diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ce399f92e0fa4d4dc43554453767d21521e63c1f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__init__.py @@ -0,0 +1,112 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_torch_available, + is_vision_available, +) + + +_import_structure = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_beit"] = ["BeitFeatureExtractor"] + _import_structure["image_processing_beit"] = ["BeitImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_beit"] = [ + "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", + "BeitForImageClassification", + "BeitForMaskedImageModeling", + "BeitForSemanticSegmentation", + "BeitModel", + "BeitPreTrainedModel", + "BeitBackbone", + ] + + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_beit"] = [ + "FlaxBeitForImageClassification", + "FlaxBeitForMaskedImageModeling", + "FlaxBeitModel", + "FlaxBeitPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_beit import BeitFeatureExtractor + from .image_processing_beit import BeitImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_beit import ( + BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, + BeitBackbone, + BeitForImageClassification, + BeitForMaskedImageModeling, + BeitForSemanticSegmentation, + BeitModel, + BeitPreTrainedModel, + ) + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_beit import ( + FlaxBeitForImageClassification, + FlaxBeitForMaskedImageModeling, + FlaxBeitModel, + FlaxBeitPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f1446d77c72be75d026e0759dcff5b9ff4e8234 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/configuration_beit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/configuration_beit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d0eefb2d4fc42807d324470b5a34a53ee7d62cc0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/configuration_beit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/convert_beit_unilm_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/convert_beit_unilm_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f6287e136ad46664aae596952fc74c8d200c6586 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/convert_beit_unilm_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/feature_extraction_beit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/feature_extraction_beit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a16e70e70bec65b6009fc4abf9965b13987ee49 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/feature_extraction_beit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/image_processing_beit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/image_processing_beit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1aa4d1b12be75d5e84330c71f958cfe456796cf1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/image_processing_beit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_beit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_beit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cf4a36fcbc861620b645719e0fea75f8466e7701 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_beit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_flax_beit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_flax_beit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..26347e8d24b2db511910b0c0319e54bb5c3918ed Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/__pycache__/modeling_flax_beit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/configuration_beit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/configuration_beit.py new file mode 100644 index 0000000000000000000000000000000000000000..dbb1e755e94b36a651ed60f85044ddb84b2d3bef --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/configuration_beit.py @@ -0,0 +1,231 @@ +# coding=utf-8 +# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" BEiT model configuration""" +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging +from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class BeitConfig(BackboneConfigMixin, PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`BeitModel`]. It is used to instantiate an BEiT + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the BEiT + [microsoft/beit-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) architecture. + + Args: + vocab_size (`int`, *optional*, defaults to 8192): + Vocabulary size of the BEiT model. Defines the number of different image tokens that can be used during + pre-training. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + use_mask_token (`bool`, *optional*, defaults to `False`): + Whether to use a mask token for masked image modeling. + use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`): + Whether to use BERT-style absolute position embeddings. + use_relative_position_bias (`bool`, *optional*, defaults to `False`): + Whether to use T5-style relative position embeddings in the self-attention layers. + use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`): + Whether to use the same relative position embeddings across all self-attention layers of the Transformer. + layer_scale_init_value (`float`, *optional*, defaults to 0.1): + Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. + drop_path_rate (`float`, *optional*, defaults to 0.1): + Stochastic depth rate per sample (when applied in the main path of residual layers). + use_mean_pooling (`bool`, *optional*, defaults to `True`): + Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the + CLS token, before applying the classification head. + pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): + Pooling scales used in Pooling Pyramid Module applied on the last feature map. + use_auxiliary_head (`bool`, *optional*, defaults to `True`): + Whether to use an auxiliary head during training. + auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): + Weight of the cross-entropy loss of the auxiliary head. + auxiliary_channels (`int`, *optional*, defaults to 256): + Number of channels to use in the auxiliary head. + auxiliary_num_convs (`int`, *optional*, defaults to 1): + Number of convolutional layers to use in the auxiliary head. + auxiliary_concat_input (`bool`, *optional*, defaults to `False`): + Whether to concatenate the output of the auxiliary head with the input before the classification layer. + semantic_loss_ignore_index (`int`, *optional*, defaults to 255): + The index that is ignored by the loss function of the semantic segmentation model. + out_features (`List[str]`, *optional*): + If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. + (depending on how many stages the model has). If unset and `out_indices` is set, will default to the + corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. + If unset and `out_features` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + add_fpn (`bool`, *optional*, defaults to `False`): + Whether to add a FPN as part of the backbone. Only relevant for [`BeitBackbone`]. + reshape_hidden_states (`bool`, *optional*, defaults to `True`): + Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in + case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size, + seq_len, hidden_size)`. Only relevant for [`BeitBackbone`]. + + Example: + + ```python + >>> from transformers import BeitConfig, BeitModel + + >>> # Initializing a BEiT beit-base-patch16-224-pt22k style configuration + >>> configuration = BeitConfig() + + >>> # Initializing a model (with random weights) from the beit-base-patch16-224-pt22k style configuration + >>> model = BeitModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "beit" + + def __init__( + self, + vocab_size=8192, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-12, + image_size=224, + patch_size=16, + num_channels=3, + use_mask_token=False, + use_absolute_position_embeddings=False, + use_relative_position_bias=False, + use_shared_relative_position_bias=False, + layer_scale_init_value=0.1, + drop_path_rate=0.1, + use_mean_pooling=True, + pool_scales=[1, 2, 3, 6], + use_auxiliary_head=True, + auxiliary_loss_weight=0.4, + auxiliary_channels=256, + auxiliary_num_convs=1, + auxiliary_concat_input=False, + semantic_loss_ignore_index=255, + out_features=None, + out_indices=None, + add_fpn=False, + reshape_hidden_states=True, + **kwargs, + ): + super().__init__(**kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.use_mask_token = use_mask_token + self.use_absolute_position_embeddings = use_absolute_position_embeddings + self.use_relative_position_bias = use_relative_position_bias + self.use_shared_relative_position_bias = use_shared_relative_position_bias + self.layer_scale_init_value = layer_scale_init_value + self.drop_path_rate = drop_path_rate + self.use_mean_pooling = use_mean_pooling + # decode head attributes (semantic segmentation) + self.pool_scales = pool_scales + # auxiliary head attributes (semantic segmentation) + self.use_auxiliary_head = use_auxiliary_head + self.auxiliary_loss_weight = auxiliary_loss_weight + self.auxiliary_channels = auxiliary_channels + self.auxiliary_num_convs = auxiliary_num_convs + self.auxiliary_concat_input = auxiliary_concat_input + self.semantic_loss_ignore_index = semantic_loss_ignore_index + + # handle backwards compatibility + if "segmentation_indices" in kwargs: + logger.warning( + "The `segmentation_indices` argument is deprecated and will be removed in a future version, use `out_indices` instead.", + FutureWarning, + ) + out_indices = kwargs.pop("segmentation_indices") + + # backbone attributes + self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)] + self._out_features, self._out_indices = get_aligned_output_features_output_indices( + out_features=out_features, out_indices=out_indices, stage_names=self.stage_names + ) + self.add_fpn = add_fpn + self.reshape_hidden_states = reshape_hidden_states + + +# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig +class BeitOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/convert_beit_unilm_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/convert_beit_unilm_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..757113c8a60fcca061c256ed659a46f700ced08f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/convert_beit_unilm_to_pytorch.py @@ -0,0 +1,374 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert BEiT checkpoints from the unilm repository.""" + + +import argparse +import json +from pathlib import Path + +import requests +import torch +from datasets import load_dataset +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import ( + BeitConfig, + BeitForImageClassification, + BeitForMaskedImageModeling, + BeitForSemanticSegmentation, + BeitImageProcessor, +) +from transformers.image_utils import PILImageResampling +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config, has_lm_head=False, is_semantic=False): + prefix = "backbone." if is_semantic else "" + + rename_keys = [] + for i in range(config.num_hidden_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight")) + rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias")) + rename_keys.append( + (f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight") + ) + rename_keys.append( + (f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias") + ) + rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight")) + rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias")) + rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight")) + rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias")) + rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight")) + rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias")) + + # projection layer + position embeddings + rename_keys.extend( + [ + (f"{prefix}cls_token", "beit.embeddings.cls_token"), + (f"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"), + (f"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"), + ] + ) + + if has_lm_head: + # mask token + shared relative position bias + layernorm + rename_keys.extend( + [ + ("mask_token", "beit.embeddings.mask_token"), + ( + "rel_pos_bias.relative_position_bias_table", + "beit.encoder.relative_position_bias.relative_position_bias_table", + ), + ( + "rel_pos_bias.relative_position_index", + "beit.encoder.relative_position_bias.relative_position_index", + ), + ("norm.weight", "layernorm.weight"), + ("norm.bias", "layernorm.bias"), + ] + ) + elif is_semantic: + # semantic segmentation classification heads + rename_keys.extend( + [ + ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), + ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), + ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), + ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), + ] + ) + else: + # layernorm + classification head + rename_keys.extend( + [ + ("fc_norm.weight", "beit.pooler.layernorm.weight"), + ("fc_norm.bias", "beit.pooler.layernorm.bias"), + ("head.weight", "classifier.weight"), + ("head.bias", "classifier.bias"), + ] + ) + + return rename_keys + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False): + for i in range(config.num_hidden_layers): + prefix = "backbone." if is_semantic else "" + # queries, keys and values + in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight") + q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias") + v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias") + + state_dict[f"beit.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ + : config.hidden_size, : + ] + state_dict[f"beit.encoder.layer.{i}.attention.attention.query.bias"] = q_bias + state_dict[f"beit.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"beit.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ + -config.hidden_size :, : + ] + state_dict[f"beit.encoder.layer.{i}.attention.attention.value.bias"] = v_bias + + # gamma_1 and gamma_2 + # we call them lambda because otherwise they are renamed when using .from_pretrained + gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1") + gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2") + + state_dict[f"beit.encoder.layer.{i}.lambda_1"] = gamma_1 + state_dict[f"beit.encoder.layer.{i}.lambda_2"] = gamma_2 + + # relative_position bias table + index + if not has_lm_head: + # each layer has its own relative position bias + table = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_bias_table") + index = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_index") + + state_dict[ + f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table" + ] = table + state_dict[ + f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index" + ] = index + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_beit_checkpoint(checkpoint_url, pytorch_dump_folder_path): + """ + Copy/paste/tweak model's weights to our BEiT structure. + """ + + # define default BEiT configuration + config = BeitConfig() + has_lm_head = False + is_semantic = False + repo_id = "huggingface/label-files" + # set config parameters based on URL + if checkpoint_url[-9:-4] == "pt22k": + # masked image modeling + config.use_shared_relative_position_bias = True + config.use_mask_token = True + has_lm_head = True + elif checkpoint_url[-9:-4] == "ft22k": + # intermediate fine-tuning on ImageNet-22k + config.use_relative_position_bias = True + config.num_labels = 21841 + filename = "imagenet-22k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + # this dataset contains 21843 labels but the model only has 21841 + # we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18 + del id2label[9205] + del id2label[15027] + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + elif checkpoint_url[-8:-4] == "to1k": + # fine-tuning on ImageNet-1k + config.use_relative_position_bias = True + config.num_labels = 1000 + filename = "imagenet-1k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + if "384" in checkpoint_url: + config.image_size = 384 + if "512" in checkpoint_url: + config.image_size = 512 + elif "ade20k" in checkpoint_url: + # fine-tuning + config.use_relative_position_bias = True + config.num_labels = 150 + filename = "ade20k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + config.image_size = 640 + is_semantic = True + else: + raise ValueError("Checkpoint not supported, URL should either end with 'pt22k', 'ft22k', 'to1k' or 'ade20k'") + + # size of the architecture + if "base" in checkpoint_url: + pass + elif "large" in checkpoint_url: + config.hidden_size = 1024 + config.intermediate_size = 4096 + config.num_hidden_layers = 24 + config.num_attention_heads = 16 + if "ade20k" in checkpoint_url: + config.image_size = 640 + config.out_indices = [7, 11, 15, 23] + else: + raise ValueError("Should either find 'base' or 'large' in checkpoint URL") + + # load state_dict of original model, remove and rename some keys + state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True) + state_dict = state_dict["model"] if "ade20k" not in checkpoint_url else state_dict["state_dict"] + + rename_keys = create_rename_keys(config, has_lm_head=has_lm_head, is_semantic=is_semantic) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config, has_lm_head=has_lm_head, is_semantic=is_semantic) + if is_semantic: + # add prefix to decoder keys + for key, val in state_dict.copy().items(): + val = state_dict.pop(key) + if key.startswith("backbone.fpn"): + key = key.replace("backbone.fpn", "fpn") + state_dict[key] = val + + # load HuggingFace model + if checkpoint_url[-9:-4] == "pt22k": + model = BeitForMaskedImageModeling(config) + elif "ade20k" in checkpoint_url: + model = BeitForSemanticSegmentation(config) + else: + model = BeitForImageClassification(config) + model.eval() + model.load_state_dict(state_dict) + + # Check outputs on an image + if is_semantic: + image_processor = BeitImageProcessor(size=config.image_size, do_center_crop=False) + ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") + image = Image.open(ds[0]["file"]) + else: + image_processor = BeitImageProcessor( + size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=False + ) + image = prepare_img() + + encoding = image_processor(images=image, return_tensors="pt") + pixel_values = encoding["pixel_values"] + + outputs = model(pixel_values) + logits = outputs.logits + + # verify logits + expected_shape = torch.Size([1, 1000]) + if checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k"): + expected_shape = torch.Size([1, 196, 8192]) + elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k"): + expected_shape = torch.Size([1, 196, 8192]) + elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22k"): + expected_shape = torch.Size([1, 21841]) + expected_logits = torch.tensor([2.2288, 2.4671, 0.7395]) + expected_class_idx = 2397 + elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22k"): + expected_shape = torch.Size([1, 21841]) + expected_logits = torch.tensor([1.6881, -0.2787, 0.5901]) + expected_class_idx = 2396 + elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft1k"): + expected_logits = torch.tensor([0.1241, 0.0798, -0.6569]) + expected_class_idx = 285 + elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22kto1k"): + expected_logits = torch.tensor([-1.2385, -1.0987, -1.0108]) + expected_class_idx = 281 + elif checkpoint_url[:-4].endswith("beit_base_patch16_384_pt22k_ft22kto1k"): + expected_logits = torch.tensor([-1.5303, -0.9484, -0.3147]) + expected_class_idx = 761 + elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft1k"): + expected_logits = torch.tensor([0.4610, -0.0928, 0.2086]) + expected_class_idx = 761 + elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22kto1k"): + expected_logits = torch.tensor([-0.4804, 0.6257, -0.1837]) + expected_class_idx = 761 + elif checkpoint_url[:-4].endswith("beit_large_patch16_384_pt22k_ft22kto1k"): + expected_logits = torch.tensor([[-0.5122, 0.5117, -0.2113]]) + expected_class_idx = 761 + elif checkpoint_url[:-4].endswith("beit_large_patch16_512_pt22k_ft22kto1k"): + expected_logits = torch.tensor([-0.3062, 0.7261, 0.4852]) + expected_class_idx = 761 + elif checkpoint_url[:-4].endswith("beit_base_patch16_640_pt22k_ft22ktoade20k"): + expected_shape = (1, 150, 160, 160) + expected_logits = torch.tensor( + [ + [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], + [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], + [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], + ] + ) + elif checkpoint_url[:-4].endswith("beit_large_patch16_640_pt22k_ft22ktoade20k"): + expected_shape = (1, 150, 160, 160) + expected_logits = torch.tensor( + [ + [[-4.3305, -2.3049, -3.0161], [-2.9591, -1.5305, -2.2251], [-3.4198, -1.8004, -2.9062]], + [[-5.8922, -3.7435, -4.3978], [-4.2063, -2.7872, -3.4755], [-4.2791, -3.1874, -4.1681]], + [[0.9895, 4.3467, 4.7663], [4.2476, 5.6830, 6.1518], [4.5550, 6.2495, 6.5154]], + ] + ) + else: + raise ValueError("Can't verify logits as model is not supported") + + if logits.shape != expected_shape: + raise ValueError(f"Shape of logits not as expected. {logits.shape=}, {expected_shape=}") + if not has_lm_head: + if is_semantic: + if not torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-3): + raise ValueError("First elements of logits not as expected") + else: + print("Predicted class idx:", logits.argmax(-1).item()) + + if not torch.allclose(logits[0, :3], expected_logits, atol=1e-3): + raise ValueError("First elements of logits not as expected") + if logits.argmax(-1).item() != expected_class_idx: + raise ValueError("Predicted class index not as expected") + + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + + parser.add_argument( + "--checkpoint_url", + default="https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth", + type=str, + help="URL to the original PyTorch checkpoint (.pth file).", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." + ) + args = parser.parse_args() + convert_beit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/feature_extraction_beit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/feature_extraction_beit.py new file mode 100644 index 0000000000000000000000000000000000000000..59dacb4ae51f6e314b96ca8c0e8c368e689c1aa7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/feature_extraction_beit.py @@ -0,0 +1,33 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for BEiT.""" + +import warnings + +from ...utils import logging +from .image_processing_beit import BeitImageProcessor + + +logger = logging.get_logger(__name__) + + +class BeitFeatureExtractor(BeitImageProcessor): + def __init__(self, *args, **kwargs) -> None: + warnings.warn( + "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" + " use BeitImageProcessor instead.", + FutureWarning, + ) + super().__init__(*args, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/image_processing_beit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/image_processing_beit.py new file mode 100644 index 0000000000000000000000000000000000000000..5e15fe645cf9d9118a59e54a1b29c9e86d520765 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/image_processing_beit.py @@ -0,0 +1,531 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for Beit.""" + +import warnings +from typing import Any, Dict, List, Optional, Tuple, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import resize, to_channel_dimension_format +from ...image_utils import ( + IMAGENET_STANDARD_MEAN, + IMAGENET_STANDARD_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging + + +if is_vision_available(): + import PIL + +if is_torch_available(): + import torch + + +logger = logging.get_logger(__name__) + + +class BeitImageProcessor(BaseImageProcessor): + r""" + Constructs a BEiT image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the + `do_resize` parameter in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`): + Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` + method. + resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): + Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the + `preprocess` method. + do_center_crop (`bool`, *optional*, defaults to `True`): + Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image + is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the + `preprocess` method. + crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): + Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`. + Can be overridden by the `crop_size` parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the + `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` + parameter in the `preprocess` method. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): + The mean to use if normalizing the image. This is a float or list of floats of length of the number of + channels of the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): + The standard deviation to use if normalizing the image. This is a float or list of floats of length of the + number of channels of the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + do_reduce_labels (`bool`, *optional*, defaults to `False`): + Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is + used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The + background label will be replaced by 255. Can be overridden by the `do_reduce_labels` parameter in the + `preprocess` method. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Dict[str, int] = None, + resample: PILImageResampling = PILImageResampling.BICUBIC, + do_center_crop: bool = True, + crop_size: Dict[str, int] = None, + rescale_factor: Union[int, float] = 1 / 255, + do_rescale: bool = True, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_reduce_labels: bool = False, + **kwargs, + ) -> None: + if "reduce_labels" in kwargs: + warnings.warn( + "The `reduce_labels` parameter is deprecated and will be removed in a future version. Please use" + " `do_reduce_labels` instead.", + FutureWarning, + ) + do_reduce_labels = kwargs.pop("reduce_labels") + super().__init__(**kwargs) + size = size if size is not None else {"height": 256, "width": 256} + size = get_size_dict(size) + crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} + crop_size = get_size_dict(crop_size, param_name="crop_size") + self.do_resize = do_resize + self.size = size + self.resample = resample + self.do_center_crop = do_center_crop + self.crop_size = crop_size + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD + self.do_reduce_labels = do_reduce_labels + self._valid_processor_keys = [ + "images", + "segmentation_maps", + "do_resize", + "size", + "resample", + "do_center_crop", + "crop_size", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "do_reduce_labels", + "return_tensors", + "data_format", + "input_data_format", + ] + + @classmethod + def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): + """ + Overrides the `from_dict` method from the base class to make sure `reduce_labels` is updated if image processor + is created using from_dict and kwargs e.g. `BeitImageProcessor.from_pretrained(checkpoint, reduce_labels=True)` + """ + image_processor_dict = image_processor_dict.copy() + if "reduce_labels" in kwargs: + image_processor_dict["reduce_labels"] = kwargs.pop("reduce_labels") + return super().from_dict(image_processor_dict, **kwargs) + + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BICUBIC, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image to (size["height"], size["width"]). + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Size of the output image. + resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`): + Resampling filter to use when resiizing the image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + size = get_size_dict(size, default_to_square=True, param_name="size") + if "height" not in size or "width" not in size: + raise ValueError(f"The `size` argument must contain `height` and `width` keys. Got {size.keys()}") + return resize( + image, + size=(size["height"], size["width"]), + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def reduce_label(self, label: ImageInput) -> np.ndarray: + label = to_numpy_array(label) + # Avoid using underflow conversion + label[label == 0] = 255 + label = label - 1 + label[label == 254] = 255 + return label + + def _preprocess( + self, + image: ImageInput, + do_reduce_labels: bool = None, + do_resize: bool = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ): + if do_reduce_labels: + image = self.reduce_label(image) + + if do_resize: + image = self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) + + if do_center_crop: + image = self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) + + if do_rescale: + image = self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + + if do_normalize: + image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + + return image + + def _preprocess_image( + self, + image: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + """Preprocesses a single image.""" + # All transformations expect numpy arrays. + image = to_numpy_array(image) + if is_scaled_image(image) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + if input_data_format is None: + input_data_format = infer_channel_dimension_format(image) + image = self._preprocess( + image, + do_reduce_labels=False, + do_resize=do_resize, + size=size, + resample=resample, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + input_data_format=input_data_format, + ) + if data_format is not None: + image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) + return image + + def _preprocess_segmentation_map( + self, + segmentation_map: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_reduce_labels: bool = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ): + """Preprocesses a single segmentation map.""" + # All transformations expect numpy arrays. + segmentation_map = to_numpy_array(segmentation_map) + # Add an axis to the segmentation maps for transformations. + if segmentation_map.ndim == 2: + segmentation_map = segmentation_map[None, ...] + added_dimension = True + input_data_format = ChannelDimension.FIRST + else: + added_dimension = False + if input_data_format is None: + input_data_format = infer_channel_dimension_format(segmentation_map, num_channels=1) + segmentation_map = self._preprocess( + image=segmentation_map, + do_reduce_labels=do_reduce_labels, + do_resize=do_resize, + resample=resample, + size=size, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_normalize=False, + do_rescale=False, + input_data_format=ChannelDimension.FIRST, + ) + # Remove extra axis if added + if added_dimension: + segmentation_map = np.squeeze(segmentation_map, axis=0) + segmentation_map = segmentation_map.astype(np.int64) + return segmentation_map + + def __call__(self, images, segmentation_maps=None, **kwargs): + # Overrides the `__call__` method of the `Preprocessor` class such that the images and segmentation maps can both + # be passed in as positional arguments. + return super().__call__(images, segmentation_maps=segmentation_maps, **kwargs) + + def preprocess( + self, + images: ImageInput, + segmentation_maps: Optional[ImageInput] = None, + do_resize: bool = None, + size: Dict[str, int] = None, + resample: PILImageResampling = None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_reduce_labels: Optional[bool] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: ChannelDimension = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> PIL.Image.Image: + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + segmentation_maps (`ImageInput`, *optional*) + Segmentation maps to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after resizing. + resample (`int`, *optional*, defaults to `self.resample`): + Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only + has an effect if `do_resize` is set to `True`. + do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): + Whether to center crop the image. + crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): + Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be + padded with zeros and then cropped + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image values between [0 - 1]. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation. + do_reduce_labels (`bool`, *optional*, defaults to `self.do_reduce_labels`): + Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 + is used for background, and background itself is not included in all classes of a dataset (e.g. + ADE20k). The background label will be replaced by 255. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - Unset: Use the channel dimension format of the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_resize = do_resize if do_resize is not None else self.do_resize + size = size if size is not None else self.size + size = get_size_dict(size, default_to_square=True, param_name="size") + resample = resample if resample is not None else self.resample + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + crop_size = crop_size if crop_size is not None else self.crop_size + crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + images = make_list_of_images(images) + + if segmentation_maps is not None: + segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) + + if segmentation_maps is not None and not valid_images(segmentation_maps): + raise ValueError( + "Invalid segmentation_maps type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_resize=do_resize, + size=size, + resample=resample, + ) + + images = [ + self._preprocess_image( + image=img, + do_resize=do_resize, + do_center_crop=do_center_crop, + do_rescale=do_rescale, + do_normalize=do_normalize, + resample=resample, + size=size, + rescale_factor=rescale_factor, + crop_size=crop_size, + image_mean=image_mean, + image_std=image_std, + data_format=data_format, + input_data_format=input_data_format, + ) + for img in images + ] + + data = {"pixel_values": images} + + if segmentation_maps is not None: + segmentation_maps = [ + self._preprocess_segmentation_map( + segmentation_map=segmentation_map, + do_reduce_labels=do_reduce_labels, + do_resize=do_resize, + resample=resample, + size=size, + do_center_crop=do_center_crop, + crop_size=crop_size, + ) + for segmentation_map in segmentation_maps + ] + data["labels"] = segmentation_maps + + return BatchFeature(data=data, tensor_type=return_tensors) + + def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple] = None): + """ + Converts the output of [`BeitForSemanticSegmentation`] into semantic segmentation maps. Only supports PyTorch. + + Args: + outputs ([`BeitForSemanticSegmentation`]): + Raw outputs of the model. + target_sizes (`List[Tuple]` of length `batch_size`, *optional*): + List of tuples corresponding to the requested final size (height, width) of each prediction. If unset, + predictions will not be resized. + + Returns: + semantic_segmentation: `List[torch.Tensor]` of length `batch_size`, where each item is a semantic + segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is + specified). Each entry of each `torch.Tensor` correspond to a semantic class id. + """ + # TODO: add support for other frameworks + logits = outputs.logits + + # Resize logits and compute semantic segmentation maps + if target_sizes is not None: + if len(logits) != len(target_sizes): + raise ValueError( + "Make sure that you pass in as many target sizes as the batch dimension of the logits" + ) + + if is_torch_tensor(target_sizes): + target_sizes = target_sizes.numpy() + + semantic_segmentation = [] + + for idx in range(len(logits)): + resized_logits = torch.nn.functional.interpolate( + logits[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False + ) + semantic_map = resized_logits[0].argmax(dim=0) + semantic_segmentation.append(semantic_map) + else: + semantic_segmentation = logits.argmax(dim=1) + semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] + + return semantic_segmentation diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_beit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_beit.py new file mode 100644 index 0000000000000000000000000000000000000000..d04717039ec90967fe326e25a88e2faa2a883fe2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_beit.py @@ -0,0 +1,1425 @@ +# coding=utf-8 +# Copyright 2021 Microsoft Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch BEiT model.""" + + +import collections.abc +import math +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import Tensor, nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BackboneOutput, + BaseModelOutput, + BaseModelOutputWithPooling, + ImageClassifierOutput, + MaskedLMOutput, + SemanticSegmenterOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ...utils.backbone_utils import BackboneMixin +from .configuration_beit import BeitConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "BeitConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "microsoft/beit-base-patch16-224-pt22k" +_EXPECTED_OUTPUT_SHAPE = [1, 197, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "microsoft/beit-base-patch16-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +from ..deprecated._archive_maps import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class BeitModelOutputWithPooling(BaseModelOutputWithPooling): + """ + Class for outputs of [`BeitModel`]. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if + *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token + will be returned. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +class BeitDropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +# Based on timm implementation, which can be found here: +# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py +class BeitEmbeddings(nn.Module): + """ + Construct the CLS token, position and patch embeddings. Optionally, also the mask token. + + """ + + def __init__(self, config: BeitConfig) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + if config.use_mask_token: + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + else: + self.mask_token = None + self.patch_embeddings = BeitPatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + if config.use_absolute_position_embeddings: + self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) + else: + self.position_embeddings = None + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: + embeddings, (patch_height, patch_width) = self.patch_embeddings( + pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None + ) + batch_size, seq_len, _ = embeddings.size() + + if bool_masked_pos is not None: + mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) + # replace the masked visual tokens by mask_tokens + w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) + embeddings = embeddings * (1 - w) + mask_tokens * w + + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + if self.position_embeddings is not None: + cls_tokens = cls_tokens + self.position_embeddings[:, :1, :] + + embeddings = torch.cat((cls_tokens, embeddings), dim=1) + + embeddings = self.dropout(embeddings) + + return embeddings, (patch_height, patch_width) + + +class BeitPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + self.patch_shape = patch_shape + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor, position_embedding: Optional[torch.Tensor] = None) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + + embeddings = self.projection(pixel_values) + patch_height, patch_width = embeddings.shape[2], embeddings.shape[3] + + if position_embedding is not None: + # interpolate the position embedding to the corresponding size + position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute( + 0, 3, 1, 2 + ) + position_embedding = nn.functional.interpolate( + position_embedding, size=(patch_height, patch_width), mode="bicubic" + ) + embeddings = embeddings + position_embedding + + embeddings = embeddings.flatten(2).transpose(1, 2) + + return embeddings, (patch_height, patch_width) + + +class BeitSelfAttention(nn.Module): + def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + if window_size: + self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) + else: + self.relative_position_bias = None + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + relative_position_bias: Optional["BeitRelativePositionBias"] = None, + ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Add relative position bias if present. + if self.relative_position_bias is not None: + attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0) + + # Add shared relative position bias if provided. + if relative_position_bias is not None: + attention_scores = attention_scores + relative_position_bias + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +class BeitSelfOutput(nn.Module): + """ + The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: BeitConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +class BeitAttention(nn.Module): + def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: + super().__init__() + self.attention = BeitSelfAttention(config, window_size=window_size) + self.output = BeitSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + relative_position_bias: Optional["BeitRelativePositionBias"] = None, + ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class BeitIntermediate(nn.Module): + def __init__(self, config: BeitConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +class BeitOutput(nn.Module): + def __init__(self, config: BeitConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +class BeitLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = BeitAttention(config, window_size=window_size) + self.intermediate = BeitIntermediate(config) + self.output = BeitOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.drop_path = BeitDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + init_values = config.layer_scale_init_value + if init_values > 0: + self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) + self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) + else: + self.lambda_1, self.lambda_2 = None, None + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + relative_position_bias: Optional["BeitRelativePositionBias"] = None, + ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + relative_position_bias=relative_position_bias, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # apply lambda_1 if present + if self.lambda_1 is not None: + attention_output = self.lambda_1 * attention_output + + # first residual connection + hidden_states = self.drop_path(attention_output) + hidden_states + + # in BEiT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + + layer_output = self.intermediate(layer_output) + layer_output = self.output(layer_output) + + if self.lambda_2 is not None: + layer_output = self.lambda_2 * layer_output + + # second residual connection + layer_output = self.drop_path(layer_output) + hidden_states + + outputs = (layer_output,) + outputs + + return outputs + + +class BeitRelativePositionBias(nn.Module): + def __init__(self, config: BeitConfig, window_size: tuple) -> None: + super().__init__() + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, config.num_attention_heads) + ) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = torch.zeros( + size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype + ) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index, persistent=False) + + def forward(self) -> torch.Tensor: + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 + ) # Wh*Ww,Wh*Ww,nH + + return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + + +class BeitEncoder(nn.Module): + def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None: + super().__init__() + self.config = config + if config.use_shared_relative_position_bias: + self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) + else: + self.relative_position_bias = None + + # stochastic depth decay rule + dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] + self.layer = nn.ModuleList( + [ + BeitLayer( + config, + window_size=window_size if config.use_relative_position_bias else None, + drop_path_rate=dpr[i], + ) + for i in range(config.num_hidden_layers) + ] + ) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + relative_position_bias = ( + self.relative_position_bias() if self.relative_position_bias is not None else None + ) + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class BeitPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BeitConfig + base_model_prefix = "beit" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +BEIT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`BeitConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BEIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`BeitImageProcessor.__call__`] for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.", + BEIT_START_DOCSTRING, +) +class BeitModel(BeitPreTrainedModel): + def __init__(self, config: BeitConfig, add_pooling_layer: bool = True) -> None: + super().__init__(config) + self.config = config + + self.embeddings = BeitEmbeddings(config) + self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) + + self.layernorm = ( + nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + ) + self.pooler = BeitPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BeitModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, BeitModelOutputWithPooling]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values, bool_masked_pos) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return BeitModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class BeitPooler(nn.Module): + def __init__(self, config: BeitConfig) -> None: + super().__init__() + self.layernorm = ( + nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None + ) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + if self.layernorm is not None: + # Mean pool the final hidden states of the patch tokens + patch_tokens = hidden_states[:, 1:, :] + pooled_output = self.layernorm(patch_tokens.mean(1)) + else: + # Pool by simply taking the final hidden state of the [CLS] token + pooled_output = hidden_states[:, 0] + + return pooled_output + + +@add_start_docstrings( + """Beit Model transformer with a 'language' modeling head on top. BEiT does masked image modeling by predicting + visual tokens of a Vector-Quantize Variational Autoencoder (VQ-VAE), whereas other vision models like ViT and DeiT + predict RGB pixel values. As a result, this class is incompatible with [`AutoModelForMaskedImageModeling`], so you + will need to use [`BeitForMaskedImageModeling`] directly if you wish to do masked image modeling with BEiT.""", + BEIT_START_DOCSTRING, +) +class BeitForMaskedImageModeling(BeitPreTrainedModel): + def __init__(self, config: BeitConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.beit = BeitModel(config, add_pooling_layer=False) + + # Classifier head + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, MaskedLMOutput]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") + >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") + + >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 + >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values + >>> # create random boolean mask of shape (batch_size, num_patches) + >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() + + >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) + >>> loss, logits = outputs.loss, outputs.logits + >>> list(logits.shape) + [1, 196, 8192] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.beit( + pixel_values, + bool_masked_pos=bool_masked_pos, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + sequence_output = self.layernorm(sequence_output) + prediction_scores = self.lm_head(sequence_output[:, 1:]) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores[bool_masked_pos], labels) + + if not return_dict: + output = (prediction_scores,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final + hidden states of the patch tokens) e.g. for ImageNet. + """, + BEIT_START_DOCSTRING, +) +class BeitForImageClassification(BeitPreTrainedModel): + def __init__(self, config: BeitConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.beit = BeitModel(config, add_pooling_layer=True) + + # Classifier head + self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + outputs = self.beit( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +class BeitConvModule(nn.Module): + """ + A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution + layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__( + self, + in_channels: int, + out_channels: int, + kernel_size: Union[int, Tuple[int, int]], + padding: Union[int, Tuple[int, int], str] = 0, + bias: bool = False, + dilation: Union[int, Tuple[int, int]] = 1, + ) -> None: + super().__init__() + self.conv = nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + padding=padding, + bias=bias, + dilation=dilation, + ) + self.bn = nn.BatchNorm2d(out_channels) + self.activation = nn.ReLU() + + def forward(self, input: torch.Tensor) -> torch.Tensor: + output = self.conv(input) + output = self.bn(output) + output = self.activation(output) + + return output + + +class BeitPyramidPoolingBlock(nn.Module): + def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: + super().__init__() + self.layers = [ + nn.AdaptiveAvgPool2d(pool_scale), + BeitConvModule(in_channels, channels, kernel_size=1), + ] + for i, layer in enumerate(self.layers): + self.add_module(str(i), layer) + + def forward(self, input: torch.Tensor) -> torch.Tensor: + hidden_state = input + for layer in self.layers: + hidden_state = layer(hidden_state) + return hidden_state + + +class BeitPyramidPoolingModule(nn.Module): + """ + Pyramid Pooling Module (PPM) used in PSPNet. + + Args: + pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid + Module. + in_channels (int): Input channels. + channels (int): Channels after modules, before conv_seg. + align_corners (bool): align_corners argument of F.interpolate. + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: + super().__init__() + self.pool_scales = pool_scales + self.align_corners = align_corners + self.in_channels = in_channels + self.channels = channels + self.blocks = [] + for i, pool_scale in enumerate(pool_scales): + block = BeitPyramidPoolingBlock(pool_scale=pool_scale, in_channels=in_channels, channels=channels) + self.blocks.append(block) + self.add_module(str(i), block) + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + ppm_outs = [] + for ppm in self.blocks: + ppm_out = ppm(x) + upsampled_ppm_out = nn.functional.interpolate( + ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners + ) + ppm_outs.append(upsampled_ppm_out) + return ppm_outs + + +class BeitUperHead(nn.Module): + """ + Unified Perceptual Parsing for Scene Understanding. This head is the implementation of + [UPerNet](https://arxiv.org/abs/1807.10221). + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__(self, config: BeitConfig) -> None: + super().__init__() + + self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) + self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] + self.channels = config.hidden_size + self.align_corners = False + self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) + + # PSP Module + self.psp_modules = BeitPyramidPoolingModule( + self.pool_scales, + self.in_channels[-1], + self.channels, + align_corners=self.align_corners, + ) + self.bottleneck = BeitConvModule( + self.in_channels[-1] + len(self.pool_scales) * self.channels, + self.channels, + kernel_size=3, + padding=1, + ) + # FPN Module + self.lateral_convs = nn.ModuleList() + self.fpn_convs = nn.ModuleList() + for in_channels in self.in_channels[:-1]: # skip the top layer + l_conv = BeitConvModule(in_channels, self.channels, kernel_size=1) + fpn_conv = BeitConvModule(self.channels, self.channels, kernel_size=3, padding=1) + self.lateral_convs.append(l_conv) + self.fpn_convs.append(fpn_conv) + + self.fpn_bottleneck = BeitConvModule( + len(self.in_channels) * self.channels, + self.channels, + kernel_size=3, + padding=1, + ) + + def psp_forward(self, inputs): + x = inputs[-1] + psp_outs = [x] + psp_outs.extend(self.psp_modules(x)) + psp_outs = torch.cat(psp_outs, dim=1) + output = self.bottleneck(psp_outs) + + return output + + def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: + # build laterals + laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] + + laterals.append(self.psp_forward(encoder_hidden_states)) + + # build top-down path + used_backbone_levels = len(laterals) + for i in range(used_backbone_levels - 1, 0, -1): + prev_shape = laterals[i - 1].shape[2:] + laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( + laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners + ) + + # build outputs + fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] + # append psp feature + fpn_outs.append(laterals[-1]) + + for i in range(used_backbone_levels - 1, 0, -1): + fpn_outs[i] = nn.functional.interpolate( + fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners + ) + fpn_outs = torch.cat(fpn_outs, dim=1) + output = self.fpn_bottleneck(fpn_outs) + output = self.classifier(output) + + return output + + +class BeitFCNHead(nn.Module): + """ + Fully Convolution Networks for Semantic Segmentation. This head is implemented of + [FCNNet](https://arxiv.org/abs/1411.4038>). + + Args: + config (BeitConfig): Configuration. + in_channels + kernel_size (int): The kernel size for convs in the head. Default: 3. + dilation (int): The dilation rate for convs in the head. Default: 1. + + + Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. + """ + + def __init__( + self, config: BeitConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1 + ) -> None: + super().__init__() + self.in_channels = config.hidden_size + self.channels = config.auxiliary_channels + self.num_convs = config.auxiliary_num_convs + self.concat_input = config.auxiliary_concat_input + self.in_index = in_index + + conv_padding = (kernel_size // 2) * dilation + convs = [] + convs.append( + BeitConvModule( + self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation + ) + ) + for i in range(self.num_convs - 1): + convs.append( + BeitConvModule( + self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation + ) + ) + if self.num_convs == 0: + self.convs = nn.Identity() + else: + self.convs = nn.Sequential(*convs) + if self.concat_input: + self.conv_cat = BeitConvModule( + self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 + ) + + self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) + + def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: + # just take the relevant feature maps + hidden_states = encoder_hidden_states[self.in_index] + output = self.convs(hidden_states) + if self.concat_input: + output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) + output = self.classifier(output) + return output + + +@add_start_docstrings( + """ + Beit Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. + """, + BEIT_START_DOCSTRING, +) +class BeitForSemanticSegmentation(BeitPreTrainedModel): + def __init__(self, config: BeitConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.beit = BeitModel(config, add_pooling_layer=False) + + # FPNs + if len(self.config.out_indices) != 4: + raise ValueError( + "BeitForSemanticSegmentation requires config.out_indices to be a list of 4 integers, " + "specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of " + "a base-sized architecture." + ) + self.fpn1 = nn.Sequential( + nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), + nn.BatchNorm2d(config.hidden_size), + nn.GELU(), + nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), + ) + self.fpn2 = nn.Sequential( + nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), + ) + self.fpn3 = nn.Identity() + self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) + + # Semantic segmentation head(s) + self.decode_head = BeitUperHead(config) + self.auxiliary_head = BeitFCNHead(config) if config.use_auxiliary_head else None + + # Initialize weights and apply final processing + self.post_init() + + def compute_loss(self, logits, auxiliary_logits, labels): + # upsample logits to the images' original size + upsampled_logits = nn.functional.interpolate( + logits, size=labels.shape[-2:], mode="bilinear", align_corners=False + ) + if auxiliary_logits is not None: + upsampled_auxiliary_logits = nn.functional.interpolate( + auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False + ) + # compute weighted loss + loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) + main_loss = loss_fct(upsampled_logits, labels) + loss = main_loss + if auxiliary_logits is not None: + auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) + loss += self.config.auxiliary_loss_weight * auxiliary_loss + + return loss + + @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, SemanticSegmenterOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): + Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, BeitForSemanticSegmentation + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") + >>> model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640") + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> outputs = model(**inputs) + >>> # logits are of shape (batch_size, num_labels, height, width) + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + outputs = self.beit( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=True, # we need the intermediate hidden states + return_dict=return_dict, + ) + + encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] + + # only keep certain features, and reshape + # note that we do +1 as the encoder_hidden_states also includes the initial embeddings + features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] + batch_size = pixel_values.shape[0] + patch_resolution = self.config.image_size // self.config.patch_size + features = [ + x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features + ] + + # apply FPNs + ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] + for i in range(len(features)): + features[i] = ops[i](features[i]) + + logits = self.decode_head(features) + + auxiliary_logits = None + if self.auxiliary_head is not None: + auxiliary_logits = self.auxiliary_head(features) + + loss = None + if labels is not None: + if self.config.num_labels == 1: + raise ValueError("The number of labels should be greater than one") + else: + loss = self.compute_loss(logits, auxiliary_logits, labels) + + if not return_dict: + if output_hidden_states: + output = (logits,) + outputs[1:] + else: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SemanticSegmenterOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + BEiT backbone, to be used with frameworks like DETR and MaskFormer. + """, + BEIT_START_DOCSTRING, +) +class BeitBackbone(BeitPreTrainedModel, BackboneMixin): + def __init__(self, config): + super().__init__(config) + super()._init_backbone(config) + + self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)] + self.embeddings = BeitEmbeddings(config) + self.encoder = BeitEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) + + if config.add_fpn: + if len(self.config.out_indices) != 4: + raise ValueError( + "BeitBackbone requires config.out_indices to be a list of 4 integers, " + "specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of " + "a base-sized architecture." + ) + hidden_size = config.hidden_size + self.fpn1 = nn.Sequential( + nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2), + nn.BatchNorm2d(hidden_size, eps=config.batch_norm_eps), + nn.GELU(), + nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2), + ) + + self.fpn2 = nn.Sequential(nn.ConvTranspose2d(hidden_size, hidden_size, kernel_size=2, stride=2)) + self.fpn3 = nn.Identity() + self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) + + # initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.patch_embeddings + + @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Tensor, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> BackboneOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoBackbone + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") + >>> model = AutoBackbone.from_pretrained( + ... "microsoft/beit-base-patch16-224", out_features=["stage1", "stage2", "stage3", "stage4"] + ... ) + + >>> inputs = processor(image, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> feature_maps = outputs.feature_maps + >>> list(feature_maps[-1].shape) + [1, 768, 14, 14] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + + batch_size = pixel_values.shape[0] + embedding_output, (patch_height, patch_width) = self.embeddings(pixel_values) + + outputs = self.encoder( + embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict + ) + + hidden_states = outputs.hidden_states if return_dict else outputs[1] + + feature_maps = () + for stage, hidden_state in zip(self.stage_names, hidden_states): + if stage in self.out_features: + if self.config.reshape_hidden_states: + hidden_state = hidden_state[:, 1:, :] + hidden_state = hidden_state.permute(0, 2, 1) + hidden_state = hidden_state.reshape(batch_size, -1, patch_height, patch_width) + + feature_maps += (hidden_state,) + + if self.config.add_fpn: + feature_maps = [ + self.fpn1(feature_maps[0]), + self.fpn2(feature_maps[1]), + self.fpn3(feature_maps[2]), + self.fpn4(feature_maps[3]), + ] + feature_maps = tuple(feature_maps) + + if not return_dict: + if output_hidden_states: + output = (feature_maps,) + outputs[1:] + else: + output = (feature_maps,) + outputs[2:] + return output + + return BackboneOutput( + feature_maps=feature_maps, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_flax_beit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_flax_beit.py new file mode 100644 index 0000000000000000000000000000000000000000..c1da64d263a26678a5514e76a17e05c44352eee3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/beit/modeling_flax_beit.py @@ -0,0 +1,948 @@ +# coding=utf-8 +# Copyright 2021 Microsoft Research and the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import Callable, List, Optional, Tuple + +import flax +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPooling, + FlaxMaskedLMOutput, + FlaxSequenceClassifierOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward +from .configuration_beit import BeitConfig + + +@flax.struct.dataclass +class FlaxBeitModelOutputWithPooling(FlaxBaseModelOutputWithPooling): + """ + Class for outputs of [`FlaxBeitModel`]. + + Args: + last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + pooler_output (`jnp.ndarray` of shape `(batch_size, hidden_size)`): + Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if + *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token + will be returned. + hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus + the initial embedding outputs. + attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + +BEIT_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading, saving and converting weights from PyTorch models) + + This model is also a + [flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as + a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and + behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`BeitConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +BEIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`AutoImageProcessor.__call__`] for details. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +def relative_position_index_init(window_size: Tuple[int, int]) -> jnp.ndarray: + """ + get pair-wise relative position index for each token inside the window + """ + num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + + coords_h = np.arange(window_size[0]) + coords_w = np.arange(window_size[1]) + coords = np.stack(np.meshgrid(coords_h, coords_w, indexing="ij")) # 2, Wh, Ww + coords_flatten = np.reshape(coords, (2, -1)) + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = np.transpose(relative_coords, (1, 2, 0)) # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + + relative_position_index = np.zeros(shape=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = num_relative_distance - 3 + relative_position_index[0:, 0] = num_relative_distance - 2 + relative_position_index[0, 0] = num_relative_distance - 1 + return jnp.array(relative_position_index) + + +def ones_with_scale(key, shape, scale, dtype=jnp.float32): + return jnp.ones(shape, dtype) * scale + + +class FlaxBeitDropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + rate: float + + @nn.module.compact + def __call__(self, inputs, deterministic: Optional[bool] = True): + if self.rate == 0.0: + return inputs + keep_prob = 1.0 - self.rate + if deterministic: + return inputs + else: + shape = (inputs.shape[0],) + (1,) * (inputs.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + rng = self.make_rng("droppath") + random_tensor = keep_prob + jax.random.uniform(rng, shape=shape, dtype=inputs.dtype) + binary_tensor = jnp.floor(random_tensor) + output = inputs / keep_prob * binary_tensor + return output + + +class FlaxBeitPatchEmbeddings(nn.Module): + config: BeitConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.num_channels = self.config.num_channels + image_size = self.config.image_size + patch_size = self.config.patch_size + num_patches = (image_size // patch_size) * (image_size // patch_size) + patch_shape = (image_size // patch_size, image_size // patch_size) + self.num_patches = num_patches + self.patch_shape = patch_shape + self.projection = nn.Conv( + self.config.hidden_size, + kernel_size=(patch_size, patch_size), + strides=(patch_size, patch_size), + padding="VALID", + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + def __call__(self, pixel_values): + num_channels = pixel_values.shape[-1] + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + embeddings = self.projection(pixel_values) + batch_size, _, _, channels = embeddings.shape + return jnp.reshape(embeddings, (batch_size, -1, channels)) + + +class FlaxBeitEmbeddings(nn.Module): + """Construct the CLS token, position and patch embeddings.""" + + config: BeitConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.cls_token = self.param("cls_token", nn.initializers.zeros, (1, 1, self.config.hidden_size)) + if self.config.use_mask_token: + self.mask_token = self.param("mask_token", nn.initializers.zeros, (1, 1, self.config.hidden_size)) + self.patch_embeddings = FlaxBeitPatchEmbeddings(self.config, dtype=self.dtype) + num_patches = self.patch_embeddings.num_patches + if self.config.use_absolute_position_embeddings: + self.position_embeddings = self.param( + "position_embeddings", nn.initializers.zeros, (1, num_patches + 1, self.config.hidden_size) + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, pixel_values, bool_masked_pos=None, deterministic=True): + embeddings = self.patch_embeddings(pixel_values) + batch_size, seq_len, _ = embeddings.shape + + cls_tokens = jnp.broadcast_to(self.cls_token, (batch_size, 1, self.config.hidden_size)) + cls_tokens = cls_tokens.astype(embeddings.dtype) + + if bool_masked_pos is not None: + mask_tokens = jnp.broadcast_to(self.mask_token, (batch_size, seq_len, self.config.hidden_size)) + mask_tokens = mask_tokens.astype(embeddings.dtype) + # replace the masked visual tokens by mask_tokens + w = jnp.expand_dims(bool_masked_pos, axis=-1) + embeddings = embeddings * (1 - w) + mask_tokens * w + + embeddings = jnp.concatenate((cls_tokens, embeddings), axis=1) + + if self.config.use_absolute_position_embeddings: + embeddings = embeddings + self.position_embeddings.astype(embeddings.dtype) + + embeddings = self.dropout(embeddings, deterministic=deterministic) + return embeddings + + +class FlaxBeitRelativePositionBias(nn.Module): + config: BeitConfig + window_size: Tuple[int, int] + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + num_relative_distance = (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1) + 3 + self.relative_position_bias_table = self.param( + "relative_position_bias_table", + nn.initializers.zeros, + (num_relative_distance, self.config.num_attention_heads), + ) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + self.relative_position_index = relative_position_index_init(self.window_size) + + def __call__(self): + index = self.relative_position_index.reshape(-1) + shape = (self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) + relative_position_bias = self.relative_position_bias_table[index].reshape(shape) # Wh*Ww,Wh*Ww,nH + return jnp.transpose(relative_position_bias, (2, 0, 1)) + + +class FlaxBeitSelfAttention(nn.Module): + config: BeitConfig + window_size: Tuple[int, int] + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + if self.config.hidden_size % self.config.num_attention_heads != 0 and not hasattr( + self.config, "embedding_size" + ): + raise ValueError( + f"The hidden size {self.config.hidden_size,} is not a multiple of the number of attention " + f"heads {self.config.num_attention_heads}." + ) + + self.query = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + self.key = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + use_bias=False, + ) + self.value = nn.Dense( + self.config.hidden_size, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + self.relative_position_bias = ( + FlaxBeitRelativePositionBias(self.config, window_size=self.window_size, dtype=self.dtype) + if self.window_size + else None + ) + + def __call__( + self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False + ): + head_dim = self.config.hidden_size // self.config.num_attention_heads + + query_states = self.query(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + value_states = self.value(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + key_states = self.key(hidden_states).reshape( + hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim) + ) + + dropout_rng = None + if not deterministic and self.config.attention_probs_dropout_prob > 0.0: + dropout_rng = self.make_rng("dropout") + + attention_bias = jnp.array(0.0, dtype=self.dtype) + # Add relative position bias if present. + if self.relative_position_bias is not None: + attention_bias = jnp.expand_dims(self.relative_position_bias(), 0) + attention_bias = attention_bias.astype(query_states.dtype) + + # Add shared relative position bias if provided. + if relative_position_bias is not None: + attention_bias = attention_bias + relative_position_bias.astype(attention_bias.dtype) + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.config.attention_probs_dropout_prob, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + +class FlaxBeitSelfOutput(nn.Module): + config: BeitConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + return hidden_states + + +class FlaxBeitAttention(nn.Module): + config: BeitConfig + window_size: Tuple[int, int] + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.attention = FlaxBeitSelfAttention(self.config, self.window_size, dtype=self.dtype) + self.output = FlaxBeitSelfOutput(self.config, dtype=self.dtype) + + def __call__( + self, hidden_states, relative_position_bias=None, deterministic=True, output_attentions: bool = False + ): + attn_outputs = self.attention( + hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions + ) + attn_output = attn_outputs[0] + attn_output = self.output(attn_output, deterministic=deterministic) + + outputs = (attn_output,) + + if output_attentions: + outputs += (attn_outputs[1],) + + return outputs + + +class FlaxBeitIntermediate(nn.Module): + config: BeitConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.intermediate_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.activation = ACT2FN[self.config.hidden_act] + + def __call__(self, hidden_states): + hidden_states = self.dense(hidden_states) + hidden_states = self.activation(hidden_states) + + return hidden_states + + +class FlaxBeitOutput(nn.Module): + config: BeitConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dense = nn.Dense( + self.config.hidden_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) + + def __call__(self, hidden_states, deterministic: bool = True): + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + + return hidden_states + + +class FlaxBeitLayer(nn.Module): + config: BeitConfig + window_size: Tuple[int, int] + drop_path_rate: float + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.attention = FlaxBeitAttention(self.config, self.window_size, dtype=self.dtype) + self.intermediate = FlaxBeitIntermediate(self.config, dtype=self.dtype) + self.output = FlaxBeitOutput(self.config, dtype=self.dtype) + self.layernorm_before = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.drop_path = FlaxBeitDropPath(rate=self.drop_path_rate) + self.layernorm_after = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + + self.init_values = self.config.layer_scale_init_value + if self.init_values > 0: + self.lambda_1 = self.param("lambda_1", ones_with_scale, (self.config.hidden_size), self.init_values) + self.lambda_2 = self.param("lambda_2", ones_with_scale, (self.config.hidden_size), self.init_values) + else: + self.lambda_1 = None + self.lambda_2 = None + + def __call__( + self, hidden_states, relative_position_bias=None, deterministic: bool = True, output_attentions: bool = False + ): + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in BEiT, layernorm is applied before self-attention + relative_position_bias, + deterministic=deterministic, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + + # apply lambda_1 if present + if self.lambda_1 is not None: + attention_output = self.lambda_1.astype(attention_output.dtype) * attention_output + + # first residual connection + hidden_states = self.drop_path(attention_output, deterministic=deterministic) + hidden_states + + # in BEiT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + + layer_output = self.intermediate(layer_output) + layer_output = self.output(layer_output, deterministic=deterministic) + + # apply lambda_2 if present + if self.lambda_2 is not None: + layer_output = self.lambda_2.astype(layer_output.dtype) * layer_output + + # second residual connection + layer_output = self.drop_path(layer_output, deterministic=deterministic) + hidden_states + + outputs = (layer_output,) + + if output_attentions: + outputs += (self_attention_outputs[1],) + + return outputs + + +class FlaxBeitLayerCollection(nn.Module): + config: BeitConfig + window_size: Tuple[int, int] + drop_path_rates: List[float] + relative_position_bias: Callable[[], jnp.ndarray] + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxBeitLayer( + self.config, + window_size=self.window_size if self.config.use_relative_position_bias else None, + drop_path_rate=self.drop_path_rates[i], + name=str(i), + dtype=self.dtype, + ) + for i in range(self.config.num_hidden_layers) + ] + + def __call__( + self, + hidden_states, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for i, layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + relative_position_bias = self.relative_position_bias() if self.relative_position_bias is not None else None + layer_outputs = layer( + hidden_states, relative_position_bias, deterministic=deterministic, output_attentions=output_attentions + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states,) + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class FlaxBeitEncoder(nn.Module): + config: BeitConfig + window_size: Tuple[int, int] + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + if self.config.use_shared_relative_position_bias: + self.relative_position_bias = FlaxBeitRelativePositionBias( + config=self.config, window_size=self.window_size, dtype=self.dtype + ) + + # stochastic depth decay rule + drop_path_rates = list(np.linspace(0, self.config.drop_path_rate, self.config.num_hidden_layers)) + self.layer = FlaxBeitLayerCollection( + self.config, + window_size=self.window_size, + drop_path_rates=drop_path_rates, + relative_position_bias=self.relative_position_bias + if self.config.use_shared_relative_position_bias + else None, + dtype=self.dtype, + ) + + def __call__( + self, + hidden_states, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + return self.layer( + hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + +class FlaxBeitPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BeitConfig + base_model_prefix = "beit" + main_input_name = "pixel_values" + module_class: nn.Module = None + + def __init__( + self, + config: BeitConfig, + input_shape=None, + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + if input_shape is None: + input_shape = (1, config.image_size, config.image_size, config.num_channels) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + pixel_values = jnp.zeros(input_shape, dtype=self.dtype) + + params_rng, dropout_rng = jax.random.split(rng) + dropout_rng, droppath_rng = jax.random.split(dropout_rng) + rngs = {"params": params_rng, "dropout": dropout_rng, "droppath": droppath_rng} + + random_params = self.module.init(rngs, pixel_values, return_dict=False)["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + @add_start_docstrings_to_model_forward(BEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + def __call__( + self, + pixel_values, + bool_masked_pos=None, + params: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + dropout_rng, droppath_rng = jax.random.split(dropout_rng) + rngs["dropout"] = dropout_rng + rngs["droppath"] = droppath_rng + + return self.module.apply( + {"params": params or self.params}, + jnp.array(pixel_values, dtype=jnp.float32), + bool_masked_pos, + not train, + output_attentions, + output_hidden_states, + return_dict, + rngs=rngs, + ) + + +class FlaxBeitPooler(nn.Module): + config: BeitConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + if self.config.use_mean_pooling: + self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + + def __call__(self, hidden_states): + if self.config.use_mean_pooling: + # Mean pool the final hidden states of the patch tokens + patch_tokens = hidden_states[:, 1:, :] + pooled_output = self.layernorm(jnp.mean(patch_tokens, axis=1)) + else: + # Pool by simply taking the final hidden state of the [CLS] token + pooled_output = hidden_states[:, 0] + + return pooled_output + + +class FlaxBeitModule(nn.Module): + config: BeitConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + add_pooling_layer: bool = True + + def setup(self): + self.embeddings = FlaxBeitEmbeddings(self.config, dtype=self.dtype) + self.encoder = FlaxBeitEncoder( + self.config, window_size=self.embeddings.patch_embeddings.patch_shape, dtype=self.dtype + ) + if not self.config.use_mean_pooling: + self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.pooler = FlaxBeitPooler(self.config, dtype=self.dtype) if self.add_pooling_layer else None + + def __call__( + self, + pixel_values, + bool_masked_pos=None, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + hidden_states = self.embeddings(pixel_values, bool_masked_pos, deterministic=deterministic) + + outputs = self.encoder( + hidden_states, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] + if not self.config.use_mean_pooling: + hidden_states = self.layernorm(hidden_states) + pooled = self.pooler(hidden_states) if self.add_pooling_layer else None + + if not return_dict: + # if pooled is None, don't return it + if pooled is None: + return (hidden_states,) + outputs[1:] + return (hidden_states, pooled) + outputs[1:] + + return FlaxBeitModelOutputWithPooling( + last_hidden_state=hidden_states, + pooler_output=pooled, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + "The bare Beit Model transformer outputting raw hidden-states without any specific head on top.", + BEIT_START_DOCSTRING, +) +class FlaxBeitModel(FlaxBeitPreTrainedModel): + module_class = FlaxBeitModule + + +FLAX_BEIT_MODEL_DOCSTRING = """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, FlaxBeitModel + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k") + >>> model = FlaxBeitModel.from_pretrained("microsoft/beit-base-patch16-224-pt22k-ft22k") + + >>> inputs = image_processor(images=image, return_tensors="np") + >>> outputs = model(**inputs) + >>> last_hidden_states = outputs.last_hidden_state + ``` +""" + +overwrite_call_docstring(FlaxBeitModel, FLAX_BEIT_MODEL_DOCSTRING) +append_replace_return_docstrings(FlaxBeitModel, output_type=FlaxBeitModelOutputWithPooling, config_class=BeitConfig) + + +class FlaxBeitForMaskedImageModelingModule(nn.Module): + config: BeitConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.beit = FlaxBeitModule(self.config, add_pooling_layer=False, dtype=self.dtype) + + # Classifier head + self.layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) + self.lm_head = nn.Dense( + self.config.vocab_size, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + + def __call__( + self, + pixel_values=None, + bool_masked_pos=None, + deterministic: bool = True, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.beit( + pixel_values, + bool_masked_pos, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + sequence_output = self.layernorm(sequence_output) + prediction_scores = self.lm_head(sequence_output[:, 1:]) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return output + + return FlaxMaskedLMOutput( + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + "Beit Model transformer with a 'language' modeling head on top (to predict visual tokens).", + BEIT_START_DOCSTRING, +) +class FlaxBeitForMaskedImageModeling(FlaxBeitPreTrainedModel): + module_class = FlaxBeitForMaskedImageModelingModule + + +FLAX_BEIT_MLM_DOCSTRING = """ + bool_masked_pos (`numpy.ndarray` of shape `(batch_size, num_patches)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, BeitForMaskedImageModeling + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224-pt22k") + >>> model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") + + >>> inputs = image_processor(images=image, return_tensors="np") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + ``` +""" + +overwrite_call_docstring(FlaxBeitForMaskedImageModeling, FLAX_BEIT_MLM_DOCSTRING) +append_replace_return_docstrings( + FlaxBeitForMaskedImageModeling, output_type=FlaxMaskedLMOutput, config_class=BeitConfig +) + + +class FlaxBeitForImageClassificationModule(nn.Module): + config: BeitConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.beit = FlaxBeitModule(config=self.config, dtype=self.dtype, add_pooling_layer=True) + self.classifier = nn.Dense( + self.config.num_labels, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + dtype=self.dtype, + ) + + def __call__( + self, + pixel_values=None, + bool_masked_pos=None, + deterministic: bool = True, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.beit( + pixel_values, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + logits = self.classifier(pooled_output) + + if not return_dict: + output = (logits,) + outputs[2:] + return output + + return FlaxSequenceClassifierOutput( + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Beit Model transformer with an image classification head on top (a linear layer on top of the average of the final + hidden states of the patch tokens) e.g. for ImageNet. + """, + BEIT_START_DOCSTRING, +) +class FlaxBeitForImageClassification(FlaxBeitPreTrainedModel): + module_class = FlaxBeitForImageClassificationModule + + +FLAX_BEIT_CLASSIF_DOCSTRING = """ + Returns: + + Example: + + ```python + >>> from transformers import AutoImageProcessor, FlaxBeitForImageClassification + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") + >>> model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224") + + >>> inputs = image_processor(images=image, return_tensors="np") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + >>> # model predicts one of the 1000 ImageNet classes + >>> predicted_class_idx = logits.argmax(-1).item() + >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) + ``` +""" + +overwrite_call_docstring(FlaxBeitForImageClassification, FLAX_BEIT_CLASSIF_DOCSTRING) +append_replace_return_docstrings( + FlaxBeitForImageClassification, output_type=FlaxSequenceClassifierOutput, config_class=BeitConfig +) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/tokenization_clvp.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/tokenization_clvp.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fcd41e68dc10b98eed91c73d7760f1c85dd2064a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/clvp/__pycache__/tokenization_clvp.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a0b44186efbc05bef9faed3a47057fcfe3610862 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__init__.py @@ -0,0 +1,113 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_tf_available, + is_torch_available, + is_vision_available, +) + + +_import_structure = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_deit"] = ["DeiTFeatureExtractor"] + _import_structure["image_processing_deit"] = ["DeiTImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_deit"] = [ + "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", + "DeiTForImageClassification", + "DeiTForImageClassificationWithTeacher", + "DeiTForMaskedImageModeling", + "DeiTModel", + "DeiTPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_deit"] = [ + "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFDeiTForImageClassification", + "TFDeiTForImageClassificationWithTeacher", + "TFDeiTForMaskedImageModeling", + "TFDeiTModel", + "TFDeiTPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_deit import DeiTFeatureExtractor + from .image_processing_deit import DeiTImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_deit import ( + DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, + DeiTForImageClassification, + DeiTForImageClassificationWithTeacher, + DeiTForMaskedImageModeling, + DeiTModel, + DeiTPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_deit import ( + TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, + TFDeiTForImageClassification, + TFDeiTForImageClassificationWithTeacher, + TFDeiTForMaskedImageModeling, + TFDeiTModel, + TFDeiTPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b2e58482ed875ed99aaf390adcc090ba39b673c3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/configuration_deit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/configuration_deit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a8ec79ad2226aacef671fe5e88a7720212f8576 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/configuration_deit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/convert_deit_timm_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/convert_deit_timm_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..efc32b6a7cecd4e2b1bedd6e24b4a9fc3f231caf Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/convert_deit_timm_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/feature_extraction_deit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/feature_extraction_deit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1750457aab04801593dfe948ede0c2a840993881 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/feature_extraction_deit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/image_processing_deit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/image_processing_deit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d2223329a40c84bf81972ee894af7d5a55de4cf Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/image_processing_deit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_deit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_deit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d1eca3289d99554fee52607f3bb44231e455563c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_deit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_tf_deit.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_tf_deit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6668e366d47f4872bd33190c829b126a247b9749 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/__pycache__/modeling_tf_deit.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/configuration_deit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/configuration_deit.py new file mode 100644 index 0000000000000000000000000000000000000000..394c6ff93704ccedad80c1a20c7f8a9aa2e5a04d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/configuration_deit.py @@ -0,0 +1,142 @@ +# coding=utf-8 +# Copyright 2021 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" DeiT model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class DeiTConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`DeiTModel`]. It is used to instantiate an DeiT + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the DeiT + [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) + architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries, keys and values. + encoder_stride (`int`, *optional*, defaults to 16): + Factor to increase the spatial resolution by in the decoder head for masked image modeling. + + Example: + + ```python + >>> from transformers import DeiTConfig, DeiTModel + + >>> # Initializing a DeiT deit-base-distilled-patch16-224 style configuration + >>> configuration = DeiTConfig() + + >>> # Initializing a model (with random weights) from the deit-base-distilled-patch16-224 style configuration + >>> model = DeiTModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "deit" + + def __init__( + self, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-12, + image_size=224, + patch_size=16, + num_channels=3, + qkv_bias=True, + encoder_stride=16, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.qkv_bias = qkv_bias + self.encoder_stride = encoder_stride + + +class DeiTOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/convert_deit_timm_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/convert_deit_timm_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..2b5c795ff2d2ab6d8b3e6ce6f8a0150ff3911f33 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/convert_deit_timm_to_pytorch.py @@ -0,0 +1,219 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert DeiT distilled checkpoints from the timm library.""" + + +import argparse +import json +from pathlib import Path + +import requests +import timm +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +# here we list all keys to be renamed (original name on the left, our name on the right) +def create_rename_keys(config, base_model=False): + rename_keys = [] + for i in range(config.num_hidden_layers): + # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms + rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight")) + rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias")) + rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight")) + rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias")) + rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight")) + rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias")) + rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight")) + rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias")) + + # projection layer + position embeddings + rename_keys.extend( + [ + ("cls_token", "deit.embeddings.cls_token"), + ("dist_token", "deit.embeddings.distillation_token"), + ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), + ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), + ("pos_embed", "deit.embeddings.position_embeddings"), + ] + ) + + if base_model: + # layernorm + pooler + rename_keys.extend( + [ + ("norm.weight", "layernorm.weight"), + ("norm.bias", "layernorm.bias"), + ("pre_logits.fc.weight", "pooler.dense.weight"), + ("pre_logits.fc.bias", "pooler.dense.bias"), + ] + ) + + # if just the base model, we should remove "deit" from all keys that start with "deit" + rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("deit") else pair for pair in rename_keys] + else: + # layernorm + classification heads + rename_keys.extend( + [ + ("norm.weight", "deit.layernorm.weight"), + ("norm.bias", "deit.layernorm.bias"), + ("head.weight", "cls_classifier.weight"), + ("head.bias", "cls_classifier.bias"), + ("head_dist.weight", "distillation_classifier.weight"), + ("head_dist.bias", "distillation_classifier.bias"), + ] + ) + + return rename_keys + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict, config, base_model=False): + for i in range(config.num_hidden_layers): + if base_model: + prefix = "" + else: + prefix = "deit." + # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") + in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ + : config.hidden_size, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ + config.hidden_size : config.hidden_size * 2 + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ + -config.hidden_size :, : + ] + state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] + + +def rename_key(dct, old, new): + val = dct.pop(old) + dct[new] = val + + +# We will verify our results on an image of cute cats +def prepare_img(): + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_deit_checkpoint(deit_name, pytorch_dump_folder_path): + """ + Copy/paste/tweak model's weights to our DeiT structure. + """ + + # define default DeiT configuration + config = DeiTConfig() + # all deit models have fine-tuned heads + base_model = False + # dataset (fine-tuned on ImageNet 2012), patch_size and image_size + config.num_labels = 1000 + repo_id = "huggingface/label-files" + filename = "imagenet-1k-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + config.patch_size = int(deit_name[-6:-4]) + config.image_size = int(deit_name[-3:]) + # size of the architecture + if deit_name[9:].startswith("tiny"): + config.hidden_size = 192 + config.intermediate_size = 768 + config.num_hidden_layers = 12 + config.num_attention_heads = 3 + elif deit_name[9:].startswith("small"): + config.hidden_size = 384 + config.intermediate_size = 1536 + config.num_hidden_layers = 12 + config.num_attention_heads = 6 + if deit_name[9:].startswith("base"): + pass + elif deit_name[4:].startswith("large"): + config.hidden_size = 1024 + config.intermediate_size = 4096 + config.num_hidden_layers = 24 + config.num_attention_heads = 16 + + # load original model from timm + timm_model = timm.create_model(deit_name, pretrained=True) + timm_model.eval() + + # load state_dict of original model, remove and rename some keys + state_dict = timm_model.state_dict() + rename_keys = create_rename_keys(config, base_model) + for src, dest in rename_keys: + rename_key(state_dict, src, dest) + read_in_q_k_v(state_dict, config, base_model) + + # load HuggingFace model + model = DeiTForImageClassificationWithTeacher(config).eval() + model.load_state_dict(state_dict) + + # Check outputs on an image, prepared by DeiTImageProcessor + size = int( + (256 / 224) * config.image_size + ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 + image_processor = DeiTImageProcessor(size=size, crop_size=config.image_size) + encoding = image_processor(images=prepare_img(), return_tensors="pt") + pixel_values = encoding["pixel_values"] + outputs = model(pixel_values) + + timm_logits = timm_model(pixel_values) + assert timm_logits.shape == outputs.logits.shape + assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) + + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {deit_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--deit_name", + default="vit_deit_base_distilled_patch16_224", + type=str, + help="Name of the DeiT timm model you'd like to convert.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + + args = parser.parse_args() + convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/feature_extraction_deit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/feature_extraction_deit.py new file mode 100644 index 0000000000000000000000000000000000000000..b66922ea95753a81b93a3f9c99607119017df3f3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/feature_extraction_deit.py @@ -0,0 +1,33 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for DeiT.""" + +import warnings + +from ...utils import logging +from .image_processing_deit import DeiTImageProcessor + + +logger = logging.get_logger(__name__) + + +class DeiTFeatureExtractor(DeiTImageProcessor): + def __init__(self, *args, **kwargs) -> None: + warnings.warn( + "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" + " use DeiTImageProcessor instead.", + FutureWarning, + ) + super().__init__(*args, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/image_processing_deit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/image_processing_deit.py new file mode 100644 index 0000000000000000000000000000000000000000..2a8ebb36377854aa80bf8505c7e98b1eb661648a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/image_processing_deit.py @@ -0,0 +1,320 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for DeiT.""" + +from typing import Dict, List, Optional, Union + +import numpy as np + +from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict +from ...image_transforms import resize, to_channel_dimension_format +from ...image_utils import ( + IMAGENET_STANDARD_MEAN, + IMAGENET_STANDARD_STD, + ChannelDimension, + ImageInput, + PILImageResampling, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import TensorType, is_vision_available, logging + + +if is_vision_available(): + import PIL + + +logger = logging.get_logger(__name__) + + +class DeiTImageProcessor(BaseImageProcessor): + r""" + Constructs a DeiT image processor. + + Args: + do_resize (`bool`, *optional*, defaults to `True`): + Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by + `do_resize` in `preprocess`. + size (`Dict[str, int]` *optional*, defaults to `{"height": 256, "width": 256}`): + Size of the image after `resize`. Can be overridden by `size` in `preprocess`. + resample (`PILImageResampling` filter, *optional*, defaults to `Resampling.BICUBIC`): + Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`. + do_center_crop (`bool`, *optional*, defaults to `True`): + Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image + is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`. + crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): + Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the + `preprocess` method. + do_rescale (`bool`, *optional*, defaults to `True`): + Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` + parameter in the `preprocess` method. + do_normalize (`bool`, *optional*, defaults to `True`): + Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` + method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): + Mean to use if normalizing the image. This is a float or list of floats the length of the number of + channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): + Standard deviation to use if normalizing the image. This is a float or list of floats the length of the + number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. + """ + + model_input_names = ["pixel_values"] + + def __init__( + self, + do_resize: bool = True, + size: Dict[str, int] = None, + resample: PILImageResampling = PIL.Image.BICUBIC, + do_center_crop: bool = True, + crop_size: Dict[str, int] = None, + rescale_factor: Union[int, float] = 1 / 255, + do_rescale: bool = True, + do_normalize: bool = True, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + **kwargs, + ) -> None: + super().__init__(**kwargs) + size = size if size is not None else {"height": 256, "width": 256} + size = get_size_dict(size) + crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} + crop_size = get_size_dict(crop_size, param_name="crop_size") + + self.do_resize = do_resize + self.size = size + self.resample = resample + self.do_center_crop = do_center_crop + self.crop_size = crop_size + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD + self._valid_processor_keys = [ + "images", + "do_resize", + "size", + "resample", + "do_center_crop", + "crop_size", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "return_tensors", + "data_format", + "input_data_format", + ] + + # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BICUBIC, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize an image to `(size["height"], size["width"])`. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): + `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. + data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + + Returns: + `np.ndarray`: The resized image. + """ + size = get_size_dict(size) + if "height" not in size or "width" not in size: + raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") + output_size = (size["height"], size["width"]) + return resize( + image, + size=output_size, + resample=resample, + data_format=data_format, + input_data_format=input_data_format, + **kwargs, + ) + + def preprocess( + self, + images: ImageInput, + do_resize: bool = None, + size: Dict[str, int] = None, + resample=None, + do_center_crop: bool = None, + crop_size: Dict[str, int] = None, + do_rescale: bool = None, + rescale_factor: float = None, + do_normalize: bool = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: ChannelDimension = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> PIL.Image.Image: + """ + Preprocess an image or batch of images. + + Args: + images (`ImageInput`): + Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If + passing in images with pixel values between 0 and 1, set `do_rescale=False`. + do_resize (`bool`, *optional*, defaults to `self.do_resize`): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to `self.size`): + Size of the image after `resize`. + resample (`PILImageResampling`, *optional*, defaults to `self.resample`): + PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to + `True`. + do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): + Whether to center crop the image. + crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): + Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be + padded with zeros and then cropped + do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): + Whether to rescale the image values between [0 - 1]. + rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): + Rescale factor to rescale the image by if `do_rescale` is set to `True`. + do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): + Image mean. + image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): + Image standard deviation. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - `None`: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): + The channel dimension format for the output image. Can be one of: + - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `ChannelDimension.LAST`: image in (height, width, num_channels) format. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + do_resize = do_resize if do_resize is not None else self.do_resize + resample = resample if resample is not None else self.resample + do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop + do_rescale = do_rescale if do_rescale is not None else self.do_rescale + rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor + do_normalize = do_normalize if do_normalize is not None else self.do_normalize + image_mean = image_mean if image_mean is not None else self.image_mean + image_std = image_std if image_std is not None else self.image_std + + size = size if size is not None else self.size + size = get_size_dict(size) + crop_size = crop_size if crop_size is not None else self.crop_size + crop_size = get_size_dict(crop_size, param_name="crop_size") + + images = make_list_of_images(images) + + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_center_crop=do_center_crop, + crop_size=crop_size, + do_resize=do_resize, + size=size, + resample=resample, + ) + # All transformations expect numpy arrays. + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + if do_resize: + images = [ + self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) + for image in images + ] + + if do_center_crop: + images = [ + self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images + ] + + if do_rescale: + images = [ + self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) + for image in images + ] + + if do_normalize: + images = [ + self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) + for image in images + ] + + images = [ + to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images + ] + + data = {"pixel_values": images} + return BatchFeature(data=data, tensor_type=return_tensors) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_deit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_deit.py new file mode 100644 index 0000000000000000000000000000000000000000..5efcc95d503da407426611b2b67d5c76ddde73e8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_deit.py @@ -0,0 +1,891 @@ +# coding=utf-8 +# Copyright 2021 Facebook AI Research (FAIR), Ross Wightman, The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DeiT model.""" + + +import collections.abc +import math +from dataclasses import dataclass +from typing import Optional, Set, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + ImageClassifierOutput, + MaskedImageModelingOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_deit import DeiTConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "DeiTConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224" +_EXPECTED_OUTPUT_SHAPE = [1, 198, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +from ..deprecated._archive_maps import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class DeiTEmbeddings(nn.Module): + """ + Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token. + """ + + def __init__(self, config: DeiTConfig, use_mask_token: bool = False) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None + self.patch_embeddings = DeiTPatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size)) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: + embeddings = self.patch_embeddings(pixel_values) + batch_size, seq_length, _ = embeddings.size() + + if bool_masked_pos is not None: + mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) + # replace the masked visual tokens by mask_tokens + mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) + embeddings = embeddings * (1.0 - mask) + mask_tokens * mask + + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + distillation_tokens = self.distillation_token.expand(batch_size, -1, -1) + embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1) + embeddings = embeddings + self.position_embeddings + embeddings = self.dropout(embeddings) + return embeddings + + +class DeiTPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." + ) + x = self.projection(pixel_values).flatten(2).transpose(1, 2) + return x + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DeiT +class DeiTSelfAttention(nn.Module): + def __init__(self, config: DeiTConfig) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DeiT +class DeiTSelfOutput(nn.Module): + """ + The residual connection is defined in DeiTLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: DeiTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->DeiT +class DeiTAttention(nn.Module): + def __init__(self, config: DeiTConfig) -> None: + super().__init__() + self.attention = DeiTSelfAttention(config) + self.output = DeiTSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DeiT +class DeiTIntermediate(nn.Module): + def __init__(self, config: DeiTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DeiT +class DeiTOutput(nn.Module): + def __init__(self, config: DeiTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + hidden_states = hidden_states + input_tensor + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->DeiT +class DeiTLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: DeiTConfig) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = DeiTAttention(config) + self.intermediate = DeiTIntermediate(config) + self.output = DeiTOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in DeiT, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + hidden_states + + # in DeiT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + + # second residual connection is done here + layer_output = self.output(layer_output, hidden_states) + + outputs = (layer_output,) + outputs + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->DeiT +class DeiTEncoder(nn.Module): + def __init__(self, config: DeiTConfig) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([DeiTLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class DeiTPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = DeiTConfig + base_model_prefix = "deit" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + _no_split_modules = ["DeiTLayer"] + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid + # `trunc_normal_cpu` not implemented in `half` issues + module.weight.data = nn.init.trunc_normal_( + module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range + ).to(module.weight.dtype) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +DEIT_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`DeiTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DEIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`DeiTImageProcessor.__call__`] for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.", + DEIT_START_DOCSTRING, +) +class DeiTModel(DeiTPreTrainedModel): + def __init__(self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False) -> None: + super().__init__(config) + self.config = config + + self.embeddings = DeiTEmbeddings(config, use_mask_token=use_mask_token) + self.encoder = DeiTEncoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pooler = DeiTPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> DeiTPatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) + expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype + if pixel_values.dtype != expected_dtype: + pixel_values = pixel_values.to(expected_dtype) + + embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DeiT +class DeiTPooler(nn.Module): + def __init__(self, config: DeiTConfig): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +@add_start_docstrings( + """DeiT Model with a decoder on top for masked image modeling, as proposed in [SimMIM](https://arxiv.org/abs/2111.09886). + + + + Note that we provide a script to pre-train this model on custom data in our [examples + directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). + + + """, + DEIT_START_DOCSTRING, +) +class DeiTForMaskedImageModeling(DeiTPreTrainedModel): + def __init__(self, config: DeiTConfig) -> None: + super().__init__(config) + + self.deit = DeiTModel(config, add_pooling_layer=False, use_mask_token=True) + + self.decoder = nn.Sequential( + nn.Conv2d( + in_channels=config.hidden_size, + out_channels=config.encoder_stride**2 * config.num_channels, + kernel_size=1, + ), + nn.PixelShuffle(config.encoder_stride), + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=MaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, MaskedImageModelingOutput]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + + Returns: + + Examples: + ```python + >>> from transformers import AutoImageProcessor, DeiTForMaskedImageModeling + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") + >>> model = DeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224") + + >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 + >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values + >>> # create random boolean mask of shape (batch_size, num_patches) + >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() + + >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) + >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction + >>> list(reconstructed_pixel_values.shape) + [1, 3, 224, 224] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deit( + pixel_values, + bool_masked_pos=bool_masked_pos, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + # Reshape to (batch_size, num_channels, height, width) + sequence_output = sequence_output[:, 1:-1] + batch_size, sequence_length, num_channels = sequence_output.shape + height = width = int(sequence_length**0.5) + sequence_output = sequence_output.permute(0, 2, 1).reshape(batch_size, num_channels, height, width) + + # Reconstruct pixel values + reconstructed_pixel_values = self.decoder(sequence_output) + + masked_im_loss = None + if bool_masked_pos is not None: + size = self.config.image_size // self.config.patch_size + bool_masked_pos = bool_masked_pos.reshape(-1, size, size) + mask = ( + bool_masked_pos.repeat_interleave(self.config.patch_size, 1) + .repeat_interleave(self.config.patch_size, 2) + .unsqueeze(1) + .contiguous() + ) + reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") + masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels + + if not return_dict: + output = (reconstructed_pixel_values,) + outputs[1:] + return ((masked_im_loss,) + output) if masked_im_loss is not None else output + + return MaskedImageModelingOutput( + loss=masked_im_loss, + reconstruction=reconstructed_pixel_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of + the [CLS] token) e.g. for ImageNet. + """, + DEIT_START_DOCSTRING, +) +class DeiTForImageClassification(DeiTPreTrainedModel): + def __init__(self, config: DeiTConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.deit = DeiTModel(config, add_pooling_layer=False) + + # Classifier head + self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, DeiTForImageClassification + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> torch.manual_seed(3) # doctest: +IGNORE_RESULT + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> # note: we are loading a DeiTForImageClassificationWithTeacher from the hub here, + >>> # so the head will be randomly initialized, hence the predictions will be random + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") + >>> model = DeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224") + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + >>> # model predicts one of the 1000 ImageNet classes + >>> predicted_class_idx = logits.argmax(-1).item() + >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) + Predicted class: Polaroid camera, Polaroid Land camera + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deit( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.classifier(sequence_output[:, 0, :]) + # we don't use the distillation token + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@dataclass +class DeiTForImageClassificationWithTeacherOutput(ModelOutput): + """ + Output type of [`DeiTForImageClassificationWithTeacher`]. + + Args: + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Prediction scores as the average of the cls_logits and distillation logits. + cls_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the + class token). + distillation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the + distillation token). + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + logits: torch.FloatTensor = None + cls_logits: torch.FloatTensor = None + distillation_logits: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@add_start_docstrings( + """ + DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of + the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. + + .. warning:: + + This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet + supported. + """, + DEIT_START_DOCSTRING, +) +class DeiTForImageClassificationWithTeacher(DeiTPreTrainedModel): + def __init__(self, config: DeiTConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.deit = DeiTModel(config, add_pooling_layer=False) + + # Classifier heads + self.cls_classifier = ( + nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + self.distillation_classifier = ( + nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=DeiTForImageClassificationWithTeacherOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, DeiTForImageClassificationWithTeacherOutput]: + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deit( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + cls_logits = self.cls_classifier(sequence_output[:, 0, :]) + distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) + + # during inference, return the average of both classifier predictions + logits = (cls_logits + distillation_logits) / 2 + + if not return_dict: + output = (logits, cls_logits, distillation_logits) + outputs[1:] + return output + + return DeiTForImageClassificationWithTeacherOutput( + logits=logits, + cls_logits=cls_logits, + distillation_logits=distillation_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_tf_deit.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_tf_deit.py new file mode 100644 index 0000000000000000000000000000000000000000..aec5f6df95922aac77bd8e210b74c37cc17beebe --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/deit/modeling_tf_deit.py @@ -0,0 +1,1178 @@ +# coding=utf-8 +# Copyright 2022 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TensorFlow DeiT model.""" + + +from __future__ import annotations + +import collections.abc +import math +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPooling, + TFImageClassifierOutput, + TFMaskedImageModelingOutput, +) +from ...modeling_tf_utils import ( + TFPreTrainedModel, + TFSequenceClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_deit import DeiTConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "DeiTConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224" +_EXPECTED_OUTPUT_SHAPE = [1, 198, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +from ..deprecated._archive_maps import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class TFDeiTForImageClassificationWithTeacherOutput(ModelOutput): + """ + Output type of [`DeiTForImageClassificationWithTeacher`]. + + Args: + logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): + Prediction scores as the average of the cls_logits and distillation logits. + cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): + Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the + class token). + distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): + Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the + distillation token). + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus + the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + logits: tf.Tensor = None + cls_logits: tf.Tensor = None + distillation_logits: tf.Tensor = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +class TFDeiTEmbeddings(keras.layers.Layer): + """ + Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token. + """ + + def __init__(self, config: DeiTConfig, use_mask_token: bool = False, **kwargs) -> None: + super().__init__(**kwargs) + self.config = config + self.use_mask_token = use_mask_token + self.patch_embeddings = TFDeiTPatchEmbeddings(config=config, name="patch_embeddings") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") + + def build(self, input_shape=None): + self.cls_token = self.add_weight( + shape=(1, 1, self.config.hidden_size), + initializer=keras.initializers.zeros(), + trainable=True, + name="cls_token", + ) + self.distillation_token = self.add_weight( + shape=(1, 1, self.config.hidden_size), + initializer=keras.initializers.zeros(), + trainable=True, + name="distillation_token", + ) + self.mask_token = None + if self.use_mask_token: + self.mask_token = self.add_weight( + shape=(1, 1, self.config.hidden_size), + initializer=keras.initializers.zeros(), + trainable=True, + name="mask_token", + ) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = self.add_weight( + shape=(1, num_patches + 2, self.config.hidden_size), + initializer=keras.initializers.zeros(), + trainable=True, + name="position_embeddings", + ) + + if self.built: + return + self.built = True + if getattr(self, "patch_embeddings", None) is not None: + with tf.name_scope(self.patch_embeddings.name): + self.patch_embeddings.build(None) + if getattr(self, "dropout", None) is not None: + with tf.name_scope(self.dropout.name): + self.dropout.build(None) + + def call( + self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None, training: bool = False + ) -> tf.Tensor: + embeddings = self.patch_embeddings(pixel_values) + batch_size, seq_length, _ = shape_list(embeddings) + + if bool_masked_pos is not None: + mask_tokens = tf.tile(self.mask_token, [batch_size, seq_length, 1]) + # replace the masked visual tokens by mask_tokens + mask = tf.expand_dims(bool_masked_pos, axis=-1) + mask = tf.cast(mask, dtype=mask_tokens.dtype) + embeddings = embeddings * (1.0 - mask) + mask_tokens * mask + + cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0) + distillation_tokens = tf.repeat(self.distillation_token, repeats=batch_size, axis=0) + embeddings = tf.concat((cls_tokens, distillation_tokens, embeddings), axis=1) + embeddings = embeddings + self.position_embeddings + embeddings = self.dropout(embeddings, training=training) + return embeddings + + +class TFDeiTPatchEmbeddings(keras.layers.Layer): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config: DeiTConfig, **kwargs) -> None: + super().__init__(**kwargs) + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = keras.layers.Conv2D( + hidden_size, kernel_size=patch_size, strides=patch_size, name="projection" + ) + + def call(self, pixel_values: tf.Tensor) -> tf.Tensor: + batch_size, height, width, num_channels = shape_list(pixel_values) + if tf.executing_eagerly() and num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + if tf.executing_eagerly() and (height != self.image_size[0] or width != self.image_size[1]): + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." + ) + x = self.projection(pixel_values) + batch_size, height, width, num_channels = shape_list(x) + x = tf.reshape(x, (batch_size, height * width, num_channels)) + return x + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "projection", None) is not None: + with tf.name_scope(self.projection.name): + self.projection.build([None, None, None, self.num_channels]) + + +# Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfAttention with ViT->DeiT +class TFDeiTSelfAttention(keras.layers.Layer): + def __init__(self, config: DeiTConfig, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(inputs=hidden_states) + mixed_key_layer = self.key(inputs=hidden_states) + mixed_value_layer = self.value(inputs=hidden_states) + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) + value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) + attention_scores = tf.divide(attention_scores, dk) + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + attention_output = tf.matmul(attention_probs, value_layer) + attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfOutput with ViT->DeiT +class TFDeiTSelfOutput(keras.layers.Layer): + """ + The residual connection is defined in TFDeiTLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: DeiTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.vit.modeling_tf_vit.TFViTAttention with ViT->DeiT +class TFDeiTAttention(keras.layers.Layer): + def __init__(self, config: DeiTConfig, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFDeiTSelfAttention(config, name="attention") + self.dense_output = TFDeiTSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + input_tensor: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_outputs = self.self_attention( + hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training + ) + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=input_tensor, training=training + ) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +# Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->DeiT +class TFDeiTIntermediate(keras.layers.Layer): + def __init__(self, config: DeiTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.vit.modeling_tf_vit.TFViTOutput with ViT->DeiT +class TFDeiTOutput(keras.layers.Layer): + def __init__(self, config: DeiTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = hidden_states + input_tensor + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + + +class TFDeiTLayer(keras.layers.Layer): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: DeiTConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFDeiTAttention(config, name="attention") + self.intermediate = TFDeiTIntermediate(config, name="intermediate") + self.deit_output = TFDeiTOutput(config, name="output") + + self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") + self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + attention_outputs = self.attention( + # in DeiT, layernorm is applied before self-attention + input_tensor=self.layernorm_before(inputs=hidden_states, training=training), + head_mask=head_mask, + output_attentions=output_attentions, + training=training, + ) + attention_output = attention_outputs[0] + + # first residual connection + hidden_states = attention_output + hidden_states + + # in DeiT, layernorm is also applied after self-attention + layer_output = self.layernorm_after(inputs=hidden_states, training=training) + + intermediate_output = self.intermediate(hidden_states=layer_output, training=training) + + # second residual connection is done here + layer_output = self.deit_output( + hidden_states=intermediate_output, input_tensor=hidden_states, training=training + ) + outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "deit_output", None) is not None: + with tf.name_scope(self.deit_output.name): + self.deit_output.build(None) + if getattr(self, "layernorm_before", None) is not None: + with tf.name_scope(self.layernorm_before.name): + self.layernorm_before.build([None, None, self.config.hidden_size]) + if getattr(self, "layernorm_after", None) is not None: + with tf.name_scope(self.layernorm_after.name): + self.layernorm_after.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.vit.modeling_tf_vit.TFViTEncoder with ViT->DeiT +class TFDeiTEncoder(keras.layers.Layer): + def __init__(self, config: DeiTConfig, **kwargs): + super().__init__(**kwargs) + + self.layer = [TFDeiTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states: tf.Tensor, + head_mask: tf.Tensor, + output_attentions: bool, + output_hidden_states: bool, + return_dict: bool, + training: bool = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_outputs = layer_module( + hidden_states=hidden_states, + head_mask=head_mask[i], + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFDeiTMainLayer(keras.layers.Layer): + config_class = DeiTConfig + + def __init__( + self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs + ) -> None: + super().__init__(**kwargs) + self.config = config + + self.embeddings = TFDeiTEmbeddings(config, use_mask_token=use_mask_token, name="embeddings") + self.encoder = TFDeiTEncoder(config, name="encoder") + + self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") + self.pooler = TFDeiTPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self) -> TFDeiTPatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + def get_head_mask(self, head_mask): + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + return head_mask + + @unpack_inputs + def call( + self, + pixel_values: tf.Tensor | None = None, + bool_masked_pos: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # TF 2.0 image layers can't use NCHW format when running on CPU. + # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) + pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1)) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask) + + embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos, training=training) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output, training=training) + pooled_output = self.pooler(sequence_output, training=training) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return TFBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "layernorm", None) is not None: + with tf.name_scope(self.layernorm.name): + self.layernorm.build([None, None, self.config.hidden_size]) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +# Copied from transformers.models.vit.modeling_tf_vit.TFViTPreTrainedModel with ViT->DeiT all-casing +class TFDeiTPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = DeiTConfig + base_model_prefix = "deit" + main_input_name = "pixel_values" + + +DEIT_START_DOCSTRING = r""" + This model is a TensorFlow + [keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular + TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior. + + Parameters: + config ([`DeiTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DEIT_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`DeiTImageProcessor.__call__`] for details. + + head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.", + DEIT_START_DOCSTRING, +) +class TFDeiTModel(TFDeiTPreTrainedModel): + def __init__( + self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs + ) -> None: + super().__init__(config, **kwargs) + + self.deit = TFDeiTMainLayer( + config, add_pooling_layer=add_pooling_layer, use_mask_token=use_mask_token, name="deit" + ) + + @unpack_inputs + @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFBaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def call( + self, + pixel_values: tf.Tensor | None = None, + bool_masked_pos: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[Tuple, TFBaseModelOutputWithPooling]: + outputs = self.deit( + pixel_values=pixel_values, + bool_masked_pos=bool_masked_pos, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "deit", None) is not None: + with tf.name_scope(self.deit.name): + self.deit.build(None) + + +# Copied from transformers.models.vit.modeling_tf_vit.TFViTPooler with ViT->DeiT +class TFDeiTPooler(keras.layers.Layer): + def __init__(self, config: DeiTConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +class TFDeitPixelShuffle(keras.layers.Layer): + """TF layer implementation of torch.nn.PixelShuffle""" + + def __init__(self, upscale_factor: int, **kwargs) -> None: + super().__init__(**kwargs) + if not isinstance(upscale_factor, int) or upscale_factor < 2: + raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}") + self.upscale_factor = upscale_factor + + def call(self, x: tf.Tensor) -> tf.Tensor: + hidden_states = x + batch_size, _, _, num_input_channels = shape_list(hidden_states) + block_size_squared = self.upscale_factor**2 + output_depth = int(num_input_channels / block_size_squared) + # When the number of output channels >= 2, PyTorch's PixelShuffle and + # TF's depth_to_space differ in their output as the order of channels selected for combining + # is a permutation of the other c.f. + # https://stackoverflow.com/questions/68272502/tf-depth-to-space-not-same-as-torchs-pixelshuffle-when-output-channels-1 + permutation = tf.constant( + [[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]] + ) + hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1) + hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC") + return hidden_states + + +class TFDeitDecoder(keras.layers.Layer): + def __init__(self, config: DeiTConfig, **kwargs) -> None: + super().__init__(**kwargs) + self.conv2d = keras.layers.Conv2D( + filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, name="0" + ) + self.pixel_shuffle = TFDeitPixelShuffle(config.encoder_stride, name="1") + self.config = config + + def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = inputs + hidden_states = self.conv2d(hidden_states) + hidden_states = self.pixel_shuffle(hidden_states) + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "conv2d", None) is not None: + with tf.name_scope(self.conv2d.name): + self.conv2d.build([None, None, None, self.config.hidden_size]) + if getattr(self, "pixel_shuffle", None) is not None: + with tf.name_scope(self.pixel_shuffle.name): + self.pixel_shuffle.build(None) + + +@add_start_docstrings( + "DeiT Model with a decoder on top for masked image modeling, as proposed in" + " [SimMIM](https://arxiv.org/abs/2111.09886).", + DEIT_START_DOCSTRING, +) +class TFDeiTForMaskedImageModeling(TFDeiTPreTrainedModel): + def __init__(self, config: DeiTConfig) -> None: + super().__init__(config) + + self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="deit") + self.decoder = TFDeitDecoder(config, name="decoder") + + @unpack_inputs + @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + pixel_values: tf.Tensor | None = None, + bool_masked_pos: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[tuple, TFMaskedImageModelingOutput]: + r""" + bool_masked_pos (`tf.Tensor` of type bool and shape `(batch_size, num_patches)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + + Returns: + + Examples: + ```python + >>> from transformers import AutoImageProcessor, TFDeiTForMaskedImageModeling + >>> import tensorflow as tf + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") + >>> model = TFDeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224") + + >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 + >>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values + >>> # create random boolean mask of shape (batch_size, num_patches) + >>> bool_masked_pos = tf.cast(tf.random.uniform((1, num_patches), minval=0, maxval=2, dtype=tf.int32), tf.bool) + + >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) + >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction + >>> list(reconstructed_pixel_values.shape) + [1, 3, 224, 224] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deit( + pixel_values, + bool_masked_pos=bool_masked_pos, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + + # Reshape to (batch_size, num_channels, height, width) + sequence_output = sequence_output[:, 1:-1] + batch_size, sequence_length, num_channels = shape_list(sequence_output) + height = width = int(sequence_length**0.5) + sequence_output = tf.reshape(sequence_output, (batch_size, height, width, num_channels)) + + # Reconstruct pixel values + reconstructed_pixel_values = self.decoder(sequence_output, training=training) + # TF 2.0 image layers can't use NCHW format when running on CPU, so intermediate layers use NHWC, + # including the decoder. We transpose to compute the loss against the pixel values + # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) + reconstructed_pixel_values = tf.transpose(reconstructed_pixel_values, (0, 3, 1, 2)) + + masked_im_loss = None + if bool_masked_pos is not None: + size = self.config.image_size // self.config.patch_size + bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size)) + mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1) + mask = tf.repeat(mask, self.config.patch_size, 2) + mask = tf.expand_dims(mask, 1) + mask = tf.cast(mask, tf.float32) + + reconstruction_loss = keras.losses.mean_absolute_error( + # Swap axes as metric calculation reduces over the final dimension + tf.transpose(pixel_values, (1, 2, 3, 0)), + tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)), + ) + reconstruction_loss = tf.expand_dims(reconstruction_loss, 0) + total_loss = tf.reduce_sum(reconstruction_loss * mask) + num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels + masked_im_loss = total_loss / num_masked_pixels + masked_im_loss = tf.reshape(masked_im_loss, (1,)) + + if not return_dict: + output = (reconstructed_pixel_values,) + outputs[1:] + return ((masked_im_loss,) + output) if masked_im_loss is not None else output + + return TFMaskedImageModelingOutput( + loss=masked_im_loss, + reconstruction=reconstructed_pixel_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "deit", None) is not None: + with tf.name_scope(self.deit.name): + self.deit.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + """ + DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of + the [CLS] token) e.g. for ImageNet. + """, + DEIT_START_DOCSTRING, +) +class TFDeiTForImageClassification(TFDeiTPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config: DeiTConfig): + super().__init__(config) + + self.num_labels = config.num_labels + self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit") + + # Classifier head + self.classifier = ( + keras.layers.Dense(config.num_labels, name="classifier") + if config.num_labels > 0 + else keras.layers.Activation("linear", name="classifier") + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFImageClassifierOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + pixel_values: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + labels: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[tf.Tensor, TFImageClassifierOutput]: + r""" + labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, TFDeiTForImageClassification + >>> import tensorflow as tf + >>> from PIL import Image + >>> import requests + + >>> keras.utils.set_random_seed(3) # doctest: +IGNORE_RESULT + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> # note: we are loading a TFDeiTForImageClassificationWithTeacher from the hub here, + >>> # so the head will be randomly initialized, hence the predictions will be random + >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") + >>> model = TFDeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224") + + >>> inputs = image_processor(images=image, return_tensors="tf") + >>> outputs = model(**inputs) + >>> logits = outputs.logits + >>> # model predicts one of the 1000 ImageNet classes + >>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0] + >>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)]) + Predicted class: little blue heron, Egretta caerulea + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deit( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + + logits = self.classifier(sequence_output[:, 0, :]) + # we don't use the distillation token + + loss = None if labels is None else self.hf_compute_loss(labels, logits) + + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "deit", None) is not None: + with tf.name_scope(self.deit.name): + self.deit.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of + the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. + + .. warning:: + + This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet + supported. + """, + DEIT_START_DOCSTRING, +) +class TFDeiTForImageClassificationWithTeacher(TFDeiTPreTrainedModel): + def __init__(self, config: DeiTConfig) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit") + + # Classifier heads + self.cls_classifier = ( + keras.layers.Dense(config.num_labels, name="cls_classifier") + if config.num_labels > 0 + else keras.layers.Activation("linear", name="cls_classifier") + ) + self.distillation_classifier = ( + keras.layers.Dense(config.num_labels, name="distillation_classifier") + if config.num_labels > 0 + else keras.layers.Activation("linear", name="distillation_classifier") + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=TFDeiTForImageClassificationWithTeacherOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def call( + self, + pixel_values: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[tuple, TFDeiTForImageClassificationWithTeacherOutput]: + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.deit( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + + cls_logits = self.cls_classifier(sequence_output[:, 0, :]) + distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) + + # during inference, return the average of both classifier predictions + logits = (cls_logits + distillation_logits) / 2 + + if not return_dict: + output = (logits, cls_logits, distillation_logits) + outputs[1:] + return output + + return TFDeiTForImageClassificationWithTeacherOutput( + logits=logits, + cls_logits=cls_logits, + distillation_logits=distillation_logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "deit", None) is not None: + with tf.name_scope(self.deit.name): + self.deit.build(None) + if getattr(self, "cls_classifier", None) is not None: + with tf.name_scope(self.cls_classifier.name): + self.cls_classifier.build([None, None, self.config.hidden_size]) + if getattr(self, "distillation_classifier", None) is not None: + with tf.name_scope(self.distillation_classifier.name): + self.distillation_classifier.build([None, None, self.config.hidden_size]) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3d3e0d7c51161c79c66d6e42ad8d65655c8a6e1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5a12c2b112ef3e4fd5f9a8e30a4133547f77cdd5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/configuration_dinov2.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8ef4a93a84134eb250684d37aa9feed179b4ad9e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/convert_dinov2_to_hf.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..05526bc2473204c45b57a069b3ef6a5432d6eac7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/__pycache__/modeling_dinov2.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py new file mode 100644 index 0000000000000000000000000000000000000000..b5fe872a706fc71808562e8152db4eee4ca7218f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/configuration_dinov2.py @@ -0,0 +1,175 @@ +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" DINOv2 model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging +from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class Dinov2Config(BackboneConfigMixin, PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an + Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the Dinov2 + [google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + mlp_ratio (`int`, *optional*, defaults to 4): + Ratio of the hidden size of the MLPs relative to the `hidden_size`. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries, keys and values. + layerscale_value (`float`, *optional*, defaults to 1.0): + Initial value to use for layer scale. + drop_path_rate (`float`, *optional*, defaults to 0.0): + Stochastic depth rate per sample (when applied in the main path of residual layers). + use_swiglu_ffn (`bool`, *optional*, defaults to `False`): + Whether to use the SwiGLU feedforward neural network. + out_features (`List[str]`, *optional*): + If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. + (depending on how many stages the model has). If unset and `out_indices` is set, will default to the + corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + out_indices (`List[int]`, *optional*): + If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how + many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. + If unset and `out_features` is unset, will default to the last stage. Must be in the + same order as defined in the `stage_names` attribute. + apply_layernorm (`bool`, *optional*, defaults to `True`): + Whether to apply layer normalization to the feature maps in case the model is used as backbone. + reshape_hidden_states (`bool`, *optional*, defaults to `True`): + Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in + case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size, + seq_len, hidden_size)`. + + Example: + + ```python + >>> from transformers import Dinov2Config, Dinov2Model + + >>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration + >>> configuration = Dinov2Config() + + >>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration + >>> model = Dinov2Model(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "dinov2" + + def __init__( + self, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + mlp_ratio=4, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-6, + image_size=224, + patch_size=16, + num_channels=3, + qkv_bias=True, + layerscale_value=1.0, + drop_path_rate=0.0, + use_swiglu_ffn=False, + out_features=None, + out_indices=None, + apply_layernorm=True, + reshape_hidden_states=True, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.mlp_ratio = mlp_ratio + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.qkv_bias = qkv_bias + self.layerscale_value = layerscale_value + self.drop_path_rate = drop_path_rate + self.use_swiglu_ffn = use_swiglu_ffn + self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_hidden_layers + 1)] + self._out_features, self._out_indices = get_aligned_output_features_output_indices( + out_features=out_features, out_indices=out_indices, stage_names=self.stage_names + ) + self.apply_layernorm = apply_layernorm + self.reshape_hidden_states = reshape_hidden_states + + +class Dinov2OnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py new file mode 100644 index 0000000000000000000000000000000000000000..c25022f6ec22d8d4afa1f926af9eb6e4d03adb35 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/dinov2/modeling_dinov2.py @@ -0,0 +1,856 @@ +# coding=utf-8 +# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch DINOv2 model.""" + + +import collections.abc +import math +from typing import Dict, List, Optional, Set, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BackboneOutput, + BaseModelOutput, + BaseModelOutputWithPooling, + ImageClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ...utils.backbone_utils import BackboneMixin +from .configuration_dinov2 import Dinov2Config + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "Dinov2Config" + +# Base docstring +_CHECKPOINT_FOR_DOC = "facebook/dinov2-base" +_EXPECTED_OUTPUT_SHAPE = [1, 257, 768] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-small-imagenet1k-1-layer" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + + +from ..deprecated._archive_maps import DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +class Dinov2Embeddings(nn.Module): + """ + Construct the CLS token, mask token, position and patch embeddings. + """ + + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) + self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size)) + self.patch_embeddings = Dinov2PatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.config = config + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + num_patches = embeddings.shape[1] - 1 + num_positions = self.position_embeddings.shape[1] - 1 + if num_patches == num_positions and height == width: + return self.position_embeddings + class_pos_embed = self.position_embeddings[:, 0] + patch_pos_embed = self.position_embeddings[:, 1:] + dim = embeddings.shape[-1] + height = height // self.config.patch_size + width = width // self.config.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + height, width = height + 0.1, width + 0.1 + patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + target_dtype = patch_pos_embed.dtype + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed.to(dtype=torch.float32), + scale_factor=(float(height / math.sqrt(num_positions)), float(width / math.sqrt(num_positions))), + mode="bicubic", + align_corners=False, + ).to(dtype=target_dtype) + if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]: + raise ValueError("Width or height does not match with the interpolated position embeddings") + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) + + def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None) -> torch.Tensor: + batch_size, _, height, width = pixel_values.shape + target_dtype = self.patch_embeddings.projection.weight.dtype + embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype)) + + if bool_masked_pos is not None: + embeddings = torch.where( + bool_masked_pos.unsqueeze(-1), self.mask_token.to(embeddings.dtype).unsqueeze(0), embeddings + ) + + # add the [CLS] token to the embedded patch tokens + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + embeddings = torch.cat((cls_tokens, embeddings), dim=1) + + # add positional encoding to each token + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + + embeddings = self.dropout(embeddings) + + return embeddings + + +class Dinov2PatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: + num_channels = pixel_values.shape[1] + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + f" Expected {self.num_channels} but got {num_channels}." + ) + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + return embeddings + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2 +class Dinov2SelfAttention(nn.Module): + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2 +class Dinov2SelfOutput(nn.Module): + """ + The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2 +class Dinov2Attention(nn.Module): + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + self.attention = Dinov2SelfAttention(config) + self.output = Dinov2SelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class Dinov2LayerScale(nn.Module): + def __init__(self, config) -> None: + super().__init__() + self.lambda1 = nn.Parameter(config.layerscale_value * torch.ones(config.hidden_size)) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + return hidden_state * self.lambda1 + + +# Copied from transformers.models.beit.modeling_beit.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.beit.modeling_beit.BeitDropPath +class Dinov2DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +class Dinov2MLP(nn.Module): + def __init__(self, config) -> None: + super().__init__() + in_features = out_features = config.hidden_size + hidden_features = int(config.hidden_size * config.mlp_ratio) + self.fc1 = nn.Linear(in_features, hidden_features, bias=True) + if isinstance(config.hidden_act, str): + self.activation = ACT2FN[config.hidden_act] + else: + self.activation = config.hidden_act + self.fc2 = nn.Linear(hidden_features, out_features, bias=True) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + hidden_state = self.fc1(hidden_state) + hidden_state = self.activation(hidden_state) + hidden_state = self.fc2(hidden_state) + return hidden_state + + +class Dinov2SwiGLUFFN(nn.Module): + def __init__(self, config) -> None: + super().__init__() + in_features = out_features = config.hidden_size + hidden_features = int(config.hidden_size * config.mlp_ratio) + hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 + + self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True) + self.weights_out = nn.Linear(hidden_features, out_features, bias=True) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + hidden_state = self.weights_in(hidden_state) + x1, x2 = hidden_state.chunk(2, dim=-1) + hidden = nn.functional.silu(x1) * x2 + return self.weights_out(hidden) + + +class Dinov2Layer(nn.Module): + """This corresponds to the Block class in the original implementation.""" + + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + + self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.attention = Dinov2Attention(config) + self.layer_scale1 = Dinov2LayerScale(config) + self.drop_path = Dinov2DropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() + + self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + if config.use_swiglu_ffn: + self.mlp = Dinov2SwiGLUFFN(config) + else: + self.mlp = Dinov2MLP(config) + self.layer_scale2 = Dinov2LayerScale(config) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_attention_outputs = self.attention( + self.norm1(hidden_states), # in Dinov2, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + + attention_output = self.layer_scale1(attention_output) + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = self.drop_path(attention_output) + hidden_states + + # in Dinov2, layernorm is also applied after self-attention + layer_output = self.norm2(hidden_states) + layer_output = self.mlp(layer_output) + layer_output = self.layer_scale2(layer_output) + + # second residual connection + layer_output = self.drop_path(layer_output) + hidden_states + + outputs = (layer_output,) + outputs + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2 +class Dinov2Encoder(nn.Module): + def __init__(self, config: Dinov2Config) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([Dinov2Layer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class Dinov2PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = Dinov2Config + base_model_prefix = "dinov2" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid + # `trunc_normal_cpu` not implemented in `half` issues + module.weight.data = nn.init.trunc_normal_( + module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range + ).to(module.weight.dtype) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, Dinov2Embeddings): + module.position_embeddings.data = nn.init.trunc_normal_( + module.position_embeddings.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.position_embeddings.dtype) + + module.cls_token.data = nn.init.trunc_normal_( + module.cls_token.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.cls_token.dtype) + + +DINOV2_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`Dinov2Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +DINOV2_BASE_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`BitImageProcessor.preprocess`] for details. + + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for + pre-training. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +DINOV2_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`BitImageProcessor.preprocess`] for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.", + DINOV2_START_DOCSTRING, +) +class Dinov2Model(Dinov2PreTrainedModel): + def __init__(self, config: Dinov2Config): + super().__init__(config) + self.config = config + + self.embeddings = Dinov2Embeddings(config) + self.encoder = Dinov2Encoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> Dinov2PatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) + + encoder_outputs = self.encoder( + embedding_output, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = sequence_output[:, 0, :] + + if not return_dict: + head_outputs = (sequence_output, pooled_output) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + """ + Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state + of the [CLS] token) e.g. for ImageNet. + """, + DINOV2_START_DOCSTRING, +) +class Dinov2ForImageClassification(Dinov2PreTrainedModel): + def __init__(self, config: Dinov2Config) -> None: + super().__init__(config) + + self.num_labels = config.num_labels + self.dinov2 = Dinov2Model(config) + + # Classifier head + self.classifier = ( + nn.Linear(config.hidden_size * 2, config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[tuple, ImageClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.dinov2( + pixel_values, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] # batch_size, sequence_length, hidden_size + + cls_token = sequence_output[:, 0] + patch_tokens = sequence_output[:, 1:] + + linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1) + + logits = self.classifier(linear_input) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Dinov2 backbone, to be used with frameworks like DETR and MaskFormer. + """, + DINOV2_START_DOCSTRING, +) +class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin): + def __init__(self, config): + super().__init__(config) + super()._init_backbone(config) + + self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)] + self.embeddings = Dinov2Embeddings(config) + self.encoder = Dinov2Encoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> Dinov2PatchEmbeddings: + return self.embeddings.patch_embeddings + + @add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.Tensor, + output_hidden_states: Optional[bool] = None, + output_attentions: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> BackboneOutput: + """ + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoBackbone + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base") + >>> model = AutoBackbone.from_pretrained( + ... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"] + ... ) + + >>> inputs = processor(image, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> feature_maps = outputs.feature_maps + >>> list(feature_maps[-1].shape) + [1, 768, 16, 16] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + + embedding_output = self.embeddings(pixel_values) + + outputs = self.encoder( + embedding_output, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict + ) + + hidden_states = outputs.hidden_states if return_dict else outputs[1] + + feature_maps = () + for stage, hidden_state in zip(self.stage_names, hidden_states): + if stage in self.out_features: + if self.config.apply_layernorm: + hidden_state = self.layernorm(hidden_state) + if self.config.reshape_hidden_states: + hidden_state = hidden_state[:, 1:] + # this was actually a bug in the original implementation that we copied here, + # cause normally the order is height, width + batch_size, _, height, width = pixel_values.shape + patch_size = self.config.patch_size + hidden_state = hidden_state.reshape(batch_size, height // patch_size, width // patch_size, -1) + hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() + feature_maps += (hidden_state,) + + if not return_dict: + if output_hidden_states: + output = (feature_maps,) + outputs[1:] + else: + output = (feature_maps,) + outputs[2:] + return output + + return BackboneOutput( + feature_maps=feature_maps, + hidden_states=outputs.hidden_states if output_hidden_states else None, + attentions=outputs.attentions if output_attentions else None, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..33660eb81e4faebb7938bbba7ba165a2d7079d81 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__init__.py @@ -0,0 +1,65 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_torch_available, +) + + +_import_structure = { + "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_gpt_bigcode"] = [ + "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", + "GPTBigCodeForSequenceClassification", + "GPTBigCodeForTokenClassification", + "GPTBigCodeForCausalLM", + "GPTBigCodeModel", + "GPTBigCodePreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_gpt_bigcode import ( + GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, + GPTBigCodeForCausalLM, + GPTBigCodeForSequenceClassification, + GPTBigCodeForTokenClassification, + GPTBigCodeModel, + GPTBigCodePreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f0e9259873567c1a54ae6f585b29f51e001555e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/configuration_gpt_bigcode.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/configuration_gpt_bigcode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..35f93c2d4ac5d1b3429caf90072e9d079a721b8a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/configuration_gpt_bigcode.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/modeling_gpt_bigcode.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/modeling_gpt_bigcode.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c6ece5ffbc0efccd2d5e0d2562a1585a806b6901 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/modeling_gpt_bigcode.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ea0f7752ed0cac8d76812a4075bd6217d0db33a6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/__init__.py @@ -0,0 +1,68 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_nllb_moe": [ + "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", + "NllbMoeConfig", + ] +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_nllb_moe"] = [ + "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", + "NllbMoeForConditionalGeneration", + "NllbMoeModel", + "NllbMoePreTrainedModel", + "NllbMoeTop2Router", + "NllbMoeSparseMLP", + ] + + +if TYPE_CHECKING: + from .configuration_nllb_moe import ( + NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, + NllbMoeConfig, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_nllb_moe import ( + NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, + NllbMoeForConditionalGeneration, + NllbMoeModel, + NllbMoePreTrainedModel, + NllbMoeSparseMLP, + NllbMoeTop2Router, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/configuration_nllb_moe.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/configuration_nllb_moe.py new file mode 100644 index 0000000000000000000000000000000000000000..48172824ff2425d224b36d2589b304c238e3bae0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/configuration_nllb_moe.py @@ -0,0 +1,218 @@ +# coding=utf-8 +# Copyright 2023, HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" NLLB-MoE model configuration""" +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class NllbMoeConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`NllbMoeModel`]. It is used to instantiate an + NLLB-MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the NLLB-MoE + [facebook/nllb-moe-54b](https://huggingface.co/facebook/nllb-moe-54b) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50265): + Vocabulary size of the NllbMoe model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`NllbMoeModel`] or + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + classifier_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for classifier. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + second_expert_policy ( `str`, *optional*, default to `"all"`): + The policy used for the sampling the probability of being sampled to a second expert for each token. + normalize_router_prob_before_dropping (`bool`, *optional*, defaults to `True`): + Whether or not to normalize the router probabilities before applying a mask based on the experts capacity + (capacity dropping). + batch_prioritized_routing (`bool`, *optional*, defaults to `True`): + Whether or not to orders the tokens by their router probabilities before capacity dropping. This means that + the tokens that have the highest probabilities will be routed before other tokens that might be further in + the sequence. + moe_eval_capacity_token_fraction (`float`, *optional*, defaults to 1.0): + Fraction of tokens as capacity during validation, if set to negative, uses the same as training. Should be + in range: (0.0, 1.0]. + num_experts (`int`, *optional*, defaults to 128): + Number of experts for each NllbMoeSparseMlp layer. + expert_capacity (`int`, *optional*, defaults to 64): + Number of tokens that can be stored in each expert. + encoder_sparse_step (`int`, *optional*, defaults to 4): + Frequency of the sparse layers in the encoder. 4 means that one out of 4 layers will be sparse. + decoder_sparse_step (`int`, *optional*, defaults to 4): + Frequency of the sparse layers in the decoder. 4 means that one out of 4 layers will be sparse. + router_dtype (`str`, *optional*, default to `"float32"`): + The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the + *selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961). + router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`): + Whether to ignore padding tokens when routing. if `False`, the padding tokens are not routed to any + experts. + router_bias (`bool`, *optional*, defaults to `False`): + Whether or not the classifier of the router should have a bias. + moe_token_dropout (`float`, *optional*, defualt ot 0.2): + Masking rate for MoE expert output masking (EOM), which is implemented via a Dropout2d on the expert + outputs. + output_router_logits (`bool`, *optional*, defaults to `False`): + Whether or not to return the router logits. Only set to `True` to get the auxiliary loss when training. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + + Example: + + ```python + >>> from transformers import NllbMoeModel, NllbMoeConfig + + >>> # Initializing a NllbMoe facebook/nllb-moe-54b style configuration + >>> configuration = NllbMoeConfig() + + >>> # Initializing a model from the facebook/nllb-moe-54b style configuration + >>> model = NllbMoeModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "nllb-moe" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + def __init__( + self, + vocab_size=128112, + max_position_embeddings=1024, + encoder_layers=12, + encoder_ffn_dim=4096, + encoder_attention_heads=16, + decoder_layers=12, + decoder_ffn_dim=4096, + decoder_attention_heads=16, + encoder_layerdrop=0.05, + decoder_layerdrop=0.05, + use_cache=True, + is_encoder_decoder=True, + activation_function="relu", + d_model=1024, + dropout=0.1, + attention_dropout=0.1, + activation_dropout=0.0, + init_std=0.02, + decoder_start_token_id=2, + scale_embedding=True, + router_bias=False, + router_dtype="float32", + router_ignore_padding_tokens=False, + num_experts=128, + expert_capacity=64, + encoder_sparse_step=4, + decoder_sparse_step=4, + router_z_loss_coef=0.001, + router_aux_loss_coef=0.001, + second_expert_policy="all", + normalize_router_prob_before_dropping=False, + batch_prioritized_routing=False, + moe_eval_capacity_token_fraction=1.0, + moe_token_dropout=0.2, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + output_router_logits=False, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + self.router_z_loss_coef = router_z_loss_coef + self.router_aux_loss_coef = router_aux_loss_coef + self.decoder_sparse_step = decoder_sparse_step + self.encoder_sparse_step = encoder_sparse_step + self.num_experts = num_experts + self.expert_capacity = expert_capacity + self.router_bias = router_bias + if router_dtype not in ["float32", "float16", "bfloat16"]: + raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}") + self.router_dtype = router_dtype + + self.router_ignore_padding_tokens = router_ignore_padding_tokens + self.batch_prioritized_routing = batch_prioritized_routing + self.second_expert_policy = second_expert_policy + self.normalize_router_prob_before_dropping = normalize_router_prob_before_dropping + self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction + self.moe_token_dropout = moe_token_dropout + self.output_router_logits = output_router_logits + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + decoder_start_token_id=decoder_start_token_id, + **kwargs, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..5f98c0ca3d92e038311568613603208259967567 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py @@ -0,0 +1,160 @@ +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import json +import os + +import torch +from torch import nn + +from transformers import NllbMoeConfig, NllbMoeModel +from transformers.modeling_utils import dtype_byte_size +from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME + + +def remove_ignore_keys_(state_dict): + ignore_keys = [ + "encoder.version", + "decoder.version", + "model.encoder.version", + "model.decoder.version", + "decoder.output_projection.weight", + "_float_tensor", + "encoder.embed_positions._float_tensor", + "decoder.embed_positions._float_tensor", + ] + for k in ignore_keys: + state_dict.pop(k, None) + + +def make_linear_from_emb(emb): + vocab_size, emb_size = emb.weight.shape + lin_layer = nn.Linear(vocab_size, emb_size, bias=False) + lin_layer.weight.data = emb.weight.data + return lin_layer + + +def rename_fairseq_keys(state_dict, expert_idx=None): + new_dict = {} + for old_key in state_dict.keys(): + key = old_key + if "moe_layer.experts." in key: + if expert_idx is not None: + key = key.replace("moe_layer.experts.0", f"ffn.experts.expert_{expert_idx}") + else: + key = key.replace("moe_layer.experts.", "ffn.experts.expert_") + if "gate" in key: + key = key.replace(".moe_layer.gate.wg", ".ffn.router.classifier") + if "fc2" and "experts" not in key: + key = key.replace(".fc2.", ".ffn.fc2.") + if "fc1" and "experts" not in key: + key = key.replace(".fc1.", ".ffn.fc1.") + if ".encoder_attn." in key: + key = key.replace(".encoder_attn.", ".cross_attention.") + if "encoder_attn_layer_norm" in key: + key = key.replace("encoder_attn_layer_norm", "cross_attention_layer_norm") + if "final_layer_norm" in key: + key = key.replace("final_layer_norm", "ff_layer_norm") + new_dict[key] = state_dict[old_key] + return new_dict + + +def shard_on_the_fly(switch_checkpoint_path, dump_path, num_experts, dtype, weights_name: str = WEIGHTS_NAME): + sharded_state_dicts = [] + total_size = 0 + os.makedirs(dump_path, exist_ok=True) + + for expert in range(num_experts): + expert_path = switch_checkpoint_path + f"-rank-{expert}.pt" + if os.path.isfile(expert_path): + expert_state = torch.load(expert_path)["model"] + remove_ignore_keys_(expert_state) + expert_state = rename_fairseq_keys(expert_state, expert) + save_path = os.path.join( + dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin") + ) + torch.save(expert_state, save_path) + sharded_state_dicts.append(expert_state.keys()) + total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( + expert_state[list(expert_state)[0]].dtype + ) + + # Add the last block + save_path = os.path.join(dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin")) + shared_weights = torch.load(switch_checkpoint_path + "-shared.pt")["model"] + remove_ignore_keys_(shared_weights) + shared_weights = rename_fairseq_keys(shared_weights, None) + shared_weights["shared.weight"] = shared_weights["decoder.embed_tokens.weight"] + sharded_state_dicts.append(shared_weights.keys()) + + # If we only have the shared weights (dummy model/experts saved on the same file) + if len(sharded_state_dicts) == 1: + save_path = os.path.join(dump_path, weights_name) + torch.save(shared_weights, save_path) + return {weights_name: sharded_state_dicts[0]}, None + else: + torch.save(shared_weights, save_path) + # Otherwise, let's build the index + weight_map = {} + for idx, shard in enumerate(sharded_state_dicts): + shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin") + temp_filename = os.path.join(dump_path, weights_name.replace(".bin", f"-{idx+1:05d}-of-???.bin")) + os.rename(temp_filename, os.path.join(dump_path, shard_file)) + for key in shard: + weight_map[key] = shard_file + + # Add the metadata + metadata = {"total_size": total_size} + index = {"metadata": metadata, "weight_map": weight_map} + + with open(os.path.join(dump_path, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f: + content = json.dumps(index, indent=2, sort_keys=True) + "\n" + f.write(content) + + return metadata, index + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--nllb_moe_checkpoint_path", + default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000", + type=str, + required=False, + help="Path to a directory containing a folder per layer. Follows the original Google format.", + ) + parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model") + parser.add_argument( + "--pytorch_dump_folder_path", + default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b", + type=str, + required=False, + help="Path to the output pytorch model.", + ) + args = parser.parse_args() + metadata, index = shard_on_the_fly( + args.nllb_moe_checkpoint_path, + args.pytorch_dump_folder_path, + 128, + args.dtype, + ) + + config = NllbMoeConfig.from_pretrained( + "facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 + ) + config.save_pretrained(args.pytorch_dump_folder_path) + model = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) + print("Done") + model.save_pretrained(args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/modeling_nllb_moe.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/modeling_nllb_moe.py new file mode 100644 index 0000000000000000000000000000000000000000..4ef66b7bd5740c5def72af038ae832c445089b09 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/nllb_moe/modeling_nllb_moe.py @@ -0,0 +1,1792 @@ +# coding=utf-8 +# Copyright 2023 NllbMoe Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch NLLB-MoE model.""" + + +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...integrations.deepspeed import is_deepspeed_zero3_enabled +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + MoEModelOutput, + MoEModelOutputWithPastAndCrossAttentions, + Seq2SeqMoEModelOutput, + Seq2SeqMoEOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_nllb_moe import NllbMoeConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "NllbMoeConfig" +_CHECKPOINT_FOR_DOC = "hf-internal-testing/dummy-nllb-moe-2-experts" +_REAL_CHECKPOINT_FOR_DOC = "facebook/nllb-moe-54b" + + +#################################################### +# This dict contains ids and associated url +# for the pretrained weights provided with the models +#################################################### + +from ..deprecated._archive_maps import NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from transformers.models.bart.modeling_bart.shift_tokens_right +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): + """ + Shift input ids one token to the right. + """ + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() + shifted_input_ids[:, 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids +def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): + """ + Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols + are ignored. This is modified from fairseq's `utils.make_positions`. + + Args: + x: torch.Tensor x: + + Returns: torch.Tensor + """ + # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. + mask = input_ids.ne(padding_idx).int() + incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask + return incremental_indices.long() + padding_idx + + +def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float: + r""" + Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. + + See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss + function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between + experts is too unbalanced. + + Args: + router_probs (`torch.Tensor`): + Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts]. + expert_indices (`torch.Tensor`): + Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token. + + Returns: + The auxiliary loss. + """ + if router_probs is None: + return 0 + + num_experts = router_probs.shape[-1] + + # cast the expert indices to int64, otherwise one-hot encoding will fail + if expert_indices.dtype != torch.int64: + expert_indices = expert_indices.to(torch.int64) + + if len(expert_indices.shape) == 2: + expert_indices = expert_indices.unsqueeze(2) + + expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts) + + # For a given token, determine if it was routed to a given expert. + expert_mask = torch.max(expert_mask, axis=-2).values + + # cast to float32 otherwise mean will fail + expert_mask = expert_mask.to(torch.float32) + tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) + + router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2) + return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2) + + +# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding +class NllbMoeSinusoidalPositionalEmbedding(nn.Module): + """This module produces sinusoidal positional embeddings of any length.""" + + def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): + super().__init__() + self.offset = 2 + self.embedding_dim = embedding_dim + self.padding_idx = padding_idx + self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) + + def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) + if hasattr(self, "weights"): + # in forward put the weights on the correct dtype and device of the param + emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) + + self.register_buffer("weights", emb_weights, persistent=False) + + @staticmethod + def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): + """ + Build sinusoidal embeddings. + + This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of + "Attention Is All You Need". + """ + half_dim = embedding_dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) + emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) + if embedding_dim % 2 == 1: + # zero pad + emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) + if padding_idx is not None: + emb[padding_idx, :] = 0 + + return emb.to(torch.get_default_dtype()) + + @torch.no_grad() + def forward( + self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0 + ): + if input_ids is not None: + bsz, seq_len = input_ids.size() + # Create the position ids from the input token ids. Any padded tokens remain padded. + position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to( + input_ids.device + ) + else: + bsz, seq_len = inputs_embeds.size()[:-1] + position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) + + # expand embeddings if needed + max_pos = self.padding_idx + 1 + seq_len + past_key_values_length + if max_pos > self.weights.size(0): + self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) + + return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() + + def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): + """ + We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. + + Args: + inputs_embeds: torch.Tensor + + Returns: torch.Tensor + """ + input_shape = inputs_embeds.size()[:-1] + sequence_length = input_shape[1] + + position_ids = torch.arange( + self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device + ) + return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length + + +class NllbMoeTop2Router(nn.Module): + """ + Router using tokens choose top-2 experts assignment. + + This router uses the same mechanism as in NLLB-MoE from the fairseq repository. Items are sorted by router_probs + and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee + that each token is processed by an expert**, or that each expert receives at least one token. + + The router combining weights are also returned to make sure that the states that are not updated will be masked. + + """ + + def __init__(self, config: NllbMoeConfig): + super().__init__() + self.num_experts = config.num_experts + self.expert_capacity = config.expert_capacity + self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) + self.router_ignore_padding_tokens = config.router_ignore_padding_tokens + self.dtype = getattr(torch, config.router_dtype) + + self.second_expert_policy = config.second_expert_policy + self.normalize_router_prob_before_dropping = config.normalize_router_prob_before_dropping + self.batch_prioritized_routing = config.batch_prioritized_routing + self.moe_eval_capacity_token_fraction = config.moe_eval_capacity_token_fraction + + def _cast_classifier(self): + r""" + `bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an + instance of the `Linear8bitLt` class by checking special attributes. + """ + if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")): + self.classifier = self.classifier.to(self.dtype) + + def normalize_router_probabilities(self, router_probs, top_1_mask, top_2_mask): + top_1_max_probs = (router_probs * top_1_mask).sum(dim=1) + top_2_max_probs = (router_probs * top_2_mask).sum(dim=1) + denom_s = torch.clamp(top_1_max_probs + top_2_max_probs, min=torch.finfo(router_probs.dtype).eps) + top_1_max_probs = top_1_max_probs / denom_s + top_2_max_probs = top_2_max_probs / denom_s + return top_1_max_probs, top_2_max_probs + + def route_tokens( + self, + router_logits: torch.Tensor, + input_dtype: torch.dtype = torch.float32, + padding_mask: Optional[torch.LongTensor] = None, + ) -> Tuple: + """ + Computes the `dispatch_mask` and the `dispatch_weights` for each experts. The masks are adapted to the expert + capacity. + """ + nb_tokens = router_logits.shape[0] + # Apply Softmax and cast back to the original `dtype` + router_probs = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(input_dtype) + top_1_expert_index = torch.argmax(router_probs, dim=-1) + top_1_mask = torch.nn.functional.one_hot(top_1_expert_index, num_classes=self.num_experts) + + if self.second_expert_policy == "sampling": + gumbel = torch.distributions.gumbel.Gumbel(0, 1).rsample + router_logits += gumbel(router_logits.shape).to(router_logits.device) + + # replace top_1_expert_index with min values + logits_except_top_1 = router_logits.masked_fill(top_1_mask.bool(), float("-inf")) + top_2_expert_index = torch.argmax(logits_except_top_1, dim=-1) + top_2_mask = torch.nn.functional.one_hot(top_2_expert_index, num_classes=self.num_experts) + + if self.normalize_router_prob_before_dropping: + top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities( + router_probs, top_1_mask, top_2_mask + ) + + if self.second_expert_policy == "random": + top_2_max_probs = (router_probs * top_2_mask).sum(dim=1) + sampled = (2 * top_2_max_probs) > torch.rand_like(top_2_max_probs.float()) + top_2_mask = top_2_mask * sampled.repeat(self.num_experts, 1).transpose(1, 0) + + if padding_mask is not None and not self.router_ignore_padding_tokens: + if len(padding_mask.shape) == 4: + # only get the last causal mask + padding_mask = padding_mask[:, :, -1, :].reshape(-1)[-nb_tokens:] + non_padding = ~padding_mask.bool() + top_1_mask = top_1_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype) + top_2_mask = top_2_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype) + + if self.batch_prioritized_routing: + # sort tokens based on their routing probability + # to make sure important tokens are routed, first + importance_scores = -1 * router_probs.max(dim=1)[0] + sorted_top_1_mask = top_1_mask[importance_scores.argsort(dim=0)] + sorted_cumsum1 = (torch.cumsum(sorted_top_1_mask, dim=0) - 1) * sorted_top_1_mask + locations1 = sorted_cumsum1[importance_scores.argsort(dim=0).argsort(dim=0)] + + sorted_top_2_mask = top_2_mask[importance_scores.argsort(dim=0)] + sorted_cumsum2 = (torch.cumsum(sorted_top_2_mask, dim=0) - 1) * sorted_top_2_mask + locations2 = sorted_cumsum2[importance_scores.argsort(dim=0).argsort(dim=0)] + # Update 2nd's location by accounting for locations of 1st + locations2 += torch.sum(top_1_mask, dim=0, keepdim=True) + + else: + locations1 = torch.cumsum(top_1_mask, dim=0) - 1 + locations2 = torch.cumsum(top_2_mask, dim=0) - 1 + # Update 2nd's location by accounting for locations of 1st + locations2 += torch.sum(top_1_mask, dim=0, keepdim=True) + + if not self.training and self.moe_eval_capacity_token_fraction > 0: + self.expert_capacity = math.ceil(self.moe_eval_capacity_token_fraction * nb_tokens) + else: + capacity = 2 * math.ceil(nb_tokens / self.num_experts) + self.expert_capacity = capacity if self.expert_capacity is None else self.expert_capacity + + # Remove locations outside capacity from ( cumsum < capacity = False will not be routed) + top_1_mask = top_1_mask * torch.lt(locations1, self.expert_capacity) + top_2_mask = top_2_mask * torch.lt(locations2, self.expert_capacity) + + if not self.normalize_router_prob_before_dropping: + top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities( + router_probs, top_1_mask, top_2_mask + ) + + # Calculate combine_weights and dispatch_mask + gates1 = top_1_max_probs[:, None] * top_1_mask + gates2 = top_2_max_probs[:, None] * top_2_mask + router_probs = gates1 + gates2 + + return top_1_mask, router_probs + + def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.LongTensor] = None) -> Tuple: + r""" + The hidden states are reshaped to simplify the computation of the router probabilities (combining weights for + each experts.) + + Args: + hidden_states (`torch.Tensor`): + (batch_size, sequence_length, hidden_dim) from which router probabilities are computed. + Returns: + top_1_mask (`torch.Tensor` of shape (batch_size, sequence_length)): + Index tensor of shape [batch_size, sequence_length] corresponding to the expert selected for each token + using the top1 probabilities of the router. + router_probabilities (`torch.Tensor` of shape (batch_size, sequence_length, nump_experts)): + Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each + token and expert. Used for routing tokens to experts. + router_logits (`torch.Tensor` of shape (batch_size, sequence_length))): + Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. + This is used later for computing router z-loss. + """ + self.input_dtype = hidden_states.dtype + batch_size, sequence_length, hidden_dim = hidden_states.shape + hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim) + hidden_states = hidden_states.to(self.dtype) + self._cast_classifier() + router_logits = self.classifier(hidden_states) + top_1_mask, router_probs = self.route_tokens(router_logits, self.input_dtype, padding_mask) + return top_1_mask, router_probs + + +class NllbMoeDenseActDense(nn.Module): + def __init__(self, config: NllbMoeConfig, ffn_dim: int): + super().__init__() + self.fc1 = nn.Linear(config.d_model, ffn_dim) + self.fc2 = nn.Linear(ffn_dim, config.d_model) + self.dropout = nn.Dropout(config.activation_dropout) + self.act = ACT2FN[config.activation_function] + + def forward(self, hidden_states): + hidden_states = self.fc1(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.dropout(hidden_states) + if ( + isinstance(self.fc2.weight, torch.Tensor) + and hidden_states.dtype != self.fc2.weight.dtype + and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8) + ): + hidden_states = hidden_states.to(self.fc2.weight.dtype) + hidden_states = self.fc2(hidden_states) + return hidden_states + + +class NllbMoeSparseMLP(nn.Module): + r""" + Implementation of the NLLB-MoE sparse MLP module. + """ + + def __init__(self, config: NllbMoeConfig, ffn_dim: int, expert_class: nn.Module = NllbMoeDenseActDense): + super().__init__() + self.router = NllbMoeTop2Router(config) + self.moe_token_dropout = config.moe_token_dropout + self.token_dropout = nn.Dropout(self.moe_token_dropout) + self.num_experts = config.num_experts + + self.experts = nn.ModuleDict() + for idx in range(self.num_experts): + self.experts[f"expert_{idx}"] = expert_class(config, ffn_dim) + + def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.Tensor] = False): + r""" + The goal of this forward pass is to have the same number of operation as the equivalent `NllbMoeDenseActDense` + (mlp) layer. This means that all of the hidden states should be processed at most twice ( since we are using a + top_2 gating mecanism). This means that we keep the complexity to O(batch_size x sequence_length x hidden_dim) + instead of O(num_experts x batch_size x sequence_length x hidden_dim). + + 1- Get the `router_probs` from the `router`. The shape of the `router_mask` is `(batch_size X sequence_length, + num_expert)` and corresponds to the boolean version of the `router_probs`. The inputs are masked using the + `router_mask`. + + 2- Dispatch the hidden_states to its associated experts. The router probabilities are used to weight the + contribution of each experts when updating the masked hidden states. + + Args: + hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`): + The hidden states + padding_mask (`torch.Tensor`, *optional*, defaults to `False`): + Attention mask. Can be in the causal form or not. + + Returns: + hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`): + Updated hidden states + router_logits (`torch.Tensor` of shape `(batch_size, sequence_length, num_experts)`): + Needed for computing the loss + + """ + batch_size, sequence_length, hidden_dim = hidden_states.shape + + top_1_mask, router_probs = self.router(hidden_states, padding_mask) + router_mask = router_probs.bool() + hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim) + masked_hidden_states = torch.einsum("bm,be->ebm", hidden_states, router_mask) + for idx, expert in enumerate(self.experts.values()): + token_indices = router_mask[:, idx] + combining_weights = router_probs[token_indices, idx] + expert_output = expert(masked_hidden_states[idx, token_indices]) + if self.moe_token_dropout > 0: + if self.training: + expert_output = self.token_dropout(expert_output) + else: + expert_output *= 1 - self.moe_token_dropout + masked_hidden_states[idx, token_indices] = torch.einsum("b,be->be", combining_weights, expert_output) + hidden_states = masked_hidden_states.sum(dim=0).reshape(batch_size, sequence_length, hidden_dim) + + top_1_expert_index = torch.argmax(top_1_mask, dim=-1) + return hidden_states, (router_probs, top_1_expert_index) + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->NllbMoe,key_value_states->encoder_hidden_states +class NllbMoeAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[NllbMoeConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if encoder_hidden_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = encoder_hidden_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `encoder_hidden_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == encoder_hidden_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +class NllbMoeEncoderLayer(nn.Module): + def __init__(self, config: NllbMoeConfig, is_sparse: bool = False): + super().__init__() + self.embed_dim = config.d_model + self.is_sparse = is_sparse + self.self_attn = NllbMoeAttention( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + ) + self.attn_dropout = nn.Dropout(config.dropout) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + if not self.is_sparse: + self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.encoder_ffn_dim) + else: + self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.encoder_ffn_dim) + self.ff_layer_norm = nn.LayerNorm(config.d_model) + self.ff_dropout = nn.Dropout(config.activation_dropout) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + layer_head_mask: torch.Tensor, + output_attentions: bool = False, + output_router_logits: bool = False, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): + input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): + attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very + large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = self.attn_dropout(hidden_states) + hidden_states = residual + hidden_states + + residual = hidden_states + + hidden_states = self.ff_layer_norm(hidden_states) + if self.is_sparse: + hidden_states, router_states = self.ffn(hidden_states, attention_mask) + else: + # router_states set to None to track which layers have None gradients. + hidden_states, router_states = self.ffn(hidden_states), None + + hidden_states = self.ff_dropout(hidden_states) + + hidden_states = residual + hidden_states + + if hidden_states.dtype == torch.float16 and ( + torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() + ): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + if output_router_logits: + outputs += (router_states,) + + return outputs + + +class NllbMoeDecoderLayer(nn.Module): + def __init__(self, config: NllbMoeConfig, is_sparse: bool = False): + super().__init__() + self.embed_dim = config.d_model + self.is_sparse = is_sparse + self.self_attn = NllbMoeAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.attn_dropout = nn.Dropout(config.dropout) + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.cross_attention = NllbMoeAttention( + self.embed_dim, config.decoder_attention_heads, config.attention_dropout, is_decoder=True + ) + self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim) + if not self.is_sparse: + self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.decoder_ffn_dim) + else: + self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.decoder_ffn_dim) + self.ff_layer_norm = nn.LayerNorm(config.d_model) + self.ff_dropout = nn.Dropout(config.activation_dropout) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + output_router_logits: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): + input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): + attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very + large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): + encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by + very large negative values. + layer_head_mask (`torch.FloatTensor`): + mask for attention heads in a given layer of size `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): + mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): + cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = self.attn_dropout(hidden_states) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.cross_attention_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention( + hidden_states=hidden_states, + encoder_hidden_states=encoder_hidden_states, + past_key_value=cross_attn_past_key_value, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = self.attn_dropout(hidden_states) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value += cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + + hidden_states = self.ff_layer_norm(hidden_states) + if self.is_sparse: + hidden_states, router_states = self.ffn(hidden_states, attention_mask) + else: + hidden_states, router_states = self.ffn(hidden_states), None + + hidden_states = self.ff_dropout(hidden_states) + + hidden_states = residual + hidden_states + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states, present_key_value) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if output_router_logits: + outputs += (router_states,) + + return outputs + + +class NllbMoePreTrainedModel(PreTrainedModel): + config_class = NllbMoeConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["NllbMoeEncoderLayer", "NllbMoeDecoderLayer"] + + def _init_weights(self, module): + """Initialize the weights""" + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +NLLB_MOE_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`NllbMoeConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +NLLB_MOE_GENERATION_EXAMPLE = r""" + Translation example: + + ```python + >>> from transformers import AutoTokenizer, NllbMoeForConditionalGeneration + + >>> model = NllbMoeForConditionalGeneration.from_pretrained("facebook/nllb-moe-54b") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b") + + >>> text_to_translate = "Life is like a box of chocolates" + >>> model_inputs = tokenizer(text_to_translate, return_tensors="pt") + + >>> # translate to French + >>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("eng_Latn")) + >>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)) + ``` +""" + +NLLB_MOE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + NllbMoe uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, and + should not be returned during inference. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class NllbMoeEncoder(NllbMoePreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`NllbMoeEncoderLayer`]. + + Args: + config: + NllbMoeConfig + embed_tokens (nn.Embedding): + output embedding + """ + + def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) + + if embed_tokens is not None: + self.embed_tokens.weight = embed_tokens.weight + + self.embed_positions = NllbMoeSinusoidalPositionalEmbedding( + config.max_position_embeddings, + embed_dim, + self.padding_idx, + ) + sparse_step = config.encoder_sparse_step + self.layers = nn.ModuleList() + for i in range(config.encoder_layers): + is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False + self.layers.append(NllbMoeEncoderLayer(config, is_sparse)) + + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, + and should not be returned during inference. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input_ids, inputs_embeds) + embed_pos = embed_pos.to(inputs_embeds.device) + + hidden_states = inputs_embeds + embed_pos + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) + + encoder_states = () if output_hidden_states else None + all_router_probs = () if output_router_logits else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.size()[0] != len(self.layers): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = torch.rand([]) + if self.training and (dropout_probability < self.layerdrop): # skip the layer + layer_outputs = (None, None, None) + else: + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + (head_mask[idx] if head_mask is not None else None), + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + output_router_logits=output_router_logits, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + if output_router_logits: + all_router_probs += (layer_outputs[-1],) + + last_hidden_state = self.layer_norm(hidden_states) + + if output_hidden_states: + encoder_states += (last_hidden_state,) + + if not return_dict: + return tuple( + v for v in [last_hidden_state, encoder_states, all_attentions, all_router_probs] if v is not None + ) + + return MoEModelOutput( + last_hidden_state=last_hidden_state, + hidden_states=encoder_states, + attentions=all_attentions, + router_probs=all_router_probs, + ) + + +class NllbMoeDecoder(NllbMoePreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`NllbMoeDecoderLayer`] + + Args: + config: + NllbMoeConfig + embed_tokens (nn.Embedding): + output embedding + """ + + def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) + + if embed_tokens is not None: + self.embed_tokens.weight = embed_tokens.weight + + self.embed_positions = NllbMoeSinusoidalPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + self.padding_idx, + ) + + sparse_step = config.decoder_sparse_step + self.layers = nn.ModuleList() + for i in range(config.decoder_layers): + is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False + self.layers.append(NllbMoeDecoderLayer(config, is_sparse)) + + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing + cross-attention on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + output_router_logits (`bool`, *optional*): + Whether or not to return the logits of all the routers. They are useful for computing the router loss, + and should not be returned during inference. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + # create causal mask + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + combined_attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # embed positions + positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length) + positions = positions.to(inputs_embeds.device) + + hidden_states = inputs_embeds + positions + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_router_probs = () if output_router_logits else None + all_cross_attentions = () if output_attentions else None + present_key_value_states = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + if attn_mask.size()[0] != len(self.layers): + raise ValueError( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = torch.rand([]) + + skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False + if not skip_the_layer or deepspeed_zero3_is_enabled: + layer_head_mask = head_mask[idx] if head_mask is not None else None + cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + # under deepspeed zero3 all gpus must run in sync + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.forward, + hidden_states, + combined_attention_mask, + encoder_hidden_states, + encoder_attention_mask, + layer_head_mask, + cross_attn_layer_head_mask, + None, # past_key_value is always None with gradient checkpointing + use_cache, + output_attentions, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=layer_head_mask, + cross_attn_layer_head_mask=cross_attn_layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + output_router_logits=output_router_logits, + ) + + hidden_states = layer_outputs[0] + + if skip_the_layer: + continue + + if use_cache: + present_key_value_states += (layer_outputs[1],) + + if output_attentions: + all_self_attns += (layer_outputs[2],) + all_cross_attentions += (layer_outputs[3],) + + if output_router_logits: + all_router_probs += (layer_outputs[-1],) + + hidden_states = self.layer_norm(hidden_states) + + # Add last layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + present_key_value_states, + all_hidden_states, + all_self_attns, + all_cross_attentions, + all_router_probs, + ] + if v is not None + ) + return MoEModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_value_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + router_probs=all_router_probs, + ) + + +@add_start_docstrings( + "The bare NllbMoe Model outputting raw hidden-states without any specific head on top.", + NLLB_MOE_START_DOCSTRING, +) +class NllbMoeModel(NllbMoePreTrainedModel): + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + def __init__(self, config: NllbMoeConfig): + super().__init__(config) + + padding_idx, vocab_size = config.pad_token_id, config.vocab_size + self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) + + self.encoder = NllbMoeEncoder(config, self.shared) + self.decoder = NllbMoeDecoder(config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, value): + self.shared = value + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) + self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING) + @add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqMoEModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], Seq2SeqMoEModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, NllbMoeModel + + >>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts") + >>> model = SwitchTransformersModel.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 + + >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for NllbMoeModel + >>> decoder_input_ids = model._shift_right(decoder_input_ids) + + >>> # forward pass + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + return_dict = return_dict if return_dict is not None else self.config.return_dict + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, MoEModelOutput): + encoder_outputs = MoEModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None, + ) + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqMoEModelOutput( + past_key_values=decoder_outputs.past_key_values, + cross_attentions=decoder_outputs.cross_attentions, + last_hidden_state=decoder_outputs.last_hidden_state, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + decoder_hidden_states=decoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + decoder_attentions=decoder_outputs.attentions, + encoder_router_logits=encoder_outputs.router_probs, + decoder_router_logits=decoder_outputs.router_probs, + ) + + +@add_start_docstrings( + "The NllbMoe Model with a language modeling head. Can be used for summarization.", NLLB_MOE_START_DOCSTRING +) +class NllbMoeForConditionalGeneration(NllbMoePreTrainedModel): + base_model_prefix = "model" + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] + + def __init__(self, config: NllbMoeConfig): + super().__init__(config) + self.model = NllbMoeModel(config) + self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) + + self.router_z_loss_coef = config.router_z_loss_coef + self.router_aux_loss_coef = config.router_aux_loss_coef + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.model.get_encoder() + + def get_decoder(self): + return self.model.get_decoder() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(NLLB_MOE_GENERATION_EXAMPLE) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], Seq2SeqMoEOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + """ + return_dict = return_dict if return_dict is not None else self.config.return_dict + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_router_logits = ( + output_router_logits if output_router_logits is not None else self.config.output_router_logits + ) + if labels is not None: + if decoder_input_ids is None: + decoder_input_ids = shift_tokens_right( + labels, self.config.pad_token_id, self.config.decoder_start_token_id + ) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + output_router_logits=output_router_logits, + return_dict=return_dict, + ) + lm_logits = self.lm_head(outputs[0]) + + loss = None + encoder_aux_loss = None + decoder_aux_loss = None + + if labels is not None: + loss_fct = CrossEntropyLoss(ignore_index=-100) + # todo check in the config if router loss enables + + if output_router_logits: + encoder_router_logits = outputs[-1] + decoder_router_logits = outputs[3 if output_attentions else 4] + + # Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder + encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_router_logits) + encoder_aux_loss = load_balancing_loss_func(encoder_router_logits, encoder_expert_indexes) + + decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_router_logits) + decoder_aux_loss = load_balancing_loss_func(decoder_router_logits, decoder_expert_indexes) + + loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) + + if output_router_logits and labels is not None: + aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss) + loss = loss + aux_loss + + output = (loss,) if loss is not None else () + if not return_dict: + output += (lm_logits,) + if output_router_logits: # only return the loss if they are not None + output += ( + encoder_aux_loss, + decoder_aux_loss, + *outputs[1:], + ) + else: + output += outputs[1:] + + return output + + return Seq2SeqMoEOutput( + loss=loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + cross_attentions=outputs.cross_attentions, + encoder_aux_loss=encoder_aux_loss, + decoder_aux_loss=decoder_aux_loss, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + decoder_hidden_states=outputs.decoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + decoder_attentions=outputs.decoder_attentions, + encoder_router_logits=outputs.encoder_router_logits, + decoder_router_logits=outputs.decoder_router_logits, + ) + + def _unpack_router_logits(self, router_outputs): + total_router_logits = [] + total_expert_indexes = [] + for router_output in router_outputs: + if router_output is not None: + router_logits, expert_indexes = router_output + total_router_logits.append(router_logits) + total_expert_indexes.append(expert_indexes) + + total_router_logits = torch.cat(total_router_logits, dim=1) if len(total_router_logits) > 0 else None + total_expert_indexes = torch.stack(total_expert_indexes, dim=1) if len(total_expert_indexes) > 0 else None + return total_router_logits, total_expert_indexes + + # Copied from transfomers.models.switch_transformers.SwitchTransformersForConditionalGeneration.prepare_inputs_for_generation + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if decoder_input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = decoder_input_ids.shape[1] - 1 + + decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..083301cc20c677fa15daa9cff63385f04fcd0507 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__init__.py @@ -0,0 +1,65 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig"], + "tokenization_prophetnet": ["ProphetNetTokenizer"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_prophetnet"] = [ + "PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST", + "ProphetNetDecoder", + "ProphetNetEncoder", + "ProphetNetForCausalLM", + "ProphetNetForConditionalGeneration", + "ProphetNetModel", + "ProphetNetPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig + from .tokenization_prophetnet import ProphetNetTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_prophetnet import ( + PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST, + ProphetNetDecoder, + ProphetNetEncoder, + ProphetNetForCausalLM, + ProphetNetForConditionalGeneration, + ProphetNetModel, + ProphetNetPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5578673f106f4e14622faea6fc513f0a8e1adda5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/configuration_prophetnet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/configuration_prophetnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c5ca9aa028973c941b24a58413072ddf52026825 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/configuration_prophetnet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ea02b1ac6b6c5993327d1389fe388607cf8d406 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/modeling_prophetnet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/modeling_prophetnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ce351ac6b85253ab56da82df6b35fdf7af4a381 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/modeling_prophetnet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/tokenization_prophetnet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/tokenization_prophetnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..20028d5e35fda6be7bb1fca4bf4758182f65751f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/tokenization_prophetnet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/configuration_prophetnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/configuration_prophetnet.py new file mode 100644 index 0000000000000000000000000000000000000000..e07936a14cd30245a28b7e1619d1b46ac0ca9f63 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/configuration_prophetnet.py @@ -0,0 +1,180 @@ +# coding=utf-8 +# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" ProphetNet model configuration""" + +from typing import Callable, Optional, Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class ProphetNetConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a + ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the ProphetNet + [microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for activations inside the fully connected layer. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`ProphetNetModel`]. + hidden_size (`int`, *optional*, defaults to 1024): + Dimensionality of the layers and the pooler layer. + encoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + num_encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + num_encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the `intermediate` (often named feed-forward) layer in decoder. + num_decoder_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + num_decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + add_cross_attention (`bool`, *optional*, defaults to `True`): + Whether cross-attention layers should be added to the model. + is_encoder_decoder (`bool`, *optional*, defaults to `True`): + Whether this is an encoder/decoder model. + pad_token_id (`int`, *optional*, defaults to 1) + Padding token id. + bos_token_id (`int`, *optional*, defaults to 0) + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2) + End of stream token id. + ngram (`int`, *optional*, defaults to 2) + Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first + token. + num_buckets (`int`, *optional*, defaults to 32) + The number of buckets to use for each attention layer. This is for relative position calculation. See the + [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. + relative_max_distance (`int`, *optional*, defaults to 128) + Relative distances greater than this number will be put into the last same bucket. This is for relative + position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. + disable_ngram_loss (`bool`, *optional*, defaults to `False`): + Whether be trained predicting only the next first token. + eps (`float`, *optional*, defaults to 0.0): + Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label + smoothing is performed. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + """ + + model_type = "prophetnet" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = { + "num_attention_heads": "num_encoder_attention_heads", + } + + def __init__( + self, + activation_dropout: Optional[float] = 0.1, + activation_function: Optional[Union[str, Callable]] = "gelu", + vocab_size: Optional[int] = 30522, + hidden_size: Optional[int] = 1024, + encoder_ffn_dim: Optional[int] = 4096, + num_encoder_layers: Optional[int] = 12, + num_encoder_attention_heads: Optional[int] = 16, + decoder_ffn_dim: Optional[int] = 4096, + num_decoder_layers: Optional[int] = 12, + num_decoder_attention_heads: Optional[int] = 16, + attention_dropout: Optional[float] = 0.1, + dropout: Optional[float] = 0.1, + max_position_embeddings: Optional[int] = 512, + init_std: Optional[float] = 0.02, + is_encoder_decoder: Optional[bool] = True, + add_cross_attention: Optional[bool] = True, + decoder_start_token_id: Optional[int] = 0, + ngram: Optional[int] = 2, + num_buckets: Optional[int] = 32, + relative_max_distance: Optional[int] = 128, + disable_ngram_loss: Optional[bool] = False, + eps: Optional[float] = 0.0, + use_cache: Optional[bool] = True, + pad_token_id: Optional[int] = 0, + bos_token_id: Optional[int] = 1, + eos_token_id: Optional[int] = 2, + **kwargs, + ): + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.encoder_ffn_dim = encoder_ffn_dim + self.num_encoder_layers = num_encoder_layers + self.num_encoder_attention_heads = num_encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.num_decoder_layers = num_decoder_layers + self.num_decoder_attention_heads = num_decoder_attention_heads + self.max_position_embeddings = max_position_embeddings + self.init_std = init_std # Normal(0, this parameter) + self.activation_function = activation_function + + # parameters for prophetnet + self.ngram = ngram + self.num_buckets = num_buckets + self.relative_max_distance = relative_max_distance + self.disable_ngram_loss = disable_ngram_loss + self.eps = eps + + # 3 Types of Dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.dropout = dropout + + self.use_cache = use_cache + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + add_cross_attention=add_cross_attention, + decoder_start_token_id=decoder_start_token_id, + **kwargs, + ) + + @property + def num_hidden_layers(self) -> int: + return self.num_encoder_layers + self.num_decoder_layers + + @num_hidden_layers.setter + def num_hidden_layers(self, value): + raise NotImplementedError( + "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" + " `num_decoder_layers`." + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..c9e64c06ef769ad79fa43e46d6945c9d5f9f86e9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,160 @@ +# coding=utf-8 +# Copyright 2020 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert ProphetNet checkpoint.""" + + +import argparse + +from torch import nn + +# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here +# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively +from transformers_old.modeling_prophetnet import ( + ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, +) +from transformers_old.modeling_xlm_prophetnet import ( + XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, +) + +from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging + + +logger = logging.get_logger(__name__) +logging.set_verbosity_info() + + +def convert_prophetnet_checkpoint_to_pytorch(prophetnet_checkpoint_path: str, pytorch_dump_folder_path: str): + """ + Copy/paste/tweak prohpetnet's weights to our prophetnet structure. + """ + if "xprophetnet" in prophetnet_checkpoint_path: + prophet_old = XLMProphetNetForConditionalGenerationOld.from_pretrained(prophetnet_checkpoint_path) + prophet, loading_info = XLMProphetNetForConditionalGeneration.from_pretrained( + prophetnet_checkpoint_path, output_loading_info=True + ) + else: + prophet_old = ProphetNetForConditionalGenerationOld.from_pretrained(prophetnet_checkpoint_path) + prophet, loading_info = ProphetNetForConditionalGeneration.from_pretrained( + prophetnet_checkpoint_path, output_loading_info=True + ) + + special_keys = ["key_proj", "value_proj", "query_proj"] + + mapping = { + "self_attn": "ngram_self_attn", + "cross_attn": "encoder_attn", + "cross_attn_layer_norm": "encoder_attn_layer_norm", + "feed_forward_layer_norm": "final_layer_norm", + "feed_forward": "", + "intermediate": "fc1", + "output": "fc2", + "key_proj": "k_proj", + "query_proj": "q_proj", + "value_proj": "v_proj", + "word_embeddings": "embed_tokens", + "embeddings_layer_norm": "emb_layer_norm", + "relative_pos_embeddings": "relative_linear", + "ngram_embeddings": "ngram_input_embed", + "position_embeddings": "embed_positions", + } + + for key in loading_info["missing_keys"]: + attributes = key.split(".") + + if attributes[0] == "lm_head": + model = prophet + old_model = prophet_old + else: + model = prophet.prophetnet + old_model = prophet_old.model + + is_key_init = False + for attribute in attributes: + if attribute in mapping: + old_attribute = mapping[attribute] + if not hasattr(old_model, old_attribute) and len(old_attribute) > 0: + old_attribute = attribute + elif hasattr(old_model, attribute): + old_attribute = attribute + + if attribute == "weight": + assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" + model.weight = old_model.weight + logger.info(f"{attribute} is initialized.") + is_key_init = True + break + elif attribute == "bias": + assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" + model.bias = old_model.bias + logger.info(f"{attribute} is initialized") + is_key_init = True + break + elif attribute in special_keys and hasattr(old_model, "in_proj_weight"): + embed_dim = old_model.in_proj_weight.shape[0] // 3 + param = getattr(model, attribute) + param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" + param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" + if attribute == "query_proj": + model.query_proj.weight = nn.Parameter(old_model.in_proj_weight[:embed_dim, :]) + model.query_proj.bias = nn.Parameter(old_model.in_proj_bias[:embed_dim]) + + elif attribute == "key_proj": + model.key_proj.weight = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :]) + model.key_proj.bias = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim]) + elif attribute == "value_proj": + model.value_proj.weight = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :]) + model.value_proj.bias = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :]) + is_key_init = True + break + elif attribute == "position_embeddings": + assert ( + model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] + ), "Hidden size has to match" + assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." + model.position_embeddings.weight = nn.Parameter(old_model.embed_positions.weight[:512, :]) + is_key_init = True + break + + if attribute.isdigit(): + model = model[int(attribute)] + old_model = old_model[int(old_attribute)] + else: + model = getattr(model, attribute) + + if old_attribute == "": + old_model = old_model + else: + if not hasattr(old_model, old_attribute): + raise ValueError(f"{old_model} does not have {old_attribute}") + old_model = getattr(old_model, old_attribute) + + if not is_key_init: + raise ValueError(f"{key} was not correctly initialized!") + + print(f"Saving model to {pytorch_dump_folder_path}") + prophet.save_pretrained(pytorch_dump_folder_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/modeling_prophetnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/modeling_prophetnet.py new file mode 100644 index 0000000000000000000000000000000000000000..c7d9028cdaf7095a2477fe22d0ccfbd7cff561a1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/modeling_prophetnet.py @@ -0,0 +1,2340 @@ +# coding=utf-8 +# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch ProphetNet model, ported from ProphetNet repo(fairsequery_states version).""" + +import copy +import math +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import Tensor, nn +from torch.nn import LayerNorm + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutput +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_prophetnet import ProphetNetConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "ProphenetConfig" +_CHECKPOINT_FOR_DOC = "microsoft/prophetnet-large-uncased" + + +from ..deprecated._archive_maps import PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +PROPHETNET_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted + from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the + file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`. + + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and + behavior. + + Parameters: + config ([`ProphetNetConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +PROPHETNET_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + ProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +def softmax(hidden_state, dim, onnx_trace=False): + if onnx_trace: + return nn.functional.softmax(hidden_state.float(), dim=dim) + else: + return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32) + + +def ngram_attention_bias(sequence_length, ngram, device, dtype): + """ + This function computes the bias for the predict stream + """ + left_block = ( + torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min + ) + right_block = left_block.detach().clone() + # create bias + for stream_idx in range(ngram): + right_block[stream_idx].fill_diagonal_(0, wrap=False) + left_block[stream_idx].triu_(-stream_idx + 1) + + left_block[:, :, 0] = 0 + return torch.cat([left_block, right_block], dim=2) + + +def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False): + """ + This function computes individual parts of the relative position buckets. For more detail, see paper. + """ + inv_relative_positions = -relative_positions + rel_positions_bucket = 0 + + if is_bidirectional: + num_buckets = num_buckets // 2 + rel_positions_bucket = ( + rel_positions_bucket + + torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets + ) + inv_relative_positions = torch.abs(inv_relative_positions) + else: + inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions)) + + max_exact = num_buckets // 2 + is_small = torch.lt(inv_relative_positions, max_exact) + val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log( + max_distance / max_exact + ) * (num_buckets - max_exact) + val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int() + rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large) + return rel_positions_bucket + + +def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids): + """ + This function computes both main and predict relative position buckets. For more detail, see paper. + """ + # main stream + main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1) + main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1) + + # predicting stream + predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1) + predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1) + predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1) + + # get both position buckets + main_relative_position_buckets = compute_relative_buckets( + num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False + ) + predict_relative_position_buckets = compute_relative_buckets( + num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False + ) + return main_relative_position_buckets, predict_relative_position_buckets + + +@dataclass +class ProphetNetSeq2SeqLMOutput(ModelOutput): + """ + Base class for sequence-to-sequence language models outputs. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss. + logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): + Prediction scores of the main stream language modeling head (scores for each vocabulary token before + SoftMax). + logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): + Prediction scores of the predict stream language modeling head (scores for each vocabulary token before + SoftMax). + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_attn_heads, decoder_sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, decoder_sequence_length, hidden_size)`. + + Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. + decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. + + Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding + outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to + compute the weighted average in the + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, encoder_sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention + softmax, used to compute the weighted average in the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + logits_ngram: Optional[torch.FloatTensor] = None + past_key_values: Optional[Tuple[torch.FloatTensor]] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + @property + def decoder_cross_attentions(self): + warnings.warn( + "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" + " instead.", + FutureWarning, + ) + return self.cross_attentions + + +@dataclass +class ProphetNetSeq2SeqModelOutput(ModelOutput): + """ + Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential + decoding. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): + Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. + + If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, + hidden_size)` is output. + last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*): + Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_attn_heads, decoder_sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, decoder_sequence_length, hidden_size)`. + + Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. + decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. + + Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding + outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the + weighted average in the + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to + compute the weighted average in the + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, encoder_sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, encoder_sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + """ + + last_hidden_state: torch.FloatTensor + last_hidden_state_ngram: Optional[torch.FloatTensor] = None + past_key_values: Optional[Tuple[torch.FloatTensor]] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + @property + def decoder_cross_attentions(self): + warnings.warn( + "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" + " instead.", + FutureWarning, + ) + return self.cross_attentions + + +@dataclass +class ProphetNetDecoderModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): + Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. + + If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, + hidden_size)` is output. + last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): + Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_attn_heads, decoder_sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, decoder_sequence_length, hidden_size)`. + + Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. + ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. + + Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding + outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the + weighted average in the + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to + compute the weighted average in the + """ + + last_hidden_state: torch.FloatTensor + last_hidden_state_ngram: Optional[torch.FloatTensor] = None + past_key_values: Optional[Tuple[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class ProphetNetDecoderLMOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss. + logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): + Prediction scores of the main stream language modeling head (scores for each vocabulary token before + SoftMax). + logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): + Prediction scores of the predict stream language modeling head (scores for each vocabulary token before + SoftMax). + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_attn_heads, decoder_sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, decoder_sequence_length, hidden_size)`. + + Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. + ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. + + Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding + outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the + weighted average in the + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to + compute the weighted average in the + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + logits_ngram: Optional[torch.FloatTensor] = None + past_key_values: Optional[Tuple[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +class ProphetNetPreTrainedModel(PreTrainedModel): + config_class = ProphetNetConfig + base_model_prefix = "prophetnet" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.init_std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.init_std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + def _shift_right(self, input_ids): + decoder_start_token_id = self.config.decoder_start_token_id + pad_token_id = self.config.pad_token_id + + assert decoder_start_token_id is not None, ( + "self.model.config.decoder_start_token_id has to be defined. In ProphetNet it is usually set to the" + " pad_token_id. See ProphetNet docs for more information" + ) + + # shift inputs to the right + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() + shifted_input_ids[..., 0] = decoder_start_token_id + + assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" + + return shifted_input_ids + + +class ProphetNetPositionalEmbeddings(nn.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting + based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to + the forward function. + """ + + def __init__(self, config: ProphetNetConfig) -> None: + self.max_length = config.max_position_embeddings + super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id) + + def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None): + assert (position_ids is None) or ( + self.padding_idx is None + ), "If position_ids is pre-computed then padding_idx should not be set." + + if position_ids is None: + if past_key_values is not None: + # position_ids is the same for every token when decoding a single step + # Without the int() cast, it doesn't work in some cases when exporting to ONNX + prev_num_input_ids = past_key_values[0][0].shape[2] + num_input_ids = inputs_shape[1] + prev_num_input_ids + position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * ( + int(self.padding_idx + num_input_ids) + ) + else: + if attention_mask is None: + attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device) + + # retrieve position_ids from input_ids / attention_mask + position_ids = ( + torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask + ).long() + self.padding_idx + + # make sure position_ids are not bigger then max_length + position_ids = position_ids.clamp(0, self.max_length - 1) + + return super().forward(position_ids), position_ids + + def _forward(self, position_ids): + return super().forward(position_ids) + + +class ProphetNetAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + config: ProphetNetConfig, + num_attn_heads: int, + ): + super().__init__() + hidden_size = config.hidden_size + + self.attention_dropout = config.attention_dropout + self.dropout = config.dropout + self.num_attn_heads = num_attn_heads + self.head_dim = hidden_size // num_attn_heads + + assert self.head_dim * num_attn_heads == hidden_size, ( + "`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and" + " `config.num_decoder_attention_heads`" + ) + + self.key_proj = nn.Linear(hidden_size, hidden_size) + self.value_proj = nn.Linear(hidden_size, hidden_size) + self.query_proj = nn.Linear(hidden_size, hidden_size) + + self.out_proj = nn.Linear(hidden_size, hidden_size) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states, + key_value_states: Optional[Tensor] = None, + attention_mask: Optional[Tensor] = None, + layer_head_mask: Optional[Tensor] = None, + past_key_value: Optional[Tuple[Tensor]] = None, + output_attentions: bool = False, + ) -> Tuple[Tensor, Optional[Tensor]]: + batch_size, tgt_len, hidden_size = hidden_states.size() + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + assert list(hidden_states.size()) == [ + batch_size, + tgt_len, + hidden_size, + ], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}" + + # previous time steps are cached - no need to recompute key and value if they are static + query_states = self.query_proj(hidden_states) / (self.head_dim**0.5) + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.key_proj(key_value_states), -1, batch_size) + value_states = self._shape(self.value_proj(key_value_states), -1, batch_size) + else: + # self_attention + key_states = self._shape(self.key_proj(hidden_states), -1, batch_size) + value_states = self._shape(self.value_proj(hidden_states), -1, batch_size) + + if is_cross_attention: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + # project states into the correct shape + proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + src_len = key_states.size(2) + attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3)) + expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len) + if attn_weights.size() != expected_shape: + raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}") + + # This is part of a workaround to get around fork/join parallelism not supporting Optional types. + if attention_mask is not None and attention_mask.dim() == 0: + attention_mask = None + + expected_shape = (batch_size, self.num_attn_heads, 1, src_len) + if attention_mask is not None and attention_mask.size() != expected_shape: + raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}") + if attention_mask is not None: # don't attend to padding symbols + attn_weights = attn_weights + attention_mask + if output_attentions: + attn_weights_reshaped = attn_weights + else: + attn_weights_reshaped = None + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + assert layer_head_mask.size() == (self.num_attn_heads,), ( + f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( + batch_size, self.num_attn_heads, tgt_len, src_len + ) + + # apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model + attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped + + attn_probs = nn.functional.dropout( + attn_weights, + p=self.attention_dropout, + training=self.training, + ) + attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states) + expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim) + if attn_output.size() != expected_shape: + raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}") + + attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size) + attn_output = self.out_proj(attn_output) + + attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) + return attn_output, attn_weights_reshaped, past_key_value + + +class ProphetNetFeedForward(nn.Module): + """ + This is the residual two feed-forward layer block based on the original Transformer implementation. + """ + + def __init__(self, config: ProphetNetConfig, ffn_dim: int): + super().__init__() + self.activation_fn = ACT2FN[config.activation_function] + self.intermediate = nn.Linear(config.hidden_size, ffn_dim) + self.output = nn.Linear(ffn_dim, config.hidden_size) + self.activation_dropout = config.activation_dropout + self.dropout = config.dropout + + def forward(self, hidden_states): + hidden_states = self.intermediate(hidden_states) + hidden_states = self.activation_fn(hidden_states) + + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.output(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + return hidden_states + + +class ProphetNetNgramSelfAttention(nn.Module): + def __init__(self, config: ProphetNetConfig): + super().__init__() + self.hidden_size = config.hidden_size + + self.num_buckets = config.num_buckets + self.relative_max_distance = config.relative_max_distance + self.num_attn_heads = config.num_decoder_attention_heads + self.dropout = config.dropout + self.attention_dropout = config.attention_dropout + self.head_dim = config.hidden_size // self.num_attn_heads + self.ngram = config.ngram + + assert ( + self.head_dim * self.num_attn_heads == config.hidden_size + ), "config.hidden_size must be divisible by num_attn_heads" + # key, value, query projection + self.key_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.value_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.query_proj = nn.Linear(config.hidden_size, config.hidden_size) + + # out projection + self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) + + # rel position embeddings + self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads) + + # for onnx runtime + self.onnx_trace = False + + def _shape(self, tensor, seq_len, batch_size): + return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() + + def prepare_for_onnx_export_(self): + self.onnx_trace = True + + def forward( + self, + hidden_states, + past_key_value: Optional[Tuple[Tensor]] = None, + attention_mask=None, + layer_head_mask=None, + extended_predict_attention_mask=None, + main_relative_position_buckets=None, + predict_relative_position_buckets=None, + position_ids=None, + ): + batch_size, ngram_sequence_length, hidden_size = hidden_states.size() + assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], ( + f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape" + f" {hidden_states.shape}" + ) + + # project + query_states = self.query_proj(hidden_states) + key_states = self.key_proj(hidden_states) + value_states = self.value_proj(hidden_states) + + # normalize + query_states = query_states / (self.head_dim**0.5) + + # reshape + query_states = self._shape(query_states, ngram_sequence_length, batch_size) + key_states = self._shape(key_states, -1, batch_size) + value_states = self._shape(value_states, -1, batch_size) + proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) + + query_states = query_states.view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + # chunk into main stream and predict stream + hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1) + query_states_list = query_states.chunk(1 + self.ngram, dim=2) + key_states_list = key_states.chunk(1 + self.ngram, dim=2) + value_states_list = value_states.chunk(1 + self.ngram, dim=2) + + main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:] + main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:] + main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:] + main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:] + + # saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim) + if past_key_value is not None: + prev_main_key_states = past_key_value[0] + main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2) + prev_main_value_states = past_key_value[1] + main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2) + + # Update cache + past_key_value = (main_key_states, main_value_states) + + # get seq_length of main stream only + sequence_length = ngram_sequence_length // (1 + self.ngram) + + # MAIN-STREAM + # main attn weights + # [batch_size, number_heads, sequence_length, head_dimesion] + # x [batch_size, number_heads, head_dimesion, sequence_length] + # -> [batch_size, number_heads, sequence_length, sequence_length] + main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3)) + + # retrieve relative position embeddings for each layer -> see paper for more details + main_relative_pos_embeddings = self.get_main_relative_pos_embeddings( + main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets + ) + + main_attn_weights = main_attn_weights + main_relative_pos_embeddings + + if attention_mask is not None: + main_attn_weights = main_attn_weights + attention_mask + + main_attn_probs = softmax( + main_attn_weights, + dim=-1, + onnx_trace=self.onnx_trace, + ).type_as(main_attn_weights) + + if layer_head_mask is not None: + assert layer_head_mask.size() == (self.num_attn_heads,), ( + f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view( + batch_size, self.num_attn_heads, -1, sequence_length + ) + + main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training) + # project to attn_output + # [batch_size, number_heads, sequence_length, sequence_length] + # x [batch_size, number_heads, sequence_length, head_dimesion] + # -> [batch_size, number_heads, sequence_length, head_dimesion] + main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states) + # reshape so that num_heads dim is merged into last `head_dim` axis + main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size) + main_attn_output = self.out_proj(main_attn_output) + + # PREDICT-STREAM + # [batch_size, ngram, number_heads, sequence_length, head_dimesion] + predict_query_states = torch.stack(predict_query_states_list, 1).view( + batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim + ) + + # [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] + predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1) + + # [batch_size, sequence_length, ngram, hidden_size] + predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2) + + # [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion] + predict_value_states = torch.cat( + [torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2 + ) + + # [batch_size, ngram, number_heads, sequence_length, head_dimesion] + # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] + # -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] + predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states)) + + # retrieve relative position embeddings for each layer -> see paper for more details + # [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings] + predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings( + predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets + ) + + # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] + predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings + + if extended_predict_attention_mask is not None: + # Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] + extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4) + extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype) + predict_attn_weights = predict_attn_weights + extended_predict_attention_mask + + predict_attn_probs = softmax( + predict_attn_weights, + dim=-1, + onnx_trace=self.onnx_trace, + ).type_as(predict_attn_weights) + + if layer_head_mask is not None: + assert layer_head_mask.size() == (self.num_attn_heads,), ( + f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs + + predict_attn_probs = nn.functional.dropout( + predict_attn_probs, p=self.attention_dropout, training=self.training + ) + # project to attention output + # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] + # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] + # -> [batch_size, ngram, number_heads, sequence_length, head_dimesion] + predict_attn_output = torch.einsum( + "bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2)) + ) + + # reshape so that num_heads dim is merged into last `head_dim` axis + # [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size] + predict_attn_output = predict_attn_output.transpose(2, 3) + predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size) + predict_attn_output = self.out_proj(predict_attn_output) + + # concat to single attn output + # [batch_size, (1+ngram)*sequence_length, hidden_size] + attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size) + # reshape into better form for `config.output_attentions` + main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1) + + attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) + + return attn_output, main_attn_probs, predict_attn_probs, past_key_value + + def get_main_relative_pos_embeddings( + self, hidden_states, attn_weights, position_ids, main_relative_position_buckets + ): + # input hidden_states [batch_size, sequence_length, hidden_size] + # input attn_weights [batch_size, num_heads, sequence_length, sequence_length] + # input position_ids [batch_size, sequence_length] or [1,1] + batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape + attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len) + if main_relative_position_buckets is None: + batch_size, sequence_length = hidden_states.shape[:2] + relative_positions = ( + torch.arange(1, attn_weights.shape[-1] + 1) + .unsqueeze(0) + .unsqueeze(0) + .repeat(batch_size, sequence_length, 1) + .to(position_ids.device) + ) + # [batch_size, sequence_length, sequence_length+1] + relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) + main_relative_position_buckets = compute_relative_buckets( + self.num_buckets, self.relative_max_distance, relative_positions, False + ) + + # [batch_size, sequence_length, num_buckets * num_heads] + rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) + rel_pos_embeddings = rel_pos_embeddings.view( + rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads) + ) + rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2) + # [batch_size, num_heads, sequence_length, num_buckets] + rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,)) + + main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1) + # [batch_size * num_heads * sequence_length, sequence_length] + main_relative_position_buckets = main_relative_position_buckets.view( + -1, main_relative_position_buckets.shape[-1] + ) + main_relative_position_buckets = main_relative_position_buckets.long() + # [batch_size * num_heads * sequence_length, sequence_length] + rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) + + main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets) + main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1) + return main_relative_pos_embeddings + + def get_predict_relative_pos_embeddings( + self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets + ): + # input hidden_states [batch_size, sequence_length, ngram, hidden_size] + # input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length] + # input position_ids [batch_size, sequence_length] or [1,1] + # input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None + batch_size, sequence_length = hidden_states.shape[0:2] + + if predict_relative_position_buckets is None: + key_sequence_length = attn_weights.shape[-1] + assert ( + position_ids[0][0] == key_sequence_length - 1 + ), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)" + relative_positions = ( + torch.arange(0, key_sequence_length) + .unsqueeze(0) + .unsqueeze(0) + .repeat(batch_size, sequence_length, 1) + .to(position_ids.device) + ) + + relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) + predict_relative_position_buckets = compute_relative_buckets( + self.num_buckets, self.relative_max_distance, relative_positions, False + ) + + # [batch_size, ngram, sequence_length, hidden_size] + hidden_states = hidden_states.transpose(1, 2) + rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) + + # [batch_size, ngram, sequence_length, num_buckets, num_heads] + rel_pos_embeddings = rel_pos_embeddings.view( + hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads) + ) + rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3) + # [batch_size * ngram * sequence_length * num_heads, num_buckets] + rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets) + # [ngram, batch_size, num_heads * sequence_length, -1] + predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0) + predict_relative_position_buckets = predict_relative_position_buckets.repeat( + self.ngram, 1, self.num_attn_heads, 1 + ) + # [ngram * batch_size * num_heads * sequence_length, -1] + predict_relative_position_buckets = predict_relative_position_buckets.view( + -1, predict_relative_position_buckets.size(-1) + ).long() + + predict_relative_pos_embeddings = torch.gather( + rel_pos_embeddings, dim=1, index=predict_relative_position_buckets + ) + + # [batch_size, gram, num_heads, sequence_length, -1] + predict_relative_pos_embeddings = predict_relative_pos_embeddings.view( + batch_size, self.ngram, self.num_attn_heads, sequence_length, -1 + ) + + return predict_relative_pos_embeddings + + +class ProphetNetEncoderLayer(nn.Module): + """ + Encoder block for Prophetnet + """ + + def __init__(self, config: ProphetNetConfig): + super().__init__() + # 1st residual block + self.self_attn = ProphetNetAttention(config, config.num_encoder_attention_heads) + self.self_attn_layer_norm = LayerNorm(config.hidden_size) + + # 2nd residual block + self.feed_forward = ProphetNetFeedForward(config, config.encoder_ffn_dim) + self.feed_forward_layer_norm = LayerNorm(config.hidden_size) + + def forward( + self, + hidden_states, + attention_mask, + layer_head_mask, + output_attentions: bool = False, + ): + # 1st residual block + attention_output, attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = self.self_attn_layer_norm(attention_output + hidden_states) + + # 2nd residual block + feed_forward_output = self.feed_forward(hidden_states) + hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class ProphetNetDecoderLayer(nn.Module): + """ + Decoder block for Prophetnet + """ + + def __init__(self, config: ProphetNetConfig): + super().__init__() + # 1st residual block + self.self_attn = ProphetNetNgramSelfAttention(config) + self.self_attn_layer_norm = LayerNorm(config.hidden_size) + + # 2nd residual block + if config.add_cross_attention: + self.cross_attn = ProphetNetAttention(config, config.num_decoder_attention_heads) + self.cross_attn_layer_norm = LayerNorm(config.hidden_size) + + # 3rd residual block + self.feed_forward = ProphetNetFeedForward(config, config.decoder_ffn_dim) + self.feed_forward_layer_norm = LayerNorm(config.hidden_size) + + def forward( + self, + hidden_states, + attention_mask=None, + encoder_hidden_states=None, + encoder_attn_mask=None, + layer_head_mask=None, + cross_attn_layer_head_mask=None, + extended_predict_attention_mask=None, + main_relative_position_buckets=None, + predict_relative_position_buckets=None, + position_ids=None, + past_key_value=None, + use_cache: bool = True, + output_attentions: bool = False, + ): + # 1st residual block + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + extended_predict_attention_mask=extended_predict_attention_mask, + main_relative_position_buckets=main_relative_position_buckets, + predict_relative_position_buckets=predict_relative_position_buckets, + position_ids=position_ids, + ) + hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attn_weights = None + if encoder_hidden_states is not None: + # 2nd residual block + attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attn_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # 3rd residual block + feed_forward_output = self.feed_forward(hidden_states) + hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +@add_start_docstrings( + "The standalone encoder part of the ProphetNetModel.", + PROPHETNET_START_DOCSTRING, +) +class ProphetNetEncoder(ProphetNetPreTrainedModel): + r""" + word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): + The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word + embeddings instead of randomly initialized word embeddings. + """ + + def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None): + super().__init__(config) + + self.word_embeddings = ( + word_embeddings + if word_embeddings is not None + else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + ) + self.position_embeddings = ProphetNetPositionalEmbeddings(config) + self.embeddings_layer_norm = LayerNorm(config.hidden_size) + + self.layers = nn.ModuleList([ProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)]) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_embeddings + + def set_input_embeddings(self, value): + self.word_embeddings = value + + @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, ProphetNetEncoder + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") + >>> model = ProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone") + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> last_hidden_states = outputs.last_hidden_state + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is None and inputs_embeds is None: + raise ValueError("Either input_ids or inputs_embeds has to be passed.") + elif input_ids is not None and inputs_embeds is not None: + raise ValueError("Make sure to only pass input_ids or inputs_embeds.") + elif input_ids is not None and inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + # prepare attention mask + if attention_mask is not None: + extended_attention_mask = ( + 1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1) + ) * torch.finfo(self.dtype).min + extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype) + else: + extended_attention_mask = None + + position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device) + + hidden_states = inputs_embeds + position_embeddings + hidden_states = self.embeddings_layer_norm(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training) + + encoder_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + assert head_mask.size()[0] == ( + len(self.layers) + ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_hidden_states = encoder_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + extended_attention_mask, + (head_mask[idx] if head_mask is not None else None), + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask=extended_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_hidden_states = encoder_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions + ) + + +@add_start_docstrings( + "The standalone decoder part of the ProphetNetModel.", + PROPHETNET_START_DOCSTRING, +) +class ProphetNetDecoder(ProphetNetPreTrainedModel): + r""" + word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): + The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word + embeddings instead of randomly initialized word embeddings. + """ + + def __init__(self, config: ProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None): + super().__init__(config) + + self.ngram = config.ngram + self.num_buckets = config.num_buckets + self.relative_max_distance = config.relative_max_distance + self.dropout = config.dropout + self.max_target_positions = config.max_position_embeddings + + self.word_embeddings = ( + word_embeddings + if word_embeddings is not None + else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + ) + self.position_embeddings = ProphetNetPositionalEmbeddings(config) + + self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None) + self.layers = nn.ModuleList([ProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)]) + self.embeddings_layer_norm = LayerNorm(config.hidden_size) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_embeddings + + def set_input_embeddings(self, value): + self.word_embeddings = value + + @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ProphetNetDecoderModelOutput]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, ProphetNetDecoder + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") + >>> model = ProphetNetDecoder.from_pretrained("microsoft/prophetnet-large-uncased", add_cross_attention=False) + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> last_hidden_states = outputs.last_hidden_state + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is None and inputs_embeds is None: + raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.") + elif input_ids is not None and inputs_embeds is not None: + raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.") + elif input_ids is not None and inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + batch_size, sequence_length = inputs_embeds.shape[:2] + + main_stream_pos_embed, position_ids = self.position_embeddings( + (batch_size, sequence_length), + device=inputs_embeds.device, + past_key_values=past_key_values, + ) + + if past_key_values is not None: + main_relative_position_buckets, predict_relative_position_buckets = None, None + else: + ( + main_relative_position_buckets, + predict_relative_position_buckets, + ) = self.compute_buffered_relative_buckets(position_ids) + predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1) + + # add position embeddings + hidden_states = inputs_embeds + main_stream_pos_embed + + ngram_embeddings = self.ngram_embeddings.weight + + # prepare attention mask + if past_key_values is not None: + assert ( + hidden_states.size(1) == 1 + ), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1" + + ngram_hidden_states = [ + (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1) + for ngram in range(self.ngram) + ] + extended_attention_mask = None + extended_predict_attention_mask = None + else: + ngram_hidden_states = [ + (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram) + ] + extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask) + extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask) + + # prepare encoder attention mask + if encoder_attention_mask is not None: + extended_encoder_attention_mask = ( + 1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1) + ) * torch.finfo(self.dtype).min + extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype) + else: + extended_encoder_attention_mask = None + + hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1) + + if self.embeddings_layer_norm: + hidden_states = self.embeddings_layer_norm(hidden_states) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # init attentions, hidden_states and cache with empty tuples + all_main_stream_hidden_states = () if output_hidden_states else None + all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None + + all_main_stream_attns = () if output_attentions else None + all_ngram_stream_attns = () if output_attentions else None + all_cross_attns = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + present_key_values = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + assert attn_mask.size()[0] == (len(self.layers)), ( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + # grad cannot be kept because tensor is sliced + all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) + if self.config.ngram > 0: + all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + extended_attention_mask, + encoder_hidden_states, + extended_encoder_attention_mask, + (head_mask[idx] if head_mask is not None else None), + (cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), + extended_predict_attention_mask, + main_relative_position_buckets, + predict_relative_position_buckets, + position_ids, + None, + use_cache, + output_attentions, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=extended_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attn_mask=extended_encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + extended_predict_attention_mask=extended_predict_attention_mask, + main_relative_position_buckets=main_relative_position_buckets, + predict_relative_position_buckets=predict_relative_position_buckets, + position_ids=position_ids, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + present_key_values += (layer_outputs[4 if output_attentions else 1],) + + if output_attentions: + all_main_stream_attns += (layer_outputs[1],) + all_ngram_stream_attns += (layer_outputs[2],) + + if self.config.add_cross_attention: + all_cross_attns += (layer_outputs[3],) + + if output_hidden_states: + all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) + if self.config.ngram > 0: + all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) + + # split last_hidden_state for return + last_hidden_state = hidden_states[:, :sequence_length] + last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None + + if not return_dict: + return tuple( + v + for v in [ + last_hidden_state, + last_hidden_state_ngram, + present_key_values, + all_main_stream_hidden_states, + all_ngram_stream_hidden_states, + all_main_stream_attns, + all_ngram_stream_attns, + all_cross_attns, + ] + if v is not None + ) + return ProphetNetDecoderModelOutput( + last_hidden_state=last_hidden_state, + last_hidden_state_ngram=last_hidden_state_ngram, + past_key_values=present_key_values, + hidden_states=all_main_stream_hidden_states, + hidden_states_ngram=all_ngram_stream_hidden_states, + attentions=all_main_stream_attns, + ngram_attentions=all_ngram_stream_attns, + cross_attentions=all_cross_attns, + ) + + def compute_buffered_relative_buckets(self, position_ids): + batch_size, sequence_length = position_ids.shape + + position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1) + main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets( + self.num_buckets, self.relative_max_distance, position_ids + ) + + # buffer relative buckets + main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1) + predict_relative_buckets = torch.cat( + [ + predict_relative_buckets[:, :sequence_length, :sequence_length], + predict_relative_buckets[ + :, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length + ], + ], + 2, + ).repeat(batch_size, 1, 1) + + return main_relative_buckets, predict_relative_buckets + + def prepare_attention_mask(self, hidden_states, attention_mask): + batch_size, seq_length = hidden_states.shape[:2] + + # get causal mask + causal_mask = torch.full( + (seq_length, seq_length), + torch.finfo(hidden_states.dtype).min, + dtype=hidden_states.dtype, + device=hidden_states.device, + ) + causal_mask = torch.triu(causal_mask, 1) + + extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand( + (batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape + ) + + # add usual attention mask + if attention_mask is not None: + extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min + extended_attention_mask = extended_causal_mask + extended_attention_mask + else: + extended_attention_mask = extended_causal_mask + return extended_attention_mask.to(hidden_states.dtype) + + def prepare_predict_attention_mask(self, hidden_states, attention_mask): + batch_size, seq_length = hidden_states.shape[:2] + + # get causal mask + predict_causal_mask = ngram_attention_bias( + self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype + ) + predict_causal_mask = torch.cat( + [ + predict_causal_mask[:, :seq_length, :seq_length], + predict_causal_mask[ + :, :seq_length, self.max_target_positions : self.max_target_positions + seq_length + ], + ], + dim=-1, + ) + extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand( + (batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape + ) + + # add usual attention mask + if attention_mask is not None: + extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min + extended_attention_mask = extended_attention_mask.expand( + (batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length) + ) + # predicted stream attention_mask should always be 0 + extended_attention_mask = torch.cat( + [extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1 + ) + extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask + else: + extended_predict_attention_mask = extended_predict_causal_mask + return extended_predict_attention_mask.to(hidden_states.dtype) + + +@add_start_docstrings( + "The bare ProphetNet Model outputting raw hidden-states without any specific head on top.", + PROPHETNET_START_DOCSTRING, +) +class ProphetNetModel(ProphetNetPreTrainedModel): + _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"] + + def __init__(self, config: ProphetNetConfig): + super().__init__(config) + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + + encoder_config = copy.deepcopy(config) + encoder_config.is_encoder_decoder = False + encoder_config.use_cache = False + self.encoder = ProphetNetEncoder(encoder_config, self.word_embeddings) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + self.decoder = ProphetNetDecoder(decoder_config, self.word_embeddings) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_embeddings + + def set_input_embeddings(self, value): + self.word_embeddings = value + self.encoder.word_embeddings = self.word_embeddings + self.decoder.word_embeddings = self.word_embeddings + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.word_embeddings, self.word_embeddings) + self._tie_or_clone_weights(self.decoder.word_embeddings, self.word_embeddings) + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ProphetNetSeq2SeqModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, ProphetNetModel + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") + >>> model = ProphetNetModel.from_pretrained("microsoft/prophetnet-large-uncased") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + + >>> last_hidden_states = outputs.last_hidden_state # main stream hidden states + >>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + use_cache=use_cache, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + return ProphetNetSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram, + decoder_attentions=decoder_outputs.attentions, + decoder_ngram_attentions=decoder_outputs.ngram_attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + "The ProphetNet Model with a language modeling head. Can be used for sequence generation tasks.", + PROPHETNET_START_DOCSTRING, +) +class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel): + _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"] + + def __init__(self, config: ProphetNetConfig): + super().__init__(config) + self.prophetnet = ProphetNetModel(config) + self.padding_idx = config.pad_token_id + self.disable_ngram_loss = config.disable_ngram_loss + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.prophetnet.word_embeddings, self.lm_head) + + def get_input_embeddings(self): + return self.prophetnet.word_embeddings + + @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ProphetNetSeq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., + config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for + labels in `[0, ..., config.vocab_size]` + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, ProphetNetForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") + >>> model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + + >>> logits_next_token = outputs.logits # logits to predict next token as usual + >>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: + # get decoder inputs from shifting lm labels to the right + decoder_input_ids = self._shift_right(labels) + + outputs = self.prophetnet( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + batch_size, sequence_length = ( + decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2] + ) + + predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) + predict_logits = self.lm_head(predicting_streams) + + logits = predict_logits[:, 0] + logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None + + # To use .view in loss computation, make sure that logits is contiguous. + if not logits.is_contiguous(): + logits = logits.contiguous() + + loss = None + if labels is not None: + loss = self._compute_loss(predict_logits, labels) + + if not return_dict: + all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) + return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] + else: + return ProphetNetSeq2SeqLMOutput( + loss=loss, + logits=logits, + logits_ngram=logits_ngram, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states, + decoder_attentions=outputs.decoder_attentions, + decoder_ngram_attentions=outputs.decoder_ngram_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def _compute_loss(self, logits, labels, ignore_index=-100): + expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) + + for i in range(self.config.ngram): + if i > 0 and self.disable_ngram_loss: + break + expend_targets[i, :, :] = labels + + logits = logits.transpose(0, 1).contiguous() + lprobs = nn.functional.log_softmax( + logits.view(-1, logits.size(-1)), + dim=-1, + dtype=torch.float32, + ) + + loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") + + if self.config.eps > 0.0: + smooth_loss = -lprobs.sum(dim=-1, keepdim=True) + non_masked_tokens = expend_targets.ne(ignore_index).view(-1) + smooth_loss = smooth_loss[non_masked_tokens] + smooth_loss = smooth_loss.mean() + + eps_i = self.config.eps / lprobs.size(-1) + loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss + + return loss + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + assert encoder_outputs is not None, "`encoder_outputs` have to be passed for generation." + + if past_key_values: + decoder_input_ids = decoder_input_ids[:, -1:] + # first step, decoder_cached_states are empty + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return self._shift_right(labels) + + @staticmethod + # Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + # cached cross_attention states don't have to be reordered -> they are always the same + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + + layer_past[2:], + ) + return reordered_past + + def get_encoder(self): + return self.prophetnet.encoder + + def get_decoder(self): + return self.prophetnet.decoder + + +@add_start_docstrings( + "The standalone decoder part of the ProphetNetModel with a lm head on top. The model can be used for causal" + " language modeling.", + PROPHETNET_START_DOCSTRING, +) +class ProphetNetForCausalLM(ProphetNetPreTrainedModel): + _tied_weights_keys = [ + "prophetnet.word_embeddings.weight", + "prophetnet.decoder.word_embeddings.weight", + "lm_head.weight", + ] + + def __init__(self, config: ProphetNetConfig): + # set config for CLM + config = copy.deepcopy(config) + config.is_decoder = True + config.is_encoder_decoder = False + super().__init__(config) + self.prophetnet = ProphetNetDecoderWrapper(config) + + self.padding_idx = config.pad_token_id + self.disable_ngram_loss = config.disable_ngram_loss + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.prophetnet.decoder.word_embeddings + + def set_input_embeddings(self, value): + self.prophetnet.decoder.word_embeddings = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.prophetnet.decoder.word_embeddings, self.lm_head) + + def set_decoder(self, decoder): + self.prophetnet.decoder = decoder + + def get_decoder(self): + return self.prophetnet.decoder + + @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ProphetNetDecoderLMOutput]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, ProphetNetForCausalLM + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") + >>> model = ProphetNetForCausalLM.from_pretrained("microsoft/prophetnet-large-uncased") + >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> logits = outputs.logits + + >>> # Model can also be used with EncoderDecoder framework + >>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer + >>> import torch + + >>> tokenizer_enc = BertTokenizer.from_pretrained("google-bert/bert-large-uncased") + >>> tokenizer_dec = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") + >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( + ... "google-bert/bert-large-uncased", "microsoft/prophetnet-large-uncased" + ... ) + + >>> ARTICLE = ( + ... "the us state department said wednesday it had received no " + ... "formal word from bolivia that it was expelling the us ambassador there " + ... "but said the charges made against him are `` baseless ." + ... ) + >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids + >>> labels = tokenizer_dec( + ... "us rejects charges against its ambassador in bolivia", return_tensors="pt" + ... ).input_ids + >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) + + >>> loss = outputs.loss + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) + outputs = self.prophetnet.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] + + predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) + predict_logits = self.lm_head(predicting_streams) + + logits = predict_logits[:, 0] + logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None + + loss = None + if labels is not None: + loss = self._compute_loss(predict_logits, labels) + + if not return_dict: + all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) + return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] + else: + return ProphetNetDecoderLMOutput( + loss=loss, + logits=logits, + logits_ngram=logits_ngram, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + hidden_states_ngram=outputs.hidden_states_ngram, + attentions=outputs.attentions, + ngram_attentions=outputs.ngram_attentions, + cross_attentions=outputs.cross_attentions, + ) + + def _compute_loss(self, logits, labels, ignore_index=-100): + expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) + + for i in range(self.config.ngram): + if i > 0 and self.disable_ngram_loss: + break + expend_targets[i, :, :] = labels + + logits = logits.transpose(0, 1).contiguous() + lprobs = nn.functional.log_softmax( + logits.view(-1, logits.size(-1)), + dim=-1, + dtype=torch.float32, + ) + + loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") + + if self.config.eps > 0.0: + smooth_loss = -lprobs.sum(dim=-1, keepdim=True) + non_masked_tokens = expend_targets.ne(ignore_index).view(-1) + smooth_loss = smooth_loss[non_masked_tokens] + smooth_loss = smooth_loss.mean() + + eps_i = self.config.eps / lprobs.size(-1) + loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss + + return loss + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + use_cache=None, + **kwargs, + ): + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_ids.shape) + + if past_key_values: + input_ids = input_ids[:, -1:] + # first step, decoder_cached_states are empty + return { + "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed + "attention_mask": attention_mask, + "head_mask": head_mask, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + @staticmethod + # Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +class ProphetNetDecoderWrapper(ProphetNetPreTrainedModel): + """ + This is a wrapper class, so that [`ProphetNetForCausalLM`] can correctly be loaded from pretrained prophetnet + classes. + """ + + def __init__(self, config: ProphetNetConfig): + super().__init__(config) + + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.decoder = ProphetNetDecoder(config, word_embeddings=self.word_embeddings) + + # Initialize weights and apply final processing + self.post_init() + + def _tie_weights(self): + self._tie_or_clone_weights(self.word_embeddings, self.decoder.get_input_embeddings()) + + def forward(self, *args, **kwargs): + return self.decoder(*args, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/tokenization_prophetnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/tokenization_prophetnet.py new file mode 100644 index 0000000000000000000000000000000000000000..cd387520af18efcce7e49fe3450485fd56a0e204 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/prophetnet/tokenization_prophetnet.py @@ -0,0 +1,499 @@ +# coding=utf-8 +# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import collections +import os +import unicodedata +from typing import Iterable, List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"} + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens + + +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +class ProphetNetTokenizer(PreTrainedTokenizer): + r""" + Construct a ProphetNetTokenizer. Based on WordPiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + x_sep_token (`str`, *optional*, defaults to `"[X_SEP]"`): + Special second separator token, which can be generated by [`ProphetNetForConditionalGeneration`]. It is + used to separate bullet-point like sentences in summarization, *e.g.*. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + + # first name has to correspond to main model input name + # to make sure `tokenizer.pad(...)` works correctly + # `ProphetNet` doesn't have `token_type_ids` as argument. + model_input_names: List[str] = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file: str, + do_lower_case: Optional[bool] = True, + do_basic_tokenize: Optional[bool] = True, + never_split: Optional[Iterable] = None, + unk_token: Optional[str] = "[UNK]", + sep_token: Optional[str] = "[SEP]", + x_sep_token: Optional[str] = "[X_SEP]", + pad_token: Optional[str] = "[PAD]", + mask_token: Optional[str] = "[MASK]", + tokenize_chinese_chars: Optional[bool] = True, + strip_accents: Optional[bool] = None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + x_sep_token=x_sep_token, + pad_token=pad_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + def _tokenize(self, text): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token: str): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index: int): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens: str): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def get_special_tokens_mask( + self, + token_ids_0: List[int], + token_ids_1: Optional[List[int]] = None, + already_has_special_tokens: Optional[bool] = False, + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return ([0] * len(token_ids_0)) + [1] + return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ProphetNet + sequence pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + if token_ids_1 is None: + return len(token_ids_0 + sep) * [0] + return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return token_ids_0 + [self.sep_token_id] + sep = [self.sep_token_id] + return token_ids_0 + sep + token_ids_1 + sep diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b2d99e362be5fff7ed3b01d73f5faedcff7a8d12 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/convert_roberta_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/convert_roberta_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..32269777c8f2ba6ec45deda949ffd70c152931b1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/convert_roberta_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/modeling_flax_roberta.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/modeling_flax_roberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1e8a88d30fd09d4809aaacc2964d84a02cd04a41 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/modeling_flax_roberta.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/modeling_roberta.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/modeling_roberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..279807d9e6702cd086133b7fca481de56d0b075e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/modeling_roberta.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/modeling_tf_roberta.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/modeling_tf_roberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad095f640c97c03318f2f0dbaba3adc8a10b0b37 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/modeling_tf_roberta.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/tokenization_roberta.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/tokenization_roberta.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..414db82f485a6579906fc4ccfc07b7c8c2912b94 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/roberta/__pycache__/tokenization_roberta.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ff14e5b987a789c86f3ca37e11d79afe540a177e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/__init__.py @@ -0,0 +1,78 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available + + +_import_structure = { + "configuration_xlm_prophetnet": ["XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMProphetNetConfig"], +} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_xlm_prophetnet"] = ["XLMProphetNetTokenizer"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_xlm_prophetnet"] = [ + "XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST", + "XLMProphetNetDecoder", + "XLMProphetNetEncoder", + "XLMProphetNetForCausalLM", + "XLMProphetNetForConditionalGeneration", + "XLMProphetNetModel", + "XLMProphetNetPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_xlm_prophetnet import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMProphetNetConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_xlm_prophetnet import XLMProphetNetTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_xlm_prophetnet import ( + XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST, + XLMProphetNetDecoder, + XLMProphetNetEncoder, + XLMProphetNetForCausalLM, + XLMProphetNetForConditionalGeneration, + XLMProphetNetModel, + XLMProphetNetPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/__pycache__/configuration_xlm_prophetnet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/__pycache__/configuration_xlm_prophetnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..55963d20a6f5af4f2616db3108e27d16baa90042 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/__pycache__/configuration_xlm_prophetnet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/__pycache__/modeling_xlm_prophetnet.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/__pycache__/modeling_xlm_prophetnet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..793d9566356bf3e9ba56946c23eb682076ae16b7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/__pycache__/modeling_xlm_prophetnet.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/configuration_xlm_prophetnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/configuration_xlm_prophetnet.py new file mode 100644 index 0000000000000000000000000000000000000000..f1a903c227bf596c9bebaa610251b9ef5c68aa44 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/configuration_xlm_prophetnet.py @@ -0,0 +1,182 @@ +# coding=utf-8 +# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" XLM-ProphetNet model configuration""" + + +from typing import Callable, Optional, Union + +from ...configuration_utils import PretrainedConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class XLMProphetNetConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`XLMProphetNetModel`]. It is used to instantiate a + XLMProphetNet model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the XLMProphetNet + [microsoft/xprophetnet-large-wiki100-cased](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased) + architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + activation_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for activations inside the fully connected layer. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`XLMProphetNetModel`]. + hidden_size (`int`, *optional*, defaults to 1024): + Dimensionality of the layers and the pooler layer. + encoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + num_encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + num_encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the `intermediate` (often named feed-forward) layer in decoder. + num_decoder_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + num_decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + attention_dropout (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + add_cross_attention (`bool`, *optional*, defaults to `True`): + Whether cross-attention layers should be added to the model. + is_encoder_decoder (`bool`, *optional*, defaults to `True`): + Whether this is an encoder/decoder model. + pad_token_id (`int`, *optional*, defaults to 1) + Padding token id. + bos_token_id (`int`, *optional*, defaults to 0) + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2) + End of stream token id. + ngram (`int`, *optional*, defaults to 2) + Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first + token. + num_buckets (`int`, *optional*, defaults to 32) + The number of buckets to use for each attention layer. This is for relative position calculation. See the + [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. + relative_max_distance (`int`, *optional*, defaults to 128) + Relative distances greater than this number will be put into the last same bucket. This is for relative + position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. + disable_ngram_loss (`bool`, *optional*, defaults to `False`): + Whether be trained predicting only the next first token. + eps (`float`, *optional*, defaults to 0.0): + Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label + smoothing is performed. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + """ + + model_type = "xlm-prophetnet" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = { + "num_attention_heads": "num_encoder_attention_heads", + } + + def __init__( + self, + activation_dropout: Optional[float] = 0.1, + activation_function: Optional[Union[str, Callable]] = "gelu", + vocab_size: Optional[int] = 30522, + hidden_size: Optional[int] = 1024, + encoder_ffn_dim: Optional[int] = 4096, + num_encoder_layers: Optional[int] = 12, + num_encoder_attention_heads: Optional[int] = 16, + decoder_ffn_dim: Optional[int] = 4096, + num_decoder_layers: Optional[int] = 12, + num_decoder_attention_heads: Optional[int] = 16, + attention_dropout: Optional[float] = 0.1, + dropout: Optional[float] = 0.1, + max_position_embeddings: Optional[int] = 512, + init_std: Optional[float] = 0.02, + is_encoder_decoder: Optional[bool] = True, + add_cross_attention: Optional[bool] = True, + decoder_start_token_id: Optional[int] = 0, + ngram: Optional[int] = 2, + num_buckets: Optional[int] = 32, + relative_max_distance: Optional[int] = 128, + disable_ngram_loss: Optional[bool] = False, + eps: Optional[float] = 0.0, + use_cache: Optional[bool] = True, + pad_token_id: Optional[int] = 0, + bos_token_id: Optional[int] = 1, + eos_token_id: Optional[int] = 2, + **kwargs, + ): + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.encoder_ffn_dim = encoder_ffn_dim + self.num_encoder_layers = num_encoder_layers + self.num_encoder_attention_heads = num_encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.num_decoder_layers = num_decoder_layers + self.num_decoder_attention_heads = num_decoder_attention_heads + self.max_position_embeddings = max_position_embeddings + self.init_std = init_std # Normal(0, this parameter) + self.activation_function = activation_function + + # parameters for xlmprophetnet + self.ngram = ngram + self.num_buckets = num_buckets + self.relative_max_distance = relative_max_distance + self.disable_ngram_loss = disable_ngram_loss + self.eps = eps + + # 3 Types of Dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.dropout = dropout + + self.use_cache = use_cache + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + add_cross_attention=add_cross_attention, + decoder_start_token_id=decoder_start_token_id, + **kwargs, + ) + + @property + def num_hidden_layers(self) -> int: + return self.num_encoder_layers + self.num_decoder_layers + + @num_hidden_layers.setter + def num_hidden_layers(self, value): + raise NotImplementedError( + "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" + " `num_decoder_layers`." + ) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/modeling_xlm_prophetnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/modeling_xlm_prophetnet.py new file mode 100644 index 0000000000000000000000000000000000000000..53b8a1fc20cbb595f8e038e8464acde34132d771 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/modeling_xlm_prophetnet.py @@ -0,0 +1,2366 @@ +# coding=utf-8 +# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch XLM-ProphetNet model.""" + + +import copy +import math +import warnings +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import Tensor, nn +from torch.nn import LayerNorm + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutput +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_xlm_prophetnet import XLMProphetNetConfig + + +logger = logging.get_logger(__name__) + + +_CONFIG_FOR_DOC = "XLMProphetNetConfig" + + +from ..deprecated._archive_maps import XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +# Copied from src.transformers.models.prophetnet.modeling_prophetnet.PROPHETNET_START_DOCSTRING with ProphetNetConfig->XLMProphetNetConfig +XLM_PROPHETNET_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted + from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the + file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`. + + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and + behavior. + + Parameters: + config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +# Copied from src.transformers.models.prophetnet.modeling_prophetnet.PROPHETNET_INPUTS_DOCSTRING with ProphetNet->XLMProphetNet +XLM_PROPHETNET_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + XLMProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from src.transformers.models.prophetnet.modeling_prophetnet.PROPHETNET_STANDALONE_INPUTS_DOCSTRING with ProphetNet->XLMProphetNet +XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.softmax +def softmax(hidden_state, dim, onnx_trace=False): + if onnx_trace: + return nn.functional.softmax(hidden_state.float(), dim=dim) + else: + return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32) + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.ngram_attention_bias +def ngram_attention_bias(sequence_length, ngram, device, dtype): + """ + This function computes the bias for the predict stream + """ + left_block = ( + torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min + ) + right_block = left_block.detach().clone() + # create bias + for stream_idx in range(ngram): + right_block[stream_idx].fill_diagonal_(0, wrap=False) + left_block[stream_idx].triu_(-stream_idx + 1) + + left_block[:, :, 0] = 0 + return torch.cat([left_block, right_block], dim=2) + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.compute_relative_buckets +def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False): + """ + This function computes individual parts of the relative position buckets. For more detail, see paper. + """ + inv_relative_positions = -relative_positions + rel_positions_bucket = 0 + + if is_bidirectional: + num_buckets = num_buckets // 2 + rel_positions_bucket = ( + rel_positions_bucket + + torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets + ) + inv_relative_positions = torch.abs(inv_relative_positions) + else: + inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions)) + + max_exact = num_buckets // 2 + is_small = torch.lt(inv_relative_positions, max_exact) + val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log( + max_distance / max_exact + ) * (num_buckets - max_exact) + val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int() + rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large) + return rel_positions_bucket + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.compute_all_stream_relative_buckets +def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids): + """ + This function computes both main and predict relative position buckets. For more detail, see paper. + """ + # main stream + main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1) + main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1) + + # predicting stream + predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1) + predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1) + predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1) + + # get both position buckets + main_relative_position_buckets = compute_relative_buckets( + num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False + ) + predict_relative_position_buckets = compute_relative_buckets( + num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False + ) + return main_relative_position_buckets, predict_relative_position_buckets + + +@dataclass +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqLMOutput with ProphetNet->XLMProphetNet all-casing +class XLMProphetNetSeq2SeqLMOutput(ModelOutput): + """ + Base class for sequence-to-sequence language models outputs. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss. + logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): + Prediction scores of the main stream language modeling head (scores for each vocabulary token before + SoftMax). + logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): + Prediction scores of the predict stream language modeling head (scores for each vocabulary token before + SoftMax). + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_attn_heads, decoder_sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, decoder_sequence_length, hidden_size)`. + + Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. + decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. + + Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding + outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to + compute the weighted average in the + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, encoder_sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention + softmax, used to compute the weighted average in the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + logits_ngram: Optional[torch.FloatTensor] = None + past_key_values: Optional[Tuple[torch.FloatTensor]] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + @property + def decoder_cross_attentions(self): + warnings.warn( + "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" + " instead.", + FutureWarning, + ) + return self.cross_attentions + + +@dataclass +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqModelOutput with ProphetNet->XLMProphetNet all-casing +class XLMProphetNetSeq2SeqModelOutput(ModelOutput): + """ + Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential + decoding. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): + Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. + + If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, + hidden_size)` is output. + last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*): + Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_attn_heads, decoder_sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, decoder_sequence_length, hidden_size)`. + + Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. + decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. + + Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding + outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the + weighted average in the + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to + compute the weighted average in the + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, encoder_sequence_length, hidden_size)`. + + Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, encoder_sequence_length)`. + + Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + """ + + last_hidden_state: torch.FloatTensor + last_hidden_state_ngram: Optional[torch.FloatTensor] = None + past_key_values: Optional[Tuple[torch.FloatTensor]] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + @property + def decoder_cross_attentions(self): + warnings.warn( + "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" + " instead.", + FutureWarning, + ) + return self.cross_attentions + + +@dataclass +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderModelOutput with ProphetNet->XLMProphetNet all-casing +class XLMProphetNetDecoderModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): + Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. + + If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, + hidden_size)` is output. + last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): + Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_attn_heads, decoder_sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, decoder_sequence_length, hidden_size)`. + + Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. + ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. + + Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding + outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the + weighted average in the + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to + compute the weighted average in the + """ + + last_hidden_state: torch.FloatTensor + last_hidden_state_ngram: Optional[torch.FloatTensor] = None + past_key_values: Optional[Tuple[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderLMOutput with ProphetNet->XLMProphetNet all-casing +class XLMProphetNetDecoderLMOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss. + logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): + Prediction scores of the main stream language modeling head (scores for each vocabulary token before + SoftMax). + logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): + Prediction scores of the predict stream language modeling head (scores for each vocabulary token before + SoftMax). + past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, + num_attn_heads, decoder_sequence_length, embed_size_per_head)`). + + Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be + used (see `past_key_values` input) to speed up sequential decoding. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, decoder_sequence_length, hidden_size)`. + + Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. + ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. + + Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding + outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the + self-attention heads. + ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + decoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the + weighted average in the + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, + encoder_sequence_length, decoder_sequence_length)`. + + Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to + compute the weighted average in the + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + logits_ngram: Optional[torch.FloatTensor] = None + past_key_values: Optional[Tuple[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetPreTrainedModel with ProphetNet->XLMProphetNet +class XLMProphetNetPreTrainedModel(PreTrainedModel): + config_class = XLMProphetNetConfig + base_model_prefix = "prophetnet" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.init_std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.init_std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + def _shift_right(self, input_ids): + decoder_start_token_id = self.config.decoder_start_token_id + pad_token_id = self.config.pad_token_id + + assert decoder_start_token_id is not None, ( + "self.model.config.decoder_start_token_id has to be defined. In XLMProphetNet it is usually set to the" + " pad_token_id. See XLMProphetNet docs for more information" + ) + + # shift inputs to the right + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() + shifted_input_ids[..., 0] = decoder_start_token_id + + assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" + + return shifted_input_ids + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetPositionalEmbeddings with ProphetNet->XLMProphetNet +class XLMProphetNetPositionalEmbeddings(nn.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting + based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to + the forward function. + """ + + def __init__(self, config: XLMProphetNetConfig) -> None: + self.max_length = config.max_position_embeddings + super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id) + + def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None): + assert (position_ids is None) or ( + self.padding_idx is None + ), "If position_ids is pre-computed then padding_idx should not be set." + + if position_ids is None: + if past_key_values is not None: + # position_ids is the same for every token when decoding a single step + # Without the int() cast, it doesn't work in some cases when exporting to ONNX + prev_num_input_ids = past_key_values[0][0].shape[2] + num_input_ids = inputs_shape[1] + prev_num_input_ids + position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * ( + int(self.padding_idx + num_input_ids) + ) + else: + if attention_mask is None: + attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device) + + # retrieve position_ids from input_ids / attention_mask + position_ids = ( + torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask + ).long() + self.padding_idx + + # make sure position_ids are not bigger then max_length + position_ids = position_ids.clamp(0, self.max_length - 1) + + return super().forward(position_ids), position_ids + + def _forward(self, position_ids): + return super().forward(position_ids) + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetAttention with ProphetNet->XLMProphetNet +class XLMProphetNetAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + config: XLMProphetNetConfig, + num_attn_heads: int, + ): + super().__init__() + hidden_size = config.hidden_size + + self.attention_dropout = config.attention_dropout + self.dropout = config.dropout + self.num_attn_heads = num_attn_heads + self.head_dim = hidden_size // num_attn_heads + + assert self.head_dim * num_attn_heads == hidden_size, ( + "`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and" + " `config.num_decoder_attention_heads`" + ) + + self.key_proj = nn.Linear(hidden_size, hidden_size) + self.value_proj = nn.Linear(hidden_size, hidden_size) + self.query_proj = nn.Linear(hidden_size, hidden_size) + + self.out_proj = nn.Linear(hidden_size, hidden_size) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states, + key_value_states: Optional[Tensor] = None, + attention_mask: Optional[Tensor] = None, + layer_head_mask: Optional[Tensor] = None, + past_key_value: Optional[Tuple[Tensor]] = None, + output_attentions: bool = False, + ) -> Tuple[Tensor, Optional[Tensor]]: + batch_size, tgt_len, hidden_size = hidden_states.size() + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + assert list(hidden_states.size()) == [ + batch_size, + tgt_len, + hidden_size, + ], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}" + + # previous time steps are cached - no need to recompute key and value if they are static + query_states = self.query_proj(hidden_states) / (self.head_dim**0.5) + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.key_proj(key_value_states), -1, batch_size) + value_states = self._shape(self.value_proj(key_value_states), -1, batch_size) + else: + # self_attention + key_states = self._shape(self.key_proj(hidden_states), -1, batch_size) + value_states = self._shape(self.value_proj(hidden_states), -1, batch_size) + + if is_cross_attention: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + # project states into the correct shape + proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + src_len = key_states.size(2) + attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3)) + expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len) + if attn_weights.size() != expected_shape: + raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}") + + # This is part of a workaround to get around fork/join parallelism not supporting Optional types. + if attention_mask is not None and attention_mask.dim() == 0: + attention_mask = None + + expected_shape = (batch_size, self.num_attn_heads, 1, src_len) + if attention_mask is not None and attention_mask.size() != expected_shape: + raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}") + if attention_mask is not None: # don't attend to padding symbols + attn_weights = attn_weights + attention_mask + if output_attentions: + attn_weights_reshaped = attn_weights + else: + attn_weights_reshaped = None + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + assert layer_head_mask.size() == (self.num_attn_heads,), ( + f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( + batch_size, self.num_attn_heads, tgt_len, src_len + ) + + # apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model + attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped + + attn_probs = nn.functional.dropout( + attn_weights, + p=self.attention_dropout, + training=self.training, + ) + attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states) + expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim) + if attn_output.size() != expected_shape: + raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}") + + attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size) + attn_output = self.out_proj(attn_output) + + attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) + return attn_output, attn_weights_reshaped, past_key_value + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetFeedForward with ProphetNet->XLMProphetNet +class XLMProphetNetFeedForward(nn.Module): + """ + This is the residual two feed-forward layer block based on the original Transformer implementation. + """ + + def __init__(self, config: XLMProphetNetConfig, ffn_dim: int): + super().__init__() + self.activation_fn = ACT2FN[config.activation_function] + self.intermediate = nn.Linear(config.hidden_size, ffn_dim) + self.output = nn.Linear(ffn_dim, config.hidden_size) + self.activation_dropout = config.activation_dropout + self.dropout = config.dropout + + def forward(self, hidden_states): + hidden_states = self.intermediate(hidden_states) + hidden_states = self.activation_fn(hidden_states) + + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.output(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + return hidden_states + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetNgramSelfAttention with ProphetNet->XLMProphetNet +class XLMProphetNetNgramSelfAttention(nn.Module): + def __init__(self, config: XLMProphetNetConfig): + super().__init__() + self.hidden_size = config.hidden_size + + self.num_buckets = config.num_buckets + self.relative_max_distance = config.relative_max_distance + self.num_attn_heads = config.num_decoder_attention_heads + self.dropout = config.dropout + self.attention_dropout = config.attention_dropout + self.head_dim = config.hidden_size // self.num_attn_heads + self.ngram = config.ngram + + assert ( + self.head_dim * self.num_attn_heads == config.hidden_size + ), "config.hidden_size must be divisible by num_attn_heads" + # key, value, query projection + self.key_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.value_proj = nn.Linear(config.hidden_size, config.hidden_size) + self.query_proj = nn.Linear(config.hidden_size, config.hidden_size) + + # out projection + self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) + + # rel position embeddings + self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads) + + # for onnx runtime + self.onnx_trace = False + + def _shape(self, tensor, seq_len, batch_size): + return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() + + def prepare_for_onnx_export_(self): + self.onnx_trace = True + + def forward( + self, + hidden_states, + past_key_value: Optional[Tuple[Tensor]] = None, + attention_mask=None, + layer_head_mask=None, + extended_predict_attention_mask=None, + main_relative_position_buckets=None, + predict_relative_position_buckets=None, + position_ids=None, + ): + batch_size, ngram_sequence_length, hidden_size = hidden_states.size() + assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], ( + f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape" + f" {hidden_states.shape}" + ) + + # project + query_states = self.query_proj(hidden_states) + key_states = self.key_proj(hidden_states) + value_states = self.value_proj(hidden_states) + + # normalize + query_states = query_states / (self.head_dim**0.5) + + # reshape + query_states = self._shape(query_states, ngram_sequence_length, batch_size) + key_states = self._shape(key_states, -1, batch_size) + value_states = self._shape(value_states, -1, batch_size) + proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) + + query_states = query_states.view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + # chunk into main stream and predict stream + hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1) + query_states_list = query_states.chunk(1 + self.ngram, dim=2) + key_states_list = key_states.chunk(1 + self.ngram, dim=2) + value_states_list = value_states.chunk(1 + self.ngram, dim=2) + + main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:] + main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:] + main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:] + main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:] + + # saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim) + if past_key_value is not None: + prev_main_key_states = past_key_value[0] + main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2) + prev_main_value_states = past_key_value[1] + main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2) + + # Update cache + past_key_value = (main_key_states, main_value_states) + + # get seq_length of main stream only + sequence_length = ngram_sequence_length // (1 + self.ngram) + + # MAIN-STREAM + # main attn weights + # [batch_size, number_heads, sequence_length, head_dimesion] + # x [batch_size, number_heads, head_dimesion, sequence_length] + # -> [batch_size, number_heads, sequence_length, sequence_length] + main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3)) + + # retrieve relative position embeddings for each layer -> see paper for more details + main_relative_pos_embeddings = self.get_main_relative_pos_embeddings( + main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets + ) + + main_attn_weights = main_attn_weights + main_relative_pos_embeddings + + if attention_mask is not None: + main_attn_weights = main_attn_weights + attention_mask + + main_attn_probs = softmax( + main_attn_weights, + dim=-1, + onnx_trace=self.onnx_trace, + ).type_as(main_attn_weights) + + if layer_head_mask is not None: + assert layer_head_mask.size() == (self.num_attn_heads,), ( + f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view( + batch_size, self.num_attn_heads, -1, sequence_length + ) + + main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training) + # project to attn_output + # [batch_size, number_heads, sequence_length, sequence_length] + # x [batch_size, number_heads, sequence_length, head_dimesion] + # -> [batch_size, number_heads, sequence_length, head_dimesion] + main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states) + # reshape so that num_heads dim is merged into last `head_dim` axis + main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size) + main_attn_output = self.out_proj(main_attn_output) + + # PREDICT-STREAM + # [batch_size, ngram, number_heads, sequence_length, head_dimesion] + predict_query_states = torch.stack(predict_query_states_list, 1).view( + batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim + ) + + # [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] + predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1) + + # [batch_size, sequence_length, ngram, hidden_size] + predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2) + + # [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion] + predict_value_states = torch.cat( + [torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2 + ) + + # [batch_size, ngram, number_heads, sequence_length, head_dimesion] + # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] + # -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] + predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states)) + + # retrieve relative position embeddings for each layer -> see paper for more details + # [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings] + predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings( + predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets + ) + + # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] + predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings + + if extended_predict_attention_mask is not None: + # Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] + extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4) + extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype) + predict_attn_weights = predict_attn_weights + extended_predict_attention_mask + + predict_attn_probs = softmax( + predict_attn_weights, + dim=-1, + onnx_trace=self.onnx_trace, + ).type_as(predict_attn_weights) + + if layer_head_mask is not None: + assert layer_head_mask.size() == (self.num_attn_heads,), ( + f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs + + predict_attn_probs = nn.functional.dropout( + predict_attn_probs, p=self.attention_dropout, training=self.training + ) + # project to attention output + # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] + # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] + # -> [batch_size, ngram, number_heads, sequence_length, head_dimesion] + predict_attn_output = torch.einsum( + "bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2)) + ) + + # reshape so that num_heads dim is merged into last `head_dim` axis + # [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size] + predict_attn_output = predict_attn_output.transpose(2, 3) + predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size) + predict_attn_output = self.out_proj(predict_attn_output) + + # concat to single attn output + # [batch_size, (1+ngram)*sequence_length, hidden_size] + attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size) + # reshape into better form for `config.output_attentions` + main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1) + + attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) + + return attn_output, main_attn_probs, predict_attn_probs, past_key_value + + def get_main_relative_pos_embeddings( + self, hidden_states, attn_weights, position_ids, main_relative_position_buckets + ): + # input hidden_states [batch_size, sequence_length, hidden_size] + # input attn_weights [batch_size, num_heads, sequence_length, sequence_length] + # input position_ids [batch_size, sequence_length] or [1,1] + batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape + attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len) + if main_relative_position_buckets is None: + batch_size, sequence_length = hidden_states.shape[:2] + relative_positions = ( + torch.arange(1, attn_weights.shape[-1] + 1) + .unsqueeze(0) + .unsqueeze(0) + .repeat(batch_size, sequence_length, 1) + .to(position_ids.device) + ) + # [batch_size, sequence_length, sequence_length+1] + relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) + main_relative_position_buckets = compute_relative_buckets( + self.num_buckets, self.relative_max_distance, relative_positions, False + ) + + # [batch_size, sequence_length, num_buckets * num_heads] + rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) + rel_pos_embeddings = rel_pos_embeddings.view( + rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads) + ) + rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2) + # [batch_size, num_heads, sequence_length, num_buckets] + rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,)) + + main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1) + # [batch_size * num_heads * sequence_length, sequence_length] + main_relative_position_buckets = main_relative_position_buckets.view( + -1, main_relative_position_buckets.shape[-1] + ) + main_relative_position_buckets = main_relative_position_buckets.long() + # [batch_size * num_heads * sequence_length, sequence_length] + rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) + + main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets) + main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1) + return main_relative_pos_embeddings + + def get_predict_relative_pos_embeddings( + self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets + ): + # input hidden_states [batch_size, sequence_length, ngram, hidden_size] + # input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length] + # input position_ids [batch_size, sequence_length] or [1,1] + # input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None + batch_size, sequence_length = hidden_states.shape[0:2] + + if predict_relative_position_buckets is None: + key_sequence_length = attn_weights.shape[-1] + assert ( + position_ids[0][0] == key_sequence_length - 1 + ), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)" + relative_positions = ( + torch.arange(0, key_sequence_length) + .unsqueeze(0) + .unsqueeze(0) + .repeat(batch_size, sequence_length, 1) + .to(position_ids.device) + ) + + relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) + predict_relative_position_buckets = compute_relative_buckets( + self.num_buckets, self.relative_max_distance, relative_positions, False + ) + + # [batch_size, ngram, sequence_length, hidden_size] + hidden_states = hidden_states.transpose(1, 2) + rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) + + # [batch_size, ngram, sequence_length, num_buckets, num_heads] + rel_pos_embeddings = rel_pos_embeddings.view( + hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads) + ) + rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3) + # [batch_size * ngram * sequence_length * num_heads, num_buckets] + rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets) + # [ngram, batch_size, num_heads * sequence_length, -1] + predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0) + predict_relative_position_buckets = predict_relative_position_buckets.repeat( + self.ngram, 1, self.num_attn_heads, 1 + ) + # [ngram * batch_size * num_heads * sequence_length, -1] + predict_relative_position_buckets = predict_relative_position_buckets.view( + -1, predict_relative_position_buckets.size(-1) + ).long() + + predict_relative_pos_embeddings = torch.gather( + rel_pos_embeddings, dim=1, index=predict_relative_position_buckets + ) + + # [batch_size, gram, num_heads, sequence_length, -1] + predict_relative_pos_embeddings = predict_relative_pos_embeddings.view( + batch_size, self.ngram, self.num_attn_heads, sequence_length, -1 + ) + + return predict_relative_pos_embeddings + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetEncoderLayer with ProphetNet->XLMProphetNet, Prophetnet->XLMProphetnet +class XLMProphetNetEncoderLayer(nn.Module): + """ + Encoder block for XLMProphetnet + """ + + def __init__(self, config: XLMProphetNetConfig): + super().__init__() + # 1st residual block + self.self_attn = XLMProphetNetAttention(config, config.num_encoder_attention_heads) + self.self_attn_layer_norm = LayerNorm(config.hidden_size) + + # 2nd residual block + self.feed_forward = XLMProphetNetFeedForward(config, config.encoder_ffn_dim) + self.feed_forward_layer_norm = LayerNorm(config.hidden_size) + + def forward( + self, + hidden_states, + attention_mask, + layer_head_mask, + output_attentions: bool = False, + ): + # 1st residual block + attention_output, attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = self.self_attn_layer_norm(attention_output + hidden_states) + + # 2nd residual block + feed_forward_output = self.feed_forward(hidden_states) + hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderLayer with Prophetnet->XLMProphetnet, ProphetNet->XLMProphetNet +class XLMProphetNetDecoderLayer(nn.Module): + """ + Decoder block for XLMProphetnet + """ + + def __init__(self, config: XLMProphetNetConfig): + super().__init__() + # 1st residual block + self.self_attn = XLMProphetNetNgramSelfAttention(config) + self.self_attn_layer_norm = LayerNorm(config.hidden_size) + + # 2nd residual block + if config.add_cross_attention: + self.cross_attn = XLMProphetNetAttention(config, config.num_decoder_attention_heads) + self.cross_attn_layer_norm = LayerNorm(config.hidden_size) + + # 3rd residual block + self.feed_forward = XLMProphetNetFeedForward(config, config.decoder_ffn_dim) + self.feed_forward_layer_norm = LayerNorm(config.hidden_size) + + def forward( + self, + hidden_states, + attention_mask=None, + encoder_hidden_states=None, + encoder_attn_mask=None, + layer_head_mask=None, + cross_attn_layer_head_mask=None, + extended_predict_attention_mask=None, + main_relative_position_buckets=None, + predict_relative_position_buckets=None, + position_ids=None, + past_key_value=None, + use_cache: bool = True, + output_attentions: bool = False, + ): + # 1st residual block + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + extended_predict_attention_mask=extended_predict_attention_mask, + main_relative_position_buckets=main_relative_position_buckets, + predict_relative_position_buckets=predict_relative_position_buckets, + position_ids=position_ids, + ) + hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attn_weights = None + if encoder_hidden_states is not None: + # 2nd residual block + attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attn_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states) + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # 3rd residual block + feed_forward_output = self.feed_forward(hidden_states) + hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +@add_start_docstrings( + "The standalone encoder part of the XLMProphetNetModel.", + XLM_PROPHETNET_START_DOCSTRING, +) +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetEncoder with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET +class XLMProphetNetEncoder(XLMProphetNetPreTrainedModel): + r""" + word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): + The word embedding parameters. This can be used to initialize [`XLMProphetNetEncoder`] with pre-defined word + embeddings instead of randomly initialized word embeddings. + """ + + def __init__(self, config: XLMProphetNetConfig, word_embeddings: nn.Embedding = None): + super().__init__(config) + + self.word_embeddings = ( + word_embeddings + if word_embeddings is not None + else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + ) + self.position_embeddings = XLMProphetNetPositionalEmbeddings(config) + self.embeddings_layer_norm = LayerNorm(config.hidden_size) + + self.layers = nn.ModuleList([XLMProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)]) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_embeddings + + def set_input_embeddings(self, value): + self.word_embeddings = value + + @add_start_docstrings_to_model_forward(XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, XLMProphetNetEncoder + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") + >>> model = XLMProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone") + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> last_hidden_states = outputs.last_hidden_state + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is None and inputs_embeds is None: + raise ValueError("Either input_ids or inputs_embeds has to be passed.") + elif input_ids is not None and inputs_embeds is not None: + raise ValueError("Make sure to only pass input_ids or inputs_embeds.") + elif input_ids is not None and inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + # prepare attention mask + if attention_mask is not None: + extended_attention_mask = ( + 1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1) + ) * torch.finfo(self.dtype).min + extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype) + else: + extended_attention_mask = None + + position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device) + + hidden_states = inputs_embeds + position_embeddings + hidden_states = self.embeddings_layer_norm(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training) + + encoder_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + assert head_mask.size()[0] == ( + len(self.layers) + ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_hidden_states = encoder_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + extended_attention_mask, + (head_mask[idx] if head_mask is not None else None), + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask=extended_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_hidden_states = encoder_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions + ) + + +@add_start_docstrings( + "The standalone decoder part of the XLMProphetNetModel.", + XLM_PROPHETNET_START_DOCSTRING, +) +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoder with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET, +class XLMProphetNetDecoder(XLMProphetNetPreTrainedModel): + r""" + word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): + The word embedding parameters. This can be used to initialize [`XLMProphetNetEncoder`] with pre-defined word + embeddings instead of randomly initialized word embeddings. + """ + + def __init__(self, config: XLMProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None): + super().__init__(config) + + self.ngram = config.ngram + self.num_buckets = config.num_buckets + self.relative_max_distance = config.relative_max_distance + self.dropout = config.dropout + self.max_target_positions = config.max_position_embeddings + + self.word_embeddings = ( + word_embeddings + if word_embeddings is not None + else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + ) + self.position_embeddings = XLMProphetNetPositionalEmbeddings(config) + + self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None) + self.layers = nn.ModuleList([XLMProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)]) + self.embeddings_layer_norm = LayerNorm(config.hidden_size) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_embeddings + + def set_input_embeddings(self, value): + self.word_embeddings = value + + @add_start_docstrings_to_model_forward(XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=XLMProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, XLMProphetNetDecoderModelOutput]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, XLMProphetNetDecoder + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") + >>> model = XLMProphetNetDecoder.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone", add_cross_attention=False) + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> last_hidden_states = outputs.last_hidden_state + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is None and inputs_embeds is None: + raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.") + elif input_ids is not None and inputs_embeds is not None: + raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.") + elif input_ids is not None and inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + batch_size, sequence_length = inputs_embeds.shape[:2] + + main_stream_pos_embed, position_ids = self.position_embeddings( + (batch_size, sequence_length), + device=inputs_embeds.device, + past_key_values=past_key_values, + ) + + if past_key_values is not None: + main_relative_position_buckets, predict_relative_position_buckets = None, None + else: + ( + main_relative_position_buckets, + predict_relative_position_buckets, + ) = self.compute_buffered_relative_buckets(position_ids) + predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1) + + # add position embeddings + hidden_states = inputs_embeds + main_stream_pos_embed + + ngram_embeddings = self.ngram_embeddings.weight + + # prepare attention mask + if past_key_values is not None: + assert ( + hidden_states.size(1) == 1 + ), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1" + + ngram_hidden_states = [ + (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1) + for ngram in range(self.ngram) + ] + extended_attention_mask = None + extended_predict_attention_mask = None + else: + ngram_hidden_states = [ + (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram) + ] + extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask) + extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask) + + # prepare encoder attention mask + if encoder_attention_mask is not None: + extended_encoder_attention_mask = ( + 1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1) + ) * torch.finfo(self.dtype).min + extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype) + else: + extended_encoder_attention_mask = None + + hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1) + + if self.embeddings_layer_norm: + hidden_states = self.embeddings_layer_norm(hidden_states) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # init attentions, hidden_states and cache with empty tuples + all_main_stream_hidden_states = () if output_hidden_states else None + all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None + + all_main_stream_attns = () if output_attentions else None + all_ngram_stream_attns = () if output_attentions else None + all_cross_attns = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + present_key_values = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + assert attn_mask.size()[0] == (len(self.layers)), ( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + # grad cannot be kept because tensor is sliced + all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) + if self.config.ngram > 0: + all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + extended_attention_mask, + encoder_hidden_states, + extended_encoder_attention_mask, + (head_mask[idx] if head_mask is not None else None), + (cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), + extended_predict_attention_mask, + main_relative_position_buckets, + predict_relative_position_buckets, + position_ids, + None, + use_cache, + output_attentions, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=extended_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attn_mask=extended_encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + extended_predict_attention_mask=extended_predict_attention_mask, + main_relative_position_buckets=main_relative_position_buckets, + predict_relative_position_buckets=predict_relative_position_buckets, + position_ids=position_ids, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + present_key_values += (layer_outputs[4 if output_attentions else 1],) + + if output_attentions: + all_main_stream_attns += (layer_outputs[1],) + all_ngram_stream_attns += (layer_outputs[2],) + + if self.config.add_cross_attention: + all_cross_attns += (layer_outputs[3],) + + if output_hidden_states: + all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) + if self.config.ngram > 0: + all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) + + # split last_hidden_state for return + last_hidden_state = hidden_states[:, :sequence_length] + last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None + + if not return_dict: + return tuple( + v + for v in [ + last_hidden_state, + last_hidden_state_ngram, + present_key_values, + all_main_stream_hidden_states, + all_ngram_stream_hidden_states, + all_main_stream_attns, + all_ngram_stream_attns, + all_cross_attns, + ] + if v is not None + ) + return XLMProphetNetDecoderModelOutput( + last_hidden_state=last_hidden_state, + last_hidden_state_ngram=last_hidden_state_ngram, + past_key_values=present_key_values, + hidden_states=all_main_stream_hidden_states, + hidden_states_ngram=all_ngram_stream_hidden_states, + attentions=all_main_stream_attns, + ngram_attentions=all_ngram_stream_attns, + cross_attentions=all_cross_attns, + ) + + def compute_buffered_relative_buckets(self, position_ids): + batch_size, sequence_length = position_ids.shape + + position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1) + main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets( + self.num_buckets, self.relative_max_distance, position_ids + ) + + # buffer relative buckets + main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1) + predict_relative_buckets = torch.cat( + [ + predict_relative_buckets[:, :sequence_length, :sequence_length], + predict_relative_buckets[ + :, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length + ], + ], + 2, + ).repeat(batch_size, 1, 1) + + return main_relative_buckets, predict_relative_buckets + + def prepare_attention_mask(self, hidden_states, attention_mask): + batch_size, seq_length = hidden_states.shape[:2] + + # get causal mask + causal_mask = torch.full( + (seq_length, seq_length), + torch.finfo(hidden_states.dtype).min, + dtype=hidden_states.dtype, + device=hidden_states.device, + ) + causal_mask = torch.triu(causal_mask, 1) + + extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand( + (batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape + ) + + # add usual attention mask + if attention_mask is not None: + extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min + extended_attention_mask = extended_causal_mask + extended_attention_mask + else: + extended_attention_mask = extended_causal_mask + return extended_attention_mask.to(hidden_states.dtype) + + def prepare_predict_attention_mask(self, hidden_states, attention_mask): + batch_size, seq_length = hidden_states.shape[:2] + + # get causal mask + predict_causal_mask = ngram_attention_bias( + self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype + ) + predict_causal_mask = torch.cat( + [ + predict_causal_mask[:, :seq_length, :seq_length], + predict_causal_mask[ + :, :seq_length, self.max_target_positions : self.max_target_positions + seq_length + ], + ], + dim=-1, + ) + extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand( + (batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape + ) + + # add usual attention mask + if attention_mask is not None: + extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min + extended_attention_mask = extended_attention_mask.expand( + (batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length) + ) + # predicted stream attention_mask should always be 0 + extended_attention_mask = torch.cat( + [extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1 + ) + extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask + else: + extended_predict_attention_mask = extended_predict_causal_mask + return extended_predict_attention_mask.to(hidden_states.dtype) + + +@add_start_docstrings( + "The bare XLMProphetNet Model outputting raw hidden-states without any specific head on top.", + XLM_PROPHETNET_START_DOCSTRING, +) +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetModel with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET +class XLMProphetNetModel(XLMProphetNetPreTrainedModel): + _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"] + + def __init__(self, config: XLMProphetNetConfig): + super().__init__(config) + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + + encoder_config = copy.deepcopy(config) + encoder_config.is_encoder_decoder = False + encoder_config.use_cache = False + self.encoder = XLMProphetNetEncoder(encoder_config, self.word_embeddings) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + self.decoder = XLMProphetNetDecoder(decoder_config, self.word_embeddings) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_embeddings + + def set_input_embeddings(self, value): + self.word_embeddings = value + self.encoder.word_embeddings = self.word_embeddings + self.decoder.word_embeddings = self.word_embeddings + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.word_embeddings, self.word_embeddings) + self._tie_or_clone_weights(self.decoder.word_embeddings, self.word_embeddings) + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(XLM_PROPHETNET_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=XLMProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, XLMProphetNetSeq2SeqModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, XLMProphetNetModel + + >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") + >>> model = XLMProphetNetModel.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + + >>> last_hidden_states = outputs.last_hidden_state # main stream hidden states + >>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + use_cache=use_cache, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + return XLMProphetNetSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram, + decoder_attentions=decoder_outputs.attentions, + decoder_ngram_attentions=decoder_outputs.ngram_attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + "The XLMProphetNet Model with a language modeling head. Can be used for sequence generation tasks.", + XLM_PROPHETNET_START_DOCSTRING, +) +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetForConditionalGeneration with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET +class XLMProphetNetForConditionalGeneration(XLMProphetNetPreTrainedModel): + _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"] + + def __init__(self, config: XLMProphetNetConfig): + super().__init__(config) + self.prophetnet = XLMProphetNetModel(config) + self.padding_idx = config.pad_token_id + self.disable_ngram_loss = config.disable_ngram_loss + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.prophetnet.word_embeddings, self.lm_head) + + def get_input_embeddings(self): + return self.prophetnet.word_embeddings + + @add_start_docstrings_to_model_forward(XLM_PROPHETNET_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=XLMProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.Tensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, XLMProphetNetSeq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., + config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for + labels in `[0, ..., config.vocab_size]` + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, XLMProphetNetForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") + >>> model = XLMProphetNetForConditionalGeneration.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + + >>> logits_next_token = outputs.logits # logits to predict next token as usual + >>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: + # get decoder inputs from shifting lm labels to the right + decoder_input_ids = self._shift_right(labels) + + outputs = self.prophetnet( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + batch_size, sequence_length = ( + decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2] + ) + + predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) + predict_logits = self.lm_head(predicting_streams) + + logits = predict_logits[:, 0] + logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None + + # To use .view in loss computation, make sure that logits is contiguous. + if not logits.is_contiguous(): + logits = logits.contiguous() + + loss = None + if labels is not None: + loss = self._compute_loss(predict_logits, labels) + + if not return_dict: + all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) + return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] + else: + return XLMProphetNetSeq2SeqLMOutput( + loss=loss, + logits=logits, + logits_ngram=logits_ngram, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states, + decoder_attentions=outputs.decoder_attentions, + decoder_ngram_attentions=outputs.decoder_ngram_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def _compute_loss(self, logits, labels, ignore_index=-100): + expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) + + for i in range(self.config.ngram): + if i > 0 and self.disable_ngram_loss: + break + expend_targets[i, :, :] = labels + + logits = logits.transpose(0, 1).contiguous() + lprobs = nn.functional.log_softmax( + logits.view(-1, logits.size(-1)), + dim=-1, + dtype=torch.float32, + ) + + loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") + + if self.config.eps > 0.0: + smooth_loss = -lprobs.sum(dim=-1, keepdim=True) + non_masked_tokens = expend_targets.ne(ignore_index).view(-1) + smooth_loss = smooth_loss[non_masked_tokens] + smooth_loss = smooth_loss.mean() + + eps_i = self.config.eps / lprobs.size(-1) + loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss + + return loss + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + assert encoder_outputs is not None, "`encoder_outputs` have to be passed for generation." + + if past_key_values: + decoder_input_ids = decoder_input_ids[:, -1:] + # first step, decoder_cached_states are empty + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return self._shift_right(labels) + + @staticmethod + # Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + # cached cross_attention states don't have to be reordered -> they are always the same + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + + layer_past[2:], + ) + return reordered_past + + def get_encoder(self): + return self.prophetnet.encoder + + def get_decoder(self): + return self.prophetnet.decoder + + +@add_start_docstrings( + "The standalone decoder part of the XLMProphetNetModel with a lm head on top. The model can be used for causal" + " language modeling.", + XLM_PROPHETNET_START_DOCSTRING, +) +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetForCausalLM with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET +class XLMProphetNetForCausalLM(XLMProphetNetPreTrainedModel): + _tied_weights_keys = [ + "prophetnet.word_embeddings.weight", + "prophetnet.decoder.word_embeddings.weight", + "lm_head.weight", + ] + + def __init__(self, config: XLMProphetNetConfig): + # set config for CLM + config = copy.deepcopy(config) + config.is_decoder = True + config.is_encoder_decoder = False + super().__init__(config) + self.prophetnet = XLMProphetNetDecoderWrapper(config) + + self.padding_idx = config.pad_token_id + self.disable_ngram_loss = config.disable_ngram_loss + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.prophetnet.decoder.word_embeddings + + def set_input_embeddings(self, value): + self.prophetnet.decoder.word_embeddings = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.prophetnet.decoder.word_embeddings, self.lm_head) + + def set_decoder(self, decoder): + self.prophetnet.decoder = decoder + + def get_decoder(self): + return self.prophetnet.decoder + + @add_start_docstrings_to_model_forward(XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=XLMProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, XLMProphetNetDecoderLMOutput]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, XLMProphetNetForCausalLM + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") + >>> model = XLMProphetNetForCausalLM.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") + >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> logits = outputs.logits + + >>> # Model can also be used with EncoderDecoder framework + >>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer + >>> import torch + + >>> tokenizer_enc = BertTokenizer.from_pretrained("google-bert/bert-large-uncased") + >>> tokenizer_dec = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") + >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( + ... "google-bert/bert-large-uncased", "patrickvonplaten/xprophetnet-large-uncased-standalone" + ... ) + + >>> ARTICLE = ( + ... "the us state department said wednesday it had received no " + ... "formal word from bolivia that it was expelling the us ambassador there " + ... "but said the charges made against him are `` baseless ." + ... ) + >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids + >>> labels = tokenizer_dec( + ... "us rejects charges against its ambassador in bolivia", return_tensors="pt" + ... ).input_ids + >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) + + >>> loss = outputs.loss + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) + outputs = self.prophetnet.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] + + predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) + predict_logits = self.lm_head(predicting_streams) + + logits = predict_logits[:, 0] + logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None + + loss = None + if labels is not None: + loss = self._compute_loss(predict_logits, labels) + + if not return_dict: + all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) + return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] + else: + return XLMProphetNetDecoderLMOutput( + loss=loss, + logits=logits, + logits_ngram=logits_ngram, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + hidden_states_ngram=outputs.hidden_states_ngram, + attentions=outputs.attentions, + ngram_attentions=outputs.ngram_attentions, + cross_attentions=outputs.cross_attentions, + ) + + def _compute_loss(self, logits, labels, ignore_index=-100): + expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) + + for i in range(self.config.ngram): + if i > 0 and self.disable_ngram_loss: + break + expend_targets[i, :, :] = labels + + logits = logits.transpose(0, 1).contiguous() + lprobs = nn.functional.log_softmax( + logits.view(-1, logits.size(-1)), + dim=-1, + dtype=torch.float32, + ) + + loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") + + if self.config.eps > 0.0: + smooth_loss = -lprobs.sum(dim=-1, keepdim=True) + non_masked_tokens = expend_targets.ne(ignore_index).view(-1) + smooth_loss = smooth_loss[non_masked_tokens] + smooth_loss = smooth_loss.mean() + + eps_i = self.config.eps / lprobs.size(-1) + loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss + + return loss + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + use_cache=None, + **kwargs, + ): + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_ids.shape) + + if past_key_values: + input_ids = input_ids[:, -1:] + # first step, decoder_cached_states are empty + return { + "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed + "attention_mask": attention_mask, + "head_mask": head_mask, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + @staticmethod + # Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +# Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderWrapper with ProphetNet->XLMProphetNet, prophetnet->XLMProphetNet +class XLMProphetNetDecoderWrapper(XLMProphetNetPreTrainedModel): + """ + This is a wrapper class, so that [`XLMProphetNetForCausalLM`] can correctly be loaded from pretrained XLMProphetNet + classes. + """ + + def __init__(self, config: XLMProphetNetConfig): + super().__init__(config) + + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.decoder = XLMProphetNetDecoder(config, word_embeddings=self.word_embeddings) + + # Initialize weights and apply final processing + self.post_init() + + def _tie_weights(self): + self._tie_or_clone_weights(self.word_embeddings, self.decoder.get_input_embeddings()) + + def forward(self, *args, **kwargs): + return self.decoder(*args, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py new file mode 100644 index 0000000000000000000000000000000000000000..fa65fa5cbfbaf2fccd6fcad94bf68a3ef9ed22d9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py @@ -0,0 +1,323 @@ +# coding=utf-8 +# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import collections +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +SPIECE_UNDERLINE = "▁" + +VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"} + + +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +class XLMProphetNetTokenizer(PreTrainedTokenizer): + """ + Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + bos_token (`str`, *optional*, defaults to `"[SEP]"`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `"[SEP]"`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + bos_token="[SEP]", + eos_token="[SEP]", + sep_token="[SEP]", + unk_token="[UNK]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + try: + import sentencepiece as spm + except ImportError: + logger.warning( + "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" + " pip install sentencepiece" + ) + raise + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + self.vocab_file = vocab_file + + # Original fairseq vocab and spm vocab must be "aligned": + # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 + # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- + # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' + # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' + + # put special tokens and [unused] tokens into the vocab + self.fairseq_tokens_to_ids = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} + + for i in range(10): + tok = f"[unused{i}]" + self.fairseq_tokens_to_ids[tok] = 5 + i + + # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab + self.fairseq_offset = 12 + self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} + + # TODO ArthurZ fairseq_ids_to_tokens should be removed + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + unk_token=unk_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + try: + import sentencepiece as spm + except ImportError: + logger.warning( + "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" + " pip install sentencepiece" + ) + raise + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return ([0] * len(token_ids_0)) + [1] + return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLMProphetNet + does not make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + + if token_ids_1 is None: + return len(token_ids_0 + sep) * [0] + return len(token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + @property + def vocab_size(self): + return len(self.sp_model) + self.fairseq_offset + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text: str) -> str: + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + if token in self.fairseq_tokens_to_ids: + return self.fairseq_tokens_to_ids[token] + spm_id = self.sp_model.PieceToId(token) + + # Need to return unknown token if the SP model returned 0 + return spm_id + self.fairseq_offset if spm_id else self.unk_token_id + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + if index in self.fairseq_ids_to_tokens: + return self.fairseq_ids_to_tokens[index] + return self.sp_model.IdToPiece(index - self.fairseq_offset) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A XLMProphetNet sequence has the following format: + + - single sequence: `X [SEP]` + - pair of sequences: `A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return token_ids_0 + [self.sep_token_id] + sep = [self.sep_token_id] + return token_ids_0 + sep + token_ids_1 + sep diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__init__.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..28d59763bb85503b4ebc8c5aa8e8b299c45e586f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__init__.py @@ -0,0 +1,73 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]} + +try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["feature_extraction_yolos"] = ["YolosFeatureExtractor"] + _import_structure["image_processing_yolos"] = ["YolosImageProcessor"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_yolos"] = [ + "YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST", + "YolosForObjectDetection", + "YolosModel", + "YolosPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig + + try: + if not is_vision_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .feature_extraction_yolos import YolosFeatureExtractor + from .image_processing_yolos import YolosImageProcessor + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_yolos import ( + YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, + YolosForObjectDetection, + YolosModel, + YolosPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/configuration_yolos.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/configuration_yolos.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..af376e88cdaf3508be926e80d73c03d028b442a7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/configuration_yolos.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/convert_yolos_to_pytorch.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/convert_yolos_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f8b31c5b434211922d5e7a68e56d014dc432decb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/convert_yolos_to_pytorch.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/feature_extraction_yolos.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/feature_extraction_yolos.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19606ca97e1da4198ab04145839498b9e0ae54f5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/feature_extraction_yolos.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/image_processing_yolos.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/image_processing_yolos.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b43def80e3d50186c18dcf82263f1022bdfa6c9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/__pycache__/image_processing_yolos.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/configuration_yolos.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/configuration_yolos.py new file mode 100644 index 0000000000000000000000000000000000000000..098210f1a732e28260fe92e2512d59745ad52195 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/configuration_yolos.py @@ -0,0 +1,178 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" YOLOS model configuration""" + +from collections import OrderedDict +from typing import Mapping + +from packaging import version + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class YolosConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`YolosModel`]. It is used to instantiate a YOLOS + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the YOLOS + [hustvl/yolos-base](https://huggingface.co/hustvl/yolos-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + image_size (`List[int]`, *optional*, defaults to `[512, 864]`): + The size (resolution) of each image. + patch_size (`int`, *optional*, defaults to 16): + The size (resolution) of each patch. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + qkv_bias (`bool`, *optional*, defaults to `True`): + Whether to add a bias to the queries, keys and values. + num_detection_tokens (`int`, *optional*, defaults to 100): + The number of detection tokens. + use_mid_position_embeddings (`bool`, *optional*, defaults to `True`): + Whether to use the mid-layer position encodings. + auxiliary_loss (`bool`, *optional*, defaults to `False`): + Whether auxiliary decoding losses (loss at each decoder layer) are to be used. + class_cost (`float`, *optional*, defaults to 1): + Relative weight of the classification error in the Hungarian matching cost. + bbox_cost (`float`, *optional*, defaults to 5): + Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost. + giou_cost (`float`, *optional*, defaults to 2): + Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost. + bbox_loss_coefficient (`float`, *optional*, defaults to 5): + Relative weight of the L1 bounding box loss in the object detection loss. + giou_loss_coefficient (`float`, *optional*, defaults to 2): + Relative weight of the generalized IoU loss in the object detection loss. + eos_coefficient (`float`, *optional*, defaults to 0.1): + Relative classification weight of the 'no-object' class in the object detection loss. + + Example: + + ```python + >>> from transformers import YolosConfig, YolosModel + + >>> # Initializing a YOLOS hustvl/yolos-base style configuration + >>> configuration = YolosConfig() + + >>> # Initializing a model (with random weights) from the hustvl/yolos-base style configuration + >>> model = YolosModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "yolos" + + def __init__( + self, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.0, + attention_probs_dropout_prob=0.0, + initializer_range=0.02, + layer_norm_eps=1e-12, + image_size=[512, 864], + patch_size=16, + num_channels=3, + qkv_bias=True, + num_detection_tokens=100, + use_mid_position_embeddings=True, + auxiliary_loss=False, + class_cost=1, + bbox_cost=5, + giou_cost=2, + bbox_loss_coefficient=5, + giou_loss_coefficient=2, + eos_coefficient=0.1, + **kwargs, + ): + super().__init__(**kwargs) + + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.qkv_bias = qkv_bias + self.num_detection_tokens = num_detection_tokens + self.use_mid_position_embeddings = use_mid_position_embeddings + self.auxiliary_loss = auxiliary_loss + # Hungarian matcher + self.class_cost = class_cost + self.bbox_cost = bbox_cost + self.giou_cost = giou_cost + # Loss coefficients + self.bbox_loss_coefficient = bbox_loss_coefficient + self.giou_loss_coefficient = giou_loss_coefficient + self.eos_coefficient = eos_coefficient + + +class YolosOnnxConfig(OnnxConfig): + torch_onnx_minimum_version = version.parse("1.11") + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + return OrderedDict( + [ + ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), + ] + ) + + @property + def atol_for_validation(self) -> float: + return 1e-4 + + @property + def default_onnx_opset(self) -> int: + return 12 diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/convert_yolos_to_pytorch.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/convert_yolos_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..35238151ab93efe4700cc13906f1587574864c07 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/convert_yolos_to_pytorch.py @@ -0,0 +1,268 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert YOLOS checkpoints from the original repository. URL: https://github.com/hustvl/YOLOS""" + + +import argparse +import json +from pathlib import Path + +import requests +import torch +from huggingface_hub import hf_hub_download +from PIL import Image + +from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +def get_yolos_config(yolos_name: str) -> YolosConfig: + config = YolosConfig() + + # size of the architecture + if "yolos_ti" in yolos_name: + config.hidden_size = 192 + config.intermediate_size = 768 + config.num_hidden_layers = 12 + config.num_attention_heads = 3 + config.image_size = [800, 1333] + config.use_mid_position_embeddings = False + elif yolos_name == "yolos_s_dWr": + config.hidden_size = 330 + config.num_hidden_layers = 14 + config.num_attention_heads = 6 + config.intermediate_size = 1320 + elif "yolos_s" in yolos_name: + config.hidden_size = 384 + config.intermediate_size = 1536 + config.num_hidden_layers = 12 + config.num_attention_heads = 6 + elif "yolos_b" in yolos_name: + config.image_size = [800, 1344] + + config.num_labels = 91 + repo_id = "huggingface/label-files" + filename = "coco-detection-id2label.json" + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + config.id2label = id2label + config.label2id = {v: k for k, v in id2label.items()} + + return config + + +# we split up the matrix of each encoder layer into queries, keys and values +def read_in_q_k_v(state_dict: dict, config: YolosConfig, base_model: bool = False): + for i in range(config.num_hidden_layers): + # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) + in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") + in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") + # next, add query, keys and values (in that order) to the state dict + state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :] + state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] + state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ + config.hidden_size : config.hidden_size * 2, : + ] + state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ + config.hidden_size : config.hidden_size * 2 + ] + state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :] + state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] + + +def rename_key(name: str) -> str: + if "backbone" in name: + name = name.replace("backbone", "vit") + if "cls_token" in name: + name = name.replace("cls_token", "embeddings.cls_token") + if "det_token" in name: + name = name.replace("det_token", "embeddings.detection_tokens") + if "mid_pos_embed" in name: + name = name.replace("mid_pos_embed", "encoder.mid_position_embeddings") + if "pos_embed" in name: + name = name.replace("pos_embed", "embeddings.position_embeddings") + if "patch_embed.proj" in name: + name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") + if "blocks" in name: + name = name.replace("blocks", "encoder.layer") + if "attn.proj" in name: + name = name.replace("attn.proj", "attention.output.dense") + if "attn" in name: + name = name.replace("attn", "attention.self") + if "norm1" in name: + name = name.replace("norm1", "layernorm_before") + if "norm2" in name: + name = name.replace("norm2", "layernorm_after") + if "mlp.fc1" in name: + name = name.replace("mlp.fc1", "intermediate.dense") + if "mlp.fc2" in name: + name = name.replace("mlp.fc2", "output.dense") + if "class_embed" in name: + name = name.replace("class_embed", "class_labels_classifier") + if "bbox_embed" in name: + name = name.replace("bbox_embed", "bbox_predictor") + if "vit.norm" in name: + name = name.replace("vit.norm", "vit.layernorm") + + return name + + +def convert_state_dict(orig_state_dict: dict, model: YolosForObjectDetection) -> dict: + for key in orig_state_dict.copy().keys(): + val = orig_state_dict.pop(key) + + if "qkv" in key: + key_split = key.split(".") + layer_num = int(key_split[2]) + dim = model.vit.encoder.layer[layer_num].attention.attention.all_head_size + if "weight" in key: + orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.query.weight"] = val[:dim, :] + orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.key.weight"] = val[ + dim : dim * 2, : + ] + orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.value.weight"] = val[-dim:, :] + else: + orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.query.bias"] = val[:dim] + orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.key.bias"] = val[dim : dim * 2] + orig_state_dict[f"vit.encoder.layer.{layer_num}.attention.attention.value.bias"] = val[-dim:] + else: + orig_state_dict[rename_key(key)] = val + + return orig_state_dict + + +# We will verify our results on an image of cute cats +def prepare_img() -> torch.Tensor: + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + im = Image.open(requests.get(url, stream=True).raw) + return im + + +@torch.no_grad() +def convert_yolos_checkpoint( + yolos_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False +): + """ + Copy/paste/tweak model's weights to our YOLOS structure. + """ + config = get_yolos_config(yolos_name) + + # load original state_dict + state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] + + # load 🤗 model + model = YolosForObjectDetection(config) + model.eval() + new_state_dict = convert_state_dict(state_dict, model) + model.load_state_dict(new_state_dict) + + # Check outputs on an image, prepared by YolosImageProcessor + size = 800 if yolos_name != "yolos_ti" else 512 + image_processor = YolosImageProcessor(format="coco_detection", size=size) + encoding = image_processor(images=prepare_img(), return_tensors="pt") + outputs = model(**encoding) + logits, pred_boxes = outputs.logits, outputs.pred_boxes + + expected_slice_logits, expected_slice_boxes = None, None + if yolos_name == "yolos_ti": + expected_slice_logits = torch.tensor( + [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] + ) + expected_slice_boxes = torch.tensor( + [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] + ) + elif yolos_name == "yolos_s_200_pre": + expected_slice_logits = torch.tensor( + [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] + ) + expected_slice_boxes = torch.tensor( + [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] + ) + elif yolos_name == "yolos_s_300_pre": + expected_slice_logits = torch.tensor( + [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] + ) + expected_slice_boxes = torch.tensor( + [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] + ) + elif yolos_name == "yolos_s_dWr": + expected_slice_logits = torch.tensor( + [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] + ) + expected_slice_boxes = torch.tensor( + [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] + ) + elif yolos_name == "yolos_base": + expected_slice_logits = torch.tensor( + [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] + ) + expected_slice_boxes = torch.tensor( + [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] + ) + else: + raise ValueError(f"Unknown yolos_name: {yolos_name}") + + assert torch.allclose(logits[0, :3, :3], expected_slice_logits, atol=1e-4) + assert torch.allclose(pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4) + + Path(pytorch_dump_folder_path).mkdir(exist_ok=True) + print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}") + model.save_pretrained(pytorch_dump_folder_path) + print(f"Saving image processor to {pytorch_dump_folder_path}") + image_processor.save_pretrained(pytorch_dump_folder_path) + + if push_to_hub: + model_mapping = { + "yolos_ti": "yolos-tiny", + "yolos_s_200_pre": "yolos-small", + "yolos_s_300_pre": "yolos-small-300", + "yolos_s_dWr": "yolos-small-dwr", + "yolos_base": "yolos-base", + } + + print("Pushing to the hub...") + model_name = model_mapping[yolos_name] + image_processor.push_to_hub(model_name, organization="hustvl") + model.push_to_hub(model_name, organization="hustvl") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--yolos_name", + default="yolos_s_200_pre", + type=str, + help=( + "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," + " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." + ), + ) + parser.add_argument( + "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." + ) + parser.add_argument( + "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." + ) + + args = parser.parse_args() + convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/feature_extraction_yolos.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/feature_extraction_yolos.py new file mode 100644 index 0000000000000000000000000000000000000000..5696ee65bbdfa2b2712ebe9095b202c7856f5b19 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/feature_extraction_yolos.py @@ -0,0 +1,43 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Feature extractor class for YOLOS.""" + +import warnings + +from ...image_transforms import rgb_to_id as _rgb_to_id +from ...utils import logging +from .image_processing_yolos import YolosImageProcessor + + +logger = logging.get_logger(__name__) + + +def rgb_to_id(x): + warnings.warn( + "rgb_to_id has moved and will not be importable from this module from v5. " + "Please import from transformers.image_transforms instead.", + FutureWarning, + ) + return _rgb_to_id(x) + + +class YolosFeatureExtractor(YolosImageProcessor): + def __init__(self, *args, **kwargs) -> None: + warnings.warn( + "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" + " use YolosImageProcessor instead.", + FutureWarning, + ) + super().__init__(*args, **kwargs) diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/image_processing_yolos.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/image_processing_yolos.py new file mode 100644 index 0000000000000000000000000000000000000000..c4e44854a0da4322044017f395e6ad400f92f6b7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/image_processing_yolos.py @@ -0,0 +1,1447 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Image processor class for YOLOS.""" + +import pathlib +from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union + +import numpy as np + +from ...feature_extraction_utils import BatchFeature +from ...image_processing_utils import BaseImageProcessor, get_size_dict +from ...image_transforms import ( + PaddingMode, + center_to_corners_format, + corners_to_center_format, + id_to_rgb, + pad, + rescale, + resize, + rgb_to_id, + to_channel_dimension_format, +) +from ...image_utils import ( + IMAGENET_DEFAULT_MEAN, + IMAGENET_DEFAULT_STD, + AnnotationFormat, + AnnotationType, + ChannelDimension, + ImageInput, + PILImageResampling, + get_image_size, + infer_channel_dimension_format, + is_scaled_image, + make_list_of_images, + to_numpy_array, + valid_images, + validate_annotations, + validate_kwargs, + validate_preprocess_arguments, +) +from ...utils import ( + TensorType, + is_flax_available, + is_jax_tensor, + is_scipy_available, + is_tf_available, + is_tf_tensor, + is_torch_available, + is_torch_tensor, + is_vision_available, + logging, +) + + +if is_torch_available(): + import torch + from torch import nn + + +if is_vision_available(): + import PIL + + +if is_scipy_available(): + import scipy.special + import scipy.stats + +logger = logging.get_logger(__name__) + +SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC) + + +# Copied from transformers.models.detr.image_processing_detr.get_max_height_width +def get_max_height_width( + images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None +) -> List[int]: + """ + Get the maximum height and width across all images in a batch. + """ + if input_data_format is None: + input_data_format = infer_channel_dimension_format(images[0]) + + if input_data_format == ChannelDimension.FIRST: + _, max_height, max_width = max_across_indices([img.shape for img in images]) + elif input_data_format == ChannelDimension.LAST: + max_height, max_width, _ = max_across_indices([img.shape for img in images]) + else: + raise ValueError(f"Invalid channel dimension format: {input_data_format}") + return (max_height, max_width) + + +def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]: + """ + Computes the output image size given the input image size and the desired output size. + + Args: + image_size (`Tuple[int, int]`): + The input image size. + size (`int`): + The desired output size. + max_size (`int`, *optional*): + The maximum allowed output size. + """ + height, width = image_size + if max_size is not None: + min_original_size = float(min((height, width))) + max_original_size = float(max((height, width))) + if max_original_size / min_original_size * size > max_size: + size = int(round(max_size * min_original_size / max_original_size)) + + if width < height and width != size: + height = int(size * height / width) + width = size + elif height < width and height != size: + width = int(size * width / height) + height = size + width_mod = np.mod(width, 16) + height_mod = np.mod(height, 16) + width = width - width_mod + height = height - height_mod + return (height, width) + + +# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size +def get_resize_output_image_size( + input_image: np.ndarray, + size: Union[int, Tuple[int, int], List[int]], + max_size: Optional[int] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, +) -> Tuple[int, int]: + """ + Computes the output image size given the input image size and the desired output size. If the desired output size + is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output + image size is computed by keeping the aspect ratio of the input image size. + + Args: + input_image (`np.ndarray`): + The image to resize. + size (`int` or `Tuple[int, int]` or `List[int]`): + The desired output size. + max_size (`int`, *optional*): + The maximum allowed output size. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred from the input image. + """ + image_size = get_image_size(input_image, input_data_format) + if isinstance(size, (list, tuple)): + return size + + return get_size_with_aspect_ratio(image_size, size, max_size) + + +# Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn +def get_numpy_to_framework_fn(arr) -> Callable: + """ + Returns a function that converts a numpy array to the framework of the input array. + + Args: + arr (`np.ndarray`): The array to convert. + """ + if isinstance(arr, np.ndarray): + return np.array + if is_tf_available() and is_tf_tensor(arr): + import tensorflow as tf + + return tf.convert_to_tensor + if is_torch_available() and is_torch_tensor(arr): + import torch + + return torch.tensor + if is_flax_available() and is_jax_tensor(arr): + import jax.numpy as jnp + + return jnp.array + raise ValueError(f"Cannot convert arrays of type {type(arr)}") + + +# Copied from transformers.models.detr.image_processing_detr.safe_squeeze +def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray: + """ + Squeezes an array, but only if the axis specified has dim 1. + """ + if axis is None: + return arr.squeeze() + + try: + return arr.squeeze(axis=axis) + except ValueError: + return arr + + +# Copied from transformers.models.detr.image_processing_detr.normalize_annotation +def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict: + image_height, image_width = image_size + norm_annotation = {} + for key, value in annotation.items(): + if key == "boxes": + boxes = value + boxes = corners_to_center_format(boxes) + boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32) + norm_annotation[key] = boxes + else: + norm_annotation[key] = value + return norm_annotation + + +# Copied from transformers.models.detr.image_processing_detr.max_across_indices +def max_across_indices(values: Iterable[Any]) -> List[Any]: + """ + Return the maximum value across all indices of an iterable of values. + """ + return [max(values_i) for values_i in zip(*values)] + + +# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask +def make_pixel_mask( + image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None +) -> np.ndarray: + """ + Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. + + Args: + image (`np.ndarray`): + Image to make the pixel mask for. + output_size (`Tuple[int, int]`): + Output size of the mask. + """ + input_height, input_width = get_image_size(image, channel_dim=input_data_format) + mask = np.zeros(output_size, dtype=np.int64) + mask[:input_height, :input_width] = 1 + return mask + + +# Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask +def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray: + """ + Convert a COCO polygon annotation to a mask. + + Args: + segmentations (`List[List[float]]`): + List of polygons, each polygon represented by a list of x-y coordinates. + height (`int`): + Height of the mask. + width (`int`): + Width of the mask. + """ + try: + from pycocotools import mask as coco_mask + except ImportError: + raise ImportError("Pycocotools is not installed in your environment.") + + masks = [] + for polygons in segmentations: + rles = coco_mask.frPyObjects(polygons, height, width) + mask = coco_mask.decode(rles) + if len(mask.shape) < 3: + mask = mask[..., None] + mask = np.asarray(mask, dtype=np.uint8) + mask = np.any(mask, axis=2) + masks.append(mask) + if masks: + masks = np.stack(masks, axis=0) + else: + masks = np.zeros((0, height, width), dtype=np.uint8) + + return masks + + +# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation +def prepare_coco_detection_annotation( + image, + target, + return_segmentation_masks: bool = False, + input_data_format: Optional[Union[ChannelDimension, str]] = None, +): + """ + Convert the target in COCO format into the format expected by DETR. + """ + image_height, image_width = get_image_size(image, channel_dim=input_data_format) + + image_id = target["image_id"] + image_id = np.asarray([image_id], dtype=np.int64) + + # Get all COCO annotations for the given image. + annotations = target["annotations"] + annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0] + + classes = [obj["category_id"] for obj in annotations] + classes = np.asarray(classes, dtype=np.int64) + + # for conversion to coco api + area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32) + iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64) + + boxes = [obj["bbox"] for obj in annotations] + # guard against no boxes via resizing + boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4) + boxes[:, 2:] += boxes[:, :2] + boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width) + boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height) + + keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) + + new_target = {} + new_target["image_id"] = image_id + new_target["class_labels"] = classes[keep] + new_target["boxes"] = boxes[keep] + new_target["area"] = area[keep] + new_target["iscrowd"] = iscrowd[keep] + new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64) + + if annotations and "keypoints" in annotations[0]: + keypoints = [obj["keypoints"] for obj in annotations] + # Converting the filtered keypoints list to a numpy array + keypoints = np.asarray(keypoints, dtype=np.float32) + # Apply the keep mask here to filter the relevant annotations + keypoints = keypoints[keep] + num_keypoints = keypoints.shape[0] + keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints + new_target["keypoints"] = keypoints + + if return_segmentation_masks: + segmentation_masks = [obj["segmentation"] for obj in annotations] + masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width) + new_target["masks"] = masks[keep] + + return new_target + + +# Copied from transformers.models.detr.image_processing_detr.masks_to_boxes +def masks_to_boxes(masks: np.ndarray) -> np.ndarray: + """ + Compute the bounding boxes around the provided panoptic segmentation masks. + + Args: + masks: masks in format `[number_masks, height, width]` where N is the number of masks + + Returns: + boxes: bounding boxes in format `[number_masks, 4]` in xyxy format + """ + if masks.size == 0: + return np.zeros((0, 4)) + + h, w = masks.shape[-2:] + y = np.arange(0, h, dtype=np.float32) + x = np.arange(0, w, dtype=np.float32) + # see https://github.com/pytorch/pytorch/issues/50276 + y, x = np.meshgrid(y, x, indexing="ij") + + x_mask = masks * np.expand_dims(x, axis=0) + x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1) + x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool))) + x_min = x.filled(fill_value=1e8) + x_min = x_min.reshape(x_min.shape[0], -1).min(-1) + + y_mask = masks * np.expand_dims(y, axis=0) + y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1) + y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool))) + y_min = y.filled(fill_value=1e8) + y_min = y_min.reshape(y_min.shape[0], -1).min(-1) + + return np.stack([x_min, y_min, x_max, y_max], 1) + + +# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->YOLOS +def prepare_coco_panoptic_annotation( + image: np.ndarray, + target: Dict, + masks_path: Union[str, pathlib.Path], + return_masks: bool = True, + input_data_format: Union[ChannelDimension, str] = None, +) -> Dict: + """ + Prepare a coco panoptic annotation for YOLOS. + """ + image_height, image_width = get_image_size(image, channel_dim=input_data_format) + annotation_path = pathlib.Path(masks_path) / target["file_name"] + + new_target = {} + new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64) + new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64) + new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64) + + if "segments_info" in target: + masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32) + masks = rgb_to_id(masks) + + ids = np.array([segment_info["id"] for segment_info in target["segments_info"]]) + masks = masks == ids[:, None, None] + masks = masks.astype(np.uint8) + if return_masks: + new_target["masks"] = masks + new_target["boxes"] = masks_to_boxes(masks) + new_target["class_labels"] = np.array( + [segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64 + ) + new_target["iscrowd"] = np.asarray( + [segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64 + ) + new_target["area"] = np.asarray( + [segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32 + ) + + return new_target + + +# Copied from transformers.models.detr.image_processing_detr.get_segmentation_image +def get_segmentation_image( + masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False +): + h, w = input_size + final_h, final_w = target_size + + m_id = scipy.special.softmax(masks.transpose(0, 1), -1) + + if m_id.shape[-1] == 0: + # We didn't detect any mask :( + m_id = np.zeros((h, w), dtype=np.int64) + else: + m_id = m_id.argmax(-1).reshape(h, w) + + if deduplicate: + # Merge the masks corresponding to the same stuff class + for equiv in stuff_equiv_classes.values(): + for eq_id in equiv: + m_id[m_id == eq_id] = equiv[0] + + seg_img = id_to_rgb(m_id) + seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST) + return seg_img + + +# Copied from transformers.models.detr.image_processing_detr.get_mask_area +def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray: + final_h, final_w = target_size + np_seg_img = seg_img.astype(np.uint8) + np_seg_img = np_seg_img.reshape(final_h, final_w, 3) + m_id = rgb_to_id(np_seg_img) + area = [(m_id == i).sum() for i in range(n_classes)] + return area + + +# Copied from transformers.models.detr.image_processing_detr.score_labels_from_class_probabilities +def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: + probs = scipy.special.softmax(logits, axis=-1) + labels = probs.argmax(-1, keepdims=True) + scores = np.take_along_axis(probs, labels, axis=-1) + scores, labels = scores.squeeze(-1), labels.squeeze(-1) + return scores, labels + + +# Copied from transformers.models.detr.image_processing_detr.resize_annotation +def resize_annotation( + annotation: Dict[str, Any], + orig_size: Tuple[int, int], + target_size: Tuple[int, int], + threshold: float = 0.5, + resample: PILImageResampling = PILImageResampling.NEAREST, +): + """ + Resizes an annotation to a target size. + + Args: + annotation (`Dict[str, Any]`): + The annotation dictionary. + orig_size (`Tuple[int, int]`): + The original size of the input image. + target_size (`Tuple[int, int]`): + The target size of the image, as returned by the preprocessing `resize` step. + threshold (`float`, *optional*, defaults to 0.5): + The threshold used to binarize the segmentation masks. + resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`): + The resampling filter to use when resizing the masks. + """ + ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size)) + ratio_height, ratio_width = ratios + + new_annotation = {} + new_annotation["size"] = target_size + + for key, value in annotation.items(): + if key == "boxes": + boxes = value + scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32) + new_annotation["boxes"] = scaled_boxes + elif key == "area": + area = value + scaled_area = area * (ratio_width * ratio_height) + new_annotation["area"] = scaled_area + elif key == "masks": + masks = value[:, None] + masks = np.array([resize(mask, target_size, resample=resample) for mask in masks]) + masks = masks.astype(np.float32) + masks = masks[:, 0] > threshold + new_annotation["masks"] = masks + elif key == "size": + new_annotation["size"] = target_size + else: + new_annotation[key] = value + + return new_annotation + + +# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle +def binary_mask_to_rle(mask): + """ + Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. + + Args: + mask (`torch.Tensor` or `numpy.array`): + A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target + segment_id or class_id. + Returns: + `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE + format. + """ + if is_torch_tensor(mask): + mask = mask.numpy() + + pixels = mask.flatten() + pixels = np.concatenate([[0], pixels, [0]]) + runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 + runs[1::2] -= runs[::2] + return list(runs) + + +# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle +def convert_segmentation_to_rle(segmentation): + """ + Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. + + Args: + segmentation (`torch.Tensor` or `numpy.array`): + A segmentation map of shape `(height, width)` where each value denotes a segment or class id. + Returns: + `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. + """ + segment_ids = torch.unique(segmentation) + + run_length_encodings = [] + for idx in segment_ids: + mask = torch.where(segmentation == idx, 1, 0) + rle = binary_mask_to_rle(mask) + run_length_encodings.append(rle) + + return run_length_encodings + + +# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects +def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): + """ + Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and + `labels`. + + Args: + masks (`torch.Tensor`): + A tensor of shape `(num_queries, height, width)`. + scores (`torch.Tensor`): + A tensor of shape `(num_queries)`. + labels (`torch.Tensor`): + A tensor of shape `(num_queries)`. + object_mask_threshold (`float`): + A number between 0 and 1 used to binarize the masks. + Raises: + `ValueError`: Raised when the first dimension doesn't match in all input tensors. + Returns: + `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region + < `object_mask_threshold`. + """ + if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): + raise ValueError("mask, scores and labels must have the same shape!") + + to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) + + return masks[to_keep], scores[to_keep], labels[to_keep] + + +# Copied from transformers.models.detr.image_processing_detr.check_segment_validity +def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): + # Get the mask associated with the k class + mask_k = mask_labels == k + mask_k_area = mask_k.sum() + + # Compute the area of all the stuff in query k + original_area = (mask_probs[k] >= mask_threshold).sum() + mask_exists = mask_k_area > 0 and original_area > 0 + + # Eliminate disconnected tiny segments + if mask_exists: + area_ratio = mask_k_area / original_area + if not area_ratio.item() > overlap_mask_area_threshold: + mask_exists = False + + return mask_exists, mask_k + + +# Copied from transformers.models.detr.image_processing_detr.compute_segments +def compute_segments( + mask_probs, + pred_scores, + pred_labels, + mask_threshold: float = 0.5, + overlap_mask_area_threshold: float = 0.8, + label_ids_to_fuse: Optional[Set[int]] = None, + target_size: Tuple[int, int] = None, +): + height = mask_probs.shape[1] if target_size is None else target_size[0] + width = mask_probs.shape[2] if target_size is None else target_size[1] + + segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) + segments: List[Dict] = [] + + if target_size is not None: + mask_probs = nn.functional.interpolate( + mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False + )[0] + + current_segment_id = 0 + + # Weigh each mask by its prediction score + mask_probs *= pred_scores.view(-1, 1, 1) + mask_labels = mask_probs.argmax(0) # [height, width] + + # Keep track of instances of each class + stuff_memory_list: Dict[str, int] = {} + for k in range(pred_labels.shape[0]): + pred_class = pred_labels[k].item() + should_fuse = pred_class in label_ids_to_fuse + + # Check if mask exists and large enough to be a segment + mask_exists, mask_k = check_segment_validity( + mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold + ) + + if mask_exists: + if pred_class in stuff_memory_list: + current_segment_id = stuff_memory_list[pred_class] + else: + current_segment_id += 1 + + # Add current object segment to final segmentation map + segmentation[mask_k] = current_segment_id + segment_score = round(pred_scores[k].item(), 6) + segments.append( + { + "id": current_segment_id, + "label_id": pred_class, + "was_fused": should_fuse, + "score": segment_score, + } + ) + if should_fuse: + stuff_memory_list[pred_class] = current_segment_id + + return segmentation, segments + + +class YolosImageProcessor(BaseImageProcessor): + r""" + Constructs a Detr image processor. + + Args: + format (`str`, *optional*, defaults to `"coco_detection"`): + Data format of the annotations. One of "coco_detection" or "coco_panoptic". + do_resize (`bool`, *optional*, defaults to `True`): + Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be + overridden by the `do_resize` parameter in the `preprocess` method. + size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`): + Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in + the `preprocess` method. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use if resizing the image. + do_rescale (`bool`, *optional*, defaults to `True`): + Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the + `do_rescale` parameter in the `preprocess` method. + rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): + Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the + `preprocess` method. + do_normalize: + Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the + `preprocess` method. + image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): + Mean values to use when normalizing the image. Can be a single value or a list of values, one for each + channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. + image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): + Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one + for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. + do_pad (`bool`, *optional*, defaults to `True`): + Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` + method. If `True` will pad the images in the batch to the largest height and width in the batch. + Padding will be applied to the bottom and right of the image with zeros. + """ + + model_input_names = ["pixel_values", "pixel_mask"] + + def __init__( + self, + format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, + do_resize: bool = True, + size: Dict[str, int] = None, + resample: PILImageResampling = PILImageResampling.BILINEAR, + do_rescale: bool = True, + rescale_factor: Union[int, float] = 1 / 255, + do_normalize: bool = True, + image_mean: Union[float, List[float]] = None, + image_std: Union[float, List[float]] = None, + do_convert_annotations: Optional[bool] = None, + do_pad: bool = True, + **kwargs, + ) -> None: + if "pad_and_return_pixel_mask" in kwargs: + do_pad = kwargs.pop("pad_and_return_pixel_mask") + + if "max_size" in kwargs: + logger.warning_once( + "The `max_size` parameter is deprecated and will be removed in v4.26. " + "Please specify in `size['longest_edge'] instead`.", + ) + max_size = kwargs.pop("max_size") + else: + max_size = None if size is None else 1333 + + size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333} + size = get_size_dict(size, max_size=max_size, default_to_square=False) + + # Backwards compatibility + if do_convert_annotations is None: + do_convert_annotations = do_normalize + + super().__init__(**kwargs) + self.format = format + self.do_resize = do_resize + self.size = size + self.resample = resample + self.do_rescale = do_rescale + self.rescale_factor = rescale_factor + self.do_normalize = do_normalize + self.do_convert_annotations = do_convert_annotations + self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN + self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD + self.do_pad = do_pad + self._valid_processor_keys = [ + "images", + "annotations", + "return_segmentation_masks", + "masks_path", + "do_resize", + "size", + "resample", + "do_rescale", + "rescale_factor", + "do_normalize", + "image_mean", + "image_std", + "do_convert_annotations", + "do_pad", + "format", + "return_tensors", + "data_format", + "input_data_format", + ] + + @classmethod + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->Yolos + def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): + """ + Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is + created using from_dict and kwargs e.g. `YolosImageProcessor.from_pretrained(checkpoint, size=600, + max_size=800)` + """ + image_processor_dict = image_processor_dict.copy() + if "max_size" in kwargs: + image_processor_dict["max_size"] = kwargs.pop("max_size") + if "pad_and_return_pixel_mask" in kwargs: + image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask") + return super().from_dict(image_processor_dict, **kwargs) + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation + def prepare_annotation( + self, + image: np.ndarray, + target: Dict, + format: Optional[AnnotationFormat] = None, + return_segmentation_masks: bool = None, + masks_path: Optional[Union[str, pathlib.Path]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> Dict: + """ + Prepare an annotation for feeding into DETR model. + """ + format = format if format is not None else self.format + + if format == AnnotationFormat.COCO_DETECTION: + return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks + target = prepare_coco_detection_annotation( + image, target, return_segmentation_masks, input_data_format=input_data_format + ) + elif format == AnnotationFormat.COCO_PANOPTIC: + return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks + target = prepare_coco_panoptic_annotation( + image, + target, + masks_path=masks_path, + return_masks=return_segmentation_masks, + input_data_format=input_data_format, + ) + else: + raise ValueError(f"Format {format} is not supported.") + return target + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare + def prepare(self, image, target, return_segmentation_masks=None, masks_path=None): + logger.warning_once( + "The `prepare` method is deprecated and will be removed in a v4.33. " + "Please use `prepare_annotation` instead. Note: the `prepare_annotation` method " + "does not return the image anymore.", + ) + target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format) + return image, target + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask + def convert_coco_poly_to_mask(self, *args, **kwargs): + logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ") + return convert_coco_poly_to_mask(*args, **kwargs) + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection with DETR->Yolos + def prepare_coco_detection(self, *args, **kwargs): + logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ") + return prepare_coco_detection_annotation(*args, **kwargs) + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic + def prepare_coco_panoptic(self, *args, **kwargs): + logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ") + return prepare_coco_panoptic_annotation(*args, **kwargs) + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize + def resize( + self, + image: np.ndarray, + size: Dict[str, int], + resample: PILImageResampling = PILImageResampling.BILINEAR, + data_format: Optional[ChannelDimension] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> np.ndarray: + """ + Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an + int, smaller edge of the image will be matched to this number. + + Args: + image (`np.ndarray`): + Image to resize. + size (`Dict[str, int]`): + Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or + `height` and `width`. + resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): + Resampling filter to use if resizing the image. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + """ + if "max_size" in kwargs: + logger.warning_once( + "The `max_size` parameter is deprecated and will be removed in v4.26. " + "Please specify in `size['longest_edge'] instead`.", + ) + max_size = kwargs.pop("max_size") + else: + max_size = None + size = get_size_dict(size, max_size=max_size, default_to_square=False) + if "shortest_edge" in size and "longest_edge" in size: + size = get_resize_output_image_size( + image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format + ) + elif "height" in size and "width" in size: + size = (size["height"], size["width"]) + else: + raise ValueError( + "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" + f" {size.keys()}." + ) + image = resize( + image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs + ) + return image + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation + def resize_annotation( + self, + annotation, + orig_size, + size, + resample: PILImageResampling = PILImageResampling.NEAREST, + ) -> Dict: + """ + Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched + to this number. + """ + return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample) + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale + def rescale( + self, + image: np.ndarray, + rescale_factor: float, + data_format: Optional[Union[str, ChannelDimension]] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + ) -> np.ndarray: + """ + Rescale the image by the given factor. image = image * rescale_factor. + + Args: + image (`np.ndarray`): + Image to rescale. + rescale_factor (`float`): + The value to use for rescaling. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the output image. If unset, the channel dimension format of the input + image is used. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + input_data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format for the input image. If unset, is inferred from the input image. Can be + one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + """ + return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation + def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: + """ + Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to + `[center_x, center_y, width, height]` format and from absolute to relative pixel values. + """ + return normalize_annotation(annotation, image_size=image_size) + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image + def _update_annotation_for_padded_image( + self, + annotation: Dict, + input_image_size: Tuple[int, int], + output_image_size: Tuple[int, int], + padding, + update_bboxes, + ) -> Dict: + """ + Update the annotation for a padded image. + """ + new_annotation = {} + new_annotation["size"] = output_image_size + + for key, value in annotation.items(): + if key == "masks": + masks = value + masks = pad( + masks, + padding, + mode=PaddingMode.CONSTANT, + constant_values=0, + input_data_format=ChannelDimension.FIRST, + ) + masks = safe_squeeze(masks, 1) + new_annotation["masks"] = masks + elif key == "boxes" and update_bboxes: + boxes = value + boxes *= np.asarray( + [ + input_image_size[1] / output_image_size[1], + input_image_size[0] / output_image_size[0], + input_image_size[1] / output_image_size[1], + input_image_size[0] / output_image_size[0], + ] + ) + new_annotation["boxes"] = boxes + elif key == "size": + new_annotation["size"] = output_image_size + else: + new_annotation[key] = value + return new_annotation + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image + def _pad_image( + self, + image: np.ndarray, + output_size: Tuple[int, int], + annotation: Optional[Dict[str, Any]] = None, + constant_values: Union[float, Iterable[float]] = 0, + data_format: Optional[ChannelDimension] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + update_bboxes: bool = True, + ) -> np.ndarray: + """ + Pad an image with zeros to the given size. + """ + input_height, input_width = get_image_size(image, channel_dim=input_data_format) + output_height, output_width = output_size + + pad_bottom = output_height - input_height + pad_right = output_width - input_width + padding = ((0, pad_bottom), (0, pad_right)) + padded_image = pad( + image, + padding, + mode=PaddingMode.CONSTANT, + constant_values=constant_values, + data_format=data_format, + input_data_format=input_data_format, + ) + if annotation is not None: + annotation = self._update_annotation_for_padded_image( + annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes + ) + return padded_image, annotation + + def pad( + self, + images: List[np.ndarray], + annotations: Optional[List[Dict[str, Any]]] = None, + constant_values: Union[float, Iterable[float]] = 0, + return_pixel_mask: bool = False, + return_tensors: Optional[Union[str, TensorType]] = None, + data_format: Optional[ChannelDimension] = None, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + update_bboxes: bool = True, + ) -> BatchFeature: + """ + Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width + in the batch and optionally returns their corresponding pixel mask. + + Args: + image (`np.ndarray`): + Image to pad. + annotations (`List[Dict[str, any]]`, *optional*): + Annotations to pad along with the images. If provided, the bounding boxes will be updated to match the + padded images. + constant_values (`float` or `Iterable[float]`, *optional*): + The value to use for the padding if `mode` is `"constant"`. + return_pixel_mask (`bool`, *optional*, defaults to `True`): + Whether to return a pixel mask. + return_tensors (`str` or `TensorType`, *optional*): + The type of tensors to return. Can be one of: + - Unset: Return a list of `np.ndarray`. + - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. + - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. + - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. + - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. + data_format (`str` or `ChannelDimension`, *optional*): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format of the input image. If not provided, it will be inferred. + update_bboxes (`bool`, *optional*, defaults to `True`): + Whether to update the bounding boxes in the annotations to match the padded images. If the + bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)` + format, the bounding boxes will not be updated. + """ + pad_size = get_max_height_width(images, input_data_format=input_data_format) + + annotation_list = annotations if annotations is not None else [None] * len(images) + padded_images = [] + padded_annotations = [] + for image, annotation in zip(images, annotation_list): + padded_image, padded_annotation = self._pad_image( + image, + pad_size, + annotation, + constant_values=constant_values, + data_format=data_format, + input_data_format=input_data_format, + update_bboxes=update_bboxes, + ) + padded_images.append(padded_image) + padded_annotations.append(padded_annotation) + + data = {"pixel_values": padded_images} + + if return_pixel_mask: + masks = [ + make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) + for image in images + ] + data["pixel_mask"] = masks + + encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) + + if annotations is not None: + encoded_inputs["labels"] = [ + BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations + ] + + return encoded_inputs + + def preprocess( + self, + images: ImageInput, + annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, + return_segmentation_masks: bool = None, + masks_path: Optional[Union[str, pathlib.Path]] = None, + do_resize: Optional[bool] = None, + size: Optional[Dict[str, int]] = None, + resample=None, # PILImageResampling + do_rescale: Optional[bool] = None, + rescale_factor: Optional[Union[int, float]] = None, + do_normalize: Optional[bool] = None, + image_mean: Optional[Union[float, List[float]]] = None, + image_std: Optional[Union[float, List[float]]] = None, + do_convert_annotations: Optional[bool] = None, + do_pad: Optional[bool] = None, + format: Optional[Union[str, AnnotationFormat]] = None, + return_tensors: Optional[Union[TensorType, str]] = None, + data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, + input_data_format: Optional[Union[str, ChannelDimension]] = None, + **kwargs, + ) -> BatchFeature: + """ + Preprocess an image or a batch of images so that it can be used by the model. + + Args: + images (`ImageInput`): + Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging + from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. + annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): + List of annotations associated with the image or batch of images. If annotation is for object + detection, the annotations should be a dictionary with the following keys: + - "image_id" (`int`): The image id. + - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a + dictionary. An image can have no annotations, in which case the list should be empty. + If annotation is for segmentation, the annotations should be a dictionary with the following keys: + - "image_id" (`int`): The image id. + - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. + An image can have no segments, in which case the list should be empty. + - "file_name" (`str`): The file name of the image. + return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): + Whether to return segmentation masks. + masks_path (`str` or `pathlib.Path`, *optional*): + Path to the directory containing the segmentation masks. + do_resize (`bool`, *optional*, defaults to self.do_resize): + Whether to resize the image. + size (`Dict[str, int]`, *optional*, defaults to self.size): + Size of the image after resizing. + resample (`PILImageResampling`, *optional*, defaults to self.resample): + Resampling filter to use when resizing the image. + do_rescale (`bool`, *optional*, defaults to self.do_rescale): + Whether to rescale the image. + rescale_factor (`float`, *optional*, defaults to self.rescale_factor): + Rescale factor to use when rescaling the image. + do_normalize (`bool`, *optional*, defaults to self.do_normalize): + Whether to normalize the image. + image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): + Mean to use when normalizing the image. + image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): + Standard deviation to use when normalizing the image. + do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations): + Whether to convert the annotations to the format expected by the model. Converts the bounding + boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)` + and in relative coordinates. + do_pad (`bool`, *optional*, defaults to self.do_pad): + Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch + and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros. + format (`str` or `AnnotationFormat`, *optional*, defaults to self.format): + Format of the annotations. + return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): + Type of tensors to return. If `None`, will return the list of images. + data_format (`str` or `ChannelDimension`, *optional*, defaults to self.data_format): + The channel dimension format of the image. If not provided, it will be the same as the input image. + input_data_format (`ChannelDimension` or `str`, *optional*): + The channel dimension format for the input image. If unset, the channel dimension format is inferred + from the input image. Can be one of: + - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. + - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. + - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. + """ + if "pad_and_return_pixel_mask" in kwargs: + logger.warning_once( + "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in v4.33, " + "use `do_pad` instead.", + ) + do_pad = kwargs.pop("pad_and_return_pixel_mask") + + max_size = None + if "max_size" in kwargs: + logger.warning_once( + "The `max_size` argument is deprecated and will be removed in v4.33, use" + " `size['longest_edge']` instead.", + ) + size = kwargs.pop("max_size") + + do_resize = self.do_resize if do_resize is None else do_resize + size = self.size if size is None else size + size = get_size_dict(size=size, max_size=max_size, default_to_square=False) + resample = self.resample if resample is None else resample + do_rescale = self.do_rescale if do_rescale is None else do_rescale + rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor + do_normalize = self.do_normalize if do_normalize is None else do_normalize + image_mean = self.image_mean if image_mean is None else image_mean + image_std = self.image_std if image_std is None else image_std + do_convert_annotations = ( + self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations + ) + do_pad = self.do_pad if do_pad is None else do_pad + format = self.format if format is None else format + validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) + + images = make_list_of_images(images) + + if not valid_images(images): + raise ValueError( + "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " + "torch.Tensor, tf.Tensor or jax.ndarray." + ) + # Here the pad() method pads using the max of (width, height) and does not need to be validated. + validate_preprocess_arguments( + do_rescale=do_rescale, + rescale_factor=rescale_factor, + do_normalize=do_normalize, + image_mean=image_mean, + image_std=image_std, + do_resize=do_resize, + size=size, + resample=resample, + ) + + if annotations is not None and isinstance(annotations, dict): + annotations = [annotations] + + if annotations is not None and len(images) != len(annotations): + raise ValueError( + f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." + ) + + format = AnnotationFormat(format) + if annotations is not None: + validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations) + + if ( + masks_path is not None + and format == AnnotationFormat.COCO_PANOPTIC + and not isinstance(masks_path, (pathlib.Path, str)) + ): + raise ValueError( + "The path to the directory containing the mask PNG files should be provided as a" + f" `pathlib.Path` or string object, but is {type(masks_path)} instead." + ) + + # All transformations expect numpy arrays + images = [to_numpy_array(image) for image in images] + + if is_scaled_image(images[0]) and do_rescale: + logger.warning_once( + "It looks like you are trying to rescale already rescaled images. If the input" + " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." + ) + + if input_data_format is None: + # We assume that all images have the same channel dimension format. + input_data_format = infer_channel_dimension_format(images[0]) + + # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) + if annotations is not None: + prepared_images = [] + prepared_annotations = [] + for image, target in zip(images, annotations): + target = self.prepare_annotation( + image, + target, + format, + return_segmentation_masks=return_segmentation_masks, + masks_path=masks_path, + input_data_format=input_data_format, + ) + prepared_images.append(image) + prepared_annotations.append(target) + images = prepared_images + annotations = prepared_annotations + del prepared_images, prepared_annotations + + # transformations + if do_resize: + if annotations is not None: + resized_images, resized_annotations = [], [] + for image, target in zip(images, annotations): + orig_size = get_image_size(image, input_data_format) + resized_image = self.resize( + image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format + ) + resized_annotation = self.resize_annotation( + target, orig_size, get_image_size(resized_image, input_data_format) + ) + resized_images.append(resized_image) + resized_annotations.append(resized_annotation) + images = resized_images + annotations = resized_annotations + del resized_images, resized_annotations + else: + images = [ + self.resize(image, size=size, resample=resample, input_data_format=input_data_format) + for image in images + ] + + if do_rescale: + images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] + + if do_normalize: + images = [ + self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images + ] + + if do_convert_annotations and annotations is not None: + annotations = [ + self.normalize_annotation(annotation, get_image_size(image, input_data_format)) + for annotation, image in zip(annotations, images) + ] + + if do_pad: + # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} + encoded_inputs = self.pad( + images, + annotations=annotations, + return_pixel_mask=False, + data_format=data_format, + input_data_format=input_data_format, + update_bboxes=do_convert_annotations, + return_tensors=return_tensors, + ) + else: + images = [ + to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) + for image in images + ] + encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) + if annotations is not None: + encoded_inputs["labels"] = [ + BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations + ] + + return encoded_inputs + + # POSTPROCESSING METHODS - TODO: add support for other frameworks + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process with Detr->Yolos + def post_process(self, outputs, target_sizes): + """ + Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, + bottom_right_x, bottom_right_y) format. Only supports PyTorch. + + Args: + outputs ([`YolosObjectDetectionOutput`]): + Raw outputs of the model. + target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): + Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the + original image size (before any data augmentation). For visualization, this should be the image size + after data augment, but before padding. + Returns: + `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image + in the batch as predicted by the model. + """ + logger.warning_once( + "`post_process` is deprecated and will be removed in v5 of Transformers, please use" + " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.", + ) + + out_logits, out_bbox = outputs.logits, outputs.pred_boxes + + if len(out_logits) != len(target_sizes): + raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") + if target_sizes.shape[1] != 2: + raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") + + prob = nn.functional.softmax(out_logits, -1) + scores, labels = prob[..., :-1].max(-1) + + # convert to [x0, y0, x1, y1] format + boxes = center_to_corners_format(out_bbox) + # and from relative [0, 1] to absolute [0, height] coordinates + img_h, img_w = target_sizes.unbind(1) + scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) + boxes = boxes * scale_fct[:, None, :] + + results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)] + return results + + # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_object_detection with Detr->Yolos + def post_process_object_detection( + self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None + ): + """ + Converts the raw output of [`YolosForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, + bottom_right_x, bottom_right_y) format. Only supports PyTorch. + + Args: + outputs ([`YolosObjectDetectionOutput`]): + Raw outputs of the model. + threshold (`float`, *optional*): + Score threshold to keep object detection predictions. + target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): + Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size + `(height, width)` of each image in the batch. If unset, predictions will not be resized. + Returns: + `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image + in the batch as predicted by the model. + """ + out_logits, out_bbox = outputs.logits, outputs.pred_boxes + + if target_sizes is not None: + if len(out_logits) != len(target_sizes): + raise ValueError( + "Make sure that you pass in as many target sizes as the batch dimension of the logits" + ) + + prob = nn.functional.softmax(out_logits, -1) + scores, labels = prob[..., :-1].max(-1) + + # Convert to [x0, y0, x1, y1] format + boxes = center_to_corners_format(out_bbox) + + # Convert from relative [0, 1] to absolute [0, height] coordinates + if target_sizes is not None: + if isinstance(target_sizes, List): + img_h = torch.Tensor([i[0] for i in target_sizes]) + img_w = torch.Tensor([i[1] for i in target_sizes]) + else: + img_h, img_w = target_sizes.unbind(1) + + scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) + boxes = boxes * scale_fct[:, None, :] + + results = [] + for s, l, b in zip(scores, labels, boxes): + score = s[s > threshold] + label = l[s > threshold] + box = b[s > threshold] + results.append({"scores": score, "labels": label, "boxes": box}) + + return results diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/modeling_yolos.py b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/modeling_yolos.py new file mode 100644 index 0000000000000000000000000000000000000000..f47b6b228f571eb59a08bfbb1ac34b7ab6df0bad --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/transformers/models/yolos/modeling_yolos.py @@ -0,0 +1,1321 @@ +# coding=utf-8 +# Copyright 2022 School of EIC, Huazhong University of Science & Technology and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch YOLOS model.""" + + +import collections.abc +import math +from dataclasses import dataclass +from typing import Dict, List, Optional, Set, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import Tensor, nn + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_accelerate_available, + is_scipy_available, + is_vision_available, + logging, + replace_return_docstrings, + requires_backends, +) +from .configuration_yolos import YolosConfig + + +if is_scipy_available(): + from scipy.optimize import linear_sum_assignment + +if is_vision_available(): + from transformers.image_transforms import center_to_corners_format + +if is_accelerate_available(): + from accelerate import PartialState + from accelerate.utils import reduce + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "YolosConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "hustvl/yolos-small" +_EXPECTED_OUTPUT_SHAPE = [1, 3401, 384] + + +from ..deprecated._archive_maps import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class YolosObjectDetectionOutput(ModelOutput): + """ + Output type of [`YolosForObjectDetection`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): + Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a + bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized + scale-invariant IoU loss. + loss_dict (`Dict`, *optional*): + A dictionary containing the individual losses. Useful for logging. + logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): + Classification logits (including no-object) for all queries. + pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): + Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These + values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding + possible padding). You can use [`~YolosImageProcessor.post_process`] to retrieve the unnormalized bounding + boxes. + auxiliary_outputs (`list[Dict]`, *optional*): + Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) + and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and + `pred_boxes`) for each decoder layer. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of + the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + loss_dict: Optional[Dict] = None + logits: torch.FloatTensor = None + pred_boxes: torch.FloatTensor = None + auxiliary_outputs: Optional[List[Dict]] = None + last_hidden_state: Optional[torch.FloatTensor] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +class YolosEmbeddings(nn.Module): + """ + Construct the CLS token, detection tokens, position and patch embeddings. + + """ + + def __init__(self, config: YolosConfig) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) + self.detection_tokens = nn.Parameter(torch.zeros(1, config.num_detection_tokens, config.hidden_size)) + self.patch_embeddings = YolosPatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter( + torch.zeros(1, num_patches + config.num_detection_tokens + 1, config.hidden_size) + ) + + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.interpolation = InterpolateInitialPositionEmbeddings(config) + self.config = config + + def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + embeddings = self.patch_embeddings(pixel_values) + + batch_size, seq_len, _ = embeddings.size() + + # add the [CLS] and detection tokens to the embedded patch tokens + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + detection_tokens = self.detection_tokens.expand(batch_size, -1, -1) + embeddings = torch.cat((cls_tokens, embeddings, detection_tokens), dim=1) + + # add positional encoding to each token + # this might require interpolation of the existing position embeddings + position_embeddings = self.interpolation(self.position_embeddings, (height, width)) + + embeddings = embeddings + position_embeddings + + embeddings = self.dropout(embeddings) + + return embeddings + + +class InterpolateInitialPositionEmbeddings(nn.Module): + def __init__(self, config) -> None: + super().__init__() + self.config = config + + def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor: + cls_pos_embed = pos_embed[:, 0, :] + cls_pos_embed = cls_pos_embed[:, None] + det_pos_embed = pos_embed[:, -self.config.num_detection_tokens :, :] + patch_pos_embed = pos_embed[:, 1 : -self.config.num_detection_tokens, :] + patch_pos_embed = patch_pos_embed.transpose(1, 2) + batch_size, hidden_size, seq_len = patch_pos_embed.shape + + patch_height, patch_width = ( + self.config.image_size[0] // self.config.patch_size, + self.config.image_size[1] // self.config.patch_size, + ) + patch_pos_embed = patch_pos_embed.view(batch_size, hidden_size, patch_height, patch_width) + + height, width = img_size + new_patch_heigth, new_patch_width = height // self.config.patch_size, width // self.config.patch_size + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, size=(new_patch_heigth, new_patch_width), mode="bicubic", align_corners=False + ) + patch_pos_embed = patch_pos_embed.flatten(2).transpose(1, 2) + scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=1) + return scale_pos_embed + + +class InterpolateMidPositionEmbeddings(nn.Module): + def __init__(self, config) -> None: + super().__init__() + self.config = config + + def forward(self, pos_embed, img_size=(800, 1344)) -> torch.Tensor: + cls_pos_embed = pos_embed[:, :, 0, :] + cls_pos_embed = cls_pos_embed[:, None] + det_pos_embed = pos_embed[:, :, -self.config.num_detection_tokens :, :] + patch_pos_embed = pos_embed[:, :, 1 : -self.config.num_detection_tokens, :] + patch_pos_embed = patch_pos_embed.transpose(2, 3) + depth, batch_size, hidden_size, seq_len = patch_pos_embed.shape + + patch_height, patch_width = ( + self.config.image_size[0] // self.config.patch_size, + self.config.image_size[1] // self.config.patch_size, + ) + patch_pos_embed = patch_pos_embed.view(depth * batch_size, hidden_size, patch_height, patch_width) + height, width = img_size + new_patch_height, new_patch_width = height // self.config.patch_size, width // self.config.patch_size + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, size=(new_patch_height, new_patch_width), mode="bicubic", align_corners=False + ) + patch_pos_embed = ( + patch_pos_embed.flatten(2) + .transpose(1, 2) + .contiguous() + .view(depth, batch_size, new_patch_height * new_patch_width, hidden_size) + ) + scale_pos_embed = torch.cat((cls_pos_embed, patch_pos_embed, det_pos_embed), dim=2) + return scale_pos_embed + + +class YolosPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + ) + + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + return embeddings + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Yolos +class YolosSelfAttention(nn.Module): + def __init__(self, config: YolosConfig) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Yolos +class YolosSelfOutput(nn.Module): + """ + The residual connection is defined in YolosLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: YolosConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Yolos +class YolosAttention(nn.Module): + def __init__(self, config: YolosConfig) -> None: + super().__init__() + self.attention = YolosSelfAttention(config) + self.output = YolosSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->Yolos +class YolosIntermediate(nn.Module): + def __init__(self, config: YolosConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->Yolos +class YolosOutput(nn.Module): + def __init__(self, config: YolosConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + hidden_states = hidden_states + input_tensor + + return hidden_states + + +# Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->Yolos +class YolosLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: YolosConfig) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = YolosAttention(config) + self.intermediate = YolosIntermediate(config) + self.output = YolosOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_attention_outputs = self.attention( + self.layernorm_before(hidden_states), # in Yolos, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + hidden_states + + # in Yolos, layernorm is also applied after self-attention + layer_output = self.layernorm_after(hidden_states) + layer_output = self.intermediate(layer_output) + + # second residual connection is done here + layer_output = self.output(layer_output, hidden_states) + + outputs = (layer_output,) + outputs + + return outputs + + +class YolosEncoder(nn.Module): + def __init__(self, config: YolosConfig) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([YolosLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + seq_length = ( + 1 + (config.image_size[0] * config.image_size[1] // config.patch_size**2) + config.num_detection_tokens + ) + self.mid_position_embeddings = ( + nn.Parameter( + torch.zeros( + config.num_hidden_layers - 1, + 1, + seq_length, + config.hidden_size, + ) + ) + if config.use_mid_position_embeddings + else None + ) + + self.interpolation = InterpolateMidPositionEmbeddings(config) if config.use_mid_position_embeddings else None + + def forward( + self, + hidden_states: torch.Tensor, + height, + width, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + if self.config.use_mid_position_embeddings: + interpolated_mid_position_embeddings = self.interpolation(self.mid_position_embeddings, (height, width)) + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if self.config.use_mid_position_embeddings: + if i < (self.config.num_hidden_layers - 1): + hidden_states = hidden_states + interpolated_mid_position_embeddings[i] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class YolosPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = YolosConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +YOLOS_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`YolosConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +YOLOS_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`YolosImageProcessor.__call__`] for details. + + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare YOLOS Model transformer outputting raw hidden-states without any specific head on top.", + YOLOS_START_DOCSTRING, +) +class YolosModel(YolosPreTrainedModel): + def __init__(self, config: YolosConfig, add_pooling_layer: bool = True): + super().__init__(config) + self.config = config + + self.embeddings = YolosEmbeddings(config) + self.encoder = YolosEncoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pooler = YolosPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> YolosPatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. + + Args: + heads_to_prune (`dict` of {layer_num: list of heads to prune in this layer}): + See base class `PreTrainedModel`. + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(YOLOS_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPooling, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings(pixel_values) + + encoder_outputs = self.encoder( + embedding_output, + height=pixel_values.shape[-2], + width=pixel_values.shape[-1], + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class YolosPooler(nn.Module): + def __init__(self, config: YolosConfig): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +@add_start_docstrings( + """ + YOLOS Model (consisting of a ViT encoder) with object detection heads on top, for tasks such as COCO detection. + """, + YOLOS_START_DOCSTRING, +) +class YolosForObjectDetection(YolosPreTrainedModel): + def __init__(self, config: YolosConfig): + super().__init__(config) + + # YOLOS (ViT) encoder model + self.vit = YolosModel(config, add_pooling_layer=False) + + # Object detection heads + # We add one for the "no object" class + self.class_labels_classifier = YolosMLPPredictionHead( + input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=config.num_labels + 1, num_layers=3 + ) + self.bbox_predictor = YolosMLPPredictionHead( + input_dim=config.hidden_size, hidden_dim=config.hidden_size, output_dim=4, num_layers=3 + ) + + # Initialize weights and apply final processing + self.post_init() + + # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py + @torch.jit.unused + def _set_aux_loss(self, outputs_class, outputs_coord): + # this is a workaround to make torchscript happy, as torchscript + # doesn't support dictionary with non-homogeneous values, such + # as a dict having both a Tensor and a list. + return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] + + @add_start_docstrings_to_model_forward(YOLOS_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=YolosObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + labels: Optional[List[Dict]] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, YolosObjectDetectionOutput]: + r""" + labels (`List[Dict]` of len `(batch_size,)`, *optional*): + Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the + following 2 keys: `'class_labels'` and `'boxes'` (the class labels and bounding boxes of an image in the + batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding + boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, + 4)`. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoModelForObjectDetection + >>> import torch + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny") + >>> model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny") + + >>> inputs = image_processor(images=image, return_tensors="pt") + >>> outputs = model(**inputs) + + >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) + >>> target_sizes = torch.tensor([image.size[::-1]]) + >>> results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[ + ... 0 + ... ] + + >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): + ... box = [round(i, 2) for i in box.tolist()] + ... print( + ... f"Detected {model.config.id2label[label.item()]} with confidence " + ... f"{round(score.item(), 3)} at location {box}" + ... ) + Detected remote with confidence 0.991 at location [46.48, 72.78, 178.98, 119.3] + Detected remote with confidence 0.908 at location [336.48, 79.27, 368.23, 192.36] + Detected cat with confidence 0.934 at location [337.18, 18.06, 638.14, 373.09] + Detected cat with confidence 0.979 at location [10.93, 53.74, 313.41, 470.67] + Detected remote with confidence 0.974 at location [41.63, 72.23, 178.09, 119.99] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # First, sent images through YOLOS base model to obtain hidden states + outputs = self.vit( + pixel_values, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + # Take the final hidden states of the detection tokens + sequence_output = sequence_output[:, -self.config.num_detection_tokens :, :] + + # Class logits + predicted bounding boxes + logits = self.class_labels_classifier(sequence_output) + pred_boxes = self.bbox_predictor(sequence_output).sigmoid() + + loss, loss_dict, auxiliary_outputs = None, None, None + if labels is not None: + # First: create the matcher + matcher = YolosHungarianMatcher( + class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost + ) + # Second: create the criterion + losses = ["labels", "boxes", "cardinality"] + criterion = YolosLoss( + matcher=matcher, + num_classes=self.config.num_labels, + eos_coef=self.config.eos_coefficient, + losses=losses, + ) + criterion.to(self.device) + # Third: compute the losses, based on outputs and labels + outputs_loss = {} + outputs_loss["logits"] = logits + outputs_loss["pred_boxes"] = pred_boxes + if self.config.auxiliary_loss: + intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] + outputs_class = self.class_labels_classifier(intermediate) + outputs_coord = self.bbox_predictor(intermediate).sigmoid() + auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord) + outputs_loss["auxiliary_outputs"] = auxiliary_outputs + + loss_dict = criterion(outputs_loss, labels) + # Fourth: compute total loss, as a weighted sum of the various losses + weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} + weight_dict["loss_giou"] = self.config.giou_loss_coefficient + if self.config.auxiliary_loss: + aux_weight_dict = {} + for i in range(self.config.decoder_layers - 1): + aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) + weight_dict.update(aux_weight_dict) + loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) + + if not return_dict: + if auxiliary_outputs is not None: + output = (logits, pred_boxes) + auxiliary_outputs + outputs + else: + output = (logits, pred_boxes) + outputs + return ((loss, loss_dict) + output) if loss is not None else output + + return YolosObjectDetectionOutput( + loss=loss, + loss_dict=loss_dict, + logits=logits, + pred_boxes=pred_boxes, + auxiliary_outputs=auxiliary_outputs, + last_hidden_state=outputs.last_hidden_state, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +# Copied from transformers.models.detr.modeling_detr.dice_loss +def dice_loss(inputs, targets, num_boxes): + """ + Compute the DICE loss, similar to generalized IOU for masks + + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs (0 for the negative class and 1 for the positive + class). + """ + inputs = inputs.sigmoid() + inputs = inputs.flatten(1) + numerator = 2 * (inputs * targets).sum(1) + denominator = inputs.sum(-1) + targets.sum(-1) + loss = 1 - (numerator + 1) / (denominator + 1) + return loss.sum() / num_boxes + + +# Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss +def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): + """ + Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. + + Args: + inputs (`torch.FloatTensor` of arbitrary shape): + The predictions for each example. + targets (`torch.FloatTensor` with the same shape as `inputs`) + A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class + and 1 for the positive class). + alpha (`float`, *optional*, defaults to `0.25`): + Optional weighting factor in the range (0,1) to balance positive vs. negative examples. + gamma (`int`, *optional*, defaults to `2`): + Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. + + Returns: + Loss tensor + """ + prob = inputs.sigmoid() + ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") + # add modulating factor + p_t = prob * targets + (1 - prob) * (1 - targets) + loss = ce_loss * ((1 - p_t) ** gamma) + + if alpha >= 0: + alpha_t = alpha * targets + (1 - alpha) * (1 - targets) + loss = alpha_t * loss + + return loss.mean(1).sum() / num_boxes + + +# Copied from transformers.models.detr.modeling_detr.DetrLoss with Detr->Yolos +class YolosLoss(nn.Module): + """ + This class computes the losses for YolosForObjectDetection/YolosForSegmentation. The process happens in two steps: 1) + we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair + of matched ground-truth / prediction (supervise class and box). + + A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes` + parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is + the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to + be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2 + (`max_obj_id` + 1). For more details on this, check the following discussion + https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223" + + + Args: + matcher (`YolosHungarianMatcher`): + Module able to compute a matching between targets and proposals. + num_classes (`int`): + Number of object categories, omitting the special no-object category. + eos_coef (`float`): + Relative classification weight applied to the no-object category. + losses (`List[str]`): + List of all the losses to be applied. See `get_loss` for a list of all available losses. + """ + + def __init__(self, matcher, num_classes, eos_coef, losses): + super().__init__() + self.matcher = matcher + self.num_classes = num_classes + self.eos_coef = eos_coef + self.losses = losses + empty_weight = torch.ones(self.num_classes + 1) + empty_weight[-1] = self.eos_coef + self.register_buffer("empty_weight", empty_weight) + + # removed logging parameter, which was part of the original implementation + def loss_labels(self, outputs, targets, indices, num_boxes): + """ + Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim + [nb_target_boxes] + """ + if "logits" not in outputs: + raise KeyError("No logits were found in the outputs") + source_logits = outputs["logits"] + + idx = self._get_source_permutation_idx(indices) + target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) + target_classes = torch.full( + source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device + ) + target_classes[idx] = target_classes_o + + loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight) + losses = {"loss_ce": loss_ce} + + return losses + + @torch.no_grad() + def loss_cardinality(self, outputs, targets, indices, num_boxes): + """ + Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. + + This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. + """ + logits = outputs["logits"] + device = logits.device + target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) + # Count the number of predictions that are NOT "no-object" (which is the last class) + card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) + card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) + losses = {"cardinality_error": card_err} + return losses + + def loss_boxes(self, outputs, targets, indices, num_boxes): + """ + Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. + + Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes + are expected in format (center_x, center_y, w, h), normalized by the image size. + """ + if "pred_boxes" not in outputs: + raise KeyError("No predicted boxes found in outputs") + idx = self._get_source_permutation_idx(indices) + source_boxes = outputs["pred_boxes"][idx] + target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) + + loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") + + losses = {} + losses["loss_bbox"] = loss_bbox.sum() / num_boxes + + loss_giou = 1 - torch.diag( + generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) + ) + losses["loss_giou"] = loss_giou.sum() / num_boxes + return losses + + def loss_masks(self, outputs, targets, indices, num_boxes): + """ + Compute the losses related to the masks: the focal loss and the dice loss. + + Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. + """ + if "pred_masks" not in outputs: + raise KeyError("No predicted masks found in outputs") + + source_idx = self._get_source_permutation_idx(indices) + target_idx = self._get_target_permutation_idx(indices) + source_masks = outputs["pred_masks"] + source_masks = source_masks[source_idx] + masks = [t["masks"] for t in targets] + # TODO use valid to mask invalid areas due to padding in loss + target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() + target_masks = target_masks.to(source_masks) + target_masks = target_masks[target_idx] + + # upsample predictions to the target size + source_masks = nn.functional.interpolate( + source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False + ) + source_masks = source_masks[:, 0].flatten(1) + + target_masks = target_masks.flatten(1) + target_masks = target_masks.view(source_masks.shape) + losses = { + "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), + "loss_dice": dice_loss(source_masks, target_masks, num_boxes), + } + return losses + + def _get_source_permutation_idx(self, indices): + # permute predictions following indices + batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) + source_idx = torch.cat([source for (source, _) in indices]) + return batch_idx, source_idx + + def _get_target_permutation_idx(self, indices): + # permute targets following indices + batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) + target_idx = torch.cat([target for (_, target) in indices]) + return batch_idx, target_idx + + def get_loss(self, loss, outputs, targets, indices, num_boxes): + loss_map = { + "labels": self.loss_labels, + "cardinality": self.loss_cardinality, + "boxes": self.loss_boxes, + "masks": self.loss_masks, + } + if loss not in loss_map: + raise ValueError(f"Loss {loss} not supported") + return loss_map[loss](outputs, targets, indices, num_boxes) + + def forward(self, outputs, targets): + """ + This performs the loss computation. + + Args: + outputs (`dict`, *optional*): + Dictionary of tensors, see the output specification of the model for the format. + targets (`List[dict]`, *optional*): + List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the + losses applied, see each loss' doc. + """ + outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} + + # Retrieve the matching between the outputs of the last layer and the targets + indices = self.matcher(outputs_without_aux, targets) + + # Compute the average number of target boxes across all nodes, for normalization purposes + num_boxes = sum(len(t["class_labels"]) for t in targets) + num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) + world_size = 1 + if is_accelerate_available(): + if PartialState._shared_state != {}: + num_boxes = reduce(num_boxes) + world_size = PartialState().num_processes + num_boxes = torch.clamp(num_boxes / world_size, min=1).item() + + # Compute all the requested losses + losses = {} + for loss in self.losses: + losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) + + # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. + if "auxiliary_outputs" in outputs: + for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): + indices = self.matcher(auxiliary_outputs, targets) + for loss in self.losses: + if loss == "masks": + # Intermediate masks losses are too costly to compute, we ignore them. + continue + l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) + l_dict = {k + f"_{i}": v for k, v in l_dict.items()} + losses.update(l_dict) + + return losses + + +# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with Detr->Yolos +class YolosMLPPredictionHead(nn.Module): + """ + Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, + height and width of a bounding box w.r.t. an image. + + Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py + + """ + + def __init__(self, input_dim, hidden_dim, output_dim, num_layers): + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + return x + + +# Copied from transformers.models.detr.modeling_detr.DetrHungarianMatcher with Detr->Yolos +class YolosHungarianMatcher(nn.Module): + """ + This class computes an assignment between the targets and the predictions of the network. + + For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more + predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are + un-matched (and thus treated as non-objects). + + Args: + class_cost: + The relative weight of the classification error in the matching cost. + bbox_cost: + The relative weight of the L1 error of the bounding box coordinates in the matching cost. + giou_cost: + The relative weight of the giou loss of the bounding box in the matching cost. + """ + + def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): + super().__init__() + requires_backends(self, ["scipy"]) + + self.class_cost = class_cost + self.bbox_cost = bbox_cost + self.giou_cost = giou_cost + if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: + raise ValueError("All costs of the Matcher can't be 0") + + @torch.no_grad() + def forward(self, outputs, targets): + """ + Args: + outputs (`dict`): + A dictionary that contains at least these entries: + * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits + * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. + targets (`List[dict]`): + A list of targets (len(targets) = batch_size), where each target is a dict containing: + * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of + ground-truth + objects in the target) containing the class labels + * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. + + Returns: + `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: + - index_i is the indices of the selected predictions (in order) + - index_j is the indices of the corresponding selected targets (in order) + For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) + """ + batch_size, num_queries = outputs["logits"].shape[:2] + + # We flatten to compute the cost matrices in a batch + out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes] + out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] + + # Also concat the target labels and boxes + target_ids = torch.cat([v["class_labels"] for v in targets]) + target_bbox = torch.cat([v["boxes"] for v in targets]) + + # Compute the classification cost. Contrary to the loss, we don't use the NLL, + # but approximate it in 1 - proba[target class]. + # The 1 is a constant that doesn't change the matching, it can be ommitted. + class_cost = -out_prob[:, target_ids] + + # Compute the L1 cost between boxes + bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) + + # Compute the giou cost between boxes + giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) + + # Final cost matrix + cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost + cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() + + sizes = [len(v["boxes"]) for v in targets] + indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] + return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] + + +# Copied from transformers.models.detr.modeling_detr._upcast +def _upcast(t: Tensor) -> Tensor: + # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type + if t.is_floating_point(): + return t if t.dtype in (torch.float32, torch.float64) else t.float() + else: + return t if t.dtype in (torch.int32, torch.int64) else t.int() + + +# Copied from transformers.models.detr.modeling_detr.box_area +def box_area(boxes: Tensor) -> Tensor: + """ + Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. + + Args: + boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): + Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 + < x2` and `0 <= y1 < y2`. + + Returns: + `torch.FloatTensor`: a tensor containing the area for each box. + """ + boxes = _upcast(boxes) + return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) + + +# Copied from transformers.models.detr.modeling_detr.box_iou +def box_iou(boxes1, boxes2): + area1 = box_area(boxes1) + area2 = box_area(boxes2) + + left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] + right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] + + width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] + inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] + + union = area1[:, None] + area2 - inter + + iou = inter / union + return iou, union + + +# Copied from transformers.models.detr.modeling_detr.generalized_box_iou +def generalized_box_iou(boxes1, boxes2): + """ + Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. + + Returns: + `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) + """ + # degenerate boxes gives inf / nan results + # so do an early check + if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): + raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") + if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): + raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") + iou, union = box_iou(boxes1, boxes2) + + top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) + bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) + + width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] + area = width_height[:, :, 0] * width_height[:, :, 1] + + return iou - (area - union) / area + + +# Copied from transformers.models.detr.modeling_detr._max_by_axis +def _max_by_axis(the_list): + # type: (List[List[int]]) -> List[int] + maxes = the_list[0] + for sublist in the_list[1:]: + for index, item in enumerate(sublist): + maxes[index] = max(maxes[index], item) + return maxes + + +# Copied from transformers.models.detr.modeling_detr.NestedTensor +class NestedTensor(object): + def __init__(self, tensors, mask: Optional[Tensor]): + self.tensors = tensors + self.mask = mask + + def to(self, device): + cast_tensor = self.tensors.to(device) + mask = self.mask + if mask is not None: + cast_mask = mask.to(device) + else: + cast_mask = None + return NestedTensor(cast_tensor, cast_mask) + + def decompose(self): + return self.tensors, self.mask + + def __repr__(self): + return str(self.tensors) + + +# Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list +def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): + if tensor_list[0].ndim == 3: + max_size = _max_by_axis([list(img.shape) for img in tensor_list]) + batch_shape = [len(tensor_list)] + max_size + batch_size, num_channels, height, width = batch_shape + dtype = tensor_list[0].dtype + device = tensor_list[0].device + tensor = torch.zeros(batch_shape, dtype=dtype, device=device) + mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) + for img, pad_img, m in zip(tensor_list, tensor, mask): + pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) + m[: img.shape[1], : img.shape[2]] = False + else: + raise ValueError("Only 3-dimensional tensors are supported") + return NestedTensor(tensor, mask)