """ + ), + window_method="rolling", + aggregation_description="weighted window mean", + agg_method="mean", + ) + def mean(self, numeric_only: bool = False, **kwargs): + window_func = window_aggregations.roll_weighted_mean + # error: Argument 1 to "_apply" of "Window" has incompatible type + # "Callable[[ndarray, ndarray, int], ndarray]"; expected + # "Callable[[ndarray, int, int], ndarray]" + return self._apply( + window_func, # type: ignore[arg-type] + name="mean", + numeric_only=numeric_only, + **kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + kwargs_scipy, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([0, 1, 5, 2, 8]) + + To get an instance of :class:`~pandas.core.window.rolling.Window` we need + to pass the parameter `win_type`. + + >>> type(ser.rolling(2, win_type='gaussian')) + + + In order to use the `SciPy` Gaussian window we need to provide the parameters + `M` and `std`. The parameter `M` corresponds to 2 in our example. + We pass the second parameter `std` as a parameter of the following method: + + >>> ser.rolling(2, win_type='gaussian').var(std=3) + 0 NaN + 1 0.5 + 2 8.0 + 3 4.5 + 4 18.0 + dtype: float64 + """ + ), + window_method="rolling", + aggregation_description="weighted window variance", + agg_method="var", + ) + def var(self, ddof: int = 1, numeric_only: bool = False, **kwargs): + window_func = partial(window_aggregations.roll_weighted_var, ddof=ddof) + kwargs.pop("name", None) + return self._apply(window_func, name="var", numeric_only=numeric_only, **kwargs) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + kwargs_scipy, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([0, 1, 5, 2, 8]) + + To get an instance of :class:`~pandas.core.window.rolling.Window` we need + to pass the parameter `win_type`. + + >>> type(ser.rolling(2, win_type='gaussian')) + + + In order to use the `SciPy` Gaussian window we need to provide the parameters + `M` and `std`. The parameter `M` corresponds to 2 in our example. + We pass the second parameter `std` as a parameter of the following method: + + >>> ser.rolling(2, win_type='gaussian').std(std=3) + 0 NaN + 1 0.707107 + 2 2.828427 + 3 2.121320 + 4 4.242641 + dtype: float64 + """ + ), + window_method="rolling", + aggregation_description="weighted window standard deviation", + agg_method="std", + ) + def std(self, ddof: int = 1, numeric_only: bool = False, **kwargs): + return zsqrt( + self.var(ddof=ddof, name="std", numeric_only=numeric_only, **kwargs) + ) + + +class RollingAndExpandingMixin(BaseWindow): + def count(self, numeric_only: bool = False): + window_func = window_aggregations.roll_sum + return self._apply(window_func, name="count", numeric_only=numeric_only) + + def apply( + self, + func: Callable[..., Any], + raw: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + args: tuple[Any, ...] | None = None, + kwargs: dict[str, Any] | None = None, + ): + if args is None: + args = () + if kwargs is None: + kwargs = {} + + if not is_bool(raw): + raise ValueError("raw parameter must be `True` or `False`") + + numba_args: tuple[Any, ...] = () + if maybe_use_numba(engine): + if raw is False: + raise ValueError("raw must be `True` when using the numba engine") + numba_args = args + if self.method == "single": + apply_func = generate_numba_apply_func( + func, **get_jit_arguments(engine_kwargs, kwargs) + ) + else: + apply_func = generate_numba_table_func( + func, **get_jit_arguments(engine_kwargs, kwargs) + ) + elif engine in ("cython", None): + if engine_kwargs is not None: + raise ValueError("cython engine does not accept engine_kwargs") + apply_func = self._generate_cython_apply_func(args, kwargs, raw, func) + else: + raise ValueError("engine must be either 'numba' or 'cython'") + + return self._apply( + apply_func, + name="apply", + numba_args=numba_args, + ) + + def _generate_cython_apply_func( + self, + args: tuple[Any, ...], + kwargs: dict[str, Any], + raw: bool | np.bool_, + function: Callable[..., Any], + ) -> Callable[[np.ndarray, np.ndarray, np.ndarray, int], np.ndarray]: + from pandas import Series + + window_func = partial( + window_aggregations.roll_apply, + args=args, + kwargs=kwargs, + raw=raw, + function=function, + ) + + def apply_func(values, begin, end, min_periods, raw=raw): + if not raw: + # GH 45912 + values = Series(values, index=self._on, copy=False) + return window_func(values, begin, end, min_periods) + + return apply_func + + def sum( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + if self.method == "table": + func = generate_manual_numpy_nan_agg_with_axis(np.nansum) + return self.apply( + func, + raw=True, + engine=engine, + engine_kwargs=engine_kwargs, + ) + else: + from pandas.core._numba.kernels import sliding_sum + + return self._numba_apply(sliding_sum, engine_kwargs) + window_func = window_aggregations.roll_sum + return self._apply(window_func, name="sum", numeric_only=numeric_only) + + def max( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + if self.method == "table": + func = generate_manual_numpy_nan_agg_with_axis(np.nanmax) + return self.apply( + func, + raw=True, + engine=engine, + engine_kwargs=engine_kwargs, + ) + else: + from pandas.core._numba.kernels import sliding_min_max + + return self._numba_apply(sliding_min_max, engine_kwargs, is_max=True) + window_func = window_aggregations.roll_max + return self._apply(window_func, name="max", numeric_only=numeric_only) + + def min( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + if self.method == "table": + func = generate_manual_numpy_nan_agg_with_axis(np.nanmin) + return self.apply( + func, + raw=True, + engine=engine, + engine_kwargs=engine_kwargs, + ) + else: + from pandas.core._numba.kernels import sliding_min_max + + return self._numba_apply(sliding_min_max, engine_kwargs, is_max=False) + window_func = window_aggregations.roll_min + return self._apply(window_func, name="min", numeric_only=numeric_only) + + def mean( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + if self.method == "table": + func = generate_manual_numpy_nan_agg_with_axis(np.nanmean) + return self.apply( + func, + raw=True, + engine=engine, + engine_kwargs=engine_kwargs, + ) + else: + from pandas.core._numba.kernels import sliding_mean + + return self._numba_apply(sliding_mean, engine_kwargs) + window_func = window_aggregations.roll_mean + return self._apply(window_func, name="mean", numeric_only=numeric_only) + + def median( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + if self.method == "table": + func = generate_manual_numpy_nan_agg_with_axis(np.nanmedian) + else: + func = np.nanmedian + + return self.apply( + func, + raw=True, + engine=engine, + engine_kwargs=engine_kwargs, + ) + window_func = window_aggregations.roll_median_c + return self._apply(window_func, name="median", numeric_only=numeric_only) + + def std( + self, + ddof: int = 1, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + if self.method == "table": + raise NotImplementedError("std not supported with method='table'") + from pandas.core._numba.kernels import sliding_var + + return zsqrt(self._numba_apply(sliding_var, engine_kwargs, ddof=ddof)) + window_func = window_aggregations.roll_var + + def zsqrt_func(values, begin, end, min_periods): + return zsqrt(window_func(values, begin, end, min_periods, ddof=ddof)) + + return self._apply( + zsqrt_func, + name="std", + numeric_only=numeric_only, + ) + + def var( + self, + ddof: int = 1, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + if maybe_use_numba(engine): + if self.method == "table": + raise NotImplementedError("var not supported with method='table'") + from pandas.core._numba.kernels import sliding_var + + return self._numba_apply(sliding_var, engine_kwargs, ddof=ddof) + window_func = partial(window_aggregations.roll_var, ddof=ddof) + return self._apply( + window_func, + name="var", + numeric_only=numeric_only, + ) + + def skew(self, numeric_only: bool = False): + window_func = window_aggregations.roll_skew + return self._apply( + window_func, + name="skew", + numeric_only=numeric_only, + ) + + def sem(self, ddof: int = 1, numeric_only: bool = False): + # Raise here so error message says sem instead of std + self._validate_numeric_only("sem", numeric_only) + return self.std(numeric_only=numeric_only) / ( + self.count(numeric_only=numeric_only) - ddof + ).pow(0.5) + + def kurt(self, numeric_only: bool = False): + window_func = window_aggregations.roll_kurt + return self._apply( + window_func, + name="kurt", + numeric_only=numeric_only, + ) + + def quantile( + self, + q: float, + interpolation: QuantileInterpolation = "linear", + numeric_only: bool = False, + ): + if q == 1.0: + window_func = window_aggregations.roll_max + elif q == 0.0: + window_func = window_aggregations.roll_min + else: + window_func = partial( + window_aggregations.roll_quantile, + quantile=q, + interpolation=interpolation, + ) + + return self._apply(window_func, name="quantile", numeric_only=numeric_only) + + def rank( + self, + method: WindowingRankType = "average", + ascending: bool = True, + pct: bool = False, + numeric_only: bool = False, + ): + window_func = partial( + window_aggregations.roll_rank, + method=method, + ascending=ascending, + percentile=pct, + ) + + return self._apply(window_func, name="rank", numeric_only=numeric_only) + + def cov( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + ddof: int = 1, + numeric_only: bool = False, + ): + if self.step is not None: + raise NotImplementedError("step not implemented for cov") + self._validate_numeric_only("cov", numeric_only) + + from pandas import Series + + def cov_func(x, y): + x_array = self._prep_values(x) + y_array = self._prep_values(y) + window_indexer = self._get_window_indexer() + min_periods = ( + self.min_periods + if self.min_periods is not None + else window_indexer.window_size + ) + start, end = window_indexer.get_window_bounds( + num_values=len(x_array), + min_periods=min_periods, + center=self.center, + closed=self.closed, + step=self.step, + ) + self._check_window_bounds(start, end, len(x_array)) + + with np.errstate(all="ignore"): + mean_x_y = window_aggregations.roll_mean( + x_array * y_array, start, end, min_periods + ) + mean_x = window_aggregations.roll_mean(x_array, start, end, min_periods) + mean_y = window_aggregations.roll_mean(y_array, start, end, min_periods) + count_x_y = window_aggregations.roll_sum( + notna(x_array + y_array).astype(np.float64), start, end, 0 + ) + result = (mean_x_y - mean_x * mean_y) * (count_x_y / (count_x_y - ddof)) + return Series(result, index=x.index, name=x.name, copy=False) + + return self._apply_pairwise( + self._selected_obj, other, pairwise, cov_func, numeric_only + ) + + def corr( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + ddof: int = 1, + numeric_only: bool = False, + ): + if self.step is not None: + raise NotImplementedError("step not implemented for corr") + self._validate_numeric_only("corr", numeric_only) + + from pandas import Series + + def corr_func(x, y): + x_array = self._prep_values(x) + y_array = self._prep_values(y) + window_indexer = self._get_window_indexer() + min_periods = ( + self.min_periods + if self.min_periods is not None + else window_indexer.window_size + ) + start, end = window_indexer.get_window_bounds( + num_values=len(x_array), + min_periods=min_periods, + center=self.center, + closed=self.closed, + step=self.step, + ) + self._check_window_bounds(start, end, len(x_array)) + + with np.errstate(all="ignore"): + mean_x_y = window_aggregations.roll_mean( + x_array * y_array, start, end, min_periods + ) + mean_x = window_aggregations.roll_mean(x_array, start, end, min_periods) + mean_y = window_aggregations.roll_mean(y_array, start, end, min_periods) + count_x_y = window_aggregations.roll_sum( + notna(x_array + y_array).astype(np.float64), start, end, 0 + ) + x_var = window_aggregations.roll_var( + x_array, start, end, min_periods, ddof + ) + y_var = window_aggregations.roll_var( + y_array, start, end, min_periods, ddof + ) + numerator = (mean_x_y - mean_x * mean_y) * ( + count_x_y / (count_x_y - ddof) + ) + denominator = (x_var * y_var) ** 0.5 + result = numerator / denominator + return Series(result, index=x.index, name=x.name, copy=False) + + return self._apply_pairwise( + self._selected_obj, other, pairwise, corr_func, numeric_only + ) + + +class Rolling(RollingAndExpandingMixin): + _attributes: list[str] = [ + "window", + "min_periods", + "center", + "win_type", + "axis", + "on", + "closed", + "step", + "method", + ] + + def _validate(self): + super()._validate() + + # we allow rolling on a datetimelike index + if ( + self.obj.empty + or isinstance(self._on, (DatetimeIndex, TimedeltaIndex, PeriodIndex)) + or (isinstance(self._on.dtype, ArrowDtype) and self._on.dtype.kind in "mM") + ) and isinstance(self.window, (str, BaseOffset, timedelta)): + self._validate_datetimelike_monotonic() + + # this will raise ValueError on non-fixed freqs + try: + freq = to_offset(self.window) + except (TypeError, ValueError) as err: + raise ValueError( + f"passed window {self.window} is not " + "compatible with a datetimelike index" + ) from err + if isinstance(self._on, PeriodIndex): + # error: Incompatible types in assignment (expression has type + # "float", variable has type "Optional[int]") + self._win_freq_i8 = freq.nanos / ( # type: ignore[assignment] + self._on.freq.nanos / self._on.freq.n + ) + else: + try: + unit = dtype_to_unit(self._on.dtype) # type: ignore[arg-type] + except TypeError: + # if not a datetime dtype, eg for empty dataframes + unit = "ns" + self._win_freq_i8 = Timedelta(freq.nanos).as_unit(unit)._value + + # min_periods must be an integer + if self.min_periods is None: + self.min_periods = 1 + + if self.step is not None: + raise NotImplementedError( + "step is not supported with frequency windows" + ) + + elif isinstance(self.window, BaseIndexer): + # Passed BaseIndexer subclass should handle all other rolling kwargs + pass + elif not is_integer(self.window) or self.window < 0: + raise ValueError("window must be an integer 0 or greater") + + def _validate_datetimelike_monotonic(self) -> None: + """ + Validate self._on is monotonic (increasing or decreasing) and has + no NaT values for frequency windows. + """ + if self._on.hasnans: + self._raise_monotonic_error("values must not have NaT") + if not (self._on.is_monotonic_increasing or self._on.is_monotonic_decreasing): + self._raise_monotonic_error("values must be monotonic") + + def _raise_monotonic_error(self, msg: str): + on = self.on + if on is None: + if self.axis == 0: + on = "index" + else: + on = "column" + raise ValueError(f"{on} {msg}") + + @doc( + _shared_docs["aggregate"], + see_also=dedent( + """ + See Also + -------- + pandas.Series.rolling : Calling object with Series data. + pandas.DataFrame.rolling : Calling object with DataFrame data. + """ + ), + examples=dedent( + """ + Examples + -------- + >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]}) + >>> df + A B C + 0 1 4 7 + 1 2 5 8 + 2 3 6 9 + + >>> df.rolling(2).sum() + A B C + 0 NaN NaN NaN + 1 3.0 9.0 15.0 + 2 5.0 11.0 17.0 + + >>> df.rolling(2).agg({"A": "sum", "B": "min"}) + A B + 0 NaN NaN + 1 3.0 4.0 + 2 5.0 5.0 + """ + ), + klass="Series/Dataframe", + axis="", + ) + def aggregate(self, func, *args, **kwargs): + return super().aggregate(func, *args, **kwargs) + + agg = aggregate + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([2, 3, np.nan, 10]) + >>> s.rolling(2).count() + 0 NaN + 1 2.0 + 2 1.0 + 3 1.0 + dtype: float64 + >>> s.rolling(3).count() + 0 NaN + 1 NaN + 2 2.0 + 3 2.0 + dtype: float64 + >>> s.rolling(4).count() + 0 NaN + 1 NaN + 2 NaN + 3 3.0 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="count of non NaN observations", + agg_method="count", + ) + def count(self, numeric_only: bool = False): + return super().count(numeric_only) + + @doc( + template_header, + create_section_header("Parameters"), + window_apply_parameters, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 6, 5, 4]) + >>> ser.rolling(2).apply(lambda s: s.sum() - s.min()) + 0 NaN + 1 6.0 + 2 6.0 + 3 5.0 + dtype: float64 + """ + ), + window_method="rolling", + aggregation_description="custom aggregation function", + agg_method="apply", + ) + def apply( + self, + func: Callable[..., Any], + raw: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + args: tuple[Any, ...] | None = None, + kwargs: dict[str, Any] | None = None, + ): + return super().apply( + func, + raw=raw, + engine=engine, + engine_kwargs=engine_kwargs, + args=args, + kwargs=kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([1, 2, 3, 4, 5]) + >>> s + 0 1 + 1 2 + 2 3 + 3 4 + 4 5 + dtype: int64 + + >>> s.rolling(3).sum() + 0 NaN + 1 NaN + 2 6.0 + 3 9.0 + 4 12.0 + dtype: float64 + + >>> s.rolling(3, center=True).sum() + 0 NaN + 1 6.0 + 2 9.0 + 3 12.0 + 4 NaN + dtype: float64 + + For DataFrame, each sum is computed column-wise. + + >>> df = pd.DataFrame({{"A": s, "B": s ** 2}}) + >>> df + A B + 0 1 1 + 1 2 4 + 2 3 9 + 3 4 16 + 4 5 25 + + >>> df.rolling(3).sum() + A B + 0 NaN NaN + 1 NaN NaN + 2 6.0 14.0 + 3 9.0 29.0 + 4 12.0 50.0 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="sum", + agg_method="sum", + ) + def sum( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().sum( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 2, 3, 4]) + >>> ser.rolling(2).max() + 0 NaN + 1 2.0 + 2 3.0 + 3 4.0 + dtype: float64 + """ + ), + window_method="rolling", + aggregation_description="maximum", + agg_method="max", + ) + def max( + self, + numeric_only: bool = False, + *args, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + **kwargs, + ): + return super().max( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """ + Performing a rolling minimum with a window size of 3. + + >>> s = pd.Series([4, 3, 5, 2, 6]) + >>> s.rolling(3).min() + 0 NaN + 1 NaN + 2 3.0 + 3 2.0 + 4 2.0 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="minimum", + agg_method="min", + ) + def min( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().min( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """ + The below examples will show rolling mean calculations with window sizes of + two and three, respectively. + + >>> s = pd.Series([1, 2, 3, 4]) + >>> s.rolling(2).mean() + 0 NaN + 1 1.5 + 2 2.5 + 3 3.5 + dtype: float64 + + >>> s.rolling(3).mean() + 0 NaN + 1 NaN + 2 2.0 + 3 3.0 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="mean", + agg_method="mean", + ) + def mean( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().mean( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + window_agg_numba_parameters(), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + numba_notes, + create_section_header("Examples"), + dedent( + """ + Compute the rolling median of a series with a window size of 3. + + >>> s = pd.Series([0, 1, 2, 3, 4]) + >>> s.rolling(3).median() + 0 NaN + 1 NaN + 2 1.0 + 3 2.0 + 4 3.0 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="median", + agg_method="median", + ) + def median( + self, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().median( + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + ddof : int, default 1 + Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + window_agg_numba_parameters("1.4"), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + "numpy.std : Equivalent method for NumPy array.\n", + template_see_also, + create_section_header("Notes"), + dedent( + """ + The default ``ddof`` of 1 used in :meth:`Series.std` is different + than the default ``ddof`` of 0 in :func:`numpy.std`. + + A minimum of one period is required for the rolling calculation.\n + """ + ).replace("\n", "", 1), + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) + >>> s.rolling(3).std() + 0 NaN + 1 NaN + 2 0.577350 + 3 1.000000 + 4 1.000000 + 5 1.154701 + 6 0.000000 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="standard deviation", + agg_method="std", + ) + def std( + self, + ddof: int = 1, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().std( + ddof=ddof, + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + ddof : int, default 1 + Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + window_agg_numba_parameters("1.4"), + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + "numpy.var : Equivalent method for NumPy array.\n", + template_see_also, + create_section_header("Notes"), + dedent( + """ + The default ``ddof`` of 1 used in :meth:`Series.var` is different + than the default ``ddof`` of 0 in :func:`numpy.var`. + + A minimum of one period is required for the rolling calculation.\n + """ + ).replace("\n", "", 1), + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) + >>> s.rolling(3).var() + 0 NaN + 1 NaN + 2 0.333333 + 3 1.000000 + 4 1.000000 + 5 1.333333 + 6 0.000000 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="variance", + agg_method="var", + ) + def var( + self, + ddof: int = 1, + numeric_only: bool = False, + engine: Literal["cython", "numba"] | None = None, + engine_kwargs: dict[str, bool] | None = None, + ): + return super().var( + ddof=ddof, + numeric_only=numeric_only, + engine=engine, + engine_kwargs=engine_kwargs, + ) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + "scipy.stats.skew : Third moment of a probability density.\n", + template_see_also, + create_section_header("Notes"), + dedent( + """ + A minimum of three periods is required for the rolling calculation.\n + """ + ), + create_section_header("Examples"), + dedent( + """\ + >>> ser = pd.Series([1, 5, 2, 7, 15, 6]) + >>> ser.rolling(3).skew().round(6) + 0 NaN + 1 NaN + 2 1.293343 + 3 -0.585583 + 4 0.670284 + 5 1.652317 + dtype: float64 + """ + ), + window_method="rolling", + aggregation_description="unbiased skewness", + agg_method="skew", + ) + def skew(self, numeric_only: bool = False): + return super().skew(numeric_only=numeric_only) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + ddof : int, default 1 + Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Notes"), + "A minimum of one period is required for the calculation.\n\n", + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([0, 1, 2, 3]) + >>> s.rolling(2, min_periods=1).sem() + 0 NaN + 1 0.707107 + 2 0.707107 + 3 0.707107 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="standard error of mean", + agg_method="sem", + ) + def sem(self, ddof: int = 1, numeric_only: bool = False): + # Raise here so error message says sem instead of std + self._validate_numeric_only("sem", numeric_only) + return self.std(numeric_only=numeric_only) / ( + self.count(numeric_only) - ddof + ).pow(0.5) + + @doc( + template_header, + create_section_header("Parameters"), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + "scipy.stats.kurtosis : Reference SciPy method.\n", + template_see_also, + create_section_header("Notes"), + "A minimum of four periods is required for the calculation.\n\n", + create_section_header("Examples"), + dedent( + """ + The example below will show a rolling calculation with a window size of + four matching the equivalent function call using `scipy.stats`. + + >>> arr = [1, 2, 3, 4, 999] + >>> import scipy.stats + >>> print(f"{{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}}") + -1.200000 + >>> print(f"{{scipy.stats.kurtosis(arr[1:], bias=False):.6f}}") + 3.999946 + >>> s = pd.Series(arr) + >>> s.rolling(4).kurt() + 0 NaN + 1 NaN + 2 NaN + 3 -1.200000 + 4 3.999946 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="Fisher's definition of kurtosis without bias", + agg_method="kurt", + ) + def kurt(self, numeric_only: bool = False): + return super().kurt(numeric_only=numeric_only) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + quantile : float + Quantile to compute. 0 <= quantile <= 1. + + .. deprecated:: 2.1.0 + This will be renamed to 'q' in a future version. + interpolation : {{'linear', 'lower', 'higher', 'midpoint', 'nearest'}} + This optional parameter specifies the interpolation method to use, + when the desired quantile lies between two data points `i` and `j`: + + * linear: `i + (j - i) * fraction`, where `fraction` is the + fractional part of the index surrounded by `i` and `j`. + * lower: `i`. + * higher: `j`. + * nearest: `i` or `j` whichever is nearest. + * midpoint: (`i` + `j`) / 2. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([1, 2, 3, 4]) + >>> s.rolling(2).quantile(.4, interpolation='lower') + 0 NaN + 1 1.0 + 2 2.0 + 3 3.0 + dtype: float64 + + >>> s.rolling(2).quantile(.4, interpolation='midpoint') + 0 NaN + 1 1.5 + 2 2.5 + 3 3.5 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="quantile", + agg_method="quantile", + ) + @deprecate_kwarg(old_arg_name="quantile", new_arg_name="q") + def quantile( + self, + q: float, + interpolation: QuantileInterpolation = "linear", + numeric_only: bool = False, + ): + return super().quantile( + q=q, + interpolation=interpolation, + numeric_only=numeric_only, + ) + + @doc( + template_header, + ".. versionadded:: 1.4.0 \n\n", + create_section_header("Parameters"), + dedent( + """ + method : {{'average', 'min', 'max'}}, default 'average' + How to rank the group of records that have the same value (i.e. ties): + + * average: average rank of the group + * min: lowest rank in the group + * max: highest rank in the group + + ascending : bool, default True + Whether or not the elements should be ranked in ascending order. + pct : bool, default False + Whether or not to display the returned rankings in percentile + form. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """ + >>> s = pd.Series([1, 4, 2, 3, 5, 3]) + >>> s.rolling(3).rank() + 0 NaN + 1 NaN + 2 2.0 + 3 2.0 + 4 3.0 + 5 1.5 + dtype: float64 + + >>> s.rolling(3).rank(method="max") + 0 NaN + 1 NaN + 2 2.0 + 3 2.0 + 4 3.0 + 5 2.0 + dtype: float64 + + >>> s.rolling(3).rank(method="min") + 0 NaN + 1 NaN + 2 2.0 + 3 2.0 + 4 3.0 + 5 1.0 + dtype: float64 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="rank", + agg_method="rank", + ) + def rank( + self, + method: WindowingRankType = "average", + ascending: bool = True, + pct: bool = False, + numeric_only: bool = False, + ): + return super().rank( + method=method, + ascending=ascending, + pct=pct, + numeric_only=numeric_only, + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + other : Series or DataFrame, optional + If not supplied then will default to self and produce pairwise + output. + pairwise : bool, default None + If False then only matching columns between self and other will be + used and the output will be a DataFrame. + If True then all pairwise combinations will be calculated and the + output will be a MultiIndexed DataFrame in the case of DataFrame + inputs. In the case of missing elements, only complete pairwise + observations will be used. + ddof : int, default 1 + Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + template_see_also, + create_section_header("Examples"), + dedent( + """\ + >>> ser1 = pd.Series([1, 2, 3, 4]) + >>> ser2 = pd.Series([1, 4, 5, 8]) + >>> ser1.rolling(2).cov(ser2) + 0 NaN + 1 1.5 + 2 0.5 + 3 1.5 + dtype: float64 + """ + ), + window_method="rolling", + aggregation_description="sample covariance", + agg_method="cov", + ) + def cov( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + ddof: int = 1, + numeric_only: bool = False, + ): + return super().cov( + other=other, + pairwise=pairwise, + ddof=ddof, + numeric_only=numeric_only, + ) + + @doc( + template_header, + create_section_header("Parameters"), + dedent( + """ + other : Series or DataFrame, optional + If not supplied then will default to self and produce pairwise + output. + pairwise : bool, default None + If False then only matching columns between self and other will be + used and the output will be a DataFrame. + If True then all pairwise combinations will be calculated and the + output will be a MultiIndexed DataFrame in the case of DataFrame + inputs. In the case of missing elements, only complete pairwise + observations will be used. + ddof : int, default 1 + Delta Degrees of Freedom. The divisor used in calculations + is ``N - ddof``, where ``N`` represents the number of elements. + """ + ).replace("\n", "", 1), + kwargs_numeric_only, + create_section_header("Returns"), + template_returns, + create_section_header("See Also"), + dedent( + """ + cov : Similar method to calculate covariance. + numpy.corrcoef : NumPy Pearson's correlation calculation. + """ + ).replace("\n", "", 1), + template_see_also, + create_section_header("Notes"), + dedent( + """ + This function uses Pearson's definition of correlation + (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). + + When `other` is not specified, the output will be self correlation (e.g. + all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise` + set to `True`. + + Function will return ``NaN`` for correlations of equal valued sequences; + this is the result of a 0/0 division error. + + When `pairwise` is set to `False`, only matching columns between `self` and + `other` will be used. + + When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame + with the original index on the first level, and the `other` DataFrame + columns on the second level. + + In the case of missing elements, only complete pairwise observations + will be used.\n + """ + ).replace("\n", "", 1), + create_section_header("Examples"), + dedent( + """ + The below example shows a rolling calculation with a window size of + four matching the equivalent function call using :meth:`numpy.corrcoef`. + + >>> v1 = [3, 3, 3, 5, 8] + >>> v2 = [3, 4, 4, 4, 8] + >>> np.corrcoef(v1[:-1], v2[:-1]) + array([[1. , 0.33333333], + [0.33333333, 1. ]]) + >>> np.corrcoef(v1[1:], v2[1:]) + array([[1. , 0.9169493], + [0.9169493, 1. ]]) + >>> s1 = pd.Series(v1) + >>> s2 = pd.Series(v2) + >>> s1.rolling(4).corr(s2) + 0 NaN + 1 NaN + 2 NaN + 3 0.333333 + 4 0.916949 + dtype: float64 + + The below example shows a similar rolling calculation on a + DataFrame using the pairwise option. + + >>> matrix = np.array([[51., 35.], + ... [49., 30.], + ... [47., 32.], + ... [46., 31.], + ... [50., 36.]]) + >>> np.corrcoef(matrix[:-1, 0], matrix[:-1, 1]) + array([[1. , 0.6263001], + [0.6263001, 1. ]]) + >>> np.corrcoef(matrix[1:, 0], matrix[1:, 1]) + array([[1. , 0.55536811], + [0.55536811, 1. ]]) + >>> df = pd.DataFrame(matrix, columns=['X', 'Y']) + >>> df + X Y + 0 51.0 35.0 + 1 49.0 30.0 + 2 47.0 32.0 + 3 46.0 31.0 + 4 50.0 36.0 + >>> df.rolling(4).corr(pairwise=True) + X Y + 0 X NaN NaN + Y NaN NaN + 1 X NaN NaN + Y NaN NaN + 2 X NaN NaN + Y NaN NaN + 3 X 1.000000 0.626300 + Y 0.626300 1.000000 + 4 X 1.000000 0.555368 + Y 0.555368 1.000000 + """ + ).replace("\n", "", 1), + window_method="rolling", + aggregation_description="correlation", + agg_method="corr", + ) + def corr( + self, + other: DataFrame | Series | None = None, + pairwise: bool | None = None, + ddof: int = 1, + numeric_only: bool = False, + ): + return super().corr( + other=other, + pairwise=pairwise, + ddof=ddof, + numeric_only=numeric_only, + ) + + +Rolling.__doc__ = Window.__doc__ + + +class RollingGroupby(BaseWindowGroupby, Rolling): + """ + Provide a rolling groupby implementation. + """ + + _attributes = Rolling._attributes + BaseWindowGroupby._attributes + + def _get_window_indexer(self) -> GroupbyIndexer: + """ + Return an indexer class that will compute the window start and end bounds + + Returns + ------- + GroupbyIndexer + """ + rolling_indexer: type[BaseIndexer] + indexer_kwargs: dict[str, Any] | None = None + index_array = self._index_array + if isinstance(self.window, BaseIndexer): + rolling_indexer = type(self.window) + indexer_kwargs = self.window.__dict__.copy() + assert isinstance(indexer_kwargs, dict) # for mypy + # We'll be using the index of each group later + indexer_kwargs.pop("index_array", None) + window = self.window + elif self._win_freq_i8 is not None: + rolling_indexer = VariableWindowIndexer + # error: Incompatible types in assignment (expression has type + # "int", variable has type "BaseIndexer") + window = self._win_freq_i8 # type: ignore[assignment] + else: + rolling_indexer = FixedWindowIndexer + window = self.window + window_indexer = GroupbyIndexer( + index_array=index_array, + window_size=window, + groupby_indices=self._grouper.indices, + window_indexer=rolling_indexer, + indexer_kwargs=indexer_kwargs, + ) + return window_indexer + + def _validate_datetimelike_monotonic(self): + """ + Validate that each group in self._on is monotonic + """ + # GH 46061 + if self._on.hasnans: + self._raise_monotonic_error("values must not have NaT") + for group_indices in self._grouper.indices.values(): + group_on = self._on.take(group_indices) + if not ( + group_on.is_monotonic_increasing or group_on.is_monotonic_decreasing + ): + on = "index" if self.on is None else self.on + raise ValueError( + f"Each group within {on} must be monotonic. " + f"Sort the values in {on} first." + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/_util.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/_util.py new file mode 100644 index 0000000000000000000000000000000000000000..3b2ae5daffdbaf515a330a54a83e550751e29fdb --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/_util.py @@ -0,0 +1,34 @@ +from __future__ import annotations + +from typing import Callable + +from pandas.compat._optional import import_optional_dependency + +import pandas as pd + + +def _arrow_dtype_mapping() -> dict: + pa = import_optional_dependency("pyarrow") + return { + pa.int8(): pd.Int8Dtype(), + pa.int16(): pd.Int16Dtype(), + pa.int32(): pd.Int32Dtype(), + pa.int64(): pd.Int64Dtype(), + pa.uint8(): pd.UInt8Dtype(), + pa.uint16(): pd.UInt16Dtype(), + pa.uint32(): pd.UInt32Dtype(), + pa.uint64(): pd.UInt64Dtype(), + pa.bool_(): pd.BooleanDtype(), + pa.string(): pd.StringDtype(), + pa.float32(): pd.Float32Dtype(), + pa.float64(): pd.Float64Dtype(), + } + + +def arrow_string_types_mapper() -> Callable: + pa = import_optional_dependency("pyarrow") + + return { + pa.string(): pd.StringDtype(storage="pyarrow_numpy"), + pa.large_string(): pd.StringDtype(storage="pyarrow_numpy"), + }.get diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/clipboards.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/clipboards.py new file mode 100644 index 0000000000000000000000000000000000000000..a15e37328e9fa95587d53b58b1af10e1e57fd60c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/clipboards.py @@ -0,0 +1,197 @@ +""" io on the clipboard """ +from __future__ import annotations + +from io import StringIO +from typing import TYPE_CHECKING +import warnings + +from pandas._libs import lib +from pandas.util._exceptions import find_stack_level +from pandas.util._validators import check_dtype_backend + +from pandas.core.dtypes.generic import ABCDataFrame + +from pandas import ( + get_option, + option_context, +) + +if TYPE_CHECKING: + from pandas._typing import DtypeBackend + + +def read_clipboard( + sep: str = r"\s+", + dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, + **kwargs, +): # pragma: no cover + r""" + Read text from clipboard and pass to :func:`~pandas.read_csv`. + + Parses clipboard contents similar to how CSV files are parsed + using :func:`~pandas.read_csv`. + + Parameters + ---------- + sep : str, default '\\s+' + A string or regex delimiter. The default of ``'\\s+'`` denotes + one or more whitespace characters. + + dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' + Back-end data type applied to the resultant :class:`DataFrame` + (still experimental). Behaviour is as follows: + + * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` + (default). + * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` + DataFrame. + + .. versionadded:: 2.0 + + **kwargs + See :func:`~pandas.read_csv` for the full argument list. + + Returns + ------- + DataFrame + A parsed :class:`~pandas.DataFrame` object. + + See Also + -------- + DataFrame.to_clipboard : Copy object to the system clipboard. + read_csv : Read a comma-separated values (csv) file into DataFrame. + read_fwf : Read a table of fixed-width formatted lines into DataFrame. + + Examples + -------- + >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) + >>> df.to_clipboard() # doctest: +SKIP + >>> pd.read_clipboard() # doctest: +SKIP + A B C + 0 1 2 3 + 1 4 5 6 + """ + encoding = kwargs.pop("encoding", "utf-8") + + # only utf-8 is valid for passed value because that's what clipboard + # supports + if encoding is not None and encoding.lower().replace("-", "") != "utf8": + raise NotImplementedError("reading from clipboard only supports utf-8 encoding") + + check_dtype_backend(dtype_backend) + + from pandas.io.clipboard import clipboard_get + from pandas.io.parsers import read_csv + + text = clipboard_get() + + # Try to decode (if needed, as "text" might already be a string here). + try: + text = text.decode(kwargs.get("encoding") or get_option("display.encoding")) + except AttributeError: + pass + + # Excel copies into clipboard with \t separation + # inspect no more then the 10 first lines, if they + # all contain an equal number (>0) of tabs, infer + # that this came from excel and set 'sep' accordingly + lines = text[:10000].split("\n")[:-1][:10] + + # Need to remove leading white space, since read_csv + # accepts: + # a b + # 0 1 2 + # 1 3 4 + + counts = {x.lstrip(" ").count("\t") for x in lines} + if len(lines) > 1 and len(counts) == 1 and counts.pop() != 0: + sep = "\t" + # check the number of leading tabs in the first line + # to account for index columns + index_length = len(lines[0]) - len(lines[0].lstrip(" \t")) + if index_length != 0: + kwargs.setdefault("index_col", list(range(index_length))) + + # Edge case where sep is specified to be None, return to default + if sep is None and kwargs.get("delim_whitespace") is None: + sep = r"\s+" + + # Regex separator currently only works with python engine. + # Default to python if separator is multi-character (regex) + if len(sep) > 1 and kwargs.get("engine") is None: + kwargs["engine"] = "python" + elif len(sep) > 1 and kwargs.get("engine") == "c": + warnings.warn( + "read_clipboard with regex separator does not work properly with c engine.", + stacklevel=find_stack_level(), + ) + + return read_csv(StringIO(text), sep=sep, dtype_backend=dtype_backend, **kwargs) + + +def to_clipboard( + obj, excel: bool | None = True, sep: str | None = None, **kwargs +) -> None: # pragma: no cover + """ + Attempt to write text representation of object to the system clipboard + The clipboard can be then pasted into Excel for example. + + Parameters + ---------- + obj : the object to write to the clipboard + excel : bool, defaults to True + if True, use the provided separator, writing in a csv + format for allowing easy pasting into excel. + if False, write a string representation of the object + to the clipboard + sep : optional, defaults to tab + other keywords are passed to to_csv + + Notes + ----- + Requirements for your platform + - Linux: xclip, or xsel (with PyQt4 modules) + - Windows: + - OS X: + """ + encoding = kwargs.pop("encoding", "utf-8") + + # testing if an invalid encoding is passed to clipboard + if encoding is not None and encoding.lower().replace("-", "") != "utf8": + raise ValueError("clipboard only supports utf-8 encoding") + + from pandas.io.clipboard import clipboard_set + + if excel is None: + excel = True + + if excel: + try: + if sep is None: + sep = "\t" + buf = StringIO() + + # clipboard_set (pyperclip) expects unicode + obj.to_csv(buf, sep=sep, encoding="utf-8", **kwargs) + text = buf.getvalue() + + clipboard_set(text) + return + except TypeError: + warnings.warn( + "to_clipboard in excel mode requires a single character separator.", + stacklevel=find_stack_level(), + ) + elif sep is not None: + warnings.warn( + "to_clipboard with excel=False ignores the sep argument.", + stacklevel=find_stack_level(), + ) + + if isinstance(obj, ABCDataFrame): + # str(df) has various unhelpful defaults, like truncation + with option_context("display.max_colwidth", None): + objstr = obj.to_string(**kwargs) + else: + objstr = str(obj) + clipboard_set(objstr) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/feather_format.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/feather_format.py new file mode 100644 index 0000000000000000000000000000000000000000..d0aaf83b84cb241ebdd872c1c8b7982fadc9acdb --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/feather_format.py @@ -0,0 +1,143 @@ +""" feather-format compat """ +from __future__ import annotations + +from typing import ( + TYPE_CHECKING, + Any, +) + +from pandas._config import using_pyarrow_string_dtype + +from pandas._libs import lib +from pandas.compat._optional import import_optional_dependency +from pandas.util._decorators import doc +from pandas.util._validators import check_dtype_backend + +import pandas as pd +from pandas.core.api import DataFrame +from pandas.core.shared_docs import _shared_docs + +from pandas.io._util import arrow_string_types_mapper +from pandas.io.common import get_handle + +if TYPE_CHECKING: + from collections.abc import ( + Hashable, + Sequence, + ) + + from pandas._typing import ( + DtypeBackend, + FilePath, + ReadBuffer, + StorageOptions, + WriteBuffer, + ) + + +@doc(storage_options=_shared_docs["storage_options"]) +def to_feather( + df: DataFrame, + path: FilePath | WriteBuffer[bytes], + storage_options: StorageOptions | None = None, + **kwargs: Any, +) -> None: + """ + Write a DataFrame to the binary Feather format. + + Parameters + ---------- + df : DataFrame + path : str, path object, or file-like object + {storage_options} + **kwargs : + Additional keywords passed to `pyarrow.feather.write_feather`. + + """ + import_optional_dependency("pyarrow") + from pyarrow import feather + + if not isinstance(df, DataFrame): + raise ValueError("feather only support IO with DataFrames") + + with get_handle( + path, "wb", storage_options=storage_options, is_text=False + ) as handles: + feather.write_feather(df, handles.handle, **kwargs) + + +@doc(storage_options=_shared_docs["storage_options"]) +def read_feather( + path: FilePath | ReadBuffer[bytes], + columns: Sequence[Hashable] | None = None, + use_threads: bool = True, + storage_options: StorageOptions | None = None, + dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, +) -> DataFrame: + """ + Load a feather-format object from the file path. + + Parameters + ---------- + path : str, path object, or file-like object + String, path object (implementing ``os.PathLike[str]``), or file-like + object implementing a binary ``read()`` function. The string could be a URL. + Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is + expected. A local file could be: ``file://localhost/path/to/table.feather``. + columns : sequence, default None + If not provided, all columns are read. + use_threads : bool, default True + Whether to parallelize reading using multiple threads. + {storage_options} + + dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable' + Back-end data type applied to the resultant :class:`DataFrame` + (still experimental). Behaviour is as follows: + + * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` + (default). + * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` + DataFrame. + + .. versionadded:: 2.0 + + Returns + ------- + type of object stored in file + + Examples + -------- + >>> df = pd.read_feather("path/to/file.feather") # doctest: +SKIP + """ + import_optional_dependency("pyarrow") + from pyarrow import feather + + # import utils to register the pyarrow extension types + import pandas.core.arrays.arrow.extension_types # pyright: ignore[reportUnusedImport] # noqa: F401 + + check_dtype_backend(dtype_backend) + + with get_handle( + path, "rb", storage_options=storage_options, is_text=False + ) as handles: + if dtype_backend is lib.no_default and not using_pyarrow_string_dtype(): + return feather.read_feather( + handles.handle, columns=columns, use_threads=bool(use_threads) + ) + + pa_table = feather.read_table( + handles.handle, columns=columns, use_threads=bool(use_threads) + ) + + if dtype_backend == "numpy_nullable": + from pandas.io._util import _arrow_dtype_mapping + + return pa_table.to_pandas(types_mapper=_arrow_dtype_mapping().get) + + elif dtype_backend == "pyarrow": + return pa_table.to_pandas(types_mapper=pd.ArrowDtype) + + elif using_pyarrow_string_dtype(): + return pa_table.to_pandas(types_mapper=arrow_string_types_mapper()) + else: + raise NotImplementedError diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/html.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/html.py new file mode 100644 index 0000000000000000000000000000000000000000..4eeeb1b655f8ac55309edeacd593f5a5c2516678 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/html.py @@ -0,0 +1,1259 @@ +""" +:mod:`pandas.io.html` is a module containing functionality for dealing with +HTML IO. + +""" + +from __future__ import annotations + +from collections import abc +import numbers +import re +from re import Pattern +from typing import ( + TYPE_CHECKING, + Literal, + cast, +) +import warnings + +from pandas._libs import lib +from pandas.compat._optional import import_optional_dependency +from pandas.errors import ( + AbstractMethodError, + EmptyDataError, +) +from pandas.util._decorators import doc +from pandas.util._exceptions import find_stack_level +from pandas.util._validators import check_dtype_backend + +from pandas.core.dtypes.common import is_list_like + +from pandas import isna +from pandas.core.indexes.base import Index +from pandas.core.indexes.multi import MultiIndex +from pandas.core.series import Series +from pandas.core.shared_docs import _shared_docs + +from pandas.io.common import ( + file_exists, + get_handle, + is_file_like, + is_fsspec_url, + is_url, + stringify_path, + validate_header_arg, +) +from pandas.io.formats.printing import pprint_thing +from pandas.io.parsers import TextParser + +if TYPE_CHECKING: + from collections.abc import ( + Iterable, + Sequence, + ) + + from pandas._typing import ( + BaseBuffer, + DtypeBackend, + FilePath, + HTMLFlavors, + ReadBuffer, + StorageOptions, + ) + + from pandas import DataFrame + +############# +# READ HTML # +############# +_RE_WHITESPACE = re.compile(r"[\r\n]+|\s{2,}") + + +def _remove_whitespace(s: str, regex: Pattern = _RE_WHITESPACE) -> str: + """ + Replace extra whitespace inside of a string with a single space. + + Parameters + ---------- + s : str or unicode + The string from which to remove extra whitespace. + regex : re.Pattern + The regular expression to use to remove extra whitespace. + + Returns + ------- + subd : str or unicode + `s` with all extra whitespace replaced with a single space. + """ + return regex.sub(" ", s.strip()) + + +def _get_skiprows(skiprows: int | Sequence[int] | slice | None) -> int | Sequence[int]: + """ + Get an iterator given an integer, slice or container. + + Parameters + ---------- + skiprows : int, slice, container + The iterator to use to skip rows; can also be a slice. + + Raises + ------ + TypeError + * If `skiprows` is not a slice, integer, or Container + + Returns + ------- + it : iterable + A proper iterator to use to skip rows of a DataFrame. + """ + if isinstance(skiprows, slice): + start, step = skiprows.start or 0, skiprows.step or 1 + return list(range(start, skiprows.stop, step)) + elif isinstance(skiprows, numbers.Integral) or is_list_like(skiprows): + return cast("int | Sequence[int]", skiprows) + elif skiprows is None: + return 0 + raise TypeError(f"{type(skiprows).__name__} is not a valid type for skipping rows") + + +def _read( + obj: FilePath | BaseBuffer, + encoding: str | None, + storage_options: StorageOptions | None, +) -> str | bytes: + """ + Try to read from a url, file or string. + + Parameters + ---------- + obj : str, unicode, path object, or file-like object + + Returns + ------- + raw_text : str + """ + text: str | bytes + if ( + is_url(obj) + or hasattr(obj, "read") + or (isinstance(obj, str) and file_exists(obj)) + ): + with get_handle( + obj, "r", encoding=encoding, storage_options=storage_options + ) as handles: + text = handles.handle.read() + elif isinstance(obj, (str, bytes)): + text = obj + else: + raise TypeError(f"Cannot read object of type '{type(obj).__name__}'") + return text + + +class _HtmlFrameParser: + """ + Base class for parsers that parse HTML into DataFrames. + + Parameters + ---------- + io : str or file-like + This can be either a string of raw HTML, a valid URL using the HTTP, + FTP, or FILE protocols or a file-like object. + + match : str or regex + The text to match in the document. + + attrs : dict + List of HTML element attributes to match. + + encoding : str + Encoding to be used by parser + + displayed_only : bool + Whether or not items with "display:none" should be ignored + + extract_links : {None, "all", "header", "body", "footer"} + Table elements in the specified section(s) with tags will have their + href extracted. + + .. versionadded:: 1.5.0 + + Attributes + ---------- + io : str or file-like + raw HTML, URL, or file-like object + + match : regex + The text to match in the raw HTML + + attrs : dict-like + A dictionary of valid table attributes to use to search for table + elements. + + encoding : str + Encoding to be used by parser + + displayed_only : bool + Whether or not items with "display:none" should be ignored + + extract_links : {None, "all", "header", "body", "footer"} + Table elements in the specified section(s) with tags will have their + href extracted. + + .. versionadded:: 1.5.0 + + Notes + ----- + To subclass this class effectively you must override the following methods: + * :func:`_build_doc` + * :func:`_attr_getter` + * :func:`_href_getter` + * :func:`_text_getter` + * :func:`_parse_td` + * :func:`_parse_thead_tr` + * :func:`_parse_tbody_tr` + * :func:`_parse_tfoot_tr` + * :func:`_parse_tables` + * :func:`_equals_tag` + See each method's respective documentation for details on their + functionality. + """ + + def __init__( + self, + io: FilePath | ReadBuffer[str] | ReadBuffer[bytes], + match: str | Pattern, + attrs: dict[str, str] | None, + encoding: str, + displayed_only: bool, + extract_links: Literal[None, "header", "footer", "body", "all"], + storage_options: StorageOptions = None, + ) -> None: + self.io = io + self.match = match + self.attrs = attrs + self.encoding = encoding + self.displayed_only = displayed_only + self.extract_links = extract_links + self.storage_options = storage_options + + def parse_tables(self): + """ + Parse and return all tables from the DOM. + + Returns + ------- + list of parsed (header, body, footer) tuples from tables. + """ + tables = self._parse_tables(self._build_doc(), self.match, self.attrs) + return (self._parse_thead_tbody_tfoot(table) for table in tables) + + def _attr_getter(self, obj, attr): + """ + Return the attribute value of an individual DOM node. + + Parameters + ---------- + obj : node-like + A DOM node. + + attr : str or unicode + The attribute, such as "colspan" + + Returns + ------- + str or unicode + The attribute value. + """ + # Both lxml and BeautifulSoup have the same implementation: + return obj.get(attr) + + def _href_getter(self, obj) -> str | None: + """ + Return a href if the DOM node contains a child or None. + + Parameters + ---------- + obj : node-like + A DOM node. + + Returns + ------- + href : str or unicode + The href from the child of the DOM node. + """ + raise AbstractMethodError(self) + + def _text_getter(self, obj): + """ + Return the text of an individual DOM node. + + Parameters + ---------- + obj : node-like + A DOM node. + + Returns + ------- + text : str or unicode + The text from an individual DOM node. + """ + raise AbstractMethodError(self) + + def _parse_td(self, obj): + """ + Return the td elements from a row element. + + Parameters + ---------- + obj : node-like + A DOM node. + + Returns + ------- + list of node-like + These are the elements of each row, i.e., the columns. + """ + raise AbstractMethodError(self) + + def _parse_thead_tr(self, table): + """ + Return the list of thead row elements from the parsed table element. + + Parameters + ---------- + table : a table element that contains zero or more thead elements. + + Returns + ------- + list of node-like + These are the row elements of a table. + """ + raise AbstractMethodError(self) + + def _parse_tbody_tr(self, table): + """ + Return the list of tbody row elements from the parsed table element. + + HTML5 table bodies consist of either 0 or more elements (which + only contain elements) or 0 or more elements. This method + checks for both structures. + + Parameters + ---------- + table : a table element that contains row elements. + + Returns + ------- + list of node-like + These are the row elements of a table. + """ + raise AbstractMethodError(self) + + def _parse_tfoot_tr(self, table): + """ + Return the list of tfoot row elements from the parsed table element. + + Parameters + ---------- + table : a table element that contains row elements. + + Returns + ------- + list of node-like + These are the row elements of a table. + """ + raise AbstractMethodError(self) + + def _parse_tables(self, document, match, attrs): + """ + Return all tables from the parsed DOM. + + Parameters + ---------- + document : the DOM from which to parse the table element. + + match : str or regular expression + The text to search for in the DOM tree. + + attrs : dict + A dictionary of table attributes that can be used to disambiguate + multiple tables on a page. + + Raises + ------ + ValueError : `match` does not match any text in the document. + + Returns + ------- + list of node-like + HTML
elements to be parsed into raw data. + """ + raise AbstractMethodError(self) + + def _equals_tag(self, obj, tag) -> bool: + """ + Return whether an individual DOM node matches a tag + + Parameters + ---------- + obj : node-like + A DOM node. + + tag : str + Tag name to be checked for equality. + + Returns + ------- + boolean + Whether `obj`'s tag name is `tag` + """ + raise AbstractMethodError(self) + + def _build_doc(self): + """ + Return a tree-like object that can be used to iterate over the DOM. + + Returns + ------- + node-like + The DOM from which to parse the table element. + """ + raise AbstractMethodError(self) + + def _parse_thead_tbody_tfoot(self, table_html): + """ + Given a table, return parsed header, body, and foot. + + Parameters + ---------- + table_html : node-like + + Returns + ------- + tuple of (header, body, footer), each a list of list-of-text rows. + + Notes + ----- + Header and body are lists-of-lists. Top level list is a list of + rows. Each row is a list of str text. + + Logic: Use , , elements to identify + header, body, and footer, otherwise: + - Put all rows into body + - Move rows from top of body to header only if + all elements inside row are . Move the top all- or + while body_rows and row_is_all_th(body_rows[0]): + header_rows.append(body_rows.pop(0)) + + header = self._expand_colspan_rowspan(header_rows, section="header") + body = self._expand_colspan_rowspan(body_rows, section="body") + footer = self._expand_colspan_rowspan(footer_rows, section="footer") + + return header, body, footer + + def _expand_colspan_rowspan( + self, rows, section: Literal["header", "footer", "body"] + ): + """ + Given a list of s, return a list of text rows. + + Parameters + ---------- + rows : list of node-like + List of s + section : the section that the rows belong to (header, body or footer). + + Returns + ------- + list of list + Each returned row is a list of str text, or tuple (text, link) + if extract_links is not None. + + Notes + ----- + Any cell with ``rowspan`` or ``colspan`` will have its contents copied + to subsequent cells. + """ + all_texts = [] # list of rows, each a list of str + text: str | tuple + remainder: list[ + tuple[int, str | tuple, int] + ] = [] # list of (index, text, nrows) + + for tr in rows: + texts = [] # the output for this row + next_remainder = [] + + index = 0 + tds = self._parse_td(tr) + for td in tds: + # Append texts from previous rows with rowspan>1 that come + # before this or (see _parse_thead_tr). + return row.xpath("./td|./th") + + def _parse_tables(self, document, match, kwargs): + pattern = match.pattern + + # 1. check all descendants for the given pattern and only search tables + # GH 49929 + xpath_expr = f"//table[.//text()[re:test(., {repr(pattern)})]]" + + # if any table attributes were given build an xpath expression to + # search for them + if kwargs: + xpath_expr += _build_xpath_expr(kwargs) + + tables = document.xpath(xpath_expr, namespaces=_re_namespace) + + tables = self._handle_hidden_tables(tables, "attrib") + if self.displayed_only: + for table in tables: + # lxml utilizes XPATH 1.0 which does not have regex + # support. As a result, we find all elements with a style + # attribute and iterate them to check for display:none + for elem in table.xpath(".//style"): + elem.drop_tree() + for elem in table.xpath(".//*[@style]"): + if "display:none" in elem.attrib.get("style", "").replace(" ", ""): + elem.drop_tree() + if not tables: + raise ValueError(f"No tables found matching regex {repr(pattern)}") + return tables + + def _equals_tag(self, obj, tag) -> bool: + return obj.tag == tag + + def _build_doc(self): + """ + Raises + ------ + ValueError + * If a URL that lxml cannot parse is passed. + + Exception + * Any other ``Exception`` thrown. For example, trying to parse a + URL that is syntactically correct on a machine with no internet + connection will fail. + + See Also + -------- + pandas.io.html._HtmlFrameParser._build_doc + """ + from lxml.etree import XMLSyntaxError + from lxml.html import ( + HTMLParser, + fromstring, + parse, + ) + + parser = HTMLParser(recover=True, encoding=self.encoding) + + try: + if is_url(self.io): + with get_handle( + self.io, "r", storage_options=self.storage_options + ) as f: + r = parse(f.handle, parser=parser) + else: + # try to parse the input in the simplest way + r = parse(self.io, parser=parser) + try: + r = r.getroot() + except AttributeError: + pass + except (UnicodeDecodeError, OSError) as e: + # if the input is a blob of html goop + if not is_url(self.io): + r = fromstring(self.io, parser=parser) + + try: + r = r.getroot() + except AttributeError: + pass + else: + raise e + else: + if not hasattr(r, "text_content"): + raise XMLSyntaxError("no text parsed from document", 0, 0, 0) + + for br in r.xpath("*//br"): + br.tail = "\n" + (br.tail or "") + + return r + + def _parse_thead_tr(self, table): + rows = [] + + for thead in table.xpath(".//thead"): + rows.extend(thead.xpath("./tr")) + + # HACK: lxml does not clean up the clearly-erroneous + # . (Missing ). Add + # the and _pretend_ it's a ; _parse_td() will find its + # children as though it's a . + # + # Better solution would be to use html5lib. + elements_at_root = thead.xpath("./td|./th") + if elements_at_root: + rows.append(thead) + + return rows + + def _parse_tbody_tr(self, table): + from_tbody = table.xpath(".//tbody//tr") + from_root = table.xpath("./tr") + # HTML spec: at most one of these lists has content + return from_tbody + from_root + + def _parse_tfoot_tr(self, table): + return table.xpath(".//tfoot//tr") + + +def _expand_elements(body) -> None: + data = [len(elem) for elem in body] + lens = Series(data) + lens_max = lens.max() + not_max = lens[lens != lens_max] + + empty = [""] + for ind, length in not_max.items(): + body[ind] += empty * (lens_max - length) + + +def _data_to_frame(**kwargs): + head, body, foot = kwargs.pop("data") + header = kwargs.pop("header") + kwargs["skiprows"] = _get_skiprows(kwargs["skiprows"]) + if head: + body = head + body + + # Infer header when there is a or top
+ - Move rows from bottom of body to footer only if + all elements inside row are + """ + header_rows = self._parse_thead_tr(table_html) + body_rows = self._parse_tbody_tr(table_html) + footer_rows = self._parse_tfoot_tr(table_html) + + def row_is_all_th(row): + return all(self._equals_tag(t, "th") for t in self._parse_td(row)) + + if not header_rows: + # The table has no
rows from + # body_rows to header_rows. (This is a common case because many + # tables in the wild have no
+ while remainder and remainder[0][0] <= index: + prev_i, prev_text, prev_rowspan = remainder.pop(0) + texts.append(prev_text) + if prev_rowspan > 1: + next_remainder.append((prev_i, prev_text, prev_rowspan - 1)) + index += 1 + + # Append the text from this , colspan times + text = _remove_whitespace(self._text_getter(td)) + if self.extract_links in ("all", section): + href = self._href_getter(td) + text = (text, href) + rowspan = int(self._attr_getter(td, "rowspan") or 1) + colspan = int(self._attr_getter(td, "colspan") or 1) + + for _ in range(colspan): + texts.append(text) + if rowspan > 1: + next_remainder.append((index, text, rowspan - 1)) + index += 1 + + # Append texts from previous rows at the final position + for prev_i, prev_text, prev_rowspan in remainder: + texts.append(prev_text) + if prev_rowspan > 1: + next_remainder.append((prev_i, prev_text, prev_rowspan - 1)) + + all_texts.append(texts) + remainder = next_remainder + + # Append rows that only appear because the previous row had non-1 + # rowspan + while remainder: + next_remainder = [] + texts = [] + for prev_i, prev_text, prev_rowspan in remainder: + texts.append(prev_text) + if prev_rowspan > 1: + next_remainder.append((prev_i, prev_text, prev_rowspan - 1)) + all_texts.append(texts) + remainder = next_remainder + + return all_texts + + def _handle_hidden_tables(self, tbl_list, attr_name: str): + """ + Return list of tables, potentially removing hidden elements + + Parameters + ---------- + tbl_list : list of node-like + Type of list elements will vary depending upon parser used + attr_name : str + Name of the accessor for retrieving HTML attributes + + Returns + ------- + list of node-like + Return type matches `tbl_list` + """ + if not self.displayed_only: + return tbl_list + + return [ + x + for x in tbl_list + if "display:none" + not in getattr(x, attr_name).get("style", "").replace(" ", "") + ] + + +class _BeautifulSoupHtml5LibFrameParser(_HtmlFrameParser): + """ + HTML to DataFrame parser that uses BeautifulSoup under the hood. + + See Also + -------- + pandas.io.html._HtmlFrameParser + pandas.io.html._LxmlFrameParser + + Notes + ----- + Documentation strings for this class are in the base class + :class:`pandas.io.html._HtmlFrameParser`. + """ + + def _parse_tables(self, document, match, attrs): + element_name = "table" + tables = document.find_all(element_name, attrs=attrs) + if not tables: + raise ValueError("No tables found") + + result = [] + unique_tables = set() + tables = self._handle_hidden_tables(tables, "attrs") + + for table in tables: + if self.displayed_only: + for elem in table.find_all("style"): + elem.decompose() + + for elem in table.find_all(style=re.compile(r"display:\s*none")): + elem.decompose() + + if table not in unique_tables and table.find(string=match) is not None: + result.append(table) + unique_tables.add(table) + if not result: + raise ValueError(f"No tables found matching pattern {repr(match.pattern)}") + return result + + def _href_getter(self, obj) -> str | None: + a = obj.find("a", href=True) + return None if not a else a["href"] + + def _text_getter(self, obj): + return obj.text + + def _equals_tag(self, obj, tag) -> bool: + return obj.name == tag + + def _parse_td(self, row): + return row.find_all(("td", "th"), recursive=False) + + def _parse_thead_tr(self, table): + return table.select("thead tr") + + def _parse_tbody_tr(self, table): + from_tbody = table.select("tbody tr") + from_root = table.find_all("tr", recursive=False) + # HTML spec: at most one of these lists has content + return from_tbody + from_root + + def _parse_tfoot_tr(self, table): + return table.select("tfoot tr") + + def _setup_build_doc(self): + raw_text = _read(self.io, self.encoding, self.storage_options) + if not raw_text: + raise ValueError(f"No text parsed from document: {self.io}") + return raw_text + + def _build_doc(self): + from bs4 import BeautifulSoup + + bdoc = self._setup_build_doc() + if isinstance(bdoc, bytes) and self.encoding is not None: + udoc = bdoc.decode(self.encoding) + from_encoding = None + else: + udoc = bdoc + from_encoding = self.encoding + + soup = BeautifulSoup(udoc, features="html5lib", from_encoding=from_encoding) + + for br in soup.find_all("br"): + br.replace_with("\n" + br.text) + + return soup + + +def _build_xpath_expr(attrs) -> str: + """ + Build an xpath expression to simulate bs4's ability to pass in kwargs to + search for attributes when using the lxml parser. + + Parameters + ---------- + attrs : dict + A dict of HTML attributes. These are NOT checked for validity. + + Returns + ------- + expr : unicode + An XPath expression that checks for the given HTML attributes. + """ + # give class attribute as class_ because class is a python keyword + if "class_" in attrs: + attrs["class"] = attrs.pop("class_") + + s = " and ".join([f"@{k}={repr(v)}" for k, v in attrs.items()]) + return f"[{s}]" + + +_re_namespace = {"re": "http://exslt.org/regular-expressions"} + + +class _LxmlFrameParser(_HtmlFrameParser): + """ + HTML to DataFrame parser that uses lxml under the hood. + + Warning + ------- + This parser can only handle HTTP, FTP, and FILE urls. + + See Also + -------- + _HtmlFrameParser + _BeautifulSoupLxmlFrameParser + + Notes + ----- + Documentation strings for this class are in the base class + :class:`_HtmlFrameParser`. + """ + + def _href_getter(self, obj) -> str | None: + href = obj.xpath(".//a/@href") + return None if not href else href[0] + + def _text_getter(self, obj): + return obj.text_content() + + def _parse_td(self, row): + # Look for direct children only: the "row" element here may be a + #
foobar
-only rows + if header is None: + if len(head) == 1: + header = 0 + else: + # ignore all-empty-text rows + header = [i for i, row in enumerate(head) if any(text for text in row)] + + if foot: + body += foot + + # fill out elements of body that are "ragged" + _expand_elements(body) + with TextParser(body, header=header, **kwargs) as tp: + return tp.read() + + +_valid_parsers = { + "lxml": _LxmlFrameParser, + None: _LxmlFrameParser, + "html5lib": _BeautifulSoupHtml5LibFrameParser, + "bs4": _BeautifulSoupHtml5LibFrameParser, +} + + +def _parser_dispatch(flavor: HTMLFlavors | None) -> type[_HtmlFrameParser]: + """ + Choose the parser based on the input flavor. + + Parameters + ---------- + flavor : {{"lxml", "html5lib", "bs4"}} or None + The type of parser to use. This must be a valid backend. + + Returns + ------- + cls : _HtmlFrameParser subclass + The parser class based on the requested input flavor. + + Raises + ------ + ValueError + * If `flavor` is not a valid backend. + ImportError + * If you do not have the requested `flavor` + """ + valid_parsers = list(_valid_parsers.keys()) + if flavor not in valid_parsers: + raise ValueError( + f"{repr(flavor)} is not a valid flavor, valid flavors are {valid_parsers}" + ) + + if flavor in ("bs4", "html5lib"): + import_optional_dependency("html5lib") + import_optional_dependency("bs4") + else: + import_optional_dependency("lxml.etree") + return _valid_parsers[flavor] + + +def _print_as_set(s) -> str: + arg = ", ".join([pprint_thing(el) for el in s]) + return f"{{{arg}}}" + + +def _validate_flavor(flavor): + if flavor is None: + flavor = "lxml", "bs4" + elif isinstance(flavor, str): + flavor = (flavor,) + elif isinstance(flavor, abc.Iterable): + if not all(isinstance(flav, str) for flav in flavor): + raise TypeError( + f"Object of type {repr(type(flavor).__name__)} " + f"is not an iterable of strings" + ) + else: + msg = repr(flavor) if isinstance(flavor, str) else str(flavor) + msg += " is not a valid flavor" + raise ValueError(msg) + + flavor = tuple(flavor) + valid_flavors = set(_valid_parsers) + flavor_set = set(flavor) + + if not flavor_set & valid_flavors: + raise ValueError( + f"{_print_as_set(flavor_set)} is not a valid set of flavors, valid " + f"flavors are {_print_as_set(valid_flavors)}" + ) + return flavor + + +def _parse( + flavor, + io, + match, + attrs, + encoding, + displayed_only, + extract_links, + storage_options, + **kwargs, +): + flavor = _validate_flavor(flavor) + compiled_match = re.compile(match) # you can pass a compiled regex here + + retained = None + for flav in flavor: + parser = _parser_dispatch(flav) + p = parser( + io, + compiled_match, + attrs, + encoding, + displayed_only, + extract_links, + storage_options, + ) + + try: + tables = p.parse_tables() + except ValueError as caught: + # if `io` is an io-like object, check if it's seekable + # and try to rewind it before trying the next parser + if hasattr(io, "seekable") and io.seekable(): + io.seek(0) + elif hasattr(io, "seekable") and not io.seekable(): + # if we couldn't rewind it, let the user know + raise ValueError( + f"The flavor {flav} failed to parse your input. " + "Since you passed a non-rewindable file " + "object, we can't rewind it to try " + "another parser. Try read_html() with a different flavor." + ) from caught + + retained = caught + else: + break + else: + assert retained is not None # for mypy + raise retained + + ret = [] + for table in tables: + try: + df = _data_to_frame(data=table, **kwargs) + # Cast MultiIndex header to an Index of tuples when extracting header + # links and replace nan with None (therefore can't use mi.to_flat_index()). + # This maintains consistency of selection (e.g. df.columns.str[1]) + if extract_links in ("all", "header") and isinstance( + df.columns, MultiIndex + ): + df.columns = Index( + ((col[0], None if isna(col[1]) else col[1]) for col in df.columns), + tupleize_cols=False, + ) + + ret.append(df) + except EmptyDataError: # empty table + continue + return ret + + +@doc(storage_options=_shared_docs["storage_options"]) +def read_html( + io: FilePath | ReadBuffer[str], + *, + match: str | Pattern = ".+", + flavor: HTMLFlavors | Sequence[HTMLFlavors] | None = None, + header: int | Sequence[int] | None = None, + index_col: int | Sequence[int] | None = None, + skiprows: int | Sequence[int] | slice | None = None, + attrs: dict[str, str] | None = None, + parse_dates: bool = False, + thousands: str | None = ",", + encoding: str | None = None, + decimal: str = ".", + converters: dict | None = None, + na_values: Iterable[object] | None = None, + keep_default_na: bool = True, + displayed_only: bool = True, + extract_links: Literal[None, "header", "footer", "body", "all"] = None, + dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, + storage_options: StorageOptions = None, +) -> list[DataFrame]: + r""" + Read HTML tables into a ``list`` of ``DataFrame`` objects. + + Parameters + ---------- + io : str, path object, or file-like object + String, path object (implementing ``os.PathLike[str]``), or file-like + object implementing a string ``read()`` function. + The string can represent a URL or the HTML itself. Note that + lxml only accepts the http, ftp and file url protocols. If you have a + URL that starts with ``'https'`` you might try removing the ``'s'``. + + .. deprecated:: 2.1.0 + Passing html literal strings is deprecated. + Wrap literal string/bytes input in ``io.StringIO``/``io.BytesIO`` instead. + + match : str or compiled regular expression, optional + The set of tables containing text matching this regex or string will be + returned. Unless the HTML is extremely simple you will probably need to + pass a non-empty string here. Defaults to '.+' (match any non-empty + string). The default value will return all tables contained on a page. + This value is converted to a regular expression so that there is + consistent behavior between Beautiful Soup and lxml. + + flavor : {{"lxml", "html5lib", "bs4"}} or list-like, optional + The parsing engine (or list of parsing engines) to use. 'bs4' and + 'html5lib' are synonymous with each other, they are both there for + backwards compatibility. The default of ``None`` tries to use ``lxml`` + to parse and if that fails it falls back on ``bs4`` + ``html5lib``. + + header : int or list-like, optional + The row (or list of rows for a :class:`~pandas.MultiIndex`) to use to + make the columns headers. + + index_col : int or list-like, optional + The column (or list of columns) to use to create the index. + + skiprows : int, list-like or slice, optional + Number of rows to skip after parsing the column integer. 0-based. If a + sequence of integers or a slice is given, will skip the rows indexed by + that sequence. Note that a single element sequence means 'skip the nth + row' whereas an integer means 'skip n rows'. + + attrs : dict, optional + This is a dictionary of attributes that you can pass to use to identify + the table in the HTML. These are not checked for validity before being + passed to lxml or Beautiful Soup. However, these attributes must be + valid HTML table attributes to work correctly. For example, :: + + attrs = {{'id': 'table'}} + + is a valid attribute dictionary because the 'id' HTML tag attribute is + a valid HTML attribute for *any* HTML tag as per `this document + `__. :: + + attrs = {{'asdf': 'table'}} + + is *not* a valid attribute dictionary because 'asdf' is not a valid + HTML attribute even if it is a valid XML attribute. Valid HTML 4.01 + table attributes can be found `here + `__. A + working draft of the HTML 5 spec can be found `here + `__. It contains the + latest information on table attributes for the modern web. + + parse_dates : bool, optional + See :func:`~read_csv` for more details. + + thousands : str, optional + Separator to use to parse thousands. Defaults to ``','``. + + encoding : str, optional + The encoding used to decode the web page. Defaults to ``None``.``None`` + preserves the previous encoding behavior, which depends on the + underlying parser library (e.g., the parser library will try to use + the encoding provided by the document). + + decimal : str, default '.' + Character to recognize as decimal point (e.g. use ',' for European + data). + + converters : dict, default None + Dict of functions for converting values in certain columns. Keys can + either be integers or column labels, values are functions that take one + input argument, the cell (not column) content, and return the + transformed content. + + na_values : iterable, default None + Custom NA values. + + keep_default_na : bool, default True + If na_values are specified and keep_default_na is False the default NaN + values are overridden, otherwise they're appended to. + + displayed_only : bool, default True + Whether elements with "display: none" should be parsed. + + extract_links : {{None, "all", "header", "body", "footer"}} + Table elements in the specified section(s) with tags will have their + href extracted. + + .. versionadded:: 1.5.0 + + dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable' + Back-end data type applied to the resultant :class:`DataFrame` + (still experimental). Behaviour is as follows: + + * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` + (default). + * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` + DataFrame. + + .. versionadded:: 2.0 + + {storage_options} + + .. versionadded:: 2.1.0 + + Returns + ------- + dfs + A list of DataFrames. + + See Also + -------- + read_csv : Read a comma-separated values (csv) file into DataFrame. + + Notes + ----- + Before using this function you should read the :ref:`gotchas about the + HTML parsing libraries `. + + Expect to do some cleanup after you call this function. For example, you + might need to manually assign column names if the column names are + converted to NaN when you pass the `header=0` argument. We try to assume as + little as possible about the structure of the table and push the + idiosyncrasies of the HTML contained in the table to the user. + + This function searches for ```` elements and only for ```` + and ```` or ```` argument, it is used to construct + the header, otherwise the function attempts to find the header within + the body (by putting rows with only ``
`` rows and ```` elements within each ``
`` + element in the table. ```` stands for "table data". This function + attempts to properly handle ``colspan`` and ``rowspan`` attributes. + If the function has a ``
`` elements into the header). + + Similar to :func:`~read_csv` the `header` argument is applied + **after** `skiprows` is applied. + + This function will *always* return a list of :class:`DataFrame` *or* + it will fail, e.g., it will *not* return an empty list. + + Examples + -------- + See the :ref:`read_html documentation in the IO section of the docs + ` for some examples of reading in HTML tables. + """ + # Type check here. We don't want to parse only to fail because of an + # invalid value of an integer skiprows. + if isinstance(skiprows, numbers.Integral) and skiprows < 0: + raise ValueError( + "cannot skip rows starting from the end of the " + "data (you passed a negative value)" + ) + if extract_links not in [None, "header", "footer", "body", "all"]: + raise ValueError( + "`extract_links` must be one of " + '{None, "header", "footer", "body", "all"}, got ' + f'"{extract_links}"' + ) + + validate_header_arg(header) + check_dtype_backend(dtype_backend) + + io = stringify_path(io) + + if isinstance(io, str) and not any( + [ + is_file_like(io), + file_exists(io), + is_url(io), + is_fsspec_url(io), + ] + ): + warnings.warn( + "Passing literal html to 'read_html' is deprecated and " + "will be removed in a future version. To read from a " + "literal string, wrap it in a 'StringIO' object.", + FutureWarning, + stacklevel=find_stack_level(), + ) + + return _parse( + flavor=flavor, + io=io, + match=match, + header=header, + index_col=index_col, + skiprows=skiprows, + parse_dates=parse_dates, + thousands=thousands, + attrs=attrs, + encoding=encoding, + decimal=decimal, + converters=converters, + na_values=na_values, + keep_default_na=keep_default_na, + displayed_only=displayed_only, + extract_links=extract_links, + dtype_backend=dtype_backend, + storage_options=storage_options, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/sql.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/sql.py new file mode 100644 index 0000000000000000000000000000000000000000..3e17175167f25a4bfc7eb559070927f56dc84eae --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/sql.py @@ -0,0 +1,2926 @@ +""" +Collection of query wrappers / abstractions to both facilitate data +retrieval and to reduce dependency on DB-specific API. +""" + +from __future__ import annotations + +from abc import ( + ABC, + abstractmethod, +) +from contextlib import ( + ExitStack, + contextmanager, +) +from datetime import ( + date, + datetime, + time, +) +from functools import partial +import re +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Literal, + cast, + overload, +) +import warnings + +import numpy as np + +from pandas._config import using_pyarrow_string_dtype + +from pandas._libs import lib +from pandas.compat._optional import import_optional_dependency +from pandas.errors import ( + AbstractMethodError, + DatabaseError, +) +from pandas.util._exceptions import find_stack_level +from pandas.util._validators import check_dtype_backend + +from pandas.core.dtypes.common import ( + is_dict_like, + is_list_like, +) +from pandas.core.dtypes.dtypes import ( + ArrowDtype, + DatetimeTZDtype, +) +from pandas.core.dtypes.missing import isna + +from pandas import get_option +from pandas.core.api import ( + DataFrame, + Series, +) +from pandas.core.arrays import ArrowExtensionArray +from pandas.core.base import PandasObject +import pandas.core.common as com +from pandas.core.common import maybe_make_list +from pandas.core.internals.construction import convert_object_array +from pandas.core.tools.datetimes import to_datetime + +if TYPE_CHECKING: + from collections.abc import ( + Iterator, + Mapping, + ) + + from sqlalchemy import Table + from sqlalchemy.sql.expression import ( + Select, + TextClause, + ) + + from pandas._typing import ( + DateTimeErrorChoices, + DtypeArg, + DtypeBackend, + IndexLabel, + Self, + ) + + from pandas import Index + +# ----------------------------------------------------------------------------- +# -- Helper functions + + +def _process_parse_dates_argument(parse_dates): + """Process parse_dates argument for read_sql functions""" + # handle non-list entries for parse_dates gracefully + if parse_dates is True or parse_dates is None or parse_dates is False: + parse_dates = [] + + elif not hasattr(parse_dates, "__iter__"): + parse_dates = [parse_dates] + return parse_dates + + +def _handle_date_column( + col, utc: bool = False, format: str | dict[str, Any] | None = None +): + if isinstance(format, dict): + # GH35185 Allow custom error values in parse_dates argument of + # read_sql like functions. + # Format can take on custom to_datetime argument values such as + # {"errors": "coerce"} or {"dayfirst": True} + error: DateTimeErrorChoices = format.pop("errors", None) or "ignore" + if error == "ignore": + try: + return to_datetime(col, **format) + except (TypeError, ValueError): + # TODO: not reached 2023-10-27; needed? + return col + return to_datetime(col, errors=error, **format) + else: + # Allow passing of formatting string for integers + # GH17855 + if format is None and ( + issubclass(col.dtype.type, np.floating) + or issubclass(col.dtype.type, np.integer) + ): + format = "s" + if format in ["D", "d", "h", "m", "s", "ms", "us", "ns"]: + return to_datetime(col, errors="coerce", unit=format, utc=utc) + elif isinstance(col.dtype, DatetimeTZDtype): + # coerce to UTC timezone + # GH11216 + return to_datetime(col, utc=True) + else: + return to_datetime(col, errors="coerce", format=format, utc=utc) + + +def _parse_date_columns(data_frame, parse_dates): + """ + Force non-datetime columns to be read as such. + Supports both string formatted and integer timestamp columns. + """ + parse_dates = _process_parse_dates_argument(parse_dates) + + # we want to coerce datetime64_tz dtypes for now to UTC + # we could in theory do a 'nice' conversion from a FixedOffset tz + # GH11216 + for i, (col_name, df_col) in enumerate(data_frame.items()): + if isinstance(df_col.dtype, DatetimeTZDtype) or col_name in parse_dates: + try: + fmt = parse_dates[col_name] + except (KeyError, TypeError): + fmt = None + data_frame.isetitem(i, _handle_date_column(df_col, format=fmt)) + + return data_frame + + +def _convert_arrays_to_dataframe( + data, + columns, + coerce_float: bool = True, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", +) -> DataFrame: + content = lib.to_object_array_tuples(data) + arrays = convert_object_array( + list(content.T), + dtype=None, + coerce_float=coerce_float, + dtype_backend=dtype_backend, + ) + if dtype_backend == "pyarrow": + pa = import_optional_dependency("pyarrow") + + result_arrays = [] + for arr in arrays: + pa_array = pa.array(arr, from_pandas=True) + if arr.dtype == "string": + # TODO: Arrow still infers strings arrays as regular strings instead + # of large_string, which is what we preserver everywhere else for + # dtype_backend="pyarrow". We may want to reconsider this + pa_array = pa_array.cast(pa.string()) + result_arrays.append(ArrowExtensionArray(pa_array)) + arrays = result_arrays # type: ignore[assignment] + if arrays: + df = DataFrame(dict(zip(list(range(len(columns))), arrays))) + df.columns = columns + return df + else: + return DataFrame(columns=columns) + + +def _wrap_result( + data, + columns, + index_col=None, + coerce_float: bool = True, + parse_dates=None, + dtype: DtypeArg | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", +): + """Wrap result set of a SQLAlchemy query in a DataFrame.""" + frame = _convert_arrays_to_dataframe(data, columns, coerce_float, dtype_backend) + + if dtype: + frame = frame.astype(dtype) + + frame = _parse_date_columns(frame, parse_dates) + + if index_col is not None: + frame = frame.set_index(index_col) + + return frame + + +def _wrap_result_adbc( + df: DataFrame, + *, + index_col=None, + parse_dates=None, + dtype: DtypeArg | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", +) -> DataFrame: + """Wrap result set of a SQLAlchemy query in a DataFrame.""" + if dtype: + df = df.astype(dtype) + + df = _parse_date_columns(df, parse_dates) + + if index_col is not None: + df = df.set_index(index_col) + + return df + + +def execute(sql, con, params=None): + """ + Execute the given SQL query using the provided connection object. + + Parameters + ---------- + sql : string + SQL query to be executed. + con : SQLAlchemy connection or sqlite3 connection + If a DBAPI2 object, only sqlite3 is supported. + params : list or tuple, optional, default: None + List of parameters to pass to execute method. + + Returns + ------- + Results Iterable + """ + warnings.warn( + "`pandas.io.sql.execute` is deprecated and " + "will be removed in the future version.", + FutureWarning, + stacklevel=find_stack_level(), + ) # GH50185 + sqlalchemy = import_optional_dependency("sqlalchemy", errors="ignore") + + if sqlalchemy is not None and isinstance(con, (str, sqlalchemy.engine.Engine)): + raise TypeError("pandas.io.sql.execute requires a connection") # GH50185 + with pandasSQL_builder(con, need_transaction=True) as pandas_sql: + return pandas_sql.execute(sql, params) + + +# ----------------------------------------------------------------------------- +# -- Read and write to DataFrames + + +@overload +def read_sql_table( + table_name: str, + con, + schema=..., + index_col: str | list[str] | None = ..., + coerce_float=..., + parse_dates: list[str] | dict[str, str] | None = ..., + columns: list[str] | None = ..., + chunksize: None = ..., + dtype_backend: DtypeBackend | lib.NoDefault = ..., +) -> DataFrame: + ... + + +@overload +def read_sql_table( + table_name: str, + con, + schema=..., + index_col: str | list[str] | None = ..., + coerce_float=..., + parse_dates: list[str] | dict[str, str] | None = ..., + columns: list[str] | None = ..., + chunksize: int = ..., + dtype_backend: DtypeBackend | lib.NoDefault = ..., +) -> Iterator[DataFrame]: + ... + + +def read_sql_table( + table_name: str, + con, + schema: str | None = None, + index_col: str | list[str] | None = None, + coerce_float: bool = True, + parse_dates: list[str] | dict[str, str] | None = None, + columns: list[str] | None = None, + chunksize: int | None = None, + dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, +) -> DataFrame | Iterator[DataFrame]: + """ + Read SQL database table into a DataFrame. + + Given a table name and a SQLAlchemy connectable, returns a DataFrame. + This function does not support DBAPI connections. + + Parameters + ---------- + table_name : str + Name of SQL table in database. + con : SQLAlchemy connectable or str + A database URI could be provided as str. + SQLite DBAPI connection mode not supported. + schema : str, default None + Name of SQL schema in database to query (if database flavor + supports this). Uses default schema if None (default). + index_col : str or list of str, optional, default: None + Column(s) to set as index(MultiIndex). + coerce_float : bool, default True + Attempts to convert values of non-string, non-numeric objects (like + decimal.Decimal) to floating point. Can result in loss of Precision. + parse_dates : list or dict, default None + - List of column names to parse as dates. + - Dict of ``{column_name: format string}`` where format string is + strftime compatible in case of parsing string times or is one of + (D, s, ns, ms, us) in case of parsing integer timestamps. + - Dict of ``{column_name: arg dict}``, where the arg dict corresponds + to the keyword arguments of :func:`pandas.to_datetime` + Especially useful with databases without native Datetime support, + such as SQLite. + columns : list, default None + List of column names to select from SQL table. + chunksize : int, default None + If specified, returns an iterator where `chunksize` is the number of + rows to include in each chunk. + dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' + Back-end data type applied to the resultant :class:`DataFrame` + (still experimental). Behaviour is as follows: + + * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` + (default). + * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` + DataFrame. + + .. versionadded:: 2.0 + + Returns + ------- + DataFrame or Iterator[DataFrame] + A SQL table is returned as two-dimensional data structure with labeled + axes. + + See Also + -------- + read_sql_query : Read SQL query into a DataFrame. + read_sql : Read SQL query or database table into a DataFrame. + + Notes + ----- + Any datetime values with time zone information will be converted to UTC. + + Examples + -------- + >>> pd.read_sql_table('table_name', 'postgres:///db_name') # doctest:+SKIP + """ + + check_dtype_backend(dtype_backend) + if dtype_backend is lib.no_default: + dtype_backend = "numpy" # type: ignore[assignment] + assert dtype_backend is not lib.no_default + + with pandasSQL_builder(con, schema=schema, need_transaction=True) as pandas_sql: + if not pandas_sql.has_table(table_name): + raise ValueError(f"Table {table_name} not found") + + table = pandas_sql.read_table( + table_name, + index_col=index_col, + coerce_float=coerce_float, + parse_dates=parse_dates, + columns=columns, + chunksize=chunksize, + dtype_backend=dtype_backend, + ) + + if table is not None: + return table + else: + raise ValueError(f"Table {table_name} not found", con) + + +@overload +def read_sql_query( + sql, + con, + index_col: str | list[str] | None = ..., + coerce_float=..., + params: list[Any] | Mapping[str, Any] | None = ..., + parse_dates: list[str] | dict[str, str] | None = ..., + chunksize: None = ..., + dtype: DtypeArg | None = ..., + dtype_backend: DtypeBackend | lib.NoDefault = ..., +) -> DataFrame: + ... + + +@overload +def read_sql_query( + sql, + con, + index_col: str | list[str] | None = ..., + coerce_float=..., + params: list[Any] | Mapping[str, Any] | None = ..., + parse_dates: list[str] | dict[str, str] | None = ..., + chunksize: int = ..., + dtype: DtypeArg | None = ..., + dtype_backend: DtypeBackend | lib.NoDefault = ..., +) -> Iterator[DataFrame]: + ... + + +def read_sql_query( + sql, + con, + index_col: str | list[str] | None = None, + coerce_float: bool = True, + params: list[Any] | Mapping[str, Any] | None = None, + parse_dates: list[str] | dict[str, str] | None = None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, +) -> DataFrame | Iterator[DataFrame]: + """ + Read SQL query into a DataFrame. + + Returns a DataFrame corresponding to the result set of the query + string. Optionally provide an `index_col` parameter to use one of the + columns as the index, otherwise default integer index will be used. + + Parameters + ---------- + sql : str SQL query or SQLAlchemy Selectable (select or text object) + SQL query to be executed. + con : SQLAlchemy connectable, str, or sqlite3 connection + Using SQLAlchemy makes it possible to use any DB supported by that + library. If a DBAPI2 object, only sqlite3 is supported. + index_col : str or list of str, optional, default: None + Column(s) to set as index(MultiIndex). + coerce_float : bool, default True + Attempts to convert values of non-string, non-numeric objects (like + decimal.Decimal) to floating point. Useful for SQL result sets. + params : list, tuple or mapping, optional, default: None + List of parameters to pass to execute method. The syntax used + to pass parameters is database driver dependent. Check your + database driver documentation for which of the five syntax styles, + described in PEP 249's paramstyle, is supported. + Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}. + parse_dates : list or dict, default: None + - List of column names to parse as dates. + - Dict of ``{column_name: format string}`` where format string is + strftime compatible in case of parsing string times, or is one of + (D, s, ns, ms, us) in case of parsing integer timestamps. + - Dict of ``{column_name: arg dict}``, where the arg dict corresponds + to the keyword arguments of :func:`pandas.to_datetime` + Especially useful with databases without native Datetime support, + such as SQLite. + chunksize : int, default None + If specified, return an iterator where `chunksize` is the number of + rows to include in each chunk. + dtype : Type name or dict of columns + Data type for data or columns. E.g. np.float64 or + {'a': np.float64, 'b': np.int32, 'c': 'Int64'}. + + .. versionadded:: 1.3.0 + dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' + Back-end data type applied to the resultant :class:`DataFrame` + (still experimental). Behaviour is as follows: + + * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` + (default). + * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` + DataFrame. + + .. versionadded:: 2.0 + + Returns + ------- + DataFrame or Iterator[DataFrame] + + See Also + -------- + read_sql_table : Read SQL database table into a DataFrame. + read_sql : Read SQL query or database table into a DataFrame. + + Notes + ----- + Any datetime values with time zone information parsed via the `parse_dates` + parameter will be converted to UTC. + + Examples + -------- + >>> from sqlalchemy import create_engine # doctest: +SKIP + >>> engine = create_engine("sqlite:///database.db") # doctest: +SKIP + >>> with engine.connect() as conn, conn.begin(): # doctest: +SKIP + ... data = pd.read_sql_table("data", conn) # doctest: +SKIP + """ + + check_dtype_backend(dtype_backend) + if dtype_backend is lib.no_default: + dtype_backend = "numpy" # type: ignore[assignment] + assert dtype_backend is not lib.no_default + + with pandasSQL_builder(con) as pandas_sql: + return pandas_sql.read_query( + sql, + index_col=index_col, + params=params, + coerce_float=coerce_float, + parse_dates=parse_dates, + chunksize=chunksize, + dtype=dtype, + dtype_backend=dtype_backend, + ) + + +@overload +def read_sql( + sql, + con, + index_col: str | list[str] | None = ..., + coerce_float=..., + params=..., + parse_dates=..., + columns: list[str] = ..., + chunksize: None = ..., + dtype_backend: DtypeBackend | lib.NoDefault = ..., + dtype: DtypeArg | None = None, +) -> DataFrame: + ... + + +@overload +def read_sql( + sql, + con, + index_col: str | list[str] | None = ..., + coerce_float=..., + params=..., + parse_dates=..., + columns: list[str] = ..., + chunksize: int = ..., + dtype_backend: DtypeBackend | lib.NoDefault = ..., + dtype: DtypeArg | None = None, +) -> Iterator[DataFrame]: + ... + + +def read_sql( + sql, + con, + index_col: str | list[str] | None = None, + coerce_float: bool = True, + params=None, + parse_dates=None, + columns: list[str] | None = None, + chunksize: int | None = None, + dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, + dtype: DtypeArg | None = None, +) -> DataFrame | Iterator[DataFrame]: + """ + Read SQL query or database table into a DataFrame. + + This function is a convenience wrapper around ``read_sql_table`` and + ``read_sql_query`` (for backward compatibility). It will delegate + to the specific function depending on the provided input. A SQL query + will be routed to ``read_sql_query``, while a database table name will + be routed to ``read_sql_table``. Note that the delegated function might + have more specific notes about their functionality not listed here. + + Parameters + ---------- + sql : str or SQLAlchemy Selectable (select or text object) + SQL query to be executed or a table name. + con : ADBC Connection, SQLAlchemy connectable, str, or sqlite3 connection + ADBC provides high performance I/O with native type support, where available. + Using SQLAlchemy makes it possible to use any DB supported by that + library. If a DBAPI2 object, only sqlite3 is supported. The user is responsible + for engine disposal and connection closure for the ADBC connection and + SQLAlchemy connectable; str connections are closed automatically. See + `here `_. + index_col : str or list of str, optional, default: None + Column(s) to set as index(MultiIndex). + coerce_float : bool, default True + Attempts to convert values of non-string, non-numeric objects (like + decimal.Decimal) to floating point, useful for SQL result sets. + params : list, tuple or dict, optional, default: None + List of parameters to pass to execute method. The syntax used + to pass parameters is database driver dependent. Check your + database driver documentation for which of the five syntax styles, + described in PEP 249's paramstyle, is supported. + Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}. + parse_dates : list or dict, default: None + - List of column names to parse as dates. + - Dict of ``{column_name: format string}`` where format string is + strftime compatible in case of parsing string times, or is one of + (D, s, ns, ms, us) in case of parsing integer timestamps. + - Dict of ``{column_name: arg dict}``, where the arg dict corresponds + to the keyword arguments of :func:`pandas.to_datetime` + Especially useful with databases without native Datetime support, + such as SQLite. + columns : list, default: None + List of column names to select from SQL table (only used when reading + a table). + chunksize : int, default None + If specified, return an iterator where `chunksize` is the + number of rows to include in each chunk. + dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' + Back-end data type applied to the resultant :class:`DataFrame` + (still experimental). Behaviour is as follows: + + * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` + (default). + * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` + DataFrame. + + .. versionadded:: 2.0 + dtype : Type name or dict of columns + Data type for data or columns. E.g. np.float64 or + {'a': np.float64, 'b': np.int32, 'c': 'Int64'}. + The argument is ignored if a table is passed instead of a query. + + .. versionadded:: 2.0.0 + + Returns + ------- + DataFrame or Iterator[DataFrame] + + See Also + -------- + read_sql_table : Read SQL database table into a DataFrame. + read_sql_query : Read SQL query into a DataFrame. + + Examples + -------- + Read data from SQL via either a SQL query or a SQL tablename. + When using a SQLite database only SQL queries are accepted, + providing only the SQL tablename will result in an error. + + >>> from sqlite3 import connect + >>> conn = connect(':memory:') + >>> df = pd.DataFrame(data=[[0, '10/11/12'], [1, '12/11/10']], + ... columns=['int_column', 'date_column']) + >>> df.to_sql(name='test_data', con=conn) + 2 + + >>> pd.read_sql('SELECT int_column, date_column FROM test_data', conn) + int_column date_column + 0 0 10/11/12 + 1 1 12/11/10 + + >>> pd.read_sql('test_data', 'postgres:///db_name') # doctest:+SKIP + + Apply date parsing to columns through the ``parse_dates`` argument + The ``parse_dates`` argument calls ``pd.to_datetime`` on the provided columns. + Custom argument values for applying ``pd.to_datetime`` on a column are specified + via a dictionary format: + + >>> pd.read_sql('SELECT int_column, date_column FROM test_data', + ... conn, + ... parse_dates={"date_column": {"format": "%d/%m/%y"}}) + int_column date_column + 0 0 2012-11-10 + 1 1 2010-11-12 + + .. versionadded:: 2.2.0 + + pandas now supports reading via ADBC drivers + + >>> from adbc_driver_postgresql import dbapi # doctest:+SKIP + >>> with dbapi.connect('postgres:///db_name') as conn: # doctest:+SKIP + ... pd.read_sql('SELECT int_column FROM test_data', conn) + int_column + 0 0 + 1 1 + """ + + check_dtype_backend(dtype_backend) + if dtype_backend is lib.no_default: + dtype_backend = "numpy" # type: ignore[assignment] + assert dtype_backend is not lib.no_default + + with pandasSQL_builder(con) as pandas_sql: + if isinstance(pandas_sql, SQLiteDatabase): + return pandas_sql.read_query( + sql, + index_col=index_col, + params=params, + coerce_float=coerce_float, + parse_dates=parse_dates, + chunksize=chunksize, + dtype_backend=dtype_backend, + dtype=dtype, + ) + + try: + _is_table_name = pandas_sql.has_table(sql) + except Exception: + # using generic exception to catch errors from sql drivers (GH24988) + _is_table_name = False + + if _is_table_name: + return pandas_sql.read_table( + sql, + index_col=index_col, + coerce_float=coerce_float, + parse_dates=parse_dates, + columns=columns, + chunksize=chunksize, + dtype_backend=dtype_backend, + ) + else: + return pandas_sql.read_query( + sql, + index_col=index_col, + params=params, + coerce_float=coerce_float, + parse_dates=parse_dates, + chunksize=chunksize, + dtype_backend=dtype_backend, + dtype=dtype, + ) + + +def to_sql( + frame, + name: str, + con, + schema: str | None = None, + if_exists: Literal["fail", "replace", "append"] = "fail", + index: bool = True, + index_label: IndexLabel | None = None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + method: Literal["multi"] | Callable | None = None, + engine: str = "auto", + **engine_kwargs, +) -> int | None: + """ + Write records stored in a DataFrame to a SQL database. + + Parameters + ---------- + frame : DataFrame, Series + name : str + Name of SQL table. + con : ADBC Connection, SQLAlchemy connectable, str, or sqlite3 connection + or sqlite3 DBAPI2 connection + ADBC provides high performance I/O with native type support, where available. + Using SQLAlchemy makes it possible to use any DB supported by that + library. + If a DBAPI2 object, only sqlite3 is supported. + schema : str, optional + Name of SQL schema in database to write to (if database flavor + supports this). If None, use default schema (default). + if_exists : {'fail', 'replace', 'append'}, default 'fail' + - fail: If table exists, do nothing. + - replace: If table exists, drop it, recreate it, and insert data. + - append: If table exists, insert data. Create if does not exist. + index : bool, default True + Write DataFrame index as a column. + index_label : str or sequence, optional + Column label for index column(s). If None is given (default) and + `index` is True, then the index names are used. + A sequence should be given if the DataFrame uses MultiIndex. + chunksize : int, optional + Specify the number of rows in each batch to be written at a time. + By default, all rows will be written at once. + dtype : dict or scalar, optional + Specifying the datatype for columns. If a dictionary is used, the + keys should be the column names and the values should be the + SQLAlchemy types or strings for the sqlite3 fallback mode. If a + scalar is provided, it will be applied to all columns. + method : {None, 'multi', callable}, optional + Controls the SQL insertion clause used: + + - None : Uses standard SQL ``INSERT`` clause (one per row). + - ``'multi'``: Pass multiple values in a single ``INSERT`` clause. + - callable with signature ``(pd_table, conn, keys, data_iter) -> int | None``. + + Details and a sample callable implementation can be found in the + section :ref:`insert method `. + engine : {'auto', 'sqlalchemy'}, default 'auto' + SQL engine library to use. If 'auto', then the option + ``io.sql.engine`` is used. The default ``io.sql.engine`` + behavior is 'sqlalchemy' + + .. versionadded:: 1.3.0 + + **engine_kwargs + Any additional kwargs are passed to the engine. + + Returns + ------- + None or int + Number of rows affected by to_sql. None is returned if the callable + passed into ``method`` does not return an integer number of rows. + + .. versionadded:: 1.4.0 + + Notes + ----- + The returned rows affected is the sum of the ``rowcount`` attribute of ``sqlite3.Cursor`` + or SQLAlchemy connectable. If using ADBC the returned rows are the result + of ``Cursor.adbc_ingest``. The returned value may not reflect the exact number of written + rows as stipulated in the + `sqlite3 `__ or + `SQLAlchemy `__ + """ # noqa: E501 + if if_exists not in ("fail", "replace", "append"): + raise ValueError(f"'{if_exists}' is not valid for if_exists") + + if isinstance(frame, Series): + frame = frame.to_frame() + elif not isinstance(frame, DataFrame): + raise NotImplementedError( + "'frame' argument should be either a Series or a DataFrame" + ) + + with pandasSQL_builder(con, schema=schema, need_transaction=True) as pandas_sql: + return pandas_sql.to_sql( + frame, + name, + if_exists=if_exists, + index=index, + index_label=index_label, + schema=schema, + chunksize=chunksize, + dtype=dtype, + method=method, + engine=engine, + **engine_kwargs, + ) + + +def has_table(table_name: str, con, schema: str | None = None) -> bool: + """ + Check if DataBase has named table. + + Parameters + ---------- + table_name: string + Name of SQL table. + con: ADBC Connection, SQLAlchemy connectable, str, or sqlite3 connection + ADBC provides high performance I/O with native type support, where available. + Using SQLAlchemy makes it possible to use any DB supported by that + library. + If a DBAPI2 object, only sqlite3 is supported. + schema : string, default None + Name of SQL schema in database to write to (if database flavor supports + this). If None, use default schema (default). + + Returns + ------- + boolean + """ + with pandasSQL_builder(con, schema=schema) as pandas_sql: + return pandas_sql.has_table(table_name) + + +table_exists = has_table + + +def pandasSQL_builder( + con, + schema: str | None = None, + need_transaction: bool = False, +) -> PandasSQL: + """ + Convenience function to return the correct PandasSQL subclass based on the + provided parameters. Also creates a sqlalchemy connection and transaction + if necessary. + """ + import sqlite3 + + if isinstance(con, sqlite3.Connection) or con is None: + return SQLiteDatabase(con) + + sqlalchemy = import_optional_dependency("sqlalchemy", errors="ignore") + + if isinstance(con, str) and sqlalchemy is None: + raise ImportError("Using URI string without sqlalchemy installed.") + + if sqlalchemy is not None and isinstance(con, (str, sqlalchemy.engine.Connectable)): + return SQLDatabase(con, schema, need_transaction) + + adbc = import_optional_dependency("adbc_driver_manager.dbapi", errors="ignore") + if adbc and isinstance(con, adbc.Connection): + return ADBCDatabase(con) + + warnings.warn( + "pandas only supports SQLAlchemy connectable (engine/connection) or " + "database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 " + "objects are not tested. Please consider using SQLAlchemy.", + UserWarning, + stacklevel=find_stack_level(), + ) + return SQLiteDatabase(con) + + +class SQLTable(PandasObject): + """ + For mapping Pandas tables to SQL tables. + Uses fact that table is reflected by SQLAlchemy to + do better type conversions. + Also holds various flags needed to avoid having to + pass them between functions all the time. + """ + + # TODO: support for multiIndex + + def __init__( + self, + name: str, + pandas_sql_engine, + frame=None, + index: bool | str | list[str] | None = True, + if_exists: Literal["fail", "replace", "append"] = "fail", + prefix: str = "pandas", + index_label=None, + schema=None, + keys=None, + dtype: DtypeArg | None = None, + ) -> None: + self.name = name + self.pd_sql = pandas_sql_engine + self.prefix = prefix + self.frame = frame + self.index = self._index_name(index, index_label) + self.schema = schema + self.if_exists = if_exists + self.keys = keys + self.dtype = dtype + + if frame is not None: + # We want to initialize based on a dataframe + self.table = self._create_table_setup() + else: + # no data provided, read-only mode + self.table = self.pd_sql.get_table(self.name, self.schema) + + if self.table is None: + raise ValueError(f"Could not init table '{name}'") + + if not len(self.name): + raise ValueError("Empty table name specified") + + def exists(self): + return self.pd_sql.has_table(self.name, self.schema) + + def sql_schema(self) -> str: + from sqlalchemy.schema import CreateTable + + return str(CreateTable(self.table).compile(self.pd_sql.con)) + + def _execute_create(self) -> None: + # Inserting table into database, add to MetaData object + self.table = self.table.to_metadata(self.pd_sql.meta) + with self.pd_sql.run_transaction(): + self.table.create(bind=self.pd_sql.con) + + def create(self) -> None: + if self.exists(): + if self.if_exists == "fail": + raise ValueError(f"Table '{self.name}' already exists.") + if self.if_exists == "replace": + self.pd_sql.drop_table(self.name, self.schema) + self._execute_create() + elif self.if_exists == "append": + pass + else: + raise ValueError(f"'{self.if_exists}' is not valid for if_exists") + else: + self._execute_create() + + def _execute_insert(self, conn, keys: list[str], data_iter) -> int: + """ + Execute SQL statement inserting data + + Parameters + ---------- + conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection + keys : list of str + Column names + data_iter : generator of list + Each item contains a list of values to be inserted + """ + data = [dict(zip(keys, row)) for row in data_iter] + result = conn.execute(self.table.insert(), data) + return result.rowcount + + def _execute_insert_multi(self, conn, keys: list[str], data_iter) -> int: + """ + Alternative to _execute_insert for DBs support multi-value INSERT. + + Note: multi-value insert is usually faster for analytics DBs + and tables containing a few columns + but performance degrades quickly with increase of columns. + + """ + + from sqlalchemy import insert + + data = [dict(zip(keys, row)) for row in data_iter] + stmt = insert(self.table).values(data) + result = conn.execute(stmt) + return result.rowcount + + def insert_data(self) -> tuple[list[str], list[np.ndarray]]: + if self.index is not None: + temp = self.frame.copy() + temp.index.names = self.index + try: + temp.reset_index(inplace=True) + except ValueError as err: + raise ValueError(f"duplicate name in index/columns: {err}") from err + else: + temp = self.frame + + column_names = list(map(str, temp.columns)) + ncols = len(column_names) + # this just pre-allocates the list: None's will be replaced with ndarrays + # error: List item 0 has incompatible type "None"; expected "ndarray" + data_list: list[np.ndarray] = [None] * ncols # type: ignore[list-item] + + for i, (_, ser) in enumerate(temp.items()): + if ser.dtype.kind == "M": + if isinstance(ser._values, ArrowExtensionArray): + import pyarrow as pa + + if pa.types.is_date(ser.dtype.pyarrow_dtype): + # GH#53854 to_pydatetime not supported for pyarrow date dtypes + d = ser._values.to_numpy(dtype=object) + else: + with warnings.catch_warnings(): + warnings.filterwarnings("ignore", category=FutureWarning) + # GH#52459 to_pydatetime will return Index[object] + d = np.asarray(ser.dt.to_pydatetime(), dtype=object) + else: + d = ser._values.to_pydatetime() + elif ser.dtype.kind == "m": + vals = ser._values + if isinstance(vals, ArrowExtensionArray): + vals = vals.to_numpy(dtype=np.dtype("m8[ns]")) + # store as integers, see GH#6921, GH#7076 + d = vals.view("i8").astype(object) + else: + d = ser._values.astype(object) + + assert isinstance(d, np.ndarray), type(d) + + if ser._can_hold_na: + # Note: this will miss timedeltas since they are converted to int + mask = isna(d) + d[mask] = None + + data_list[i] = d + + return column_names, data_list + + def insert( + self, + chunksize: int | None = None, + method: Literal["multi"] | Callable | None = None, + ) -> int | None: + # set insert method + if method is None: + exec_insert = self._execute_insert + elif method == "multi": + exec_insert = self._execute_insert_multi + elif callable(method): + exec_insert = partial(method, self) + else: + raise ValueError(f"Invalid parameter `method`: {method}") + + keys, data_list = self.insert_data() + + nrows = len(self.frame) + + if nrows == 0: + return 0 + + if chunksize is None: + chunksize = nrows + elif chunksize == 0: + raise ValueError("chunksize argument should be non-zero") + + chunks = (nrows // chunksize) + 1 + total_inserted = None + with self.pd_sql.run_transaction() as conn: + for i in range(chunks): + start_i = i * chunksize + end_i = min((i + 1) * chunksize, nrows) + if start_i >= end_i: + break + + chunk_iter = zip(*(arr[start_i:end_i] for arr in data_list)) + num_inserted = exec_insert(conn, keys, chunk_iter) + # GH 46891 + if num_inserted is not None: + if total_inserted is None: + total_inserted = num_inserted + else: + total_inserted += num_inserted + return total_inserted + + def _query_iterator( + self, + result, + exit_stack: ExitStack, + chunksize: int | None, + columns, + coerce_float: bool = True, + parse_dates=None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ): + """Return generator through chunked result set.""" + has_read_data = False + with exit_stack: + while True: + data = result.fetchmany(chunksize) + if not data: + if not has_read_data: + yield DataFrame.from_records( + [], columns=columns, coerce_float=coerce_float + ) + break + + has_read_data = True + self.frame = _convert_arrays_to_dataframe( + data, columns, coerce_float, dtype_backend + ) + + self._harmonize_columns( + parse_dates=parse_dates, dtype_backend=dtype_backend + ) + + if self.index is not None: + self.frame.set_index(self.index, inplace=True) + + yield self.frame + + def read( + self, + exit_stack: ExitStack, + coerce_float: bool = True, + parse_dates=None, + columns=None, + chunksize: int | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ) -> DataFrame | Iterator[DataFrame]: + from sqlalchemy import select + + if columns is not None and len(columns) > 0: + cols = [self.table.c[n] for n in columns] + if self.index is not None: + for idx in self.index[::-1]: + cols.insert(0, self.table.c[idx]) + sql_select = select(*cols) + else: + sql_select = select(self.table) + result = self.pd_sql.execute(sql_select) + column_names = result.keys() + + if chunksize is not None: + return self._query_iterator( + result, + exit_stack, + chunksize, + column_names, + coerce_float=coerce_float, + parse_dates=parse_dates, + dtype_backend=dtype_backend, + ) + else: + data = result.fetchall() + self.frame = _convert_arrays_to_dataframe( + data, column_names, coerce_float, dtype_backend + ) + + self._harmonize_columns( + parse_dates=parse_dates, dtype_backend=dtype_backend + ) + + if self.index is not None: + self.frame.set_index(self.index, inplace=True) + + return self.frame + + def _index_name(self, index, index_label): + # for writing: index=True to include index in sql table + if index is True: + nlevels = self.frame.index.nlevels + # if index_label is specified, set this as index name(s) + if index_label is not None: + if not isinstance(index_label, list): + index_label = [index_label] + if len(index_label) != nlevels: + raise ValueError( + "Length of 'index_label' should match number of " + f"levels, which is {nlevels}" + ) + return index_label + # return the used column labels for the index columns + if ( + nlevels == 1 + and "index" not in self.frame.columns + and self.frame.index.name is None + ): + return ["index"] + else: + return com.fill_missing_names(self.frame.index.names) + + # for reading: index=(list of) string to specify column to set as index + elif isinstance(index, str): + return [index] + elif isinstance(index, list): + return index + else: + return None + + def _get_column_names_and_types(self, dtype_mapper): + column_names_and_types = [] + if self.index is not None: + for i, idx_label in enumerate(self.index): + idx_type = dtype_mapper(self.frame.index._get_level_values(i)) + column_names_and_types.append((str(idx_label), idx_type, True)) + + column_names_and_types += [ + (str(self.frame.columns[i]), dtype_mapper(self.frame.iloc[:, i]), False) + for i in range(len(self.frame.columns)) + ] + + return column_names_and_types + + def _create_table_setup(self): + from sqlalchemy import ( + Column, + PrimaryKeyConstraint, + Table, + ) + from sqlalchemy.schema import MetaData + + column_names_and_types = self._get_column_names_and_types(self._sqlalchemy_type) + + columns: list[Any] = [ + Column(name, typ, index=is_index) + for name, typ, is_index in column_names_and_types + ] + + if self.keys is not None: + if not is_list_like(self.keys): + keys = [self.keys] + else: + keys = self.keys + pkc = PrimaryKeyConstraint(*keys, name=self.name + "_pk") + columns.append(pkc) + + schema = self.schema or self.pd_sql.meta.schema + + # At this point, attach to new metadata, only attach to self.meta + # once table is created. + meta = MetaData() + return Table(self.name, meta, *columns, schema=schema) + + def _harmonize_columns( + self, + parse_dates=None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ) -> None: + """ + Make the DataFrame's column types align with the SQL table + column types. + Need to work around limited NA value support. Floats are always + fine, ints must always be floats if there are Null values. + Booleans are hard because converting bool column with None replaces + all Nones with false. Therefore only convert bool if there are no + NA values. + Datetimes should already be converted to np.datetime64 if supported, + but here we also force conversion if required. + """ + parse_dates = _process_parse_dates_argument(parse_dates) + + for sql_col in self.table.columns: + col_name = sql_col.name + try: + df_col = self.frame[col_name] + + # Handle date parsing upfront; don't try to convert columns + # twice + if col_name in parse_dates: + try: + fmt = parse_dates[col_name] + except TypeError: + fmt = None + self.frame[col_name] = _handle_date_column(df_col, format=fmt) + continue + + # the type the dataframe column should have + col_type = self._get_dtype(sql_col.type) + + if ( + col_type is datetime + or col_type is date + or col_type is DatetimeTZDtype + ): + # Convert tz-aware Datetime SQL columns to UTC + utc = col_type is DatetimeTZDtype + self.frame[col_name] = _handle_date_column(df_col, utc=utc) + elif dtype_backend == "numpy" and col_type is float: + # floats support NA, can always convert! + self.frame[col_name] = df_col.astype(col_type, copy=False) + + elif dtype_backend == "numpy" and len(df_col) == df_col.count(): + # No NA values, can convert ints and bools + if col_type is np.dtype("int64") or col_type is bool: + self.frame[col_name] = df_col.astype(col_type, copy=False) + except KeyError: + pass # this column not in results + + def _sqlalchemy_type(self, col: Index | Series): + dtype: DtypeArg = self.dtype or {} + if is_dict_like(dtype): + dtype = cast(dict, dtype) + if col.name in dtype: + return dtype[col.name] + + # Infer type of column, while ignoring missing values. + # Needed for inserting typed data containing NULLs, GH 8778. + col_type = lib.infer_dtype(col, skipna=True) + + from sqlalchemy.types import ( + TIMESTAMP, + BigInteger, + Boolean, + Date, + DateTime, + Float, + Integer, + SmallInteger, + Text, + Time, + ) + + if col_type in ("datetime64", "datetime"): + # GH 9086: TIMESTAMP is the suggested type if the column contains + # timezone information + try: + # error: Item "Index" of "Union[Index, Series]" has no attribute "dt" + if col.dt.tz is not None: # type: ignore[union-attr] + return TIMESTAMP(timezone=True) + except AttributeError: + # The column is actually a DatetimeIndex + # GH 26761 or an Index with date-like data e.g. 9999-01-01 + if getattr(col, "tz", None) is not None: + return TIMESTAMP(timezone=True) + return DateTime + if col_type == "timedelta64": + warnings.warn( + "the 'timedelta' type is not supported, and will be " + "written as integer values (ns frequency) to the database.", + UserWarning, + stacklevel=find_stack_level(), + ) + return BigInteger + elif col_type == "floating": + if col.dtype == "float32": + return Float(precision=23) + else: + return Float(precision=53) + elif col_type == "integer": + # GH35076 Map pandas integer to optimal SQLAlchemy integer type + if col.dtype.name.lower() in ("int8", "uint8", "int16"): + return SmallInteger + elif col.dtype.name.lower() in ("uint16", "int32"): + return Integer + elif col.dtype.name.lower() == "uint64": + raise ValueError("Unsigned 64 bit integer datatype is not supported") + else: + return BigInteger + elif col_type == "boolean": + return Boolean + elif col_type == "date": + return Date + elif col_type == "time": + return Time + elif col_type == "complex": + raise ValueError("Complex datatypes not supported") + + return Text + + def _get_dtype(self, sqltype): + from sqlalchemy.types import ( + TIMESTAMP, + Boolean, + Date, + DateTime, + Float, + Integer, + ) + + if isinstance(sqltype, Float): + return float + elif isinstance(sqltype, Integer): + # TODO: Refine integer size. + return np.dtype("int64") + elif isinstance(sqltype, TIMESTAMP): + # we have a timezone capable type + if not sqltype.timezone: + return datetime + return DatetimeTZDtype + elif isinstance(sqltype, DateTime): + # Caution: np.datetime64 is also a subclass of np.number. + return datetime + elif isinstance(sqltype, Date): + return date + elif isinstance(sqltype, Boolean): + return bool + return object + + +class PandasSQL(PandasObject, ABC): + """ + Subclasses Should define read_query and to_sql. + """ + + def __enter__(self) -> Self: + return self + + def __exit__(self, *args) -> None: + pass + + def read_table( + self, + table_name: str, + index_col: str | list[str] | None = None, + coerce_float: bool = True, + parse_dates=None, + columns=None, + schema: str | None = None, + chunksize: int | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ) -> DataFrame | Iterator[DataFrame]: + raise NotImplementedError + + @abstractmethod + def read_query( + self, + sql: str, + index_col: str | list[str] | None = None, + coerce_float: bool = True, + parse_dates=None, + params=None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ) -> DataFrame | Iterator[DataFrame]: + pass + + @abstractmethod + def to_sql( + self, + frame, + name: str, + if_exists: Literal["fail", "replace", "append"] = "fail", + index: bool = True, + index_label=None, + schema=None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + method: Literal["multi"] | Callable | None = None, + engine: str = "auto", + **engine_kwargs, + ) -> int | None: + pass + + @abstractmethod + def execute(self, sql: str | Select | TextClause, params=None): + pass + + @abstractmethod + def has_table(self, name: str, schema: str | None = None) -> bool: + pass + + @abstractmethod + def _create_sql_schema( + self, + frame: DataFrame, + table_name: str, + keys: list[str] | None = None, + dtype: DtypeArg | None = None, + schema: str | None = None, + ) -> str: + pass + + +class BaseEngine: + def insert_records( + self, + table: SQLTable, + con, + frame, + name: str, + index: bool | str | list[str] | None = True, + schema=None, + chunksize: int | None = None, + method=None, + **engine_kwargs, + ) -> int | None: + """ + Inserts data into already-prepared table + """ + raise AbstractMethodError(self) + + +class SQLAlchemyEngine(BaseEngine): + def __init__(self) -> None: + import_optional_dependency( + "sqlalchemy", extra="sqlalchemy is required for SQL support." + ) + + def insert_records( + self, + table: SQLTable, + con, + frame, + name: str, + index: bool | str | list[str] | None = True, + schema=None, + chunksize: int | None = None, + method=None, + **engine_kwargs, + ) -> int | None: + from sqlalchemy import exc + + try: + return table.insert(chunksize=chunksize, method=method) + except exc.StatementError as err: + # GH34431 + # https://stackoverflow.com/a/67358288/6067848 + msg = r"""(\(1054, "Unknown column 'inf(e0)?' in 'field list'"\))(?# + )|inf can not be used with MySQL""" + err_text = str(err.orig) + if re.search(msg, err_text): + raise ValueError("inf cannot be used with MySQL") from err + raise err + + +def get_engine(engine: str) -> BaseEngine: + """return our implementation""" + if engine == "auto": + engine = get_option("io.sql.engine") + + if engine == "auto": + # try engines in this order + engine_classes = [SQLAlchemyEngine] + + error_msgs = "" + for engine_class in engine_classes: + try: + return engine_class() + except ImportError as err: + error_msgs += "\n - " + str(err) + + raise ImportError( + "Unable to find a usable engine; " + "tried using: 'sqlalchemy'.\n" + "A suitable version of " + "sqlalchemy is required for sql I/O " + "support.\n" + "Trying to import the above resulted in these errors:" + f"{error_msgs}" + ) + + if engine == "sqlalchemy": + return SQLAlchemyEngine() + + raise ValueError("engine must be one of 'auto', 'sqlalchemy'") + + +class SQLDatabase(PandasSQL): + """ + This class enables conversion between DataFrame and SQL databases + using SQLAlchemy to handle DataBase abstraction. + + Parameters + ---------- + con : SQLAlchemy Connectable or URI string. + Connectable to connect with the database. Using SQLAlchemy makes it + possible to use any DB supported by that library. + schema : string, default None + Name of SQL schema in database to write to (if database flavor + supports this). If None, use default schema (default). + need_transaction : bool, default False + If True, SQLDatabase will create a transaction. + + """ + + def __init__( + self, con, schema: str | None = None, need_transaction: bool = False + ) -> None: + from sqlalchemy import create_engine + from sqlalchemy.engine import Engine + from sqlalchemy.schema import MetaData + + # self.exit_stack cleans up the Engine and Connection and commits the + # transaction if any of those objects was created below. + # Cleanup happens either in self.__exit__ or at the end of the iterator + # returned by read_sql when chunksize is not None. + self.exit_stack = ExitStack() + if isinstance(con, str): + con = create_engine(con) + self.exit_stack.callback(con.dispose) + if isinstance(con, Engine): + con = self.exit_stack.enter_context(con.connect()) + if need_transaction and not con.in_transaction(): + self.exit_stack.enter_context(con.begin()) + self.con = con + self.meta = MetaData(schema=schema) + self.returns_generator = False + + def __exit__(self, *args) -> None: + if not self.returns_generator: + self.exit_stack.close() + + @contextmanager + def run_transaction(self): + if not self.con.in_transaction(): + with self.con.begin(): + yield self.con + else: + yield self.con + + def execute(self, sql: str | Select | TextClause, params=None): + """Simple passthrough to SQLAlchemy connectable""" + args = [] if params is None else [params] + if isinstance(sql, str): + return self.con.exec_driver_sql(sql, *args) + return self.con.execute(sql, *args) + + def read_table( + self, + table_name: str, + index_col: str | list[str] | None = None, + coerce_float: bool = True, + parse_dates=None, + columns=None, + schema: str | None = None, + chunksize: int | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ) -> DataFrame | Iterator[DataFrame]: + """ + Read SQL database table into a DataFrame. + + Parameters + ---------- + table_name : str + Name of SQL table in database. + index_col : string, optional, default: None + Column to set as index. + coerce_float : bool, default True + Attempts to convert values of non-string, non-numeric objects + (like decimal.Decimal) to floating point. This can result in + loss of precision. + parse_dates : list or dict, default: None + - List of column names to parse as dates. + - Dict of ``{column_name: format string}`` where format string is + strftime compatible in case of parsing string times, or is one of + (D, s, ns, ms, us) in case of parsing integer timestamps. + - Dict of ``{column_name: arg}``, where the arg corresponds + to the keyword arguments of :func:`pandas.to_datetime`. + Especially useful with databases without native Datetime support, + such as SQLite. + columns : list, default: None + List of column names to select from SQL table. + schema : string, default None + Name of SQL schema in database to query (if database flavor + supports this). If specified, this overwrites the default + schema of the SQL database object. + chunksize : int, default None + If specified, return an iterator where `chunksize` is the number + of rows to include in each chunk. + dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' + Back-end data type applied to the resultant :class:`DataFrame` + (still experimental). Behaviour is as follows: + + * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` + (default). + * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` + DataFrame. + + .. versionadded:: 2.0 + + Returns + ------- + DataFrame + + See Also + -------- + pandas.read_sql_table + SQLDatabase.read_query + + """ + self.meta.reflect(bind=self.con, only=[table_name], views=True) + table = SQLTable(table_name, self, index=index_col, schema=schema) + if chunksize is not None: + self.returns_generator = True + return table.read( + self.exit_stack, + coerce_float=coerce_float, + parse_dates=parse_dates, + columns=columns, + chunksize=chunksize, + dtype_backend=dtype_backend, + ) + + @staticmethod + def _query_iterator( + result, + exit_stack: ExitStack, + chunksize: int, + columns, + index_col=None, + coerce_float: bool = True, + parse_dates=None, + dtype: DtypeArg | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ): + """Return generator through chunked result set""" + has_read_data = False + with exit_stack: + while True: + data = result.fetchmany(chunksize) + if not data: + if not has_read_data: + yield _wrap_result( + [], + columns, + index_col=index_col, + coerce_float=coerce_float, + parse_dates=parse_dates, + dtype=dtype, + dtype_backend=dtype_backend, + ) + break + + has_read_data = True + yield _wrap_result( + data, + columns, + index_col=index_col, + coerce_float=coerce_float, + parse_dates=parse_dates, + dtype=dtype, + dtype_backend=dtype_backend, + ) + + def read_query( + self, + sql: str, + index_col: str | list[str] | None = None, + coerce_float: bool = True, + parse_dates=None, + params=None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ) -> DataFrame | Iterator[DataFrame]: + """ + Read SQL query into a DataFrame. + + Parameters + ---------- + sql : str + SQL query to be executed. + index_col : string, optional, default: None + Column name to use as index for the returned DataFrame object. + coerce_float : bool, default True + Attempt to convert values of non-string, non-numeric objects (like + decimal.Decimal) to floating point, useful for SQL result sets. + params : list, tuple or dict, optional, default: None + List of parameters to pass to execute method. The syntax used + to pass parameters is database driver dependent. Check your + database driver documentation for which of the five syntax styles, + described in PEP 249's paramstyle, is supported. + Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'} + parse_dates : list or dict, default: None + - List of column names to parse as dates. + - Dict of ``{column_name: format string}`` where format string is + strftime compatible in case of parsing string times, or is one of + (D, s, ns, ms, us) in case of parsing integer timestamps. + - Dict of ``{column_name: arg dict}``, where the arg dict + corresponds to the keyword arguments of + :func:`pandas.to_datetime` Especially useful with databases + without native Datetime support, such as SQLite. + chunksize : int, default None + If specified, return an iterator where `chunksize` is the number + of rows to include in each chunk. + dtype : Type name or dict of columns + Data type for data or columns. E.g. np.float64 or + {'a': np.float64, 'b': np.int32, 'c': 'Int64'} + + .. versionadded:: 1.3.0 + + Returns + ------- + DataFrame + + See Also + -------- + read_sql_table : Read SQL database table into a DataFrame. + read_sql + + """ + result = self.execute(sql, params) + columns = result.keys() + + if chunksize is not None: + self.returns_generator = True + return self._query_iterator( + result, + self.exit_stack, + chunksize, + columns, + index_col=index_col, + coerce_float=coerce_float, + parse_dates=parse_dates, + dtype=dtype, + dtype_backend=dtype_backend, + ) + else: + data = result.fetchall() + frame = _wrap_result( + data, + columns, + index_col=index_col, + coerce_float=coerce_float, + parse_dates=parse_dates, + dtype=dtype, + dtype_backend=dtype_backend, + ) + return frame + + read_sql = read_query + + def prep_table( + self, + frame, + name: str, + if_exists: Literal["fail", "replace", "append"] = "fail", + index: bool | str | list[str] | None = True, + index_label=None, + schema=None, + dtype: DtypeArg | None = None, + ) -> SQLTable: + """ + Prepares table in the database for data insertion. Creates it if needed, etc. + """ + if dtype: + if not is_dict_like(dtype): + # error: Value expression in dictionary comprehension has incompatible + # type "Union[ExtensionDtype, str, dtype[Any], Type[object], + # Dict[Hashable, Union[ExtensionDtype, Union[str, dtype[Any]], + # Type[str], Type[float], Type[int], Type[complex], Type[bool], + # Type[object]]]]"; expected type "Union[ExtensionDtype, str, + # dtype[Any], Type[object]]" + dtype = {col_name: dtype for col_name in frame} # type: ignore[misc] + else: + dtype = cast(dict, dtype) + + from sqlalchemy.types import TypeEngine + + for col, my_type in dtype.items(): + if isinstance(my_type, type) and issubclass(my_type, TypeEngine): + pass + elif isinstance(my_type, TypeEngine): + pass + else: + raise ValueError(f"The type of {col} is not a SQLAlchemy type") + + table = SQLTable( + name, + self, + frame=frame, + index=index, + if_exists=if_exists, + index_label=index_label, + schema=schema, + dtype=dtype, + ) + table.create() + return table + + def check_case_sensitive( + self, + name: str, + schema: str | None, + ) -> None: + """ + Checks table name for issues with case-sensitivity. + Method is called after data is inserted. + """ + if not name.isdigit() and not name.islower(): + # check for potentially case sensitivity issues (GH7815) + # Only check when name is not a number and name is not lower case + from sqlalchemy import inspect as sqlalchemy_inspect + + insp = sqlalchemy_inspect(self.con) + table_names = insp.get_table_names(schema=schema or self.meta.schema) + if name not in table_names: + msg = ( + f"The provided table name '{name}' is not found exactly as " + "such in the database after writing the table, possibly " + "due to case sensitivity issues. Consider using lower " + "case table names." + ) + warnings.warn( + msg, + UserWarning, + stacklevel=find_stack_level(), + ) + + def to_sql( + self, + frame, + name: str, + if_exists: Literal["fail", "replace", "append"] = "fail", + index: bool = True, + index_label=None, + schema: str | None = None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + method: Literal["multi"] | Callable | None = None, + engine: str = "auto", + **engine_kwargs, + ) -> int | None: + """ + Write records stored in a DataFrame to a SQL database. + + Parameters + ---------- + frame : DataFrame + name : string + Name of SQL table. + if_exists : {'fail', 'replace', 'append'}, default 'fail' + - fail: If table exists, do nothing. + - replace: If table exists, drop it, recreate it, and insert data. + - append: If table exists, insert data. Create if does not exist. + index : boolean, default True + Write DataFrame index as a column. + index_label : string or sequence, default None + Column label for index column(s). If None is given (default) and + `index` is True, then the index names are used. + A sequence should be given if the DataFrame uses MultiIndex. + schema : string, default None + Name of SQL schema in database to write to (if database flavor + supports this). If specified, this overwrites the default + schema of the SQLDatabase object. + chunksize : int, default None + If not None, then rows will be written in batches of this size at a + time. If None, all rows will be written at once. + dtype : single type or dict of column name to SQL type, default None + Optional specifying the datatype for columns. The SQL type should + be a SQLAlchemy type. If all columns are of the same type, one + single value can be used. + method : {None', 'multi', callable}, default None + Controls the SQL insertion clause used: + + * None : Uses standard SQL ``INSERT`` clause (one per row). + * 'multi': Pass multiple values in a single ``INSERT`` clause. + * callable with signature ``(pd_table, conn, keys, data_iter)``. + + Details and a sample callable implementation can be found in the + section :ref:`insert method `. + engine : {'auto', 'sqlalchemy'}, default 'auto' + SQL engine library to use. If 'auto', then the option + ``io.sql.engine`` is used. The default ``io.sql.engine`` + behavior is 'sqlalchemy' + + .. versionadded:: 1.3.0 + + **engine_kwargs + Any additional kwargs are passed to the engine. + """ + sql_engine = get_engine(engine) + + table = self.prep_table( + frame=frame, + name=name, + if_exists=if_exists, + index=index, + index_label=index_label, + schema=schema, + dtype=dtype, + ) + + total_inserted = sql_engine.insert_records( + table=table, + con=self.con, + frame=frame, + name=name, + index=index, + schema=schema, + chunksize=chunksize, + method=method, + **engine_kwargs, + ) + + self.check_case_sensitive(name=name, schema=schema) + return total_inserted + + @property + def tables(self): + return self.meta.tables + + def has_table(self, name: str, schema: str | None = None) -> bool: + from sqlalchemy import inspect as sqlalchemy_inspect + + insp = sqlalchemy_inspect(self.con) + return insp.has_table(name, schema or self.meta.schema) + + def get_table(self, table_name: str, schema: str | None = None) -> Table: + from sqlalchemy import ( + Numeric, + Table, + ) + + schema = schema or self.meta.schema + tbl = Table(table_name, self.meta, autoload_with=self.con, schema=schema) + for column in tbl.columns: + if isinstance(column.type, Numeric): + column.type.asdecimal = False + return tbl + + def drop_table(self, table_name: str, schema: str | None = None) -> None: + schema = schema or self.meta.schema + if self.has_table(table_name, schema): + self.meta.reflect( + bind=self.con, only=[table_name], schema=schema, views=True + ) + with self.run_transaction(): + self.get_table(table_name, schema).drop(bind=self.con) + self.meta.clear() + + def _create_sql_schema( + self, + frame: DataFrame, + table_name: str, + keys: list[str] | None = None, + dtype: DtypeArg | None = None, + schema: str | None = None, + ) -> str: + table = SQLTable( + table_name, + self, + frame=frame, + index=False, + keys=keys, + dtype=dtype, + schema=schema, + ) + return str(table.sql_schema()) + + +# ---- SQL without SQLAlchemy --- + + +class ADBCDatabase(PandasSQL): + """ + This class enables conversion between DataFrame and SQL databases + using ADBC to handle DataBase abstraction. + + Parameters + ---------- + con : adbc_driver_manager.dbapi.Connection + """ + + def __init__(self, con) -> None: + self.con = con + + @contextmanager + def run_transaction(self): + with self.con.cursor() as cur: + try: + yield cur + except Exception: + self.con.rollback() + raise + self.con.commit() + + def execute(self, sql: str | Select | TextClause, params=None): + if not isinstance(sql, str): + raise TypeError("Query must be a string unless using sqlalchemy.") + args = [] if params is None else [params] + cur = self.con.cursor() + try: + cur.execute(sql, *args) + return cur + except Exception as exc: + try: + self.con.rollback() + except Exception as inner_exc: # pragma: no cover + ex = DatabaseError( + f"Execution failed on sql: {sql}\n{exc}\nunable to rollback" + ) + raise ex from inner_exc + + ex = DatabaseError(f"Execution failed on sql '{sql}': {exc}") + raise ex from exc + + def read_table( + self, + table_name: str, + index_col: str | list[str] | None = None, + coerce_float: bool = True, + parse_dates=None, + columns=None, + schema: str | None = None, + chunksize: int | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ) -> DataFrame | Iterator[DataFrame]: + """ + Read SQL database table into a DataFrame. + + Parameters + ---------- + table_name : str + Name of SQL table in database. + coerce_float : bool, default True + Raises NotImplementedError + parse_dates : list or dict, default: None + - List of column names to parse as dates. + - Dict of ``{column_name: format string}`` where format string is + strftime compatible in case of parsing string times, or is one of + (D, s, ns, ms, us) in case of parsing integer timestamps. + - Dict of ``{column_name: arg}``, where the arg corresponds + to the keyword arguments of :func:`pandas.to_datetime`. + Especially useful with databases without native Datetime support, + such as SQLite. + columns : list, default: None + List of column names to select from SQL table. + schema : string, default None + Name of SQL schema in database to query (if database flavor + supports this). If specified, this overwrites the default + schema of the SQL database object. + chunksize : int, default None + Raises NotImplementedError + dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' + Back-end data type applied to the resultant :class:`DataFrame` + (still experimental). Behaviour is as follows: + + * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` + (default). + * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` + DataFrame. + + .. versionadded:: 2.0 + + Returns + ------- + DataFrame + + See Also + -------- + pandas.read_sql_table + SQLDatabase.read_query + + """ + if coerce_float is not True: + raise NotImplementedError( + "'coerce_float' is not implemented for ADBC drivers" + ) + if chunksize: + raise NotImplementedError("'chunksize' is not implemented for ADBC drivers") + + if columns: + if index_col: + index_select = maybe_make_list(index_col) + else: + index_select = [] + to_select = index_select + columns + select_list = ", ".join(f'"{x}"' for x in to_select) + else: + select_list = "*" + if schema: + stmt = f"SELECT {select_list} FROM {schema}.{table_name}" + else: + stmt = f"SELECT {select_list} FROM {table_name}" + + mapping: type[ArrowDtype] | None | Callable + if dtype_backend == "pyarrow": + mapping = ArrowDtype + elif dtype_backend == "numpy_nullable": + from pandas.io._util import _arrow_dtype_mapping + + mapping = _arrow_dtype_mapping().get + elif using_pyarrow_string_dtype(): + from pandas.io._util import arrow_string_types_mapper + + arrow_string_types_mapper() + else: + mapping = None + + with self.con.cursor() as cur: + cur.execute(stmt) + df = cur.fetch_arrow_table().to_pandas(types_mapper=mapping) + + return _wrap_result_adbc( + df, + index_col=index_col, + parse_dates=parse_dates, + ) + + def read_query( + self, + sql: str, + index_col: str | list[str] | None = None, + coerce_float: bool = True, + parse_dates=None, + params=None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ) -> DataFrame | Iterator[DataFrame]: + """ + Read SQL query into a DataFrame. + + Parameters + ---------- + sql : str + SQL query to be executed. + index_col : string, optional, default: None + Column name to use as index for the returned DataFrame object. + coerce_float : bool, default True + Raises NotImplementedError + params : list, tuple or dict, optional, default: None + Raises NotImplementedError + parse_dates : list or dict, default: None + - List of column names to parse as dates. + - Dict of ``{column_name: format string}`` where format string is + strftime compatible in case of parsing string times, or is one of + (D, s, ns, ms, us) in case of parsing integer timestamps. + - Dict of ``{column_name: arg dict}``, where the arg dict + corresponds to the keyword arguments of + :func:`pandas.to_datetime` Especially useful with databases + without native Datetime support, such as SQLite. + chunksize : int, default None + Raises NotImplementedError + dtype : Type name or dict of columns + Data type for data or columns. E.g. np.float64 or + {'a': np.float64, 'b': np.int32, 'c': 'Int64'} + + .. versionadded:: 1.3.0 + + Returns + ------- + DataFrame + + See Also + -------- + read_sql_table : Read SQL database table into a DataFrame. + read_sql + + """ + if coerce_float is not True: + raise NotImplementedError( + "'coerce_float' is not implemented for ADBC drivers" + ) + if params: + raise NotImplementedError("'params' is not implemented for ADBC drivers") + if chunksize: + raise NotImplementedError("'chunksize' is not implemented for ADBC drivers") + + mapping: type[ArrowDtype] | None | Callable + if dtype_backend == "pyarrow": + mapping = ArrowDtype + elif dtype_backend == "numpy_nullable": + from pandas.io._util import _arrow_dtype_mapping + + mapping = _arrow_dtype_mapping().get + else: + mapping = None + + with self.con.cursor() as cur: + cur.execute(sql) + df = cur.fetch_arrow_table().to_pandas(types_mapper=mapping) + + return _wrap_result_adbc( + df, + index_col=index_col, + parse_dates=parse_dates, + dtype=dtype, + ) + + read_sql = read_query + + def to_sql( + self, + frame, + name: str, + if_exists: Literal["fail", "replace", "append"] = "fail", + index: bool = True, + index_label=None, + schema: str | None = None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + method: Literal["multi"] | Callable | None = None, + engine: str = "auto", + **engine_kwargs, + ) -> int | None: + """ + Write records stored in a DataFrame to a SQL database. + + Parameters + ---------- + frame : DataFrame + name : string + Name of SQL table. + if_exists : {'fail', 'replace', 'append'}, default 'fail' + - fail: If table exists, do nothing. + - replace: If table exists, drop it, recreate it, and insert data. + - append: If table exists, insert data. Create if does not exist. + index : boolean, default True + Write DataFrame index as a column. + index_label : string or sequence, default None + Raises NotImplementedError + schema : string, default None + Name of SQL schema in database to write to (if database flavor + supports this). If specified, this overwrites the default + schema of the SQLDatabase object. + chunksize : int, default None + Raises NotImplementedError + dtype : single type or dict of column name to SQL type, default None + Raises NotImplementedError + method : {None', 'multi', callable}, default None + Raises NotImplementedError + engine : {'auto', 'sqlalchemy'}, default 'auto' + Raises NotImplementedError if not set to 'auto' + """ + if index_label: + raise NotImplementedError( + "'index_label' is not implemented for ADBC drivers" + ) + if chunksize: + raise NotImplementedError("'chunksize' is not implemented for ADBC drivers") + if dtype: + raise NotImplementedError("'dtype' is not implemented for ADBC drivers") + if method: + raise NotImplementedError("'method' is not implemented for ADBC drivers") + if engine != "auto": + raise NotImplementedError( + "engine != 'auto' not implemented for ADBC drivers" + ) + + if schema: + table_name = f"{schema}.{name}" + else: + table_name = name + + # pandas if_exists="append" will still create the + # table if it does not exist; ADBC is more explicit with append/create + # as applicable modes, so the semantics get blurred across + # the libraries + mode = "create" + if self.has_table(name, schema): + if if_exists == "fail": + raise ValueError(f"Table '{table_name}' already exists.") + elif if_exists == "replace": + with self.con.cursor() as cur: + cur.execute(f"DROP TABLE {table_name}") + elif if_exists == "append": + mode = "append" + + import pyarrow as pa + + try: + tbl = pa.Table.from_pandas(frame, preserve_index=index) + except pa.ArrowNotImplementedError as exc: + raise ValueError("datatypes not supported") from exc + + with self.con.cursor() as cur: + total_inserted = cur.adbc_ingest( + table_name=name, data=tbl, mode=mode, db_schema_name=schema + ) + + self.con.commit() + return total_inserted + + def has_table(self, name: str, schema: str | None = None) -> bool: + meta = self.con.adbc_get_objects( + db_schema_filter=schema, table_name_filter=name + ).read_all() + + for catalog_schema in meta["catalog_db_schemas"].to_pylist(): + if not catalog_schema: + continue + for schema_record in catalog_schema: + if not schema_record: + continue + + for table_record in schema_record["db_schema_tables"]: + if table_record["table_name"] == name: + return True + + return False + + def _create_sql_schema( + self, + frame: DataFrame, + table_name: str, + keys: list[str] | None = None, + dtype: DtypeArg | None = None, + schema: str | None = None, + ) -> str: + raise NotImplementedError("not implemented for adbc") + + +# sqlite-specific sql strings and handler class +# dictionary used for readability purposes +_SQL_TYPES = { + "string": "TEXT", + "floating": "REAL", + "integer": "INTEGER", + "datetime": "TIMESTAMP", + "date": "DATE", + "time": "TIME", + "boolean": "INTEGER", +} + + +def _get_unicode_name(name: object): + try: + uname = str(name).encode("utf-8", "strict").decode("utf-8") + except UnicodeError as err: + raise ValueError(f"Cannot convert identifier to UTF-8: '{name}'") from err + return uname + + +def _get_valid_sqlite_name(name: object): + # See https://stackoverflow.com/questions/6514274/how-do-you-escape-strings\ + # -for-sqlite-table-column-names-in-python + # Ensure the string can be encoded as UTF-8. + # Ensure the string does not include any NUL characters. + # Replace all " with "". + # Wrap the entire thing in double quotes. + + uname = _get_unicode_name(name) + if not len(uname): + raise ValueError("Empty table or column name specified") + + nul_index = uname.find("\x00") + if nul_index >= 0: + raise ValueError("SQLite identifier cannot contain NULs") + return '"' + uname.replace('"', '""') + '"' + + +class SQLiteTable(SQLTable): + """ + Patch the SQLTable for fallback support. + Instead of a table variable just use the Create Table statement. + """ + + def __init__(self, *args, **kwargs) -> None: + super().__init__(*args, **kwargs) + + self._register_date_adapters() + + def _register_date_adapters(self) -> None: + # GH 8341 + # register an adapter callable for datetime.time object + import sqlite3 + + # this will transform time(12,34,56,789) into '12:34:56.000789' + # (this is what sqlalchemy does) + def _adapt_time(t) -> str: + # This is faster than strftime + return f"{t.hour:02d}:{t.minute:02d}:{t.second:02d}.{t.microsecond:06d}" + + # Also register adapters for date/datetime and co + # xref https://docs.python.org/3.12/library/sqlite3.html#adapter-and-converter-recipes + # Python 3.12+ doesn't auto-register adapters for us anymore + + adapt_date_iso = lambda val: val.isoformat() + adapt_datetime_iso = lambda val: val.isoformat(" ") + + sqlite3.register_adapter(time, _adapt_time) + + sqlite3.register_adapter(date, adapt_date_iso) + sqlite3.register_adapter(datetime, adapt_datetime_iso) + + convert_date = lambda val: date.fromisoformat(val.decode()) + convert_timestamp = lambda val: datetime.fromisoformat(val.decode()) + + sqlite3.register_converter("date", convert_date) + sqlite3.register_converter("timestamp", convert_timestamp) + + def sql_schema(self) -> str: + return str(";\n".join(self.table)) + + def _execute_create(self) -> None: + with self.pd_sql.run_transaction() as conn: + for stmt in self.table: + conn.execute(stmt) + + def insert_statement(self, *, num_rows: int) -> str: + names = list(map(str, self.frame.columns)) + wld = "?" # wildcard char + escape = _get_valid_sqlite_name + + if self.index is not None: + for idx in self.index[::-1]: + names.insert(0, idx) + + bracketed_names = [escape(column) for column in names] + col_names = ",".join(bracketed_names) + + row_wildcards = ",".join([wld] * len(names)) + wildcards = ",".join([f"({row_wildcards})" for _ in range(num_rows)]) + insert_statement = ( + f"INSERT INTO {escape(self.name)} ({col_names}) VALUES {wildcards}" + ) + return insert_statement + + def _execute_insert(self, conn, keys, data_iter) -> int: + data_list = list(data_iter) + conn.executemany(self.insert_statement(num_rows=1), data_list) + return conn.rowcount + + def _execute_insert_multi(self, conn, keys, data_iter) -> int: + data_list = list(data_iter) + flattened_data = [x for row in data_list for x in row] + conn.execute(self.insert_statement(num_rows=len(data_list)), flattened_data) + return conn.rowcount + + def _create_table_setup(self): + """ + Return a list of SQL statements that creates a table reflecting the + structure of a DataFrame. The first entry will be a CREATE TABLE + statement while the rest will be CREATE INDEX statements. + """ + column_names_and_types = self._get_column_names_and_types(self._sql_type_name) + escape = _get_valid_sqlite_name + + create_tbl_stmts = [ + escape(cname) + " " + ctype for cname, ctype, _ in column_names_and_types + ] + + if self.keys is not None and len(self.keys): + if not is_list_like(self.keys): + keys = [self.keys] + else: + keys = self.keys + cnames_br = ", ".join([escape(c) for c in keys]) + create_tbl_stmts.append( + f"CONSTRAINT {self.name}_pk PRIMARY KEY ({cnames_br})" + ) + if self.schema: + schema_name = self.schema + "." + else: + schema_name = "" + create_stmts = [ + "CREATE TABLE " + + schema_name + + escape(self.name) + + " (\n" + + ",\n ".join(create_tbl_stmts) + + "\n)" + ] + + ix_cols = [cname for cname, _, is_index in column_names_and_types if is_index] + if len(ix_cols): + cnames = "_".join(ix_cols) + cnames_br = ",".join([escape(c) for c in ix_cols]) + create_stmts.append( + "CREATE INDEX " + + escape("ix_" + self.name + "_" + cnames) + + "ON " + + escape(self.name) + + " (" + + cnames_br + + ")" + ) + + return create_stmts + + def _sql_type_name(self, col): + dtype: DtypeArg = self.dtype or {} + if is_dict_like(dtype): + dtype = cast(dict, dtype) + if col.name in dtype: + return dtype[col.name] + + # Infer type of column, while ignoring missing values. + # Needed for inserting typed data containing NULLs, GH 8778. + col_type = lib.infer_dtype(col, skipna=True) + + if col_type == "timedelta64": + warnings.warn( + "the 'timedelta' type is not supported, and will be " + "written as integer values (ns frequency) to the database.", + UserWarning, + stacklevel=find_stack_level(), + ) + col_type = "integer" + + elif col_type == "datetime64": + col_type = "datetime" + + elif col_type == "empty": + col_type = "string" + + elif col_type == "complex": + raise ValueError("Complex datatypes not supported") + + if col_type not in _SQL_TYPES: + col_type = "string" + + return _SQL_TYPES[col_type] + + +class SQLiteDatabase(PandasSQL): + """ + Version of SQLDatabase to support SQLite connections (fallback without + SQLAlchemy). This should only be used internally. + + Parameters + ---------- + con : sqlite connection object + + """ + + def __init__(self, con) -> None: + self.con = con + + @contextmanager + def run_transaction(self): + cur = self.con.cursor() + try: + yield cur + self.con.commit() + except Exception: + self.con.rollback() + raise + finally: + cur.close() + + def execute(self, sql: str | Select | TextClause, params=None): + if not isinstance(sql, str): + raise TypeError("Query must be a string unless using sqlalchemy.") + args = [] if params is None else [params] + cur = self.con.cursor() + try: + cur.execute(sql, *args) + return cur + except Exception as exc: + try: + self.con.rollback() + except Exception as inner_exc: # pragma: no cover + ex = DatabaseError( + f"Execution failed on sql: {sql}\n{exc}\nunable to rollback" + ) + raise ex from inner_exc + + ex = DatabaseError(f"Execution failed on sql '{sql}': {exc}") + raise ex from exc + + @staticmethod + def _query_iterator( + cursor, + chunksize: int, + columns, + index_col=None, + coerce_float: bool = True, + parse_dates=None, + dtype: DtypeArg | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ): + """Return generator through chunked result set""" + has_read_data = False + while True: + data = cursor.fetchmany(chunksize) + if type(data) == tuple: + data = list(data) + if not data: + cursor.close() + if not has_read_data: + result = DataFrame.from_records( + [], columns=columns, coerce_float=coerce_float + ) + if dtype: + result = result.astype(dtype) + yield result + break + + has_read_data = True + yield _wrap_result( + data, + columns, + index_col=index_col, + coerce_float=coerce_float, + parse_dates=parse_dates, + dtype=dtype, + dtype_backend=dtype_backend, + ) + + def read_query( + self, + sql, + index_col=None, + coerce_float: bool = True, + parse_dates=None, + params=None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + dtype_backend: DtypeBackend | Literal["numpy"] = "numpy", + ) -> DataFrame | Iterator[DataFrame]: + cursor = self.execute(sql, params) + columns = [col_desc[0] for col_desc in cursor.description] + + if chunksize is not None: + return self._query_iterator( + cursor, + chunksize, + columns, + index_col=index_col, + coerce_float=coerce_float, + parse_dates=parse_dates, + dtype=dtype, + dtype_backend=dtype_backend, + ) + else: + data = self._fetchall_as_list(cursor) + cursor.close() + + frame = _wrap_result( + data, + columns, + index_col=index_col, + coerce_float=coerce_float, + parse_dates=parse_dates, + dtype=dtype, + dtype_backend=dtype_backend, + ) + return frame + + def _fetchall_as_list(self, cur): + result = cur.fetchall() + if not isinstance(result, list): + result = list(result) + return result + + def to_sql( + self, + frame, + name: str, + if_exists: str = "fail", + index: bool = True, + index_label=None, + schema=None, + chunksize: int | None = None, + dtype: DtypeArg | None = None, + method: Literal["multi"] | Callable | None = None, + engine: str = "auto", + **engine_kwargs, + ) -> int | None: + """ + Write records stored in a DataFrame to a SQL database. + + Parameters + ---------- + frame: DataFrame + name: string + Name of SQL table. + if_exists: {'fail', 'replace', 'append'}, default 'fail' + fail: If table exists, do nothing. + replace: If table exists, drop it, recreate it, and insert data. + append: If table exists, insert data. Create if it does not exist. + index : bool, default True + Write DataFrame index as a column + index_label : string or sequence, default None + Column label for index column(s). If None is given (default) and + `index` is True, then the index names are used. + A sequence should be given if the DataFrame uses MultiIndex. + schema : string, default None + Ignored parameter included for compatibility with SQLAlchemy + version of ``to_sql``. + chunksize : int, default None + If not None, then rows will be written in batches of this + size at a time. If None, all rows will be written at once. + dtype : single type or dict of column name to SQL type, default None + Optional specifying the datatype for columns. The SQL type should + be a string. If all columns are of the same type, one single value + can be used. + method : {None, 'multi', callable}, default None + Controls the SQL insertion clause used: + + * None : Uses standard SQL ``INSERT`` clause (one per row). + * 'multi': Pass multiple values in a single ``INSERT`` clause. + * callable with signature ``(pd_table, conn, keys, data_iter)``. + + Details and a sample callable implementation can be found in the + section :ref:`insert method `. + """ + if dtype: + if not is_dict_like(dtype): + # error: Value expression in dictionary comprehension has incompatible + # type "Union[ExtensionDtype, str, dtype[Any], Type[object], + # Dict[Hashable, Union[ExtensionDtype, Union[str, dtype[Any]], + # Type[str], Type[float], Type[int], Type[complex], Type[bool], + # Type[object]]]]"; expected type "Union[ExtensionDtype, str, + # dtype[Any], Type[object]]" + dtype = {col_name: dtype for col_name in frame} # type: ignore[misc] + else: + dtype = cast(dict, dtype) + + for col, my_type in dtype.items(): + if not isinstance(my_type, str): + raise ValueError(f"{col} ({my_type}) not a string") + + table = SQLiteTable( + name, + self, + frame=frame, + index=index, + if_exists=if_exists, + index_label=index_label, + dtype=dtype, + ) + table.create() + return table.insert(chunksize, method) + + def has_table(self, name: str, schema: str | None = None) -> bool: + wld = "?" + query = f""" + SELECT + name + FROM + sqlite_master + WHERE + type IN ('table', 'view') + AND name={wld}; + """ + + return len(self.execute(query, [name]).fetchall()) > 0 + + def get_table(self, table_name: str, schema: str | None = None) -> None: + return None # not supported in fallback mode + + def drop_table(self, name: str, schema: str | None = None) -> None: + drop_sql = f"DROP TABLE {_get_valid_sqlite_name(name)}" + self.execute(drop_sql) + + def _create_sql_schema( + self, + frame, + table_name: str, + keys=None, + dtype: DtypeArg | None = None, + schema: str | None = None, + ) -> str: + table = SQLiteTable( + table_name, + self, + frame=frame, + index=False, + keys=keys, + dtype=dtype, + schema=schema, + ) + return str(table.sql_schema()) + + +def get_schema( + frame, + name: str, + keys=None, + con=None, + dtype: DtypeArg | None = None, + schema: str | None = None, +) -> str: + """ + Get the SQL db table schema for the given frame. + + Parameters + ---------- + frame : DataFrame + name : str + name of SQL table + keys : string or sequence, default: None + columns to use a primary key + con: ADBC Connection, SQLAlchemy connectable, sqlite3 connection, default: None + ADBC provides high performance I/O with native type support, where available. + Using SQLAlchemy makes it possible to use any DB supported by that + library + If a DBAPI2 object, only sqlite3 is supported. + dtype : dict of column name to SQL type, default None + Optional specifying the datatype for columns. The SQL type should + be a SQLAlchemy type, or a string for sqlite3 fallback connection. + schema: str, default: None + Optional specifying the schema to be used in creating the table. + """ + with pandasSQL_builder(con=con) as pandas_sql: + return pandas_sql._create_sql_schema( + frame, name, keys=keys, dtype=dtype, schema=schema + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/stata.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/stata.py new file mode 100644 index 0000000000000000000000000000000000000000..4abf9af185a01284ab4c3ba968335117b3f9b81b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/stata.py @@ -0,0 +1,3763 @@ +""" +Module contains tools for processing Stata files into DataFrames + +The StataReader below was originally written by Joe Presbrey as part of PyDTA. +It has been extended and improved by Skipper Seabold from the Statsmodels +project who also developed the StataWriter and was finally added to pandas in +a once again improved version. + +You can find more information on http://presbrey.mit.edu/PyDTA and +https://www.statsmodels.org/devel/ +""" +from __future__ import annotations + +from collections import abc +from datetime import ( + datetime, + timedelta, +) +from io import BytesIO +import os +import struct +import sys +from typing import ( + IO, + TYPE_CHECKING, + AnyStr, + Callable, + Final, + cast, +) +import warnings + +import numpy as np + +from pandas._libs import lib +from pandas._libs.lib import infer_dtype +from pandas._libs.writers import max_len_string_array +from pandas.errors import ( + CategoricalConversionWarning, + InvalidColumnName, + PossiblePrecisionLoss, + ValueLabelTypeMismatch, +) +from pandas.util._decorators import ( + Appender, + doc, +) +from pandas.util._exceptions import find_stack_level + +from pandas.core.dtypes.base import ExtensionDtype +from pandas.core.dtypes.common import ( + ensure_object, + is_numeric_dtype, + is_string_dtype, +) +from pandas.core.dtypes.dtypes import CategoricalDtype + +from pandas import ( + Categorical, + DatetimeIndex, + NaT, + Timestamp, + isna, + to_datetime, + to_timedelta, +) +from pandas.core.frame import DataFrame +from pandas.core.indexes.base import Index +from pandas.core.indexes.range import RangeIndex +from pandas.core.series import Series +from pandas.core.shared_docs import _shared_docs + +from pandas.io.common import get_handle + +if TYPE_CHECKING: + from collections.abc import ( + Hashable, + Sequence, + ) + from types import TracebackType + from typing import Literal + + from pandas._typing import ( + CompressionOptions, + FilePath, + ReadBuffer, + Self, + StorageOptions, + WriteBuffer, + ) + +_version_error = ( + "Version of given Stata file is {version}. pandas supports importing " + "versions 105, 108, 111 (Stata 7SE), 113 (Stata 8/9), " + "114 (Stata 10/11), 115 (Stata 12), 117 (Stata 13), 118 (Stata 14/15/16)," + "and 119 (Stata 15/16, over 32,767 variables)." +) + +_statafile_processing_params1 = """\ +convert_dates : bool, default True + Convert date variables to DataFrame time values. +convert_categoricals : bool, default True + Read value labels and convert columns to Categorical/Factor variables.""" + +_statafile_processing_params2 = """\ +index_col : str, optional + Column to set as index. +convert_missing : bool, default False + Flag indicating whether to convert missing values to their Stata + representations. If False, missing values are replaced with nan. + If True, columns containing missing values are returned with + object data types and missing values are represented by + StataMissingValue objects. +preserve_dtypes : bool, default True + Preserve Stata datatypes. If False, numeric data are upcast to pandas + default types for foreign data (float64 or int64). +columns : list or None + Columns to retain. Columns will be returned in the given order. None + returns all columns. +order_categoricals : bool, default True + Flag indicating whether converted categorical data are ordered.""" + +_chunksize_params = """\ +chunksize : int, default None + Return StataReader object for iterations, returns chunks with + given number of lines.""" + +_iterator_params = """\ +iterator : bool, default False + Return StataReader object.""" + +_reader_notes = """\ +Notes +----- +Categorical variables read through an iterator may not have the same +categories and dtype. This occurs when a variable stored in a DTA +file is associated to an incomplete set of value labels that only +label a strict subset of the values.""" + +_read_stata_doc = f""" +Read Stata file into DataFrame. + +Parameters +---------- +filepath_or_buffer : str, path object or file-like object + Any valid string path is acceptable. The string could be a URL. Valid + URL schemes include http, ftp, s3, and file. For file URLs, a host is + expected. A local file could be: ``file://localhost/path/to/table.dta``. + + If you want to pass in a path object, pandas accepts any ``os.PathLike``. + + By file-like object, we refer to objects with a ``read()`` method, + such as a file handle (e.g. via builtin ``open`` function) + or ``StringIO``. +{_statafile_processing_params1} +{_statafile_processing_params2} +{_chunksize_params} +{_iterator_params} +{_shared_docs["decompression_options"] % "filepath_or_buffer"} +{_shared_docs["storage_options"]} + +Returns +------- +DataFrame or pandas.api.typing.StataReader + +See Also +-------- +io.stata.StataReader : Low-level reader for Stata data files. +DataFrame.to_stata: Export Stata data files. + +{_reader_notes} + +Examples +-------- + +Creating a dummy stata for this example + +>>> df = pd.DataFrame({{'animal': ['falcon', 'parrot', 'falcon', 'parrot'], +... 'speed': [350, 18, 361, 15]}}) # doctest: +SKIP +>>> df.to_stata('animals.dta') # doctest: +SKIP + +Read a Stata dta file: + +>>> df = pd.read_stata('animals.dta') # doctest: +SKIP + +Read a Stata dta file in 10,000 line chunks: + +>>> values = np.random.randint(0, 10, size=(20_000, 1), dtype="uint8") # doctest: +SKIP +>>> df = pd.DataFrame(values, columns=["i"]) # doctest: +SKIP +>>> df.to_stata('filename.dta') # doctest: +SKIP + +>>> with pd.read_stata('filename.dta', chunksize=10000) as itr: # doctest: +SKIP +>>> for chunk in itr: +... # Operate on a single chunk, e.g., chunk.mean() +... pass # doctest: +SKIP +""" + +_read_method_doc = f"""\ +Reads observations from Stata file, converting them into a dataframe + +Parameters +---------- +nrows : int + Number of lines to read from data file, if None read whole file. +{_statafile_processing_params1} +{_statafile_processing_params2} + +Returns +------- +DataFrame +""" + +_stata_reader_doc = f"""\ +Class for reading Stata dta files. + +Parameters +---------- +path_or_buf : path (string), buffer or path object + string, path object (pathlib.Path or py._path.local.LocalPath) or object + implementing a binary read() functions. +{_statafile_processing_params1} +{_statafile_processing_params2} +{_chunksize_params} +{_shared_docs["decompression_options"]} +{_shared_docs["storage_options"]} + +{_reader_notes} +""" + + +_date_formats = ["%tc", "%tC", "%td", "%d", "%tw", "%tm", "%tq", "%th", "%ty"] + + +stata_epoch: Final = datetime(1960, 1, 1) + + +def _stata_elapsed_date_to_datetime_vec(dates: Series, fmt: str) -> Series: + """ + Convert from SIF to datetime. https://www.stata.com/help.cgi?datetime + + Parameters + ---------- + dates : Series + The Stata Internal Format date to convert to datetime according to fmt + fmt : str + The format to convert to. Can be, tc, td, tw, tm, tq, th, ty + Returns + + Returns + ------- + converted : Series + The converted dates + + Examples + -------- + >>> dates = pd.Series([52]) + >>> _stata_elapsed_date_to_datetime_vec(dates , "%tw") + 0 1961-01-01 + dtype: datetime64[ns] + + Notes + ----- + datetime/c - tc + milliseconds since 01jan1960 00:00:00.000, assuming 86,400 s/day + datetime/C - tC - NOT IMPLEMENTED + milliseconds since 01jan1960 00:00:00.000, adjusted for leap seconds + date - td + days since 01jan1960 (01jan1960 = 0) + weekly date - tw + weeks since 1960w1 + This assumes 52 weeks in a year, then adds 7 * remainder of the weeks. + The datetime value is the start of the week in terms of days in the + year, not ISO calendar weeks. + monthly date - tm + months since 1960m1 + quarterly date - tq + quarters since 1960q1 + half-yearly date - th + half-years since 1960h1 yearly + date - ty + years since 0000 + """ + MIN_YEAR, MAX_YEAR = Timestamp.min.year, Timestamp.max.year + MAX_DAY_DELTA = (Timestamp.max - datetime(1960, 1, 1)).days + MIN_DAY_DELTA = (Timestamp.min - datetime(1960, 1, 1)).days + MIN_MS_DELTA = MIN_DAY_DELTA * 24 * 3600 * 1000 + MAX_MS_DELTA = MAX_DAY_DELTA * 24 * 3600 * 1000 + + def convert_year_month_safe(year, month) -> Series: + """ + Convert year and month to datetimes, using pandas vectorized versions + when the date range falls within the range supported by pandas. + Otherwise it falls back to a slower but more robust method + using datetime. + """ + if year.max() < MAX_YEAR and year.min() > MIN_YEAR: + return to_datetime(100 * year + month, format="%Y%m") + else: + index = getattr(year, "index", None) + return Series([datetime(y, m, 1) for y, m in zip(year, month)], index=index) + + def convert_year_days_safe(year, days) -> Series: + """ + Converts year (e.g. 1999) and days since the start of the year to a + datetime or datetime64 Series + """ + if year.max() < (MAX_YEAR - 1) and year.min() > MIN_YEAR: + return to_datetime(year, format="%Y") + to_timedelta(days, unit="d") + else: + index = getattr(year, "index", None) + value = [ + datetime(y, 1, 1) + timedelta(days=int(d)) for y, d in zip(year, days) + ] + return Series(value, index=index) + + def convert_delta_safe(base, deltas, unit) -> Series: + """ + Convert base dates and deltas to datetimes, using pandas vectorized + versions if the deltas satisfy restrictions required to be expressed + as dates in pandas. + """ + index = getattr(deltas, "index", None) + if unit == "d": + if deltas.max() > MAX_DAY_DELTA or deltas.min() < MIN_DAY_DELTA: + values = [base + timedelta(days=int(d)) for d in deltas] + return Series(values, index=index) + elif unit == "ms": + if deltas.max() > MAX_MS_DELTA or deltas.min() < MIN_MS_DELTA: + values = [ + base + timedelta(microseconds=(int(d) * 1000)) for d in deltas + ] + return Series(values, index=index) + else: + raise ValueError("format not understood") + base = to_datetime(base) + deltas = to_timedelta(deltas, unit=unit) + return base + deltas + + # TODO(non-nano): If/when pandas supports more than datetime64[ns], this + # should be improved to use correct range, e.g. datetime[Y] for yearly + bad_locs = np.isnan(dates) + has_bad_values = False + if bad_locs.any(): + has_bad_values = True + dates._values[bad_locs] = 1.0 # Replace with NaT + dates = dates.astype(np.int64) + + if fmt.startswith(("%tc", "tc")): # Delta ms relative to base + base = stata_epoch + ms = dates + conv_dates = convert_delta_safe(base, ms, "ms") + elif fmt.startswith(("%tC", "tC")): + warnings.warn( + "Encountered %tC format. Leaving in Stata Internal Format.", + stacklevel=find_stack_level(), + ) + conv_dates = Series(dates, dtype=object) + if has_bad_values: + conv_dates[bad_locs] = NaT + return conv_dates + # Delta days relative to base + elif fmt.startswith(("%td", "td", "%d", "d")): + base = stata_epoch + days = dates + conv_dates = convert_delta_safe(base, days, "d") + # does not count leap days - 7 days is a week. + # 52nd week may have more than 7 days + elif fmt.startswith(("%tw", "tw")): + year = stata_epoch.year + dates // 52 + days = (dates % 52) * 7 + conv_dates = convert_year_days_safe(year, days) + elif fmt.startswith(("%tm", "tm")): # Delta months relative to base + year = stata_epoch.year + dates // 12 + month = (dates % 12) + 1 + conv_dates = convert_year_month_safe(year, month) + elif fmt.startswith(("%tq", "tq")): # Delta quarters relative to base + year = stata_epoch.year + dates // 4 + quarter_month = (dates % 4) * 3 + 1 + conv_dates = convert_year_month_safe(year, quarter_month) + elif fmt.startswith(("%th", "th")): # Delta half-years relative to base + year = stata_epoch.year + dates // 2 + month = (dates % 2) * 6 + 1 + conv_dates = convert_year_month_safe(year, month) + elif fmt.startswith(("%ty", "ty")): # Years -- not delta + year = dates + first_month = np.ones_like(dates) + conv_dates = convert_year_month_safe(year, first_month) + else: + raise ValueError(f"Date fmt {fmt} not understood") + + if has_bad_values: # Restore NaT for bad values + conv_dates[bad_locs] = NaT + + return conv_dates + + +def _datetime_to_stata_elapsed_vec(dates: Series, fmt: str) -> Series: + """ + Convert from datetime to SIF. https://www.stata.com/help.cgi?datetime + + Parameters + ---------- + dates : Series + Series or array containing datetime or datetime64[ns] to + convert to the Stata Internal Format given by fmt + fmt : str + The format to convert to. Can be, tc, td, tw, tm, tq, th, ty + """ + index = dates.index + NS_PER_DAY = 24 * 3600 * 1000 * 1000 * 1000 + US_PER_DAY = NS_PER_DAY / 1000 + + def parse_dates_safe( + dates: Series, delta: bool = False, year: bool = False, days: bool = False + ): + d = {} + if lib.is_np_dtype(dates.dtype, "M"): + if delta: + time_delta = dates - Timestamp(stata_epoch).as_unit("ns") + d["delta"] = time_delta._values.view(np.int64) // 1000 # microseconds + if days or year: + date_index = DatetimeIndex(dates) + d["year"] = date_index._data.year + d["month"] = date_index._data.month + if days: + days_in_ns = dates._values.view(np.int64) - to_datetime( + d["year"], format="%Y" + )._values.view(np.int64) + d["days"] = days_in_ns // NS_PER_DAY + + elif infer_dtype(dates, skipna=False) == "datetime": + if delta: + delta = dates._values - stata_epoch + + def f(x: timedelta) -> float: + return US_PER_DAY * x.days + 1000000 * x.seconds + x.microseconds + + v = np.vectorize(f) + d["delta"] = v(delta) + if year: + year_month = dates.apply(lambda x: 100 * x.year + x.month) + d["year"] = year_month._values // 100 + d["month"] = year_month._values - d["year"] * 100 + if days: + + def g(x: datetime) -> int: + return (x - datetime(x.year, 1, 1)).days + + v = np.vectorize(g) + d["days"] = v(dates) + else: + raise ValueError( + "Columns containing dates must contain either " + "datetime64, datetime or null values." + ) + + return DataFrame(d, index=index) + + bad_loc = isna(dates) + index = dates.index + if bad_loc.any(): + if lib.is_np_dtype(dates.dtype, "M"): + dates._values[bad_loc] = to_datetime(stata_epoch) + else: + dates._values[bad_loc] = stata_epoch + + if fmt in ["%tc", "tc"]: + d = parse_dates_safe(dates, delta=True) + conv_dates = d.delta / 1000 + elif fmt in ["%tC", "tC"]: + warnings.warn( + "Stata Internal Format tC not supported.", + stacklevel=find_stack_level(), + ) + conv_dates = dates + elif fmt in ["%td", "td"]: + d = parse_dates_safe(dates, delta=True) + conv_dates = d.delta // US_PER_DAY + elif fmt in ["%tw", "tw"]: + d = parse_dates_safe(dates, year=True, days=True) + conv_dates = 52 * (d.year - stata_epoch.year) + d.days // 7 + elif fmt in ["%tm", "tm"]: + d = parse_dates_safe(dates, year=True) + conv_dates = 12 * (d.year - stata_epoch.year) + d.month - 1 + elif fmt in ["%tq", "tq"]: + d = parse_dates_safe(dates, year=True) + conv_dates = 4 * (d.year - stata_epoch.year) + (d.month - 1) // 3 + elif fmt in ["%th", "th"]: + d = parse_dates_safe(dates, year=True) + conv_dates = 2 * (d.year - stata_epoch.year) + (d.month > 6).astype(int) + elif fmt in ["%ty", "ty"]: + d = parse_dates_safe(dates, year=True) + conv_dates = d.year + else: + raise ValueError(f"Format {fmt} is not a known Stata date format") + + conv_dates = Series(conv_dates, dtype=np.float64, copy=False) + missing_value = struct.unpack(" DataFrame: + """ + Checks the dtypes of the columns of a pandas DataFrame for + compatibility with the data types and ranges supported by Stata, and + converts if necessary. + + Parameters + ---------- + data : DataFrame + The DataFrame to check and convert + + Notes + ----- + Numeric columns in Stata must be one of int8, int16, int32, float32 or + float64, with some additional value restrictions. int8 and int16 columns + are checked for violations of the value restrictions and upcast if needed. + int64 data is not usable in Stata, and so it is downcast to int32 whenever + the value are in the int32 range, and sidecast to float64 when larger than + this range. If the int64 values are outside of the range of those + perfectly representable as float64 values, a warning is raised. + + bool columns are cast to int8. uint columns are converted to int of the + same size if there is no loss in precision, otherwise are upcast to a + larger type. uint64 is currently not supported since it is concerted to + object in a DataFrame. + """ + ws = "" + # original, if small, if large + conversion_data: tuple[ + tuple[type, type, type], + tuple[type, type, type], + tuple[type, type, type], + tuple[type, type, type], + tuple[type, type, type], + ] = ( + (np.bool_, np.int8, np.int8), + (np.uint8, np.int8, np.int16), + (np.uint16, np.int16, np.int32), + (np.uint32, np.int32, np.int64), + (np.uint64, np.int64, np.float64), + ) + + float32_max = struct.unpack("= 2**53: + ws = precision_loss_doc.format("uint64", "float64") + + data[col] = data[col].astype(dtype) + + # Check values and upcast if necessary + + if dtype == np.int8 and not empty_df: + if data[col].max() > 100 or data[col].min() < -127: + data[col] = data[col].astype(np.int16) + elif dtype == np.int16 and not empty_df: + if data[col].max() > 32740 or data[col].min() < -32767: + data[col] = data[col].astype(np.int32) + elif dtype == np.int64: + if empty_df or ( + data[col].max() <= 2147483620 and data[col].min() >= -2147483647 + ): + data[col] = data[col].astype(np.int32) + else: + data[col] = data[col].astype(np.float64) + if data[col].max() >= 2**53 or data[col].min() <= -(2**53): + ws = precision_loss_doc.format("int64", "float64") + elif dtype in (np.float32, np.float64): + if np.isinf(data[col]).any(): + raise ValueError( + f"Column {col} contains infinity or -infinity" + "which is outside the range supported by Stata." + ) + value = data[col].max() + if dtype == np.float32 and value > float32_max: + data[col] = data[col].astype(np.float64) + elif dtype == np.float64: + if value > float64_max: + raise ValueError( + f"Column {col} has a maximum value ({value}) outside the range " + f"supported by Stata ({float64_max})" + ) + if is_nullable_int: + if orig_missing.any(): + # Replace missing by Stata sentinel value + sentinel = StataMissingValue.BASE_MISSING_VALUES[data[col].dtype.name] + data.loc[orig_missing, col] = sentinel + if ws: + warnings.warn( + ws, + PossiblePrecisionLoss, + stacklevel=find_stack_level(), + ) + + return data + + +class StataValueLabel: + """ + Parse a categorical column and prepare formatted output + + Parameters + ---------- + catarray : Series + Categorical Series to encode + encoding : {"latin-1", "utf-8"} + Encoding to use for value labels. + """ + + def __init__( + self, catarray: Series, encoding: Literal["latin-1", "utf-8"] = "latin-1" + ) -> None: + if encoding not in ("latin-1", "utf-8"): + raise ValueError("Only latin-1 and utf-8 are supported.") + self.labname = catarray.name + self._encoding = encoding + categories = catarray.cat.categories + self.value_labels = enumerate(categories) + + self._prepare_value_labels() + + def _prepare_value_labels(self) -> None: + """Encode value labels.""" + + self.text_len = 0 + self.txt: list[bytes] = [] + self.n = 0 + # Offsets (length of categories), converted to int32 + self.off = np.array([], dtype=np.int32) + # Values, converted to int32 + self.val = np.array([], dtype=np.int32) + self.len = 0 + + # Compute lengths and setup lists of offsets and labels + offsets: list[int] = [] + values: list[float] = [] + for vl in self.value_labels: + category: str | bytes = vl[1] + if not isinstance(category, str): + category = str(category) + warnings.warn( + value_label_mismatch_doc.format(self.labname), + ValueLabelTypeMismatch, + stacklevel=find_stack_level(), + ) + category = category.encode(self._encoding) + offsets.append(self.text_len) + self.text_len += len(category) + 1 # +1 for the padding + values.append(vl[0]) + self.txt.append(category) + self.n += 1 + + if self.text_len > 32000: + raise ValueError( + "Stata value labels for a single variable must " + "have a combined length less than 32,000 characters." + ) + + # Ensure int32 + self.off = np.array(offsets, dtype=np.int32) + self.val = np.array(values, dtype=np.int32) + + # Total length + self.len = 4 + 4 + 4 * self.n + 4 * self.n + self.text_len + + def generate_value_label(self, byteorder: str) -> bytes: + """ + Generate the binary representation of the value labels. + + Parameters + ---------- + byteorder : str + Byte order of the output + + Returns + ------- + value_label : bytes + Bytes containing the formatted value label + """ + encoding = self._encoding + bio = BytesIO() + null_byte = b"\x00" + + # len + bio.write(struct.pack(byteorder + "i", self.len)) + + # labname + labname = str(self.labname)[:32].encode(encoding) + lab_len = 32 if encoding not in ("utf-8", "utf8") else 128 + labname = _pad_bytes(labname, lab_len + 1) + bio.write(labname) + + # padding - 3 bytes + for i in range(3): + bio.write(struct.pack("c", null_byte)) + + # value_label_table + # n - int32 + bio.write(struct.pack(byteorder + "i", self.n)) + + # textlen - int32 + bio.write(struct.pack(byteorder + "i", self.text_len)) + + # off - int32 array (n elements) + for offset in self.off: + bio.write(struct.pack(byteorder + "i", offset)) + + # val - int32 array (n elements) + for value in self.val: + bio.write(struct.pack(byteorder + "i", value)) + + # txt - Text labels, null terminated + for text in self.txt: + bio.write(text + null_byte) + + return bio.getvalue() + + +class StataNonCatValueLabel(StataValueLabel): + """ + Prepare formatted version of value labels + + Parameters + ---------- + labname : str + Value label name + value_labels: Dictionary + Mapping of values to labels + encoding : {"latin-1", "utf-8"} + Encoding to use for value labels. + """ + + def __init__( + self, + labname: str, + value_labels: dict[float, str], + encoding: Literal["latin-1", "utf-8"] = "latin-1", + ) -> None: + if encoding not in ("latin-1", "utf-8"): + raise ValueError("Only latin-1 and utf-8 are supported.") + + self.labname = labname + self._encoding = encoding + self.value_labels = sorted( # type: ignore[assignment] + value_labels.items(), key=lambda x: x[0] + ) + self._prepare_value_labels() + + +class StataMissingValue: + """ + An observation's missing value. + + Parameters + ---------- + value : {int, float} + The Stata missing value code + + Notes + ----- + More information: + + Integer missing values make the code '.', '.a', ..., '.z' to the ranges + 101 ... 127 (for int8), 32741 ... 32767 (for int16) and 2147483621 ... + 2147483647 (for int32). Missing values for floating point data types are + more complex but the pattern is simple to discern from the following table. + + np.float32 missing values (float in Stata) + 0000007f . + 0008007f .a + 0010007f .b + ... + 00c0007f .x + 00c8007f .y + 00d0007f .z + + np.float64 missing values (double in Stata) + 000000000000e07f . + 000000000001e07f .a + 000000000002e07f .b + ... + 000000000018e07f .x + 000000000019e07f .y + 00000000001ae07f .z + """ + + # Construct a dictionary of missing values + MISSING_VALUES: dict[float, str] = {} + bases: Final = (101, 32741, 2147483621) + for b in bases: + # Conversion to long to avoid hash issues on 32 bit platforms #8968 + MISSING_VALUES[b] = "." + for i in range(1, 27): + MISSING_VALUES[i + b] = "." + chr(96 + i) + + float32_base: bytes = b"\x00\x00\x00\x7f" + increment_32: int = struct.unpack(" 0: + MISSING_VALUES[key] += chr(96 + i) + int_value = struct.unpack(" 0: + MISSING_VALUES[key] += chr(96 + i) + int_value = struct.unpack("q", struct.pack(" None: + self._value = value + # Conversion to int to avoid hash issues on 32 bit platforms #8968 + value = int(value) if value < 2147483648 else float(value) + self._str = self.MISSING_VALUES[value] + + @property + def string(self) -> str: + """ + The Stata representation of the missing value: '.', '.a'..'.z' + + Returns + ------- + str + The representation of the missing value. + """ + return self._str + + @property + def value(self) -> float: + """ + The binary representation of the missing value. + + Returns + ------- + {int, float} + The binary representation of the missing value. + """ + return self._value + + def __str__(self) -> str: + return self.string + + def __repr__(self) -> str: + return f"{type(self)}({self})" + + def __eq__(self, other: object) -> bool: + return ( + isinstance(other, type(self)) + and self.string == other.string + and self.value == other.value + ) + + @classmethod + def get_base_missing_value(cls, dtype: np.dtype) -> float: + if dtype.type is np.int8: + value = cls.BASE_MISSING_VALUES["int8"] + elif dtype.type is np.int16: + value = cls.BASE_MISSING_VALUES["int16"] + elif dtype.type is np.int32: + value = cls.BASE_MISSING_VALUES["int32"] + elif dtype.type is np.float32: + value = cls.BASE_MISSING_VALUES["float32"] + elif dtype.type is np.float64: + value = cls.BASE_MISSING_VALUES["float64"] + else: + raise ValueError("Unsupported dtype") + return value + + +class StataParser: + def __init__(self) -> None: + # type code. + # -------------------- + # str1 1 = 0x01 + # str2 2 = 0x02 + # ... + # str244 244 = 0xf4 + # byte 251 = 0xfb (sic) + # int 252 = 0xfc + # long 253 = 0xfd + # float 254 = 0xfe + # double 255 = 0xff + # -------------------- + # NOTE: the byte type seems to be reserved for categorical variables + # with a label, but the underlying variable is -127 to 100 + # we're going to drop the label and cast to int + self.DTYPE_MAP = dict( + [(i, np.dtype(f"S{i}")) for i in range(1, 245)] + + [ + (251, np.dtype(np.int8)), + (252, np.dtype(np.int16)), + (253, np.dtype(np.int32)), + (254, np.dtype(np.float32)), + (255, np.dtype(np.float64)), + ] + ) + self.DTYPE_MAP_XML: dict[int, np.dtype] = { + 32768: np.dtype(np.uint8), # Keys to GSO + 65526: np.dtype(np.float64), + 65527: np.dtype(np.float32), + 65528: np.dtype(np.int32), + 65529: np.dtype(np.int16), + 65530: np.dtype(np.int8), + } + self.TYPE_MAP = list(tuple(range(251)) + tuple("bhlfd")) + self.TYPE_MAP_XML = { + # Not really a Q, unclear how to handle byteswap + 32768: "Q", + 65526: "d", + 65527: "f", + 65528: "l", + 65529: "h", + 65530: "b", + } + # NOTE: technically, some of these are wrong. there are more numbers + # that can be represented. it's the 27 ABOVE and BELOW the max listed + # numeric data type in [U] 12.2.2 of the 11.2 manual + float32_min = b"\xff\xff\xff\xfe" + float32_max = b"\xff\xff\xff\x7e" + float64_min = b"\xff\xff\xff\xff\xff\xff\xef\xff" + float64_max = b"\xff\xff\xff\xff\xff\xff\xdf\x7f" + self.VALID_RANGE = { + "b": (-127, 100), + "h": (-32767, 32740), + "l": (-2147483647, 2147483620), + "f": ( + np.float32(struct.unpack(" None: + super().__init__() + + # Arguments to the reader (can be temporarily overridden in + # calls to read). + self._convert_dates = convert_dates + self._convert_categoricals = convert_categoricals + self._index_col = index_col + self._convert_missing = convert_missing + self._preserve_dtypes = preserve_dtypes + self._columns = columns + self._order_categoricals = order_categoricals + self._original_path_or_buf = path_or_buf + self._compression = compression + self._storage_options = storage_options + self._encoding = "" + self._chunksize = chunksize + self._using_iterator = False + self._entered = False + if self._chunksize is None: + self._chunksize = 1 + elif not isinstance(chunksize, int) or chunksize <= 0: + raise ValueError("chunksize must be a positive integer when set.") + + # State variables for the file + self._close_file: Callable[[], None] | None = None + self._missing_values = False + self._can_read_value_labels = False + self._column_selector_set = False + self._value_labels_read = False + self._data_read = False + self._dtype: np.dtype | None = None + self._lines_read = 0 + + self._native_byteorder = _set_endianness(sys.byteorder) + + def _ensure_open(self) -> None: + """ + Ensure the file has been opened and its header data read. + """ + if not hasattr(self, "_path_or_buf"): + self._open_file() + + def _open_file(self) -> None: + """ + Open the file (with compression options, etc.), and read header information. + """ + if not self._entered: + warnings.warn( + "StataReader is being used without using a context manager. " + "Using StataReader as a context manager is the only supported method.", + ResourceWarning, + stacklevel=find_stack_level(), + ) + handles = get_handle( + self._original_path_or_buf, + "rb", + storage_options=self._storage_options, + is_text=False, + compression=self._compression, + ) + if hasattr(handles.handle, "seekable") and handles.handle.seekable(): + # If the handle is directly seekable, use it without an extra copy. + self._path_or_buf = handles.handle + self._close_file = handles.close + else: + # Copy to memory, and ensure no encoding. + with handles: + self._path_or_buf = BytesIO(handles.handle.read()) + self._close_file = self._path_or_buf.close + + self._read_header() + self._setup_dtype() + + def __enter__(self) -> Self: + """enter context manager""" + self._entered = True + return self + + def __exit__( + self, + exc_type: type[BaseException] | None, + exc_value: BaseException | None, + traceback: TracebackType | None, + ) -> None: + if self._close_file: + self._close_file() + + def close(self) -> None: + """Close the handle if its open. + + .. deprecated: 2.0.0 + + The close method is not part of the public API. + The only supported way to use StataReader is to use it as a context manager. + """ + warnings.warn( + "The StataReader.close() method is not part of the public API and " + "will be removed in a future version without notice. " + "Using StataReader as a context manager is the only supported method.", + FutureWarning, + stacklevel=find_stack_level(), + ) + if self._close_file: + self._close_file() + + def _set_encoding(self) -> None: + """ + Set string encoding which depends on file version + """ + if self._format_version < 118: + self._encoding = "latin-1" + else: + self._encoding = "utf-8" + + def _read_int8(self) -> int: + return struct.unpack("b", self._path_or_buf.read(1))[0] + + def _read_uint8(self) -> int: + return struct.unpack("B", self._path_or_buf.read(1))[0] + + def _read_uint16(self) -> int: + return struct.unpack(f"{self._byteorder}H", self._path_or_buf.read(2))[0] + + def _read_uint32(self) -> int: + return struct.unpack(f"{self._byteorder}I", self._path_or_buf.read(4))[0] + + def _read_uint64(self) -> int: + return struct.unpack(f"{self._byteorder}Q", self._path_or_buf.read(8))[0] + + def _read_int16(self) -> int: + return struct.unpack(f"{self._byteorder}h", self._path_or_buf.read(2))[0] + + def _read_int32(self) -> int: + return struct.unpack(f"{self._byteorder}i", self._path_or_buf.read(4))[0] + + def _read_int64(self) -> int: + return struct.unpack(f"{self._byteorder}q", self._path_or_buf.read(8))[0] + + def _read_char8(self) -> bytes: + return struct.unpack("c", self._path_or_buf.read(1))[0] + + def _read_int16_count(self, count: int) -> tuple[int, ...]: + return struct.unpack( + f"{self._byteorder}{'h' * count}", + self._path_or_buf.read(2 * count), + ) + + def _read_header(self) -> None: + first_char = self._read_char8() + if first_char == b"<": + self._read_new_header() + else: + self._read_old_header(first_char) + + def _read_new_header(self) -> None: + # The first part of the header is common to 117 - 119. + self._path_or_buf.read(27) # stata_dta>
+ self._format_version = int(self._path_or_buf.read(3)) + if self._format_version not in [117, 118, 119]: + raise ValueError(_version_error.format(version=self._format_version)) + self._set_encoding() + self._path_or_buf.read(21) # + self._byteorder = ">" if self._path_or_buf.read(3) == b"MSF" else "<" + self._path_or_buf.read(15) # + self._nvar = ( + self._read_uint16() if self._format_version <= 118 else self._read_uint32() + ) + self._path_or_buf.read(7) # + + self._nobs = self._get_nobs() + self._path_or_buf.read(11) # + self._time_stamp = self._get_time_stamp() + self._path_or_buf.read(26) #
+ self._path_or_buf.read(8) # 0x0000000000000000 + self._path_or_buf.read(8) # position of + + self._seek_vartypes = self._read_int64() + 16 + self._seek_varnames = self._read_int64() + 10 + self._seek_sortlist = self._read_int64() + 10 + self._seek_formats = self._read_int64() + 9 + self._seek_value_label_names = self._read_int64() + 19 + + # Requires version-specific treatment + self._seek_variable_labels = self._get_seek_variable_labels() + + self._path_or_buf.read(8) # + self._data_location = self._read_int64() + 6 + self._seek_strls = self._read_int64() + 7 + self._seek_value_labels = self._read_int64() + 14 + + self._typlist, self._dtyplist = self._get_dtypes(self._seek_vartypes) + + self._path_or_buf.seek(self._seek_varnames) + self._varlist = self._get_varlist() + + self._path_or_buf.seek(self._seek_sortlist) + self._srtlist = self._read_int16_count(self._nvar + 1)[:-1] + + self._path_or_buf.seek(self._seek_formats) + self._fmtlist = self._get_fmtlist() + + self._path_or_buf.seek(self._seek_value_label_names) + self._lbllist = self._get_lbllist() + + self._path_or_buf.seek(self._seek_variable_labels) + self._variable_labels = self._get_variable_labels() + + # Get data type information, works for versions 117-119. + def _get_dtypes( + self, seek_vartypes: int + ) -> tuple[list[int | str], list[str | np.dtype]]: + self._path_or_buf.seek(seek_vartypes) + typlist = [] + dtyplist = [] + for _ in range(self._nvar): + typ = self._read_uint16() + if typ <= 2045: + typlist.append(typ) + dtyplist.append(str(typ)) + else: + try: + typlist.append(self.TYPE_MAP_XML[typ]) # type: ignore[arg-type] + dtyplist.append(self.DTYPE_MAP_XML[typ]) # type: ignore[arg-type] + except KeyError as err: + raise ValueError(f"cannot convert stata types [{typ}]") from err + + return typlist, dtyplist # type: ignore[return-value] + + def _get_varlist(self) -> list[str]: + # 33 in order formats, 129 in formats 118 and 119 + b = 33 if self._format_version < 118 else 129 + return [self._decode(self._path_or_buf.read(b)) for _ in range(self._nvar)] + + # Returns the format list + def _get_fmtlist(self) -> list[str]: + if self._format_version >= 118: + b = 57 + elif self._format_version > 113: + b = 49 + elif self._format_version > 104: + b = 12 + else: + b = 7 + + return [self._decode(self._path_or_buf.read(b)) for _ in range(self._nvar)] + + # Returns the label list + def _get_lbllist(self) -> list[str]: + if self._format_version >= 118: + b = 129 + elif self._format_version > 108: + b = 33 + else: + b = 9 + return [self._decode(self._path_or_buf.read(b)) for _ in range(self._nvar)] + + def _get_variable_labels(self) -> list[str]: + if self._format_version >= 118: + vlblist = [ + self._decode(self._path_or_buf.read(321)) for _ in range(self._nvar) + ] + elif self._format_version > 105: + vlblist = [ + self._decode(self._path_or_buf.read(81)) for _ in range(self._nvar) + ] + else: + vlblist = [ + self._decode(self._path_or_buf.read(32)) for _ in range(self._nvar) + ] + return vlblist + + def _get_nobs(self) -> int: + if self._format_version >= 118: + return self._read_uint64() + else: + return self._read_uint32() + + def _get_data_label(self) -> str: + if self._format_version >= 118: + strlen = self._read_uint16() + return self._decode(self._path_or_buf.read(strlen)) + elif self._format_version == 117: + strlen = self._read_int8() + return self._decode(self._path_or_buf.read(strlen)) + elif self._format_version > 105: + return self._decode(self._path_or_buf.read(81)) + else: + return self._decode(self._path_or_buf.read(32)) + + def _get_time_stamp(self) -> str: + if self._format_version >= 118: + strlen = self._read_int8() + return self._path_or_buf.read(strlen).decode("utf-8") + elif self._format_version == 117: + strlen = self._read_int8() + return self._decode(self._path_or_buf.read(strlen)) + elif self._format_version > 104: + return self._decode(self._path_or_buf.read(18)) + else: + raise ValueError() + + def _get_seek_variable_labels(self) -> int: + if self._format_version == 117: + self._path_or_buf.read(8) # , throw away + # Stata 117 data files do not follow the described format. This is + # a work around that uses the previous label, 33 bytes for each + # variable, 20 for the closing tag and 17 for the opening tag + return self._seek_value_label_names + (33 * self._nvar) + 20 + 17 + elif self._format_version >= 118: + return self._read_int64() + 17 + else: + raise ValueError() + + def _read_old_header(self, first_char: bytes) -> None: + self._format_version = int(first_char[0]) + if self._format_version not in [104, 105, 108, 111, 113, 114, 115]: + raise ValueError(_version_error.format(version=self._format_version)) + self._set_encoding() + self._byteorder = ">" if self._read_int8() == 0x1 else "<" + self._filetype = self._read_int8() + self._path_or_buf.read(1) # unused + + self._nvar = self._read_uint16() + self._nobs = self._get_nobs() + + self._data_label = self._get_data_label() + + self._time_stamp = self._get_time_stamp() + + # descriptors + if self._format_version > 108: + typlist = [int(c) for c in self._path_or_buf.read(self._nvar)] + else: + buf = self._path_or_buf.read(self._nvar) + typlistb = np.frombuffer(buf, dtype=np.uint8) + typlist = [] + for tp in typlistb: + if tp in self.OLD_TYPE_MAPPING: + typlist.append(self.OLD_TYPE_MAPPING[tp]) + else: + typlist.append(tp - 127) # bytes + + try: + self._typlist = [self.TYPE_MAP[typ] for typ in typlist] + except ValueError as err: + invalid_types = ",".join([str(x) for x in typlist]) + raise ValueError(f"cannot convert stata types [{invalid_types}]") from err + try: + self._dtyplist = [self.DTYPE_MAP[typ] for typ in typlist] + except ValueError as err: + invalid_dtypes = ",".join([str(x) for x in typlist]) + raise ValueError(f"cannot convert stata dtypes [{invalid_dtypes}]") from err + + if self._format_version > 108: + self._varlist = [ + self._decode(self._path_or_buf.read(33)) for _ in range(self._nvar) + ] + else: + self._varlist = [ + self._decode(self._path_or_buf.read(9)) for _ in range(self._nvar) + ] + self._srtlist = self._read_int16_count(self._nvar + 1)[:-1] + + self._fmtlist = self._get_fmtlist() + + self._lbllist = self._get_lbllist() + + self._variable_labels = self._get_variable_labels() + + # ignore expansion fields (Format 105 and later) + # When reading, read five bytes; the last four bytes now tell you + # the size of the next read, which you discard. You then continue + # like this until you read 5 bytes of zeros. + + if self._format_version > 104: + while True: + data_type = self._read_int8() + if self._format_version > 108: + data_len = self._read_int32() + else: + data_len = self._read_int16() + if data_type == 0: + break + self._path_or_buf.read(data_len) + + # necessary data to continue parsing + self._data_location = self._path_or_buf.tell() + + def _setup_dtype(self) -> np.dtype: + """Map between numpy and state dtypes""" + if self._dtype is not None: + return self._dtype + + dtypes = [] # Convert struct data types to numpy data type + for i, typ in enumerate(self._typlist): + if typ in self.NUMPY_TYPE_MAP: + typ = cast(str, typ) # only strs in NUMPY_TYPE_MAP + dtypes.append((f"s{i}", f"{self._byteorder}{self.NUMPY_TYPE_MAP[typ]}")) + else: + dtypes.append((f"s{i}", f"S{typ}")) + self._dtype = np.dtype(dtypes) + + return self._dtype + + def _decode(self, s: bytes) -> str: + # have bytes not strings, so must decode + s = s.partition(b"\0")[0] + try: + return s.decode(self._encoding) + except UnicodeDecodeError: + # GH 25960, fallback to handle incorrect format produced when 117 + # files are converted to 118 files in Stata + encoding = self._encoding + msg = f""" +One or more strings in the dta file could not be decoded using {encoding}, and +so the fallback encoding of latin-1 is being used. This can happen when a file +has been incorrectly encoded by Stata or some other software. You should verify +the string values returned are correct.""" + warnings.warn( + msg, + UnicodeWarning, + stacklevel=find_stack_level(), + ) + return s.decode("latin-1") + + def _read_value_labels(self) -> None: + self._ensure_open() + if self._value_labels_read: + # Don't read twice + return + if self._format_version <= 108: + # Value labels are not supported in version 108 and earlier. + self._value_labels_read = True + self._value_label_dict: dict[str, dict[float, str]] = {} + return + + if self._format_version >= 117: + self._path_or_buf.seek(self._seek_value_labels) + else: + assert self._dtype is not None + offset = self._nobs * self._dtype.itemsize + self._path_or_buf.seek(self._data_location + offset) + + self._value_labels_read = True + self._value_label_dict = {} + + while True: + if self._format_version >= 117: + if self._path_or_buf.read(5) == b" + break # end of value label table + + slength = self._path_or_buf.read(4) + if not slength: + break # end of value label table (format < 117) + if self._format_version <= 117: + labname = self._decode(self._path_or_buf.read(33)) + else: + labname = self._decode(self._path_or_buf.read(129)) + self._path_or_buf.read(3) # padding + + n = self._read_uint32() + txtlen = self._read_uint32() + off = np.frombuffer( + self._path_or_buf.read(4 * n), dtype=f"{self._byteorder}i4", count=n + ) + val = np.frombuffer( + self._path_or_buf.read(4 * n), dtype=f"{self._byteorder}i4", count=n + ) + ii = np.argsort(off) + off = off[ii] + val = val[ii] + txt = self._path_or_buf.read(txtlen) + self._value_label_dict[labname] = {} + for i in range(n): + end = off[i + 1] if i < n - 1 else txtlen + self._value_label_dict[labname][val[i]] = self._decode( + txt[off[i] : end] + ) + if self._format_version >= 117: + self._path_or_buf.read(6) # + self._value_labels_read = True + + def _read_strls(self) -> None: + self._path_or_buf.seek(self._seek_strls) + # Wrap v_o in a string to allow uint64 values as keys on 32bit OS + self.GSO = {"0": ""} + while True: + if self._path_or_buf.read(3) != b"GSO": + break + + if self._format_version == 117: + v_o = self._read_uint64() + else: + buf = self._path_or_buf.read(12) + # Only tested on little endian file on little endian machine. + v_size = 2 if self._format_version == 118 else 3 + if self._byteorder == "<": + buf = buf[0:v_size] + buf[4 : (12 - v_size)] + else: + # This path may not be correct, impossible to test + buf = buf[0:v_size] + buf[(4 + v_size) :] + v_o = struct.unpack("Q", buf)[0] + typ = self._read_uint8() + length = self._read_uint32() + va = self._path_or_buf.read(length) + if typ == 130: + decoded_va = va[0:-1].decode(self._encoding) + else: + # Stata says typ 129 can be binary, so use str + decoded_va = str(va) + # Wrap v_o in a string to allow uint64 values as keys on 32bit OS + self.GSO[str(v_o)] = decoded_va + + def __next__(self) -> DataFrame: + self._using_iterator = True + return self.read(nrows=self._chunksize) + + def get_chunk(self, size: int | None = None) -> DataFrame: + """ + Reads lines from Stata file and returns as dataframe + + Parameters + ---------- + size : int, defaults to None + Number of lines to read. If None, reads whole file. + + Returns + ------- + DataFrame + """ + if size is None: + size = self._chunksize + return self.read(nrows=size) + + @Appender(_read_method_doc) + def read( + self, + nrows: int | None = None, + convert_dates: bool | None = None, + convert_categoricals: bool | None = None, + index_col: str | None = None, + convert_missing: bool | None = None, + preserve_dtypes: bool | None = None, + columns: Sequence[str] | None = None, + order_categoricals: bool | None = None, + ) -> DataFrame: + self._ensure_open() + + # Handle options + if convert_dates is None: + convert_dates = self._convert_dates + if convert_categoricals is None: + convert_categoricals = self._convert_categoricals + if convert_missing is None: + convert_missing = self._convert_missing + if preserve_dtypes is None: + preserve_dtypes = self._preserve_dtypes + if columns is None: + columns = self._columns + if order_categoricals is None: + order_categoricals = self._order_categoricals + if index_col is None: + index_col = self._index_col + if nrows is None: + nrows = self._nobs + + # Handle empty file or chunk. If reading incrementally raise + # StopIteration. If reading the whole thing return an empty + # data frame. + if (self._nobs == 0) and nrows == 0: + self._can_read_value_labels = True + self._data_read = True + data = DataFrame(columns=self._varlist) + # Apply dtypes correctly + for i, col in enumerate(data.columns): + dt = self._dtyplist[i] + if isinstance(dt, np.dtype): + if dt.char != "S": + data[col] = data[col].astype(dt) + if columns is not None: + data = self._do_select_columns(data, columns) + return data + + if (self._format_version >= 117) and (not self._value_labels_read): + self._can_read_value_labels = True + self._read_strls() + + # Read data + assert self._dtype is not None + dtype = self._dtype + max_read_len = (self._nobs - self._lines_read) * dtype.itemsize + read_len = nrows * dtype.itemsize + read_len = min(read_len, max_read_len) + if read_len <= 0: + # Iterator has finished, should never be here unless + # we are reading the file incrementally + if convert_categoricals: + self._read_value_labels() + raise StopIteration + offset = self._lines_read * dtype.itemsize + self._path_or_buf.seek(self._data_location + offset) + read_lines = min(nrows, self._nobs - self._lines_read) + raw_data = np.frombuffer( + self._path_or_buf.read(read_len), dtype=dtype, count=read_lines + ) + + self._lines_read += read_lines + if self._lines_read == self._nobs: + self._can_read_value_labels = True + self._data_read = True + # if necessary, swap the byte order to native here + if self._byteorder != self._native_byteorder: + raw_data = raw_data.byteswap().view(raw_data.dtype.newbyteorder()) + + if convert_categoricals: + self._read_value_labels() + + if len(raw_data) == 0: + data = DataFrame(columns=self._varlist) + else: + data = DataFrame.from_records(raw_data) + data.columns = Index(self._varlist) + + # If index is not specified, use actual row number rather than + # restarting at 0 for each chunk. + if index_col is None: + data.index = RangeIndex( + self._lines_read - read_lines, self._lines_read + ) # set attr instead of set_index to avoid copy + + if columns is not None: + data = self._do_select_columns(data, columns) + + # Decode strings + for col, typ in zip(data, self._typlist): + if isinstance(typ, int): + data[col] = data[col].apply(self._decode) + + data = self._insert_strls(data) + + # Convert columns (if needed) to match input type + valid_dtypes = [i for i, dtyp in enumerate(self._dtyplist) if dtyp is not None] + object_type = np.dtype(object) + for idx in valid_dtypes: + dtype = data.iloc[:, idx].dtype + if dtype not in (object_type, self._dtyplist[idx]): + data.isetitem(idx, data.iloc[:, idx].astype(dtype)) + + data = self._do_convert_missing(data, convert_missing) + + if convert_dates: + for i, fmt in enumerate(self._fmtlist): + if any(fmt.startswith(date_fmt) for date_fmt in _date_formats): + data.isetitem( + i, _stata_elapsed_date_to_datetime_vec(data.iloc[:, i], fmt) + ) + + if convert_categoricals and self._format_version > 108: + data = self._do_convert_categoricals( + data, self._value_label_dict, self._lbllist, order_categoricals + ) + + if not preserve_dtypes: + retyped_data = [] + convert = False + for col in data: + dtype = data[col].dtype + if dtype in (np.dtype(np.float16), np.dtype(np.float32)): + dtype = np.dtype(np.float64) + convert = True + elif dtype in ( + np.dtype(np.int8), + np.dtype(np.int16), + np.dtype(np.int32), + ): + dtype = np.dtype(np.int64) + convert = True + retyped_data.append((col, data[col].astype(dtype))) + if convert: + data = DataFrame.from_dict(dict(retyped_data)) + + if index_col is not None: + data = data.set_index(data.pop(index_col)) + + return data + + def _do_convert_missing(self, data: DataFrame, convert_missing: bool) -> DataFrame: + # Check for missing values, and replace if found + replacements = {} + for i in range(len(data.columns)): + fmt = self._typlist[i] + if fmt not in self.VALID_RANGE: + continue + + fmt = cast(str, fmt) # only strs in VALID_RANGE + nmin, nmax = self.VALID_RANGE[fmt] + series = data.iloc[:, i] + + # appreciably faster to do this with ndarray instead of Series + svals = series._values + missing = (svals < nmin) | (svals > nmax) + + if not missing.any(): + continue + + if convert_missing: # Replacement follows Stata notation + missing_loc = np.nonzero(np.asarray(missing))[0] + umissing, umissing_loc = np.unique(series[missing], return_inverse=True) + replacement = Series(series, dtype=object) + for j, um in enumerate(umissing): + missing_value = StataMissingValue(um) + + loc = missing_loc[umissing_loc == j] + replacement.iloc[loc] = missing_value + else: # All replacements are identical + dtype = series.dtype + if dtype not in (np.float32, np.float64): + dtype = np.float64 + replacement = Series(series, dtype=dtype) + if not replacement._values.flags["WRITEABLE"]: + # only relevant for ArrayManager; construction + # path for BlockManager ensures writeability + replacement = replacement.copy() + # Note: operating on ._values is much faster than directly + # TODO: can we fix that? + replacement._values[missing] = np.nan + replacements[i] = replacement + if replacements: + for idx, value in replacements.items(): + data.isetitem(idx, value) + return data + + def _insert_strls(self, data: DataFrame) -> DataFrame: + if not hasattr(self, "GSO") or len(self.GSO) == 0: + return data + for i, typ in enumerate(self._typlist): + if typ != "Q": + continue + # Wrap v_o in a string to allow uint64 values as keys on 32bit OS + data.isetitem(i, [self.GSO[str(k)] for k in data.iloc[:, i]]) + return data + + def _do_select_columns(self, data: DataFrame, columns: Sequence[str]) -> DataFrame: + if not self._column_selector_set: + column_set = set(columns) + if len(column_set) != len(columns): + raise ValueError("columns contains duplicate entries") + unmatched = column_set.difference(data.columns) + if unmatched: + joined = ", ".join(list(unmatched)) + raise ValueError( + "The following columns were not " + f"found in the Stata data set: {joined}" + ) + # Copy information for retained columns for later processing + dtyplist = [] + typlist = [] + fmtlist = [] + lbllist = [] + for col in columns: + i = data.columns.get_loc(col) + dtyplist.append(self._dtyplist[i]) + typlist.append(self._typlist[i]) + fmtlist.append(self._fmtlist[i]) + lbllist.append(self._lbllist[i]) + + self._dtyplist = dtyplist + self._typlist = typlist + self._fmtlist = fmtlist + self._lbllist = lbllist + self._column_selector_set = True + + return data[columns] + + def _do_convert_categoricals( + self, + data: DataFrame, + value_label_dict: dict[str, dict[float, str]], + lbllist: Sequence[str], + order_categoricals: bool, + ) -> DataFrame: + """ + Converts categorical columns to Categorical type. + """ + if not value_label_dict: + return data + cat_converted_data = [] + for col, label in zip(data, lbllist): + if label in value_label_dict: + # Explicit call with ordered=True + vl = value_label_dict[label] + keys = np.array(list(vl.keys())) + column = data[col] + key_matches = column.isin(keys) + if self._using_iterator and key_matches.all(): + initial_categories: np.ndarray | None = keys + # If all categories are in the keys and we are iterating, + # use the same keys for all chunks. If some are missing + # value labels, then we will fall back to the categories + # varying across chunks. + else: + if self._using_iterator: + # warn is using an iterator + warnings.warn( + categorical_conversion_warning, + CategoricalConversionWarning, + stacklevel=find_stack_level(), + ) + initial_categories = None + cat_data = Categorical( + column, categories=initial_categories, ordered=order_categoricals + ) + if initial_categories is None: + # If None here, then we need to match the cats in the Categorical + categories = [] + for category in cat_data.categories: + if category in vl: + categories.append(vl[category]) + else: + categories.append(category) + else: + # If all cats are matched, we can use the values + categories = list(vl.values()) + try: + # Try to catch duplicate categories + # TODO: if we get a non-copying rename_categories, use that + cat_data = cat_data.rename_categories(categories) + except ValueError as err: + vc = Series(categories, copy=False).value_counts() + repeated_cats = list(vc.index[vc > 1]) + repeats = "-" * 80 + "\n" + "\n".join(repeated_cats) + # GH 25772 + msg = f""" +Value labels for column {col} are not unique. These cannot be converted to +pandas categoricals. + +Either read the file with `convert_categoricals` set to False or use the +low level interface in `StataReader` to separately read the values and the +value_labels. + +The repeated labels are: +{repeats} +""" + raise ValueError(msg) from err + # TODO: is the next line needed above in the data(...) method? + cat_series = Series(cat_data, index=data.index, copy=False) + cat_converted_data.append((col, cat_series)) + else: + cat_converted_data.append((col, data[col])) + data = DataFrame(dict(cat_converted_data), copy=False) + return data + + @property + def data_label(self) -> str: + """ + Return data label of Stata file. + + Examples + -------- + >>> df = pd.DataFrame([(1,)], columns=["variable"]) + >>> time_stamp = pd.Timestamp(2000, 2, 29, 14, 21) + >>> data_label = "This is a data file." + >>> path = "/My_path/filename.dta" + >>> df.to_stata(path, time_stamp=time_stamp, # doctest: +SKIP + ... data_label=data_label, # doctest: +SKIP + ... version=None) # doctest: +SKIP + >>> with pd.io.stata.StataReader(path) as reader: # doctest: +SKIP + ... print(reader.data_label) # doctest: +SKIP + This is a data file. + """ + self._ensure_open() + return self._data_label + + @property + def time_stamp(self) -> str: + """ + Return time stamp of Stata file. + """ + self._ensure_open() + return self._time_stamp + + def variable_labels(self) -> dict[str, str]: + """ + Return a dict associating each variable name with corresponding label. + + Returns + ------- + dict + + Examples + -------- + >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=["col_1", "col_2"]) + >>> time_stamp = pd.Timestamp(2000, 2, 29, 14, 21) + >>> path = "/My_path/filename.dta" + >>> variable_labels = {"col_1": "This is an example"} + >>> df.to_stata(path, time_stamp=time_stamp, # doctest: +SKIP + ... variable_labels=variable_labels, version=None) # doctest: +SKIP + >>> with pd.io.stata.StataReader(path) as reader: # doctest: +SKIP + ... print(reader.variable_labels()) # doctest: +SKIP + {'index': '', 'col_1': 'This is an example', 'col_2': ''} + >>> pd.read_stata(path) # doctest: +SKIP + index col_1 col_2 + 0 0 1 2 + 1 1 3 4 + """ + self._ensure_open() + return dict(zip(self._varlist, self._variable_labels)) + + def value_labels(self) -> dict[str, dict[float, str]]: + """ + Return a nested dict associating each variable name to its value and label. + + Returns + ------- + dict + + Examples + -------- + >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=["col_1", "col_2"]) + >>> time_stamp = pd.Timestamp(2000, 2, 29, 14, 21) + >>> path = "/My_path/filename.dta" + >>> value_labels = {"col_1": {3: "x"}} + >>> df.to_stata(path, time_stamp=time_stamp, # doctest: +SKIP + ... value_labels=value_labels, version=None) # doctest: +SKIP + >>> with pd.io.stata.StataReader(path) as reader: # doctest: +SKIP + ... print(reader.value_labels()) # doctest: +SKIP + {'col_1': {3: 'x'}} + >>> pd.read_stata(path) # doctest: +SKIP + index col_1 col_2 + 0 0 1 2 + 1 1 x 4 + """ + if not self._value_labels_read: + self._read_value_labels() + + return self._value_label_dict + + +@Appender(_read_stata_doc) +def read_stata( + filepath_or_buffer: FilePath | ReadBuffer[bytes], + *, + convert_dates: bool = True, + convert_categoricals: bool = True, + index_col: str | None = None, + convert_missing: bool = False, + preserve_dtypes: bool = True, + columns: Sequence[str] | None = None, + order_categoricals: bool = True, + chunksize: int | None = None, + iterator: bool = False, + compression: CompressionOptions = "infer", + storage_options: StorageOptions | None = None, +) -> DataFrame | StataReader: + reader = StataReader( + filepath_or_buffer, + convert_dates=convert_dates, + convert_categoricals=convert_categoricals, + index_col=index_col, + convert_missing=convert_missing, + preserve_dtypes=preserve_dtypes, + columns=columns, + order_categoricals=order_categoricals, + chunksize=chunksize, + storage_options=storage_options, + compression=compression, + ) + + if iterator or chunksize: + return reader + + with reader: + return reader.read() + + +def _set_endianness(endianness: str) -> str: + if endianness.lower() in ["<", "little"]: + return "<" + elif endianness.lower() in [">", "big"]: + return ">" + else: # pragma : no cover + raise ValueError(f"Endianness {endianness} not understood") + + +def _pad_bytes(name: AnyStr, length: int) -> AnyStr: + """ + Take a char string and pads it with null bytes until it's length chars. + """ + if isinstance(name, bytes): + return name + b"\x00" * (length - len(name)) + return name + "\x00" * (length - len(name)) + + +def _convert_datetime_to_stata_type(fmt: str) -> np.dtype: + """ + Convert from one of the stata date formats to a type in TYPE_MAP. + """ + if fmt in [ + "tc", + "%tc", + "td", + "%td", + "tw", + "%tw", + "tm", + "%tm", + "tq", + "%tq", + "th", + "%th", + "ty", + "%ty", + ]: + return np.dtype(np.float64) # Stata expects doubles for SIFs + else: + raise NotImplementedError(f"Format {fmt} not implemented") + + +def _maybe_convert_to_int_keys(convert_dates: dict, varlist: list[Hashable]) -> dict: + new_dict = {} + for key in convert_dates: + if not convert_dates[key].startswith("%"): # make sure proper fmts + convert_dates[key] = "%" + convert_dates[key] + if key in varlist: + new_dict.update({varlist.index(key): convert_dates[key]}) + else: + if not isinstance(key, int): + raise ValueError("convert_dates key must be a column or an integer") + new_dict.update({key: convert_dates[key]}) + return new_dict + + +def _dtype_to_stata_type(dtype: np.dtype, column: Series) -> int: + """ + Convert dtype types to stata types. Returns the byte of the given ordinal. + See TYPE_MAP and comments for an explanation. This is also explained in + the dta spec. + 1 - 244 are strings of this length + Pandas Stata + 251 - for int8 byte + 252 - for int16 int + 253 - for int32 long + 254 - for float32 float + 255 - for double double + + If there are dates to convert, then dtype will already have the correct + type inserted. + """ + # TODO: expand to handle datetime to integer conversion + if dtype.type is np.object_: # try to coerce it to the biggest string + # not memory efficient, what else could we + # do? + itemsize = max_len_string_array(ensure_object(column._values)) + return max(itemsize, 1) + elif dtype.type is np.float64: + return 255 + elif dtype.type is np.float32: + return 254 + elif dtype.type is np.int32: + return 253 + elif dtype.type is np.int16: + return 252 + elif dtype.type is np.int8: + return 251 + else: # pragma : no cover + raise NotImplementedError(f"Data type {dtype} not supported.") + + +def _dtype_to_default_stata_fmt( + dtype, column: Series, dta_version: int = 114, force_strl: bool = False +) -> str: + """ + Map numpy dtype to stata's default format for this type. Not terribly + important since users can change this in Stata. Semantics are + + object -> "%DDs" where DD is the length of the string. If not a string, + raise ValueError + float64 -> "%10.0g" + float32 -> "%9.0g" + int64 -> "%9.0g" + int32 -> "%12.0g" + int16 -> "%8.0g" + int8 -> "%8.0g" + strl -> "%9s" + """ + # TODO: Refactor to combine type with format + # TODO: expand this to handle a default datetime format? + if dta_version < 117: + max_str_len = 244 + else: + max_str_len = 2045 + if force_strl: + return "%9s" + if dtype.type is np.object_: + itemsize = max_len_string_array(ensure_object(column._values)) + if itemsize > max_str_len: + if dta_version >= 117: + return "%9s" + else: + raise ValueError(excessive_string_length_error.format(column.name)) + return "%" + str(max(itemsize, 1)) + "s" + elif dtype == np.float64: + return "%10.0g" + elif dtype == np.float32: + return "%9.0g" + elif dtype == np.int32: + return "%12.0g" + elif dtype in (np.int8, np.int16): + return "%8.0g" + else: # pragma : no cover + raise NotImplementedError(f"Data type {dtype} not supported.") + + +@doc( + storage_options=_shared_docs["storage_options"], + compression_options=_shared_docs["compression_options"] % "fname", +) +class StataWriter(StataParser): + """ + A class for writing Stata binary dta files + + Parameters + ---------- + fname : path (string), buffer or path object + string, path object (pathlib.Path or py._path.local.LocalPath) or + object implementing a binary write() functions. If using a buffer + then the buffer will not be automatically closed after the file + is written. + data : DataFrame + Input to save + convert_dates : dict + Dictionary mapping columns containing datetime types to stata internal + format to use when writing the dates. Options are 'tc', 'td', 'tm', + 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. + Datetime columns that do not have a conversion type specified will be + converted to 'tc'. Raises NotImplementedError if a datetime column has + timezone information + write_index : bool + Write the index to Stata dataset. + byteorder : str + Can be ">", "<", "little", or "big". default is `sys.byteorder` + time_stamp : datetime + A datetime to use as file creation date. Default is the current time + data_label : str + A label for the data set. Must be 80 characters or smaller. + variable_labels : dict + Dictionary containing columns as keys and variable labels as values. + Each label must be 80 characters or smaller. + {compression_options} + + .. versionchanged:: 1.4.0 Zstandard support. + + {storage_options} + + value_labels : dict of dicts + Dictionary containing columns as keys and dictionaries of column value + to labels as values. The combined length of all labels for a single + variable must be 32,000 characters or smaller. + + .. versionadded:: 1.4.0 + + Returns + ------- + writer : StataWriter instance + The StataWriter instance has a write_file method, which will + write the file to the given `fname`. + + Raises + ------ + NotImplementedError + * If datetimes contain timezone information + ValueError + * Columns listed in convert_dates are neither datetime64[ns] + or datetime + * Column dtype is not representable in Stata + * Column listed in convert_dates is not in DataFrame + * Categorical label contains more than 32,000 characters + + Examples + -------- + >>> data = pd.DataFrame([[1.0, 1]], columns=['a', 'b']) + >>> writer = StataWriter('./data_file.dta', data) + >>> writer.write_file() + + Directly write a zip file + >>> compression = {{"method": "zip", "archive_name": "data_file.dta"}} + >>> writer = StataWriter('./data_file.zip', data, compression=compression) + >>> writer.write_file() + + Save a DataFrame with dates + >>> from datetime import datetime + >>> data = pd.DataFrame([[datetime(2000,1,1)]], columns=['date']) + >>> writer = StataWriter('./date_data_file.dta', data, {{'date' : 'tw'}}) + >>> writer.write_file() + """ + + _max_string_length = 244 + _encoding: Literal["latin-1", "utf-8"] = "latin-1" + + def __init__( + self, + fname: FilePath | WriteBuffer[bytes], + data: DataFrame, + convert_dates: dict[Hashable, str] | None = None, + write_index: bool = True, + byteorder: str | None = None, + time_stamp: datetime | None = None, + data_label: str | None = None, + variable_labels: dict[Hashable, str] | None = None, + compression: CompressionOptions = "infer", + storage_options: StorageOptions | None = None, + *, + value_labels: dict[Hashable, dict[float, str]] | None = None, + ) -> None: + super().__init__() + self.data = data + self._convert_dates = {} if convert_dates is None else convert_dates + self._write_index = write_index + self._time_stamp = time_stamp + self._data_label = data_label + self._variable_labels = variable_labels + self._non_cat_value_labels = value_labels + self._value_labels: list[StataValueLabel] = [] + self._has_value_labels = np.array([], dtype=bool) + self._compression = compression + self._output_file: IO[bytes] | None = None + self._converted_names: dict[Hashable, str] = {} + # attach nobs, nvars, data, varlist, typlist + self._prepare_pandas(data) + self.storage_options = storage_options + + if byteorder is None: + byteorder = sys.byteorder + self._byteorder = _set_endianness(byteorder) + self._fname = fname + self.type_converters = {253: np.int32, 252: np.int16, 251: np.int8} + + def _write(self, to_write: str) -> None: + """ + Helper to call encode before writing to file for Python 3 compat. + """ + self.handles.handle.write(to_write.encode(self._encoding)) + + def _write_bytes(self, value: bytes) -> None: + """ + Helper to assert file is open before writing. + """ + self.handles.handle.write(value) + + def _prepare_non_cat_value_labels( + self, data: DataFrame + ) -> list[StataNonCatValueLabel]: + """ + Check for value labels provided for non-categorical columns. Value + labels + """ + non_cat_value_labels: list[StataNonCatValueLabel] = [] + if self._non_cat_value_labels is None: + return non_cat_value_labels + + for labname, labels in self._non_cat_value_labels.items(): + if labname in self._converted_names: + colname = self._converted_names[labname] + elif labname in data.columns: + colname = str(labname) + else: + raise KeyError( + f"Can't create value labels for {labname}, it wasn't " + "found in the dataset." + ) + + if not is_numeric_dtype(data[colname].dtype): + # Labels should not be passed explicitly for categorical + # columns that will be converted to int + raise ValueError( + f"Can't create value labels for {labname}, value labels " + "can only be applied to numeric columns." + ) + svl = StataNonCatValueLabel(colname, labels, self._encoding) + non_cat_value_labels.append(svl) + return non_cat_value_labels + + def _prepare_categoricals(self, data: DataFrame) -> DataFrame: + """ + Check for categorical columns, retain categorical information for + Stata file and convert categorical data to int + """ + is_cat = [isinstance(dtype, CategoricalDtype) for dtype in data.dtypes] + if not any(is_cat): + return data + + self._has_value_labels |= np.array(is_cat) + + get_base_missing_value = StataMissingValue.get_base_missing_value + data_formatted = [] + for col, col_is_cat in zip(data, is_cat): + if col_is_cat: + svl = StataValueLabel(data[col], encoding=self._encoding) + self._value_labels.append(svl) + dtype = data[col].cat.codes.dtype + if dtype == np.int64: + raise ValueError( + "It is not possible to export " + "int64-based categorical data to Stata." + ) + values = data[col].cat.codes._values.copy() + + # Upcast if needed so that correct missing values can be set + if values.max() >= get_base_missing_value(dtype): + if dtype == np.int8: + dtype = np.dtype(np.int16) + elif dtype == np.int16: + dtype = np.dtype(np.int32) + else: + dtype = np.dtype(np.float64) + values = np.array(values, dtype=dtype) + + # Replace missing values with Stata missing value for type + values[values == -1] = get_base_missing_value(dtype) + data_formatted.append((col, values)) + else: + data_formatted.append((col, data[col])) + return DataFrame.from_dict(dict(data_formatted)) + + def _replace_nans(self, data: DataFrame) -> DataFrame: + # return data + """ + Checks floating point data columns for nans, and replaces these with + the generic Stata for missing value (.) + """ + for c in data: + dtype = data[c].dtype + if dtype in (np.float32, np.float64): + if dtype == np.float32: + replacement = self.MISSING_VALUES["f"] + else: + replacement = self.MISSING_VALUES["d"] + data[c] = data[c].fillna(replacement) + + return data + + def _update_strl_names(self) -> None: + """No-op, forward compatibility""" + + def _validate_variable_name(self, name: str) -> str: + """ + Validate variable names for Stata export. + + Parameters + ---------- + name : str + Variable name + + Returns + ------- + str + The validated name with invalid characters replaced with + underscores. + + Notes + ----- + Stata 114 and 117 support ascii characters in a-z, A-Z, 0-9 + and _. + """ + for c in name: + if ( + (c < "A" or c > "Z") + and (c < "a" or c > "z") + and (c < "0" or c > "9") + and c != "_" + ): + name = name.replace(c, "_") + return name + + def _check_column_names(self, data: DataFrame) -> DataFrame: + """ + Checks column names to ensure that they are valid Stata column names. + This includes checks for: + * Non-string names + * Stata keywords + * Variables that start with numbers + * Variables with names that are too long + + When an illegal variable name is detected, it is converted, and if + dates are exported, the variable name is propagated to the date + conversion dictionary + """ + converted_names: dict[Hashable, str] = {} + columns = list(data.columns) + original_columns = columns[:] + + duplicate_var_id = 0 + for j, name in enumerate(columns): + orig_name = name + if not isinstance(name, str): + name = str(name) + + name = self._validate_variable_name(name) + + # Variable name must not be a reserved word + if name in self.RESERVED_WORDS: + name = "_" + name + + # Variable name may not start with a number + if "0" <= name[0] <= "9": + name = "_" + name + + name = name[: min(len(name), 32)] + + if not name == orig_name: + # check for duplicates + while columns.count(name) > 0: + # prepend ascending number to avoid duplicates + name = "_" + str(duplicate_var_id) + name + name = name[: min(len(name), 32)] + duplicate_var_id += 1 + converted_names[orig_name] = name + + columns[j] = name + + data.columns = Index(columns) + + # Check date conversion, and fix key if needed + if self._convert_dates: + for c, o in zip(columns, original_columns): + if c != o: + self._convert_dates[c] = self._convert_dates[o] + del self._convert_dates[o] + + if converted_names: + conversion_warning = [] + for orig_name, name in converted_names.items(): + msg = f"{orig_name} -> {name}" + conversion_warning.append(msg) + + ws = invalid_name_doc.format("\n ".join(conversion_warning)) + warnings.warn( + ws, + InvalidColumnName, + stacklevel=find_stack_level(), + ) + + self._converted_names = converted_names + self._update_strl_names() + + return data + + def _set_formats_and_types(self, dtypes: Series) -> None: + self.fmtlist: list[str] = [] + self.typlist: list[int] = [] + for col, dtype in dtypes.items(): + self.fmtlist.append(_dtype_to_default_stata_fmt(dtype, self.data[col])) + self.typlist.append(_dtype_to_stata_type(dtype, self.data[col])) + + def _prepare_pandas(self, data: DataFrame) -> None: + # NOTE: we might need a different API / class for pandas objects so + # we can set different semantics - handle this with a PR to pandas.io + + data = data.copy() + + if self._write_index: + temp = data.reset_index() + if isinstance(temp, DataFrame): + data = temp + + # Ensure column names are strings + data = self._check_column_names(data) + + # Check columns for compatibility with stata, upcast if necessary + # Raise if outside the supported range + data = _cast_to_stata_types(data) + + # Replace NaNs with Stata missing values + data = self._replace_nans(data) + + # Set all columns to initially unlabelled + self._has_value_labels = np.repeat(False, data.shape[1]) + + # Create value labels for non-categorical data + non_cat_value_labels = self._prepare_non_cat_value_labels(data) + + non_cat_columns = [svl.labname for svl in non_cat_value_labels] + has_non_cat_val_labels = data.columns.isin(non_cat_columns) + self._has_value_labels |= has_non_cat_val_labels + self._value_labels.extend(non_cat_value_labels) + + # Convert categoricals to int data, and strip labels + data = self._prepare_categoricals(data) + + self.nobs, self.nvar = data.shape + self.data = data + self.varlist = data.columns.tolist() + + dtypes = data.dtypes + + # Ensure all date columns are converted + for col in data: + if col in self._convert_dates: + continue + if lib.is_np_dtype(data[col].dtype, "M"): + self._convert_dates[col] = "tc" + + self._convert_dates = _maybe_convert_to_int_keys( + self._convert_dates, self.varlist + ) + for key in self._convert_dates: + new_type = _convert_datetime_to_stata_type(self._convert_dates[key]) + dtypes.iloc[key] = np.dtype(new_type) + + # Verify object arrays are strings and encode to bytes + self._encode_strings() + + self._set_formats_and_types(dtypes) + + # set the given format for the datetime cols + if self._convert_dates is not None: + for key in self._convert_dates: + if isinstance(key, int): + self.fmtlist[key] = self._convert_dates[key] + + def _encode_strings(self) -> None: + """ + Encode strings in dta-specific encoding + + Do not encode columns marked for date conversion or for strL + conversion. The strL converter independently handles conversion and + also accepts empty string arrays. + """ + convert_dates = self._convert_dates + # _convert_strl is not available in dta 114 + convert_strl = getattr(self, "_convert_strl", []) + for i, col in enumerate(self.data): + # Skip columns marked for date conversion or strl conversion + if i in convert_dates or col in convert_strl: + continue + column = self.data[col] + dtype = column.dtype + if dtype.type is np.object_: + inferred_dtype = infer_dtype(column, skipna=True) + if not ((inferred_dtype == "string") or len(column) == 0): + col = column.name + raise ValueError( + f"""\ +Column `{col}` cannot be exported.\n\nOnly string-like object arrays +containing all strings or a mix of strings and None can be exported. +Object arrays containing only null values are prohibited. Other object +types cannot be exported and must first be converted to one of the +supported types.""" + ) + encoded = self.data[col].str.encode(self._encoding) + # If larger than _max_string_length do nothing + if ( + max_len_string_array(ensure_object(encoded._values)) + <= self._max_string_length + ): + self.data[col] = encoded + + def write_file(self) -> None: + """ + Export DataFrame object to Stata dta format. + + Examples + -------- + >>> df = pd.DataFrame({"fully_labelled": [1, 2, 3, 3, 1], + ... "partially_labelled": [1.0, 2.0, np.nan, 9.0, np.nan], + ... "Y": [7, 7, 9, 8, 10], + ... "Z": pd.Categorical(["j", "k", "l", "k", "j"]), + ... }) + >>> path = "/My_path/filename.dta" + >>> labels = {"fully_labelled": {1: "one", 2: "two", 3: "three"}, + ... "partially_labelled": {1.0: "one", 2.0: "two"}, + ... } + >>> writer = pd.io.stata.StataWriter(path, + ... df, + ... value_labels=labels) # doctest: +SKIP + >>> writer.write_file() # doctest: +SKIP + >>> df = pd.read_stata(path) # doctest: +SKIP + >>> df # doctest: +SKIP + index fully_labelled partially_labeled Y Z + 0 0 one one 7 j + 1 1 two two 7 k + 2 2 three NaN 9 l + 3 3 three 9.0 8 k + 4 4 one NaN 10 j + """ + with get_handle( + self._fname, + "wb", + compression=self._compression, + is_text=False, + storage_options=self.storage_options, + ) as self.handles: + if self.handles.compression["method"] is not None: + # ZipFile creates a file (with the same name) for each write call. + # Write it first into a buffer and then write the buffer to the ZipFile. + self._output_file, self.handles.handle = self.handles.handle, BytesIO() + self.handles.created_handles.append(self.handles.handle) + + try: + self._write_header( + data_label=self._data_label, time_stamp=self._time_stamp + ) + self._write_map() + self._write_variable_types() + self._write_varnames() + self._write_sortlist() + self._write_formats() + self._write_value_label_names() + self._write_variable_labels() + self._write_expansion_fields() + self._write_characteristics() + records = self._prepare_data() + self._write_data(records) + self._write_strls() + self._write_value_labels() + self._write_file_close_tag() + self._write_map() + self._close() + except Exception as exc: + self.handles.close() + if isinstance(self._fname, (str, os.PathLike)) and os.path.isfile( + self._fname + ): + try: + os.unlink(self._fname) + except OSError: + warnings.warn( + f"This save was not successful but {self._fname} could not " + "be deleted. This file is not valid.", + ResourceWarning, + stacklevel=find_stack_level(), + ) + raise exc + + def _close(self) -> None: + """ + Close the file if it was created by the writer. + + If a buffer or file-like object was passed in, for example a GzipFile, + then leave this file open for the caller to close. + """ + # write compression + if self._output_file is not None: + assert isinstance(self.handles.handle, BytesIO) + bio, self.handles.handle = self.handles.handle, self._output_file + self.handles.handle.write(bio.getvalue()) + + def _write_map(self) -> None: + """No-op, future compatibility""" + + def _write_file_close_tag(self) -> None: + """No-op, future compatibility""" + + def _write_characteristics(self) -> None: + """No-op, future compatibility""" + + def _write_strls(self) -> None: + """No-op, future compatibility""" + + def _write_expansion_fields(self) -> None: + """Write 5 zeros for expansion fields""" + self._write(_pad_bytes("", 5)) + + def _write_value_labels(self) -> None: + for vl in self._value_labels: + self._write_bytes(vl.generate_value_label(self._byteorder)) + + def _write_header( + self, + data_label: str | None = None, + time_stamp: datetime | None = None, + ) -> None: + byteorder = self._byteorder + # ds_format - just use 114 + self._write_bytes(struct.pack("b", 114)) + # byteorder + self._write(byteorder == ">" and "\x01" or "\x02") + # filetype + self._write("\x01") + # unused + self._write("\x00") + # number of vars, 2 bytes + self._write_bytes(struct.pack(byteorder + "h", self.nvar)[:2]) + # number of obs, 4 bytes + self._write_bytes(struct.pack(byteorder + "i", self.nobs)[:4]) + # data label 81 bytes, char, null terminated + if data_label is None: + self._write_bytes(self._null_terminate_bytes(_pad_bytes("", 80))) + else: + self._write_bytes( + self._null_terminate_bytes(_pad_bytes(data_label[:80], 80)) + ) + # time stamp, 18 bytes, char, null terminated + # format dd Mon yyyy hh:mm + if time_stamp is None: + time_stamp = datetime.now() + elif not isinstance(time_stamp, datetime): + raise ValueError("time_stamp should be datetime type") + # GH #13856 + # Avoid locale-specific month conversion + months = [ + "Jan", + "Feb", + "Mar", + "Apr", + "May", + "Jun", + "Jul", + "Aug", + "Sep", + "Oct", + "Nov", + "Dec", + ] + month_lookup = {i + 1: month for i, month in enumerate(months)} + ts = ( + time_stamp.strftime("%d ") + + month_lookup[time_stamp.month] + + time_stamp.strftime(" %Y %H:%M") + ) + self._write_bytes(self._null_terminate_bytes(ts)) + + def _write_variable_types(self) -> None: + for typ in self.typlist: + self._write_bytes(struct.pack("B", typ)) + + def _write_varnames(self) -> None: + # varlist names are checked by _check_column_names + # varlist, requires null terminated + for name in self.varlist: + name = self._null_terminate_str(name) + name = _pad_bytes(name[:32], 33) + self._write(name) + + def _write_sortlist(self) -> None: + # srtlist, 2*(nvar+1), int array, encoded by byteorder + srtlist = _pad_bytes("", 2 * (self.nvar + 1)) + self._write(srtlist) + + def _write_formats(self) -> None: + # fmtlist, 49*nvar, char array + for fmt in self.fmtlist: + self._write(_pad_bytes(fmt, 49)) + + def _write_value_label_names(self) -> None: + # lbllist, 33*nvar, char array + for i in range(self.nvar): + # Use variable name when categorical + if self._has_value_labels[i]: + name = self.varlist[i] + name = self._null_terminate_str(name) + name = _pad_bytes(name[:32], 33) + self._write(name) + else: # Default is empty label + self._write(_pad_bytes("", 33)) + + def _write_variable_labels(self) -> None: + # Missing labels are 80 blank characters plus null termination + blank = _pad_bytes("", 81) + + if self._variable_labels is None: + for i in range(self.nvar): + self._write(blank) + return + + for col in self.data: + if col in self._variable_labels: + label = self._variable_labels[col] + if len(label) > 80: + raise ValueError("Variable labels must be 80 characters or fewer") + is_latin1 = all(ord(c) < 256 for c in label) + if not is_latin1: + raise ValueError( + "Variable labels must contain only characters that " + "can be encoded in Latin-1" + ) + self._write(_pad_bytes(label, 81)) + else: + self._write(blank) + + def _convert_strls(self, data: DataFrame) -> DataFrame: + """No-op, future compatibility""" + return data + + def _prepare_data(self) -> np.rec.recarray: + data = self.data + typlist = self.typlist + convert_dates = self._convert_dates + # 1. Convert dates + if self._convert_dates is not None: + for i, col in enumerate(data): + if i in convert_dates: + data[col] = _datetime_to_stata_elapsed_vec( + data[col], self.fmtlist[i] + ) + # 2. Convert strls + data = self._convert_strls(data) + + # 3. Convert bad string data to '' and pad to correct length + dtypes = {} + native_byteorder = self._byteorder == _set_endianness(sys.byteorder) + for i, col in enumerate(data): + typ = typlist[i] + if typ <= self._max_string_length: + with warnings.catch_warnings(): + warnings.filterwarnings( + "ignore", + "Downcasting object dtype arrays", + category=FutureWarning, + ) + dc = data[col].fillna("") + data[col] = dc.apply(_pad_bytes, args=(typ,)) + stype = f"S{typ}" + dtypes[col] = stype + data[col] = data[col].astype(stype) + else: + dtype = data[col].dtype + if not native_byteorder: + dtype = dtype.newbyteorder(self._byteorder) + dtypes[col] = dtype + + return data.to_records(index=False, column_dtypes=dtypes) + + def _write_data(self, records: np.rec.recarray) -> None: + self._write_bytes(records.tobytes()) + + @staticmethod + def _null_terminate_str(s: str) -> str: + s += "\x00" + return s + + def _null_terminate_bytes(self, s: str) -> bytes: + return self._null_terminate_str(s).encode(self._encoding) + + +def _dtype_to_stata_type_117(dtype: np.dtype, column: Series, force_strl: bool) -> int: + """ + Converts dtype types to stata types. Returns the byte of the given ordinal. + See TYPE_MAP and comments for an explanation. This is also explained in + the dta spec. + 1 - 2045 are strings of this length + Pandas Stata + 32768 - for object strL + 65526 - for int8 byte + 65527 - for int16 int + 65528 - for int32 long + 65529 - for float32 float + 65530 - for double double + + If there are dates to convert, then dtype will already have the correct + type inserted. + """ + # TODO: expand to handle datetime to integer conversion + if force_strl: + return 32768 + if dtype.type is np.object_: # try to coerce it to the biggest string + # not memory efficient, what else could we + # do? + itemsize = max_len_string_array(ensure_object(column._values)) + itemsize = max(itemsize, 1) + if itemsize <= 2045: + return itemsize + return 32768 + elif dtype.type is np.float64: + return 65526 + elif dtype.type is np.float32: + return 65527 + elif dtype.type is np.int32: + return 65528 + elif dtype.type is np.int16: + return 65529 + elif dtype.type is np.int8: + return 65530 + else: # pragma : no cover + raise NotImplementedError(f"Data type {dtype} not supported.") + + +def _pad_bytes_new(name: str | bytes, length: int) -> bytes: + """ + Takes a bytes instance and pads it with null bytes until it's length chars. + """ + if isinstance(name, str): + name = bytes(name, "utf-8") + return name + b"\x00" * (length - len(name)) + + +class StataStrLWriter: + """ + Converter for Stata StrLs + + Stata StrLs map 8 byte values to strings which are stored using a + dictionary-like format where strings are keyed to two values. + + Parameters + ---------- + df : DataFrame + DataFrame to convert + columns : Sequence[str] + List of columns names to convert to StrL + version : int, optional + dta version. Currently supports 117, 118 and 119 + byteorder : str, optional + Can be ">", "<", "little", or "big". default is `sys.byteorder` + + Notes + ----- + Supports creation of the StrL block of a dta file for dta versions + 117, 118 and 119. These differ in how the GSO is stored. 118 and + 119 store the GSO lookup value as a uint32 and a uint64, while 117 + uses two uint32s. 118 and 119 also encode all strings as unicode + which is required by the format. 117 uses 'latin-1' a fixed width + encoding that extends the 7-bit ascii table with an additional 128 + characters. + """ + + def __init__( + self, + df: DataFrame, + columns: Sequence[str], + version: int = 117, + byteorder: str | None = None, + ) -> None: + if version not in (117, 118, 119): + raise ValueError("Only dta versions 117, 118 and 119 supported") + self._dta_ver = version + + self.df = df + self.columns = columns + self._gso_table = {"": (0, 0)} + if byteorder is None: + byteorder = sys.byteorder + self._byteorder = _set_endianness(byteorder) + + gso_v_type = "I" # uint32 + gso_o_type = "Q" # uint64 + self._encoding = "utf-8" + if version == 117: + o_size = 4 + gso_o_type = "I" # 117 used uint32 + self._encoding = "latin-1" + elif version == 118: + o_size = 6 + else: # version == 119 + o_size = 5 + self._o_offet = 2 ** (8 * (8 - o_size)) + self._gso_o_type = gso_o_type + self._gso_v_type = gso_v_type + + def _convert_key(self, key: tuple[int, int]) -> int: + v, o = key + return v + self._o_offet * o + + def generate_table(self) -> tuple[dict[str, tuple[int, int]], DataFrame]: + """ + Generates the GSO lookup table for the DataFrame + + Returns + ------- + gso_table : dict + Ordered dictionary using the string found as keys + and their lookup position (v,o) as values + gso_df : DataFrame + DataFrame where strl columns have been converted to + (v,o) values + + Notes + ----- + Modifies the DataFrame in-place. + + The DataFrame returned encodes the (v,o) values as uint64s. The + encoding depends on the dta version, and can be expressed as + + enc = v + o * 2 ** (o_size * 8) + + so that v is stored in the lower bits and o is in the upper + bits. o_size is + + * 117: 4 + * 118: 6 + * 119: 5 + """ + gso_table = self._gso_table + gso_df = self.df + columns = list(gso_df.columns) + selected = gso_df[self.columns] + col_index = [(col, columns.index(col)) for col in self.columns] + keys = np.empty(selected.shape, dtype=np.uint64) + for o, (idx, row) in enumerate(selected.iterrows()): + for j, (col, v) in enumerate(col_index): + val = row[col] + # Allow columns with mixed str and None (GH 23633) + val = "" if val is None else val + key = gso_table.get(val, None) + if key is None: + # Stata prefers human numbers + key = (v + 1, o + 1) + gso_table[val] = key + keys[o, j] = self._convert_key(key) + for i, col in enumerate(self.columns): + gso_df[col] = keys[:, i] + + return gso_table, gso_df + + def generate_blob(self, gso_table: dict[str, tuple[int, int]]) -> bytes: + """ + Generates the binary blob of GSOs that is written to the dta file. + + Parameters + ---------- + gso_table : dict + Ordered dictionary (str, vo) + + Returns + ------- + gso : bytes + Binary content of dta file to be placed between strl tags + + Notes + ----- + Output format depends on dta version. 117 uses two uint32s to + express v and o while 118+ uses a uint32 for v and a uint64 for o. + """ + # Format information + # Length includes null term + # 117 + # GSOvvvvooootllllxxxxxxxxxxxxxxx...x + # 3 u4 u4 u1 u4 string + null term + # + # 118, 119 + # GSOvvvvooooooootllllxxxxxxxxxxxxxxx...x + # 3 u4 u8 u1 u4 string + null term + + bio = BytesIO() + gso = bytes("GSO", "ascii") + gso_type = struct.pack(self._byteorder + "B", 130) + null = struct.pack(self._byteorder + "B", 0) + v_type = self._byteorder + self._gso_v_type + o_type = self._byteorder + self._gso_o_type + len_type = self._byteorder + "I" + for strl, vo in gso_table.items(): + if vo == (0, 0): + continue + v, o = vo + + # GSO + bio.write(gso) + + # vvvv + bio.write(struct.pack(v_type, v)) + + # oooo / oooooooo + bio.write(struct.pack(o_type, o)) + + # t + bio.write(gso_type) + + # llll + utf8_string = bytes(strl, "utf-8") + bio.write(struct.pack(len_type, len(utf8_string) + 1)) + + # xxx...xxx + bio.write(utf8_string) + bio.write(null) + + return bio.getvalue() + + +class StataWriter117(StataWriter): + """ + A class for writing Stata binary dta files in Stata 13 format (117) + + Parameters + ---------- + fname : path (string), buffer or path object + string, path object (pathlib.Path or py._path.local.LocalPath) or + object implementing a binary write() functions. If using a buffer + then the buffer will not be automatically closed after the file + is written. + data : DataFrame + Input to save + convert_dates : dict + Dictionary mapping columns containing datetime types to stata internal + format to use when writing the dates. Options are 'tc', 'td', 'tm', + 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. + Datetime columns that do not have a conversion type specified will be + converted to 'tc'. Raises NotImplementedError if a datetime column has + timezone information + write_index : bool + Write the index to Stata dataset. + byteorder : str + Can be ">", "<", "little", or "big". default is `sys.byteorder` + time_stamp : datetime + A datetime to use as file creation date. Default is the current time + data_label : str + A label for the data set. Must be 80 characters or smaller. + variable_labels : dict + Dictionary containing columns as keys and variable labels as values. + Each label must be 80 characters or smaller. + convert_strl : list + List of columns names to convert to Stata StrL format. Columns with + more than 2045 characters are automatically written as StrL. + Smaller columns can be converted by including the column name. Using + StrLs can reduce output file size when strings are longer than 8 + characters, and either frequently repeated or sparse. + {compression_options} + + .. versionchanged:: 1.4.0 Zstandard support. + + value_labels : dict of dicts + Dictionary containing columns as keys and dictionaries of column value + to labels as values. The combined length of all labels for a single + variable must be 32,000 characters or smaller. + + .. versionadded:: 1.4.0 + + Returns + ------- + writer : StataWriter117 instance + The StataWriter117 instance has a write_file method, which will + write the file to the given `fname`. + + Raises + ------ + NotImplementedError + * If datetimes contain timezone information + ValueError + * Columns listed in convert_dates are neither datetime64[ns] + or datetime + * Column dtype is not representable in Stata + * Column listed in convert_dates is not in DataFrame + * Categorical label contains more than 32,000 characters + + Examples + -------- + >>> data = pd.DataFrame([[1.0, 1, 'a']], columns=['a', 'b', 'c']) + >>> writer = pd.io.stata.StataWriter117('./data_file.dta', data) + >>> writer.write_file() + + Directly write a zip file + >>> compression = {"method": "zip", "archive_name": "data_file.dta"} + >>> writer = pd.io.stata.StataWriter117( + ... './data_file.zip', data, compression=compression + ... ) + >>> writer.write_file() + + Or with long strings stored in strl format + >>> data = pd.DataFrame([['A relatively long string'], [''], ['']], + ... columns=['strls']) + >>> writer = pd.io.stata.StataWriter117( + ... './data_file_with_long_strings.dta', data, convert_strl=['strls']) + >>> writer.write_file() + """ + + _max_string_length = 2045 + _dta_version = 117 + + def __init__( + self, + fname: FilePath | WriteBuffer[bytes], + data: DataFrame, + convert_dates: dict[Hashable, str] | None = None, + write_index: bool = True, + byteorder: str | None = None, + time_stamp: datetime | None = None, + data_label: str | None = None, + variable_labels: dict[Hashable, str] | None = None, + convert_strl: Sequence[Hashable] | None = None, + compression: CompressionOptions = "infer", + storage_options: StorageOptions | None = None, + *, + value_labels: dict[Hashable, dict[float, str]] | None = None, + ) -> None: + # Copy to new list since convert_strl might be modified later + self._convert_strl: list[Hashable] = [] + if convert_strl is not None: + self._convert_strl.extend(convert_strl) + + super().__init__( + fname, + data, + convert_dates, + write_index, + byteorder=byteorder, + time_stamp=time_stamp, + data_label=data_label, + variable_labels=variable_labels, + value_labels=value_labels, + compression=compression, + storage_options=storage_options, + ) + self._map: dict[str, int] = {} + self._strl_blob = b"" + + @staticmethod + def _tag(val: str | bytes, tag: str) -> bytes: + """Surround val with """ + if isinstance(val, str): + val = bytes(val, "utf-8") + return bytes("<" + tag + ">", "utf-8") + val + bytes("", "utf-8") + + def _update_map(self, tag: str) -> None: + """Update map location for tag with file position""" + assert self.handles.handle is not None + self._map[tag] = self.handles.handle.tell() + + def _write_header( + self, + data_label: str | None = None, + time_stamp: datetime | None = None, + ) -> None: + """Write the file header""" + byteorder = self._byteorder + self._write_bytes(bytes("", "utf-8")) + bio = BytesIO() + # ds_format - 117 + bio.write(self._tag(bytes(str(self._dta_version), "utf-8"), "release")) + # byteorder + bio.write(self._tag(byteorder == ">" and "MSF" or "LSF", "byteorder")) + # number of vars, 2 bytes in 117 and 118, 4 byte in 119 + nvar_type = "H" if self._dta_version <= 118 else "I" + bio.write(self._tag(struct.pack(byteorder + nvar_type, self.nvar), "K")) + # 117 uses 4 bytes, 118 uses 8 + nobs_size = "I" if self._dta_version == 117 else "Q" + bio.write(self._tag(struct.pack(byteorder + nobs_size, self.nobs), "N")) + # data label 81 bytes, char, null terminated + label = data_label[:80] if data_label is not None else "" + encoded_label = label.encode(self._encoding) + label_size = "B" if self._dta_version == 117 else "H" + label_len = struct.pack(byteorder + label_size, len(encoded_label)) + encoded_label = label_len + encoded_label + bio.write(self._tag(encoded_label, "label")) + # time stamp, 18 bytes, char, null terminated + # format dd Mon yyyy hh:mm + if time_stamp is None: + time_stamp = datetime.now() + elif not isinstance(time_stamp, datetime): + raise ValueError("time_stamp should be datetime type") + # Avoid locale-specific month conversion + months = [ + "Jan", + "Feb", + "Mar", + "Apr", + "May", + "Jun", + "Jul", + "Aug", + "Sep", + "Oct", + "Nov", + "Dec", + ] + month_lookup = {i + 1: month for i, month in enumerate(months)} + ts = ( + time_stamp.strftime("%d ") + + month_lookup[time_stamp.month] + + time_stamp.strftime(" %Y %H:%M") + ) + # '\x11' added due to inspection of Stata file + stata_ts = b"\x11" + bytes(ts, "utf-8") + bio.write(self._tag(stata_ts, "timestamp")) + self._write_bytes(self._tag(bio.getvalue(), "header")) + + def _write_map(self) -> None: + """ + Called twice during file write. The first populates the values in + the map with 0s. The second call writes the final map locations when + all blocks have been written. + """ + if not self._map: + self._map = { + "stata_data": 0, + "map": self.handles.handle.tell(), + "variable_types": 0, + "varnames": 0, + "sortlist": 0, + "formats": 0, + "value_label_names": 0, + "variable_labels": 0, + "characteristics": 0, + "data": 0, + "strls": 0, + "value_labels": 0, + "stata_data_close": 0, + "end-of-file": 0, + } + # Move to start of map + self.handles.handle.seek(self._map["map"]) + bio = BytesIO() + for val in self._map.values(): + bio.write(struct.pack(self._byteorder + "Q", val)) + self._write_bytes(self._tag(bio.getvalue(), "map")) + + def _write_variable_types(self) -> None: + self._update_map("variable_types") + bio = BytesIO() + for typ in self.typlist: + bio.write(struct.pack(self._byteorder + "H", typ)) + self._write_bytes(self._tag(bio.getvalue(), "variable_types")) + + def _write_varnames(self) -> None: + self._update_map("varnames") + bio = BytesIO() + # 118 scales by 4 to accommodate utf-8 data worst case encoding + vn_len = 32 if self._dta_version == 117 else 128 + for name in self.varlist: + name = self._null_terminate_str(name) + name = _pad_bytes_new(name[:32].encode(self._encoding), vn_len + 1) + bio.write(name) + self._write_bytes(self._tag(bio.getvalue(), "varnames")) + + def _write_sortlist(self) -> None: + self._update_map("sortlist") + sort_size = 2 if self._dta_version < 119 else 4 + self._write_bytes(self._tag(b"\x00" * sort_size * (self.nvar + 1), "sortlist")) + + def _write_formats(self) -> None: + self._update_map("formats") + bio = BytesIO() + fmt_len = 49 if self._dta_version == 117 else 57 + for fmt in self.fmtlist: + bio.write(_pad_bytes_new(fmt.encode(self._encoding), fmt_len)) + self._write_bytes(self._tag(bio.getvalue(), "formats")) + + def _write_value_label_names(self) -> None: + self._update_map("value_label_names") + bio = BytesIO() + # 118 scales by 4 to accommodate utf-8 data worst case encoding + vl_len = 32 if self._dta_version == 117 else 128 + for i in range(self.nvar): + # Use variable name when categorical + name = "" # default name + if self._has_value_labels[i]: + name = self.varlist[i] + name = self._null_terminate_str(name) + encoded_name = _pad_bytes_new(name[:32].encode(self._encoding), vl_len + 1) + bio.write(encoded_name) + self._write_bytes(self._tag(bio.getvalue(), "value_label_names")) + + def _write_variable_labels(self) -> None: + # Missing labels are 80 blank characters plus null termination + self._update_map("variable_labels") + bio = BytesIO() + # 118 scales by 4 to accommodate utf-8 data worst case encoding + vl_len = 80 if self._dta_version == 117 else 320 + blank = _pad_bytes_new("", vl_len + 1) + + if self._variable_labels is None: + for _ in range(self.nvar): + bio.write(blank) + self._write_bytes(self._tag(bio.getvalue(), "variable_labels")) + return + + for col in self.data: + if col in self._variable_labels: + label = self._variable_labels[col] + if len(label) > 80: + raise ValueError("Variable labels must be 80 characters or fewer") + try: + encoded = label.encode(self._encoding) + except UnicodeEncodeError as err: + raise ValueError( + "Variable labels must contain only characters that " + f"can be encoded in {self._encoding}" + ) from err + + bio.write(_pad_bytes_new(encoded, vl_len + 1)) + else: + bio.write(blank) + self._write_bytes(self._tag(bio.getvalue(), "variable_labels")) + + def _write_characteristics(self) -> None: + self._update_map("characteristics") + self._write_bytes(self._tag(b"", "characteristics")) + + def _write_data(self, records) -> None: + self._update_map("data") + self._write_bytes(b"") + self._write_bytes(records.tobytes()) + self._write_bytes(b"") + + def _write_strls(self) -> None: + self._update_map("strls") + self._write_bytes(self._tag(self._strl_blob, "strls")) + + def _write_expansion_fields(self) -> None: + """No-op in dta 117+""" + + def _write_value_labels(self) -> None: + self._update_map("value_labels") + bio = BytesIO() + for vl in self._value_labels: + lab = vl.generate_value_label(self._byteorder) + lab = self._tag(lab, "lbl") + bio.write(lab) + self._write_bytes(self._tag(bio.getvalue(), "value_labels")) + + def _write_file_close_tag(self) -> None: + self._update_map("stata_data_close") + self._write_bytes(bytes("", "utf-8")) + self._update_map("end-of-file") + + def _update_strl_names(self) -> None: + """ + Update column names for conversion to strl if they might have been + changed to comply with Stata naming rules + """ + # Update convert_strl if names changed + for orig, new in self._converted_names.items(): + if orig in self._convert_strl: + idx = self._convert_strl.index(orig) + self._convert_strl[idx] = new + + def _convert_strls(self, data: DataFrame) -> DataFrame: + """ + Convert columns to StrLs if either very large or in the + convert_strl variable + """ + convert_cols = [ + col + for i, col in enumerate(data) + if self.typlist[i] == 32768 or col in self._convert_strl + ] + + if convert_cols: + ssw = StataStrLWriter(data, convert_cols, version=self._dta_version) + tab, new_data = ssw.generate_table() + data = new_data + self._strl_blob = ssw.generate_blob(tab) + return data + + def _set_formats_and_types(self, dtypes: Series) -> None: + self.typlist = [] + self.fmtlist = [] + for col, dtype in dtypes.items(): + force_strl = col in self._convert_strl + fmt = _dtype_to_default_stata_fmt( + dtype, + self.data[col], + dta_version=self._dta_version, + force_strl=force_strl, + ) + self.fmtlist.append(fmt) + self.typlist.append( + _dtype_to_stata_type_117(dtype, self.data[col], force_strl) + ) + + +class StataWriterUTF8(StataWriter117): + """ + Stata binary dta file writing in Stata 15 (118) and 16 (119) formats + + DTA 118 and 119 format files support unicode string data (both fixed + and strL) format. Unicode is also supported in value labels, variable + labels and the dataset label. Format 119 is automatically used if the + file contains more than 32,767 variables. + + Parameters + ---------- + fname : path (string), buffer or path object + string, path object (pathlib.Path or py._path.local.LocalPath) or + object implementing a binary write() functions. If using a buffer + then the buffer will not be automatically closed after the file + is written. + data : DataFrame + Input to save + convert_dates : dict, default None + Dictionary mapping columns containing datetime types to stata internal + format to use when writing the dates. Options are 'tc', 'td', 'tm', + 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. + Datetime columns that do not have a conversion type specified will be + converted to 'tc'. Raises NotImplementedError if a datetime column has + timezone information + write_index : bool, default True + Write the index to Stata dataset. + byteorder : str, default None + Can be ">", "<", "little", or "big". default is `sys.byteorder` + time_stamp : datetime, default None + A datetime to use as file creation date. Default is the current time + data_label : str, default None + A label for the data set. Must be 80 characters or smaller. + variable_labels : dict, default None + Dictionary containing columns as keys and variable labels as values. + Each label must be 80 characters or smaller. + convert_strl : list, default None + List of columns names to convert to Stata StrL format. Columns with + more than 2045 characters are automatically written as StrL. + Smaller columns can be converted by including the column name. Using + StrLs can reduce output file size when strings are longer than 8 + characters, and either frequently repeated or sparse. + version : int, default None + The dta version to use. By default, uses the size of data to determine + the version. 118 is used if data.shape[1] <= 32767, and 119 is used + for storing larger DataFrames. + {compression_options} + + .. versionchanged:: 1.4.0 Zstandard support. + + value_labels : dict of dicts + Dictionary containing columns as keys and dictionaries of column value + to labels as values. The combined length of all labels for a single + variable must be 32,000 characters or smaller. + + .. versionadded:: 1.4.0 + + Returns + ------- + StataWriterUTF8 + The instance has a write_file method, which will write the file to the + given `fname`. + + Raises + ------ + NotImplementedError + * If datetimes contain timezone information + ValueError + * Columns listed in convert_dates are neither datetime64[ns] + or datetime + * Column dtype is not representable in Stata + * Column listed in convert_dates is not in DataFrame + * Categorical label contains more than 32,000 characters + + Examples + -------- + Using Unicode data and column names + + >>> from pandas.io.stata import StataWriterUTF8 + >>> data = pd.DataFrame([[1.0, 1, 'ᴬ']], columns=['a', 'β', 'ĉ']) + >>> writer = StataWriterUTF8('./data_file.dta', data) + >>> writer.write_file() + + Directly write a zip file + >>> compression = {"method": "zip", "archive_name": "data_file.dta"} + >>> writer = StataWriterUTF8('./data_file.zip', data, compression=compression) + >>> writer.write_file() + + Or with long strings stored in strl format + + >>> data = pd.DataFrame([['ᴀ relatively long ŝtring'], [''], ['']], + ... columns=['strls']) + >>> writer = StataWriterUTF8('./data_file_with_long_strings.dta', data, + ... convert_strl=['strls']) + >>> writer.write_file() + """ + + _encoding: Literal["utf-8"] = "utf-8" + + def __init__( + self, + fname: FilePath | WriteBuffer[bytes], + data: DataFrame, + convert_dates: dict[Hashable, str] | None = None, + write_index: bool = True, + byteorder: str | None = None, + time_stamp: datetime | None = None, + data_label: str | None = None, + variable_labels: dict[Hashable, str] | None = None, + convert_strl: Sequence[Hashable] | None = None, + version: int | None = None, + compression: CompressionOptions = "infer", + storage_options: StorageOptions | None = None, + *, + value_labels: dict[Hashable, dict[float, str]] | None = None, + ) -> None: + if version is None: + version = 118 if data.shape[1] <= 32767 else 119 + elif version not in (118, 119): + raise ValueError("version must be either 118 or 119.") + elif version == 118 and data.shape[1] > 32767: + raise ValueError( + "You must use version 119 for data sets containing more than" + "32,767 variables" + ) + + super().__init__( + fname, + data, + convert_dates=convert_dates, + write_index=write_index, + byteorder=byteorder, + time_stamp=time_stamp, + data_label=data_label, + variable_labels=variable_labels, + value_labels=value_labels, + convert_strl=convert_strl, + compression=compression, + storage_options=storage_options, + ) + # Override version set in StataWriter117 init + self._dta_version = version + + def _validate_variable_name(self, name: str) -> str: + """ + Validate variable names for Stata export. + + Parameters + ---------- + name : str + Variable name + + Returns + ------- + str + The validated name with invalid characters replaced with + underscores. + + Notes + ----- + Stata 118+ support most unicode characters. The only limitation is in + the ascii range where the characters supported are a-z, A-Z, 0-9 and _. + """ + # High code points appear to be acceptable + for c in name: + if ( + ( + ord(c) < 128 + and (c < "A" or c > "Z") + and (c < "a" or c > "z") + and (c < "0" or c > "9") + and c != "_" + ) + or 128 <= ord(c) < 192 + or c in {"×", "÷"} # noqa: RUF001 + ): + name = name.replace(c, "_") + + return name diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/xml.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/xml.py new file mode 100644 index 0000000000000000000000000000000000000000..ac497cd266027f7af71884996182e1725baba361 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/xml.py @@ -0,0 +1,1177 @@ +""" +:mod:``pandas.io.xml`` is a module for reading XML. +""" + +from __future__ import annotations + +import io +from os import PathLike +from typing import ( + TYPE_CHECKING, + Any, + Callable, +) +import warnings + +from pandas._libs import lib +from pandas.compat._optional import import_optional_dependency +from pandas.errors import ( + AbstractMethodError, + ParserError, +) +from pandas.util._decorators import doc +from pandas.util._exceptions import find_stack_level +from pandas.util._validators import check_dtype_backend + +from pandas.core.dtypes.common import is_list_like + +from pandas.core.shared_docs import _shared_docs + +from pandas.io.common import ( + file_exists, + get_handle, + infer_compression, + is_file_like, + is_fsspec_url, + is_url, + stringify_path, +) +from pandas.io.parsers import TextParser + +if TYPE_CHECKING: + from collections.abc import Sequence + from xml.etree.ElementTree import Element + + from lxml import etree + + from pandas._typing import ( + CompressionOptions, + ConvertersArg, + DtypeArg, + DtypeBackend, + FilePath, + ParseDatesArg, + ReadBuffer, + StorageOptions, + XMLParsers, + ) + + from pandas import DataFrame + + +@doc( + storage_options=_shared_docs["storage_options"], + decompression_options=_shared_docs["decompression_options"] % "path_or_buffer", +) +class _XMLFrameParser: + """ + Internal subclass to parse XML into DataFrames. + + Parameters + ---------- + path_or_buffer : a valid JSON ``str``, path object or file-like object + Any valid string path is acceptable. The string could be a URL. Valid + URL schemes include http, ftp, s3, and file. + + xpath : str or regex + The ``XPath`` expression to parse required set of nodes for + migration to :class:`~pandas.DataFrame`. ``etree`` supports limited ``XPath``. + + namespaces : dict + The namespaces defined in XML document (``xmlns:namespace='URI'``) + as dicts with key being namespace and value the URI. + + elems_only : bool + Parse only the child elements at the specified ``xpath``. + + attrs_only : bool + Parse only the attributes at the specified ``xpath``. + + names : list + Column names for :class:`~pandas.DataFrame` of parsed XML data. + + dtype : dict + Data type for data or columns. E.g. {{'a': np.float64, + 'b': np.int32, 'c': 'Int64'}} + + .. versionadded:: 1.5.0 + + converters : dict, optional + Dict of functions for converting values in certain columns. Keys can + either be integers or column labels. + + .. versionadded:: 1.5.0 + + parse_dates : bool or list of int or names or list of lists or dict + Converts either index or select columns to datetimes + + .. versionadded:: 1.5.0 + + encoding : str + Encoding of xml object or document. + + stylesheet : str or file-like + URL, file, file-like object, or a raw string containing XSLT, + ``etree`` does not support XSLT but retained for consistency. + + iterparse : dict, optional + Dict with row element as key and list of descendant elements + and/or attributes as value to be retrieved in iterparsing of + XML document. + + .. versionadded:: 1.5.0 + + {decompression_options} + + .. versionchanged:: 1.4.0 Zstandard support. + + {storage_options} + + See also + -------- + pandas.io.xml._EtreeFrameParser + pandas.io.xml._LxmlFrameParser + + Notes + ----- + To subclass this class effectively you must override the following methods:` + * :func:`parse_data` + * :func:`_parse_nodes` + * :func:`_iterparse_nodes` + * :func:`_parse_doc` + * :func:`_validate_names` + * :func:`_validate_path` + + + See each method's respective documentation for details on their + functionality. + """ + + def __init__( + self, + path_or_buffer: FilePath | ReadBuffer[bytes] | ReadBuffer[str], + xpath: str, + namespaces: dict[str, str] | None, + elems_only: bool, + attrs_only: bool, + names: Sequence[str] | None, + dtype: DtypeArg | None, + converters: ConvertersArg | None, + parse_dates: ParseDatesArg | None, + encoding: str | None, + stylesheet: FilePath | ReadBuffer[bytes] | ReadBuffer[str] | None, + iterparse: dict[str, list[str]] | None, + compression: CompressionOptions, + storage_options: StorageOptions, + ) -> None: + self.path_or_buffer = path_or_buffer + self.xpath = xpath + self.namespaces = namespaces + self.elems_only = elems_only + self.attrs_only = attrs_only + self.names = names + self.dtype = dtype + self.converters = converters + self.parse_dates = parse_dates + self.encoding = encoding + self.stylesheet = stylesheet + self.iterparse = iterparse + self.is_style = None + self.compression: CompressionOptions = compression + self.storage_options = storage_options + + def parse_data(self) -> list[dict[str, str | None]]: + """ + Parse xml data. + + This method will call the other internal methods to + validate ``xpath``, names, parse and return specific nodes. + """ + + raise AbstractMethodError(self) + + def _parse_nodes(self, elems: list[Any]) -> list[dict[str, str | None]]: + """ + Parse xml nodes. + + This method will parse the children and attributes of elements + in ``xpath``, conditionally for only elements, only attributes + or both while optionally renaming node names. + + Raises + ------ + ValueError + * If only elements and only attributes are specified. + + Notes + ----- + Namespace URIs will be removed from return node values. Also, + elements with missing children or attributes compared to siblings + will have optional keys filled with None values. + """ + + dicts: list[dict[str, str | None]] + + if self.elems_only and self.attrs_only: + raise ValueError("Either element or attributes can be parsed not both.") + if self.elems_only: + if self.names: + dicts = [ + { + **( + {el.tag: el.text} + if el.text and not el.text.isspace() + else {} + ), + **{ + nm: ch.text if ch.text else None + for nm, ch in zip(self.names, el.findall("*")) + }, + } + for el in elems + ] + else: + dicts = [ + {ch.tag: ch.text if ch.text else None for ch in el.findall("*")} + for el in elems + ] + + elif self.attrs_only: + dicts = [ + {k: v if v else None for k, v in el.attrib.items()} for el in elems + ] + + elif self.names: + dicts = [ + { + **el.attrib, + **({el.tag: el.text} if el.text and not el.text.isspace() else {}), + **{ + nm: ch.text if ch.text else None + for nm, ch in zip(self.names, el.findall("*")) + }, + } + for el in elems + ] + + else: + dicts = [ + { + **el.attrib, + **({el.tag: el.text} if el.text and not el.text.isspace() else {}), + **{ch.tag: ch.text if ch.text else None for ch in el.findall("*")}, + } + for el in elems + ] + + dicts = [ + {k.split("}")[1] if "}" in k else k: v for k, v in d.items()} for d in dicts + ] + + keys = list(dict.fromkeys([k for d in dicts for k in d.keys()])) + dicts = [{k: d[k] if k in d.keys() else None for k in keys} for d in dicts] + + if self.names: + dicts = [dict(zip(self.names, d.values())) for d in dicts] + + return dicts + + def _iterparse_nodes(self, iterparse: Callable) -> list[dict[str, str | None]]: + """ + Iterparse xml nodes. + + This method will read in local disk, decompressed XML files for elements + and underlying descendants using iterparse, a method to iterate through + an XML tree without holding entire XML tree in memory. + + Raises + ------ + TypeError + * If ``iterparse`` is not a dict or its dict value is not list-like. + ParserError + * If ``path_or_buffer`` is not a physical file on disk or file-like object. + * If no data is returned from selected items in ``iterparse``. + + Notes + ----- + Namespace URIs will be removed from return node values. Also, + elements with missing children or attributes in submitted list + will have optional keys filled with None values. + """ + + dicts: list[dict[str, str | None]] = [] + row: dict[str, str | None] | None = None + + if not isinstance(self.iterparse, dict): + raise TypeError( + f"{type(self.iterparse).__name__} is not a valid type for iterparse" + ) + + row_node = next(iter(self.iterparse.keys())) if self.iterparse else "" + if not is_list_like(self.iterparse[row_node]): + raise TypeError( + f"{type(self.iterparse[row_node])} is not a valid type " + "for value in iterparse" + ) + + if (not hasattr(self.path_or_buffer, "read")) and ( + not isinstance(self.path_or_buffer, (str, PathLike)) + or is_url(self.path_or_buffer) + or is_fsspec_url(self.path_or_buffer) + or ( + isinstance(self.path_or_buffer, str) + and self.path_or_buffer.startswith((" list[Any]: + """ + Validate ``xpath``. + + This method checks for syntax, evaluation, or empty nodes return. + + Raises + ------ + SyntaxError + * If xpah is not supported or issues with namespaces. + + ValueError + * If xpah does not return any nodes. + """ + + raise AbstractMethodError(self) + + def _validate_names(self) -> None: + """ + Validate names. + + This method will check if names is a list-like and aligns + with length of parse nodes. + + Raises + ------ + ValueError + * If value is not a list and less then length of nodes. + """ + raise AbstractMethodError(self) + + def _parse_doc( + self, raw_doc: FilePath | ReadBuffer[bytes] | ReadBuffer[str] + ) -> Element | etree._Element: + """ + Build tree from path_or_buffer. + + This method will parse XML object into tree + either from string/bytes or file location. + """ + raise AbstractMethodError(self) + + +class _EtreeFrameParser(_XMLFrameParser): + """ + Internal class to parse XML into DataFrames with the Python + standard library XML module: `xml.etree.ElementTree`. + """ + + def parse_data(self) -> list[dict[str, str | None]]: + from xml.etree.ElementTree import iterparse + + if self.stylesheet is not None: + raise ValueError( + "To use stylesheet, you need lxml installed and selected as parser." + ) + + if self.iterparse is None: + self.xml_doc = self._parse_doc(self.path_or_buffer) + elems = self._validate_path() + + self._validate_names() + + xml_dicts: list[dict[str, str | None]] = ( + self._parse_nodes(elems) + if self.iterparse is None + else self._iterparse_nodes(iterparse) + ) + + return xml_dicts + + def _validate_path(self) -> list[Any]: + """ + Notes + ----- + ``etree`` supports limited ``XPath``. If user attempts a more complex + expression syntax error will raise. + """ + + msg = ( + "xpath does not return any nodes or attributes. " + "Be sure to specify in `xpath` the parent nodes of " + "children and attributes to parse. " + "If document uses namespaces denoted with " + "xmlns, be sure to define namespaces and " + "use them in xpath." + ) + try: + elems = self.xml_doc.findall(self.xpath, namespaces=self.namespaces) + children = [ch for el in elems for ch in el.findall("*")] + attrs = {k: v for el in elems for k, v in el.attrib.items()} + + if elems is None: + raise ValueError(msg) + + if elems is not None: + if self.elems_only and children == []: + raise ValueError(msg) + if self.attrs_only and attrs == {}: + raise ValueError(msg) + if children == [] and attrs == {}: + raise ValueError(msg) + + except (KeyError, SyntaxError): + raise SyntaxError( + "You have used an incorrect or unsupported XPath " + "expression for etree library or you used an " + "undeclared namespace prefix." + ) + + return elems + + def _validate_names(self) -> None: + children: list[Any] + + if self.names: + if self.iterparse: + children = self.iterparse[next(iter(self.iterparse))] + else: + parent = self.xml_doc.find(self.xpath, namespaces=self.namespaces) + children = parent.findall("*") if parent is not None else [] + + if is_list_like(self.names): + if len(self.names) < len(children): + raise ValueError( + "names does not match length of child elements in xpath." + ) + else: + raise TypeError( + f"{type(self.names).__name__} is not a valid type for names" + ) + + def _parse_doc( + self, raw_doc: FilePath | ReadBuffer[bytes] | ReadBuffer[str] + ) -> Element: + from xml.etree.ElementTree import ( + XMLParser, + parse, + ) + + handle_data = get_data_from_filepath( + filepath_or_buffer=raw_doc, + encoding=self.encoding, + compression=self.compression, + storage_options=self.storage_options, + ) + + with preprocess_data(handle_data) as xml_data: + curr_parser = XMLParser(encoding=self.encoding) + document = parse(xml_data, parser=curr_parser) + + return document.getroot() + + +class _LxmlFrameParser(_XMLFrameParser): + """ + Internal class to parse XML into :class:`~pandas.DataFrame` with third-party + full-featured XML library, ``lxml``, that supports + ``XPath`` 1.0 and XSLT 1.0. + """ + + def parse_data(self) -> list[dict[str, str | None]]: + """ + Parse xml data. + + This method will call the other internal methods to + validate ``xpath``, names, optionally parse and run XSLT, + and parse original or transformed XML and return specific nodes. + """ + from lxml.etree import iterparse + + if self.iterparse is None: + self.xml_doc = self._parse_doc(self.path_or_buffer) + + if self.stylesheet: + self.xsl_doc = self._parse_doc(self.stylesheet) + self.xml_doc = self._transform_doc() + + elems = self._validate_path() + + self._validate_names() + + xml_dicts: list[dict[str, str | None]] = ( + self._parse_nodes(elems) + if self.iterparse is None + else self._iterparse_nodes(iterparse) + ) + + return xml_dicts + + def _validate_path(self) -> list[Any]: + msg = ( + "xpath does not return any nodes or attributes. " + "Be sure to specify in `xpath` the parent nodes of " + "children and attributes to parse. " + "If document uses namespaces denoted with " + "xmlns, be sure to define namespaces and " + "use them in xpath." + ) + + elems = self.xml_doc.xpath(self.xpath, namespaces=self.namespaces) + children = [ch for el in elems for ch in el.xpath("*")] + attrs = {k: v for el in elems for k, v in el.attrib.items()} + + if elems == []: + raise ValueError(msg) + + if elems != []: + if self.elems_only and children == []: + raise ValueError(msg) + if self.attrs_only and attrs == {}: + raise ValueError(msg) + if children == [] and attrs == {}: + raise ValueError(msg) + + return elems + + def _validate_names(self) -> None: + children: list[Any] + + if self.names: + if self.iterparse: + children = self.iterparse[next(iter(self.iterparse))] + else: + children = self.xml_doc.xpath( + self.xpath + "[1]/*", namespaces=self.namespaces + ) + + if is_list_like(self.names): + if len(self.names) < len(children): + raise ValueError( + "names does not match length of child elements in xpath." + ) + else: + raise TypeError( + f"{type(self.names).__name__} is not a valid type for names" + ) + + def _parse_doc( + self, raw_doc: FilePath | ReadBuffer[bytes] | ReadBuffer[str] + ) -> etree._Element: + from lxml.etree import ( + XMLParser, + fromstring, + parse, + ) + + handle_data = get_data_from_filepath( + filepath_or_buffer=raw_doc, + encoding=self.encoding, + compression=self.compression, + storage_options=self.storage_options, + ) + + with preprocess_data(handle_data) as xml_data: + curr_parser = XMLParser(encoding=self.encoding) + + if isinstance(xml_data, io.StringIO): + if self.encoding is None: + raise TypeError( + "Can not pass encoding None when input is StringIO." + ) + + document = fromstring( + xml_data.getvalue().encode(self.encoding), parser=curr_parser + ) + else: + document = parse(xml_data, parser=curr_parser) + + return document + + def _transform_doc(self) -> etree._XSLTResultTree: + """ + Transform original tree using stylesheet. + + This method will transform original xml using XSLT script into + am ideally flatter xml document for easier parsing and migration + to Data Frame. + """ + from lxml.etree import XSLT + + transformer = XSLT(self.xsl_doc) + new_doc = transformer(self.xml_doc) + + return new_doc + + +def get_data_from_filepath( + filepath_or_buffer: FilePath | bytes | ReadBuffer[bytes] | ReadBuffer[str], + encoding: str | None, + compression: CompressionOptions, + storage_options: StorageOptions, +) -> str | bytes | ReadBuffer[bytes] | ReadBuffer[str]: + """ + Extract raw XML data. + + The method accepts three input types: + 1. filepath (string-like) + 2. file-like object (e.g. open file object, StringIO) + 3. XML string or bytes + + This method turns (1) into (2) to simplify the rest of the processing. + It returns input types (2) and (3) unchanged. + """ + if not isinstance(filepath_or_buffer, bytes): + filepath_or_buffer = stringify_path(filepath_or_buffer) + + if ( + isinstance(filepath_or_buffer, str) + and not filepath_or_buffer.startswith((" io.StringIO | io.BytesIO: + """ + Convert extracted raw data. + + This method will return underlying data of extracted XML content. + The data either has a `read` attribute (e.g. a file object or a + StringIO/BytesIO) or is a string or bytes that is an XML document. + """ + + if isinstance(data, str): + data = io.StringIO(data) + + elif isinstance(data, bytes): + data = io.BytesIO(data) + + return data + + +def _data_to_frame(data, **kwargs) -> DataFrame: + """ + Convert parsed data to Data Frame. + + This method will bind xml dictionary data of keys and values + into named columns of Data Frame using the built-in TextParser + class that build Data Frame and infers specific dtypes. + """ + + tags = next(iter(data)) + nodes = [list(d.values()) for d in data] + + try: + with TextParser(nodes, names=tags, **kwargs) as tp: + return tp.read() + except ParserError: + raise ParserError( + "XML document may be too complex for import. " + "Try to flatten document and use distinct " + "element and attribute names." + ) + + +def _parse( + path_or_buffer: FilePath | ReadBuffer[bytes] | ReadBuffer[str], + xpath: str, + namespaces: dict[str, str] | None, + elems_only: bool, + attrs_only: bool, + names: Sequence[str] | None, + dtype: DtypeArg | None, + converters: ConvertersArg | None, + parse_dates: ParseDatesArg | None, + encoding: str | None, + parser: XMLParsers, + stylesheet: FilePath | ReadBuffer[bytes] | ReadBuffer[str] | None, + iterparse: dict[str, list[str]] | None, + compression: CompressionOptions, + storage_options: StorageOptions, + dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, + **kwargs, +) -> DataFrame: + """ + Call internal parsers. + + This method will conditionally call internal parsers: + LxmlFrameParser and/or EtreeParser. + + Raises + ------ + ImportError + * If lxml is not installed if selected as parser. + + ValueError + * If parser is not lxml or etree. + """ + + p: _EtreeFrameParser | _LxmlFrameParser + + if isinstance(path_or_buffer, str) and not any( + [ + is_file_like(path_or_buffer), + file_exists(path_or_buffer), + is_url(path_or_buffer), + is_fsspec_url(path_or_buffer), + ] + ): + warnings.warn( + "Passing literal xml to 'read_xml' is deprecated and " + "will be removed in a future version. To read from a " + "literal string, wrap it in a 'StringIO' object.", + FutureWarning, + stacklevel=find_stack_level(), + ) + + if parser == "lxml": + lxml = import_optional_dependency("lxml.etree", errors="ignore") + + if lxml is not None: + p = _LxmlFrameParser( + path_or_buffer, + xpath, + namespaces, + elems_only, + attrs_only, + names, + dtype, + converters, + parse_dates, + encoding, + stylesheet, + iterparse, + compression, + storage_options, + ) + else: + raise ImportError("lxml not found, please install or use the etree parser.") + + elif parser == "etree": + p = _EtreeFrameParser( + path_or_buffer, + xpath, + namespaces, + elems_only, + attrs_only, + names, + dtype, + converters, + parse_dates, + encoding, + stylesheet, + iterparse, + compression, + storage_options, + ) + else: + raise ValueError("Values for parser can only be lxml or etree.") + + data_dicts = p.parse_data() + + return _data_to_frame( + data=data_dicts, + dtype=dtype, + converters=converters, + parse_dates=parse_dates, + dtype_backend=dtype_backend, + **kwargs, + ) + + +@doc( + storage_options=_shared_docs["storage_options"], + decompression_options=_shared_docs["decompression_options"] % "path_or_buffer", +) +def read_xml( + path_or_buffer: FilePath | ReadBuffer[bytes] | ReadBuffer[str], + *, + xpath: str = "./*", + namespaces: dict[str, str] | None = None, + elems_only: bool = False, + attrs_only: bool = False, + names: Sequence[str] | None = None, + dtype: DtypeArg | None = None, + converters: ConvertersArg | None = None, + parse_dates: ParseDatesArg | None = None, + # encoding can not be None for lxml and StringIO input + encoding: str | None = "utf-8", + parser: XMLParsers = "lxml", + stylesheet: FilePath | ReadBuffer[bytes] | ReadBuffer[str] | None = None, + iterparse: dict[str, list[str]] | None = None, + compression: CompressionOptions = "infer", + storage_options: StorageOptions | None = None, + dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, +) -> DataFrame: + r""" + Read XML document into a :class:`~pandas.DataFrame` object. + + .. versionadded:: 1.3.0 + + Parameters + ---------- + path_or_buffer : str, path object, or file-like object + String, path object (implementing ``os.PathLike[str]``), or file-like + object implementing a ``read()`` function. The string can be any valid XML + string or a path. The string can further be a URL. Valid URL schemes + include http, ftp, s3, and file. + + .. deprecated:: 2.1.0 + Passing xml literal strings is deprecated. + Wrap literal xml input in ``io.StringIO`` or ``io.BytesIO`` instead. + + xpath : str, optional, default './\*' + The ``XPath`` to parse required set of nodes for migration to + :class:`~pandas.DataFrame`.``XPath`` should return a collection of elements + and not a single element. Note: The ``etree`` parser supports limited ``XPath`` + expressions. For more complex ``XPath``, use ``lxml`` which requires + installation. + + namespaces : dict, optional + The namespaces defined in XML document as dicts with key being + namespace prefix and value the URI. There is no need to include all + namespaces in XML, only the ones used in ``xpath`` expression. + Note: if XML document uses default namespace denoted as + `xmlns=''` without a prefix, you must assign any temporary + namespace prefix such as 'doc' to the URI in order to parse + underlying nodes and/or attributes. For example, :: + + namespaces = {{"doc": "https://example.com"}} + + elems_only : bool, optional, default False + Parse only the child elements at the specified ``xpath``. By default, + all child elements and non-empty text nodes are returned. + + attrs_only : bool, optional, default False + Parse only the attributes at the specified ``xpath``. + By default, all attributes are returned. + + names : list-like, optional + Column names for DataFrame of parsed XML data. Use this parameter to + rename original element names and distinguish same named elements and + attributes. + + dtype : Type name or dict of column -> type, optional + Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32, + 'c': 'Int64'}} + Use `str` or `object` together with suitable `na_values` settings + to preserve and not interpret dtype. + If converters are specified, they will be applied INSTEAD + of dtype conversion. + + .. versionadded:: 1.5.0 + + converters : dict, optional + Dict of functions for converting values in certain columns. Keys can either + be integers or column labels. + + .. versionadded:: 1.5.0 + + parse_dates : bool or list of int or names or list of lists or dict, default False + Identifiers to parse index or columns to datetime. The behavior is as follows: + + * boolean. If True -> try parsing the index. + * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 + each as a separate date column. + * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as + a single date column. + * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call + result 'foo' + + .. versionadded:: 1.5.0 + + encoding : str, optional, default 'utf-8' + Encoding of XML document. + + parser : {{'lxml','etree'}}, default 'lxml' + Parser module to use for retrieval of data. Only 'lxml' and + 'etree' are supported. With 'lxml' more complex ``XPath`` searches + and ability to use XSLT stylesheet are supported. + + stylesheet : str, path object or file-like object + A URL, file-like object, or a raw string containing an XSLT script. + This stylesheet should flatten complex, deeply nested XML documents + for easier parsing. To use this feature you must have ``lxml`` module + installed and specify 'lxml' as ``parser``. The ``xpath`` must + reference nodes of transformed XML document generated after XSLT + transformation and not the original XML document. Only XSLT 1.0 + scripts and not later versions is currently supported. + + iterparse : dict, optional + The nodes or attributes to retrieve in iterparsing of XML document + as a dict with key being the name of repeating element and value being + list of elements or attribute names that are descendants of the repeated + element. Note: If this option is used, it will replace ``xpath`` parsing + and unlike ``xpath``, descendants do not need to relate to each other but can + exist any where in document under the repeating element. This memory- + efficient method should be used for very large XML files (500MB, 1GB, or 5GB+). + For example, :: + + iterparse = {{"row_element": ["child_elem", "attr", "grandchild_elem"]}} + + .. versionadded:: 1.5.0 + + {decompression_options} + + .. versionchanged:: 1.4.0 Zstandard support. + + {storage_options} + + dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable' + Back-end data type applied to the resultant :class:`DataFrame` + (still experimental). Behaviour is as follows: + + * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` + (default). + * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` + DataFrame. + + .. versionadded:: 2.0 + + Returns + ------- + df + A DataFrame. + + See Also + -------- + read_json : Convert a JSON string to pandas object. + read_html : Read HTML tables into a list of DataFrame objects. + + Notes + ----- + This method is best designed to import shallow XML documents in + following format which is the ideal fit for the two-dimensions of a + ``DataFrame`` (row by column). :: + + + + data + data + data + ... + + + ... + + ... + + + As a file format, XML documents can be designed any way including + layout of elements and attributes as long as it conforms to W3C + specifications. Therefore, this method is a convenience handler for + a specific flatter design and not all possible XML structures. + + However, for more complex XML documents, ``stylesheet`` allows you to + temporarily redesign original document with XSLT (a special purpose + language) for a flatter version for migration to a DataFrame. + + This function will *always* return a single :class:`DataFrame` or raise + exceptions due to issues with XML document, ``xpath``, or other + parameters. + + See the :ref:`read_xml documentation in the IO section of the docs + ` for more information in using this method to parse XML + files to DataFrames. + + Examples + -------- + >>> from io import StringIO + >>> xml = ''' + ... + ... + ... square + ... 360 + ... 4.0 + ... + ... + ... circle + ... 360 + ... + ... + ... + ... triangle + ... 180 + ... 3.0 + ... + ... ''' + + >>> df = pd.read_xml(StringIO(xml)) + >>> df + shape degrees sides + 0 square 360 4.0 + 1 circle 360 NaN + 2 triangle 180 3.0 + + >>> xml = ''' + ... + ... + ... + ... + ... ''' + + >>> df = pd.read_xml(StringIO(xml), xpath=".//row") + >>> df + shape degrees sides + 0 square 360 4.0 + 1 circle 360 NaN + 2 triangle 180 3.0 + + >>> xml = ''' + ... + ... + ... square + ... 360 + ... 4.0 + ... + ... + ... circle + ... 360 + ... + ... + ... + ... triangle + ... 180 + ... 3.0 + ... + ... ''' + + >>> df = pd.read_xml(StringIO(xml), + ... xpath="//doc:row", + ... namespaces={{"doc": "https://example.com"}}) + >>> df + shape degrees sides + 0 square 360 4.0 + 1 circle 360 NaN + 2 triangle 180 3.0 + + >>> xml_data = ''' + ... + ... + ... 0 + ... 1 + ... 2.5 + ... True + ... a + ... 2019-12-31 00:00:00 + ... + ... + ... 1 + ... 4.5 + ... False + ... b + ... 2019-12-31 00:00:00 + ... + ... + ... ''' + + >>> df = pd.read_xml(StringIO(xml_data), + ... dtype_backend="numpy_nullable", + ... parse_dates=["e"]) + >>> df + index a b c d e + 0 0 1 2.5 True a 2019-12-31 + 1 1 4.5 False b 2019-12-31 + """ + check_dtype_backend(dtype_backend) + + return _parse( + path_or_buffer=path_or_buffer, + xpath=xpath, + namespaces=namespaces, + elems_only=elems_only, + attrs_only=attrs_only, + names=names, + dtype=dtype, + converters=converters, + parse_dates=parse_dates, + encoding=encoding, + parser=parser, + stylesheet=stylesheet, + iterparse=iterparse, + compression=compression, + storage_options=storage_options, + dtype_backend=dtype_backend, + )