Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/appellseqs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/compatibility.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/constructor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/densearith.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/densetools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/distributedmodules.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/domainmatrix.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/factortools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/fields.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/galoistools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/groebnertools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/modulargcd.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/monomials.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/multivariate_resultants.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/orderings.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/orthopolys.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/partfrac.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyclasses.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyconfig.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyerrors.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyfuncs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polymatrix.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyoptions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyquinticconst.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyroots.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polytools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyutils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/rationaltools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/ring_series.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/rings.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/rootisolation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/rootoftools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/specialpolys.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/sqfreetools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/subresultants_qq_zz.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_extensions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_ideals.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_modules.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/test_extensions.py +196 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/test_homomorphisms.py +113 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/test_ideals.py +131 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/test_modules.py +408 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__init__.py +27 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/basis.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/exceptions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/galois_resolvents.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (5.29 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/appellseqs.cpython-310.pyc
ADDED
Binary file (8.71 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/compatibility.cpython-310.pyc
ADDED
Binary file (62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/constructor.cpython-310.pyc
ADDED
Binary file (9.27 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/densearith.cpython-310.pyc
ADDED
Binary file (34.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/densetools.cpython-310.pyc
ADDED
Binary file (26.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/distributedmodules.cpython-310.pyc
ADDED
Binary file (23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/domainmatrix.cpython-310.pyc
ADDED
Binary file (512 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/factortools.cpython-310.pyc
ADDED
Binary file (33.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/fields.cpython-310.pyc
ADDED
Binary file (18.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/galoistools.cpython-310.pyc
ADDED
Binary file (53.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/groebnertools.cpython-310.pyc
ADDED
Binary file (22.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/modulargcd.cpython-310.pyc
ADDED
Binary file (49.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/monomials.cpython-310.pyc
ADDED
Binary file (19.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/multivariate_resultants.cpython-310.pyc
ADDED
Binary file (17.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/orderings.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/orthopolys.cpython-310.pyc
ADDED
Binary file (8.97 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/partfrac.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyclasses.cpython-310.pyc
ADDED
Binary file (55.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyconfig.cpython-310.pyc
ADDED
Binary file (1.67 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyerrors.cpython-310.pyc
ADDED
Binary file (7.18 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyfuncs.cpython-310.pyc
ADDED
Binary file (8.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polymatrix.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyoptions.cpython-310.pyc
ADDED
Binary file (21.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyquinticconst.cpython-310.pyc
ADDED
Binary file (132 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyroots.cpython-310.pyc
ADDED
Binary file (31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polytools.cpython-310.pyc
ADDED
Binary file (176 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/polyutils.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/rationaltools.cpython-310.pyc
ADDED
Binary file (3.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/ring_series.cpython-310.pyc
ADDED
Binary file (47.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/rings.cpython-310.pyc
ADDED
Binary file (69.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/rootisolation.cpython-310.pyc
ADDED
Binary file (51.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/rootoftools.cpython-310.pyc
ADDED
Binary file (34.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/specialpolys.cpython-310.pyc
ADDED
Binary file (14.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/sqfreetools.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/__pycache__/subresultants_qq_zz.cpython-310.pyc
ADDED
Binary file (68.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_extensions.cpython-310.pyc
ADDED
Binary file (7.87 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_ideals.cpython-310.pyc
ADDED
Binary file (4.74 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/__pycache__/test_modules.cpython-310.pyc
ADDED
Binary file (15.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/test_extensions.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import symbols
|
2 |
+
from sympy.functions.elementary.trigonometric import (cos, sin)
|
3 |
+
from sympy.polys import QQ, ZZ
|
4 |
+
from sympy.polys.polytools import Poly
|
5 |
+
from sympy.polys.polyerrors import NotInvertible
|
6 |
+
from sympy.polys.agca.extensions import FiniteExtension
|
7 |
+
from sympy.polys.domainmatrix import DomainMatrix
|
8 |
+
|
9 |
+
from sympy.testing.pytest import raises
|
10 |
+
|
11 |
+
from sympy.abc import x, y, t
|
12 |
+
|
13 |
+
|
14 |
+
def test_FiniteExtension():
|
15 |
+
# Gaussian integers
|
16 |
+
A = FiniteExtension(Poly(x**2 + 1, x))
|
17 |
+
assert A.rank == 2
|
18 |
+
assert str(A) == 'ZZ[x]/(x**2 + 1)'
|
19 |
+
i = A.generator
|
20 |
+
assert i.parent() is A
|
21 |
+
|
22 |
+
assert i*i == A(-1)
|
23 |
+
raises(TypeError, lambda: i*())
|
24 |
+
|
25 |
+
assert A.basis == (A.one, i)
|
26 |
+
assert A(1) == A.one
|
27 |
+
assert i**2 == A(-1)
|
28 |
+
assert i**2 != -1 # no coercion
|
29 |
+
assert (2 + i)*(1 - i) == 3 - i
|
30 |
+
assert (1 + i)**8 == A(16)
|
31 |
+
assert A(1).inverse() == A(1)
|
32 |
+
raises(NotImplementedError, lambda: A(2).inverse())
|
33 |
+
|
34 |
+
# Finite field of order 27
|
35 |
+
F = FiniteExtension(Poly(x**3 - x + 1, x, modulus=3))
|
36 |
+
assert F.rank == 3
|
37 |
+
a = F.generator # also generates the cyclic group F - {0}
|
38 |
+
assert F.basis == (F(1), a, a**2)
|
39 |
+
assert a**27 == a
|
40 |
+
assert a**26 == F(1)
|
41 |
+
assert a**13 == F(-1)
|
42 |
+
assert a**9 == a + 1
|
43 |
+
assert a**3 == a - 1
|
44 |
+
assert a**6 == a**2 + a + 1
|
45 |
+
assert F(x**2 + x).inverse() == 1 - a
|
46 |
+
assert F(x + 2)**(-1) == F(x + 2).inverse()
|
47 |
+
assert a**19 * a**(-19) == F(1)
|
48 |
+
assert (a - 1) / (2*a**2 - 1) == a**2 + 1
|
49 |
+
assert (a - 1) // (2*a**2 - 1) == a**2 + 1
|
50 |
+
assert 2/(a**2 + 1) == a**2 - a + 1
|
51 |
+
assert (a**2 + 1)/2 == -a**2 - 1
|
52 |
+
raises(NotInvertible, lambda: F(0).inverse())
|
53 |
+
|
54 |
+
# Function field of an elliptic curve
|
55 |
+
K = FiniteExtension(Poly(t**2 - x**3 - x + 1, t, field=True))
|
56 |
+
assert K.rank == 2
|
57 |
+
assert str(K) == 'ZZ(x)[t]/(t**2 - x**3 - x + 1)'
|
58 |
+
y = K.generator
|
59 |
+
c = 1/(x**3 - x**2 + x - 1)
|
60 |
+
assert ((y + x)*(y - x)).inverse() == K(c)
|
61 |
+
assert (y + x)*(y - x)*c == K(1) # explicit inverse of y + x
|
62 |
+
|
63 |
+
|
64 |
+
def test_FiniteExtension_eq_hash():
|
65 |
+
# Test eq and hash
|
66 |
+
p1 = Poly(x**2 - 2, x, domain=ZZ)
|
67 |
+
p2 = Poly(x**2 - 2, x, domain=QQ)
|
68 |
+
K1 = FiniteExtension(p1)
|
69 |
+
K2 = FiniteExtension(p2)
|
70 |
+
assert K1 == FiniteExtension(Poly(x**2 - 2))
|
71 |
+
assert K2 != FiniteExtension(Poly(x**2 - 2))
|
72 |
+
assert len({K1, K2, FiniteExtension(p1)}) == 2
|
73 |
+
|
74 |
+
|
75 |
+
def test_FiniteExtension_mod():
|
76 |
+
# Test mod
|
77 |
+
K = FiniteExtension(Poly(x**3 + 1, x, domain=QQ))
|
78 |
+
xf = K(x)
|
79 |
+
assert (xf**2 - 1) % 1 == K.zero
|
80 |
+
assert 1 % (xf**2 - 1) == K.zero
|
81 |
+
assert (xf**2 - 1) / (xf - 1) == xf + 1
|
82 |
+
assert (xf**2 - 1) // (xf - 1) == xf + 1
|
83 |
+
assert (xf**2 - 1) % (xf - 1) == K.zero
|
84 |
+
raises(ZeroDivisionError, lambda: (xf**2 - 1) % 0)
|
85 |
+
raises(TypeError, lambda: xf % [])
|
86 |
+
raises(TypeError, lambda: [] % xf)
|
87 |
+
|
88 |
+
# Test mod over ring
|
89 |
+
K = FiniteExtension(Poly(x**3 + 1, x, domain=ZZ))
|
90 |
+
xf = K(x)
|
91 |
+
assert (xf**2 - 1) % 1 == K.zero
|
92 |
+
raises(NotImplementedError, lambda: (xf**2 - 1) % (xf - 1))
|
93 |
+
|
94 |
+
|
95 |
+
def test_FiniteExtension_from_sympy():
|
96 |
+
# Test to_sympy/from_sympy
|
97 |
+
K = FiniteExtension(Poly(x**3 + 1, x, domain=ZZ))
|
98 |
+
xf = K(x)
|
99 |
+
assert K.from_sympy(x) == xf
|
100 |
+
assert K.to_sympy(xf) == x
|
101 |
+
|
102 |
+
|
103 |
+
def test_FiniteExtension_set_domain():
|
104 |
+
KZ = FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))
|
105 |
+
KQ = FiniteExtension(Poly(x**2 + 1, x, domain='QQ'))
|
106 |
+
assert KZ.set_domain(QQ) == KQ
|
107 |
+
|
108 |
+
|
109 |
+
def test_FiniteExtension_exquo():
|
110 |
+
# Test exquo
|
111 |
+
K = FiniteExtension(Poly(x**4 + 1))
|
112 |
+
xf = K(x)
|
113 |
+
assert K.exquo(xf**2 - 1, xf - 1) == xf + 1
|
114 |
+
|
115 |
+
|
116 |
+
def test_FiniteExtension_convert():
|
117 |
+
# Test from_MonogenicFiniteExtension
|
118 |
+
K1 = FiniteExtension(Poly(x**2 + 1))
|
119 |
+
K2 = QQ[x]
|
120 |
+
x1, x2 = K1(x), K2(x)
|
121 |
+
assert K1.convert(x2) == x1
|
122 |
+
assert K2.convert(x1) == x2
|
123 |
+
|
124 |
+
K = FiniteExtension(Poly(x**2 - 1, domain=QQ))
|
125 |
+
assert K.convert_from(QQ(1, 2), QQ) == K.one/2
|
126 |
+
|
127 |
+
|
128 |
+
def test_FiniteExtension_division_ring():
|
129 |
+
# Test division in FiniteExtension over a ring
|
130 |
+
KQ = FiniteExtension(Poly(x**2 - 1, x, domain=QQ))
|
131 |
+
KZ = FiniteExtension(Poly(x**2 - 1, x, domain=ZZ))
|
132 |
+
KQt = FiniteExtension(Poly(x**2 - 1, x, domain=QQ[t]))
|
133 |
+
KQtf = FiniteExtension(Poly(x**2 - 1, x, domain=QQ.frac_field(t)))
|
134 |
+
assert KQ.is_Field is True
|
135 |
+
assert KZ.is_Field is False
|
136 |
+
assert KQt.is_Field is False
|
137 |
+
assert KQtf.is_Field is True
|
138 |
+
for K in KQ, KZ, KQt, KQtf:
|
139 |
+
xK = K.convert(x)
|
140 |
+
assert xK / K.one == xK
|
141 |
+
assert xK // K.one == xK
|
142 |
+
assert xK % K.one == K.zero
|
143 |
+
raises(ZeroDivisionError, lambda: xK / K.zero)
|
144 |
+
raises(ZeroDivisionError, lambda: xK // K.zero)
|
145 |
+
raises(ZeroDivisionError, lambda: xK % K.zero)
|
146 |
+
if K.is_Field:
|
147 |
+
assert xK / xK == K.one
|
148 |
+
assert xK // xK == K.one
|
149 |
+
assert xK % xK == K.zero
|
150 |
+
else:
|
151 |
+
raises(NotImplementedError, lambda: xK / xK)
|
152 |
+
raises(NotImplementedError, lambda: xK // xK)
|
153 |
+
raises(NotImplementedError, lambda: xK % xK)
|
154 |
+
|
155 |
+
|
156 |
+
def test_FiniteExtension_Poly():
|
157 |
+
K = FiniteExtension(Poly(x**2 - 2))
|
158 |
+
p = Poly(x, y, domain=K)
|
159 |
+
assert p.domain == K
|
160 |
+
assert p.as_expr() == x
|
161 |
+
assert (p**2).as_expr() == 2
|
162 |
+
|
163 |
+
K = FiniteExtension(Poly(x**2 - 2, x, domain=QQ))
|
164 |
+
K2 = FiniteExtension(Poly(t**2 - 2, t, domain=K))
|
165 |
+
assert str(K2) == 'QQ[x]/(x**2 - 2)[t]/(t**2 - 2)'
|
166 |
+
|
167 |
+
eK = K2.convert(x + t)
|
168 |
+
assert K2.to_sympy(eK) == x + t
|
169 |
+
assert K2.to_sympy(eK ** 2) == 4 + 2*x*t
|
170 |
+
p = Poly(x + t, y, domain=K2)
|
171 |
+
assert p**2 == Poly(4 + 2*x*t, y, domain=K2)
|
172 |
+
|
173 |
+
|
174 |
+
def test_FiniteExtension_sincos_jacobian():
|
175 |
+
# Use FiniteExtensino to compute the Jacobian of a matrix involving sin
|
176 |
+
# and cos of different symbols.
|
177 |
+
r, p, t = symbols('rho, phi, theta')
|
178 |
+
elements = [
|
179 |
+
[sin(p)*cos(t), r*cos(p)*cos(t), -r*sin(p)*sin(t)],
|
180 |
+
[sin(p)*sin(t), r*cos(p)*sin(t), r*sin(p)*cos(t)],
|
181 |
+
[ cos(p), -r*sin(p), 0],
|
182 |
+
]
|
183 |
+
|
184 |
+
def make_extension(K):
|
185 |
+
K = FiniteExtension(Poly(sin(p)**2+cos(p)**2-1, sin(p), domain=K[cos(p)]))
|
186 |
+
K = FiniteExtension(Poly(sin(t)**2+cos(t)**2-1, sin(t), domain=K[cos(t)]))
|
187 |
+
return K
|
188 |
+
|
189 |
+
Ksc1 = make_extension(ZZ[r])
|
190 |
+
Ksc2 = make_extension(ZZ)[r]
|
191 |
+
|
192 |
+
for K in [Ksc1, Ksc2]:
|
193 |
+
elements_K = [[K.convert(e) for e in row] for row in elements]
|
194 |
+
J = DomainMatrix(elements_K, (3, 3), K)
|
195 |
+
det = J.charpoly()[-1] * (-K.one)**3
|
196 |
+
assert det == K.convert(r**2*sin(p))
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/test_homomorphisms.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests for homomorphisms."""
|
2 |
+
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.polys.domains.rationalfield import QQ
|
5 |
+
from sympy.abc import x, y
|
6 |
+
from sympy.polys.agca import homomorphism
|
7 |
+
from sympy.testing.pytest import raises
|
8 |
+
|
9 |
+
|
10 |
+
def test_printing():
|
11 |
+
R = QQ.old_poly_ring(x)
|
12 |
+
|
13 |
+
assert str(homomorphism(R.free_module(1), R.free_module(1), [0])) == \
|
14 |
+
'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1'
|
15 |
+
assert str(homomorphism(R.free_module(2), R.free_module(2), [0, 0])) == \
|
16 |
+
'Matrix([ \n[0, 0], : QQ[x]**2 -> QQ[x]**2\n[0, 0]]) '
|
17 |
+
assert str(homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])) == \
|
18 |
+
'Matrix([[0]]) : QQ[x]**1 -> QQ[x]**1/<[x]>'
|
19 |
+
assert str(R.free_module(0).identity_hom()) == 'Matrix(0, 0, []) : QQ[x]**0 -> QQ[x]**0'
|
20 |
+
|
21 |
+
def test_operations():
|
22 |
+
F = QQ.old_poly_ring(x).free_module(2)
|
23 |
+
G = QQ.old_poly_ring(x).free_module(3)
|
24 |
+
f = F.identity_hom()
|
25 |
+
g = homomorphism(F, F, [0, [1, x]])
|
26 |
+
h = homomorphism(F, F, [[1, 0], 0])
|
27 |
+
i = homomorphism(F, G, [[1, 0, 0], [0, 1, 0]])
|
28 |
+
|
29 |
+
assert f == f
|
30 |
+
assert f != g
|
31 |
+
assert f != i
|
32 |
+
assert (f != F.identity_hom()) is False
|
33 |
+
assert 2*f == f*2 == homomorphism(F, F, [[2, 0], [0, 2]])
|
34 |
+
assert f/2 == homomorphism(F, F, [[S.Half, 0], [0, S.Half]])
|
35 |
+
assert f + g == homomorphism(F, F, [[1, 0], [1, x + 1]])
|
36 |
+
assert f - g == homomorphism(F, F, [[1, 0], [-1, 1 - x]])
|
37 |
+
assert f*g == g == g*f
|
38 |
+
assert h*g == homomorphism(F, F, [0, [1, 0]])
|
39 |
+
assert g*h == homomorphism(F, F, [0, 0])
|
40 |
+
assert i*f == i
|
41 |
+
assert f([1, 2]) == [1, 2]
|
42 |
+
assert g([1, 2]) == [2, 2*x]
|
43 |
+
|
44 |
+
assert i.restrict_domain(F.submodule([x, x]))([x, x]) == i([x, x])
|
45 |
+
h1 = h.quotient_domain(F.submodule([0, 1]))
|
46 |
+
assert h1([1, 0]) == h([1, 0])
|
47 |
+
assert h1.restrict_domain(h1.domain.submodule([x, 0]))([x, 0]) == h([x, 0])
|
48 |
+
|
49 |
+
raises(TypeError, lambda: f/g)
|
50 |
+
raises(TypeError, lambda: f + 1)
|
51 |
+
raises(TypeError, lambda: f + i)
|
52 |
+
raises(TypeError, lambda: f - 1)
|
53 |
+
raises(TypeError, lambda: f*i)
|
54 |
+
|
55 |
+
|
56 |
+
def test_creation():
|
57 |
+
F = QQ.old_poly_ring(x).free_module(3)
|
58 |
+
G = QQ.old_poly_ring(x).free_module(2)
|
59 |
+
SM = F.submodule([1, 1, 1])
|
60 |
+
Q = F / SM
|
61 |
+
SQ = Q.submodule([1, 0, 0])
|
62 |
+
|
63 |
+
matrix = [[1, 0], [0, 1], [-1, -1]]
|
64 |
+
h = homomorphism(F, G, matrix)
|
65 |
+
h2 = homomorphism(Q, G, matrix)
|
66 |
+
assert h.quotient_domain(SM) == h2
|
67 |
+
raises(ValueError, lambda: h.quotient_domain(F.submodule([1, 0, 0])))
|
68 |
+
assert h2.restrict_domain(SQ) == homomorphism(SQ, G, matrix)
|
69 |
+
raises(ValueError, lambda: h.restrict_domain(G))
|
70 |
+
raises(ValueError, lambda: h.restrict_codomain(G.submodule([1, 0])))
|
71 |
+
raises(ValueError, lambda: h.quotient_codomain(F))
|
72 |
+
|
73 |
+
im = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
|
74 |
+
for M in [F, SM, Q, SQ]:
|
75 |
+
assert M.identity_hom() == homomorphism(M, M, im)
|
76 |
+
assert SM.inclusion_hom() == homomorphism(SM, F, im)
|
77 |
+
assert SQ.inclusion_hom() == homomorphism(SQ, Q, im)
|
78 |
+
assert Q.quotient_hom() == homomorphism(F, Q, im)
|
79 |
+
assert SQ.quotient_hom() == homomorphism(SQ.base, SQ, im)
|
80 |
+
|
81 |
+
class conv:
|
82 |
+
def convert(x, y=None):
|
83 |
+
return x
|
84 |
+
|
85 |
+
class dummy:
|
86 |
+
container = conv()
|
87 |
+
|
88 |
+
def submodule(*args):
|
89 |
+
return None
|
90 |
+
raises(TypeError, lambda: homomorphism(dummy(), G, matrix))
|
91 |
+
raises(TypeError, lambda: homomorphism(F, dummy(), matrix))
|
92 |
+
raises(
|
93 |
+
ValueError, lambda: homomorphism(QQ.old_poly_ring(x, y).free_module(3), G, matrix))
|
94 |
+
raises(ValueError, lambda: homomorphism(F, G, [0, 0]))
|
95 |
+
|
96 |
+
|
97 |
+
def test_properties():
|
98 |
+
R = QQ.old_poly_ring(x, y)
|
99 |
+
F = R.free_module(2)
|
100 |
+
h = homomorphism(F, F, [[x, 0], [y, 0]])
|
101 |
+
assert h.kernel() == F.submodule([-y, x])
|
102 |
+
assert h.image() == F.submodule([x, 0], [y, 0])
|
103 |
+
assert not h.is_injective()
|
104 |
+
assert not h.is_surjective()
|
105 |
+
assert h.restrict_codomain(h.image()).is_surjective()
|
106 |
+
assert h.restrict_domain(F.submodule([1, 0])).is_injective()
|
107 |
+
assert h.quotient_domain(
|
108 |
+
h.kernel()).restrict_codomain(h.image()).is_isomorphism()
|
109 |
+
|
110 |
+
R2 = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y))) / [x**2 + 1]
|
111 |
+
F = R2.free_module(2)
|
112 |
+
h = homomorphism(F, F, [[x, 0], [y, y + 1]])
|
113 |
+
assert h.is_isomorphism()
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/test_ideals.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test ideals.py code."""
|
2 |
+
|
3 |
+
from sympy.polys import QQ, ilex
|
4 |
+
from sympy.abc import x, y, z
|
5 |
+
from sympy.testing.pytest import raises
|
6 |
+
|
7 |
+
|
8 |
+
def test_ideal_operations():
|
9 |
+
R = QQ.old_poly_ring(x, y)
|
10 |
+
I = R.ideal(x)
|
11 |
+
J = R.ideal(y)
|
12 |
+
S = R.ideal(x*y)
|
13 |
+
T = R.ideal(x, y)
|
14 |
+
|
15 |
+
assert not (I == J)
|
16 |
+
assert I == I
|
17 |
+
|
18 |
+
assert I.union(J) == T
|
19 |
+
assert I + J == T
|
20 |
+
assert I + T == T
|
21 |
+
|
22 |
+
assert not I.subset(T)
|
23 |
+
assert T.subset(I)
|
24 |
+
|
25 |
+
assert I.product(J) == S
|
26 |
+
assert I*J == S
|
27 |
+
assert x*J == S
|
28 |
+
assert I*y == S
|
29 |
+
assert R.convert(x)*J == S
|
30 |
+
assert I*R.convert(y) == S
|
31 |
+
|
32 |
+
assert not I.is_zero()
|
33 |
+
assert not J.is_whole_ring()
|
34 |
+
|
35 |
+
assert R.ideal(x**2 + 1, x).is_whole_ring()
|
36 |
+
assert R.ideal() == R.ideal(0)
|
37 |
+
assert R.ideal().is_zero()
|
38 |
+
|
39 |
+
assert T.contains(x*y)
|
40 |
+
assert T.subset([x, y])
|
41 |
+
|
42 |
+
assert T.in_terms_of_generators(x) == [R(1), R(0)]
|
43 |
+
|
44 |
+
assert T**0 == R.ideal(1)
|
45 |
+
assert T**1 == T
|
46 |
+
assert T**2 == R.ideal(x**2, y**2, x*y)
|
47 |
+
assert I**5 == R.ideal(x**5)
|
48 |
+
|
49 |
+
|
50 |
+
def test_exceptions():
|
51 |
+
I = QQ.old_poly_ring(x).ideal(x)
|
52 |
+
J = QQ.old_poly_ring(y).ideal(1)
|
53 |
+
raises(ValueError, lambda: I.union(x))
|
54 |
+
raises(ValueError, lambda: I + J)
|
55 |
+
raises(ValueError, lambda: I * J)
|
56 |
+
raises(ValueError, lambda: I.union(J))
|
57 |
+
assert (I == J) is False
|
58 |
+
assert I != J
|
59 |
+
|
60 |
+
|
61 |
+
def test_nontriv_global():
|
62 |
+
R = QQ.old_poly_ring(x, y, z)
|
63 |
+
|
64 |
+
def contains(I, f):
|
65 |
+
return R.ideal(*I).contains(f)
|
66 |
+
|
67 |
+
assert contains([x, y], x)
|
68 |
+
assert contains([x, y], x + y)
|
69 |
+
assert not contains([x, y], 1)
|
70 |
+
assert not contains([x, y], z)
|
71 |
+
assert contains([x**2 + y, x**2 + x], x - y)
|
72 |
+
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
|
73 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3)
|
74 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4)
|
75 |
+
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2)
|
76 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x)
|
77 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z)
|
78 |
+
assert contains([x, 1 + x + y, 5 - 7*y], 1)
|
79 |
+
assert contains(
|
80 |
+
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
|
81 |
+
x**3)
|
82 |
+
assert not contains(
|
83 |
+
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
|
84 |
+
x**2 + y**2)
|
85 |
+
|
86 |
+
# compare local order
|
87 |
+
assert not contains([x*(1 + x + y), y*(1 + z)], x)
|
88 |
+
assert not contains([x*(1 + x + y), y*(1 + z)], x + y)
|
89 |
+
|
90 |
+
|
91 |
+
def test_nontriv_local():
|
92 |
+
R = QQ.old_poly_ring(x, y, z, order=ilex)
|
93 |
+
|
94 |
+
def contains(I, f):
|
95 |
+
return R.ideal(*I).contains(f)
|
96 |
+
|
97 |
+
assert contains([x, y], x)
|
98 |
+
assert contains([x, y], x + y)
|
99 |
+
assert not contains([x, y], 1)
|
100 |
+
assert not contains([x, y], z)
|
101 |
+
assert contains([x**2 + y, x**2 + x], x - y)
|
102 |
+
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
|
103 |
+
assert contains([x*(1 + x + y), y*(1 + z)], x)
|
104 |
+
assert contains([x*(1 + x + y), y*(1 + z)], x + y)
|
105 |
+
|
106 |
+
|
107 |
+
def test_intersection():
|
108 |
+
R = QQ.old_poly_ring(x, y, z)
|
109 |
+
# SCA, example 1.8.11
|
110 |
+
assert R.ideal(x, y).intersect(R.ideal(y**2, z)) == R.ideal(y**2, y*z, x*z)
|
111 |
+
|
112 |
+
assert R.ideal(x, y).intersect(R.ideal()).is_zero()
|
113 |
+
|
114 |
+
R = QQ.old_poly_ring(x, y, z, order="ilex")
|
115 |
+
assert R.ideal(x, y).intersect(R.ideal(y**2 + y**2*z, z + z*x**3*y)) == \
|
116 |
+
R.ideal(y**2, y*z, x*z)
|
117 |
+
|
118 |
+
|
119 |
+
def test_quotient():
|
120 |
+
# SCA, example 1.8.13
|
121 |
+
R = QQ.old_poly_ring(x, y, z)
|
122 |
+
assert R.ideal(x, y).quotient(R.ideal(y**2, z)) == R.ideal(x, y)
|
123 |
+
|
124 |
+
|
125 |
+
def test_reduction():
|
126 |
+
from sympy.polys.distributedmodules import sdm_nf_buchberger_reduced
|
127 |
+
R = QQ.old_poly_ring(x, y)
|
128 |
+
I = R.ideal(x**5, y)
|
129 |
+
e = R.convert(x**3 + y**2)
|
130 |
+
assert I.reduce_element(e) == e
|
131 |
+
assert I.reduce_element(e, NF=sdm_nf_buchberger_reduced) == R.convert(x**3)
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/agca/tests/test_modules.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test modules.py code."""
|
2 |
+
|
3 |
+
from sympy.polys.agca.modules import FreeModule, ModuleOrder, FreeModulePolyRing
|
4 |
+
from sympy.polys import CoercionFailed, QQ, lex, grlex, ilex, ZZ
|
5 |
+
from sympy.abc import x, y, z
|
6 |
+
from sympy.testing.pytest import raises
|
7 |
+
from sympy.core.numbers import Rational
|
8 |
+
|
9 |
+
|
10 |
+
def test_FreeModuleElement():
|
11 |
+
M = QQ.old_poly_ring(x).free_module(3)
|
12 |
+
e = M.convert([1, x, x**2])
|
13 |
+
f = [QQ.old_poly_ring(x).convert(1), QQ.old_poly_ring(x).convert(x), QQ.old_poly_ring(x).convert(x**2)]
|
14 |
+
assert list(e) == f
|
15 |
+
assert f[0] == e[0]
|
16 |
+
assert f[1] == e[1]
|
17 |
+
assert f[2] == e[2]
|
18 |
+
raises(IndexError, lambda: e[3])
|
19 |
+
|
20 |
+
g = M.convert([x, 0, 0])
|
21 |
+
assert e + g == M.convert([x + 1, x, x**2])
|
22 |
+
assert f + g == M.convert([x + 1, x, x**2])
|
23 |
+
assert -e == M.convert([-1, -x, -x**2])
|
24 |
+
assert e - g == M.convert([1 - x, x, x**2])
|
25 |
+
assert e != g
|
26 |
+
|
27 |
+
assert M.convert([x, x, x]) / QQ.old_poly_ring(x).convert(x) == [1, 1, 1]
|
28 |
+
R = QQ.old_poly_ring(x, order="ilex")
|
29 |
+
assert R.free_module(1).convert([x]) / R.convert(x) == [1]
|
30 |
+
|
31 |
+
|
32 |
+
def test_FreeModule():
|
33 |
+
M1 = FreeModule(QQ.old_poly_ring(x), 2)
|
34 |
+
assert M1 == FreeModule(QQ.old_poly_ring(x), 2)
|
35 |
+
assert M1 != FreeModule(QQ.old_poly_ring(y), 2)
|
36 |
+
assert M1 != FreeModule(QQ.old_poly_ring(x), 3)
|
37 |
+
M2 = FreeModule(QQ.old_poly_ring(x, order="ilex"), 2)
|
38 |
+
|
39 |
+
assert [x, 1] in M1
|
40 |
+
assert [x] not in M1
|
41 |
+
assert [2, y] not in M1
|
42 |
+
assert [1/(x + 1), 2] not in M1
|
43 |
+
|
44 |
+
e = M1.convert([x, x**2 + 1])
|
45 |
+
X = QQ.old_poly_ring(x).convert(x)
|
46 |
+
assert e == [X, X**2 + 1]
|
47 |
+
assert e == [x, x**2 + 1]
|
48 |
+
assert 2*e == [2*x, 2*x**2 + 2]
|
49 |
+
assert e*2 == [2*x, 2*x**2 + 2]
|
50 |
+
assert e/2 == [x/2, (x**2 + 1)/2]
|
51 |
+
assert x*e == [x**2, x**3 + x]
|
52 |
+
assert e*x == [x**2, x**3 + x]
|
53 |
+
assert X*e == [x**2, x**3 + x]
|
54 |
+
assert e*X == [x**2, x**3 + x]
|
55 |
+
|
56 |
+
assert [x, 1] in M2
|
57 |
+
assert [x] not in M2
|
58 |
+
assert [2, y] not in M2
|
59 |
+
assert [1/(x + 1), 2] in M2
|
60 |
+
|
61 |
+
e = M2.convert([x, x**2 + 1])
|
62 |
+
X = QQ.old_poly_ring(x, order="ilex").convert(x)
|
63 |
+
assert e == [X, X**2 + 1]
|
64 |
+
assert e == [x, x**2 + 1]
|
65 |
+
assert 2*e == [2*x, 2*x**2 + 2]
|
66 |
+
assert e*2 == [2*x, 2*x**2 + 2]
|
67 |
+
assert e/2 == [x/2, (x**2 + 1)/2]
|
68 |
+
assert x*e == [x**2, x**3 + x]
|
69 |
+
assert e*x == [x**2, x**3 + x]
|
70 |
+
assert e/(1 + x) == [x/(1 + x), (x**2 + 1)/(1 + x)]
|
71 |
+
assert X*e == [x**2, x**3 + x]
|
72 |
+
assert e*X == [x**2, x**3 + x]
|
73 |
+
|
74 |
+
M3 = FreeModule(QQ.old_poly_ring(x, y), 2)
|
75 |
+
assert M3.convert(e) == M3.convert([x, x**2 + 1])
|
76 |
+
|
77 |
+
assert not M3.is_submodule(0)
|
78 |
+
assert not M3.is_zero()
|
79 |
+
|
80 |
+
raises(NotImplementedError, lambda: ZZ.old_poly_ring(x).free_module(2))
|
81 |
+
raises(NotImplementedError, lambda: FreeModulePolyRing(ZZ, 2))
|
82 |
+
raises(CoercionFailed, lambda: M1.convert(QQ.old_poly_ring(x).free_module(3)
|
83 |
+
.convert([1, 2, 3])))
|
84 |
+
raises(CoercionFailed, lambda: M3.convert(1))
|
85 |
+
|
86 |
+
|
87 |
+
def test_ModuleOrder():
|
88 |
+
o1 = ModuleOrder(lex, grlex, False)
|
89 |
+
o2 = ModuleOrder(ilex, lex, False)
|
90 |
+
|
91 |
+
assert o1 == ModuleOrder(lex, grlex, False)
|
92 |
+
assert (o1 != ModuleOrder(lex, grlex, False)) is False
|
93 |
+
assert o1 != o2
|
94 |
+
|
95 |
+
assert o1((1, 2, 3)) == (1, (5, (2, 3)))
|
96 |
+
assert o2((1, 2, 3)) == (-1, (2, 3))
|
97 |
+
|
98 |
+
|
99 |
+
def test_SubModulePolyRing_global():
|
100 |
+
R = QQ.old_poly_ring(x, y)
|
101 |
+
F = R.free_module(3)
|
102 |
+
Fd = F.submodule([1, 0, 0], [1, 2, 0], [1, 2, 3])
|
103 |
+
M = F.submodule([x**2 + y**2, 1, 0], [x, y, 1])
|
104 |
+
|
105 |
+
assert F == Fd
|
106 |
+
assert Fd == F
|
107 |
+
assert F != M
|
108 |
+
assert M != F
|
109 |
+
assert Fd != M
|
110 |
+
assert M != Fd
|
111 |
+
assert Fd == F.submodule(*F.basis())
|
112 |
+
|
113 |
+
assert Fd.is_full_module()
|
114 |
+
assert not M.is_full_module()
|
115 |
+
assert not Fd.is_zero()
|
116 |
+
assert not M.is_zero()
|
117 |
+
assert Fd.submodule().is_zero()
|
118 |
+
|
119 |
+
assert M.contains([x**2 + y**2 + x, 1 + y, 1])
|
120 |
+
assert not M.contains([x**2 + y**2 + x, 1 + y, 2])
|
121 |
+
assert M.contains([y**2, 1 - x*y, -x])
|
122 |
+
|
123 |
+
assert not F.submodule([1 + x, 0, 0]) == F.submodule([1, 0, 0])
|
124 |
+
assert F.submodule([1, 0, 0], [0, 1, 0]).union(F.submodule([0, 0, 1])) == F
|
125 |
+
assert not M.is_submodule(0)
|
126 |
+
|
127 |
+
m = F.convert([x**2 + y**2, 1, 0])
|
128 |
+
n = M.convert(m)
|
129 |
+
assert m.module is F
|
130 |
+
assert n.module is M
|
131 |
+
|
132 |
+
raises(ValueError, lambda: M.submodule([1, 0, 0]))
|
133 |
+
raises(TypeError, lambda: M.union(1))
|
134 |
+
raises(ValueError, lambda: M.union(R.free_module(1).submodule([x])))
|
135 |
+
|
136 |
+
assert F.submodule([x, x, x]) != F.submodule([x, x, x], order="ilex")
|
137 |
+
|
138 |
+
|
139 |
+
def test_SubModulePolyRing_local():
|
140 |
+
R = QQ.old_poly_ring(x, y, order=ilex)
|
141 |
+
F = R.free_module(3)
|
142 |
+
Fd = F.submodule([1 + x, 0, 0], [1 + y, 2 + 2*y, 0], [1, 2, 3])
|
143 |
+
M = F.submodule([x**2 + y**2, 1, 0], [x, y, 1])
|
144 |
+
|
145 |
+
assert F == Fd
|
146 |
+
assert Fd == F
|
147 |
+
assert F != M
|
148 |
+
assert M != F
|
149 |
+
assert Fd != M
|
150 |
+
assert M != Fd
|
151 |
+
assert Fd == F.submodule(*F.basis())
|
152 |
+
|
153 |
+
assert Fd.is_full_module()
|
154 |
+
assert not M.is_full_module()
|
155 |
+
assert not Fd.is_zero()
|
156 |
+
assert not M.is_zero()
|
157 |
+
assert Fd.submodule().is_zero()
|
158 |
+
|
159 |
+
assert M.contains([x**2 + y**2 + x, 1 + y, 1])
|
160 |
+
assert not M.contains([x**2 + y**2 + x, 1 + y, 2])
|
161 |
+
assert M.contains([y**2, 1 - x*y, -x])
|
162 |
+
|
163 |
+
assert F.submodule([1 + x, 0, 0]) == F.submodule([1, 0, 0])
|
164 |
+
assert F.submodule(
|
165 |
+
[1, 0, 0], [0, 1, 0]).union(F.submodule([0, 0, 1 + x*y])) == F
|
166 |
+
|
167 |
+
raises(ValueError, lambda: M.submodule([1, 0, 0]))
|
168 |
+
|
169 |
+
|
170 |
+
def test_SubModulePolyRing_nontriv_global():
|
171 |
+
R = QQ.old_poly_ring(x, y, z)
|
172 |
+
F = R.free_module(1)
|
173 |
+
|
174 |
+
def contains(I, f):
|
175 |
+
return F.submodule(*[[g] for g in I]).contains([f])
|
176 |
+
|
177 |
+
assert contains([x, y], x)
|
178 |
+
assert contains([x, y], x + y)
|
179 |
+
assert not contains([x, y], 1)
|
180 |
+
assert not contains([x, y], z)
|
181 |
+
assert contains([x**2 + y, x**2 + x], x - y)
|
182 |
+
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
|
183 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3)
|
184 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4)
|
185 |
+
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2)
|
186 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x)
|
187 |
+
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z)
|
188 |
+
assert contains([x, 1 + x + y, 5 - 7*y], 1)
|
189 |
+
assert contains(
|
190 |
+
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
|
191 |
+
x**3)
|
192 |
+
assert not contains(
|
193 |
+
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z],
|
194 |
+
x**2 + y**2)
|
195 |
+
|
196 |
+
# compare local order
|
197 |
+
assert not contains([x*(1 + x + y), y*(1 + z)], x)
|
198 |
+
assert not contains([x*(1 + x + y), y*(1 + z)], x + y)
|
199 |
+
|
200 |
+
|
201 |
+
def test_SubModulePolyRing_nontriv_local():
|
202 |
+
R = QQ.old_poly_ring(x, y, z, order=ilex)
|
203 |
+
F = R.free_module(1)
|
204 |
+
|
205 |
+
def contains(I, f):
|
206 |
+
return F.submodule(*[[g] for g in I]).contains([f])
|
207 |
+
|
208 |
+
assert contains([x, y], x)
|
209 |
+
assert contains([x, y], x + y)
|
210 |
+
assert not contains([x, y], 1)
|
211 |
+
assert not contains([x, y], z)
|
212 |
+
assert contains([x**2 + y, x**2 + x], x - y)
|
213 |
+
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2)
|
214 |
+
assert contains([x*(1 + x + y), y*(1 + z)], x)
|
215 |
+
assert contains([x*(1 + x + y), y*(1 + z)], x + y)
|
216 |
+
|
217 |
+
|
218 |
+
def test_syzygy():
|
219 |
+
R = QQ.old_poly_ring(x, y, z)
|
220 |
+
M = R.free_module(1).submodule([x*y], [y*z], [x*z])
|
221 |
+
S = R.free_module(3).submodule([0, x, -y], [z, -x, 0])
|
222 |
+
assert M.syzygy_module() == S
|
223 |
+
|
224 |
+
M2 = M / ([x*y*z],)
|
225 |
+
S2 = R.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y])
|
226 |
+
assert M2.syzygy_module() == S2
|
227 |
+
|
228 |
+
F = R.free_module(3)
|
229 |
+
assert F.submodule(*F.basis()).syzygy_module() == F.submodule()
|
230 |
+
|
231 |
+
R2 = QQ.old_poly_ring(x, y, z) / [x*y*z]
|
232 |
+
M3 = R2.free_module(1).submodule([x*y], [y*z], [x*z])
|
233 |
+
S3 = R2.free_module(3).submodule([z, 0, 0], [0, x, 0], [0, 0, y])
|
234 |
+
assert M3.syzygy_module() == S3
|
235 |
+
|
236 |
+
|
237 |
+
def test_in_terms_of_generators():
|
238 |
+
R = QQ.old_poly_ring(x, order="ilex")
|
239 |
+
M = R.free_module(2).submodule([2*x, 0], [1, 2])
|
240 |
+
assert M.in_terms_of_generators(
|
241 |
+
[x, x]) == [R.convert(Rational(1, 4)), R.convert(x/2)]
|
242 |
+
raises(ValueError, lambda: M.in_terms_of_generators([1, 0]))
|
243 |
+
|
244 |
+
M = R.free_module(2) / ([x, 0], [1, 1])
|
245 |
+
SM = M.submodule([1, x])
|
246 |
+
assert SM.in_terms_of_generators([2, 0]) == [R.convert(-2/(x - 1))]
|
247 |
+
|
248 |
+
R = QQ.old_poly_ring(x, y) / [x**2 - y**2]
|
249 |
+
M = R.free_module(2)
|
250 |
+
SM = M.submodule([x, 0], [0, y])
|
251 |
+
assert SM.in_terms_of_generators(
|
252 |
+
[x**2, x**2]) == [R.convert(x), R.convert(y)]
|
253 |
+
|
254 |
+
|
255 |
+
def test_QuotientModuleElement():
|
256 |
+
R = QQ.old_poly_ring(x)
|
257 |
+
F = R.free_module(3)
|
258 |
+
N = F.submodule([1, x, x**2])
|
259 |
+
M = F/N
|
260 |
+
e = M.convert([x**2, 2, 0])
|
261 |
+
|
262 |
+
assert M.convert([x + 1, x**2 + x, x**3 + x**2]) == 0
|
263 |
+
assert e == [x**2, 2, 0] + N == F.convert([x**2, 2, 0]) + N == \
|
264 |
+
M.convert(F.convert([x**2, 2, 0]))
|
265 |
+
|
266 |
+
assert M.convert([x**2 + 1, 2*x + 2, x**2]) == e + [0, x, 0] == \
|
267 |
+
e + M.convert([0, x, 0]) == e + F.convert([0, x, 0])
|
268 |
+
assert M.convert([x**2 + 1, 2, x**2]) == e - [0, x, 0] == \
|
269 |
+
e - M.convert([0, x, 0]) == e - F.convert([0, x, 0])
|
270 |
+
assert M.convert([0, 2, 0]) == M.convert([x**2, 4, 0]) - e == \
|
271 |
+
[x**2, 4, 0] - e == F.convert([x**2, 4, 0]) - e
|
272 |
+
assert M.convert([x**3 + x**2, 2*x + 2, 0]) == (1 + x)*e == \
|
273 |
+
R.convert(1 + x)*e == e*(1 + x) == e*R.convert(1 + x)
|
274 |
+
assert -e == [-x**2, -2, 0]
|
275 |
+
|
276 |
+
f = [x, x, 0] + N
|
277 |
+
assert M.convert([1, 1, 0]) == f / x == f / R.convert(x)
|
278 |
+
|
279 |
+
M2 = F/[(2, 2*x, 2*x**2), (0, 0, 1)]
|
280 |
+
G = R.free_module(2)
|
281 |
+
M3 = G/[[1, x]]
|
282 |
+
M4 = F.submodule([1, x, x**2], [1, 0, 0]) / N
|
283 |
+
raises(CoercionFailed, lambda: M.convert(G.convert([1, x])))
|
284 |
+
raises(CoercionFailed, lambda: M.convert(M3.convert([1, x])))
|
285 |
+
raises(CoercionFailed, lambda: M.convert(M2.convert([1, x, x])))
|
286 |
+
assert M2.convert(M.convert([2, x, x**2])) == [2, x, 0]
|
287 |
+
assert M.convert(M4.convert([2, 0, 0])) == [2, 0, 0]
|
288 |
+
|
289 |
+
|
290 |
+
def test_QuotientModule():
|
291 |
+
R = QQ.old_poly_ring(x)
|
292 |
+
F = R.free_module(3)
|
293 |
+
N = F.submodule([1, x, x**2])
|
294 |
+
M = F/N
|
295 |
+
|
296 |
+
assert M != F
|
297 |
+
assert M != N
|
298 |
+
assert M == F / [(1, x, x**2)]
|
299 |
+
assert not M.is_zero()
|
300 |
+
assert (F / F.basis()).is_zero()
|
301 |
+
|
302 |
+
SQ = F.submodule([1, x, x**2], [2, 0, 0]) / N
|
303 |
+
assert SQ == M.submodule([2, x, x**2])
|
304 |
+
assert SQ != M.submodule([2, 1, 0])
|
305 |
+
assert SQ != M
|
306 |
+
assert M.is_submodule(SQ)
|
307 |
+
assert not SQ.is_full_module()
|
308 |
+
|
309 |
+
raises(ValueError, lambda: N/F)
|
310 |
+
raises(ValueError, lambda: F.submodule([2, 0, 0]) / N)
|
311 |
+
raises(ValueError, lambda: R.free_module(2)/F)
|
312 |
+
raises(CoercionFailed, lambda: F.convert(M.convert([1, x, x**2])))
|
313 |
+
|
314 |
+
M1 = F / [[1, 1, 1]]
|
315 |
+
M2 = M1.submodule([1, 0, 0], [0, 1, 0])
|
316 |
+
assert M1 == M2
|
317 |
+
|
318 |
+
|
319 |
+
def test_ModulesQuotientRing():
|
320 |
+
R = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y))) / [x**2 + 1]
|
321 |
+
M1 = R.free_module(2)
|
322 |
+
assert M1 == R.free_module(2)
|
323 |
+
assert M1 != QQ.old_poly_ring(x).free_module(2)
|
324 |
+
assert M1 != R.free_module(3)
|
325 |
+
|
326 |
+
assert [x, 1] in M1
|
327 |
+
assert [x] not in M1
|
328 |
+
assert [1/(R.convert(x) + 1), 2] in M1
|
329 |
+
assert [1, 2/(1 + y)] in M1
|
330 |
+
assert [1, 2/y] not in M1
|
331 |
+
|
332 |
+
assert M1.convert([x**2, y]) == [-1, y]
|
333 |
+
|
334 |
+
F = R.free_module(3)
|
335 |
+
Fd = F.submodule([x**2, 0, 0], [1, 2, 0], [1, 2, 3])
|
336 |
+
M = F.submodule([x**2 + y**2, 1, 0], [x, y, 1])
|
337 |
+
|
338 |
+
assert F == Fd
|
339 |
+
assert Fd == F
|
340 |
+
assert F != M
|
341 |
+
assert M != F
|
342 |
+
assert Fd != M
|
343 |
+
assert M != Fd
|
344 |
+
assert Fd == F.submodule(*F.basis())
|
345 |
+
|
346 |
+
assert Fd.is_full_module()
|
347 |
+
assert not M.is_full_module()
|
348 |
+
assert not Fd.is_zero()
|
349 |
+
assert not M.is_zero()
|
350 |
+
assert Fd.submodule().is_zero()
|
351 |
+
|
352 |
+
assert M.contains([x**2 + y**2 + x, -x**2 + y, 1])
|
353 |
+
assert not M.contains([x**2 + y**2 + x, 1 + y, 2])
|
354 |
+
assert M.contains([y**2, 1 - x*y, -x])
|
355 |
+
|
356 |
+
assert F.submodule([x, 0, 0]) == F.submodule([1, 0, 0])
|
357 |
+
assert not F.submodule([y, 0, 0]) == F.submodule([1, 0, 0])
|
358 |
+
assert F.submodule([1, 0, 0], [0, 1, 0]).union(F.submodule([0, 0, 1])) == F
|
359 |
+
assert not M.is_submodule(0)
|
360 |
+
|
361 |
+
|
362 |
+
def test_module_mul():
|
363 |
+
R = QQ.old_poly_ring(x)
|
364 |
+
M = R.free_module(2)
|
365 |
+
S1 = M.submodule([x, 0], [0, x])
|
366 |
+
S2 = M.submodule([x**2, 0], [0, x**2])
|
367 |
+
I = R.ideal(x)
|
368 |
+
|
369 |
+
assert I*M == M*I == S1 == x*M == M*x
|
370 |
+
assert I*S1 == S2 == x*S1
|
371 |
+
|
372 |
+
|
373 |
+
def test_intersection():
|
374 |
+
# SCA, example 2.8.5
|
375 |
+
F = QQ.old_poly_ring(x, y).free_module(2)
|
376 |
+
M1 = F.submodule([x, y], [y, 1])
|
377 |
+
M2 = F.submodule([0, y - 1], [x, 1], [y, x])
|
378 |
+
I = F.submodule([x, y], [y**2 - y, y - 1], [x*y + y, x + 1])
|
379 |
+
I1, rel1, rel2 = M1.intersect(M2, relations=True)
|
380 |
+
assert I1 == M2.intersect(M1) == I
|
381 |
+
for i, g in enumerate(I1.gens):
|
382 |
+
assert g == sum(c*x for c, x in zip(rel1[i], M1.gens)) \
|
383 |
+
== sum(d*y for d, y in zip(rel2[i], M2.gens))
|
384 |
+
|
385 |
+
assert F.submodule([x, y]).intersect(F.submodule([y, x])).is_zero()
|
386 |
+
|
387 |
+
|
388 |
+
def test_quotient():
|
389 |
+
# SCA, example 2.8.6
|
390 |
+
R = QQ.old_poly_ring(x, y, z)
|
391 |
+
F = R.free_module(2)
|
392 |
+
assert F.submodule([x*y, x*z], [y*z, x*y]).module_quotient(
|
393 |
+
F.submodule([y, z], [z, y])) == QQ.old_poly_ring(x, y, z).ideal(x**2*y**2 - x*y*z**2)
|
394 |
+
assert F.submodule([x, y]).module_quotient(F.submodule()).is_whole_ring()
|
395 |
+
|
396 |
+
M = F.submodule([x**2, x**2], [y**2, y**2])
|
397 |
+
N = F.submodule([x + y, x + y])
|
398 |
+
q, rel = M.module_quotient(N, relations=True)
|
399 |
+
assert q == R.ideal(y**2, x - y)
|
400 |
+
for i, g in enumerate(q.gens):
|
401 |
+
assert g*N.gens[0] == sum(c*x for c, x in zip(rel[i], M.gens))
|
402 |
+
|
403 |
+
|
404 |
+
def test_groebner_extendend():
|
405 |
+
M = QQ.old_poly_ring(x, y, z).free_module(3).submodule([x + 1, y, 1], [x*y, z, z**2])
|
406 |
+
G, R = M._groebner_vec(extended=True)
|
407 |
+
for i, g in enumerate(G):
|
408 |
+
assert g == sum(c*gen for c, gen in zip(R[i], M.gens))
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Computational algebraic field theory. """
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
'minpoly', 'minimal_polynomial',
|
5 |
+
|
6 |
+
'field_isomorphism', 'primitive_element', 'to_number_field',
|
7 |
+
|
8 |
+
'isolate',
|
9 |
+
|
10 |
+
'round_two',
|
11 |
+
|
12 |
+
'prime_decomp', 'prime_valuation',
|
13 |
+
|
14 |
+
'galois_group',
|
15 |
+
]
|
16 |
+
|
17 |
+
from .minpoly import minpoly, minimal_polynomial
|
18 |
+
|
19 |
+
from .subfield import field_isomorphism, primitive_element, to_number_field
|
20 |
+
|
21 |
+
from .utilities import isolate
|
22 |
+
|
23 |
+
from .basis import round_two
|
24 |
+
|
25 |
+
from .primes import prime_decomp, prime_valuation
|
26 |
+
|
27 |
+
from .galoisgroups import galois_group
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (684 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/basis.cpython-310.pyc
ADDED
Binary file (7.27 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/exceptions.cpython-310.pyc
ADDED
Binary file (2.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/galois_resolvents.cpython-310.pyc
ADDED
Binary file (24.3 kB). View file
|
|