diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__init__.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cc7fba9c72cbdc8a32ac7660a9d48f3b4fe02690 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_css.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_css.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b2129b1a666a01d1b51445156457c8da4a9dbe22 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_css.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_format.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_format.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3447d40b70e80c31b4acbf1d41a1918c64bd86d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_format.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_ipython_compat.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_ipython_compat.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8b90656b52f9b2b751d199916bcda8609f4803b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_ipython_compat.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_printing.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_printing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14de9bdcd72e3206e6a705f56bf408cb883e847f Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_printing.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_csv.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_csv.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9afcf6dda7671071190d41c013edb179758f1fad Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_csv.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_excel.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_excel.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5cc656a4db0723748b1f447aaed956e9e60e5f7 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_excel.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_html.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_html.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..860ad43780c95167918292c22a759e05f306d7c1 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_html.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_latex.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_latex.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a57cefd5bd688301495ca514751b92b4fca4173 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_latex.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_string.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_string.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3705cb84af7a5d5ec1637e5055d70bcc747e87ce Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/__pycache__/test_to_string.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_bar.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_bar.py new file mode 100644 index 0000000000000000000000000000000000000000..b0e4712e8bb3d15959bddc0bd8697981b16bd8ef --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_bar.py @@ -0,0 +1,358 @@ +import io + +import numpy as np +import pytest + +from pandas import ( + NA, + DataFrame, + read_csv, +) + +pytest.importorskip("jinja2") + + +def bar_grad(a=None, b=None, c=None, d=None): + """Used in multiple tests to simplify formatting of expected result""" + ret = [("width", "10em")] + if all(x is None for x in [a, b, c, d]): + return ret + return ret + [ + ( + "background", + f"linear-gradient(90deg,{','.join([x for x in [a, b, c, d] if x])})", + ) + ] + + +def no_bar(): + return bar_grad() + + +def bar_to(x, color="#d65f5f"): + return bar_grad(f" {color} {x:.1f}%", f" transparent {x:.1f}%") + + +def bar_from_to(x, y, color="#d65f5f"): + return bar_grad( + f" transparent {x:.1f}%", + f" {color} {x:.1f}%", + f" {color} {y:.1f}%", + f" transparent {y:.1f}%", + ) + + +@pytest.fixture +def df_pos(): + return DataFrame([[1], [2], [3]]) + + +@pytest.fixture +def df_neg(): + return DataFrame([[-1], [-2], [-3]]) + + +@pytest.fixture +def df_mix(): + return DataFrame([[-3], [1], [2]]) + + +@pytest.mark.parametrize( + "align, exp", + [ + ("left", [no_bar(), bar_to(50), bar_to(100)]), + ("right", [bar_to(100), bar_from_to(50, 100), no_bar()]), + ("mid", [bar_to(33.33), bar_to(66.66), bar_to(100)]), + ("zero", [bar_from_to(50, 66.7), bar_from_to(50, 83.3), bar_from_to(50, 100)]), + ("mean", [bar_to(50), no_bar(), bar_from_to(50, 100)]), + (2.0, [bar_to(50), no_bar(), bar_from_to(50, 100)]), + (np.median, [bar_to(50), no_bar(), bar_from_to(50, 100)]), + ], +) +def test_align_positive_cases(df_pos, align, exp): + # test different align cases for all positive values + result = df_pos.style.bar(align=align)._compute().ctx + expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]} + assert result == expected + + +@pytest.mark.parametrize( + "align, exp", + [ + ("left", [bar_to(100), bar_to(50), no_bar()]), + ("right", [no_bar(), bar_from_to(50, 100), bar_to(100)]), + ("mid", [bar_from_to(66.66, 100), bar_from_to(33.33, 100), bar_to(100)]), + ("zero", [bar_from_to(33.33, 50), bar_from_to(16.66, 50), bar_to(50)]), + ("mean", [bar_from_to(50, 100), no_bar(), bar_to(50)]), + (-2.0, [bar_from_to(50, 100), no_bar(), bar_to(50)]), + (np.median, [bar_from_to(50, 100), no_bar(), bar_to(50)]), + ], +) +def test_align_negative_cases(df_neg, align, exp): + # test different align cases for all negative values + result = df_neg.style.bar(align=align)._compute().ctx + expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]} + assert result == expected + + +@pytest.mark.parametrize( + "align, exp", + [ + ("left", [no_bar(), bar_to(80), bar_to(100)]), + ("right", [bar_to(100), bar_from_to(80, 100), no_bar()]), + ("mid", [bar_to(60), bar_from_to(60, 80), bar_from_to(60, 100)]), + ("zero", [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]), + ("mean", [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]), + (-0.0, [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]), + (np.nanmedian, [bar_to(50), no_bar(), bar_from_to(50, 62.5)]), + ], +) +@pytest.mark.parametrize("nans", [True, False]) +def test_align_mixed_cases(df_mix, align, exp, nans): + # test different align cases for mixed positive and negative values + # also test no impact of NaNs and no_bar + expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]} + if nans: + df_mix.loc[3, :] = np.nan + expected.update({(3, 0): no_bar()}) + result = df_mix.style.bar(align=align)._compute().ctx + assert result == expected + + +@pytest.mark.parametrize( + "align, exp", + [ + ( + "left", + { + "index": [[no_bar(), no_bar()], [bar_to(100), bar_to(100)]], + "columns": [[no_bar(), bar_to(100)], [no_bar(), bar_to(100)]], + "none": [[no_bar(), bar_to(33.33)], [bar_to(66.66), bar_to(100)]], + }, + ), + ( + "mid", + { + "index": [[bar_to(33.33), bar_to(50)], [bar_to(100), bar_to(100)]], + "columns": [[bar_to(50), bar_to(100)], [bar_to(75), bar_to(100)]], + "none": [[bar_to(25), bar_to(50)], [bar_to(75), bar_to(100)]], + }, + ), + ( + "zero", + { + "index": [ + [bar_from_to(50, 66.66), bar_from_to(50, 75)], + [bar_from_to(50, 100), bar_from_to(50, 100)], + ], + "columns": [ + [bar_from_to(50, 75), bar_from_to(50, 100)], + [bar_from_to(50, 87.5), bar_from_to(50, 100)], + ], + "none": [ + [bar_from_to(50, 62.5), bar_from_to(50, 75)], + [bar_from_to(50, 87.5), bar_from_to(50, 100)], + ], + }, + ), + ( + 2, + { + "index": [ + [bar_to(50), no_bar()], + [bar_from_to(50, 100), bar_from_to(50, 100)], + ], + "columns": [ + [bar_to(50), no_bar()], + [bar_from_to(50, 75), bar_from_to(50, 100)], + ], + "none": [ + [bar_from_to(25, 50), no_bar()], + [bar_from_to(50, 75), bar_from_to(50, 100)], + ], + }, + ), + ], +) +@pytest.mark.parametrize("axis", ["index", "columns", "none"]) +def test_align_axis(align, exp, axis): + # test all axis combinations with positive values and different aligns + data = DataFrame([[1, 2], [3, 4]]) + result = ( + data.style.bar(align=align, axis=None if axis == "none" else axis) + ._compute() + .ctx + ) + expected = { + (0, 0): exp[axis][0][0], + (0, 1): exp[axis][0][1], + (1, 0): exp[axis][1][0], + (1, 1): exp[axis][1][1], + } + assert result == expected + + +@pytest.mark.parametrize( + "values, vmin, vmax", + [ + ("positive", 1.5, 2.5), + ("negative", -2.5, -1.5), + ("mixed", -2.5, 1.5), + ], +) +@pytest.mark.parametrize("nullify", [None, "vmin", "vmax"]) # test min/max separately +@pytest.mark.parametrize("align", ["left", "right", "zero", "mid"]) +def test_vmin_vmax_clipping(df_pos, df_neg, df_mix, values, vmin, vmax, nullify, align): + # test that clipping occurs if any vmin > data_values or vmax < data_values + if align == "mid": # mid acts as left or right in each case + if values == "positive": + align = "left" + elif values == "negative": + align = "right" + df = {"positive": df_pos, "negative": df_neg, "mixed": df_mix}[values] + vmin = None if nullify == "vmin" else vmin + vmax = None if nullify == "vmax" else vmax + + clip_df = df.where(df <= (vmax if vmax else 999), other=vmax) + clip_df = clip_df.where(clip_df >= (vmin if vmin else -999), other=vmin) + + result = ( + df.style.bar(align=align, vmin=vmin, vmax=vmax, color=["red", "green"]) + ._compute() + .ctx + ) + expected = clip_df.style.bar(align=align, color=["red", "green"])._compute().ctx + assert result == expected + + +@pytest.mark.parametrize( + "values, vmin, vmax", + [ + ("positive", 0.5, 4.5), + ("negative", -4.5, -0.5), + ("mixed", -4.5, 4.5), + ], +) +@pytest.mark.parametrize("nullify", [None, "vmin", "vmax"]) # test min/max separately +@pytest.mark.parametrize("align", ["left", "right", "zero", "mid"]) +def test_vmin_vmax_widening(df_pos, df_neg, df_mix, values, vmin, vmax, nullify, align): + # test that widening occurs if any vmax > data_values or vmin < data_values + if align == "mid": # mid acts as left or right in each case + if values == "positive": + align = "left" + elif values == "negative": + align = "right" + df = {"positive": df_pos, "negative": df_neg, "mixed": df_mix}[values] + vmin = None if nullify == "vmin" else vmin + vmax = None if nullify == "vmax" else vmax + + expand_df = df.copy() + expand_df.loc[3, :], expand_df.loc[4, :] = vmin, vmax + + result = ( + df.style.bar(align=align, vmin=vmin, vmax=vmax, color=["red", "green"]) + ._compute() + .ctx + ) + expected = expand_df.style.bar(align=align, color=["red", "green"])._compute().ctx + assert result.items() <= expected.items() + + +def test_numerics(): + # test data is pre-selected for numeric values + data = DataFrame([[1, "a"], [2, "b"]]) + result = data.style.bar()._compute().ctx + assert (0, 1) not in result + assert (1, 1) not in result + + +@pytest.mark.parametrize( + "align, exp", + [ + ("left", [no_bar(), bar_to(100, "green")]), + ("right", [bar_to(100, "red"), no_bar()]), + ("mid", [bar_to(25, "red"), bar_from_to(25, 100, "green")]), + ("zero", [bar_from_to(33.33, 50, "red"), bar_from_to(50, 100, "green")]), + ], +) +def test_colors_mixed(align, exp): + data = DataFrame([[-1], [3]]) + result = data.style.bar(align=align, color=["red", "green"])._compute().ctx + assert result == {(0, 0): exp[0], (1, 0): exp[1]} + + +def test_bar_align_height(): + # test when keyword height is used 'no-repeat center' and 'background-size' present + data = DataFrame([[1], [2]]) + result = data.style.bar(align="left", height=50)._compute().ctx + bg_s = "linear-gradient(90deg, #d65f5f 100.0%, transparent 100.0%) no-repeat center" + expected = { + (0, 0): [("width", "10em")], + (1, 0): [ + ("width", "10em"), + ("background", bg_s), + ("background-size", "100% 50.0%"), + ], + } + assert result == expected + + +def test_bar_value_error_raises(): + df = DataFrame({"A": [-100, -60, -30, -20]}) + + msg = "`align` should be in {'left', 'right', 'mid', 'mean', 'zero'} or" + with pytest.raises(ValueError, match=msg): + df.style.bar(align="poorly", color=["#d65f5f", "#5fba7d"]).to_html() + + msg = r"`width` must be a value in \[0, 100\]" + with pytest.raises(ValueError, match=msg): + df.style.bar(width=200).to_html() + + msg = r"`height` must be a value in \[0, 100\]" + with pytest.raises(ValueError, match=msg): + df.style.bar(height=200).to_html() + + +def test_bar_color_and_cmap_error_raises(): + df = DataFrame({"A": [1, 2, 3, 4]}) + msg = "`color` and `cmap` cannot both be given" + # Test that providing both color and cmap raises a ValueError + with pytest.raises(ValueError, match=msg): + df.style.bar(color="#d65f5f", cmap="viridis").to_html() + + +def test_bar_invalid_color_type_error_raises(): + df = DataFrame({"A": [1, 2, 3, 4]}) + msg = ( + r"`color` must be string or list or tuple of 2 strings," + r"\(eg: color=\['#d65f5f', '#5fba7d'\]\)" + ) + # Test that providing an invalid color type raises a ValueError + with pytest.raises(ValueError, match=msg): + df.style.bar(color=123).to_html() + + # Test that providing a color list with more than two elements raises a ValueError + with pytest.raises(ValueError, match=msg): + df.style.bar(color=["#d65f5f", "#5fba7d", "#abcdef"]).to_html() + + +def test_styler_bar_with_NA_values(): + df1 = DataFrame({"A": [1, 2, NA, 4]}) + df2 = DataFrame([[NA, NA], [NA, NA]]) + expected_substring = "style type=" + html_output1 = df1.style.bar(subset="A").to_html() + html_output2 = df2.style.bar(align="left", axis=None).to_html() + assert expected_substring in html_output1 + assert expected_substring in html_output2 + + +def test_style_bar_with_pyarrow_NA_values(): + data = """name,age,test1,test2,teacher + Adam,15,95.0,80,Ashby + Bob,16,81.0,82,Ashby + Dave,16,89.0,84,Jones + Fred,15,,88,Jones""" + df = read_csv(io.StringIO(data), dtype_backend="pyarrow") + expected_substring = "style type=" + html_output = df.style.bar(subset="test1").to_html() + assert expected_substring in html_output diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_exceptions.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_exceptions.py new file mode 100644 index 0000000000000000000000000000000000000000..d52e3a37e7693dadce34f73fc03a0790c7a0b4d3 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_exceptions.py @@ -0,0 +1,44 @@ +import pytest + +jinja2 = pytest.importorskip("jinja2") + +from pandas import ( + DataFrame, + MultiIndex, +) + +from pandas.io.formats.style import Styler + + +@pytest.fixture +def df(): + return DataFrame( + data=[[0, -0.609], [1, -1.228]], + columns=["A", "B"], + index=["x", "y"], + ) + + +@pytest.fixture +def styler(df): + return Styler(df, uuid_len=0) + + +def test_concat_bad_columns(styler): + msg = "`other.data` must have same columns as `Styler.data" + with pytest.raises(ValueError, match=msg): + styler.concat(DataFrame([[1, 2]]).style) + + +def test_concat_bad_type(styler): + msg = "`other` must be of type `Styler`" + with pytest.raises(TypeError, match=msg): + styler.concat(DataFrame([[1, 2]])) + + +def test_concat_bad_index_levels(styler, df): + df = df.copy() + df.index = MultiIndex.from_tuples([(0, 0), (1, 1)]) + msg = "number of index levels must be same in `other`" + with pytest.raises(ValueError, match=msg): + styler.concat(df.style) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_non_unique.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_non_unique.py new file mode 100644 index 0000000000000000000000000000000000000000..e4d31fe21f2c9cf3454a67f8c7443382f7f1c0ef --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_non_unique.py @@ -0,0 +1,140 @@ +from textwrap import dedent + +import pytest + +from pandas import ( + DataFrame, + IndexSlice, +) + +pytest.importorskip("jinja2") + +from pandas.io.formats.style import Styler + + +@pytest.fixture +def df(): + return DataFrame( + [[1, 2, 3], [4, 5, 6], [7, 8, 9]], + index=["i", "j", "j"], + columns=["c", "d", "d"], + dtype=float, + ) + + +@pytest.fixture +def styler(df): + return Styler(df, uuid_len=0) + + +def test_format_non_unique(df): + # GH 41269 + + # test dict + html = df.style.format({"d": "{:.1f}"}).to_html() + for val in ["1.000000<", "4.000000<", "7.000000<"]: + assert val in html + for val in ["2.0<", "3.0<", "5.0<", "6.0<", "8.0<", "9.0<"]: + assert val in html + + # test subset + html = df.style.format(precision=1, subset=IndexSlice["j", "d"]).to_html() + for val in ["1.000000<", "4.000000<", "7.000000<", "2.000000<", "3.000000<"]: + assert val in html + for val in ["5.0<", "6.0<", "8.0<", "9.0<"]: + assert val in html + + +@pytest.mark.parametrize("func", ["apply", "map"]) +def test_apply_map_non_unique_raises(df, func): + # GH 41269 + if func == "apply": + op = lambda s: ["color: red;"] * len(s) + else: + op = lambda v: "color: red;" + + with pytest.raises(KeyError, match="`Styler.apply` and `.map` are not"): + getattr(df.style, func)(op)._compute() + + +def test_table_styles_dict_non_unique_index(styler): + styles = styler.set_table_styles( + {"j": [{"selector": "td", "props": "a: v;"}]}, axis=1 + ).table_styles + assert styles == [ + {"selector": "td.row1", "props": [("a", "v")]}, + {"selector": "td.row2", "props": [("a", "v")]}, + ] + + +def test_table_styles_dict_non_unique_columns(styler): + styles = styler.set_table_styles( + {"d": [{"selector": "td", "props": "a: v;"}]}, axis=0 + ).table_styles + assert styles == [ + {"selector": "td.col1", "props": [("a", "v")]}, + {"selector": "td.col2", "props": [("a", "v")]}, + ] + + +def test_tooltips_non_unique_raises(styler): + # ttips has unique keys + ttips = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "d"], index=["a", "b"]) + styler.set_tooltips(ttips=ttips) # OK + + # ttips has non-unique columns + ttips = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "c"], index=["a", "b"]) + with pytest.raises(KeyError, match="Tooltips render only if `ttips` has unique"): + styler.set_tooltips(ttips=ttips) + + # ttips has non-unique index + ttips = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "d"], index=["a", "a"]) + with pytest.raises(KeyError, match="Tooltips render only if `ttips` has unique"): + styler.set_tooltips(ttips=ttips) + + +def test_set_td_classes_non_unique_raises(styler): + # classes has unique keys + classes = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "d"], index=["a", "b"]) + styler.set_td_classes(classes=classes) # OK + + # classes has non-unique columns + classes = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "c"], index=["a", "b"]) + with pytest.raises(KeyError, match="Classes render only if `classes` has unique"): + styler.set_td_classes(classes=classes) + + # classes has non-unique index + classes = DataFrame([["1", "2"], ["3", "4"]], columns=["c", "d"], index=["a", "a"]) + with pytest.raises(KeyError, match="Classes render only if `classes` has unique"): + styler.set_td_classes(classes=classes) + + +def test_hide_columns_non_unique(styler): + ctx = styler.hide(["d"], axis="columns")._translate(True, True) + + assert ctx["head"][0][1]["display_value"] == "c" + assert ctx["head"][0][1]["is_visible"] is True + + assert ctx["head"][0][2]["display_value"] == "d" + assert ctx["head"][0][2]["is_visible"] is False + + assert ctx["head"][0][3]["display_value"] == "d" + assert ctx["head"][0][3]["is_visible"] is False + + assert ctx["body"][0][1]["is_visible"] is True + assert ctx["body"][0][2]["is_visible"] is False + assert ctx["body"][0][3]["is_visible"] is False + + +def test_latex_non_unique(styler): + result = styler.to_latex() + assert result == dedent( + """\ + \\begin{tabular}{lrrr} + & c & d & d \\\\ + i & 1.000000 & 2.000000 & 3.000000 \\\\ + j & 4.000000 & 5.000000 & 6.000000 \\\\ + j & 7.000000 & 8.000000 & 9.000000 \\\\ + \\end{tabular} + """ + ) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_style.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_style.py new file mode 100644 index 0000000000000000000000000000000000000000..6fa72bd48031cca999b81cccfcedafcd3abcd924 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_style.py @@ -0,0 +1,1588 @@ +import contextlib +import copy +import re +from textwrap import dedent + +import numpy as np +import pytest + +from pandas import ( + DataFrame, + IndexSlice, + MultiIndex, + Series, + option_context, +) +import pandas._testing as tm + +jinja2 = pytest.importorskip("jinja2") +from pandas.io.formats.style import ( # isort:skip + Styler, +) +from pandas.io.formats.style_render import ( + _get_level_lengths, + _get_trimming_maximums, + maybe_convert_css_to_tuples, + non_reducing_slice, +) + + +@pytest.fixture +def mi_df(): + return DataFrame( + [[1, 2], [3, 4]], + index=MultiIndex.from_product([["i0"], ["i1_a", "i1_b"]]), + columns=MultiIndex.from_product([["c0"], ["c1_a", "c1_b"]]), + dtype=int, + ) + + +@pytest.fixture +def mi_styler(mi_df): + return Styler(mi_df, uuid_len=0) + + +@pytest.fixture +def mi_styler_comp(mi_styler): + # comprehensively add features to mi_styler + mi_styler = mi_styler._copy(deepcopy=True) + mi_styler.css = {**mi_styler.css, "row": "ROW", "col": "COL"} + mi_styler.uuid_len = 5 + mi_styler.uuid = "abcde" + mi_styler.set_caption("capt") + mi_styler.set_table_styles([{"selector": "a", "props": "a:v;"}]) + mi_styler.hide(axis="columns") + mi_styler.hide([("c0", "c1_a")], axis="columns", names=True) + mi_styler.hide(axis="index") + mi_styler.hide([("i0", "i1_a")], axis="index", names=True) + mi_styler.set_table_attributes('class="box"') + other = mi_styler.data.agg(["mean"]) + other.index = MultiIndex.from_product([[""], other.index]) + mi_styler.concat(other.style) + mi_styler.format(na_rep="MISSING", precision=3) + mi_styler.format_index(precision=2, axis=0) + mi_styler.format_index(precision=4, axis=1) + mi_styler.highlight_max(axis=None) + mi_styler.map_index(lambda x: "color: white;", axis=0) + mi_styler.map_index(lambda x: "color: black;", axis=1) + mi_styler.set_td_classes( + DataFrame( + [["a", "b"], ["a", "c"]], index=mi_styler.index, columns=mi_styler.columns + ) + ) + mi_styler.set_tooltips( + DataFrame( + [["a2", "b2"], ["a2", "c2"]], + index=mi_styler.index, + columns=mi_styler.columns, + ) + ) + return mi_styler + + +@pytest.fixture +def blank_value(): + return " " + + +@pytest.fixture +def df(): + df = DataFrame({"A": [0, 1], "B": np.random.default_rng(2).standard_normal(2)}) + return df + + +@pytest.fixture +def styler(df): + df = DataFrame({"A": [0, 1], "B": np.random.default_rng(2).standard_normal(2)}) + return Styler(df) + + +@pytest.mark.parametrize( + "sparse_columns, exp_cols", + [ + ( + True, + [ + {"is_visible": True, "attributes": 'colspan="2"', "value": "c0"}, + {"is_visible": False, "attributes": "", "value": "c0"}, + ], + ), + ( + False, + [ + {"is_visible": True, "attributes": "", "value": "c0"}, + {"is_visible": True, "attributes": "", "value": "c0"}, + ], + ), + ], +) +def test_mi_styler_sparsify_columns(mi_styler, sparse_columns, exp_cols): + exp_l1_c0 = {"is_visible": True, "attributes": "", "display_value": "c1_a"} + exp_l1_c1 = {"is_visible": True, "attributes": "", "display_value": "c1_b"} + + ctx = mi_styler._translate(True, sparse_columns) + + assert exp_cols[0].items() <= ctx["head"][0][2].items() + assert exp_cols[1].items() <= ctx["head"][0][3].items() + assert exp_l1_c0.items() <= ctx["head"][1][2].items() + assert exp_l1_c1.items() <= ctx["head"][1][3].items() + + +@pytest.mark.parametrize( + "sparse_index, exp_rows", + [ + ( + True, + [ + {"is_visible": True, "attributes": 'rowspan="2"', "value": "i0"}, + {"is_visible": False, "attributes": "", "value": "i0"}, + ], + ), + ( + False, + [ + {"is_visible": True, "attributes": "", "value": "i0"}, + {"is_visible": True, "attributes": "", "value": "i0"}, + ], + ), + ], +) +def test_mi_styler_sparsify_index(mi_styler, sparse_index, exp_rows): + exp_l1_r0 = {"is_visible": True, "attributes": "", "display_value": "i1_a"} + exp_l1_r1 = {"is_visible": True, "attributes": "", "display_value": "i1_b"} + + ctx = mi_styler._translate(sparse_index, True) + + assert exp_rows[0].items() <= ctx["body"][0][0].items() + assert exp_rows[1].items() <= ctx["body"][1][0].items() + assert exp_l1_r0.items() <= ctx["body"][0][1].items() + assert exp_l1_r1.items() <= ctx["body"][1][1].items() + + +def test_mi_styler_sparsify_options(mi_styler): + with option_context("styler.sparse.index", False): + html1 = mi_styler.to_html() + with option_context("styler.sparse.index", True): + html2 = mi_styler.to_html() + + assert html1 != html2 + + with option_context("styler.sparse.columns", False): + html1 = mi_styler.to_html() + with option_context("styler.sparse.columns", True): + html2 = mi_styler.to_html() + + assert html1 != html2 + + +@pytest.mark.parametrize( + "rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn", + [ + (100, 100, 100, None, None, 12, 6), # reduce to (12, 6) < 100 elements + (1000, 3, 750, None, None, 250, 3), # dynamically reduce rows to 250, keep cols + (4, 1000, 500, None, None, 4, 125), # dynamically reduce cols to 125, keep rows + (1000, 3, 750, 10, None, 10, 3), # overwrite above dynamics with max_row + (4, 1000, 500, None, 5, 4, 5), # overwrite above dynamics with max_col + (100, 100, 700, 50, 50, 25, 25), # rows cols below given maxes so < 700 elmts + ], +) +def test_trimming_maximum(rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn): + rn, cn = _get_trimming_maximums( + rn, cn, max_els, max_rows, max_cols, scaling_factor=0.5 + ) + assert (rn, cn) == (exp_rn, exp_cn) + + +@pytest.mark.parametrize( + "option, val", + [ + ("styler.render.max_elements", 6), + ("styler.render.max_rows", 3), + ], +) +def test_render_trimming_rows(option, val): + # test auto and specific trimming of rows + df = DataFrame(np.arange(120).reshape(60, 2)) + with option_context(option, val): + ctx = df.style._translate(True, True) + assert len(ctx["head"][0]) == 3 # index + 2 data cols + assert len(ctx["body"]) == 4 # 3 data rows + trimming row + assert len(ctx["body"][0]) == 3 # index + 2 data cols + + +@pytest.mark.parametrize( + "option, val", + [ + ("styler.render.max_elements", 6), + ("styler.render.max_columns", 2), + ], +) +def test_render_trimming_cols(option, val): + # test auto and specific trimming of cols + df = DataFrame(np.arange(30).reshape(3, 10)) + with option_context(option, val): + ctx = df.style._translate(True, True) + assert len(ctx["head"][0]) == 4 # index + 2 data cols + trimming col + assert len(ctx["body"]) == 3 # 3 data rows + assert len(ctx["body"][0]) == 4 # index + 2 data cols + trimming col + + +def test_render_trimming_mi(): + midx = MultiIndex.from_product([[1, 2], [1, 2, 3]]) + df = DataFrame(np.arange(36).reshape(6, 6), columns=midx, index=midx) + with option_context("styler.render.max_elements", 4): + ctx = df.style._translate(True, True) + + assert len(ctx["body"][0]) == 5 # 2 indexes + 2 data cols + trimming row + assert {"attributes": 'rowspan="2"'}.items() <= ctx["body"][0][0].items() + assert {"class": "data row0 col_trim"}.items() <= ctx["body"][0][4].items() + assert {"class": "data row_trim col_trim"}.items() <= ctx["body"][2][4].items() + assert len(ctx["body"]) == 3 # 2 data rows + trimming row + + +def test_render_empty_mi(): + # GH 43305 + df = DataFrame(index=MultiIndex.from_product([["A"], [0, 1]], names=[None, "one"])) + expected = dedent( + """\ + > + + +   + one + + + """ + ) + assert expected in df.style.to_html() + + +@pytest.mark.parametrize("comprehensive", [True, False]) +@pytest.mark.parametrize("render", [True, False]) +@pytest.mark.parametrize("deepcopy", [True, False]) +def test_copy(comprehensive, render, deepcopy, mi_styler, mi_styler_comp): + styler = mi_styler_comp if comprehensive else mi_styler + styler.uuid_len = 5 + + s2 = copy.deepcopy(styler) if deepcopy else copy.copy(styler) # make copy and check + assert s2 is not styler + + if render: + styler.to_html() + + excl = [ + "cellstyle_map", # render time vars.. + "cellstyle_map_columns", + "cellstyle_map_index", + "template_latex", # render templates are class level + "template_html", + "template_html_style", + "template_html_table", + ] + if not deepcopy: # check memory locations are equal for all included attributes + for attr in [a for a in styler.__dict__ if (not callable(a) and a not in excl)]: + assert id(getattr(s2, attr)) == id(getattr(styler, attr)) + else: # check memory locations are different for nested or mutable vars + shallow = [ + "data", + "columns", + "index", + "uuid_len", + "uuid", + "caption", + "cell_ids", + "hide_index_", + "hide_columns_", + "hide_index_names", + "hide_column_names", + "table_attributes", + ] + for attr in shallow: + assert id(getattr(s2, attr)) == id(getattr(styler, attr)) + + for attr in [ + a + for a in styler.__dict__ + if (not callable(a) and a not in excl and a not in shallow) + ]: + if getattr(s2, attr) is None: + assert id(getattr(s2, attr)) == id(getattr(styler, attr)) + else: + assert id(getattr(s2, attr)) != id(getattr(styler, attr)) + + +@pytest.mark.parametrize("deepcopy", [True, False]) +def test_inherited_copy(mi_styler, deepcopy): + # Ensure that the inherited class is preserved when a Styler object is copied. + # GH 52728 + class CustomStyler(Styler): + pass + + custom_styler = CustomStyler(mi_styler.data) + custom_styler_copy = ( + copy.deepcopy(custom_styler) if deepcopy else copy.copy(custom_styler) + ) + assert isinstance(custom_styler_copy, CustomStyler) + + +def test_clear(mi_styler_comp): + # NOTE: if this test fails for new features then 'mi_styler_comp' should be updated + # to ensure proper testing of the 'copy', 'clear', 'export' methods with new feature + # GH 40675 + styler = mi_styler_comp + styler._compute() # execute applied methods + + clean_copy = Styler(styler.data, uuid=styler.uuid) + + excl = [ + "data", + "index", + "columns", + "uuid", + "uuid_len", # uuid is set to be the same on styler and clean_copy + "cell_ids", + "cellstyle_map", # execution time only + "cellstyle_map_columns", # execution time only + "cellstyle_map_index", # execution time only + "template_latex", # render templates are class level + "template_html", + "template_html_style", + "template_html_table", + ] + # tests vars are not same vals on obj and clean copy before clear (except for excl) + for attr in [a for a in styler.__dict__ if not (callable(a) or a in excl)]: + res = getattr(styler, attr) == getattr(clean_copy, attr) + if hasattr(res, "__iter__") and len(res) > 0: + assert not all(res) # some element in iterable differs + elif hasattr(res, "__iter__") and len(res) == 0: + pass # empty array + else: + assert not res # explicit var differs + + # test vars have same vales on obj and clean copy after clearing + styler.clear() + for attr in [a for a in styler.__dict__ if not callable(a)]: + res = getattr(styler, attr) == getattr(clean_copy, attr) + assert all(res) if hasattr(res, "__iter__") else res + + +def test_export(mi_styler_comp, mi_styler): + exp_attrs = [ + "_todo", + "hide_index_", + "hide_index_names", + "hide_columns_", + "hide_column_names", + "table_attributes", + "table_styles", + "css", + ] + for attr in exp_attrs: + check = getattr(mi_styler, attr) == getattr(mi_styler_comp, attr) + assert not ( + all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check + ) + + export = mi_styler_comp.export() + used = mi_styler.use(export) + for attr in exp_attrs: + check = getattr(used, attr) == getattr(mi_styler_comp, attr) + assert all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check + + used.to_html() + + +def test_hide_raises(mi_styler): + msg = "`subset` and `level` cannot be passed simultaneously" + with pytest.raises(ValueError, match=msg): + mi_styler.hide(axis="index", subset="something", level="something else") + + msg = "`level` must be of type `int`, `str` or list of such" + with pytest.raises(ValueError, match=msg): + mi_styler.hide(axis="index", level={"bad": 1, "type": 2}) + + +@pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) +def test_hide_index_level(mi_styler, level): + mi_styler.index.names, mi_styler.columns.names = ["zero", "one"], ["zero", "one"] + ctx = mi_styler.hide(axis="index", level=level)._translate(False, True) + assert len(ctx["head"][0]) == 3 + assert len(ctx["head"][1]) == 3 + assert len(ctx["head"][2]) == 4 + assert ctx["head"][2][0]["is_visible"] + assert not ctx["head"][2][1]["is_visible"] + + assert ctx["body"][0][0]["is_visible"] + assert not ctx["body"][0][1]["is_visible"] + assert ctx["body"][1][0]["is_visible"] + assert not ctx["body"][1][1]["is_visible"] + + +@pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) +@pytest.mark.parametrize("names", [True, False]) +def test_hide_columns_level(mi_styler, level, names): + mi_styler.columns.names = ["zero", "one"] + if names: + mi_styler.index.names = ["zero", "one"] + ctx = mi_styler.hide(axis="columns", level=level)._translate(True, False) + assert len(ctx["head"]) == (2 if names else 1) + + +@pytest.mark.parametrize("method", ["map", "apply"]) +@pytest.mark.parametrize("axis", ["index", "columns"]) +def test_apply_map_header(method, axis): + # GH 41893 + df = DataFrame({"A": [0, 0], "B": [1, 1]}, index=["C", "D"]) + func = { + "apply": lambda s: ["attr: val" if ("A" in v or "C" in v) else "" for v in s], + "map": lambda v: "attr: val" if ("A" in v or "C" in v) else "", + } + + # test execution added to todo + result = getattr(df.style, f"{method}_index")(func[method], axis=axis) + assert len(result._todo) == 1 + assert len(getattr(result, f"ctx_{axis}")) == 0 + + # test ctx object on compute + result._compute() + expected = { + (0, 0): [("attr", "val")], + } + assert getattr(result, f"ctx_{axis}") == expected + + +@pytest.mark.parametrize("method", ["apply", "map"]) +@pytest.mark.parametrize("axis", ["index", "columns"]) +def test_apply_map_header_mi(mi_styler, method, axis): + # GH 41893 + func = { + "apply": lambda s: ["attr: val;" if "b" in v else "" for v in s], + "map": lambda v: "attr: val" if "b" in v else "", + } + result = getattr(mi_styler, f"{method}_index")(func[method], axis=axis)._compute() + expected = {(1, 1): [("attr", "val")]} + assert getattr(result, f"ctx_{axis}") == expected + + +def test_apply_map_header_raises(mi_styler): + # GH 41893 + with pytest.raises(ValueError, match="No axis named bad for object type DataFrame"): + mi_styler.map_index(lambda v: "attr: val;", axis="bad")._compute() + + +class TestStyler: + def test_init_non_pandas(self): + msg = "``data`` must be a Series or DataFrame" + with pytest.raises(TypeError, match=msg): + Styler([1, 2, 3]) + + def test_init_series(self): + result = Styler(Series([1, 2])) + assert result.data.ndim == 2 + + def test_repr_html_ok(self, styler): + styler._repr_html_() + + def test_repr_html_mathjax(self, styler): + # gh-19824 / 41395 + assert "tex2jax_ignore" not in styler._repr_html_() + + with option_context("styler.html.mathjax", False): + assert "tex2jax_ignore" in styler._repr_html_() + + def test_update_ctx(self, styler): + styler._update_ctx(DataFrame({"A": ["color: red", "color: blue"]})) + expected = {(0, 0): [("color", "red")], (1, 0): [("color", "blue")]} + assert styler.ctx == expected + + def test_update_ctx_flatten_multi_and_trailing_semi(self, styler): + attrs = DataFrame({"A": ["color: red; foo: bar", "color:blue ; foo: baz;"]}) + styler._update_ctx(attrs) + expected = { + (0, 0): [("color", "red"), ("foo", "bar")], + (1, 0): [("color", "blue"), ("foo", "baz")], + } + assert styler.ctx == expected + + def test_render(self): + df = DataFrame({"A": [0, 1]}) + style = lambda x: Series(["color: red", "color: blue"], name=x.name) + s = Styler(df, uuid="AB").apply(style) + s.to_html() + # it worked? + + def test_multiple_render(self, df): + # GH 39396 + s = Styler(df, uuid_len=0).map(lambda x: "color: red;", subset=["A"]) + s.to_html() # do 2 renders to ensure css styles not duplicated + assert ( + '" in s.to_html() + ) + + def test_render_empty_dfs(self): + empty_df = DataFrame() + es = Styler(empty_df) + es.to_html() + # An index but no columns + DataFrame(columns=["a"]).style.to_html() + # A column but no index + DataFrame(index=["a"]).style.to_html() + # No IndexError raised? + + def test_render_double(self): + df = DataFrame({"A": [0, 1]}) + style = lambda x: Series( + ["color: red; border: 1px", "color: blue; border: 2px"], name=x.name + ) + s = Styler(df, uuid="AB").apply(style) + s.to_html() + # it worked? + + def test_set_properties(self): + df = DataFrame({"A": [0, 1]}) + result = df.style.set_properties(color="white", size="10px")._compute().ctx + # order is deterministic + v = [("color", "white"), ("size", "10px")] + expected = {(0, 0): v, (1, 0): v} + assert result.keys() == expected.keys() + for v1, v2 in zip(result.values(), expected.values()): + assert sorted(v1) == sorted(v2) + + def test_set_properties_subset(self): + df = DataFrame({"A": [0, 1]}) + result = ( + df.style.set_properties(subset=IndexSlice[0, "A"], color="white") + ._compute() + .ctx + ) + expected = {(0, 0): [("color", "white")]} + assert result == expected + + def test_empty_index_name_doesnt_display(self, blank_value): + # https://github.com/pandas-dev/pandas/pull/12090#issuecomment-180695902 + df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) + result = df.style._translate(True, True) + assert len(result["head"]) == 1 + expected = { + "class": "blank level0", + "type": "th", + "value": blank_value, + "is_visible": True, + "display_value": blank_value, + } + assert expected.items() <= result["head"][0][0].items() + + def test_index_name(self): + # https://github.com/pandas-dev/pandas/issues/11655 + df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) + result = df.set_index("A").style._translate(True, True) + expected = { + "class": "index_name level0", + "type": "th", + "value": "A", + "is_visible": True, + "display_value": "A", + } + assert expected.items() <= result["head"][1][0].items() + + def test_numeric_columns(self): + # https://github.com/pandas-dev/pandas/issues/12125 + # smoke test for _translate + df = DataFrame({0: [1, 2, 3]}) + df.style._translate(True, True) + + def test_apply_axis(self): + df = DataFrame({"A": [0, 0], "B": [1, 1]}) + f = lambda x: [f"val: {x.max()}" for v in x] + result = df.style.apply(f, axis=1) + assert len(result._todo) == 1 + assert len(result.ctx) == 0 + result._compute() + expected = { + (0, 0): [("val", "1")], + (0, 1): [("val", "1")], + (1, 0): [("val", "1")], + (1, 1): [("val", "1")], + } + assert result.ctx == expected + + result = df.style.apply(f, axis=0) + expected = { + (0, 0): [("val", "0")], + (0, 1): [("val", "1")], + (1, 0): [("val", "0")], + (1, 1): [("val", "1")], + } + result._compute() + assert result.ctx == expected + result = df.style.apply(f) # default + result._compute() + assert result.ctx == expected + + @pytest.mark.parametrize("axis", [0, 1]) + def test_apply_series_return(self, axis): + # GH 42014 + df = DataFrame([[1, 2], [3, 4]], index=["X", "Y"], columns=["X", "Y"]) + + # test Series return where len(Series) < df.index or df.columns but labels OK + func = lambda s: Series(["color: red;"], index=["Y"]) + result = df.style.apply(func, axis=axis)._compute().ctx + assert result[(1, 1)] == [("color", "red")] + assert result[(1 - axis, axis)] == [("color", "red")] + + # test Series return where labels align but different order + func = lambda s: Series(["color: red;", "color: blue;"], index=["Y", "X"]) + result = df.style.apply(func, axis=axis)._compute().ctx + assert result[(0, 0)] == [("color", "blue")] + assert result[(1, 1)] == [("color", "red")] + assert result[(1 - axis, axis)] == [("color", "red")] + assert result[(axis, 1 - axis)] == [("color", "blue")] + + @pytest.mark.parametrize("index", [False, True]) + @pytest.mark.parametrize("columns", [False, True]) + def test_apply_dataframe_return(self, index, columns): + # GH 42014 + df = DataFrame([[1, 2], [3, 4]], index=["X", "Y"], columns=["X", "Y"]) + idxs = ["X", "Y"] if index else ["Y"] + cols = ["X", "Y"] if columns else ["Y"] + df_styles = DataFrame("color: red;", index=idxs, columns=cols) + result = df.style.apply(lambda x: df_styles, axis=None)._compute().ctx + + assert result[(1, 1)] == [("color", "red")] # (Y,Y) styles always present + assert (result[(0, 1)] == [("color", "red")]) is index # (X,Y) only if index + assert (result[(1, 0)] == [("color", "red")]) is columns # (Y,X) only if cols + assert (result[(0, 0)] == [("color", "red")]) is (index and columns) # (X,X) + + @pytest.mark.parametrize( + "slice_", + [ + IndexSlice[:], + IndexSlice[:, ["A"]], + IndexSlice[[1], :], + IndexSlice[[1], ["A"]], + IndexSlice[:2, ["A", "B"]], + ], + ) + @pytest.mark.parametrize("axis", [0, 1]) + def test_apply_subset(self, slice_, axis, df): + def h(x, color="bar"): + return Series(f"color: {color}", index=x.index, name=x.name) + + result = df.style.apply(h, axis=axis, subset=slice_, color="baz")._compute().ctx + expected = { + (r, c): [("color", "baz")] + for r, row in enumerate(df.index) + for c, col in enumerate(df.columns) + if row in df.loc[slice_].index and col in df.loc[slice_].columns + } + assert result == expected + + @pytest.mark.parametrize( + "slice_", + [ + IndexSlice[:], + IndexSlice[:, ["A"]], + IndexSlice[[1], :], + IndexSlice[[1], ["A"]], + IndexSlice[:2, ["A", "B"]], + ], + ) + def test_map_subset(self, slice_, df): + result = df.style.map(lambda x: "color:baz;", subset=slice_)._compute().ctx + expected = { + (r, c): [("color", "baz")] + for r, row in enumerate(df.index) + for c, col in enumerate(df.columns) + if row in df.loc[slice_].index and col in df.loc[slice_].columns + } + assert result == expected + + @pytest.mark.parametrize( + "slice_", + [ + IndexSlice[:, IndexSlice["x", "A"]], + IndexSlice[:, IndexSlice[:, "A"]], + IndexSlice[:, IndexSlice[:, ["A", "C"]]], # missing col element + IndexSlice[IndexSlice["a", 1], :], + IndexSlice[IndexSlice[:, 1], :], + IndexSlice[IndexSlice[:, [1, 3]], :], # missing row element + IndexSlice[:, ("x", "A")], + IndexSlice[("a", 1), :], + ], + ) + def test_map_subset_multiindex(self, slice_): + # GH 19861 + # edited for GH 33562 + if ( + isinstance(slice_[-1], tuple) + and isinstance(slice_[-1][-1], list) + and "C" in slice_[-1][-1] + ): + ctx = pytest.raises(KeyError, match="C") + elif ( + isinstance(slice_[0], tuple) + and isinstance(slice_[0][1], list) + and 3 in slice_[0][1] + ): + ctx = pytest.raises(KeyError, match="3") + else: + ctx = contextlib.nullcontext() + + idx = MultiIndex.from_product([["a", "b"], [1, 2]]) + col = MultiIndex.from_product([["x", "y"], ["A", "B"]]) + df = DataFrame(np.random.default_rng(2).random((4, 4)), columns=col, index=idx) + + with ctx: + df.style.map(lambda x: "color: red;", subset=slice_).to_html() + + def test_map_subset_multiindex_code(self): + # https://github.com/pandas-dev/pandas/issues/25858 + # Checks styler.map works with multindex when codes are provided + codes = np.array([[0, 0, 1, 1], [0, 1, 0, 1]]) + columns = MultiIndex( + levels=[["a", "b"], ["%", "#"]], codes=codes, names=["", ""] + ) + df = DataFrame( + [[1, -1, 1, 1], [-1, 1, 1, 1]], index=["hello", "world"], columns=columns + ) + pct_subset = IndexSlice[:, IndexSlice[:, "%":"%"]] + + def color_negative_red(val): + color = "red" if val < 0 else "black" + return f"color: {color}" + + df.loc[pct_subset] + df.style.map(color_negative_red, subset=pct_subset) + + @pytest.mark.parametrize( + "stylefunc", ["background_gradient", "bar", "text_gradient"] + ) + def test_subset_for_boolean_cols(self, stylefunc): + # GH47838 + df = DataFrame( + [ + [1, 2], + [3, 4], + ], + columns=[False, True], + ) + styled = getattr(df.style, stylefunc)() + styled._compute() + assert set(styled.ctx) == {(0, 0), (0, 1), (1, 0), (1, 1)} + + def test_empty(self): + df = DataFrame({"A": [1, 0]}) + s = df.style + s.ctx = {(0, 0): [("color", "red")], (1, 0): [("", "")]} + + result = s._translate(True, True)["cellstyle"] + expected = [ + {"props": [("color", "red")], "selectors": ["row0_col0"]}, + {"props": [("", "")], "selectors": ["row1_col0"]}, + ] + assert result == expected + + def test_duplicate(self): + df = DataFrame({"A": [1, 0]}) + s = df.style + s.ctx = {(0, 0): [("color", "red")], (1, 0): [("color", "red")]} + + result = s._translate(True, True)["cellstyle"] + expected = [ + {"props": [("color", "red")], "selectors": ["row0_col0", "row1_col0"]} + ] + assert result == expected + + def test_init_with_na_rep(self): + # GH 21527 28358 + df = DataFrame([[None, None], [1.1, 1.2]], columns=["A", "B"]) + + ctx = Styler(df, na_rep="NA")._translate(True, True) + assert ctx["body"][0][1]["display_value"] == "NA" + assert ctx["body"][0][2]["display_value"] == "NA" + + def test_caption(self, df): + styler = Styler(df, caption="foo") + result = styler.to_html() + assert all(["caption" in result, "foo" in result]) + + styler = df.style + result = styler.set_caption("baz") + assert styler is result + assert styler.caption == "baz" + + def test_uuid(self, df): + styler = Styler(df, uuid="abc123") + result = styler.to_html() + assert "abc123" in result + + styler = df.style + result = styler.set_uuid("aaa") + assert result is styler + assert result.uuid == "aaa" + + def test_unique_id(self): + # See https://github.com/pandas-dev/pandas/issues/16780 + df = DataFrame({"a": [1, 3, 5, 6], "b": [2, 4, 12, 21]}) + result = df.style.to_html(uuid="test") + assert "test" in result + ids = re.findall('id="(.*?)"', result) + assert np.unique(ids).size == len(ids) + + def test_table_styles(self, df): + style = [{"selector": "th", "props": [("foo", "bar")]}] # default format + styler = Styler(df, table_styles=style) + result = " ".join(styler.to_html().split()) + assert "th { foo: bar; }" in result + + styler = df.style + result = styler.set_table_styles(style) + assert styler is result + assert styler.table_styles == style + + # GH 39563 + style = [{"selector": "th", "props": "foo:bar;"}] # css string format + styler = df.style.set_table_styles(style) + result = " ".join(styler.to_html().split()) + assert "th { foo: bar; }" in result + + def test_table_styles_multiple(self, df): + ctx = df.style.set_table_styles( + [ + {"selector": "th,td", "props": "color:red;"}, + {"selector": "tr", "props": "color:green;"}, + ] + )._translate(True, True)["table_styles"] + assert ctx == [ + {"selector": "th", "props": [("color", "red")]}, + {"selector": "td", "props": [("color", "red")]}, + {"selector": "tr", "props": [("color", "green")]}, + ] + + def test_table_styles_dict_multiple_selectors(self, df): + # GH 44011 + result = df.style.set_table_styles( + { + "B": [ + {"selector": "th,td", "props": [("border-left", "2px solid black")]} + ] + } + )._translate(True, True)["table_styles"] + + expected = [ + {"selector": "th.col1", "props": [("border-left", "2px solid black")]}, + {"selector": "td.col1", "props": [("border-left", "2px solid black")]}, + ] + + assert result == expected + + def test_maybe_convert_css_to_tuples(self): + expected = [("a", "b"), ("c", "d e")] + assert maybe_convert_css_to_tuples("a:b;c:d e;") == expected + assert maybe_convert_css_to_tuples("a: b ;c: d e ") == expected + expected = [] + assert maybe_convert_css_to_tuples("") == expected + + def test_maybe_convert_css_to_tuples_err(self): + msg = "Styles supplied as string must follow CSS rule formats" + with pytest.raises(ValueError, match=msg): + maybe_convert_css_to_tuples("err") + + def test_table_attributes(self, df): + attributes = 'class="foo" data-bar' + styler = Styler(df, table_attributes=attributes) + result = styler.to_html() + assert 'class="foo" data-bar' in result + + result = df.style.set_table_attributes(attributes).to_html() + assert 'class="foo" data-bar' in result + + def test_apply_none(self): + def f(x): + return DataFrame( + np.where(x == x.max(), "color: red", ""), + index=x.index, + columns=x.columns, + ) + + result = DataFrame([[1, 2], [3, 4]]).style.apply(f, axis=None)._compute().ctx + assert result[(1, 1)] == [("color", "red")] + + def test_trim(self, df): + result = df.style.to_html() # trim=True + assert result.count("#") == 0 + + result = df.style.highlight_max().to_html() + assert result.count("#") == len(df.columns) + + def test_export(self, df, styler): + f = lambda x: "color: red" if x > 0 else "color: blue" + g = lambda x, z: f"color: {z}" if x > 0 else f"color: {z}" + style1 = styler + style1.map(f).map(g, z="b").highlight_max()._compute() # = render + result = style1.export() + style2 = df.style + style2.use(result) + assert style1._todo == style2._todo + style2.to_html() + + def test_bad_apply_shape(self): + df = DataFrame([[1, 2], [3, 4]], index=["A", "B"], columns=["X", "Y"]) + + msg = "resulted in the apply method collapsing to a Series." + with pytest.raises(ValueError, match=msg): + df.style._apply(lambda x: "x") + + msg = "created invalid {} labels" + with pytest.raises(ValueError, match=msg.format("index")): + df.style._apply(lambda x: [""]) + + with pytest.raises(ValueError, match=msg.format("index")): + df.style._apply(lambda x: ["", "", "", ""]) + + with pytest.raises(ValueError, match=msg.format("index")): + df.style._apply(lambda x: Series(["a:v;", ""], index=["A", "C"]), axis=0) + + with pytest.raises(ValueError, match=msg.format("columns")): + df.style._apply(lambda x: ["", "", ""], axis=1) + + with pytest.raises(ValueError, match=msg.format("columns")): + df.style._apply(lambda x: Series(["a:v;", ""], index=["X", "Z"]), axis=1) + + msg = "returned ndarray with wrong shape" + with pytest.raises(ValueError, match=msg): + df.style._apply(lambda x: np.array([[""], [""]]), axis=None) + + def test_apply_bad_return(self): + def f(x): + return "" + + df = DataFrame([[1, 2], [3, 4]]) + msg = ( + "must return a DataFrame or ndarray when passed to `Styler.apply` " + "with axis=None" + ) + with pytest.raises(TypeError, match=msg): + df.style._apply(f, axis=None) + + @pytest.mark.parametrize("axis", ["index", "columns"]) + def test_apply_bad_labels(self, axis): + def f(x): + return DataFrame(**{axis: ["bad", "labels"]}) + + df = DataFrame([[1, 2], [3, 4]]) + msg = f"created invalid {axis} labels." + with pytest.raises(ValueError, match=msg): + df.style._apply(f, axis=None) + + def test_get_level_lengths(self): + index = MultiIndex.from_product([["a", "b"], [0, 1, 2]]) + expected = { + (0, 0): 3, + (0, 3): 3, + (1, 0): 1, + (1, 1): 1, + (1, 2): 1, + (1, 3): 1, + (1, 4): 1, + (1, 5): 1, + } + result = _get_level_lengths(index, sparsify=True, max_index=100) + tm.assert_dict_equal(result, expected) + + expected = { + (0, 0): 1, + (0, 1): 1, + (0, 2): 1, + (0, 3): 1, + (0, 4): 1, + (0, 5): 1, + (1, 0): 1, + (1, 1): 1, + (1, 2): 1, + (1, 3): 1, + (1, 4): 1, + (1, 5): 1, + } + result = _get_level_lengths(index, sparsify=False, max_index=100) + tm.assert_dict_equal(result, expected) + + def test_get_level_lengths_un_sorted(self): + index = MultiIndex.from_arrays([[1, 1, 2, 1], ["a", "b", "b", "d"]]) + expected = { + (0, 0): 2, + (0, 2): 1, + (0, 3): 1, + (1, 0): 1, + (1, 1): 1, + (1, 2): 1, + (1, 3): 1, + } + result = _get_level_lengths(index, sparsify=True, max_index=100) + tm.assert_dict_equal(result, expected) + + expected = { + (0, 0): 1, + (0, 1): 1, + (0, 2): 1, + (0, 3): 1, + (1, 0): 1, + (1, 1): 1, + (1, 2): 1, + (1, 3): 1, + } + result = _get_level_lengths(index, sparsify=False, max_index=100) + tm.assert_dict_equal(result, expected) + + def test_mi_sparse_index_names(self, blank_value): + # Test the class names and displayed value are correct on rendering MI names + df = DataFrame( + {"A": [1, 2]}, + index=MultiIndex.from_arrays( + [["a", "a"], [0, 1]], names=["idx_level_0", "idx_level_1"] + ), + ) + result = df.style._translate(True, True) + head = result["head"][1] + expected = [ + { + "class": "index_name level0", + "display_value": "idx_level_0", + "is_visible": True, + }, + { + "class": "index_name level1", + "display_value": "idx_level_1", + "is_visible": True, + }, + { + "class": "blank col0", + "display_value": blank_value, + "is_visible": True, + }, + ] + for i, expected_dict in enumerate(expected): + assert expected_dict.items() <= head[i].items() + + def test_mi_sparse_column_names(self, blank_value): + df = DataFrame( + np.arange(16).reshape(4, 4), + index=MultiIndex.from_arrays( + [["a", "a", "b", "a"], [0, 1, 1, 2]], + names=["idx_level_0", "idx_level_1"], + ), + columns=MultiIndex.from_arrays( + [["C1", "C1", "C2", "C2"], [1, 0, 1, 0]], names=["colnam_0", "colnam_1"] + ), + ) + result = Styler(df, cell_ids=False)._translate(True, True) + + for level in [0, 1]: + head = result["head"][level] + expected = [ + { + "class": "blank", + "display_value": blank_value, + "is_visible": True, + }, + { + "class": f"index_name level{level}", + "display_value": f"colnam_{level}", + "is_visible": True, + }, + ] + for i, expected_dict in enumerate(expected): + assert expected_dict.items() <= head[i].items() + + def test_hide_column_headers(self, df, styler): + ctx = styler.hide(axis="columns")._translate(True, True) + assert len(ctx["head"]) == 0 # no header entries with an unnamed index + + df.index.name = "some_name" + ctx = df.style.hide(axis="columns")._translate(True, True) + assert len(ctx["head"]) == 1 + # index names still visible, changed in #42101, reverted in 43404 + + def test_hide_single_index(self, df): + # GH 14194 + # single unnamed index + ctx = df.style._translate(True, True) + assert ctx["body"][0][0]["is_visible"] + assert ctx["head"][0][0]["is_visible"] + ctx2 = df.style.hide(axis="index")._translate(True, True) + assert not ctx2["body"][0][0]["is_visible"] + assert not ctx2["head"][0][0]["is_visible"] + + # single named index + ctx3 = df.set_index("A").style._translate(True, True) + assert ctx3["body"][0][0]["is_visible"] + assert len(ctx3["head"]) == 2 # 2 header levels + assert ctx3["head"][0][0]["is_visible"] + + ctx4 = df.set_index("A").style.hide(axis="index")._translate(True, True) + assert not ctx4["body"][0][0]["is_visible"] + assert len(ctx4["head"]) == 1 # only 1 header levels + assert not ctx4["head"][0][0]["is_visible"] + + def test_hide_multiindex(self): + # GH 14194 + df = DataFrame( + {"A": [1, 2], "B": [1, 2]}, + index=MultiIndex.from_arrays( + [["a", "a"], [0, 1]], names=["idx_level_0", "idx_level_1"] + ), + ) + ctx1 = df.style._translate(True, True) + # tests for 'a' and '0' + assert ctx1["body"][0][0]["is_visible"] + assert ctx1["body"][0][1]["is_visible"] + # check for blank header rows + assert len(ctx1["head"][0]) == 4 # two visible indexes and two data columns + + ctx2 = df.style.hide(axis="index")._translate(True, True) + # tests for 'a' and '0' + assert not ctx2["body"][0][0]["is_visible"] + assert not ctx2["body"][0][1]["is_visible"] + # check for blank header rows + assert len(ctx2["head"][0]) == 3 # one hidden (col name) and two data columns + assert not ctx2["head"][0][0]["is_visible"] + + def test_hide_columns_single_level(self, df): + # GH 14194 + # test hiding single column + ctx = df.style._translate(True, True) + assert ctx["head"][0][1]["is_visible"] + assert ctx["head"][0][1]["display_value"] == "A" + assert ctx["head"][0][2]["is_visible"] + assert ctx["head"][0][2]["display_value"] == "B" + assert ctx["body"][0][1]["is_visible"] # col A, row 1 + assert ctx["body"][1][2]["is_visible"] # col B, row 1 + + ctx = df.style.hide("A", axis="columns")._translate(True, True) + assert not ctx["head"][0][1]["is_visible"] + assert not ctx["body"][0][1]["is_visible"] # col A, row 1 + assert ctx["body"][1][2]["is_visible"] # col B, row 1 + + # test hiding multiple columns + ctx = df.style.hide(["A", "B"], axis="columns")._translate(True, True) + assert not ctx["head"][0][1]["is_visible"] + assert not ctx["head"][0][2]["is_visible"] + assert not ctx["body"][0][1]["is_visible"] # col A, row 1 + assert not ctx["body"][1][2]["is_visible"] # col B, row 1 + + def test_hide_columns_index_mult_levels(self): + # GH 14194 + # setup dataframe with multiple column levels and indices + i1 = MultiIndex.from_arrays( + [["a", "a"], [0, 1]], names=["idx_level_0", "idx_level_1"] + ) + i2 = MultiIndex.from_arrays( + [["b", "b"], [0, 1]], names=["col_level_0", "col_level_1"] + ) + df = DataFrame([[1, 2], [3, 4]], index=i1, columns=i2) + ctx = df.style._translate(True, True) + # column headers + assert ctx["head"][0][2]["is_visible"] + assert ctx["head"][1][2]["is_visible"] + assert ctx["head"][1][3]["display_value"] == "1" + # indices + assert ctx["body"][0][0]["is_visible"] + # data + assert ctx["body"][1][2]["is_visible"] + assert ctx["body"][1][2]["display_value"] == "3" + assert ctx["body"][1][3]["is_visible"] + assert ctx["body"][1][3]["display_value"] == "4" + + # hide top column level, which hides both columns + ctx = df.style.hide("b", axis="columns")._translate(True, True) + assert not ctx["head"][0][2]["is_visible"] # b + assert not ctx["head"][1][2]["is_visible"] # 0 + assert not ctx["body"][1][2]["is_visible"] # 3 + assert ctx["body"][0][0]["is_visible"] # index + + # hide first column only + ctx = df.style.hide([("b", 0)], axis="columns")._translate(True, True) + assert not ctx["head"][0][2]["is_visible"] # b + assert ctx["head"][0][3]["is_visible"] # b + assert not ctx["head"][1][2]["is_visible"] # 0 + assert not ctx["body"][1][2]["is_visible"] # 3 + assert ctx["body"][1][3]["is_visible"] + assert ctx["body"][1][3]["display_value"] == "4" + + # hide second column and index + ctx = df.style.hide([("b", 1)], axis=1).hide(axis=0)._translate(True, True) + assert not ctx["body"][0][0]["is_visible"] # index + assert len(ctx["head"][0]) == 3 + assert ctx["head"][0][1]["is_visible"] # b + assert ctx["head"][1][1]["is_visible"] # 0 + assert not ctx["head"][1][2]["is_visible"] # 1 + assert not ctx["body"][1][3]["is_visible"] # 4 + assert ctx["body"][1][2]["is_visible"] + assert ctx["body"][1][2]["display_value"] == "3" + + # hide top row level, which hides both rows so body empty + ctx = df.style.hide("a", axis="index")._translate(True, True) + assert ctx["body"] == [] + + # hide first row only + ctx = df.style.hide(("a", 0), axis="index")._translate(True, True) + for i in [0, 1, 2, 3]: + assert "row1" in ctx["body"][0][i]["class"] # row0 not included in body + assert ctx["body"][0][i]["is_visible"] + + def test_pipe(self, df): + def set_caption_from_template(styler, a, b): + return styler.set_caption(f"Dataframe with a = {a} and b = {b}") + + styler = df.style.pipe(set_caption_from_template, "A", b="B") + assert "Dataframe with a = A and b = B" in styler.to_html() + + # Test with an argument that is a (callable, keyword_name) pair. + def f(a, b, styler): + return (a, b, styler) + + styler = df.style + result = styler.pipe((f, "styler"), a=1, b=2) + assert result == (1, 2, styler) + + def test_no_cell_ids(self): + # GH 35588 + # GH 35663 + df = DataFrame(data=[[0]]) + styler = Styler(df, uuid="_", cell_ids=False) + styler.to_html() + s = styler.to_html() # render twice to ensure ctx is not updated + assert s.find('') != -1 + + @pytest.mark.parametrize( + "classes", + [ + DataFrame( + data=[["", "test-class"], [np.nan, None]], + columns=["A", "B"], + index=["a", "b"], + ), + DataFrame(data=[["test-class"]], columns=["B"], index=["a"]), + DataFrame(data=[["test-class", "unused"]], columns=["B", "C"], index=["a"]), + ], + ) + def test_set_data_classes(self, classes): + # GH 36159 + df = DataFrame(data=[[0, 1], [2, 3]], columns=["A", "B"], index=["a", "b"]) + s = Styler(df, uuid_len=0, cell_ids=False).set_td_classes(classes).to_html() + assert '0' in s + assert '1' in s + assert '2' in s + assert '3' in s + # GH 39317 + s = Styler(df, uuid_len=0, cell_ids=True).set_td_classes(classes).to_html() + assert '0' in s + assert '1' in s + assert '2' in s + assert '3' in s + + def test_set_data_classes_reindex(self): + # GH 39317 + df = DataFrame( + data=[[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=[0, 1, 2], index=[0, 1, 2] + ) + classes = DataFrame( + data=[["mi", "ma"], ["mu", "mo"]], + columns=[0, 2], + index=[0, 2], + ) + s = Styler(df, uuid_len=0).set_td_classes(classes).to_html() + assert '0' in s + assert '2' in s + assert '4' in s + assert '6' in s + assert '8' in s + + def test_chaining_table_styles(self): + # GH 35607 + df = DataFrame(data=[[0, 1], [1, 2]], columns=["A", "B"]) + styler = df.style.set_table_styles( + [{"selector": "", "props": [("background-color", "yellow")]}] + ).set_table_styles( + [{"selector": ".col0", "props": [("background-color", "blue")]}], + overwrite=False, + ) + assert len(styler.table_styles) == 2 + + def test_column_and_row_styling(self): + # GH 35607 + df = DataFrame(data=[[0, 1], [1, 2]], columns=["A", "B"]) + s = Styler(df, uuid_len=0) + s = s.set_table_styles({"A": [{"selector": "", "props": [("color", "blue")]}]}) + assert "#T_ .col0 {\n color: blue;\n}" in s.to_html() + s = s.set_table_styles( + {0: [{"selector": "", "props": [("color", "blue")]}]}, axis=1 + ) + assert "#T_ .row0 {\n color: blue;\n}" in s.to_html() + + @pytest.mark.parametrize("len_", [1, 5, 32, 33, 100]) + def test_uuid_len(self, len_): + # GH 36345 + df = DataFrame(data=[["A"]]) + s = Styler(df, uuid_len=len_, cell_ids=False).to_html() + strt = s.find('id="T_') + end = s[strt + 6 :].find('"') + if len_ > 32: + assert end == 32 + else: + assert end == len_ + + @pytest.mark.parametrize("len_", [-2, "bad", None]) + def test_uuid_len_raises(self, len_): + # GH 36345 + df = DataFrame(data=[["A"]]) + msg = "``uuid_len`` must be an integer in range \\[0, 32\\]." + with pytest.raises(TypeError, match=msg): + Styler(df, uuid_len=len_, cell_ids=False).to_html() + + @pytest.mark.parametrize( + "slc", + [ + IndexSlice[:, :], + IndexSlice[:, 1], + IndexSlice[1, :], + IndexSlice[[1], [1]], + IndexSlice[1, [1]], + IndexSlice[[1], 1], + IndexSlice[1], + IndexSlice[1, 1], + slice(None, None, None), + [0, 1], + np.array([0, 1]), + Series([0, 1]), + ], + ) + def test_non_reducing_slice(self, slc): + df = DataFrame([[0, 1], [2, 3]]) + + tslice_ = non_reducing_slice(slc) + assert isinstance(df.loc[tslice_], DataFrame) + + @pytest.mark.parametrize("box", [list, Series, np.array]) + def test_list_slice(self, box): + # like dataframe getitem + subset = box(["A"]) + + df = DataFrame({"A": [1, 2], "B": [3, 4]}, index=["A", "B"]) + expected = IndexSlice[:, ["A"]] + + result = non_reducing_slice(subset) + tm.assert_frame_equal(df.loc[result], df.loc[expected]) + + def test_non_reducing_slice_on_multiindex(self): + # GH 19861 + dic = { + ("a", "d"): [1, 4], + ("a", "c"): [2, 3], + ("b", "c"): [3, 2], + ("b", "d"): [4, 1], + } + df = DataFrame(dic, index=[0, 1]) + idx = IndexSlice + slice_ = idx[:, idx["b", "d"]] + tslice_ = non_reducing_slice(slice_) + + result = df.loc[tslice_] + expected = DataFrame({("b", "d"): [4, 1]}) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "slice_", + [ + IndexSlice[:, :], + # check cols + IndexSlice[:, IndexSlice[["a"]]], # inferred deeper need list + IndexSlice[:, IndexSlice[["a"], ["c"]]], # inferred deeper need list + IndexSlice[:, IndexSlice["a", "c", :]], + IndexSlice[:, IndexSlice["a", :, "e"]], + IndexSlice[:, IndexSlice[:, "c", "e"]], + IndexSlice[:, IndexSlice["a", ["c", "d"], :]], # check list + IndexSlice[:, IndexSlice["a", ["c", "d", "-"], :]], # don't allow missing + IndexSlice[:, IndexSlice["a", ["c", "d", "-"], "e"]], # no slice + # check rows + IndexSlice[IndexSlice[["U"]], :], # inferred deeper need list + IndexSlice[IndexSlice[["U"], ["W"]], :], # inferred deeper need list + IndexSlice[IndexSlice["U", "W", :], :], + IndexSlice[IndexSlice["U", :, "Y"], :], + IndexSlice[IndexSlice[:, "W", "Y"], :], + IndexSlice[IndexSlice[:, "W", ["Y", "Z"]], :], # check list + IndexSlice[IndexSlice[:, "W", ["Y", "Z", "-"]], :], # don't allow missing + IndexSlice[IndexSlice["U", "W", ["Y", "Z", "-"]], :], # no slice + # check simultaneous + IndexSlice[IndexSlice[:, "W", "Y"], IndexSlice["a", "c", :]], + ], + ) + def test_non_reducing_multi_slice_on_multiindex(self, slice_): + # GH 33562 + cols = MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]) + idxs = MultiIndex.from_product([["U", "V"], ["W", "X"], ["Y", "Z"]]) + df = DataFrame(np.arange(64).reshape(8, 8), columns=cols, index=idxs) + + for lvl in [0, 1]: + key = slice_[lvl] + if isinstance(key, tuple): + for subkey in key: + if isinstance(subkey, list) and "-" in subkey: + # not present in the index level, raises KeyError since 2.0 + with pytest.raises(KeyError, match="-"): + df.loc[slice_] + return + + expected = df.loc[slice_] + result = df.loc[non_reducing_slice(slice_)] + tm.assert_frame_equal(result, expected) + + +def test_hidden_index_names(mi_df): + mi_df.index.names = ["Lev0", "Lev1"] + mi_styler = mi_df.style + ctx = mi_styler._translate(True, True) + assert len(ctx["head"]) == 3 # 2 column index levels + 1 index names row + + mi_styler.hide(axis="index", names=True) + ctx = mi_styler._translate(True, True) + assert len(ctx["head"]) == 2 # index names row is unparsed + for i in range(4): + assert ctx["body"][0][i]["is_visible"] # 2 index levels + 2 data values visible + + mi_styler.hide(axis="index", level=1) + ctx = mi_styler._translate(True, True) + assert len(ctx["head"]) == 2 # index names row is still hidden + assert ctx["body"][0][0]["is_visible"] is True + assert ctx["body"][0][1]["is_visible"] is False + + +def test_hidden_column_names(mi_df): + mi_df.columns.names = ["Lev0", "Lev1"] + mi_styler = mi_df.style + ctx = mi_styler._translate(True, True) + assert ctx["head"][0][1]["display_value"] == "Lev0" + assert ctx["head"][1][1]["display_value"] == "Lev1" + + mi_styler.hide(names=True, axis="columns") + ctx = mi_styler._translate(True, True) + assert ctx["head"][0][1]["display_value"] == " " + assert ctx["head"][1][1]["display_value"] == " " + + mi_styler.hide(level=0, axis="columns") + ctx = mi_styler._translate(True, True) + assert len(ctx["head"]) == 1 # no index names and only one visible column headers + assert ctx["head"][0][1]["display_value"] == " " + + +@pytest.mark.parametrize("caption", [1, ("a", "b", "c"), (1, "s")]) +def test_caption_raises(mi_styler, caption): + msg = "`caption` must be either a string or 2-tuple of strings." + with pytest.raises(ValueError, match=msg): + mi_styler.set_caption(caption) + + +def test_hiding_headers_over_index_no_sparsify(): + # GH 43464 + midx = MultiIndex.from_product([[1, 2], ["a", "a", "b"]]) + df = DataFrame(9, index=midx, columns=[0]) + ctx = df.style._translate(False, False) + assert len(ctx["body"]) == 6 + ctx = df.style.hide((1, "a"), axis=0)._translate(False, False) + assert len(ctx["body"]) == 4 + assert "row2" in ctx["body"][0][0]["class"] + + +def test_hiding_headers_over_columns_no_sparsify(): + # GH 43464 + midx = MultiIndex.from_product([[1, 2], ["a", "a", "b"]]) + df = DataFrame(9, columns=midx, index=[0]) + ctx = df.style._translate(False, False) + for ix in [(0, 1), (0, 2), (1, 1), (1, 2)]: + assert ctx["head"][ix[0]][ix[1]]["is_visible"] is True + ctx = df.style.hide((1, "a"), axis="columns")._translate(False, False) + for ix in [(0, 1), (0, 2), (1, 1), (1, 2)]: + assert ctx["head"][ix[0]][ix[1]]["is_visible"] is False + + +def test_get_level_lengths_mi_hidden(): + # GH 43464 + index = MultiIndex.from_arrays([[1, 1, 1, 2, 2, 2], ["a", "a", "b", "a", "a", "b"]]) + expected = { + (0, 2): 1, + (0, 3): 1, + (0, 4): 1, + (0, 5): 1, + (1, 2): 1, + (1, 3): 1, + (1, 4): 1, + (1, 5): 1, + } + result = _get_level_lengths( + index, + sparsify=False, + max_index=100, + hidden_elements=[0, 1, 0, 1], # hidden element can repeat if duplicated index + ) + tm.assert_dict_equal(result, expected) + + +def test_row_trimming_hide_index(): + # gh 43703 + df = DataFrame([[1], [2], [3], [4], [5]]) + with option_context("styler.render.max_rows", 2): + ctx = df.style.hide([0, 1], axis="index")._translate(True, True) + assert len(ctx["body"]) == 3 + for r, val in enumerate(["3", "4", "..."]): + assert ctx["body"][r][1]["display_value"] == val + + +def test_row_trimming_hide_index_mi(): + # gh 44247 + df = DataFrame([[1], [2], [3], [4], [5]]) + df.index = MultiIndex.from_product([[0], [0, 1, 2, 3, 4]]) + with option_context("styler.render.max_rows", 2): + ctx = df.style.hide([(0, 0), (0, 1)], axis="index")._translate(True, True) + assert len(ctx["body"]) == 3 + + # level 0 index headers (sparsified) + assert {"value": 0, "attributes": 'rowspan="2"', "is_visible": True}.items() <= ctx[ + "body" + ][0][0].items() + assert {"value": 0, "attributes": "", "is_visible": False}.items() <= ctx["body"][ + 1 + ][0].items() + assert {"value": "...", "is_visible": True}.items() <= ctx["body"][2][0].items() + + for r, val in enumerate(["2", "3", "..."]): + assert ctx["body"][r][1]["display_value"] == val # level 1 index headers + for r, val in enumerate(["3", "4", "..."]): + assert ctx["body"][r][2]["display_value"] == val # data values + + +def test_col_trimming_hide_columns(): + # gh 44272 + df = DataFrame([[1, 2, 3, 4, 5]]) + with option_context("styler.render.max_columns", 2): + ctx = df.style.hide([0, 1], axis="columns")._translate(True, True) + + assert len(ctx["head"][0]) == 6 # blank, [0, 1 (hidden)], [2 ,3 (visible)], + trim + for c, vals in enumerate([(1, False), (2, True), (3, True), ("...", True)]): + assert ctx["head"][0][c + 2]["value"] == vals[0] + assert ctx["head"][0][c + 2]["is_visible"] == vals[1] + + assert len(ctx["body"][0]) == 6 # index + 2 hidden + 2 visible + trimming col + + +def test_no_empty_apply(mi_styler): + # 45313 + mi_styler.apply(lambda s: ["a:v;"] * 2, subset=[False, False]) + mi_styler._compute() + + +@pytest.mark.parametrize("format", ["html", "latex", "string"]) +def test_output_buffer(mi_styler, format): + # gh 47053 + with tm.ensure_clean(f"delete_me.{format}") as f: + getattr(mi_styler, f"to_{format}")(f) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_tooltip.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_tooltip.py new file mode 100644 index 0000000000000000000000000000000000000000..c49a0e05c67002ab0b6eebd1ffd3bda554622f4d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/style/test_tooltip.py @@ -0,0 +1,85 @@ +import numpy as np +import pytest + +from pandas import DataFrame + +pytest.importorskip("jinja2") +from pandas.io.formats.style import Styler + + +@pytest.fixture +def df(): + return DataFrame( + data=[[0, 1, 2], [3, 4, 5], [6, 7, 8]], + columns=["A", "B", "C"], + index=["x", "y", "z"], + ) + + +@pytest.fixture +def styler(df): + return Styler(df, uuid_len=0) + + +@pytest.mark.parametrize( + "ttips", + [ + DataFrame( # Test basic reindex and ignoring blank + data=[["Min", "Max"], [np.nan, ""]], + columns=["A", "C"], + index=["x", "y"], + ), + DataFrame( # Test non-referenced columns, reversed col names, short index + data=[["Max", "Min", "Bad-Col"]], columns=["C", "A", "D"], index=["x"] + ), + ], +) +def test_tooltip_render(ttips, styler): + # GH 21266 + result = styler.set_tooltips(ttips).to_html() + + # test tooltip table level class + assert "#T_ .pd-t {\n visibility: hidden;\n" in result + + # test 'Min' tooltip added + assert "#T_ #T__row0_col0:hover .pd-t {\n visibility: visible;\n}" in result + assert '#T_ #T__row0_col0 .pd-t::after {\n content: "Min";\n}' in result + assert 'class="data row0 col0" >0' in result + + # test 'Max' tooltip added + assert "#T_ #T__row0_col2:hover .pd-t {\n visibility: visible;\n}" in result + assert '#T_ #T__row0_col2 .pd-t::after {\n content: "Max";\n}' in result + assert 'class="data row0 col2" >2' in result + + # test Nan, empty string and bad column ignored + assert "#T_ #T__row1_col0:hover .pd-t {\n visibility: visible;\n}" not in result + assert "#T_ #T__row1_col1:hover .pd-t {\n visibility: visible;\n}" not in result + assert "#T_ #T__row0_col1:hover .pd-t {\n visibility: visible;\n}" not in result + assert "#T_ #T__row1_col2:hover .pd-t {\n visibility: visible;\n}" not in result + assert "Bad-Col" not in result + + +def test_tooltip_ignored(styler): + # GH 21266 + result = styler.to_html() # no set_tooltips() creates no + assert '' in result + assert '' not in result + + +def test_tooltip_css_class(styler): + # GH 21266 + result = styler.set_tooltips( + DataFrame([["tooltip"]], index=["x"], columns=["A"]), + css_class="other-class", + props=[("color", "green")], + ).to_html() + assert "#T_ .other-class {\n color: green;\n" in result + assert '#T_ #T__row0_col0 .other-class::after {\n content: "tooltip";\n' in result + + # GH 39563 + result = styler.set_tooltips( # set_tooltips overwrites previous + DataFrame([["tooltip"]], index=["x"], columns=["A"]), + css_class="another-class", + props="color:green;color:red;", + ).to_html() + assert "#T_ .another-class {\n color: green;\n color: red;\n}" in result diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_console.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_console.py new file mode 100644 index 0000000000000000000000000000000000000000..dd7b57df9baed18b172dc8398a61a49e9435f82a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_console.py @@ -0,0 +1,72 @@ +import locale + +import pytest + +from pandas._config import detect_console_encoding + + +class MockEncoding: + """ + Used to add a side effect when accessing the 'encoding' property. If the + side effect is a str in nature, the value will be returned. Otherwise, the + side effect should be an exception that will be raised. + """ + + def __init__(self, encoding) -> None: + super().__init__() + self.val = encoding + + @property + def encoding(self): + return self.raise_or_return(self.val) + + @staticmethod + def raise_or_return(val): + if isinstance(val, str): + return val + else: + raise val + + +@pytest.mark.parametrize("empty,filled", [["stdin", "stdout"], ["stdout", "stdin"]]) +def test_detect_console_encoding_from_stdout_stdin(monkeypatch, empty, filled): + # Ensures that when sys.stdout.encoding or sys.stdin.encoding is used when + # they have values filled. + # GH 21552 + with monkeypatch.context() as context: + context.setattr(f"sys.{empty}", MockEncoding("")) + context.setattr(f"sys.{filled}", MockEncoding(filled)) + assert detect_console_encoding() == filled + + +@pytest.mark.parametrize("encoding", [AttributeError, OSError, "ascii"]) +def test_detect_console_encoding_fallback_to_locale(monkeypatch, encoding): + # GH 21552 + with monkeypatch.context() as context: + context.setattr("locale.getpreferredencoding", lambda: "foo") + context.setattr("sys.stdout", MockEncoding(encoding)) + assert detect_console_encoding() == "foo" + + +@pytest.mark.parametrize( + "std,locale", + [ + ["ascii", "ascii"], + ["ascii", locale.Error], + [AttributeError, "ascii"], + [AttributeError, locale.Error], + [OSError, "ascii"], + [OSError, locale.Error], + ], +) +def test_detect_console_encoding_fallback_to_default(monkeypatch, std, locale): + # When both the stdout/stdin encoding and locale preferred encoding checks + # fail (or return 'ascii', we should default to the sys default encoding. + # GH 21552 + with monkeypatch.context() as context: + context.setattr( + "locale.getpreferredencoding", lambda: MockEncoding.raise_or_return(locale) + ) + context.setattr("sys.stdout", MockEncoding(std)) + context.setattr("sys.getdefaultencoding", lambda: "sysDefaultEncoding") + assert detect_console_encoding() == "sysDefaultEncoding" diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_css.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_css.py new file mode 100644 index 0000000000000000000000000000000000000000..db436d8283b9972819f8eff099689cf492d45a83 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_css.py @@ -0,0 +1,289 @@ +import pytest + +from pandas.errors import CSSWarning + +import pandas._testing as tm + +from pandas.io.formats.css import CSSResolver + + +def assert_resolves(css, props, inherited=None): + resolve = CSSResolver() + actual = resolve(css, inherited=inherited) + assert props == actual + + +def assert_same_resolution(css1, css2, inherited=None): + resolve = CSSResolver() + resolved1 = resolve(css1, inherited=inherited) + resolved2 = resolve(css2, inherited=inherited) + assert resolved1 == resolved2 + + +@pytest.mark.parametrize( + "name,norm,abnorm", + [ + ( + "whitespace", + "hello: world; foo: bar", + " \t hello \t :\n world \n ; \n foo: \tbar\n\n", + ), + ("case", "hello: world; foo: bar", "Hello: WORLD; foO: bar"), + ("empty-decl", "hello: world; foo: bar", "; hello: world;; foo: bar;\n; ;"), + ("empty-list", "", ";"), + ], +) +def test_css_parse_normalisation(name, norm, abnorm): + assert_same_resolution(norm, abnorm) + + +@pytest.mark.parametrize( + "invalid_css,remainder", + [ + # No colon + ("hello-world", ""), + ("border-style: solid; hello-world", "border-style: solid"), + ( + "border-style: solid; hello-world; font-weight: bold", + "border-style: solid; font-weight: bold", + ), + # Unclosed string fail + # Invalid size + ("font-size: blah", "font-size: 1em"), + ("font-size: 1a2b", "font-size: 1em"), + ("font-size: 1e5pt", "font-size: 1em"), + ("font-size: 1+6pt", "font-size: 1em"), + ("font-size: 1unknownunit", "font-size: 1em"), + ("font-size: 10", "font-size: 1em"), + ("font-size: 10 pt", "font-size: 1em"), + # Too many args + ("border-top: 1pt solid red green", "border-top: 1pt solid green"), + ], +) +def test_css_parse_invalid(invalid_css, remainder): + with tm.assert_produces_warning(CSSWarning): + assert_same_resolution(invalid_css, remainder) + + +@pytest.mark.parametrize( + "shorthand,expansions", + [ + ("margin", ["margin-top", "margin-right", "margin-bottom", "margin-left"]), + ("padding", ["padding-top", "padding-right", "padding-bottom", "padding-left"]), + ( + "border-width", + [ + "border-top-width", + "border-right-width", + "border-bottom-width", + "border-left-width", + ], + ), + ( + "border-color", + [ + "border-top-color", + "border-right-color", + "border-bottom-color", + "border-left-color", + ], + ), + ( + "border-style", + [ + "border-top-style", + "border-right-style", + "border-bottom-style", + "border-left-style", + ], + ), + ], +) +def test_css_side_shorthands(shorthand, expansions): + top, right, bottom, left = expansions + + assert_resolves( + f"{shorthand}: 1pt", {top: "1pt", right: "1pt", bottom: "1pt", left: "1pt"} + ) + + assert_resolves( + f"{shorthand}: 1pt 4pt", {top: "1pt", right: "4pt", bottom: "1pt", left: "4pt"} + ) + + assert_resolves( + f"{shorthand}: 1pt 4pt 2pt", + {top: "1pt", right: "4pt", bottom: "2pt", left: "4pt"}, + ) + + assert_resolves( + f"{shorthand}: 1pt 4pt 2pt 0pt", + {top: "1pt", right: "4pt", bottom: "2pt", left: "0pt"}, + ) + + with tm.assert_produces_warning(CSSWarning): + assert_resolves(f"{shorthand}: 1pt 1pt 1pt 1pt 1pt", {}) + + +@pytest.mark.parametrize( + "shorthand,sides", + [ + ("border-top", ["top"]), + ("border-right", ["right"]), + ("border-bottom", ["bottom"]), + ("border-left", ["left"]), + ("border", ["top", "right", "bottom", "left"]), + ], +) +def test_css_border_shorthand_sides(shorthand, sides): + def create_border_dict(sides, color=None, style=None, width=None): + resolved = {} + for side in sides: + if color: + resolved[f"border-{side}-color"] = color + if style: + resolved[f"border-{side}-style"] = style + if width: + resolved[f"border-{side}-width"] = width + return resolved + + assert_resolves( + f"{shorthand}: 1pt red solid", create_border_dict(sides, "red", "solid", "1pt") + ) + + +@pytest.mark.parametrize( + "prop, expected", + [ + ("1pt red solid", ("red", "solid", "1pt")), + ("red 1pt solid", ("red", "solid", "1pt")), + ("red solid 1pt", ("red", "solid", "1pt")), + ("solid 1pt red", ("red", "solid", "1pt")), + ("red solid", ("red", "solid", "1.500000pt")), + # Note: color=black is not CSS conforming + # (See https://drafts.csswg.org/css-backgrounds/#border-shorthands) + ("1pt solid", ("black", "solid", "1pt")), + ("1pt red", ("red", "none", "1pt")), + ("red", ("red", "none", "1.500000pt")), + ("1pt", ("black", "none", "1pt")), + ("solid", ("black", "solid", "1.500000pt")), + # Sizes + ("1em", ("black", "none", "12pt")), + ], +) +def test_css_border_shorthands(prop, expected): + color, style, width = expected + + assert_resolves( + f"border-left: {prop}", + { + "border-left-color": color, + "border-left-style": style, + "border-left-width": width, + }, + ) + + +@pytest.mark.parametrize( + "style,inherited,equiv", + [ + ("margin: 1px; margin: 2px", "", "margin: 2px"), + ("margin: 1px", "margin: 2px", "margin: 1px"), + ("margin: 1px; margin: inherit", "margin: 2px", "margin: 2px"), + ( + "margin: 1px; margin-top: 2px", + "", + "margin-left: 1px; margin-right: 1px; " + "margin-bottom: 1px; margin-top: 2px", + ), + ("margin-top: 2px", "margin: 1px", "margin: 1px; margin-top: 2px"), + ("margin: 1px", "margin-top: 2px", "margin: 1px"), + ( + "margin: 1px; margin-top: inherit", + "margin: 2px", + "margin: 1px; margin-top: 2px", + ), + ], +) +def test_css_precedence(style, inherited, equiv): + resolve = CSSResolver() + inherited_props = resolve(inherited) + style_props = resolve(style, inherited=inherited_props) + equiv_props = resolve(equiv) + assert style_props == equiv_props + + +@pytest.mark.parametrize( + "style,equiv", + [ + ( + "margin: 1px; margin-top: inherit", + "margin-bottom: 1px; margin-right: 1px; margin-left: 1px", + ), + ("margin-top: inherit", ""), + ("margin-top: initial", ""), + ], +) +def test_css_none_absent(style, equiv): + assert_same_resolution(style, equiv) + + +@pytest.mark.parametrize( + "size,resolved", + [ + ("xx-small", "6pt"), + ("x-small", f"{7.5:f}pt"), + ("small", f"{9.6:f}pt"), + ("medium", "12pt"), + ("large", f"{13.5:f}pt"), + ("x-large", "18pt"), + ("xx-large", "24pt"), + ("8px", "6pt"), + ("1.25pc", "15pt"), + (".25in", "18pt"), + ("02.54cm", "72pt"), + ("25.4mm", "72pt"), + ("101.6q", "72pt"), + ("101.6q", "72pt"), + ], +) +@pytest.mark.parametrize("relative_to", [None, "16pt"]) # invariant to inherited size +def test_css_absolute_font_size(size, relative_to, resolved): + if relative_to is None: + inherited = None + else: + inherited = {"font-size": relative_to} + assert_resolves(f"font-size: {size}", {"font-size": resolved}, inherited=inherited) + + +@pytest.mark.parametrize( + "size,relative_to,resolved", + [ + ("1em", None, "12pt"), + ("1.0em", None, "12pt"), + ("1.25em", None, "15pt"), + ("1em", "16pt", "16pt"), + ("1.0em", "16pt", "16pt"), + ("1.25em", "16pt", "20pt"), + ("1rem", "16pt", "12pt"), + ("1.0rem", "16pt", "12pt"), + ("1.25rem", "16pt", "15pt"), + ("100%", None, "12pt"), + ("125%", None, "15pt"), + ("100%", "16pt", "16pt"), + ("125%", "16pt", "20pt"), + ("2ex", None, "12pt"), + ("2.0ex", None, "12pt"), + ("2.50ex", None, "15pt"), + ("inherit", "16pt", "16pt"), + ("smaller", None, "10pt"), + ("smaller", "18pt", "15pt"), + ("larger", None, f"{14.4:f}pt"), + ("larger", "15pt", "18pt"), + ], +) +def test_css_relative_font_size(size, relative_to, resolved): + if relative_to is None: + inherited = None + else: + inherited = {"font-size": relative_to} + assert_resolves(f"font-size: {size}", {"font-size": resolved}, inherited=inherited) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_eng_formatting.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_eng_formatting.py new file mode 100644 index 0000000000000000000000000000000000000000..6d581b5b92e0c8cbcfe21dbbdfb0f99ca05c1a4e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_eng_formatting.py @@ -0,0 +1,254 @@ +import numpy as np +import pytest + +from pandas import ( + DataFrame, + reset_option, + set_eng_float_format, +) + +from pandas.io.formats.format import EngFormatter + + +@pytest.fixture(autouse=True) +def reset_float_format(): + yield + reset_option("display.float_format") + + +class TestEngFormatter: + def test_eng_float_formatter2(self, float_frame): + df = float_frame + df.loc[5] = 0 + + set_eng_float_format() + repr(df) + + set_eng_float_format(use_eng_prefix=True) + repr(df) + + set_eng_float_format(accuracy=0) + repr(df) + + def test_eng_float_formatter(self): + df = DataFrame({"A": [1.41, 141.0, 14100, 1410000.0]}) + + set_eng_float_format() + result = df.to_string() + expected = ( + " A\n" + "0 1.410E+00\n" + "1 141.000E+00\n" + "2 14.100E+03\n" + "3 1.410E+06" + ) + assert result == expected + + set_eng_float_format(use_eng_prefix=True) + result = df.to_string() + expected = " A\n0 1.410\n1 141.000\n2 14.100k\n3 1.410M" + assert result == expected + + set_eng_float_format(accuracy=0) + result = df.to_string() + expected = " A\n0 1E+00\n1 141E+00\n2 14E+03\n3 1E+06" + assert result == expected + + def compare(self, formatter, input, output): + formatted_input = formatter(input) + assert formatted_input == output + + def compare_all(self, formatter, in_out): + """ + Parameters: + ----------- + formatter: EngFormatter under test + in_out: list of tuples. Each tuple = (number, expected_formatting) + + It is tested if 'formatter(number) == expected_formatting'. + *number* should be >= 0 because formatter(-number) == fmt is also + tested. *fmt* is derived from *expected_formatting* + """ + for input, output in in_out: + self.compare(formatter, input, output) + self.compare(formatter, -input, "-" + output[1:]) + + def test_exponents_with_eng_prefix(self): + formatter = EngFormatter(accuracy=3, use_eng_prefix=True) + f = np.sqrt(2) + in_out = [ + (f * 10**-24, " 1.414y"), + (f * 10**-23, " 14.142y"), + (f * 10**-22, " 141.421y"), + (f * 10**-21, " 1.414z"), + (f * 10**-20, " 14.142z"), + (f * 10**-19, " 141.421z"), + (f * 10**-18, " 1.414a"), + (f * 10**-17, " 14.142a"), + (f * 10**-16, " 141.421a"), + (f * 10**-15, " 1.414f"), + (f * 10**-14, " 14.142f"), + (f * 10**-13, " 141.421f"), + (f * 10**-12, " 1.414p"), + (f * 10**-11, " 14.142p"), + (f * 10**-10, " 141.421p"), + (f * 10**-9, " 1.414n"), + (f * 10**-8, " 14.142n"), + (f * 10**-7, " 141.421n"), + (f * 10**-6, " 1.414u"), + (f * 10**-5, " 14.142u"), + (f * 10**-4, " 141.421u"), + (f * 10**-3, " 1.414m"), + (f * 10**-2, " 14.142m"), + (f * 10**-1, " 141.421m"), + (f * 10**0, " 1.414"), + (f * 10**1, " 14.142"), + (f * 10**2, " 141.421"), + (f * 10**3, " 1.414k"), + (f * 10**4, " 14.142k"), + (f * 10**5, " 141.421k"), + (f * 10**6, " 1.414M"), + (f * 10**7, " 14.142M"), + (f * 10**8, " 141.421M"), + (f * 10**9, " 1.414G"), + (f * 10**10, " 14.142G"), + (f * 10**11, " 141.421G"), + (f * 10**12, " 1.414T"), + (f * 10**13, " 14.142T"), + (f * 10**14, " 141.421T"), + (f * 10**15, " 1.414P"), + (f * 10**16, " 14.142P"), + (f * 10**17, " 141.421P"), + (f * 10**18, " 1.414E"), + (f * 10**19, " 14.142E"), + (f * 10**20, " 141.421E"), + (f * 10**21, " 1.414Z"), + (f * 10**22, " 14.142Z"), + (f * 10**23, " 141.421Z"), + (f * 10**24, " 1.414Y"), + (f * 10**25, " 14.142Y"), + (f * 10**26, " 141.421Y"), + ] + self.compare_all(formatter, in_out) + + def test_exponents_without_eng_prefix(self): + formatter = EngFormatter(accuracy=4, use_eng_prefix=False) + f = np.pi + in_out = [ + (f * 10**-24, " 3.1416E-24"), + (f * 10**-23, " 31.4159E-24"), + (f * 10**-22, " 314.1593E-24"), + (f * 10**-21, " 3.1416E-21"), + (f * 10**-20, " 31.4159E-21"), + (f * 10**-19, " 314.1593E-21"), + (f * 10**-18, " 3.1416E-18"), + (f * 10**-17, " 31.4159E-18"), + (f * 10**-16, " 314.1593E-18"), + (f * 10**-15, " 3.1416E-15"), + (f * 10**-14, " 31.4159E-15"), + (f * 10**-13, " 314.1593E-15"), + (f * 10**-12, " 3.1416E-12"), + (f * 10**-11, " 31.4159E-12"), + (f * 10**-10, " 314.1593E-12"), + (f * 10**-9, " 3.1416E-09"), + (f * 10**-8, " 31.4159E-09"), + (f * 10**-7, " 314.1593E-09"), + (f * 10**-6, " 3.1416E-06"), + (f * 10**-5, " 31.4159E-06"), + (f * 10**-4, " 314.1593E-06"), + (f * 10**-3, " 3.1416E-03"), + (f * 10**-2, " 31.4159E-03"), + (f * 10**-1, " 314.1593E-03"), + (f * 10**0, " 3.1416E+00"), + (f * 10**1, " 31.4159E+00"), + (f * 10**2, " 314.1593E+00"), + (f * 10**3, " 3.1416E+03"), + (f * 10**4, " 31.4159E+03"), + (f * 10**5, " 314.1593E+03"), + (f * 10**6, " 3.1416E+06"), + (f * 10**7, " 31.4159E+06"), + (f * 10**8, " 314.1593E+06"), + (f * 10**9, " 3.1416E+09"), + (f * 10**10, " 31.4159E+09"), + (f * 10**11, " 314.1593E+09"), + (f * 10**12, " 3.1416E+12"), + (f * 10**13, " 31.4159E+12"), + (f * 10**14, " 314.1593E+12"), + (f * 10**15, " 3.1416E+15"), + (f * 10**16, " 31.4159E+15"), + (f * 10**17, " 314.1593E+15"), + (f * 10**18, " 3.1416E+18"), + (f * 10**19, " 31.4159E+18"), + (f * 10**20, " 314.1593E+18"), + (f * 10**21, " 3.1416E+21"), + (f * 10**22, " 31.4159E+21"), + (f * 10**23, " 314.1593E+21"), + (f * 10**24, " 3.1416E+24"), + (f * 10**25, " 31.4159E+24"), + (f * 10**26, " 314.1593E+24"), + ] + self.compare_all(formatter, in_out) + + def test_rounding(self): + formatter = EngFormatter(accuracy=3, use_eng_prefix=True) + in_out = [ + (5.55555, " 5.556"), + (55.5555, " 55.556"), + (555.555, " 555.555"), + (5555.55, " 5.556k"), + (55555.5, " 55.556k"), + (555555, " 555.555k"), + ] + self.compare_all(formatter, in_out) + + formatter = EngFormatter(accuracy=1, use_eng_prefix=True) + in_out = [ + (5.55555, " 5.6"), + (55.5555, " 55.6"), + (555.555, " 555.6"), + (5555.55, " 5.6k"), + (55555.5, " 55.6k"), + (555555, " 555.6k"), + ] + self.compare_all(formatter, in_out) + + formatter = EngFormatter(accuracy=0, use_eng_prefix=True) + in_out = [ + (5.55555, " 6"), + (55.5555, " 56"), + (555.555, " 556"), + (5555.55, " 6k"), + (55555.5, " 56k"), + (555555, " 556k"), + ] + self.compare_all(formatter, in_out) + + formatter = EngFormatter(accuracy=3, use_eng_prefix=True) + result = formatter(0) + assert result == " 0.000" + + def test_nan(self): + # Issue #11981 + + formatter = EngFormatter(accuracy=1, use_eng_prefix=True) + result = formatter(np.nan) + assert result == "NaN" + + df = DataFrame( + { + "a": [1.5, 10.3, 20.5], + "b": [50.3, 60.67, 70.12], + "c": [100.2, 101.33, 120.33], + } + ) + pt = df.pivot_table(values="a", index="b", columns="c") + set_eng_float_format(accuracy=1) + result = pt.to_string() + assert "NaN" in result + + def test_inf(self): + # Issue #11981 + + formatter = EngFormatter(accuracy=1, use_eng_prefix=True) + result = formatter(np.inf) + assert result == "inf" diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_format.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_format.py new file mode 100644 index 0000000000000000000000000000000000000000..0ca29c219b55b0931885f2fbf92cbf1fd809c5b8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_format.py @@ -0,0 +1,2293 @@ +""" +Tests for the file pandas.io.formats.format, *not* tests for general formatting +of pandas objects. +""" +from datetime import datetime +from io import StringIO +from pathlib import Path +import re +from shutil import get_terminal_size + +import numpy as np +import pytest + +from pandas._config import using_pyarrow_string_dtype + +import pandas as pd +from pandas import ( + DataFrame, + Index, + MultiIndex, + NaT, + Series, + Timestamp, + date_range, + get_option, + option_context, + read_csv, + reset_option, +) + +from pandas.io.formats import printing +import pandas.io.formats.format as fmt + + +@pytest.fixture(params=["string", "pathlike", "buffer"]) +def filepath_or_buffer_id(request): + """ + A fixture yielding test ids for filepath_or_buffer testing. + """ + return request.param + + +@pytest.fixture +def filepath_or_buffer(filepath_or_buffer_id, tmp_path): + """ + A fixture yielding a string representing a filepath, a path-like object + and a StringIO buffer. Also checks that buffer is not closed. + """ + if filepath_or_buffer_id == "buffer": + buf = StringIO() + yield buf + assert not buf.closed + else: + assert isinstance(tmp_path, Path) + if filepath_or_buffer_id == "pathlike": + yield tmp_path / "foo" + else: + yield str(tmp_path / "foo") + + +@pytest.fixture +def assert_filepath_or_buffer_equals( + filepath_or_buffer, filepath_or_buffer_id, encoding +): + """ + Assertion helper for checking filepath_or_buffer. + """ + if encoding is None: + encoding = "utf-8" + + def _assert_filepath_or_buffer_equals(expected): + if filepath_or_buffer_id == "string": + with open(filepath_or_buffer, encoding=encoding) as f: + result = f.read() + elif filepath_or_buffer_id == "pathlike": + result = filepath_or_buffer.read_text(encoding=encoding) + elif filepath_or_buffer_id == "buffer": + result = filepath_or_buffer.getvalue() + assert result == expected + + return _assert_filepath_or_buffer_equals + + +def has_info_repr(df): + r = repr(df) + c1 = r.split("\n")[0].startswith(" + # 2. Index + # 3. Columns + # 4. dtype + # 5. memory usage + # 6. trailing newline + nv = len(r.split("\n")) == 6 + return has_info and nv + + +def has_horizontally_truncated_repr(df): + try: # Check header row + fst_line = np.array(repr(df).splitlines()[0].split()) + cand_col = np.where(fst_line == "...")[0][0] + except IndexError: + return False + # Make sure each row has this ... in the same place + r = repr(df) + for ix, _ in enumerate(r.splitlines()): + if not r.split()[cand_col] == "...": + return False + return True + + +def has_vertically_truncated_repr(df): + r = repr(df) + only_dot_row = False + for row in r.splitlines(): + if re.match(r"^[\.\ ]+$", row): + only_dot_row = True + return only_dot_row + + +def has_truncated_repr(df): + return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) + + +def has_doubly_truncated_repr(df): + return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) + + +def has_expanded_repr(df): + r = repr(df) + for line in r.split("\n"): + if line.endswith("\\"): + return True + return False + + +class TestDataFrameFormatting: + def test_repr_truncation(self): + max_len = 20 + with option_context("display.max_colwidth", max_len): + df = DataFrame( + { + "A": np.random.default_rng(2).standard_normal(10), + "B": [ + "a" + * np.random.default_rng(2).integers(max_len - 1, max_len + 1) + for _ in range(10) + ], + } + ) + r = repr(df) + r = r[r.find("\n") + 1 :] + + adj = printing.get_adjustment() + + for line, value in zip(r.split("\n"), df["B"]): + if adj.len(value) + 1 > max_len: + assert "..." in line + else: + assert "..." not in line + + with option_context("display.max_colwidth", 999999): + assert "..." not in repr(df) + + with option_context("display.max_colwidth", max_len + 2): + assert "..." not in repr(df) + + def test_repr_truncation_preserves_na(self): + # https://github.com/pandas-dev/pandas/issues/55630 + df = DataFrame({"a": [pd.NA for _ in range(10)]}) + with option_context("display.max_rows", 2, "display.show_dimensions", False): + assert repr(df) == " a\n0 \n.. ...\n9 " + + def test_max_colwidth_negative_int_raises(self): + # Deprecation enforced from: + # https://github.com/pandas-dev/pandas/issues/31532 + with pytest.raises( + ValueError, match="Value must be a nonnegative integer or None" + ): + with option_context("display.max_colwidth", -1): + pass + + def test_repr_chop_threshold(self): + df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) + reset_option("display.chop_threshold") # default None + assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" + + with option_context("display.chop_threshold", 0.2): + assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" + + with option_context("display.chop_threshold", 0.6): + assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" + + with option_context("display.chop_threshold", None): + assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" + + def test_repr_chop_threshold_column_below(self): + # GH 6839: validation case + + df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T + + with option_context("display.chop_threshold", 0): + assert repr(df) == ( + " 0 1\n" + "0 10.0 8.000000e-10\n" + "1 20.0 -1.000000e-11\n" + "2 30.0 2.000000e-09\n" + "3 40.0 -2.000000e-11" + ) + + with option_context("display.chop_threshold", 1e-8): + assert repr(df) == ( + " 0 1\n" + "0 10.0 0.000000e+00\n" + "1 20.0 0.000000e+00\n" + "2 30.0 0.000000e+00\n" + "3 40.0 0.000000e+00" + ) + + with option_context("display.chop_threshold", 5e-11): + assert repr(df) == ( + " 0 1\n" + "0 10.0 8.000000e-10\n" + "1 20.0 0.000000e+00\n" + "2 30.0 2.000000e-09\n" + "3 40.0 0.000000e+00" + ) + + def test_repr_no_backslash(self): + with option_context("mode.sim_interactive", True): + df = DataFrame(np.random.default_rng(2).standard_normal((10, 4))) + assert "\\" not in repr(df) + + def test_expand_frame_repr(self): + df_small = DataFrame("hello", index=[0], columns=[0]) + df_wide = DataFrame("hello", index=[0], columns=range(10)) + df_tall = DataFrame("hello", index=range(30), columns=range(5)) + + with option_context("mode.sim_interactive", True): + with option_context( + "display.max_columns", + 10, + "display.width", + 20, + "display.max_rows", + 20, + "display.show_dimensions", + True, + ): + with option_context("display.expand_frame_repr", True): + assert not has_truncated_repr(df_small) + assert not has_expanded_repr(df_small) + assert not has_truncated_repr(df_wide) + assert has_expanded_repr(df_wide) + assert has_vertically_truncated_repr(df_tall) + assert has_expanded_repr(df_tall) + + with option_context("display.expand_frame_repr", False): + assert not has_truncated_repr(df_small) + assert not has_expanded_repr(df_small) + assert not has_horizontally_truncated_repr(df_wide) + assert not has_expanded_repr(df_wide) + assert has_vertically_truncated_repr(df_tall) + assert not has_expanded_repr(df_tall) + + def test_repr_non_interactive(self): + # in non interactive mode, there can be no dependency on the + # result of terminal auto size detection + df = DataFrame("hello", index=range(1000), columns=range(5)) + + with option_context( + "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 + ): + assert not has_truncated_repr(df) + assert not has_expanded_repr(df) + + def test_repr_truncates_terminal_size(self, monkeypatch): + # see gh-21180 + + terminal_size = (118, 96) + monkeypatch.setattr( + "pandas.io.formats.format.get_terminal_size", lambda: terminal_size + ) + + index = range(5) + columns = MultiIndex.from_tuples( + [ + ("This is a long title with > 37 chars.", "cat"), + ("This is a loooooonger title with > 43 chars.", "dog"), + ] + ) + df = DataFrame(1, index=index, columns=columns) + + result = repr(df) + + h1, h2 = result.split("\n")[:2] + assert "long" in h1 + assert "loooooonger" in h1 + assert "cat" in h2 + assert "dog" in h2 + + # regular columns + df2 = DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) + result = repr(df2) + + assert df2.columns[0] in result.split("\n")[0] + + def test_repr_truncates_terminal_size_full(self, monkeypatch): + # GH 22984 ensure entire window is filled + terminal_size = (80, 24) + df = DataFrame(np.random.default_rng(2).random((1, 7))) + + monkeypatch.setattr( + "pandas.io.formats.format.get_terminal_size", lambda: terminal_size + ) + assert "..." not in str(df) + + def test_repr_truncation_column_size(self): + # dataframe with last column very wide -> check it is not used to + # determine size of truncation (...) column + df = DataFrame( + { + "a": [108480, 30830], + "b": [12345, 12345], + "c": [12345, 12345], + "d": [12345, 12345], + "e": ["a" * 50] * 2, + } + ) + assert "..." in str(df) + assert " ... " not in str(df) + + def test_repr_max_columns_max_rows(self): + term_width, term_height = get_terminal_size() + if term_width < 10 or term_height < 10: + pytest.skip(f"terminal size too small, {term_width} x {term_height}") + + def mkframe(n): + index = [f"{i:05d}" for i in range(n)] + return DataFrame(0, index, index) + + df6 = mkframe(6) + df10 = mkframe(10) + with option_context("mode.sim_interactive", True): + with option_context("display.width", term_width * 2): + with option_context("display.max_rows", 5, "display.max_columns", 5): + assert not has_expanded_repr(mkframe(4)) + assert not has_expanded_repr(mkframe(5)) + assert not has_expanded_repr(df6) + assert has_doubly_truncated_repr(df6) + + with option_context("display.max_rows", 20, "display.max_columns", 10): + # Out off max_columns boundary, but no extending + # since not exceeding width + assert not has_expanded_repr(df6) + assert not has_truncated_repr(df6) + + with option_context("display.max_rows", 9, "display.max_columns", 10): + # out vertical bounds can not result in expanded repr + assert not has_expanded_repr(df10) + assert has_vertically_truncated_repr(df10) + + # width=None in terminal, auto detection + with option_context( + "display.max_columns", + 100, + "display.max_rows", + term_width * 20, + "display.width", + None, + ): + df = mkframe((term_width // 7) - 2) + assert not has_expanded_repr(df) + df = mkframe((term_width // 7) + 2) + printing.pprint_thing(df._repr_fits_horizontal_()) + assert has_expanded_repr(df) + + def test_repr_min_rows(self): + df = DataFrame({"a": range(20)}) + + # default setting no truncation even if above min_rows + assert ".." not in repr(df) + assert ".." not in df._repr_html_() + + df = DataFrame({"a": range(61)}) + + # default of max_rows 60 triggers truncation if above + assert ".." in repr(df) + assert ".." in df._repr_html_() + + with option_context("display.max_rows", 10, "display.min_rows", 4): + # truncated after first two rows + assert ".." in repr(df) + assert "2 " not in repr(df) + assert "..." in df._repr_html_() + assert "2" not in df._repr_html_() + + with option_context("display.max_rows", 12, "display.min_rows", None): + # when set to None, follow value of max_rows + assert "5 5" in repr(df) + assert "5" in df._repr_html_() + + with option_context("display.max_rows", 10, "display.min_rows", 12): + # when set value higher as max_rows, use the minimum + assert "5 5" not in repr(df) + assert "5" not in df._repr_html_() + + with option_context("display.max_rows", None, "display.min_rows", 12): + # max_rows of None -> never truncate + assert ".." not in repr(df) + assert ".." not in df._repr_html_() + + def test_str_max_colwidth(self): + # GH 7856 + df = DataFrame( + [ + { + "a": "foo", + "b": "bar", + "c": "uncomfortably long line with lots of stuff", + "d": 1, + }, + {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, + ] + ) + df.set_index(["a", "b", "c"]) + assert str(df) == ( + " a b c d\n" + "0 foo bar uncomfortably long line with lots of stuff 1\n" + "1 foo bar stuff 1" + ) + with option_context("max_colwidth", 20): + assert str(df) == ( + " a b c d\n" + "0 foo bar uncomfortably lo... 1\n" + "1 foo bar stuff 1" + ) + + def test_auto_detect(self): + term_width, term_height = get_terminal_size() + fac = 1.05 # Arbitrary large factor to exceed term width + cols = range(int(term_width * fac)) + index = range(10) + df = DataFrame(index=index, columns=cols) + with option_context("mode.sim_interactive", True): + with option_context("display.max_rows", None): + with option_context("display.max_columns", None): + # Wrap around with None + assert has_expanded_repr(df) + with option_context("display.max_rows", 0): + with option_context("display.max_columns", 0): + # Truncate with auto detection. + assert has_horizontally_truncated_repr(df) + + index = range(int(term_height * fac)) + df = DataFrame(index=index, columns=cols) + with option_context("display.max_rows", 0): + with option_context("display.max_columns", None): + # Wrap around with None + assert has_expanded_repr(df) + # Truncate vertically + assert has_vertically_truncated_repr(df) + + with option_context("display.max_rows", None): + with option_context("display.max_columns", 0): + assert has_horizontally_truncated_repr(df) + + def test_to_string_repr_unicode2(self): + idx = Index(["abc", "\u03c3a", "aegdvg"]) + ser = Series(np.random.default_rng(2).standard_normal(len(idx)), idx) + rs = repr(ser).split("\n") + line_len = len(rs[0]) + for line in rs[1:]: + try: + line = line.decode(get_option("display.encoding")) + except AttributeError: + pass + if not line.startswith("dtype:"): + assert len(line) == line_len + + def test_east_asian_unicode_false(self): + # not aligned properly because of east asian width + + # mid col + df = DataFrame( + {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, + index=["a", "bb", "c", "ddd"], + ) + expected = ( + " a b\na あ 1\n" + "bb いいい 222\nc う 33333\n" + "ddd ええええええ 4" + ) + assert repr(df) == expected + + # last col + df = DataFrame( + {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, + index=["a", "bb", "c", "ddd"], + ) + expected = ( + " a b\na 1 あ\n" + "bb 222 いいい\nc 33333 う\n" + "ddd 4 ええええええ" + ) + assert repr(df) == expected + + # all col + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + }, + index=["a", "bb", "c", "ddd"], + ) + expected = ( + " a b\na あああああ あ\n" + "bb い いいい\nc う う\n" + "ddd えええ ええええええ" + ) + assert repr(df) == expected + + # column name + df = DataFrame( + { + "b": ["あ", "いいい", "う", "ええええええ"], + "あああああ": [1, 222, 33333, 4], + }, + index=["a", "bb", "c", "ddd"], + ) + expected = ( + " b あああああ\na あ 1\n" + "bb いいい 222\nc う 33333\n" + "ddd ええええええ 4" + ) + assert repr(df) == expected + + # index + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + }, + index=["あああ", "いいいいいい", "うう", "え"], + ) + expected = ( + " a b\nあああ あああああ あ\n" + "いいいいいい い いいい\nうう う う\n" + "え えええ ええええええ" + ) + assert repr(df) == expected + + # index name + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + }, + index=Index(["あ", "い", "うう", "え"], name="おおおお"), + ) + expected = ( + " a b\n" + "おおおお \n" + "あ あああああ あ\n" + "い い いいい\n" + "うう う う\n" + "え えええ ええええええ" + ) + assert repr(df) == expected + + # all + df = DataFrame( + { + "あああ": ["あああ", "い", "う", "えええええ"], + "いいいいい": ["あ", "いいい", "う", "ええ"], + }, + index=Index(["あ", "いいい", "うう", "え"], name="お"), + ) + expected = ( + " あああ いいいいい\n" + "お \n" + "あ あああ あ\n" + "いいい い いいい\n" + "うう う う\n" + "え えええええ ええ" + ) + assert repr(df) == expected + + # MultiIndex + idx = MultiIndex.from_tuples( + [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] + ) + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + }, + index=idx, + ) + expected = ( + " a b\n" + "あ いい あああああ あ\n" + "う え い いいい\n" + "おおお かかかか う う\n" + "き くく えええ ええええええ" + ) + assert repr(df) == expected + + # truncate + with option_context("display.max_rows", 3, "display.max_columns", 3): + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + "c": ["お", "か", "ききき", "くくくくくく"], + "ああああ": ["さ", "し", "す", "せ"], + }, + columns=["a", "b", "c", "ああああ"], + ) + + expected = ( + " a ... ああああ\n0 あああああ ... さ\n" + ".. ... ... ...\n3 えええ ... せ\n" + "\n[4 rows x 4 columns]" + ) + assert repr(df) == expected + + df.index = ["あああ", "いいいい", "う", "aaa"] + expected = ( + " a ... ああああ\nあああ あああああ ... さ\n" + ".. ... ... ...\naaa えええ ... せ\n" + "\n[4 rows x 4 columns]" + ) + assert repr(df) == expected + + def test_east_asian_unicode_true(self): + # Enable Unicode option ----------------------------------------- + with option_context("display.unicode.east_asian_width", True): + # mid col + df = DataFrame( + {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, + index=["a", "bb", "c", "ddd"], + ) + expected = ( + " a b\na あ 1\n" + "bb いいい 222\nc う 33333\n" + "ddd ええええええ 4" + ) + assert repr(df) == expected + + # last col + df = DataFrame( + {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, + index=["a", "bb", "c", "ddd"], + ) + expected = ( + " a b\na 1 あ\n" + "bb 222 いいい\nc 33333 う\n" + "ddd 4 ええええええ" + ) + assert repr(df) == expected + + # all col + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + }, + index=["a", "bb", "c", "ddd"], + ) + expected = ( + " a b\n" + "a あああああ あ\n" + "bb い いいい\n" + "c う う\n" + "ddd えええ ええええええ" + ) + assert repr(df) == expected + + # column name + df = DataFrame( + { + "b": ["あ", "いいい", "う", "ええええええ"], + "あああああ": [1, 222, 33333, 4], + }, + index=["a", "bb", "c", "ddd"], + ) + expected = ( + " b あああああ\n" + "a あ 1\n" + "bb いいい 222\n" + "c う 33333\n" + "ddd ええええええ 4" + ) + assert repr(df) == expected + + # index + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + }, + index=["あああ", "いいいいいい", "うう", "え"], + ) + expected = ( + " a b\n" + "あああ あああああ あ\n" + "いいいいいい い いいい\n" + "うう う う\n" + "え えええ ええええええ" + ) + assert repr(df) == expected + + # index name + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + }, + index=Index(["あ", "い", "うう", "え"], name="おおおお"), + ) + expected = ( + " a b\n" + "おおおお \n" + "あ あああああ あ\n" + "い い いいい\n" + "うう う う\n" + "え えええ ええええええ" + ) + assert repr(df) == expected + + # all + df = DataFrame( + { + "あああ": ["あああ", "い", "う", "えええええ"], + "いいいいい": ["あ", "いいい", "う", "ええ"], + }, + index=Index(["あ", "いいい", "うう", "え"], name="お"), + ) + expected = ( + " あああ いいいいい\n" + "お \n" + "あ あああ あ\n" + "いいい い いいい\n" + "うう う う\n" + "え えええええ ええ" + ) + assert repr(df) == expected + + # MultiIndex + idx = MultiIndex.from_tuples( + [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] + ) + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + }, + index=idx, + ) + expected = ( + " a b\n" + "あ いい あああああ あ\n" + "う え い いいい\n" + "おおお かかかか う う\n" + "き くく えええ ええええええ" + ) + assert repr(df) == expected + + # truncate + with option_context("display.max_rows", 3, "display.max_columns", 3): + df = DataFrame( + { + "a": ["あああああ", "い", "う", "えええ"], + "b": ["あ", "いいい", "う", "ええええええ"], + "c": ["お", "か", "ききき", "くくくくくく"], + "ああああ": ["さ", "し", "す", "せ"], + }, + columns=["a", "b", "c", "ああああ"], + ) + + expected = ( + " a ... ああああ\n" + "0 あああああ ... さ\n" + ".. ... ... ...\n" + "3 えええ ... せ\n" + "\n[4 rows x 4 columns]" + ) + assert repr(df) == expected + + df.index = ["あああ", "いいいい", "う", "aaa"] + expected = ( + " a ... ああああ\n" + "あああ あああああ ... さ\n" + "... ... ... ...\n" + "aaa えええ ... せ\n" + "\n[4 rows x 4 columns]" + ) + assert repr(df) == expected + + # ambiguous unicode + df = DataFrame( + { + "b": ["あ", "いいい", "¡¡", "ええええええ"], + "あああああ": [1, 222, 33333, 4], + }, + index=["a", "bb", "c", "¡¡¡"], + ) + expected = ( + " b あああああ\n" + "a あ 1\n" + "bb いいい 222\n" + "c ¡¡ 33333\n" + "¡¡¡ ええええええ 4" + ) + assert repr(df) == expected + + def test_to_string_buffer_all_unicode(self): + buf = StringIO() + + empty = DataFrame({"c/\u03c3": Series(dtype=object)}) + nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) + + print(empty, file=buf) + print(nonempty, file=buf) + + # this should work + buf.getvalue() + + @pytest.mark.parametrize( + "index_scalar", + [ + "a" * 10, + 1, + Timestamp(2020, 1, 1), + pd.Period("2020-01-01"), + ], + ) + @pytest.mark.parametrize("h", [10, 20]) + @pytest.mark.parametrize("w", [10, 20]) + def test_to_string_truncate_indices(self, index_scalar, h, w): + with option_context("display.expand_frame_repr", False): + df = DataFrame( + index=[index_scalar] * h, columns=[str(i) * 10 for i in range(w)] + ) + with option_context("display.max_rows", 15): + if h == 20: + assert has_vertically_truncated_repr(df) + else: + assert not has_vertically_truncated_repr(df) + with option_context("display.max_columns", 15): + if w == 20: + assert has_horizontally_truncated_repr(df) + else: + assert not has_horizontally_truncated_repr(df) + with option_context("display.max_rows", 15, "display.max_columns", 15): + if h == 20 and w == 20: + assert has_doubly_truncated_repr(df) + else: + assert not has_doubly_truncated_repr(df) + + def test_to_string_truncate_multilevel(self): + arrays = [ + ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], + ["one", "two", "one", "two", "one", "two", "one", "two"], + ] + df = DataFrame(index=arrays, columns=arrays) + with option_context("display.max_rows", 7, "display.max_columns", 7): + assert has_doubly_truncated_repr(df) + + @pytest.mark.parametrize("dtype", ["object", "datetime64[us]"]) + def test_truncate_with_different_dtypes(self, dtype): + # 11594, 12045 + # when truncated the dtypes of the splits can differ + + # 11594 + ser = Series( + [datetime(2012, 1, 1)] * 10 + + [datetime(1012, 1, 2)] + + [datetime(2012, 1, 3)] * 10, + dtype=dtype, + ) + + with option_context("display.max_rows", 8): + result = str(ser) + assert dtype in result + + def test_truncate_with_different_dtypes2(self): + # 12045 + df = DataFrame({"text": ["some words"] + [None] * 9}, dtype=object) + + with option_context("display.max_rows", 8, "display.max_columns", 3): + result = str(df) + assert "None" in result + assert "NaN" not in result + + def test_truncate_with_different_dtypes_multiindex(self): + # GH#13000 + df = DataFrame({"Vals": range(100)}) + frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) + result = repr(frame) + + result2 = repr(frame.iloc[:5]) + assert result.startswith(result2) + + def test_datetimelike_frame(self): + # GH 12211 + df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC")] + [NaT] * 5}) + + with option_context("display.max_rows", 5): + result = str(df) + assert "2013-01-01 00:00:00+00:00" in result + assert "NaT" in result + assert "..." in result + assert "[6 rows x 1 columns]" in result + + dts = [Timestamp("2011-01-01", tz="US/Eastern")] * 5 + [NaT] * 5 + df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) + with option_context("display.max_rows", 5): + expected = ( + " dt x\n" + "0 2011-01-01 00:00:00-05:00 1\n" + "1 2011-01-01 00:00:00-05:00 2\n" + ".. ... ..\n" + "8 NaT 9\n" + "9 NaT 10\n\n" + "[10 rows x 2 columns]" + ) + assert repr(df) == expected + + dts = [NaT] * 5 + [Timestamp("2011-01-01", tz="US/Eastern")] * 5 + df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) + with option_context("display.max_rows", 5): + expected = ( + " dt x\n" + "0 NaT 1\n" + "1 NaT 2\n" + ".. ... ..\n" + "8 2011-01-01 00:00:00-05:00 9\n" + "9 2011-01-01 00:00:00-05:00 10\n\n" + "[10 rows x 2 columns]" + ) + assert repr(df) == expected + + dts = [Timestamp("2011-01-01", tz="Asia/Tokyo")] * 5 + [ + Timestamp("2011-01-01", tz="US/Eastern") + ] * 5 + df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) + with option_context("display.max_rows", 5): + expected = ( + " dt x\n" + "0 2011-01-01 00:00:00+09:00 1\n" + "1 2011-01-01 00:00:00+09:00 2\n" + ".. ... ..\n" + "8 2011-01-01 00:00:00-05:00 9\n" + "9 2011-01-01 00:00:00-05:00 10\n\n" + "[10 rows x 2 columns]" + ) + assert repr(df) == expected + + @pytest.mark.parametrize( + "start_date", + [ + "2017-01-01 23:59:59.999999999", + "2017-01-01 23:59:59.99999999", + "2017-01-01 23:59:59.9999999", + "2017-01-01 23:59:59.999999", + "2017-01-01 23:59:59.99999", + "2017-01-01 23:59:59.9999", + ], + ) + def test_datetimeindex_highprecision(self, start_date): + # GH19030 + # Check that high-precision time values for the end of day are + # included in repr for DatetimeIndex + df = DataFrame({"A": date_range(start=start_date, freq="D", periods=5)}) + result = str(df) + assert start_date in result + + dti = date_range(start=start_date, freq="D", periods=5) + df = DataFrame({"A": range(5)}, index=dti) + result = str(df.index) + assert start_date in result + + def test_string_repr_encoding(self, datapath): + filepath = datapath("io", "parser", "data", "unicode_series.csv") + df = read_csv(filepath, header=None, encoding="latin1") + repr(df) + repr(df[1]) + + def test_repr_corner(self): + # representing infs poses no problems + df = DataFrame({"foo": [-np.inf, np.inf]}) + repr(df) + + def test_frame_info_encoding(self): + index = ["'Til There Was You (1997)", "ldum klaka (Cold Fever) (1994)"] + with option_context("display.max_rows", 1): + df = DataFrame(columns=["a", "b", "c"], index=index) + repr(df) + repr(df.T) + + def test_wide_repr(self): + with option_context( + "mode.sim_interactive", + True, + "display.show_dimensions", + True, + "display.max_columns", + 20, + ): + max_cols = get_option("display.max_columns") + df = DataFrame([["a" * 25] * (max_cols - 1)] * 10) + with option_context("display.expand_frame_repr", False): + rep_str = repr(df) + + assert f"10 rows x {max_cols - 1} columns" in rep_str + with option_context("display.expand_frame_repr", True): + wide_repr = repr(df) + assert rep_str != wide_repr + + with option_context("display.width", 120): + wider_repr = repr(df) + assert len(wider_repr) < len(wide_repr) + + def test_wide_repr_wide_columns(self): + with option_context("mode.sim_interactive", True, "display.max_columns", 20): + df = DataFrame( + np.random.default_rng(2).standard_normal((5, 3)), + columns=["a" * 90, "b" * 90, "c" * 90], + ) + rep_str = repr(df) + + assert len(rep_str.splitlines()) == 20 + + def test_wide_repr_named(self): + with option_context("mode.sim_interactive", True, "display.max_columns", 20): + max_cols = get_option("display.max_columns") + df = DataFrame([["a" * 25] * (max_cols - 1)] * 10) + df.index.name = "DataFrame Index" + with option_context("display.expand_frame_repr", False): + rep_str = repr(df) + with option_context("display.expand_frame_repr", True): + wide_repr = repr(df) + assert rep_str != wide_repr + + with option_context("display.width", 150): + wider_repr = repr(df) + assert len(wider_repr) < len(wide_repr) + + for line in wide_repr.splitlines()[1::13]: + assert "DataFrame Index" in line + + def test_wide_repr_multiindex(self): + with option_context("mode.sim_interactive", True, "display.max_columns", 20): + midx = MultiIndex.from_arrays([["a" * 5] * 10] * 2) + max_cols = get_option("display.max_columns") + df = DataFrame([["a" * 25] * (max_cols - 1)] * 10, index=midx) + df.index.names = ["Level 0", "Level 1"] + with option_context("display.expand_frame_repr", False): + rep_str = repr(df) + with option_context("display.expand_frame_repr", True): + wide_repr = repr(df) + assert rep_str != wide_repr + + with option_context("display.width", 150): + wider_repr = repr(df) + assert len(wider_repr) < len(wide_repr) + + for line in wide_repr.splitlines()[1::13]: + assert "Level 0 Level 1" in line + + def test_wide_repr_multiindex_cols(self): + with option_context("mode.sim_interactive", True, "display.max_columns", 20): + max_cols = get_option("display.max_columns") + midx = MultiIndex.from_arrays([["a" * 5] * 10] * 2) + mcols = MultiIndex.from_arrays([["b" * 3] * (max_cols - 1)] * 2) + df = DataFrame( + [["c" * 25] * (max_cols - 1)] * 10, index=midx, columns=mcols + ) + df.index.names = ["Level 0", "Level 1"] + with option_context("display.expand_frame_repr", False): + rep_str = repr(df) + with option_context("display.expand_frame_repr", True): + wide_repr = repr(df) + assert rep_str != wide_repr + + with option_context("display.width", 150, "display.max_columns", 20): + wider_repr = repr(df) + assert len(wider_repr) < len(wide_repr) + + def test_wide_repr_unicode(self): + with option_context("mode.sim_interactive", True, "display.max_columns", 20): + max_cols = 20 + df = DataFrame([["a" * 25] * 10] * (max_cols - 1)) + with option_context("display.expand_frame_repr", False): + rep_str = repr(df) + with option_context("display.expand_frame_repr", True): + wide_repr = repr(df) + assert rep_str != wide_repr + + with option_context("display.width", 150): + wider_repr = repr(df) + assert len(wider_repr) < len(wide_repr) + + def test_wide_repr_wide_long_columns(self): + with option_context("mode.sim_interactive", True): + df = DataFrame({"a": ["a" * 30, "b" * 30], "b": ["c" * 70, "d" * 80]}) + + result = repr(df) + assert "ccccc" in result + assert "ddddd" in result + + def test_long_series(self): + n = 1000 + s = Series( + np.random.default_rng(2).integers(-50, 50, n), + index=[f"s{x:04d}" for x in range(n)], + dtype="int64", + ) + + str_rep = str(s) + nmatches = len(re.findall("dtype", str_rep)) + assert nmatches == 1 + + def test_to_string_ascii_error(self): + data = [ + ( + "0 ", + " .gitignore ", + " 5 ", + " \xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2", + ) + ] + df = DataFrame(data) + + # it works! + repr(df) + + def test_show_dimensions(self): + df = DataFrame(123, index=range(10, 15), columns=range(30)) + + with option_context( + "display.max_rows", + 10, + "display.max_columns", + 40, + "display.width", + 500, + "display.expand_frame_repr", + "info", + "display.show_dimensions", + True, + ): + assert "5 rows" in str(df) + assert "5 rows" in df._repr_html_() + with option_context( + "display.max_rows", + 10, + "display.max_columns", + 40, + "display.width", + 500, + "display.expand_frame_repr", + "info", + "display.show_dimensions", + False, + ): + assert "5 rows" not in str(df) + assert "5 rows" not in df._repr_html_() + with option_context( + "display.max_rows", + 2, + "display.max_columns", + 2, + "display.width", + 500, + "display.expand_frame_repr", + "info", + "display.show_dimensions", + "truncate", + ): + assert "5 rows" in str(df) + assert "5 rows" in df._repr_html_() + with option_context( + "display.max_rows", + 10, + "display.max_columns", + 40, + "display.width", + 500, + "display.expand_frame_repr", + "info", + "display.show_dimensions", + "truncate", + ): + assert "5 rows" not in str(df) + assert "5 rows" not in df._repr_html_() + + def test_info_repr(self): + # GH#21746 For tests inside a terminal (i.e. not CI) we need to detect + # the terminal size to ensure that we try to print something "too big" + term_width, term_height = get_terminal_size() + + max_rows = 60 + max_cols = 20 + (max(term_width, 80) - 80) // 4 + # Long + h, w = max_rows + 1, max_cols - 1 + df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) + assert has_vertically_truncated_repr(df) + with option_context("display.large_repr", "info"): + assert has_info_repr(df) + + # Wide + h, w = max_rows - 1, max_cols + 1 + df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) + assert has_horizontally_truncated_repr(df) + with option_context( + "display.large_repr", "info", "display.max_columns", max_cols + ): + assert has_info_repr(df) + + def test_info_repr_max_cols(self): + # GH #6939 + df = DataFrame(np.random.default_rng(2).standard_normal((10, 5))) + with option_context( + "display.large_repr", + "info", + "display.max_columns", + 1, + "display.max_info_columns", + 4, + ): + assert has_non_verbose_info_repr(df) + + with option_context( + "display.large_repr", + "info", + "display.max_columns", + 1, + "display.max_info_columns", + 5, + ): + assert not has_non_verbose_info_repr(df) + + # FIXME: don't leave commented-out + # test verbose overrides + # set_option('display.max_info_columns', 4) # exceeded + + def test_pprint_pathological_object(self): + """ + If the test fails, it at least won't hang. + """ + + class A: + def __getitem__(self, key): + return 3 # obviously simplified + + df = DataFrame([A()]) + repr(df) # just don't die + + def test_float_trim_zeros(self): + vals = [ + 2.08430917305e10, + 3.52205017305e10, + 2.30674817305e10, + 2.03954217305e10, + 5.59897817305e10, + ] + skip = True + for line in repr(DataFrame({"A": vals})).split("\n")[:-2]: + if line.startswith("dtype:"): + continue + if _three_digit_exp(): + assert ("+010" in line) or skip + else: + assert ("+10" in line) or skip + skip = False + + @pytest.mark.parametrize( + "data, expected", + [ + (["3.50"], "0 3.50\ndtype: object"), + ([1.20, "1.00"], "0 1.2\n1 1.00\ndtype: object"), + ([np.nan], "0 NaN\ndtype: float64"), + ([None], "0 None\ndtype: object"), + (["3.50", np.nan], "0 3.50\n1 NaN\ndtype: object"), + ([3.50, np.nan], "0 3.5\n1 NaN\ndtype: float64"), + ([3.50, np.nan, "3.50"], "0 3.5\n1 NaN\n2 3.50\ndtype: object"), + ([3.50, None, "3.50"], "0 3.5\n1 None\n2 3.50\ndtype: object"), + ], + ) + def test_repr_str_float_truncation(self, data, expected, using_infer_string): + # GH#38708 + series = Series(data, dtype=object if "3.50" in data else None) + result = repr(series) + assert result == expected + + @pytest.mark.parametrize( + "float_format,expected", + [ + ("{:,.0f}".format, "0 1,000\n1 test\ndtype: object"), + ("{:.4f}".format, "0 1000.0000\n1 test\ndtype: object"), + ], + ) + def test_repr_float_format_in_object_col(self, float_format, expected): + # GH#40024 + df = Series([1000.0, "test"]) + with option_context("display.float_format", float_format): + result = repr(df) + + assert result == expected + + def test_period(self): + # GH 12615 + df = DataFrame( + { + "A": pd.period_range("2013-01", periods=4, freq="M"), + "B": [ + pd.Period("2011-01", freq="M"), + pd.Period("2011-02-01", freq="D"), + pd.Period("2011-03-01 09:00", freq="h"), + pd.Period("2011-04", freq="M"), + ], + "C": list("abcd"), + } + ) + exp = ( + " A B C\n" + "0 2013-01 2011-01 a\n" + "1 2013-02 2011-02-01 b\n" + "2 2013-03 2011-03-01 09:00 c\n" + "3 2013-04 2011-04 d" + ) + assert str(df) == exp + + @pytest.mark.parametrize( + "length, max_rows, min_rows, expected", + [ + (10, 10, 10, 10), + (10, 10, None, 10), + (10, 8, None, 8), + (20, 30, 10, 30), # max_rows > len(frame), hence max_rows + (50, 30, 10, 10), # max_rows < len(frame), hence min_rows + (100, 60, 10, 10), # same + (60, 60, 10, 60), # edge case + (61, 60, 10, 10), # edge case + ], + ) + def test_max_rows_fitted(self, length, min_rows, max_rows, expected): + """Check that display logic is correct. + + GH #37359 + + See description here: + https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options + """ + formatter = fmt.DataFrameFormatter( + DataFrame(np.random.default_rng(2).random((length, 3))), + max_rows=max_rows, + min_rows=min_rows, + ) + result = formatter.max_rows_fitted + assert result == expected + + +def gen_series_formatting(): + s1 = Series(["a"] * 100) + s2 = Series(["ab"] * 100) + s3 = Series(["a", "ab", "abc", "abcd", "abcde", "abcdef"]) + s4 = s3[::-1] + test_sers = {"onel": s1, "twol": s2, "asc": s3, "desc": s4} + return test_sers + + +class TestSeriesFormatting: + def test_freq_name_separation(self): + s = Series( + np.random.default_rng(2).standard_normal(10), + index=date_range("1/1/2000", periods=10), + name=0, + ) + + result = repr(s) + assert "Freq: D, Name: 0" in result + + def test_unicode_name_in_footer(self): + s = Series([1, 2], name="\u05e2\u05d1\u05e8\u05d9\u05ea") + sf = fmt.SeriesFormatter(s, name="\u05e2\u05d1\u05e8\u05d9\u05ea") + sf._get_footer() # should not raise exception + + @pytest.mark.xfail( + using_pyarrow_string_dtype(), reason="Fixup when arrow is default" + ) + def test_east_asian_unicode_series(self): + # not aligned properly because of east asian width + + # unicode index + s = Series(["a", "bb", "CCC", "D"], index=["あ", "いい", "ううう", "ええええ"]) + expected = "".join( + [ + "あ a\n", + "いい bb\n", + "ううう CCC\n", + "ええええ D\ndtype: object", + ] + ) + assert repr(s) == expected + + # unicode values + s = Series(["あ", "いい", "ううう", "ええええ"], index=["a", "bb", "c", "ddd"]) + expected = "".join( + [ + "a あ\n", + "bb いい\n", + "c ううう\n", + "ddd ええええ\n", + "dtype: object", + ] + ) + + assert repr(s) == expected + + # both + s = Series( + ["あ", "いい", "ううう", "ええええ"], + index=["ああ", "いいいい", "う", "えええ"], + ) + expected = "".join( + [ + "ああ あ\n", + "いいいい いい\n", + "う ううう\n", + "えええ ええええ\n", + "dtype: object", + ] + ) + + assert repr(s) == expected + + # unicode footer + s = Series( + ["あ", "いい", "ううう", "ええええ"], + index=["ああ", "いいいい", "う", "えええ"], + name="おおおおおおお", + ) + expected = ( + "ああ あ\nいいいい いい\nう ううう\n" + "えええ ええええ\nName: おおおおおおお, dtype: object" + ) + assert repr(s) == expected + + # MultiIndex + idx = MultiIndex.from_tuples( + [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] + ) + s = Series([1, 22, 3333, 44444], index=idx) + expected = ( + "あ いい 1\n" + "う え 22\n" + "おおお かかかか 3333\n" + "き くく 44444\ndtype: int64" + ) + assert repr(s) == expected + + # object dtype, shorter than unicode repr + s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) + expected = ( + "1 1\nAB 22\nNaN 3333\nあああ 44444\ndtype: int64" + ) + assert repr(s) == expected + + # object dtype, longer than unicode repr + s = Series( + [1, 22, 3333, 44444], index=[1, "AB", Timestamp("2011-01-01"), "あああ"] + ) + expected = ( + "1 1\n" + "AB 22\n" + "2011-01-01 00:00:00 3333\n" + "あああ 44444\ndtype: int64" + ) + assert repr(s) == expected + + # truncate + with option_context("display.max_rows", 3): + s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") + + expected = ( + "0 あ\n ... \n" + "3 ええええ\n" + "Name: おおおおおおお, Length: 4, dtype: object" + ) + assert repr(s) == expected + + s.index = ["ああ", "いいいい", "う", "えええ"] + expected = ( + "ああ あ\n ... \n" + "えええ ええええ\n" + "Name: おおおおおおお, Length: 4, dtype: object" + ) + assert repr(s) == expected + + # Enable Unicode option ----------------------------------------- + with option_context("display.unicode.east_asian_width", True): + # unicode index + s = Series( + ["a", "bb", "CCC", "D"], + index=["あ", "いい", "ううう", "ええええ"], + ) + expected = ( + "あ a\nいい bb\nううう CCC\n" + "ええええ D\ndtype: object" + ) + assert repr(s) == expected + + # unicode values + s = Series( + ["あ", "いい", "ううう", "ええええ"], + index=["a", "bb", "c", "ddd"], + ) + expected = ( + "a あ\nbb いい\nc ううう\n" + "ddd ええええ\ndtype: object" + ) + assert repr(s) == expected + # both + s = Series( + ["あ", "いい", "ううう", "ええええ"], + index=["ああ", "いいいい", "う", "えええ"], + ) + expected = ( + "ああ あ\n" + "いいいい いい\n" + "う ううう\n" + "えええ ええええ\ndtype: object" + ) + assert repr(s) == expected + + # unicode footer + s = Series( + ["あ", "いい", "ううう", "ええええ"], + index=["ああ", "いいいい", "う", "えええ"], + name="おおおおおおお", + ) + expected = ( + "ああ あ\n" + "いいいい いい\n" + "う ううう\n" + "えええ ええええ\n" + "Name: おおおおおおお, dtype: object" + ) + assert repr(s) == expected + + # MultiIndex + idx = MultiIndex.from_tuples( + [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] + ) + s = Series([1, 22, 3333, 44444], index=idx) + expected = ( + "あ いい 1\n" + "う え 22\n" + "おおお かかかか 3333\n" + "き くく 44444\n" + "dtype: int64" + ) + assert repr(s) == expected + + # object dtype, shorter than unicode repr + s = Series([1, 22, 3333, 44444], index=[1, "AB", np.nan, "あああ"]) + expected = ( + "1 1\nAB 22\nNaN 3333\n" + "あああ 44444\ndtype: int64" + ) + assert repr(s) == expected + + # object dtype, longer than unicode repr + s = Series( + [1, 22, 3333, 44444], + index=[1, "AB", Timestamp("2011-01-01"), "あああ"], + ) + expected = ( + "1 1\n" + "AB 22\n" + "2011-01-01 00:00:00 3333\n" + "あああ 44444\ndtype: int64" + ) + assert repr(s) == expected + + # truncate + with option_context("display.max_rows", 3): + s = Series(["あ", "いい", "ううう", "ええええ"], name="おおおおおおお") + expected = ( + "0 あ\n ... \n" + "3 ええええ\n" + "Name: おおおおおおお, Length: 4, dtype: object" + ) + assert repr(s) == expected + + s.index = ["ああ", "いいいい", "う", "えええ"] + expected = ( + "ああ あ\n" + " ... \n" + "えええ ええええ\n" + "Name: おおおおおおお, Length: 4, dtype: object" + ) + assert repr(s) == expected + + # ambiguous unicode + s = Series( + ["¡¡", "い¡¡", "ううう", "ええええ"], + index=["ああ", "¡¡¡¡いい", "¡¡", "えええ"], + ) + expected = ( + "ああ ¡¡\n" + "¡¡¡¡いい い¡¡\n" + "¡¡ ううう\n" + "えええ ええええ\ndtype: object" + ) + assert repr(s) == expected + + def test_float_trim_zeros(self): + vals = [ + 2.08430917305e10, + 3.52205017305e10, + 2.30674817305e10, + 2.03954217305e10, + 5.59897817305e10, + ] + for line in repr(Series(vals)).split("\n"): + if line.startswith("dtype:"): + continue + if _three_digit_exp(): + assert "+010" in line + else: + assert "+10" in line + + @pytest.mark.parametrize( + "start_date", + [ + "2017-01-01 23:59:59.999999999", + "2017-01-01 23:59:59.99999999", + "2017-01-01 23:59:59.9999999", + "2017-01-01 23:59:59.999999", + "2017-01-01 23:59:59.99999", + "2017-01-01 23:59:59.9999", + ], + ) + def test_datetimeindex_highprecision(self, start_date): + # GH19030 + # Check that high-precision time values for the end of day are + # included in repr for DatetimeIndex + s1 = Series(date_range(start=start_date, freq="D", periods=5)) + result = str(s1) + assert start_date in result + + dti = date_range(start=start_date, freq="D", periods=5) + s2 = Series(3, index=dti) + result = str(s2.index) + assert start_date in result + + def test_mixed_datetime64(self): + df = DataFrame({"A": [1, 2], "B": ["2012-01-01", "2012-01-02"]}) + df["B"] = pd.to_datetime(df.B) + + result = repr(df.loc[0]) + assert "2012-01-01" in result + + def test_period(self): + # GH 12615 + index = pd.period_range("2013-01", periods=6, freq="M") + s = Series(np.arange(6, dtype="int64"), index=index) + exp = ( + "2013-01 0\n" + "2013-02 1\n" + "2013-03 2\n" + "2013-04 3\n" + "2013-05 4\n" + "2013-06 5\n" + "Freq: M, dtype: int64" + ) + assert str(s) == exp + + s = Series(index) + exp = ( + "0 2013-01\n" + "1 2013-02\n" + "2 2013-03\n" + "3 2013-04\n" + "4 2013-05\n" + "5 2013-06\n" + "dtype: period[M]" + ) + assert str(s) == exp + + # periods with mixed freq + s = Series( + [ + pd.Period("2011-01", freq="M"), + pd.Period("2011-02-01", freq="D"), + pd.Period("2011-03-01 09:00", freq="h"), + ] + ) + exp = ( + "0 2011-01\n1 2011-02-01\n" + "2 2011-03-01 09:00\ndtype: object" + ) + assert str(s) == exp + + def test_max_multi_index_display(self): + # GH 7101 + + # doc example (indexing.rst) + + # multi-index + arrays = [ + ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], + ["one", "two", "one", "two", "one", "two", "one", "two"], + ] + tuples = list(zip(*arrays)) + index = MultiIndex.from_tuples(tuples, names=["first", "second"]) + s = Series(np.random.default_rng(2).standard_normal(8), index=index) + + with option_context("display.max_rows", 10): + assert len(str(s).split("\n")) == 10 + with option_context("display.max_rows", 3): + assert len(str(s).split("\n")) == 5 + with option_context("display.max_rows", 2): + assert len(str(s).split("\n")) == 5 + with option_context("display.max_rows", 1): + assert len(str(s).split("\n")) == 4 + with option_context("display.max_rows", 0): + assert len(str(s).split("\n")) == 10 + + # index + s = Series(np.random.default_rng(2).standard_normal(8), None) + + with option_context("display.max_rows", 10): + assert len(str(s).split("\n")) == 9 + with option_context("display.max_rows", 3): + assert len(str(s).split("\n")) == 4 + with option_context("display.max_rows", 2): + assert len(str(s).split("\n")) == 4 + with option_context("display.max_rows", 1): + assert len(str(s).split("\n")) == 3 + with option_context("display.max_rows", 0): + assert len(str(s).split("\n")) == 9 + + # Make sure #8532 is fixed + def test_consistent_format(self): + s = Series([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9999, 1, 1] * 10) + with option_context("display.max_rows", 10, "display.show_dimensions", False): + res = repr(s) + exp = ( + "0 1.0000\n1 1.0000\n2 1.0000\n3 " + "1.0000\n4 1.0000\n ... \n125 " + "1.0000\n126 1.0000\n127 0.9999\n128 " + "1.0000\n129 1.0000\ndtype: float64" + ) + assert res == exp + + def chck_ncols(self, s): + lines = [ + line for line in repr(s).split("\n") if not re.match(r"[^\.]*\.+", line) + ][:-1] + ncolsizes = len({len(line.strip()) for line in lines}) + assert ncolsizes == 1 + + @pytest.mark.xfail( + using_pyarrow_string_dtype(), reason="change when arrow is default" + ) + def test_format_explicit(self): + test_sers = gen_series_formatting() + with option_context("display.max_rows", 4, "display.show_dimensions", False): + res = repr(test_sers["onel"]) + exp = "0 a\n1 a\n ..\n98 a\n99 a\ndtype: object" + assert exp == res + res = repr(test_sers["twol"]) + exp = "0 ab\n1 ab\n ..\n98 ab\n99 ab\ndtype: object" + assert exp == res + res = repr(test_sers["asc"]) + exp = ( + "0 a\n1 ab\n ... \n4 abcde\n5 " + "abcdef\ndtype: object" + ) + assert exp == res + res = repr(test_sers["desc"]) + exp = ( + "5 abcdef\n4 abcde\n ... \n1 ab\n0 " + "a\ndtype: object" + ) + assert exp == res + + def test_ncols(self): + test_sers = gen_series_formatting() + for s in test_sers.values(): + self.chck_ncols(s) + + def test_max_rows_eq_one(self): + s = Series(range(10), dtype="int64") + with option_context("display.max_rows", 1): + strrepr = repr(s).split("\n") + exp1 = ["0", "0"] + res1 = strrepr[0].split() + assert exp1 == res1 + exp2 = [".."] + res2 = strrepr[1].split() + assert exp2 == res2 + + def test_truncate_ndots(self): + def getndots(s): + return len(re.match(r"[^\.]*(\.*)", s).groups()[0]) + + s = Series([0, 2, 3, 6]) + with option_context("display.max_rows", 2): + strrepr = repr(s).replace("\n", "") + assert getndots(strrepr) == 2 + + s = Series([0, 100, 200, 400]) + with option_context("display.max_rows", 2): + strrepr = repr(s).replace("\n", "") + assert getndots(strrepr) == 3 + + def test_show_dimensions(self): + # gh-7117 + s = Series(range(5)) + + assert "Length" not in repr(s) + + with option_context("display.max_rows", 4): + assert "Length" in repr(s) + + with option_context("display.show_dimensions", True): + assert "Length" in repr(s) + + with option_context("display.max_rows", 4, "display.show_dimensions", False): + assert "Length" not in repr(s) + + def test_repr_min_rows(self): + s = Series(range(20)) + + # default setting no truncation even if above min_rows + assert ".." not in repr(s) + + s = Series(range(61)) + + # default of max_rows 60 triggers truncation if above + assert ".." in repr(s) + + with option_context("display.max_rows", 10, "display.min_rows", 4): + # truncated after first two rows + assert ".." in repr(s) + assert "2 " not in repr(s) + + with option_context("display.max_rows", 12, "display.min_rows", None): + # when set to None, follow value of max_rows + assert "5 5" in repr(s) + + with option_context("display.max_rows", 10, "display.min_rows", 12): + # when set value higher as max_rows, use the minimum + assert "5 5" not in repr(s) + + with option_context("display.max_rows", None, "display.min_rows", 12): + # max_rows of None -> never truncate + assert ".." not in repr(s) + + +class TestGenericArrayFormatter: + def test_1d_array(self): + # _GenericArrayFormatter is used on types for which there isn't a dedicated + # formatter. np.bool_ is one of those types. + obj = fmt._GenericArrayFormatter(np.array([True, False])) + res = obj.get_result() + assert len(res) == 2 + # Results should be right-justified. + assert res[0] == " True" + assert res[1] == " False" + + def test_2d_array(self): + obj = fmt._GenericArrayFormatter(np.array([[True, False], [False, True]])) + res = obj.get_result() + assert len(res) == 2 + assert res[0] == " [True, False]" + assert res[1] == " [False, True]" + + def test_3d_array(self): + obj = fmt._GenericArrayFormatter( + np.array([[[True, True], [False, False]], [[False, True], [True, False]]]) + ) + res = obj.get_result() + assert len(res) == 2 + assert res[0] == " [[True, True], [False, False]]" + assert res[1] == " [[False, True], [True, False]]" + + def test_2d_extension_type(self): + # GH 33770 + + # Define a stub extension type with just enough code to run Series.__repr__() + class DtypeStub(pd.api.extensions.ExtensionDtype): + @property + def type(self): + return np.ndarray + + @property + def name(self): + return "DtypeStub" + + class ExtTypeStub(pd.api.extensions.ExtensionArray): + def __len__(self) -> int: + return 2 + + def __getitem__(self, ix): + return [ix == 1, ix == 0] + + @property + def dtype(self): + return DtypeStub() + + series = Series(ExtTypeStub(), copy=False) + res = repr(series) # This line crashed before #33770 was fixed. + expected = "\n".join( + ["0 [False True]", "1 [True False]", "dtype: DtypeStub"] + ) + assert res == expected + + +def _three_digit_exp(): + return f"{1.7e8:.4g}" == "1.7e+008" + + +class TestFloatArrayFormatter: + def test_misc(self): + obj = fmt.FloatArrayFormatter(np.array([], dtype=np.float64)) + result = obj.get_result() + assert len(result) == 0 + + def test_format(self): + obj = fmt.FloatArrayFormatter(np.array([12, 0], dtype=np.float64)) + result = obj.get_result() + assert result[0] == " 12.0" + assert result[1] == " 0.0" + + def test_output_display_precision_trailing_zeroes(self): + # Issue #20359: trimming zeros while there is no decimal point + + # Happens when display precision is set to zero + with option_context("display.precision", 0): + s = Series([840.0, 4200.0]) + expected_output = "0 840\n1 4200\ndtype: float64" + assert str(s) == expected_output + + @pytest.mark.parametrize( + "value,expected", + [ + ([9.4444], " 0\n0 9"), + ([0.49], " 0\n0 5e-01"), + ([10.9999], " 0\n0 11"), + ([9.5444, 9.6], " 0\n0 10\n1 10"), + ([0.46, 0.78, -9.9999], " 0\n0 5e-01\n1 8e-01\n2 -1e+01"), + ], + ) + def test_set_option_precision(self, value, expected): + # Issue #30122 + # Precision was incorrectly shown + + with option_context("display.precision", 0): + df_value = DataFrame(value) + assert str(df_value) == expected + + def test_output_significant_digits(self): + # Issue #9764 + + # In case default display precision changes: + with option_context("display.precision", 6): + # DataFrame example from issue #9764 + d = DataFrame( + { + "col1": [ + 9.999e-8, + 1e-7, + 1.0001e-7, + 2e-7, + 4.999e-7, + 5e-7, + 5.0001e-7, + 6e-7, + 9.999e-7, + 1e-6, + 1.0001e-6, + 2e-6, + 4.999e-6, + 5e-6, + 5.0001e-6, + 6e-6, + ] + } + ) + + expected_output = { + (0, 6): " col1\n" + "0 9.999000e-08\n" + "1 1.000000e-07\n" + "2 1.000100e-07\n" + "3 2.000000e-07\n" + "4 4.999000e-07\n" + "5 5.000000e-07", + (1, 6): " col1\n" + "1 1.000000e-07\n" + "2 1.000100e-07\n" + "3 2.000000e-07\n" + "4 4.999000e-07\n" + "5 5.000000e-07", + (1, 8): " col1\n" + "1 1.000000e-07\n" + "2 1.000100e-07\n" + "3 2.000000e-07\n" + "4 4.999000e-07\n" + "5 5.000000e-07\n" + "6 5.000100e-07\n" + "7 6.000000e-07", + (8, 16): " col1\n" + "8 9.999000e-07\n" + "9 1.000000e-06\n" + "10 1.000100e-06\n" + "11 2.000000e-06\n" + "12 4.999000e-06\n" + "13 5.000000e-06\n" + "14 5.000100e-06\n" + "15 6.000000e-06", + (9, 16): " col1\n" + "9 0.000001\n" + "10 0.000001\n" + "11 0.000002\n" + "12 0.000005\n" + "13 0.000005\n" + "14 0.000005\n" + "15 0.000006", + } + + for (start, stop), v in expected_output.items(): + assert str(d[start:stop]) == v + + def test_too_long(self): + # GH 10451 + with option_context("display.precision", 4): + # need both a number > 1e6 and something that normally formats to + # having length > display.precision + 6 + df = DataFrame({"x": [12345.6789]}) + assert str(df) == " x\n0 12345.6789" + df = DataFrame({"x": [2e6]}) + assert str(df) == " x\n0 2000000.0" + df = DataFrame({"x": [12345.6789, 2e6]}) + assert str(df) == " x\n0 1.2346e+04\n1 2.0000e+06" + + +class TestTimedelta64Formatter: + def test_days(self): + x = pd.to_timedelta(list(range(5)) + [NaT], unit="D")._values + result = fmt._Timedelta64Formatter(x).get_result() + assert result[0].strip() == "0 days" + assert result[1].strip() == "1 days" + + result = fmt._Timedelta64Formatter(x[1:2]).get_result() + assert result[0].strip() == "1 days" + + result = fmt._Timedelta64Formatter(x).get_result() + assert result[0].strip() == "0 days" + assert result[1].strip() == "1 days" + + result = fmt._Timedelta64Formatter(x[1:2]).get_result() + assert result[0].strip() == "1 days" + + def test_days_neg(self): + x = pd.to_timedelta(list(range(5)) + [NaT], unit="D")._values + result = fmt._Timedelta64Formatter(-x).get_result() + assert result[0].strip() == "0 days" + assert result[1].strip() == "-1 days" + + def test_subdays(self): + y = pd.to_timedelta(list(range(5)) + [NaT], unit="s")._values + result = fmt._Timedelta64Formatter(y).get_result() + assert result[0].strip() == "0 days 00:00:00" + assert result[1].strip() == "0 days 00:00:01" + + def test_subdays_neg(self): + y = pd.to_timedelta(list(range(5)) + [NaT], unit="s")._values + result = fmt._Timedelta64Formatter(-y).get_result() + assert result[0].strip() == "0 days 00:00:00" + assert result[1].strip() == "-1 days +23:59:59" + + def test_zero(self): + x = pd.to_timedelta(list(range(1)) + [NaT], unit="D")._values + result = fmt._Timedelta64Formatter(x).get_result() + assert result[0].strip() == "0 days" + + x = pd.to_timedelta(list(range(1)), unit="D")._values + result = fmt._Timedelta64Formatter(x).get_result() + assert result[0].strip() == "0 days" + + +class TestDatetime64Formatter: + def test_mixed(self): + x = Series([datetime(2013, 1, 1), datetime(2013, 1, 1, 12), NaT])._values + result = fmt._Datetime64Formatter(x).get_result() + assert result[0].strip() == "2013-01-01 00:00:00" + assert result[1].strip() == "2013-01-01 12:00:00" + + def test_dates(self): + x = Series([datetime(2013, 1, 1), datetime(2013, 1, 2), NaT])._values + result = fmt._Datetime64Formatter(x).get_result() + assert result[0].strip() == "2013-01-01" + assert result[1].strip() == "2013-01-02" + + def test_date_nanos(self): + x = Series([Timestamp(200)])._values + result = fmt._Datetime64Formatter(x).get_result() + assert result[0].strip() == "1970-01-01 00:00:00.000000200" + + def test_dates_display(self): + # 10170 + # make sure that we are consistently display date formatting + x = Series(date_range("20130101 09:00:00", periods=5, freq="D")) + x.iloc[1] = np.nan + result = fmt._Datetime64Formatter(x._values).get_result() + assert result[0].strip() == "2013-01-01 09:00:00" + assert result[1].strip() == "NaT" + assert result[4].strip() == "2013-01-05 09:00:00" + + x = Series(date_range("20130101 09:00:00", periods=5, freq="s")) + x.iloc[1] = np.nan + result = fmt._Datetime64Formatter(x._values).get_result() + assert result[0].strip() == "2013-01-01 09:00:00" + assert result[1].strip() == "NaT" + assert result[4].strip() == "2013-01-01 09:00:04" + + x = Series(date_range("20130101 09:00:00", periods=5, freq="ms")) + x.iloc[1] = np.nan + result = fmt._Datetime64Formatter(x._values).get_result() + assert result[0].strip() == "2013-01-01 09:00:00.000" + assert result[1].strip() == "NaT" + assert result[4].strip() == "2013-01-01 09:00:00.004" + + x = Series(date_range("20130101 09:00:00", periods=5, freq="us")) + x.iloc[1] = np.nan + result = fmt._Datetime64Formatter(x._values).get_result() + assert result[0].strip() == "2013-01-01 09:00:00.000000" + assert result[1].strip() == "NaT" + assert result[4].strip() == "2013-01-01 09:00:00.000004" + + x = Series(date_range("20130101 09:00:00", periods=5, freq="ns")) + x.iloc[1] = np.nan + result = fmt._Datetime64Formatter(x._values).get_result() + assert result[0].strip() == "2013-01-01 09:00:00.000000000" + assert result[1].strip() == "NaT" + assert result[4].strip() == "2013-01-01 09:00:00.000000004" + + def test_datetime64formatter_yearmonth(self): + x = Series([datetime(2016, 1, 1), datetime(2016, 2, 2)])._values + + def format_func(x): + return x.strftime("%Y-%m") + + formatter = fmt._Datetime64Formatter(x, formatter=format_func) + result = formatter.get_result() + assert result == ["2016-01", "2016-02"] + + def test_datetime64formatter_hoursecond(self): + x = Series( + pd.to_datetime(["10:10:10.100", "12:12:12.120"], format="%H:%M:%S.%f") + )._values + + def format_func(x): + return x.strftime("%H:%M") + + formatter = fmt._Datetime64Formatter(x, formatter=format_func) + result = formatter.get_result() + assert result == ["10:10", "12:12"] + + def test_datetime64formatter_tz_ms(self): + x = ( + Series( + np.array(["2999-01-01", "2999-01-02", "NaT"], dtype="datetime64[ms]") + ) + .dt.tz_localize("US/Pacific") + ._values + ) + result = fmt._Datetime64TZFormatter(x).get_result() + assert result[0].strip() == "2999-01-01 00:00:00-08:00" + assert result[1].strip() == "2999-01-02 00:00:00-08:00" + + +class TestFormatPercentiles: + @pytest.mark.parametrize( + "percentiles, expected", + [ + ( + [0.01999, 0.02001, 0.5, 0.666666, 0.9999], + ["1.999%", "2.001%", "50%", "66.667%", "99.99%"], + ), + ( + [0, 0.5, 0.02001, 0.5, 0.666666, 0.9999], + ["0%", "50%", "2.0%", "50%", "66.67%", "99.99%"], + ), + ([0.281, 0.29, 0.57, 0.58], ["28.1%", "29%", "57%", "58%"]), + ([0.28, 0.29, 0.57, 0.58], ["28%", "29%", "57%", "58%"]), + ( + [0.9, 0.99, 0.999, 0.9999, 0.99999], + ["90%", "99%", "99.9%", "99.99%", "99.999%"], + ), + ], + ) + def test_format_percentiles(self, percentiles, expected): + result = fmt.format_percentiles(percentiles) + assert result == expected + + @pytest.mark.parametrize( + "percentiles", + [ + ([0.1, np.nan, 0.5]), + ([-0.001, 0.1, 0.5]), + ([2, 0.1, 0.5]), + ([0.1, 0.5, "a"]), + ], + ) + def test_error_format_percentiles(self, percentiles): + msg = r"percentiles should all be in the interval \[0,1\]" + with pytest.raises(ValueError, match=msg): + fmt.format_percentiles(percentiles) + + def test_format_percentiles_integer_idx(self): + # Issue #26660 + result = fmt.format_percentiles(np.linspace(0, 1, 10 + 1)) + expected = [ + "0%", + "10%", + "20%", + "30%", + "40%", + "50%", + "60%", + "70%", + "80%", + "90%", + "100%", + ] + assert result == expected + + +@pytest.mark.parametrize("method", ["to_string", "to_html", "to_latex"]) +@pytest.mark.parametrize( + "encoding, data", + [(None, "abc"), ("utf-8", "abc"), ("gbk", "造成输出中文显示乱码"), ("foo", "abc")], +) +def test_filepath_or_buffer_arg( + method, + filepath_or_buffer, + assert_filepath_or_buffer_equals, + encoding, + data, + filepath_or_buffer_id, +): + df = DataFrame([data]) + if method in ["to_latex"]: # uses styler implementation + pytest.importorskip("jinja2") + + if filepath_or_buffer_id not in ["string", "pathlike"] and encoding is not None: + with pytest.raises( + ValueError, match="buf is not a file name and encoding is specified." + ): + getattr(df, method)(buf=filepath_or_buffer, encoding=encoding) + elif encoding == "foo": + with pytest.raises(LookupError, match="unknown encoding"): + getattr(df, method)(buf=filepath_or_buffer, encoding=encoding) + else: + expected = getattr(df, method)() + getattr(df, method)(buf=filepath_or_buffer, encoding=encoding) + assert_filepath_or_buffer_equals(expected) + + +@pytest.mark.parametrize("method", ["to_string", "to_html", "to_latex"]) +def test_filepath_or_buffer_bad_arg_raises(float_frame, method): + if method in ["to_latex"]: # uses styler implementation + pytest.importorskip("jinja2") + msg = "buf is not a file name and it has no write method" + with pytest.raises(TypeError, match=msg): + getattr(float_frame, method)(buf=object()) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_ipython_compat.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_ipython_compat.py new file mode 100644 index 0000000000000000000000000000000000000000..8512f41396906de1f59bbb23d4b535f82c546132 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_ipython_compat.py @@ -0,0 +1,90 @@ +import numpy as np + +import pandas._config.config as cf + +from pandas import ( + DataFrame, + MultiIndex, +) + + +class TestTableSchemaRepr: + def test_publishes(self, ip): + ipython = ip.instance(config=ip.config) + df = DataFrame({"A": [1, 2]}) + objects = [df["A"], df] # dataframe / series + expected_keys = [ + {"text/plain", "application/vnd.dataresource+json"}, + {"text/plain", "text/html", "application/vnd.dataresource+json"}, + ] + + opt = cf.option_context("display.html.table_schema", True) + last_obj = None + for obj, expected in zip(objects, expected_keys): + last_obj = obj + with opt: + formatted = ipython.display_formatter.format(obj) + assert set(formatted[0].keys()) == expected + + with_latex = cf.option_context("styler.render.repr", "latex") + + with opt, with_latex: + formatted = ipython.display_formatter.format(last_obj) + + expected = { + "text/plain", + "text/html", + "text/latex", + "application/vnd.dataresource+json", + } + assert set(formatted[0].keys()) == expected + + def test_publishes_not_implemented(self, ip): + # column MultiIndex + # GH#15996 + midx = MultiIndex.from_product([["A", "B"], ["a", "b", "c"]]) + df = DataFrame( + np.random.default_rng(2).standard_normal((5, len(midx))), columns=midx + ) + + opt = cf.option_context("display.html.table_schema", True) + + with opt: + formatted = ip.instance(config=ip.config).display_formatter.format(df) + + expected = {"text/plain", "text/html"} + assert set(formatted[0].keys()) == expected + + def test_config_on(self): + df = DataFrame({"A": [1, 2]}) + with cf.option_context("display.html.table_schema", True): + result = df._repr_data_resource_() + + assert result is not None + + def test_config_default_off(self): + df = DataFrame({"A": [1, 2]}) + with cf.option_context("display.html.table_schema", False): + result = df._repr_data_resource_() + + assert result is None + + def test_enable_data_resource_formatter(self, ip): + # GH#10491 + formatters = ip.instance(config=ip.config).display_formatter.formatters + mimetype = "application/vnd.dataresource+json" + + with cf.option_context("display.html.table_schema", True): + assert "application/vnd.dataresource+json" in formatters + assert formatters[mimetype].enabled + + # still there, just disabled + assert "application/vnd.dataresource+json" in formatters + assert not formatters[mimetype].enabled + + # able to re-set + with cf.option_context("display.html.table_schema", True): + assert "application/vnd.dataresource+json" in formatters + assert formatters[mimetype].enabled + # smoke test that it works + ip.instance(config=ip.config).display_formatter.format(cf) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_printing.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_printing.py new file mode 100644 index 0000000000000000000000000000000000000000..acf2bc72c687d44dd1769468d21fba1bb04443b0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_printing.py @@ -0,0 +1,129 @@ +# Note! This file is aimed specifically at pandas.io.formats.printing utility +# functions, not the general printing of pandas objects. +import string + +import pandas._config.config as cf + +from pandas.io.formats import printing + + +def test_adjoin(): + data = [["a", "b", "c"], ["dd", "ee", "ff"], ["ggg", "hhh", "iii"]] + expected = "a dd ggg\nb ee hhh\nc ff iii" + + adjoined = printing.adjoin(2, *data) + + assert adjoined == expected + + +class TestPPrintThing: + def test_repr_binary_type(self): + letters = string.ascii_letters + try: + raw = bytes(letters, encoding=cf.get_option("display.encoding")) + except TypeError: + raw = bytes(letters) + b = str(raw.decode("utf-8")) + res = printing.pprint_thing(b, quote_strings=True) + assert res == repr(b) + res = printing.pprint_thing(b, quote_strings=False) + assert res == b + + def test_repr_obeys_max_seq_limit(self): + with cf.option_context("display.max_seq_items", 2000): + assert len(printing.pprint_thing(list(range(1000)))) > 1000 + + with cf.option_context("display.max_seq_items", 5): + assert len(printing.pprint_thing(list(range(1000)))) < 100 + + with cf.option_context("display.max_seq_items", 1): + assert len(printing.pprint_thing(list(range(1000)))) < 9 + + def test_repr_set(self): + assert printing.pprint_thing({1}) == "{1}" + + +class TestFormatBase: + def test_adjoin(self): + data = [["a", "b", "c"], ["dd", "ee", "ff"], ["ggg", "hhh", "iii"]] + expected = "a dd ggg\nb ee hhh\nc ff iii" + + adjoined = printing.adjoin(2, *data) + + assert adjoined == expected + + def test_adjoin_unicode(self): + data = [["あ", "b", "c"], ["dd", "ええ", "ff"], ["ggg", "hhh", "いいい"]] + expected = "あ dd ggg\nb ええ hhh\nc ff いいい" + adjoined = printing.adjoin(2, *data) + assert adjoined == expected + + adj = printing._EastAsianTextAdjustment() + + expected = """あ dd ggg +b ええ hhh +c ff いいい""" + + adjoined = adj.adjoin(2, *data) + assert adjoined == expected + cols = adjoined.split("\n") + assert adj.len(cols[0]) == 13 + assert adj.len(cols[1]) == 13 + assert adj.len(cols[2]) == 16 + + expected = """あ dd ggg +b ええ hhh +c ff いいい""" + + adjoined = adj.adjoin(7, *data) + assert adjoined == expected + cols = adjoined.split("\n") + assert adj.len(cols[0]) == 23 + assert adj.len(cols[1]) == 23 + assert adj.len(cols[2]) == 26 + + def test_justify(self): + adj = printing._EastAsianTextAdjustment() + + def just(x, *args, **kwargs): + # wrapper to test single str + return adj.justify([x], *args, **kwargs)[0] + + assert just("abc", 5, mode="left") == "abc " + assert just("abc", 5, mode="center") == " abc " + assert just("abc", 5, mode="right") == " abc" + assert just("abc", 5, mode="left") == "abc " + assert just("abc", 5, mode="center") == " abc " + assert just("abc", 5, mode="right") == " abc" + + assert just("パンダ", 5, mode="left") == "パンダ" + assert just("パンダ", 5, mode="center") == "パンダ" + assert just("パンダ", 5, mode="right") == "パンダ" + + assert just("パンダ", 10, mode="left") == "パンダ " + assert just("パンダ", 10, mode="center") == " パンダ " + assert just("パンダ", 10, mode="right") == " パンダ" + + def test_east_asian_len(self): + adj = printing._EastAsianTextAdjustment() + + assert adj.len("abc") == 3 + assert adj.len("abc") == 3 + + assert adj.len("パンダ") == 6 + assert adj.len("パンダ") == 5 + assert adj.len("パンダpanda") == 11 + assert adj.len("パンダpanda") == 10 + + def test_ambiguous_width(self): + adj = printing._EastAsianTextAdjustment() + assert adj.len("¡¡ab") == 4 + + with cf.option_context("display.unicode.ambiguous_as_wide", True): + adj = printing._EastAsianTextAdjustment() + assert adj.len("¡¡ab") == 6 + + data = [["あ", "b", "c"], ["dd", "ええ", "ff"], ["ggg", "¡¡ab", "いいい"]] + expected = "あ dd ggg \nb ええ ¡¡ab\nc ff いいい" + adjoined = adj.adjoin(2, *data) + assert adjoined == expected diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_csv.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_csv.py new file mode 100644 index 0000000000000000000000000000000000000000..0db49a73621eab7fa59a76827a50b862fad41dca --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_csv.py @@ -0,0 +1,758 @@ +import io +import os +import sys +from zipfile import ZipFile + +from _csv import Error +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + Index, + compat, +) +import pandas._testing as tm + + +class TestToCSV: + def test_to_csv_with_single_column(self): + # see gh-18676, https://bugs.python.org/issue32255 + # + # Python's CSV library adds an extraneous '""' + # before the newline when the NaN-value is in + # the first row. Otherwise, only the newline + # character is added. This behavior is inconsistent + # and was patched in https://bugs.python.org/pull_request4672. + df1 = DataFrame([None, 1]) + expected1 = """\ +"" +1.0 +""" + with tm.ensure_clean("test.csv") as path: + df1.to_csv(path, header=None, index=None) + with open(path, encoding="utf-8") as f: + assert f.read() == expected1 + + df2 = DataFrame([1, None]) + expected2 = """\ +1.0 +"" +""" + with tm.ensure_clean("test.csv") as path: + df2.to_csv(path, header=None, index=None) + with open(path, encoding="utf-8") as f: + assert f.read() == expected2 + + def test_to_csv_default_encoding(self): + # GH17097 + df = DataFrame({"col": ["AAAAA", "ÄÄÄÄÄ", "ßßßßß", "聞聞聞聞聞"]}) + + with tm.ensure_clean("test.csv") as path: + # the default to_csv encoding is uft-8. + df.to_csv(path) + tm.assert_frame_equal(pd.read_csv(path, index_col=0), df) + + def test_to_csv_quotechar(self): + df = DataFrame({"col": [1, 2]}) + expected = """\ +"","col" +"0","1" +"1","2" +""" + + with tm.ensure_clean("test.csv") as path: + df.to_csv(path, quoting=1) # 1=QUOTE_ALL + with open(path, encoding="utf-8") as f: + assert f.read() == expected + + expected = """\ +$$,$col$ +$0$,$1$ +$1$,$2$ +""" + + with tm.ensure_clean("test.csv") as path: + df.to_csv(path, quoting=1, quotechar="$") + with open(path, encoding="utf-8") as f: + assert f.read() == expected + + with tm.ensure_clean("test.csv") as path: + with pytest.raises(TypeError, match="quotechar"): + df.to_csv(path, quoting=1, quotechar=None) + + def test_to_csv_doublequote(self): + df = DataFrame({"col": ['a"a', '"bb"']}) + expected = '''\ +"","col" +"0","a""a" +"1","""bb""" +''' + + with tm.ensure_clean("test.csv") as path: + df.to_csv(path, quoting=1, doublequote=True) # QUOTE_ALL + with open(path, encoding="utf-8") as f: + assert f.read() == expected + + with tm.ensure_clean("test.csv") as path: + with pytest.raises(Error, match="escapechar"): + df.to_csv(path, doublequote=False) # no escapechar set + + def test_to_csv_escapechar(self): + df = DataFrame({"col": ['a"a', '"bb"']}) + expected = """\ +"","col" +"0","a\\"a" +"1","\\"bb\\"" +""" + + with tm.ensure_clean("test.csv") as path: # QUOTE_ALL + df.to_csv(path, quoting=1, doublequote=False, escapechar="\\") + with open(path, encoding="utf-8") as f: + assert f.read() == expected + + df = DataFrame({"col": ["a,a", ",bb,"]}) + expected = """\ +,col +0,a\\,a +1,\\,bb\\, +""" + + with tm.ensure_clean("test.csv") as path: + df.to_csv(path, quoting=3, escapechar="\\") # QUOTE_NONE + with open(path, encoding="utf-8") as f: + assert f.read() == expected + + def test_csv_to_string(self): + df = DataFrame({"col": [1, 2]}) + expected_rows = [",col", "0,1", "1,2"] + expected = tm.convert_rows_list_to_csv_str(expected_rows) + assert df.to_csv() == expected + + def test_to_csv_decimal(self): + # see gh-781 + df = DataFrame({"col1": [1], "col2": ["a"], "col3": [10.1]}) + + expected_rows = [",col1,col2,col3", "0,1,a,10.1"] + expected_default = tm.convert_rows_list_to_csv_str(expected_rows) + assert df.to_csv() == expected_default + + expected_rows = [";col1;col2;col3", "0;1;a;10,1"] + expected_european_excel = tm.convert_rows_list_to_csv_str(expected_rows) + assert df.to_csv(decimal=",", sep=";") == expected_european_excel + + expected_rows = [",col1,col2,col3", "0,1,a,10.10"] + expected_float_format_default = tm.convert_rows_list_to_csv_str(expected_rows) + assert df.to_csv(float_format="%.2f") == expected_float_format_default + + expected_rows = [";col1;col2;col3", "0;1;a;10,10"] + expected_float_format = tm.convert_rows_list_to_csv_str(expected_rows) + assert ( + df.to_csv(decimal=",", sep=";", float_format="%.2f") + == expected_float_format + ) + + # see gh-11553: testing if decimal is taken into account for '0.0' + df = DataFrame({"a": [0, 1.1], "b": [2.2, 3.3], "c": 1}) + + expected_rows = ["a,b,c", "0^0,2^2,1", "1^1,3^3,1"] + expected = tm.convert_rows_list_to_csv_str(expected_rows) + assert df.to_csv(index=False, decimal="^") == expected + + # same but for an index + assert df.set_index("a").to_csv(decimal="^") == expected + + # same for a multi-index + assert df.set_index(["a", "b"]).to_csv(decimal="^") == expected + + def test_to_csv_float_format(self): + # testing if float_format is taken into account for the index + # GH 11553 + df = DataFrame({"a": [0, 1], "b": [2.2, 3.3], "c": 1}) + + expected_rows = ["a,b,c", "0,2.20,1", "1,3.30,1"] + expected = tm.convert_rows_list_to_csv_str(expected_rows) + assert df.set_index("a").to_csv(float_format="%.2f") == expected + + # same for a multi-index + assert df.set_index(["a", "b"]).to_csv(float_format="%.2f") == expected + + def test_to_csv_na_rep(self): + # see gh-11553 + # + # Testing if NaN values are correctly represented in the index. + df = DataFrame({"a": [0, np.nan], "b": [0, 1], "c": [2, 3]}) + expected_rows = ["a,b,c", "0.0,0,2", "_,1,3"] + expected = tm.convert_rows_list_to_csv_str(expected_rows) + + assert df.set_index("a").to_csv(na_rep="_") == expected + assert df.set_index(["a", "b"]).to_csv(na_rep="_") == expected + + # now with an index containing only NaNs + df = DataFrame({"a": np.nan, "b": [0, 1], "c": [2, 3]}) + expected_rows = ["a,b,c", "_,0,2", "_,1,3"] + expected = tm.convert_rows_list_to_csv_str(expected_rows) + + assert df.set_index("a").to_csv(na_rep="_") == expected + assert df.set_index(["a", "b"]).to_csv(na_rep="_") == expected + + # check if na_rep parameter does not break anything when no NaN + df = DataFrame({"a": 0, "b": [0, 1], "c": [2, 3]}) + expected_rows = ["a,b,c", "0,0,2", "0,1,3"] + expected = tm.convert_rows_list_to_csv_str(expected_rows) + + assert df.set_index("a").to_csv(na_rep="_") == expected + assert df.set_index(["a", "b"]).to_csv(na_rep="_") == expected + + csv = pd.Series(["a", pd.NA, "c"]).to_csv(na_rep="ZZZZZ") + expected = tm.convert_rows_list_to_csv_str([",0", "0,a", "1,ZZZZZ", "2,c"]) + assert expected == csv + + def test_to_csv_na_rep_nullable_string(self, nullable_string_dtype): + # GH 29975 + # Make sure full na_rep shows up when a dtype is provided + expected = tm.convert_rows_list_to_csv_str([",0", "0,a", "1,ZZZZZ", "2,c"]) + csv = pd.Series(["a", pd.NA, "c"], dtype=nullable_string_dtype).to_csv( + na_rep="ZZZZZ" + ) + assert expected == csv + + def test_to_csv_date_format(self): + # GH 10209 + df_sec = DataFrame({"A": pd.date_range("20130101", periods=5, freq="s")}) + df_day = DataFrame({"A": pd.date_range("20130101", periods=5, freq="d")}) + + expected_rows = [ + ",A", + "0,2013-01-01 00:00:00", + "1,2013-01-01 00:00:01", + "2,2013-01-01 00:00:02", + "3,2013-01-01 00:00:03", + "4,2013-01-01 00:00:04", + ] + expected_default_sec = tm.convert_rows_list_to_csv_str(expected_rows) + assert df_sec.to_csv() == expected_default_sec + + expected_rows = [ + ",A", + "0,2013-01-01 00:00:00", + "1,2013-01-02 00:00:00", + "2,2013-01-03 00:00:00", + "3,2013-01-04 00:00:00", + "4,2013-01-05 00:00:00", + ] + expected_ymdhms_day = tm.convert_rows_list_to_csv_str(expected_rows) + assert df_day.to_csv(date_format="%Y-%m-%d %H:%M:%S") == expected_ymdhms_day + + expected_rows = [ + ",A", + "0,2013-01-01", + "1,2013-01-01", + "2,2013-01-01", + "3,2013-01-01", + "4,2013-01-01", + ] + expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows) + assert df_sec.to_csv(date_format="%Y-%m-%d") == expected_ymd_sec + + expected_rows = [ + ",A", + "0,2013-01-01", + "1,2013-01-02", + "2,2013-01-03", + "3,2013-01-04", + "4,2013-01-05", + ] + expected_default_day = tm.convert_rows_list_to_csv_str(expected_rows) + assert df_day.to_csv() == expected_default_day + assert df_day.to_csv(date_format="%Y-%m-%d") == expected_default_day + + # see gh-7791 + # + # Testing if date_format parameter is taken into account + # for multi-indexed DataFrames. + df_sec["B"] = 0 + df_sec["C"] = 1 + + expected_rows = ["A,B,C", "2013-01-01,0,1.0"] + expected_ymd_sec = tm.convert_rows_list_to_csv_str(expected_rows) + + df_sec_grouped = df_sec.groupby([pd.Grouper(key="A", freq="1h"), "B"]) + assert df_sec_grouped.mean().to_csv(date_format="%Y-%m-%d") == expected_ymd_sec + + def test_to_csv_different_datetime_formats(self): + # GH#21734 + df = DataFrame( + { + "date": pd.to_datetime("1970-01-01"), + "datetime": pd.date_range("1970-01-01", periods=2, freq="h"), + } + ) + expected_rows = [ + "date,datetime", + "1970-01-01,1970-01-01 00:00:00", + "1970-01-01,1970-01-01 01:00:00", + ] + expected = tm.convert_rows_list_to_csv_str(expected_rows) + assert df.to_csv(index=False) == expected + + def test_to_csv_date_format_in_categorical(self): + # GH#40754 + ser = pd.Series(pd.to_datetime(["2021-03-27", pd.NaT], format="%Y-%m-%d")) + ser = ser.astype("category") + expected = tm.convert_rows_list_to_csv_str(["0", "2021-03-27", '""']) + assert ser.to_csv(index=False) == expected + + ser = pd.Series( + pd.date_range( + start="2021-03-27", freq="D", periods=1, tz="Europe/Berlin" + ).append(pd.DatetimeIndex([pd.NaT])) + ) + ser = ser.astype("category") + assert ser.to_csv(index=False, date_format="%Y-%m-%d") == expected + + def test_to_csv_float_ea_float_format(self): + # GH#45991 + df = DataFrame({"a": [1.1, 2.02, pd.NA, 6.000006], "b": "c"}) + df["a"] = df["a"].astype("Float64") + result = df.to_csv(index=False, float_format="%.5f") + expected = tm.convert_rows_list_to_csv_str( + ["a,b", "1.10000,c", "2.02000,c", ",c", "6.00001,c"] + ) + assert result == expected + + def test_to_csv_float_ea_no_float_format(self): + # GH#45991 + df = DataFrame({"a": [1.1, 2.02, pd.NA, 6.000006], "b": "c"}) + df["a"] = df["a"].astype("Float64") + result = df.to_csv(index=False) + expected = tm.convert_rows_list_to_csv_str( + ["a,b", "1.1,c", "2.02,c", ",c", "6.000006,c"] + ) + assert result == expected + + def test_to_csv_multi_index(self): + # see gh-6618 + df = DataFrame([1], columns=pd.MultiIndex.from_arrays([[1], [2]])) + + exp_rows = [",1", ",2", "0,1"] + exp = tm.convert_rows_list_to_csv_str(exp_rows) + assert df.to_csv() == exp + + exp_rows = ["1", "2", "1"] + exp = tm.convert_rows_list_to_csv_str(exp_rows) + assert df.to_csv(index=False) == exp + + df = DataFrame( + [1], + columns=pd.MultiIndex.from_arrays([[1], [2]]), + index=pd.MultiIndex.from_arrays([[1], [2]]), + ) + + exp_rows = [",,1", ",,2", "1,2,1"] + exp = tm.convert_rows_list_to_csv_str(exp_rows) + assert df.to_csv() == exp + + exp_rows = ["1", "2", "1"] + exp = tm.convert_rows_list_to_csv_str(exp_rows) + assert df.to_csv(index=False) == exp + + df = DataFrame([1], columns=pd.MultiIndex.from_arrays([["foo"], ["bar"]])) + + exp_rows = [",foo", ",bar", "0,1"] + exp = tm.convert_rows_list_to_csv_str(exp_rows) + assert df.to_csv() == exp + + exp_rows = ["foo", "bar", "1"] + exp = tm.convert_rows_list_to_csv_str(exp_rows) + assert df.to_csv(index=False) == exp + + @pytest.mark.parametrize( + "ind,expected", + [ + ( + pd.MultiIndex(levels=[[1.0]], codes=[[0]], names=["x"]), + "x,data\n1.0,1\n", + ), + ( + pd.MultiIndex( + levels=[[1.0], [2.0]], codes=[[0], [0]], names=["x", "y"] + ), + "x,y,data\n1.0,2.0,1\n", + ), + ], + ) + def test_to_csv_single_level_multi_index(self, ind, expected, frame_or_series): + # see gh-19589 + obj = frame_or_series(pd.Series([1], ind, name="data")) + + result = obj.to_csv(lineterminator="\n", header=True) + assert result == expected + + def test_to_csv_string_array_ascii(self): + # GH 10813 + str_array = [{"names": ["foo", "bar"]}, {"names": ["baz", "qux"]}] + df = DataFrame(str_array) + expected_ascii = """\ +,names +0,"['foo', 'bar']" +1,"['baz', 'qux']" +""" + with tm.ensure_clean("str_test.csv") as path: + df.to_csv(path, encoding="ascii") + with open(path, encoding="utf-8") as f: + assert f.read() == expected_ascii + + def test_to_csv_string_array_utf8(self): + # GH 10813 + str_array = [{"names": ["foo", "bar"]}, {"names": ["baz", "qux"]}] + df = DataFrame(str_array) + expected_utf8 = """\ +,names +0,"['foo', 'bar']" +1,"['baz', 'qux']" +""" + with tm.ensure_clean("unicode_test.csv") as path: + df.to_csv(path, encoding="utf-8") + with open(path, encoding="utf-8") as f: + assert f.read() == expected_utf8 + + def test_to_csv_string_with_lf(self): + # GH 20353 + data = {"int": [1, 2, 3], "str_lf": ["abc", "d\nef", "g\nh\n\ni"]} + df = DataFrame(data) + with tm.ensure_clean("lf_test.csv") as path: + # case 1: The default line terminator(=os.linesep)(PR 21406) + os_linesep = os.linesep.encode("utf-8") + expected_noarg = ( + b"int,str_lf" + + os_linesep + + b"1,abc" + + os_linesep + + b'2,"d\nef"' + + os_linesep + + b'3,"g\nh\n\ni"' + + os_linesep + ) + df.to_csv(path, index=False) + with open(path, "rb") as f: + assert f.read() == expected_noarg + with tm.ensure_clean("lf_test.csv") as path: + # case 2: LF as line terminator + expected_lf = b'int,str_lf\n1,abc\n2,"d\nef"\n3,"g\nh\n\ni"\n' + df.to_csv(path, lineterminator="\n", index=False) + with open(path, "rb") as f: + assert f.read() == expected_lf + with tm.ensure_clean("lf_test.csv") as path: + # case 3: CRLF as line terminator + # 'lineterminator' should not change inner element + expected_crlf = b'int,str_lf\r\n1,abc\r\n2,"d\nef"\r\n3,"g\nh\n\ni"\r\n' + df.to_csv(path, lineterminator="\r\n", index=False) + with open(path, "rb") as f: + assert f.read() == expected_crlf + + def test_to_csv_string_with_crlf(self): + # GH 20353 + data = {"int": [1, 2, 3], "str_crlf": ["abc", "d\r\nef", "g\r\nh\r\n\r\ni"]} + df = DataFrame(data) + with tm.ensure_clean("crlf_test.csv") as path: + # case 1: The default line terminator(=os.linesep)(PR 21406) + os_linesep = os.linesep.encode("utf-8") + expected_noarg = ( + b"int,str_crlf" + + os_linesep + + b"1,abc" + + os_linesep + + b'2,"d\r\nef"' + + os_linesep + + b'3,"g\r\nh\r\n\r\ni"' + + os_linesep + ) + df.to_csv(path, index=False) + with open(path, "rb") as f: + assert f.read() == expected_noarg + with tm.ensure_clean("crlf_test.csv") as path: + # case 2: LF as line terminator + expected_lf = b'int,str_crlf\n1,abc\n2,"d\r\nef"\n3,"g\r\nh\r\n\r\ni"\n' + df.to_csv(path, lineterminator="\n", index=False) + with open(path, "rb") as f: + assert f.read() == expected_lf + with tm.ensure_clean("crlf_test.csv") as path: + # case 3: CRLF as line terminator + # 'lineterminator' should not change inner element + expected_crlf = ( + b"int,str_crlf\r\n" + b"1,abc\r\n" + b'2,"d\r\nef"\r\n' + b'3,"g\r\nh\r\n\r\ni"\r\n' + ) + df.to_csv(path, lineterminator="\r\n", index=False) + with open(path, "rb") as f: + assert f.read() == expected_crlf + + def test_to_csv_stdout_file(self, capsys): + # GH 21561 + df = DataFrame([["foo", "bar"], ["baz", "qux"]], columns=["name_1", "name_2"]) + expected_rows = [",name_1,name_2", "0,foo,bar", "1,baz,qux"] + expected_ascii = tm.convert_rows_list_to_csv_str(expected_rows) + + df.to_csv(sys.stdout, encoding="ascii") + captured = capsys.readouterr() + + assert captured.out == expected_ascii + assert not sys.stdout.closed + + @pytest.mark.xfail( + compat.is_platform_windows(), + reason=( + "Especially in Windows, file stream should not be passed" + "to csv writer without newline='' option." + "(https://docs.python.org/3/library/csv.html#csv.writer)" + ), + ) + def test_to_csv_write_to_open_file(self): + # GH 21696 + df = DataFrame({"a": ["x", "y", "z"]}) + expected = """\ +manual header +x +y +z +""" + with tm.ensure_clean("test.txt") as path: + with open(path, "w", encoding="utf-8") as f: + f.write("manual header\n") + df.to_csv(f, header=None, index=None) + with open(path, encoding="utf-8") as f: + assert f.read() == expected + + def test_to_csv_write_to_open_file_with_newline_py3(self): + # see gh-21696 + # see gh-20353 + df = DataFrame({"a": ["x", "y", "z"]}) + expected_rows = ["x", "y", "z"] + expected = "manual header\n" + tm.convert_rows_list_to_csv_str(expected_rows) + with tm.ensure_clean("test.txt") as path: + with open(path, "w", newline="", encoding="utf-8") as f: + f.write("manual header\n") + df.to_csv(f, header=None, index=None) + + with open(path, "rb") as f: + assert f.read() == bytes(expected, "utf-8") + + @pytest.mark.parametrize("to_infer", [True, False]) + @pytest.mark.parametrize("read_infer", [True, False]) + def test_to_csv_compression( + self, compression_only, read_infer, to_infer, compression_to_extension + ): + # see gh-15008 + compression = compression_only + + # We'll complete file extension subsequently. + filename = "test." + filename += compression_to_extension[compression] + + df = DataFrame({"A": [1]}) + + to_compression = "infer" if to_infer else compression + read_compression = "infer" if read_infer else compression + + with tm.ensure_clean(filename) as path: + df.to_csv(path, compression=to_compression) + result = pd.read_csv(path, index_col=0, compression=read_compression) + tm.assert_frame_equal(result, df) + + def test_to_csv_compression_dict(self, compression_only): + # GH 26023 + method = compression_only + df = DataFrame({"ABC": [1]}) + filename = "to_csv_compress_as_dict." + extension = { + "gzip": "gz", + "zstd": "zst", + }.get(method, method) + filename += extension + with tm.ensure_clean(filename) as path: + df.to_csv(path, compression={"method": method}) + read_df = pd.read_csv(path, index_col=0) + tm.assert_frame_equal(read_df, df) + + def test_to_csv_compression_dict_no_method_raises(self): + # GH 26023 + df = DataFrame({"ABC": [1]}) + compression = {"some_option": True} + msg = "must have key 'method'" + + with tm.ensure_clean("out.zip") as path: + with pytest.raises(ValueError, match=msg): + df.to_csv(path, compression=compression) + + @pytest.mark.parametrize("compression", ["zip", "infer"]) + @pytest.mark.parametrize("archive_name", ["test_to_csv.csv", "test_to_csv.zip"]) + def test_to_csv_zip_arguments(self, compression, archive_name): + # GH 26023 + df = DataFrame({"ABC": [1]}) + with tm.ensure_clean("to_csv_archive_name.zip") as path: + df.to_csv( + path, compression={"method": compression, "archive_name": archive_name} + ) + with ZipFile(path) as zp: + assert len(zp.filelist) == 1 + archived_file = zp.filelist[0].filename + assert archived_file == archive_name + + @pytest.mark.parametrize( + "filename,expected_arcname", + [ + ("archive.csv", "archive.csv"), + ("archive.tsv", "archive.tsv"), + ("archive.csv.zip", "archive.csv"), + ("archive.tsv.zip", "archive.tsv"), + ("archive.zip", "archive"), + ], + ) + def test_to_csv_zip_infer_name(self, tmp_path, filename, expected_arcname): + # GH 39465 + df = DataFrame({"ABC": [1]}) + path = tmp_path / filename + df.to_csv(path, compression="zip") + with ZipFile(path) as zp: + assert len(zp.filelist) == 1 + archived_file = zp.filelist[0].filename + assert archived_file == expected_arcname + + @pytest.mark.parametrize("df_new_type", ["Int64"]) + def test_to_csv_na_rep_long_string(self, df_new_type): + # see gh-25099 + df = DataFrame({"c": [float("nan")] * 3}) + df = df.astype(df_new_type) + expected_rows = ["c", "mynull", "mynull", "mynull"] + expected = tm.convert_rows_list_to_csv_str(expected_rows) + + result = df.to_csv(index=False, na_rep="mynull", encoding="ascii") + + assert expected == result + + def test_to_csv_timedelta_precision(self): + # GH 6783 + s = pd.Series([1, 1]).astype("timedelta64[ns]") + buf = io.StringIO() + s.to_csv(buf) + result = buf.getvalue() + expected_rows = [ + ",0", + "0,0 days 00:00:00.000000001", + "1,0 days 00:00:00.000000001", + ] + expected = tm.convert_rows_list_to_csv_str(expected_rows) + assert result == expected + + def test_na_rep_truncated(self): + # https://github.com/pandas-dev/pandas/issues/31447 + result = pd.Series(range(8, 12)).to_csv(na_rep="-") + expected = tm.convert_rows_list_to_csv_str([",0", "0,8", "1,9", "2,10", "3,11"]) + assert result == expected + + result = pd.Series([True, False]).to_csv(na_rep="nan") + expected = tm.convert_rows_list_to_csv_str([",0", "0,True", "1,False"]) + assert result == expected + + result = pd.Series([1.1, 2.2]).to_csv(na_rep=".") + expected = tm.convert_rows_list_to_csv_str([",0", "0,1.1", "1,2.2"]) + assert result == expected + + @pytest.mark.parametrize("errors", ["surrogatepass", "ignore", "replace"]) + def test_to_csv_errors(self, errors): + # GH 22610 + data = ["\ud800foo"] + ser = pd.Series(data, index=Index(data, dtype=object), dtype=object) + with tm.ensure_clean("test.csv") as path: + ser.to_csv(path, errors=errors) + # No use in reading back the data as it is not the same anymore + # due to the error handling + + @pytest.mark.parametrize("mode", ["wb", "w"]) + def test_to_csv_binary_handle(self, mode): + """ + Binary file objects should work (if 'mode' contains a 'b') or even without + it in most cases. + + GH 35058 and GH 19827 + """ + df = DataFrame( + 1.1 * np.arange(120).reshape((30, 4)), + columns=Index(list("ABCD")), + index=Index([f"i-{i}" for i in range(30)]), + ) + with tm.ensure_clean() as path: + with open(path, mode="w+b") as handle: + df.to_csv(handle, mode=mode) + tm.assert_frame_equal(df, pd.read_csv(path, index_col=0)) + + @pytest.mark.parametrize("mode", ["wb", "w"]) + def test_to_csv_encoding_binary_handle(self, mode): + """ + Binary file objects should honor a specified encoding. + + GH 23854 and GH 13068 with binary handles + """ + # example from GH 23854 + content = "a, b, 🐟".encode("utf-8-sig") + buffer = io.BytesIO(content) + df = pd.read_csv(buffer, encoding="utf-8-sig") + + buffer = io.BytesIO() + df.to_csv(buffer, mode=mode, encoding="utf-8-sig", index=False) + buffer.seek(0) # tests whether file handle wasn't closed + assert buffer.getvalue().startswith(content) + + # example from GH 13068 + with tm.ensure_clean() as path: + with open(path, "w+b") as handle: + DataFrame().to_csv(handle, mode=mode, encoding="utf-8-sig") + + handle.seek(0) + assert handle.read().startswith(b'\xef\xbb\xbf""') + + +def test_to_csv_iterative_compression_name(compression): + # GH 38714 + df = DataFrame( + 1.1 * np.arange(120).reshape((30, 4)), + columns=Index(list("ABCD")), + index=Index([f"i-{i}" for i in range(30)]), + ) + with tm.ensure_clean() as path: + df.to_csv(path, compression=compression, chunksize=1) + tm.assert_frame_equal( + pd.read_csv(path, compression=compression, index_col=0), df + ) + + +def test_to_csv_iterative_compression_buffer(compression): + # GH 38714 + df = DataFrame( + 1.1 * np.arange(120).reshape((30, 4)), + columns=Index(list("ABCD")), + index=Index([f"i-{i}" for i in range(30)]), + ) + with io.BytesIO() as buffer: + df.to_csv(buffer, compression=compression, chunksize=1) + buffer.seek(0) + tm.assert_frame_equal( + pd.read_csv(buffer, compression=compression, index_col=0), df + ) + assert not buffer.closed + + +def test_to_csv_pos_args_deprecation(): + # GH-54229 + df = DataFrame({"a": [1, 2, 3]}) + msg = ( + r"Starting with pandas version 3.0 all arguments of to_csv except for the " + r"argument 'path_or_buf' will be keyword-only." + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + buffer = io.BytesIO() + df.to_csv(buffer, ";") diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_excel.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_excel.py new file mode 100644 index 0000000000000000000000000000000000000000..927a9f4961f6ff7ae51f74aceb0cb36dc6754c21 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_excel.py @@ -0,0 +1,429 @@ +"""Tests formatting as writer-agnostic ExcelCells + +ExcelFormatter is tested implicitly in pandas/tests/io/excel +""" +import string + +import pytest + +from pandas.errors import CSSWarning + +import pandas._testing as tm + +from pandas.io.formats.excel import ( + CssExcelCell, + CSSToExcelConverter, +) + + +@pytest.mark.parametrize( + "css,expected", + [ + # FONT + # - name + ("font-family: foo,bar", {"font": {"name": "foo"}}), + ('font-family: "foo bar",baz', {"font": {"name": "foo bar"}}), + ("font-family: foo,\nbar", {"font": {"name": "foo"}}), + ("font-family: foo, bar, baz", {"font": {"name": "foo"}}), + ("font-family: bar, foo", {"font": {"name": "bar"}}), + ("font-family: 'foo bar', baz", {"font": {"name": "foo bar"}}), + ("font-family: 'foo \\'bar', baz", {"font": {"name": "foo 'bar"}}), + ('font-family: "foo \\"bar", baz', {"font": {"name": 'foo "bar'}}), + ('font-family: "foo ,bar", baz', {"font": {"name": "foo ,bar"}}), + # - family + ("font-family: serif", {"font": {"name": "serif", "family": 1}}), + ("font-family: Serif", {"font": {"name": "serif", "family": 1}}), + ("font-family: roman, serif", {"font": {"name": "roman", "family": 1}}), + ("font-family: roman, sans-serif", {"font": {"name": "roman", "family": 2}}), + ("font-family: roman, sans serif", {"font": {"name": "roman"}}), + ("font-family: roman, sansserif", {"font": {"name": "roman"}}), + ("font-family: roman, cursive", {"font": {"name": "roman", "family": 4}}), + ("font-family: roman, fantasy", {"font": {"name": "roman", "family": 5}}), + # - size + ("font-size: 1em", {"font": {"size": 12}}), + ("font-size: xx-small", {"font": {"size": 6}}), + ("font-size: x-small", {"font": {"size": 7.5}}), + ("font-size: small", {"font": {"size": 9.6}}), + ("font-size: medium", {"font": {"size": 12}}), + ("font-size: large", {"font": {"size": 13.5}}), + ("font-size: x-large", {"font": {"size": 18}}), + ("font-size: xx-large", {"font": {"size": 24}}), + ("font-size: 50%", {"font": {"size": 6}}), + # - bold + ("font-weight: 100", {"font": {"bold": False}}), + ("font-weight: 200", {"font": {"bold": False}}), + ("font-weight: 300", {"font": {"bold": False}}), + ("font-weight: 400", {"font": {"bold": False}}), + ("font-weight: normal", {"font": {"bold": False}}), + ("font-weight: lighter", {"font": {"bold": False}}), + ("font-weight: bold", {"font": {"bold": True}}), + ("font-weight: bolder", {"font": {"bold": True}}), + ("font-weight: 700", {"font": {"bold": True}}), + ("font-weight: 800", {"font": {"bold": True}}), + ("font-weight: 900", {"font": {"bold": True}}), + # - italic + ("font-style: italic", {"font": {"italic": True}}), + ("font-style: oblique", {"font": {"italic": True}}), + # - underline + ("text-decoration: underline", {"font": {"underline": "single"}}), + ("text-decoration: overline", {}), + ("text-decoration: none", {}), + # - strike + ("text-decoration: line-through", {"font": {"strike": True}}), + ( + "text-decoration: underline line-through", + {"font": {"strike": True, "underline": "single"}}, + ), + ( + "text-decoration: underline; text-decoration: line-through", + {"font": {"strike": True}}, + ), + # - color + ("color: red", {"font": {"color": "FF0000"}}), + ("color: #ff0000", {"font": {"color": "FF0000"}}), + ("color: #f0a", {"font": {"color": "FF00AA"}}), + # - shadow + ("text-shadow: none", {"font": {"shadow": False}}), + ("text-shadow: 0px -0em 0px #CCC", {"font": {"shadow": False}}), + ("text-shadow: 0px -0em 0px #999", {"font": {"shadow": False}}), + ("text-shadow: 0px -0em 0px", {"font": {"shadow": False}}), + ("text-shadow: 2px -0em 0px #CCC", {"font": {"shadow": True}}), + ("text-shadow: 0px -2em 0px #CCC", {"font": {"shadow": True}}), + ("text-shadow: 0px -0em 2px #CCC", {"font": {"shadow": True}}), + ("text-shadow: 0px -0em 2px", {"font": {"shadow": True}}), + ("text-shadow: 0px -2em", {"font": {"shadow": True}}), + # FILL + # - color, fillType + ( + "background-color: red", + {"fill": {"fgColor": "FF0000", "patternType": "solid"}}, + ), + ( + "background-color: #ff0000", + {"fill": {"fgColor": "FF0000", "patternType": "solid"}}, + ), + ( + "background-color: #f0a", + {"fill": {"fgColor": "FF00AA", "patternType": "solid"}}, + ), + # BORDER + # - style + ( + "border-style: solid", + { + "border": { + "top": {"style": "medium"}, + "bottom": {"style": "medium"}, + "left": {"style": "medium"}, + "right": {"style": "medium"}, + } + }, + ), + ( + "border-style: solid; border-width: thin", + { + "border": { + "top": {"style": "thin"}, + "bottom": {"style": "thin"}, + "left": {"style": "thin"}, + "right": {"style": "thin"}, + } + }, + ), + ( + "border-top-style: solid; border-top-width: thin", + {"border": {"top": {"style": "thin"}}}, + ), + ( + "border-top-style: solid; border-top-width: 1pt", + {"border": {"top": {"style": "thin"}}}, + ), + ("border-top-style: solid", {"border": {"top": {"style": "medium"}}}), + ( + "border-top-style: solid; border-top-width: medium", + {"border": {"top": {"style": "medium"}}}, + ), + ( + "border-top-style: solid; border-top-width: 2pt", + {"border": {"top": {"style": "medium"}}}, + ), + ( + "border-top-style: solid; border-top-width: thick", + {"border": {"top": {"style": "thick"}}}, + ), + ( + "border-top-style: solid; border-top-width: 4pt", + {"border": {"top": {"style": "thick"}}}, + ), + ( + "border-top-style: dotted", + {"border": {"top": {"style": "mediumDashDotDot"}}}, + ), + ( + "border-top-style: dotted; border-top-width: thin", + {"border": {"top": {"style": "dotted"}}}, + ), + ("border-top-style: dashed", {"border": {"top": {"style": "mediumDashed"}}}), + ( + "border-top-style: dashed; border-top-width: thin", + {"border": {"top": {"style": "dashed"}}}, + ), + ("border-top-style: double", {"border": {"top": {"style": "double"}}}), + # - color + ( + "border-style: solid; border-color: #0000ff", + { + "border": { + "top": {"style": "medium", "color": "0000FF"}, + "right": {"style": "medium", "color": "0000FF"}, + "bottom": {"style": "medium", "color": "0000FF"}, + "left": {"style": "medium", "color": "0000FF"}, + } + }, + ), + ( + "border-top-style: double; border-top-color: blue", + {"border": {"top": {"style": "double", "color": "0000FF"}}}, + ), + ( + "border-top-style: solid; border-top-color: #06c", + {"border": {"top": {"style": "medium", "color": "0066CC"}}}, + ), + ( + "border-top-color: blue", + {"border": {"top": {"color": "0000FF", "style": "none"}}}, + ), + # ALIGNMENT + # - horizontal + ("text-align: center", {"alignment": {"horizontal": "center"}}), + ("text-align: left", {"alignment": {"horizontal": "left"}}), + ("text-align: right", {"alignment": {"horizontal": "right"}}), + ("text-align: justify", {"alignment": {"horizontal": "justify"}}), + # - vertical + ("vertical-align: top", {"alignment": {"vertical": "top"}}), + ("vertical-align: text-top", {"alignment": {"vertical": "top"}}), + ("vertical-align: middle", {"alignment": {"vertical": "center"}}), + ("vertical-align: bottom", {"alignment": {"vertical": "bottom"}}), + ("vertical-align: text-bottom", {"alignment": {"vertical": "bottom"}}), + # - wrap_text + ("white-space: nowrap", {"alignment": {"wrap_text": False}}), + ("white-space: pre", {"alignment": {"wrap_text": False}}), + ("white-space: pre-line", {"alignment": {"wrap_text": False}}), + ("white-space: normal", {"alignment": {"wrap_text": True}}), + # NUMBER FORMAT + ("number-format: 0%", {"number_format": {"format_code": "0%"}}), + ( + "number-format: 0§[Red](0)§-§@;", + {"number_format": {"format_code": "0;[red](0);-;@"}}, # GH 46152 + ), + ], +) +def test_css_to_excel(css, expected): + convert = CSSToExcelConverter() + assert expected == convert(css) + + +def test_css_to_excel_multiple(): + convert = CSSToExcelConverter() + actual = convert( + """ + font-weight: bold; + text-decoration: underline; + color: red; + border-width: thin; + text-align: center; + vertical-align: top; + unused: something; + """ + ) + assert { + "font": {"bold": True, "underline": "single", "color": "FF0000"}, + "border": { + "top": {"style": "thin"}, + "right": {"style": "thin"}, + "bottom": {"style": "thin"}, + "left": {"style": "thin"}, + }, + "alignment": {"horizontal": "center", "vertical": "top"}, + } == actual + + +@pytest.mark.parametrize( + "css,inherited,expected", + [ + ("font-weight: bold", "", {"font": {"bold": True}}), + ("", "font-weight: bold", {"font": {"bold": True}}), + ( + "font-weight: bold", + "font-style: italic", + {"font": {"bold": True, "italic": True}}, + ), + ("font-style: normal", "font-style: italic", {"font": {"italic": False}}), + ("font-style: inherit", "", {}), + ( + "font-style: normal; font-style: inherit", + "font-style: italic", + {"font": {"italic": True}}, + ), + ], +) +def test_css_to_excel_inherited(css, inherited, expected): + convert = CSSToExcelConverter(inherited) + assert expected == convert(css) + + +@pytest.mark.parametrize( + "input_color,output_color", + ( + list(CSSToExcelConverter.NAMED_COLORS.items()) + + [("#" + rgb, rgb) for rgb in CSSToExcelConverter.NAMED_COLORS.values()] + + [("#F0F", "FF00FF"), ("#ABC", "AABBCC")] + ), +) +def test_css_to_excel_good_colors(input_color, output_color): + # see gh-18392 + css = ( + f"border-top-color: {input_color}; " + f"border-right-color: {input_color}; " + f"border-bottom-color: {input_color}; " + f"border-left-color: {input_color}; " + f"background-color: {input_color}; " + f"color: {input_color}" + ) + + expected = {} + + expected["fill"] = {"patternType": "solid", "fgColor": output_color} + + expected["font"] = {"color": output_color} + + expected["border"] = { + k: {"color": output_color, "style": "none"} + for k in ("top", "right", "bottom", "left") + } + + with tm.assert_produces_warning(None): + convert = CSSToExcelConverter() + assert expected == convert(css) + + +@pytest.mark.parametrize("input_color", [None, "not-a-color"]) +def test_css_to_excel_bad_colors(input_color): + # see gh-18392 + css = ( + f"border-top-color: {input_color}; " + f"border-right-color: {input_color}; " + f"border-bottom-color: {input_color}; " + f"border-left-color: {input_color}; " + f"background-color: {input_color}; " + f"color: {input_color}" + ) + + expected = {} + + if input_color is not None: + expected["fill"] = {"patternType": "solid"} + + with tm.assert_produces_warning(CSSWarning): + convert = CSSToExcelConverter() + assert expected == convert(css) + + +def tests_css_named_colors_valid(): + upper_hexs = set(map(str.upper, string.hexdigits)) + for color in CSSToExcelConverter.NAMED_COLORS.values(): + assert len(color) == 6 and all(c in upper_hexs for c in color) + + +def test_css_named_colors_from_mpl_present(): + mpl_colors = pytest.importorskip("matplotlib.colors") + + pd_colors = CSSToExcelConverter.NAMED_COLORS + for name, color in mpl_colors.CSS4_COLORS.items(): + assert name in pd_colors and pd_colors[name] == color[1:] + + +@pytest.mark.parametrize( + "styles,expected", + [ + ([("color", "green"), ("color", "red")], "color: red;"), + ([("font-weight", "bold"), ("font-weight", "normal")], "font-weight: normal;"), + ([("text-align", "center"), ("TEXT-ALIGN", "right")], "text-align: right;"), + ], +) +def test_css_excel_cell_precedence(styles, expected): + """It applies favors latter declarations over former declarations""" + # See GH 47371 + converter = CSSToExcelConverter() + converter._call_cached.cache_clear() + css_styles = {(0, 0): styles} + cell = CssExcelCell( + row=0, + col=0, + val="", + style=None, + css_styles=css_styles, + css_row=0, + css_col=0, + css_converter=converter, + ) + converter._call_cached.cache_clear() + + assert cell.style == converter(expected) + + +@pytest.mark.parametrize( + "styles,cache_hits,cache_misses", + [ + ([[("color", "green"), ("color", "red"), ("color", "green")]], 0, 1), + ( + [ + [("font-weight", "bold")], + [("font-weight", "normal"), ("font-weight", "bold")], + ], + 1, + 1, + ), + ([[("text-align", "center")], [("TEXT-ALIGN", "center")]], 1, 1), + ( + [ + [("font-weight", "bold"), ("text-align", "center")], + [("font-weight", "bold"), ("text-align", "left")], + ], + 0, + 2, + ), + ( + [ + [("font-weight", "bold"), ("text-align", "center")], + [("font-weight", "bold"), ("text-align", "left")], + [("font-weight", "bold"), ("text-align", "center")], + ], + 1, + 2, + ), + ], +) +def test_css_excel_cell_cache(styles, cache_hits, cache_misses): + """It caches unique cell styles""" + # See GH 47371 + converter = CSSToExcelConverter() + converter._call_cached.cache_clear() + + css_styles = {(0, i): _style for i, _style in enumerate(styles)} + for css_row, css_col in css_styles: + CssExcelCell( + row=0, + col=0, + val="", + style=None, + css_styles=css_styles, + css_row=css_row, + css_col=css_col, + css_converter=converter, + ) + cache_info = converter._call_cached.cache_info() + converter._call_cached.cache_clear() + + assert cache_info.hits == cache_hits + assert cache_info.misses == cache_misses diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_html.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_html.py new file mode 100644 index 0000000000000000000000000000000000000000..790ba92f70c40095af3f40396135be2842b33229 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_html.py @@ -0,0 +1,1177 @@ +from datetime import datetime +from io import StringIO +import itertools +import re +import textwrap + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + Index, + MultiIndex, + get_option, + option_context, +) +import pandas._testing as tm + +import pandas.io.formats.format as fmt + +lorem_ipsum = ( + "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod " + "tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim " + "veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex " + "ea commodo consequat. Duis aute irure dolor in reprehenderit in " + "voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur " + "sint occaecat cupidatat non proident, sunt in culpa qui officia " + "deserunt mollit anim id est laborum." +) + + +def expected_html(datapath, name): + """ + Read HTML file from formats data directory. + + Parameters + ---------- + datapath : pytest fixture + The datapath fixture injected into a test by pytest. + name : str + The name of the HTML file without the suffix. + + Returns + ------- + str : contents of HTML file. + """ + filename = ".".join([name, "html"]) + filepath = datapath("io", "formats", "data", "html", filename) + with open(filepath, encoding="utf-8") as f: + html = f.read() + return html.rstrip() + + +@pytest.fixture(params=["mixed", "empty"]) +def biggie_df_fixture(request): + """Fixture for a big mixed Dataframe and an empty Dataframe""" + if request.param == "mixed": + df = DataFrame( + { + "A": np.random.default_rng(2).standard_normal(200), + "B": Index([f"{i}?!" for i in range(200)]), + }, + index=np.arange(200), + ) + df.loc[:20, "A"] = np.nan + df.loc[:20, "B"] = np.nan + return df + elif request.param == "empty": + df = DataFrame(index=np.arange(200)) + return df + + +@pytest.fixture(params=fmt.VALID_JUSTIFY_PARAMETERS) +def justify(request): + return request.param + + +@pytest.mark.parametrize("col_space", [30, 50]) +def test_to_html_with_col_space(col_space): + df = DataFrame(np.random.default_rng(2).random(size=(1, 3))) + # check that col_space affects HTML generation + # and be very brittle about it. + result = df.to_html(col_space=col_space) + hdrs = [x for x in result.split(r"\n") if re.search(r"\s]", x)] + assert len(hdrs) > 0 + for h in hdrs: + assert "min-width" in h + assert str(col_space) in h + + +def test_to_html_with_column_specific_col_space_raises(): + df = DataFrame( + np.random.default_rng(2).random(size=(3, 3)), columns=["a", "b", "c"] + ) + + msg = ( + "Col_space length\\(\\d+\\) should match " + "DataFrame number of columns\\(\\d+\\)" + ) + with pytest.raises(ValueError, match=msg): + df.to_html(col_space=[30, 40]) + + with pytest.raises(ValueError, match=msg): + df.to_html(col_space=[30, 40, 50, 60]) + + msg = "unknown column" + with pytest.raises(ValueError, match=msg): + df.to_html(col_space={"a": "foo", "b": 23, "d": 34}) + + +def test_to_html_with_column_specific_col_space(): + df = DataFrame( + np.random.default_rng(2).random(size=(3, 3)), columns=["a", "b", "c"] + ) + + result = df.to_html(col_space={"a": "2em", "b": 23}) + hdrs = [x for x in result.split("\n") if re.search(r"\s]", x)] + assert 'min-width: 2em;">a' in hdrs[1] + assert 'min-width: 23px;">b' in hdrs[2] + assert "c" in hdrs[3] + + result = df.to_html(col_space=["1em", 2, 3]) + hdrs = [x for x in result.split("\n") if re.search(r"\s]", x)] + assert 'min-width: 1em;">a' in hdrs[1] + assert 'min-width: 2px;">b' in hdrs[2] + assert 'min-width: 3px;">c' in hdrs[3] + + +def test_to_html_with_empty_string_label(): + # GH 3547, to_html regards empty string labels as repeated labels + data = {"c1": ["a", "b"], "c2": ["a", ""], "data": [1, 2]} + df = DataFrame(data).set_index(["c1", "c2"]) + result = df.to_html() + assert "rowspan" not in result + + +@pytest.mark.parametrize( + "df,expected", + [ + (DataFrame({"\u03c3": np.arange(10.0)}), "unicode_1"), + (DataFrame({"A": ["\u03c3"]}), "unicode_2"), + ], +) +def test_to_html_unicode(df, expected, datapath): + expected = expected_html(datapath, expected) + result = df.to_html() + assert result == expected + + +def test_to_html_encoding(float_frame, tmp_path): + # GH 28663 + path = tmp_path / "test.html" + float_frame.to_html(path, encoding="gbk") + with open(str(path), encoding="gbk") as f: + assert float_frame.to_html() == f.read() + + +def test_to_html_decimal(datapath): + # GH 12031 + df = DataFrame({"A": [6.0, 3.1, 2.2]}) + result = df.to_html(decimal=",") + expected = expected_html(datapath, "gh12031_expected_output") + assert result == expected + + +@pytest.mark.parametrize( + "kwargs,string,expected", + [ + ({}, "", "escaped"), + ({"escape": False}, "bold", "escape_disabled"), + ], +) +def test_to_html_escaped(kwargs, string, expected, datapath): + a = "strl2": {a: string, b: string}} + result = DataFrame(test_dict).to_html(**kwargs) + expected = expected_html(datapath, expected) + assert result == expected + + +@pytest.mark.parametrize("index_is_named", [True, False]) +def test_to_html_multiindex_index_false(index_is_named, datapath): + # GH 8452 + df = DataFrame( + {"a": range(2), "b": range(3, 5), "c": range(5, 7), "d": range(3, 5)} + ) + df.columns = MultiIndex.from_product([["a", "b"], ["c", "d"]]) + if index_is_named: + df.index = Index(df.index.values, name="idx") + result = df.to_html(index=False) + expected = expected_html(datapath, "gh8452_expected_output") + assert result == expected + + +@pytest.mark.parametrize( + "multi_sparse,expected", + [ + (False, "multiindex_sparsify_false_multi_sparse_1"), + (False, "multiindex_sparsify_false_multi_sparse_2"), + (True, "multiindex_sparsify_1"), + (True, "multiindex_sparsify_2"), + ], +) +def test_to_html_multiindex_sparsify(multi_sparse, expected, datapath): + index = MultiIndex.from_arrays([[0, 0, 1, 1], [0, 1, 0, 1]], names=["foo", None]) + df = DataFrame([[0, 1], [2, 3], [4, 5], [6, 7]], index=index) + if expected.endswith("2"): + df.columns = index[::2] + with option_context("display.multi_sparse", multi_sparse): + result = df.to_html() + expected = expected_html(datapath, expected) + assert result == expected + + +@pytest.mark.parametrize( + "max_rows,expected", + [ + (60, "gh14882_expected_output_1"), + # Test that ... appears in a middle level + (56, "gh14882_expected_output_2"), + ], +) +def test_to_html_multiindex_odd_even_truncate(max_rows, expected, datapath): + # GH 14882 - Issue on truncation with odd length DataFrame + index = MultiIndex.from_product( + [[100, 200, 300], [10, 20, 30], [1, 2, 3, 4, 5, 6, 7]], names=["a", "b", "c"] + ) + df = DataFrame({"n": range(len(index))}, index=index) + result = df.to_html(max_rows=max_rows) + expected = expected_html(datapath, expected) + assert result == expected + + +@pytest.mark.parametrize( + "df,formatters,expected", + [ + ( + DataFrame( + [[0, 1], [2, 3], [4, 5], [6, 7]], + columns=Index(["foo", None], dtype=object), + index=np.arange(4), + ), + {"__index__": lambda x: "abcd"[x]}, + "index_formatter", + ), + ( + DataFrame({"months": [datetime(2016, 1, 1), datetime(2016, 2, 2)]}), + {"months": lambda x: x.strftime("%Y-%m")}, + "datetime64_monthformatter", + ), + ( + DataFrame( + { + "hod": pd.to_datetime( + ["10:10:10.100", "12:12:12.120"], format="%H:%M:%S.%f" + ) + } + ), + {"hod": lambda x: x.strftime("%H:%M")}, + "datetime64_hourformatter", + ), + ( + DataFrame( + { + "i": pd.Series([1, 2], dtype="int64"), + "f": pd.Series([1, 2], dtype="float64"), + "I": pd.Series([1, 2], dtype="Int64"), + "s": pd.Series([1, 2], dtype="string"), + "b": pd.Series([True, False], dtype="boolean"), + "c": pd.Series(["a", "b"], dtype=pd.CategoricalDtype(["a", "b"])), + "o": pd.Series([1, "2"], dtype=object), + } + ), + [lambda x: "formatted"] * 7, + "various_dtypes_formatted", + ), + ], +) +def test_to_html_formatters(df, formatters, expected, datapath): + expected = expected_html(datapath, expected) + result = df.to_html(formatters=formatters) + assert result == expected + + +def test_to_html_regression_GH6098(): + df = DataFrame( + { + "clé1": ["a", "a", "b", "b", "a"], + "clé2": ["1er", "2ème", "1er", "2ème", "1er"], + "données1": np.random.default_rng(2).standard_normal(5), + "données2": np.random.default_rng(2).standard_normal(5), + } + ) + + # it works + df.pivot_table(index=["clé1"], columns=["clé2"])._repr_html_() + + +def test_to_html_truncate(datapath): + index = pd.date_range(start="20010101", freq="D", periods=20) + df = DataFrame(index=index, columns=range(20)) + result = df.to_html(max_rows=8, max_cols=4) + expected = expected_html(datapath, "truncate") + assert result == expected + + +@pytest.mark.parametrize("size", [1, 5]) +def test_html_invalid_formatters_arg_raises(size): + # issue-28469 + df = DataFrame(columns=["a", "b", "c"]) + msg = "Formatters length({}) should match DataFrame number of columns(3)" + with pytest.raises(ValueError, match=re.escape(msg.format(size))): + df.to_html(formatters=["{}".format] * size) + + +def test_to_html_truncate_formatter(datapath): + # issue-25955 + data = [ + {"A": 1, "B": 2, "C": 3, "D": 4}, + {"A": 5, "B": 6, "C": 7, "D": 8}, + {"A": 9, "B": 10, "C": 11, "D": 12}, + {"A": 13, "B": 14, "C": 15, "D": 16}, + ] + + df = DataFrame(data) + fmt = lambda x: str(x) + "_mod" + formatters = [fmt, fmt, None, None] + result = df.to_html(formatters=formatters, max_cols=3) + expected = expected_html(datapath, "truncate_formatter") + assert result == expected + + +@pytest.mark.parametrize( + "sparsify,expected", + [(True, "truncate_multi_index"), (False, "truncate_multi_index_sparse_off")], +) +def test_to_html_truncate_multi_index(sparsify, expected, datapath): + arrays = [ + ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], + ["one", "two", "one", "two", "one", "two", "one", "two"], + ] + df = DataFrame(index=arrays, columns=arrays) + result = df.to_html(max_rows=7, max_cols=7, sparsify=sparsify) + expected = expected_html(datapath, expected) + assert result == expected + + +@pytest.mark.parametrize( + "option,result,expected", + [ + (None, lambda df: df.to_html(), "1"), + (None, lambda df: df.to_html(border=2), "2"), + (2, lambda df: df.to_html(), "2"), + (2, lambda df: df._repr_html_(), "2"), + ], +) +def test_to_html_border(option, result, expected): + df = DataFrame({"A": [1, 2]}) + if option is None: + result = result(df) + else: + with option_context("display.html.border", option): + result = result(df) + expected = f'border="{expected}"' + assert expected in result + + +@pytest.mark.parametrize("biggie_df_fixture", ["mixed"], indirect=True) +def test_to_html(biggie_df_fixture): + # TODO: split this test + df = biggie_df_fixture + s = df.to_html() + + buf = StringIO() + retval = df.to_html(buf=buf) + assert retval is None + assert buf.getvalue() == s + + assert isinstance(s, str) + + df.to_html(columns=["B", "A"], col_space=17) + df.to_html(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) + + df.to_html(columns=["B", "A"], float_format=str) + df.to_html(columns=["B", "A"], col_space=12, float_format=str) + + +@pytest.mark.parametrize("biggie_df_fixture", ["empty"], indirect=True) +def test_to_html_empty_dataframe(biggie_df_fixture): + df = biggie_df_fixture + df.to_html() + + +def test_to_html_filename(biggie_df_fixture, tmpdir): + df = biggie_df_fixture + expected = df.to_html() + path = tmpdir.join("test.html") + df.to_html(path) + result = path.read() + assert result == expected + + +def test_to_html_with_no_bold(): + df = DataFrame({"x": np.random.default_rng(2).standard_normal(5)}) + html = df.to_html(bold_rows=False) + result = html[html.find("")] + assert "B" not in result + + +@pytest.mark.parametrize( + "columns,justify,expected", + [ + ( + MultiIndex.from_arrays( + [np.arange(2).repeat(2), np.mod(range(4), 2)], + names=["CL0", "CL1"], + ), + "left", + "multiindex_1", + ), + ( + MultiIndex.from_arrays([np.arange(4), np.mod(range(4), 2)]), + "right", + "multiindex_2", + ), + ], +) +def test_to_html_multiindex(columns, justify, expected, datapath): + df = DataFrame([list("abcd"), list("efgh")], columns=columns) + result = df.to_html(justify=justify) + expected = expected_html(datapath, expected) + assert result == expected + + +def test_to_html_justify(justify, datapath): + df = DataFrame( + {"A": [6, 30000, 2], "B": [1, 2, 70000], "C": [223442, 0, 1]}, + columns=["A", "B", "C"], + ) + result = df.to_html(justify=justify) + expected = expected_html(datapath, "justify").format(justify=justify) + assert result == expected + + +@pytest.mark.parametrize( + "justify", ["super-right", "small-left", "noinherit", "tiny", "pandas"] +) +def test_to_html_invalid_justify(justify): + # GH 17527 + df = DataFrame() + msg = "Invalid value for justify parameter" + + with pytest.raises(ValueError, match=msg): + df.to_html(justify=justify) + + +class TestHTMLIndex: + @pytest.fixture + def df(self): + index = ["foo", "bar", "baz"] + df = DataFrame( + {"A": [1, 2, 3], "B": [1.2, 3.4, 5.6], "C": ["one", "two", np.nan]}, + columns=["A", "B", "C"], + index=index, + ) + return df + + @pytest.fixture + def expected_without_index(self, datapath): + return expected_html(datapath, "index_2") + + def test_to_html_flat_index_without_name( + self, datapath, df, expected_without_index + ): + expected_with_index = expected_html(datapath, "index_1") + assert df.to_html() == expected_with_index + + result = df.to_html(index=False) + for i in df.index: + assert i not in result + assert result == expected_without_index + + def test_to_html_flat_index_with_name(self, datapath, df, expected_without_index): + df.index = Index(["foo", "bar", "baz"], name="idx") + expected_with_index = expected_html(datapath, "index_3") + assert df.to_html() == expected_with_index + assert df.to_html(index=False) == expected_without_index + + def test_to_html_multiindex_without_names( + self, datapath, df, expected_without_index + ): + tuples = [("foo", "car"), ("foo", "bike"), ("bar", "car")] + df.index = MultiIndex.from_tuples(tuples) + + expected_with_index = expected_html(datapath, "index_4") + assert df.to_html() == expected_with_index + + result = df.to_html(index=False) + for i in ["foo", "bar", "car", "bike"]: + assert i not in result + # must be the same result as normal index + assert result == expected_without_index + + def test_to_html_multiindex_with_names(self, datapath, df, expected_without_index): + tuples = [("foo", "car"), ("foo", "bike"), ("bar", "car")] + df.index = MultiIndex.from_tuples(tuples, names=["idx1", "idx2"]) + expected_with_index = expected_html(datapath, "index_5") + assert df.to_html() == expected_with_index + assert df.to_html(index=False) == expected_without_index + + +@pytest.mark.parametrize("classes", ["sortable draggable", ["sortable", "draggable"]]) +def test_to_html_with_classes(classes, datapath): + df = DataFrame() + expected = expected_html(datapath, "with_classes") + result = df.to_html(classes=classes) + assert result == expected + + +def test_to_html_no_index_max_rows(datapath): + # GH 14998 + df = DataFrame({"A": [1, 2, 3, 4]}) + result = df.to_html(index=False, max_rows=1) + expected = expected_html(datapath, "gh14998_expected_output") + assert result == expected + + +def test_to_html_multiindex_max_cols(datapath): + # GH 6131 + index = MultiIndex( + levels=[["ba", "bb", "bc"], ["ca", "cb", "cc"]], + codes=[[0, 1, 2], [0, 1, 2]], + names=["b", "c"], + ) + columns = MultiIndex( + levels=[["d"], ["aa", "ab", "ac"]], + codes=[[0, 0, 0], [0, 1, 2]], + names=[None, "a"], + ) + data = np.array( + [[1.0, np.nan, np.nan], [np.nan, 2.0, np.nan], [np.nan, np.nan, 3.0]] + ) + df = DataFrame(data, index, columns) + result = df.to_html(max_cols=2) + expected = expected_html(datapath, "gh6131_expected_output") + assert result == expected + + +def test_to_html_multi_indexes_index_false(datapath): + # GH 22579 + df = DataFrame( + {"a": range(10), "b": range(10, 20), "c": range(10, 20), "d": range(10, 20)} + ) + df.columns = MultiIndex.from_product([["a", "b"], ["c", "d"]]) + df.index = MultiIndex.from_product([["a", "b"], ["c", "d", "e", "f", "g"]]) + result = df.to_html(index=False) + expected = expected_html(datapath, "gh22579_expected_output") + assert result == expected + + +@pytest.mark.parametrize("index_names", [True, False]) +@pytest.mark.parametrize("header", [True, False]) +@pytest.mark.parametrize("index", [True, False]) +@pytest.mark.parametrize( + "column_index, column_type", + [ + (Index([0, 1]), "unnamed_standard"), + (Index([0, 1], name="columns.name"), "named_standard"), + (MultiIndex.from_product([["a"], ["b", "c"]]), "unnamed_multi"), + ( + MultiIndex.from_product( + [["a"], ["b", "c"]], names=["columns.name.0", "columns.name.1"] + ), + "named_multi", + ), + ], +) +@pytest.mark.parametrize( + "row_index, row_type", + [ + (Index([0, 1]), "unnamed_standard"), + (Index([0, 1], name="index.name"), "named_standard"), + (MultiIndex.from_product([["a"], ["b", "c"]]), "unnamed_multi"), + ( + MultiIndex.from_product( + [["a"], ["b", "c"]], names=["index.name.0", "index.name.1"] + ), + "named_multi", + ), + ], +) +def test_to_html_basic_alignment( + datapath, row_index, row_type, column_index, column_type, index, header, index_names +): + # GH 22747, GH 22579 + df = DataFrame(np.zeros((2, 2), dtype=int), index=row_index, columns=column_index) + result = df.to_html(index=index, header=header, index_names=index_names) + + if not index: + row_type = "none" + elif not index_names and row_type.startswith("named"): + row_type = "un" + row_type + + if not header: + column_type = "none" + elif not index_names and column_type.startswith("named"): + column_type = "un" + column_type + + filename = "index_" + row_type + "_columns_" + column_type + expected = expected_html(datapath, filename) + assert result == expected + + +@pytest.mark.parametrize("index_names", [True, False]) +@pytest.mark.parametrize("header", [True, False]) +@pytest.mark.parametrize("index", [True, False]) +@pytest.mark.parametrize( + "column_index, column_type", + [ + (Index(np.arange(8)), "unnamed_standard"), + (Index(np.arange(8), name="columns.name"), "named_standard"), + ( + MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]), + "unnamed_multi", + ), + ( + MultiIndex.from_product( + [["a", "b"], ["c", "d"], ["e", "f"]], names=["foo", None, "baz"] + ), + "named_multi", + ), + ], +) +@pytest.mark.parametrize( + "row_index, row_type", + [ + (Index(np.arange(8)), "unnamed_standard"), + (Index(np.arange(8), name="index.name"), "named_standard"), + ( + MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]), + "unnamed_multi", + ), + ( + MultiIndex.from_product( + [["a", "b"], ["c", "d"], ["e", "f"]], names=["foo", None, "baz"] + ), + "named_multi", + ), + ], +) +def test_to_html_alignment_with_truncation( + datapath, row_index, row_type, column_index, column_type, index, header, index_names +): + # GH 22747, GH 22579 + df = DataFrame(np.arange(64).reshape(8, 8), index=row_index, columns=column_index) + result = df.to_html( + max_rows=4, max_cols=4, index=index, header=header, index_names=index_names + ) + + if not index: + row_type = "none" + elif not index_names and row_type.startswith("named"): + row_type = "un" + row_type + + if not header: + column_type = "none" + elif not index_names and column_type.startswith("named"): + column_type = "un" + column_type + + filename = "trunc_df_index_" + row_type + "_columns_" + column_type + expected = expected_html(datapath, filename) + assert result == expected + + +@pytest.mark.parametrize("index", [False, 0]) +def test_to_html_truncation_index_false_max_rows(datapath, index): + # GH 15019 + data = [ + [1.764052, 0.400157], + [0.978738, 2.240893], + [1.867558, -0.977278], + [0.950088, -0.151357], + [-0.103219, 0.410599], + ] + df = DataFrame(data) + result = df.to_html(max_rows=4, index=index) + expected = expected_html(datapath, "gh15019_expected_output") + assert result == expected + + +@pytest.mark.parametrize("index", [False, 0]) +@pytest.mark.parametrize( + "col_index_named, expected_output", + [(False, "gh22783_expected_output"), (True, "gh22783_named_columns_index")], +) +def test_to_html_truncation_index_false_max_cols( + datapath, index, col_index_named, expected_output +): + # GH 22783 + data = [ + [1.764052, 0.400157, 0.978738, 2.240893, 1.867558], + [-0.977278, 0.950088, -0.151357, -0.103219, 0.410599], + ] + df = DataFrame(data) + if col_index_named: + df.columns.rename("columns.name", inplace=True) + result = df.to_html(max_cols=4, index=index) + expected = expected_html(datapath, expected_output) + assert result == expected + + +@pytest.mark.parametrize("notebook", [True, False]) +def test_to_html_notebook_has_style(notebook): + df = DataFrame({"A": [1, 2, 3]}) + result = df.to_html(notebook=notebook) + + if notebook: + assert "tbody tr th:only-of-type" in result + assert "vertical-align: middle;" in result + assert "thead th" in result + else: + assert "tbody tr th:only-of-type" not in result + assert "vertical-align: middle;" not in result + assert "thead th" not in result + + +def test_to_html_with_index_names_false(): + # GH 16493 + df = DataFrame({"A": [1, 2]}, index=Index(["a", "b"], name="myindexname")) + result = df.to_html(index_names=False) + assert "myindexname" not in result + + +def test_to_html_with_id(): + # GH 8496 + df = DataFrame({"A": [1, 2]}, index=Index(["a", "b"], name="myindexname")) + result = df.to_html(index_names=False, table_id="TEST_ID") + assert ' id="TEST_ID"' in result + + +@pytest.mark.parametrize( + "value,float_format,expected", + [ + (0.19999, "%.3f", "gh21625_expected_output"), + (100.0, "%.0f", "gh22270_expected_output"), + ], +) +def test_to_html_float_format_no_fixed_width(value, float_format, expected, datapath): + # GH 21625, GH 22270 + df = DataFrame({"x": [value]}) + expected = expected_html(datapath, expected) + result = df.to_html(float_format=float_format) + assert result == expected + + +@pytest.mark.parametrize( + "render_links,expected", + [(True, "render_links_true"), (False, "render_links_false")], +) +def test_to_html_render_links(render_links, expected, datapath): + # GH 2679 + data = [ + [0, "https://pandas.pydata.org/?q1=a&q2=b", "pydata.org"], + [0, "www.pydata.org", "pydata.org"], + ] + df = DataFrame(data, columns=Index(["foo", "bar", None], dtype=object)) + + result = df.to_html(render_links=render_links) + expected = expected_html(datapath, expected) + assert result == expected + + +@pytest.mark.parametrize( + "method,expected", + [ + ("to_html", lambda x: lorem_ipsum), + ("_repr_html_", lambda x: lorem_ipsum[: x - 4] + "..."), # regression case + ], +) +@pytest.mark.parametrize("max_colwidth", [10, 20, 50, 100]) +def test_ignore_display_max_colwidth(method, expected, max_colwidth): + # see gh-17004 + df = DataFrame([lorem_ipsum]) + with option_context("display.max_colwidth", max_colwidth): + result = getattr(df, method)() + expected = expected(max_colwidth) + assert expected in result + + +@pytest.mark.parametrize("classes", [True, 0]) +def test_to_html_invalid_classes_type(classes): + # GH 25608 + df = DataFrame() + msg = "classes must be a string, list, or tuple" + + with pytest.raises(TypeError, match=msg): + df.to_html(classes=classes) + + +def test_to_html_round_column_headers(): + # GH 17280 + df = DataFrame([1], columns=[0.55555]) + with option_context("display.precision", 3): + html = df.to_html(notebook=False) + notebook = df.to_html(notebook=True) + assert "0.55555" in html + assert "0.556" in notebook + + +@pytest.mark.parametrize("unit", ["100px", "10%", "5em", 150]) +def test_to_html_with_col_space_units(unit): + # GH 25941 + df = DataFrame(np.random.default_rng(2).random(size=(1, 3))) + result = df.to_html(col_space=unit) + result = result.split("tbody")[0] + hdrs = [x for x in result.split("\n") if re.search(r"\s]", x)] + if isinstance(unit, int): + unit = str(unit) + "px" + for h in hdrs: + expected = f'' + assert expected in h + + +class TestReprHTML: + def test_html_repr_min_rows_default(self, datapath): + # gh-27991 + + # default setting no truncation even if above min_rows + df = DataFrame({"a": range(20)}) + result = df._repr_html_() + expected = expected_html(datapath, "html_repr_min_rows_default_no_truncation") + assert result == expected + + # default of max_rows 60 triggers truncation if above + df = DataFrame({"a": range(61)}) + result = df._repr_html_() + expected = expected_html(datapath, "html_repr_min_rows_default_truncated") + assert result == expected + + @pytest.mark.parametrize( + "max_rows,min_rows,expected", + [ + # truncated after first two rows + (10, 4, "html_repr_max_rows_10_min_rows_4"), + # when set to None, follow value of max_rows + (12, None, "html_repr_max_rows_12_min_rows_None"), + # when set value higher as max_rows, use the minimum + (10, 12, "html_repr_max_rows_10_min_rows_12"), + # max_rows of None -> never truncate + (None, 12, "html_repr_max_rows_None_min_rows_12"), + ], + ) + def test_html_repr_min_rows(self, datapath, max_rows, min_rows, expected): + # gh-27991 + + df = DataFrame({"a": range(61)}) + expected = expected_html(datapath, expected) + with option_context("display.max_rows", max_rows, "display.min_rows", min_rows): + result = df._repr_html_() + assert result == expected + + def test_repr_html_ipython_config(self, ip): + code = textwrap.dedent( + """\ + from pandas import DataFrame + df = DataFrame({"A": [1, 2]}) + df._repr_html_() + + cfg = get_ipython().config + cfg['IPKernelApp']['parent_appname'] + df._repr_html_() + """ + ) + result = ip.run_cell(code, silent=True) + assert not result.error_in_exec + + def test_info_repr_html(self): + max_rows = 60 + max_cols = 20 + # Long + h, w = max_rows + 1, max_cols - 1 + df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) + assert r"<class" not in df._repr_html_() + with option_context("display.large_repr", "info"): + assert r"<class" in df._repr_html_() + + # Wide + h, w = max_rows - 1, max_cols + 1 + df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) + assert "{40 + h}" in reg_repr + + h = max_rows + 1 + df = DataFrame( + { + "idx": np.linspace(-10, 10, h), + "A": np.arange(1, 1 + h), + "B": np.arange(41, 41 + h), + } + ).set_index("idx") + long_repr = df._repr_html_() + assert ".." in long_repr + assert "31" not in long_repr + assert f"{h} rows " in long_repr + assert "2 columns" in long_repr + + def test_repr_html_long_multiindex(self): + max_rows = 60 + max_L1 = max_rows // 2 + + tuples = list(itertools.product(np.arange(max_L1), ["foo", "bar"])) + idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) + df = DataFrame( + np.random.default_rng(2).standard_normal((max_L1 * 2, 2)), + index=idx, + columns=["A", "B"], + ) + with option_context("display.max_rows", 60, "display.max_columns", 20): + reg_repr = df._repr_html_() + assert "..." not in reg_repr + + tuples = list(itertools.product(np.arange(max_L1 + 1), ["foo", "bar"])) + idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) + df = DataFrame( + np.random.default_rng(2).standard_normal(((max_L1 + 1) * 2, 2)), + index=idx, + columns=["A", "B"], + ) + long_repr = df._repr_html_() + assert "..." in long_repr + + def test_repr_html_long_and_wide(self): + max_cols = 20 + max_rows = 60 + + h, w = max_rows - 1, max_cols - 1 + df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) + with option_context("display.max_rows", 60, "display.max_columns", 20): + assert "..." not in df._repr_html_() + + h, w = max_rows + 1, max_cols + 1 + df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) + with option_context("display.max_rows", 60, "display.max_columns", 20): + assert "..." in df._repr_html_() + + +def test_to_html_multilevel(multiindex_year_month_day_dataframe_random_data): + ymd = multiindex_year_month_day_dataframe_random_data + + ymd.columns.name = "foo" + ymd.to_html() + ymd.T.to_html() + + +@pytest.mark.parametrize("na_rep", ["NaN", "Ted"]) +def test_to_html_na_rep_and_float_format(na_rep, datapath): + # https://github.com/pandas-dev/pandas/issues/13828 + df = DataFrame( + [ + ["A", 1.2225], + ["A", None], + ], + columns=["Group", "Data"], + ) + result = df.to_html(na_rep=na_rep, float_format="{:.2f}".format) + expected = expected_html(datapath, "gh13828_expected_output") + expected = expected.format(na_rep=na_rep) + assert result == expected + + +def test_to_html_na_rep_non_scalar_data(datapath): + # GH47103 + df = DataFrame([{"a": 1, "b": [1, 2, 3]}]) + result = df.to_html(na_rep="-") + expected = expected_html(datapath, "gh47103_expected_output") + assert result == expected + + +def test_to_html_float_format_object_col(datapath): + # GH#40024 + df = DataFrame(data={"x": [1000.0, "test"]}) + result = df.to_html(float_format=lambda x: f"{x:,.0f}") + expected = expected_html(datapath, "gh40024_expected_output") + assert result == expected + + +def test_to_html_multiindex_col_with_colspace(): + # GH#53885 + df = DataFrame([[1, 2]]) + df.columns = MultiIndex.from_tuples([(1, 1), (2, 1)]) + result = df.to_html(col_space=100) + expected = ( + '\n' + " \n" + " \n" + ' \n' + ' \n' + ' \n' + " \n" + " \n" + ' \n' + ' \n' + ' \n' + " \n" + " \n" + " \n" + " \n" + " \n" + " \n" + " \n" + " \n" + " \n" + "
12
11
012
" + ) + assert result == expected + + +def test_to_html_tuple_col_with_colspace(): + # GH#53885 + df = DataFrame({("a", "b"): [1], "b": [2]}) + result = df.to_html(col_space=100) + expected = ( + '\n' + " \n" + ' \n' + ' \n' + ' \n' + ' \n' + " \n" + " \n" + " \n" + " \n" + " \n" + " \n" + " \n" + " \n" + " \n" + "
(a, b)b
012
" + ) + assert result == expected + + +def test_to_html_empty_complex_array(): + # GH#54167 + df = DataFrame({"x": np.array([], dtype="complex")}) + result = df.to_html(col_space=100) + expected = ( + '\n' + " \n" + ' \n' + ' \n' + ' \n' + " \n" + " \n" + " \n" + " \n" + "
x
" + ) + assert result == expected + + +def test_to_html_pos_args_deprecation(): + # GH-54229 + df = DataFrame({"a": [1, 2, 3]}) + msg = ( + r"Starting with pandas version 3.0 all arguments of to_html except for the " + r"argument 'buf' will be keyword-only." + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + df.to_html(None, None) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_latex.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_latex.py new file mode 100644 index 0000000000000000000000000000000000000000..1fd96dff27d06dc3056b56c5f7e8eb054e98bd8f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_latex.py @@ -0,0 +1,1425 @@ +import codecs +from datetime import datetime +from textwrap import dedent + +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + Series, +) +import pandas._testing as tm + +pytest.importorskip("jinja2") + + +def _dedent(string): + """Dedent without new line in the beginning. + + Built-in textwrap.dedent would keep new line character in the beginning + of multi-line string starting from the new line. + This version drops the leading new line character. + """ + return dedent(string).lstrip() + + +@pytest.fixture +def df_short(): + """Short dataframe for testing table/tabular/longtable LaTeX env.""" + return DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + + +class TestToLatex: + def test_to_latex_to_file(self, float_frame): + with tm.ensure_clean("test.tex") as path: + float_frame.to_latex(path) + with open(path, encoding="utf-8") as f: + assert float_frame.to_latex() == f.read() + + def test_to_latex_to_file_utf8_with_encoding(self): + # test with utf-8 and encoding option (GH 7061) + df = DataFrame([["au\xdfgangen"]]) + with tm.ensure_clean("test.tex") as path: + df.to_latex(path, encoding="utf-8") + with codecs.open(path, "r", encoding="utf-8") as f: + assert df.to_latex() == f.read() + + def test_to_latex_to_file_utf8_without_encoding(self): + # test with utf-8 without encoding option + df = DataFrame([["au\xdfgangen"]]) + with tm.ensure_clean("test.tex") as path: + df.to_latex(path) + with codecs.open(path, "r", encoding="utf-8") as f: + assert df.to_latex() == f.read() + + def test_to_latex_tabular_with_index(self): + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex() + expected = _dedent( + r""" + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_tabular_without_index(self): + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(index=False) + expected = _dedent( + r""" + \begin{tabular}{rl} + \toprule + a & b \\ + \midrule + 1 & b1 \\ + 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + @pytest.mark.parametrize( + "bad_column_format", + [5, 1.2, ["l", "r"], ("r", "c"), {"r", "c", "l"}, {"a": "r", "b": "l"}], + ) + def test_to_latex_bad_column_format(self, bad_column_format): + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + msg = r"`column_format` must be str or unicode" + with pytest.raises(ValueError, match=msg): + df.to_latex(column_format=bad_column_format) + + def test_to_latex_column_format_just_works(self, float_frame): + # GH Bug #9402 + float_frame.to_latex(column_format="lcr") + + def test_to_latex_column_format(self): + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(column_format="lcr") + expected = _dedent( + r""" + \begin{tabular}{lcr} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_float_format_object_col(self): + # GH#40024 + ser = Series([1000.0, "test"]) + result = ser.to_latex(float_format="{:,.0f}".format) + expected = _dedent( + r""" + \begin{tabular}{ll} + \toprule + & 0 \\ + \midrule + 0 & 1,000 \\ + 1 & test \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_empty_tabular(self): + df = DataFrame() + result = df.to_latex() + expected = _dedent( + r""" + \begin{tabular}{l} + \toprule + \midrule + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_series(self): + s = Series(["a", "b", "c"]) + result = s.to_latex() + expected = _dedent( + r""" + \begin{tabular}{ll} + \toprule + & 0 \\ + \midrule + 0 & a \\ + 1 & b \\ + 2 & c \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_midrule_location(self): + # GH 18326 + df = DataFrame({"a": [1, 2]}) + df.index.name = "foo" + result = df.to_latex(index_names=False) + expected = _dedent( + r""" + \begin{tabular}{lr} + \toprule + & a \\ + \midrule + 0 & 1 \\ + 1 & 2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_pos_args_deprecation(self): + # GH-54229 + df = DataFrame( + { + "name": ["Raphael", "Donatello"], + "age": [26, 45], + "height": [181.23, 177.65], + } + ) + msg = ( + r"Starting with pandas version 3.0 all arguments of to_latex except for " + r"the argument 'buf' will be keyword-only." + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + df.to_latex(None, None) + + +class TestToLatexLongtable: + def test_to_latex_empty_longtable(self): + df = DataFrame() + result = df.to_latex(longtable=True) + expected = _dedent( + r""" + \begin{longtable}{l} + \toprule + \midrule + \endfirsthead + \toprule + \midrule + \endhead + \midrule + \multicolumn{0}{r}{Continued on next page} \\ + \midrule + \endfoot + \bottomrule + \endlastfoot + \end{longtable} + """ + ) + assert result == expected + + def test_to_latex_longtable_with_index(self): + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(longtable=True) + expected = _dedent( + r""" + \begin{longtable}{lrl} + \toprule + & a & b \\ + \midrule + \endfirsthead + \toprule + & a & b \\ + \midrule + \endhead + \midrule + \multicolumn{3}{r}{Continued on next page} \\ + \midrule + \endfoot + \bottomrule + \endlastfoot + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \end{longtable} + """ + ) + assert result == expected + + def test_to_latex_longtable_without_index(self): + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(index=False, longtable=True) + expected = _dedent( + r""" + \begin{longtable}{rl} + \toprule + a & b \\ + \midrule + \endfirsthead + \toprule + a & b \\ + \midrule + \endhead + \midrule + \multicolumn{2}{r}{Continued on next page} \\ + \midrule + \endfoot + \bottomrule + \endlastfoot + 1 & b1 \\ + 2 & b2 \\ + \end{longtable} + """ + ) + assert result == expected + + @pytest.mark.parametrize( + "df, expected_number", + [ + (DataFrame({"a": [1, 2]}), 1), + (DataFrame({"a": [1, 2], "b": [3, 4]}), 2), + (DataFrame({"a": [1, 2], "b": [3, 4], "c": [5, 6]}), 3), + ], + ) + def test_to_latex_longtable_continued_on_next_page(self, df, expected_number): + result = df.to_latex(index=False, longtable=True) + assert rf"\multicolumn{{{expected_number}}}" in result + + +class TestToLatexHeader: + def test_to_latex_no_header_with_index(self): + # GH 7124 + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(header=False) + expected = _dedent( + r""" + \begin{tabular}{lrl} + \toprule + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_no_header_without_index(self): + # GH 7124 + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(index=False, header=False) + expected = _dedent( + r""" + \begin{tabular}{rl} + \toprule + \midrule + 1 & b1 \\ + 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_specified_header_with_index(self): + # GH 7124 + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(header=["AA", "BB"]) + expected = _dedent( + r""" + \begin{tabular}{lrl} + \toprule + & AA & BB \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_specified_header_without_index(self): + # GH 7124 + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(header=["AA", "BB"], index=False) + expected = _dedent( + r""" + \begin{tabular}{rl} + \toprule + AA & BB \\ + \midrule + 1 & b1 \\ + 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + @pytest.mark.parametrize( + "header, num_aliases", + [ + (["A"], 1), + (("B",), 1), + (("Col1", "Col2", "Col3"), 3), + (("Col1", "Col2", "Col3", "Col4"), 4), + ], + ) + def test_to_latex_number_of_items_in_header_missmatch_raises( + self, + header, + num_aliases, + ): + # GH 7124 + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + msg = f"Writing 2 cols but got {num_aliases} aliases" + with pytest.raises(ValueError, match=msg): + df.to_latex(header=header) + + def test_to_latex_decimal(self): + # GH 12031 + df = DataFrame({"a": [1.0, 2.1], "b": ["b1", "b2"]}) + result = df.to_latex(decimal=",") + expected = _dedent( + r""" + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1,000000 & b1 \\ + 1 & 2,100000 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + +class TestToLatexBold: + def test_to_latex_bold_rows(self): + # GH 16707 + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(bold_rows=True) + expected = _dedent( + r""" + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + \textbf{0} & 1 & b1 \\ + \textbf{1} & 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_no_bold_rows(self): + # GH 16707 + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(bold_rows=False) + expected = _dedent( + r""" + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + +class TestToLatexCaptionLabel: + @pytest.fixture + def caption_table(self): + """Caption for table/tabular LaTeX environment.""" + return "a table in a \\texttt{table/tabular} environment" + + @pytest.fixture + def short_caption(self): + """Short caption for testing \\caption[short_caption]{full_caption}.""" + return "a table" + + @pytest.fixture + def label_table(self): + """Label for table/tabular LaTeX environment.""" + return "tab:table_tabular" + + @pytest.fixture + def caption_longtable(self): + """Caption for longtable LaTeX environment.""" + return "a table in a \\texttt{longtable} environment" + + @pytest.fixture + def label_longtable(self): + """Label for longtable LaTeX environment.""" + return "tab:longtable" + + def test_to_latex_caption_only(self, df_short, caption_table): + # GH 25436 + result = df_short.to_latex(caption=caption_table) + expected = _dedent( + r""" + \begin{table} + \caption{a table in a \texttt{table/tabular} environment} + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + \end{table} + """ + ) + assert result == expected + + def test_to_latex_label_only(self, df_short, label_table): + # GH 25436 + result = df_short.to_latex(label=label_table) + expected = _dedent( + r""" + \begin{table} + \label{tab:table_tabular} + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + \end{table} + """ + ) + assert result == expected + + def test_to_latex_caption_and_label(self, df_short, caption_table, label_table): + # GH 25436 + result = df_short.to_latex(caption=caption_table, label=label_table) + expected = _dedent( + r""" + \begin{table} + \caption{a table in a \texttt{table/tabular} environment} + \label{tab:table_tabular} + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + \end{table} + """ + ) + assert result == expected + + def test_to_latex_caption_and_shortcaption( + self, + df_short, + caption_table, + short_caption, + ): + result = df_short.to_latex(caption=(caption_table, short_caption)) + expected = _dedent( + r""" + \begin{table} + \caption[a table]{a table in a \texttt{table/tabular} environment} + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + \end{table} + """ + ) + assert result == expected + + def test_to_latex_caption_and_shortcaption_list_is_ok(self, df_short): + caption = ("Long-long-caption", "Short") + result_tuple = df_short.to_latex(caption=caption) + result_list = df_short.to_latex(caption=list(caption)) + assert result_tuple == result_list + + def test_to_latex_caption_shortcaption_and_label( + self, + df_short, + caption_table, + short_caption, + label_table, + ): + # test when the short_caption is provided alongside caption and label + result = df_short.to_latex( + caption=(caption_table, short_caption), + label=label_table, + ) + expected = _dedent( + r""" + \begin{table} + \caption[a table]{a table in a \texttt{table/tabular} environment} + \label{tab:table_tabular} + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + \end{table} + """ + ) + assert result == expected + + @pytest.mark.parametrize( + "bad_caption", + [ + ("full_caption", "short_caption", "extra_string"), + ("full_caption", "short_caption", 1), + ("full_caption", "short_caption", None), + ("full_caption",), + (None,), + ], + ) + def test_to_latex_bad_caption_raises(self, bad_caption): + # test that wrong number of params is raised + df = DataFrame({"a": [1]}) + msg = "`caption` must be either a string or 2-tuple of strings" + with pytest.raises(ValueError, match=msg): + df.to_latex(caption=bad_caption) + + def test_to_latex_two_chars_caption(self, df_short): + # test that two chars caption is handled correctly + # it must not be unpacked into long_caption, short_caption. + result = df_short.to_latex(caption="xy") + expected = _dedent( + r""" + \begin{table} + \caption{xy} + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + \end{table} + """ + ) + assert result == expected + + def test_to_latex_longtable_caption_only(self, df_short, caption_longtable): + # GH 25436 + # test when no caption and no label is provided + # is performed by test_to_latex_longtable() + result = df_short.to_latex(longtable=True, caption=caption_longtable) + expected = _dedent( + r""" + \begin{longtable}{lrl} + \caption{a table in a \texttt{longtable} environment} \\ + \toprule + & a & b \\ + \midrule + \endfirsthead + \caption[]{a table in a \texttt{longtable} environment} \\ + \toprule + & a & b \\ + \midrule + \endhead + \midrule + \multicolumn{3}{r}{Continued on next page} \\ + \midrule + \endfoot + \bottomrule + \endlastfoot + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \end{longtable} + """ + ) + assert result == expected + + def test_to_latex_longtable_label_only(self, df_short, label_longtable): + # GH 25436 + result = df_short.to_latex(longtable=True, label=label_longtable) + expected = _dedent( + r""" + \begin{longtable}{lrl} + \label{tab:longtable} \\ + \toprule + & a & b \\ + \midrule + \endfirsthead + \toprule + & a & b \\ + \midrule + \endhead + \midrule + \multicolumn{3}{r}{Continued on next page} \\ + \midrule + \endfoot + \bottomrule + \endlastfoot + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \end{longtable} + """ + ) + assert result == expected + + def test_to_latex_longtable_caption_and_label( + self, + df_short, + caption_longtable, + label_longtable, + ): + # GH 25436 + result = df_short.to_latex( + longtable=True, + caption=caption_longtable, + label=label_longtable, + ) + expected = _dedent( + r""" + \begin{longtable}{lrl} + \caption{a table in a \texttt{longtable} environment} \label{tab:longtable} \\ + \toprule + & a & b \\ + \midrule + \endfirsthead + \caption[]{a table in a \texttt{longtable} environment} \\ + \toprule + & a & b \\ + \midrule + \endhead + \midrule + \multicolumn{3}{r}{Continued on next page} \\ + \midrule + \endfoot + \bottomrule + \endlastfoot + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \end{longtable} + """ + ) + assert result == expected + + def test_to_latex_longtable_caption_shortcaption_and_label( + self, + df_short, + caption_longtable, + short_caption, + label_longtable, + ): + # test when the caption, the short_caption and the label are provided + result = df_short.to_latex( + longtable=True, + caption=(caption_longtable, short_caption), + label=label_longtable, + ) + expected = _dedent( + r""" +\begin{longtable}{lrl} +\caption[a table]{a table in a \texttt{longtable} environment} \label{tab:longtable} \\ +\toprule + & a & b \\ +\midrule +\endfirsthead +\caption[]{a table in a \texttt{longtable} environment} \\ +\toprule + & a & b \\ +\midrule +\endhead +\midrule +\multicolumn{3}{r}{Continued on next page} \\ +\midrule +\endfoot +\bottomrule +\endlastfoot +0 & 1 & b1 \\ +1 & 2 & b2 \\ +\end{longtable} +""" + ) + assert result == expected + + +class TestToLatexEscape: + @pytest.fixture + def df_with_symbols(self): + """Dataframe with special characters for testing chars escaping.""" + a = "a" + b = "b" + yield DataFrame({"co$e^x$": {a: "a", b: "b"}, "co^l1": {a: "a", b: "b"}}) + + def test_to_latex_escape_false(self, df_with_symbols): + result = df_with_symbols.to_latex(escape=False) + expected = _dedent( + r""" + \begin{tabular}{lll} + \toprule + & co$e^x$ & co^l1 \\ + \midrule + a & a & a \\ + b & b & b \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_escape_default(self, df_with_symbols): + # gh50871: in v2.0 escape is False by default (styler.format.escape=None) + default = df_with_symbols.to_latex() + specified_true = df_with_symbols.to_latex(escape=True) + assert default != specified_true + + def test_to_latex_special_escape(self): + df = DataFrame([r"a\b\c", r"^a^b^c", r"~a~b~c"]) + result = df.to_latex(escape=True) + expected = _dedent( + r""" + \begin{tabular}{ll} + \toprule + & 0 \\ + \midrule + 0 & a\textbackslash b\textbackslash c \\ + 1 & \textasciicircum a\textasciicircum b\textasciicircum c \\ + 2 & \textasciitilde a\textasciitilde b\textasciitilde c \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_escape_special_chars(self): + special_characters = ["&", "%", "$", "#", "_", "{", "}", "~", "^", "\\"] + df = DataFrame(data=special_characters) + result = df.to_latex(escape=True) + expected = _dedent( + r""" + \begin{tabular}{ll} + \toprule + & 0 \\ + \midrule + 0 & \& \\ + 1 & \% \\ + 2 & \$ \\ + 3 & \# \\ + 4 & \_ \\ + 5 & \{ \\ + 6 & \} \\ + 7 & \textasciitilde \\ + 8 & \textasciicircum \\ + 9 & \textbackslash \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_specified_header_special_chars_without_escape(self): + # GH 7124 + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(header=["$A$", "$B$"], escape=False) + expected = _dedent( + r""" + \begin{tabular}{lrl} + \toprule + & $A$ & $B$ \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + +class TestToLatexPosition: + def test_to_latex_position(self): + the_position = "h" + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(position=the_position) + expected = _dedent( + r""" + \begin{table}[h] + \begin{tabular}{lrl} + \toprule + & a & b \\ + \midrule + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \bottomrule + \end{tabular} + \end{table} + """ + ) + assert result == expected + + def test_to_latex_longtable_position(self): + the_position = "t" + df = DataFrame({"a": [1, 2], "b": ["b1", "b2"]}) + result = df.to_latex(longtable=True, position=the_position) + expected = _dedent( + r""" + \begin{longtable}[t]{lrl} + \toprule + & a & b \\ + \midrule + \endfirsthead + \toprule + & a & b \\ + \midrule + \endhead + \midrule + \multicolumn{3}{r}{Continued on next page} \\ + \midrule + \endfoot + \bottomrule + \endlastfoot + 0 & 1 & b1 \\ + 1 & 2 & b2 \\ + \end{longtable} + """ + ) + assert result == expected + + +class TestToLatexFormatters: + def test_to_latex_with_formatters(self): + df = DataFrame( + { + "datetime64": [ + datetime(2016, 1, 1), + datetime(2016, 2, 5), + datetime(2016, 3, 3), + ], + "float": [1.0, 2.0, 3.0], + "int": [1, 2, 3], + "object": [(1, 2), True, False], + } + ) + + formatters = { + "datetime64": lambda x: x.strftime("%Y-%m"), + "float": lambda x: f"[{x: 4.1f}]", + "int": lambda x: f"0x{x:x}", + "object": lambda x: f"-{x!s}-", + "__index__": lambda x: f"index: {x}", + } + result = df.to_latex(formatters=dict(formatters)) + + expected = _dedent( + r""" + \begin{tabular}{llrrl} + \toprule + & datetime64 & float & int & object \\ + \midrule + index: 0 & 2016-01 & [ 1.0] & 0x1 & -(1, 2)- \\ + index: 1 & 2016-02 & [ 2.0] & 0x2 & -True- \\ + index: 2 & 2016-03 & [ 3.0] & 0x3 & -False- \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_float_format_no_fixed_width_3decimals(self): + # GH 21625 + df = DataFrame({"x": [0.19999]}) + result = df.to_latex(float_format="%.3f") + expected = _dedent( + r""" + \begin{tabular}{lr} + \toprule + & x \\ + \midrule + 0 & 0.200 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_float_format_no_fixed_width_integer(self): + # GH 22270 + df = DataFrame({"x": [100.0]}) + result = df.to_latex(float_format="%.0f") + expected = _dedent( + r""" + \begin{tabular}{lr} + \toprule + & x \\ + \midrule + 0 & 100 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + @pytest.mark.parametrize("na_rep", ["NaN", "Ted"]) + def test_to_latex_na_rep_and_float_format(self, na_rep): + df = DataFrame( + [ + ["A", 1.2225], + ["A", None], + ], + columns=["Group", "Data"], + ) + result = df.to_latex(na_rep=na_rep, float_format="{:.2f}".format) + expected = _dedent( + rf""" + \begin{{tabular}}{{llr}} + \toprule + & Group & Data \\ + \midrule + 0 & A & 1.22 \\ + 1 & A & {na_rep} \\ + \bottomrule + \end{{tabular}} + """ + ) + assert result == expected + + +class TestToLatexMultiindex: + @pytest.fixture + def multiindex_frame(self): + """Multiindex dataframe for testing multirow LaTeX macros.""" + yield DataFrame.from_dict( + { + ("c1", 0): Series({x: x for x in range(4)}), + ("c1", 1): Series({x: x + 4 for x in range(4)}), + ("c2", 0): Series({x: x for x in range(4)}), + ("c2", 1): Series({x: x + 4 for x in range(4)}), + ("c3", 0): Series({x: x for x in range(4)}), + } + ).T + + @pytest.fixture + def multicolumn_frame(self): + """Multicolumn dataframe for testing multicolumn LaTeX macros.""" + yield DataFrame( + { + ("c1", 0): {x: x for x in range(5)}, + ("c1", 1): {x: x + 5 for x in range(5)}, + ("c2", 0): {x: x for x in range(5)}, + ("c2", 1): {x: x + 5 for x in range(5)}, + ("c3", 0): {x: x for x in range(5)}, + } + ) + + def test_to_latex_multindex_header(self): + # GH 16718 + df = DataFrame({"a": [0], "b": [1], "c": [2], "d": [3]}) + df = df.set_index(["a", "b"]) + observed = df.to_latex(header=["r1", "r2"], multirow=False) + expected = _dedent( + r""" + \begin{tabular}{llrr} + \toprule + & & r1 & r2 \\ + a & b & & \\ + \midrule + 0 & 1 & 2 & 3 \\ + \bottomrule + \end{tabular} + """ + ) + assert observed == expected + + def test_to_latex_multiindex_empty_name(self): + # GH 18669 + mi = pd.MultiIndex.from_product([[1, 2]], names=[""]) + df = DataFrame(-1, index=mi, columns=range(4)) + observed = df.to_latex() + expected = _dedent( + r""" + \begin{tabular}{lrrrr} + \toprule + & 0 & 1 & 2 & 3 \\ + & & & & \\ + \midrule + 1 & -1 & -1 & -1 & -1 \\ + 2 & -1 & -1 & -1 & -1 \\ + \bottomrule + \end{tabular} + """ + ) + assert observed == expected + + def test_to_latex_multiindex_column_tabular(self): + df = DataFrame({("x", "y"): ["a"]}) + result = df.to_latex() + expected = _dedent( + r""" + \begin{tabular}{ll} + \toprule + & x \\ + & y \\ + \midrule + 0 & a \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_multiindex_small_tabular(self): + df = DataFrame({("x", "y"): ["a"]}).T + result = df.to_latex(multirow=False) + expected = _dedent( + r""" + \begin{tabular}{lll} + \toprule + & & 0 \\ + \midrule + x & y & a \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_multiindex_tabular(self, multiindex_frame): + result = multiindex_frame.to_latex(multirow=False) + expected = _dedent( + r""" + \begin{tabular}{llrrrr} + \toprule + & & 0 & 1 & 2 & 3 \\ + \midrule + c1 & 0 & 0 & 1 & 2 & 3 \\ + & 1 & 4 & 5 & 6 & 7 \\ + c2 & 0 & 0 & 1 & 2 & 3 \\ + & 1 & 4 & 5 & 6 & 7 \\ + c3 & 0 & 0 & 1 & 2 & 3 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_multicolumn_tabular(self, multiindex_frame): + # GH 14184 + df = multiindex_frame.T + df.columns.names = ["a", "b"] + result = df.to_latex(multirow=False) + expected = _dedent( + r""" + \begin{tabular}{lrrrrr} + \toprule + a & \multicolumn{2}{r}{c1} & \multicolumn{2}{r}{c2} & c3 \\ + b & 0 & 1 & 0 & 1 & 0 \\ + \midrule + 0 & 0 & 4 & 0 & 4 & 0 \\ + 1 & 1 & 5 & 1 & 5 & 1 \\ + 2 & 2 & 6 & 2 & 6 & 2 \\ + 3 & 3 & 7 & 3 & 7 & 3 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_index_has_name_tabular(self): + # GH 10660 + df = DataFrame({"a": [0, 0, 1, 1], "b": list("abab"), "c": [1, 2, 3, 4]}) + result = df.set_index(["a", "b"]).to_latex(multirow=False) + expected = _dedent( + r""" + \begin{tabular}{llr} + \toprule + & & c \\ + a & b & \\ + \midrule + 0 & a & 1 \\ + & b & 2 \\ + 1 & a & 3 \\ + & b & 4 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_groupby_tabular(self): + # GH 10660 + df = DataFrame({"a": [0, 0, 1, 1], "b": list("abab"), "c": [1, 2, 3, 4]}) + result = ( + df.groupby("a") + .describe() + .to_latex(float_format="{:.1f}".format, escape=True) + ) + expected = _dedent( + r""" + \begin{tabular}{lrrrrrrrr} + \toprule + & \multicolumn{8}{r}{c} \\ + & count & mean & std & min & 25\% & 50\% & 75\% & max \\ + a & & & & & & & & \\ + \midrule + 0 & 2.0 & 1.5 & 0.7 & 1.0 & 1.2 & 1.5 & 1.8 & 2.0 \\ + 1 & 2.0 & 3.5 & 0.7 & 3.0 & 3.2 & 3.5 & 3.8 & 4.0 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_multiindex_dupe_level(self): + # see gh-14484 + # + # If an index is repeated in subsequent rows, it should be + # replaced with a blank in the created table. This should + # ONLY happen if all higher order indices (to the left) are + # equal too. In this test, 'c' has to be printed both times + # because the higher order index 'A' != 'B'. + df = DataFrame( + index=pd.MultiIndex.from_tuples([("A", "c"), ("B", "c")]), columns=["col"] + ) + result = df.to_latex(multirow=False) + expected = _dedent( + r""" + \begin{tabular}{lll} + \toprule + & & col \\ + \midrule + A & c & NaN \\ + B & c & NaN \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_multicolumn_default(self, multicolumn_frame): + result = multicolumn_frame.to_latex() + expected = _dedent( + r""" + \begin{tabular}{lrrrrr} + \toprule + & \multicolumn{2}{r}{c1} & \multicolumn{2}{r}{c2} & c3 \\ + & 0 & 1 & 0 & 1 & 0 \\ + \midrule + 0 & 0 & 5 & 0 & 5 & 0 \\ + 1 & 1 & 6 & 1 & 6 & 1 \\ + 2 & 2 & 7 & 2 & 7 & 2 \\ + 3 & 3 & 8 & 3 & 8 & 3 \\ + 4 & 4 & 9 & 4 & 9 & 4 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_multicolumn_false(self, multicolumn_frame): + result = multicolumn_frame.to_latex(multicolumn=False, multicolumn_format="l") + expected = _dedent( + r""" + \begin{tabular}{lrrrrr} + \toprule + & c1 & & c2 & & c3 \\ + & 0 & 1 & 0 & 1 & 0 \\ + \midrule + 0 & 0 & 5 & 0 & 5 & 0 \\ + 1 & 1 & 6 & 1 & 6 & 1 \\ + 2 & 2 & 7 & 2 & 7 & 2 \\ + 3 & 3 & 8 & 3 & 8 & 3 \\ + 4 & 4 & 9 & 4 & 9 & 4 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_multirow_true(self, multicolumn_frame): + result = multicolumn_frame.T.to_latex(multirow=True) + expected = _dedent( + r""" + \begin{tabular}{llrrrrr} + \toprule + & & 0 & 1 & 2 & 3 & 4 \\ + \midrule + \multirow[t]{2}{*}{c1} & 0 & 0 & 1 & 2 & 3 & 4 \\ + & 1 & 5 & 6 & 7 & 8 & 9 \\ + \cline{1-7} + \multirow[t]{2}{*}{c2} & 0 & 0 & 1 & 2 & 3 & 4 \\ + & 1 & 5 & 6 & 7 & 8 & 9 \\ + \cline{1-7} + c3 & 0 & 0 & 1 & 2 & 3 & 4 \\ + \cline{1-7} + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_multicolumnrow_with_multicol_format(self, multicolumn_frame): + multicolumn_frame.index = multicolumn_frame.T.index + result = multicolumn_frame.T.to_latex( + multirow=True, + multicolumn=True, + multicolumn_format="c", + ) + expected = _dedent( + r""" + \begin{tabular}{llrrrrr} + \toprule + & & \multicolumn{2}{c}{c1} & \multicolumn{2}{c}{c2} & c3 \\ + & & 0 & 1 & 0 & 1 & 0 \\ + \midrule + \multirow[t]{2}{*}{c1} & 0 & 0 & 1 & 2 & 3 & 4 \\ + & 1 & 5 & 6 & 7 & 8 & 9 \\ + \cline{1-7} + \multirow[t]{2}{*}{c2} & 0 & 0 & 1 & 2 & 3 & 4 \\ + & 1 & 5 & 6 & 7 & 8 & 9 \\ + \cline{1-7} + c3 & 0 & 0 & 1 & 2 & 3 & 4 \\ + \cline{1-7} + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + @pytest.mark.parametrize("name0", [None, "named0"]) + @pytest.mark.parametrize("name1", [None, "named1"]) + @pytest.mark.parametrize("axes", [[0], [1], [0, 1]]) + def test_to_latex_multiindex_names(self, name0, name1, axes): + # GH 18667 + names = [name0, name1] + mi = pd.MultiIndex.from_product([[1, 2], [3, 4]]) + df = DataFrame(-1, index=mi.copy(), columns=mi.copy()) + for idx in axes: + df.axes[idx].names = names + + idx_names = tuple(n or "" for n in names) + idx_names_row = ( + f"{idx_names[0]} & {idx_names[1]} & & & & \\\\\n" + if (0 in axes and any(names)) + else "" + ) + col_names = [n if (bool(n) and 1 in axes) else "" for n in names] + observed = df.to_latex(multirow=False) + # pylint: disable-next=consider-using-f-string + expected = r"""\begin{tabular}{llrrrr} +\toprule + & %s & \multicolumn{2}{r}{1} & \multicolumn{2}{r}{2} \\ + & %s & 3 & 4 & 3 & 4 \\ +%s\midrule +1 & 3 & -1 & -1 & -1 & -1 \\ + & 4 & -1 & -1 & -1 & -1 \\ +2 & 3 & -1 & -1 & -1 & -1 \\ + & 4 & -1 & -1 & -1 & -1 \\ +\bottomrule +\end{tabular} +""" % tuple( + list(col_names) + [idx_names_row] + ) + assert observed == expected + + @pytest.mark.parametrize("one_row", [True, False]) + def test_to_latex_multiindex_nans(self, one_row): + # GH 14249 + df = DataFrame({"a": [None, 1], "b": [2, 3], "c": [4, 5]}) + if one_row: + df = df.iloc[[0]] + observed = df.set_index(["a", "b"]).to_latex(multirow=False) + expected = _dedent( + r""" + \begin{tabular}{llr} + \toprule + & & c \\ + a & b & \\ + \midrule + NaN & 2 & 4 \\ + """ + ) + if not one_row: + expected += r"""1.000000 & 3 & 5 \\ +""" + expected += r"""\bottomrule +\end{tabular} +""" + assert observed == expected + + def test_to_latex_non_string_index(self): + # GH 19981 + df = DataFrame([[1, 2, 3]] * 2).set_index([0, 1]) + result = df.to_latex(multirow=False) + expected = _dedent( + r""" + \begin{tabular}{llr} + \toprule + & & 2 \\ + 0 & 1 & \\ + \midrule + 1 & 2 & 3 \\ + & 2 & 3 \\ + \bottomrule + \end{tabular} + """ + ) + assert result == expected + + def test_to_latex_multiindex_multirow(self): + # GH 16719 + mi = pd.MultiIndex.from_product( + [[0.0, 1.0], [3.0, 2.0, 1.0], ["0", "1"]], names=["i", "val0", "val1"] + ) + df = DataFrame(index=mi) + result = df.to_latex(multirow=True, escape=False) + expected = _dedent( + r""" + \begin{tabular}{lll} + \toprule + i & val0 & val1 \\ + \midrule + \multirow[t]{6}{*}{0.000000} & \multirow[t]{2}{*}{3.000000} & 0 \\ + & & 1 \\ + \cline{2-3} + & \multirow[t]{2}{*}{2.000000} & 0 \\ + & & 1 \\ + \cline{2-3} + & \multirow[t]{2}{*}{1.000000} & 0 \\ + & & 1 \\ + \cline{1-3} \cline{2-3} + \multirow[t]{6}{*}{1.000000} & \multirow[t]{2}{*}{3.000000} & 0 \\ + & & 1 \\ + \cline{2-3} + & \multirow[t]{2}{*}{2.000000} & 0 \\ + & & 1 \\ + \cline{2-3} + & \multirow[t]{2}{*}{1.000000} & 0 \\ + & & 1 \\ + \cline{1-3} \cline{2-3} + \bottomrule + \end{tabular} + """ + ) + assert result == expected diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_markdown.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_markdown.py new file mode 100644 index 0000000000000000000000000000000000000000..85eca834ff0d43ca30eb4043ed9f97fd3807899b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_markdown.py @@ -0,0 +1,106 @@ +from io import ( + BytesIO, + StringIO, +) + +import pytest + +import pandas as pd +import pandas._testing as tm + +pytest.importorskip("tabulate") + + +def test_simple(): + buf = StringIO() + df = pd.DataFrame([1, 2, 3]) + df.to_markdown(buf=buf) + result = buf.getvalue() + assert ( + result == "| | 0 |\n|---:|----:|\n| 0 | 1 |\n| 1 | 2 |\n| 2 | 3 |" + ) + + +def test_empty_frame(): + buf = StringIO() + df = pd.DataFrame({"id": [], "first_name": [], "last_name": []}).set_index("id") + df.to_markdown(buf=buf) + result = buf.getvalue() + assert result == ( + "| id | first_name | last_name |\n" + "|------|--------------|-------------|" + ) + + +def test_other_tablefmt(): + buf = StringIO() + df = pd.DataFrame([1, 2, 3]) + df.to_markdown(buf=buf, tablefmt="jira") + result = buf.getvalue() + assert result == "|| || 0 ||\n| 0 | 1 |\n| 1 | 2 |\n| 2 | 3 |" + + +def test_other_headers(): + buf = StringIO() + df = pd.DataFrame([1, 2, 3]) + df.to_markdown(buf=buf, headers=["foo", "bar"]) + result = buf.getvalue() + assert result == ( + "| foo | bar |\n|------:|------:|\n| 0 " + "| 1 |\n| 1 | 2 |\n| 2 | 3 |" + ) + + +def test_series(): + buf = StringIO() + s = pd.Series([1, 2, 3], name="foo") + s.to_markdown(buf=buf) + result = buf.getvalue() + assert result == ( + "| | foo |\n|---:|------:|\n| 0 | 1 " + "|\n| 1 | 2 |\n| 2 | 3 |" + ) + + +def test_no_buf(): + df = pd.DataFrame([1, 2, 3]) + result = df.to_markdown() + assert ( + result == "| | 0 |\n|---:|----:|\n| 0 | 1 |\n| 1 | 2 |\n| 2 | 3 |" + ) + + +@pytest.mark.parametrize("index", [True, False]) +def test_index(index): + # GH 32667 + + df = pd.DataFrame([1, 2, 3]) + + result = df.to_markdown(index=index) + + if index: + expected = ( + "| | 0 |\n|---:|----:|\n| 0 | 1 |\n| 1 | 2 |\n| 2 | 3 |" + ) + else: + expected = "| 0 |\n|----:|\n| 1 |\n| 2 |\n| 3 |" + assert result == expected + + +def test_showindex_disallowed_in_kwargs(): + # GH 32667; disallowing showindex in kwargs enforced in 2.0 + df = pd.DataFrame([1, 2, 3]) + with pytest.raises(ValueError, match="Pass 'index' instead of 'showindex"): + df.to_markdown(index=True, showindex=True) + + +def test_markdown_pos_args_deprecatation(): + # GH-54229 + df = pd.DataFrame({"a": [1, 2, 3]}) + msg = ( + r"Starting with pandas version 3.0 all arguments of to_markdown except for the " + r"argument 'buf' will be keyword-only." + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + buffer = BytesIO() + df.to_markdown(buffer, "grid") diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_string.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_string.py new file mode 100644 index 0000000000000000000000000000000000000000..2e5a5005cb0761c104ed6de26cd5a6ef730c08d5 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/formats/test_to_string.py @@ -0,0 +1,1216 @@ +from datetime import ( + datetime, + timedelta, +) +from io import StringIO +import re +import sys +from textwrap import dedent + +import numpy as np +import pytest + +from pandas._config import using_pyarrow_string_dtype + +from pandas import ( + CategoricalIndex, + DataFrame, + Index, + NaT, + Series, + Timestamp, + concat, + date_range, + get_option, + option_context, + read_csv, + timedelta_range, + to_datetime, +) +import pandas._testing as tm + + +def _three_digit_exp(): + return f"{1.7e8:.4g}" == "1.7e+008" + + +class TestDataFrameToStringFormatters: + def test_to_string_masked_ea_with_formatter(self): + # GH#39336 + df = DataFrame( + { + "a": Series([0.123456789, 1.123456789], dtype="Float64"), + "b": Series([1, 2], dtype="Int64"), + } + ) + result = df.to_string(formatters=["{:.2f}".format, "{:.2f}".format]) + expected = dedent( + """\ + a b + 0 0.12 1.00 + 1 1.12 2.00""" + ) + assert result == expected + + def test_to_string_with_formatters(self): + df = DataFrame( + { + "int": [1, 2, 3], + "float": [1.0, 2.0, 3.0], + "object": [(1, 2), True, False], + }, + columns=["int", "float", "object"], + ) + + formatters = [ + ("int", lambda x: f"0x{x:x}"), + ("float", lambda x: f"[{x: 4.1f}]"), + ("object", lambda x: f"-{x!s}-"), + ] + result = df.to_string(formatters=dict(formatters)) + result2 = df.to_string(formatters=list(zip(*formatters))[1]) + assert result == ( + " int float object\n" + "0 0x1 [ 1.0] -(1, 2)-\n" + "1 0x2 [ 2.0] -True-\n" + "2 0x3 [ 3.0] -False-" + ) + assert result == result2 + + def test_to_string_with_datetime64_monthformatter(self): + months = [datetime(2016, 1, 1), datetime(2016, 2, 2)] + x = DataFrame({"months": months}) + + def format_func(x): + return x.strftime("%Y-%m") + + result = x.to_string(formatters={"months": format_func}) + expected = dedent( + """\ + months + 0 2016-01 + 1 2016-02""" + ) + assert result.strip() == expected + + def test_to_string_with_datetime64_hourformatter(self): + x = DataFrame( + {"hod": to_datetime(["10:10:10.100", "12:12:12.120"], format="%H:%M:%S.%f")} + ) + + def format_func(x): + return x.strftime("%H:%M") + + result = x.to_string(formatters={"hod": format_func}) + expected = dedent( + """\ + hod + 0 10:10 + 1 12:12""" + ) + assert result.strip() == expected + + def test_to_string_with_formatters_unicode(self): + df = DataFrame({"c/\u03c3": [1, 2, 3]}) + result = df.to_string(formatters={"c/\u03c3": str}) + expected = dedent( + """\ + c/\u03c3 + 0 1 + 1 2 + 2 3""" + ) + assert result == expected + + def test_to_string_index_formatter(self): + df = DataFrame([range(5), range(5, 10), range(10, 15)]) + + rs = df.to_string(formatters={"__index__": lambda x: "abc"[x]}) + + xp = dedent( + """\ + 0 1 2 3 4 + a 0 1 2 3 4 + b 5 6 7 8 9 + c 10 11 12 13 14\ + """ + ) + assert rs == xp + + def test_no_extra_space(self): + # GH#52690: Check that no extra space is given + col1 = "TEST" + col2 = "PANDAS" + col3 = "to_string" + expected = f"{col1:<6s} {col2:<7s} {col3:<10s}" + df = DataFrame([{"col1": "TEST", "col2": "PANDAS", "col3": "to_string"}]) + d = {"col1": "{:<6s}".format, "col2": "{:<7s}".format, "col3": "{:<10s}".format} + result = df.to_string(index=False, header=False, formatters=d) + assert result == expected + + +class TestDataFrameToStringColSpace: + def test_to_string_with_column_specific_col_space_raises(self): + df = DataFrame( + np.random.default_rng(2).random(size=(3, 3)), columns=["a", "b", "c"] + ) + + msg = ( + "Col_space length\\(\\d+\\) should match " + "DataFrame number of columns\\(\\d+\\)" + ) + with pytest.raises(ValueError, match=msg): + df.to_string(col_space=[30, 40]) + + with pytest.raises(ValueError, match=msg): + df.to_string(col_space=[30, 40, 50, 60]) + + msg = "unknown column" + with pytest.raises(ValueError, match=msg): + df.to_string(col_space={"a": "foo", "b": 23, "d": 34}) + + def test_to_string_with_column_specific_col_space(self): + df = DataFrame( + np.random.default_rng(2).random(size=(3, 3)), columns=["a", "b", "c"] + ) + + result = df.to_string(col_space={"a": 10, "b": 11, "c": 12}) + # 3 separating space + each col_space for (id, a, b, c) + assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) + + result = df.to_string(col_space=[10, 11, 12]) + assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) + + def test_to_string_with_col_space(self): + df = DataFrame(np.random.default_rng(2).random(size=(1, 3))) + c10 = len(df.to_string(col_space=10).split("\n")[1]) + c20 = len(df.to_string(col_space=20).split("\n")[1]) + c30 = len(df.to_string(col_space=30).split("\n")[1]) + assert c10 < c20 < c30 + + # GH#8230 + # col_space wasn't being applied with header=False + with_header = df.to_string(col_space=20) + with_header_row1 = with_header.splitlines()[1] + no_header = df.to_string(col_space=20, header=False) + assert len(with_header_row1) == len(no_header) + + def test_to_string_repr_tuples(self): + buf = StringIO() + + df = DataFrame({"tups": list(zip(range(10), range(10)))}) + repr(df) + df.to_string(col_space=10, buf=buf) + + +class TestDataFrameToStringHeader: + def test_to_string_header_false(self): + # GH#49230 + df = DataFrame([1, 2]) + df.index.name = "a" + s = df.to_string(header=False) + expected = "a \n0 1\n1 2" + assert s == expected + + df = DataFrame([[1, 2], [3, 4]]) + df.index.name = "a" + s = df.to_string(header=False) + expected = "a \n0 1 2\n1 3 4" + assert s == expected + + def test_to_string_multindex_header(self): + # GH#16718 + df = DataFrame({"a": [0], "b": [1], "c": [2], "d": [3]}).set_index(["a", "b"]) + res = df.to_string(header=["r1", "r2"]) + exp = " r1 r2\na b \n0 1 2 3" + assert res == exp + + def test_to_string_no_header(self): + df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) + + df_s = df.to_string(header=False) + expected = "0 1 4\n1 2 5\n2 3 6" + + assert df_s == expected + + def test_to_string_specified_header(self): + df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) + + df_s = df.to_string(header=["X", "Y"]) + expected = " X Y\n0 1 4\n1 2 5\n2 3 6" + + assert df_s == expected + + msg = "Writing 2 cols but got 1 aliases" + with pytest.raises(ValueError, match=msg): + df.to_string(header=["X"]) + + +class TestDataFrameToStringLineWidth: + def test_to_string_line_width(self): + df = DataFrame(123, index=range(10, 15), columns=range(30)) + lines = df.to_string(line_width=80) + assert max(len(line) for line in lines.split("\n")) == 80 + + def test_to_string_line_width_no_index(self): + # GH#13998, GH#22505 + df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) + + df_s = df.to_string(line_width=1, index=False) + expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 " + + assert df_s == expected + + df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) + + df_s = df.to_string(line_width=1, index=False) + expected = " x \\\n11 \n22 \n33 \n\n y \n 4 \n 5 \n 6 " + + assert df_s == expected + + df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) + + df_s = df.to_string(line_width=1, index=False) + expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 " + + assert df_s == expected + + def test_to_string_line_width_no_header(self): + # GH#53054 + df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) + + df_s = df.to_string(line_width=1, header=False) + expected = "0 1 \\\n1 2 \n2 3 \n\n0 4 \n1 5 \n2 6 " + + assert df_s == expected + + df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) + + df_s = df.to_string(line_width=1, header=False) + expected = "0 11 \\\n1 22 \n2 33 \n\n0 4 \n1 5 \n2 6 " + + assert df_s == expected + + df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) + + df_s = df.to_string(line_width=1, header=False) + expected = "0 11 \\\n1 22 \n2 -33 \n\n0 4 \n1 5 \n2 -6 " + + assert df_s == expected + + def test_to_string_line_width_with_both_index_and_header(self): + # GH#53054 + df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) + + df_s = df.to_string(line_width=1) + expected = ( + " x \\\n0 1 \n1 2 \n2 3 \n\n y \n0 4 \n1 5 \n2 6 " + ) + + assert df_s == expected + + df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) + + df_s = df.to_string(line_width=1) + expected = ( + " x \\\n0 11 \n1 22 \n2 33 \n\n y \n0 4 \n1 5 \n2 6 " + ) + + assert df_s == expected + + df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) + + df_s = df.to_string(line_width=1) + expected = ( + " x \\\n0 11 \n1 22 \n2 -33 \n\n y \n0 4 \n1 5 \n2 -6 " + ) + + assert df_s == expected + + def test_to_string_line_width_no_index_no_header(self): + # GH#53054 + df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) + + df_s = df.to_string(line_width=1, index=False, header=False) + expected = "1 \\\n2 \n3 \n\n4 \n5 \n6 " + + assert df_s == expected + + df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) + + df_s = df.to_string(line_width=1, index=False, header=False) + expected = "11 \\\n22 \n33 \n\n4 \n5 \n6 " + + assert df_s == expected + + df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) + + df_s = df.to_string(line_width=1, index=False, header=False) + expected = " 11 \\\n 22 \n-33 \n\n 4 \n 5 \n-6 " + + assert df_s == expected + + +class TestToStringNumericFormatting: + def test_to_string_float_format_no_fixed_width(self): + # GH#21625 + df = DataFrame({"x": [0.19999]}) + expected = " x\n0 0.200" + assert df.to_string(float_format="%.3f") == expected + + # GH#22270 + df = DataFrame({"x": [100.0]}) + expected = " x\n0 100" + assert df.to_string(float_format="%.0f") == expected + + def test_to_string_small_float_values(self): + df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]}) + + result = df.to_string() + # sadness per above + if _three_digit_exp(): + expected = ( + " a\n" + "0 1.500000e+000\n" + "1 1.000000e-017\n" + "2 -5.500000e-007" + ) + else: + expected = ( + " a\n" + "0 1.500000e+00\n" + "1 1.000000e-17\n" + "2 -5.500000e-07" + ) + assert result == expected + + # but not all exactly zero + df = df * 0 + result = df.to_string() + expected = " 0\n0 0\n1 0\n2 -0" + # TODO: assert that these match?? + + def test_to_string_complex_float_formatting(self): + # GH #25514, 25745 + with option_context("display.precision", 5): + df = DataFrame( + { + "x": [ + (0.4467846931321966 + 0.0715185102060818j), + (0.2739442392974528 + 0.23515228785438969j), + (0.26974928742135185 + 0.3250604054898979j), + (-1j), + ] + } + ) + result = df.to_string() + expected = ( + " x\n0 0.44678+0.07152j\n" + "1 0.27394+0.23515j\n" + "2 0.26975+0.32506j\n" + "3 -0.00000-1.00000j" + ) + assert result == expected + + def test_to_string_format_inf(self): + # GH#24861 + df = DataFrame( + { + "A": [-np.inf, np.inf, -1, -2.1234, 3, 4], + "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], + } + ) + result = df.to_string() + + expected = ( + " A B\n" + "0 -inf -inf\n" + "1 inf inf\n" + "2 -1.0000 foo\n" + "3 -2.1234 foooo\n" + "4 3.0000 fooooo\n" + "5 4.0000 bar" + ) + assert result == expected + + df = DataFrame( + { + "A": [-np.inf, np.inf, -1.0, -2.0, 3.0, 4.0], + "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], + } + ) + result = df.to_string() + + expected = ( + " A B\n" + "0 -inf -inf\n" + "1 inf inf\n" + "2 -1.0 foo\n" + "3 -2.0 foooo\n" + "4 3.0 fooooo\n" + "5 4.0 bar" + ) + assert result == expected + + def test_to_string_int_formatting(self): + df = DataFrame({"x": [-15, 20, 25, -35]}) + assert issubclass(df["x"].dtype.type, np.integer) + + output = df.to_string() + expected = " x\n0 -15\n1 20\n2 25\n3 -35" + assert output == expected + + def test_to_string_float_formatting(self): + with option_context( + "display.precision", + 5, + "display.notebook_repr_html", + False, + ): + df = DataFrame( + {"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]} + ) + + df_s = df.to_string() + + if _three_digit_exp(): + expected = ( + " x\n0 0.00000e+000\n1 2.50000e-001\n" + "2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n" + "5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n" + "8 -1.00000e+006" + ) + else: + expected = ( + " x\n0 0.00000e+00\n1 2.50000e-01\n" + "2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n" + "5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n" + "8 -1.00000e+06" + ) + assert df_s == expected + + df = DataFrame({"x": [3234, 0.253]}) + df_s = df.to_string() + + expected = " x\n0 3234.000\n1 0.253" + assert df_s == expected + + assert get_option("display.precision") == 6 + + df = DataFrame({"x": [1e9, 0.2512]}) + df_s = df.to_string() + + if _three_digit_exp(): + expected = " x\n0 1.000000e+009\n1 2.512000e-001" + else: + expected = " x\n0 1.000000e+09\n1 2.512000e-01" + assert df_s == expected + + +class TestDataFrameToString: + def test_to_string_decimal(self): + # GH#23614 + df = DataFrame({"A": [6.0, 3.1, 2.2]}) + expected = " A\n0 6,0\n1 3,1\n2 2,2" + assert df.to_string(decimal=",") == expected + + def test_to_string_left_justify_cols(self): + df = DataFrame({"x": [3234, 0.253]}) + df_s = df.to_string(justify="left") + expected = " x \n0 3234.000\n1 0.253" + assert df_s == expected + + def test_to_string_format_na(self): + df = DataFrame( + { + "A": [np.nan, -1, -2.1234, 3, 4], + "B": [np.nan, "foo", "foooo", "fooooo", "bar"], + } + ) + result = df.to_string() + + expected = ( + " A B\n" + "0 NaN NaN\n" + "1 -1.0000 foo\n" + "2 -2.1234 foooo\n" + "3 3.0000 fooooo\n" + "4 4.0000 bar" + ) + assert result == expected + + df = DataFrame( + { + "A": [np.nan, -1.0, -2.0, 3.0, 4.0], + "B": [np.nan, "foo", "foooo", "fooooo", "bar"], + } + ) + result = df.to_string() + + expected = ( + " A B\n" + "0 NaN NaN\n" + "1 -1.0 foo\n" + "2 -2.0 foooo\n" + "3 3.0 fooooo\n" + "4 4.0 bar" + ) + assert result == expected + + def test_to_string_with_dict_entries(self): + df = DataFrame({"A": [{"a": 1, "b": 2}]}) + + val = df.to_string() + assert "'a': 1" in val + assert "'b': 2" in val + + def test_to_string_with_categorical_columns(self): + # GH#35439 + data = [[4, 2], [3, 2], [4, 3]] + cols = ["aaaaaaaaa", "b"] + df = DataFrame(data, columns=cols) + df_cat_cols = DataFrame(data, columns=CategoricalIndex(cols)) + + assert df.to_string() == df_cat_cols.to_string() + + def test_repr_embedded_ndarray(self): + arr = np.empty(10, dtype=[("err", object)]) + for i in range(len(arr)): + arr["err"][i] = np.random.default_rng(2).standard_normal(i) + + df = DataFrame(arr) + repr(df["err"]) + repr(df) + df.to_string() + + def test_to_string_truncate(self): + # GH 9784 - dont truncate when calling DataFrame.to_string + df = DataFrame( + [ + { + "a": "foo", + "b": "bar", + "c": "let's make this a very VERY long line that is longer " + "than the default 50 character limit", + "d": 1, + }, + {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, + ] + ) + df.set_index(["a", "b", "c"]) + assert df.to_string() == ( + " a b " + " c d\n" + "0 foo bar let's make this a very VERY long line t" + "hat is longer than the default 50 character limit 1\n" + "1 foo bar " + " stuff 1" + ) + with option_context("max_colwidth", 20): + # the display option has no effect on the to_string method + assert df.to_string() == ( + " a b " + " c d\n" + "0 foo bar let's make this a very VERY long line t" + "hat is longer than the default 50 character limit 1\n" + "1 foo bar " + " stuff 1" + ) + assert df.to_string(max_colwidth=20) == ( + " a b c d\n" + "0 foo bar let's make this ... 1\n" + "1 foo bar stuff 1" + ) + + @pytest.mark.parametrize( + "input_array, expected", + [ + ({"A": ["a"]}, "A\na"), + ({"A": ["a", "b"], "B": ["c", "dd"]}, "A B\na c\nb dd"), + ({"A": ["a", 1], "B": ["aa", 1]}, "A B\na aa\n1 1"), + ], + ) + def test_format_remove_leading_space_dataframe(self, input_array, expected): + # GH#24980 + df = DataFrame(input_array).to_string(index=False) + assert df == expected + + @pytest.mark.parametrize( + "data,expected", + [ + ( + {"col1": [1, 2], "col2": [3, 4]}, + " col1 col2\n0 1 3\n1 2 4", + ), + ( + {"col1": ["Abc", 0.756], "col2": [np.nan, 4.5435]}, + " col1 col2\n0 Abc NaN\n1 0.756 4.5435", + ), + ( + {"col1": [np.nan, "a"], "col2": [0.009, 3.543], "col3": ["Abc", 23]}, + " col1 col2 col3\n0 NaN 0.009 Abc\n1 a 3.543 23", + ), + ], + ) + def test_to_string_max_rows_zero(self, data, expected): + # GH#35394 + result = DataFrame(data=data).to_string(max_rows=0) + assert result == expected + + @pytest.mark.parametrize( + "max_cols, max_rows, expected", + [ + ( + 10, + None, + " 0 1 2 3 4 ... 6 7 8 9 10\n" + " 0 0 0 0 0 ... 0 0 0 0 0\n" + " 0 0 0 0 0 ... 0 0 0 0 0\n" + " 0 0 0 0 0 ... 0 0 0 0 0\n" + " 0 0 0 0 0 ... 0 0 0 0 0", + ), + ( + None, + 2, + " 0 1 2 3 4 5 6 7 8 9 10\n" + " 0 0 0 0 0 0 0 0 0 0 0\n" + " .. .. .. .. .. .. .. .. .. .. ..\n" + " 0 0 0 0 0 0 0 0 0 0 0", + ), + ( + 10, + 2, + " 0 1 2 3 4 ... 6 7 8 9 10\n" + " 0 0 0 0 0 ... 0 0 0 0 0\n" + " .. .. .. .. .. ... .. .. .. .. ..\n" + " 0 0 0 0 0 ... 0 0 0 0 0", + ), + ( + 9, + 2, + " 0 1 2 3 ... 7 8 9 10\n" + " 0 0 0 0 ... 0 0 0 0\n" + " .. .. .. .. ... .. .. .. ..\n" + " 0 0 0 0 ... 0 0 0 0", + ), + ( + 1, + 1, + " 0 ...\n 0 ...\n.. ...", + ), + ], + ) + def test_truncation_no_index(self, max_cols, max_rows, expected): + df = DataFrame([[0] * 11] * 4) + assert ( + df.to_string(index=False, max_cols=max_cols, max_rows=max_rows) == expected + ) + + def test_to_string_no_index(self): + # GH#16839, GH#13032 + df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]}) + + df_s = df.to_string(index=False) + # Leading space is expected for positive numbers. + expected = " x y z\n11 33 AAA\n22 -44 " + assert df_s == expected + + df_s = df[["y", "x", "z"]].to_string(index=False) + expected = " y x z\n 33 11 AAA\n-44 22 " + assert df_s == expected + + def test_to_string_unicode_columns(self, float_frame): + df = DataFrame({"\u03c3": np.arange(10.0)}) + + buf = StringIO() + df.to_string(buf=buf) + buf.getvalue() + + buf = StringIO() + df.info(buf=buf) + buf.getvalue() + + result = float_frame.to_string() + assert isinstance(result, str) + + @pytest.mark.parametrize("na_rep", ["NaN", "Ted"]) + def test_to_string_na_rep_and_float_format(self, na_rep): + # GH#13828 + df = DataFrame([["A", 1.2225], ["A", None]], columns=["Group", "Data"]) + result = df.to_string(na_rep=na_rep, float_format="{:.2f}".format) + expected = dedent( + f"""\ + Group Data + 0 A 1.22 + 1 A {na_rep}""" + ) + assert result == expected + + def test_to_string_string_dtype(self): + # GH#50099 + pytest.importorskip("pyarrow") + df = DataFrame( + {"x": ["foo", "bar", "baz"], "y": ["a", "b", "c"], "z": [1, 2, 3]} + ) + df = df.astype( + {"x": "string[pyarrow]", "y": "string[python]", "z": "int64[pyarrow]"} + ) + result = df.dtypes.to_string() + expected = dedent( + """\ + x string[pyarrow] + y string[python] + z int64[pyarrow]""" + ) + assert result == expected + + def test_to_string_pos_args_deprecation(self): + # GH#54229 + df = DataFrame({"a": [1, 2, 3]}) + msg = ( + "Starting with pandas version 3.0 all arguments of to_string " + "except for the " + "argument 'buf' will be keyword-only." + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + buf = StringIO() + df.to_string(buf, None, None, True, True) + + def test_to_string_utf8_columns(self): + n = "\u05d0".encode() + df = DataFrame([1, 2], columns=[n]) + + with option_context("display.max_rows", 1): + repr(df) + + def test_to_string_unicode_two(self): + dm = DataFrame({"c/\u03c3": []}) + buf = StringIO() + dm.to_string(buf) + + def test_to_string_unicode_three(self): + dm = DataFrame(["\xc2"]) + buf = StringIO() + dm.to_string(buf) + + def test_to_string_with_float_index(self): + index = Index([1.5, 2, 3, 4, 5]) + df = DataFrame(np.arange(5), index=index) + + result = df.to_string() + expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4" + assert result == expected + + def test_to_string(self): + # big mixed + biggie = DataFrame( + { + "A": np.random.default_rng(2).standard_normal(200), + "B": Index([f"{i}?!" for i in range(200)]), + }, + ) + + biggie.loc[:20, "A"] = np.nan + biggie.loc[:20, "B"] = np.nan + s = biggie.to_string() + + buf = StringIO() + retval = biggie.to_string(buf=buf) + assert retval is None + assert buf.getvalue() == s + + assert isinstance(s, str) + + # print in right order + result = biggie.to_string( + columns=["B", "A"], col_space=17, float_format="%.5f".__mod__ + ) + lines = result.split("\n") + header = lines[0].strip().split() + joined = "\n".join([re.sub(r"\s+", " ", x).strip() for x in lines[1:]]) + recons = read_csv(StringIO(joined), names=header, header=None, sep=" ") + tm.assert_series_equal(recons["B"], biggie["B"]) + assert recons["A"].count() == biggie["A"].count() + assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all() + + # FIXME: don't leave commented-out + # expected = ['B', 'A'] + # assert header == expected + + result = biggie.to_string(columns=["A"], col_space=17) + header = result.split("\n")[0].strip().split() + expected = ["A"] + assert header == expected + + biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) + + biggie.to_string(columns=["B", "A"], float_format=str) + biggie.to_string(columns=["B", "A"], col_space=12, float_format=str) + + frame = DataFrame(index=np.arange(200)) + frame.to_string() + + # TODO: split or simplify this test? + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="fix when arrow is default") + def test_to_string_index_with_nan(self): + # GH#2850 + df = DataFrame( + { + "id1": {0: "1a3", 1: "9h4"}, + "id2": {0: np.nan, 1: "d67"}, + "id3": {0: "78d", 1: "79d"}, + "value": {0: 123, 1: 64}, + } + ) + + # multi-index + y = df.set_index(["id1", "id2", "id3"]) + result = y.to_string() + expected = ( + " value\nid1 id2 id3 \n" + "1a3 NaN 78d 123\n9h4 d67 79d 64" + ) + assert result == expected + + # index + y = df.set_index("id2") + result = y.to_string() + expected = ( + " id1 id3 value\nid2 \n" + "NaN 1a3 78d 123\nd67 9h4 79d 64" + ) + assert result == expected + + # with append (this failed in 0.12) + y = df.set_index(["id1", "id2"]).set_index("id3", append=True) + result = y.to_string() + expected = ( + " value\nid1 id2 id3 \n" + "1a3 NaN 78d 123\n9h4 d67 79d 64" + ) + assert result == expected + + # all-nan in mi + df2 = df.copy() + df2.loc[:, "id2"] = np.nan + y = df2.set_index("id2") + result = y.to_string() + expected = ( + " id1 id3 value\nid2 \n" + "NaN 1a3 78d 123\nNaN 9h4 79d 64" + ) + assert result == expected + + # partial nan in mi + df2 = df.copy() + df2.loc[:, "id2"] = np.nan + y = df2.set_index(["id2", "id3"]) + result = y.to_string() + expected = ( + " id1 value\nid2 id3 \n" + "NaN 78d 1a3 123\n 79d 9h4 64" + ) + assert result == expected + + df = DataFrame( + { + "id1": {0: np.nan, 1: "9h4"}, + "id2": {0: np.nan, 1: "d67"}, + "id3": {0: np.nan, 1: "79d"}, + "value": {0: 123, 1: 64}, + } + ) + + y = df.set_index(["id1", "id2", "id3"]) + result = y.to_string() + expected = ( + " value\nid1 id2 id3 \n" + "NaN NaN NaN 123\n9h4 d67 79d 64" + ) + assert result == expected + + def test_to_string_nonunicode_nonascii_alignment(self): + df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) + rep_str = df.to_string() + lines = rep_str.split("\n") + assert len(lines[1]) == len(lines[2]) + + def test_unicode_problem_decoding_as_ascii(self): + df = DataFrame({"c/\u03c3": Series({"test": np.nan})}) + str(df.to_string()) + + def test_to_string_repr_unicode(self): + buf = StringIO() + + unicode_values = ["\u03c3"] * 10 + unicode_values = np.array(unicode_values, dtype=object) + df = DataFrame({"unicode": unicode_values}) + df.to_string(col_space=10, buf=buf) + + # it works! + repr(df) + # it works even if sys.stdin in None + _stdin = sys.stdin + try: + sys.stdin = None + repr(df) + finally: + sys.stdin = _stdin + + +class TestSeriesToString: + def test_to_string_without_index(self): + # GH#11729 Test index=False option + ser = Series([1, 2, 3, 4]) + result = ser.to_string(index=False) + expected = "\n".join(["1", "2", "3", "4"]) + assert result == expected + + def test_to_string_name(self): + ser = Series(range(100), dtype="int64") + ser.name = "myser" + res = ser.to_string(max_rows=2, name=True) + exp = "0 0\n ..\n99 99\nName: myser" + assert res == exp + res = ser.to_string(max_rows=2, name=False) + exp = "0 0\n ..\n99 99" + assert res == exp + + def test_to_string_dtype(self): + ser = Series(range(100), dtype="int64") + res = ser.to_string(max_rows=2, dtype=True) + exp = "0 0\n ..\n99 99\ndtype: int64" + assert res == exp + res = ser.to_string(max_rows=2, dtype=False) + exp = "0 0\n ..\n99 99" + assert res == exp + + def test_to_string_length(self): + ser = Series(range(100), dtype="int64") + res = ser.to_string(max_rows=2, length=True) + exp = "0 0\n ..\n99 99\nLength: 100" + assert res == exp + + def test_to_string_na_rep(self): + ser = Series(index=range(100), dtype=np.float64) + res = ser.to_string(na_rep="foo", max_rows=2) + exp = "0 foo\n ..\n99 foo" + assert res == exp + + def test_to_string_float_format(self): + ser = Series(range(10), dtype="float64") + res = ser.to_string(float_format=lambda x: f"{x:2.1f}", max_rows=2) + exp = "0 0.0\n ..\n9 9.0" + assert res == exp + + def test_to_string_header(self): + ser = Series(range(10), dtype="int64") + ser.index.name = "foo" + res = ser.to_string(header=True, max_rows=2) + exp = "foo\n0 0\n ..\n9 9" + assert res == exp + res = ser.to_string(header=False, max_rows=2) + exp = "0 0\n ..\n9 9" + assert res == exp + + def test_to_string_empty_col(self): + # GH#13653 + ser = Series(["", "Hello", "World", "", "", "Mooooo", "", ""]) + res = ser.to_string(index=False) + exp = " \n Hello\n World\n \n \nMooooo\n \n " + assert re.match(exp, res) + + def test_to_string_timedelta64(self): + Series(np.array([1100, 20], dtype="timedelta64[ns]")).to_string() + + ser = Series(date_range("2012-1-1", periods=3, freq="D")) + + # GH#2146 + + # adding NaTs + y = ser - ser.shift(1) + result = y.to_string() + assert "1 days" in result + assert "00:00:00" not in result + assert "NaT" in result + + # with frac seconds + o = Series([datetime(2012, 1, 1, microsecond=150)] * 3) + y = ser - o + result = y.to_string() + assert "-1 days +23:59:59.999850" in result + + # rounding? + o = Series([datetime(2012, 1, 1, 1)] * 3) + y = ser - o + result = y.to_string() + assert "-1 days +23:00:00" in result + assert "1 days 23:00:00" in result + + o = Series([datetime(2012, 1, 1, 1, 1)] * 3) + y = ser - o + result = y.to_string() + assert "-1 days +22:59:00" in result + assert "1 days 22:59:00" in result + + o = Series([datetime(2012, 1, 1, 1, 1, microsecond=150)] * 3) + y = ser - o + result = y.to_string() + assert "-1 days +22:58:59.999850" in result + assert "0 days 22:58:59.999850" in result + + # neg time + td = timedelta(minutes=5, seconds=3) + s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td + y = ser - s2 + result = y.to_string() + assert "-1 days +23:54:57" in result + + td = timedelta(microseconds=550) + s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td + y = ser - td + result = y.to_string() + assert "2012-01-01 23:59:59.999450" in result + + # no boxing of the actual elements + td = Series(timedelta_range("1 days", periods=3)) + result = td.to_string() + assert result == "0 1 days\n1 2 days\n2 3 days" + + def test_to_string(self): + ts = Series( + np.arange(10, dtype=np.float64), + index=date_range("2020-01-01", periods=10, freq="B"), + ) + buf = StringIO() + + s = ts.to_string() + + retval = ts.to_string(buf=buf) + assert retval is None + assert buf.getvalue().strip() == s + + # pass float_format + format = "%.4f".__mod__ + result = ts.to_string(float_format=format) + result = [x.split()[1] for x in result.split("\n")[:-1]] + expected = [format(x) for x in ts] + assert result == expected + + # empty string + result = ts[:0].to_string() + assert result == "Series([], Freq: B)" + + result = ts[:0].to_string(length=0) + assert result == "Series([], Freq: B)" + + # name and length + cp = ts.copy() + cp.name = "foo" + result = cp.to_string(length=True, name=True, dtype=True) + last_line = result.split("\n")[-1].strip() + assert last_line == (f"Freq: B, Name: foo, Length: {len(cp)}, dtype: float64") + + @pytest.mark.parametrize( + "input_array, expected", + [ + ("a", "a"), + (["a", "b"], "a\nb"), + ([1, "a"], "1\na"), + (1, "1"), + ([0, -1], " 0\n-1"), + (1.0, "1.0"), + ([" a", " b"], " a\n b"), + ([".1", "1"], ".1\n 1"), + (["10", "-10"], " 10\n-10"), + ], + ) + def test_format_remove_leading_space_series(self, input_array, expected): + # GH: 24980 + ser = Series(input_array) + result = ser.to_string(index=False) + assert result == expected + + def test_to_string_complex_number_trims_zeros(self): + ser = Series([1.000000 + 1.000000j, 1.0 + 1.0j, 1.05 + 1.0j]) + result = ser.to_string() + expected = dedent( + """\ + 0 1.00+1.00j + 1 1.00+1.00j + 2 1.05+1.00j""" + ) + assert result == expected + + def test_nullable_float_to_string(self, float_ea_dtype): + # https://github.com/pandas-dev/pandas/issues/36775 + dtype = float_ea_dtype + ser = Series([0.0, 1.0, None], dtype=dtype) + result = ser.to_string() + expected = dedent( + """\ + 0 0.0 + 1 1.0 + 2 """ + ) + assert result == expected + + def test_nullable_int_to_string(self, any_int_ea_dtype): + # https://github.com/pandas-dev/pandas/issues/36775 + dtype = any_int_ea_dtype + ser = Series([0, 1, None], dtype=dtype) + result = ser.to_string() + expected = dedent( + """\ + 0 0 + 1 1 + 2 """ + ) + assert result == expected + + def test_to_string_mixed(self): + ser = Series(["foo", np.nan, -1.23, 4.56]) + result = ser.to_string() + expected = "".join(["0 foo\n", "1 NaN\n", "2 -1.23\n", "3 4.56"]) + assert result == expected + + # but don't count NAs as floats + ser = Series(["foo", np.nan, "bar", "baz"]) + result = ser.to_string() + expected = "".join(["0 foo\n", "1 NaN\n", "2 bar\n", "3 baz"]) + assert result == expected + + ser = Series(["foo", 5, "bar", "baz"]) + result = ser.to_string() + expected = "".join(["0 foo\n", "1 5\n", "2 bar\n", "3 baz"]) + assert result == expected + + def test_to_string_float_na_spacing(self): + ser = Series([0.0, 1.5678, 2.0, -3.0, 4.0]) + ser[::2] = np.nan + + result = ser.to_string() + expected = ( + "0 NaN\n" + "1 1.5678\n" + "2 NaN\n" + "3 -3.0000\n" + "4 NaN" + ) + assert result == expected + + def test_to_string_with_datetimeindex(self): + index = date_range("20130102", periods=6) + ser = Series(1, index=index) + result = ser.to_string() + assert "2013-01-02" in result + + # nat in index + s2 = Series(2, index=[Timestamp("20130111"), NaT]) + ser = concat([s2, ser]) + result = ser.to_string() + assert "NaT" in result + + # nat in summary + result = str(s2.index) + assert "NaT" in result diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__init__.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f82549ad05e94587b5b7d9566ea8b50e22b9ccd6 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/test_compression.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/test_compression.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3b1bdb3486879e3b7915965e24244d4b1f9130a1 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/test_compression.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/test_json_table_schema_ext_dtype.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/test_json_table_schema_ext_dtype.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef3cf22d8699ddb474e074f7fe9cc60d3fd11f8d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/test_json_table_schema_ext_dtype.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/test_readlines.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/test_readlines.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..491659da6fd820e1ce8d878617b0483082689688 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/__pycache__/test_readlines.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/conftest.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/conftest.py new file mode 100644 index 0000000000000000000000000000000000000000..4e848cd48b42d70033af233bf71c6904b9d069f9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/conftest.py @@ -0,0 +1,9 @@ +import pytest + + +@pytest.fixture(params=["split", "records", "index", "columns", "values"]) +def orient(request): + """ + Fixture for orients excluding the table format. + """ + return request.param diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_compression.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_compression.py new file mode 100644 index 0000000000000000000000000000000000000000..ff7d34c85c01599707e648c4d9964773d16a13fc --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_compression.py @@ -0,0 +1,130 @@ +from io import ( + BytesIO, + StringIO, +) + +import pytest + +import pandas.util._test_decorators as td + +import pandas as pd +import pandas._testing as tm + + +def test_compression_roundtrip(compression): + df = pd.DataFrame( + [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], + index=["A", "B"], + columns=["X", "Y", "Z"], + ) + + with tm.ensure_clean() as path: + df.to_json(path, compression=compression) + tm.assert_frame_equal(df, pd.read_json(path, compression=compression)) + + # explicitly ensure file was compressed. + with tm.decompress_file(path, compression) as fh: + result = fh.read().decode("utf8") + data = StringIO(result) + tm.assert_frame_equal(df, pd.read_json(data)) + + +def test_read_zipped_json(datapath): + uncompressed_path = datapath("io", "json", "data", "tsframe_v012.json") + uncompressed_df = pd.read_json(uncompressed_path) + + compressed_path = datapath("io", "json", "data", "tsframe_v012.json.zip") + compressed_df = pd.read_json(compressed_path, compression="zip") + + tm.assert_frame_equal(uncompressed_df, compressed_df) + + +@td.skip_if_not_us_locale +@pytest.mark.single_cpu +def test_with_s3_url(compression, s3_public_bucket, s3so): + # Bucket created in tests/io/conftest.py + df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}')) + + with tm.ensure_clean() as path: + df.to_json(path, compression=compression) + with open(path, "rb") as f: + s3_public_bucket.put_object(Key="test-1", Body=f) + + roundtripped_df = pd.read_json( + f"s3://{s3_public_bucket.name}/test-1", + compression=compression, + storage_options=s3so, + ) + tm.assert_frame_equal(df, roundtripped_df) + + +def test_lines_with_compression(compression): + with tm.ensure_clean() as path: + df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}')) + df.to_json(path, orient="records", lines=True, compression=compression) + roundtripped_df = pd.read_json(path, lines=True, compression=compression) + tm.assert_frame_equal(df, roundtripped_df) + + +def test_chunksize_with_compression(compression): + with tm.ensure_clean() as path: + df = pd.read_json(StringIO('{"a": ["foo", "bar", "baz"], "b": [4, 5, 6]}')) + df.to_json(path, orient="records", lines=True, compression=compression) + + with pd.read_json( + path, lines=True, chunksize=1, compression=compression + ) as res: + roundtripped_df = pd.concat(res) + tm.assert_frame_equal(df, roundtripped_df) + + +def test_write_unsupported_compression_type(): + df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}')) + with tm.ensure_clean() as path: + msg = "Unrecognized compression type: unsupported" + with pytest.raises(ValueError, match=msg): + df.to_json(path, compression="unsupported") + + +def test_read_unsupported_compression_type(): + with tm.ensure_clean() as path: + msg = "Unrecognized compression type: unsupported" + with pytest.raises(ValueError, match=msg): + pd.read_json(path, compression="unsupported") + + +@pytest.mark.parametrize( + "infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))] +) +@pytest.mark.parametrize("to_infer", [True, False]) +@pytest.mark.parametrize("read_infer", [True, False]) +def test_to_json_compression( + compression_only, read_infer, to_infer, compression_to_extension, infer_string +): + with pd.option_context("future.infer_string", infer_string): + # see gh-15008 + compression = compression_only + + # We'll complete file extension subsequently. + filename = "test." + filename += compression_to_extension[compression] + + df = pd.DataFrame({"A": [1]}) + + to_compression = "infer" if to_infer else compression + read_compression = "infer" if read_infer else compression + + with tm.ensure_clean(filename) as path: + df.to_json(path, compression=to_compression) + result = pd.read_json(path, compression=read_compression) + tm.assert_frame_equal(result, df) + + +def test_to_json_compression_mode(compression): + # GH 39985 (read_json does not support user-provided binary files) + expected = pd.DataFrame({"A": [1]}) + + with BytesIO() as buffer: + expected.to_json(buffer, compression=compression) + # df = pd.read_json(buffer, compression=compression) + # tm.assert_frame_equal(expected, df) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_deprecated_kwargs.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_deprecated_kwargs.py new file mode 100644 index 0000000000000000000000000000000000000000..cc88fc3ba18263ac78f7057bfb5950f0420646b4 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_deprecated_kwargs.py @@ -0,0 +1,21 @@ +""" +Tests for the deprecated keyword arguments for `read_json`. +""" +from io import StringIO + +import pandas as pd +import pandas._testing as tm + +from pandas.io.json import read_json + + +def test_good_kwargs(): + df = pd.DataFrame({"A": [2, 4, 6], "B": [3, 6, 9]}, index=[0, 1, 2]) + + with tm.assert_produces_warning(None): + data1 = StringIO(df.to_json(orient="split")) + tm.assert_frame_equal(df, read_json(data1, orient="split")) + data2 = StringIO(df.to_json(orient="columns")) + tm.assert_frame_equal(df, read_json(data2, orient="columns")) + data3 = StringIO(df.to_json(orient="index")) + tm.assert_frame_equal(df, read_json(data3, orient="index")) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_json_table_schema.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_json_table_schema.py new file mode 100644 index 0000000000000000000000000000000000000000..cc101bb9c8b6d7c5f230b408ecf060a4af520106 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_json_table_schema.py @@ -0,0 +1,873 @@ +"""Tests for Table Schema integration.""" +from collections import OrderedDict +from io import StringIO +import json + +import numpy as np +import pytest + +from pandas.core.dtypes.dtypes import ( + CategoricalDtype, + DatetimeTZDtype, + PeriodDtype, +) + +import pandas as pd +from pandas import DataFrame +import pandas._testing as tm + +from pandas.io.json._table_schema import ( + as_json_table_type, + build_table_schema, + convert_json_field_to_pandas_type, + convert_pandas_type_to_json_field, + set_default_names, +) + + +@pytest.fixture +def df_schema(): + return DataFrame( + { + "A": [1, 2, 3, 4], + "B": ["a", "b", "c", "c"], + "C": pd.date_range("2016-01-01", freq="d", periods=4), + "D": pd.timedelta_range("1h", periods=4, freq="min"), + }, + index=pd.Index(range(4), name="idx"), + ) + + +@pytest.fixture +def df_table(): + return DataFrame( + { + "A": [1, 2, 3, 4], + "B": ["a", "b", "c", "c"], + "C": pd.date_range("2016-01-01", freq="d", periods=4), + "D": pd.timedelta_range("1h", periods=4, freq="min"), + "E": pd.Series(pd.Categorical(["a", "b", "c", "c"])), + "F": pd.Series(pd.Categorical(["a", "b", "c", "c"], ordered=True)), + "G": [1.0, 2.0, 3, 4.0], + "H": pd.date_range("2016-01-01", freq="d", periods=4, tz="US/Central"), + }, + index=pd.Index(range(4), name="idx"), + ) + + +class TestBuildSchema: + def test_build_table_schema(self, df_schema, using_infer_string): + result = build_table_schema(df_schema, version=False) + expected = { + "fields": [ + {"name": "idx", "type": "integer"}, + {"name": "A", "type": "integer"}, + {"name": "B", "type": "string"}, + {"name": "C", "type": "datetime"}, + {"name": "D", "type": "duration"}, + ], + "primaryKey": ["idx"], + } + if using_infer_string: + expected["fields"][2] = {"name": "B", "type": "any", "extDtype": "string"} + assert result == expected + result = build_table_schema(df_schema) + assert "pandas_version" in result + + def test_series(self): + s = pd.Series([1, 2, 3], name="foo") + result = build_table_schema(s, version=False) + expected = { + "fields": [ + {"name": "index", "type": "integer"}, + {"name": "foo", "type": "integer"}, + ], + "primaryKey": ["index"], + } + assert result == expected + result = build_table_schema(s) + assert "pandas_version" in result + + def test_series_unnamed(self): + result = build_table_schema(pd.Series([1, 2, 3]), version=False) + expected = { + "fields": [ + {"name": "index", "type": "integer"}, + {"name": "values", "type": "integer"}, + ], + "primaryKey": ["index"], + } + assert result == expected + + def test_multiindex(self, df_schema, using_infer_string): + df = df_schema + idx = pd.MultiIndex.from_product([("a", "b"), (1, 2)]) + df.index = idx + + result = build_table_schema(df, version=False) + expected = { + "fields": [ + {"name": "level_0", "type": "string"}, + {"name": "level_1", "type": "integer"}, + {"name": "A", "type": "integer"}, + {"name": "B", "type": "string"}, + {"name": "C", "type": "datetime"}, + {"name": "D", "type": "duration"}, + ], + "primaryKey": ["level_0", "level_1"], + } + if using_infer_string: + expected["fields"][0] = { + "name": "level_0", + "type": "any", + "extDtype": "string", + } + expected["fields"][3] = {"name": "B", "type": "any", "extDtype": "string"} + assert result == expected + + df.index.names = ["idx0", None] + expected["fields"][0]["name"] = "idx0" + expected["primaryKey"] = ["idx0", "level_1"] + result = build_table_schema(df, version=False) + assert result == expected + + +class TestTableSchemaType: + @pytest.mark.parametrize("int_type", [int, np.int16, np.int32, np.int64]) + def test_as_json_table_type_int_data(self, int_type): + int_data = [1, 2, 3] + assert as_json_table_type(np.array(int_data, dtype=int_type).dtype) == "integer" + + @pytest.mark.parametrize("float_type", [float, np.float16, np.float32, np.float64]) + def test_as_json_table_type_float_data(self, float_type): + float_data = [1.0, 2.0, 3.0] + assert ( + as_json_table_type(np.array(float_data, dtype=float_type).dtype) == "number" + ) + + @pytest.mark.parametrize("bool_type", [bool, np.bool_]) + def test_as_json_table_type_bool_data(self, bool_type): + bool_data = [True, False] + assert ( + as_json_table_type(np.array(bool_data, dtype=bool_type).dtype) == "boolean" + ) + + @pytest.mark.parametrize( + "date_data", + [ + pd.to_datetime(["2016"]), + pd.to_datetime(["2016"], utc=True), + pd.Series(pd.to_datetime(["2016"])), + pd.Series(pd.to_datetime(["2016"], utc=True)), + pd.period_range("2016", freq="Y", periods=3), + ], + ) + def test_as_json_table_type_date_data(self, date_data): + assert as_json_table_type(date_data.dtype) == "datetime" + + @pytest.mark.parametrize( + "str_data", + [pd.Series(["a", "b"], dtype=object), pd.Index(["a", "b"], dtype=object)], + ) + def test_as_json_table_type_string_data(self, str_data): + assert as_json_table_type(str_data.dtype) == "string" + + @pytest.mark.parametrize( + "cat_data", + [ + pd.Categorical(["a"]), + pd.Categorical([1]), + pd.Series(pd.Categorical([1])), + pd.CategoricalIndex([1]), + pd.Categorical([1]), + ], + ) + def test_as_json_table_type_categorical_data(self, cat_data): + assert as_json_table_type(cat_data.dtype) == "any" + + # ------ + # dtypes + # ------ + @pytest.mark.parametrize("int_dtype", [int, np.int16, np.int32, np.int64]) + def test_as_json_table_type_int_dtypes(self, int_dtype): + assert as_json_table_type(int_dtype) == "integer" + + @pytest.mark.parametrize("float_dtype", [float, np.float16, np.float32, np.float64]) + def test_as_json_table_type_float_dtypes(self, float_dtype): + assert as_json_table_type(float_dtype) == "number" + + @pytest.mark.parametrize("bool_dtype", [bool, np.bool_]) + def test_as_json_table_type_bool_dtypes(self, bool_dtype): + assert as_json_table_type(bool_dtype) == "boolean" + + @pytest.mark.parametrize( + "date_dtype", + [ + np.dtype(" None: + self.hexed = hexed + self.binary = bytes.fromhex(hexed) + + def __str__(self) -> str: + return self.hexed + + hexed = "574b4454ba8c5eb4f98a8f45" + binthing = BinaryThing(hexed) + + # verify the proper conversion of printable content + df_printable = DataFrame({"A": [binthing.hexed]}) + assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}' + + # check if non-printable content throws appropriate Exception + df_nonprintable = DataFrame({"A": [binthing]}) + msg = "Unsupported UTF-8 sequence length when encoding string" + with pytest.raises(OverflowError, match=msg): + df_nonprintable.to_json() + + # the same with multiple columns threw segfaults + df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"]) + with pytest.raises(OverflowError, match=msg): + df_mixed.to_json() + + # default_handler should resolve exceptions for non-string types + result = df_nonprintable.to_json(default_handler=str) + expected = f'{{"A":{{"0":"{hexed}"}}}}' + assert result == expected + assert ( + df_mixed.to_json(default_handler=str) + == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}' + ) + + def test_label_overflow(self): + # GH14256: buffer length not checked when writing label + result = DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json() + expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}' + assert result == expected + + def test_series_non_unique_index(self): + s = Series(["a", "b"], index=[1, 1]) + + msg = "Series index must be unique for orient='index'" + with pytest.raises(ValueError, match=msg): + s.to_json(orient="index") + + tm.assert_series_equal( + s, + read_json( + StringIO(s.to_json(orient="split")), orient="split", typ="series" + ), + ) + unserialized = read_json( + StringIO(s.to_json(orient="records")), orient="records", typ="series" + ) + tm.assert_equal(s.values, unserialized.values) + + def test_series_default_orient(self, string_series): + assert string_series.to_json() == string_series.to_json(orient="index") + + def test_series_roundtrip_simple(self, orient, string_series, using_infer_string): + data = StringIO(string_series.to_json(orient=orient)) + result = read_json(data, typ="series", orient=orient) + + expected = string_series + if using_infer_string and orient in ("split", "index", "columns"): + # These schemas don't contain dtypes, so we infer string + expected.index = expected.index.astype("string[pyarrow_numpy]") + if orient in ("values", "records"): + expected = expected.reset_index(drop=True) + if orient != "split": + expected.name = None + + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("dtype", [False, None]) + def test_series_roundtrip_object(self, orient, dtype, object_series): + data = StringIO(object_series.to_json(orient=orient)) + result = read_json(data, typ="series", orient=orient, dtype=dtype) + + expected = object_series + if orient in ("values", "records"): + expected = expected.reset_index(drop=True) + if orient != "split": + expected.name = None + + tm.assert_series_equal(result, expected) + + def test_series_roundtrip_empty(self, orient): + empty_series = Series([], index=[], dtype=np.float64) + data = StringIO(empty_series.to_json(orient=orient)) + result = read_json(data, typ="series", orient=orient) + + expected = empty_series.reset_index(drop=True) + if orient in ("split"): + expected.index = expected.index.astype(np.float64) + + tm.assert_series_equal(result, expected) + + def test_series_roundtrip_timeseries(self, orient, datetime_series): + data = StringIO(datetime_series.to_json(orient=orient)) + result = read_json(data, typ="series", orient=orient) + + expected = datetime_series + if orient in ("values", "records"): + expected = expected.reset_index(drop=True) + if orient != "split": + expected.name = None + + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize("dtype", [np.float64, int]) + def test_series_roundtrip_numeric(self, orient, dtype): + s = Series(range(6), index=["a", "b", "c", "d", "e", "f"]) + data = StringIO(s.to_json(orient=orient)) + result = read_json(data, typ="series", orient=orient) + + expected = s.copy() + if orient in ("values", "records"): + expected = expected.reset_index(drop=True) + + tm.assert_series_equal(result, expected) + + def test_series_to_json_except(self): + s = Series([1, 2, 3]) + msg = "Invalid value 'garbage' for option 'orient'" + with pytest.raises(ValueError, match=msg): + s.to_json(orient="garbage") + + def test_series_from_json_precise_float(self): + s = Series([4.56, 4.56, 4.56]) + result = read_json(StringIO(s.to_json()), typ="series", precise_float=True) + tm.assert_series_equal(result, s, check_index_type=False) + + def test_series_with_dtype(self): + # GH 21986 + s = Series([4.56, 4.56, 4.56]) + result = read_json(StringIO(s.to_json()), typ="series", dtype=np.int64) + expected = Series([4] * 3) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "dtype,expected", + [ + (True, Series(["2000-01-01"], dtype="datetime64[ns]")), + (False, Series([946684800000])), + ], + ) + def test_series_with_dtype_datetime(self, dtype, expected): + s = Series(["2000-01-01"], dtype="datetime64[ns]") + data = StringIO(s.to_json()) + result = read_json(data, typ="series", dtype=dtype) + tm.assert_series_equal(result, expected) + + def test_frame_from_json_precise_float(self): + df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) + result = read_json(StringIO(df.to_json()), precise_float=True) + tm.assert_frame_equal(result, df) + + def test_typ(self): + s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64") + result = read_json(StringIO(s.to_json()), typ=None) + tm.assert_series_equal(result, s) + + def test_reconstruction_index(self): + df = DataFrame([[1, 2, 3], [4, 5, 6]]) + result = read_json(StringIO(df.to_json())) + tm.assert_frame_equal(result, df) + + df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"]) + result = read_json(StringIO(df.to_json())) + tm.assert_frame_equal(result, df) + + def test_path(self, float_frame, int_frame, datetime_frame): + with tm.ensure_clean("test.json") as path: + for df in [float_frame, int_frame, datetime_frame]: + df.to_json(path) + read_json(path) + + def test_axis_dates(self, datetime_series, datetime_frame): + # frame + json = StringIO(datetime_frame.to_json()) + result = read_json(json) + tm.assert_frame_equal(result, datetime_frame) + + # series + json = StringIO(datetime_series.to_json()) + result = read_json(json, typ="series") + tm.assert_series_equal(result, datetime_series, check_names=False) + assert result.name is None + + def test_convert_dates(self, datetime_series, datetime_frame): + # frame + df = datetime_frame + df["date"] = Timestamp("20130101").as_unit("ns") + + json = StringIO(df.to_json()) + result = read_json(json) + tm.assert_frame_equal(result, df) + + df["foo"] = 1.0 + json = StringIO(df.to_json(date_unit="ns")) + + result = read_json(json, convert_dates=False) + expected = df.copy() + expected["date"] = expected["date"].values.view("i8") + expected["foo"] = expected["foo"].astype("int64") + tm.assert_frame_equal(result, expected) + + # series + ts = Series(Timestamp("20130101").as_unit("ns"), index=datetime_series.index) + json = StringIO(ts.to_json()) + result = read_json(json, typ="series") + tm.assert_series_equal(result, ts) + + @pytest.mark.parametrize("date_format", ["epoch", "iso"]) + @pytest.mark.parametrize("as_object", [True, False]) + @pytest.mark.parametrize("date_typ", [datetime.date, datetime.datetime, Timestamp]) + def test_date_index_and_values(self, date_format, as_object, date_typ): + data = [date_typ(year=2020, month=1, day=1), pd.NaT] + if as_object: + data.append("a") + + ser = Series(data, index=data) + result = ser.to_json(date_format=date_format) + + if date_format == "epoch": + expected = '{"1577836800000":1577836800000,"null":null}' + else: + expected = ( + '{"2020-01-01T00:00:00.000":"2020-01-01T00:00:00.000","null":null}' + ) + + if as_object: + expected = expected.replace("}", ',"a":"a"}') + + assert result == expected + + @pytest.mark.parametrize( + "infer_word", + [ + "trade_time", + "date", + "datetime", + "sold_at", + "modified", + "timestamp", + "timestamps", + ], + ) + def test_convert_dates_infer(self, infer_word): + # GH10747 + + data = [{"id": 1, infer_word: 1036713600000}, {"id": 2}] + expected = DataFrame( + [[1, Timestamp("2002-11-08")], [2, pd.NaT]], columns=["id", infer_word] + ) + + result = read_json(StringIO(ujson_dumps(data)))[["id", infer_word]] + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "date,date_unit", + [ + ("20130101 20:43:42.123", None), + ("20130101 20:43:42", "s"), + ("20130101 20:43:42.123", "ms"), + ("20130101 20:43:42.123456", "us"), + ("20130101 20:43:42.123456789", "ns"), + ], + ) + def test_date_format_frame(self, date, date_unit, datetime_frame): + df = datetime_frame + + df["date"] = Timestamp(date).as_unit("ns") + df.iloc[1, df.columns.get_loc("date")] = pd.NaT + df.iloc[5, df.columns.get_loc("date")] = pd.NaT + if date_unit: + json = df.to_json(date_format="iso", date_unit=date_unit) + else: + json = df.to_json(date_format="iso") + + result = read_json(StringIO(json)) + expected = df.copy() + tm.assert_frame_equal(result, expected) + + def test_date_format_frame_raises(self, datetime_frame): + df = datetime_frame + msg = "Invalid value 'foo' for option 'date_unit'" + with pytest.raises(ValueError, match=msg): + df.to_json(date_format="iso", date_unit="foo") + + @pytest.mark.parametrize( + "date,date_unit", + [ + ("20130101 20:43:42.123", None), + ("20130101 20:43:42", "s"), + ("20130101 20:43:42.123", "ms"), + ("20130101 20:43:42.123456", "us"), + ("20130101 20:43:42.123456789", "ns"), + ], + ) + def test_date_format_series(self, date, date_unit, datetime_series): + ts = Series(Timestamp(date).as_unit("ns"), index=datetime_series.index) + ts.iloc[1] = pd.NaT + ts.iloc[5] = pd.NaT + if date_unit: + json = ts.to_json(date_format="iso", date_unit=date_unit) + else: + json = ts.to_json(date_format="iso") + + result = read_json(StringIO(json), typ="series") + expected = ts.copy() + tm.assert_series_equal(result, expected) + + def test_date_format_series_raises(self, datetime_series): + ts = Series(Timestamp("20130101 20:43:42.123"), index=datetime_series.index) + msg = "Invalid value 'foo' for option 'date_unit'" + with pytest.raises(ValueError, match=msg): + ts.to_json(date_format="iso", date_unit="foo") + + @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) + def test_date_unit(self, unit, datetime_frame): + df = datetime_frame + df["date"] = Timestamp("20130101 20:43:42").as_unit("ns") + dl = df.columns.get_loc("date") + df.iloc[1, dl] = Timestamp("19710101 20:43:42") + df.iloc[2, dl] = Timestamp("21460101 20:43:42") + df.iloc[4, dl] = pd.NaT + + json = df.to_json(date_format="epoch", date_unit=unit) + + # force date unit + result = read_json(StringIO(json), date_unit=unit) + tm.assert_frame_equal(result, df) + + # detect date unit + result = read_json(StringIO(json), date_unit=None) + tm.assert_frame_equal(result, df) + + @pytest.mark.parametrize("unit", ["s", "ms", "us"]) + def test_iso_non_nano_datetimes(self, unit): + # Test that numpy datetimes + # in an Index or a column with non-nano resolution can be serialized + # correctly + # GH53686 + index = DatetimeIndex( + [np.datetime64("2023-01-01T11:22:33.123456", unit)], + dtype=f"datetime64[{unit}]", + ) + df = DataFrame( + { + "date": Series( + [np.datetime64("2022-01-01T11:22:33.123456", unit)], + dtype=f"datetime64[{unit}]", + index=index, + ), + "date_obj": Series( + [np.datetime64("2023-01-01T11:22:33.123456", unit)], + dtype=object, + index=index, + ), + }, + ) + + buf = StringIO() + df.to_json(buf, date_format="iso", date_unit=unit) + buf.seek(0) + + # read_json always reads datetimes in nanosecond resolution + # TODO: check_dtype/check_index_type should be removable + # once read_json gets non-nano support + tm.assert_frame_equal( + read_json(buf, convert_dates=["date", "date_obj"]), + df, + check_index_type=False, + check_dtype=False, + ) + + def test_weird_nested_json(self): + # this used to core dump the parser + s = r"""{ + "status": "success", + "data": { + "posts": [ + { + "id": 1, + "title": "A blog post", + "body": "Some useful content" + }, + { + "id": 2, + "title": "Another blog post", + "body": "More content" + } + ] + } + }""" + read_json(StringIO(s)) + + def test_doc_example(self): + dfj2 = DataFrame( + np.random.default_rng(2).standard_normal((5, 2)), columns=list("AB") + ) + dfj2["date"] = Timestamp("20130101") + dfj2["ints"] = range(5) + dfj2["bools"] = True + dfj2.index = date_range("20130101", periods=5) + + json = StringIO(dfj2.to_json()) + result = read_json(json, dtype={"ints": np.int64, "bools": np.bool_}) + tm.assert_frame_equal(result, result) + + def test_round_trip_exception(self, datapath): + # GH 3867 + path = datapath("io", "json", "data", "teams.csv") + df = pd.read_csv(path) + s = df.to_json() + + result = read_json(StringIO(s)) + res = result.reindex(index=df.index, columns=df.columns) + msg = "The 'downcast' keyword in fillna is deprecated" + with tm.assert_produces_warning(FutureWarning, match=msg): + res = res.fillna(np.nan, downcast=False) + tm.assert_frame_equal(res, df) + + @pytest.mark.network + @pytest.mark.single_cpu + @pytest.mark.parametrize( + "field,dtype", + [ + ["created_at", pd.DatetimeTZDtype(tz="UTC")], + ["closed_at", "datetime64[ns]"], + ["updated_at", pd.DatetimeTZDtype(tz="UTC")], + ], + ) + def test_url(self, field, dtype, httpserver): + data = '{"created_at": ["2023-06-23T18:21:36Z"], "closed_at": ["2023-06-23T18:21:36"], "updated_at": ["2023-06-23T18:21:36Z"]}\n' # noqa: E501 + httpserver.serve_content(content=data) + result = read_json(httpserver.url, convert_dates=True) + assert result[field].dtype == dtype + + def test_timedelta(self): + converter = lambda x: pd.to_timedelta(x, unit="ms") + + ser = Series([timedelta(23), timedelta(seconds=5)]) + assert ser.dtype == "timedelta64[ns]" + + result = read_json(StringIO(ser.to_json()), typ="series").apply(converter) + tm.assert_series_equal(result, ser) + + ser = Series([timedelta(23), timedelta(seconds=5)], index=Index([0, 1])) + assert ser.dtype == "timedelta64[ns]" + result = read_json(StringIO(ser.to_json()), typ="series").apply(converter) + tm.assert_series_equal(result, ser) + + frame = DataFrame([timedelta(23), timedelta(seconds=5)]) + assert frame[0].dtype == "timedelta64[ns]" + tm.assert_frame_equal( + frame, read_json(StringIO(frame.to_json())).apply(converter) + ) + + def test_timedelta2(self): + frame = DataFrame( + { + "a": [timedelta(days=23), timedelta(seconds=5)], + "b": [1, 2], + "c": date_range(start="20130101", periods=2), + } + ) + data = StringIO(frame.to_json(date_unit="ns")) + result = read_json(data) + result["a"] = pd.to_timedelta(result.a, unit="ns") + result["c"] = pd.to_datetime(result.c) + tm.assert_frame_equal(frame, result) + + def test_mixed_timedelta_datetime(self): + td = timedelta(23) + ts = Timestamp("20130101") + frame = DataFrame({"a": [td, ts]}, dtype=object) + + expected = DataFrame( + {"a": [pd.Timedelta(td).as_unit("ns")._value, ts.as_unit("ns")._value]} + ) + data = StringIO(frame.to_json(date_unit="ns")) + result = read_json(data, dtype={"a": "int64"}) + tm.assert_frame_equal(result, expected, check_index_type=False) + + @pytest.mark.parametrize("as_object", [True, False]) + @pytest.mark.parametrize("date_format", ["iso", "epoch"]) + @pytest.mark.parametrize("timedelta_typ", [pd.Timedelta, timedelta]) + def test_timedelta_to_json(self, as_object, date_format, timedelta_typ): + # GH28156: to_json not correctly formatting Timedelta + data = [timedelta_typ(days=1), timedelta_typ(days=2), pd.NaT] + if as_object: + data.append("a") + + ser = Series(data, index=data) + if date_format == "iso": + expected = ( + '{"P1DT0H0M0S":"P1DT0H0M0S","P2DT0H0M0S":"P2DT0H0M0S","null":null}' + ) + else: + expected = '{"86400000":86400000,"172800000":172800000,"null":null}' + + if as_object: + expected = expected.replace("}", ',"a":"a"}') + + result = ser.to_json(date_format=date_format) + assert result == expected + + @pytest.mark.parametrize("as_object", [True, False]) + @pytest.mark.parametrize("timedelta_typ", [pd.Timedelta, timedelta]) + def test_timedelta_to_json_fractional_precision(self, as_object, timedelta_typ): + data = [timedelta_typ(milliseconds=42)] + ser = Series(data, index=data) + if as_object: + ser = ser.astype(object) + + result = ser.to_json() + expected = '{"42":42}' + assert result == expected + + def test_default_handler(self): + value = object() + frame = DataFrame({"a": [7, value]}) + expected = DataFrame({"a": [7, str(value)]}) + result = read_json(StringIO(frame.to_json(default_handler=str))) + tm.assert_frame_equal(expected, result, check_index_type=False) + + def test_default_handler_indirect(self): + def default(obj): + if isinstance(obj, complex): + return [("mathjs", "Complex"), ("re", obj.real), ("im", obj.imag)] + return str(obj) + + df_list = [ + 9, + DataFrame( + {"a": [1, "STR", complex(4, -5)], "b": [float("nan"), None, "N/A"]}, + columns=["a", "b"], + ), + ] + expected = ( + '[9,[[1,null],["STR",null],[[["mathjs","Complex"],' + '["re",4.0],["im",-5.0]],"N\\/A"]]]' + ) + assert ( + ujson_dumps(df_list, default_handler=default, orient="values") == expected + ) + + def test_default_handler_numpy_unsupported_dtype(self): + # GH12554 to_json raises 'Unhandled numpy dtype 15' + df = DataFrame( + {"a": [1, 2.3, complex(4, -5)], "b": [float("nan"), None, complex(1.2, 0)]}, + columns=["a", "b"], + ) + expected = ( + '[["(1+0j)","(nan+0j)"],' + '["(2.3+0j)","(nan+0j)"],' + '["(4-5j)","(1.2+0j)"]]' + ) + assert df.to_json(default_handler=str, orient="values") == expected + + def test_default_handler_raises(self): + msg = "raisin" + + def my_handler_raises(obj): + raise TypeError(msg) + + with pytest.raises(TypeError, match=msg): + DataFrame({"a": [1, 2, object()]}).to_json( + default_handler=my_handler_raises + ) + with pytest.raises(TypeError, match=msg): + DataFrame({"a": [1, 2, complex(4, -5)]}).to_json( + default_handler=my_handler_raises + ) + + def test_categorical(self): + # GH4377 df.to_json segfaults with non-ndarray blocks + df = DataFrame({"A": ["a", "b", "c", "a", "b", "b", "a"]}) + df["B"] = df["A"] + expected = df.to_json() + + df["B"] = df["A"].astype("category") + assert expected == df.to_json() + + s = df["A"] + sc = df["B"] + assert s.to_json() == sc.to_json() + + def test_datetime_tz(self): + # GH4377 df.to_json segfaults with non-ndarray blocks + tz_range = date_range("20130101", periods=3, tz="US/Eastern") + tz_naive = tz_range.tz_convert("utc").tz_localize(None) + + df = DataFrame({"A": tz_range, "B": date_range("20130101", periods=3)}) + + df_naive = df.copy() + df_naive["A"] = tz_naive + expected = df_naive.to_json() + assert expected == df.to_json() + + stz = Series(tz_range) + s_naive = Series(tz_naive) + assert stz.to_json() == s_naive.to_json() + + def test_sparse(self): + # GH4377 df.to_json segfaults with non-ndarray blocks + df = DataFrame(np.random.default_rng(2).standard_normal((10, 4))) + df.loc[:8] = np.nan + + sdf = df.astype("Sparse") + expected = df.to_json() + assert expected == sdf.to_json() + + s = Series(np.random.default_rng(2).standard_normal(10)) + s.loc[:8] = np.nan + ss = s.astype("Sparse") + + expected = s.to_json() + assert expected == ss.to_json() + + @pytest.mark.parametrize( + "ts", + [ + Timestamp("2013-01-10 05:00:00Z"), + Timestamp("2013-01-10 00:00:00", tz="US/Eastern"), + Timestamp("2013-01-10 00:00:00-0500"), + ], + ) + def test_tz_is_utc(self, ts): + exp = '"2013-01-10T05:00:00.000Z"' + + assert ujson_dumps(ts, iso_dates=True) == exp + dt = ts.to_pydatetime() + assert ujson_dumps(dt, iso_dates=True) == exp + + def test_tz_is_naive(self): + ts = Timestamp("2013-01-10 05:00:00") + exp = '"2013-01-10T05:00:00.000"' + + assert ujson_dumps(ts, iso_dates=True) == exp + dt = ts.to_pydatetime() + assert ujson_dumps(dt, iso_dates=True) == exp + + @pytest.mark.parametrize( + "tz_range", + [ + date_range("2013-01-01 05:00:00Z", periods=2), + date_range("2013-01-01 00:00:00", periods=2, tz="US/Eastern"), + date_range("2013-01-01 00:00:00-0500", periods=2), + ], + ) + def test_tz_range_is_utc(self, tz_range): + exp = '["2013-01-01T05:00:00.000Z","2013-01-02T05:00:00.000Z"]' + dfexp = ( + '{"DT":{' + '"0":"2013-01-01T05:00:00.000Z",' + '"1":"2013-01-02T05:00:00.000Z"}}' + ) + + assert ujson_dumps(tz_range, iso_dates=True) == exp + dti = DatetimeIndex(tz_range) + # Ensure datetimes in object array are serialized correctly + # in addition to the normal DTI case + assert ujson_dumps(dti, iso_dates=True) == exp + assert ujson_dumps(dti.astype(object), iso_dates=True) == exp + df = DataFrame({"DT": dti}) + result = ujson_dumps(df, iso_dates=True) + assert result == dfexp + assert ujson_dumps(df.astype({"DT": object}), iso_dates=True) + + def test_tz_range_is_naive(self): + dti = date_range("2013-01-01 05:00:00", periods=2) + + exp = '["2013-01-01T05:00:00.000","2013-01-02T05:00:00.000"]' + dfexp = '{"DT":{"0":"2013-01-01T05:00:00.000","1":"2013-01-02T05:00:00.000"}}' + + # Ensure datetimes in object array are serialized correctly + # in addition to the normal DTI case + assert ujson_dumps(dti, iso_dates=True) == exp + assert ujson_dumps(dti.astype(object), iso_dates=True) == exp + df = DataFrame({"DT": dti}) + result = ujson_dumps(df, iso_dates=True) + assert result == dfexp + assert ujson_dumps(df.astype({"DT": object}), iso_dates=True) + + def test_read_inline_jsonl(self): + # GH9180 + + result = read_json(StringIO('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n'), lines=True) + expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) + tm.assert_frame_equal(result, expected) + + @pytest.mark.single_cpu + @td.skip_if_not_us_locale + def test_read_s3_jsonl(self, s3_public_bucket_with_data, s3so): + # GH17200 + + result = read_json( + f"s3n://{s3_public_bucket_with_data.name}/items.jsonl", + lines=True, + storage_options=s3so, + ) + expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) + tm.assert_frame_equal(result, expected) + + def test_read_local_jsonl(self): + # GH17200 + with tm.ensure_clean("tmp_items.json") as path: + with open(path, "w", encoding="utf-8") as infile: + infile.write('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n') + result = read_json(path, lines=True) + expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) + tm.assert_frame_equal(result, expected) + + def test_read_jsonl_unicode_chars(self): + # GH15132: non-ascii unicode characters + # \u201d == RIGHT DOUBLE QUOTATION MARK + + # simulate file handle + json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' + json = StringIO(json) + result = read_json(json, lines=True) + expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) + tm.assert_frame_equal(result, expected) + + # simulate string + json = StringIO('{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n') + result = read_json(json, lines=True) + expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("bigNum", [sys.maxsize + 1, -(sys.maxsize + 2)]) + def test_to_json_large_numbers(self, bigNum): + # GH34473 + series = Series(bigNum, dtype=object, index=["articleId"]) + json = series.to_json() + expected = '{"articleId":' + str(bigNum) + "}" + assert json == expected + + df = DataFrame(bigNum, dtype=object, index=["articleId"], columns=[0]) + json = df.to_json() + expected = '{"0":{"articleId":' + str(bigNum) + "}}" + assert json == expected + + @pytest.mark.parametrize("bigNum", [-(2**63) - 1, 2**64]) + def test_read_json_large_numbers(self, bigNum): + # GH20599, 26068 + json = StringIO('{"articleId":' + str(bigNum) + "}") + msg = r"Value is too small|Value is too big" + with pytest.raises(ValueError, match=msg): + read_json(json) + + json = StringIO('{"0":{"articleId":' + str(bigNum) + "}}") + with pytest.raises(ValueError, match=msg): + read_json(json) + + def test_read_json_large_numbers2(self): + # GH18842 + json = '{"articleId": "1404366058080022500245"}' + json = StringIO(json) + result = read_json(json, typ="series") + expected = Series(1.404366e21, index=["articleId"]) + tm.assert_series_equal(result, expected) + + json = '{"0": {"articleId": "1404366058080022500245"}}' + json = StringIO(json) + result = read_json(json) + expected = DataFrame(1.404366e21, index=["articleId"], columns=[0]) + tm.assert_frame_equal(result, expected) + + def test_to_jsonl(self): + # GH9180 + df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) + result = df.to_json(orient="records", lines=True) + expected = '{"a":1,"b":2}\n{"a":1,"b":2}\n' + assert result == expected + + df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"]) + result = df.to_json(orient="records", lines=True) + expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}\n' + assert result == expected + tm.assert_frame_equal(read_json(StringIO(result), lines=True), df) + + # GH15096: escaped characters in columns and data + df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"]) + result = df.to_json(orient="records", lines=True) + expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}\n' + assert result == expected + + tm.assert_frame_equal(read_json(StringIO(result), lines=True), df) + + # TODO: there is a near-identical test for pytables; can we share? + @pytest.mark.xfail(reason="GH#13774 encoding kwarg not supported", raises=TypeError) + @pytest.mark.parametrize( + "val", + [ + [b"E\xc9, 17", b"", b"a", b"b", b"c"], + [b"E\xc9, 17", b"a", b"b", b"c"], + [b"EE, 17", b"", b"a", b"b", b"c"], + [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], + [b"", b"a", b"b", b"c"], + [b"\xf8\xfc", b"a", b"b", b"c"], + [b"A\xf8\xfc", b"", b"a", b"b", b"c"], + [np.nan, b"", b"b", b"c"], + [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], + ], + ) + @pytest.mark.parametrize("dtype", ["category", object]) + def test_latin_encoding(self, dtype, val): + # GH 13774 + ser = Series( + [x.decode("latin-1") if isinstance(x, bytes) else x for x in val], + dtype=dtype, + ) + encoding = "latin-1" + with tm.ensure_clean("test.json") as path: + ser.to_json(path, encoding=encoding) + retr = read_json(StringIO(path), encoding=encoding) + tm.assert_series_equal(ser, retr, check_categorical=False) + + def test_data_frame_size_after_to_json(self): + # GH15344 + df = DataFrame({"a": [str(1)]}) + + size_before = df.memory_usage(index=True, deep=True).sum() + df.to_json() + size_after = df.memory_usage(index=True, deep=True).sum() + + assert size_before == size_after + + @pytest.mark.parametrize( + "index", [None, [1, 2], [1.0, 2.0], ["a", "b"], ["1", "2"], ["1.", "2."]] + ) + @pytest.mark.parametrize("columns", [["a", "b"], ["1", "2"], ["1.", "2."]]) + def test_from_json_to_json_table_index_and_columns(self, index, columns): + # GH25433 GH25435 + expected = DataFrame([[1, 2], [3, 4]], index=index, columns=columns) + dfjson = expected.to_json(orient="table") + + result = read_json(StringIO(dfjson), orient="table") + tm.assert_frame_equal(result, expected) + + def test_from_json_to_json_table_dtypes(self): + # GH21345 + expected = DataFrame({"a": [1, 2], "b": [3.0, 4.0], "c": ["5", "6"]}) + dfjson = expected.to_json(orient="table") + result = read_json(StringIO(dfjson), orient="table") + tm.assert_frame_equal(result, expected) + + # TODO: We are casting to string which coerces None to NaN before casting back + # to object, ending up with incorrect na values + @pytest.mark.xfail(using_pyarrow_string_dtype(), reason="incorrect na conversion") + @pytest.mark.parametrize("orient", ["split", "records", "index", "columns"]) + def test_to_json_from_json_columns_dtypes(self, orient): + # GH21892 GH33205 + expected = DataFrame.from_dict( + { + "Integer": Series([1, 2, 3], dtype="int64"), + "Float": Series([None, 2.0, 3.0], dtype="float64"), + "Object": Series([None, "", "c"], dtype="object"), + "Bool": Series([True, False, True], dtype="bool"), + "Category": Series(["a", "b", None], dtype="category"), + "Datetime": Series( + ["2020-01-01", None, "2020-01-03"], dtype="datetime64[ns]" + ), + } + ) + dfjson = expected.to_json(orient=orient) + + result = read_json( + StringIO(dfjson), + orient=orient, + dtype={ + "Integer": "int64", + "Float": "float64", + "Object": "object", + "Bool": "bool", + "Category": "category", + "Datetime": "datetime64[ns]", + }, + ) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("dtype", [True, {"b": int, "c": int}]) + def test_read_json_table_dtype_raises(self, dtype): + # GH21345 + df = DataFrame({"a": [1, 2], "b": [3.0, 4.0], "c": ["5", "6"]}) + dfjson = df.to_json(orient="table") + msg = "cannot pass both dtype and orient='table'" + with pytest.raises(ValueError, match=msg): + read_json(dfjson, orient="table", dtype=dtype) + + @pytest.mark.parametrize("orient", ["index", "columns", "records", "values"]) + def test_read_json_table_empty_axes_dtype(self, orient): + # GH28558 + + expected = DataFrame() + result = read_json(StringIO("{}"), orient=orient, convert_axes=True) + tm.assert_index_equal(result.index, expected.index) + tm.assert_index_equal(result.columns, expected.columns) + + def test_read_json_table_convert_axes_raises(self): + # GH25433 GH25435 + df = DataFrame([[1, 2], [3, 4]], index=[1.0, 2.0], columns=["1.", "2."]) + dfjson = df.to_json(orient="table") + msg = "cannot pass both convert_axes and orient='table'" + with pytest.raises(ValueError, match=msg): + read_json(dfjson, orient="table", convert_axes=True) + + @pytest.mark.parametrize( + "data, expected", + [ + ( + DataFrame([[1, 2], [4, 5]], columns=["a", "b"]), + {"columns": ["a", "b"], "data": [[1, 2], [4, 5]]}, + ), + ( + DataFrame([[1, 2], [4, 5]], columns=["a", "b"]).rename_axis("foo"), + {"columns": ["a", "b"], "data": [[1, 2], [4, 5]]}, + ), + ( + DataFrame( + [[1, 2], [4, 5]], columns=["a", "b"], index=[["a", "b"], ["c", "d"]] + ), + {"columns": ["a", "b"], "data": [[1, 2], [4, 5]]}, + ), + (Series([1, 2, 3], name="A"), {"name": "A", "data": [1, 2, 3]}), + ( + Series([1, 2, 3], name="A").rename_axis("foo"), + {"name": "A", "data": [1, 2, 3]}, + ), + ( + Series([1, 2], name="A", index=[["a", "b"], ["c", "d"]]), + {"name": "A", "data": [1, 2]}, + ), + ], + ) + def test_index_false_to_json_split(self, data, expected): + # GH 17394 + # Testing index=False in to_json with orient='split' + + result = data.to_json(orient="split", index=False) + result = json.loads(result) + + assert result == expected + + @pytest.mark.parametrize( + "data", + [ + (DataFrame([[1, 2], [4, 5]], columns=["a", "b"])), + (DataFrame([[1, 2], [4, 5]], columns=["a", "b"]).rename_axis("foo")), + ( + DataFrame( + [[1, 2], [4, 5]], columns=["a", "b"], index=[["a", "b"], ["c", "d"]] + ) + ), + (Series([1, 2, 3], name="A")), + (Series([1, 2, 3], name="A").rename_axis("foo")), + (Series([1, 2], name="A", index=[["a", "b"], ["c", "d"]])), + ], + ) + def test_index_false_to_json_table(self, data): + # GH 17394 + # Testing index=False in to_json with orient='table' + + result = data.to_json(orient="table", index=False) + result = json.loads(result) + + expected = { + "schema": pd.io.json.build_table_schema(data, index=False), + "data": DataFrame(data).to_dict(orient="records"), + } + + assert result == expected + + @pytest.mark.parametrize("orient", ["index", "columns"]) + def test_index_false_error_to_json(self, orient): + # GH 17394, 25513 + # Testing error message from to_json with index=False + + df = DataFrame([[1, 2], [4, 5]], columns=["a", "b"]) + + msg = ( + "'index=False' is only valid when 'orient' is 'split', " + "'table', 'records', or 'values'" + ) + with pytest.raises(ValueError, match=msg): + df.to_json(orient=orient, index=False) + + @pytest.mark.parametrize("orient", ["records", "values"]) + def test_index_true_error_to_json(self, orient): + # GH 25513 + # Testing error message from to_json with index=True + + df = DataFrame([[1, 2], [4, 5]], columns=["a", "b"]) + + msg = ( + "'index=True' is only valid when 'orient' is 'split', " + "'table', 'index', or 'columns'" + ) + with pytest.raises(ValueError, match=msg): + df.to_json(orient=orient, index=True) + + @pytest.mark.parametrize("orient", ["split", "table"]) + @pytest.mark.parametrize("index", [True, False]) + def test_index_false_from_json_to_json(self, orient, index): + # GH25170 + # Test index=False in from_json to_json + expected = DataFrame({"a": [1, 2], "b": [3, 4]}) + dfjson = expected.to_json(orient=orient, index=index) + result = read_json(StringIO(dfjson), orient=orient) + tm.assert_frame_equal(result, expected) + + def test_read_timezone_information(self): + # GH 25546 + result = read_json( + StringIO('{"2019-01-01T11:00:00.000Z":88}'), typ="series", orient="index" + ) + exp_dti = DatetimeIndex(["2019-01-01 11:00:00"], dtype="M8[ns, UTC]") + expected = Series([88], index=exp_dti) + tm.assert_series_equal(result, expected) + + @pytest.mark.parametrize( + "url", + [ + "s3://example-fsspec/", + "gcs://another-fsspec/file.json", + "https://example-site.com/data", + "some-protocol://data.txt", + ], + ) + def test_read_json_with_url_value(self, url): + # GH 36271 + result = read_json(StringIO(f'{{"url":{{"0":"{url}"}}}}')) + expected = DataFrame({"url": [url]}) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "compression", + ["", ".gz", ".bz2", ".tar"], + ) + def test_read_json_with_very_long_file_path(self, compression): + # GH 46718 + long_json_path = f'{"a" * 1000}.json{compression}' + with pytest.raises( + FileNotFoundError, match=f"File {long_json_path} does not exist" + ): + # path too long for Windows is handled in file_exists() but raises in + # _get_data_from_filepath() + read_json(long_json_path) + + @pytest.mark.parametrize( + "date_format,key", [("epoch", 86400000), ("iso", "P1DT0H0M0S")] + ) + def test_timedelta_as_label(self, date_format, key): + df = DataFrame([[1]], columns=[pd.Timedelta("1D")]) + expected = f'{{"{key}":{{"0":1}}}}' + result = df.to_json(date_format=date_format) + + assert result == expected + + @pytest.mark.parametrize( + "orient,expected", + [ + ("index", "{\"('a', 'b')\":{\"('c', 'd')\":1}}"), + ("columns", "{\"('c', 'd')\":{\"('a', 'b')\":1}}"), + # TODO: the below have separate encoding procedures + pytest.param( + "split", + "", + marks=pytest.mark.xfail( + reason="Produces JSON but not in a consistent manner" + ), + ), + pytest.param( + "table", + "", + marks=pytest.mark.xfail( + reason="Produces JSON but not in a consistent manner" + ), + ), + ], + ) + def test_tuple_labels(self, orient, expected): + # GH 20500 + df = DataFrame([[1]], index=[("a", "b")], columns=[("c", "d")]) + result = df.to_json(orient=orient) + assert result == expected + + @pytest.mark.parametrize("indent", [1, 2, 4]) + def test_to_json_indent(self, indent): + # GH 12004 + df = DataFrame([["foo", "bar"], ["baz", "qux"]], columns=["a", "b"]) + + result = df.to_json(indent=indent) + spaces = " " * indent + expected = f"""{{ +{spaces}"a":{{ +{spaces}{spaces}"0":"foo", +{spaces}{spaces}"1":"baz" +{spaces}}}, +{spaces}"b":{{ +{spaces}{spaces}"0":"bar", +{spaces}{spaces}"1":"qux" +{spaces}}} +}}""" + + assert result == expected + + @pytest.mark.skipif( + using_pyarrow_string_dtype(), + reason="Adjust expected when infer_string is default, no bug here, " + "just a complicated parametrization", + ) + @pytest.mark.parametrize( + "orient,expected", + [ + ( + "split", + """{ + "columns":[ + "a", + "b" + ], + "index":[ + 0, + 1 + ], + "data":[ + [ + "foo", + "bar" + ], + [ + "baz", + "qux" + ] + ] +}""", + ), + ( + "records", + """[ + { + "a":"foo", + "b":"bar" + }, + { + "a":"baz", + "b":"qux" + } +]""", + ), + ( + "index", + """{ + "0":{ + "a":"foo", + "b":"bar" + }, + "1":{ + "a":"baz", + "b":"qux" + } +}""", + ), + ( + "columns", + """{ + "a":{ + "0":"foo", + "1":"baz" + }, + "b":{ + "0":"bar", + "1":"qux" + } +}""", + ), + ( + "values", + """[ + [ + "foo", + "bar" + ], + [ + "baz", + "qux" + ] +]""", + ), + ( + "table", + """{ + "schema":{ + "fields":[ + { + "name":"index", + "type":"integer" + }, + { + "name":"a", + "type":"string" + }, + { + "name":"b", + "type":"string" + } + ], + "primaryKey":[ + "index" + ], + "pandas_version":"1.4.0" + }, + "data":[ + { + "index":0, + "a":"foo", + "b":"bar" + }, + { + "index":1, + "a":"baz", + "b":"qux" + } + ] +}""", + ), + ], + ) + def test_json_indent_all_orients(self, orient, expected): + # GH 12004 + df = DataFrame([["foo", "bar"], ["baz", "qux"]], columns=["a", "b"]) + result = df.to_json(orient=orient, indent=4) + assert result == expected + + def test_json_negative_indent_raises(self): + with pytest.raises(ValueError, match="must be a nonnegative integer"): + DataFrame().to_json(indent=-1) + + def test_emca_262_nan_inf_support(self): + # GH 12213 + data = StringIO( + '["a", NaN, "NaN", Infinity, "Infinity", -Infinity, "-Infinity"]' + ) + result = read_json(data) + expected = DataFrame( + ["a", None, "NaN", np.inf, "Infinity", -np.inf, "-Infinity"] + ) + tm.assert_frame_equal(result, expected) + + def test_frame_int_overflow(self): + # GH 30320 + encoded_json = json.dumps([{"col": "31900441201190696999"}, {"col": "Text"}]) + expected = DataFrame({"col": ["31900441201190696999", "Text"]}) + result = read_json(StringIO(encoded_json)) + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize( + "dataframe,expected", + [ + ( + DataFrame({"x": [1, 2, 3], "y": ["a", "b", "c"]}), + '{"(0, \'x\')":1,"(0, \'y\')":"a","(1, \'x\')":2,' + '"(1, \'y\')":"b","(2, \'x\')":3,"(2, \'y\')":"c"}', + ) + ], + ) + def test_json_multiindex(self, dataframe, expected): + series = dataframe.stack(future_stack=True) + result = series.to_json(orient="index") + assert result == expected + + @pytest.mark.single_cpu + def test_to_s3(self, s3_public_bucket, s3so): + # GH 28375 + mock_bucket_name, target_file = s3_public_bucket.name, "test.json" + df = DataFrame({"x": [1, 2, 3], "y": [2, 4, 6]}) + df.to_json(f"s3://{mock_bucket_name}/{target_file}", storage_options=s3so) + timeout = 5 + while True: + if target_file in (obj.key for obj in s3_public_bucket.objects.all()): + break + time.sleep(0.1) + timeout -= 0.1 + assert timeout > 0, "Timed out waiting for file to appear on moto" + + def test_json_pandas_nulls(self, nulls_fixture, request): + # GH 31615 + if isinstance(nulls_fixture, Decimal): + mark = pytest.mark.xfail(reason="not implemented") + request.applymarker(mark) + + result = DataFrame([[nulls_fixture]]).to_json() + assert result == '{"0":{"0":null}}' + + def test_readjson_bool_series(self): + # GH31464 + result = read_json(StringIO("[true, true, false]"), typ="series") + expected = Series([True, True, False]) + tm.assert_series_equal(result, expected) + + def test_to_json_multiindex_escape(self): + # GH 15273 + df = DataFrame( + True, + index=date_range("2017-01-20", "2017-01-23"), + columns=["foo", "bar"], + ).stack(future_stack=True) + result = df.to_json() + expected = ( + "{\"(Timestamp('2017-01-20 00:00:00'), 'foo')\":true," + "\"(Timestamp('2017-01-20 00:00:00'), 'bar')\":true," + "\"(Timestamp('2017-01-21 00:00:00'), 'foo')\":true," + "\"(Timestamp('2017-01-21 00:00:00'), 'bar')\":true," + "\"(Timestamp('2017-01-22 00:00:00'), 'foo')\":true," + "\"(Timestamp('2017-01-22 00:00:00'), 'bar')\":true," + "\"(Timestamp('2017-01-23 00:00:00'), 'foo')\":true," + "\"(Timestamp('2017-01-23 00:00:00'), 'bar')\":true}" + ) + assert result == expected + + def test_to_json_series_of_objects(self): + class _TestObject: + def __init__(self, a, b, _c, d) -> None: + self.a = a + self.b = b + self._c = _c + self.d = d + + def e(self): + return 5 + + # JSON keys should be all non-callable non-underscore attributes, see GH-42768 + series = Series([_TestObject(a=1, b=2, _c=3, d=4)]) + assert json.loads(series.to_json()) == {"0": {"a": 1, "b": 2, "d": 4}} + + @pytest.mark.parametrize( + "data,expected", + [ + ( + Series({0: -6 + 8j, 1: 0 + 1j, 2: 9 - 5j}), + '{"0":{"imag":8.0,"real":-6.0},' + '"1":{"imag":1.0,"real":0.0},' + '"2":{"imag":-5.0,"real":9.0}}', + ), + ( + Series({0: -9.39 + 0.66j, 1: 3.95 + 9.32j, 2: 4.03 - 0.17j}), + '{"0":{"imag":0.66,"real":-9.39},' + '"1":{"imag":9.32,"real":3.95},' + '"2":{"imag":-0.17,"real":4.03}}', + ), + ( + DataFrame([[-2 + 3j, -1 - 0j], [4 - 3j, -0 - 10j]]), + '{"0":{"0":{"imag":3.0,"real":-2.0},' + '"1":{"imag":-3.0,"real":4.0}},' + '"1":{"0":{"imag":0.0,"real":-1.0},' + '"1":{"imag":-10.0,"real":0.0}}}', + ), + ( + DataFrame( + [[-0.28 + 0.34j, -1.08 - 0.39j], [0.41 - 0.34j, -0.78 - 1.35j]] + ), + '{"0":{"0":{"imag":0.34,"real":-0.28},' + '"1":{"imag":-0.34,"real":0.41}},' + '"1":{"0":{"imag":-0.39,"real":-1.08},' + '"1":{"imag":-1.35,"real":-0.78}}}', + ), + ], + ) + def test_complex_data_tojson(self, data, expected): + # GH41174 + result = data.to_json() + assert result == expected + + def test_json_uint64(self): + # GH21073 + expected = ( + '{"columns":["col1"],"index":[0,1],' + '"data":[[13342205958987758245],[12388075603347835679]]}' + ) + df = DataFrame(data={"col1": [13342205958987758245, 12388075603347835679]}) + result = df.to_json(orient="split") + assert result == expected + + @pytest.mark.parametrize( + "orient", ["split", "records", "values", "index", "columns"] + ) + def test_read_json_dtype_backend( + self, string_storage, dtype_backend, orient, using_infer_string + ): + # GH#50750 + pa = pytest.importorskip("pyarrow") + df = DataFrame( + { + "a": Series([1, np.nan, 3], dtype="Int64"), + "b": Series([1, 2, 3], dtype="Int64"), + "c": Series([1.5, np.nan, 2.5], dtype="Float64"), + "d": Series([1.5, 2.0, 2.5], dtype="Float64"), + "e": [True, False, None], + "f": [True, False, True], + "g": ["a", "b", "c"], + "h": ["a", "b", None], + } + ) + + if using_infer_string: + string_array = ArrowStringArrayNumpySemantics(pa.array(["a", "b", "c"])) + string_array_na = ArrowStringArrayNumpySemantics(pa.array(["a", "b", None])) + elif string_storage == "python": + string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_)) + string_array_na = StringArray(np.array(["a", "b", NA], dtype=np.object_)) + + elif dtype_backend == "pyarrow": + pa = pytest.importorskip("pyarrow") + from pandas.arrays import ArrowExtensionArray + + string_array = ArrowExtensionArray(pa.array(["a", "b", "c"])) + string_array_na = ArrowExtensionArray(pa.array(["a", "b", None])) + + else: + string_array = ArrowStringArray(pa.array(["a", "b", "c"])) + string_array_na = ArrowStringArray(pa.array(["a", "b", None])) + + out = df.to_json(orient=orient) + with pd.option_context("mode.string_storage", string_storage): + result = read_json( + StringIO(out), dtype_backend=dtype_backend, orient=orient + ) + + expected = DataFrame( + { + "a": Series([1, np.nan, 3], dtype="Int64"), + "b": Series([1, 2, 3], dtype="Int64"), + "c": Series([1.5, np.nan, 2.5], dtype="Float64"), + "d": Series([1.5, 2.0, 2.5], dtype="Float64"), + "e": Series([True, False, NA], dtype="boolean"), + "f": Series([True, False, True], dtype="boolean"), + "g": string_array, + "h": string_array_na, + } + ) + + if dtype_backend == "pyarrow": + from pandas.arrays import ArrowExtensionArray + + expected = DataFrame( + { + col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True)) + for col in expected.columns + } + ) + + if orient == "values": + expected.columns = list(range(8)) + + tm.assert_frame_equal(result, expected) + + @pytest.mark.parametrize("orient", ["split", "records", "index"]) + def test_read_json_nullable_series(self, string_storage, dtype_backend, orient): + # GH#50750 + pa = pytest.importorskip("pyarrow") + ser = Series([1, np.nan, 3], dtype="Int64") + + out = ser.to_json(orient=orient) + with pd.option_context("mode.string_storage", string_storage): + result = read_json( + StringIO(out), dtype_backend=dtype_backend, orient=orient, typ="series" + ) + + expected = Series([1, np.nan, 3], dtype="Int64") + + if dtype_backend == "pyarrow": + from pandas.arrays import ArrowExtensionArray + + expected = Series(ArrowExtensionArray(pa.array(expected, from_pandas=True))) + + tm.assert_series_equal(result, expected) + + def test_invalid_dtype_backend(self): + msg = ( + "dtype_backend numpy is invalid, only 'numpy_nullable' and " + "'pyarrow' are allowed." + ) + with pytest.raises(ValueError, match=msg): + read_json("test", dtype_backend="numpy") + + +def test_invalid_engine(): + # GH 48893 + ser = Series(range(1)) + out = ser.to_json() + with pytest.raises(ValueError, match="The engine type foo"): + read_json(out, engine="foo") + + +def test_pyarrow_engine_lines_false(): + # GH 48893 + ser = Series(range(1)) + out = ser.to_json() + with pytest.raises(ValueError, match="currently pyarrow engine only supports"): + read_json(out, engine="pyarrow", lines=False) + + +def test_json_roundtrip_string_inference(orient): + pytest.importorskip("pyarrow") + df = DataFrame( + [["a", "b"], ["c", "d"]], index=["row 1", "row 2"], columns=["col 1", "col 2"] + ) + out = df.to_json() + with pd.option_context("future.infer_string", True): + result = read_json(StringIO(out)) + expected = DataFrame( + [["a", "b"], ["c", "d"]], + dtype="string[pyarrow_numpy]", + index=Index(["row 1", "row 2"], dtype="string[pyarrow_numpy]"), + columns=Index(["col 1", "col 2"], dtype="string[pyarrow_numpy]"), + ) + tm.assert_frame_equal(result, expected) + + +def test_json_pos_args_deprecation(): + # GH-54229 + df = DataFrame({"a": [1, 2, 3]}) + msg = ( + r"Starting with pandas version 3.0 all arguments of to_json except for the " + r"argument 'path_or_buf' will be keyword-only." + ) + with tm.assert_produces_warning(FutureWarning, match=msg): + buf = BytesIO() + df.to_json(buf, "split") + + +@td.skip_if_no("pyarrow") +def test_to_json_ea_null(): + # GH#57224 + df = DataFrame( + { + "a": Series([1, NA], dtype="int64[pyarrow]"), + "b": Series([2, NA], dtype="Int64"), + } + ) + result = df.to_json(orient="records", lines=True) + expected = """{"a":1,"b":2} +{"a":null,"b":null} +""" + assert result == expected + + +def test_read_json_lines_rangeindex(): + # GH 57429 + data = """ +{"a": 1, "b": 2} +{"a": 3, "b": 4} +""" + result = read_json(StringIO(data), lines=True).index + expected = RangeIndex(2) + tm.assert_index_equal(result, expected, exact=True) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_readlines.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_readlines.py new file mode 100644 index 0000000000000000000000000000000000000000..d96ccb4b94cc2c567c8d7e59cad3227017f9200d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_readlines.py @@ -0,0 +1,543 @@ +from collections.abc import Iterator +from io import StringIO +from pathlib import Path + +import numpy as np +import pytest + +import pandas as pd +from pandas import ( + DataFrame, + read_json, +) +import pandas._testing as tm + +from pandas.io.json._json import JsonReader + +pytestmark = pytest.mark.filterwarnings( + "ignore:Passing a BlockManager to DataFrame:DeprecationWarning" +) + + +@pytest.fixture +def lines_json_df(): + df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) + return df.to_json(lines=True, orient="records") + + +@pytest.fixture(params=["ujson", "pyarrow"]) +def engine(request): + if request.param == "pyarrow": + pytest.importorskip("pyarrow.json") + return request.param + + +def test_read_jsonl(): + # GH9180 + result = read_json(StringIO('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n'), lines=True) + expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) + tm.assert_frame_equal(result, expected) + + +def test_read_jsonl_engine_pyarrow(datapath, engine): + result = read_json( + datapath("io", "json", "data", "line_delimited.json"), + lines=True, + engine=engine, + ) + expected = DataFrame({"a": [1, 3, 5], "b": [2, 4, 6]}) + tm.assert_frame_equal(result, expected) + + +def test_read_datetime(request, engine): + # GH33787 + if engine == "pyarrow": + # GH 48893 + reason = "Pyarrow only supports a file path as an input and line delimited json" + request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError)) + + df = DataFrame( + [([1, 2], ["2020-03-05", "2020-04-08T09:58:49+00:00"], "hector")], + columns=["accounts", "date", "name"], + ) + json_line = df.to_json(lines=True, orient="records") + + if engine == "pyarrow": + result = read_json(StringIO(json_line), engine=engine) + else: + result = read_json(StringIO(json_line), engine=engine) + expected = DataFrame( + [[1, "2020-03-05", "hector"], [2, "2020-04-08T09:58:49+00:00", "hector"]], + columns=["accounts", "date", "name"], + ) + tm.assert_frame_equal(result, expected) + + +def test_read_jsonl_unicode_chars(): + # GH15132: non-ascii unicode characters + # \u201d == RIGHT DOUBLE QUOTATION MARK + + # simulate file handle + json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' + json = StringIO(json) + result = read_json(json, lines=True) + expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) + tm.assert_frame_equal(result, expected) + + # simulate string + json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' + result = read_json(StringIO(json), lines=True) + expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) + tm.assert_frame_equal(result, expected) + + +def test_to_jsonl(): + # GH9180 + df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) + result = df.to_json(orient="records", lines=True) + expected = '{"a":1,"b":2}\n{"a":1,"b":2}\n' + assert result == expected + + df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"]) + result = df.to_json(orient="records", lines=True) + expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}\n' + assert result == expected + tm.assert_frame_equal(read_json(StringIO(result), lines=True), df) + + # GH15096: escaped characters in columns and data + df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"]) + result = df.to_json(orient="records", lines=True) + expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}\n' + assert result == expected + tm.assert_frame_equal(read_json(StringIO(result), lines=True), df) + + +def test_to_jsonl_count_new_lines(): + # GH36888 + df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) + actual_new_lines_count = df.to_json(orient="records", lines=True).count("\n") + expected_new_lines_count = 2 + assert actual_new_lines_count == expected_new_lines_count + + +@pytest.mark.parametrize("chunksize", [1, 1.0]) +def test_readjson_chunks(request, lines_json_df, chunksize, engine): + # Basic test that read_json(chunks=True) gives the same result as + # read_json(chunks=False) + # GH17048: memory usage when lines=True + + if engine == "pyarrow": + # GH 48893 + reason = ( + "Pyarrow only supports a file path as an input and line delimited json" + "and doesn't support chunksize parameter." + ) + request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError)) + + unchunked = read_json(StringIO(lines_json_df), lines=True) + with read_json( + StringIO(lines_json_df), lines=True, chunksize=chunksize, engine=engine + ) as reader: + chunked = pd.concat(reader) + + tm.assert_frame_equal(chunked, unchunked) + + +def test_readjson_chunksize_requires_lines(lines_json_df, engine): + msg = "chunksize can only be passed if lines=True" + with pytest.raises(ValueError, match=msg): + with read_json( + StringIO(lines_json_df), lines=False, chunksize=2, engine=engine + ) as _: + pass + + +def test_readjson_chunks_series(request, engine): + if engine == "pyarrow": + # GH 48893 + reason = ( + "Pyarrow only supports a file path as an input and line delimited json" + "and doesn't support chunksize parameter." + ) + request.applymarker(pytest.mark.xfail(reason=reason)) + + # Test reading line-format JSON to Series with chunksize param + s = pd.Series({"A": 1, "B": 2}) + + strio = StringIO(s.to_json(lines=True, orient="records")) + unchunked = read_json(strio, lines=True, typ="Series", engine=engine) + + strio = StringIO(s.to_json(lines=True, orient="records")) + with read_json( + strio, lines=True, typ="Series", chunksize=1, engine=engine + ) as reader: + chunked = pd.concat(reader) + + tm.assert_series_equal(chunked, unchunked) + + +def test_readjson_each_chunk(request, lines_json_df, engine): + if engine == "pyarrow": + # GH 48893 + reason = ( + "Pyarrow only supports a file path as an input and line delimited json" + "and doesn't support chunksize parameter." + ) + request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError)) + + # Other tests check that the final result of read_json(chunksize=True) + # is correct. This checks the intermediate chunks. + with read_json( + StringIO(lines_json_df), lines=True, chunksize=2, engine=engine + ) as reader: + chunks = list(reader) + assert chunks[0].shape == (2, 2) + assert chunks[1].shape == (1, 2) + + +def test_readjson_chunks_from_file(request, engine): + if engine == "pyarrow": + # GH 48893 + reason = ( + "Pyarrow only supports a file path as an input and line delimited json" + "and doesn't support chunksize parameter." + ) + request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError)) + + with tm.ensure_clean("test.json") as path: + df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) + df.to_json(path, lines=True, orient="records") + with read_json(path, lines=True, chunksize=1, engine=engine) as reader: + chunked = pd.concat(reader) + unchunked = read_json(path, lines=True, engine=engine) + tm.assert_frame_equal(unchunked, chunked) + + +@pytest.mark.parametrize("chunksize", [None, 1]) +def test_readjson_chunks_closes(chunksize): + with tm.ensure_clean("test.json") as path: + df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) + df.to_json(path, lines=True, orient="records") + reader = JsonReader( + path, + orient=None, + typ="frame", + dtype=True, + convert_axes=True, + convert_dates=True, + keep_default_dates=True, + precise_float=False, + date_unit=None, + encoding=None, + lines=True, + chunksize=chunksize, + compression=None, + nrows=None, + ) + with reader: + reader.read() + assert ( + reader.handles.handle.closed + ), f"didn't close stream with chunksize = {chunksize}" + + +@pytest.mark.parametrize("chunksize", [0, -1, 2.2, "foo"]) +def test_readjson_invalid_chunksize(lines_json_df, chunksize, engine): + msg = r"'chunksize' must be an integer >=1" + + with pytest.raises(ValueError, match=msg): + with read_json( + StringIO(lines_json_df), lines=True, chunksize=chunksize, engine=engine + ) as _: + pass + + +@pytest.mark.parametrize("chunksize", [None, 1, 2]) +def test_readjson_chunks_multiple_empty_lines(chunksize): + j = """ + + {"A":1,"B":4} + + + + {"A":2,"B":5} + + + + + + + + {"A":3,"B":6} + """ + orig = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) + test = read_json(StringIO(j), lines=True, chunksize=chunksize) + if chunksize is not None: + with test: + test = pd.concat(test) + tm.assert_frame_equal(orig, test, obj=f"chunksize: {chunksize}") + + +def test_readjson_unicode(request, monkeypatch, engine): + if engine == "pyarrow": + # GH 48893 + reason = ( + "Pyarrow only supports a file path as an input and line delimited json" + "and doesn't support chunksize parameter." + ) + request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError)) + + with tm.ensure_clean("test.json") as path: + monkeypatch.setattr("locale.getpreferredencoding", lambda do_setlocale: "cp949") + with open(path, "w", encoding="utf-8") as f: + f.write('{"£©µÀÆÖÞßéöÿ":["АБВГДабвгд가"]}') + + result = read_json(path, engine=engine) + expected = DataFrame({"£©µÀÆÖÞßéöÿ": ["АБВГДабвгд가"]}) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("nrows", [1, 2]) +def test_readjson_nrows(nrows, engine): + # GH 33916 + # Test reading line-format JSON to Series with nrows param + jsonl = """{"a": 1, "b": 2} + {"a": 3, "b": 4} + {"a": 5, "b": 6} + {"a": 7, "b": 8}""" + result = read_json(StringIO(jsonl), lines=True, nrows=nrows) + expected = DataFrame({"a": [1, 3, 5, 7], "b": [2, 4, 6, 8]}).iloc[:nrows] + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("nrows,chunksize", [(2, 2), (4, 2)]) +def test_readjson_nrows_chunks(request, nrows, chunksize, engine): + # GH 33916 + # Test reading line-format JSON to Series with nrows and chunksize param + if engine == "pyarrow": + # GH 48893 + reason = ( + "Pyarrow only supports a file path as an input and line delimited json" + "and doesn't support chunksize parameter." + ) + request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError)) + + jsonl = """{"a": 1, "b": 2} + {"a": 3, "b": 4} + {"a": 5, "b": 6} + {"a": 7, "b": 8}""" + + if engine != "pyarrow": + with read_json( + StringIO(jsonl), lines=True, nrows=nrows, chunksize=chunksize, engine=engine + ) as reader: + chunked = pd.concat(reader) + else: + with read_json( + jsonl, lines=True, nrows=nrows, chunksize=chunksize, engine=engine + ) as reader: + chunked = pd.concat(reader) + expected = DataFrame({"a": [1, 3, 5, 7], "b": [2, 4, 6, 8]}).iloc[:nrows] + tm.assert_frame_equal(chunked, expected) + + +def test_readjson_nrows_requires_lines(engine): + # GH 33916 + # Test ValueError raised if nrows is set without setting lines in read_json + jsonl = """{"a": 1, "b": 2} + {"a": 3, "b": 4} + {"a": 5, "b": 6} + {"a": 7, "b": 8}""" + msg = "nrows can only be passed if lines=True" + with pytest.raises(ValueError, match=msg): + read_json(jsonl, lines=False, nrows=2, engine=engine) + + +def test_readjson_lines_chunks_fileurl(request, datapath, engine): + # GH 27135 + # Test reading line-format JSON from file url + if engine == "pyarrow": + # GH 48893 + reason = ( + "Pyarrow only supports a file path as an input and line delimited json" + "and doesn't support chunksize parameter." + ) + request.applymarker(pytest.mark.xfail(reason=reason, raises=ValueError)) + + df_list_expected = [ + DataFrame([[1, 2]], columns=["a", "b"], index=[0]), + DataFrame([[3, 4]], columns=["a", "b"], index=[1]), + DataFrame([[5, 6]], columns=["a", "b"], index=[2]), + ] + os_path = datapath("io", "json", "data", "line_delimited.json") + file_url = Path(os_path).as_uri() + with read_json(file_url, lines=True, chunksize=1, engine=engine) as url_reader: + for index, chuck in enumerate(url_reader): + tm.assert_frame_equal(chuck, df_list_expected[index]) + + +def test_chunksize_is_incremental(): + # See https://github.com/pandas-dev/pandas/issues/34548 + jsonl = ( + """{"a": 1, "b": 2} + {"a": 3, "b": 4} + {"a": 5, "b": 6} + {"a": 7, "b": 8}\n""" + * 1000 + ) + + class MyReader: + def __init__(self, contents) -> None: + self.read_count = 0 + self.stringio = StringIO(contents) + + def read(self, *args): + self.read_count += 1 + return self.stringio.read(*args) + + def __iter__(self) -> Iterator: + self.read_count += 1 + return iter(self.stringio) + + reader = MyReader(jsonl) + assert len(list(read_json(reader, lines=True, chunksize=100))) > 1 + assert reader.read_count > 10 + + +@pytest.mark.parametrize("orient_", ["split", "index", "table"]) +def test_to_json_append_orient(orient_): + # GH 35849 + # Test ValueError when orient is not 'records' + df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) + msg = ( + r"mode='a' \(append\) is only supported when " + "lines is True and orient is 'records'" + ) + with pytest.raises(ValueError, match=msg): + df.to_json(mode="a", orient=orient_) + + +def test_to_json_append_lines(): + # GH 35849 + # Test ValueError when lines is not True + df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) + msg = ( + r"mode='a' \(append\) is only supported when " + "lines is True and orient is 'records'" + ) + with pytest.raises(ValueError, match=msg): + df.to_json(mode="a", lines=False, orient="records") + + +@pytest.mark.parametrize("mode_", ["r", "x"]) +def test_to_json_append_mode(mode_): + # GH 35849 + # Test ValueError when mode is not supported option + df = DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) + msg = ( + f"mode={mode_} is not a valid option." + "Only 'w' and 'a' are currently supported." + ) + with pytest.raises(ValueError, match=msg): + df.to_json(mode=mode_, lines=False, orient="records") + + +def test_to_json_append_output_consistent_columns(): + # GH 35849 + # Testing that resulting output reads in as expected. + # Testing same columns, new rows + df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) + df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]}) + + expected = DataFrame({"col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "d"]}) + with tm.ensure_clean("test.json") as path: + # Save dataframes to the same file + df1.to_json(path, lines=True, orient="records") + df2.to_json(path, mode="a", lines=True, orient="records") + + # Read path file + result = read_json(path, lines=True) + tm.assert_frame_equal(result, expected) + + +def test_to_json_append_output_inconsistent_columns(): + # GH 35849 + # Testing that resulting output reads in as expected. + # Testing one new column, one old column, new rows + df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) + df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]}) + + expected = DataFrame( + { + "col1": [1, 2, None, None], + "col2": ["a", "b", "e", "f"], + "col3": [np.nan, np.nan, "!", "#"], + } + ) + with tm.ensure_clean("test.json") as path: + # Save dataframes to the same file + df1.to_json(path, mode="a", lines=True, orient="records") + df3.to_json(path, mode="a", lines=True, orient="records") + + # Read path file + result = read_json(path, lines=True) + tm.assert_frame_equal(result, expected) + + +def test_to_json_append_output_different_columns(): + # GH 35849 + # Testing that resulting output reads in as expected. + # Testing same, differing and new columns + df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) + df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]}) + df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]}) + df4 = DataFrame({"col4": [True, False]}) + + expected = DataFrame( + { + "col1": [1, 2, 3, 4, None, None, None, None], + "col2": ["a", "b", "c", "d", "e", "f", np.nan, np.nan], + "col3": [np.nan, np.nan, np.nan, np.nan, "!", "#", np.nan, np.nan], + "col4": [None, None, None, None, None, None, True, False], + } + ).astype({"col4": "float"}) + with tm.ensure_clean("test.json") as path: + # Save dataframes to the same file + df1.to_json(path, mode="a", lines=True, orient="records") + df2.to_json(path, mode="a", lines=True, orient="records") + df3.to_json(path, mode="a", lines=True, orient="records") + df4.to_json(path, mode="a", lines=True, orient="records") + + # Read path file + result = read_json(path, lines=True) + tm.assert_frame_equal(result, expected) + + +def test_to_json_append_output_different_columns_reordered(): + # GH 35849 + # Testing that resulting output reads in as expected. + # Testing specific result column order. + df1 = DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) + df2 = DataFrame({"col1": [3, 4], "col2": ["c", "d"]}) + df3 = DataFrame({"col2": ["e", "f"], "col3": ["!", "#"]}) + df4 = DataFrame({"col4": [True, False]}) + + # df4, df3, df2, df1 (in that order) + expected = DataFrame( + { + "col4": [True, False, None, None, None, None, None, None], + "col2": [np.nan, np.nan, "e", "f", "c", "d", "a", "b"], + "col3": [np.nan, np.nan, "!", "#", np.nan, np.nan, np.nan, np.nan], + "col1": [None, None, None, None, 3, 4, 1, 2], + } + ).astype({"col4": "float"}) + with tm.ensure_clean("test.json") as path: + # Save dataframes to the same file + df4.to_json(path, mode="a", lines=True, orient="records") + df3.to_json(path, mode="a", lines=True, orient="records") + df2.to_json(path, mode="a", lines=True, orient="records") + df1.to_json(path, mode="a", lines=True, orient="records") + + # Read path file + result = read_json(path, lines=True) + tm.assert_frame_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_ujson.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_ujson.py new file mode 100644 index 0000000000000000000000000000000000000000..56ea9ea625dff721a2e989d858ae89c22aa69f4d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/json/test_ujson.py @@ -0,0 +1,1087 @@ +import calendar +import datetime +import decimal +import json +import locale +import math +import re +import time + +import dateutil +import numpy as np +import pytest +import pytz + +import pandas._libs.json as ujson +from pandas.compat import IS64 + +from pandas import ( + DataFrame, + DatetimeIndex, + Index, + NaT, + PeriodIndex, + Series, + Timedelta, + Timestamp, + date_range, +) +import pandas._testing as tm + + +def _clean_dict(d): + """ + Sanitize dictionary for JSON by converting all keys to strings. + + Parameters + ---------- + d : dict + The dictionary to convert. + + Returns + ------- + cleaned_dict : dict + """ + return {str(k): v for k, v in d.items()} + + +@pytest.fixture( + params=[None, "split", "records", "values", "index"] # Column indexed by default. +) +def orient(request): + return request.param + + +class TestUltraJSONTests: + @pytest.mark.skipif(not IS64, reason="not compliant on 32-bit, xref #15865") + def test_encode_decimal(self): + sut = decimal.Decimal("1337.1337") + encoded = ujson.ujson_dumps(sut, double_precision=15) + decoded = ujson.ujson_loads(encoded) + assert decoded == 1337.1337 + + sut = decimal.Decimal("0.95") + encoded = ujson.ujson_dumps(sut, double_precision=1) + assert encoded == "1.0" + + decoded = ujson.ujson_loads(encoded) + assert decoded == 1.0 + + sut = decimal.Decimal("0.94") + encoded = ujson.ujson_dumps(sut, double_precision=1) + assert encoded == "0.9" + + decoded = ujson.ujson_loads(encoded) + assert decoded == 0.9 + + sut = decimal.Decimal("1.95") + encoded = ujson.ujson_dumps(sut, double_precision=1) + assert encoded == "2.0" + + decoded = ujson.ujson_loads(encoded) + assert decoded == 2.0 + + sut = decimal.Decimal("-1.95") + encoded = ujson.ujson_dumps(sut, double_precision=1) + assert encoded == "-2.0" + + decoded = ujson.ujson_loads(encoded) + assert decoded == -2.0 + + sut = decimal.Decimal("0.995") + encoded = ujson.ujson_dumps(sut, double_precision=2) + assert encoded == "1.0" + + decoded = ujson.ujson_loads(encoded) + assert decoded == 1.0 + + sut = decimal.Decimal("0.9995") + encoded = ujson.ujson_dumps(sut, double_precision=3) + assert encoded == "1.0" + + decoded = ujson.ujson_loads(encoded) + assert decoded == 1.0 + + sut = decimal.Decimal("0.99999999999999944") + encoded = ujson.ujson_dumps(sut, double_precision=15) + assert encoded == "1.0" + + decoded = ujson.ujson_loads(encoded) + assert decoded == 1.0 + + @pytest.mark.parametrize("ensure_ascii", [True, False]) + def test_encode_string_conversion(self, ensure_ascii): + string_input = "A string \\ / \b \f \n \r \t &" + not_html_encoded = '"A string \\\\ \\/ \\b \\f \\n \\r \\t <\\/script> &"' + html_encoded = ( + '"A string \\\\ \\/ \\b \\f \\n \\r \\t \\u003c\\/script\\u003e \\u0026"' + ) + + def helper(expected_output, **encode_kwargs): + output = ujson.ujson_dumps( + string_input, ensure_ascii=ensure_ascii, **encode_kwargs + ) + + assert output == expected_output + assert string_input == json.loads(output) + assert string_input == ujson.ujson_loads(output) + + # Default behavior assumes encode_html_chars=False. + helper(not_html_encoded) + + # Make sure explicit encode_html_chars=False works. + helper(not_html_encoded, encode_html_chars=False) + + # Make sure explicit encode_html_chars=True does the encoding. + helper(html_encoded, encode_html_chars=True) + + @pytest.mark.parametrize( + "long_number", [-4342969734183514, -12345678901234.56789012, -528656961.4399388] + ) + def test_double_long_numbers(self, long_number): + sut = {"a": long_number} + encoded = ujson.ujson_dumps(sut, double_precision=15) + + decoded = ujson.ujson_loads(encoded) + assert sut == decoded + + def test_encode_non_c_locale(self): + lc_category = locale.LC_NUMERIC + + # We just need one of these locales to work. + for new_locale in ("it_IT.UTF-8", "Italian_Italy"): + if tm.can_set_locale(new_locale, lc_category): + with tm.set_locale(new_locale, lc_category): + assert ujson.ujson_loads(ujson.ujson_dumps(4.78e60)) == 4.78e60 + assert ujson.ujson_loads("4.78", precise_float=True) == 4.78 + break + + def test_decimal_decode_test_precise(self): + sut = {"a": 4.56} + encoded = ujson.ujson_dumps(sut) + decoded = ujson.ujson_loads(encoded, precise_float=True) + assert sut == decoded + + def test_encode_double_tiny_exponential(self): + num = 1e-40 + assert num == ujson.ujson_loads(ujson.ujson_dumps(num)) + num = 1e-100 + assert num == ujson.ujson_loads(ujson.ujson_dumps(num)) + num = -1e-45 + assert num == ujson.ujson_loads(ujson.ujson_dumps(num)) + num = -1e-145 + assert np.allclose(num, ujson.ujson_loads(ujson.ujson_dumps(num))) + + @pytest.mark.parametrize("unicode_key", ["key1", "بن"]) + def test_encode_dict_with_unicode_keys(self, unicode_key): + unicode_dict = {unicode_key: "value1"} + assert unicode_dict == ujson.ujson_loads(ujson.ujson_dumps(unicode_dict)) + + @pytest.mark.parametrize( + "double_input", [math.pi, -math.pi] # Should work with negatives too. + ) + def test_encode_double_conversion(self, double_input): + output = ujson.ujson_dumps(double_input) + assert round(double_input, 5) == round(json.loads(output), 5) + assert round(double_input, 5) == round(ujson.ujson_loads(output), 5) + + def test_encode_with_decimal(self): + decimal_input = 1.0 + output = ujson.ujson_dumps(decimal_input) + + assert output == "1.0" + + def test_encode_array_of_nested_arrays(self): + nested_input = [[[[]]]] * 20 + output = ujson.ujson_dumps(nested_input) + + assert nested_input == json.loads(output) + assert nested_input == ujson.ujson_loads(output) + + def test_encode_array_of_doubles(self): + doubles_input = [31337.31337, 31337.31337, 31337.31337, 31337.31337] * 10 + output = ujson.ujson_dumps(doubles_input) + + assert doubles_input == json.loads(output) + assert doubles_input == ujson.ujson_loads(output) + + def test_double_precision(self): + double_input = 30.012345678901234 + output = ujson.ujson_dumps(double_input, double_precision=15) + + assert double_input == json.loads(output) + assert double_input == ujson.ujson_loads(output) + + for double_precision in (3, 9): + output = ujson.ujson_dumps(double_input, double_precision=double_precision) + rounded_input = round(double_input, double_precision) + + assert rounded_input == json.loads(output) + assert rounded_input == ujson.ujson_loads(output) + + @pytest.mark.parametrize( + "invalid_val", + [ + 20, + -1, + "9", + None, + ], + ) + def test_invalid_double_precision(self, invalid_val): + double_input = 30.12345678901234567890 + expected_exception = ValueError if isinstance(invalid_val, int) else TypeError + msg = ( + r"Invalid value '.*' for option 'double_precision', max is '15'|" + r"an integer is required \(got type |" + r"object cannot be interpreted as an integer" + ) + with pytest.raises(expected_exception, match=msg): + ujson.ujson_dumps(double_input, double_precision=invalid_val) + + def test_encode_string_conversion2(self): + string_input = "A string \\ / \b \f \n \r \t" + output = ujson.ujson_dumps(string_input) + + assert string_input == json.loads(output) + assert string_input == ujson.ujson_loads(output) + assert output == '"A string \\\\ \\/ \\b \\f \\n \\r \\t"' + + @pytest.mark.parametrize( + "unicode_input", + ["Räksmörgås اسامة بن محمد بن عوض بن لادن", "\xe6\x97\xa5\xd1\x88"], + ) + def test_encode_unicode_conversion(self, unicode_input): + enc = ujson.ujson_dumps(unicode_input) + dec = ujson.ujson_loads(enc) + + assert enc == json.dumps(unicode_input) + assert dec == json.loads(enc) + + def test_encode_control_escaping(self): + escaped_input = "\x19" + enc = ujson.ujson_dumps(escaped_input) + dec = ujson.ujson_loads(enc) + + assert escaped_input == dec + assert enc == json.dumps(escaped_input) + + def test_encode_unicode_surrogate_pair(self): + surrogate_input = "\xf0\x90\x8d\x86" + enc = ujson.ujson_dumps(surrogate_input) + dec = ujson.ujson_loads(enc) + + assert enc == json.dumps(surrogate_input) + assert dec == json.loads(enc) + + def test_encode_unicode_4bytes_utf8(self): + four_bytes_input = "\xf0\x91\x80\xb0TRAILINGNORMAL" + enc = ujson.ujson_dumps(four_bytes_input) + dec = ujson.ujson_loads(enc) + + assert enc == json.dumps(four_bytes_input) + assert dec == json.loads(enc) + + def test_encode_unicode_4bytes_utf8highest(self): + four_bytes_input = "\xf3\xbf\xbf\xbfTRAILINGNORMAL" + enc = ujson.ujson_dumps(four_bytes_input) + + dec = ujson.ujson_loads(enc) + + assert enc == json.dumps(four_bytes_input) + assert dec == json.loads(enc) + + def test_encode_unicode_error(self): + string = "'\udac0'" + msg = ( + r"'utf-8' codec can't encode character '\\udac0' " + r"in position 1: surrogates not allowed" + ) + with pytest.raises(UnicodeEncodeError, match=msg): + ujson.ujson_dumps([string]) + + def test_encode_array_in_array(self): + arr_in_arr_input = [[[[]]]] + output = ujson.ujson_dumps(arr_in_arr_input) + + assert arr_in_arr_input == json.loads(output) + assert output == json.dumps(arr_in_arr_input) + assert arr_in_arr_input == ujson.ujson_loads(output) + + @pytest.mark.parametrize( + "num_input", + [ + 31337, + -31337, # Negative number. + -9223372036854775808, # Large negative number. + ], + ) + def test_encode_num_conversion(self, num_input): + output = ujson.ujson_dumps(num_input) + assert num_input == json.loads(output) + assert output == json.dumps(num_input) + assert num_input == ujson.ujson_loads(output) + + def test_encode_list_conversion(self): + list_input = [1, 2, 3, 4] + output = ujson.ujson_dumps(list_input) + + assert list_input == json.loads(output) + assert list_input == ujson.ujson_loads(output) + + def test_encode_dict_conversion(self): + dict_input = {"k1": 1, "k2": 2, "k3": 3, "k4": 4} + output = ujson.ujson_dumps(dict_input) + + assert dict_input == json.loads(output) + assert dict_input == ujson.ujson_loads(output) + + @pytest.mark.parametrize("builtin_value", [None, True, False]) + def test_encode_builtin_values_conversion(self, builtin_value): + output = ujson.ujson_dumps(builtin_value) + assert builtin_value == json.loads(output) + assert output == json.dumps(builtin_value) + assert builtin_value == ujson.ujson_loads(output) + + def test_encode_datetime_conversion(self): + datetime_input = datetime.datetime.fromtimestamp(time.time()) + output = ujson.ujson_dumps(datetime_input, date_unit="s") + expected = calendar.timegm(datetime_input.utctimetuple()) + + assert int(expected) == json.loads(output) + assert int(expected) == ujson.ujson_loads(output) + + def test_encode_date_conversion(self): + date_input = datetime.date.fromtimestamp(time.time()) + output = ujson.ujson_dumps(date_input, date_unit="s") + + tup = (date_input.year, date_input.month, date_input.day, 0, 0, 0) + expected = calendar.timegm(tup) + + assert int(expected) == json.loads(output) + assert int(expected) == ujson.ujson_loads(output) + + @pytest.mark.parametrize( + "test", + [datetime.time(), datetime.time(1, 2, 3), datetime.time(10, 12, 15, 343243)], + ) + def test_encode_time_conversion_basic(self, test): + output = ujson.ujson_dumps(test) + expected = f'"{test.isoformat()}"' + assert expected == output + + def test_encode_time_conversion_pytz(self): + # see gh-11473: to_json segfaults with timezone-aware datetimes + test = datetime.time(10, 12, 15, 343243, pytz.utc) + output = ujson.ujson_dumps(test) + expected = f'"{test.isoformat()}"' + assert expected == output + + def test_encode_time_conversion_dateutil(self): + # see gh-11473: to_json segfaults with timezone-aware datetimes + test = datetime.time(10, 12, 15, 343243, dateutil.tz.tzutc()) + output = ujson.ujson_dumps(test) + expected = f'"{test.isoformat()}"' + assert expected == output + + @pytest.mark.parametrize( + "decoded_input", [NaT, np.datetime64("NaT"), np.nan, np.inf, -np.inf] + ) + def test_encode_as_null(self, decoded_input): + assert ujson.ujson_dumps(decoded_input) == "null", "Expected null" + + def test_datetime_units(self): + val = datetime.datetime(2013, 8, 17, 21, 17, 12, 215504) + stamp = Timestamp(val).as_unit("ns") + + roundtrip = ujson.ujson_loads(ujson.ujson_dumps(val, date_unit="s")) + assert roundtrip == stamp._value // 10**9 + + roundtrip = ujson.ujson_loads(ujson.ujson_dumps(val, date_unit="ms")) + assert roundtrip == stamp._value // 10**6 + + roundtrip = ujson.ujson_loads(ujson.ujson_dumps(val, date_unit="us")) + assert roundtrip == stamp._value // 10**3 + + roundtrip = ujson.ujson_loads(ujson.ujson_dumps(val, date_unit="ns")) + assert roundtrip == stamp._value + + msg = "Invalid value 'foo' for option 'date_unit'" + with pytest.raises(ValueError, match=msg): + ujson.ujson_dumps(val, date_unit="foo") + + def test_encode_to_utf8(self): + unencoded = "\xe6\x97\xa5\xd1\x88" + + enc = ujson.ujson_dumps(unencoded, ensure_ascii=False) + dec = ujson.ujson_loads(enc) + + assert enc == json.dumps(unencoded, ensure_ascii=False) + assert dec == json.loads(enc) + + def test_decode_from_unicode(self): + unicode_input = '{"obj": 31337}' + + dec1 = ujson.ujson_loads(unicode_input) + dec2 = ujson.ujson_loads(str(unicode_input)) + + assert dec1 == dec2 + + def test_encode_recursion_max(self): + # 8 is the max recursion depth + + class O2: + member = 0 + + class O1: + member = 0 + + decoded_input = O1() + decoded_input.member = O2() + decoded_input.member.member = decoded_input + + with pytest.raises(OverflowError, match="Maximum recursion level reached"): + ujson.ujson_dumps(decoded_input) + + def test_decode_jibberish(self): + jibberish = "fdsa sda v9sa fdsa" + msg = "Unexpected character found when decoding 'false'" + with pytest.raises(ValueError, match=msg): + ujson.ujson_loads(jibberish) + + @pytest.mark.parametrize( + "broken_json", + [ + "[", # Broken array start. + "{", # Broken object start. + "]", # Broken array end. + "}", # Broken object end. + ], + ) + def test_decode_broken_json(self, broken_json): + msg = "Expected object or value" + with pytest.raises(ValueError, match=msg): + ujson.ujson_loads(broken_json) + + @pytest.mark.parametrize("too_big_char", ["[", "{"]) + def test_decode_depth_too_big(self, too_big_char): + with pytest.raises(ValueError, match="Reached object decoding depth limit"): + ujson.ujson_loads(too_big_char * (1024 * 1024)) + + @pytest.mark.parametrize( + "bad_string", + [ + '"TESTING', # Unterminated. + '"TESTING\\"', # Unterminated escape. + "tru", # Broken True. + "fa", # Broken False. + "n", # Broken None. + ], + ) + def test_decode_bad_string(self, bad_string): + msg = ( + "Unexpected character found when decoding|" + "Unmatched ''\"' when when decoding 'string'" + ) + with pytest.raises(ValueError, match=msg): + ujson.ujson_loads(bad_string) + + @pytest.mark.parametrize( + "broken_json, err_msg", + [ + ( + '{{1337:""}}', + "Key name of object must be 'string' when decoding 'object'", + ), + ('{{"key":"}', "Unmatched ''\"' when when decoding 'string'"), + ("[[[true", "Unexpected character found when decoding array value (2)"), + ], + ) + def test_decode_broken_json_leak(self, broken_json, err_msg): + for _ in range(1000): + with pytest.raises(ValueError, match=re.escape(err_msg)): + ujson.ujson_loads(broken_json) + + @pytest.mark.parametrize( + "invalid_dict", + [ + "{{{{31337}}}}", # No key. + '{{{{"key":}}}}', # No value. + '{{{{"key"}}}}', # No colon or value. + ], + ) + def test_decode_invalid_dict(self, invalid_dict): + msg = ( + "Key name of object must be 'string' when decoding 'object'|" + "No ':' found when decoding object value|" + "Expected object or value" + ) + with pytest.raises(ValueError, match=msg): + ujson.ujson_loads(invalid_dict) + + @pytest.mark.parametrize( + "numeric_int_as_str", ["31337", "-31337"] # Should work with negatives. + ) + def test_decode_numeric_int(self, numeric_int_as_str): + assert int(numeric_int_as_str) == ujson.ujson_loads(numeric_int_as_str) + + def test_encode_null_character(self): + wrapped_input = "31337 \x00 1337" + output = ujson.ujson_dumps(wrapped_input) + + assert wrapped_input == json.loads(output) + assert output == json.dumps(wrapped_input) + assert wrapped_input == ujson.ujson_loads(output) + + alone_input = "\x00" + output = ujson.ujson_dumps(alone_input) + + assert alone_input == json.loads(output) + assert output == json.dumps(alone_input) + assert alone_input == ujson.ujson_loads(output) + assert '" \\u0000\\r\\n "' == ujson.ujson_dumps(" \u0000\r\n ") + + def test_decode_null_character(self): + wrapped_input = '"31337 \\u0000 31337"' + assert ujson.ujson_loads(wrapped_input) == json.loads(wrapped_input) + + def test_encode_list_long_conversion(self): + long_input = [ + 9223372036854775807, + 9223372036854775807, + 9223372036854775807, + 9223372036854775807, + 9223372036854775807, + 9223372036854775807, + ] + output = ujson.ujson_dumps(long_input) + + assert long_input == json.loads(output) + assert long_input == ujson.ujson_loads(output) + + @pytest.mark.parametrize("long_input", [9223372036854775807, 18446744073709551615]) + def test_encode_long_conversion(self, long_input): + output = ujson.ujson_dumps(long_input) + + assert long_input == json.loads(output) + assert output == json.dumps(long_input) + assert long_input == ujson.ujson_loads(output) + + @pytest.mark.parametrize("bigNum", [2**64, -(2**63) - 1]) + def test_dumps_ints_larger_than_maxsize(self, bigNum): + encoding = ujson.ujson_dumps(bigNum) + assert str(bigNum) == encoding + + with pytest.raises( + ValueError, + match="Value is too big|Value is too small", + ): + assert ujson.ujson_loads(encoding) == bigNum + + @pytest.mark.parametrize( + "int_exp", ["1337E40", "1.337E40", "1337E+9", "1.337e+40", "1.337E-4"] + ) + def test_decode_numeric_int_exp(self, int_exp): + assert ujson.ujson_loads(int_exp) == json.loads(int_exp) + + def test_loads_non_str_bytes_raises(self): + msg = "a bytes-like object is required, not 'NoneType'" + with pytest.raises(TypeError, match=msg): + ujson.ujson_loads(None) + + @pytest.mark.parametrize("val", [3590016419, 2**31, 2**32, (2**32) - 1]) + def test_decode_number_with_32bit_sign_bit(self, val): + # Test that numbers that fit within 32 bits but would have the + # sign bit set (2**31 <= x < 2**32) are decoded properly. + doc = f'{{"id": {val}}}' + assert ujson.ujson_loads(doc)["id"] == val + + def test_encode_big_escape(self): + # Make sure no Exception is raised. + for _ in range(10): + base = "\u00e5".encode() + escape_input = base * 1024 * 1024 * 2 + ujson.ujson_dumps(escape_input) + + def test_decode_big_escape(self): + # Make sure no Exception is raised. + for _ in range(10): + base = "\u00e5".encode() + quote = b'"' + + escape_input = quote + (base * 1024 * 1024 * 2) + quote + ujson.ujson_loads(escape_input) + + def test_to_dict(self): + d = {"key": 31337} + + class DictTest: + def toDict(self): + return d + + o = DictTest() + output = ujson.ujson_dumps(o) + + dec = ujson.ujson_loads(output) + assert dec == d + + def test_default_handler(self): + class _TestObject: + def __init__(self, val) -> None: + self.val = val + + @property + def recursive_attr(self): + return _TestObject("recursive_attr") + + def __str__(self) -> str: + return str(self.val) + + msg = "Maximum recursion level reached" + with pytest.raises(OverflowError, match=msg): + ujson.ujson_dumps(_TestObject("foo")) + assert '"foo"' == ujson.ujson_dumps(_TestObject("foo"), default_handler=str) + + def my_handler(_): + return "foobar" + + assert '"foobar"' == ujson.ujson_dumps( + _TestObject("foo"), default_handler=my_handler + ) + + def my_handler_raises(_): + raise TypeError("I raise for anything") + + with pytest.raises(TypeError, match="I raise for anything"): + ujson.ujson_dumps(_TestObject("foo"), default_handler=my_handler_raises) + + def my_int_handler(_): + return 42 + + assert ( + ujson.ujson_loads( + ujson.ujson_dumps(_TestObject("foo"), default_handler=my_int_handler) + ) + == 42 + ) + + def my_obj_handler(_): + return datetime.datetime(2013, 2, 3) + + assert ujson.ujson_loads( + ujson.ujson_dumps(datetime.datetime(2013, 2, 3)) + ) == ujson.ujson_loads( + ujson.ujson_dumps(_TestObject("foo"), default_handler=my_obj_handler) + ) + + obj_list = [_TestObject("foo"), _TestObject("bar")] + assert json.loads(json.dumps(obj_list, default=str)) == ujson.ujson_loads( + ujson.ujson_dumps(obj_list, default_handler=str) + ) + + def test_encode_object(self): + class _TestObject: + def __init__(self, a, b, _c, d) -> None: + self.a = a + self.b = b + self._c = _c + self.d = d + + def e(self): + return 5 + + # JSON keys should be all non-callable non-underscore attributes, see GH-42768 + test_object = _TestObject(a=1, b=2, _c=3, d=4) + assert ujson.ujson_loads(ujson.ujson_dumps(test_object)) == { + "a": 1, + "b": 2, + "d": 4, + } + + def test_ujson__name__(self): + # GH 52898 + assert ujson.__name__ == "pandas._libs.json" + + +class TestNumpyJSONTests: + @pytest.mark.parametrize("bool_input", [True, False]) + def test_bool(self, bool_input): + b = bool(bool_input) + assert ujson.ujson_loads(ujson.ujson_dumps(b)) == b + + def test_bool_array(self): + bool_array = np.array( + [True, False, True, True, False, True, False, False], dtype=bool + ) + output = np.array(ujson.ujson_loads(ujson.ujson_dumps(bool_array)), dtype=bool) + tm.assert_numpy_array_equal(bool_array, output) + + def test_int(self, any_int_numpy_dtype): + klass = np.dtype(any_int_numpy_dtype).type + num = klass(1) + + assert klass(ujson.ujson_loads(ujson.ujson_dumps(num))) == num + + def test_int_array(self, any_int_numpy_dtype): + arr = np.arange(100, dtype=int) + arr_input = arr.astype(any_int_numpy_dtype) + + arr_output = np.array( + ujson.ujson_loads(ujson.ujson_dumps(arr_input)), dtype=any_int_numpy_dtype + ) + tm.assert_numpy_array_equal(arr_input, arr_output) + + def test_int_max(self, any_int_numpy_dtype): + if any_int_numpy_dtype in ("int64", "uint64") and not IS64: + pytest.skip("Cannot test 64-bit integer on 32-bit platform") + + klass = np.dtype(any_int_numpy_dtype).type + + # uint64 max will always overflow, + # as it's encoded to signed. + if any_int_numpy_dtype == "uint64": + num = np.iinfo("int64").max + else: + num = np.iinfo(any_int_numpy_dtype).max + + assert klass(ujson.ujson_loads(ujson.ujson_dumps(num))) == num + + def test_float(self, float_numpy_dtype): + klass = np.dtype(float_numpy_dtype).type + num = klass(256.2013) + + assert klass(ujson.ujson_loads(ujson.ujson_dumps(num))) == num + + def test_float_array(self, float_numpy_dtype): + arr = np.arange(12.5, 185.72, 1.7322, dtype=float) + float_input = arr.astype(float_numpy_dtype) + + float_output = np.array( + ujson.ujson_loads(ujson.ujson_dumps(float_input, double_precision=15)), + dtype=float_numpy_dtype, + ) + tm.assert_almost_equal(float_input, float_output) + + def test_float_max(self, float_numpy_dtype): + klass = np.dtype(float_numpy_dtype).type + num = klass(np.finfo(float_numpy_dtype).max / 10) + + tm.assert_almost_equal( + klass(ujson.ujson_loads(ujson.ujson_dumps(num, double_precision=15))), num + ) + + def test_array_basic(self): + arr = np.arange(96) + arr = arr.reshape((2, 2, 2, 2, 3, 2)) + + tm.assert_numpy_array_equal( + np.array(ujson.ujson_loads(ujson.ujson_dumps(arr))), arr + ) + + @pytest.mark.parametrize("shape", [(10, 10), (5, 5, 4), (100, 1)]) + def test_array_reshaped(self, shape): + arr = np.arange(100) + arr = arr.reshape(shape) + + tm.assert_numpy_array_equal( + np.array(ujson.ujson_loads(ujson.ujson_dumps(arr))), arr + ) + + def test_array_list(self): + arr_list = [ + "a", + [], + {}, + {}, + [], + 42, + 97.8, + ["a", "b"], + {"key": "val"}, + ] + arr = np.array(arr_list, dtype=object) + result = np.array(ujson.ujson_loads(ujson.ujson_dumps(arr)), dtype=object) + tm.assert_numpy_array_equal(result, arr) + + def test_array_float(self): + dtype = np.float32 + + arr = np.arange(100.202, 200.202, 1, dtype=dtype) + arr = arr.reshape((5, 5, 4)) + + arr_out = np.array(ujson.ujson_loads(ujson.ujson_dumps(arr)), dtype=dtype) + tm.assert_almost_equal(arr, arr_out) + + def test_0d_array(self): + # gh-18878 + msg = re.escape( + "array(1) (numpy-scalar) is not JSON serializable at the moment" + ) + with pytest.raises(TypeError, match=msg): + ujson.ujson_dumps(np.array(1)) + + def test_array_long_double(self): + msg = re.compile( + "1234.5.* \\(numpy-scalar\\) is not JSON serializable at the moment" + ) + with pytest.raises(TypeError, match=msg): + ujson.ujson_dumps(np.longdouble(1234.5)) + + +class TestPandasJSONTests: + def test_dataframe(self, orient): + dtype = np.int64 + + df = DataFrame( + [[1, 2, 3], [4, 5, 6]], + index=["a", "b"], + columns=["x", "y", "z"], + dtype=dtype, + ) + encode_kwargs = {} if orient is None else {"orient": orient} + assert (df.dtypes == dtype).all() + + output = ujson.ujson_loads(ujson.ujson_dumps(df, **encode_kwargs)) + assert (df.dtypes == dtype).all() + + # Ensure proper DataFrame initialization. + if orient == "split": + dec = _clean_dict(output) + output = DataFrame(**dec) + else: + output = DataFrame(output) + + # Corrections to enable DataFrame comparison. + if orient == "values": + df.columns = [0, 1, 2] + df.index = [0, 1] + elif orient == "records": + df.index = [0, 1] + elif orient == "index": + df = df.transpose() + + assert (df.dtypes == dtype).all() + tm.assert_frame_equal(output, df) + + def test_dataframe_nested(self, orient): + df = DataFrame( + [[1, 2, 3], [4, 5, 6]], index=["a", "b"], columns=["x", "y", "z"] + ) + + nested = {"df1": df, "df2": df.copy()} + kwargs = {} if orient is None else {"orient": orient} + + exp = { + "df1": ujson.ujson_loads(ujson.ujson_dumps(df, **kwargs)), + "df2": ujson.ujson_loads(ujson.ujson_dumps(df, **kwargs)), + } + assert ujson.ujson_loads(ujson.ujson_dumps(nested, **kwargs)) == exp + + def test_series(self, orient): + dtype = np.int64 + s = Series( + [10, 20, 30, 40, 50, 60], + name="series", + index=[6, 7, 8, 9, 10, 15], + dtype=dtype, + ).sort_values() + assert s.dtype == dtype + + encode_kwargs = {} if orient is None else {"orient": orient} + + output = ujson.ujson_loads(ujson.ujson_dumps(s, **encode_kwargs)) + assert s.dtype == dtype + + if orient == "split": + dec = _clean_dict(output) + output = Series(**dec) + else: + output = Series(output) + + if orient in (None, "index"): + s.name = None + output = output.sort_values() + s.index = ["6", "7", "8", "9", "10", "15"] + elif orient in ("records", "values"): + s.name = None + s.index = [0, 1, 2, 3, 4, 5] + + assert s.dtype == dtype + tm.assert_series_equal(output, s) + + def test_series_nested(self, orient): + s = Series( + [10, 20, 30, 40, 50, 60], name="series", index=[6, 7, 8, 9, 10, 15] + ).sort_values() + nested = {"s1": s, "s2": s.copy()} + kwargs = {} if orient is None else {"orient": orient} + + exp = { + "s1": ujson.ujson_loads(ujson.ujson_dumps(s, **kwargs)), + "s2": ujson.ujson_loads(ujson.ujson_dumps(s, **kwargs)), + } + assert ujson.ujson_loads(ujson.ujson_dumps(nested, **kwargs)) == exp + + def test_index(self): + i = Index([23, 45, 18, 98, 43, 11], name="index") + + # Column indexed. + output = Index(ujson.ujson_loads(ujson.ujson_dumps(i)), name="index") + tm.assert_index_equal(i, output) + + dec = _clean_dict(ujson.ujson_loads(ujson.ujson_dumps(i, orient="split"))) + output = Index(**dec) + + tm.assert_index_equal(i, output) + assert i.name == output.name + + tm.assert_index_equal(i, output) + assert i.name == output.name + + output = Index( + ujson.ujson_loads(ujson.ujson_dumps(i, orient="values")), name="index" + ) + tm.assert_index_equal(i, output) + + output = Index( + ujson.ujson_loads(ujson.ujson_dumps(i, orient="records")), name="index" + ) + tm.assert_index_equal(i, output) + + output = Index( + ujson.ujson_loads(ujson.ujson_dumps(i, orient="index")), name="index" + ) + tm.assert_index_equal(i, output) + + def test_datetime_index(self): + date_unit = "ns" + + # freq doesn't round-trip + rng = DatetimeIndex(list(date_range("1/1/2000", periods=20)), freq=None) + encoded = ujson.ujson_dumps(rng, date_unit=date_unit) + + decoded = DatetimeIndex(np.array(ujson.ujson_loads(encoded))) + tm.assert_index_equal(rng, decoded) + + ts = Series(np.random.default_rng(2).standard_normal(len(rng)), index=rng) + decoded = Series(ujson.ujson_loads(ujson.ujson_dumps(ts, date_unit=date_unit))) + + idx_values = decoded.index.values.astype(np.int64) + decoded.index = DatetimeIndex(idx_values) + tm.assert_series_equal(ts, decoded) + + @pytest.mark.parametrize( + "invalid_arr", + [ + "[31337,]", # Trailing comma. + "[,31337]", # Leading comma. + "[]]", # Unmatched bracket. + "[,]", # Only comma. + ], + ) + def test_decode_invalid_array(self, invalid_arr): + msg = ( + "Expected object or value|Trailing data|" + "Unexpected character found when decoding array value" + ) + with pytest.raises(ValueError, match=msg): + ujson.ujson_loads(invalid_arr) + + @pytest.mark.parametrize("arr", [[], [31337]]) + def test_decode_array(self, arr): + assert arr == ujson.ujson_loads(str(arr)) + + @pytest.mark.parametrize("extreme_num", [9223372036854775807, -9223372036854775808]) + def test_decode_extreme_numbers(self, extreme_num): + assert extreme_num == ujson.ujson_loads(str(extreme_num)) + + @pytest.mark.parametrize("too_extreme_num", [f"{2**64}", f"{-2**63-1}"]) + def test_decode_too_extreme_numbers(self, too_extreme_num): + with pytest.raises( + ValueError, + match="Value is too big|Value is too small", + ): + ujson.ujson_loads(too_extreme_num) + + def test_decode_with_trailing_whitespaces(self): + assert {} == ujson.ujson_loads("{}\n\t ") + + def test_decode_with_trailing_non_whitespaces(self): + with pytest.raises(ValueError, match="Trailing data"): + ujson.ujson_loads("{}\n\t a") + + @pytest.mark.parametrize("value", [f"{2**64}", f"{-2**63-1}"]) + def test_decode_array_with_big_int(self, value): + with pytest.raises( + ValueError, + match="Value is too big|Value is too small", + ): + ujson.ujson_loads(value) + + @pytest.mark.parametrize( + "float_number", + [ + 1.1234567893, + 1.234567893, + 1.34567893, + 1.4567893, + 1.567893, + 1.67893, + 1.7893, + 1.893, + 1.3, + ], + ) + @pytest.mark.parametrize("sign", [-1, 1]) + def test_decode_floating_point(self, sign, float_number): + float_number *= sign + tm.assert_almost_equal( + float_number, ujson.ujson_loads(str(float_number)), rtol=1e-15 + ) + + def test_encode_big_set(self): + s = set() + + for x in range(100000): + s.add(x) + + # Make sure no Exception is raised. + ujson.ujson_dumps(s) + + def test_encode_empty_set(self): + assert "[]" == ujson.ujson_dumps(set()) + + def test_encode_set(self): + s = {1, 2, 3, 4, 5, 6, 7, 8, 9} + enc = ujson.ujson_dumps(s) + dec = ujson.ujson_loads(enc) + + for v in dec: + assert v in s + + @pytest.mark.parametrize( + "td", + [ + Timedelta(days=366), + Timedelta(days=-1), + Timedelta(hours=13, minutes=5, seconds=5), + Timedelta(hours=13, minutes=20, seconds=30), + Timedelta(days=-1, nanoseconds=5), + Timedelta(nanoseconds=1), + Timedelta(microseconds=1, nanoseconds=1), + Timedelta(milliseconds=1, microseconds=1, nanoseconds=1), + Timedelta(milliseconds=999, microseconds=999, nanoseconds=999), + ], + ) + def test_encode_timedelta_iso(self, td): + # GH 28256 + result = ujson.ujson_dumps(td, iso_dates=True) + expected = f'"{td.isoformat()}"' + + assert result == expected + + def test_encode_periodindex(self): + # GH 46683 + p = PeriodIndex(["2022-04-06", "2022-04-07"], freq="D") + df = DataFrame(index=p) + assert df.to_json() == "{}" diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_network.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_network.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b7cd4e7a0fad2623d52c81ead855a747f3731b73 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/__pycache__/test_network.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__init__.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b6a5385d8becc0f68ef149364c01d2c68269d326 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/test_categorical.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/test_categorical.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f8ccf2e1350ff1a89dbffc13559580d0bfdcc60 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/test_categorical.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/test_dtypes_basic.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/test_dtypes_basic.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a08fcda8b5ff5cfa2c64f1d2a32a2f650f37d23 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/test_dtypes_basic.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/test_empty.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/test_empty.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a0eadb6c4af31f6c5a8c74c1b75423627a57ef1c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/__pycache__/test_empty.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/test_categorical.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/test_categorical.py new file mode 100644 index 0000000000000000000000000000000000000000..f4aff14a5ce32d19b0c4e6c9ef504ae141bdca67 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/test_categorical.py @@ -0,0 +1,334 @@ +""" +Tests dtype specification during parsing +for all of the parsers defined in parsers.py +""" +from io import StringIO +import os + +import numpy as np +import pytest + +from pandas._libs import parsers as libparsers + +from pandas.core.dtypes.dtypes import CategoricalDtype + +import pandas as pd +from pandas import ( + Categorical, + DataFrame, + Timestamp, +) +import pandas._testing as tm + +pytestmark = pytest.mark.filterwarnings( + "ignore:Passing a BlockManager to DataFrame:DeprecationWarning" +) + +xfail_pyarrow = pytest.mark.usefixtures("pyarrow_xfail") + + +@xfail_pyarrow # AssertionError: Attributes of DataFrame.iloc[:, 0] are different +@pytest.mark.parametrize( + "dtype", + [ + "category", + CategoricalDtype(), + {"a": "category", "b": "category", "c": CategoricalDtype()}, + ], +) +def test_categorical_dtype(all_parsers, dtype): + # see gh-10153 + parser = all_parsers + data = """a,b,c +1,a,3.4 +1,a,3.4 +2,b,4.5""" + expected = DataFrame( + { + "a": Categorical(["1", "1", "2"]), + "b": Categorical(["a", "a", "b"]), + "c": Categorical(["3.4", "3.4", "4.5"]), + } + ) + actual = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(actual, expected) + + +@pytest.mark.parametrize("dtype", [{"b": "category"}, {1: "category"}]) +def test_categorical_dtype_single(all_parsers, dtype, request): + # see gh-10153 + parser = all_parsers + data = """a,b,c +1,a,3.4 +1,a,3.4 +2,b,4.5""" + expected = DataFrame( + {"a": [1, 1, 2], "b": Categorical(["a", "a", "b"]), "c": [3.4, 3.4, 4.5]} + ) + if parser.engine == "pyarrow": + mark = pytest.mark.xfail( + strict=False, + reason="Flaky test sometimes gives object dtype instead of Categorical", + ) + request.applymarker(mark) + + actual = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(actual, expected) + + +@xfail_pyarrow # AssertionError: Attributes of DataFrame.iloc[:, 0] are different +def test_categorical_dtype_unsorted(all_parsers): + # see gh-10153 + parser = all_parsers + data = """a,b,c +1,b,3.4 +1,b,3.4 +2,a,4.5""" + expected = DataFrame( + { + "a": Categorical(["1", "1", "2"]), + "b": Categorical(["b", "b", "a"]), + "c": Categorical(["3.4", "3.4", "4.5"]), + } + ) + actual = parser.read_csv(StringIO(data), dtype="category") + tm.assert_frame_equal(actual, expected) + + +@xfail_pyarrow # AssertionError: Attributes of DataFrame.iloc[:, 0] are different +def test_categorical_dtype_missing(all_parsers): + # see gh-10153 + parser = all_parsers + data = """a,b,c +1,b,3.4 +1,nan,3.4 +2,a,4.5""" + expected = DataFrame( + { + "a": Categorical(["1", "1", "2"]), + "b": Categorical(["b", np.nan, "a"]), + "c": Categorical(["3.4", "3.4", "4.5"]), + } + ) + actual = parser.read_csv(StringIO(data), dtype="category") + tm.assert_frame_equal(actual, expected) + + +@xfail_pyarrow # AssertionError: Attributes of DataFrame.iloc[:, 0] are different +@pytest.mark.slow +def test_categorical_dtype_high_cardinality_numeric(all_parsers, monkeypatch): + # see gh-18186 + # was an issue with C parser, due to DEFAULT_BUFFER_HEURISTIC + parser = all_parsers + heuristic = 2**5 + data = np.sort([str(i) for i in range(heuristic + 1)]) + expected = DataFrame({"a": Categorical(data, ordered=True)}) + with monkeypatch.context() as m: + m.setattr(libparsers, "DEFAULT_BUFFER_HEURISTIC", heuristic) + actual = parser.read_csv(StringIO("a\n" + "\n".join(data)), dtype="category") + actual["a"] = actual["a"].cat.reorder_categories( + np.sort(actual.a.cat.categories), ordered=True + ) + tm.assert_frame_equal(actual, expected) + + +def test_categorical_dtype_utf16(all_parsers, csv_dir_path): + # see gh-10153 + pth = os.path.join(csv_dir_path, "utf16_ex.txt") + parser = all_parsers + encoding = "utf-16" + sep = "\t" + + expected = parser.read_csv(pth, sep=sep, encoding=encoding) + expected = expected.apply(Categorical) + + actual = parser.read_csv(pth, sep=sep, encoding=encoding, dtype="category") + tm.assert_frame_equal(actual, expected) + + +def test_categorical_dtype_chunksize_infer_categories(all_parsers): + # see gh-10153 + parser = all_parsers + data = """a,b +1,a +1,b +1,b +2,c""" + expecteds = [ + DataFrame({"a": [1, 1], "b": Categorical(["a", "b"])}), + DataFrame({"a": [1, 2], "b": Categorical(["b", "c"])}, index=[2, 3]), + ] + + if parser.engine == "pyarrow": + msg = "The 'chunksize' option is not supported with the 'pyarrow' engine" + with pytest.raises(ValueError, match=msg): + parser.read_csv(StringIO(data), dtype={"b": "category"}, chunksize=2) + return + + with parser.read_csv( + StringIO(data), dtype={"b": "category"}, chunksize=2 + ) as actuals: + for actual, expected in zip(actuals, expecteds): + tm.assert_frame_equal(actual, expected) + + +def test_categorical_dtype_chunksize_explicit_categories(all_parsers): + # see gh-10153 + parser = all_parsers + data = """a,b +1,a +1,b +1,b +2,c""" + cats = ["a", "b", "c"] + expecteds = [ + DataFrame({"a": [1, 1], "b": Categorical(["a", "b"], categories=cats)}), + DataFrame( + {"a": [1, 2], "b": Categorical(["b", "c"], categories=cats)}, + index=[2, 3], + ), + ] + dtype = CategoricalDtype(cats) + + if parser.engine == "pyarrow": + msg = "The 'chunksize' option is not supported with the 'pyarrow' engine" + with pytest.raises(ValueError, match=msg): + parser.read_csv(StringIO(data), dtype={"b": dtype}, chunksize=2) + return + + with parser.read_csv(StringIO(data), dtype={"b": dtype}, chunksize=2) as actuals: + for actual, expected in zip(actuals, expecteds): + tm.assert_frame_equal(actual, expected) + + +def test_categorical_dtype_latin1(all_parsers, csv_dir_path): + # see gh-10153 + pth = os.path.join(csv_dir_path, "unicode_series.csv") + parser = all_parsers + encoding = "latin-1" + + expected = parser.read_csv(pth, header=None, encoding=encoding) + expected[1] = Categorical(expected[1]) + + actual = parser.read_csv(pth, header=None, encoding=encoding, dtype={1: "category"}) + tm.assert_frame_equal(actual, expected) + + +@pytest.mark.parametrize("ordered", [False, True]) +@pytest.mark.parametrize( + "categories", + [["a", "b", "c"], ["a", "c", "b"], ["a", "b", "c", "d"], ["c", "b", "a"]], +) +def test_categorical_category_dtype(all_parsers, categories, ordered): + parser = all_parsers + data = """a,b +1,a +1,b +1,b +2,c""" + expected = DataFrame( + { + "a": [1, 1, 1, 2], + "b": Categorical( + ["a", "b", "b", "c"], categories=categories, ordered=ordered + ), + } + ) + + dtype = {"b": CategoricalDtype(categories=categories, ordered=ordered)} + result = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(result, expected) + + +def test_categorical_category_dtype_unsorted(all_parsers): + parser = all_parsers + data = """a,b +1,a +1,b +1,b +2,c""" + dtype = CategoricalDtype(["c", "b", "a"]) + expected = DataFrame( + { + "a": [1, 1, 1, 2], + "b": Categorical(["a", "b", "b", "c"], categories=["c", "b", "a"]), + } + ) + + result = parser.read_csv(StringIO(data), dtype={"b": dtype}) + tm.assert_frame_equal(result, expected) + + +def test_categorical_coerces_numeric(all_parsers): + parser = all_parsers + dtype = {"b": CategoricalDtype([1, 2, 3])} + + data = "b\n1\n1\n2\n3" + expected = DataFrame({"b": Categorical([1, 1, 2, 3])}) + + result = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(result, expected) + + +def test_categorical_coerces_datetime(all_parsers): + parser = all_parsers + dti = pd.DatetimeIndex(["2017-01-01", "2018-01-01", "2019-01-01"], freq=None) + dtype = {"b": CategoricalDtype(dti)} + + data = "b\n2017-01-01\n2018-01-01\n2019-01-01" + expected = DataFrame({"b": Categorical(dtype["b"].categories)}) + + result = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(result, expected) + + +def test_categorical_coerces_timestamp(all_parsers): + parser = all_parsers + dtype = {"b": CategoricalDtype([Timestamp("2014")])} + + data = "b\n2014-01-01\n2014-01-01" + expected = DataFrame({"b": Categorical([Timestamp("2014")] * 2)}) + + result = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(result, expected) + + +def test_categorical_coerces_timedelta(all_parsers): + parser = all_parsers + dtype = {"b": CategoricalDtype(pd.to_timedelta(["1h", "2h", "3h"]))} + + data = "b\n1h\n2h\n3h" + expected = DataFrame({"b": Categorical(dtype["b"].categories)}) + + result = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "data", + [ + "b\nTrue\nFalse\nNA\nFalse", + "b\ntrue\nfalse\nNA\nfalse", + "b\nTRUE\nFALSE\nNA\nFALSE", + "b\nTrue\nFalse\nNA\nFALSE", + ], +) +def test_categorical_dtype_coerces_boolean(all_parsers, data): + # see gh-20498 + parser = all_parsers + dtype = {"b": CategoricalDtype([False, True])} + expected = DataFrame({"b": Categorical([True, False, None, False])}) + + result = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(result, expected) + + +def test_categorical_unexpected_categories(all_parsers): + parser = all_parsers + dtype = {"b": CategoricalDtype(["a", "b", "d", "e"])} + + data = "b\nd\na\nc\nd" # Unexpected c + expected = DataFrame({"b": Categorical(list("dacd"), dtype=dtype["b"])}) + + result = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/test_dtypes_basic.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/test_dtypes_basic.py new file mode 100644 index 0000000000000000000000000000000000000000..ce02e752fb90b4f69d63baa6875ba8bda6d991fb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/test_dtypes_basic.py @@ -0,0 +1,643 @@ +""" +Tests dtype specification during parsing +for all of the parsers defined in parsers.py +""" +from collections import defaultdict +from io import StringIO + +import numpy as np +import pytest + +from pandas.errors import ParserWarning + +import pandas as pd +from pandas import ( + DataFrame, + Timestamp, +) +import pandas._testing as tm +from pandas.core.arrays import ( + ArrowStringArray, + IntegerArray, + StringArray, +) + +pytestmark = pytest.mark.filterwarnings( + "ignore:Passing a BlockManager to DataFrame:DeprecationWarning" +) + + +@pytest.mark.parametrize("dtype", [str, object]) +@pytest.mark.parametrize("check_orig", [True, False]) +@pytest.mark.usefixtures("pyarrow_xfail") +def test_dtype_all_columns(all_parsers, dtype, check_orig): + # see gh-3795, gh-6607 + parser = all_parsers + + df = DataFrame( + np.random.default_rng(2).random((5, 2)).round(4), + columns=list("AB"), + index=["1A", "1B", "1C", "1D", "1E"], + ) + + with tm.ensure_clean("__passing_str_as_dtype__.csv") as path: + df.to_csv(path) + + result = parser.read_csv(path, dtype=dtype, index_col=0) + + if check_orig: + expected = df.copy() + result = result.astype(float) + else: + expected = df.astype(str) + + tm.assert_frame_equal(result, expected) + + +@pytest.mark.usefixtures("pyarrow_xfail") +def test_dtype_per_column(all_parsers): + parser = all_parsers + data = """\ +one,two +1,2.5 +2,3.5 +3,4.5 +4,5.5""" + expected = DataFrame( + [[1, "2.5"], [2, "3.5"], [3, "4.5"], [4, "5.5"]], columns=["one", "two"] + ) + expected["one"] = expected["one"].astype(np.float64) + expected["two"] = expected["two"].astype(object) + + result = parser.read_csv(StringIO(data), dtype={"one": np.float64, 1: str}) + tm.assert_frame_equal(result, expected) + + +def test_invalid_dtype_per_column(all_parsers): + parser = all_parsers + data = """\ +one,two +1,2.5 +2,3.5 +3,4.5 +4,5.5""" + + with pytest.raises(TypeError, match="data type [\"']foo[\"'] not understood"): + parser.read_csv(StringIO(data), dtype={"one": "foo", 1: "int"}) + + +def test_raise_on_passed_int_dtype_with_nas(all_parsers): + # see gh-2631 + parser = all_parsers + data = """YEAR, DOY, a +2001,106380451,10 +2001,,11 +2001,106380451,67""" + + if parser.engine == "c": + msg = "Integer column has NA values" + elif parser.engine == "pyarrow": + msg = "The 'skipinitialspace' option is not supported with the 'pyarrow' engine" + else: + msg = "Unable to convert column DOY" + + with pytest.raises(ValueError, match=msg): + parser.read_csv(StringIO(data), dtype={"DOY": np.int64}, skipinitialspace=True) + + +def test_dtype_with_converters(all_parsers): + parser = all_parsers + data = """a,b +1.1,2.2 +1.2,2.3""" + + if parser.engine == "pyarrow": + msg = "The 'converters' option is not supported with the 'pyarrow' engine" + with pytest.raises(ValueError, match=msg): + parser.read_csv( + StringIO(data), dtype={"a": "i8"}, converters={"a": lambda x: str(x)} + ) + return + + # Dtype spec ignored if converted specified. + result = parser.read_csv_check_warnings( + ParserWarning, + "Both a converter and dtype were specified for column a " + "- only the converter will be used.", + StringIO(data), + dtype={"a": "i8"}, + converters={"a": lambda x: str(x)}, + ) + expected = DataFrame({"a": ["1.1", "1.2"], "b": [2.2, 2.3]}) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "dtype", list(np.typecodes["AllInteger"] + np.typecodes["Float"]) +) +def test_numeric_dtype(all_parsers, dtype): + data = "0\n1" + parser = all_parsers + expected = DataFrame([0, 1], dtype=dtype) + + result = parser.read_csv(StringIO(data), header=None, dtype=dtype) + tm.assert_frame_equal(expected, result) + + +@pytest.mark.usefixtures("pyarrow_xfail") +def test_boolean_dtype(all_parsers): + parser = all_parsers + data = "\n".join( + [ + "a", + "True", + "TRUE", + "true", + "1", + "1.0", + "False", + "FALSE", + "false", + "0", + "0.0", + "NaN", + "nan", + "NA", + "null", + "NULL", + ] + ) + + result = parser.read_csv(StringIO(data), dtype="boolean") + expected = DataFrame( + { + "a": pd.array( + [ + True, + True, + True, + True, + True, + False, + False, + False, + False, + False, + None, + None, + None, + None, + None, + ], + dtype="boolean", + ) + } + ) + + tm.assert_frame_equal(result, expected) + + +@pytest.mark.usefixtures("pyarrow_xfail") +def test_delimiter_with_usecols_and_parse_dates(all_parsers): + # GH#35873 + result = all_parsers.read_csv( + StringIO('"dump","-9,1","-9,1",20101010'), + engine="python", + names=["col", "col1", "col2", "col3"], + usecols=["col1", "col2", "col3"], + parse_dates=["col3"], + decimal=",", + ) + expected = DataFrame( + {"col1": [-9.1], "col2": [-9.1], "col3": [Timestamp("2010-10-10")]} + ) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("thousands", ["_", None]) +def test_decimal_and_exponential( + request, python_parser_only, numeric_decimal, thousands +): + # GH#31920 + decimal_number_check(request, python_parser_only, numeric_decimal, thousands, None) + + +@pytest.mark.parametrize("thousands", ["_", None]) +@pytest.mark.parametrize("float_precision", [None, "legacy", "high", "round_trip"]) +def test_1000_sep_decimal_float_precision( + request, c_parser_only, numeric_decimal, float_precision, thousands +): + # test decimal and thousand sep handling in across 'float_precision' + # parsers + decimal_number_check( + request, c_parser_only, numeric_decimal, thousands, float_precision + ) + text, value = numeric_decimal + text = " " + text + " " + if isinstance(value, str): # the negative cases (parse as text) + value = " " + value + " " + decimal_number_check( + request, c_parser_only, (text, value), thousands, float_precision + ) + + +def decimal_number_check(request, parser, numeric_decimal, thousands, float_precision): + # GH#31920 + value = numeric_decimal[0] + if thousands is None and value in ("1_,", "1_234,56", "1_234,56e0"): + request.applymarker( + pytest.mark.xfail(reason=f"thousands={thousands} and sep is in {value}") + ) + df = parser.read_csv( + StringIO(value), + float_precision=float_precision, + sep="|", + thousands=thousands, + decimal=",", + header=None, + ) + val = df.iloc[0, 0] + assert val == numeric_decimal[1] + + +@pytest.mark.parametrize("float_precision", [None, "legacy", "high", "round_trip"]) +def test_skip_whitespace(c_parser_only, float_precision): + DATA = """id\tnum\t +1\t1.2 \t +1\t 2.1\t +2\t 1\t +2\t 1.2 \t +""" + df = c_parser_only.read_csv( + StringIO(DATA), + float_precision=float_precision, + sep="\t", + header=0, + dtype={1: np.float64}, + ) + tm.assert_series_equal(df.iloc[:, 1], pd.Series([1.2, 2.1, 1.0, 1.2], name="num")) + + +@pytest.mark.usefixtures("pyarrow_xfail") +def test_true_values_cast_to_bool(all_parsers): + # GH#34655 + text = """a,b +yes,xxx +no,yyy +1,zzz +0,aaa + """ + parser = all_parsers + result = parser.read_csv( + StringIO(text), + true_values=["yes"], + false_values=["no"], + dtype={"a": "boolean"}, + ) + expected = DataFrame( + {"a": [True, False, True, False], "b": ["xxx", "yyy", "zzz", "aaa"]} + ) + expected["a"] = expected["a"].astype("boolean") + tm.assert_frame_equal(result, expected) + + +@pytest.mark.usefixtures("pyarrow_xfail") +@pytest.mark.parametrize("dtypes, exp_value", [({}, "1"), ({"a.1": "int64"}, 1)]) +def test_dtype_mangle_dup_cols(all_parsers, dtypes, exp_value): + # GH#35211 + parser = all_parsers + data = """a,a\n1,1""" + dtype_dict = {"a": str, **dtypes} + # GH#42462 + dtype_dict_copy = dtype_dict.copy() + result = parser.read_csv(StringIO(data), dtype=dtype_dict) + expected = DataFrame({"a": ["1"], "a.1": [exp_value]}) + assert dtype_dict == dtype_dict_copy, "dtype dict changed" + tm.assert_frame_equal(result, expected) + + +@pytest.mark.usefixtures("pyarrow_xfail") +def test_dtype_mangle_dup_cols_single_dtype(all_parsers): + # GH#42022 + parser = all_parsers + data = """a,a\n1,1""" + result = parser.read_csv(StringIO(data), dtype=str) + expected = DataFrame({"a": ["1"], "a.1": ["1"]}) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.usefixtures("pyarrow_xfail") +def test_dtype_multi_index(all_parsers): + # GH 42446 + parser = all_parsers + data = "A,B,B\nX,Y,Z\n1,2,3" + + result = parser.read_csv( + StringIO(data), + header=list(range(2)), + dtype={ + ("A", "X"): np.int32, + ("B", "Y"): np.int32, + ("B", "Z"): np.float32, + }, + ) + + expected = DataFrame( + { + ("A", "X"): np.int32([1]), + ("B", "Y"): np.int32([2]), + ("B", "Z"): np.float32([3]), + } + ) + + tm.assert_frame_equal(result, expected) + + +def test_nullable_int_dtype(all_parsers, any_int_ea_dtype): + # GH 25472 + parser = all_parsers + dtype = any_int_ea_dtype + + data = """a,b,c +,3,5 +1,,6 +2,4,""" + expected = DataFrame( + { + "a": pd.array([pd.NA, 1, 2], dtype=dtype), + "b": pd.array([3, pd.NA, 4], dtype=dtype), + "c": pd.array([5, 6, pd.NA], dtype=dtype), + } + ) + actual = parser.read_csv(StringIO(data), dtype=dtype) + tm.assert_frame_equal(actual, expected) + + +@pytest.mark.usefixtures("pyarrow_xfail") +@pytest.mark.parametrize("default", ["float", "float64"]) +def test_dtypes_defaultdict(all_parsers, default): + # GH#41574 + data = """a,b +1,2 +""" + dtype = defaultdict(lambda: default, a="int64") + parser = all_parsers + result = parser.read_csv(StringIO(data), dtype=dtype) + expected = DataFrame({"a": [1], "b": 2.0}) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.usefixtures("pyarrow_xfail") +def test_dtypes_defaultdict_mangle_dup_cols(all_parsers): + # GH#41574 + data = """a,b,a,b,b.1 +1,2,3,4,5 +""" + dtype = defaultdict(lambda: "float64", a="int64") + dtype["b.1"] = "int64" + parser = all_parsers + result = parser.read_csv(StringIO(data), dtype=dtype) + expected = DataFrame({"a": [1], "b": [2.0], "a.1": [3], "b.2": [4.0], "b.1": [5]}) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.usefixtures("pyarrow_xfail") +def test_dtypes_defaultdict_invalid(all_parsers): + # GH#41574 + data = """a,b +1,2 +""" + dtype = defaultdict(lambda: "invalid_dtype", a="int64") + parser = all_parsers + with pytest.raises(TypeError, match="not understood"): + parser.read_csv(StringIO(data), dtype=dtype) + + +def test_dtype_backend(all_parsers): + # GH#36712 + + parser = all_parsers + + data = """a,b,c,d,e,f,g,h,i,j +1,2.5,True,a,,,,,12-31-2019, +3,4.5,False,b,6,7.5,True,a,12-31-2019, +""" + result = parser.read_csv( + StringIO(data), dtype_backend="numpy_nullable", parse_dates=["i"] + ) + expected = DataFrame( + { + "a": pd.Series([1, 3], dtype="Int64"), + "b": pd.Series([2.5, 4.5], dtype="Float64"), + "c": pd.Series([True, False], dtype="boolean"), + "d": pd.Series(["a", "b"], dtype="string"), + "e": pd.Series([pd.NA, 6], dtype="Int64"), + "f": pd.Series([pd.NA, 7.5], dtype="Float64"), + "g": pd.Series([pd.NA, True], dtype="boolean"), + "h": pd.Series([pd.NA, "a"], dtype="string"), + "i": pd.Series([Timestamp("2019-12-31")] * 2), + "j": pd.Series([pd.NA, pd.NA], dtype="Int64"), + } + ) + tm.assert_frame_equal(result, expected) + + +def test_dtype_backend_and_dtype(all_parsers): + # GH#36712 + + parser = all_parsers + + data = """a,b +1,2.5 +, +""" + result = parser.read_csv( + StringIO(data), dtype_backend="numpy_nullable", dtype="float64" + ) + expected = DataFrame({"a": [1.0, np.nan], "b": [2.5, np.nan]}) + tm.assert_frame_equal(result, expected) + + +def test_dtype_backend_string(all_parsers, string_storage): + # GH#36712 + pa = pytest.importorskip("pyarrow") + + with pd.option_context("mode.string_storage", string_storage): + parser = all_parsers + + data = """a,b +a,x +b, +""" + result = parser.read_csv(StringIO(data), dtype_backend="numpy_nullable") + + if string_storage == "python": + expected = DataFrame( + { + "a": StringArray(np.array(["a", "b"], dtype=np.object_)), + "b": StringArray(np.array(["x", pd.NA], dtype=np.object_)), + } + ) + else: + expected = DataFrame( + { + "a": ArrowStringArray(pa.array(["a", "b"])), + "b": ArrowStringArray(pa.array(["x", None])), + } + ) + tm.assert_frame_equal(result, expected) + + +def test_dtype_backend_ea_dtype_specified(all_parsers): + # GH#491496 + data = """a,b +1,2 +""" + parser = all_parsers + result = parser.read_csv( + StringIO(data), dtype="Int64", dtype_backend="numpy_nullable" + ) + expected = DataFrame({"a": [1], "b": 2}, dtype="Int64") + tm.assert_frame_equal(result, expected) + + +def test_dtype_backend_pyarrow(all_parsers, request): + # GH#36712 + pa = pytest.importorskip("pyarrow") + parser = all_parsers + + data = """a,b,c,d,e,f,g,h,i,j +1,2.5,True,a,,,,,12-31-2019, +3,4.5,False,b,6,7.5,True,a,12-31-2019, +""" + result = parser.read_csv(StringIO(data), dtype_backend="pyarrow", parse_dates=["i"]) + expected = DataFrame( + { + "a": pd.Series([1, 3], dtype="int64[pyarrow]"), + "b": pd.Series([2.5, 4.5], dtype="float64[pyarrow]"), + "c": pd.Series([True, False], dtype="bool[pyarrow]"), + "d": pd.Series(["a", "b"], dtype=pd.ArrowDtype(pa.string())), + "e": pd.Series([pd.NA, 6], dtype="int64[pyarrow]"), + "f": pd.Series([pd.NA, 7.5], dtype="float64[pyarrow]"), + "g": pd.Series([pd.NA, True], dtype="bool[pyarrow]"), + "h": pd.Series( + [pd.NA, "a"], + dtype=pd.ArrowDtype(pa.string()), + ), + "i": pd.Series([Timestamp("2019-12-31")] * 2), + "j": pd.Series([pd.NA, pd.NA], dtype="null[pyarrow]"), + } + ) + tm.assert_frame_equal(result, expected) + + +# pyarrow engine failing: +# https://github.com/pandas-dev/pandas/issues/56136 +@pytest.mark.usefixtures("pyarrow_xfail") +def test_ea_int_avoid_overflow(all_parsers): + # GH#32134 + parser = all_parsers + data = """a,b +1,1 +,1 +1582218195625938945,1 +""" + result = parser.read_csv(StringIO(data), dtype={"a": "Int64"}) + expected = DataFrame( + { + "a": IntegerArray( + np.array([1, 1, 1582218195625938945]), np.array([False, True, False]) + ), + "b": 1, + } + ) + tm.assert_frame_equal(result, expected) + + +def test_string_inference(all_parsers): + # GH#54430 + pytest.importorskip("pyarrow") + dtype = "string[pyarrow_numpy]" + + data = """a,b +x,1 +y,2 +,3""" + parser = all_parsers + with pd.option_context("future.infer_string", True): + result = parser.read_csv(StringIO(data)) + + expected = DataFrame( + {"a": pd.Series(["x", "y", None], dtype=dtype), "b": [1, 2, 3]}, + columns=pd.Index(["a", "b"], dtype=dtype), + ) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("dtype", ["O", object, "object", np.object_, str, np.str_]) +def test_string_inference_object_dtype(all_parsers, dtype): + # GH#56047 + pytest.importorskip("pyarrow") + + data = """a,b +x,a +y,a +z,a""" + parser = all_parsers + with pd.option_context("future.infer_string", True): + result = parser.read_csv(StringIO(data), dtype=dtype) + + expected = DataFrame( + { + "a": pd.Series(["x", "y", "z"], dtype=object), + "b": pd.Series(["a", "a", "a"], dtype=object), + }, + columns=pd.Index(["a", "b"], dtype="string[pyarrow_numpy]"), + ) + tm.assert_frame_equal(result, expected) + + with pd.option_context("future.infer_string", True): + result = parser.read_csv(StringIO(data), dtype={"a": dtype}) + + expected = DataFrame( + { + "a": pd.Series(["x", "y", "z"], dtype=object), + "b": pd.Series(["a", "a", "a"], dtype="string[pyarrow_numpy]"), + }, + columns=pd.Index(["a", "b"], dtype="string[pyarrow_numpy]"), + ) + tm.assert_frame_equal(result, expected) + + +def test_accurate_parsing_of_large_integers(all_parsers): + # GH#52505 + data = """SYMBOL,MOMENT,ID,ID_DEAL +AAPL,20230301181139587,1925036343869802844, +AAPL,20230301181139587,2023552585717889863,2023552585717263358 +NVDA,20230301181139587,2023552585717889863,2023552585717263359 +AMC,20230301181139587,2023552585717889863,2023552585717263360 +AMZN,20230301181139587,2023552585717889759,2023552585717263360 +MSFT,20230301181139587,2023552585717889863,2023552585717263361 +NVDA,20230301181139587,2023552585717889827,2023552585717263361""" + orders = pd.read_csv(StringIO(data), dtype={"ID_DEAL": pd.Int64Dtype()}) + assert len(orders.loc[orders["ID_DEAL"] == 2023552585717263358, "ID_DEAL"]) == 1 + assert len(orders.loc[orders["ID_DEAL"] == 2023552585717263359, "ID_DEAL"]) == 1 + assert len(orders.loc[orders["ID_DEAL"] == 2023552585717263360, "ID_DEAL"]) == 2 + assert len(orders.loc[orders["ID_DEAL"] == 2023552585717263361, "ID_DEAL"]) == 2 + + +def test_dtypes_with_usecols(all_parsers): + # GH#54868 + + parser = all_parsers + data = """a,b,c +1,2,3 +4,5,6""" + + result = parser.read_csv(StringIO(data), usecols=["a", "c"], dtype={"a": object}) + if parser.engine == "pyarrow": + values = [1, 4] + else: + values = ["1", "4"] + expected = DataFrame({"a": pd.Series(values, dtype=object), "c": [3, 6]}) + tm.assert_frame_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/test_empty.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/test_empty.py new file mode 100644 index 0000000000000000000000000000000000000000..f34385b190c5ffa8df1a517fb0e0c9ccd8fe0073 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/dtypes/test_empty.py @@ -0,0 +1,181 @@ +""" +Tests dtype specification during parsing +for all of the parsers defined in parsers.py +""" +from io import StringIO + +import numpy as np +import pytest + +from pandas import ( + Categorical, + DataFrame, + Index, + MultiIndex, + Series, + concat, +) +import pandas._testing as tm + +skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip") + + +@skip_pyarrow # CSV parse error: Empty CSV file or block +def test_dtype_all_columns_empty(all_parsers): + # see gh-12048 + parser = all_parsers + result = parser.read_csv(StringIO("A,B"), dtype=str) + + expected = DataFrame({"A": [], "B": []}, dtype=str) + tm.assert_frame_equal(result, expected) + + +@skip_pyarrow # CSV parse error: Empty CSV file or block +def test_empty_pass_dtype(all_parsers): + parser = all_parsers + + data = "one,two" + result = parser.read_csv(StringIO(data), dtype={"one": "u1"}) + + expected = DataFrame( + {"one": np.empty(0, dtype="u1"), "two": np.empty(0, dtype=object)}, + ) + tm.assert_frame_equal(result, expected) + + +@skip_pyarrow # CSV parse error: Empty CSV file or block +def test_empty_with_index_pass_dtype(all_parsers): + parser = all_parsers + + data = "one,two" + result = parser.read_csv( + StringIO(data), index_col=["one"], dtype={"one": "u1", 1: "f"} + ) + + expected = DataFrame( + {"two": np.empty(0, dtype="f")}, index=Index([], dtype="u1", name="one") + ) + tm.assert_frame_equal(result, expected) + + +@skip_pyarrow # CSV parse error: Empty CSV file or block +def test_empty_with_multi_index_pass_dtype(all_parsers): + parser = all_parsers + + data = "one,two,three" + result = parser.read_csv( + StringIO(data), index_col=["one", "two"], dtype={"one": "u1", 1: "f8"} + ) + + exp_idx = MultiIndex.from_arrays( + [np.empty(0, dtype="u1"), np.empty(0, dtype=np.float64)], + names=["one", "two"], + ) + expected = DataFrame({"three": np.empty(0, dtype=object)}, index=exp_idx) + tm.assert_frame_equal(result, expected) + + +@skip_pyarrow # CSV parse error: Empty CSV file or block +def test_empty_with_mangled_column_pass_dtype_by_names(all_parsers): + parser = all_parsers + + data = "one,one" + result = parser.read_csv(StringIO(data), dtype={"one": "u1", "one.1": "f"}) + + expected = DataFrame( + {"one": np.empty(0, dtype="u1"), "one.1": np.empty(0, dtype="f")}, + ) + tm.assert_frame_equal(result, expected) + + +@skip_pyarrow # CSV parse error: Empty CSV file or block +def test_empty_with_mangled_column_pass_dtype_by_indexes(all_parsers): + parser = all_parsers + + data = "one,one" + result = parser.read_csv(StringIO(data), dtype={0: "u1", 1: "f"}) + + expected = DataFrame( + {"one": np.empty(0, dtype="u1"), "one.1": np.empty(0, dtype="f")}, + ) + tm.assert_frame_equal(result, expected) + + +@skip_pyarrow # CSV parse error: Empty CSV file or block +def test_empty_with_dup_column_pass_dtype_by_indexes(all_parsers): + # see gh-9424 + parser = all_parsers + expected = concat( + [Series([], name="one", dtype="u1"), Series([], name="one.1", dtype="f")], + axis=1, + ) + + data = "one,one" + result = parser.read_csv(StringIO(data), dtype={0: "u1", 1: "f"}) + tm.assert_frame_equal(result, expected) + + +def test_empty_with_dup_column_pass_dtype_by_indexes_raises(all_parsers): + # see gh-9424 + parser = all_parsers + expected = concat( + [Series([], name="one", dtype="u1"), Series([], name="one.1", dtype="f")], + axis=1, + ) + expected.index = expected.index.astype(object) + + with pytest.raises(ValueError, match="Duplicate names"): + data = "" + parser.read_csv(StringIO(data), names=["one", "one"], dtype={0: "u1", 1: "f"}) + + +@pytest.mark.parametrize( + "dtype,expected", + [ + (np.float64, DataFrame(columns=["a", "b"], dtype=np.float64)), + ( + "category", + DataFrame({"a": Categorical([]), "b": Categorical([])}), + ), + ( + {"a": "category", "b": "category"}, + DataFrame({"a": Categorical([]), "b": Categorical([])}), + ), + ("datetime64[ns]", DataFrame(columns=["a", "b"], dtype="datetime64[ns]")), + ( + "timedelta64[ns]", + DataFrame( + { + "a": Series([], dtype="timedelta64[ns]"), + "b": Series([], dtype="timedelta64[ns]"), + }, + ), + ), + ( + {"a": np.int64, "b": np.int32}, + DataFrame( + {"a": Series([], dtype=np.int64), "b": Series([], dtype=np.int32)}, + ), + ), + ( + {0: np.int64, 1: np.int32}, + DataFrame( + {"a": Series([], dtype=np.int64), "b": Series([], dtype=np.int32)}, + ), + ), + ( + {"a": np.int64, 1: np.int32}, + DataFrame( + {"a": Series([], dtype=np.int64), "b": Series([], dtype=np.int32)}, + ), + ), + ], +) +@skip_pyarrow # CSV parse error: Empty CSV file or block +def test_empty_dtype(all_parsers, dtype, expected): + # see gh-14712 + parser = all_parsers + data = "a,b" + + result = parser.read_csv(StringIO(data), header=0, dtype=dtype) + tm.assert_frame_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/usecols/test_usecols_basic.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/usecols/test_usecols_basic.py new file mode 100644 index 0000000000000000000000000000000000000000..767fba666e41769a2fa1c756a5e93b5e1720cd9c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/parser/usecols/test_usecols_basic.py @@ -0,0 +1,563 @@ +""" +Tests the usecols functionality during parsing +for all of the parsers defined in parsers.py +""" +from io import StringIO + +import numpy as np +import pytest + +from pandas.errors import ParserError + +from pandas import ( + DataFrame, + Index, + array, +) +import pandas._testing as tm + +pytestmark = pytest.mark.filterwarnings( + "ignore:Passing a BlockManager to DataFrame:DeprecationWarning" +) + +_msg_validate_usecols_arg = ( + "'usecols' must either be list-like " + "of all strings, all unicode, all " + "integers or a callable." +) +_msg_validate_usecols_names = ( + "Usecols do not match columns, columns expected but not found: {0}" +) +_msg_pyarrow_requires_names = ( + "The pyarrow engine does not allow 'usecols' to be integer column " + "positions. Pass a list of string column names instead." +) + +xfail_pyarrow = pytest.mark.usefixtures("pyarrow_xfail") +skip_pyarrow = pytest.mark.usefixtures("pyarrow_skip") + +pytestmark = pytest.mark.filterwarnings( + "ignore:Passing a BlockManager to DataFrame is deprecated:DeprecationWarning" +) + + +def test_raise_on_mixed_dtype_usecols(all_parsers): + # See gh-12678 + data = """a,b,c + 1000,2000,3000 + 4000,5000,6000 + """ + usecols = [0, "b", 2] + parser = all_parsers + + with pytest.raises(ValueError, match=_msg_validate_usecols_arg): + parser.read_csv(StringIO(data), usecols=usecols) + + +@pytest.mark.parametrize("usecols", [(1, 2), ("b", "c")]) +def test_usecols(all_parsers, usecols, request): + data = """\ +a,b,c +1,2,3 +4,5,6 +7,8,9 +10,11,12""" + parser = all_parsers + if parser.engine == "pyarrow" and isinstance(usecols[0], int): + with pytest.raises(ValueError, match=_msg_pyarrow_requires_names): + parser.read_csv(StringIO(data), usecols=usecols) + return + + result = parser.read_csv(StringIO(data), usecols=usecols) + + expected = DataFrame([[2, 3], [5, 6], [8, 9], [11, 12]], columns=["b", "c"]) + tm.assert_frame_equal(result, expected) + + +def test_usecols_with_names(all_parsers): + data = """\ +a,b,c +1,2,3 +4,5,6 +7,8,9 +10,11,12""" + parser = all_parsers + names = ["foo", "bar"] + + if parser.engine == "pyarrow": + with pytest.raises(ValueError, match=_msg_pyarrow_requires_names): + parser.read_csv(StringIO(data), names=names, usecols=[1, 2], header=0) + return + + result = parser.read_csv(StringIO(data), names=names, usecols=[1, 2], header=0) + + expected = DataFrame([[2, 3], [5, 6], [8, 9], [11, 12]], columns=names) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "names,usecols", [(["b", "c"], [1, 2]), (["a", "b", "c"], ["b", "c"])] +) +def test_usecols_relative_to_names(all_parsers, names, usecols): + data = """\ +1,2,3 +4,5,6 +7,8,9 +10,11,12""" + parser = all_parsers + if parser.engine == "pyarrow" and not isinstance(usecols[0], int): + # ArrowKeyError: Column 'fb' in include_columns does not exist + pytest.skip(reason="https://github.com/apache/arrow/issues/38676") + + result = parser.read_csv(StringIO(data), names=names, header=None, usecols=usecols) + + expected = DataFrame([[2, 3], [5, 6], [8, 9], [11, 12]], columns=["b", "c"]) + tm.assert_frame_equal(result, expected) + + +def test_usecols_relative_to_names2(all_parsers): + # see gh-5766 + data = """\ +1,2,3 +4,5,6 +7,8,9 +10,11,12""" + parser = all_parsers + + result = parser.read_csv( + StringIO(data), names=["a", "b"], header=None, usecols=[0, 1] + ) + + expected = DataFrame([[1, 2], [4, 5], [7, 8], [10, 11]], columns=["a", "b"]) + tm.assert_frame_equal(result, expected) + + +# regex mismatch: "Length mismatch: Expected axis has 1 elements" +@xfail_pyarrow +def test_usecols_name_length_conflict(all_parsers): + data = """\ +1,2,3 +4,5,6 +7,8,9 +10,11,12""" + parser = all_parsers + msg = "Number of passed names did not match number of header fields in the file" + with pytest.raises(ValueError, match=msg): + parser.read_csv(StringIO(data), names=["a", "b"], header=None, usecols=[1]) + + +def test_usecols_single_string(all_parsers): + # see gh-20558 + parser = all_parsers + data = """foo, bar, baz +1000, 2000, 3000 +4000, 5000, 6000""" + + with pytest.raises(ValueError, match=_msg_validate_usecols_arg): + parser.read_csv(StringIO(data), usecols="foo") + + +@skip_pyarrow # CSV parse error in one case, AttributeError in another +@pytest.mark.parametrize( + "data", ["a,b,c,d\n1,2,3,4\n5,6,7,8", "a,b,c,d\n1,2,3,4,\n5,6,7,8,"] +) +def test_usecols_index_col_false(all_parsers, data): + # see gh-9082 + parser = all_parsers + usecols = ["a", "c", "d"] + expected = DataFrame({"a": [1, 5], "c": [3, 7], "d": [4, 8]}) + + result = parser.read_csv(StringIO(data), usecols=usecols, index_col=False) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("index_col", ["b", 0]) +@pytest.mark.parametrize("usecols", [["b", "c"], [1, 2]]) +def test_usecols_index_col_conflict(all_parsers, usecols, index_col, request): + # see gh-4201: test that index_col as integer reflects usecols + parser = all_parsers + data = "a,b,c,d\nA,a,1,one\nB,b,2,two" + + if parser.engine == "pyarrow" and isinstance(usecols[0], int): + with pytest.raises(ValueError, match=_msg_pyarrow_requires_names): + parser.read_csv(StringIO(data), usecols=usecols, index_col=index_col) + return + + expected = DataFrame({"c": [1, 2]}, index=Index(["a", "b"], name="b")) + + result = parser.read_csv(StringIO(data), usecols=usecols, index_col=index_col) + tm.assert_frame_equal(result, expected) + + +def test_usecols_index_col_conflict2(all_parsers): + # see gh-4201: test that index_col as integer reflects usecols + parser = all_parsers + data = "a,b,c,d\nA,a,1,one\nB,b,2,two" + + expected = DataFrame({"b": ["a", "b"], "c": [1, 2], "d": ("one", "two")}) + expected = expected.set_index(["b", "c"]) + + result = parser.read_csv( + StringIO(data), usecols=["b", "c", "d"], index_col=["b", "c"] + ) + tm.assert_frame_equal(result, expected) + + +@skip_pyarrow # CSV parse error: Expected 3 columns, got 4 +def test_usecols_implicit_index_col(all_parsers): + # see gh-2654 + parser = all_parsers + data = "a,b,c\n4,apple,bat,5.7\n8,orange,cow,10" + + result = parser.read_csv(StringIO(data), usecols=["a", "b"]) + expected = DataFrame({"a": ["apple", "orange"], "b": ["bat", "cow"]}, index=[4, 8]) + tm.assert_frame_equal(result, expected) + + +def test_usecols_index_col_middle(all_parsers): + # GH#9098 + parser = all_parsers + data = """a,b,c,d +1,2,3,4 +""" + result = parser.read_csv(StringIO(data), usecols=["b", "c", "d"], index_col="c") + expected = DataFrame({"b": [2], "d": [4]}, index=Index([3], name="c")) + tm.assert_frame_equal(result, expected) + + +def test_usecols_index_col_end(all_parsers): + # GH#9098 + parser = all_parsers + data = """a,b,c,d +1,2,3,4 +""" + result = parser.read_csv(StringIO(data), usecols=["b", "c", "d"], index_col="d") + expected = DataFrame({"b": [2], "c": [3]}, index=Index([4], name="d")) + tm.assert_frame_equal(result, expected) + + +def test_usecols_regex_sep(all_parsers): + # see gh-2733 + parser = all_parsers + data = "a b c\n4 apple bat 5.7\n8 orange cow 10" + + if parser.engine == "pyarrow": + msg = "the 'pyarrow' engine does not support regex separators" + with pytest.raises(ValueError, match=msg): + parser.read_csv(StringIO(data), sep=r"\s+", usecols=("a", "b")) + return + + result = parser.read_csv(StringIO(data), sep=r"\s+", usecols=("a", "b")) + + expected = DataFrame({"a": ["apple", "orange"], "b": ["bat", "cow"]}, index=[4, 8]) + tm.assert_frame_equal(result, expected) + + +def test_usecols_with_whitespace(all_parsers): + parser = all_parsers + data = "a b c\n4 apple bat 5.7\n8 orange cow 10" + + depr_msg = "The 'delim_whitespace' keyword in pd.read_csv is deprecated" + + if parser.engine == "pyarrow": + msg = "The 'delim_whitespace' option is not supported with the 'pyarrow' engine" + with pytest.raises(ValueError, match=msg): + with tm.assert_produces_warning( + FutureWarning, match=depr_msg, check_stacklevel=False + ): + parser.read_csv( + StringIO(data), delim_whitespace=True, usecols=("a", "b") + ) + return + + with tm.assert_produces_warning( + FutureWarning, match=depr_msg, check_stacklevel=False + ): + result = parser.read_csv( + StringIO(data), delim_whitespace=True, usecols=("a", "b") + ) + expected = DataFrame({"a": ["apple", "orange"], "b": ["bat", "cow"]}, index=[4, 8]) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "usecols,expected", + [ + # Column selection by index. + ([0, 1], DataFrame(data=[[1000, 2000], [4000, 5000]], columns=["2", "0"])), + # Column selection by name. + ( + ["0", "1"], + DataFrame(data=[[2000, 3000], [5000, 6000]], columns=["0", "1"]), + ), + ], +) +def test_usecols_with_integer_like_header(all_parsers, usecols, expected, request): + parser = all_parsers + data = """2,0,1 +1000,2000,3000 +4000,5000,6000""" + + if parser.engine == "pyarrow" and isinstance(usecols[0], int): + with pytest.raises(ValueError, match=_msg_pyarrow_requires_names): + parser.read_csv(StringIO(data), usecols=usecols) + return + + result = parser.read_csv(StringIO(data), usecols=usecols) + tm.assert_frame_equal(result, expected) + + +@xfail_pyarrow # mismatched shape +def test_empty_usecols(all_parsers): + data = "a,b,c\n1,2,3\n4,5,6" + expected = DataFrame(columns=Index([])) + parser = all_parsers + + result = parser.read_csv(StringIO(data), usecols=set()) + tm.assert_frame_equal(result, expected) + + +def test_np_array_usecols(all_parsers): + # see gh-12546 + parser = all_parsers + data = "a,b,c\n1,2,3" + usecols = np.array(["a", "b"]) + + expected = DataFrame([[1, 2]], columns=usecols) + result = parser.read_csv(StringIO(data), usecols=usecols) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "usecols,expected", + [ + ( + lambda x: x.upper() in ["AAA", "BBB", "DDD"], + DataFrame( + { + "AaA": { + 0: 0.056674972999999997, + 1: 2.6132309819999997, + 2: 3.5689350380000002, + }, + "bBb": {0: 8, 1: 2, 2: 7}, + "ddd": {0: "a", 1: "b", 2: "a"}, + } + ), + ), + (lambda x: False, DataFrame(columns=Index([]))), + ], +) +def test_callable_usecols(all_parsers, usecols, expected): + # see gh-14154 + data = """AaA,bBb,CCC,ddd +0.056674973,8,True,a +2.613230982,2,False,b +3.568935038,7,False,a""" + parser = all_parsers + + if parser.engine == "pyarrow": + msg = "The pyarrow engine does not allow 'usecols' to be a callable" + with pytest.raises(ValueError, match=msg): + parser.read_csv(StringIO(data), usecols=usecols) + return + + result = parser.read_csv(StringIO(data), usecols=usecols) + tm.assert_frame_equal(result, expected) + + +# ArrowKeyError: Column 'fa' in include_columns does not exist in CSV file +@skip_pyarrow +@pytest.mark.parametrize("usecols", [["a", "c"], lambda x: x in ["a", "c"]]) +def test_incomplete_first_row(all_parsers, usecols): + # see gh-6710 + data = "1,2\n1,2,3" + parser = all_parsers + names = ["a", "b", "c"] + expected = DataFrame({"a": [1, 1], "c": [np.nan, 3]}) + + result = parser.read_csv(StringIO(data), names=names, usecols=usecols) + tm.assert_frame_equal(result, expected) + + +@skip_pyarrow # CSV parse error: Expected 3 columns, got 4 +@pytest.mark.parametrize( + "data,usecols,kwargs,expected", + [ + # see gh-8985 + ( + "19,29,39\n" * 2 + "10,20,30,40", + [0, 1, 2], + {"header": None}, + DataFrame([[19, 29, 39], [19, 29, 39], [10, 20, 30]]), + ), + # see gh-9549 + ( + ("A,B,C\n1,2,3\n3,4,5\n1,2,4,5,1,6\n1,2,3,,,1,\n1,2,3\n5,6,7"), + ["A", "B", "C"], + {}, + DataFrame( + { + "A": [1, 3, 1, 1, 1, 5], + "B": [2, 4, 2, 2, 2, 6], + "C": [3, 5, 4, 3, 3, 7], + } + ), + ), + ], +) +def test_uneven_length_cols(all_parsers, data, usecols, kwargs, expected): + # see gh-8985 + parser = all_parsers + result = parser.read_csv(StringIO(data), usecols=usecols, **kwargs) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize( + "usecols,kwargs,expected,msg", + [ + ( + ["a", "b", "c", "d"], + {}, + DataFrame({"a": [1, 5], "b": [2, 6], "c": [3, 7], "d": [4, 8]}), + None, + ), + ( + ["a", "b", "c", "f"], + {}, + None, + _msg_validate_usecols_names.format(r"\['f'\]"), + ), + (["a", "b", "f"], {}, None, _msg_validate_usecols_names.format(r"\['f'\]")), + ( + ["a", "b", "f", "g"], + {}, + None, + _msg_validate_usecols_names.format(r"\[('f', 'g'|'g', 'f')\]"), + ), + # see gh-14671 + ( + None, + {"header": 0, "names": ["A", "B", "C", "D"]}, + DataFrame({"A": [1, 5], "B": [2, 6], "C": [3, 7], "D": [4, 8]}), + None, + ), + ( + ["A", "B", "C", "f"], + {"header": 0, "names": ["A", "B", "C", "D"]}, + None, + _msg_validate_usecols_names.format(r"\['f'\]"), + ), + ( + ["A", "B", "f"], + {"names": ["A", "B", "C", "D"]}, + None, + _msg_validate_usecols_names.format(r"\['f'\]"), + ), + ], +) +def test_raises_on_usecols_names_mismatch( + all_parsers, usecols, kwargs, expected, msg, request +): + data = "a,b,c,d\n1,2,3,4\n5,6,7,8" + kwargs.update(usecols=usecols) + parser = all_parsers + + if parser.engine == "pyarrow" and not ( + usecols is not None and expected is not None + ): + # everything but the first case + # ArrowKeyError: Column 'f' in include_columns does not exist in CSV file + pytest.skip(reason="https://github.com/apache/arrow/issues/38676") + + if expected is None: + with pytest.raises(ValueError, match=msg): + parser.read_csv(StringIO(data), **kwargs) + else: + result = parser.read_csv(StringIO(data), **kwargs) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("usecols", [["A", "C"], [0, 2]]) +def test_usecols_subset_names_mismatch_orig_columns(all_parsers, usecols, request): + data = "a,b,c,d\n1,2,3,4\n5,6,7,8" + names = ["A", "B", "C", "D"] + parser = all_parsers + + if parser.engine == "pyarrow": + if isinstance(usecols[0], int): + with pytest.raises(ValueError, match=_msg_pyarrow_requires_names): + parser.read_csv(StringIO(data), header=0, names=names, usecols=usecols) + return + # "pyarrow.lib.ArrowKeyError: Column 'A' in include_columns does not exist" + pytest.skip(reason="https://github.com/apache/arrow/issues/38676") + + result = parser.read_csv(StringIO(data), header=0, names=names, usecols=usecols) + expected = DataFrame({"A": [1, 5], "C": [3, 7]}) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.parametrize("names", [None, ["a", "b"]]) +def test_usecols_indices_out_of_bounds(all_parsers, names): + # GH#25623 & GH 41130; enforced in 2.0 + parser = all_parsers + data = """ +a,b +1,2 + """ + + err = ParserError + msg = "Defining usecols with out-of-bounds" + if parser.engine == "pyarrow": + err = ValueError + msg = _msg_pyarrow_requires_names + + with pytest.raises(err, match=msg): + parser.read_csv(StringIO(data), usecols=[0, 2], names=names, header=0) + + +def test_usecols_additional_columns(all_parsers): + # GH#46997 + parser = all_parsers + usecols = lambda header: header.strip() in ["a", "b", "c"] + + if parser.engine == "pyarrow": + msg = "The pyarrow engine does not allow 'usecols' to be a callable" + with pytest.raises(ValueError, match=msg): + parser.read_csv(StringIO("a,b\nx,y,z"), index_col=False, usecols=usecols) + return + result = parser.read_csv(StringIO("a,b\nx,y,z"), index_col=False, usecols=usecols) + expected = DataFrame({"a": ["x"], "b": "y"}) + tm.assert_frame_equal(result, expected) + + +def test_usecols_additional_columns_integer_columns(all_parsers): + # GH#46997 + parser = all_parsers + usecols = lambda header: header.strip() in ["0", "1"] + if parser.engine == "pyarrow": + msg = "The pyarrow engine does not allow 'usecols' to be a callable" + with pytest.raises(ValueError, match=msg): + parser.read_csv(StringIO("0,1\nx,y,z"), index_col=False, usecols=usecols) + return + result = parser.read_csv(StringIO("0,1\nx,y,z"), index_col=False, usecols=usecols) + expected = DataFrame({"0": ["x"], "1": "y"}) + tm.assert_frame_equal(result, expected) + + +def test_usecols_dtype(all_parsers): + parser = all_parsers + data = """ +col1,col2,col3 +a,1,x +b,2,y +""" + result = parser.read_csv( + StringIO(data), + usecols=["col1", "col2"], + dtype={"col1": "string", "col2": "uint8", "col3": "string"}, + ) + expected = DataFrame( + {"col1": array(["a", "b"]), "col2": np.array([1, 2], dtype="uint8")} + ) + tm.assert_frame_equal(result, expected) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fe4c017837627c12d2dbf935c990895260f680f5 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_categorical.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_categorical.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..383aeaa22c7518e838ccb492ec6ba4e77664717d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_categorical.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_errors.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_errors.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09f74c3225c6d8794c33bc63f47d13694f60de05 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_errors.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_keys.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_keys.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a85eba28c4e0a61aa8d9d1d47b60557248a2ba22 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_keys.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_select.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_select.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18cca613b99954dbaaf37b00663fbd86458fede4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_select.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_time_series.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_time_series.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ff88fa9049e2bae2e0774777c964bd374084f9be Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_time_series.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_timezones.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_timezones.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8b96f141a6b4674f70d98708abb34efa3e0be7b9 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/pytables/__pycache__/test_timezones.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__init__.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..809ae34203398c61a24c8d3ae0b15bc971abf160 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_byteswap.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_byteswap.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d691c5cefff345bed100f430ce272f540ce3d922 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_byteswap.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_sas.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_sas.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..04c54338c9b2cb0d8567795c7628d78a46cf2a0f Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_sas.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_sas7bdat.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_sas7bdat.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8292be8e9df10b1097c0f3d1de27a67548f976a2 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_sas7bdat.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_xport.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_xport.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e71f55b98428d499928c0d9aa74aad6d2e4a0d56 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/__pycache__/test_xport.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_byteswap.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_byteswap.py new file mode 100644 index 0000000000000000000000000000000000000000..6d7f2f05d1b00b1855dd040bf08cebabf73f9b9a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_byteswap.py @@ -0,0 +1,55 @@ +from hypothesis import ( + assume, + example, + given, + strategies as st, +) +import numpy as np +import pytest + +from pandas._libs.byteswap import ( + read_double_with_byteswap, + read_float_with_byteswap, + read_uint16_with_byteswap, + read_uint32_with_byteswap, + read_uint64_with_byteswap, +) + +import pandas._testing as tm + + +@given(read_offset=st.integers(0, 11), number=st.integers(min_value=0)) +@example(number=2**16, read_offset=0) +@example(number=2**32, read_offset=0) +@example(number=2**64, read_offset=0) +@pytest.mark.parametrize("int_type", [np.uint16, np.uint32, np.uint64]) +@pytest.mark.parametrize("should_byteswap", [True, False]) +def test_int_byteswap(read_offset, number, int_type, should_byteswap): + assume(number < 2 ** (8 * int_type(0).itemsize)) + _test(number, int_type, read_offset, should_byteswap) + + +@pytest.mark.filterwarnings("ignore:overflow encountered:RuntimeWarning") +@given(read_offset=st.integers(0, 11), number=st.floats()) +@pytest.mark.parametrize("float_type", [np.float32, np.float64]) +@pytest.mark.parametrize("should_byteswap", [True, False]) +def test_float_byteswap(read_offset, number, float_type, should_byteswap): + _test(number, float_type, read_offset, should_byteswap) + + +def _test(number, number_type, read_offset, should_byteswap): + number = number_type(number) + data = np.random.default_rng(2).integers(0, 256, size=20, dtype="uint8") + data[read_offset : read_offset + number.itemsize] = number[None].view("uint8") + swap_func = { + np.float32: read_float_with_byteswap, + np.float64: read_double_with_byteswap, + np.uint16: read_uint16_with_byteswap, + np.uint32: read_uint32_with_byteswap, + np.uint64: read_uint64_with_byteswap, + }[type(number)] + output_number = number_type(swap_func(bytes(data), read_offset, should_byteswap)) + if should_byteswap: + tm.assert_equal(output_number, number.byteswap()) + else: + tm.assert_equal(output_number, number) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_sas.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_sas.py new file mode 100644 index 0000000000000000000000000000000000000000..1e38baf4fc4093879b850f03d746ae5e67b477ee --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_sas.py @@ -0,0 +1,34 @@ +from io import StringIO + +import pytest + +from pandas import read_sas +import pandas._testing as tm + + +class TestSas: + def test_sas_buffer_format(self): + # see gh-14947 + b = StringIO("") + + msg = ( + "If this is a buffer object rather than a string " + "name, you must specify a format string" + ) + with pytest.raises(ValueError, match=msg): + read_sas(b) + + def test_sas_read_no_format_or_extension(self): + # see gh-24548 + msg = "unable to infer format of SAS file.+" + with tm.ensure_clean("test_file_no_extension") as path: + with pytest.raises(ValueError, match=msg): + read_sas(path) + + +def test_sas_archive(datapath): + fname_uncompressed = datapath("io", "sas", "data", "airline.sas7bdat") + df_uncompressed = read_sas(fname_uncompressed) + fname_compressed = datapath("io", "sas", "data", "airline.sas7bdat.gz") + df_compressed = read_sas(fname_compressed, format="sas7bdat") + tm.assert_frame_equal(df_uncompressed, df_compressed) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_sas7bdat.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_sas7bdat.py new file mode 100644 index 0000000000000000000000000000000000000000..b71896c77ffb5872beb98d3914e6195b69855703 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_sas7bdat.py @@ -0,0 +1,419 @@ +import contextlib +from datetime import datetime +import io +import os +from pathlib import Path + +import numpy as np +import pytest + +from pandas.compat import IS64 +from pandas.errors import EmptyDataError +import pandas.util._test_decorators as td + +import pandas as pd +import pandas._testing as tm + +from pandas.io.sas.sas7bdat import SAS7BDATReader + + +@pytest.fixture +def dirpath(datapath): + return datapath("io", "sas", "data") + + +@pytest.fixture(params=[(1, range(1, 16)), (2, [16])]) +def data_test_ix(request, dirpath): + i, test_ix = request.param + fname = os.path.join(dirpath, f"test_sas7bdat_{i}.csv") + df = pd.read_csv(fname) + epoch = datetime(1960, 1, 1) + t1 = pd.to_timedelta(df["Column4"], unit="d") + df["Column4"] = (epoch + t1).astype("M8[s]") + t2 = pd.to_timedelta(df["Column12"], unit="d") + df["Column12"] = (epoch + t2).astype("M8[s]") + for k in range(df.shape[1]): + col = df.iloc[:, k] + if col.dtype == np.int64: + df.isetitem(k, df.iloc[:, k].astype(np.float64)) + return df, test_ix + + +# https://github.com/cython/cython/issues/1720 +class TestSAS7BDAT: + @pytest.mark.slow + def test_from_file(self, dirpath, data_test_ix): + expected, test_ix = data_test_ix + for k in test_ix: + fname = os.path.join(dirpath, f"test{k}.sas7bdat") + df = pd.read_sas(fname, encoding="utf-8") + tm.assert_frame_equal(df, expected) + + @pytest.mark.slow + def test_from_buffer(self, dirpath, data_test_ix): + expected, test_ix = data_test_ix + for k in test_ix: + fname = os.path.join(dirpath, f"test{k}.sas7bdat") + with open(fname, "rb") as f: + byts = f.read() + buf = io.BytesIO(byts) + with pd.read_sas( + buf, format="sas7bdat", iterator=True, encoding="utf-8" + ) as rdr: + df = rdr.read() + tm.assert_frame_equal(df, expected) + + @pytest.mark.slow + def test_from_iterator(self, dirpath, data_test_ix): + expected, test_ix = data_test_ix + for k in test_ix: + fname = os.path.join(dirpath, f"test{k}.sas7bdat") + with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr: + df = rdr.read(2) + tm.assert_frame_equal(df, expected.iloc[0:2, :]) + df = rdr.read(3) + tm.assert_frame_equal(df, expected.iloc[2:5, :]) + + @pytest.mark.slow + def test_path_pathlib(self, dirpath, data_test_ix): + expected, test_ix = data_test_ix + for k in test_ix: + fname = Path(os.path.join(dirpath, f"test{k}.sas7bdat")) + df = pd.read_sas(fname, encoding="utf-8") + tm.assert_frame_equal(df, expected) + + @td.skip_if_no("py.path") + @pytest.mark.slow + def test_path_localpath(self, dirpath, data_test_ix): + from py.path import local as LocalPath + + expected, test_ix = data_test_ix + for k in test_ix: + fname = LocalPath(os.path.join(dirpath, f"test{k}.sas7bdat")) + df = pd.read_sas(fname, encoding="utf-8") + tm.assert_frame_equal(df, expected) + + @pytest.mark.slow + @pytest.mark.parametrize("chunksize", (3, 5, 10, 11)) + @pytest.mark.parametrize("k", range(1, 17)) + def test_iterator_loop(self, dirpath, k, chunksize): + # github #13654 + fname = os.path.join(dirpath, f"test{k}.sas7bdat") + with pd.read_sas(fname, chunksize=chunksize, encoding="utf-8") as rdr: + y = 0 + for x in rdr: + y += x.shape[0] + assert y == rdr.row_count + + def test_iterator_read_too_much(self, dirpath): + # github #14734 + fname = os.path.join(dirpath, "test1.sas7bdat") + with pd.read_sas( + fname, format="sas7bdat", iterator=True, encoding="utf-8" + ) as rdr: + d1 = rdr.read(rdr.row_count + 20) + + with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr: + d2 = rdr.read(rdr.row_count + 20) + tm.assert_frame_equal(d1, d2) + + +def test_encoding_options(datapath): + fname = datapath("io", "sas", "data", "test1.sas7bdat") + df1 = pd.read_sas(fname) + df2 = pd.read_sas(fname, encoding="utf-8") + for col in df1.columns: + try: + df1[col] = df1[col].str.decode("utf-8") + except AttributeError: + pass + tm.assert_frame_equal(df1, df2) + + with contextlib.closing(SAS7BDATReader(fname, convert_header_text=False)) as rdr: + df3 = rdr.read() + for x, y in zip(df1.columns, df3.columns): + assert x == y.decode() + + +def test_encoding_infer(datapath): + fname = datapath("io", "sas", "data", "test1.sas7bdat") + + with pd.read_sas(fname, encoding="infer", iterator=True) as df1_reader: + # check: is encoding inferred correctly from file + assert df1_reader.inferred_encoding == "cp1252" + df1 = df1_reader.read() + + with pd.read_sas(fname, encoding="cp1252", iterator=True) as df2_reader: + df2 = df2_reader.read() + + # check: reader reads correct information + tm.assert_frame_equal(df1, df2) + + +def test_productsales(datapath): + fname = datapath("io", "sas", "data", "productsales.sas7bdat") + df = pd.read_sas(fname, encoding="utf-8") + fname = datapath("io", "sas", "data", "productsales.csv") + df0 = pd.read_csv(fname, parse_dates=["MONTH"]) + vn = ["ACTUAL", "PREDICT", "QUARTER", "YEAR"] + df0[vn] = df0[vn].astype(np.float64) + + df0["MONTH"] = df0["MONTH"].astype("M8[s]") + tm.assert_frame_equal(df, df0) + + +def test_12659(datapath): + fname = datapath("io", "sas", "data", "test_12659.sas7bdat") + df = pd.read_sas(fname) + fname = datapath("io", "sas", "data", "test_12659.csv") + df0 = pd.read_csv(fname) + df0 = df0.astype(np.float64) + tm.assert_frame_equal(df, df0) + + +def test_airline(datapath): + fname = datapath("io", "sas", "data", "airline.sas7bdat") + df = pd.read_sas(fname) + fname = datapath("io", "sas", "data", "airline.csv") + df0 = pd.read_csv(fname) + df0 = df0.astype(np.float64) + tm.assert_frame_equal(df, df0) + + +def test_date_time(datapath): + # Support of different SAS date/datetime formats (PR #15871) + fname = datapath("io", "sas", "data", "datetime.sas7bdat") + df = pd.read_sas(fname) + fname = datapath("io", "sas", "data", "datetime.csv") + df0 = pd.read_csv( + fname, parse_dates=["Date1", "Date2", "DateTime", "DateTimeHi", "Taiw"] + ) + # GH 19732: Timestamps imported from sas will incur floating point errors + # See GH#56014 for discussion of the correct "expected" results + # We are really just testing that we are "close". This only seems to be + # an issue near the implementation bounds. + + df[df.columns[3]] = df.iloc[:, 3].dt.round("us") + df0["Date1"] = df0["Date1"].astype("M8[s]") + df0["Date2"] = df0["Date2"].astype("M8[s]") + df0["DateTime"] = df0["DateTime"].astype("M8[ms]") + df0["Taiw"] = df0["Taiw"].astype("M8[s]") + + res = df0["DateTimeHi"].astype("M8[us]").dt.round("ms") + df0["DateTimeHi"] = res.astype("M8[ms]") + + if not IS64: + # No good reason for this, just what we get on the CI + df0.loc[0, "DateTimeHi"] += np.timedelta64(1, "ms") + df0.loc[[2, 3], "DateTimeHi"] -= np.timedelta64(1, "ms") + tm.assert_frame_equal(df, df0) + + +@pytest.mark.parametrize("column", ["WGT", "CYL"]) +def test_compact_numerical_values(datapath, column): + # Regression test for #21616 + fname = datapath("io", "sas", "data", "cars.sas7bdat") + df = pd.read_sas(fname, encoding="latin-1") + # The two columns CYL and WGT in cars.sas7bdat have column + # width < 8 and only contain integral values. + # Test that pandas doesn't corrupt the numbers by adding + # decimals. + result = df[column] + expected = df[column].round() + tm.assert_series_equal(result, expected, check_exact=True) + + +def test_many_columns(datapath): + # Test for looking for column information in more places (PR #22628) + fname = datapath("io", "sas", "data", "many_columns.sas7bdat") + + df = pd.read_sas(fname, encoding="latin-1") + + fname = datapath("io", "sas", "data", "many_columns.csv") + df0 = pd.read_csv(fname, encoding="latin-1") + tm.assert_frame_equal(df, df0) + + +def test_inconsistent_number_of_rows(datapath): + # Regression test for issue #16615. (PR #22628) + fname = datapath("io", "sas", "data", "load_log.sas7bdat") + df = pd.read_sas(fname, encoding="latin-1") + assert len(df) == 2097 + + +def test_zero_variables(datapath): + # Check if the SAS file has zero variables (PR #18184) + fname = datapath("io", "sas", "data", "zero_variables.sas7bdat") + with pytest.raises(EmptyDataError, match="No columns to parse from file"): + pd.read_sas(fname) + + +def test_zero_rows(datapath): + # GH 18198 + fname = datapath("io", "sas", "data", "zero_rows.sas7bdat") + result = pd.read_sas(fname) + expected = pd.DataFrame([{"char_field": "a", "num_field": 1.0}]).iloc[:0] + tm.assert_frame_equal(result, expected) + + +def test_corrupt_read(datapath): + # We don't really care about the exact failure, the important thing is + # that the resource should be cleaned up afterwards (BUG #35566) + fname = datapath("io", "sas", "data", "corrupt.sas7bdat") + msg = "'SAS7BDATReader' object has no attribute 'row_count'" + with pytest.raises(AttributeError, match=msg): + pd.read_sas(fname) + + +def test_max_sas_date(datapath): + # GH 20927 + # NB. max datetime in SAS dataset is 31DEC9999:23:59:59.999 + # but this is read as 29DEC9999:23:59:59.998993 by a buggy + # sas7bdat module + # See also GH#56014 for discussion of the correct "expected" results. + fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat") + df = pd.read_sas(fname, encoding="iso-8859-1") + + expected = pd.DataFrame( + { + "text": ["max", "normal"], + "dt_as_float": [253717747199.999, 1880323199.999], + "dt_as_dt": np.array( + [ + datetime(9999, 12, 29, 23, 59, 59, 999000), + datetime(2019, 8, 1, 23, 59, 59, 999000), + ], + dtype="M8[ms]", + ), + "date_as_float": [2936547.0, 21762.0], + "date_as_date": np.array( + [ + datetime(9999, 12, 29), + datetime(2019, 8, 1), + ], + dtype="M8[s]", + ), + }, + columns=["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"], + ) + + if not IS64: + # No good reason for this, just what we get on the CI + expected.loc[:, "dt_as_dt"] -= np.timedelta64(1, "ms") + + tm.assert_frame_equal(df, expected) + + +def test_max_sas_date_iterator(datapath): + # GH 20927 + # when called as an iterator, only those chunks with a date > pd.Timestamp.max + # are returned as datetime.datetime, if this happens that whole chunk is returned + # as datetime.datetime + col_order = ["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"] + fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat") + results = [] + for df in pd.read_sas(fname, encoding="iso-8859-1", chunksize=1): + # GH 19732: Timestamps imported from sas will incur floating point errors + df.reset_index(inplace=True, drop=True) + results.append(df) + expected = [ + pd.DataFrame( + { + "text": ["max"], + "dt_as_float": [253717747199.999], + "dt_as_dt": np.array( + [datetime(9999, 12, 29, 23, 59, 59, 999000)], dtype="M8[ms]" + ), + "date_as_float": [2936547.0], + "date_as_date": np.array([datetime(9999, 12, 29)], dtype="M8[s]"), + }, + columns=col_order, + ), + pd.DataFrame( + { + "text": ["normal"], + "dt_as_float": [1880323199.999], + "dt_as_dt": np.array(["2019-08-01 23:59:59.999"], dtype="M8[ms]"), + "date_as_float": [21762.0], + "date_as_date": np.array(["2019-08-01"], dtype="M8[s]"), + }, + columns=col_order, + ), + ] + if not IS64: + # No good reason for this, just what we get on the CI + expected[0].loc[0, "dt_as_dt"] -= np.timedelta64(1, "ms") + expected[1].loc[0, "dt_as_dt"] -= np.timedelta64(1, "ms") + + tm.assert_frame_equal(results[0], expected[0]) + tm.assert_frame_equal(results[1], expected[1]) + + +def test_null_date(datapath): + fname = datapath("io", "sas", "data", "dates_null.sas7bdat") + df = pd.read_sas(fname, encoding="utf-8") + + expected = pd.DataFrame( + { + "datecol": np.array( + [ + datetime(9999, 12, 29), + np.datetime64("NaT"), + ], + dtype="M8[s]", + ), + "datetimecol": np.array( + [ + datetime(9999, 12, 29, 23, 59, 59, 999000), + np.datetime64("NaT"), + ], + dtype="M8[ms]", + ), + }, + ) + if not IS64: + # No good reason for this, just what we get on the CI + expected.loc[0, "datetimecol"] -= np.timedelta64(1, "ms") + tm.assert_frame_equal(df, expected) + + +def test_meta2_page(datapath): + # GH 35545 + fname = datapath("io", "sas", "data", "test_meta2_page.sas7bdat") + df = pd.read_sas(fname) + assert len(df) == 1000 + + +@pytest.mark.parametrize( + "test_file, override_offset, override_value, expected_msg", + [ + ("test2.sas7bdat", 0x10000 + 55229, 0x80 | 0x0F, "Out of bounds"), + ("test2.sas7bdat", 0x10000 + 55229, 0x10, "unknown control byte"), + ("test3.sas7bdat", 118170, 184, "Out of bounds"), + ], +) +def test_rle_rdc_exceptions( + datapath, test_file, override_offset, override_value, expected_msg +): + """Errors in RLE/RDC decompression should propagate.""" + with open(datapath("io", "sas", "data", test_file), "rb") as fd: + data = bytearray(fd.read()) + data[override_offset] = override_value + with pytest.raises(Exception, match=expected_msg): + pd.read_sas(io.BytesIO(data), format="sas7bdat") + + +def test_0x40_control_byte(datapath): + # GH 31243 + fname = datapath("io", "sas", "data", "0x40controlbyte.sas7bdat") + df = pd.read_sas(fname, encoding="ascii") + fname = datapath("io", "sas", "data", "0x40controlbyte.csv") + df0 = pd.read_csv(fname, dtype="object") + tm.assert_frame_equal(df, df0) + + +def test_0x00_control_byte(datapath): + # GH 47099 + fname = datapath("io", "sas", "data", "0x00controlbyte.sas7bdat.bz2") + df = next(pd.read_sas(fname, chunksize=11_000)) + assert df.shape == (11_000, 20) diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_xport.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_xport.py new file mode 100644 index 0000000000000000000000000000000000000000..766c9c37d55b9ee3fcb1d206b9ed100aaaf1d610 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/sas/test_xport.py @@ -0,0 +1,167 @@ +import numpy as np +import pytest + +import pandas as pd +import pandas._testing as tm + +from pandas.io.sas.sasreader import read_sas + +# CSV versions of test xpt files were obtained using the R foreign library + +# Numbers in a SAS xport file are always float64, so need to convert +# before making comparisons. + + +def numeric_as_float(data): + for v in data.columns: + if data[v].dtype is np.dtype("int64"): + data[v] = data[v].astype(np.float64) + + +class TestXport: + @pytest.fixture + def file01(self, datapath): + return datapath("io", "sas", "data", "DEMO_G.xpt") + + @pytest.fixture + def file02(self, datapath): + return datapath("io", "sas", "data", "SSHSV1_A.xpt") + + @pytest.fixture + def file03(self, datapath): + return datapath("io", "sas", "data", "DRXFCD_G.xpt") + + @pytest.fixture + def file04(self, datapath): + return datapath("io", "sas", "data", "paxraw_d_short.xpt") + + @pytest.fixture + def file05(self, datapath): + return datapath("io", "sas", "data", "DEMO_PUF.cpt") + + @pytest.mark.slow + def test1_basic(self, file01): + # Tests with DEMO_G.xpt (all numeric file) + + # Compare to this + data_csv = pd.read_csv(file01.replace(".xpt", ".csv")) + numeric_as_float(data_csv) + + # Read full file + data = read_sas(file01, format="xport") + tm.assert_frame_equal(data, data_csv) + num_rows = data.shape[0] + + # Test reading beyond end of file + with read_sas(file01, format="xport", iterator=True) as reader: + data = reader.read(num_rows + 100) + assert data.shape[0] == num_rows + + # Test incremental read with `read` method. + with read_sas(file01, format="xport", iterator=True) as reader: + data = reader.read(10) + tm.assert_frame_equal(data, data_csv.iloc[0:10, :]) + + # Test incremental read with `get_chunk` method. + with read_sas(file01, format="xport", chunksize=10) as reader: + data = reader.get_chunk() + tm.assert_frame_equal(data, data_csv.iloc[0:10, :]) + + # Test read in loop + m = 0 + with read_sas(file01, format="xport", chunksize=100) as reader: + for x in reader: + m += x.shape[0] + assert m == num_rows + + # Read full file with `read_sas` method + data = read_sas(file01) + tm.assert_frame_equal(data, data_csv) + + def test1_index(self, file01): + # Tests with DEMO_G.xpt using index (all numeric file) + + # Compare to this + data_csv = pd.read_csv(file01.replace(".xpt", ".csv")) + data_csv = data_csv.set_index("SEQN") + numeric_as_float(data_csv) + + # Read full file + data = read_sas(file01, index="SEQN", format="xport") + tm.assert_frame_equal(data, data_csv, check_index_type=False) + + # Test incremental read with `read` method. + with read_sas(file01, index="SEQN", format="xport", iterator=True) as reader: + data = reader.read(10) + tm.assert_frame_equal(data, data_csv.iloc[0:10, :], check_index_type=False) + + # Test incremental read with `get_chunk` method. + with read_sas(file01, index="SEQN", format="xport", chunksize=10) as reader: + data = reader.get_chunk() + tm.assert_frame_equal(data, data_csv.iloc[0:10, :], check_index_type=False) + + def test1_incremental(self, file01): + # Test with DEMO_G.xpt, reading full file incrementally + + data_csv = pd.read_csv(file01.replace(".xpt", ".csv")) + data_csv = data_csv.set_index("SEQN") + numeric_as_float(data_csv) + + with read_sas(file01, index="SEQN", chunksize=1000) as reader: + all_data = list(reader) + data = pd.concat(all_data, axis=0) + + tm.assert_frame_equal(data, data_csv, check_index_type=False) + + def test2(self, file02): + # Test with SSHSV1_A.xpt + + # Compare to this + data_csv = pd.read_csv(file02.replace(".xpt", ".csv")) + numeric_as_float(data_csv) + + data = read_sas(file02) + tm.assert_frame_equal(data, data_csv) + + def test2_binary(self, file02): + # Test with SSHSV1_A.xpt, read as a binary file + + # Compare to this + data_csv = pd.read_csv(file02.replace(".xpt", ".csv")) + numeric_as_float(data_csv) + + with open(file02, "rb") as fd: + # GH#35693 ensure that if we pass an open file, we + # dont incorrectly close it in read_sas + data = read_sas(fd, format="xport") + + tm.assert_frame_equal(data, data_csv) + + def test_multiple_types(self, file03): + # Test with DRXFCD_G.xpt (contains text and numeric variables) + + # Compare to this + data_csv = pd.read_csv(file03.replace(".xpt", ".csv")) + + data = read_sas(file03, encoding="utf-8") + tm.assert_frame_equal(data, data_csv) + + def test_truncated_float_support(self, file04): + # Test with paxraw_d_short.xpt, a shortened version of: + # http://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/PAXRAW_D.ZIP + # This file has truncated floats (5 bytes in this case). + + # GH 11713 + + data_csv = pd.read_csv(file04.replace(".xpt", ".csv")) + + data = read_sas(file04, format="xport") + tm.assert_frame_equal(data.astype("int64"), data_csv) + + def test_cport_header_found_raises(self, file05): + # Test with DEMO_PUF.cpt, the beginning of puf2019_1_fall.xpt + # from https://www.cms.gov/files/zip/puf2019.zip + # (despite the extension, it's a cpt file) + msg = "Header record indicates a CPORT file, which is not readable." + with pytest.raises(ValueError, match=msg): + read_sas(file05, format="xport") diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3ccc675ecb0d63a8e97f6b11da825cfd6738750c Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/conftest.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/conftest.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..893ee4f29ba360c0c759d4eadeb2cbdf45edf963 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/conftest.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/test_to_xml.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/test_to_xml.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d1ef0b91311d15d91dcce6fda37f3b2f68f2bc88 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/test_to_xml.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/test_xml.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/test_xml.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fde386e79d73cb10f288697db973a912dadbb3dd Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/test_xml.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/test_xml_dtypes.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/test_xml_dtypes.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9bb869fb6d83a4e9ce974bdf5136dd45e5070839 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/__pycache__/test_xml_dtypes.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/test_to_xml.py b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/test_to_xml.py new file mode 100644 index 0000000000000000000000000000000000000000..37251a58b0c119ef1da15c259e9e77a456b86ac9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/pandas/tests/io/xml/test_to_xml.py @@ -0,0 +1,1375 @@ +from __future__ import annotations + +from io import ( + BytesIO, + StringIO, +) +import os + +import numpy as np +import pytest + +import pandas.util._test_decorators as td + +from pandas import ( + NA, + DataFrame, + Index, +) +import pandas._testing as tm + +from pandas.io.common import get_handle +from pandas.io.xml import read_xml + +# CHECKLIST + +# [x] - ValueError: "Values for parser can only be lxml or etree." + +# etree +# [x] - ImportError: "lxml not found, please install or use the etree parser." +# [X] - TypeError: "...is not a valid type for attr_cols" +# [X] - TypeError: "...is not a valid type for elem_cols" +# [X] - LookupError: "unknown encoding" +# [X] - KeyError: "...is not included in namespaces" +# [X] - KeyError: "no valid column" +# [X] - ValueError: "To use stylesheet, you need lxml installed..." +# [] - OSError: (NEED PERMISSOIN ISSUE, DISK FULL, ETC.) +# [X] - FileNotFoundError: "No such file or directory" +# [X] - PermissionError: "Forbidden" + +# lxml +# [X] - TypeError: "...is not a valid type for attr_cols" +# [X] - TypeError: "...is not a valid type for elem_cols" +# [X] - LookupError: "unknown encoding" +# [] - OSError: (NEED PERMISSOIN ISSUE, DISK FULL, ETC.) +# [X] - FileNotFoundError: "No such file or directory" +# [X] - KeyError: "...is not included in namespaces" +# [X] - KeyError: "no valid column" +# [X] - ValueError: "stylesheet is not a url, file, or xml string." +# [] - LookupError: (NEED WRONG ENCODING FOR FILE OUTPUT) +# [] - URLError: (USUALLY DUE TO NETWORKING) +# [] - HTTPError: (NEED AN ONLINE STYLESHEET) +# [X] - OSError: "failed to load external entity" +# [X] - XMLSyntaxError: "Opening and ending tag mismatch" +# [X] - XSLTApplyError: "Cannot resolve URI" +# [X] - XSLTParseError: "failed to compile" +# [X] - PermissionError: "Forbidden" + + +@pytest.fixture +def geom_df(): + return DataFrame( + { + "shape": ["square", "circle", "triangle"], + "degrees": [360, 360, 180], + "sides": [4, np.nan, 3], + } + ) + + +@pytest.fixture +def planet_df(): + return DataFrame( + { + "planet": [ + "Mercury", + "Venus", + "Earth", + "Mars", + "Jupiter", + "Saturn", + "Uranus", + "Neptune", + ], + "type": [ + "terrestrial", + "terrestrial", + "terrestrial", + "terrestrial", + "gas giant", + "gas giant", + "ice giant", + "ice giant", + ], + "location": [ + "inner", + "inner", + "inner", + "inner", + "outer", + "outer", + "outer", + "outer", + ], + "mass": [ + 0.330114, + 4.86747, + 5.97237, + 0.641712, + 1898.187, + 568.3174, + 86.8127, + 102.4126, + ], + } + ) + + +@pytest.fixture +def from_file_expected(): + return """\ + + + + 0 + cooking + Everyday Italian + Giada De Laurentiis + 2005 + 30.0 + + + 1 + children + Harry Potter + J K. Rowling + 2005 + 29.99 + + + 2 + web + Learning XML + Erik T. Ray + 2003 + 39.95 + +""" + + +def equalize_decl(doc): + # etree and lxml differ on quotes and case in xml declaration + if doc is not None: + doc = doc.replace( + ' + + + cooking + Everyday Italian + Giada De Laurentiis + 2005 + 30.0 + + + children + Harry Potter + J K. Rowling + 2005 + 29.99 + + + web + Learning XML + Erik T. Ray + 2003 + 39.95 + +""" + + df_file = read_xml(xml_books, parser=parser) + + with tm.ensure_clean("test.xml") as path: + df_file.to_xml(path, index=False, parser=parser) + with open(path, "rb") as f: + output = f.read().decode("utf-8").strip() + + output = equalize_decl(output) + + assert output == expected + + +def test_index_false_rename_row_root(xml_books, parser): + expected = """\ + + + + cooking + Everyday Italian + Giada De Laurentiis + 2005 + 30.0 + + + children + Harry Potter + J K. Rowling + 2005 + 29.99 + + + web + Learning XML + Erik T. Ray + 2003 + 39.95 + +""" + + df_file = read_xml(xml_books, parser=parser) + + with tm.ensure_clean("test.xml") as path: + df_file.to_xml( + path, index=False, root_name="books", row_name="book", parser=parser + ) + with open(path, "rb") as f: + output = f.read().decode("utf-8").strip() + + output = equalize_decl(output) + + assert output == expected + + +@pytest.mark.parametrize( + "offset_index", [list(range(10, 13)), [str(i) for i in range(10, 13)]] +) +def test_index_false_with_offset_input_index(parser, offset_index, geom_df): + """ + Tests that the output does not contain the `` field when the index of the + input Dataframe has an offset. + + This is a regression test for issue #42458. + """ + + expected = """\ + + + + square + 360 + 4.0 + + + circle + 360 + + + + triangle + 180 + 3.0 + +""" + + offset_geom_df = geom_df.copy() + offset_geom_df.index = Index(offset_index) + output = offset_geom_df.to_xml(index=False, parser=parser) + output = equalize_decl(output) + + assert output == expected + + +# NA_REP + +na_expected = """\ + + + + 0 + square + 360 + 4.0 + + + 1 + circle + 360 + + + + 2 + triangle + 180 + 3.0 + +""" + + +def test_na_elem_output(parser, geom_df): + output = geom_df.to_xml(parser=parser) + output = equalize_decl(output) + + assert output == na_expected + + +def test_na_empty_str_elem_option(parser, geom_df): + output = geom_df.to_xml(na_rep="", parser=parser) + output = equalize_decl(output) + + assert output == na_expected + + +def test_na_empty_elem_option(parser, geom_df): + expected = """\ + + + + 0 + square + 360 + 4.0 + + + 1 + circle + 360 + 0.0 + + + 2 + triangle + 180 + 3.0 + +""" + + output = geom_df.to_xml(na_rep="0.0", parser=parser) + output = equalize_decl(output) + + assert output == expected + + +# ATTR_COLS + + +def test_attrs_cols_nan_output(parser, geom_df): + expected = """\ + + + + + +""" + + output = geom_df.to_xml(attr_cols=["shape", "degrees", "sides"], parser=parser) + output = equalize_decl(output) + + assert output == expected + + +def test_attrs_cols_prefix(parser, geom_df): + expected = """\ + + + + + +""" + + output = geom_df.to_xml( + attr_cols=["index", "shape", "degrees", "sides"], + namespaces={"doc": "http://example.xom"}, + prefix="doc", + parser=parser, + ) + output = equalize_decl(output) + + assert output == expected + + +def test_attrs_unknown_column(parser, geom_df): + with pytest.raises(KeyError, match=("no valid column")): + geom_df.to_xml(attr_cols=["shape", "degree", "sides"], parser=parser) + + +def test_attrs_wrong_type(parser, geom_df): + with pytest.raises(TypeError, match=("is not a valid type for attr_cols")): + geom_df.to_xml(attr_cols='"shape", "degree", "sides"', parser=parser) + + +# ELEM_COLS + + +def test_elems_cols_nan_output(parser, geom_df): + elems_cols_expected = """\ + + + + 360 + 4.0 + square + + + 360 + + circle + + + 180 + 3.0 + triangle + +""" + + output = geom_df.to_xml( + index=False, elem_cols=["degrees", "sides", "shape"], parser=parser + ) + output = equalize_decl(output) + + assert output == elems_cols_expected + + +def test_elems_unknown_column(parser, geom_df): + with pytest.raises(KeyError, match=("no valid column")): + geom_df.to_xml(elem_cols=["shape", "degree", "sides"], parser=parser) + + +def test_elems_wrong_type(parser, geom_df): + with pytest.raises(TypeError, match=("is not a valid type for elem_cols")): + geom_df.to_xml(elem_cols='"shape", "degree", "sides"', parser=parser) + + +def test_elems_and_attrs_cols(parser, geom_df): + elems_cols_expected = """\ + + + + 360 + 4.0 + + + 360 + + + + 180 + 3.0 + +""" + + output = geom_df.to_xml( + index=False, + elem_cols=["degrees", "sides"], + attr_cols=["shape"], + parser=parser, + ) + output = equalize_decl(output) + + assert output == elems_cols_expected + + +# HIERARCHICAL COLUMNS + + +def test_hierarchical_columns(parser, planet_df): + expected = """\ + + + + inner + terrestrial + 4 + 11.81 + 2.95 + + + outer + gas giant + 2 + 2466.5 + 1233.25 + + + outer + ice giant + 2 + 189.23 + 94.61 + + + All + + 8 + 2667.54 + 333.44 + +""" + + pvt = planet_df.pivot_table( + index=["location", "type"], + values="mass", + aggfunc=["count", "sum", "mean"], + margins=True, + ).round(2) + + output = pvt.to_xml(parser=parser) + output = equalize_decl(output) + + assert output == expected + + +def test_hierarchical_attrs_columns(parser, planet_df): + expected = """\ + + + + + + +""" + + pvt = planet_df.pivot_table( + index=["location", "type"], + values="mass", + aggfunc=["count", "sum", "mean"], + margins=True, + ).round(2) + + output = pvt.to_xml(attr_cols=list(pvt.reset_index().columns.values), parser=parser) + output = equalize_decl(output) + + assert output == expected + + +# MULTIINDEX + + +def test_multi_index(parser, planet_df): + expected = """\ + + + + inner + terrestrial + 4 + 11.81 + 2.95 + + + outer + gas giant + 2 + 2466.5 + 1233.25 + + + outer + ice giant + 2 + 189.23 + 94.61 + +""" + + agg = ( + planet_df.groupby(["location", "type"])["mass"] + .agg(["count", "sum", "mean"]) + .round(2) + ) + + output = agg.to_xml(parser=parser) + output = equalize_decl(output) + + assert output == expected + + +def test_multi_index_attrs_cols(parser, planet_df): + expected = """\ + + + + + +""" + + agg = ( + planet_df.groupby(["location", "type"])["mass"] + .agg(["count", "sum", "mean"]) + .round(2) + ) + output = agg.to_xml(attr_cols=list(agg.reset_index().columns.values), parser=parser) + output = equalize_decl(output) + + assert output == expected + + +# NAMESPACE + + +def test_default_namespace(parser, geom_df): + expected = """\ + + + + 0 + square + 360 + 4.0 + + + 1 + circle + 360 + + + + 2 + triangle + 180 + 3.0 + +""" + + output = geom_df.to_xml(namespaces={"": "http://example.com"}, parser=parser) + output = equalize_decl(output) + + assert output == expected + + +def test_unused_namespaces(parser, geom_df): + expected = """\ + + + + 0 + square + 360 + 4.0 + + + 1 + circle + 360 + + + + 2 + triangle + 180 + 3.0 + +""" + + output = geom_df.to_xml( + namespaces={"oth": "http://other.org", "ex": "http://example.com"}, + parser=parser, + ) + output = equalize_decl(output) + + assert output == expected + + +# PREFIX + + +def test_namespace_prefix(parser, geom_df): + expected = """\ + + + + 0 + square + 360 + 4.0 + + + 1 + circle + 360 + + + + 2 + triangle + 180 + 3.0 + +""" + + output = geom_df.to_xml( + namespaces={"doc": "http://example.com"}, prefix="doc", parser=parser + ) + output = equalize_decl(output) + + assert output == expected + + +def test_missing_prefix_in_nmsp(parser, geom_df): + with pytest.raises(KeyError, match=("doc is not included in namespaces")): + geom_df.to_xml( + namespaces={"": "http://example.com"}, prefix="doc", parser=parser + ) + + +def test_namespace_prefix_and_default(parser, geom_df): + expected = """\ + + + + 0 + square + 360 + 4.0 + + + 1 + circle + 360 + + + + 2 + triangle + 180 + 3.0 + +""" + + output = geom_df.to_xml( + namespaces={"": "http://example.com", "doc": "http://other.org"}, + prefix="doc", + parser=parser, + ) + output = equalize_decl(output) + + assert output == expected + + +# ENCODING + +encoding_expected = """\ + + + + 0 + 1 + José + Sofía + + + 1 + 2 + Luis + Valentina + + + 2 + 3 + Carlos + Isabella + + + 3 + 4 + Juan + Camila + + + 4 + 5 + Jorge + Valeria + +""" + + +def test_encoding_option_str(xml_baby_names, parser): + df_file = read_xml(xml_baby_names, parser=parser, encoding="ISO-8859-1").head(5) + + output = df_file.to_xml(encoding="ISO-8859-1", parser=parser) + + if output is not None: + # etree and lxml differ on quotes and case in xml declaration + output = output.replace( + ' + + 0 + square + 360 + 4.0 + + + 1 + circle + 360 + + + + 2 + triangle + 180 + 3.0 + +""" + + output = geom_df.to_xml(xml_declaration=False) + + assert output == expected + + +def test_no_pretty_print_with_decl(parser, geom_df): + expected = ( + "\n" + "0square" + "3604.0" + "1circle360" + "2" + "triangle1803.0" + "" + ) + + output = geom_df.to_xml(pretty_print=False, parser=parser) + output = equalize_decl(output) + + # etree adds space for closed tags + if output is not None: + output = output.replace(" />", "/>") + + assert output == expected + + +def test_no_pretty_print_no_decl(parser, geom_df): + expected = ( + "0square" + "3604.0" + "1circle360" + "2" + "triangle1803.0" + "" + ) + + output = geom_df.to_xml(xml_declaration=False, pretty_print=False, parser=parser) + + # etree adds space for closed tags + if output is not None: + output = output.replace(" />", "/>") + + assert output == expected + + +# PARSER + + +@td.skip_if_installed("lxml") +def test_default_parser_no_lxml(geom_df): + with pytest.raises( + ImportError, match=("lxml not found, please install or use the etree parser.") + ): + geom_df.to_xml() + + +def test_unknown_parser(geom_df): + with pytest.raises( + ValueError, match=("Values for parser can only be lxml or etree.") + ): + geom_df.to_xml(parser="bs4") + + +# STYLESHEET + +xsl_expected = """\ + + + + 0 + square + 360 + 4.0 + + + 1 + circle + 360 + + + + 2 + triangle + 180 + 3.0 + +""" + + +def test_stylesheet_file_like(xsl_row_field_output, mode, geom_df): + pytest.importorskip("lxml") + with open( + xsl_row_field_output, mode, encoding="utf-8" if mode == "r" else None + ) as f: + assert geom_df.to_xml(stylesheet=f) == xsl_expected + + +def test_stylesheet_io(xsl_row_field_output, mode, geom_df): + # note: By default the bodies of untyped functions are not checked, + # consider using --check-untyped-defs + pytest.importorskip("lxml") + xsl_obj: BytesIO | StringIO # type: ignore[annotation-unchecked] + + with open( + xsl_row_field_output, mode, encoding="utf-8" if mode == "r" else None + ) as f: + if mode == "rb": + xsl_obj = BytesIO(f.read()) + else: + xsl_obj = StringIO(f.read()) + + output = geom_df.to_xml(stylesheet=xsl_obj) + + assert output == xsl_expected + + +def test_stylesheet_buffered_reader(xsl_row_field_output, mode, geom_df): + pytest.importorskip("lxml") + with open( + xsl_row_field_output, mode, encoding="utf-8" if mode == "r" else None + ) as f: + xsl_obj = f.read() + + output = geom_df.to_xml(stylesheet=xsl_obj) + + assert output == xsl_expected + + +def test_stylesheet_wrong_path(geom_df): + lxml_etree = pytest.importorskip("lxml.etree") + + xsl = os.path.join("data", "xml", "row_field_output.xslt") + + with pytest.raises( + lxml_etree.XMLSyntaxError, + match=("Start tag expected, '<' not found"), + ): + geom_df.to_xml(stylesheet=xsl) + + +@pytest.mark.parametrize("val", ["", b""]) +def test_empty_string_stylesheet(val, geom_df): + lxml_etree = pytest.importorskip("lxml.etree") + + msg = "|".join( + [ + "Document is empty", + "Start tag expected, '<' not found", + # Seen on Mac with lxml 4.9.1 + r"None \(line 0\)", + ] + ) + + with pytest.raises(lxml_etree.XMLSyntaxError, match=msg): + geom_df.to_xml(stylesheet=val) + + +def test_incorrect_xsl_syntax(geom_df): + lxml_etree = pytest.importorskip("lxml.etree") + + xsl = """\ + + + + + + + + + + + + + + + + + + +""" + + with pytest.raises( + lxml_etree.XMLSyntaxError, match=("Opening and ending tag mismatch") + ): + geom_df.to_xml(stylesheet=xsl) + + +def test_incorrect_xsl_eval(geom_df): + lxml_etree = pytest.importorskip("lxml.etree") + + xsl = """\ + + + + + + + + + + + + + + + + + + +""" + + with pytest.raises(lxml_etree.XSLTParseError, match=("failed to compile")): + geom_df.to_xml(stylesheet=xsl) + + +def test_incorrect_xsl_apply(geom_df): + lxml_etree = pytest.importorskip("lxml.etree") + + xsl = """\ + + + + + + + + + +""" + + with pytest.raises(lxml_etree.XSLTApplyError, match=("Cannot resolve URI")): + with tm.ensure_clean("test.xml") as path: + geom_df.to_xml(path, stylesheet=xsl) + + +def test_stylesheet_with_etree(geom_df): + xsl = """\ + + + + + + + + + """ + + with pytest.raises( + ValueError, match=("To use stylesheet, you need lxml installed") + ): + geom_df.to_xml(parser="etree", stylesheet=xsl) + + +def test_style_to_csv(geom_df): + pytest.importorskip("lxml") + xsl = """\ + + + + + , + + ,shape,degrees,sides + + + + + + + +""" + + out_csv = geom_df.to_csv(lineterminator="\n") + + if out_csv is not None: + out_csv = out_csv.strip() + out_xml = geom_df.to_xml(stylesheet=xsl) + + assert out_csv == out_xml + + +def test_style_to_string(geom_df): + pytest.importorskip("lxml") + xsl = """\ + + + + + + + shape degrees sides + + + + + + + +""" + + out_str = geom_df.to_string() + out_xml = geom_df.to_xml(na_rep="NaN", stylesheet=xsl) + + assert out_xml == out_str + + +def test_style_to_json(geom_df): + pytest.importorskip("lxml") + xsl = """\ + + + + + " + + + {"shape":{ + + },"degrees":{ + + },"sides":{ + + }} + + + + + + + + + + + + + + + + + , + + +""" + + out_json = geom_df.to_json() + out_xml = geom_df.to_xml(stylesheet=xsl) + + assert out_json == out_xml + + +# COMPRESSION + + +geom_xml = """\ + + + + 0 + square + 360 + 4.0 + + + 1 + circle + 360 + + + + 2 + triangle + 180 + 3.0 + +""" + + +def test_compression_output(parser, compression_only, geom_df): + with tm.ensure_clean() as path: + geom_df.to_xml(path, parser=parser, compression=compression_only) + + with get_handle( + path, + "r", + compression=compression_only, + ) as handle_obj: + output = handle_obj.handle.read() + + output = equalize_decl(output) + + assert geom_xml == output.strip() + + +def test_filename_and_suffix_comp( + parser, compression_only, geom_df, compression_to_extension +): + compfile = "xml." + compression_to_extension[compression_only] + with tm.ensure_clean(filename=compfile) as path: + geom_df.to_xml(path, parser=parser, compression=compression_only) + + with get_handle( + path, + "r", + compression=compression_only, + ) as handle_obj: + output = handle_obj.handle.read() + + output = equalize_decl(output) + + assert geom_xml == output.strip() + + +def test_ea_dtypes(any_numeric_ea_dtype, parser): + # GH#43903 + expected = """ + + + 0 + + +""" + df = DataFrame({"a": [NA]}).astype(any_numeric_ea_dtype) + result = df.to_xml(parser=parser) + assert equalize_decl(result).strip() == expected + + +def test_unsuported_compression(parser, geom_df): + with pytest.raises(ValueError, match="Unrecognized compression type"): + with tm.ensure_clean() as path: + geom_df.to_xml(path, parser=parser, compression="7z") + + +# STORAGE OPTIONS + + +@pytest.mark.single_cpu +def test_s3_permission_output(parser, s3_public_bucket, geom_df): + s3fs = pytest.importorskip("s3fs") + pytest.importorskip("lxml") + + with tm.external_error_raised((PermissionError, FileNotFoundError)): + fs = s3fs.S3FileSystem(anon=True) + fs.ls(s3_public_bucket.name) + + geom_df.to_xml( + f"s3://{s3_public_bucket.name}/geom.xml", compression="zip", parser=parser + )