diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader.h new file mode 100644 index 0000000000000000000000000000000000000000..06ea83d8a2327c13aafbe0aa35cd44de81843c07 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader.h @@ -0,0 +1,57 @@ +#pragma once + +#include +#include + +#include + +#include + +#include +#include +#include +#include + +namespace torch { +namespace data { + +/// Creates a `DataLoader` instance for a stateless `dataset`, a `sampler` and +/// some `options`. +template +torch::disable_if_t< + Dataset::is_stateful, + std::unique_ptr>> +make_data_loader(Dataset dataset, Sampler sampler, DataLoaderOptions options) { + return std::make_unique>( + std::move(dataset), std::move(sampler), std::move(options)); +} + +/// Creates a `DataLoader` instance for a stateless `dataset` and some +/// `options`. A sampler (by default a `RandomSampler`) will be constructed from +/// the size of the dataset. +template +torch::disable_if_t< + Dataset::is_stateful || !std::is_constructible::value, + std::unique_ptr>> +make_data_loader( + Dataset dataset, + DataLoaderOptions options = DataLoaderOptions()) { + const optional size = dataset.size(); + TORCH_CHECK( + size.has_value(), + "Expected the dataset to be sized in " + "order to construct the Sampler"); + return make_data_loader( + std::move(dataset), Sampler(*size), std::move(options)); +} + +/// Creates a `DataLoader` for a stateful `dataset` and some `options`. +template > +std::unique_ptr> make_data_loader( + Dataset dataset, + DataLoaderOptions options = DataLoaderOptions()) { + return std::make_unique>( + std::move(dataset), std::move(options)); +} +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader/base.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader/base.h new file mode 100644 index 0000000000000000000000000000000000000000..72c4f337fbf4b6cd79c7e08297d7da8683b65e68 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader/base.h @@ -0,0 +1,255 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include + +#include + +#include +#include + +#include +#include +#include +#include +#include +#include +#include + +namespace torch { +namespace data { +template +class DataLoaderBase { + public: + using BatchType = Batch; + using BatchRequestType = BatchRequest; + + /// Constructs a new DataLoader from a `dataset` to sample from, `options` + /// to configure the DataLoader with, and a `sampler` that specifies the + /// sampling strategy. + DataLoaderBase( + DataLoaderOptions options, + std::unique_ptr main_thread_dataset = nullptr) + : options_(std::move(options)), + main_thread_dataset_(std::move(main_thread_dataset)), + sequencer_(new_sequencer()) {} + + // NOLINTNEXTLINE(bugprone-exception-escape) + virtual ~DataLoaderBase() { + join(); + } + + /// Returns an iterator into the DataLoader. The lifetime of the iterator is + /// bound to the DataLoader. In C++ standards language, the category of the + /// iterator is `OutputIterator`. See + /// https://en.cppreference.com/w/cpp/named_req/OutputIterator for what this + /// means. In short: you may increment the iterator and dereference it, but + /// cannot go back, or step forward more than one position at a time. When the + /// DataLoader is exhausted, it will compare equal with the special + /// "sentinel" iterator returned by `DataLoader::end()`. Most of the time, you + /// should only use range-for loops to loop over the DataLoader, but + /// standard algorithms like `std::copy(dataloader.begin(), dataloader.end(), + /// output_iterator)` are supported too. + Iterator begin() { + TORCH_CHECK( + shuttle_.in_flight_jobs() == 0, + "Attempted to get a new DataLoader iterator " + "while another iterator is not yet exhausted"); + reset(); + return Iterator(std::make_unique>( + [this] { return this->next(); })); + } + + /// Returns a special "sentinel" iterator that compares equal with a + /// non-sentinel iterator once the DataLoader is exhausted. + Iterator end() { + return Iterator(std::make_unique>()); + } + + /// Joins the DataLoader's worker threads and drains internal queues. + /// This function may only be invoked from the main thread (in which the + /// DataLoader lives). + void join() { + if (joined_) { + return; + } + shuttle_.drain(); + // Send one 'quit' message per worker. Since a worker dies (exits its + // thread) after receiving this message, each `QuitWorker()` message will be + // read by exactly one worker. + for (const auto w : c10::irange(options_.workers)) { + (void)w; // Suppress unused variable warning + push_job(QuitWorker()); + } + for (auto& worker : workers_) { + worker.join(); + } + joined_ = true; + } + + /// Returns the options with which the DataLoader was configured. + const FullDataLoaderOptions& options() const noexcept { + return options_; + } + + protected: + /// Simple mix-in to give something a sequence number. + struct Sequenced { + Sequenced() = default; + Sequenced(size_t sqn) : sequence_number(sqn) {} + size_t sequence_number; + }; + + struct QuitWorker {}; + + /// A `Job` is either a `BatchRequest` (new indices to fetch data at) or a + /// `QuitWorker` object, to indicate the worker should shut down. + struct Job : Sequenced { + Job() = default; + Job(QuitWorker q, size_t sqn) : Sequenced(sqn), quit(q) {} + Job(BatchRequest&& i, size_t sqn) + : Sequenced(sqn), batch_request(std::move(i)) {} + optional quit; + optional batch_request; + }; + + /// The finished result of a job. + struct Result : Sequenced { + Result() = default; + Result(optional&& b, size_t sqn) + : Sequenced(sqn), batch(std::move(b)) {} + Result(std::exception_ptr exception, size_t sqn) + : Sequenced(sqn), exception(std::move(exception)) {} + optional batch; + std::exception_ptr exception; + }; + + /// Subclass hook for getting the next batch request. The stateless case will + /// ask the sampler for a new batch request (e.g. a vector of indices), while + /// the stateful one will simply return the batch size. + virtual optional get_batch_request() = 0; + + /// Resets the internal state of the DataLoader, optionally pre-fetching + /// new jobs. + virtual void reset() { + shuttle_.drain(); + sequence_number_ = 0; + sequencer_ = new_sequencer(); + prefetch(); + } + + /// Schedules `requested_jobs` many new batches to be fetched. The actual + /// number of jobs scheduled may be less if the DataLoader exhausts. + void prefetch(size_t requested_jobs) { + for (const auto r : c10::irange(requested_jobs)) { + (void)r; // Suppress unused variable + if (auto batch_request = get_batch_request()) { + this->push_job(std::move(*batch_request)); + } else { + break; + } + } + } + + /// Schedules the maximum number of jobs (based on the `max_jobs` option). + void prefetch() { + prefetch(options_.max_jobs); + } + + /// Returns the next batch of data, or an empty `optional` if the DataLoader + /// is exhausted. This operation will block until a batch is available if one + /// is still expected. + optional next() { + if (options_.workers > 0) { + while (optional result = this->pop_result()) { + if (result->exception) { + throw WorkerException(result->exception); + } else if (result->batch) { + prefetch(1); + return std::move(result->batch); + } + } + } else if (auto batch_request = get_batch_request()) { + return this->main_thread_dataset_->get_batch(std::move(*batch_request)); + } + return nullopt; + } + + /// The function that worker threads run. + void worker_thread(Dataset& dataset) { + while (true) { + auto job = shuttle_.pop_job(); + if (job.quit) { + break; + } + try { + auto batch = dataset.get_batch(std::move(*job.batch_request)); + shuttle_.push_result({std::move(batch), job.sequence_number}); + } catch (...) { + shuttle_.push_result({std::current_exception(), job.sequence_number}); + } + } + } + + /// Convenience method that calls `shuttle_.push_job()` with the next sequence + /// number. + template + void push_job(T value) { + shuttle_.push_job({std::move(value), sequence_number_++}); + } + + /// Convenience method that gets the next result from the sequencer. + optional pop_result() { + return sequencer_->next( + [this] { return this->shuttle_.pop_result(this->options_.timeout); }); + } + + /// Convenience method that creates a new sequencer based on the + /// `enforce_ordering` option. + std::unique_ptr> new_sequencer() { + if (options_.enforce_ordering) { + return std::make_unique>( + options_.max_jobs); + } + return std::make_unique>(); + } + + /// The options the DataLoader was configured with. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + const FullDataLoaderOptions options_; + + /// The dataset for the main thread, only has a value if the number of + /// worker threads was configured as zero, meaning the main thread has to do + /// all the work (synchronously). NOTE: Really want this to be on the heap + /// when empty, therefore `unique_ptr` and not `optional`. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + std::unique_ptr main_thread_dataset_; + + /// The sequence number for the *next* batch to be retrieved from the + /// dataset. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + size_t sequence_number_ = 0; + + /// The worker threads, running the `worker_thread()` method. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + std::vector workers_; + + /// The `DataShuttle` which takes care of the life cycle of a job. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + detail::DataShuttle shuttle_; + + /// The `Sequencer`, which handles optional ordering of batches. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + std::unique_ptr> sequencer_; + + /// True if the DataLoader has joined its worker threads. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + bool joined_ = false; +}; +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader/stateful.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader/stateful.h new file mode 100644 index 0000000000000000000000000000000000000000..e8eb85861f77f97558c3ac54fed9d15b281f73a7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader/stateful.h @@ -0,0 +1,65 @@ +#pragma once + +#include +#include + +#include +#include +#include + +namespace torch { +namespace data { + +/// A dataloader for stateful datasets. +/// +/// A dataloader for stateful datatasets differs from one for stateless +/// datasets one in that the dataset is shared among worker threads, and that +/// this dataset is itself responsible for producing batches rather than +/// depending on a sampler. The statefulness here actually refers to the +/// dataset. The StatefulDataLoader simply alters the data loading algorithm to +/// accommodate the stateful, shared nature of the dataset. Note that the +/// dataset must be thread safe if more than one worker thread is used. +/// +/// A stateful dataloader is created by calling `make_data_loader` with a +/// stateful dataset. +template +class StatefulDataLoader : public DataLoaderBase< + Dataset, + typename Dataset::BatchType::value_type, + typename Dataset::BatchRequestType> { + public: + using super = DataLoaderBase< + Dataset, + typename Dataset::BatchType::value_type, + typename Dataset::BatchRequestType>; + using typename super::BatchRequestType; + + /// Constructs the `StatefulDataLoader` from a `dataset` and some `options`. + StatefulDataLoader(Dataset dataset, DataLoaderOptions options) + : super( + std::move(options), + std::make_unique(std::move(dataset))) { + for (const auto w : c10::irange(this->options_.workers)) { + // As opposed to the stateless case, here all worker threads access the + // same underlying dataset. + this->workers_.emplace_back( + [this] { this->worker_thread(*this->main_thread_dataset_); }); + } + } + + private: + /// Resets the internal state of the dataloader and the dataset. + void reset() override { + this->main_thread_dataset_->reset(); + // Call the base class method last because it calls `prefetch()` + super::reset(); + } + + /// For stateful datasets, the batch request is always the batch size. The + /// dataset is responsible for determining what goes into the batch next. + optional get_batch_request() override { + return this->options_.batch_size; + } +}; +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader/stateless.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader/stateless.h new file mode 100644 index 0000000000000000000000000000000000000000..9c2612bb86c36503688fc2f979572593506b46d9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader/stateless.h @@ -0,0 +1,82 @@ +#pragma once + +#include +#include + +#include +#include + +#include +#include +#include + +namespace torch { +namespace data { + +/// A dataloader for stateless datasets. +/// +/// This dataloader follows the traditional PyTorch dataloader design, whereby a +/// (posssibly) stateful sampler produces *batch requests* for a stateless +/// dataset, which acts as a simple batch request to batch mapping. The batch +/// request will often be an array of indices, and if the dataset is a simple +/// image dataset, the dataset would produce the images at those indices. +template +class StatelessDataLoader : public DataLoaderBase< + Dataset, + typename Dataset::BatchType, + typename Sampler::BatchRequestType> { + public: + using super = DataLoaderBase< + Dataset, + typename Dataset::BatchType, + typename Sampler::BatchRequestType>; + using typename super::BatchRequestType; + + /// Constructs the `StatelessDataLoader` from a `dataset`, a `sampler` and + /// some `options`. + StatelessDataLoader( + Dataset dataset, + Sampler sampler, + DataLoaderOptions options) + : super(std::move(options)), sampler_(std::move(sampler)) { + for (const auto w : c10::irange(this->options_.workers)) { + // Here we copy the dataset into the worker thread closure. Each worker + // has its own copy of the dataset. This means the dataset must be + // trivially copiable, or else we don't expect more than one worker to + // be in use. + (void)w; // Suppress unused variable warning + this->workers_.emplace_back( + [this, dataset]() mutable { this->worker_thread(dataset); }); + } + if (this->options_.workers == 0) { + this->main_thread_dataset_ = + std::make_unique(std::move(dataset)); + } + } + + private: + /// Resets the internal state of the dataloader and the sampler. + void reset() override { + sampler_.reset(); + // Call the base class method last because it calls `prefetch()` + super::reset(); + } + + /// Queries the sampler for the next batch request (possibly progressing its + /// internal state). + optional get_batch_request() override { + auto indices = sampler_.next(this->options_.batch_size); + if (!indices || + (indices->size() < this->options_.batch_size && + this->options_.drop_last)) { + return nullopt; + } + AT_ASSERT(indices->size() > 0); + return indices; + } + + /// The `Sampler` used to produce batch requests. + Sampler sampler_; +}; +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader_options.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader_options.h new file mode 100644 index 0000000000000000000000000000000000000000..600f704cffdc4dba3ffdc934178b6ffe5c157e3c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/dataloader_options.h @@ -0,0 +1,65 @@ +#pragma once + +#include +#include + +#include +#include + +namespace torch { +namespace data { + +/// Options to configure a `DataLoader`. +struct DataLoaderOptions { + DataLoaderOptions() = default; + /* implicit */ DataLoaderOptions(size_t batch_size) + : batch_size_(batch_size) {} + + /// The size of each batch to fetch. + TORCH_ARG(size_t, batch_size) = 1; + + /// The number of worker threads to launch. If zero, the main thread will + /// synchronously perform the data loading. + TORCH_ARG(size_t, workers) = 0; + + /// The maximum number of jobs to enqueue for fetching by worker threads. + /// Defaults to two times the number of worker threads. + TORCH_ARG(optional, max_jobs); + + /// An optional limit on the time to wait for the next batch. + TORCH_ARG(optional, timeout); + + /// Whether to enforce ordering of batches when multiple are loaded + /// asynchronously by worker threads. Set to `false` for better performance if + /// you do not care about determinism. + TORCH_ARG(bool, enforce_ordering) = true; + + /// Whether to omit the last batch if it contains less than `batch_size` + /// examples. + TORCH_ARG(bool, drop_last) = false; +}; + +/// Like `DataLoaderOptions`, but without any unconfigured state. +/// `DataLoaderOptions` has some options that depend on other options +/// (`max_jobs` => `2 * workers`). In the spirit of properly using the C++ type +/// system, `DataLoaderOptions` allows only setting values. To access values, +/// you must create a `FullDataLoaderOptions` from a `DataLoaderOptions` +/// instance, which will do any necessary coalescing. +struct FullDataLoaderOptions { + explicit FullDataLoaderOptions(DataLoaderOptions options) + : batch_size(options.batch_size()), + workers(options.workers()), + max_jobs(options.max_jobs().value_or(2 * workers)), + timeout(options.timeout()), + enforce_ordering(options.enforce_ordering()), + drop_last(options.drop_last()) {} + + size_t batch_size; + size_t workers; + size_t max_jobs; + optional timeout; + bool enforce_ordering; + bool drop_last; +}; +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/datasets.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/datasets.h new file mode 100644 index 0000000000000000000000000000000000000000..df565e97235828e5c89c76f0373bc1cdaee01287 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/datasets.h @@ -0,0 +1,9 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/datasets/chunk.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/datasets/chunk.h new file mode 100644 index 0000000000000000000000000000000000000000..1f211be9ab6fe41f80eff9475e99cb96e845966b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/datasets/chunk.h @@ -0,0 +1,529 @@ +#pragma once + +#include +#include +#include +#include +#include +#include + +#include + +namespace torch { +namespace data { +namespace datasets { + +/// Interface for chunk reader, which performs data chunking and reading of +/// entire chunks. +/// +/// A chunk could be an entire file, such as an audio data file or an image, +/// or part of a file in the case of a large text-file split based on seek +/// positions. +template < + typename ExampleType_, + typename ChunkType_ = std::vector> +class ChunkDataReader { + public: + virtual ~ChunkDataReader() = default; + + using ChunkType = ChunkType_; + using ExampleType = ExampleType_; + + /// Read an entire chunk. + virtual ChunkType read_chunk(size_t chunk_index) = 0; + + /// Returns the number of chunks available in this reader. + virtual size_t chunk_count() = 0; + + /// This will clear any internal state associate with this reader. + virtual void reset() = 0; +}; + +namespace detail { +/// BatchDataBuffer manages a queue of UnwrappedBatchData. After a new chunk is +/// loaded, BatchDataBuffer splits it into small batches and push them into the +/// queue. When get_batch is called from data loader, it pops cached batches and +/// return. If the cache is empty, it either waits to load more chunks or return +/// null if all chunks are loaded. +template < + typename UnwrappedBatch, + typename ExampleSampler = samplers::RandomSampler> +class BatchDataBuffer { + public: + using UnwrappedBatchType = UnwrappedBatch; + using BatchType = torch::optional; + using BatchRequestType = typename ExampleSampler::BatchRequestType; + + BatchDataBuffer( + size_t batch_size, + ExampleSampler& example_sampler, + size_t queue_capacity) + : batch_size_(batch_size), + example_sampler_(example_sampler), + queue_capacity_(queue_capacity) {} + + /// Return batch data from the queue. Called from the ChunkDataset main + /// thread. + BatchType get_batch() { + std::unique_lock lock(queue_mutex_); + cv_read_.wait(lock, [this] { + // wait till there is available data in the queue or if all chunks are + // loaded (i.e. the dataset is exhausted for this epoch) + return ( + this->total_example_count_in_queue_ >= batch_size_ || this->stop_); + }); + if (batch_queue_.empty()) { + AT_ASSERT(stop_); + // All batches have been retrieved. Return an empty batch. + return nullopt; + } + + UnwrappedBatchData batch = std::move(batch_queue_.front()); + batch_queue_.pop(); + if (batch.exception) { + throw WorkerException(batch.exception); + } + + total_example_count_in_queue_ -= batch.batch_data.size(); + lock.unlock(); + cv_write_.notify_all(); + + return batch.batch_data; + } + + /// Push preloaded chunks to batch queue. Called from the ChunkDataset worker + /// threads. + void add_chunk_data(UnwrappedBatchType data) { + std::unique_lock lock(queue_mutex_); + cv_write_.wait(lock, [this] { + // stop loading if we have preloaded enough data. + return this->total_example_count_in_queue_ < this->queue_capacity_ || + this->stop_; + }); + if (stop_) { + // When stop_ is true, it means no further chunk loading is necessary. + // Return without any further processing. + return; + } + + auto data_size = data.size(); + auto remaining_size = data_size; + example_sampler_.reset(data_size); + + auto fill_batch = [&](size_t example_count, UnwrappedBatchType& batch) { + auto batch_example_indices = this->example_sampler_.next(example_count); + AT_ASSERT( + batch_example_indices && + batch_example_indices.value().size() == example_count); + BatchRequestType& indices = batch_example_indices.value(); + for (size_t i : indices) { + TORCH_CHECK(i < data_size, "Index out of range"); + batch.emplace_back(std::move(data[i])); + } + remaining_size -= example_count; + }; + + if (!batch_queue_.empty()) { + // if the queue has existing data, and the last batch doesn't have enough + // examples to fill a batch_size batch, add more example to this batch + // first. + auto& batch = batch_queue_.back(); + size_t current_count = batch.batch_data.size(); + if (current_count < batch_size_) { + auto example_count = + std::min(remaining_size, batch_size_ - current_count); + fill_batch(example_count, batch.batch_data); + } + } + + // If we still have data remaining after filling the last pushed batch, add + // them to the queue too. + // NOLINTNEXTLINE(bugprone-infinite-loop) + while (remaining_size > 0) { + UnwrappedBatchType current_batch; + + // Allocate the batch memory ahead of time. + current_batch.reserve(batch_size_); + + auto example_count = std::min(remaining_size, batch_size_); + fill_batch(example_count, current_batch); + batch_queue_.emplace(std::move(current_batch)); + } + total_example_count_in_queue_ += data_size; + lock.unlock(); + cv_read_.notify_all(); + } + + /// Push exceptions thrown during preloading into batch queue. Called from + /// the ChunkDataset worker threads. + void add_chunk_data(std::exception_ptr e_ptr) { + std::unique_lock lock(queue_mutex_); + cv_write_.wait(lock, [this] { + // stop loading if we have preloaded enough data. + return ( + this->total_example_count_in_queue_ < this->queue_capacity_ || + this->stop_); + }); + if (stop_) { + // When stop_ is true, it means this current thread needs to be tore down, + // the batch buffer will be discarded, so no need to enqueue any new + // exceptions. + return; + } + + batch_queue_.emplace(e_ptr); + lock.unlock(); + cv_read_.notify_all(); + } + + void stop() { + { + // Hold the lock before changing stop_ to prevent a race condition which + // can cause a deadlock. To be more specific, conditional variable + // cv_write_ waits on predicate stop_ in add_chunk_data(). The wait + // happens in two steps: 1) while still holding the lock, check if + // predicate is true; 2) if it is true, proceeds, otherwise, release the + // lock and wait until notified. Without holding a lock, cv_write_'s + // notification can happen in between step 1) and 2). In that case, as + // cv_write_ is not in waiting status yet, so the notification is lost and + // cv_write_ will sleep forever. By taking a lock before changing + // predicate stop_, it is ensured updating and evaluating stop_ always + // happen in a synchronized way + std::lock_guard lock(queue_mutex_); + stop_ = true; + } + + // notify all writers, wake them from wait to exit current method. + cv_write_.notify_all(); + // notify all readers too. + cv_read_.notify_all(); + } + /// The batch size is needed to create batches from the chunk data. Similar to + /// regular dataloader where the batches are created with prefetches, + /// BatchDataBuffer perform the batch creation using the provided batch size. + size_t batch_size_ = 0; + + /// count of total example stored in the queue + size_t total_example_count_in_queue_ = 0; + + /// struct that contains a raw unwrapped batch unit. An unwrapped batch unit + /// is the raw data without 'optional' wrapper. It can be a collection of + /// images, utterances, e.t.c. + struct UnwrappedBatchData { + explicit UnwrappedBatchData(UnwrappedBatchType data) + : batch_data(std::move(data)) {} + + // NOLINTNEXTLINE(modernize-pass-by-value) + explicit UnwrappedBatchData(std::exception_ptr e) : exception(e) {} + + /// batch data to return + UnwrappedBatchType batch_data; + + /// exception pointer which captures any abnormal exceptions while creating + /// the batch. + std::exception_ptr exception; + }; + + /// local cache to store example batches from loaded chunk + std::queue batch_queue_; + + // sync batch_queue_ update. + std::mutex queue_mutex_; + + std::condition_variable cv_read_; + std::condition_variable cv_write_; + + ExampleSampler& example_sampler_; + + // configurable maximun number of elements the queue can hold at one time. + size_t queue_capacity_; + + // When set to true, it wakes the writer threads from the wait and exit + // current function call. This is needed when ChunkDataSet.Reset is called + // while the previous epoch is not exhausted yet. When ChunkDataset is waiting + // its preloader to finish previous work before tearing down the thread, the + // preloader could be still waiting for the conditional variable, thus cause + // the program to hang. This boolean is used to break this waiting condition. + bool stop_ = false; +}; +} // namespace detail + +/// Options to configure a `ChunkDataset`. +struct ChunkDatasetOptions { + ChunkDatasetOptions() = delete; + ChunkDatasetOptions( + size_t preloader_count, + size_t batch_size, + size_t cache_size = 2048, + size_t cross_chunk_shuffle_count = 1) + : preloader_count_(preloader_count), + batch_size_(batch_size), + cache_size_(cache_size), + cross_chunk_shuffle_count_(cross_chunk_shuffle_count) { + TORCH_CHECK( + preloader_count_ > 0, + "Preloader count is 0. At least one preloader needs to be specified."); + TORCH_CHECK( + batch_size_ > 0, + "Batch size is 0. A positive batch size needs to be specified."); + TORCH_CHECK( + cache_size_ > 0, + "Cache size is 0. A positive cache size needs to be specified."); + TORCH_CHECK( + cache_size_ >= batch_size_, + "Cache size is less than batch size. Cache needs to be large enough to " + "hold at least one batch."); + TORCH_CHECK( + cross_chunk_shuffle_count_ > 0, + "cross_chunk_shuffle_count needs to be greater than 0."); + } + + /// The number of worker thread to preload chunk data. + TORCH_ARG(size_t, preloader_count); + + /// The size of each batch. + TORCH_ARG(size_t, batch_size); + + /// The capacity of the queue for batch caching. + TORCH_ARG(size_t, cache_size) = 2048; + + // The number of chunks to perfrom cross-chunk shuffling. Default to 1 meaning + // no cross-chunk shuffling. When it is equal to n (n > 1), n random + // chunks will be loaded at once and example shuffling will be performed + // across all those n chunks. + // Note: Usually the default config (1 chunk shuffle + example shuffle) is + // good enough to generate random distributed data. Use this parameter only if + // you know cross-shuffle is needed in your case. Also there is a performance + // penalty when this value is greater than 1, as we need to do extra merge + // between multiple chunks before performing example sampling. + TORCH_ARG(size_t, cross_chunk_shuffle_count) = 1; +}; + +/// A stateful dataset that support hierarchical sampling and prefetching of +/// entre chunks. +/// +/// Unlike regular dataset, chunk dataset require two samplers to operate and +/// keeps an internal state. `ChunkSampler` selects, which chunk to load next, +/// while the `ExampleSampler` determins the order of Examples that are returned +/// in each `get_batch` call. The hierarchical sampling approach used here is +/// inspired by this paper http://martin.zinkevich.org/publications/nips2010.pdf +template < + typename ChunkReader, + typename ChunkSampler = samplers::RandomSampler, + typename ExampleSampler = samplers::RandomSampler> +class ChunkDataset final + : public StatefulDataset< + ChunkDataset, + typename ChunkReader::BatchType, + size_t> { + public: + using BatchType = torch::optional; + using UnwrappedBatchType = typename ChunkReader::BatchType; + using BatchRequestType = size_t; + using ChunkSamplerType = ChunkSampler; + using ExampleSamplerType = ExampleSampler; + + ChunkDataset( + ChunkReader chunk_reader, + ChunkSampler chunk_sampler, + ExampleSampler example_sampler, + ChunkDatasetOptions options, + std::function preprocessing_policy = + std::function()) + : chunk_reader_(std::move(chunk_reader)), + chunk_sampler_(std::move(chunk_sampler)), + example_sampler_(std::move(example_sampler)), + options_(std::move(options)), + preprocessing_policy_(std::move(preprocessing_policy)), + quit_worker_(false), + running_preloaders_(0), + load_checkpoint_(false) {} + + ~ChunkDataset() override { + // stop batch buffer first. + if (batch_buffer_) { + batch_buffer_->stop(); + } + free_workers(); + } + + /// Default get_batch method of BatchDataset. This method returns + /// Example batches created from the preloaded chunks. The implemenation + /// is dataset agnostic and does not need overriding in different chunk + /// datasets. + BatchType get_batch(size_t batch_size) override { + TORCH_CHECK( + batch_buffer_ != nullptr, + "Dataset needs to call reset() before calling get_batch()."); + + TORCH_CHECK( + batch_size == options_.batch_size(), + "The requested batch size does not match with the initialized batch size.\n" + " The requested batch size is ", + batch_size, + ", while the dataset is created with batch size equal to ", + options_.batch_size()); + return batch_buffer_->get_batch(); + } + + /// Helper method around get_batch as `batch_size` is not strictly necessary + BatchType get_batch() { + return get_batch(options_.batch_size()); + } + + /// This will clear any internal state and starts the internal prefetching + /// mechanism for the chunk dataset. + void reset() override { + // We need this to support partial data reads via dataloader iterator. + if (batch_buffer_) { + batch_buffer_->stop(); + } + // free workers from previous reset if there is any. + free_workers(); + preload_threads_.clear(); + + if (!load_checkpoint_) { + chunk_reader_.reset(); + chunk_sampler_.reset(chunk_reader_.chunk_count()); + load_checkpoint_ = false; + } + + // Throw out any existing cached batch in the buffer and re-creates a new + // chunk buffer. + batch_buffer_ = std::make_unique< + detail::BatchDataBuffer>( + options_.batch_size(), example_sampler_, options_.cache_size()); + + // create new workers for this new epoch. + quit_worker_ = false; + + AT_ASSERT(running_preloaders_ == 0); + running_preloaders_ = options_.preloader_count(); + for (const auto i : c10::irange(options_.preloader_count())) { + preload_threads_.emplace_back([this, i]() { this->preloader(i); }); + } + } + + /// size is not used for chunk dataset. + optional size() const override { + return torch::nullopt; + } + + // provide a references to chunk sampler. Used mainly in distributed data + // loading to set the epoch number for the sampler. + ChunkSamplerType& chunk_sampler() { + return chunk_sampler_; + } + + void save(serialize::OutputArchive& archive) const override { + std::lock_guard lock(chunk_index_guard_); + chunk_sampler_.save(archive); + } + + void load(serialize::InputArchive& archive) override { + std::lock_guard lock(chunk_index_guard_); + chunk_sampler_.load(archive); + load_checkpoint_ = true; + } + + private: + /// running on worker thread to preload chunk data. + void preloader(size_t id) { + while (!quit_worker_.load()) { + try { + std::vector chunk_idx; + { + std::lock_guard lock(chunk_index_guard_); + if (auto chunk_sampler_result = chunk_sampler_.next( + this->options_.cross_chunk_shuffle_count())) { + chunk_idx = chunk_sampler_result.value(); + } else { + break; + } + } + UnwrappedBatchType data = chunk_reader_.read_chunk(chunk_idx[0]); + for (const auto i : c10::irange(1, chunk_idx.size())) { + auto chunk_data = chunk_reader_.read_chunk(chunk_idx[i]); + std::move( + chunk_data.begin(), chunk_data.end(), std::back_inserter(data)); + } + if (preprocessing_policy_) { + preprocessing_policy_(data); + } + if (!data.empty()) { // skip empty chunks. + batch_buffer_->add_chunk_data(std::move(data)); + } + } catch (...) { + batch_buffer_->add_chunk_data(std::current_exception()); + } + } + AT_ASSERT(running_preloaders_.load() > 0); + --running_preloaders_; + if (running_preloaders_.load() == 0) { + // all preloaders are completed, so we can notify the batch_buffer. + batch_buffer_->stop(); + } + } + + /// Block the current thread until the workers finish execution and exit. + void free_workers() { + if (!quit_worker_.load()) { + quit_worker_ = true; + for (auto& worker_thread : preload_threads_) { + worker_thread.join(); + } + } + } + + private: + // Templated class that defines what is a chunk and how to read chunk data. + // When a chunk is returned by chunk_reader_, ChunkDataset split it into + // batches and caches them in batch_buffer_. + ChunkReader chunk_reader_; + + // chunk sampler to shuffle different chunks + ChunkSamplerType chunk_sampler_; + + // example sampler to shuffle examples in a specific chunk + ExampleSamplerType example_sampler_; + + // batch data buffer which holds chunk data from preloading thread. + std::shared_ptr< + detail::BatchDataBuffer> + batch_buffer_; + + // worker thread pool + std::vector preload_threads_; + + /// The options the Dataset was configured with. + const ChunkDatasetOptions options_; + + // function pointer wrapper to apply custom processing over chunk data. This + // is considered an advanced parameter for developers who want to apply a + // pre-process to the chunk data before sampling into minibatch. + // Different than the collate function, this policy is applied on the chunk + // level, instead of minibatch level. When a chunk of data is loaded (multiple + // chunks if cross_chunk_shuffle_count_ is greater than 1), this policy is + // applied to the full loaded data. It is useful if developers want to + // perform pre-processing (like bucketing) to the chunk data before + // example sampler samples the data. By default it's an empty pointer and no + // action will be taken. + std::function preprocessing_policy_; + + // indicate whether the worker thread can be teared down + std::atomic quit_worker_; + + // keep track of running preloaders to notify batch buffer. A value 0 + // indicates that the chunk loading is completed. + std::atomic running_preloaders_; + + // mutex to synchronize chunk sampler next() call. + mutable std::mutex chunk_index_guard_; + + // boolean value to indicate whether we need to load the checkpoint for + // chunk_sampler_. + bool load_checkpoint_; +}; +} // namespace datasets +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/detail/data_shuttle.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/detail/data_shuttle.h new file mode 100644 index 0000000000000000000000000000000000000000..4f087a01f4330dfbaee0a575dacd424d587e8e9a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/detail/data_shuttle.h @@ -0,0 +1,87 @@ +#pragma once + +#include +#include + +#include +#include + +#include +#include + +namespace torch { +namespace data { +namespace detail { + +/// Encapsulates the full life cycle of DataLoader jobs. +/// +/// When a new job is enqueued to the `DataShuttle`, a counter for in-flight +/// jobs is bumped. This job is said to be "in-flight" until its result is +/// popped. Worker threads dequeue jobs as soon as they are available. When a +/// worker finishes a job, it enqueues the result. Only when the main thread +/// dequeues a result is the count of in-flight jobs decremented. When the main +/// thread attempts to dequeue a job but no jobs are in-flight, that means the +/// epoch is complete and `pop_result` returns an empty optional. +template +class DataShuttle { + public: + /// Pushes a new job. Called by the main thread. + void push_job(Job job) { + new_jobs_.push(std::move(job)); + ++in_flight_jobs_; + } + + /// Pushes the result of a job. Called by worker threads. + void push_result(Result result) { + results_.push(std::move(result)); + } + + /// Returns the next job, blocking until there is one available. Called by + /// worker threads. + Job pop_job() { + return new_jobs_.pop(); + } + + /// Returns the result of a job, or nullopt if all jobs were exhausted. Called + /// by the main thread. + optional pop_result( + optional timeout = nullopt) { + if (in_flight_jobs_ > 0) { + auto result = results_.pop(timeout); + --in_flight_jobs_; + return result; + } + return nullopt; + } + + /// Discards any jobs that are not yet in flight, and waits for all in-flight + /// jobs to finish, discarding their result. + void drain() { + // Clear all inputs so that no further jobs are scheduled. + auto number_cleared = new_jobs_.clear(); + in_flight_jobs_ -= number_cleared; + // Remove any outstanding results. + while (in_flight_jobs_ > 0) { + pop_result(); + } + } + + /// Returns the number of jobs that are still in progress. + /// When this number is zero, an epoch is finished. + size_t in_flight_jobs() const noexcept { + return in_flight_jobs_; + } + + private: + /// The queue for jobs that are not yet in flight. + Queue new_jobs_; + /// The number of in-flight jobs. + /// NOTE: Not atomic because only manipulated by the main thread. + size_t in_flight_jobs_ = 0; + /// The queue for results of finished jobs. + Queue results_; +}; + +} // namespace detail +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/detail/queue.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/detail/queue.h new file mode 100644 index 0000000000000000000000000000000000000000..332914bb1405f89418963a5b38ca518cd19bcdeb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/detail/queue.h @@ -0,0 +1,84 @@ +#pragma once + +#include + +#include + +#include +#include +#include +#include +#include + +namespace torch { +namespace data { +namespace detail { + +/// A basic locked, blocking MPMC queue. +/// +/// Every `push` and `pop` is guarded by a mutex. A condition variable is used +/// to communicate insertion of new elements, such that waiting threads will be +/// woken up if they are currently waiting inside a call to `pop()`. +/// +/// Note that this data structure is written specifically for use with the +/// `DataLoader`. Its behavior is tailored to this use case and may not be +/// applicable to more general uses. +template +class Queue { + public: + /// Pushes a new value to the back of the `Queue` and notifies one thread on + /// the waiting side about this event. + void push(T value) { + { + std::lock_guard lock(mutex_); + queue_.push(std::move(value)); + } + cv_.notify_one(); + } + + /// Blocks until at least one element is ready to be popped from the front of + /// the queue. An optional `timeout` in seconds can be used to limit the time + /// spent waiting for an element. If the wait times out, an exception is + /// raised. + T pop(optional timeout = nullopt) { + std::unique_lock lock(mutex_); + if (timeout) { + if (!cv_.wait_for( + lock, *timeout, [this] { return !this->queue_.empty(); })) { + // clang-format off + AT_ERROR( + "Timeout in DataLoader queue while waiting for next batch" + " (timeout was ", timeout->count(), " ms)"); + // clang-format on + } + } else { + cv_.wait(lock, [this] { return !this->queue_.empty(); }); + } + AT_ASSERT(!queue_.empty()); + T value = queue_.front(); + queue_.pop(); + lock.unlock(); + return value; + } + + /// Empties the queue and returns the number of elements that were present at + /// the start of the function. No threads are notified about this event as it + /// is assumed to be used to drain the queue during shutdown of a + /// `DataLoader`. + size_t clear() { + std::lock_guard lock(this->mutex_); + const auto size = queue_.size(); + while (!queue_.empty()) { + queue_.pop(); + } + return size; + } + + private: + std::queue queue_; + std::mutex mutex_; + std::condition_variable cv_; +}; +} // namespace detail +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/detail/sequencers.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/detail/sequencers.h new file mode 100644 index 0000000000000000000000000000000000000000..7412263c336ce31ed51834372953676baa90800f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/detail/sequencers.h @@ -0,0 +1,113 @@ +#pragma once + +#include + +#include +#include +#include + +namespace torch { +namespace data { +namespace detail { +namespace sequencers { +namespace detail { +template +bool buffer_contains_result(const std::vector>& buffer) { + return std::any_of( + buffer.begin(), buffer.end(), [](const optional& result) { + return result.has_value(); + }); +} +} // namespace detail + +/// A `Sequencer` accepts a function that yields the next result of a +/// `DataLoader` and then has the opportunity to influence the order in which +/// these results are returned. The `NoSequencer` does not enforce any +/// sequencing and returns any result directly. The `OrderedSequencer` instead +/// buffers results internally to return them in order of their sequence number. +template +struct Sequencer { + using ResultProducer = std::function()>; + virtual ~Sequencer() = default; + virtual optional next(ResultProducer next_result) = 0; +}; + +/// A `Sequencer` that does not enforce any ordering. It is effectively the +/// identity function. +template +struct NoSequencer final : public Sequencer { + using typename Sequencer::ResultProducer; + optional next(ResultProducer next_result) override { + return next_result(); + } +}; + +/// A `Sequencer` that buffers results and returns them in order of their +/// sequence number. The `OrderedSequencer` maintains an internal, monotonically +/// incrementing counter for the next sequence number it expects. If it receives +/// a result with a higher sequence number, it will buffer it for later (when +/// the sequence number reaches that of this result). Otherwise, if the sequence +/// numbers match, the result is returned. +/// +/// Implementation note: The `OrderedSequencer` is implemented with a fixed-size +/// buffer. Let `m` be the maximum number of jobs in the data loader's queue and +/// `s` be the current sequence number. Assume `m` jobs are scheduled in the +/// `DataLoader`. Any new result is stored at index `job.sqn mod m` in the +/// `OrderedSequencer`. Why are we sure sequence numbers of new jobs will not +/// collide with sequence numbers of buffered jobs? The `OrderedSequencer` will +/// not return from `next()` until it receives the result with sqn `s`. This +/// means no new jobs can be scheduled in the `DataLoader` in the meantime, +/// which enforces that as long as sqn `s` has not been received, `s + m` (which +/// would cause a collision in the fixed-size buffer) will not yet be scheduled. +template +struct OrderedSequencer : public Sequencer { + using typename Sequencer::ResultProducer; + + /// Constructs the `OrderedSequencer` with the maximum number of results it + /// will ever hold at one point in time. + explicit OrderedSequencer(size_t max_jobs) : buffer_(max_jobs) {} + + /// Buffers results until the next one in the expected order is received. + optional next(ResultProducer next_result) override { + // If we already have the result for the next sqn, return it. + if (auto& maybe_result = buffer(next_sequence_number_)) { + auto result = std::move(*maybe_result); + buffer(next_sequence_number_++).reset(); + return result; + } + // Otherwise wait for the next result. + while (true) { + auto result = next_result(); + if (!result) { + AT_ASSERT(!detail::buffer_contains_result(buffer_)); + break; + } + // If it was not nullopt and the sequence numbers match, return it + // directly and bump the sequence number. + if (result->sequence_number == next_sequence_number_) { + ++next_sequence_number_; + return result; + } + // Stash the result for later. + AT_ASSERT(!buffer(result->sequence_number).has_value()); + buffer(result->sequence_number) = std::move(result); + } + // The result was an empty optional, so we are done with this epoch. + return nullopt; + } + + /// Accesses the buffer at the `index` modulo the buffer size. + optional& buffer(size_t index) { + return buffer_.at(index % buffer_.size()); + } + + /// The monotonically increasing sequence number we expect. + size_t next_sequence_number_ = 0; + + /// A fixed-size buffer (after construction). + std::vector> buffer_; +}; +} // namespace sequencers +} // namespace detail +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/example.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/example.h new file mode 100644 index 0000000000000000000000000000000000000000..57219a24cd0b08d65f8f5e46b80c0f8906a0ab03 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/example.h @@ -0,0 +1,55 @@ +#pragma once + +#include + +namespace torch { +namespace data { + +/// An `Example` from a dataset. +/// +/// A dataset consists of data and an associated target (label). +template +struct Example { + using DataType = Data; + using TargetType = Target; + + Example() = default; + Example(Data data, Target target) + : data(std::move(data)), target(std::move(target)) {} + + Data data; + Target target; +}; + +namespace example { +using NoTarget = void; +} // namespace example + +/// A specialization for `Example` that does not have a target. +/// +/// This class exists so that code can be written for a templated `Example` +/// type, and work both for labeled and unlabeled datasets. +template +struct Example { + using DataType = Data; + using TargetType = example::NoTarget; + + Example() = default; + /* implicit */ Example(Data data) : data(std::move(data)) {} + + // When a DataLoader returns an Example like this, that example should be + // implicitly convertible to the underlying data type. + + operator Data&() { + return data; + } + operator const Data&() const { + return data; + } + + Data data; +}; + +using TensorExample = Example; +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/iterator.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/iterator.h new file mode 100644 index 0000000000000000000000000000000000000000..82091b59e046a72b5906301ab0835379de9bdee5 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/iterator.h @@ -0,0 +1,178 @@ +#pragma once + +#include +#include + +#include + +#include +#include +#include +#include +#include + +namespace torch { +namespace data { +namespace detail { +// For increased safety and more separated logic, this implementation of +// `Iterator` consists of a `ValidIterator` and a `SentinelIterator`. A +// `ValidIterator` yields new batches until the `DataLoader` is exhausted. While +// the `DataLoader` is not exhausted, `ValidIterator`s compare equal if they are +// the same object. When the `ValidIterator` becomes exhausted, it compares +// equal to the `SentinelIterator`, but not before. Half the code here is to +// implement double dispatch for the comparison. Got damnit, C++. + +template +struct ValidIterator; + +template +struct SentinelIterator; + +/// Base class for the `ValidIterator` and `SentinelIterator` +template +struct IteratorImpl { + virtual ~IteratorImpl() = default; + virtual void next() = 0; + virtual Batch& get() = 0; + virtual bool operator==(const IteratorImpl& other) const = 0; + virtual bool operator==(const ValidIterator& other) const = 0; + virtual bool operator==(const SentinelIterator& other) const = 0; +}; + +template +struct ValidIterator : public IteratorImpl { + using BatchProducer = std::function()>; + + explicit ValidIterator(BatchProducer next_batch) + : next_batch_(std::move(next_batch)) {} + + /// Fetches the next batch. + void next() override { + // If we didn't get the very first batch yet, get it now. + lazy_initialize(); + TORCH_CHECK( + batch_.has_value(), "Attempted to increment iterator past the end"); + // Increment to the next batch. + batch_ = next_batch_(); + } + + /// Returns the current batch. The precondition for this operation to not + /// throw an exception is that it has been compared to the `SentinelIterator` + /// and did not compare equal. + Batch& get() override { + // If we didn't get the very first batch yet, get it now. + lazy_initialize(); + TORCH_CHECK( + batch_.has_value(), + "Attempted to dereference iterator that was past the end"); + return batch_.value(); + } + + /// Does double dispatch. + bool operator==(const IteratorImpl& other) const override { + return other == *this; + } + + /// A `ValidIterator` is equal to the `SentinelIterator` iff. the + /// `ValidIterator` has reached the end of the dataloader. + bool operator==(const SentinelIterator& /* unused */) const override { + lazy_initialize(); + return !batch_; + } + + /// Returns true if the memory address of `other` equals that of `this`. + bool operator==(const ValidIterator& other) const override { + return &other == this; + } + + /// Gets the very first batch if it has not yet been fetched. + void lazy_initialize() const { + if (!initialized_) { + batch_ = next_batch_(); + initialized_ = true; + } + } + + BatchProducer next_batch_; + mutable optional batch_; + mutable bool initialized_ = false; +}; + +template +struct SentinelIterator : public IteratorImpl { + void next() override { + AT_ERROR( + "Incrementing the DataLoader's past-the-end iterator is not allowed"); + } + + Batch& get() override { + AT_ERROR( + "Dereferencing the DataLoader's past-the-end iterator is not allowed"); + } + + /// Does double dispatch. + bool operator==(const IteratorImpl& other) const override { + return other == *this; + } + + /// Calls the comparison operator between `ValidIterator` and + /// `SentinelIterator`. + bool operator==(const ValidIterator& other) const override { + return other == *this; + } + + /// Sentinel iterators always compare equal. + bool operator==(const SentinelIterator& other) const override { + return true; + } +}; +} // namespace detail + +template +class Iterator { + public: + // Type aliases to make the class recognized as a proper iterator. + using difference_type = std::ptrdiff_t; + using value_type = Batch; + using pointer = Batch*; + using reference = Batch&; + using iterator_category = std::input_iterator_tag; + + explicit Iterator(std::unique_ptr> impl) + : impl_(std::move(impl)) {} + + /// Increments the iterator. + /// Only permitted for valid iterators (not past the end). + Iterator& operator++() { + impl_->next(); + return *this; + } + + /// Returns the current batch. + /// Only permitted for valid iterators (not past the end). + Batch& operator*() { + return impl_->get(); + } + + /// Returns a pointer to the current batch. + /// Only permitted for valid iterators (not past the end). + Batch* operator->() { + return &impl_->get(); + } + + /// Compares two iterators for equality. + bool operator==(const Iterator& other) const { + return *impl_ == *other.impl_; + } + + /// Compares two iterators for inequality. + bool operator!=(const Iterator& other) const { + return !(*this == other); + } + + private: + /// Points either to a `ValidIterator` or to a `SentinelIterator`. + std::shared_ptr> impl_; +}; +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/samplers.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/samplers.h new file mode 100644 index 0000000000000000000000000000000000000000..928a2412aa76f8a22574b433a2f61152c45ae5c7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/samplers.h @@ -0,0 +1,9 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/samplers/base.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/samplers/base.h new file mode 100644 index 0000000000000000000000000000000000000000..780f19035c6a3dd0b48ea358b32ec3ead2996843 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/samplers/base.h @@ -0,0 +1,47 @@ +#pragma once + +#include +#include + +#include +#include +#include + +namespace torch { +namespace serialize { +class OutputArchive; +class InputArchive; +} // namespace serialize +} // namespace torch + +namespace torch { +namespace data { +namespace samplers { +/// A `Sampler` is an object that yields an index with which to access a +/// dataset. +template > +class Sampler { + public: + using BatchRequestType = BatchRequest; + + virtual ~Sampler() = default; + + /// Resets the `Sampler`'s internal state. + /// Typically called before a new epoch. + /// Optionally, accepts a new size when reseting the sampler. + virtual void reset(optional new_size) = 0; + + /// Returns the next index if possible, or an empty optional if the + /// sampler is exhausted for this epoch. + virtual optional next(size_t batch_size) = 0; + + /// Serializes the `Sampler` to the `archive`. + virtual void save(serialize::OutputArchive& archive) const = 0; + + /// Deserializes the `Sampler` from the `archive`. + virtual void load(serialize::InputArchive& archive) = 0; +}; + +} // namespace samplers +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms.h new file mode 100644 index 0000000000000000000000000000000000000000..e5d92062e62d52dd2dac3ab39f76385f9bf1522f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms.h @@ -0,0 +1,7 @@ +#pragma once + +#include +#include +#include +#include +#include diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/base.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/base.h new file mode 100644 index 0000000000000000000000000000000000000000..0bc1f2ea7b141a270a7b5f826442d96d9841e72c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/base.h @@ -0,0 +1,53 @@ +#pragma once + +#include + +#include +#include + +namespace torch { +namespace data { +namespace transforms { + +/// A transformation of a batch to a new batch. +template +class BatchTransform { + public: + using InputBatchType = InputBatch; + using OutputBatchType = OutputBatch; + + virtual ~BatchTransform() = default; + + /// Applies the transformation to the given `input_batch`. + virtual OutputBatch apply_batch(InputBatch input_batch) = 0; +}; + +/// A transformation of individual input examples to individual output examples. +/// +/// Just like a `Dataset` is a `BatchDataset`, a `Transform` is a +/// `BatchTransform` that can operate on the level of individual examples rather +/// than entire batches. The batch-level transform is implemented (by default) +/// in terms of the example-level transform, though this can be customized. +template +class Transform + : public BatchTransform, std::vector> { + public: + using InputType = Input; + using OutputType = Output; + + /// Applies the transformation to the given `input`. + virtual OutputType apply(InputType input) = 0; + + /// Applies the `transformation` over the entire `input_batch`. + std::vector apply_batch(std::vector input_batch) override { + std::vector output_batch; + output_batch.reserve(input_batch.size()); + for (auto&& input : input_batch) { + output_batch.push_back(apply(std::move(input))); + } + return output_batch; + } +}; +} // namespace transforms +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/collate.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/collate.h new file mode 100644 index 0000000000000000000000000000000000000000..181bcae0031b6f7f0f77b5eebeb7f3de5436c691 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/collate.h @@ -0,0 +1,35 @@ +#pragma once + +#include +#include + +#include + +namespace torch { +namespace data { +namespace transforms { + +/// A `Collation` is a transform that reduces a batch into a single value. +/// The result is a `BatchDataset` that has the type of the single value as its +/// `BatchType`. +template > +using Collation = BatchTransform; + +/// A `Collate` allows passing a custom function to reduce/collate a batch +/// into a single value. It's effectively the lambda version of `Collation`, +/// which you could subclass and override `operator()` to achieve the same. +/// +/// \rst +/// .. code-block:: cpp +/// using namespace torch::data; +/// +/// auto dataset = datasets::MNIST("path/to/mnist") +/// .map(transforms::Collate>([](std::vector> e) { +/// return std::move(e.front()); +/// })); +/// \endrst +template > +using Collate = BatchLambda; +} // namespace transforms +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/lambda.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/lambda.h new file mode 100644 index 0000000000000000000000000000000000000000..252b29807a8efe5e16fa11b9f9337c9f8a4ffa98 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/lambda.h @@ -0,0 +1,56 @@ +#pragma once + +#include + +#include +#include +#include + +namespace torch { +namespace data { +namespace transforms { + +/// A `BatchTransform` that applies a user-provided functor to a batch. +template +class BatchLambda : public BatchTransform { + public: + using typename BatchTransform::InputBatchType; + using typename BatchTransform::OutputBatchType; + using FunctionType = std::function; + + /// Constructs the `BatchLambda` from the given `function` object. + explicit BatchLambda(FunctionType function) + : function_(std::move(function)) {} + + /// Applies the user-provided function object to the `input_batch`. + OutputBatchType apply_batch(InputBatchType input_batch) override { + return function_(std::move(input_batch)); + } + + private: + FunctionType function_; +}; + +// A `Transform` that applies a user-provided functor to individual examples. +template +class Lambda : public Transform { + public: + using typename Transform::InputType; + using typename Transform::OutputType; + using FunctionType = std::function; + + /// Constructs the `Lambda` from the given `function` object. + explicit Lambda(FunctionType function) : function_(std::move(function)) {} + + /// Applies the user-provided function object to the `input`. + OutputType apply(InputType input) override { + return function_(std::move(input)); + } + + private: + FunctionType function_; +}; + +} // namespace transforms +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/stack.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/stack.h new file mode 100644 index 0000000000000000000000000000000000000000..4be1bd920b71596b7a91dcae28acc2713c7af782 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/stack.h @@ -0,0 +1,49 @@ +#pragma once + +#include +#include +#include + +#include +#include + +namespace torch { +namespace data { +namespace transforms { + +template > +struct Stack; + +/// A `Collation` for `Example` types that stacks all data +/// tensors into one tensor, and all target (label) tensors into one tensor. +template <> +struct Stack> : public Collation> { + Example<> apply_batch(std::vector> examples) override { + std::vector data, targets; + data.reserve(examples.size()); + targets.reserve(examples.size()); + for (auto& example : examples) { + data.push_back(std::move(example.data)); + targets.push_back(std::move(example.target)); + } + return {torch::stack(data), torch::stack(targets)}; + } +}; + +/// A `Collation` for `Example` types that stacks all data +/// tensors into one tensor. +template <> +struct Stack + : public Collation> { + TensorExample apply_batch(std::vector examples) override { + std::vector data; + data.reserve(examples.size()); + for (auto& example : examples) { + data.push_back(std::move(example.data)); + } + return torch::stack(data); + } +}; +} // namespace transforms +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/tensor.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/tensor.h new file mode 100644 index 0000000000000000000000000000000000000000..2e135c528131506b0249db41f9de56e7cfc84e03 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/transforms/tensor.h @@ -0,0 +1,77 @@ +#pragma once + +#include +#include +#include + +#include +#include + +namespace torch { +namespace data { +namespace transforms { + +/// A `Transform` that is specialized for the typical `Example` +/// combination. It exposes a single `operator()` interface hook (for +/// subclasses), and calls this function on input `Example` objects. +template +class TensorTransform + : public Transform, Example> { + public: + using E = Example; + using typename Transform::InputType; + using typename Transform::OutputType; + + /// Transforms a single input tensor to an output tensor. + virtual Tensor operator()(Tensor input) = 0; + + /// Implementation of `Transform::apply` that calls `operator()`. + OutputType apply(InputType input) override { + input.data = (*this)(std::move(input.data)); + return input; + } +}; + +/// A `Lambda` specialized for the typical `Example` input type. +template +class TensorLambda : public TensorTransform { + public: + using FunctionType = std::function; + + /// Creates a `TensorLambda` from the given `function`. + explicit TensorLambda(FunctionType function) + : function_(std::move(function)) {} + + /// Applies the user-provided functor to the input tensor. + Tensor operator()(Tensor input) override { + return function_(std::move(input)); + } + + private: + FunctionType function_; +}; + +/// Normalizes input tensors by subtracting the supplied mean and dividing by +/// the given standard deviation. +template +struct Normalize : public TensorTransform { + /// Constructs a `Normalize` transform. The mean and standard deviation can be + /// anything that is broadcastable over the input tensors (like single + /// scalars). + Normalize(ArrayRef mean, ArrayRef stddev) + : mean(torch::tensor(mean, torch::kFloat32) + .unsqueeze(/*dim=*/1) + .unsqueeze(/*dim=*/2)), + stddev(torch::tensor(stddev, torch::kFloat32) + .unsqueeze(/*dim=*/1) + .unsqueeze(/*dim=*/2)) {} + + torch::Tensor operator()(Tensor input) override { + return input.sub(mean).div(stddev); + } + + torch::Tensor mean, stddev; +}; +} // namespace transforms +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/worker_exception.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/worker_exception.h new file mode 100644 index 0000000000000000000000000000000000000000..40680b8330c456669826e8957abcbd3ae15c130c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/data/worker_exception.h @@ -0,0 +1,38 @@ +#pragma once + +#include +#include +#include + +namespace torch { +namespace data { + +/// An exception thrown when a DataLoader's worker thread throws an exception, +/// which is caught. A `WorkerException` stores an `exception_ptr` to the +/// original exception thrown in the worker thread. +struct WorkerException : public std::exception { + /// Constructs a `WorkerException` from an `exception_ptr`. + explicit WorkerException(std::exception_ptr original) + : original_exception(std::move(original)), + message("Caught exception in DataLoader worker thread.") { + try { + std::rethrow_exception(original_exception); + } catch (std::exception& e) { + message += " Original message: "; + message += e.what(); + } + } + + const char* what() const noexcept override { + return message.c_str(); + } + + /// The original exception thrown in the worker thread. + std::exception_ptr original_exception; + + /// This exception's message (not the original exception's message). + std::string message; +}; + +} // namespace data +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/functional/conv.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/functional/conv.h new file mode 100644 index 0000000000000000000000000000000000000000..22f8d04ab73451a5b4f01b625ec8614149fc8adb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/functional/conv.h @@ -0,0 +1,301 @@ +#pragma once + +#include +#include + +namespace torch { +namespace nn { +namespace functional { + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace detail { + +inline std::string padding_unwrap(enumtype::kValid) { + return "valid"; +} + +inline std::string padding_unwrap(enumtype::kSame) { + return "same"; +} + +template +IntArrayRef padding_unwrap(const ExpandingArray& array) { + return array; +} + +inline Tensor conv1d( + const Tensor& input, + const Tensor& weight, + const Tensor& bias, + ExpandingArray<1> stride, + const Conv1dFuncOptions::padding_t& padding, + ExpandingArray<1> dilation, + int64_t groups) { + return std::visit( + [&](const auto& pad) { + return torch::conv1d( + input, weight, bias, stride, padding_unwrap(pad), dilation, groups); + }, + padding); +} +} // namespace detail +#endif /* DOXYGEN_SHOULD_SKIP_THIS */ + +/// See +/// https://pytorch.org/docs/master/nn.functional.html#torch.nn.functional.conv1d +/// about the exact behavior of this functional. +/// +/// See the documentation for `torch::nn::functional::Conv1dFuncOptions` class +/// to learn what optional arguments are supported for this functional. +/// +/// Example: +/// ``` +/// namespace F = torch::nn::functional; +/// F::conv1d(x, weight, F::Conv1dFuncOptions().stride(1)); +/// ``` +inline Tensor conv1d( + const Tensor& input, + const Tensor& weight, + const Conv1dFuncOptions& options = {}) { + return detail::conv1d( + input, + weight, + options.bias(), + options.stride(), + options.padding(), + options.dilation(), + options.groups()); +} + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace detail { +inline Tensor conv2d( + const Tensor& input, + const Tensor& weight, + const Tensor& bias, + ExpandingArray<2> stride, + const Conv2dFuncOptions::padding_t& padding, + ExpandingArray<2> dilation, + int64_t groups) { + return std::visit( + [&](const auto& pad) { + return torch::conv2d( + input, weight, bias, stride, padding_unwrap(pad), dilation, groups); + }, + padding); +} +} // namespace detail +#endif /* DOXYGEN_SHOULD_SKIP_THIS */ + +/// See +/// https://pytorch.org/docs/master/nn.functional.html#torch.nn.functional.conv2d +/// about the exact behavior of this functional. +/// +/// See the documentation for `torch::nn::functional::Conv2dFuncOptions` class +/// to learn what optional arguments are supported for this functional. +/// +/// Example: +/// ``` +/// namespace F = torch::nn::functional; +/// F::conv2d(x, weight, F::Conv2dFuncOptions().stride(1)); +/// ``` +inline Tensor conv2d( + const Tensor& input, + const Tensor& weight, + const Conv2dFuncOptions& options = {}) { + return detail::conv2d( + input, + weight, + options.bias(), + options.stride(), + options.padding(), + options.dilation(), + options.groups()); +} + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace detail { +inline Tensor conv3d( + const Tensor& input, + const Tensor& weight, + const Tensor& bias, + ExpandingArray<3> stride, + const Conv3dFuncOptions::padding_t& padding, + ExpandingArray<3> dilation, + int64_t groups) { + return std::visit( + [&](const auto& pad) { + return torch::conv3d( + input, weight, bias, stride, padding_unwrap(pad), dilation, groups); + }, + padding); +} +} // namespace detail +#endif /* DOXYGEN_SHOULD_SKIP_THIS */ + +/// See +/// https://pytorch.org/docs/master/nn.functional.html#torch.nn.functional.conv3d +/// about the exact behavior of this functional. +/// +/// See the documentation for `torch::nn::functional::Conv3dFuncOptions` class +/// to learn what optional arguments are supported for this functional. +/// +/// Example: +/// ``` +/// namespace F = torch::nn::functional; +/// F::conv3d(x, weight, F::Conv3dFuncOptions().stride(1)); +/// ``` +inline Tensor conv3d( + const Tensor& input, + const Tensor& weight, + const Conv3dFuncOptions& options = {}) { + return detail::conv3d( + input, + weight, + options.bias(), + options.stride(), + options.padding(), + options.dilation(), + options.groups()); +} + +// ============================================================================ + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace detail { +inline Tensor conv_transpose1d( + const Tensor& input, + const Tensor& weight, + const Tensor& bias, + IntArrayRef stride, + IntArrayRef padding, + IntArrayRef output_padding, + int64_t groups, + IntArrayRef dilation) { + return torch::conv_transpose1d( + input, weight, bias, stride, padding, output_padding, groups, dilation); +} +} // namespace detail +#endif /* DOXYGEN_SHOULD_SKIP_THIS */ + +/// See +/// https://pytorch.org/docs/master/nn.functional.html#torch.nn.functional.conv_transpose1d +/// about the exact behavior of this functional. +/// +/// See the documentation for +/// `torch::nn::functional::ConvTranspose1dFuncOptions` class to learn what +/// optional arguments are supported for this functional. +/// +/// Example: +/// ``` +/// namespace F = torch::nn::functional; +/// F::conv_transpose1d(x, weight, F::ConvTranspose1dFuncOptions().stride(1)); +/// ``` +inline Tensor conv_transpose1d( + const Tensor& input, + const Tensor& weight, + const ConvTranspose1dFuncOptions& options = {}) { + return detail::conv_transpose1d( + input, + weight, + options.bias(), + options.stride(), + options.padding(), + options.output_padding(), + options.groups(), + options.dilation()); +} + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace detail { +inline Tensor conv_transpose2d( + const Tensor& input, + const Tensor& weight, + const Tensor& bias, + IntArrayRef stride, + IntArrayRef padding, + IntArrayRef output_padding, + int64_t groups, + IntArrayRef dilation) { + return torch::conv_transpose2d( + input, weight, bias, stride, padding, output_padding, groups, dilation); +} +} // namespace detail +#endif /* DOXYGEN_SHOULD_SKIP_THIS */ + +/// See +/// https://pytorch.org/docs/master/nn.functional.html#torch.nn.functional.conv_transpose2d +/// about the exact behavior of this functional. +/// +/// See the documentation for +/// `torch::nn::functional::ConvTranspose2dFuncOptions` class to learn what +/// optional arguments are supported for this functional. +/// +/// Example: +/// ``` +/// namespace F = torch::nn::functional; +/// F::conv_transpose2d(x, weight, F::ConvTranspose2dFuncOptions().stride(1)); +/// ``` +inline Tensor conv_transpose2d( + const Tensor& input, + const Tensor& weight, + const ConvTranspose2dFuncOptions& options = {}) { + return detail::conv_transpose2d( + input, + weight, + options.bias(), + options.stride(), + options.padding(), + options.output_padding(), + options.groups(), + options.dilation()); +} + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace detail { +inline Tensor conv_transpose3d( + const Tensor& input, + const Tensor& weight, + const Tensor& bias, + IntArrayRef stride, + IntArrayRef padding, + IntArrayRef output_padding, + int64_t groups, + IntArrayRef dilation) { + return torch::conv_transpose3d( + input, weight, bias, stride, padding, output_padding, groups, dilation); +} +} // namespace detail +#endif /* DOXYGEN_SHOULD_SKIP_THIS */ + +/// See +/// https://pytorch.org/docs/master/nn.functional.html#torch.nn.functional.conv_transpose3d +/// about the exact behavior of this functional. +/// +/// See the documentation for +/// `torch::nn::functional::ConvTranspose3dFuncOptions` class to learn what +/// optional arguments are supported for this functional. +/// +/// Example: +/// ``` +/// namespace F = torch::nn::functional; +/// F::conv_transpose3d(x, weight, F::ConvTranspose3dFuncOptions().stride(1)); +/// ``` +inline Tensor conv_transpose3d( + const Tensor& input, + const Tensor& weight, + const ConvTranspose3dFuncOptions& options = {}) { + return detail::conv_transpose3d( + input, + weight, + options.bias(), + options.stride(), + options.padding(), + options.output_padding(), + options.groups(), + options.dilation()); +} + +} // namespace functional +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/functional/padding.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/functional/padding.h new file mode 100644 index 0000000000000000000000000000000000000000..7bbf75cfa75547cbe616c307a4e0cbfead88a9c8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/functional/padding.h @@ -0,0 +1,58 @@ +#pragma once + +#include +#include + +namespace torch { +namespace nn { +namespace functional { + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace detail { +inline Tensor pad( + const Tensor& input, + IntArrayRef pad, + PadFuncOptions::mode_t mode, + double value) { + const auto mode_enum = [&] { + if (std::holds_alternative(mode)) { + return at::padding_mode::constant; + } else if (std::holds_alternative(mode)) { + return at::padding_mode::reflect; + } else if (std::holds_alternative(mode)) { + return at::padding_mode::replicate; + } else if (std::holds_alternative(mode)) { + return at::padding_mode::circular; + } + TORCH_CHECK(false, "Unrecognised padding mode"); + }(); + + c10::optional fill_value; + if (value != 0.0) { + fill_value = value; + } + return at::_pad_enum(input, pad, static_cast(mode_enum), fill_value); +} +} // namespace detail +#endif /* DOXYGEN_SHOULD_SKIP_THIS */ + +/// See +/// https://pytorch.org/docs/master/nn.functional.html#torch.nn.functional.pad +/// about the exact behavior of this functional. +/// +/// See the documentation for `torch::nn::functional::PadFuncOptions` class to +/// learn what optional arguments are supported for this functional. +/// +/// Example: +/// ``` +/// namespace F = torch::nn::functional; +/// F::pad(input, F::PadFuncOptions({1, 2, 2, 1, 1, +/// 2}).mode(torch::kReplicate)); +/// ``` +inline Tensor pad(const Tensor& input, const PadFuncOptions& options) { + return detail::pad(input, options.pad(), options.mode(), options.value()); +} + +} // namespace functional +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/functional/upsampling.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/functional/upsampling.h new file mode 100644 index 0000000000000000000000000000000000000000..f786b9d6983a082cb7bb3a820add496f25e7d49c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/functional/upsampling.h @@ -0,0 +1,290 @@ +#pragma once + +#include +#include +#include + +#include +#include + +namespace torch { +namespace nn { +namespace functional { + +inline std::vector _interp_output_size( + int64_t dim, + std::tuple< + Tensor, + c10::optional>, + c10::optional>, + c10::optional> closed_over_args) { + Tensor input; + c10::optional> size; + c10::optional> scale_factor; + c10::optional recompute_scale_factor; + std::tie(input, size, scale_factor, recompute_scale_factor) = + closed_over_args; + if (size == c10::nullopt && scale_factor == c10::nullopt) { + TORCH_CHECK(false, "either size or scale_factor should be defined"); + } + if (size != c10::nullopt && scale_factor != c10::nullopt) { + TORCH_CHECK(false, "only one of size or scale_factor should be defined"); + } + if (scale_factor != c10::nullopt) { + if (static_cast(scale_factor.value().size()) != dim) { + TORCH_CHECK( + false, + "scale_factor shape must match input shape. ", + "Input is ", + dim, + "D, scale_factor size is ", + torch::ArrayRef(*scale_factor)); + } + } + if (size != c10::nullopt) { + return *size; + } + + TORCH_INTERNAL_ASSERT(scale_factor != c10::nullopt); + auto scale_factors = *scale_factor; + + if (recompute_scale_factor == c10::nullopt) { + // only warn when the scales have floating values since + // the result for ints is the same with/without recompute_scale_factor + bool is_float_scale_factor = false; + for (double scale : scale_factors) { + is_float_scale_factor = floor(scale) != scale; + if (is_float_scale_factor) { + break; + } + } + if (is_float_scale_factor) { + TORCH_WARN( + "The default behavior for interpolate/upsample with float scale_factor changed " + "in 1.6.0 to align with other frameworks/libraries, and uses scale_factor directly, " + "instead of relying on the computed output size. " + "If you wish to keep the old behavior, please set recompute_scale_factor=True. " + "See the documentation of nn.Upsample for details. "); + } + } + + std::vector ret; + for (const auto i : c10::irange(dim)) { + ret.emplace_back(static_cast( + floor(static_cast(input.size(i + 2)) * scale_factors[i]))); + } + return ret; +} + +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace detail { +inline Tensor interpolate( + const Tensor& input, + const c10::optional>& size, + const c10::optional>& scale_factor, + InterpolateFuncOptions::mode_t mode, + c10::optional align_corners, + c10::optional recompute_scale_factor, + bool antialias) { + if (std::holds_alternative(mode) || + std::get_if(&mode)) { + if (align_corners != c10::nullopt) { + TORCH_CHECK( + false, + "align_corners option can only be set with the " + "interpolating modes: linear | bilinear | bicubic | trilinear"); + } + } else { + if (align_corners == c10::nullopt) { + TORCH_WARN( + "Default upsampling behavior when mode=", + enumtype::get_enum_name(mode), + " is changed " + "to align_corners=False since 0.4.0. Please specify " + "align_corners=True if the old behavior is desired. " + "See the documentation of nn.Upsample for details."); + align_corners = false; + } + } + + TORCH_CHECK( + input.dim() >= 3 && input.dim() <= 5, + "Input Error: Only 3D, 4D and 5D input Tensors supported " + "(got ", + input.dim(), + "D) for the modes: nearest | linear | bilinear | bicubic | trilinear " + "(got ", + enumtype::get_enum_name(mode), + ")"); + + auto scale_factor_len = input.dim() - 2; + std::vector> scale_factor_list( + scale_factor_len, c10::nullopt); + if (scale_factor != c10::nullopt && !recompute_scale_factor.value_or(false)) { + auto _scale_factor_repeated = *scale_factor; + scale_factor_list = {}; + for (const auto& elem : _scale_factor_repeated) { + scale_factor_list.emplace_back(elem); + } + } + + if (antialias && + !(input.dim() == 4 && + (std::get_if(&mode) || + std::get_if(&mode)))) { + TORCH_CHECK( + false, + "Anti-alias option is only supported for bilinear and bicubic modes"); + } + + auto closed_over_args = + std::make_tuple(input, size, scale_factor, recompute_scale_factor); + if (input.dim() == 3 && std::get_if(&mode)) { + return torch::upsample_nearest1d( + input, + _interp_output_size(1, std::move(closed_over_args)), + scale_factor_list.at(0)); + } else if (input.dim() == 4 && std::get_if(&mode)) { + return torch::upsample_nearest2d( + input, + _interp_output_size(2, std::move(closed_over_args)), + scale_factor_list.at(0), + scale_factor_list.at(1)); + } else if (input.dim() == 5 && std::get_if(&mode)) { + return torch::upsample_nearest3d( + input, + _interp_output_size(3, std::move(closed_over_args)), + scale_factor_list.at(0), + scale_factor_list.at(1), + scale_factor_list.at(2)); + } else if (input.dim() == 3 && std::get_if(&mode)) { + return torch::_upsample_nearest_exact1d( + input, + _interp_output_size(1, std::move(closed_over_args)), + scale_factor_list.at(0)); + } else if (input.dim() == 4 && std::get_if(&mode)) { + return torch::_upsample_nearest_exact2d( + input, + _interp_output_size(2, std::move(closed_over_args)), + scale_factor_list.at(0), + scale_factor_list.at(1)); + } else if (input.dim() == 5 && std::get_if(&mode)) { + return torch::_upsample_nearest_exact3d( + input, + _interp_output_size(3, std::move(closed_over_args)), + scale_factor_list.at(0), + scale_factor_list.at(1), + scale_factor_list.at(2)); + } else if (input.dim() == 3 && std::get_if(&mode)) { + return detail::adaptive_avg_pool1d( + input, _interp_output_size(1, std::move(closed_over_args))); + } else if (input.dim() == 4 && std::get_if(&mode)) { + return detail::adaptive_avg_pool2d( + input, _interp_output_size(2, std::move(closed_over_args))); + } else if (input.dim() == 5 && std::get_if(&mode)) { + return detail::adaptive_avg_pool3d( + input, _interp_output_size(3, std::move(closed_over_args))); + } else if (input.dim() == 3 && std::get_if(&mode)) { + TORCH_INTERNAL_ASSERT(align_corners != c10::nullopt); + return torch::upsample_linear1d( + input, + _interp_output_size(1, std::move(closed_over_args)), + *align_corners, + scale_factor_list.at(0)); + } else if (input.dim() == 3 && std::get_if(&mode)) { + TORCH_CHECK(false, "Got 3D input, but bilinear mode needs 4D input"); + } else if (input.dim() == 3 && std::get_if(&mode)) { + TORCH_CHECK(false, "Got 3D input, but trilinear mode needs 5D input"); + } else if (input.dim() == 4 && std::get_if(&mode)) { + TORCH_CHECK(false, "Got 4D input, but linear mode needs 3D input"); + } else if (input.dim() == 4 && std::get_if(&mode)) { + TORCH_INTERNAL_ASSERT(align_corners != c10::nullopt); + if (antialias) { + return torch::_upsample_bilinear2d_aa( + input, + _interp_output_size(2, std::move(closed_over_args)), + *align_corners, + scale_factor_list.at(0), + scale_factor_list.at(1)); + } + return torch::upsample_bilinear2d( + input, + _interp_output_size(2, std::move(closed_over_args)), + *align_corners, + scale_factor_list.at(0), + scale_factor_list.at(1)); + } else if (input.dim() == 4 && std::get_if(&mode)) { + TORCH_CHECK(false, "Got 4D input, but trilinear mode needs 5D input"); + } else if (input.dim() == 5 && std::get_if(&mode)) { + TORCH_CHECK(false, "Got 5D input, but linear mode needs 3D input"); + } else if (input.dim() == 5 && std::get_if(&mode)) { + TORCH_CHECK(false, "Got 5D input, but bilinear mode needs 4D input"); + } else if (input.dim() == 5 && std::get_if(&mode)) { + TORCH_INTERNAL_ASSERT(align_corners != c10::nullopt); + return torch::upsample_trilinear3d( + input, + _interp_output_size(3, std::move(closed_over_args)), + *align_corners, + scale_factor_list.at(0), + scale_factor_list.at(1), + scale_factor_list.at(2)); + } else if (input.dim() == 4 && std::get_if(&mode)) { + TORCH_INTERNAL_ASSERT(align_corners != c10::nullopt); + if (antialias) { + return torch::_upsample_bicubic2d_aa( + input, + _interp_output_size(2, std::move(closed_over_args)), + *align_corners, + scale_factor_list.at(0), + scale_factor_list.at(1)); + } + return torch::upsample_bicubic2d( + input, + _interp_output_size(2, std::move(closed_over_args)), + *align_corners, + scale_factor_list.at(0), + scale_factor_list.at(1)); + } else { + TORCH_CHECK( + false, + "Input Error: Only 3D, 4D and 5D input Tensors supported " + "(got ", + input.dim(), + "D) for the modes: nearest | linear | bilinear | bicubic | trilinear " + "(got ", + enumtype::get_enum_name(mode), + ")"); + } +} +} // namespace detail +#endif /* DOXYGEN_SHOULD_SKIP_THIS */ + +/// See +/// https://pytorch.org/docs/master/nn.functional.html#torch.nn.functional.interpolate +/// about the exact behavior of this functional. +/// +/// See the documentation for `torch::nn::functional::InterpolateFuncOptions` +/// class to learn what optional arguments are supported for this functional. +/// +/// Example: +/// ``` +/// namespace F = torch::nn::functional; +/// F::interpolate(input, +/// F::InterpolateFuncOptions().size({4}).mode(torch::kNearest)); +/// ``` +inline Tensor interpolate( + const Tensor& input, + const InterpolateFuncOptions& options = {}) { + return detail::interpolate( + input, + options.size(), + options.scale_factor(), + options.mode(), + options.align_corners(), + options.recompute_scale_factor(), + options.antialias()); +} + +} // namespace functional +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/_functions.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/_functions.h new file mode 100644 index 0000000000000000000000000000000000000000..5bf1ce2dcb28537a0f37939c686450292a92c930 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/_functions.h @@ -0,0 +1,26 @@ +#pragma once + +#include +#include +#include +#include + +namespace torch { +namespace nn { +namespace functions { + +class CrossMapLRN2d : public torch::autograd::Function { + public: + static torch::autograd::Variable forward( + torch::autograd::AutogradContext* ctx, + const torch::autograd::Variable& input, + const CrossMapLRN2dOptions& options); + + static torch::autograd::variable_list backward( + torch::autograd::AutogradContext* ctx, + torch::autograd::variable_list grad_output); +}; + +} // namespace functions +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/activation.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/activation.h new file mode 100644 index 0000000000000000000000000000000000000000..68056ec458ebb116c957b134ceb1053b135ba85b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/activation.h @@ -0,0 +1,875 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ELU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies elu over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ELU to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ELUOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ELU model(ELUOptions().alpha(42.42).inplace(true)); +/// ``` +class TORCH_API ELUImpl : public torch::nn::Cloneable { + public: + explicit ELUImpl(const ELUOptions& options_ = {}); + + Tensor forward(Tensor input); + + void reset() override; + + /// Pretty prints the `ELU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + ELUOptions options; +}; + +/// A `ModuleHolder` subclass for `ELUImpl`. +/// See the documentation for `ELUImpl` class to learn what methods it +/// provides, and examples of how to use `ELU` with `torch::nn::ELUOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(ELU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SELU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the selu function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.SELU to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::SELUOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// SELU model(SELUOptions().inplace(true)); +/// ``` +class TORCH_API SELUImpl : public torch::nn::Cloneable { + public: + explicit SELUImpl(const SELUOptions& options_ = {}); + + Tensor forward(Tensor input); + + void reset() override; + + /// Pretty prints the `SELU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + SELUOptions options; +}; + +/// A `ModuleHolder` subclass for `SELUImpl`. +/// See the documentation for `SELUImpl` class to learn what methods it +/// provides, and examples of how to use `SELU` with `torch::nn::SELUOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(SELU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Hardshrink ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the hard shrinkage function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Hardshrink to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::HardshrinkOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Hardshrink model(HardshrinkOptions().lambda(42.42)); +/// ``` +class TORCH_API HardshrinkImpl : public torch::nn::Cloneable { + public: + explicit HardshrinkImpl(const HardshrinkOptions& options_ = {}); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Hardshrink` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + HardshrinkOptions options; +}; + +/// A `ModuleHolder` subclass for `HardshrinkImpl`. +/// See the documentation for `HardshrinkImpl` class to learn what methods it +/// provides, and examples of how to use `Hardshrink` with +/// `torch::nn::HardshrinkOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Hardshrink); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Hardtanh ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the HardTanh function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Hardtanh to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::HardtanhOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Hardtanh +/// model(HardtanhOptions().min_val(-42.42).max_val(0.42).inplace(true)); +/// ``` +class TORCH_API HardtanhImpl : public torch::nn::Cloneable { + public: + explicit HardtanhImpl(const HardtanhOptions& options_ = {}); + + Tensor forward(Tensor input); + + void reset() override; + + /// Pretty prints the `Hardtanh` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + HardtanhOptions options; +}; + +/// A `ModuleHolder` subclass for `HardtanhImpl`. +/// See the documentation for `HardtanhImpl` class to learn what methods it +/// provides, and examples of how to use `Hardtanh` with +/// `torch::nn::HardtanhOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Hardtanh); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LeakyReLU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the LeakyReLU function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.LeakyReLU to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::LeakyReLUOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// LeakyReLU model(LeakyReLUOptions().negative_slope(0.42).inplace(true)); +/// ``` +class TORCH_API LeakyReLUImpl : public torch::nn::Cloneable { + public: + explicit LeakyReLUImpl(const LeakyReLUOptions& options_ = {}); + + Tensor forward(Tensor input); + + void reset() override; + + /// Pretty prints the `LeakyReLU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + LeakyReLUOptions options; +}; + +/// A `ModuleHolder` subclass for `LeakyReLUImpl`. +/// See the documentation for `LeakyReLUImpl` class to learn what methods it +/// provides, and examples of how to use `LeakyReLU` with +/// `torch::nn::LeakyReLUOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(LeakyReLU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LogSigmoid ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the LogSigmoid function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.LogSigmoid to learn +/// about the exact behavior of this module. +class TORCH_API LogSigmoidImpl : public torch::nn::Cloneable { + public: + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `LogSigmoid` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `LogSigmoidImpl`. +/// See the documentation for `LogSigmoidImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(LogSigmoid); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Softmax ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the Softmax function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Softmax to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::SoftmaxOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Softmax model(SoftmaxOptions(1)); +/// ``` +class TORCH_API SoftmaxImpl : public torch::nn::Cloneable { + public: + explicit SoftmaxImpl(int64_t dim) : SoftmaxImpl(SoftmaxOptions(dim)) {} + explicit SoftmaxImpl(const SoftmaxOptions& options_); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Softmax` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + SoftmaxOptions options; +}; + +/// A `ModuleHolder` subclass for `SoftmaxImpl`. +/// See the documentation for `SoftmaxImpl` class to learn what methods it +/// provides, and examples of how to use `Softmax` with +/// `torch::nn::SoftmaxOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Softmax); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Softmin ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the Softmin function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Softmin to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::SoftminOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Softmin model(SoftminOptions(1)); +/// ``` +class TORCH_API SoftminImpl : public torch::nn::Cloneable { + public: + explicit SoftminImpl(int64_t dim) : SoftminImpl(SoftminOptions(dim)) {} + explicit SoftminImpl(const SoftminOptions& options_); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Softmin` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + SoftminOptions options; +}; + +/// A `ModuleHolder` subclass for `SoftminImpl`. +/// See the documentation for `SoftminImpl` class to learn what methods it +/// provides, and examples of how to use `Softmin` with +/// `torch::nn::SoftminOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Softmin); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LogSoftmax ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the LogSoftmax function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.LogSoftmax to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::LogSoftmaxOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// LogSoftmax model(LogSoftmaxOptions(1)); +/// ``` +class TORCH_API LogSoftmaxImpl : public torch::nn::Cloneable { + public: + explicit LogSoftmaxImpl(int64_t dim) + : LogSoftmaxImpl(LogSoftmaxOptions(dim)) {} + explicit LogSoftmaxImpl(const LogSoftmaxOptions& options_); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `LogSoftmax` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + LogSoftmaxOptions options; +}; + +/// A `ModuleHolder` subclass for `LogSoftmaxImpl`. +/// See the documentation for `LogSoftmaxImpl` class to learn what methods it +/// provides, and examples of how to use `LogSoftmax` with +/// `torch::nn::LogSoftmaxOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(LogSoftmax); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Softmax2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the Softmax2d function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Softmax2d to learn +/// about the exact behavior of this module. +class TORCH_API Softmax2dImpl : public torch::nn::Cloneable { + public: + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Softmax2d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `Softmax2dImpl`. +/// See the documentation for `Softmax2dImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Softmax2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PReLU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the PReLU function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.PReLU to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::PReLUOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// PReLU model(PReLUOptions().num_parameters(42)); +/// ``` +class TORCH_API PReLUImpl : public torch::nn::Cloneable { + public: + explicit PReLUImpl(const PReLUOptions& options_ = {}); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `PReLU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + PReLUOptions options; + + /// The learned weight. + Tensor weight; +}; + +/// A `ModuleHolder` subclass for `PReLUImpl`. +/// See the documentation for `PReLUImpl` class to learn what methods it +/// provides, and examples of how to use `PReLU` with `torch::nn::PReLUOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(PReLU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ReLU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the ReLU function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ReLU to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ReLUOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ReLU model(ReLUOptions().inplace(true)); +/// ``` +class TORCH_API ReLUImpl : public torch::nn::Cloneable { + public: + explicit ReLUImpl(const ReLUOptions& options_ = {}); + + Tensor forward(Tensor input); + + void reset() override; + + /// Pretty prints the `ReLU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + ReLUOptions options; +}; + +/// A `ModuleHolder` subclass for `ReLUImpl`. +/// See the documentation for `ReLUImpl` class to learn what methods it +/// provides, and examples of how to use `ReLU` with `torch::nn::ReLUOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(ReLU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ReLU6 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the ReLU6 function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ReLU6 to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ReLU6Options` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ReLU6 model(ReLU6Options().inplace(true)); +/// ``` +class TORCH_API ReLU6Impl : public torch::nn::Cloneable { + public: + explicit ReLU6Impl(const ReLU6Options& options_ = {}); + + Tensor forward(Tensor input); + + void reset() override; + + /// Pretty prints the `ReLU6` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + ReLU6Options options; +}; + +/// A `ModuleHolder` subclass for `ReLU6Impl`. +/// See the documentation for `ReLU6Impl` class to learn what methods it +/// provides, and examples of how to use `ReLU6` with `torch::nn::ReLU6Options`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(ReLU6); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RReLU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the RReLU function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.RReLU to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::RReLUOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// RReLU model(RReLUOptions().lower(0.24).upper(0.42).inplace(true)); +/// ``` +class TORCH_API RReLUImpl : public torch::nn::Cloneable { + public: + explicit RReLUImpl(const RReLUOptions& options_ = {}); + + Tensor forward(Tensor input); + + void reset() override; + + /// Pretty prints the `RReLU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + RReLUOptions options; +}; + +/// A `ModuleHolder` subclass for `RReLUImpl`. +/// See the documentation for `RReLUImpl` class to learn what methods it +/// provides, and examples of how to use `RReLU` with `torch::nn::RReLUOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(RReLU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CELU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies celu over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.CELU to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::CELUOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// CELU model(CELUOptions().alpha(42.42).inplace(true)); +/// ``` +class TORCH_API CELUImpl : public torch::nn::Cloneable { + public: + explicit CELUImpl(const CELUOptions& options_ = {}); + + Tensor forward(Tensor input); + + void reset() override; + + /// Pretty prints the `CELU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + CELUOptions options; +}; + +/// A `ModuleHolder` subclass for `CELUImpl`. +/// See the documentation for `CELUImpl` class to learn what methods it +/// provides, and examples of how to use `CELU` with `torch::nn::CELUOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(CELU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GLU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies glu over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.GLU to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::GLUOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// GLU model(GLUOptions(1)); +/// ``` +class TORCH_API GLUImpl : public torch::nn::Cloneable { + public: + explicit GLUImpl(const GLUOptions& options_ = {}); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `GLU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + GLUOptions options; +}; + +/// A `ModuleHolder` subclass for `GLUImpl`. +/// See the documentation for `GLUImpl` class to learn what methods it +/// provides, and examples of how to use `GLU` with `torch::nn::GLUOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(GLU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GELU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies gelu over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.GELU to learn +/// about the exact behavior of this module. +class TORCH_API GELUImpl : public torch::nn::Cloneable { + public: + explicit GELUImpl(GELUOptions options_ = {}); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `GELU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + GELUOptions options; +}; + +/// A `ModuleHolder` subclass for `GELUImpl`. +/// See the documentation for `GELUImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(GELU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SiLU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies silu over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.SiLU to learn +/// about the exact behavior of this module. +class TORCH_API SiLUImpl : public torch::nn::Cloneable { + public: + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `SiLU` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `SiLUImpl`. +/// See the documentation for `SiLUImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(SiLU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Mish ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies mish over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Mish to learn +/// about the exact behavior of this module. +class TORCH_API MishImpl : public torch::nn::Cloneable { + public: + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Mish` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `MishImpl`. +/// See the documentation for `MishImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Mish); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Sigmoid ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies sigmoid over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Sigmoid to learn +/// about the exact behavior of this module. +class TORCH_API SigmoidImpl : public torch::nn::Cloneable { + public: + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Sigmoid` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `SigmoidImpl`. +/// See the documentation for `SigmoidImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Sigmoid); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Softplus ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies softplus over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Softplus to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::SoftplusOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Softplus model(SoftplusOptions().beta(0.24).threshold(42.42)); +/// ``` +class TORCH_API SoftplusImpl : public torch::nn::Cloneable { + public: + explicit SoftplusImpl(const SoftplusOptions& options_ = {}); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Softplus` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + SoftplusOptions options; +}; + +/// A `ModuleHolder` subclass for `SoftplusImpl`. +/// See the documentation for `SoftplusImpl` class to learn what methods it +/// provides, and examples of how to use `Softplus` with +/// `torch::nn::SoftplusOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Softplus); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Softshrink ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the soft shrinkage function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Softshrink to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::SoftshrinkOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Softshrink model(SoftshrinkOptions(42.42)); +/// ``` +class TORCH_API SoftshrinkImpl : public torch::nn::Cloneable { + public: + explicit SoftshrinkImpl(const SoftshrinkOptions& options_ = {}); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Softshrink` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + SoftshrinkOptions options; +}; + +/// A `ModuleHolder` subclass for `SoftshrinkImpl`. +/// See the documentation for `SoftshrinkImpl` class to learn what methods it +/// provides, and examples of how to use `Softshrink` with +/// `torch::nn::SoftshrinkOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Softshrink); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Softsign ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies Softsign over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Softsign to learn +/// about the exact behavior of this module. +class TORCH_API SoftsignImpl : public torch::nn::Cloneable { + public: + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Softsign` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `SoftsignImpl`. +/// See the documentation for `SoftsignImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Softsign); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Tanh ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies Tanh over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Tanh to learn +/// about the exact behavior of this module. +class TORCH_API TanhImpl : public torch::nn::Cloneable { + public: + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Tanh` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `TanhImpl`. +/// See the documentation for `TanhImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Tanh); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Tanhshrink ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies Tanhshrink over a given input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Tanhshrink to learn +/// about the exact behavior of this module. +class TORCH_API TanhshrinkImpl : public torch::nn::Cloneable { + public: + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `Tanhshrink` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `TanhshrinkImpl`. +/// See the documentation for `TanhshrinkImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Tanhshrink); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Threshold ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the Threshold function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Threshold to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ThresholdOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Threshold model(ThresholdOptions(42.42, 24.24).inplace(true)); +/// ``` +class TORCH_API ThresholdImpl : public torch::nn::Cloneable { + public: + ThresholdImpl(double threshold, double value) + : ThresholdImpl(ThresholdOptions(threshold, value)) {} + explicit ThresholdImpl(const ThresholdOptions& options_); + + Tensor forward(Tensor input); + + void reset() override; + + /// Pretty prints the `Threshold` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + ThresholdOptions options; +}; + +/// A `ModuleHolder` subclass for `ThresholdImpl`. +/// See the documentation for `ThresholdImpl` class to learn what methods it +/// provides, and examples of how to use `Threshold` with +/// `torch::nn::ThresholdOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Threshold); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MultiheadAttention ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the MultiheadAttention function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.MultiheadAttention +/// to learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MultiheadAttentionOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MultiheadAttention model(MultiheadAttentionOptions(20, 10).bias(false)); +/// ``` +class TORCH_API MultiheadAttentionImpl + : public torch::nn::Cloneable { + public: + MultiheadAttentionImpl(int64_t embed_dim, int64_t num_heads) + : MultiheadAttentionImpl( + MultiheadAttentionOptions(embed_dim, num_heads)) {} + explicit MultiheadAttentionImpl(const MultiheadAttentionOptions& options_); + + std::tuple forward( + const Tensor& query, + const Tensor& key, + const Tensor& value, + const Tensor& key_padding_mask = {}, + bool need_weights = true, + const Tensor& attn_mask = {}, + bool average_attn_weights = true); + + protected: + FORWARD_HAS_DEFAULT_ARGS( + {3, AnyValue(Tensor())}, + {4, AnyValue(true)}, + {5, AnyValue(Tensor())}, + {6, AnyValue(true)}) + + public: + void reset() override; + + void _reset_parameters(); + + /// The options with which this `Module` was constructed. + MultiheadAttentionOptions options; + + bool _qkv_same_embed_dim; + Tensor in_proj_weight; + Tensor in_proj_bias; + Tensor bias_k; + Tensor bias_v; + Linear out_proj = nullptr; + Tensor q_proj_weight; + Tensor k_proj_weight; + Tensor v_proj_weight; + int64_t head_dim; +}; + +/// A `ModuleHolder` subclass for `MultiheadAttentionImpl`. +/// See the documentation for `MultiheadAttentionImpl` class to learn what +/// methods it provides, and examples of how to use `MultiheadAttention` with +/// `torch::nn::MultiheadAttentionOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(MultiheadAttention); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/adaptive.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/adaptive.h new file mode 100644 index 0000000000000000000000000000000000000000..939d57dd5d5107e2e4f6975d84c1a87cbc17e154 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/adaptive.h @@ -0,0 +1,109 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include + +namespace torch { +namespace nn { + +/// The output of a single invocation of an AdaptiveLogSoftmaxWithLoss +/// module's `forward()` method. +struct TORCH_API ASMoutput { + ASMoutput(Tensor output_, double loss_); + + /// Tensor containing computed target log probabilities for each example + Tensor output; + + /// Scalar representing the computed negative log likelihood loss + double loss; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveLogSoftmaxWithLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Efficient softmax approximation as described in +/// `Efficient softmax approximation for GPUs`_ by Edouard Grave, Armand Joulin, +/// Moustapha Cissé, David Grangier, and Hervé Jégou. +/// See +/// https://pytorch.org/docs/master/nn.html#torch.nn.AdaptiveLogSoftmaxWithLoss +/// to learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AdaptiveLogSoftmaxWithLossOptions` +/// class to learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AdaptiveLogSoftmaxWithLoss model(AdaptiveLogSoftmaxWithLossOptions(8, 10, +/// {4, 8}).div_value(2.).head_bias(true)); +/// ``` +class TORCH_API AdaptiveLogSoftmaxWithLossImpl + : public Cloneable { + public: + AdaptiveLogSoftmaxWithLossImpl( + int64_t in_features, + int64_t n_classes, + std::vector cutoffs) + : AdaptiveLogSoftmaxWithLossImpl(AdaptiveLogSoftmaxWithLossOptions( + in_features, + n_classes, + cutoffs)) {} + + explicit AdaptiveLogSoftmaxWithLossImpl( + AdaptiveLogSoftmaxWithLossOptions options_); + + ASMoutput forward(const Tensor& input, const Tensor& target); + + void reset() override; + + void reset_parameters(); + + /// Pretty prints the `AdaptiveLogSoftmaxWithLoss` module into the given + /// `stream`. + void pretty_print(std::ostream& stream) const override; + + /// Given input tensor, and output of `head`, computes the log of the full + /// distribution + Tensor _get_full_log_prob(const Tensor& input, const Tensor& head_output); + + /// Computes log probabilities for all n_classes + Tensor log_prob(const Tensor& input); + + /// This is equivalent to `log_pob(input).argmax(1)` but is more efficient in + /// some cases + Tensor predict(const Tensor& input); + + /// The options with which this `Module` was constructed + AdaptiveLogSoftmaxWithLossOptions options; + + /// Cutoffs used to assign targets to their buckets. It should be an ordered + /// Sequence of integers sorted in the increasing order + std::vector cutoffs; + + int64_t shortlist_size; + + /// Number of clusters + int64_t n_clusters; + + /// Output size of head classifier + int64_t head_size; + + Linear head = nullptr; + + ModuleList tail; +}; + +/// A `ModuleHolder` subclass for `AdaptiveLogSoftmaxWithLossImpl`. +/// See the documentation for `AdaptiveLogSoftmaxWithLossImpl` class to learn +/// what methods it provides, and examples of how to use +/// `AdaptiveLogSoftmaxWithLoss` with +/// `torch::nn::AdaptiveLogSoftmaxWithLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(AdaptiveLogSoftmaxWithLoss); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/batchnorm.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/batchnorm.h new file mode 100644 index 0000000000000000000000000000000000000000..3264d90bd6ed7abf4635c09cda0a396978a41f66 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/batchnorm.h @@ -0,0 +1,250 @@ +#pragma once + +#include +#include +#include +#include +#include +#include + +#include + +namespace torch { +namespace nn { + +/// Base class for all (dimension-specialized) batchnorm and instancenorm +/// modules. +template +class NormImplBase : public torch::nn::Cloneable { + protected: + virtual void _check_input_dim(const Tensor& input) = 0; + + public: + NormImplBase(const DerivedOptions& options_) : options(options_) { + // NOLINTNEXTLINE(clang-analyzer-optin.cplusplus.VirtualCall) + reset(); + } + + void reset() override { + if (options.affine()) { + weight = this->register_parameter( + "weight", torch::empty({options.num_features()})); + bias = this->register_parameter( + "bias", torch::empty({options.num_features()})); + } else { + weight = + this->register_parameter("weight", Tensor(), /*requires_grad=*/false); + bias = + this->register_parameter("bias", Tensor(), /*requires_grad=*/false); + } + if (options.track_running_stats()) { + running_mean = this->register_buffer( + "running_mean", torch::zeros({options.num_features()})); + running_var = this->register_buffer( + "running_var", torch::ones({options.num_features()})); + num_batches_tracked = this->register_buffer( + "num_batches_tracked", torch::tensor(0, torch::dtype(torch::kLong))); + } else { + running_mean = this->register_buffer("running_mean", Tensor()); + running_var = this->register_buffer("running_var", Tensor()); + num_batches_tracked = + this->register_buffer("num_batches_tracked", Tensor()); + } + reset_parameters(); + } + + void reset_running_stats() { + if (options.track_running_stats()) { + running_mean.zero_(); + running_var.fill_(1); + num_batches_tracked.zero_(); + } + } + + void reset_parameters() { + reset_running_stats(); + if (options.affine()) { + torch::nn::init::ones_(weight); + torch::nn::init::zeros_(bias); + } + } + + /// The options with which this module was constructed. + DerivedOptions options; + + /// The learned weight. + /// Only defined if the `affine` option was `true` upon construction. + Tensor weight; + + /// The learned bias. + /// Only defined if the `affine` option was `true` upon construction. + Tensor bias; + + /// The running mean. + /// Only defined if the `track_running_stats` option was `true` upon + /// construction. + Tensor running_mean; + + /// The running variance. + /// Only defined if the `track_running_stats` option was `true` upon + /// construction. + Tensor running_var; + + /// The number of the forward call. + /// Only defined if the `track_running_stats` option was `true` upon + /// construction. + Tensor num_batches_tracked; +}; + +/// Base class for all (dimension-specialized) batchnorm modules. +template +class BatchNormImplBase : public NormImplBase { + public: + using NormImplBase::NormImplBase; + + Tensor forward(const Tensor& input) { + this->_check_input_dim(input); + // NOLINTNEXTLINE(cppcoreguidelines-init-variables) + double exponential_average_factor; + if (this->options.momentum() == c10::nullopt) { + exponential_average_factor = 0.0; + } else { + exponential_average_factor = this->options.momentum().value(); + } + + if (this->is_training() && this->options.track_running_stats()) { + if (this->num_batches_tracked.defined()) { + this->num_batches_tracked += 1; + if (this->options.momentum() == + c10::nullopt) { // use cumulative moving average + exponential_average_factor = + 1.0 / this->num_batches_tracked.template item(); + } else { // use exponential moving average + exponential_average_factor = this->options.momentum().value(); + } + } + } + + return torch::nn::functional::detail::batch_norm( + input, + this->running_mean, + this->running_var, + this->weight, + this->bias, + this->is_training() || !this->options.track_running_stats(), + /*momentum=*/exponential_average_factor, + this->options.eps()); + } + + /// Pretty prints the `BatchNorm{1,2,3}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override { + stream << std::boolalpha << "torch::nn::BatchNorm" << D << "d(" + << this->options.num_features() << ", " + << "eps=" << this->options.eps() << ", " + << "momentum="; + + if (this->options.momentum().has_value()) { + stream << this->options.momentum().value(); + } else { + stream << "None"; + } + + stream << ", " + << "affine=" << this->options.affine() << ", " + << "track_running_stats=" << this->options.track_running_stats() + << ")"; + } +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BatchNorm1d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the BatchNorm1d function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.BatchNorm1d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::BatchNorm1dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// BatchNorm1d +/// model(BatchNorm1dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); +/// ``` +class TORCH_API BatchNorm1dImpl : public BatchNormImplBase<1, BatchNorm1dImpl> { + protected: + void _check_input_dim(const Tensor& input) override; + + public: + using BatchNormImplBase<1, BatchNorm1dImpl>::BatchNormImplBase; +}; + +/// A `ModuleHolder` subclass for `BatchNorm1dImpl`. +/// See the documentation for `BatchNorm1dImpl` class to learn what methods it +/// provides, and examples of how to use `BatchNorm1d` with +/// `torch::nn::BatchNorm1dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(BatchNorm1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BatchNorm2d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the BatchNorm2d function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.BatchNorm2d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::BatchNorm2dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// BatchNorm2d +/// model(BatchNorm2dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); +/// ``` +class TORCH_API BatchNorm2dImpl : public BatchNormImplBase<2, BatchNorm2dImpl> { + protected: + void _check_input_dim(const Tensor& input) override; + + public: + using BatchNormImplBase<2, BatchNorm2dImpl>::BatchNormImplBase; +}; + +/// A `ModuleHolder` subclass for `BatchNorm2dImpl`. +/// See the documentation for `BatchNorm2dImpl` class to learn what methods it +/// provides, and examples of how to use `BatchNorm2d` with +/// `torch::nn::BatchNorm2dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(BatchNorm2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BatchNorm3d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the BatchNorm3d function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.BatchNorm3d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::BatchNorm3dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// BatchNorm3d +/// model(BatchNorm3dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); +/// ``` +class TORCH_API BatchNorm3dImpl : public BatchNormImplBase<3, BatchNorm3dImpl> { + protected: + void _check_input_dim(const Tensor& input) override; + + public: + using BatchNormImplBase<3, BatchNorm3dImpl>::BatchNormImplBase; +}; + +/// A `ModuleHolder` subclass for `BatchNorm3dImpl`. +/// See the documentation for `BatchNorm3dImpl` class to learn what methods it +/// provides, and examples of how to use `BatchNorm3d` with +/// `torch::nn::BatchNorm3dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(BatchNorm3d); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/common.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/common.h new file mode 100644 index 0000000000000000000000000000000000000000..f172c82e7e632411be9ea3b8a4dc3d68ff5e74a3 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/common.h @@ -0,0 +1,97 @@ +#pragma once + +/// This macro enables a module with default arguments in its forward method +/// to be used in a Sequential module. +/// +/// Example usage: +/// +/// Let's say we have a module declared like this: +/// ``` +/// struct MImpl : torch::nn::Module { +/// public: +/// explicit MImpl(int value_) : value(value_) {} +/// torch::Tensor forward(int a, int b = 2, double c = 3.0) { +/// return torch::tensor(a + b + c); +/// } +/// private: +/// int value; +/// }; +/// TORCH_MODULE(M); +/// ``` +/// +/// If we try to use it in a Sequential module and run forward: +/// ``` +/// torch::nn::Sequential seq(M(1)); +/// seq->forward(1); +/// ``` +/// +/// We will receive the following error message: +/// ``` +/// MImpl's forward() method expects 3 argument(s), but received 1. +/// If MImpl's forward() method has default arguments, please make sure +/// the forward() method is declared with a corresponding +/// `FORWARD_HAS_DEFAULT_ARGS` macro. +/// ``` +/// +/// The right way to fix this error is to use the `FORWARD_HAS_DEFAULT_ARGS` +/// macro when declaring the module: +/// ``` +/// struct MImpl : torch::nn::Module { +/// public: +/// explicit MImpl(int value_) : value(value_) {} +/// torch::Tensor forward(int a, int b = 2, double c = 3.0) { +/// return torch::tensor(a + b + c); +/// } +/// protected: +/// /* +/// NOTE: looking at the argument list of `forward`: +/// `forward(int a, int b = 2, double c = 3.0)` +/// we saw the following default arguments: +/// ---------------------------------------------------------------- +/// 0-based index of default | Default value of arg +/// arg in forward arg list | (wrapped by `torch::nn::AnyValue()`) +/// ---------------------------------------------------------------- +/// 1 | torch::nn::AnyValue(2) +/// 2 | torch::nn::AnyValue(3.0) +/// ---------------------------------------------------------------- +/// Thus we pass the following arguments to the `FORWARD_HAS_DEFAULT_ARGS` +/// macro: +/// */ +/// FORWARD_HAS_DEFAULT_ARGS({1, torch::nn::AnyValue(2)}, {2, +/// torch::nn::AnyValue(3.0)}) +/// private: +/// int value; +/// }; +/// TORCH_MODULE(M); +/// ``` +/// Now, running the following would work: +/// ``` +/// torch::nn::Sequential seq(M(1)); +/// seq->forward(1); // This correctly populates the default arguments for +/// `MImpl::forward` +/// ``` +#define FORWARD_HAS_DEFAULT_ARGS(...) \ + template \ + friend struct torch::nn::AnyModuleHolder; \ + bool _forward_has_default_args() override { \ + return true; \ + } \ + unsigned int _forward_num_required_args() override { \ + std::pair args_info[] = {__VA_ARGS__}; \ + return args_info[0].first; \ + } \ + std::vector _forward_populate_default_args( \ + std::vector&& arguments) override { \ + std::pair args_info[] = {__VA_ARGS__}; \ + unsigned int num_all_args = std::rbegin(args_info)->first + 1; \ + TORCH_INTERNAL_ASSERT( \ + arguments.size() >= _forward_num_required_args() && \ + arguments.size() <= num_all_args); \ + std::vector ret = std::move(arguments); \ + ret.reserve(num_all_args); \ + for (auto& arg_info : args_info) { \ + if (arg_info.first > ret.size() - 1) \ + ret.emplace_back(std::move(arg_info.second)); \ + } \ + return ret; \ + } diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/any.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/any.h new file mode 100644 index 0000000000000000000000000000000000000000..05983b1ea1064c5b1c025931f5f3e53a8dda7f8e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/any.h @@ -0,0 +1,372 @@ +#pragma once + +#include +#include +#include +#include +#include +#include + +#include +#include + +#include + +#include +#include +#include +#include +#include + +namespace torch { +namespace nn { + +/// Stores a type erased `Module`. +/// +/// The PyTorch C++ API does not impose an interface on the signature of +/// `forward()` in `Module` subclasses. This gives you complete freedom to +/// design your `forward()` methods to your liking. However, this also means +/// there is no unified base type you could store in order to call `forward()` +/// polymorphically for any module. This is where the `AnyModule` comes in. +/// Instead of inheritance, it relies on type erasure for polymorphism. +/// +/// An `AnyModule` can store any `nn::Module` subclass that provides a +/// `forward()` method. This `forward()` may accept any types and return any +/// type. Once stored in an `AnyModule`, you can invoke the underlying module's +/// `forward()` by calling `AnyModule::forward()` with the arguments you would +/// supply to the stored module (though see one important limitation below). +/// Example: +/// +/// \rst +/// .. code-block:: cpp +/// +/// struct GenericTrainer { +/// torch::nn::AnyModule module; +/// +/// void train(torch::Tensor input) { +/// module.forward(input); +/// } +/// }; +/// +/// GenericTrainer trainer1{torch::nn::Linear(3, 4)}; +/// GenericTrainer trainer2{torch::nn::Conv2d(3, 4, 2)}; +/// \endrst +/// +/// As `AnyModule` erases the static type of the stored module (and its +/// `forward()` method) to achieve polymorphism, type checking of arguments is +/// moved to runtime. That is, passing an argument with an incorrect type to an +/// `AnyModule` will compile, but throw an exception at runtime: +/// +/// \rst +/// .. code-block:: cpp +/// +/// torch::nn::AnyModule module(torch::nn::Linear(3, 4)); +/// // Linear takes a tensor as input, but we are passing an integer. +/// // This will compile, but throw a `torch::Error` exception at runtime. +/// module.forward(123); +/// \endrst +/// +/// \rst +/// .. attention:: +/// One noteworthy limitation of `AnyModule` is that its `forward()` method +/// does not support implicit conversion of argument types. For example, if +/// the stored module's `forward()` method accepts a `float` and you call +/// `any_module.forward(3.4)` (where `3.4` is a `double`), this will throw +/// an exception. +/// \endrst +/// +/// The return type of the `AnyModule`'s `forward()` method is controlled via +/// the first template argument to `AnyModule::forward()`. It defaults to +/// `torch::Tensor`. To change it, you can write `any_module.forward()`, +/// for example. +/// +/// \rst +/// .. code-block:: cpp +/// +/// torch::nn::AnyModule module(torch::nn::Linear(3, 4)); +/// auto output = module.forward(torch::ones({2, 3})); +/// +/// struct IntModule { +/// int forward(int x) { return x; } +/// }; +/// torch::nn::AnyModule module(IntModule{}); +/// int output = module.forward(5); +/// \endrst +/// +/// The only other method an `AnyModule` provides access to on the stored +/// module is `clone()`. However, you may acquire a handle on the module via +/// `.ptr()`, which returns a `shared_ptr`. Further, if you know +/// the concrete type of the stored module, you can get a concrete handle to it +/// using `.get()` where `T` is the concrete module type. +/// +/// \rst +/// .. code-block:: cpp +/// +/// torch::nn::AnyModule module(torch::nn::Linear(3, 4)); +/// std::shared_ptr ptr = module.ptr(); +/// torch::nn::Linear linear(module.get()); +/// \endrst +class AnyModule { + public: + /// A default-constructed `AnyModule` is in an empty state. + AnyModule() = default; + + /// Constructs an `AnyModule` from a `shared_ptr` to concrete module object. + template + explicit AnyModule(std::shared_ptr module); + + /// Constructs an `AnyModule` from a concrete module object. + template < + typename ModuleType, + typename = torch::detail::enable_if_module_t> + explicit AnyModule(ModuleType&& module); + + /// Constructs an `AnyModule` from a module holder. + template + explicit AnyModule(const ModuleHolder& module_holder); + + /// Move construction and assignment is allowed, and follows the default + /// behavior of move for `std::unique_ptr`. + AnyModule(AnyModule&&) = default; + AnyModule& operator=(AnyModule&&) = default; + + /// Creates a shallow copy of an `AnyModule`. + AnyModule(const AnyModule& other); + AnyModule& operator=(const AnyModule& other); + + /// Creates a deep copy of an `AnyModule` if it contains a module, else an + /// empty `AnyModule` if it is empty. + AnyModule clone(optional device = nullopt) const; + + /// Assigns a module to the `AnyModule` (to circumvent the explicit + /// constructor). + template + AnyModule& operator=(std::shared_ptr module); + + /// Invokes `forward()` on the contained module with the given arguments, and + /// returns the return value as an `AnyValue`. Use this method when chaining + /// `AnyModule`s in a loop. + template + AnyValue any_forward(ArgumentTypes&&... arguments); + + /// Invokes `forward()` on the contained module with the given arguments, and + /// casts the returned `AnyValue` to the supplied `ReturnType` (which defaults + /// to `torch::Tensor`). + template + ReturnType forward(ArgumentTypes&&... arguments); + + /// Attempts to cast the underlying module to the given module type. Throws an + /// exception if the types do not match. + template > + T& get(); + + /// Attempts to cast the underlying module to the given module type. Throws an + /// exception if the types do not match. + template > + const T& get() const; + + /// Returns the contained module in a `nn::ModuleHolder` subclass if possible + /// (i.e. if `T` has a constructor for the underlying module type). + template + T get() const; + + /// Returns a `std::shared_ptr` whose dynamic type is that of the underlying + /// module. + std::shared_ptr ptr() const; + + /// Like `ptr()`, but casts the pointer to the given type. + template > + std::shared_ptr ptr() const; + + /// Returns the `type_info` object of the contained value. + const std::type_info& type_info() const; + + /// Returns true if the `AnyModule` does not contain a module. + bool is_empty() const noexcept; + + private: + /// Creates a `unique_ptr` pointing to a + /// `AnyModuleHolder` of the correct type. This method is used to deduce the + /// arguments of the module's `forward()` method. + template < + typename ModuleType, + typename Class, + typename ReturnType, + typename... ArgumentTypes> + std::unique_ptr make_holder( + std::shared_ptr&& module, + ReturnType (Class::*)(ArgumentTypes...)); + + /// Helper method invoked by const and non-const `get()`. + template + ModuleType& get_(ReturnType (ModuleType::*)(ArgumentTypes...)) const; + + /// Helper method invoked by const and non-const `get()`. + template + ModuleType& get_() const; + + /// The type erased module. + std::unique_ptr content_; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AnyModule ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +template +AnyModule::AnyModule(std::shared_ptr module) + : content_(make_holder( + std::move(module), + &std::remove_reference::type::forward)) { + // `AnyModule` can only store an `nn::Module` subclass object that provides + // a `forward()` method that has a non-templatized return type. + // (e.g. `AnyModule` cannot store `nn::Sequential`, because `nn::Sequential`'s + // `forward()` method has a templatized return type.) + static_assert( + torch::detail::is_module::value, + "Can only store object derived from nn::Module into AnyModule"); + static_assert( + torch::detail::has_forward::value, + "Can only store module with a forward() method that has a non-templatized" + " argument type and return type into AnyModule (e.g. we cannot store nn::Sequential" + "into AnyModule, because its forward() method's argument type and return type are templatized." + " If you need to use nn::Sequentials inside each other you can subclass " + "nn::Sequential and write a non-templatized forward function for it. You can checkout " + "https://github.com/pytorch/vision/blob/2f46070f3cb1ea894d82578f3dc5677f82f34958/torchvision/csrc/models/mnasnet.cpp#L59 " + "for an example on how to do this.)."); +} + +template +AnyModule::AnyModule(ModuleType&& module) + : AnyModule( + std::make_shared(std::forward(module))) {} + +template +AnyModule::AnyModule(const ModuleHolder& module_holder) + : AnyModule(module_holder.ptr()) {} + +inline AnyModule::AnyModule(const AnyModule& other) + : content_(other.content_ ? other.content_->copy() : nullptr) {} + +inline AnyModule& AnyModule::operator=(const AnyModule& other) { + if (this != &other) { + content_ = other.content_ ? other.content_->copy() : nullptr; + } + return *this; +} + +inline AnyModule AnyModule::clone(optional device) const { + AnyModule clone; + clone.content_ = content_ ? content_->clone_module(device) : nullptr; + return clone; +} + +template +AnyModule& AnyModule::operator=(std::shared_ptr module) { + // NOLINTNEXTLINE(cppcoreguidelines-c-copy-assignment-signature) + return (*this = AnyModule(std::move(module))); +} + +template +AnyValue AnyModule::any_forward(ArgumentTypes&&... arguments) { + TORCH_CHECK(!is_empty(), "Cannot call forward() on an empty AnyModule"); + std::vector values; + values.reserve(sizeof...(ArgumentTypes)); + torch::apply( + [&values](AnyValue&& value) { values.push_back(std::move(value)); }, + AnyValue(std::forward(arguments))...); + return content_->forward(std::move(values)); +} + +template +ReturnType AnyModule::forward(ArgumentTypes&&... arguments) { + return any_forward(std::forward(arguments)...) + .template get(); +} + +template +T& AnyModule::get() { + TORCH_CHECK(!is_empty(), "Cannot call get() on an empty AnyModule"); + return get_(); +} + +template +const T& AnyModule::get() const { + TORCH_CHECK(!is_empty(), "Cannot call get() on an empty AnyModule"); + return get_(); +} + +template +T AnyModule::get() const { + return T(ptr()); +} + +inline std::shared_ptr AnyModule::ptr() const { + TORCH_CHECK(!is_empty(), "Cannot call ptr() on an empty AnyModule"); + return content_->ptr(); +} + +template +std::shared_ptr AnyModule::ptr() const { + TORCH_CHECK(!is_empty(), "Cannot call ptr() on an empty AnyModule"); + // Call get() but discard the value, just to do the type checking. + get_(); + return std::dynamic_pointer_cast(ptr()); +} + +inline const std::type_info& AnyModule::type_info() const { + TORCH_CHECK(!is_empty(), "Cannot call type_info() on an empty AnyModule"); + return content_->type_info; +} + +inline bool AnyModule::is_empty() const noexcept { + return content_ == nullptr; +} + +// Private Methods + +template < + typename ModuleType, + typename Class, + typename ReturnType, + typename... ArgumentTypes> +std::unique_ptr AnyModule::make_holder( + std::shared_ptr&& module, + ReturnType (Class::*)(ArgumentTypes...)) { + static_assert( + torch::detail::check_not_lvalue_references(), + "Modules stored inside AnyModule must not take references. " + "Use pointers instead."); + static_assert( + !std::is_void::value, + "AnyModule cannot store modules that return void " + "(you can return a dummy value)."); + return std::make_unique< + AnyModuleHolder, ArgumentTypes...>>( + std::move(module)); +} + +template +ModuleType& AnyModule::get_() const { + using M = typename std::remove_reference::type; + static_assert( + torch::detail::has_forward::value, + "Can only call AnyModule::get with a type T that has a forward method"); + return get_(&M::forward); +} + +template +ModuleType& AnyModule::get_( + ReturnType (ModuleType::*)(ArgumentTypes...)) const { + if (typeid(ModuleType).hash_code() == type_info().hash_code()) { + return *static_cast&>( + *content_) + .module; + } + AT_ERROR( + "Attempted to cast module of type ", + c10::demangle(type_info().name()), + " to type ", + c10::demangle(typeid(ModuleType).name())); +} + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/any_module_holder.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/any_module_holder.h new file mode 100644 index 0000000000000000000000000000000000000000..cd1dca9ff7a0ad235c024df08107c7d856e6756c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/any_module_holder.h @@ -0,0 +1,133 @@ +#pragma once + +#include + +namespace torch { +namespace nn { + +class Module; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~ AnyModulePlaceholder ~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// The static type of the object we store in the `AnyModule`, which erases +/// the actual type, but allows us to call `forward()` on the underlying +/// module. +struct AnyModulePlaceholder : public AnyValue::Placeholder { + using AnyValue::Placeholder::Placeholder; + + /// The "erased" `forward()` method. + virtual AnyValue forward(std::vector&& arguments) = 0; + + /// Returns std::shared_ptr pointing to the erased module. + virtual std::shared_ptr ptr() = 0; + + /// Returns a `AnyModulePlaceholder` with a shallow copy of this `AnyModule`. + virtual std::unique_ptr copy() const = 0; + + /// Returns a `AnyModulePlaceholder` with a deep copy of this `AnyModule`. + virtual std::unique_ptr clone_module( + optional device) const = 0; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AnyModuleHolder ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// The dynamic type of the object stored in the `AnyModule`. It contains the +/// concrete instance to which all calls are forwarded. It is parameterized +/// over the concrete type of the module, and the types of the arguments the +/// module takes in its `forward()` method. +template +struct AnyModuleHolder : public AnyModulePlaceholder { + /// \internal + struct CheckedGetter { + template + decay_t&& operator()(size_t index) { + AT_ASSERT(index < arguments_.size()); + auto& value = arguments_[index]; + if (auto* maybe_value = value.template try_get>()) { + return std::move(*maybe_value); + } + AT_ERROR( + "Expected argument #", + index, + " to be of type ", + c10::demangle(typeid(T).name()), + ", but received value of type ", + c10::demangle(value.type_info().name())); + } + std::vector& arguments_; + }; + + /// \internal + struct InvokeForward { + template + AnyValue operator()(Ts&&... ts) { + return AnyValue(module_->forward(std::forward(ts)...)); + } + std::shared_ptr& module_; + }; + + /// Constructs the `AnyModuleHolder` from a concrete module. + explicit AnyModuleHolder(std::shared_ptr&& module_) + : AnyModulePlaceholder(typeid(ModuleType)), module(std::move(module_)) {} + + /// Calls `forward()` on the underlying module, casting each `AnyValue` in the + /// argument vector to a concrete value. + AnyValue forward(std::vector&& arguments) override { + if (module->_forward_has_default_args()) { + TORCH_CHECK( + arguments.size() >= module->_forward_num_required_args() && + arguments.size() <= sizeof...(ArgumentTypes), + c10::demangle(type_info.name()), + "'s forward() method expects at least ", + module->_forward_num_required_args(), + " argument(s) and at most ", + sizeof...(ArgumentTypes), + " argument(s), but received ", + arguments.size(), + "."); + arguments = std::move( + module->_forward_populate_default_args(std::move(arguments))); + } else { + std::string use_default_args_macro_prompt = " If " + + c10::demangle(type_info.name()) + + "'s forward() method has default arguments, " + + "please make sure the forward() method is declared with a corresponding `FORWARD_HAS_DEFAULT_ARGS` macro."; + TORCH_CHECK( + arguments.size() == sizeof...(ArgumentTypes), + c10::demangle(type_info.name()), + "'s forward() method expects ", + sizeof...(ArgumentTypes), + " argument(s), but received ", + arguments.size(), + ".", + (arguments.size() < sizeof...(ArgumentTypes)) + ? use_default_args_macro_prompt + : ""); + } + + // FYI: During invocation of a module's `forward()` method, the values live + // in the `arguments` vector inside this function. + return torch::unpack( + InvokeForward{module}, CheckedGetter{arguments}); + } + + std::shared_ptr ptr() override { + return module; + } + + std::unique_ptr copy() const override { + return std::make_unique(*this); + } + + std::unique_ptr clone_module( + optional device) const override { + return std::make_unique( + std::dynamic_pointer_cast(module->clone(device))); + } + + /// The actual concrete module instance. + std::shared_ptr module; +}; + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/any_value.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/any_value.h new file mode 100644 index 0000000000000000000000000000000000000000..3e6c23ef977ca88237b2999a43eaa08309a43c29 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/any_value.h @@ -0,0 +1,124 @@ +#pragma once + +#include +#include +#include +#include + +#include +#include + +#include +#include +#include +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AnyValue ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// An implementation of `std::any` which stores +/// a type erased object, whose concrete value can be retrieved at runtime by +/// checking if the `typeid()` of a requested type matches the `typeid()` of +/// the object stored. +class AnyValue { + public: + /// Move construction and assignment is allowed, and follows the default + /// behavior of move for `std::unique_ptr`. + AnyValue(AnyValue&&) = default; + AnyValue& operator=(AnyValue&&) = default; + + /// Copy construction and assignment is allowed. + AnyValue(const AnyValue& other) : content_(other.content_->clone()) {} + AnyValue& operator=(const AnyValue& other) { + content_ = other.content_->clone(); + return *this; + } + + /// Constructs the `AnyValue` from value type. + template + // NOLINTNEXTLINE(bugprone-forwarding-reference-overload) + explicit AnyValue(T&& value) + : content_(std::make_unique>>(std::forward(value))) { + } + + /// Returns a pointer to the value contained in the `AnyValue` if the type + /// passed as template parameter matches the type of the value stored, and + /// returns a null pointer otherwise. + template + T* try_get() { + static_assert( + !std::is_reference::value, + "AnyValue stores decayed types, you cannot cast it to a reference type"); + static_assert( + !std::is_array::value, + "AnyValue stores decayed types, you must cast it to T* instead of T[]"); + if (typeid(T).hash_code() == type_info().hash_code()) { + return &static_cast&>(*content_).value; + } + return nullptr; + } + + /// Returns the value contained in the `AnyValue` if the type passed as + /// template parameter matches the type of the value stored, and throws an + /// exception otherwise. + template + T get() { + if (auto* maybe_value = try_get()) { + return *maybe_value; + } + AT_ERROR( + "Attempted to cast AnyValue to ", + c10::demangle(typeid(T).name()), + ", but its actual type is ", + c10::demangle(type_info().name())); + } + + /// Returns the `type_info` object of the contained value. + const std::type_info& type_info() const noexcept { + return content_->type_info; + } + + private: + friend struct AnyModulePlaceholder; + friend struct TestAnyValue; + + /// \internal + /// The static type of the object we store in the `AnyValue`, which erases the + /// actual object's type, allowing us only to check the `type_info` of the + /// type stored in the dynamic type. + struct Placeholder { + explicit Placeholder(const std::type_info& type_info_) noexcept + : type_info(type_info_) {} + Placeholder(const Placeholder&) = default; + Placeholder(Placeholder&&) = default; + virtual ~Placeholder() = default; + virtual std::unique_ptr clone() const { + TORCH_CHECK(false, "clone() should only be called on `AnyValue::Holder`"); + } + const std::type_info& type_info; + }; + + /// \internal + /// The dynamic type of the object we store in the `AnyValue`, which hides the + /// actual object we have erased in this `AnyValue`. + template + struct Holder : public Placeholder { + /// A template because T&& would not be universal reference here. + template + // NOLINTNEXTLINE(bugprone-forwarding-reference-overload) + explicit Holder(U&& value_) noexcept + : Placeholder(typeid(T)), value(std::forward(value_)) {} + std::unique_ptr clone() const override { + return std::make_unique>(value); + } + T value; + }; + + /// The type erased object. + std::unique_ptr content_; +}; + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/functional.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/functional.h new file mode 100644 index 0000000000000000000000000000000000000000..dbd2b0aaebdcce8d2ff39e1fa77576008fbb9bba --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/functional.h @@ -0,0 +1,105 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include +#include + +namespace torch { +namespace nn { + +/// Wraps a function in a `Module`. +/// +/// The `Functional` module allows wrapping an arbitrary function or function +/// object in an `nn::Module`. This is primarily handy for usage in +/// `Sequential`. +/// +/// \rst +/// .. code-block:: cpp +/// +/// Sequential sequential( +/// Linear(3, 4), +/// Functional(torch::relu), +/// BatchNorm1d(3), +/// Functional(torch::elu, /*alpha=*/1)); +/// \endrst +/// +/// While a `Functional` module only accepts a single `Tensor` as input, it is +/// possible for the wrapped function to accept further arguments. However, +/// these have to be bound *at construction time*. For example, if +/// you want to wrap `torch::leaky_relu`, which accepts a `slope` scalar as its +/// second argument, with a particular value for its `slope` in a `Functional` +/// module, you could write +/// +/// \rst +/// .. code-block:: cpp +/// +/// Functional(torch::leaky_relu, /*slope=*/0.5) +/// \endrst +/// +/// The value of `0.5` is then stored within the `Functional` object and +/// supplied to the function call at invocation time. Note that such bound +/// values are evaluated eagerly and stored a single time. See the documentation +/// of [std::bind](https://en.cppreference.com/w/cpp/utility/functional/bind) +/// for more information on the semantics of argument binding. +/// +/// \rst +/// .. attention:: +/// After passing any bound arguments, the function must accept a single +/// tensor and return a single tensor. +/// \endrst +/// +/// Note that `Functional` overloads the call operator (`operator()`) such that +/// you can invoke it with `my_func(...)`. +class TORCH_API FunctionalImpl : public torch::nn::Cloneable { + public: + using Function = std::function; + + /// Constructs a `Functional` from a function object. + explicit FunctionalImpl(Function function); + + template < + typename SomeFunction, + typename... Args, + typename = torch::enable_if_t<(sizeof...(Args) > 0)>> + explicit FunctionalImpl(SomeFunction original_function, Args&&... args) + // NOLINTNEXTLINE(modernize-avoid-bind) + : function_(std::bind( + original_function, + /*input=*/std::placeholders::_1, + std::forward(args)...)) { + // std::bind is normally evil, but (1) gcc is broken w.r.t. handling + // parameter pack expansion in lambdas and (2) moving parameter packs into + // a lambda only works with C++14, so std::bind is the more move-aware + // solution here. + } + + void reset() override; + + /// Pretty prints the `Functional` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// Forwards the `input` tensor to the underlying (bound) function object. + Tensor forward(Tensor input); + + /// Calls forward(input). + Tensor operator()(Tensor input); + + bool is_serializable() const override; + + private: + Function function_; +}; + +/// A `ModuleHolder` subclass for `FunctionalImpl`. +/// See the documentation for `FunctionalImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Functional); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/moduledict.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/moduledict.h new file mode 100644 index 0000000000000000000000000000000000000000..1f7fffa5919fd471414534971e84e683301b98de --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/moduledict.h @@ -0,0 +1,262 @@ +#pragma once + +#include +#include +#include +#include + +namespace torch { +namespace nn { + +/// An OrderedDict of `Module`s that registers its elements by their `key`s. +/// +/// \rst +/// .. code-block:: cpp +/// +/// torch::OrderedDict> ordereddict = { +/// {"linear", Linear(10, 3).ptr()}, +/// {"conv", Conv2d(1, 2, 3).ptr()}, +/// {"dropout", Dropout(0.5).ptr()}, +/// }; +/// torch::nn::ModuleDict dict1(ordereddict); +/// +/// for (const auto &module : *dict1) { +/// module->pretty_print(std::cout); +/// } +/// +/// std::vector>> list = { +/// {"linear", Linear(10, 3).ptr()}, +/// {"conv", Conv2d(1, 2, 3).ptr()}, +/// {"dropout", Dropout(0.5).ptr()}, +/// }; +/// torch::nn::ModuleDict dict2(list); +/// +/// for (const auto &module : *dict2) { +/// module->pretty_print(std::cout); +/// } +/// +/// \endrst +/// +/// Why should you use `ModuleDict` instead of a simple `map` or `OrderedDict`? +/// The value a `ModuleDict` provides over manually calling an ordered map of +/// modules is that it allows treating the whole container *as a single module*, +/// such that performing a transformation on the `ModuleDict` applies to each of +/// the modules it stores (which are each a registered submodule of the +/// `ModuleDict`). For example, calling `.to(torch::kCUDA)` on a `ModuleDict` +/// will move each module in the map to CUDA memory. For example: +/// +/// \rst +/// .. code-block:: cpp +/// +/// torch::OrderedDict> ordereddict = { +/// {"linear", Linear(10, 3).ptr()}, +/// {"conv", Conv2d(1, 2, 3).ptr()}, +/// {"dropout", Dropout(0.5).ptr()}, +/// }; +/// torch::nn::ModuleDict dict(ordereddict); +/// +/// // Convert all modules to CUDA. +/// dict->to(torch::kCUDA); +/// +/// \endrst +/// +/// Finally, `ModuleDict` provides a lightweight container API, such as allowing +/// iteration over submodules, positional access, adding new modules from a +/// vector of key-module pairs or an `OrderedDict` or another `ModuleDict` after +/// construction via `update`. +class ModuleDictImpl : public Cloneable { + public: + using Iterator = + torch::OrderedDict>::Iterator; + using ConstIterator = + torch::OrderedDict>::ConstIterator; + + ModuleDictImpl() = default; + + /// Constructs the `ModuleDict` from a list of string-Module pairs. + explicit ModuleDictImpl( + const std::vector>>& + modules) { + update(modules); + } + + /// Constructs the `ModuleDict` from an `OrderedDict`. + explicit ModuleDictImpl( + const torch::OrderedDict>& modules) { + update(modules); + } + + /// Return the items in the `ModuleDict`. + std::vector>> items() const { + return modules_.pairs(); + } + + /// Return the keys in the `ModuleDict`. + std::vector keys() const { + return modules_.keys(); + } + + /// Return the values in the `ModuleDict`. + std::vector> values() const { + return modules_.values(); + } + + /// Return an iterator to the start of `ModuleDict`. + Iterator begin() { + return modules_.begin(); + } + + /// Return a const iterator to the start of `ModuleDict`. + ConstIterator begin() const { + return modules_.begin(); + } + + /// Return an iterator to the end of `ModuleDict`. + Iterator end() { + return modules_.end(); + } + + /// Return a const iterator to the end of `ModuleDict`. + ConstIterator end() const { + return modules_.end(); + } + + /// Return the number of items currently stored in the `ModuleDict`. + size_t size() const noexcept { + return modules_.size(); + } + + /// Return true if the `ModuleDict` is empty, otherwise return false. + bool empty() const noexcept { + return modules_.is_empty(); + } + + /// Check if the centain parameter with the key in the `ModuleDict`. + bool contains(const std::string& key) const noexcept { + return modules_.contains(key); + } + + /// Remove all items from the `ModuleDict`. + void clear() { + // Not remove the registration of modules to make it consistent with python + // version. + modules_.clear(); + } + + /// Special cloning function for `ModuleDict` because it does not use + /// `reset()`. + std::shared_ptr clone( + const optional& device = nullopt) const override { + auto clone = std::make_shared(); + for (const auto& module : modules_) { + clone->insert(module.key(), module.value()->clone(device)); + } + return clone; + } + + /// `reset()` is empty for `ModuleDict`, since it does not have parameters of + /// its own. + void reset() override {} + + /// Pretty prints the `ModuleDict` into the given `stream`. + void pretty_print(std::ostream& stream) const override { + stream << "torch::nn::ModuleDict"; + } + + /// Attempts to returns the `Module` associated with the given `key`. Throws + /// an exception if no such `key` is stored in the `ModuleDict`. Check + /// contains(key) before for a non-throwing way of access. + std::shared_ptr operator[](const std::string& key) const { + return modules_[key]; + } + + /// Attempts to return the module at the given key as the requested type. + /// Throws an exception if no such `key` is stored in the `ModuleDict`. + /// Check contains(key) before for a non-throwing way of access. + template + T& at(const std::string& key) { + static_assert( + torch::detail::is_module::value, + "Can only call ModuleList::at with an nn::Module type"); + auto module = modules_[key]->as(); + TORCH_CHECK( + module, + "Unable to cast module[", + key, + "] to ", + c10::demangle(typeid(T).name())); + return *module; + } + + /// Attempts to return the module at the given key as the requested type. + /// Throws an exception if no such `key` is stored in the `ModuleDict`. + /// Check contains(key) before for a non-throwing way of access. + template + const T& at(const std::string& key) const { + static_assert( + torch::detail::is_module::value, + "Can only call ModuleList::at with an nn::Module type"); + const auto module = modules_[key]->as(); + TORCH_CHECK( + module, + "Unable to cast module[", + key, + "] to ", + c10::demangle(typeid(T).name())); + return *module; + } + + /// Removes and returns the `Module` associated with the given `key`. + /// Throws an exception if no such `key` is stored in the `ModuleDict`. + /// Check contains(key) before for a non-throwing way of access. + std::shared_ptr pop(const std::string& key) { + auto module = modules_[key]; + modules_.erase(key); + // Not remove the registration of the module to make it consistent with + // python version. + return module; + } + + /// Updated the `ModuleDict` with a vector of key-module pairs. + void update( + const std::vector>>& + modules) { + for (auto& item : modules) { + insert(item.first, item.second); + } + } + + /// Updated the `ModuleDict` with key-value pairs from `OrderedDict` or + /// `ModuleDict`. + template + void update(const Container& container) { + for (auto& item : container) { + insert(item.key(), item.value()); + } + } + + private: + /// Private `OrderedDict` holding the key-Module pairs. + torch::OrderedDict> modules_; + + /// Insert a key-module pair by overwriting existing keys, + /// and register or replace the `Module`. + void insert(const std::string& key, std::shared_ptr module) { + if (contains(key)) { + modules_[key] = std::move(module); + replace_module(key, modules_[key]); + } else { + modules_.insert(key, std::move(module)); + register_module(key, modules_.back().value()); + } + } +}; + +/// A `ModuleHolder` subclass for `ModuleDictImpl`. +/// See the documentation for `ModuleDictImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(ModuleDict); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/modulelist.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/modulelist.h new file mode 100644 index 0000000000000000000000000000000000000000..72a76163ac0344d3a81737e185160c9007b2f70d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/modulelist.h @@ -0,0 +1,274 @@ +#pragma once + +#include +#include +#include + +#include +#include + +namespace torch { +namespace nn { + +/// A list of `Module`s that registers its elements. +/// +/// \rst +/// .. code-block:: cpp +/// +/// torch::nn::ModuleList mlist( +/// torch::nn::Linear(3, 4), +/// torch::nn::BatchNorm1d(4), +/// torch::nn::Dropout(0.5) +/// ); +/// +/// for (const auto &module : *mlist) { +/// module->pretty_print(std::cout); +/// } +/// +/// \endrst +/// +/// Why should you use `ModuleList` instead of a simple `std::vector`? The value +/// a `ModuleList` provides over manually calling a sequence of modules is that +/// it allows treating the whole container *as a single module*, such that +/// performing a transformation on the `ModuleList` applies to each of the +/// modules it stores (which are each a registered submodule of the +/// `ModuleList`). For example, calling +/// `.to(torch::kCUDA)` on a `ModuleList` will move each module in the list to +/// CUDA memory. For example: +/// +/// \rst +/// .. code-block:: cpp +/// +/// torch::nn::ModuleList mlist( +/// torch::nn::Linear(3, 4), +/// torch::nn::BatchNorm1d(4), +/// torch::nn::Dropout(0.5) +/// ); +/// +/// // Convert all modules to CUDA. +/// mlist->to(torch::kCUDA); +/// +/// \endrst +/// +/// Finally, `ModuleList` provides a lightweight container API, such as allowing +/// iteration over submodules, positional access, adding a new module after +/// construction via `push_back`, as well as joining two `ModuleList`s via +/// `extend`. +class ModuleListImpl : public Cloneable { + public: + using Iterator = std::vector>::iterator; + using ConstIterator = std::vector>::const_iterator; + + ModuleListImpl() = default; + + /// Constructs the `ModuleList` from a variadic list of modules. + template + explicit ModuleListImpl(Modules&&... modules) { + modules_.reserve(sizeof...(Modules)); + push_back_var(std::forward(modules)...); + } + + /// Special cloning function for `ModuleList` because it does not use + /// `reset()`. + std::shared_ptr clone( + const optional& device = nullopt) const override { + auto clone = std::make_shared(); + for (const auto& module : modules_) { + clone->push_back(module->clone(device)); + } + return clone; + } + + /// `reset()` is empty for `ModuleList`, since it does not have parameters of + /// its own. + void reset() override {} + + /// Pretty prints the `ModuleList` module into the given `stream`. + void pretty_print(std::ostream& stream) const override { + stream << "torch::nn::ModuleList"; + } + + void push_back(std::shared_ptr module) { + modules_.push_back(std::move(module)); + const auto index = modules_.size() - 1; + register_module(c10::to_string(index), modules_[index]); + } + + /// Adds a new `Module` to the `ModuleList` container, moving or copying + /// it into a `shared_ptr` internally. This method allows passing value types, + /// and letting the container deal with the boxing. + template > + void push_back(M&& module) { + using Type = typename std::remove_reference::type; + push_back(std::make_shared(std::forward(module))); + } + + /// Unwraps the contained module of a `ModuleHolder` and adds it to the + /// `ModuleList`. + template + void push_back(const ModuleHolder& module_holder) { + push_back(module_holder.ptr()); + } + + /// Iterates over the container and calls `push_back()` on each value. + template + void extend(const Container& container) { + for (const auto& module : container) { + push_back(module); + } + } + + /// Returns an iterator to the start of the `ModuleList`. + Iterator begin() { + return modules_.begin(); + } + + /// Returns a const iterator to the start of the `ModuleList`. + ConstIterator begin() const { + return modules_.begin(); + } + + /// Returns an iterator to the end of the `ModuleList`. + Iterator end() { + return modules_.end(); + } + + /// Returns a const iterator to the end of the `ModuleList`. + ConstIterator end() const { + return modules_.end(); + } + + /// Attempts to return the module at the given index as the requested type. + /// Throws an exception if the index is out of bounds or the types do not + /// match. + template + T& at(size_t index) { + static_assert( + torch::detail::is_module::value, + "Can only call ModuleList::at with an nn::Module type"); + TORCH_CHECK(index < size(), "Index out of range"); + auto module = modules_[index]->as(); + TORCH_CHECK( + module, + "Unable to cast module[", + index, + "] to ", + c10::demangle(typeid(T).name())); + return *module; + } + + /// Attempts to return the module at the given index as the requested type. + /// Throws an exception if the index is out of bounds or the types do not + /// match. + template + const T& at(size_t index) const { + static_assert( + torch::detail::is_module::value, + "Can only call ModuleList::at with an nn::Module type"); + TORCH_CHECK(index < size(), "Index out of range"); + const auto module = modules_[index]->as(); + TORCH_CHECK( + module, + "Unable to cast module[", + index, + "] to ", + c10::demangle(typeid(T).name())); + return *module; + } + + /// Attempts to return a `std::shared_ptr` whose dynamic type is that of the + /// underlying module at the given index. Throws an exception if the index is + /// out of bounds. + std::shared_ptr ptr(size_t index) const { + TORCH_CHECK(index < size(), "Index out of range"); + return modules_[index]; + } + + /// Attempts to return a `std::shared_ptr` whose type is the one provided. + /// Throws an exception if the index is out of bounds or the types do not + /// match. + template + std::shared_ptr ptr(size_t index) const { + static_assert( + torch::detail::is_module::value, + "Can only call ModuleList::ptr with an nn::Module type"); + TORCH_CHECK(index < size(), "Index out of range"); + return std::dynamic_pointer_cast(modules_[index]); + } + + /// Like `ptr(index)`. + std::shared_ptr operator[](size_t index) const { + // This is the only method we can call without a type. + return ptr(index); + } + + /// The current size of the `ModuleList` container. + size_t size() const noexcept { + return modules_.size(); + } + + /// True if there are no modules in the `ModuleList`. + bool is_empty() const noexcept { + return size() == 0; + } + + void insert(size_t index, std::shared_ptr module) { + TORCH_CHECK(index <= size(), "Index out of range"); + + if (index == size()) + push_back(std::move(module)); + else { + modules_.insert( + modules_.begin() + Iterator::difference_type(index), + std::move(module)); + + for (const auto i : c10::irange(index, size() - 1)) { + (void)i; // Suppress unused variable warning + replace_module(c10::to_string(index), modules_[index]); + } + register_module(c10::to_string(size() - 1), modules_.back()); + } + } + + /// Unwraps the contained module of a `ModuleHolder` and inserts it in the + /// `ModuleList`. + template + void insert(size_t index, const ModuleHolder& module_holder) { + insert(index, module_holder.ptr()); + } + + /// inserts a new `Module` to the `ModuleList` container, moving or copying + /// it into a `shared_ptr` internally. This method allows passing value types, + /// and letting the container deal with the boxing. + template > + void insert(size_t index, M&& module) { + using Type = typename std::remove_reference::type; + insert(index, std::make_shared(std::forward(module))); + } + + private: + template + void push_back_var(Head&& head, Tail&&... tail) { + push_back(std::forward(head)); + // Recursively calls this method, until the parameter pack only thas this + // entry left. Then calls `push_back()` a final time (above). + push_back_var(std::forward(tail)...); + } + + /// The base case, when the list of modules is empty. + void push_back_var() {} + + // Box the AnyModules to give ModuleList reference semantics, like the rest of + // the API. Note that this is not required otherwise, this could just be a + // `vector`. + std::vector> modules_; +}; + +/// A `ModuleHolder` subclass for `ModuleListImpl`. +/// See the documentation for `ModuleListImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(ModuleList); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/named_any.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/named_any.h new file mode 100644 index 0000000000000000000000000000000000000000..00d39de17f4012cbfb9aa4e56327d26c66f33bc2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/named_any.h @@ -0,0 +1,94 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include +#include + +#include + +#include +#include +#include +#include +#include +#include + +namespace torch { +namespace nn { + +/// Stores a type erased `Module` with name. +/// +/// The `NamedAnyModule` class enables the following API for constructing +/// `nn::Sequential` with named submodules: +/// \rst +/// .. code-block:: cpp +/// +/// struct M : torch::nn::Module { +/// explicit M(int value_) : value(value_) {} +/// int value; +/// int forward() { +/// return value; +/// } +/// }; +/// +/// Sequential sequential({ +/// {"m1", std::make_shared(1)}, // shared pointer to `Module` is +/// supported {std::string("m2"), M(2)}, // `Module` is supported +/// {"linear1", Linear(10, 3)} // `ModuleHolder` is supported +/// }); +/// \endrst +class NamedAnyModule { + public: + /// Creates a `NamedAnyModule` from a (boxed) `Module`. + template + NamedAnyModule(std::string name, std::shared_ptr module_ptr) + : NamedAnyModule(std::move(name), AnyModule(std::move(module_ptr))) {} + + /// Creates a `NamedAnyModule` from a `Module`, moving or copying it + /// into a `shared_ptr` internally. + // NOTE: We need to use `std::remove_reference::type` to get rid of + // any reference components for make_unique. + template > + NamedAnyModule(std::string name, M&& module) + : NamedAnyModule( + std::move(name), + std::make_shared::type>( + std::forward(module))) {} + + /// Creates a `NamedAnyModule` from a `Module` that is unwrapped from + /// a `ModuleHolder`. + template + NamedAnyModule(std::string name, const ModuleHolder& module_holder) + : NamedAnyModule(std::move(name), module_holder.ptr()) {} + + /// Creates a `NamedAnyModule` from a type-erased `AnyModule`. + NamedAnyModule(std::string name, AnyModule any_module) + : name_(std::move(name)), module_(std::move(any_module)) {} + + /// Returns a reference to the name. + const std::string& name() const noexcept { + return name_; + } + + /// Returns a reference to the module. + AnyModule& module() noexcept { + return module_; + } + + /// Returns a const reference to the module. + const AnyModule& module() const noexcept { + return module_; + } + + private: + std::string name_; + AnyModule module_; +}; + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/parameterdict.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/parameterdict.h new file mode 100644 index 0000000000000000000000000000000000000000..f201825deb5bad0bc8640b6d977e156d10a74435 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/parameterdict.h @@ -0,0 +1,148 @@ +#pragma once + +#include +#include +#include +#include +#include + +namespace torch { +namespace nn { + +class ParameterDictImpl : public Cloneable { + public: + using Iterator = OrderedDict::Iterator; + using ConstIterator = OrderedDict::ConstIterator; + + ParameterDictImpl() = default; + + explicit ParameterDictImpl( + const torch::OrderedDict& params) { + parameters_ = params; + } + + /// `reset()` is empty for `ParameterDict`, since it does not have + /// parameters of its own. + void reset() override {} + + /// Pretty prints the `ParameterDict` module into the given `stream`. + void pretty_print(std::ostream& stream) const override { + stream << "torch::nn::ParameterDict(" << std::endl; + for (const auto& pair : parameters_) { + stream << "(" << pair.key() << ")" + << ": Parameter containing: [" << pair.value().scalar_type() + << " of size " << pair.value().sizes() << "]"; + ; + stream << std::endl; + } + stream << ")"; + } + + /// Insert the parameter along with the key into ParameterDict + /// The parameter is set to be require grad by default + Tensor& insert(std::string key, Tensor param) { + bool requires_grad = param.requires_grad(); + return register_parameter(std::move(key), std::move(param), requires_grad); + } + + /// Remove key from the ParameterDict and return its value, throw exception + /// if the key is not contained. Please check contains(key) before for a + /// non-throwing access. + Tensor pop(const std::string& key) { + torch::Tensor v = parameters_[key]; + parameters_.erase(key); + return v; + } + + /// Return the keys in the dict + ::std::vector keys() const { + return parameters_.keys(); + } + + /// Return the Values in the dict + ::std::vector values() const { + return parameters_.values(); + } + + /// Return an iterator to the start of ParameterDict + Iterator begin() { + return parameters_.begin(); + } + + /// Return a const iterator to the start of ParameterDict + ConstIterator begin() const { + return parameters_.begin(); + } + + /// Return an iterator to the end of ParameterDict + Iterator end() { + return parameters_.end(); + } + + /// Return a const iterator to the end of ParameterDict + ConstIterator end() const { + return parameters_.end(); + } + + /// Return the number of items currently stored in the ParameterDict + size_t size() const noexcept { + return parameters_.size(); + } + + /// Return true if the ParameterDict is empty, otherwise return false + bool empty() const noexcept { + return parameters_.is_empty(); + } + + /// Update the ParameterDict with the key-value pairs from + /// another ParameterDict, overwriting existing key + template + void update(const Container& container) { + for (auto& item : container) { + parameters_[item.key()] = item.value(); + } + } + + /// Remove all parameters in the ParameterDict + void clear() { + parameters_.clear(); + } + + /// Check if the centain parameter with the key in the ParameterDict + bool contains(const std::string& key) const noexcept { + return parameters_.contains(key); + } + + /// Returns the value associated with the given `key`. Throws an exception if + /// no such key is stored in the `ParameterDict`. Check contains(key) before + /// for a non-throwing way of access + const Tensor& get(const std::string& key) const { + return parameters_[key]; + } + + /// Returns the value associated with the given `key`. Throws an exception if + /// no such key is stored in the `ParameterDict`. Check contains(key) before + /// for a non-throwing way of access + Tensor& get(const std::string& key) { + return parameters_[key]; + } + + /// Returns the value associated with the given `key`. Throws an exception if + /// no such key is stored in the `ParameterDict`. Check contains(key) before + /// for a non-throwing way of access + Tensor& operator[](const std::string& key) { + return parameters_[key]; + } + + /// Returns the value associated with the given `key`. Throws an exception if + /// no such key is stored in the `ParameterDict`. Check contains(key) before + /// for a non-throwing way of access + const Tensor& operator[](const std::string& key) const { + return parameters_[key]; + } +}; + +TORCH_MODULE(ParameterDict); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/parameterlist.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/parameterlist.h new file mode 100644 index 0000000000000000000000000000000000000000..30b7eb89e48b8b9df8cd0ac7f4a337ba714831b4 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/parameterlist.h @@ -0,0 +1,169 @@ +#pragma once + +#include +#include + +#include + +namespace torch { +namespace nn { +class ParameterListImpl : public Cloneable { + public: + using Iterator = typename std::vector< + OrderedDict::Item>::iterator; + using ConstIterator = typename std::vector< + OrderedDict::Item>::const_iterator; + + ParameterListImpl() = default; + + /// Constructs the `ParameterList` from a variadic list of ParameterList. + template + explicit ParameterListImpl(Tensors&&... params) { + parameters_.reserve(sizeof...(Tensors)); + push_back_var(std::forward(params)...); + } + + template + explicit ParameterListImpl(const Tensors&... params) { + parameters_.reserve(sizeof...(Tensors)); + push_back_var(std::forward(params)...); + } + + /// `reset()` is empty for `ParameterList`, since it does not have parameters + /// of its own. + void reset() override {} + + /// Pretty prints the `ParameterList` module into the given `stream`. + void pretty_print(std::ostream& stream) const override { + stream << "torch::nn::ParameterList(" << std::endl; + for (const auto& pair : parameters_) { + stream << "(" << pair.key() << ")" + << ": Parameter containing: [" << pair.value().scalar_type() + << " of size " << pair.value().sizes() << "]"; + ; + stream << std::endl; + } + stream << ")"; + } + + /// push the a given parameter at the end of the list + void append(torch::Tensor&& param) { + bool requires_grad = param.requires_grad(); + register_parameter( + c10::to_string(parameters_.size()), std::move(param), requires_grad); + } + + /// push the a given parameter at the end of the list + void append(const torch::Tensor& param) { + bool requires_grad = param.requires_grad(); + register_parameter( + c10::to_string(parameters_.size()), param, requires_grad); + } + + /// push the a given parameter at the end of the list + /// And the key of the pair will be discarded, only the value + /// will be added into the `ParameterList` + void append(const OrderedDict::Item& pair) { + register_parameter( + c10::to_string(parameters_.size()), + pair.value(), + pair.value().requires_grad()); + } + + /// extend parameters from a container to the end of the list + template + void extend(const Container& container) { + for (const auto& param : container) { + append(param); + } + } + + /// Returns an iterator to the start of the ParameterList + /// the iterator returned will be type of `OrderedDict::Item` + Iterator begin() { + return parameters_.begin(); + } + + /// Returns a const iterator to the start of the ParameterList + /// the iterator returned will be type of `OrderedDict::Item` + ConstIterator begin() const { + return parameters_.begin(); + } + + /// Returns an iterator to the end of the ParameterList + /// the iterator returned will be type of `OrderedDict::Item` + Iterator end() { + return parameters_.end(); + } + + /// Returns a const iterator to the end of the ParameterList + /// the iterator returned will be type of `OrderedDict::Item` + ConstIterator end() const { + return parameters_.end(); + } + + /// Returns the value associated with the given `key`. Throws an exception if + /// no such key is stored in the `ParameterList`. Check contains(key) before + /// for a non-throwing way of access + at::Tensor& at(size_t idx) { + TORCH_CHECK(idx < size(), "Index out of range"); + return parameters_[c10::to_string(idx)]; + } + + /// Returns the value associated with the given `key`. Throws an exception if + /// no such key is stored in the `ParameterList`. Check contains(key) before + /// for a non-throwing way of access + const at::Tensor& at(size_t idx) const { + TORCH_CHECK(idx < size(), "Index out of range"); + return parameters_[c10::to_string(idx)]; + } + + /// Returns the value associated with the given `key`. Throws an exception if + /// no such key is stored in the `ParameterList`. Check contains(key) before + /// for a non-throwing way of access + at::Tensor& operator[](size_t idx) { + return at(idx); + } + + /// Returns the value associated with the given `key`. Throws an exception if + /// no such key is stored in the `ParameterList`. Check contains(key) before + /// for a non-throwing way of access + const at::Tensor& operator[](size_t idx) const { + return at(idx); + } + + /// Return the size of the ParameterList + size_t size() const noexcept { + return parameters_.size(); + } + /// True if the ParameterList is empty + bool is_empty() const noexcept { + return parameters_.is_empty(); + } + + /// Overload the +=, so that two ParameterList could be incrementally added + template + Container& operator+=(const Container& other) { + extend(other); + return *this; + } + + private: + template + void push_back_var(Head&& head, Tail&&... tail) { + append(std::forward(head)); + // Recursively calls this method, until the parameter pack only thas this + // entry left. Then calls `push_back()` a final time (above). + push_back_var(std::forward(tail)...); + } + + /// The base case, when the list of modules is empty. + void push_back_var() {} +}; +TORCH_MODULE(ParameterList); +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/sequential.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/sequential.h new file mode 100644 index 0000000000000000000000000000000000000000..9494926eef3c6c7fb0faaac4b57a520a29388f15 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/container/sequential.h @@ -0,0 +1,390 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include + +#include + +#include +#include +#include +#include +#include +#include +#include + +namespace torch { +namespace nn { + +/// A list of `Module`s that acts as a `Module` itself. +/// +/// A `Sequential` is fundamentally a list of `Module`s, each with a `forward()` +/// method. `Sequential` provides a `forward()` method of its own, which accepts +/// any input and forwards it to the first module it stores. It then "chains" +/// outputs to inputs sequentially for each subsequent module, finally returning +/// the output of the last module. For example: +/// +/// \rst +/// .. code-block:: cpp +/// +/// torch::nn::Sequential seq( +/// torch::nn::Linear(3, 4), +/// torch::nn::BatchNorm1d(4), +/// torch::nn::Dropout(0.5) +/// ); +/// +/// auto output = seq->forward(torch::ones(3)); +/// +/// \endrst +/// +/// This can conceptually be thought of as the following loop (using Python as +/// pseudocode): +/// +/// \rst +/// .. code-block:: python +/// +/// def forward(sequential, input): +/// for module in sequential: +/// input = module(input) +/// return input +/// +/// \endrst +/// +/// Why should you use `Sequential` instead of a simple `std::vector`? The value +/// a `Sequential` provides over manually calling a sequence of modules is that +/// it allows treating the whole container *as a single module*, such that +/// performing a transformation on the `Sequential` applies to each of the +/// modules it stores (which are each a registered submodule of the +/// `Sequential`). For example, calling +/// `.to(torch::kCUDA)` on a `Sequential` will move each module in the list to +/// CUDA memory. For example: +/// +/// \rst +/// .. code-block:: cpp +/// +/// torch::nn::Sequential seq( +/// torch::nn::Linear(3, 4), +/// torch::nn::BatchNorm1d(4), +/// torch::nn::Dropout(0.5) +/// ); +/// +/// // Convert all modules to CUDA. +/// seq->to(torch::kCUDA); +/// +/// \endrst +/// +/// Finally, `Sequential` provides a lightweight container API, such as allowing +/// iteration over submodules, positional access, adding a new module after +/// construction via `push_back`, as well as joining two `Sequential`s via +/// `extend`. +/// +/// \rst +/// .. attention:: +/// One current limitation of `Sequential` is that all except the first module +/// must accept a single argument. If your modules need to take multiple +/// arguments, you should define them to take and return tuples. +/// \endrst +class SequentialImpl : public Cloneable { + public: + using Iterator = std::vector::iterator; + using ConstIterator = std::vector::const_iterator; + + SequentialImpl() = default; + + /// Constructs the `Sequential` from a variadic list of modules. + template + explicit SequentialImpl(Modules&&... modules) { + modules_.reserve(sizeof...(Modules)); + push_back(std::forward(modules)...); + } + + /// Constructs the `Sequential` from an `OrderedDict` of named `AnyModule`s. + explicit SequentialImpl( + torch::OrderedDict&& ordered_dict) { + modules_.reserve(ordered_dict.size()); + for (auto& item : ordered_dict) { + push_back(item.key(), std::move(item.value())); + } + } + + /// Constructs the `Sequential` from a braced-init-list of named `AnyModule`s. + /// It enables the following use case: + /// `Sequential sequential({{"m1", M(1)}, {"m2", M(2)}})` + explicit SequentialImpl(std::initializer_list named_modules) { + modules_.reserve(named_modules.size()); + for (const auto& named_module : named_modules) { + push_back(named_module.name(), named_module.module()); + } + } + + /// Special cloning function for `Sequential` because it does not use + /// `reset()`. + std::shared_ptr clone( + const optional& device = nullopt) const override { + auto clone = std::make_shared(); + for (const auto& module : modules_) { + clone->push_back(module.clone(device)); + } + return clone; + } + + /// `reset()` is empty for `Sequential`, since it does not have parameters of + /// its own. + void reset() override {} + + /// Pretty prints the `Sequential` module into the given `stream`. + void pretty_print(std::ostream& stream) const override { + stream << "torch::nn::Sequential"; + } + + /// Feeds `inputs` to the first module and then chains outputs to inputs, + /// returning the last output. + /// + /// Conceptually the following loop in Python: + /// + /// \rst + /// .. code-block:: python + /// + /// def forward(sequential, input): + /// for module in sequential: + /// input = module(input) + /// return input + /// + /// \endrst + /// + /// The return type is taken as the first template parameter. It defaults to + /// `Tensor`. If the last module in the `Sequential` returns another type `T`, + /// you should call `forward(inputs)` instead of just `forward(inputs)`: + /// + /// \rst + /// .. code-block:: cpp + /// + /// torch::Tensor tensor = sequential1->forward(inputs); + /// int integer = sequential2->forward(inputs); + /// float value = sequential3->forward(inputs); + /// + /// \endrst + template + ReturnType forward(InputTypes&&... inputs) { + TORCH_CHECK(!is_empty(), "Cannot call forward() on an empty Sequential"); + + auto iterator = modules_.begin(); + auto input = iterator->any_forward(std::forward(inputs)...); + + for (++iterator; iterator != modules_.end(); ++iterator) { + input = iterator->any_forward(std::move(input)); + } + + // Check the return value and give a nice error message if the requested + // return type was incorrect. + if (auto* return_value = input.template try_get()) { + return std::move(*return_value); + } + AT_ERROR( + "The type of the return value is ", + c10::demangle(input.type_info().name()), + ", but you asked for type ", + c10::demangle(typeid(ReturnType).name())); + } + + /// Adds a new (boxed) `Module` to the `Sequential` container. + template + void push_back(std::shared_ptr module_ptr) { + push_back(c10::to_string(modules_.size()), std::move(module_ptr)); + } + + /// Adds a new named (boxed) `Module` to the `Sequential` container. + template + void push_back(std::string name, std::shared_ptr module_ptr) { + push_back(std::move(name), AnyModule(std::move(module_ptr))); + } + + /// Adds a new `Module` to the `Sequential` container, moving or copying it + /// into a `shared_ptr` internally. This method allows passing value types, + /// and letting the container deal with the boxing. This means you can write + /// `Sequential(Module(3, 4))` instead of + /// `Sequential(std::make_shared(3, 4))`. + template > + void push_back(M&& module) { + push_back(c10::to_string(modules_.size()), std::forward(module)); + } + + /// Adds a new named `Module` to the `Sequential` container, moving or copying + /// it into a `shared_ptr` internally. This method allows passing value types, + /// and letting the container deal with the boxing. + template > + void push_back(std::string name, M&& module) { + using Type = typename std::remove_reference::type; + push_back(std::move(name), std::make_shared(std::forward(module))); + } + + /// Unwraps the contained module of a `ModuleHolder` and adds it to the + /// `Sequential`. + template + void push_back(const ModuleHolder& module_holder) { + push_back(c10::to_string(modules_.size()), module_holder); + } + + /// Unwraps the contained named module of a `ModuleHolder` and adds it to the + /// `Sequential`. + template + void push_back(std::string name, const ModuleHolder& module_holder) { + push_back(std::move(name), module_holder.ptr()); + } + + /// Iterates over the container and calls `push_back()` on each value. + template + void extend(const Container& container) { + for (const auto& module : container) { + push_back(module); + } + } + + /// Adds a type-erased `AnyModule` to the `Sequential`. + void push_back(AnyModule any_module) { + push_back(c10::to_string(modules_.size()), std::move(any_module)); + } + + void push_back(std::string name, AnyModule any_module) { + modules_.push_back(std::move(any_module)); + const auto index = modules_.size() - 1; + register_module(std::move(name), modules_[index].ptr()); + } + + /// Returns an iterator to the start of the `Sequential`. + Iterator begin() { + return modules_.begin(); + } + + /// Returns a const iterator to the start of the `Sequential`. + ConstIterator begin() const { + return modules_.begin(); + } + + /// Returns an iterator to the end of the `Sequential`. + Iterator end() { + return modules_.end(); + } + + /// Returns a const iterator to the end of the `Sequential`. + ConstIterator end() const { + return modules_.end(); + } + + /// Attempts to return the module at the given index as the requested type. + /// Throws an exception if the index is out of bounds or the types do not + /// match. + template + T& at(size_t index) { + static_assert( + torch::detail::is_module::value, + "Can only call Sequential::at with an nn::Module type"); + TORCH_CHECK(index < size(), "Index out of range"); + return modules_[index].get(); + } + + /// Attempts to return the module at the given index as the requested type. + /// Throws an exception if the index is out of bounds or the types do not + /// match. + template + const T& at(size_t index) const { + static_assert( + torch::detail::is_module::value, + "Can only call Sequential::at with an nn::Module type"); + TORCH_CHECK(index < size(), "Index out of range"); + return modules_[index].get(); + } + + /// Attempts to return a `std::shared_ptr` whose dynamic type is that of the + /// underlying module at the given index. Throws an exception if the index is + /// out of bounds. + std::shared_ptr ptr(size_t index) const { + TORCH_CHECK(index < size(), "Index out of range"); + return modules_[index].ptr(); + } + + /// Attempts to return a `std::shared_ptr` whose type is the one provided. + /// Throws an exception if the index is out of bounds or the types do not + /// match. + template + std::shared_ptr ptr(size_t index) const { + static_assert( + torch::detail::is_module::value, + "Can only call Sequential::ptr with an nn::Module type"); + TORCH_CHECK(index < size(), "Index out of range"); + return modules_[index].ptr(); + } + + /// Like `ptr(index)`. + std::shared_ptr operator[](size_t index) const { + // This is the only method we can call without a type. + return ptr(index); + } + + /// The current size of the `Sequential` container. + size_t size() const noexcept { + return modules_.size(); + } + + /// True if there are no modules in the `Sequential`. + bool is_empty() const noexcept { + return size() == 0; + } + + private: + /// Takes a First *and* Second parameter, to avoid ambiguity when a parameter + /// pack has only one type, in which case the template would be preferred, + /// even if the other `push_back` functions are better fits (e.g. `unique_ptr` + /// -> `shared_ptr` overload). + /// NOTE: We explicitly avoid matching this template with + /// `push_back(std::string("name"), module)` or `push_back("name", module)`, + /// since they should be handled by their respective `push_back` functions. + template < + typename First, + typename Second, + typename... Rest, + typename = torch::disable_if_t< + std::is_same::value || + // NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays) + std::is_same< + typename std::decay::type, + std::decay::type>::value>> + void push_back(First&& first, Second&& second, Rest&&... rest) { + push_back(std::forward(first)); + // Recursively calls this method, until the parameter pack only thas this + // entry left. Then calls `push_back()` a final time (above). + push_back(std::forward(second), std::forward(rest)...); + } + + /// The base case, when the list of modules is empty. + void push_back() {} + + // Box the AnyModules to give Sequential reference semantics, like the rest of + // the API. Note that this is not required otherwise, this could just be a + // `vector`. + std::vector modules_; +}; + +/// A `ModuleHolder` subclass for `SequentialImpl`. +/// See the documentation for `SequentialImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +class Sequential : public torch::nn::ModuleHolder { + public: + using torch::nn::ModuleHolder::ModuleHolder; + + Sequential() : ModuleHolder() {} + + /// Constructs the `Sequential` from a braced-init-list of named `AnyModule`s. + /// It enables the following use case: + /// `Sequential sequential({{"m1", M(1)}, {"m2", M(2)}})` + Sequential(std::initializer_list named_modules) + : ModuleHolder(std::make_shared(named_modules)) {} +}; +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/conv.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/conv.h new file mode 100644 index 0000000000000000000000000000000000000000..68bd10c0db8204d6e755abd222b9229846a51d3c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/conv.h @@ -0,0 +1,453 @@ +#pragma once + +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +#include +#include + +namespace torch { +namespace nn { + +/// Base class for all (dimension-specialized) convolution modules. +template +class ConvNdImpl : public torch::nn::Cloneable { + public: + explicit ConvNdImpl(detail::ConvNdOptions options_) + : options(std::move(options_)) { + // NOLINTNEXTLINE(clang-analyzer-optin.cplusplus.VirtualCall) + reset(); + } + + void reset() override { + TORCH_CHECK( + options.in_channels() > 0 && options.groups() > 0 && + options.out_channels() > 0, + "in_channels, groups and out_channels must be a positive integer."); + TORCH_CHECK( + options.in_channels() % options.groups() == 0, + "in_channels must be divisible by groups"); + TORCH_CHECK( + options.out_channels() % options.groups() == 0, + "out_channels must be divisible by groups"); + + std::visit( + c10::overloaded( + [&](enumtype::kValid) { + _reversed_padding_repeated_twice.resize(2 * D); + std::fill_n(_reversed_padding_repeated_twice.begin(), 2 * D, 0); + }, + [&](enumtype::kSame) { + for (const auto i : c10::irange(D)) { + const auto stride = (*options.stride())[i]; + TORCH_CHECK( + stride == 1, + "padding='same' is not supported for strided convolutions"); + } + + _reversed_padding_repeated_twice.resize(2 * D); + for (const auto i : c10::irange(D)) { + const auto dilation = (*options.dilation())[i]; + const auto kernel_size = (*options.kernel_size())[i]; + const auto total_padding = dilation * (kernel_size - 1); + auto left_pad = total_padding / 2; + auto right_pad = total_padding - left_pad; + _reversed_padding_repeated_twice[2 * i] = left_pad; + _reversed_padding_repeated_twice[2 * i + 1] = right_pad; + } + }, + [&](const ExpandingArray& pad) { + _reversed_padding_repeated_twice = + torch::nn::modules::utils::_reverse_repeat_vector(pad, 2); + }), + options.padding()); + + if (options.transposed()) { + std::vector weight_sizes = { + options.in_channels(), options.out_channels() / options.groups()}; + weight_sizes.insert( + weight_sizes.end(), + (*options.kernel_size()).begin(), + (*options.kernel_size()).end()); + weight = this->register_parameter("weight", torch::empty(weight_sizes)); + } else { + std::vector weight_sizes = { + options.out_channels(), options.in_channels() / options.groups()}; + weight_sizes.insert( + weight_sizes.end(), + (*options.kernel_size()).begin(), + (*options.kernel_size()).end()); + weight = this->register_parameter("weight", torch::empty(weight_sizes)); + } + + if (options.bias()) { + bias = this->register_parameter( + "bias", torch::empty({options.out_channels()})); + } else { + this->register_parameter("bias", Tensor(), /*requires_grad=*/false); + } + + reset_parameters(); + } + + void reset_parameters() { + init::kaiming_uniform_( + weight, + /*a=*/std::sqrt(5)); // NOLINT(cppcoreguidelines-avoid-magic-numbers) + + if (bias.defined()) { + // NOLINTNEXTLINE(cppcoreguidelines-init-variables) + int64_t fan_in, fan_out; + std::tie(fan_in, fan_out) = init::_calculate_fan_in_and_fan_out(weight); + auto bound = 1 / std::sqrt(fan_in); + init::uniform_(bias, -bound, bound); + } + } + + /// Pretty prints the `Conv{1,2,3}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override { + stream << "torch::nn::Conv" << D << "d" + << "(" << options.in_channels() << ", " << options.out_channels() + << ", kernel_size=" << options.kernel_size() + << ", stride=" << options.stride(); + std::visit( + c10::overloaded( + [&](enumtype::kValid) { stream << ", padding='valid'"; }, + [&](enumtype::kSame) { stream << ", padding='same'"; }, + [&](const ExpandingArray& pad) { + if (*pad != *ExpandingArray(0)) { + stream << ", padding=" << pad; + } + }), + options.padding()); + if (*options.dilation() != *ExpandingArray(1)) { + stream << ", dilation=" << options.dilation(); + } + if (*options.output_padding() != *ExpandingArray(0)) { + stream << ", output_padding=" << options.output_padding(); + } + if (options.groups() != 1) { + stream << ", groups=" << options.groups(); + } + if (!options.bias()) { + stream << ", bias=" << std::boolalpha << false; + } + if (!std::get_if(&options.padding_mode())) { + stream << ", padding_mode=" + << enumtype::get_enum_name(options.padding_mode()); + } + stream << ")"; + } + + /// The options with which this `Module` was constructed. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + detail::ConvNdOptions options; + + /// The learned kernel (or "weight"). + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + Tensor weight; + + /// The learned bias. Only defined if the `bias` option was true. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + Tensor bias; + + protected: + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + std::vector _reversed_padding_repeated_twice; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Conv1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies convolution over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Conv1d to learn about +/// the exact behavior of this module. +/// +/// See the documentation for `torch::nn::Conv1dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Conv1d model(Conv1dOptions(3, 2, 3).stride(1).bias(false)); +/// ``` +class TORCH_API Conv1dImpl : public ConvNdImpl<1, Conv1dImpl> { + public: + Conv1dImpl( + int64_t input_channels, + int64_t output_channels, + ExpandingArray<1> kernel_size) + : Conv1dImpl( + Conv1dOptions(input_channels, output_channels, kernel_size)) {} + explicit Conv1dImpl(Conv1dOptions options_); + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `Conv1dImpl`. +/// See the documentation for `Conv1dImpl` class to learn what methods it +/// provides, and examples of how to use `Conv1d` with +/// `torch::nn::Conv1dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Conv1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Conv2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies convolution over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Conv2d to learn about +/// the exact behavior of this module. +/// +/// See the documentation for `torch::nn::Conv2dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Conv2d model(Conv2dOptions(3, 2, 3).stride(1).bias(false)); +/// ``` +class TORCH_API Conv2dImpl : public ConvNdImpl<2, Conv2dImpl> { + public: + Conv2dImpl( + int64_t input_channels, + int64_t output_channels, + ExpandingArray<2> kernel_size) + : Conv2dImpl( + Conv2dOptions(input_channels, output_channels, kernel_size)) {} + explicit Conv2dImpl(Conv2dOptions options_); + Tensor forward(const Tensor& input); + + protected: + Tensor _conv_forward(const Tensor& input, const Tensor& weight); +}; + +/// A `ModuleHolder` subclass for `Conv2dImpl`. +/// See the documentation for `Conv2dImpl` class to learn what methods it +/// provides, and examples of how to use `Conv2d` with +/// `torch::nn::Conv2dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Conv2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Conv3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies convolution over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Conv3d to learn about +/// the exact behavior of this module. +/// +/// See the documentation for `torch::nn::Conv3dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Conv3d model(Conv3dOptions(3, 2, 3).stride(1).bias(false)); +/// ``` +class TORCH_API Conv3dImpl : public ConvNdImpl<3, Conv3dImpl> { + public: + Conv3dImpl( + int64_t input_channels, + int64_t output_channels, + ExpandingArray<3> kernel_size) + : Conv3dImpl( + Conv3dOptions(input_channels, output_channels, kernel_size)) {} + explicit Conv3dImpl(Conv3dOptions options_); + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `Conv3dImpl`. +/// See the documentation for `Conv3dImpl` class to learn what methods it +/// provides, and examples of how to use `Conv3d` with +/// `torch::nn::Conv3dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Conv3d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~ ConvTranspose ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Base class for all (dimension-specialized) convolution transpose modules. +template +class ConvTransposeNdImpl : public ConvNdImpl { + public: + using torch::nn::ConvNdImpl::ConvNdImpl; + explicit ConvTransposeNdImpl(detail::ConvNdOptions options_) + : ConvNdImpl(options_) { + TORCH_INTERNAL_ASSERT( + std::holds_alternative>(this->options.padding()), + "ConvTranspose padding cannot be a string"); + } + + /// Pretty prints the `ConvTranspose{1,2,3}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override { + stream << "torch::nn::ConvTranspose" << D << "d" + << "(" << this->options.in_channels() << ", " + << this->options.out_channels() + << ", kernel_size=" << this->options.kernel_size() + << ", stride=" << this->options.stride(); + const auto& pad = padding(); + if (*pad != *ExpandingArray(0)) { + stream << ", padding=" << pad; + } + if (*this->options.dilation() != *ExpandingArray(1)) { + stream << ", dilation=" << this->options.dilation(); + } + if (*this->options.output_padding() != *ExpandingArray(0)) { + stream << ", output_padding=" << this->options.output_padding(); + } + if (this->options.groups() != 1) { + stream << ", groups=" << this->options.groups(); + } + if (!this->options.bias()) { + stream << ", bias=" << std::boolalpha << false; + } + if (!std::get_if(&this->options.padding_mode())) { + stream << ", padding_mode=" + << enumtype::get_enum_name(this->options.padding_mode()); + } + stream << ")"; + } + + protected: + const ExpandingArray& padding() const { + return std::get>(this->options.padding()); + } + + std::vector _output_padding( + const Tensor& input, + const c10::optional& output_size, + const ExpandingArray& stride, + const ExpandingArray& padding, + const ExpandingArray& kernel_size); +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ConvTranspose1d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the ConvTranspose1d function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ConvTranspose1d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ConvTranspose1dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ConvTranspose1d model(ConvTranspose1dOptions(3, 2, +/// 3).stride(1).bias(false)); +/// ``` +class TORCH_API ConvTranspose1dImpl + : public ConvTransposeNdImpl<1, ConvTranspose1dImpl> { + public: + ConvTranspose1dImpl( + int64_t input_channels, + int64_t output_channels, + ExpandingArray<1> kernel_size) + : ConvTranspose1dImpl(ConvTranspose1dOptions( + input_channels, + output_channels, + kernel_size)) {} + explicit ConvTranspose1dImpl(ConvTranspose1dOptions options_); + Tensor forward( + const Tensor& input, + const c10::optional& output_size = c10::nullopt); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(c10::optional())}) +}; + +/// A `ModuleHolder` subclass for `ConvTranspose1dImpl`. +/// See the documentation for `ConvTranspose1dImpl` class to learn what methods +/// it provides, and examples of how to use `ConvTranspose1d` with +/// `torch::nn::ConvTranspose1dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(ConvTranspose1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ConvTranspose2d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the ConvTranspose2d function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ConvTranspose2d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ConvTranspose2dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ConvTranspose2d model(ConvTranspose2dOptions(3, 2, +/// 3).stride(1).bias(false)); +/// ``` +class TORCH_API ConvTranspose2dImpl + : public ConvTransposeNdImpl<2, ConvTranspose2dImpl> { + public: + ConvTranspose2dImpl( + int64_t input_channels, + int64_t output_channels, + ExpandingArray<2> kernel_size) + : ConvTranspose2dImpl(ConvTranspose2dOptions( + input_channels, + output_channels, + kernel_size)) {} + explicit ConvTranspose2dImpl(ConvTranspose2dOptions options_); + Tensor forward( + const Tensor& input, + const c10::optional& output_size = c10::nullopt); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(c10::optional())}) +}; + +/// A `ModuleHolder` subclass for `ConvTranspose2dImpl`. +/// See the documentation for `ConvTranspose2dImpl` class to learn what methods +/// it provides, and examples of how to use `ConvTranspose2d` with +/// `torch::nn::ConvTranspose2dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(ConvTranspose2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ConvTranspose3d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the ConvTranspose3d function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ConvTranspose3d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ConvTranspose3dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ConvTranspose3d model(ConvTranspose3dOptions(2, 2, +/// 2).stride(1).bias(false)); +/// ``` +class TORCH_API ConvTranspose3dImpl + : public ConvTransposeNdImpl<3, ConvTranspose3dImpl> { + public: + ConvTranspose3dImpl( + int64_t input_channels, + int64_t output_channels, + ExpandingArray<3> kernel_size) + : ConvTranspose3dImpl(ConvTranspose3dOptions( + input_channels, + output_channels, + kernel_size)) {} + explicit ConvTranspose3dImpl(ConvTranspose3dOptions options_); + Tensor forward( + const Tensor& input, + const c10::optional& output_size = c10::nullopt); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(c10::optional())}) +}; + +/// A `ModuleHolder` subclass for `ConvTranspose3dImpl`. +/// See the documentation for `ConvTranspose3dImpl` class to learn what methods +/// it provides, and examples of how to use `ConvTranspose3d` with +/// `torch::nn::ConvTranspose3dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(ConvTranspose3d); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/distance.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/distance.h new file mode 100644 index 0000000000000000000000000000000000000000..93a872476436919c2dd2fd0ea9aad1a88bcd5589 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/distance.h @@ -0,0 +1,86 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include + +namespace torch { +namespace nn { + +/// Returns the cosine similarity between :math:`x_1` and :math:`x_2`, computed +/// along `dim`. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.CosineSimilarity to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::CosineSimilarityOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// CosineSimilarity model(CosineSimilarityOptions().dim(0).eps(0.5)); +/// ``` +class TORCH_API CosineSimilarityImpl : public Cloneable { + public: + explicit CosineSimilarityImpl(const CosineSimilarityOptions& options_ = {}); + + void reset() override; + + /// Pretty prints the `CosineSimilarity` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input1, const Tensor& input2); + + /// The options with which this `Module` was constructed. + CosineSimilarityOptions options; +}; + +/// A `ModuleHolder` subclass for `CosineSimilarityImpl`. +/// See the documentation for `CosineSimilarityImpl` class to learn what methods +/// it provides, and examples of how to use `CosineSimilarity` with +/// `torch::nn::CosineSimilarityOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(CosineSimilarity); + +// ============================================================================ + +/// Returns the batchwise pairwise distance between vectors :math:`v_1`, +/// :math:`v_2` using the p-norm. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.PairwiseDistance to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::PairwiseDistanceOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// PairwiseDistance +/// model(PairwiseDistanceOptions().p(3).eps(0.5).keepdim(true)); +/// ``` +class TORCH_API PairwiseDistanceImpl : public Cloneable { + public: + explicit PairwiseDistanceImpl(const PairwiseDistanceOptions& options_ = {}); + + void reset() override; + + /// Pretty prints the `PairwiseDistance` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input1, const Tensor& input2); + + /// The options with which this `Module` was constructed. + PairwiseDistanceOptions options; +}; + +/// A `ModuleHolder` subclass for `PairwiseDistanceImpl`. +/// See the documentation for `PairwiseDistanceImpl` class to learn what methods +/// it provides, and examples of how to use `PairwiseDistance` with +/// `torch::nn::PairwiseDistanceOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(PairwiseDistance); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/dropout.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/dropout.h new file mode 100644 index 0000000000000000000000000000000000000000..7cc7dfb80fbd27541301e6fb0c81930c549d91ff --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/dropout.h @@ -0,0 +1,190 @@ +#pragma once + +#include +#include +#include +#include + +#include + +#include +#include + +namespace torch { +namespace nn { + +namespace detail { + +template +class _DropoutNd : public torch::nn::Cloneable { + public: + _DropoutNd(double p) : _DropoutNd(DropoutOptions().p(p)){}; + + explicit _DropoutNd(const DropoutOptions& options_ = {}) : options(options_) { + // NOLINTNEXTLINE(clang-analyzer-optin.cplusplus.VirtualCall) + reset(); + } + + void reset() override { + TORCH_CHECK( + options.p() >= 0. && options.p() <= 1., + "dropout probability has to be between 0 and 1, but got ", + options.p()); + } + + /// The options with which this `Module` was constructed. + DropoutOptions options; +}; + +} // namespace detail + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dropout ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies dropout over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Dropout to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::DropoutOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Dropout model(DropoutOptions().p(0.42).inplace(true)); +/// ``` +class TORCH_API DropoutImpl : public detail::_DropoutNd { + public: + using detail::_DropoutNd::_DropoutNd; + + Tensor forward(Tensor input); + + /// Pretty prints the `Dropout` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `DropoutImpl`. +/// See the documentation for `DropoutImpl` class to learn what methods it +/// provides, and examples of how to use `Dropout` with +/// `torch::nn::DropoutOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Dropout); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dropout2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies dropout over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Dropout2d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::Dropout2dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Dropout2d model(Dropout2dOptions().p(0.42).inplace(true)); +/// ``` +class TORCH_API Dropout2dImpl : public detail::_DropoutNd { + public: + using detail::_DropoutNd::_DropoutNd; + + Tensor forward(Tensor input); + + /// Pretty prints the `Dropout2d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `Dropout2dImpl`. +/// See the documentation for `Dropout2dImpl` class to learn what methods it +/// provides, and examples of how to use `Dropout2d` with +/// `torch::nn::Dropout2dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Dropout2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dropout3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies dropout over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Dropout3d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::Dropout3dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Dropout3d model(Dropout3dOptions().p(0.42).inplace(true)); +/// ``` +class TORCH_API Dropout3dImpl : public detail::_DropoutNd { + public: + using detail::_DropoutNd::_DropoutNd; + + Tensor forward(Tensor input); + + /// Pretty prints the `Dropout3d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `Dropout3dImpl`. +/// See the documentation for `Dropout3dImpl` class to learn what methods it +/// provides, and examples of how to use `Dropout3d` with +/// `torch::nn::Dropout3dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Dropout3d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AlphaDropout ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies Alpha Dropout over the input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AlphaDropout to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AlphaDropoutOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AlphaDropout model(AlphaDropoutOptions(0.2).inplace(true)); +/// ``` +class TORCH_API AlphaDropoutImpl : public detail::_DropoutNd { + public: + using detail::_DropoutNd::_DropoutNd; + + Tensor forward(const Tensor& input); + + /// Pretty prints the `AlphaDropout` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `AlphaDropoutImpl`. +/// See the documentation for `AlphaDropoutImpl` class to learn what methods it +/// provides, and examples of how to use `AlphaDropout` with +/// `torch::nn::AlphaDropoutOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(AlphaDropout); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FeatureAlphaDropout +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// See the documentation for `torch::nn::FeatureAlphaDropoutOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// FeatureAlphaDropout model(FeatureAlphaDropoutOptions(0.2).inplace(true)); +/// ``` +class TORCH_API FeatureAlphaDropoutImpl + : public detail::_DropoutNd { + public: + using detail::_DropoutNd::_DropoutNd; + + Tensor forward(const Tensor& input); + + /// Pretty prints the `FeatureAlphaDropout` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; +}; + +/// A `ModuleHolder` subclass for `FeatureAlphaDropoutImpl`. +/// See the documentation for `FeatureAlphaDropoutImpl` class to learn what +/// methods it provides, and examples of how to use `FeatureAlphaDropout` with +/// `torch::nn::FeatureAlphaDropoutOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(FeatureAlphaDropout); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/embedding.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/embedding.h new file mode 100644 index 0000000000000000000000000000000000000000..fcaddd46e83b7fdac612eb72da14ef4d0d157948 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/embedding.h @@ -0,0 +1,171 @@ +#pragma once + +#include +#include +#include +#include +#include +#include + +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Embedding +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Performs a lookup in a fixed size embedding table. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Embedding to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::EmbeddingOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Embedding model(EmbeddingOptions(10, +/// 2).padding_idx(3).max_norm(2).norm_type(2.5).scale_grad_by_freq(true).sparse(true)); +/// ``` +class TORCH_API EmbeddingImpl : public torch::nn::Cloneable { + public: + EmbeddingImpl(int64_t num_embeddings, int64_t embedding_dim) + : EmbeddingImpl(EmbeddingOptions(num_embeddings, embedding_dim)) {} + explicit EmbeddingImpl(EmbeddingOptions options_); + + void reset() override; + + void reset_parameters(); + + /// Pretty prints the `Embedding` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// Performs a lookup on the embedding table stored in `weight` using the + /// `indices` supplied and returns the result. + Tensor forward(const Tensor& indices); + + /// The `Options` used to configure this `Embedding` module. + /// Changes to `EmbeddingOptions` *after construction* have no effect. + EmbeddingOptions options; + + /// The embedding table. + Tensor weight; +}; + +/// A `ModuleHolder` subclass for `EmbeddingImpl`. +/// See the documentation for `EmbeddingImpl` class to learn what methods it +/// provides, and examples of how to use `Embedding` with +/// `torch::nn::EmbeddingOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +class Embedding : public torch::nn::ModuleHolder { + public: + using torch::nn::ModuleHolder::ModuleHolder; + + /// See the documentation for `torch::nn::EmbeddingFromPretrainedOptions` + /// class to learn what optional arguments are supported for this function. + static Embedding from_pretrained( + const torch::Tensor& embeddings, + const EmbeddingFromPretrainedOptions& options = {}) { + TORCH_CHECK( + embeddings.dim() == 2, + "Embeddings parameter is expected to be 2-dimensional"); + + // NOLINTNEXTLINE(cppcoreguidelines-init-variables) + int64_t rows, cols; + rows = embeddings.size(0); + cols = embeddings.size(1); + + Embedding embedding(EmbeddingOptions(rows, cols) + ._weight(embeddings) + .padding_idx(options.padding_idx()) + .max_norm(options.max_norm()) + .norm_type(options.norm_type()) + .scale_grad_by_freq(options.scale_grad_by_freq()) + .sparse(options.sparse())); + embedding->weight.set_requires_grad(!options.freeze()); + return embedding; + } +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ EmbeddingBag +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Computes sums or means of 'bags' of embeddings, without instantiating the +/// intermediate embeddings. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.EmbeddingBag to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::EmbeddingBagOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// EmbeddingBag model(EmbeddingBagOptions(10, +/// 2).max_norm(2).norm_type(2.5).scale_grad_by_freq(true).sparse(true).mode(torch::kSum).padding_idx(1)); +/// ``` +class TORCH_API EmbeddingBagImpl + : public torch::nn::Cloneable { + public: + EmbeddingBagImpl(int64_t num_embeddings, int64_t embedding_dim) + : EmbeddingBagImpl(EmbeddingBagOptions(num_embeddings, embedding_dim)) {} + explicit EmbeddingBagImpl(EmbeddingBagOptions options_); + + void reset() override; + + void reset_parameters(); + + /// Pretty prints the `EmbeddingBag` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The `Options` used to configure this `EmbeddingBag` module. + EmbeddingBagOptions options; + /// The embedding table. + Tensor weight; + + Tensor forward( + const Tensor& input, + const Tensor& offsets = {}, + const Tensor& per_sample_weights = {}); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}, {2, AnyValue(Tensor())}) +}; + +/// A `ModuleHolder` subclass for `EmbeddingBagImpl`. +/// See the documentation for `EmbeddingBagImpl` class to learn what methods it +/// provides, and examples of how to use `EmbeddingBag` with +/// `torch::nn::EmbeddingBagOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +class EmbeddingBag : public torch::nn::ModuleHolder { + public: + using torch::nn::ModuleHolder::ModuleHolder; + + /// See the documentation for `torch::nn::EmbeddingBagFromPretrainedOptions` + /// class to learn what optional arguments are supported for this function. + static EmbeddingBag from_pretrained( + const torch::Tensor& embeddings, + const EmbeddingBagFromPretrainedOptions& options = {}) { + TORCH_CHECK( + embeddings.dim() == 2, + "Embeddings parameter is expected to be 2-dimensional"); + + // NOLINTNEXTLINE(cppcoreguidelines-init-variables) + int64_t rows, cols; + rows = embeddings.size(0); + cols = embeddings.size(1); + + EmbeddingBag embeddingbag( + EmbeddingBagOptions(rows, cols) + ._weight(embeddings) + .max_norm(options.max_norm()) + .norm_type(options.norm_type()) + .scale_grad_by_freq(options.scale_grad_by_freq()) + .mode(options.mode()) + .sparse(options.sparse()) + .padding_idx(options.padding_idx())); + embeddingbag->weight.set_requires_grad(!options.freeze()); + return embeddingbag; + } +}; +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/fold.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/fold.h new file mode 100644 index 0000000000000000000000000000000000000000..da16381058a858aa16a9e7941740e58748f15e4a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/fold.h @@ -0,0 +1,87 @@ +#pragma once + +#include +#include +#include +#include +#include +#include + +namespace torch { +namespace nn { + +/// Applies fold over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Fold to learn about +/// the exact behavior of this module. +/// +/// See the documentation for `torch::nn::FoldOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Fold model(FoldOptions({8, 8}, {3, 3}).dilation(2).padding({2, +/// 1}).stride(2)); +/// ``` +class TORCH_API FoldImpl : public torch::nn::Cloneable { + public: + FoldImpl(ExpandingArray<2> output_size, ExpandingArray<2> kernel_size) + : FoldImpl(FoldOptions(output_size, kernel_size)) {} + explicit FoldImpl(const FoldOptions& options_); + + void reset() override; + + /// Pretty prints the `Fold` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input); + + /// The options with which this `Module` was constructed. + FoldOptions options; +}; + +/// A `ModuleHolder` subclass for `FoldImpl`. +/// See the documentation for `FoldImpl` class to learn what methods it +/// provides, and examples of how to use `Fold` with `torch::nn::FoldOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Fold); + +// ============================================================================ + +/// Applies unfold over a 4-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Unfold to learn about +/// the exact behavior of this module. +/// +/// See the documentation for `torch::nn::UnfoldOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Unfold model(UnfoldOptions({2, 4}).dilation(2).padding({2, 1}).stride(2)); +/// ``` +class TORCH_API UnfoldImpl : public Cloneable { + public: + UnfoldImpl(ExpandingArray<2> kernel_size) + : UnfoldImpl(UnfoldOptions(kernel_size)) {} + explicit UnfoldImpl(const UnfoldOptions& options_); + + void reset() override; + + /// Pretty prints the `Unfold` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input); + + /// The options with which this `Module` was constructed. + UnfoldOptions options; +}; + +/// A `ModuleHolder` subclass for `UnfoldImpl`. +/// See the documentation for `UnfoldImpl` class to learn what methods it +/// provides, and examples of how to use `Unfold` with +/// `torch::nn::UnfoldOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Unfold); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/instancenorm.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/instancenorm.h new file mode 100644 index 0000000000000000000000000000000000000000..b29ad007de7355846850aa8a17a2a554b8294be6 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/instancenorm.h @@ -0,0 +1,153 @@ +#pragma once + +#include +#include + +namespace torch { +namespace nn { + +/// Base class for all (dimension-specialized) instance norm modules +template +class InstanceNormImpl + : public torch::nn::NormImplBase { + private: + inline Tensor apply_instance_norm(const Tensor& input) { + return torch::nn::functional::detail::instance_norm( + input, + this->running_mean, + this->running_var, + this->weight, + this->bias, + this->is_training() || !this->options.track_running_stats(), + this->options.momentum(), + this->options.eps()); + } + + inline Tensor handle_no_batch_input(const Tensor& input) { + return this->apply_instance_norm(input.unsqueeze(0)).squeeze(0); + } + + public: + using torch::nn::NormImplBase::NormImplBase; + + Tensor forward(const Tensor& input) { + this->_check_input_dim(input); + + // For InstanceNorm1D, 2D is unbatched and 3D is batched + // For InstanceNorm2D, 3D is unbatched and 4D is batched + // For InstanceNorm3D, 4D is unbatched and 5D is batched + // check if input does not have a batch-dim + if (input.dim() == D + 1) { + return this->handle_no_batch_input(input); + } + + return this->apply_instance_norm(input); + } + + /// Pretty prints the `InstanceNorm{1,2,3}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override { + stream << std::boolalpha << "torch::nn::InstanceNorm" << D << "d(" + << this->options.num_features() << ", " + << "eps=" << this->options.eps() << ", " + << "momentum=" << this->options.momentum() << ", " + << "affine=" << this->options.affine() << ", " + << "track_running_stats=" << this->options.track_running_stats() + << ")"; + } +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ InstanceNorm1d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the InstanceNorm1d function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.InstanceNorm1d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::InstanceNorm1dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// InstanceNorm1d +/// model(InstanceNorm1dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); +/// ``` +class TORCH_API InstanceNorm1dImpl + : public InstanceNormImpl<1, InstanceNorm1dImpl> { + protected: + void _check_input_dim(const Tensor& input) override; + + public: + using InstanceNormImpl<1, InstanceNorm1dImpl>::InstanceNormImpl; +}; + +/// A `ModuleHolder` subclass for `InstanceNorm1dImpl`. +/// See the documentation for `InstanceNorm1dImpl` class to learn what methods +/// it provides, and examples of how to use `InstanceNorm1d` with +/// `torch::nn::InstanceNorm1dOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(InstanceNorm1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ InstanceNorm2d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the InstanceNorm2d function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.InstanceNorm2d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::InstanceNorm2dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// InstanceNorm2d +/// model(InstanceNorm2dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); +/// ``` +class TORCH_API InstanceNorm2dImpl + : public InstanceNormImpl<2, InstanceNorm2dImpl> { + protected: + void _check_input_dim(const Tensor& input) override; + + public: + using InstanceNormImpl<2, InstanceNorm2dImpl>::InstanceNormImpl; +}; + +/// A `ModuleHolder` subclass for `InstanceNorm2dImpl`. +/// See the documentation for `InstanceNorm2dImpl` class to learn what methods +/// it provides, and examples of how to use `InstanceNorm2d` with +/// `torch::nn::InstanceNorm2dOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(InstanceNorm2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ InstanceNorm3d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the InstanceNorm3d function. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.InstanceNorm3d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::InstanceNorm3dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// InstanceNorm3d +/// model(InstanceNorm3dOptions(4).eps(0.5).momentum(0.1).affine(false).track_running_stats(true)); +/// ``` +class TORCH_API InstanceNorm3dImpl + : public InstanceNormImpl<3, InstanceNorm3dImpl> { + protected: + void _check_input_dim(const Tensor& input) override; + + public: + using InstanceNormImpl<3, InstanceNorm3dImpl>::InstanceNormImpl; +}; + +/// A `ModuleHolder` subclass for `InstanceNorm3dImpl`. +/// See the documentation for `InstanceNorm3dImpl` class to learn what methods +/// it provides, and examples of how to use `InstanceNorm3d` with +/// `torch::nn::InstanceNorm3dOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(InstanceNorm3d); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/linear.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/linear.h new file mode 100644 index 0000000000000000000000000000000000000000..a58fdb36b43df9158bfd4513a2ace6bbf5e8d5f4 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/linear.h @@ -0,0 +1,214 @@ +#pragma once + +#include +#include +#include +#include +#include +#include + +#include +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Identity ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// A placeholder identity operator that is argument-insensitive. +/// See https://pytorch.org/docs/master/generated/torch.nn.Identity.html to +/// learn about the exact behavior of this module. +class TORCH_API IdentityImpl : public Cloneable { + public: + void reset() override; + + /// Pretty prints the `Identity` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `IdentityImpl`. +/// See the documentation for `IdentityImpl` class to learn what methods it +/// provides, or the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Identity); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Linear ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies a linear transformation with optional bias. +/// See https://pytorch.org/docs/master/generated/torch.nn.Linear.html to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::LinearOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Linear model(LinearOptions(5, 2).bias(false)); +/// ``` +class TORCH_API LinearImpl : public Cloneable { + public: + LinearImpl(int64_t in_features, int64_t out_features) + : LinearImpl(LinearOptions(in_features, out_features)) {} + explicit LinearImpl(const LinearOptions& options_); + + void reset() override; + + void reset_parameters(); + + /// Pretty prints the `Linear` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// Transforms the `input` tensor by multiplying with the `weight` and + /// optionally adding the `bias`, if `with_bias` is true in the options. + Tensor forward(const Tensor& input); + + /// The options used to configure this module. + LinearOptions options; + + /// The learned weight. + Tensor weight; + + /// The learned bias. If `bias` is false in the `options`, this tensor is + /// undefined. + Tensor bias; +}; + +/// A `ModuleHolder` subclass for `LinearImpl`. +/// See the documentation for `LinearImpl` class to learn what methods it +/// provides, and examples of how to use `Linear` with +/// `torch::nn::LinearOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Linear); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Flatten ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// A placeholder for Flatten operator +/// See https://pytorch.org/docs/master/generated/torch.nn.Flatten.html to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::FlattenOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Flatten model(FlattenOptions().start_dim(2).end_dim(4)); +/// ``` +class TORCH_API FlattenImpl : public Cloneable { + public: + explicit FlattenImpl(const FlattenOptions& options_ = {}); + + void reset() override; + + /// Pretty prints the `Flatten` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// Applies a flatten transform on the `input`. + Tensor forward(const Tensor& input); + + /// The options used to configure this module. + FlattenOptions options; +}; + +/// A `ModuleHolder` subclass for `FlattenImpl`. +/// See the documentation for `FlattenImpl` class to learn what methods it +/// provides, and examples of how to use `Flatten` with +/// `torch::nn::FlattenOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Flatten); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Unflatten +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// A placeholder for unflatten operator +/// See https://pytorch.org/docs/master/generated/torch.nn.Unflatten.html to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::UnflattenOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Unflatten model(UnflattenOptions(0, {2, 2})); +/// Unflatten model(UnflattenOptions("B", {{"B1", 2}, {"B2", 2}})); +/// ``` +class TORCH_API UnflattenImpl : public Cloneable { + public: + UnflattenImpl(int64_t dim, std::vector sizes) + : UnflattenImpl(UnflattenOptions(dim, sizes)) {} + UnflattenImpl(std::string dimname, UnflattenOptions::namedshape_t namedshape) + : UnflattenImpl(UnflattenOptions(dimname, namedshape)) {} + explicit UnflattenImpl(UnflattenOptions options_); + + void reset() override; + + /// Pretty prints the `Unflatten` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// Applies an unflatten transform on the `input`. + Tensor forward(const Tensor& input); + + /// The options used to configure this module. + UnflattenOptions options; +}; + +/// A `ModuleHolder` subclass for `UnflattenImpl`. +/// See the documentation for `UnflattenImpl` class to learn what methods it +/// provides, and examples of how to use `Unflatten` with +/// `torch::nn::UnflattenOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Unflatten); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Bilinear ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies a billinear transformation with optional bias. +/// See https://pytorch.org/docs/master/generated/torch.nn.Bilinear.html to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::BilinearOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Bilinear model(BilinearOptions(3, 2, 4).bias(false)); +/// ``` +class TORCH_API BilinearImpl : public Cloneable { + public: + BilinearImpl(int64_t in1_features, int64_t in2_features, int64_t out_features) + : BilinearImpl( + BilinearOptions(in1_features, in2_features, out_features)) {} + explicit BilinearImpl(const BilinearOptions& options_); + + void reset() override; + + void reset_parameters(); + + /// Pretty prints the `Bilinear` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// Applies a bilinear transform on the `input1` and `input2` tensor by + /// multiplying with the `weight` and optionally adding the `bias`, if + /// `with_bias` is true in the options. + Tensor forward(const Tensor& input1, const Tensor& input2); + + /// The options used to configure this module. + BilinearOptions options; + + /// The learned weight. + Tensor weight; + + /// The learned bias. If `with_bias` is false in the `options`, this tensor is + /// undefined. + Tensor bias; +}; + +/// A `ModuleHolder` subclass for `BilinearImpl`. +/// See the documentation for `BilinearImpl` class to learn what methods it +/// provides, and examples of how to use `Bilinear` with +/// `torch::nn::BilinearOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Bilinear); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/loss.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/loss.h new file mode 100644 index 0000000000000000000000000000000000000000..f34cfbf593340d8aa17fb701557f7bc8080f41d3 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/loss.h @@ -0,0 +1,805 @@ +#pragma once + +#include +#include +#include +#include +#include +#include + +#include + +#include +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L1Loss ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that measures the mean absolute error (MAE) between each +/// element in the input : math :`x` and target : `y`. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.L1Loss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::L1LossOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// L1Loss model(L1LossOptions(torch::kNone)); +/// ``` +struct TORCH_API L1LossImpl : Cloneable { + explicit L1LossImpl(L1LossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `L1Loss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + L1LossOptions options; +}; + +/// A `ModuleHolder` subclass for `L1LossImpl`. +/// See the documentation for `L1LossImpl` class to learn what methods it +/// provides, and examples of how to use `L1Loss` with +/// `torch::nn::L1LossOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(L1Loss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ KLDivLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// The Kullback-Leibler divergence loss measure +/// See https://pytorch.org/docs/master/nn.html#torch.nn.KLDivLoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::KLDivLossOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// KLDivLoss model(KLDivLossOptions().reduction(torch::kNone)); +/// ``` +struct TORCH_API KLDivLossImpl : Cloneable { + explicit KLDivLossImpl(KLDivLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `KLDivLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + KLDivLossOptions options; +}; + +/// A `ModuleHolder` subclass for `KLDivLossImpl`. +/// See the documentation for `KLDivLossImpl` class to learn what methods it +/// provides, and examples of how to use `KLDivLoss` with +/// `torch::nn::KLDivLossOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(KLDivLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MSELoss ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that measures the mean squared error (squared L2 norm) +/// between each element in the input :math:`x` and target :math:`y`. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.MSELoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MSELossOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MSELoss model(MSELossOptions(torch::kNone)); +/// ``` +struct TORCH_API MSELossImpl : Cloneable { + explicit MSELossImpl(MSELossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `MSELoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + MSELossOptions options; +}; + +/// A `ModuleHolder` subclass for `MSELossImpl`. +/// See the documentation for `MSELossImpl` class to learn what methods it +/// provides, and examples of how to use `MSELoss` with +/// `torch::nn::MSELossOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(MSELoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BCELoss ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that measures the Binary Cross Entropy +/// between the target and the output. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.BCELoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::BCELossOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// BCELoss model(BCELossOptions().reduction(torch::kNone).weight(weight)); +/// ``` +struct TORCH_API BCELossImpl : Cloneable { + explicit BCELossImpl(BCELossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `BCELoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + BCELossOptions options; +}; + +/// A `ModuleHolder` subclass for `BCELossImpl`. +/// See the documentation for `BCELossImpl` class to learn what methods it +/// provides, and examples of how to use `BCELoss` with +/// `torch::nn::BCELossOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(BCELoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ HingeEmbeddingLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that measures the loss given an input tensor :math:`x` +/// and a labels tensor :math:`y` (containing 1 or -1). +/// See https://pytorch.org/docs/master/nn.html#torch.nn.HingeEmbeddingLoss to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::HingeEmbeddingLossOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// HingeEmbeddingLoss +/// model(HingeEmbeddingLossOptions().margin(4).reduction(torch::kNone)); +/// ``` +struct TORCH_API HingeEmbeddingLossImpl : Cloneable { + explicit HingeEmbeddingLossImpl(HingeEmbeddingLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `HingeEmbeddingLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + HingeEmbeddingLossOptions options; +}; + +/// A `ModuleHolder` subclass for `HingeEmbeddingLossImpl`. +/// See the documentation for `HingeEmbeddingLossImpl` class to learn what +/// methods it provides, and examples of how to use `HingeEmbeddingLoss` with +/// `torch::nn::HingeEmbeddingLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(HingeEmbeddingLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MultiMarginLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that optimizes a multi-class classification hinge +/// loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`) +/// and output :math:`y` (which is a 1D tensor of target class indices, :math:`0 +/// \leq y \leq \text{x.size}(1)-1`). See +/// https://pytorch.org/docs/master/nn.html#torch.nn.MultiMarginLoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MultiMarginLossOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MultiMarginLoss model(MultiMarginLossOptions().margin(2).weight(weight)); +/// ``` +struct TORCH_API MultiMarginLossImpl : public Cloneable { + explicit MultiMarginLossImpl(MultiMarginLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `MultiMarginLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + MultiMarginLossOptions options; +}; + +/// A `ModuleHolder` subclass for `MultiMarginLossImpl`. +/// See the documentation for `MultiMarginLossImpl` class to learn what methods +/// it provides, and examples of how to use `MultiMarginLoss` with +/// `torch::nn::MultiMarginLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(MultiMarginLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CosineEmbeddingLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that measures the loss given input tensors +/// `input1`, `input2`, and a `Tensor` label `target` with values 1 or +/// -1. This is used for measuring whether two inputs are similar or +/// dissimilar, using the cosine distance, and is typically used for learning +/// nonlinear embeddings or semi-supervised learning. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.CosineEmbeddingLoss to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::CosineEmbeddingLossOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// CosineEmbeddingLoss model(CosineEmbeddingLossOptions().margin(0.5)); +/// ``` +struct TORCH_API CosineEmbeddingLossImpl + : public Cloneable { + explicit CosineEmbeddingLossImpl(CosineEmbeddingLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `CosineEmbeddingLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward( + const Tensor& input1, + const Tensor& input2, + const Tensor& target); + + /// The options with which this `Module` was constructed. + CosineEmbeddingLossOptions options; +}; + +/// A `ModuleHolder` subclass for `CosineEmbeddingLossImpl`. +/// See the documentation for `CosineEmbeddingLossImpl` class to learn what +/// methods it provides, and examples of how to use `CosineEmbeddingLoss` with +/// `torch::nn::CosineEmbeddingLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(CosineEmbeddingLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SmoothL1Loss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that uses a squared term if the absolute +/// element-wise error falls below beta and an L1 term otherwise. +/// It is less sensitive to outliers than the `MSELoss` and in some cases +/// prevents exploding gradients (e.g. see the paper `Fast R-CNN` by Ross +/// Girshick). See https://pytorch.org/docs/master/nn.html#torch.nn.SmoothL1Loss +/// to learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::SmoothL1LossOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// SmoothL1Loss model(SmoothL1LossOptions().reduction(torch::kNone).beta(0.5)); +/// ``` +struct TORCH_API SmoothL1LossImpl : public Cloneable { + explicit SmoothL1LossImpl(SmoothL1LossOptions options = {}); + + void reset() override; + + /// Pretty prints the `L1Loss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + SmoothL1LossOptions options; +}; + +/// A `ModuleHolder` subclass for `SmoothL1LossImpl`. +/// See the documentation for `SmoothL1LossImpl` class to learn what methods it +/// provides, and examples of how to use `SmoothL1Loss` with +/// `torch::nn::SmoothL1LossOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(SmoothL1Loss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ HuberLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that uses a squared term if the absolute +/// element-wise error falls below delta and a delta-scaled L1 term otherwise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.HuberLoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::HuberLossOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// HuberLoss model(HuberLossOptions().reduction(torch::kNone).delta(0.5)); +/// ``` +struct TORCH_API HuberLossImpl : public Cloneable { + explicit HuberLossImpl(HuberLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `HuberLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + HuberLossOptions options; +}; + +/// A `ModuleHolder` subclass for `HuberLossImpl`. +/// See the documentation for `HuberLossImpl` class to learn what methods it +/// provides, and examples of how to use `HuberLoss` with +/// `torch::nn::HuberLossOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(HuberLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MultiLabelMarginLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that optimizes a multi-class multi-classification +/// hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch +/// `Tensor`) and output :math:`y` (which is a 2D `Tensor` of target class +/// indices). See +/// https://pytorch.org/docs/master/nn.html#torch.nn.MultiLabelMarginLoss to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MultiLabelMarginLossOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MultiLabelMarginLoss model(MultiLabelMarginLossOptions(torch::kNone)); +/// ``` +struct TORCH_API MultiLabelMarginLossImpl + : public Cloneable { + explicit MultiLabelMarginLossImpl(MultiLabelMarginLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `L1Loss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + MultiLabelMarginLossOptions options; +}; + +/// A `ModuleHolder` subclass for `MultiLabelMarginLossImpl`. +/// See the documentation for `MultiLabelMarginLossImpl` class to learn what +/// methods it provides, and examples of how to use `MultiLabelMarginLoss` with +/// `torch::nn::MultiLabelMarginLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(MultiLabelMarginLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SoftMarginLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that optimizes a two-class classification +/// logistic loss between input tensor :math:`x` and target tensor :math:`y` +/// (containing 1 or -1). +/// See https://pytorch.org/docs/master/nn.html#torch.nn.SoftMarginLoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::SoftMarginLossOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// SoftMarginLoss model(SoftMarginLossOptions(torch::kNone)); +/// ``` +struct TORCH_API SoftMarginLossImpl : public Cloneable { + explicit SoftMarginLossImpl(SoftMarginLossOptions options_ = {}); + + /// Pretty prints the `SoftMarginLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + void reset() override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + SoftMarginLossOptions options; +}; + +/// A `ModuleHolder` subclass for `SoftMarginLossImpl`. +/// See the documentation for `SoftMarginLossImpl` class to learn what methods +/// it provides, and examples of how to use `SoftMarginLoss` with +/// `torch::nn::SoftMarginLossOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(SoftMarginLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MultiLabelSoftMarginLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that optimizes a multi-label one-versus-all +/// loss based on max-entropy, between input :math:`x` and target :math:`y` of +/// size :math:`(N, C)`. See +/// https://pytorch.org/docs/master/nn.html#torch.nn.MultiLabelSoftMarginLoss to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MultiLabelSoftMarginLossOptions` class +/// to learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MultiLabelSoftMarginLoss +/// model(MultiLabelSoftMarginLossOptions().reduction(torch::kNone).weight(weight)); +/// ``` +struct TORCH_API MultiLabelSoftMarginLossImpl + : public Cloneable { + explicit MultiLabelSoftMarginLossImpl( + MultiLabelSoftMarginLossOptions options_ = {}); + + /// Pretty prints the `MultiLabelSoftMarginLoss` module into the given + /// `stream`. + void pretty_print(std::ostream& stream) const override; + + void reset() override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + MultiLabelSoftMarginLossOptions options; +}; + +/// A `ModuleHolder` subclass for `MultiLabelSoftMarginLossImpl`. +/// See the documentation for `MultiLabelSoftMarginLossImpl` class to learn what +/// methods it provides, and examples of how to use `MultiLabelSoftMarginLoss` +/// with `torch::nn::MultiLabelSoftMarginLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(MultiLabelSoftMarginLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TripletMarginLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that measures the triplet loss given an input +/// tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater +/// than :math:`0`. This is used for measuring a relative similarity between +/// samples. A triplet is composed by `a`, `p` and `n` (i.e., `anchor`, +/// `positive examples` and `negative examples` respectively). The +/// shapes of all input tensors should be :math:`(N, D)`. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.TripletMarginLoss to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::TripletMarginLossOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// TripletMarginLoss +/// model(TripletMarginLossOptions().margin(3).p(2).eps(1e-06).swap(false)); +/// ``` +struct TORCH_API TripletMarginLossImpl + : public Cloneable { + explicit TripletMarginLossImpl(TripletMarginLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `TripletMarginLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward( + const Tensor& anchor, + const Tensor& positive, + const Tensor& negative); + + /// The options with which this `Module` was constructed. + TripletMarginLossOptions options; +}; + +/// A `ModuleHolder` subclass for `TripletMarginLossImpl`. +/// See the documentation for `TripletMarginLossImpl` class to learn what +/// methods it provides, and examples of how to use `TripletMarginLoss` with +/// `torch::nn::TripletMarginLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(TripletMarginLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TripletMarginWithDistanceLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that measures the triplet loss given input +/// tensors :math:`a`, :math:`p`, and :math:`n` (representing anchor, +/// positive, and negative examples, respectively); and a nonnegative, +/// real-valued function +/// ("distance function") used to compute the relationships between the anchor +/// and positive example ("positive distance") and the anchor and negative +/// example ("negative distance"). +/// See +/// https://pytorch.org/docs/master/nn.html#torch.nn.TripletMarginWithDistanceLoss +/// to learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::TripletMarginWithDistanceLossOptions` +/// class to learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// TripletMarginWithDistanceLoss +/// model(TripletMarginWithDistanceLossOptions().margin(3).swap(false)); +/// ``` +struct TORCH_API TripletMarginWithDistanceLossImpl + : public Cloneable { + explicit TripletMarginWithDistanceLossImpl( + TripletMarginWithDistanceLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `TripletMarginWithDistanceLoss` module into the given + /// `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward( + const Tensor& anchor, + const Tensor& positive, + const Tensor& negative); + + /// The options with which this `Module` was constructed. + TripletMarginWithDistanceLossOptions options; +}; + +/// A `ModuleHolder` subclass for `TripletMarginWithDistanceLossImpl`. +/// See the documentation for `TripletMarginWithDistanceLossImpl` class to learn +/// what methods it provides, and examples of how to use +/// `TripletMarginWithDistanceLoss` with +/// `torch::nn::TripletMarginWithDistanceLossOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(TripletMarginWithDistanceLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CTCLoss ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// The Connectionist Temporal Classification loss. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.CTCLoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::CTCLossOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// CTCLoss +/// model(CTCLossOptions().blank(42).zero_infinity(false).reduction(torch::kSum)); +/// ``` +struct TORCH_API CTCLossImpl : public Cloneable { + explicit CTCLossImpl(CTCLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `CTCLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward( + const Tensor& log_probs, + const Tensor& targets, + const Tensor& input_lengths, + const Tensor& target_lengths); + + /// The options with which this `Module` was constructed. + CTCLossOptions options; +}; + +/// A `ModuleHolder` subclass for `CTCLossImpl`. +/// See the documentation for `CTCLossImpl` class to learn what methods it +/// provides, and examples of how to use `CTCLoss` with +/// `torch::nn::CTCLossOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(CTCLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PoissonNLLLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Negative log likelihood loss with Poisson distribution of target. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.PoissonNLLLoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::PoissonNLLLossOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// PoissonNLLLoss +/// model(PoissonNLLLossOptions().log_input(false).full(true).eps(0.42).reduction(torch::kSum)); +/// ``` +struct TORCH_API PoissonNLLLossImpl : public Cloneable { + explicit PoissonNLLLossImpl(PoissonNLLLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `PoissonNLLLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& log_input, const Tensor& targets); + + /// The options with which this `Module` was constructed. + PoissonNLLLossOptions options; +}; + +/// A `ModuleHolder` subclass for `PoissonNLLLossImpl`. +/// See the documentation for `PoissonNLLLossImpl` class to learn what methods +/// it provides, and examples of how to use `PoissonNLLLoss` with +/// `torch::nn::PoissonNLLLossOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(PoissonNLLLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MarginRankingLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that measures the loss given +/// inputs :math:`x1`, :math:`x2`, two 1D mini-batch `Tensors`, +/// and a label 1D mini-batch tensor :math:`y` (containing 1 or -1). +/// See https://pytorch.org/docs/master/nn.html#torch.nn.MarginRankingLoss to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MarginRankingLossOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MarginRankingLoss +/// model(MarginRankingLossOptions().margin(0.5).reduction(torch::kSum)); +/// ``` +struct TORCH_API MarginRankingLossImpl + : public Cloneable { + explicit MarginRankingLossImpl(MarginRankingLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `MarginRankingLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward( + const Tensor& input1, + const Tensor& input2, + const Tensor& targets); + + /// The options with which this `Module` was constructed. + MarginRankingLossOptions options; +}; + +/// A `ModuleHolder` subclass for `MarginRankingLossImpl`. +/// See the documentation for `MarginRankingLossImpl` class to learn what +/// methods it provides, and examples of how to use `MarginRankingLoss` with +/// `torch::nn::MarginRankingLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(MarginRankingLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NLLLoss ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// The negative log likelihood loss. It is useful to train a classification +/// problem with `C` classes. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.NLLLoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::NLLLossOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// NLLLoss model(NLLLossOptions().ignore_index(-100).reduction(torch::kMean)); +/// ``` +struct TORCH_API NLLLossImpl : public Cloneable { + explicit NLLLossImpl(NLLLossOptions options_ = {}); + + /// Pretty prints the `NLLLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + void reset() override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + NLLLossOptions options; + + /// A manual rescaling weight given to to each class. + Tensor weight; +}; + +/// A `ModuleHolder` subclass for `NLLLossImpl`. +/// See the documentation for `NLLLossImpl` class to learn what methods it +/// provides, and examples of how to use `NLLLoss` with +/// `torch::nn::NLLLossOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(NLLLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CrossEntropyLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Creates a criterion that computes cross entropy loss between input and +/// target. See +/// https://pytorch.org/docs/master/nn.html#torch.nn.CrossEntropyLoss to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::CrossEntropyLossOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// CrossEntropyLoss +/// model(CrossEntropyLossOptions().ignore_index(-100).reduction(torch::kMean)); +/// ``` +struct TORCH_API CrossEntropyLossImpl : public Cloneable { + explicit CrossEntropyLossImpl(CrossEntropyLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `CrossEntropyLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + CrossEntropyLossOptions options; + + /// A manual rescaling weight given to to each class. + Tensor weight; +}; + +/// A `ModuleHolder` subclass for `CrossEntropyLossImpl`. +/// See the documentation for `CrossEntropyLossImpl` class to learn what methods +/// it provides, and examples of how to use `CrossEntropyLoss` with +/// `torch::nn::CrossEntropyLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(CrossEntropyLoss); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BCEWithLogitsLoss +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// This loss combines a `Sigmoid` layer and the `BCELoss` in one single +/// class. This version is more numerically stable than using a plain `Sigmoid` +/// followed by a `BCELoss` as, by combining the operations into one layer, +/// we take advantage of the log-sum-exp trick for numerical stability. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.BCEWithLogitsLoss to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::BCEWithLogitsLossOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// BCEWithLogitsLoss +/// model(BCEWithLogitsLossOptions().reduction(torch::kNone).weight(weight)); +/// ``` +struct TORCH_API BCEWithLogitsLossImpl + : public Cloneable { + explicit BCEWithLogitsLossImpl(BCEWithLogitsLossOptions options_ = {}); + + void reset() override; + + /// Pretty prints the `BCEWithLogitsLoss` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input, const Tensor& target); + + /// The options with which this `Module` was constructed. + BCEWithLogitsLossOptions options; + + /// A manual rescaling weight given to the loss of each batch element. + Tensor weight; + + /// A weight of positive examples. + Tensor pos_weight; +}; + +/// A `ModuleHolder` subclass for `BCEWithLogitsLossImpl`. +/// See the documentation for `BCEWithLogitsLossImpl` class to learn what +/// methods it provides, and examples of how to use `BCEWithLogitsLoss` with +/// `torch::nn::BCEWithLogitsLossOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(BCEWithLogitsLoss); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/normalization.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/normalization.h new file mode 100644 index 0000000000000000000000000000000000000000..2f748ef79d0bc551e0c351a430a3cca1a1746efa --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/normalization.h @@ -0,0 +1,198 @@ +#pragma once + +#include +#include +#include +#include +#include +#include + +#include +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LayerNorm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies Layer Normalization over a mini-batch of inputs as described in +/// the paper `Layer Normalization`_ . +/// See https://pytorch.org/docs/master/nn.html#torch.nn.LayerNorm to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::LayerNormOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// LayerNorm model(LayerNormOptions({2, +/// 2}).elementwise_affine(false).eps(2e-5)); +/// ``` +class TORCH_API LayerNormImpl : public torch::nn::Cloneable { + public: + LayerNormImpl(std::vector normalized_shape) + : LayerNormImpl(LayerNormOptions(normalized_shape)) {} + explicit LayerNormImpl(LayerNormOptions options_); + + void reset() override; + + void reset_parameters(); + + /// Pretty prints the `LayerNorm` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// Applies layer normalization over a mini-batch of inputs as described in + /// the paper `Layer Normalization`_ . + /// + /// The mean and standard-deviation are calculated separately over the last + /// certain number dimensions which have to be of the shape specified by + /// input `normalized_shape`. + /// + /// `Layer Normalization`: https://arxiv.org/abs/1607.06450 + Tensor forward(const Tensor& input); + + /// The options with which this module was constructed. + LayerNormOptions options; + + /// The learned weight. + /// Initialized to ones if the `elementwise_affine` option is set to `true` + /// upon construction. + Tensor weight; + + /// The learned bias. + /// Initialized to zeros `elementwise_affine` option is set to `true` upon + /// construction. + Tensor bias; +}; + +/// A `ModuleHolder` subclass for `LayerNormImpl`. +/// See the documentation for `LayerNormImpl` class to learn what methods it +/// provides, and examples of how to use `LayerNorm` with +/// `torch::nn::LayerNormOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(LayerNorm); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LocalResponseNorm +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies local response normalization over an input signal composed +/// of several input planes, where channels occupy the second dimension. +/// Applies normalization across channels. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.LocalResponseNorm to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::LocalResponseNormOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// LocalResponseNorm +/// model(LocalResponseNormOptions(2).alpha(0.0002).beta(0.85).k(2.)); +/// ``` +class TORCH_API LocalResponseNormImpl + : public Cloneable { + public: + LocalResponseNormImpl(int64_t size) + : LocalResponseNormImpl(LocalResponseNormOptions(size)) {} + explicit LocalResponseNormImpl(const LocalResponseNormOptions& options_); + + Tensor forward(const Tensor& input); + + void reset() override; + + /// Pretty prints the `LocalResponseNormImpl` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + LocalResponseNormOptions options; +}; + +/// A `ModuleHolder` subclass for `LocalResponseNormImpl`. +/// See the documentation for `LocalResponseNormImpl` class to learn what +/// methods it provides, and examples of how to use `LocalResponseNorm` with +/// `torch::nn::LocalResponseNormOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(LocalResponseNorm); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CrossMapLRN2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// See the documentation for `torch::nn::CrossMapLRN2dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// CrossMapLRN2d model(CrossMapLRN2dOptions(3).alpha(1e-5).beta(0.1).k(10)); +/// ``` +class TORCH_API CrossMapLRN2dImpl + : public torch::nn::Cloneable { + public: + CrossMapLRN2dImpl(int64_t size) + : CrossMapLRN2dImpl(CrossMapLRN2dOptions(size)) {} + explicit CrossMapLRN2dImpl(const CrossMapLRN2dOptions& options_) + : options(options_) {} + + void reset() override; + + /// Pretty prints the `CrossMapLRN2d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + torch::Tensor forward(const torch::Tensor& input); + + CrossMapLRN2dOptions options; +}; + +/// A `ModuleHolder` subclass for `CrossMapLRN2dImpl`. +/// See the documentation for `CrossMapLRN2dImpl` class to learn what methods it +/// provides, and examples of how to use `CrossMapLRN2d` with +/// `torch::nn::CrossMapLRN2dOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(CrossMapLRN2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GroupNorm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies Group Normalization over a mini-batch of inputs as described in +/// the paper `Group Normalization`_ . +/// See https://pytorch.org/docs/master/nn.html#torch.nn.GroupNorm to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::GroupNormOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// GroupNorm model(GroupNormOptions(2, 2).eps(2e-5).affine(false)); +/// ``` +class TORCH_API GroupNormImpl : public torch::nn::Cloneable { + public: + GroupNormImpl(int64_t num_groups, int64_t num_channels) + : GroupNormImpl(GroupNormOptions(num_groups, num_channels)) {} + explicit GroupNormImpl(const GroupNormOptions& options_); + + void reset() override; + + void reset_parameters(); + + /// Pretty prints the `GroupNorm` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input); + + /// The options with which this module was constructed. + GroupNormOptions options; + + /// The learned weight. + Tensor weight; + + /// The learned bias. + Tensor bias; +}; + +/// A `ModuleHolder` subclass for `GroupNormImpl`. +/// See the documentation for `GroupNormImpl` class to learn what methods it +/// provides, and examples of how to use `GroupNorm` with +/// `torch::nn::GroupNormOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(GroupNorm); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/padding.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/padding.h new file mode 100644 index 0000000000000000000000000000000000000000..9a93af0dd1192e7251cbd6ce4207abdab8fbee76 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/padding.h @@ -0,0 +1,378 @@ +#pragma once + +#include +#include +#include + +#include + +namespace torch { +namespace nn { + +/// Base class for all (dimension-specialized) ReflectionPad modules. +template +class TORCH_API ReflectionPadImpl : public torch::nn::Cloneable { + public: + ReflectionPadImpl(ExpandingArray padding) + : ReflectionPadImpl(ReflectionPadOptions(padding)) {} + explicit ReflectionPadImpl(const ReflectionPadOptions& options_); + + void reset() override; + + Tensor forward(const Tensor& input); + + /// Pretty prints the `ReflectionPad{1,2}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + ReflectionPadOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ReflectionPad1d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies ReflectionPad over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ReflectionPad1d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ReflectionPad1dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ReflectionPad1d model(ReflectionPad1dOptions({3, 1})); +/// ``` +class TORCH_API ReflectionPad1dImpl + : public ReflectionPadImpl<1, ReflectionPad1dImpl> { + public: + using ReflectionPadImpl<1, ReflectionPad1dImpl>::ReflectionPadImpl; +}; + +/// A `ModuleHolder` subclass for `ReflectionPad1dImpl`. +/// See the documentation for `ReflectionPad1dImpl` class to learn what methods +/// it provides, and examples of how to use `ReflectionPad1d` with +/// `torch::nn::ReflectionPad1dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(ReflectionPad1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ReflectionPad2d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies ReflectionPad over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ReflectionPad2d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ReflectionPad2dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ReflectionPad2d model(ReflectionPad2dOptions({1, 1, 2, 0})); +/// ``` +class TORCH_API ReflectionPad2dImpl + : public ReflectionPadImpl<2, ReflectionPad2dImpl> { + public: + using ReflectionPadImpl<2, ReflectionPad2dImpl>::ReflectionPadImpl; +}; + +/// A `ModuleHolder` subclass for `ReflectionPad2dImpl`. +/// See the documentation for `ReflectionPad2dImpl` class to learn what methods +/// it provides, and examples of how to use `ReflectionPad2d` with +/// `torch::nn::ReflectionPad2dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(ReflectionPad2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ReflectionPad3d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies ReflectionPad over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ReflectionPad3d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ReflectionPad3dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ReflectionPad3d model(ReflectionPad3dOptions(1)); +/// ReflectionPad3d model(ReflectionPad3dOptions({1, 1, 2, 0, 1, 2})); +/// ``` +class TORCH_API ReflectionPad3dImpl + : public ReflectionPadImpl<3, ReflectionPad3dImpl> { + public: + using ReflectionPadImpl<3, ReflectionPad3dImpl>::ReflectionPadImpl; +}; + +/// A `ModuleHolder` subclass for `ReflectionPad3dImpl`. +/// See the documentation for `ReflectionPad3dImpl` class to learn what methods +/// it provides, and examples of how to use `ReflectionPad3d` with +/// `torch::nn::ReflectionPad3dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(ReflectionPad3d); + +// ============================================================================ + +/// Base class for all (dimension-specialized) ReplicationPad modules. +template +class TORCH_API ReplicationPadImpl : public torch::nn::Cloneable { + public: + ReplicationPadImpl(ExpandingArray padding) + : ReplicationPadImpl(ReplicationPadOptions(padding)) {} + explicit ReplicationPadImpl(const ReplicationPadOptions& options_); + + void reset() override; + + Tensor forward(const Tensor& input); + + /// Pretty prints the `ReplicationPad{1,2}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + ReplicationPadOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ReplicationPad1d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies ReplicationPad over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ReplicationPad1d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ReplicationPad1dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ReplicationPad1d model(ReplicationPad1dOptions({3, 1})); +/// ``` +class TORCH_API ReplicationPad1dImpl + : public ReplicationPadImpl<1, ReplicationPad1dImpl> { + public: + using ReplicationPadImpl<1, ReplicationPad1dImpl>::ReplicationPadImpl; +}; + +/// A `ModuleHolder` subclass for `ReplicationPad1dImpl`. +/// See the documentation for `ReplicationPad1dImpl` class to learn what methods +/// it provides, and examples of how to use `ReplicationPad1d` with +/// `torch::nn::ReplicationPad1dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(ReplicationPad1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ReplicationPad2d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies ReplicationPad over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ReplicationPad2d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ReplicationPad2dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ReplicationPad2d model(ReplicationPad2dOptions({1, 1, 2, 0})); +/// ``` +class TORCH_API ReplicationPad2dImpl + : public ReplicationPadImpl<2, ReplicationPad2dImpl> { + public: + using ReplicationPadImpl<2, ReplicationPad2dImpl>::ReplicationPadImpl; +}; + +/// A `ModuleHolder` subclass for `ReplicationPad2dImpl`. +/// See the documentation for `ReplicationPad2dImpl` class to learn what methods +/// it provides, and examples of how to use `ReplicationPad2d` with +/// `torch::nn::ReplicationPad2dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(ReplicationPad2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ReplicationPad3d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies ReplicationPad over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ReplicationPad3d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ReplicationPad3dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ReplicationPad3d model(ReplicationPad3dOptions({1, 2, 1, 2, 1, 2})); +/// ``` +class TORCH_API ReplicationPad3dImpl + : public ReplicationPadImpl<3, ReplicationPad3dImpl> { + public: + using ReplicationPadImpl<3, ReplicationPad3dImpl>::ReplicationPadImpl; +}; + +/// A `ModuleHolder` subclass for `ReplicationPad3dImpl`. +/// See the documentation for `ReplicationPad3dImpl` class to learn what methods +/// it provides, and examples of how to use `ReplicationPad3d` with +/// `torch::nn::ReplicationPad3dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(ReplicationPad3d); + +// ============================================================================ + +/// Base class for all (dimension-specialized) ZeroPad modules. +template +class TORCH_API ZeroPadImpl : public torch::nn::Cloneable { + public: + ZeroPadImpl(ExpandingArray padding) + : ZeroPadImpl(ZeroPadOptions(padding)) {} + explicit ZeroPadImpl(const ZeroPadOptions& options_); + + void reset() override; + + Tensor forward(const Tensor& input); + + /// Pretty prints the `ZeroPad{1,2}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + ZeroPadOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ZeroPad1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +// Applies ZeroPad over a 1-D input. +class TORCH_API ZeroPad1dImpl : public ZeroPadImpl<1, ZeroPad1dImpl> { + public: + using ZeroPadImpl<1, ZeroPad1dImpl>::ZeroPadImpl; +}; + +/// A `ModuleHolder` subclass for `ZeroPad1dImpl`. +/// See the documentation for `ZeroPad1dImpl` class to learn what methods it +/// provides, and examples of how to use `ZeroPad1d` with +/// `torch::nn::ZeroPad1dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(ZeroPad1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ZeroPad2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +// Applies ZeroPad over a 2-D input. +class TORCH_API ZeroPad2dImpl : public ZeroPadImpl<2, ZeroPad2dImpl> { + public: + using ZeroPadImpl<2, ZeroPad2dImpl>::ZeroPadImpl; +}; + +/// A `ModuleHolder` subclass for `ZeroPad2dImpl`. +/// See the documentation for `ZeroPad2dImpl` class to learn what methods it +/// provides, and examples of how to use `ZeroPad2d` with +/// `torch::nn::ZeroPad2dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(ZeroPad2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ZeroPad3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +// Applies ZeroPad over a 3-D input. +class TORCH_API ZeroPad3dImpl : public ZeroPadImpl<3, ZeroPad3dImpl> { + public: + using ZeroPadImpl<3, ZeroPad3dImpl>::ZeroPadImpl; +}; + +/// A `ModuleHolder` subclass for `ZeroPad3dImpl`. +/// See the documentation for `ZeroPad3dImpl` class to learn what methods it +/// provides, and examples of how to use `ZeroPad3d` with +/// `torch::nn::ZeroPad3dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(ZeroPad3d); + +// ============================================================================ + +/// Base class for all (dimension-specialized) ConstantPad modules. +template +class TORCH_API ConstantPadImpl : public torch::nn::Cloneable { + public: + ConstantPadImpl(ExpandingArray padding, double value) + : ConstantPadImpl(ConstantPadOptions(padding, value)) {} + explicit ConstantPadImpl(const ConstantPadOptions& options_); + + void reset() override; + + Tensor forward(const Tensor& input); + + /// Pretty prints the `ConstantPad{1,2}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + ConstantPadOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ConstantPad1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies ConstantPad over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ConstantPad1d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ConstantPad1dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ConstantPad1d model(ConstantPad1dOptions({3, 1}, 3.5)); +/// ``` +class TORCH_API ConstantPad1dImpl + : public ConstantPadImpl<1, ConstantPad1dImpl> { + public: + using ConstantPadImpl<1, ConstantPad1dImpl>::ConstantPadImpl; +}; + +/// A `ModuleHolder` subclass for `ConstantPad1dImpl`. +/// See the documentation for `ConstantPad1dImpl` class to learn what methods it +/// provides, and examples of how to use `ConstantPad1d` with +/// `torch::nn::ConstantPad1dOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(ConstantPad1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ConstantPad2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies ConstantPad over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ConstantPad2d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ConstantPad2dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ConstantPad2d model(ConstantPad2dOptions({3, 0, 2, 1}, 3.5)); +/// ``` +class TORCH_API ConstantPad2dImpl + : public ConstantPadImpl<2, ConstantPad2dImpl> { + public: + using ConstantPadImpl<2, ConstantPad2dImpl>::ConstantPadImpl; +}; + +/// A `ModuleHolder` subclass for `ConstantPad2dImpl`. +/// See the documentation for `ConstantPad2dImpl` class to learn what methods it +/// provides, and examples of how to use `ConstantPad2d` with +/// `torch::nn::ConstantPad2dOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(ConstantPad2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ConstantPad3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies ConstantPad over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.ConstantPad3d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::ConstantPad3dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// ConstantPad3d model(ConstantPad3dOptions({1, 2, 1, 2, 1, 2}, 3.5)); +/// ``` +class TORCH_API ConstantPad3dImpl + : public ConstantPadImpl<3, ConstantPad3dImpl> { + public: + using ConstantPadImpl<3, ConstantPad3dImpl>::ConstantPadImpl; +}; + +/// A `ModuleHolder` subclass for `ConstantPad3dImpl`. +/// See the documentation for `ConstantPad3dImpl` class to learn what methods it +/// provides, and examples of how to use `ConstantPad3d` with +/// `torch::nn::ConstantPad3dOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(ConstantPad3d); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/pixelshuffle.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/pixelshuffle.h new file mode 100644 index 0000000000000000000000000000000000000000..e47e6851910529698150220f8c1b73c6e1945982 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/pixelshuffle.h @@ -0,0 +1,88 @@ +#pragma once + +#include +#include +#include + +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PixelShuffle +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` +/// to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an +/// upscale factor. See +/// https://pytorch.org/docs/master/nn.html#torch.nn.PixelShuffle to learn about +/// the exact behavior of this module. +/// +/// See the documentation for `torch::nn::PixelShuffleOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// PixelShuffle model(PixelShuffleOptions(5)); +/// ``` +struct TORCH_API PixelShuffleImpl + : public torch::nn::Cloneable { + explicit PixelShuffleImpl(const PixelShuffleOptions& options_); + + /// Pretty prints the `PixelShuffle` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input); + + void reset() override; + + /// The options with which this `Module` was constructed. + PixelShuffleOptions options; +}; + +/// A `ModuleHolder` subclass for `PixelShuffleImpl`. +/// See the documentation for `PixelShuffleImpl` class to learn what methods it +/// provides, and examples of how to use `PixelShuffle` with +/// `torch::nn::PixelShuffleOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(PixelShuffle); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PixelUnshuffle ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Reverses the PixelShuffle operation by rearranging elements in a tensor of +/// shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape :math:`(*, +/// C \times r^2, H, W)`, where r is a downscale factor. See +/// https://pytorch.org/docs/master/nn.html#torch.nn.PixelUnshuffle to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::PixelUnshuffleOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// PixelUnshuffle model(PixelUnshuffleOptions(5)); +/// ``` +struct TORCH_API PixelUnshuffleImpl + : public torch::nn::Cloneable { + explicit PixelUnshuffleImpl(const PixelUnshuffleOptions& options_); + + /// Pretty prints the `PixelUnshuffle` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input); + + void reset() override; + + /// The options with which this `Module` was constructed. + PixelUnshuffleOptions options; +}; + +/// A `ModuleHolder` subclass for `PixelUnshuffleImpl`. +/// See the documentation for `PixelUnshuffleImpl` class to learn what methods +/// it provides, and examples of how to use `PixelUnshuffle` with +/// `torch::nn::PixelUnshuffleOptions`. See the documentation for `ModuleHolder` +/// to learn about PyTorch's module storage semantics. +TORCH_MODULE(PixelUnshuffle); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/pooling.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/pooling.h new file mode 100644 index 0000000000000000000000000000000000000000..522dc18fc5d17c21730f0646ececc0c92641b563 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/pooling.h @@ -0,0 +1,751 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include + +namespace torch { +namespace nn { + +/// Base class for all (dimension-specialized) avgpool modules. +template +class TORCH_API AvgPoolImpl : public torch::nn::Cloneable { + public: + AvgPoolImpl(ExpandingArray kernel_size) + : AvgPoolImpl(AvgPoolOptions(kernel_size)) {} + explicit AvgPoolImpl(const AvgPoolOptions& options_); + + void reset() override; + + /// Pretty prints the `AvgPool{1,2,3}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + AvgPoolOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AvgPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies avgpool over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AvgPool1d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AvgPool1dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AvgPool1d model(AvgPool1dOptions(3).stride(2)); +/// ``` +class TORCH_API AvgPool1dImpl : public AvgPoolImpl<1, AvgPool1dImpl> { + public: + using AvgPoolImpl<1, AvgPool1dImpl>::AvgPoolImpl; + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `AvgPool1dImpl`. +/// See the documentation for `AvgPool1dImpl` class to learn what methods it +/// provides, and examples of how to use `AvgPool1d` with +/// `torch::nn::AvgPool1dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(AvgPool1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AvgPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies avgpool over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AvgPool2d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AvgPool2dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AvgPool2d model(AvgPool2dOptions({3, 2}).stride({2, 2})); +/// ``` +class TORCH_API AvgPool2dImpl : public AvgPoolImpl<2, AvgPool2dImpl> { + public: + using AvgPoolImpl<2, AvgPool2dImpl>::AvgPoolImpl; + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `AvgPool2dImpl`. +/// See the documentation for `AvgPool2dImpl` class to learn what methods it +/// provides, and examples of how to use `AvgPool2d` with +/// `torch::nn::AvgPool2dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(AvgPool2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AvgPool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies avgpool over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AvgPool3d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AvgPool3dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AvgPool3d model(AvgPool3dOptions(5).stride(2)); +/// ``` +class TORCH_API AvgPool3dImpl : public AvgPoolImpl<3, AvgPool3dImpl> { + public: + using AvgPoolImpl<3, AvgPool3dImpl>::AvgPoolImpl; + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `AvgPool3dImpl`. +/// See the documentation for `AvgPool3dImpl` class to learn what methods it +/// provides, and examples of how to use `AvgPool3d` with +/// `torch::nn::AvgPool3dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(AvgPool3d); + +// ============================================================================ + +/// Base class for all (dimension-specialized) maxpool modules. +template +class TORCH_API MaxPoolImpl : public torch::nn::Cloneable { + public: + MaxPoolImpl(ExpandingArray kernel_size) + : MaxPoolImpl(MaxPoolOptions(kernel_size)) {} + explicit MaxPoolImpl(const MaxPoolOptions& options_); + + void reset() override; + + /// Pretty prints the `MaxPool{1,2,3}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + MaxPoolOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies maxpool over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.MaxPool1d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MaxPool1dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MaxPool1d model(MaxPool1dOptions(3).stride(2)); +/// ``` +class TORCH_API MaxPool1dImpl : public MaxPoolImpl<1, MaxPool1dImpl> { + public: + using MaxPoolImpl<1, MaxPool1dImpl>::MaxPoolImpl; + Tensor forward(const Tensor& input); + + /// Returns the outputs and the indices of the max values. + /// Useful for `torch::nn::MaxUnpool1d` later. + std::tuple forward_with_indices(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `MaxPool1dImpl`. +/// See the documentation for `MaxPool1dImpl` class to learn what methods it +/// provides, and examples of how to use `MaxPool1d` with +/// `torch::nn::MaxPool1dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(MaxPool1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies maxpool over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.MaxPool2d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MaxPool2dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MaxPool2d model(MaxPool2dOptions({3, 2}).stride({2, 2})); +/// ``` +class TORCH_API MaxPool2dImpl : public MaxPoolImpl<2, MaxPool2dImpl> { + public: + using MaxPoolImpl<2, MaxPool2dImpl>::MaxPoolImpl; + Tensor forward(const Tensor& input); + + /// Returns the outputs and the indices of the max values. + /// Useful for `torch::nn::MaxUnpool2d` later. + std::tuple forward_with_indices(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `MaxPool2dImpl`. +/// See the documentation for `MaxPool2dImpl` class to learn what methods it +/// provides, and examples of how to use `MaxPool2d` with +/// `torch::nn::MaxPool2dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(MaxPool2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxPool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies maxpool over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.MaxPool3d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MaxPool3dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MaxPool3d model(MaxPool3dOptions(3).stride(2)); +/// ``` +class TORCH_API MaxPool3dImpl : public MaxPoolImpl<3, MaxPool3dImpl> { + public: + using MaxPoolImpl<3, MaxPool3dImpl>::MaxPoolImpl; + Tensor forward(const Tensor& input); + + /// Returns the outputs and the indices of the max values. + /// Useful for `torch::nn::MaxUnpool3d` later. + std::tuple forward_with_indices(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `MaxPool3dImpl`. +/// See the documentation for `MaxPool3dImpl` class to learn what methods it +/// provides, and examples of how to use `MaxPool3d` with +/// `torch::nn::MaxPool3dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(MaxPool3d); + +// ============================================================================ + +/// Base class for all (dimension-specialized) adaptive maxpool modules. +template +class TORCH_API AdaptiveMaxPoolImpl : public torch::nn::Cloneable { + public: + AdaptiveMaxPoolImpl(output_size_t output_size) + : AdaptiveMaxPoolImpl( + AdaptiveMaxPoolOptions(output_size)) {} + explicit AdaptiveMaxPoolImpl( + const AdaptiveMaxPoolOptions& options_) + : options(options_) {} + + void reset() override{}; + + /// Pretty prints the `AdaptiveMaxPool{1,2,3}d` module into the given + /// `stream`. + void pretty_print(std::ostream& stream) const override { + stream << "torch::nn::AdaptiveMaxPool" << D << "d" + << "(output_size=" << options.output_size() << ")"; + } + + /// The options with which this `Module` was constructed. + AdaptiveMaxPoolOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveMaxPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies adaptive maxpool over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AdaptiveMaxPool1d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AdaptiveMaxPool1dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AdaptiveMaxPool1d model(AdaptiveMaxPool1dOptions(3)); +/// ``` +class TORCH_API AdaptiveMaxPool1dImpl + : public AdaptiveMaxPoolImpl<1, ExpandingArray<1>, AdaptiveMaxPool1dImpl> { + public: + using AdaptiveMaxPoolImpl<1, ExpandingArray<1>, AdaptiveMaxPool1dImpl>:: + AdaptiveMaxPoolImpl; + + Tensor forward(const Tensor& input); + + /// Returns the indices along with the outputs. + /// Useful to pass to nn.MaxUnpool1d. + std::tuple forward_with_indices(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `AdaptiveMaxPool1dImpl`. +/// See the documentation for `AdaptiveMaxPool1dImpl` class to learn what +/// methods it provides, and examples of how to use `AdaptiveMaxPool1d` with +/// `torch::nn::AdaptiveMaxPool1dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(AdaptiveMaxPool1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveMaxPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies adaptive maxpool over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AdaptiveMaxPool2d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AdaptiveMaxPool2dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AdaptiveMaxPool2d model(AdaptiveMaxPool2dOptions({3, 2})); +/// ``` +class TORCH_API AdaptiveMaxPool2dImpl : public AdaptiveMaxPoolImpl< + 2, + ExpandingArrayWithOptionalElem<2>, + AdaptiveMaxPool2dImpl> { + public: + using AdaptiveMaxPoolImpl< + 2, + ExpandingArrayWithOptionalElem<2>, + AdaptiveMaxPool2dImpl>::AdaptiveMaxPoolImpl; + + Tensor forward(const Tensor& input); + + /// Returns the indices along with the outputs. + /// Useful to pass to nn.MaxUnpool2d. + std::tuple forward_with_indices(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `AdaptiveMaxPool2dImpl`. +/// See the documentation for `AdaptiveMaxPool2dImpl` class to learn what +/// methods it provides, and examples of how to use `AdaptiveMaxPool2d` with +/// `torch::nn::AdaptiveMaxPool2dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(AdaptiveMaxPool2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveMaxPool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies adaptive maxpool over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AdaptiveMaxPool3d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AdaptiveMaxPool3dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AdaptiveMaxPool3d model(AdaptiveMaxPool3dOptions(3)); +/// ``` +class TORCH_API AdaptiveMaxPool3dImpl : public AdaptiveMaxPoolImpl< + 3, + ExpandingArrayWithOptionalElem<3>, + AdaptiveMaxPool3dImpl> { + public: + using AdaptiveMaxPoolImpl< + 3, + ExpandingArrayWithOptionalElem<3>, + AdaptiveMaxPool3dImpl>::AdaptiveMaxPoolImpl; + + Tensor forward(const Tensor& input); + + /// Returns the indices along with the outputs. + /// Useful to pass to nn.MaxUnpool3d. + std::tuple forward_with_indices(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `AdaptiveMaxPool3dImpl`. +/// See the documentation for `AdaptiveMaxPool3dImpl` class to learn what +/// methods it provides, and examples of how to use `AdaptiveMaxPool3d` with +/// `torch::nn::AdaptiveMaxPool3dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(AdaptiveMaxPool3d); + +// ============================================================================ + +/// Base class for all (dimension-specialized) adaptive avgpool modules. +template +class TORCH_API AdaptiveAvgPoolImpl : public torch::nn::Cloneable { + public: + AdaptiveAvgPoolImpl(output_size_t output_size) + : AdaptiveAvgPoolImpl( + AdaptiveAvgPoolOptions(output_size)) {} + explicit AdaptiveAvgPoolImpl( + const AdaptiveAvgPoolOptions& options_) + : options(options_) {} + + void reset() override {} + + /// Pretty prints the `AdaptiveAvgPool{1,2,3}d` module into the given + /// `stream`. + void pretty_print(std::ostream& stream) const override { + stream << "torch::nn::AdaptiveAvgPool" << D << "d" + << "(output_size=" << options.output_size() << ")"; + } + + /// The options with which this `Module` was constructed. + AdaptiveAvgPoolOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveAvgPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies adaptive avgpool over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AdaptiveAvgPool1d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AdaptiveAvgPool1dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AdaptiveAvgPool1d model(AdaptiveAvgPool1dOptions(5)); +/// ``` +class TORCH_API AdaptiveAvgPool1dImpl + : public AdaptiveAvgPoolImpl<1, ExpandingArray<1>, AdaptiveAvgPool1dImpl> { + public: + using AdaptiveAvgPoolImpl<1, ExpandingArray<1>, AdaptiveAvgPool1dImpl>:: + AdaptiveAvgPoolImpl; + + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `AdaptiveAvgPool1dImpl`. +/// See the documentation for `AdaptiveAvgPool1dImpl` class to learn what +/// methods it provides, and examples of how to use `AdaptiveAvgPool1d` with +/// `torch::nn::AdaptiveAvgPool1dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(AdaptiveAvgPool1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveAvgPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies adaptive avgpool over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AdaptiveAvgPool2d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AdaptiveAvgPool2dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AdaptiveAvgPool2d model(AdaptiveAvgPool2dOptions({3, 2})); +/// ``` +class TORCH_API AdaptiveAvgPool2dImpl : public AdaptiveAvgPoolImpl< + 2, + ExpandingArrayWithOptionalElem<2>, + AdaptiveAvgPool2dImpl> { + public: + using AdaptiveAvgPoolImpl< + 2, + ExpandingArrayWithOptionalElem<2>, + AdaptiveAvgPool2dImpl>::AdaptiveAvgPoolImpl; + + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `AdaptiveAvgPool2dImpl`. +/// See the documentation for `AdaptiveAvgPool2dImpl` class to learn what +/// methods it provides, and examples of how to use `AdaptiveAvgPool2d` with +/// `torch::nn::AdaptiveAvgPool2dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(AdaptiveAvgPool2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~ AdaptiveAvgPool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies adaptive avgpool over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.AdaptiveAvgPool3d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::AdaptiveAvgPool3dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// AdaptiveAvgPool3d model(AdaptiveAvgPool3dOptions(3)); +/// ``` +class TORCH_API AdaptiveAvgPool3dImpl : public AdaptiveAvgPoolImpl< + 3, + ExpandingArrayWithOptionalElem<3>, + AdaptiveAvgPool3dImpl> { + public: + using AdaptiveAvgPoolImpl< + 3, + ExpandingArrayWithOptionalElem<3>, + AdaptiveAvgPool3dImpl>::AdaptiveAvgPoolImpl; + + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `AdaptiveAvgPool3dImpl`. +/// See the documentation for `AdaptiveAvgPool3dImpl` class to learn what +/// methods it provides, and examples of how to use `AdaptiveAvgPool3d` with +/// `torch::nn::AdaptiveAvgPool3dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(AdaptiveAvgPool3d); + +// ============================================================================ + +/// Base class for all (dimension-specialized) maxunpool modules. +template +class TORCH_API MaxUnpoolImpl : public torch::nn::Cloneable { + public: + MaxUnpoolImpl(ExpandingArray kernel_size) + : MaxUnpoolImpl(MaxUnpoolOptions(kernel_size)) {} + explicit MaxUnpoolImpl(const MaxUnpoolOptions& options_); + + void reset() override; + + /// Pretty prints the `MaxUnpool{1,2,3}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// The options with which this `Module` was constructed. + MaxUnpoolOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxUnpool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies maxunpool over a 1-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.MaxUnpool1d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MaxUnpool1dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MaxUnpool1d model(MaxUnpool1dOptions(3).stride(2).padding(1)); +/// ``` +class TORCH_API MaxUnpool1dImpl : public MaxUnpoolImpl<1, MaxUnpool1dImpl> { + public: + using MaxUnpoolImpl<1, MaxUnpool1dImpl>::MaxUnpoolImpl; + Tensor forward( + const Tensor& input, + const Tensor& indices, + const c10::optional>& output_size = c10::nullopt); + + protected: + FORWARD_HAS_DEFAULT_ARGS({2, AnyValue(c10::optional>())}) +}; + +/// A `ModuleHolder` subclass for `MaxUnpool1dImpl`. +/// See the documentation for `MaxUnpool1dImpl` class to learn what methods it +/// provides, and examples of how to use `MaxUnpool1d` with +/// `torch::nn::MaxUnpool1dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(MaxUnpool1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxUnpool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies maxunpool over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.MaxUnpool2d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MaxUnpool2dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MaxUnpool2d model(MaxUnpool2dOptions(3).stride(2).padding(1)); +/// ``` +class TORCH_API MaxUnpool2dImpl : public MaxUnpoolImpl<2, MaxUnpool2dImpl> { + public: + using MaxUnpoolImpl<2, MaxUnpool2dImpl>::MaxUnpoolImpl; + Tensor forward( + const Tensor& input, + const Tensor& indices, + const c10::optional>& output_size = c10::nullopt); + + protected: + FORWARD_HAS_DEFAULT_ARGS({2, AnyValue(c10::optional>())}) +}; + +/// A `ModuleHolder` subclass for `MaxUnpool2dImpl`. +/// See the documentation for `MaxUnpool2dImpl` class to learn what methods it +/// provides, and examples of how to use `MaxUnpool2d` with +/// `torch::nn::MaxUnpool2dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(MaxUnpool2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MaxUnpool3d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies maxunpool over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.MaxUnpool3d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::MaxUnpool3dOptions` class to learn +/// what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// MaxUnpool3d model(MaxUnpool3dOptions(3).stride(2).padding(1)); +/// ``` +class TORCH_API MaxUnpool3dImpl : public MaxUnpoolImpl<3, MaxUnpool3dImpl> { + public: + using MaxUnpoolImpl<3, MaxUnpool3dImpl>::MaxUnpoolImpl; + Tensor forward( + const Tensor& input, + const Tensor& indices, + const c10::optional>& output_size = c10::nullopt); + + protected: + FORWARD_HAS_DEFAULT_ARGS({2, AnyValue(c10::optional>())}) +}; + +/// A `ModuleHolder` subclass for `MaxUnpool3dImpl`. +/// See the documentation for `MaxUnpool3dImpl` class to learn what methods it +/// provides, and examples of how to use `MaxUnpool3d` with +/// `torch::nn::MaxUnpool3dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(MaxUnpool3d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FractionalMaxPool2d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies fractional maxpool over a 2-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.FractionalMaxPool2d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::FractionalMaxPool2dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// FractionalMaxPool2d model(FractionalMaxPool2dOptions(5).output_size(1)); +/// ``` +class TORCH_API FractionalMaxPool2dImpl + : public torch::nn::Cloneable { + public: + FractionalMaxPool2dImpl(ExpandingArray<2> kernel_size) + : FractionalMaxPool2dImpl(FractionalMaxPool2dOptions(kernel_size)) {} + explicit FractionalMaxPool2dImpl(FractionalMaxPool2dOptions options_); + + void reset() override; + + /// Pretty prints the `FractionalMaxPool2d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input); + + /// Returns the outputs and the indices of the max values. + /// Useful for `torch::nn::MaxUnpool2d` later. + std::tuple forward_with_indices(const Tensor& input); + + /// The options with which this `Module` was constructed. + FractionalMaxPool2dOptions options; + + Tensor _random_samples; +}; + +/// A `ModuleHolder` subclass for `FractionalMaxPool2dImpl`. +/// See the documentation for `FractionalMaxPool2dImpl` class to learn what +/// methods it provides, and examples of how to use `FractionalMaxPool2d` with +/// `torch::nn::FractionalMaxPool2dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(FractionalMaxPool2d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FractionalMaxPool3d +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies fractional maxpool over a 3-D input. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.FractionalMaxPool3d to +/// learn about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::FractionalMaxPool3dOptions` class to +/// learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// FractionalMaxPool3d model(FractionalMaxPool3dOptions(5).output_size(1)); +/// ``` +class TORCH_API FractionalMaxPool3dImpl + : public torch::nn::Cloneable { + public: + FractionalMaxPool3dImpl(ExpandingArray<3> kernel_size) + : FractionalMaxPool3dImpl(FractionalMaxPool3dOptions(kernel_size)) {} + explicit FractionalMaxPool3dImpl(FractionalMaxPool3dOptions options_); + + void reset() override; + + /// Pretty prints the `FractionalMaxPool3d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input); + + /// Returns the outputs and the indices of the max values. + /// Useful for `torch::nn::MaxUnpool3d` later. + std::tuple forward_with_indices(const Tensor& input); + + /// The options with which this `Module` was constructed. + FractionalMaxPool3dOptions options; + + Tensor _random_samples; +}; + +/// A `ModuleHolder` subclass for `FractionalMaxPool3dImpl`. +/// See the documentation for `FractionalMaxPool3dImpl` class to learn what +/// methods it provides, and examples of how to use `FractionalMaxPool3d` with +/// `torch::nn::FractionalMaxPool3dOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(FractionalMaxPool3d); + +// ============================================================================ + +/// Base class for all (dimension-specialized) lppool modules. +template +class TORCH_API LPPoolImpl : public torch::nn::Cloneable { + public: + LPPoolImpl(double norm_type, ExpandingArray kernel_size) + : LPPoolImpl(LPPoolOptions(norm_type, kernel_size)) {} + explicit LPPoolImpl(const LPPoolOptions& options_); + + void reset() override; + + /// Pretty prints the `LPPool{1,2}d` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + LPPoolOptions options; +}; + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LPPool1d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the LPPool1d function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.LPPool1d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::LPPool1dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// LPPool1d model(LPPool1dOptions(1, 2).stride(5).ceil_mode(true)); +/// ``` +class TORCH_API LPPool1dImpl : public LPPoolImpl<1, LPPool1dImpl> { + public: + using LPPoolImpl<1, LPPool1dImpl>::LPPoolImpl; + + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `LPPool1dImpl`. +/// See the documentation for `LPPool1dImpl` class to learn what methods it +/// provides, and examples of how to use `LPPool1d` with +/// `torch::nn::LPPool1dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(LPPool1d); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LPPool2d ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Applies the LPPool2d function element-wise. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.LPPool2d to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::LPPool2dOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// LPPool2d model(LPPool2dOptions(1, std::vector({3, 4})).stride({5, +/// 6}).ceil_mode(true)); +/// ``` +class TORCH_API LPPool2dImpl : public LPPoolImpl<2, LPPool2dImpl> { + public: + using LPPoolImpl<2, LPPool2dImpl>::LPPoolImpl; + + Tensor forward(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `LPPool2dImpl`. +/// See the documentation for `LPPool2dImpl` class to learn what methods it +/// provides, and examples of how to use `LPPool2d` with +/// `torch::nn::LPPool2dOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(LPPool2d); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/rnn.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/rnn.h new file mode 100644 index 0000000000000000000000000000000000000000..9c5ac5f3f45940a39bdb56a411d481de402fd9f6 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/rnn.h @@ -0,0 +1,401 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#include +#include +#include +#include + +namespace torch { +namespace nn { + +namespace detail { +/// Base class for all RNN implementations (intended for code sharing). +template +class TORCH_API RNNImplBase : public torch::nn::Cloneable { + public: + explicit RNNImplBase(const RNNOptionsBase& options_); + + /// Initializes the parameters of the RNN module. + void reset() override; + + void reset_parameters(); + + /// Overrides `nn::Module::to()` to call `flatten_parameters()` after the + /// original operation. + void to(torch::Device device, torch::Dtype dtype, bool non_blocking = false) + override; + void to(torch::Dtype dtype, bool non_blocking = false) override; + void to(torch::Device device, bool non_blocking = false) override; + + /// Pretty prints the RNN module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + /// Modifies the internal storage of weights for optimization purposes. + /// + /// On CPU, this method should be called if any of the weight or bias vectors + /// are changed (i.e. weights are added or removed). On GPU, it should be + /// called __any time the storage of any parameter is modified__, e.g. any + /// time a parameter is assigned a new value. This allows using the fast path + /// in cuDNN implementations of respective RNN `forward()` methods. It is + /// called once upon construction, inside `reset()`. + void flatten_parameters(); + + std::vector all_weights() const; + + /// The RNN's options. + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + RNNOptionsBase options_base; + + protected: + // Resets flat_weights_ + // Note: be v. careful before removing this, as 3rd party device types + // likely rely on this behavior to properly .to() modules like LSTM. + void reset_flat_weights(); + + void check_input(const Tensor& input, const Tensor& batch_sizes) const; + + std::tuple get_expected_hidden_size( + const Tensor& input, + const Tensor& batch_sizes) const; + + void check_hidden_size( + const Tensor& hx, + std::tuple expected_hidden_size, + std::string msg = "Expected hidden size {1}, got {2}") const; + + void check_forward_args(Tensor input, Tensor hidden, Tensor batch_sizes) + const; + + Tensor permute_hidden(Tensor hx, const Tensor& permutation) const; + + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + std::vector flat_weights_names_; + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + std::vector> all_weights_; + // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) + std::vector flat_weights_; +}; +} // namespace detail + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RNN ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// A multi-layer Elman RNN module with Tanh or ReLU activation. +/// See https://pytorch.org/docs/master/generated/torch.nn.RNN.html to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::RNNOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// RNN model(RNNOptions(128, +/// 64).num_layers(3).dropout(0.2).nonlinearity(torch::kTanh)); +/// ``` +class TORCH_API RNNImpl : public detail::RNNImplBase { + public: + RNNImpl(int64_t input_size, int64_t hidden_size) + : RNNImpl(RNNOptions(input_size, hidden_size)) {} + explicit RNNImpl(const RNNOptions& options_); + + std::tuple forward(const Tensor& input, Tensor hx = {}); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}) + + public: + std::tuple + forward_with_packed_input( + const torch::nn::utils::rnn::PackedSequence& packed_input, + Tensor hx = {}); + + RNNOptions options; + + protected: + std::tuple forward_helper( + const Tensor& input, + const Tensor& batch_sizes, + const Tensor& sorted_indices, + int64_t max_batch_size, + Tensor hx); +}; + +/// A `ModuleHolder` subclass for `RNNImpl`. +/// See the documentation for `RNNImpl` class to learn what methods it +/// provides, and examples of how to use `RNN` with `torch::nn::RNNOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(RNN); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LSTM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// A multi-layer long-short-term-memory (LSTM) module. +/// See https://pytorch.org/docs/master/generated/torch.nn.LSTM.html to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::LSTMOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// LSTM model(LSTMOptions(2, +/// 4).num_layers(3).batch_first(false).bidirectional(true)); +/// ``` +class TORCH_API LSTMImpl : public detail::RNNImplBase { + public: + LSTMImpl(int64_t input_size, int64_t hidden_size) + : LSTMImpl(LSTMOptions(input_size, hidden_size)) {} + explicit LSTMImpl(const LSTMOptions& options_); + + std::tuple> forward( + const Tensor& input, + torch::optional> hx_opt = {}); + + protected: + FORWARD_HAS_DEFAULT_ARGS( + {1, AnyValue(torch::optional>())}) + + public: + std::tuple> + forward_with_packed_input( + const torch::nn::utils::rnn::PackedSequence& packed_input, + torch::optional> hx_opt = {}); + + LSTMOptions options; + + protected: + void check_forward_args( + const Tensor& input, + std::tuple hidden, + const Tensor& batch_sizes) const; + + std::tuple get_expected_cell_size( + const Tensor& input, + const Tensor& batch_sizes) const; + + std::tuple permute_hidden( + std::tuple hx, + const Tensor& permutation) const; + + std::tuple> forward_helper( + const Tensor& input, + const Tensor& batch_sizes, + const Tensor& sorted_indices, + int64_t max_batch_size, + torch::optional> hx_opt); +}; + +/// A `ModuleHolder` subclass for `LSTMImpl`. +/// See the documentation for `LSTMImpl` class to learn what methods it +/// provides, and examples of how to use `LSTM` with `torch::nn::LSTMOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(LSTM); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GRU ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// A multi-layer gated recurrent unit (GRU) module. +/// See https://pytorch.org/docs/master/generated/torch.nn.GRU.html to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::GRUOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// GRU model(GRUOptions(2, +/// 4).num_layers(3).batch_first(false).bidirectional(true)); +/// ``` +class TORCH_API GRUImpl : public detail::RNNImplBase { + public: + GRUImpl(int64_t input_size, int64_t hidden_size) + : GRUImpl(GRUOptions(input_size, hidden_size)) {} + explicit GRUImpl(const GRUOptions& options_); + + std::tuple forward(const Tensor& input, Tensor hx = {}); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(torch::Tensor())}) + + public: + std::tuple + forward_with_packed_input( + const torch::nn::utils::rnn::PackedSequence& packed_input, + Tensor hx = {}); + + GRUOptions options; + + protected: + std::tuple forward_helper( + const Tensor& input, + const Tensor& batch_sizes, + const Tensor& sorted_indices, + int64_t max_batch_size, + Tensor hx); +}; + +/// A `ModuleHolder` subclass for `GRUImpl`. +/// See the documentation for `GRUImpl` class to learn what methods it +/// provides, and examples of how to use `GRU` with `torch::nn::GRUOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(GRU); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RNNCellImplBase +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +namespace detail { +/// Base class for all RNNCell implementations (intended for code sharing). +template +class TORCH_API RNNCellImplBase : public torch::nn::Cloneable { + public: + explicit RNNCellImplBase(const RNNCellOptionsBase& options_); + + /// Initializes the parameters of the RNNCell module. + void reset() override; + + void reset_parameters(); + + /// Pretty prints the RNN module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + RNNCellOptionsBase options_base; + + Tensor weight_ih; + Tensor weight_hh; + Tensor bias_ih; + Tensor bias_hh; + + protected: + void check_forward_input(const Tensor& input, const std::string name) const; + virtual std::string get_nonlinearity_str() const; +}; +} // namespace detail + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RNNCell +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// An Elman RNN cell with tanh or ReLU non-linearity. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.RNNCell to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::RNNCellOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// RNNCell model(RNNCellOptions(20, +/// 10).bias(false).nonlinearity(torch::kReLU)); +/// ``` +class TORCH_API RNNCellImpl : public detail::RNNCellImplBase { + public: + RNNCellImpl(int64_t input_size, int64_t hidden_size) + : RNNCellImpl(RNNCellOptions(input_size, hidden_size)) {} + explicit RNNCellImpl(const RNNCellOptions& options_); + + Tensor forward(const Tensor& input, Tensor hx = {}); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}) + + public: + RNNCellOptions options; + + protected: + std::string get_nonlinearity_str() const override; +}; + +/// A `ModuleHolder` subclass for `RNNCellImpl`. +/// See the documentation for `RNNCellImpl` class to learn what methods it +/// provides, and examples of how to use `RNNCell` with +/// `torch::nn::RNNCellOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(RNNCell); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ LSTMCell +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// A long short-term memory (LSTM) cell. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.LSTMCell to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::LSTMCellOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// LSTMCell model(LSTMCellOptions(20, 10).bias(false)); +/// ``` +class TORCH_API LSTMCellImpl : public detail::RNNCellImplBase { + public: + LSTMCellImpl(int64_t input_size, int64_t hidden_size) + : LSTMCellImpl(LSTMCellOptions(input_size, hidden_size)) {} + explicit LSTMCellImpl(const LSTMCellOptions& options_); + + std::tuple forward( + const Tensor& input, + torch::optional> hx_opt = {}); + + protected: + FORWARD_HAS_DEFAULT_ARGS( + {1, AnyValue(torch::optional>())}) + + public: + LSTMCellOptions options; +}; + +/// A `ModuleHolder` subclass for `LSTMCellImpl`. +/// See the documentation for `LSTMCellImpl` class to learn what methods it +/// provides, and examples of how to use `LSTMCell` with +/// `torch::nn::LSTMCellOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(LSTMCell); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GRUCell +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// A gated recurrent unit (GRU) cell. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.GRUCell to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::GRUCellOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// GRUCell model(GRUCellOptions(20, 10).bias(false)); +/// ``` +class TORCH_API GRUCellImpl : public detail::RNNCellImplBase { + public: + GRUCellImpl(int64_t input_size, int64_t hidden_size) + : GRUCellImpl(GRUCellOptions(input_size, hidden_size)) {} + explicit GRUCellImpl(const GRUCellOptions& options_); + + Tensor forward(const Tensor& input, Tensor hx = {}); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}) + + public: + GRUCellOptions options; +}; + +/// A `ModuleHolder` subclass for `GRUCellImpl`. +/// See the documentation for `GRUCellImpl` class to learn what methods it +/// provides, and examples of how to use `GRUCell` with +/// `torch::nn::GRUCellOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(GRUCell); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/transformer.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/transformer.h new file mode 100644 index 0000000000000000000000000000000000000000..c8c417c7564b3705cfe58f887bf43a03b7573f53 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/transformer.h @@ -0,0 +1,143 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include + +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Transformer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// A transformer model. User is able to modify the attributes as needed. The +/// architecture is based on the paper "Attention Is All You Need". Ashish +/// Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N +/// Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. +/// In Advances in Neural Information Processing Systems, pages 6000-6010. +/// +/// See https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html to +/// learn about the exact behavior of this transformer model +/// +/// See the documentation for `torch::nn::Transformer` class to learn what +/// constructor arguments are supported for this encoder layer model +/// +/// Example: +/// ``` +/// Transformer trans(TransformerOptions(512, 8)); +/// ``` +class TORCH_API TransformerImpl : public Cloneable { + public: + explicit TransformerImpl(TransformerOptions options_); + + /// forward function for Transformer Module + /// Args: + /// src: the sequence to the encoder (required). + /// tgt: the sequence to the decoder (required). + /// src_mask: the additive mask for the src sequence (optional). + /// tgt_mask: the additive mask for the tgt sequence (optional). + /// memory_mask: the additive mask for the encoder output (optional). + /// src_key_padding_mask: the ByteTensor mask for src keys per batch + /// (optional). tgt_key_padding_mask: the ByteTensor mask for tgt keys per + /// batch (optional). memory_key_padding_mask: the ByteTensor mask for + /// memory keys per batch (optional). + /// + /// Shape: + /// src: `(S, N, E)` + /// tgt: `(T, N, E)` + /// src_mask: `(S, S)` + /// tgt_mask: `(T, T)` + /// memory_mask: `(T, S)` + /// src_key_padding_mask: `(N, S)` + /// tgt_key_padding_mask: `(N, T)` + /// memory_key_padding_mask: `(N, S)` + /// + /// Note: + /// [src/tgt/memory]_mask ensures that position i is allowed to attend the + /// unmasked positions. If a ByteTensor is provided, the non-zero + /// positions are not allowed to attend while the zero positions will be + /// unchanged. If a BoolTensor is provided, positions with `True` are not + /// allowed to attend while `False` values will be unchanged. If a + /// FloatTensor is provided, it will be added to the attention weight. + /// + /// [src/tgt/memory]_key_padding_mask provides specified elements in the + /// key to be ignored by the attention. If a ByteTensor is provided, the + /// non-zero positions will be ignored while the zero positions will be + /// unchanged. If a BoolTensor is provided, the positions with the value + /// of `True` will be ignored while the position with the value of `False` + /// will be unchanged. + /// + /// output: `(T, N, E)` + /// + /// Note: + /// Due to the multi-head attention architecture in the transformer model, + /// the output sequence length of a transformer is same as the input + /// sequence (i.e. target) length of the decode. + /// + /// where + /// S is the source sequence length, + /// T is the target sequence length, + /// N is the batch size, + /// E is the feature number. + Tensor forward( + const Tensor& src, + const Tensor& tgt, + const Tensor& src_mask = {}, + const Tensor& tgt_mask = {}, + const Tensor& memory_mask = {}, + const Tensor& src_key_padding_mask = {}, + const Tensor& tgt_key_padding_mask = {}, + const Tensor& memory_key_padding_mask = {}); + + void reset() override; + + void reset_parameters(); + + /// Generate a square mask for the sequence. + /// The masked positions are filled with `-inf` in float type. + /// Unmasked positions are filled with `0.0` in float type. + /// Note: + /// 1. This function will always return a CPU tensor. + /// 2. This function requires the platform support IEEE754, since `-inf` is + /// guaranteed to + /// be valid only when IEEE754 is supported. If the platform doesn't + /// support IEEE754, this function will fill the mask with the smallest + /// float number instead of `-inf`, a one time warning will pop up as + /// well. + static Tensor generate_square_subsequent_mask(int64_t sz); + + protected: + FORWARD_HAS_DEFAULT_ARGS( + {2, AnyValue(Tensor())}, + {3, AnyValue(Tensor())}, + {4, AnyValue(Tensor())}, + {5, AnyValue(Tensor())}, + {6, AnyValue(Tensor())}, + {7, AnyValue(Tensor())}) + + public: + /// options with which this `Transformer` was constructed + TransformerOptions options; + + /// encoder module + AnyModule encoder; + + /// decoder module + AnyModule decoder; +}; + +/// A `ModuleHolder` subclass for `TransformerImpl`. +/// See the documentation for `TransformerImpl` class to learn what +/// methods it provides, and examples of how to use `Transformer` with +/// `torch::nn::TransformerOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(Transformer); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/transformercoder.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/transformercoder.h new file mode 100644 index 0000000000000000000000000000000000000000..fd1998449abd128c9431487d0af3543ce01a228d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/transformercoder.h @@ -0,0 +1,154 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include + +#include + +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TransformerEncoder +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// TransformerEncoder module. +/// See +/// https://pytorch.org/docs/master/generated/torch.nn.TransformerEncoder.html +/// to learn abouut the exact behavior of this encoder layer module. +/// +/// See the documentation for `torch::nn::TransformerEncoder` class to learn +/// what constructor arguments are supported for this encoder module. +/// +/// Example: +/// ``` +/// TransformerEncoderLayer encoderLayer(TransformerEncoderLayerOptions(512, +/// 8).dropout(0.1)); TransformerEncoder +/// encoder(TransformerEncoderOptions(encoderLayer, +/// 6).norm(LayerNorm(LayerNormOptions({2})))); +/// ``` +class TORCH_API TransformerEncoderImpl + : public Cloneable { + public: + TransformerEncoderImpl( + TransformerEncoderLayer encoder_layer, + int64_t num_layers) + : TransformerEncoderImpl( + TransformerEncoderOptions(encoder_layer, num_layers)) {} + explicit TransformerEncoderImpl(TransformerEncoderOptions options_); + + Tensor forward( + const Tensor& src, + const Tensor& src_mask = {}, + const Tensor& src_key_padding_mask = {}); + + void reset() override; + + void reset_parameters(); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}, {2, AnyValue(Tensor())}) + + public: + /// options with which this `TransformerEncoder` was constructed + TransformerEncoderOptions options; + + /// module list that contains all the encoder layers + ModuleList layers = nullptr; + + /// optional normalization module + AnyModule norm; +}; + +/// A `ModuleHolder` subclass for `TransformerEncoderImpl`. +/// See the documentation for `TransformerEncoderImpl` class to learn what +/// methods it provides, and examples of how to use `TransformerEncoder` with +/// `torch::nn::TransformerEncoderOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(TransformerEncoder); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TransformerDecoder +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// TransformerDecoder is a stack of N decoder layers. +/// See +/// https://pytorch.org/docs/master/generated/torch.nn.TransformerDecoder.html +/// to learn abouut the exact behavior of this decoder module +/// +/// See the documentation for `torch::nn::TransformerDecoderOptions` class to +/// learn what constructor arguments are supported for this decoder module +/// +/// Example: +/// ``` +/// TransformerDecoderLayer decoder_layer(TransformerDecoderLayerOptions(512, +/// 8).dropout(0.1)); TransformerDecoder +/// transformer_decoder(TransformerDecoderOptions(decoder_layer, +/// 6).norm(LayerNorm(LayerNormOptions({2})))); const auto memory = +/// torch::rand({10, 32, 512}); const auto tgt = torch::rand({20, 32, 512}); +/// auto out = transformer_decoder(tgt, memory); +/// ``` +class TORCH_API TransformerDecoderImpl + : public Cloneable { + public: + TransformerDecoderImpl( + TransformerDecoderLayer decoder_layer, + int64_t num_layers) + : TransformerDecoderImpl( + TransformerDecoderOptions(decoder_layer, num_layers)) {} + explicit TransformerDecoderImpl(TransformerDecoderOptions options_); + + void reset() override; + + void reset_parameters(); + + /// Pass the inputs (and mask) through the decoder layer in turn. + /// Args: + /// tgt: the sequence to the decoder layer (required). + /// memory: the sequence from the last layer of the encoder (required). + /// tgt_mask: the mask for the tgt sequence (optional). + /// memory_mask: the mask for the memory sequence (optional). + /// tgt_key_padding_mask: the mask for the tgt keys per batch + /// (optional). memory_key_padding_mask: the mask for the memory keys + /// per batch (optional). + Tensor forward( + const Tensor& tgt, + const Tensor& memory, + const Tensor& tgt_mask = {}, + const Tensor& memory_mask = {}, + const Tensor& tgt_key_padding_mask = {}, + const Tensor& memory_key_padding_mask = {}); + + /// The options used to configure this module. + TransformerDecoderOptions options; + + /// Cloned layers of decoder layers + ModuleList layers{nullptr}; + + /// optional layer normalization module + AnyModule norm; + + protected: + FORWARD_HAS_DEFAULT_ARGS( + {2, AnyValue(Tensor())}, + {3, AnyValue(Tensor())}, + {4, AnyValue(Tensor())}, + {5, AnyValue(Tensor())}) +}; + +/// A `ModuleHolder` subclass for `TransformerDecoderImpl`. +/// See the documentation for `TransformerDecoderImpl` class to learn what +/// methods it provides, and examples of how to use `TransformerDecoder` with +/// `torch::nn::TransformerDecoderOptions`. +/// See the documentation for `ModuleHolder` to learn about PyTorch's +/// module storage semantics. +TORCH_MODULE(TransformerDecoder); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/transformerlayer.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/transformerlayer.h new file mode 100644 index 0000000000000000000000000000000000000000..0378226b156372f8e7b33058053602b002c7d64f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/transformerlayer.h @@ -0,0 +1,195 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TransformerEncoderLayer +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// TransformerEncoderLayer module. +/// See +/// https://pytorch.org/docs/master/generated/torch.nn.TransformerEncoderLayer.html +/// to learn abouut the exact behavior of this encoder layer model +/// +/// See the documentation for `torch::nn::TransformerEncoderLayer` class to +/// learn what constructor arguments are supported for this encoder layer model +/// +/// Example: +/// ``` +/// TransformerEncoderLayer encoderLayer(TransformerEncoderLayerOptions(512, +/// 8).dropout(0.1)); +/// ``` +class TORCH_API TransformerEncoderLayerImpl + : public Cloneable { + public: + TransformerEncoderLayerImpl(int64_t d_model, int64_t nhead) + : TransformerEncoderLayerImpl( + TransformerEncoderLayerOptions(d_model, nhead)) {} + explicit TransformerEncoderLayerImpl(TransformerEncoderLayerOptions options_); + + Tensor forward( + const Tensor& src, + const Tensor& src_mask = {}, + const Tensor& src_key_padding_mask = {}); + + void reset() override; + + void reset_parameters(); + + protected: + FORWARD_HAS_DEFAULT_ARGS({1, AnyValue(Tensor())}, {2, AnyValue(Tensor())}) + + public: + /// options with which this `TransformerEncoderLayer` was constructed + TransformerEncoderLayerOptions options; + + /// self attention + MultiheadAttention self_attn = nullptr; + + /// feedforward first linear layer + Linear linear1 = nullptr; + + /// feedforward dropout layer + Dropout dropout = nullptr; + + /// feedforward second linear layer + Linear linear2 = nullptr; + + /// pre feedforward, normalization layer + LayerNorm norm1 = nullptr; + /// post feedfastward, normalization layer + LayerNorm norm2 = nullptr; + + /// pre feedfastward, dropout layer + Dropout dropout1 = nullptr; + /// post feedfastward, dropout layer + Dropout dropout2 = nullptr; +}; + +/// A `ModuleHolder` subclass for `TransformerEncoderLayerImpl``. +/// See the documentation for `TransformerEncoderLayerImpl` class to learn what +/// methods it provides, and examples of how to use `TransformerEncoderLayer` +/// with `torch::nn::TransformerEncoderLayerOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(TransformerEncoderLayer); + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TransformerDecoderLayer +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// TransformerDecoderLayer is made up of self-attn, multi-head-attn and +/// feedforward network. This standard decoder layer is based on the paper +/// "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, +/// Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia +/// Polosukhin. 2017. Attention is all you need. In Advances in Neural +/// Information Processing Systems, pages 6000-6010. Users may modify or +/// implement in a different way during application. See +/// https://pytorch.org/docs/master/nn.html#transformer-layers to learn about +/// the exact behavior of this module. +/// +/// See the documentation for `torch::nn::TransformerDecoderLayerOptions` class +/// to learn what constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// TransformerDecoderLayer model(TransformerDecoderLayerOptions(512, +/// 8).dropout(0.2)); +/// ``` +class TORCH_API TransformerDecoderLayerImpl + : public Cloneable { + public: + TransformerDecoderLayerImpl(int64_t d_model, int64_t nhead) + : TransformerDecoderLayerImpl( + TransformerDecoderLayerOptions(d_model, nhead)) {} + explicit TransformerDecoderLayerImpl(TransformerDecoderLayerOptions options_); + + void reset() override; + + void reset_parameters(); + + /// Pass the inputs (and mask) through the decoder layer. + /// Args: + /// tgt: the sequence to the decoder layer (required). + /// memory: the sequence from the last layer of the encoder (required). + /// tgt_mask: the mask for the tgt sequence (optional). + /// memory_mask: the mask for the memory sequence (optional). + /// tgt_key_padding_mask: the mask for the tgt keys per batch + /// (optional). memory_key_padding_mask: the mask for the memory keys + /// per batch (optional). + Tensor forward( + Tensor tgt, + const Tensor& memory, + const Tensor& tgt_mask = {}, + const Tensor& memory_mask = {}, + const Tensor& tgt_key_padding_mask = {}, + const Tensor& memory_key_padding_mask = {}); + + /// The options used to configure this module. + TransformerDecoderLayerOptions options; + + /// self attention + MultiheadAttention self_attn{nullptr}; + + /// Dropout, post self attention + Dropout dropout1{nullptr}; + + /// Normalization, post self attention + LayerNorm norm1{nullptr}; + + /// Multi-headed attention + MultiheadAttention multihead_attn{nullptr}; + + /// Dropout, post multi-headed attention + Dropout dropout2{nullptr}; + + /// Normalization, post multi-headed attention + LayerNorm norm2{nullptr}; + + /// Feed forward first linear layer + Linear linear1{nullptr}; + + /// Feed forward dropout layer + Dropout dropout{nullptr}; + + /// Feed forward second linear layer + Linear linear2{nullptr}; + + /// Dropout, post feed forward + Dropout dropout3{nullptr}; + + /// Normalization, post feed forward + LayerNorm norm3{nullptr}; + + protected: + FORWARD_HAS_DEFAULT_ARGS( + {2, AnyValue(Tensor())}, + {3, AnyValue(Tensor())}, + {4, AnyValue(Tensor())}, + {5, AnyValue(Tensor())}) + + /// Apply activation based on configuration + Tensor activation(const Tensor& input); +}; + +/// A `ModuleHolder` subclass for `TransformerDecoderLayerImpl`. +/// See the documentation for `TransformerDecoderLayerImpl` class to learn what +/// methods it provides, and examples of how to use `TransformerDecoderLayer` +/// with `torch::nn::TransformerDecoderLayerOptions`. See the documentation for +/// `ModuleHolder` to learn about PyTorch's module storage semantics. +TORCH_MODULE(TransformerDecoderLayer); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/upsampling.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/upsampling.h new file mode 100644 index 0000000000000000000000000000000000000000..6db8b04d574aa7116bad081e5167d106bc89b8ca --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/upsampling.h @@ -0,0 +1,55 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include + +#include +#include + +namespace torch { +namespace nn { + +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Upsample ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +/// Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D +/// (volumetric) data. +/// See https://pytorch.org/docs/master/nn.html#torch.nn.Upsample to learn +/// about the exact behavior of this module. +/// +/// See the documentation for `torch::nn::UpsampleOptions` class to learn what +/// constructor arguments are supported for this module. +/// +/// Example: +/// ``` +/// Upsample +/// model(UpsampleOptions().scale_factor({3}).mode(torch::kLinear).align_corners(false)); +/// ``` +class TORCH_API UpsampleImpl : public Cloneable { + public: + explicit UpsampleImpl(const UpsampleOptions& options_ = {}); + + void reset() override; + + /// Pretty prints the `Upsample` module into the given `stream`. + void pretty_print(std::ostream& stream) const override; + + Tensor forward(const Tensor& input); + + /// The options with which this `Module` was constructed. + UpsampleOptions options; +}; + +/// A `ModuleHolder` subclass for `UpsampleImpl`. +/// See the documentation for `UpsampleImpl` class to learn what methods it +/// provides, and examples of how to use `Upsample` with +/// `torch::nn::UpsampleOptions`. See the documentation for `ModuleHolder` to +/// learn about PyTorch's module storage semantics. +TORCH_MODULE(Upsample); + +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/utils.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/utils.h new file mode 100644 index 0000000000000000000000000000000000000000..6d3d383465f3318e8bf785eeef88a94a4aff2bdd --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/nn/modules/utils.h @@ -0,0 +1,55 @@ +#pragma once + +#include +#include +#include + +#include + +namespace torch { +namespace nn { +namespace modules { +namespace utils { + +// Reverse the order of `t` and repeat each element for `n` times. +// This can be used to translate padding arg used by Conv and Pooling modules +// to the ones used by `F::pad`. +// +// This mirrors `_reverse_repeat_tuple` in `torch/nn/modules/utils.py`. +inline std::vector _reverse_repeat_vector( + at::ArrayRef t, + int64_t n) { + TORCH_INTERNAL_ASSERT(n >= 0); + std::vector ret; + ret.reserve(t.size() * n); + for (auto rit = t.rbegin(); rit != t.rend(); ++rit) { + for (const auto i : c10::irange(n)) { + (void)i; // Suppress unused variable + ret.emplace_back(*rit); + } + } + return ret; +} + +inline std::vector _list_with_default( + torch::ArrayRef> out_size, + torch::IntArrayRef defaults) { + TORCH_CHECK( + defaults.size() > out_size.size(), + "Input dimension should be at least ", + out_size.size() + 1); + std::vector ret; + torch::IntArrayRef defaults_slice = + defaults.slice(defaults.size() - out_size.size(), out_size.size()); + for (const auto i : c10::irange(out_size.size())) { + auto v = out_size.at(i); + auto d = defaults_slice.at(i); + ret.emplace_back(v.has_value() ? v.value() : d); + } + return ret; +} + +} // namespace utils +} // namespace modules +} // namespace nn +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/adagrad.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/adagrad.h new file mode 100644 index 0000000000000000000000000000000000000000..4b2ff3c676b3d7b35485ace2b37c1545b6a66381 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/adagrad.h @@ -0,0 +1,109 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include +#include + +namespace torch { +namespace serialize { +class OutputArchive; +class InputArchive; +} // namespace serialize +} // namespace torch + +namespace torch { +namespace optim { + +struct TORCH_API AdagradOptions + : public OptimizerCloneableOptions { + AdagradOptions(double lr = 1e-2); + TORCH_ARG(double, lr) = 1e-2; + TORCH_ARG(double, lr_decay) = 0; + TORCH_ARG(double, weight_decay) = 0; + TORCH_ARG(double, initial_accumulator_value) = 0; + TORCH_ARG(double, eps) = 1e-10; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const AdagradOptions& lhs, + const AdagradOptions& rhs); + double get_lr() const override; + void set_lr(const double lr) override; +}; + +struct TORCH_API AdagradParamState + : public OptimizerCloneableParamState { + TORCH_ARG(torch::Tensor, sum); + TORCH_ARG(int64_t, step) = 0; + + public: + AdagradParamState() = default; + AdagradParamState(const AdagradParamState&) = default; + AdagradParamState& operator=(const AdagradParamState&) = default; + AdagradParamState(AdagradParamState&&) noexcept = default; + AdagradParamState& operator=(AdagradParamState&&) noexcept = default; + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const AdagradParamState& lhs, + const AdagradParamState& rhs); +}; + +class TORCH_API Adagrad : public Optimizer { + public: + explicit Adagrad( + std::vector param_groups, + AdagradOptions defaults = {}) + : Optimizer( + std::move(param_groups), + std::make_unique(defaults)) { + TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); + TORCH_CHECK( + defaults.lr_decay() >= 0, + "Invalid lr_decay value: ", + defaults.lr_decay()); + TORCH_CHECK( + defaults.weight_decay() >= 0, + "Invalid weight_decay value: ", + defaults.weight_decay()); + TORCH_CHECK( + defaults.initial_accumulator_value() >= 0, + "Invalid initial_accumulator_value value: ", + defaults.initial_accumulator_value()); + TORCH_CHECK(defaults.eps() >= 0, "Invalid epsilon value: ", defaults.eps()); + + for (const auto& group : param_groups_) { + for (const auto& p : group.params()) { + auto state = std::make_unique(); + state->step(0); + state->sum(torch::full_like( + p.data(), + defaults.initial_accumulator_value(), + at::MemoryFormat::Preserve)); + state_[p.unsafeGetTensorImpl()] = std::move(state); + } + } + } + + explicit Adagrad(std::vector params, AdagradOptions defaults = {}) + : Adagrad({OptimizerParamGroup(std::move(params))}, defaults) {} + + torch::Tensor step(LossClosure closure = nullptr) override; + void save(serialize::OutputArchive& archive) const override; + void load(serialize::InputArchive& archive) override; + + private: + template + static void serialize(Self& self, Archive& archive) { + _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(Adagrad); + } +}; +} // namespace optim +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/adam.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/adam.h new file mode 100644 index 0000000000000000000000000000000000000000..6e5e02d82c5442e1b007dd65a9240b5f959efe75 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/adam.h @@ -0,0 +1,92 @@ +#pragma once + +#include +#include +#include + +#include +#include + +namespace torch { +namespace serialize { +class OutputArchive; +class InputArchive; +} // namespace serialize +} // namespace torch + +namespace torch { +namespace optim { + +struct TORCH_API AdamOptions : public OptimizerCloneableOptions { + AdamOptions(double lr = 1e-3); + TORCH_ARG(double, lr) = 1e-3; + typedef std::tuple betas_t; + TORCH_ARG(betas_t, betas) = std::make_tuple(0.9, 0.999); + TORCH_ARG(double, eps) = 1e-8; + TORCH_ARG(double, weight_decay) = 0; + TORCH_ARG(bool, amsgrad) = false; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const AdamOptions& lhs, + const AdamOptions& rhs); + double get_lr() const override; + void set_lr(const double lr) override; +}; + +struct TORCH_API AdamParamState + : public OptimizerCloneableParamState { + TORCH_ARG(int64_t, step) = 0; + TORCH_ARG(torch::Tensor, exp_avg); + TORCH_ARG(torch::Tensor, exp_avg_sq); + TORCH_ARG(torch::Tensor, max_exp_avg_sq) = {}; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const AdamParamState& lhs, + const AdamParamState& rhs); +}; + +class TORCH_API Adam : public Optimizer { + public: + explicit Adam( + std::vector param_groups, + AdamOptions defaults = {}) + : Optimizer( + std::move(param_groups), + std::make_unique(defaults)) { + TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); + TORCH_CHECK(defaults.eps() >= 0, "Invalid epsilon value: ", defaults.eps()); + auto betas = defaults.betas(); + TORCH_CHECK( + 0 <= std::get<0>(betas) && std::get<0>(betas) < 1.0, + "Invalid beta parameter at index 0: ", + std::get<0>(betas)); + TORCH_CHECK( + 0 <= std::get<1>(betas) && std::get<1>(betas) < 1.0, + "Invalid beta parameter at index 1: ", + std::get<1>(betas)); + TORCH_CHECK( + defaults.weight_decay() >= 0, + "Invalid weight_decay value: ", + defaults.weight_decay()); + } + explicit Adam(std::vector params, AdamOptions defaults = {}) + : Adam({OptimizerParamGroup(std::move(params))}, defaults) {} + + torch::Tensor step(LossClosure closure = nullptr) override; + void save(serialize::OutputArchive& archive) const override; + void load(serialize::InputArchive& archive) override; + + private: + template + static void serialize(Self& self, Archive& archive) { + _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(Adam); + } +}; +} // namespace optim +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/adamw.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/adamw.h new file mode 100644 index 0000000000000000000000000000000000000000..a63d7fc32d455425fbb6967534e72c36ac2830c8 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/adamw.h @@ -0,0 +1,92 @@ +#pragma once + +#include +#include +#include + +#include +#include + +namespace torch { +namespace serialize { +class OutputArchive; +class InputArchive; +} // namespace serialize +} // namespace torch + +namespace torch { +namespace optim { + +struct TORCH_API AdamWOptions : public OptimizerCloneableOptions { + AdamWOptions(double lr = 1e-3); + TORCH_ARG(double, lr) = 1e-3; + typedef std::tuple betas_t; + TORCH_ARG(betas_t, betas) = std::make_tuple(0.9, 0.999); + TORCH_ARG(double, eps) = 1e-8; + TORCH_ARG(double, weight_decay) = 1e-2; + TORCH_ARG(bool, amsgrad) = false; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const AdamWOptions& lhs, + const AdamWOptions& rhs); + double get_lr() const override; + void set_lr(const double lr) override; +}; + +struct TORCH_API AdamWParamState + : public OptimizerCloneableParamState { + TORCH_ARG(int64_t, step) = 0; + TORCH_ARG(torch::Tensor, exp_avg); + TORCH_ARG(torch::Tensor, exp_avg_sq); + TORCH_ARG(torch::Tensor, max_exp_avg_sq) = {}; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const AdamWParamState& lhs, + const AdamWParamState& rhs); +}; + +class TORCH_API AdamW : public Optimizer { + public: + explicit AdamW( + std::vector param_groups, + AdamWOptions defaults = {}) + : Optimizer( + std::move(param_groups), + std::make_unique(defaults)) { + TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); + TORCH_CHECK(defaults.eps() >= 0, "Invalid epsilon value: ", defaults.eps()); + auto betas = defaults.betas(); + TORCH_CHECK( + 0 <= std::get<0>(betas) && std::get<0>(betas) < 1.0, + "Invalid beta parameter at index 0: ", + std::get<0>(betas)); + TORCH_CHECK( + 0 <= std::get<1>(betas) && std::get<1>(betas) < 1.0, + "Invalid beta parameter at index 1: ", + std::get<1>(betas)); + TORCH_CHECK( + defaults.weight_decay() >= 0, + "Invalid weight_decay value: ", + defaults.weight_decay()); + } + explicit AdamW(std::vector params, AdamWOptions defaults = {}) + : AdamW({OptimizerParamGroup(std::move(params))}, defaults) {} + + torch::Tensor step(LossClosure closure = nullptr) override; + void save(serialize::OutputArchive& archive) const override; + void load(serialize::InputArchive& archive) override; + + private: + template + static void serialize(Self& self, Archive& archive) { + _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(AdamW); + } +}; +} // namespace optim +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/lbfgs.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/lbfgs.h new file mode 100644 index 0000000000000000000000000000000000000000..99aa35d36e4b5da47a375ec50dfbab36d6298d5f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/lbfgs.h @@ -0,0 +1,103 @@ +#pragma once + +#include +#include +#include +#include + +#include +#include +#include +#include + +namespace torch { +namespace optim { + +struct TORCH_API LBFGSOptions : public OptimizerCloneableOptions { + LBFGSOptions(double lr = 1); + TORCH_ARG(double, lr) = 1; + TORCH_ARG(int64_t, max_iter) = 20; + TORCH_ARG(c10::optional, max_eval) = c10::nullopt; + TORCH_ARG(double, tolerance_grad) = 1e-7; + TORCH_ARG(double, tolerance_change) = 1e-9; + TORCH_ARG(int64_t, history_size) = 100; + TORCH_ARG(c10::optional, line_search_fn) = c10::nullopt; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const LBFGSOptions& lhs, + const LBFGSOptions& rhs); + double get_lr() const override; + void set_lr(const double lr) override; +}; + +struct TORCH_API LBFGSParamState + : public OptimizerCloneableParamState { + TORCH_ARG(int64_t, func_evals) = 0; + TORCH_ARG(int64_t, n_iter) = 0; + TORCH_ARG(double, t) = 0; + TORCH_ARG(double, prev_loss) = 0; + TORCH_ARG(Tensor, d) = {}; + TORCH_ARG(Tensor, H_diag) = {}; + TORCH_ARG(Tensor, prev_flat_grad) = {}; + TORCH_ARG(std::deque, old_dirs); + TORCH_ARG(std::deque, old_stps); + TORCH_ARG(std::deque, ro); + TORCH_ARG(c10::optional>, al) = c10::nullopt; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const LBFGSParamState& lhs, + const LBFGSParamState& rhs); +}; + +class TORCH_API LBFGS : public Optimizer { + public: + explicit LBFGS( + std::vector param_groups, + LBFGSOptions defaults = {}) + : Optimizer( + std::move(param_groups), + std::make_unique(defaults)) { + TORCH_CHECK( + param_groups_.size() == 1, + "LBFGS doesn't support per-parameter options (parameter groups)"); + if (defaults.max_eval() == c10::nullopt) { + auto max_eval_val = (defaults.max_iter() * 5) / 4; + static_cast(param_groups_[0].options()) + .max_eval(max_eval_val); + static_cast(*defaults_.get()).max_eval(max_eval_val); + } + _numel_cache = c10::nullopt; + } + explicit LBFGS(std::vector params, LBFGSOptions defaults = {}) + : LBFGS({OptimizerParamGroup(std::move(params))}, defaults) {} + + Tensor step(LossClosure closure) override; + void save(serialize::OutputArchive& archive) const override; + void load(serialize::InputArchive& archive) override; + + private: + c10::optional _numel_cache; + int64_t _numel(); + Tensor _gather_flat_grad(); + void _add_grad(const double step_size, const Tensor& update); + std::tuple _directional_evaluate( + const LossClosure& closure, + const std::vector& x, + double t, + const Tensor& d); + void _set_param(const std::vector& params_data); + std::vector _clone_param(); + + template + static void serialize(Self& self, Archive& archive) { + _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(LBFGS); + } +}; +} // namespace optim +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/optimizer.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/optimizer.h new file mode 100644 index 0000000000000000000000000000000000000000..1f448e4fffd61c920ec2249ca0ba8e50e7e43e2d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/optimizer.h @@ -0,0 +1,217 @@ +#pragma once + +#include +#include +#include + +#include +#include + +#include +#include +#include +#include +#include +#include + +// Forward declarations confuse Doxygen +#ifndef DOXYGEN_SHOULD_SKIP_THIS +namespace at { +class Tensor; +} // namespace at + +namespace torch { +using at::Tensor; +namespace serialize { +class OutputArchive; +class InputArchive; +} // namespace serialize +} // namespace torch +#endif // DOXYGEN_SHOULD_SKIP_THIS + +namespace torch { +namespace optim { + +class TORCH_API OptimizerParamState { + public: + OptimizerParamState() = default; + OptimizerParamState(const OptimizerParamState&) = default; + OptimizerParamState& operator=(const OptimizerParamState&) = default; + OptimizerParamState(OptimizerParamState&&) noexcept = default; + OptimizerParamState& operator=(OptimizerParamState&&) noexcept = default; + virtual std::unique_ptr clone() const; + virtual void serialize(torch::serialize::InputArchive& archive); + virtual void serialize(torch::serialize::OutputArchive& archive) const; + virtual ~OptimizerParamState() = default; +}; + +template +class OptimizerCloneableParamState : public OptimizerParamState { + std::unique_ptr clone() const override { + return std::make_unique(static_cast(*this)); + } +}; + +class TORCH_API OptimizerOptions { + public: + OptimizerOptions() = default; + OptimizerOptions(const OptimizerOptions&) = default; + OptimizerOptions& operator=(const OptimizerOptions&) = default; + OptimizerOptions(OptimizerOptions&&) noexcept = default; + OptimizerOptions& operator=(OptimizerOptions&&) noexcept = default; + virtual std::unique_ptr clone() const; + virtual void serialize(torch::serialize::InputArchive& archive); + virtual void serialize(torch::serialize::OutputArchive& archive) const; + virtual ~OptimizerOptions() = default; + virtual double get_lr() const; + virtual void set_lr(const double lr); +}; + +template +class OptimizerCloneableOptions : public OptimizerOptions { + private: + std::unique_ptr clone() const override { + return std::make_unique(static_cast(*this)); + } +}; + +/// Stores parameters in the param_group and stores a pointer to the +/// OptimizerOptions +class TORCH_API OptimizerParamGroup { + public: + // NOTE: In order to store `OptimizerParamGroup` in a `std::vector`, it has to + // be copy-constructible. + OptimizerParamGroup(const OptimizerParamGroup& param_group) + : params_(param_group.params()), + options_( + param_group.has_options() ? param_group.options().clone() + : nullptr) {} + OptimizerParamGroup(std::vector params) + : params_(std::move(params)) {} + OptimizerParamGroup( + std::vector params, + std::unique_ptr options) + : params_(std::move(params)), options_(std::move(options)) {} + + bool has_options() const; + OptimizerOptions& options(); + const OptimizerOptions& options() const; + void set_options(std::unique_ptr options); + std::vector& params(); + const std::vector& params() const; + + protected: + std::vector params_; + std::unique_ptr options_; +}; + +class TORCH_API Optimizer { + public: + // The copy constructor is deleted, because the user should use the + // `state_dict` / `load_state_dict` API to copy an optimizer instead. + Optimizer(const Optimizer& optimizer) = delete; + Optimizer(Optimizer&& optimizer) = default; + + explicit Optimizer( + std::vector param_groups, + std::unique_ptr defaults) + : defaults_(std::move(defaults)) { + for (const auto& param_group : param_groups) { + add_param_group(param_group); + } + } + + /// Constructs the `Optimizer` from a vector of parameters. + explicit Optimizer( + std::vector parameters, + std::unique_ptr defaults) + : Optimizer( + {OptimizerParamGroup(std::move(parameters))}, + std::move(defaults)){}; + + /// Adds the given param_group to the optimizer's param_group list. + void add_param_group(const OptimizerParamGroup& param_group); + + virtual ~Optimizer() = default; + + using LossClosure = std::function; + /// A loss function closure, which is expected to return the loss value. + virtual Tensor step(LossClosure closure = nullptr) = 0; + + /// Adds the given vector of parameters to the optimizer's parameter list. + void add_parameters(const std::vector& parameters); + + /// Zeros out the gradients of all parameters. + void zero_grad(bool set_to_none = true); + + /// Provides a const reference to the parameters in the first param_group this + /// optimizer holds. + const std::vector& parameters() const noexcept; + + /// Provides a reference to the parameters in the first param_group this + /// optimizer holds. + std::vector& parameters() noexcept; + + /// Returns the number of parameters referenced by the optimizer. + size_t size() const noexcept; + + OptimizerOptions& defaults() noexcept; + + const OptimizerOptions& defaults() const noexcept; + + /// Provides a reference to the param_groups this optimizer holds. + std::vector& param_groups() noexcept; + + /// Provides a const reference to the param_groups this optimizer holds. + const std::vector& param_groups() const noexcept; + + /// Provides a reference to the state this optimizer holds + ska::flat_hash_map>& + state() noexcept; + + /// Provides a const reference to the state this optimizer holds + const ska::flat_hash_map>& state() + const noexcept; + + /// Serializes the optimizer state into the given `archive`. + virtual void save(serialize::OutputArchive& archive) const; + + /// Deserializes the optimizer state from the given `archive`. + virtual void load(serialize::InputArchive& archive); + + protected: + std::vector param_groups_; + ska::flat_hash_map> state_; + std::unique_ptr defaults_; +}; + +/* How do we decide whether to serialize undefined tensors or + c10::nullopt values into the output archive? +Answer: we strictly follow the behavior of Python API. To be more specific: + +For optimizer options: +a) For undefined tensor: currently no tensor is used as an options argument in +Python API, so we don't need to worry about it now. b) For c10::nullopt value: +we serialize c10::nullopt values into the output archive, to follow the exact +same behavior as Python API. + +For optimizer param state: +a) For undefined tensor: in param state, undefined tensor in C++ impl is +equivalent to missing key in Python impl. Since we don't serialize missing keys +in Python API, we skip undefined tensors when serializing the param state. b) +For c10::nullopt value: in param state, c10::nullopt value in C++ impl is +equivalent to missing key in Python impl. Since we don't serialize missing keys +in Python API, we skip c10::nullopt values when serializing the param state. */ + +/// Serializes an `Optimizer` into an `OutputArchive`. +TORCH_API serialize::OutputArchive& operator<<( + serialize::OutputArchive& archive, + const Optimizer& optimizer); + +/// Deserializes a `Tensor` from an `InputArchive`. +TORCH_API serialize::InputArchive& operator>>( + serialize::InputArchive& archive, + Optimizer& optimizer); + +} // namespace optim +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/rmsprop.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/rmsprop.h new file mode 100644 index 0000000000000000000000000000000000000000..69a2e27993d5b76165cb268cb0186e632b1e05f1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/rmsprop.h @@ -0,0 +1,95 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +namespace torch { +namespace serialize { +class OutputArchive; +class InputArchive; +} // namespace serialize +} // namespace torch + +namespace torch { +namespace optim { + +struct TORCH_API RMSpropOptions + : public OptimizerCloneableOptions { + RMSpropOptions(double lr = 1e-2); + TORCH_ARG(double, lr) = 1e-2; + TORCH_ARG(double, alpha) = 0.99; + TORCH_ARG(double, eps) = 1e-8; + TORCH_ARG(double, weight_decay) = 0; + TORCH_ARG(double, momentum) = 0; + TORCH_ARG(bool, centered) = false; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const RMSpropOptions& lhs, + const RMSpropOptions& rhs); + double get_lr() const override; + void set_lr(const double lr) override; +}; + +struct TORCH_API RMSpropParamState + : public OptimizerCloneableParamState { + TORCH_ARG(int64_t, step) = 0; + TORCH_ARG(torch::Tensor, square_avg); + TORCH_ARG(torch::Tensor, momentum_buffer) = {}; + TORCH_ARG(torch::Tensor, grad_avg) = {}; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const RMSpropParamState& lhs, + const RMSpropParamState& rhs); +}; + +class TORCH_API RMSprop : public Optimizer { + public: + explicit RMSprop( + std::vector param_groups, + RMSpropOptions defaults = {}) + : Optimizer( + std::move(param_groups), + std::make_unique(defaults)) { + TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); + TORCH_CHECK(defaults.eps() >= 0, "Invalid epsilon value: ", defaults.eps()); + TORCH_CHECK( + defaults.momentum() >= 0, + "Invalid momentum value: ", + defaults.momentum()); + TORCH_CHECK( + defaults.weight_decay() >= 0, + "Invalid weight_decay value: ", + defaults.weight_decay()); + TORCH_CHECK( + defaults.alpha() >= 0, "Invalid alpha value: ", defaults.alpha()); + } + + explicit RMSprop(std::vector params, RMSpropOptions defaults = {}) + : RMSprop({OptimizerParamGroup(std::move(params))}, defaults) {} + + torch::Tensor step(LossClosure closure = nullptr) override; + void save(serialize::OutputArchive& archive) const override; + void load(serialize::InputArchive& archive) override; + + private: + template + static void serialize(Self& self, Archive& archive) { + _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(RMSprop); + } +}; +} // namespace optim +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/serialize.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/serialize.h new file mode 100644 index 0000000000000000000000000000000000000000..e666477c2a1db35a5d9e25fe408d2e6e8ea20d09 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/serialize.h @@ -0,0 +1,309 @@ +#pragma once + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace torch { +namespace optim { +namespace detail { +// Utility function to save state +template +void serialize( + serialize::OutputArchive& archive, + const ska::flat_hash_map>& + state) { + for (const auto& item : state) { + serialize::OutputArchive param_state_archive(archive.compilation_unit()); + std::string tensorimpl_key = + std::to_string(reinterpret_cast(item.first)); + const DerivedOptimizerParamState& curr_state = + static_cast(*(item.second.get())); + curr_state.serialize(param_state_archive); + archive.write(tensorimpl_key, param_state_archive); + } +} + +// Utility function to load state +template +void serialize( + serialize::InputArchive& archive, + ska::flat_hash_map>& state) { + std::vector tensorimpl_keys = archive.keys(); + for (const std::string& tensorimpl_key : tensorimpl_keys) { + serialize::InputArchive param_state_archive; + archive.read(tensorimpl_key, param_state_archive); + DerivedOptimizerParamState param_state; + param_state.serialize(param_state_archive); + state[reinterpret_cast(std::stoull(tensorimpl_key))] = + std::make_unique(param_state); + } +} + +// Utility function to save param_groups +template +void serialize( + serialize::OutputArchive& archive, + const std::vector& param_groups) { + archive.write( + "param_groups/size", + torch::tensor(static_cast(param_groups.size()))); + for (const auto i : c10::irange(param_groups.size())) { + serialize::OutputArchive param_group_archive(archive.compilation_unit()); + std::vector params = param_groups[i].params(); + param_group_archive.write( + "params/size", torch::tensor(static_cast(params.size()))); + for (const auto index : c10::irange(params.size())) { + param_group_archive.write( + "params/" + std::to_string(index), + IValue(std::to_string( + reinterpret_cast(params[index].unsafeGetTensorImpl())))); + } + const DerivedOptimizerParamOptions& param_group_options = + static_cast( + param_groups[i].options()); + serialize::OutputArchive param_group_options_archive( + param_group_archive.compilation_unit()); + param_group_options.serialize(param_group_options_archive); + param_group_archive.write("options", param_group_options_archive); + archive.write("param_groups/" + std::to_string(i), param_group_archive); + } +} + +// Utility function to load param_groups +// We take as input vector of pair of string and unique_ptr to optimizer options +// so that we can retain the state for each param by using the old tensor impl +// keys (saved during serialization) and map the new tensor impl keys to the +// correct state for each param +template +void serialize( + serialize::InputArchive& archive, + std::vector< + std::pair, std::unique_ptr>>& + param_groups) { + torch::Tensor param_groups_size_tensor; + archive.read("param_groups/size", param_groups_size_tensor); + const int64_t param_groups_size = param_groups_size_tensor.item(); + for (const auto i : c10::irange(param_groups_size)) { + serialize::InputArchive param_group_archive; + archive.read("param_groups/" + std::to_string(i), param_group_archive); + torch::Tensor size_tensor; + param_group_archive.read("params/size", size_tensor); + const int64_t size = size_tensor.item(); + std::vector params; + for (const auto index : c10::irange(size)) { + IValue ivalue; + param_group_archive.read("params/" + std::to_string(index), ivalue); + std::string element = ivalue.toStringRef(); + params.emplace_back(element); + } + serialize::InputArchive param_group_options_archive; + param_group_archive.read("options", param_group_options_archive); + DerivedOptimizerParamOptions param_group_options(0); + param_group_options.serialize(param_group_options_archive); + param_groups.emplace_back(std::make_pair( + params, + std::make_unique(param_group_options))); + } +} +} // namespace detail + +// Note: These functions are all called `serialize()` so they can be called +// inside a template where the archive type is a template type and can thus be +// passed such that the appropriate overload is selected. + +/// Utility function to save a value of `int64_t` type. +void serialize( + serialize::OutputArchive& archive, + const std::string& key, + const int64_t& value); + +/// Utility function to load a value of `int64_t` type. +void serialize( + serialize::InputArchive& archive, + const std::string& key, + int64_t& value); + +/// Utility function to save a vector of step buffers. +void serialize( + serialize::OutputArchive& archive, + const std::string& key, + const std::vector& steps); + +/// Utility function to load a vector of step buffers. +void serialize( + serialize::InputArchive& archive, + const std::string& key, + std::vector& steps); + +// Utility function to save state and param_groups +template < + typename DerivedOptimizerParamState, + typename DerivedOptimizerParamOptions> +void serialize(serialize::OutputArchive& archive, const Optimizer& optimizer) { + archive.write("pytorch_version", IValue("1.5.0")); + serialize::OutputArchive state_archive(archive.compilation_unit()); + detail::serialize( + state_archive, optimizer.state()); + archive.write("state", state_archive); + + serialize::OutputArchive param_groups_archive(archive.compilation_unit()); + detail::serialize( + param_groups_archive, optimizer.param_groups()); + archive.write("param_groups", param_groups_archive); +} + +// Utility function to load state and param_groups and update state +template < + typename DerivedOptimizerParamState, + typename DerivedOptimizerParamOptions> +void serialize(serialize::InputArchive& archive, Optimizer& optimizer) { + IValue pytorch_version; + archive.read("pytorch_version", pytorch_version); + TORCH_INTERNAL_ASSERT(pytorch_version.toStringRef() == "1.5.0"); + serialize::InputArchive state_archive; + archive.read("state", state_archive); + ska::flat_hash_map> saved_state; + detail::serialize(state_archive, saved_state); + + serialize::InputArchive param_groups_archive; + archive.read("param_groups", param_groups_archive); + std::vector< + std::pair, std::unique_ptr>> + saved_param_groups; + detail::serialize( + param_groups_archive, saved_param_groups); + + // update state + TORCH_CHECK( + saved_param_groups.size() == optimizer.param_groups().size(), + "loaded state dict has a different number of parameter groups"); + for (const auto i : c10::irange(saved_param_groups.size())) { + std::vector param_group_old_keys = saved_param_groups[i].first; + std::vector params = optimizer.param_groups()[i].params(); + TORCH_CHECK( + param_group_old_keys.size() == params.size(), + "loaded state dict contains a parameter group that has a different size than the optimizer's parameter group"); + + for (const auto idx : c10::irange(params.size())) { + auto param_group_old_key = + reinterpret_cast(std::stoull(param_group_old_keys[idx])); + if (saved_state.find(param_group_old_key) != saved_state.end()) { + optimizer.state()[params[idx].unsafeGetTensorImpl()] = + std::move(saved_state[param_group_old_key]); + } + } + } +} + +/// Utility function to save a vector of buffers. +template +void serialize( + serialize::OutputArchive& archive, + const std::string& key, + const BufferContainer& buffers) { + archive.write( + key + "/size", torch::tensor(static_cast(buffers.size()))); + for (const auto index : c10::irange(buffers.size())) { + archive.write( + key + "/" + std::to_string(index), buffers[index], /*is_buffer=*/true); + } +} + +/// Utility function to load a vector of buffers. +template +void serialize( + serialize::InputArchive& archive, + const std::string& key, + BufferContainer& buffers) { + buffers.clear(); + torch::Tensor size_tensor; + archive.read(key + "/size", size_tensor); + const size_t size = size_tensor.item(); + for (const auto index : c10::irange(size)) { + buffers.emplace_back(); + archive.read( + key + "/" + std::to_string(index), buffers.back(), /*is_buffer=*/true); + } +} + +template +c10::List deque_to_list(const std::deque& dq) { + c10::List list; + list.reserve(dq.size()); + for (const auto& e : dq) { + list.emplace_back(e); + } + return list; +} + +template +std::deque list_to_deque(const c10::List& list) { + std::deque dq; + for (const auto& e : list) { + dq.emplace_back(e); + } + return dq; +} + +#define _TORCH_OPTIM_SERIALIZE(name) \ + torch::optim::serialize(archive, #name, self.name) + +#define _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(OptimizerName) \ + torch::optim::serialize( \ + archive, self) + +#define _TORCH_OPTIM_SERIALIZE_TORCH_ARG(name) \ + { \ + auto ivalue = torch::IValue(name()); \ + /* do not serialize if name is an undefined tensor*/ \ + if (!(ivalue.isTensor() && \ + ivalue.unsafeToTensorImpl() == \ + at::UndefinedTensorImpl::singleton())) { \ + archive.write(#name, ivalue); \ + } \ + } + +#define _TORCH_OPTIM_SERIALIZE_TORCH_ARG_DEQUE(name) \ + { \ + c10::IValue ivalue = torch::IValue(deque_to_list(name())); \ + archive.write(#name, ivalue); \ + } + +#define _TORCH_OPTIM_DESERIALIZE_TORCH_ARG(T, name) \ + { \ + c10::IValue ivalue; \ + bool exists = archive.try_read(#name, ivalue); \ + if (exists) { \ + name(ivalue.to()); \ + } else { \ + bool is_tensor_type = std::is_base_of::value; \ + TORCH_INTERNAL_ASSERT(is_tensor_type); \ + } \ + } + +#define _TORCH_OPTIM_DESERIALIZE_TORCH_ARG_OPTIONAL(T, name) \ + { \ + c10::IValue ivalue; \ + bool exists = archive.try_read(#name, ivalue); \ + if (exists) { \ + name(ivalue.toOptional()); \ + } \ + } + +#define _TORCH_OPTIM_DESERIALIZE_TORCH_ARG_DEQUE(T, name) \ + { \ + c10::IValue ivalue; \ + archive.read(#name, ivalue); \ + auto list = ivalue.to>(); \ + name(list_to_deque(list)); \ + } + +} // namespace optim +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/sgd.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/sgd.h new file mode 100644 index 0000000000000000000000000000000000000000..85e9aba7ba48f751d0ae00f8356ca8d47d7b0ad2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/api/include/torch/optim/sgd.h @@ -0,0 +1,91 @@ +#pragma once + +#include +#include +#include +#include +#include + +#include +#include +#include + +namespace torch { +namespace serialize { +class OutputArchive; +class InputArchive; +} // namespace serialize +} // namespace torch + +namespace torch { +namespace optim { + +struct TORCH_API SGDOptions : public OptimizerCloneableOptions { + SGDOptions(double lr); + TORCH_ARG(double, lr); + TORCH_ARG(double, momentum) = 0; + TORCH_ARG(double, dampening) = 0; + TORCH_ARG(double, weight_decay) = 0; + TORCH_ARG(bool, nesterov) = false; + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const SGDOptions& lhs, + const SGDOptions& rhs); + double get_lr() const override; + void set_lr(const double lr) override; +}; + +struct TORCH_API SGDParamState + : public OptimizerCloneableParamState { + TORCH_ARG(torch::Tensor, momentum_buffer); + + public: + void serialize(torch::serialize::InputArchive& archive) override; + void serialize(torch::serialize::OutputArchive& archive) const override; + TORCH_API friend bool operator==( + const SGDParamState& lhs, + const SGDParamState& rhs); +}; + +class TORCH_API SGD : public Optimizer { + public: + explicit SGD( + std::vector param_groups, + SGDOptions defaults) + : Optimizer( + std::move(param_groups), + std::make_unique(defaults)) { + TORCH_CHECK(defaults.lr() >= 0, "Invalid learning rate: ", defaults.lr()); + TORCH_CHECK( + defaults.momentum() >= 0, + "Invalid momentum value: ", + defaults.momentum()); + TORCH_CHECK( + defaults.weight_decay() >= 0, + "Invalid weight_decay value: ", + defaults.weight_decay()); + TORCH_CHECK( + !defaults.nesterov() || + (defaults.momentum() > 0 && defaults.dampening() == 0), + "Nesterov momentum requires a momentum and zero dampening"); + } + + explicit SGD(std::vector params, SGDOptions defaults) + : SGD({OptimizerParamGroup(std::move(params))}, defaults) {} + + torch::Tensor step(LossClosure closure = nullptr) override; + + void save(serialize::OutputArchive& archive) const override; + void load(serialize::InputArchive& archive) override; + + private: + template + static void serialize(Self& self, Archive& archive) { + _TORCH_OPTIM_SERIALIZE_WITH_TEMPLATE_ARG(SGD); + } +}; +} // namespace optim +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/Module.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/Module.h new file mode 100644 index 0000000000000000000000000000000000000000..23d9079f146f54eb0999715b350b9d22d6652752 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/cuda/Module.h @@ -0,0 +1,12 @@ +#ifndef THCP_CUDA_MODULE_INC +#define THCP_CUDA_MODULE_INC + +void THCPModule_setDevice(int idx); +PyObject* THCPModule_getDevice_wrap(PyObject* self); +PyObject* THCPModule_setDevice_wrap(PyObject* self, PyObject* arg); +PyObject* THCPModule_getDeviceName_wrap(PyObject* self, PyObject* arg); +PyObject* THCPModule_getDriverVersion(PyObject* self); +PyObject* THCPModule_isDriverSufficient(PyObject* self); +PyObject* THCPModule_getCurrentBlasHandle_wrap(PyObject* self); + +#endif diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_model_container_runner.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_model_container_runner.h new file mode 100644 index 0000000000000000000000000000000000000000..3a02db55010942562b1ef10f56bea6dfea5f70c2 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_model_container_runner.h @@ -0,0 +1,67 @@ +#if !defined(C10_MOBILE) && !defined(ANDROID) +#pragma once + +#include +#include + +// Forward declare DynamicLibrary +namespace at { +struct DynamicLibrary; +} + +namespace torch::inductor { + +class TORCH_API AOTIModelContainerRunner { + public: + AOTIModelContainerRunner() = delete; + AOTIModelContainerRunner(const AOTIModelContainerRunner& other) = delete; + AOTIModelContainerRunner(AOTIModelContainerRunner&& other) = delete; + AOTIModelContainerRunner& operator=(const AOTIModelContainerRunner& other) = + delete; + AOTIModelContainerRunner& operator=(AOTIModelContainerRunner&& other) = + delete; + ~AOTIModelContainerRunner(); + + std::vector run( + std::vector inputs, + AOTInductorStreamHandle cuda_stream_handle = nullptr, + AOTIProxyExecutorHandle proxy_executor_handle = nullptr); + + std::vector get_call_spec(); + + AOTIModelContainerRunner( + const char* model_path, + size_t num_models, + bool is_cpu, + const char* cubin_dir); + + protected: + std::unique_ptr model_so_; + decltype(&AOTInductorModelContainerCreate) create_func_{nullptr}; + decltype(&AOTInductorModelContainerDelete) delete_func_{nullptr}; + decltype(&AOTInductorModelContainerGetNumOutputs) get_num_outputs_func_{ + nullptr}; + decltype(&AOTInductorModelContainerRun) run_func_{nullptr}; + decltype(&AOTInductorModelContainerGetCallSpec) get_call_spec_func_{nullptr}; + AOTInductorModelContainerHandle container_handle_ = nullptr; +}; + +class TORCH_API AOTIModelContainerRunnerCpu : public AOTIModelContainerRunner { + public: + AOTIModelContainerRunnerCpu(const char* model_path, size_t num_models = 1) + : AOTIModelContainerRunner(model_path, num_models, true, nullptr) {} + + std::vector run( + std::vector inputs, + AOTIProxyExecutorHandle proxy_executor_handle = nullptr) { + return AOTIModelContainerRunner::run( + inputs, nullptr, proxy_executor_handle); + } + + std::vector get_call_spec() { + return AOTIModelContainerRunner::get_call_spec(); + } +}; + +} // namespace torch::inductor +#endif diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_model_container_runner_cuda.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_model_container_runner_cuda.h new file mode 100644 index 0000000000000000000000000000000000000000..bf63464b87e69d55de9b1870a33858e8fde021ca --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_model_container_runner_cuda.h @@ -0,0 +1,21 @@ +#pragma once + +#include + +namespace torch::inductor { + +class TORCH_API AOTIModelContainerRunnerCuda : public AOTIModelContainerRunner { + public: + AOTIModelContainerRunnerCuda( + const char* model_path, + size_t num_models = 1, + const char* cubin_dir = nullptr) + : AOTIModelContainerRunner(model_path, num_models, false, cubin_dir) {} + + std::vector run( + std::vector inputs, + AOTInductorStreamHandle cuda_stream_handle = nullptr, + AOTIProxyExecutorHandle proxy_executor_handle = nullptr); +}; + +} // namespace torch::inductor diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_runtime/device_utils.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_runtime/device_utils.h new file mode 100644 index 0000000000000000000000000000000000000000..08a5db3a9e9c6d6da6035fd36e0c0b40e206337d --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_runtime/device_utils.h @@ -0,0 +1,51 @@ +#pragma once + +// WARNING: Be careful when adding new includes here. This header will be used +// in model.so, and should not refer to any aten/c10 headers except the stable +// C ABI defined in torch/csrc/inductor/aoti_torch/c/shim.h. The same rule +// applies to other files under torch/csrc/inductor/aoti_runtime/. + +#ifdef USE_CUDA + +// FIXME: Currently, CPU and CUDA backend are mutually exclusive. +// This is a temporary workaround. We need a better way to support +// multi devices. + +#include +#include + +#define AOTI_RUNTIME_DEVICE_CHECK(EXPR) \ + do { \ + const cudaError_t code = EXPR; \ + const char* msg = cudaGetErrorString(code); \ + if (code != cudaSuccess) { \ + throw std::runtime_error( \ + std::string("CUDA error: ") + std::string(msg)); \ + } \ + } while (0) + +namespace torch { +namespace aot_inductor { + +using DeviceStreamType = cudaStream_t; + +} // namespace aot_inductor +} // namespace torch + +#else // !USE_CUDA + +#define AOTI_RUNTIME_DEVICE_CHECK(EXPR) \ + bool ok = EXPR; \ + if (!ok) { \ + throw std::runtime_error("CPU runtime error"); \ + } + +namespace torch { +namespace aot_inductor { + +using DeviceStreamType = void*; + +} // namespace aot_inductor +} // namespace torch + +#endif // USE_CUDA diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_runtime/model_container.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_runtime/model_container.h new file mode 100644 index 0000000000000000000000000000000000000000..bd7df9e424ba510509969a19de35d819d94e14a1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_runtime/model_container.h @@ -0,0 +1,200 @@ +#pragma once + +#include +#include +#include +#include +#include + +// WARNING: Be careful when adding new includes here. This header will be used +// in model.so, and should not refer to any aten/c10 headers except the stable +// C ABI defined in torch/csrc/inductor/aoti_torch/c/shim.h. The same rule +// applies to other files under torch/csrc/inductor/aoti_runtime/. +#include + +namespace torch { +namespace aot_inductor { + +class AOTInductorModelContainer { + public: + AOTInductorModelContainer( + size_t num_models, + bool is_cpu = false, + std::optional cubin_dir = std::nullopt) { + constants_ = std::make_shared(); + models_.reserve(num_models); + available_models_.reserve(num_models); + for (size_t i = 0; i < num_models; ++i) { + models_.push_back(AOTInductorModel::Create(constants_, cubin_dir)); + available_models_.push_back(models_.back().get()); + } + + // Note that the all following fields (input_names_, output_names, + // etc) can be filled in by the AOT + // codegen. However, we choose to query such information from + // the owned AOTInductorModel for a couple of reasons: + // * simplify the codegen templates + // * reduce information fragmentation and duplication + // * the initialization process below is done only once when the container + // is constructed, so it would have little performance impact + auto* model = available_models_[0]; + size_t num_inputs = model->num_inputs(); + input_names_.reserve(num_inputs); + for (size_t i = 0; i < num_inputs; i++) { + input_names_.push_back(model->input_name(i)); + } + + size_t num_outputs = model->num_outputs(); + output_names_.reserve(num_outputs); + for (size_t i = 0; i < num_outputs; i++) { + output_names_.push_back(model->output_name(i)); + } + + model->load_constants(is_cpu); +#ifdef USE_CUDA + constant_blob_ = model->release_constant_blob(); +#endif + + for (auto& model : models_) { + model->update_constants_map(constants_); + } + + in_spec_ = model->get_in_spec(); + out_spec_ = model->get_out_spec(); + } + + void run( + AtenTensorHandle* + input_handles, // array of input AtenTensorHandle; handles + // are stolen; the array itself is borrowed + AtenTensorHandle* + output_handles, // array for writing output AtenTensorHandle; handles + // will be stolen by the caller; the array itself is + // borrowed + DeviceStreamType stream, + AOTIProxyExecutorHandle proxy_executor) { + auto* model = get_available_model(); + try { + model->run(input_handles, output_handles, stream, proxy_executor); + } catch (...) { + std::lock_guard lk(models_mutex_); + available_models_.push_back(model); + throw; + } + + { + std::lock_guard lk(models_mutex_); + pending_models_.push_back(model); + } + pending_models_available_.notify_one(); + } + + size_t num_inputs() const { + return input_names_.size(); + } + + size_t num_outputs() const { + return output_names_.size(); + } + + const char* input_name(size_t idx) const { + return input_names_.at(idx).c_str(); + } + + const char* output_name(size_t idx) const { + return output_names_.at(idx).c_str(); + } + + size_t num_models() const { + return models_.size(); + } + + const char* get_in_spec() const { + return in_spec_; + } + + const char* get_out_spec() const { + return out_spec_; + } + + private: + std::vector input_names_; + std::vector output_names_; + const char* in_spec_; + const char* out_spec_; + +#ifdef USE_CUDA + // Holds the blob storage for constants' at::Tensor for CUDA. + CUDAPtr constant_blob_; +#endif // USE_CUDA + + // Holds the mapping of constants to at::Tensor. + // The underlying data of at::Tensor is in either constant_blob_ (for CUDA). + // or _binary_constants_bin_start (for CPU). + std::shared_ptr constants_; + + // Holds all the AOTInductorModel instances owned by this container. + std::vector> models_; + + // Holds the AOTInductorModel instances available for inference. + std::vector available_models_; + + // Holds the AOTInductorModel instances that have started running + // inference and can be placed onto available_models_ upon their + // completion. + std::deque pending_models_; + + // Protects available_models_ and pending_models_. + std::mutex models_mutex_; + + // Notified whenever a model is placed onto pending_models_. + std::condition_variable pending_models_available_; + + AOTInductorModel* get_available_model() { + std::unique_lock lk(models_mutex_); + if (available_models_.empty()) { + reclaim_finished_models(lk); + } + auto* result = available_models_.back(); + available_models_.pop_back(); + return result; + } + + void reclaim_finished_models(std::unique_lock& lk) { + // push finished model instances to the end of pending_models_ + auto it = std::stable_partition( + pending_models_.begin(), + pending_models_.end(), + [](AOTInductorModel* m) { return !m->is_finished(); }); + + if (it != pending_models_.end()) { + // We have finished model instances that can be pushed into + // available_models_ so that we don't have to be blocked on waiting + // the pending_models_available_ condition. + available_models_.insert( + available_models_.end(), it, pending_models_.end()); + pending_models_.erase(it, pending_models_.end()); + return; + } + + pending_models_available_.wait( + lk, [this]() { return !pending_models_.empty(); }); + // Let's make the schedule simple first. We always wait on the first + // pending_models_ to be complete. + auto* model = pending_models_.front(); + pending_models_.pop_front(); + lk.unlock(); + try { + model->wait_for_completion(); + } catch (...) { + lk.lock(); + available_models_.push_back(model); + throw; + } + lk.lock(); + available_models_.push_back(model); + } +}; + +} // namespace aot_inductor +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/c/shim.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/c/shim.h new file mode 100644 index 0000000000000000000000000000000000000000..1dc01196a95b70add0a00c2f76311e979734acaa --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/c/shim.h @@ -0,0 +1,338 @@ +#ifndef AOTI_TORCH_SHIM +#define AOTI_TORCH_SHIM + +#include +#include + +// This header defines a stable C API for certain ATen functionality in +// libtorch. The AOTInductor compiled model.so will only refer to this header +// instead of other headers from aten/c10, which means it will NOT be able to +// directly use any data structures or call functions from libtorch. +// +// What problems are we trying to solve here? Direct use of aten/c10 APIs +// means use of C++ APIs on a library that doesn't have any ABI compatibility +// guarantees. However, we want model.so to remain usable across updates +// to the PyTorch C++ libraries, which requires a stable ABI. By introducing +// a C shim layer, we can minimize the surface that will cause breakage. The +// corresponding software stack can be illustrated as follows: +// +// |--------------------------------| +// | inference service code | +// |--------------------------------| +// | model.so | +// |--------------|-----------------| +// | | +// | libtorch.so | +// |--------------------------------| +// +// The general guidelines for the C API: +// +// - No exceptions, return an explicit error code to be checked at call site +// - Only pointers (AtenTensorHandle counts), integers and floats in headers +// +// If you want to make changes to this header, you MUST MAINTAIN ABI +// compatibility. Typically, this means you will have to add a _v2 version +// of a function that you, e.g., want to add a new function parameter to, and +// maintain the old and new versions of the APIs until all old model.so +// go out of use. + +#ifdef __GNUC__ +#define AOTI_TORCH_EXPORT __attribute__((__visibility__("default"))) +#else // !__GNUC__ +#ifdef _WIN32 +#define AOTI_TORCH_EXPORT __declspec(dllexport) +#else // !_WIN32 +#define AOTI_TORCH_EXPORT +#endif // _WIN32 +#endif // __GNUC__ + +#ifdef __cplusplus +extern "C" { +#endif + +// AtenTensorHandle represents an abstract notion of Tensor that can be passed +// between model.so and libtorch.so. The contents of the structure itself +// are private; model.so is not allowed to access any fields directly, it must +// go through functions defined in this ABI. Under the hood, this is +// represented as at::Tensor*, but we reserve the right to change this (and in +// fact, we probably should change it to at::TensorImpl* at least). +// +// An AtenTensorHandle can be owning (please check the API reference for exact +// ownership/borrow semantics). If you have an owning AtenTensorHandle +// in model.so, you are obligated to aoti_torch_delete_tensor_object when you +// are done. You can use the helper C++ class RAIIAtenTensorHandle +// (see aot_runtime/model.h) to ensure the deallocator is called in RAII style +// (note that RAIIAtenTensorHandle is private to model.so, and never crosses +// the ABI boundary.) +struct AtenTensorOpaque; +using AtenTensorHandle = AtenTensorOpaque*; + +struct AOTIProxyExecutorOpaque; +using AOTIProxyExecutorHandle = AOTIProxyExecutorOpaque*; + +using AOTITorchError = int32_t; +#define AOTI_TORCH_SUCCESS 0 +#define AOTI_TORCH_FAILURE 1 + +// Getter functions for retrieving various constants from the runtime, that +// can subsequently be passed to other aoti_* functions. By hiding these +// behind functions, the precise value of device/dtype is NOT part of the +// ABI contract. (In practice, aten/c10 is pretty good about not renumbering +// these, so we probably could later switch to having these in the ABI, if +// desired for perf reasons.) +AOTI_TORCH_EXPORT int32_t aoti_torch_device_type_cpu(); +AOTI_TORCH_EXPORT int32_t aoti_torch_device_type_cuda(); + +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_float8_e5m2(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_float8_e4m3fn(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_bfloat16(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_float16(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_float32(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_float64(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_uint8(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_int8(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_int16(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_int32(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_int64(); +AOTI_TORCH_EXPORT int32_t aoti_torch_dtype_bool(); + +AOTI_TORCH_EXPORT bool aoti_torch_grad_mode_is_enabled(); +AOTI_TORCH_EXPORT void aoti_torch_grad_mode_set_enabled(bool enabled); + +// Free the tensor object +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_delete_tensor_object(AtenTensorHandle tensor); + +// Get a pointer to the underlying storage data +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_get_data_ptr( + AtenTensorHandle tensor, + void** ret_data_ptr // returns borrowed reference +); + +// Get the nbytes of the underlying storage +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_get_storage_size(AtenTensorHandle tensor, int64_t* ret_size); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_get_sizes( + AtenTensorHandle tensor, + int64_t** ret_sizes // returns borrowed reference +); + +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_get_size(AtenTensorHandle tensor, int64_t d, int64_t* ret_size); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_get_strides( + AtenTensorHandle tensor, + int64_t** ret_strides // returns borrowed reference +); + +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_get_stride(AtenTensorHandle tensor, int64_t d, int64_t* ret_stride); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_get_storage_offset( + AtenTensorHandle tensor, + int64_t* ret_storage_offset); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch__alloc_from_pool( + AtenTensorHandle self, + int64_t offset_bytes, + int32_t dtype, + int64_t ndim, + const int64_t* sizes_ptr, + const int64_t* strides_ptr, + AtenTensorHandle* ret_new_tensor); + +// This function will create a new tensor object and its pointer is returned +// through *out. The caller is responsible for wrapping the tensor pointer +// with RAIIAtenTensorHandle which will call aoti_torch_delete_tensor_object +// when going out of scope. +AOTI_TORCH_EXPORT AOTITorchError aoti_torch__reinterpret_tensor( + AtenTensorHandle self, + int64_t ndim, + const int64_t* sizes_ptr, + const int64_t* strides_ptr, + int64_t storage_offset, + AtenTensorHandle* ret_new_tensor // returns new reference +); + +// This function will create a new tensor object and its pointer is returned +// through *out. The caller is responsible for wrapping the tensor pointer +// with RAIIAtenTensorHandle which will call aoti_torch_delete_tensor_object +// when going out of scope. +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_empty_strided( + int64_t ndim, + const int64_t* sizes_ptr, + const int64_t* strides_ptr, + int32_t dtype, + int32_t device_type, + int32_t device_index, + AtenTensorHandle* ret_new_tensor // returns new reference +); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_create_tensor_from_blob( + void* data, + int64_t ndim, + const int64_t* sizes_ptr, + const int64_t* strides_ptr, + int64_t storage_offset, + int32_t dtype, + int32_t device_type, + int32_t device_index, + AtenTensorHandle* ret // returns new reference +); + +// This version is deprecated. We will remove it later +AOTI_TORCH_EXPORT AOTITorchError aoti_torch__scaled_dot_product_flash_attention( + AtenTensorHandle query, + AtenTensorHandle key, + AtenTensorHandle value, + double dropout_p, + bool is_causal, + bool return_debug_mask, + double scale, + AtenTensorHandle* ret0, // returns new reference + AtenTensorHandle* ret1, // returns new reference + AtenTensorHandle* ret2, // returns new reference + AtenTensorHandle* ret3, // returns new reference + int64_t* ret4, + int64_t* ret5, + AtenTensorHandle* ret6, // returns new reference + AtenTensorHandle* ret7, // returns new reference + AtenTensorHandle* ret8 // returns new reference +); + +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch__scaled_dot_product_flash_attention_v2( + AtenTensorHandle query, + AtenTensorHandle key, + AtenTensorHandle value, + double dropout_p, + int is_causal, + int return_debug_mask, + double* scale, + AtenTensorHandle* ret0, // returns new reference + AtenTensorHandle* ret1, // returns new reference + AtenTensorHandle* ret2, // returns new reference + AtenTensorHandle* ret3, // returns new reference + int64_t* ret4, + int64_t* ret5, + AtenTensorHandle* ret6, // returns new reference + AtenTensorHandle* ret7, // returns new reference + AtenTensorHandle* ret8 // returns new reference +); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch__scaled_mm( + AtenTensorHandle self, + AtenTensorHandle mat2, + AtenTensorHandle bias, + int32_t* out_dtype, + AtenTensorHandle scale_a, + AtenTensorHandle scale_b, + AtenTensorHandle scale_result, + int8_t use_fast_accum, + AtenTensorHandle* ret0, + AtenTensorHandle* ret1); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_convolution( + AtenTensorHandle input, + AtenTensorHandle weight, + AtenTensorHandle bias, // optional argument + int64_t* stride_ptr, + int64_t stride_size, + int64_t* padding_ptr, + int64_t padding_size, + int64_t* dilation_ptr, + int64_t dilation_size, + int transposed, + int64_t* output_padding_ptr, + int64_t output_padding_size, + int64_t groups, + AtenTensorHandle* ret // returns new reference +); + +// This function will create a new uninitialized tensor object +// and its pointer is returned through *ret. +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_new_uninitialized_tensor(AtenTensorHandle* ret); + +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_tensor_copy_(AtenTensorHandle src, AtenTensorHandle dst); + +// Make the tensor referred to by dst an alias for the tensor referred +// to by src. The two tensors must still be deleted with +// aoti_torch_delete_tensor separately (or not) as before the call. +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_assign_tensors(AtenTensorHandle src, AtenTensorHandle dst); + +// This function will create a new tensor object and its pointer is returned +// through *ret. The caller is responsible for wrapping the tensor pointer +// with RAIIAtenTensorHandle which will call aoti_torch_delete_tensor_object +// when going out of scope. +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_clone(AtenTensorHandle self, AtenTensorHandle* ret); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_addmm_out( + AtenTensorHandle out, + AtenTensorHandle self, + AtenTensorHandle mat1, + AtenTensorHandle mat2, + float beta, + float alpha); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_bmm_out( + AtenTensorHandle out, + AtenTensorHandle self, + AtenTensorHandle mat2); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_mm_out( + AtenTensorHandle out, + AtenTensorHandle self, + AtenTensorHandle mat2); + +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_nonzero(AtenTensorHandle self, AtenTensorHandle* out); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_repeat_interleave_Tensor( + AtenTensorHandle repeats, + int64_t* output_size, + AtenTensorHandle* out); + +AOTI_TORCH_EXPORT AOTITorchError +aoti_check_inf_and_nan(AtenTensorHandle tensor); + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_scatter_out( + AtenTensorHandle out, + AtenTensorHandle self, + int64_t dim, + AtenTensorHandle index, + AtenTensorHandle src); + +#ifdef USE_CUDA + +struct CUDAStreamGuardOpaque; +using CUDAStreamGuardHandle = CUDAStreamGuardOpaque*; + +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_create_cuda_stream_guard( + void* stream, + int32_t device_index, + CUDAStreamGuardHandle* ret_guard // returns new reference +); + +AOTI_TORCH_EXPORT AOTITorchError +aoti_torch_delete_cuda_stream_guard(CUDAStreamGuardHandle guard); +#endif + +// See `ProxyExecutor Design Note` in ir.py for more details +AOTI_TORCH_EXPORT AOTITorchError aoti_torch_proxy_executor_call_function( + AOTIProxyExecutorHandle proxy_executor, + int extern_node_index, + int num_ints, + int64_t* flatten_int_args, + int num_tensors, + AtenTensorHandle* flatten_tensor_args); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOTI_TORCH_SHIM diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/proxy_executor.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/proxy_executor.h new file mode 100644 index 0000000000000000000000000000000000000000..4446640d2a7055654b76f168c587b9370393ad4e --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/proxy_executor.h @@ -0,0 +1,24 @@ +#pragma once + +#include +#include +#include + +namespace torch { +namespace aot_inductor { + +class ProxyExecutor { + public: + ProxyExecutor() {} + virtual ~ProxyExecutor() {} + + virtual void call_function( + int extern_node_index, + int num_ints, + int64_t* flatten_int_args, + int num_tensors, + AtenTensorHandle* flatten_tensor_args) = 0; +}; + +} // namespace aot_inductor +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/tensor_converter.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/tensor_converter.h new file mode 100644 index 0000000000000000000000000000000000000000..6b4318212869524ebad3a6f29c5a9cfc2687a83c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/tensor_converter.h @@ -0,0 +1,35 @@ +#pragma once + +#include + +#include + +namespace torch { +namespace aot_inductor { + +// Functions declared here are not meant to be called from the AOTInductor +// generated model.so + +// No ownership transfer, just pointer type conversion +TORCH_API at::Tensor* tensor_handle_to_tensor_pointer(AtenTensorHandle handle); + +// No ownership transfer, just pointer type conversion +TORCH_API AtenTensorHandle tensor_pointer_to_tensor_handle(at::Tensor* tensor); + +// unsafe_alloc_new_handles_from_tensors is used for allocating new aten +// tensor objects and return them as a vector of AtenTensorHandle (raw +// pointers), and those pointers will be stolen by model.so. +TORCH_API std::vector unsafe_alloc_new_handles_from_tensors( + std::vector& tensors); + +// alloc_tensors_by_stealing_from_handles is used for creating a vector of aten +// tensors by stealing from an array of handles. Only the handles are stolen, +// and the array itself is borrowed. +// +// WARNING: Can NOT be called in model.so unless in the non-ABI-compatible mode +TORCH_API std::vector alloc_tensors_by_stealing_from_handles( + AtenTensorHandle* handles, + size_t length); + +} // namespace aot_inductor +} // namespace torch diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/utils.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/utils.h new file mode 100644 index 0000000000000000000000000000000000000000..80f778b11c75e515692b82ac38fbe82a072a0671 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/aoti_torch/utils.h @@ -0,0 +1,16 @@ +#pragma once + +#include +#include + +#define AOTI_TORCH_CONVERT_EXCEPTION_TO_ERROR_CODE(...) \ + try { \ + __VA_ARGS__ \ + } catch (const std::exception& e) { \ + LOG(ERROR) << "Exception in aoti_torch: " << e.what(); \ + return AOTI_TORCH_FAILURE; \ + } catch (...) { \ + LOG(ERROR) << "Exception in aoti_torch: UNKNOWN"; \ + return AOTI_TORCH_FAILURE; \ + } \ + return AOTI_TORCH_SUCCESS; diff --git a/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/inductor_ops.h b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/inductor_ops.h new file mode 100644 index 0000000000000000000000000000000000000000..817ff82e030d704e1e7030c9a18d5cd936994793 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/torch/include/torch/csrc/inductor/inductor_ops.h @@ -0,0 +1,32 @@ +#pragma once + +#include + +namespace torch { +namespace inductor { + +TORCH_API at::Tensor _mm_plus_mm( + const at::Tensor& a, + const at::Tensor& b, + const at::Tensor& c, + const at::Tensor& d, + at::Tensor& out); + +TORCH_API at::Tensor _alloc_from_pool( + const at::Tensor& self, + int64_t offset_bytes, + at::ScalarType dtype, + at::IntArrayRef size, + at::IntArrayRef stride); + +// Similar to as_strided with the following differences +// - offset is added to the existing offset (rather than replacing it) +// - view tracking is disabled similar to unsafe_view +TORCH_API at::Tensor _reinterpret_tensor( + const at::Tensor& self, + at::IntArrayRef size, + at::IntArrayRef stride, + int64_t offset_increment = 0); + +} // namespace inductor +} // namespace torch